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ABSTRACT

Previous studies in this laboratory have demonstrated that BrdU induces differentiation in 

the lung epithelial cell lines DLKP (derived from a poorly differentiated carcinoma of the 

lung) and A549 (derived from an adenocarcinoma of the lung). This differentiation 

involves the induction o f epithelial specific proteins, e.g. cytokeratins-8 and -18, and 

epithelial related adhesion molecules e.g. (X2P1 integrin. This thesis investigated the 

effects BrdU has on the expression o f Ep-CAM, a non-calcium dependent, homophilic 

cell-cell adhesion protein, in these cell lines. BrdU treatment induced Ep-CAM protein 

expression in DLKP after 7 days, with this induction reaching a plateau after 14 days of 

10(iM BrdU treatment. Similarly, in A549, Ep-CAM was induced following 7 days of 

BrdU treatment and the level o f induction also plateaued after 14 days of exposure to 

10(.iM BrdU. RT-PCR analysis revealed that the effect o f BrdU on Ep-CAM expression 

appears to be at the post-transcriptional/translational level, with no increase in mRNA 

levels compared to significant increase in protein levels in both cell lines.

Ep-CAM is believed to interfere with the functioning o f the Ca2+-dependent cell-cell 

adhesion molecule E-cadherin, by causing alterations in focal adhesion proteins. Analysis 

of two these proteins, a-actinin and a-catenin, showed that BrdU down-regulated their 

expression following Ep-CAM induction.

RT-PCR analysis of the Ep-CAM homologue GA733-1 revealed that, following BrdU 

treatment, mRNA expression is induced in DLKP. However, no induction is observed in 

A549.

The ability of other halogenated thymidine analogues to induce differentiation was also 

investigated. Three halogenated thymidine analogues were selected, each possessing a 

different mechanism of biological activity, CdU (which incorporates into DNA), 5,5'- 

FdU (which inhibits DNA synthesis) and 5-BUr (which incorporates into RNA). The 

ability of CdU to induce the expression of cytokeratin-8, cytokeratin-18, cytokeratin-19, 

Ep-CAM and (31 -integrin was demonstrated in both A549 and DLKP. RT-PCR analysis
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of A549 revealed that although the protein expression was induced, the mRNA level 

remained unchanged indicating that CdU was altering expression at a post- 

transcriptional/translational level. A significant up-regulation o f cytokeratin-8, 

cytokeratin-18, cytokeratin-19, Ep-CAM and |31 integrin also occurred in DLKP and 

A549 following 5,5'-FdU treatment. Analysis of mRNA levels following treatment with 

5,5'-FdU indicated that expression was being altered at a post-transcriptional/translational 

level. Treatment o f DLKP and A549 with 5-BUr did not produce any obvious alterations 

in protein expression or mRNA levels.

To develop models reflecting in vivo differentiation, DLKP and A549 were grown in a 

hormone supplemented medium (HSM) which contained a number o f physiologically 

relevant factors e.g. oestrogen and insulin. Growth in this medium induced expression of 

cytokeratin-8, cytokeratin-18, cytokeratin-19, and Ep-CAM in DLKP and A549. 

Experiments to identify the importance o f specific components in HSM revealed that the 

deletion of hydrocortisone, and cholera toxin from HSM cause an increase in induction of 

cytokeratin-19 and Ep-CAM. In contrast the removal of insulin from HSM, reduced the 

ability to induce expression of cytokeratin-19 and Ep-CAM in A549.

To further develop in vitro models reflecting in vivo differentiation, methods were 

established to generate primary cultures o f lung tumour cells and normal lung epithelial 

cells. The assessment o f a variety o f methods for the isolation of lung carcinoma cells 

from lung tumour samples did not reveal any advantages between the methods. 

Preliminary studies on isolated normal rat type II pneumocytes revealed morphological 

and antigenic changes during in vitro cultivation. These changes were consistent with the 

terminal differentiation of type II pneumocytes into type I pneumocytes. During the 

isolation o f lung tumour cells cultures o f fibroblasts were often established and these 

expressed the unusual feature o f cytokeratin protein expression, which is usually 

epithelial- specific.
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1.0 INTRODUCTION.
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1.1 CELL TYPES OF THE LUNG

The lungs are organised into the intrapulmonary airways (bronchi and bronchioles) 

which account for 6-10% of the lung volume, and the gas exchange area or 

parenchyma, which accounts for approximately 80-90% of the lung volume. The lung 

is encapsulated by the viseral pleura, a layer o f connective tissue and mesothelial 

cells. The pleura, along with the nervous and vascular tissue associated with the lungs 

account for 9-10% of the lung volume. Thus, the lung is an extremely complex organ. 

This complexity means that the lung consists o f over 40 different cell types, allowing 

the organ to function as the principle gas exchange in the body, with a surface area o f 

70m2. The lung also has a number o f nonventilatory functions including 

humidification, thermal regulation, mucociliary clearance, anti-bacterial response, and 

elimination o f volatile substances.

Structure of Human Lungs

tr/irhoA

Figure 1.1 Basic Structure o f the Lung
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1.2 EPITHELIAL LUNG CELL TYPES

1 .2 .1  T R A C H E O B R O N C H I A L  A I R W A Y S .

At least seven epithelial cell types lining the tracheobronchial airways have been 

identified. These epithelial cells types are classified as follows: basal cells, ciliated 

cells, brush cells, goblet (or mucous) cells, serous cells, Clara cells, and 

neuroendocrine cells (the latter four function as secretory cells) (Crapo et al., 1982).

Basal cells

Basal cells are oriented with long axes parallel to and in contact with the basal lamina. 

The cytoplasm, containing many filaments and few organelles, is usually small in 

relation to the nucleus. It is thought to be a progenitor cell for the other cell types 

(Plopper, 1996).

Ciliated cells

These are epithelial cells, which possess cilia of approximately 0.25p,m in diameter. 

The function of these cilia is to sweep the mucous that lines the trachea to the 

oesophagus where it is swallowed and eliminated.

Goblet (or Mucous cells)

Goblet cells are columnar in shape but may become distended in shape due to their 

intracellular secretions. The cell cytoplasm is characterised by numerous secretory 

granules which contain high molecular weight mucous acidic glycoprotein and 

electron lucent granules.

Serous cells

Serous cells have basal, located nuclei and apical microvilli. They contain abundant 

rough endoplasmic reticulum (rER) and apical electron-dense sectretory granules. 

(Plopper, 1996)



Clara cells

Clara cells have characteristics of both sectretory cells and those capable of 

metabolising xenobiotic compounds. The secretory granules are discrete membrane 

bound electron dense structures that contain either neutral glycoprotein or low 

molecular weight protein such as cclO (Singh and Katyal, 1992). They also produce 

surfactant proteins A and C. Clara cells have mitochondria scattered throughout their 

cytoplasm and a variable amount o f a granualar ER and glycogen. The Clara cell is 

the predominant non-ciliated cell in all the generations of intra-pulmonary airways in 

laboratory animals (Plopper, 1996).

Neuroendocrine cells

Neuroendocrine cells are typically pyramid in shaped with their bases containing 

osmophilic granules, abundant ER, Golgi complex, ribosomes, and many filaments. 

These cells are most abundant in the early stages of life and are sometimes associated 

with nerve endings (Plopper, 1996).

Other epithelial cells

Other unidentifiable epithelial cells exist as a small population. They have none o f the 

characteristics o f the several cell types outlined previously and have a generalised cell 

structure (Plopper, 1996).

4



1.2.2 TRANSITION ZONE.

The transition zone, the area where small air passages of the tracheobronchial tree join 

the gas exchange area, is the focus of many lung disorders. Their histological 

appearance is similar to that of terminal bronchioles with the exception that the 

epithelium is interrupted by alveoli (Plopper, 1996).

1 .2 .3  P A R E N C H Y M A .

Parenchyma (or respiratory area) consists of functional units called acini or terminal 

respiratory units. The acini are generally defined, as all the airspace’s distal to one 

terminal bronchiole. This includes the respiratory bronchiole branching from it and all 

the associated alveolar ducts, alveolar sacs, alveoli, and the airspace’s contained 

within these structures (Plopper, 1996). Two epithelial cell types line the interalveolar 

septa, type I pneumocytes and type II pneumocytes (Penny, 1988).

Type I  Pneumocytes

Type I pneumocytes are squamous cells with a centrally placed nucleus and possess a 

large cytoplasmic volume (cellular surface area is 5000 to 7000um ). There are few 

organelles present in the cells ultrastructure e.g. mitochondria, only minimal amounts 

of rER are observed, and a moderate number of endocytoic vesicles are present. The 

type I pneumocyte is the cell through which the gas exchange process occurs. Type I 

pneumocytes cover approximately 96% of the alveolar surface yet only account for 

45% of the cell mass in the alveoli (Plopper, 1996).

Type II Pneumocytes

Type II pneumocytes cover the remainder of the alveolar surface area (approximately 

3%). Type II pneumocytes are cuboidal cells possessing microvilli, and contain many 

cellular organelles e.g. mitrochondria (accounting for 5-9% of cell volume), rER,
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microvesicles, and Golgi complex. One of the main characteristic features o f this cell 

type is the presence of many osmophilic, laminated vesicles called lamellar bodies. 

These vesicles are storage bodies for surfactant, a heterogeneous mixture of lipid, 

carbohydrate and protein that forms a highly surface active complex, of which type II 

pneumocytes are the main producers (Plopper, 1996). The main role of surfactant is 

the reduction o f the surface tension at the air-liquid interface hence stabilising the 

alveoli and preventing lung collapse (Hollingsworth and Gilfillan, 1984). Other 

ancillary roles o f the surfactant system include host defence, acting as an opsonisation 

agent for the ingestion of bacteria by macrophages (Guzman et al., 1994), and the 

prevention of oedema in the alveoli spaces (Chevalier and Collet, 1972). The type II 

pneumocyte is also thought to act as a progenitor cell for both type I and type II 

pneumocytes (Sing and Katyal, 1992; Adamson and Bowden, 1975). Various studies 

both in vivo and in vitro have shown that type II pneumocytes must undergo a number 

of antigenic and morphological changes to adopt a type I cell phenotype (Paine et al.,

1995).
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1.3 LUNG DEVELOPMENT.

The development o f the lung requires cell proliferation, branching morphogenesis, 

alveolar saccule formation and cell differentiation. These processes require well co

ordinated events, which are achieved by epithelial-mesenchymal interactions, 

activation and repression of transcriptional factors, cytokine signalling, cell cycle 

control and extracellular matrix expression and signalling (see section 1.5).

The lung originates as a ventral appendage of the endodermal epithelium lining the 

floor of the primitive embryonic pharynx. It then divides laterally into two buds and 

begins dichotomous branching into the surrounding splanchnic mesenchyme. This 

repetitive epithelial branching process, termed branching morphogenesis, is 

characteristic of lung formation and continues throughout gestation.

Lung development can be divided into four chronological stages:

I) The pseudoglandular stage during which the bronchial and respiratory tree 

develops and an undifferentiated primordial system forms. It is during this stage that 

the most significant growth and branching of the primitive lung epithelium takes 

place. This determines the pattern o f the lung system. The epithelial cells at this stage 

have a columnar morphology and are undifferentiated.

II) The canalicular stage during which the respiratory bronchioles emerge, and 

this is accompanied by the development of terminal sacs and vascularisation. Towards 

the end of this stage, the undifferentiated cuboidal cells begin to develop inclusion 

bodies, characteristic of type II pneumocytes and Clara cells.

III) The terminal sac stage during which the number of terminal sacs and 

vascularisation increases. During this stage differentiation o f type II and type I 

pneumocytes occurs.

IV) The alveolar stage during which terminal sacs develop and enlarge into 

mature alveolar ducts and alveoli.
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1.4 STEM CELL THEORY IN LUNG.

Stem cells are characterised by an ability for self-maintenance and to vary this self

maintenance (i.e. to proliferate without maturation) and also to generate a large 

number of differentiated functional progeny following injury (Potten and Loffer,

1990). It should be noted that while a differentiation potential is a property o f stem 

cells it should not be confused as an essential feature o f ‘stem-ness’.

Although stem cells in adult organs are pluripotent, the ultimate differentiated lineage 

descendants are not usually expressed beyond the relevant organ in which the stem 

cell occurs, i.e. these stem cells are tissue determined stem cells (TDS cells) and are 

thus considered separate from embryonic stem cells (ES cells) (Sell, 1994). Another 

essential difference between TDS cells and ES cells is their differentiation status, all 

stem cells with the exception o f those present in the zygote (i.e. ES cells) are 

differentiated to a greater or lesser extent. The progeny of TDS cells may undergo 

further differentiation thereby giving rise to further differentiated descendants.

These TDS cells often divide and differentiate to give rise to transit cells, which are 

still capable of division. It is the division and further differentiation o f these transit 

cells that is responsible for increasing end cell number (Lajtha, 1982; Potten and 

Loffler, 1990). Transit cells are more mature than stem cells, often showing 

intermediate properties.

An important feature o f transit cells is that they are inexorably destined to move 

towards functional status. This can be demonstrated using the following model (figure 

1.4.1). If one stem cell is mobilised into differentiation and the transit cells it derives 

undergoes 10 cycles o f amplification then just over 1,000 cells are produced. If one 

assumes it takes 24 hours for all cell proliferation (stem cell and transit cell) then a 

small population of cells can maintain a high-end cell number. This is the situation 

which applies to bone marrow, skin and intestinal epithelium (Lajtha, 1982).
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Figure 1.4.1 Demonstrating how a small population of TDS cells can maintain 

high cell populations in tissue.

TDS cells are believed to undergo a slow cell cycle in order to reduce the risk of 

errors during DNA replication. As TDS cells are present throughout the life o f the 

organism, such error could become amplified in the organism (Lajtha, 1982). Indeed it 

is proposed that most tumours contain TDS cell populations (Khan et al., 1991) and 

that the overlapping expression o f differentiation markers (Gazdar et al., 1988) within 

cancer cells is indicative o f a stem cell origin for most lung epithelial tumours.
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1.4.1 GENERAL MODELS OF DIFFERENTIATION IN STEM CELLS.

During the differentiation process o f TDS cells, it is necessary that they maintain a 

constant cell number. One popular model for this is asymmetrical cell division. 

According to this model, when the stem cell divides one daughter cell remains a stem 

cell while the other becomes a transit cell and enters the differentiation process 

(Figure 1.4.2). This model suffers from a fundamental flaw in that it suggests that 

after receiving an appropriate stimulus it proceeds into a cell cycle that yields two 

different daughter cells (Lajtha, 1982).

Although proliferation and differentiation appear to be interlinked processes during 

stem cell maturation, they are quite separate events that occur concomitantly. This 

suggests the whole differentiation process may be understood in terms o f a spiral 

model (Potten and Loffler, 1990).
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Some TDS cells appear to be highly pluripotent giving rise to several different cell 

lineages, e.g. the haematopoietic system. Given this pluripotency, it can be envisaged 

that depending on the signal, a stem cell will adopt one direction of maturation over 

another.

According to a model proposed by Holtzer el al. (1975), TDS cells are only capable of 

binary decisions, e.g. stem cell A is capable o f generating cells B or C, and cell B may 

then differentiate to cells D or E. As the transit cells pass through this hierarchy they 

go through cell division.
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1.4.2 STEM CELL MODELS IN LUNG TISSUE.

The principle of stem cells and their in vitro cultivation and manipulation is now well 

established for a number of tissue types (see table 1.4.1).

Mammary gland Rudland and Barraclough (1988)

Liver Sell (1994)

Brian Bartlett et al. (1995)

Hematopoietic tissue Fraser et al. (1995)

Intestine Hermiston and Gordon (1995)

Skin Jones et al. (1995)

Table 1.4.1. In vitro cultivation of tissue stem cells.

The existence o f a similar stem cell in the lung is strongly suspected, given the ability 

of the lung to regenerate when exposed to local damage by atmospheric components 

(e.g. smoke, carbon black particles) and by lipophilic chemicals absorbed (e.g. 

through the gut) into the blood stream. However, identification o f such a stem cell is 

hampered by the complexity o f the respiratory system and the variety of cell types 

present (Plopper and Hyde, 1992; Paine and Simon, 1996; Mariassy, 1992).

The most predominant hypothesis for stem cells in vivo in lung is that a different set 

of progenitor cells exist (including basal cells) each destined to give rise to a discrete 

differentiated cell type (Evans et al., 1989; Jetten, 1991; Plopper et al., 1992). In the 

case of type II cells, these cells proliferate and then differentiate into type I cells 

(Adamson and Bowden, 1979) and Clara cells can differentiate into ciliated cells 

(Jetten, 1991).

However, an alternative proposal is that there is a single pluripotent stem cell for 

generating ciliated cells, Clara cells and the other differentiated cell types (McDowell, 

1987). This hypothesis suggests the existence of a monotypic stem cell, which gives
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rise to a transit cell described as a small mucous granule cell (SMGC). This cell is 

defined as being of a secretory yet premature type containing a few small granules 

which are periodic acid schiff reaction positive, and also possess a well developed 

endoplasmic reticulum, prominent Golgi complex and occasional tonofilament 

bundles. It is believed to possess an electron microscopically pale cytoplasm with 

apex reaching the lumen, and appears to show no evidence o f ciliary or mucous 

differentiation. This SMGC is believed to be able to arise through dedifferentiation of 

any differentiated secretory cell type. There is some empirical evidence for this 

hypothesis as Clara cells are found to be positive for surfactant protein-A (SP-A) and 

surfactant protein-B (SP-B) which were originally described as specific products of 

type II pneumocyte cells. This suggests that Clara cells and type II pneumocytes are 

derived from the same stem cell. Further tentative indications come from studies of 

fetal mouse lung where a definite population o f progenitor cells co-express SP-A 

(type II cells), cclO (Clara cells), and calcitonin gene-related protein (CGRP) 

(pulmonary neuroendocrine cells), each being a gene product used to indicate 

differentiated function in a different respiratory epithelial cell type (Wuenschell et al.,

1996).

In an attempt to reconcile these varying hypotheses, it is necessary to divide the 

respiratory system into two segments, the pseudo stratified epithelium and the simple 

epithelium. In the proposed model, the same stem cell is likely to occur for both at the 

fetal stage and to remain in the epithelium through the whole peri- and post-natal 

stages o f life (Figure 1.4.3). However, this stem cell at stage I does not appear to be 

involved in the steady state cell turnover but pursues its role to repopulate damaged, 

severely injured epithelia with various transit cells or predifferentiated secretory cell 

populations (stage II). These transit cells further differentiate into phenotypically 

functionally cell types (stage III). The majority of the differentiated cells present in 

stage III will differentiate irreversibly (stage IV) to their ultimate cell type. A small 

proportion of the differentiated cells remains at the stage III of the differentiation 

pathway. These cells at stage III are able to dedifferentiate into the presecretory or 

predifferentiated cells o f stage II, thus participating in steady state turnover between 

stage II and stage III. In the fetal stage of differentiation, the process seems to proceed 

directly from stage I to stage III (Emura, 1997).
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Figure 1.4.3 Proposed model for the generation and maintenance of epithelial 

cell lineages in lung.

The proliferation and differentiation o f type II pneumocytes into type I pneumocytes 

is an established fact even if specific elements are still unknown. The existence o f a 

population of stem cells for the whole lung is more controversial.

In summary, very little hard scientific data exists about stem cells in the lung, the 

pathways they follow, their distribution and mechanism of action. No markers yet 

exist for lung stem cells. The idea o f dedifferentiation is in contrast to the stem cell 

models developed in skin, liver and intestine in which the stem cell pre-exist in the 

epithelium (Emura, 1997). The lung is susceptible to local damage from a number of 

sources. These include atmospheric components (e.g. ozone, silica, and carbon black 

particles); lipophilic chemicals absorbed (e.g. through the gut) into the blood stream, 

and viral and bacterial infection. Therefore, it must possess some form o f mechanism 

to regenerate itself, even if limited. In attempting to identify if  a cell is a stem cell, its 

native state is often altered during the investigation. This may result in loss o f the
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stem cell or only a limited spectrum of responses being observed from the cell. Thus, 

due to the variety o f cell types present and by the complexity o f the respiratory 

system, identification o f a lung stem cell is a difficult task.
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1.5 FACTORS CONTROLLING DIFFERENTIATION IN THE 

LUNG

1.5.1 PHYSIOLOGICAL AGENTS OF LUNG DIFFERENTIATION.

The physiological agents involved in the modulation o f lung differentiation in vivo are 

largely unknown. A number of studies using isolated lung cells (both adult and fetal) 

and cell lines have implicated a number of candidate factors including glucocorticoid 

steroids, chemokines, cell-matrix and cell-cell interactions. The mechanisms and 

interaction o f these molecules are at best poorly understood.

1.5.1.1 Glucocorticoid Steroids.

The glucocorticoid steroids regulate gene expression by binding a specific receptor in 

the cytoplasm. Upon binding, a hormone-receptor complex is formed with an 

increased affinity for DNA and migrates into the nucleus. After entering the nucleus, 

alterations in transcription of specific genes occur. The glucocorticoid steroids can 

also act in a post-translational level by increasing the number o f ribosomes translating 

the messenger RNA (Palmiter, 1972).

The importance o f the glucocorticoid steroids in lung development can be observed in 

Corticotropin-releasing hormone-deficient (CRH-KO) mice. A consequence of this 

mutation is that mice are glucocorticoid insufficient and exhibit neonatal lethality. 

Death is due to respiratory insufficiency as a result of abnormal pulmonary 

development, and in particular, impaired maturation of type II pneumocytes and Clara 

cells (Muglia et al., 1999). In vivo studies have also implicated hydrocortisone in the 

development of the gas exchange area or the differentiation of type II alveolar cells 

(Kendall et al., 1990).
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Since glucocorticoids act in a systemic manner, often stimulating paracrine signals, it 

is therefore difficult to determine their exact role in a particular cell type. In vitro 

studies have helped to elucidate some o f the mechanisms of action o f glucocorticoid 

steroids in lung differentiation. Several studies have shown that the glucocorticoid 

steroids act on lung epithelial cells directly. For example, in studies using isolated 

type II pneumocytes and various cell line models such as A549, glucocorticoids 

induced functional differentiation as seen in the production of pulmonary surfactant, 

which they control at both transcriptional and post-transcriptional levels, and 

induction of alkaline phosphatase activity (a marker for type II pneumocytes) (Speirs 

et al., 1991). However, the majority of glucocorticoid effects on lung epithelial cell 

differentiation (in both fetal and adult systems) appear to be through the mediation of 

soluble factors from glucocorticoid stimulated fibroblasts (Post et al., 1984; Speirs et 

a l,  1991; McCormick et al., 1995). In the case of oestrogen, for example, both in vivo 

and in vitro studies have found that it accelerates lung differentiation at the expense of 

lung growth (Khosla et al., 1981; Adamson el al., 1990). The action of oestrogen on 

lung epithelium is mediated in part, by fibroblasts binding oestrogen and subsequently 

transferring a maturation factor(s) to the fetal epithelium (Adamson et al., 1990).

1.5.1.2 Chemokines.

A number o f different soluble factors have been implicated in lung epithelial cell 

differentiation. Most of these are produced by lung fibroblast cells and by other lung 

cells and appear to act in an autocrine and paracrine manner.

The Fibroblast Growth Factor (FGF) family, which contains several different 

polypeptides, appears to have an important role in lung development, with fetal lung 

epithelium having been shown to be positive for FGF-Receptor (Han et al. 1992). In 

vivo and in vitro studies have implicated several members of the FGF family in lung 

growth and development in both fetal and adult tissue. These include acidic-FGF, 

basic-FGF, and KGF (FGF-7) (Lesur et al., 1992; Leslie et al., 1993; Ulich et al.,

1994).
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Epidermal Growth Factor (EGF) has been implicated in general epithelial 

development as being essential for the development of rough Endoplasmic Reticulum 

(Beaulieu and Calvert, 1981). EGF has also been identified as a possible important 

regulatory molecule in lung epithelial cell differentiation (Sundell et ah, 1980; Gross 

et al., 1986). Studies investigating fetal lung development showed localisation in the 

developing bronchi and around both Clara cells and type II pneumocytes (Raaberg et 

al, 1992).

Insulin has also shown to be important in lung growth and differentiation, with 

receptors for insulin being demonstrated on whole fetal lung. Their number appears to 

increase during late gestation (Ulane et ah, 1982). One of the possible reasons for the 

importance of insulin is that glucose is a major substrate for the synthesis of the 

phospolipid, phosphatidylcholine, in type II pneumocytes. The receptors for insulin 

have been reported on type II pneumocytes from a number o f sources (Sugahara et ah, 

1987; Shapiro et ah, 1986).

1.5.1.3 Cell-Cell and Cell-Matrix Influences.

An important component in embryonic development is cell-cell interactions such as 

epithelial-mesenchymal and epithelial-epithelial. These interactions may be of a 

diffusable nature (Jessell and Melton, 1992) or through cell-cell adhesion molecules. 

Such interactions remain important in adult tissues e.g. skin (Fusenig, 1994).

Various studies have shown that soluble factors from lung fibroblasts can influence 

the growth and differentiation of lung epithelial cells in vivo e.g. the onset of 

pulmonary surfactant at birth (Smith and Fletcher, 1979). These studies have been 

confirmed by in vitro studies with cultured type II pneumocytes grown on fibroblast 

feeder layers producing surfactant and retaining differentiation characteristics such as 

morphology (Shannon et ah, 1987). Studies have shown that lung fibroblasts produce 

these soluble factors in response to glucocorticoid action. For example, the culture of 

A549 (which possesses features of type II pneumoctyes) with media from fibroblasts 

exposed to dexamethatasone (a synthetic hydrocortisone analogue) show an increase
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in various markers o f type II pulmonary cell differentiation e.g. pulmonary surfactant 

(McCormick et al., 1995; Speirs etal., 1991).

Similarly, interactions with the extracellular matrix play an important role in both 

development of the lung and its repair by determining cell fate and maintaining cell 

differentiation (Dobbs, 1990; Rannels and Rannels, 1989). For example, specific 

domains of the extracellular matrix are believed to determine the positions of type I 

and type II pneumocytes during lung growth and development, as well as during 

repair of the alveolar surface after injury (Lwebuga-Mukasa, 1991).

Investigations with isolated type II pneumocytes appear to support this theory. These 

studies show that fibronectin (a dimeric glycoprotein) promotes a loss of type II 

differentiation and an acquisition of type I characteristics, while laminin (a trimeric 

glycoprotein) promotes the retention o f type II pneumocyte function (Rannels and 

Rannels, 1989; Rannels et al., 1987). Furthermore, it appears that type II pneumocytes 

are responsible for the composition of the extracellular matrix (Dunsmore et al. 1995) 

and that the fibronectin-rich extracellular matrix (ECM) produced by isolated type II 

pneumocytes in vitro resembles the type I pneumocyte matrix (Rannels et al. 1987).

1.5.1.4 Retinoic acid.

Retinoic acid (RA), a derivative of vitamin-A, has been implicated in the control of 

both cellular proliferation and differentiation, and has been shown to effect over 200 

different gene products (Chytil, 1992). For example, RA regulates elastin production 

by lung fibroblasts during alveolar septal formation (McGowan et al., 1995).

Within the cytoplasm of the cell, RA binds to cytoplasmic retinoic acid-binding 

proteins (CRABPs) I and II and retinol binding proteins (CRBPs) I and II (Chytil and 

Ong, 1983). It is unclear if  these proteins act in the storage o f retinoids or in their 

metabolism (Yost et al., 1988). The expression of CRABP I occurs in both fetal and 

adult lung, while CRABP II is found in fetal lung but is absent in adult lung (Chytil, 

1992).
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In the nucleus RA acts through two sets o f transcription factors, the retinoic acid 

receptors (RAR) a, p, and y, and the retinoid X receptors (RXR) a, p, and y 

(Petkovich et a l,  1987; Yu et a l,  1991). RARs bind all-trans- and 9-cw-retinoic acid, 

while the RXRs selectively bind 9-cw-retionic acid (Leblanc and Stunnenberg, 1995). 

These receptors (RAR and RXR) recognise specific RA-responsive elements (RARE) 

within the promoter regulatory regions of several genes (McGowan et a l ,  1995).

In order to exert their influence, the receptors heterodimerise to each other, e.g. 

RXR:RAR, or with other members of the nuclear receptor super-family (Leblanc and 

Stunnenberg, 1995). This heterodimerisation leads to an increase in ligand specificity 

and the number of target genes that can be activated or repressed. Thus, the 

differential expression and ligand-selective activation of the six retinoid proteins leads 

to cell type-specific expression of programs for development and growth control 

(Sporn et al., 1994).

The a, P and y subtypes of the receptors regulate the expression of specific genes by 

being expressed in a specific spatial and temporal manner (Mangelsdorf et al., 1994). 

For example, in the developing mouse embryo RARa was detected throughout the 

lung, while RARP was localised near bronchi and RARy only appeared in the lung 

late in gestation (Dolle et al., 1990).

1.5.2 SYNTHETIC AGENTS OF DIFFERENTIATION, 5-BROMO-2- 

DEOXYURIDINE.

Low levels of the thymidine analogue 5-Bromo-2’-Deoxyuridine (BrdU) have been 

shown to alter the differentiation status of different kinds of cells. This modulation of 

differentiation may be inhibitory e.g. myoblast cells (O’Neill and Stockdale, 1974) or 

stimulatory e.g. neuroblasoma cells (Ross et al., 1995). Recent work in this laboratory 

has shown that BrdU induces differentiation in a poorly differentiated lung carcinoma 

cell line, DLKP (McBride et al., 1999; Meleady and Clynes, manuscript submitted).
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The exact mechanism by which BrdU exerts its differentiation-modulating effects is 

unclear but incorporation into DNA is seen as essential. This involves BrdU being 

converted to bromodeoxyuridine monophosphate, which competes with thymidine for 

incorporation into DNA (O’Neill and Stockdale, 1974). Experimental evidence for 

this hypothesis comes from a study by Keoffler et al. (1983) which showed that a 

thymidine kinase-deficient human myeloid cell line (HL-60) was unable to 

incorporate BrdU into its DNA and subsequently failed to respond to the ability of 

BrdU to modulate its differentiation status.

A number of models exist to explain the ability o f BrdU to modulate differentiation: 

Model 1:

This model envisages that BrdU induces chromosomal breakages. These breakages 

and the associated chromosomal aberrations can be associated with stepwise changes 

in the differentiation of a cell. These breakages are at specific points called fragile 

sites, 32 of which have been identified in murine chromosomes. It proposed that BrdU 

associates with these fragile sites which are known to be recombinogenic (Alexander 

et al., 1992). Some corroboration for this model comes from a study by Schwartz and 

Snead (1982) which found that BrdU seemed to concentrate within repetitive DNA 

nucleotide sequences rather than randomly throughout the nuclear DNA. However, 

such selective incorporation would suit the other models also.

Model 2:

BrdU alters the affinity o f DNA sequences for regulatory proteins. Studies on the lac 

operon with BrdU incorporated showed that the lac suppressor was bound with 

greater affinity (Lin and Riggs, 1972).

Model 3:

In this model BrdU has been found to exert its effects on differentiation by alteration 

of a key regulatory gene(s) that alters transcription of genes involved in differentiation 

(Arnold et a l., 1988; Rauth and Davidson, 1993). In BrdU inhibition o f myoblast 

differentiation, such an alteration occurs with the down-regulation or complete 

inhibition o f the key regulatory gene, M yoDl (Tapscott et al., 1989; Nanthakumar
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and Henning, 1995). It could be envisaged that BrdU-induced alteration of 

differentiation in other tissues e.g. inhibition in mammary epithelial cells and 

pancreatic acinar cells, could be by a similar mechanism. This is strengthened by the 

homology o f MyoDl to the myc family o f proteins, which have an important role in 

differentiation.

Indeed, in BrdU-induced differentiation o f neuroblastoma, a decrease of both N-wyc 

protein and mRNA levels occur (Ross et al., 1995).

Model 4:

This model envisages that BrdU incorporation causes an alteration in the reading 

frame o f the DNA template resulting in the formation of an abnormal mRNA, which 

is incapable o f synthesising the correct differentiation products (Hill et al., 1974).
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1.6 CELL ADHESION MOLECULES.

1.6.1 INTRODUCTION.

The expression on the surface o f cells of various types of cell adhesion molecules 

influences cell-cell sorting, tissue architecture and cellular differentiation. Cell 

adhesion molecules carry out these functions by binding other cell adhesion molecules 

or by binding to the extra-cellular matrix. The cell adhesion molecules are divided 

into several families such as integrins, selectins, cadherins and the immunogloblulin 

cell adhesion molecules. Alterations in the expression of these molecules have been 

linked to various pathological conditions, for example, the development of 

malignancy.

1.6.2 INTEGRINS.

The integrin receptors consist o f two heterodimer chains, a  and P, both of which form 

a non-covalently associated complex (Hynes, 1987). The a  subunit family of integrins 

possesses 15 variants, while the p subunit family contains 8 variants. Thus in theory, 

the a  and p subunits could associate to give over 100 integrins. However, the actual 

diversity is much more restricted and in reality the a  and p subunits combine into 22 

different integrins (Buck and Horwitz, 1987). The integrin family is sub-divided on 

the basis of its p subunit (Newham and Humphires, 1996). For example, the Pi 

integrins are involved principally in the adhesion between the ECM and the cellular 

cytoskeletion (Buck et al., 1987), while the p2 integrins participate in cell-cell 

interactions (Ruoslahti, 1991). The specificity of binding is not determined solely by 

integrin pairing but also by the cell type it is expressed in, for example the CC2P1
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integrin expressed on platelets will not bind laminin (Staatz et al., 1989) while this 

integrin expressed on other cell types will bind laminin (Elices and Hemler, 1989).

Integrins have been implicated in such diverse processes as inflammation, cellular 

growth, differentiation, and cell polarity (Albelda and Buck, 1990). For example, the 

interaction in developing lung between the ECM and the epithelium is mediated by 

integrin receptors, and allows normal lung branching to occur (Gumbiner, 1996).

As well as functioning as cell adhesion molecules, the integrins have signalling 

functions that regulate various aspects of cell behaviour and differentiation. This 

signalling is accomplished through the focal adhesion proteins, some of which have 

intercellular signalling functions (LaFlamme et al., 1992). In particular, the 

phosphorylation of focal adhesion kinase (FAK) can lead to a signalling event through 

the microtubial associated protein (MAP) kinase pathways (Davis, 1993).

1.6.3 CADHERINS.

There are at least twelve known members of the cadherin family, which are divided 

into subclasses, sharing a common basic structure. The three main subclasses are E- 

Cadherin (found on many types of epithelial cells), P-Cadherin (found in the placenta 

and epidermis), and N-Cadherin (found on nerve, heart and lens cells) (Takeichi,

1991).

The cadherins function as Ca2+-dependent homophilic cell-cell binding proteins (Nose 

et al., 1990). They are believed to modulate differentiation by co-signalling with other 

cell adhesion molecules e.g. E-cadherin and the integrins act together to modulate 

glandular differentiation in colorectal cells (Pignatelli et al., 1992)

The cadherin molecules interact with the actin cytoskeleton via the catenins (a, (5, and 

y) located in the focal adhesion complexes (Ozawa el al., 1990). Through these
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interactions with the catenins to the cytoskeleton, the cadherins form cell junctions in 

epithelial cells, which are crucial for epithelial cell polarity (Ranscht, 1994). A 

disruption of these catenins leads to a disruption of cadherin function (Ozawa et al., 

1990). E-cadherin can signal downstream via (3-catenin, which is an important 

component of the WNT-mediated signalling pathway (Christofori and Semb, 1999; 

Dale, 1998).

Epithelial-cadherin (E-Cadherin) is a glycoprotein with a molecular weight of 124kDa 

and is thought to be important during embryonic development (Shirayoshi et al., 

1986). It is also involved in generating and maintaining epithelial layers in adult 

tissues (Shirayoshi et al., 1986).

Down-regulation of the E-cadherin/catenin complex has been implicated in 

oesophageal cancer (Kadowaki et al., 1994), gastric cancer (Streit el al., 1996) and 

colon cancer (Vermeulen el al., 1995). E-cadherin suppression is also associated with 

various stages of differentiation and development (Christofori and Semb, 1999). 

Down-regulation of E-cadherin mediated cell-cell adhesion can occur via signalling 

from the Rho family o f small GTPases (Tapon and Hall, 1997). Two members of this 

family, cdc42 and racl, have been shown to down-regulate E-cadherin, by activating 

IQGAP1, which competes for a-catenin with [5-catenin thereby inducing the 

disassociation of a-catenin from the E-cadherin cell adhesion complex (Kuroda et al., 

1998).

1.6.3 IMMUNOGLOBULIN SUPER FAMILY CELL ADHESION  

MOLECULES.

The immunoglobulin super family cell adhesion molecules (CAMs) are so identified 

because they possess one or more domains homologous to those found on 

immunoglobulins. The CAMs are divided into sub-families; the three most important 

being neural cell adhesion molecule (N-CAM) (Cunningham, 1995), intercellular



-I

adhesion molecule (I-CAM) (Montefort et al., 1993) and vascular cell adhesion 

molecule (V-CAM). They are single pass transmembrane proteins, and mediate cell- 

cell adhesion by Ca -independent homophilic binding. Knockout experiments in 

mice have shown their importance in development. For example, deletion of N-CAM 

results in distortion of the nervous system (Tomasiewicz el al., 1993). Furthermore, 

the promoter regions of the CAM gene sequences contain targets for the products of 

the developmental Hox and Pax genes (Cunningham, 1995).
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1.7 Ep-CAM, A CELL-CELL ADHESION MOLECULE.

1.7.1 INTRODUCTION.

The various proteins involved in cell-cell adhesion and cell-matrix interactions also 

have roles in a number of other cellular and morphological processes. These include 

proliferation, differentiation, cellular locomotion, tissue organisation and regulation of 

other cell adhesion systems. One such protein is Ep-CAM, which is also known as 

epithelial specific antigen (ESA), 17-1A antigen, epithelial glycoprotein (EPG), 

GA733-2 antigen, KSA, EPG40, EPG2, C017-1A antigen, KS1/4 antigen, and MOC 

31 antigen. The exact function o f this protein has yet to be clarified, but it appears to 

function as a homophilic, Ca2+-independent intercellular adhesion molecule, capable 

of mediating cell aggregation, preventing cell scattering, and directing cell 

segregation (Litvinov et al., 1997). Ep-CAM is found expressed in a polarised manner 

on the basolateral (and sometimes the basal) surface o f the majority of simple 

cuboidal, columnar, pseudo-stratified columnar and transitional epithelia (Simon et 

al., 1990; Litvinov et al., 1994).

1.7.2 SEQUENCE AND STRUCTURE OF Ep-CAM.

The gene family identified as GA733 is composed (to date) o f two highly homologous 

genes GA733-1 and GA733-2. Ep-CAM has been identified as the protein product of 

the latter (Linnenbach el al., 1989; Szala et al., 1990).
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1.7.2.1 Sequence of Ep-CAM Gene.

The gene GA733-1 is an intronless functional gene. This unusual phenomenon is 

possibly due to retrotransposition (a flanking direct repeat is observed) and thus may 

be the mechanism for gene duplication in this family (with truncation occurring at the 

319 untranslated sequence o f the precursor cDNA) (Linnenbach et a l,  1989). 

Transcription of the GA733-1 gene produces a 1.8 kb. mRNA. The 35.7 kDa protein 

encoded is similar, but not identical to Ep-CAM (Szala et al., 1990; Fomaro et a l,

1995).

The possible promoter region for GA733-1 includes a GC box, which appears to be 

identical to the simian virus GC, box IV though it is not clear yet if  Ep-CAM is SP-1 

responsive. In addition, present in the promoter region are an atypical CAAT box and 

a canonical TATA box (Linnenbach et al., 1989).

The GA733-2 gene (Ep-CAM) is located on chromosome 4q (Helfrich et a l ,  1997; 

Linnenbach et a l ,  1993). When the sequence for Ep-CAM (GA733-2) was compared 

to the previously established cDNAs it emerged that GA733-2 consists of 9 exons 

interspaced with introns o f variable length (Linnenbach et a l ,  1989). Northern blot 

analysis has shown a single 1.5 kb mRNA species (Perez and Walker, 1989). cDNA 

studies show that the 3'-non coding region of Ep-CAM contains the sequence 

ATTTA. This sequence has been proposed as a recognition signal for mRNA 

initiation of cytokines and proto-oncogenes. The 3'-non coding region of Ep-CAM 

also contains a copy of TTATTTAT which has been identified as a consensus 

sequence in the 3 '-non coding region o f inflammatory mediators, suggesting that Ep- 

CAM shares a similar post-transcriptional regulatory mechanism with a number of 

proto-oncogenes and inflammatory mediators (Perez and Walker, 1989).

Limited northern blot data has indicated that GA733-1 and GA733-2 are expressed 

differently. High expression levels of GA733-1 mRNA are found in the pancreatic 

carcinoma cell line BXPC-3 relative to the colorectal cell line SW 948. Expression of 

GA733-2 (Ep-CAM) mRNA is low in the BXPC-3 cell line relative to the high 

expression level in SW 948 (Szala et a l,  1990). Such differences in expression levels
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are not unanticipated since a characteristic feature o f a retroposon, like GA733-1, is 

the acquisition o f a heterologous promoter. In northern blots, no cross hybridisation 

between the two different-sized transcripts was observed, reflecting that at the DNA 

level the coding regions are only 54% identical (Szala et ah, 1990).

Also playing a role in the evolution of the Ep-CAM gene family is exon shuffling, as 

portions of these genes are found to be homologous to exon 8 o f thyroglobulin. This 

exon shuffling would have preceded any gene duplication events o f the GA733 

family. The GA733 family also shows homology to exon 2 o f the IL-2 receptor, 

which encodes for sequences involved in growth factor binding. The significance of 

the presence of these sequences is unknown (Linnenbach et ah, 1989). Ep-CAM is 

found to be highly conserved in a range of species. This is seen with highly 

homologous sequences to the human GA733-2 gene, which encodes for Ep-CAM, 

found in monkey, hamster, and chicken genomes, and an 85% homology between 

murine and human forms of Ep-CAM (Bergsagel et ah, 1992). This related family of 

conserved proteins are associated almost exclusively with epithelial tissues 

(Linnenbach et ah, 1993; Borkowski et ah, 1996).

1.7.2.2 Structure of Ep-CAM Protein.

Ep-CAM does not have any structural similarities to the other four major types of cell 

adhesion proteins, such as cadherins, integrins, selectins and the immunoglobulin 

superfamily (Litvinov el ah, 1997). It thus may represent a new family of cell surface 

proteins. The Ep-CAM protein is a 314 amino acid, 40 kDa type I (single pass) 

transmembrane glycoprotein with an isoelectric point between 6.9 and 7.7 (Ross et 

ah, 1986; Linnenbach et ah, 1989).

Over 80% of the mature protein is expressed extracellularly. This N-terminal 

extracellular domain contains two cystine-rich EGF-like domains followed by a 

cystine poor region. The two EGF-like repeats overlap a thyroglobulin-like repeat. It 

also has a small domain homologous to nidogen (an extracellular laminin binding 

protein) and placental protein 12 (an IGF-1 binding protein), though it does not share 

any functional similarities (Simon et ah, 1990; Litvinov et al., 1994). The
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hydrophobic transmembrane region contains 21 amino acids. On the cytoplasmic side, 

there is a basic 4 amino acid stop transfer sequence which is followed by a short (26 

amino acid) cytoplasmic tail (Simon et al., 1990; Litvinov et a l, 1997), of which 9 are 

positively charged (Linnenbach et al., 1989). The extracellular region also contains 

three potential N-linked glycosylation sites (Asn-Xaa-Ser/Thr). Posttranslational 

glycosylation o f these sites increases the molecular weight from 34 kDa for the de 

novo protein to its final weight of approximately 40 kDa (Simon et al., 1990; Litvinov 

et al., 1994).

Comparison of the amino acid sequences of GA 733-1 and GA 733-2 (Ep-CAM) with 

alignment programs shows that the two proteins are 49% identical. However, when 

conserved substitutions are taken into account this increases to 67% homology. Strong 

conservation occurs with the position o f hydrophobic and hydrophilic residues in both 

antigens (Szala et al., 1990).

There exists two regions of high homology, one is located in the transmembrane 

region with the proteins sharing 97% homology. The other region of high homology is 

in the extracellular domain. This 39 residue region is 79% homologous. The 

homologous extracellular domain is in turn homologus to the type I repeat o f the 

thyrogloglobulin and (human leukocyte antigen-DR) HLA-DR associated invariant 

chains (Szala et al., 1990).
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1.7.3 FUNCTION AND MECHANISM OF Ep-CAM.

As stated earlier, Ep-CAM appears to be involved in cell-cell adhesion. Evidence for 

its role in cell-cell adhesion conies from in vitro studies which showed no 

involvement o f Ep-CAM in cell-substrate contacts on a number of substrates, rather 

Ep-CAM was present at areas o f intercellular contact (Litvinov et al., 1994). Its exact 

functions have yet to be determined, but it may play a role in cell segregation in 

multilayered epithelia and in the organisation o f epithelial tissues. Ep-CAM also is the 

main cell-cell adhesion molecule in most adenocarcinomas (Litvinov et al., 1994). 

The location o f Ep-CAM expressed on the membranes of highly differentiated cells is 

mainly in areas of intercellular contact. This differs from tumour cell where 

expression is homogenous on the cell membrane (Simon et al., 1990; Litvinov et al., 

1994).

Ep-CAM has been implicated in cell-cell sorting in a number of tissues, in particular, 

glandular epithelia. Where two layers o f epithelia are present Ep-CAM is not 

expressed in the basal layer. This differential expression may be important in sorting 

mature ductal and alveolar epithelial cells from a stem cell/myoepithelial cell 

population. Other organs where Ep-CAM cell segregation may play a function 

includes the pancreas and the sorting of p cells from non-P Islet cells, as P-islet cells 

are reported to express Ep-CAM (Litvinov et al., 1994). In human fetal pancreas the 

highest levels o f Ep-CAM expression occurs in developing P-islet-like cell clusters 

budding from the ductal epithelium, a cell compartment thought to comprise of 

endocrine progenitors. In the adult, the reverse pattern was observed with the P-islet 

cells exhibiting the lowest level of Ep-CAM and the ductal cells the highest. It was 

also shown that blockage of the Ep-CAM function by KS1/4 MAb induced insulin 

and glucagon gene transcription and translation in fetal pancreatic cell clusters (Cirulli 

et al., 1998).

In vitro aggregation studies with Ep-CAM-transfected and non-transfected cells 

showed that they aggregated separately (Litviniov et al., 1994). This can be explained 

in part by the finding that high Ep-CAM expression diminishes the effect o f other
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intercellular contacts (Litvinov et al., 1994; Litvinov el al., 1997). This feature is 

similar to that reported by Benchimol et al. (1989) for carcinoembryonic antigen.

These changes in intercellular adhesion are through alteration o f cadherin-mediated 

cell-cell adhesion (Litvinov et al., 1997). Transfection o f Ep-CAM into E-cadherin 

(E-CAD) positive cells did not reduce the number of E-CAD molecules, but rather 

caused a redistribution of them on the cell surface and a reduction in the number o f E- 

CAD mediated cell-cell adhesions (Litvinov et al., 1997). E-CAD interacts with the 

actin filament component of the cytoskeleton via a- and (3-catenins (figure 1.7.2(a)).

Investigation o f these interactions in Ep-CAM-transfected cells revealed a possible 

mechanism of action (Litvinov et al., 1997). In all cells (wild type and transfected), 

approximately similar levels of p-catenin was found irrespective of the level of Ep- 

CAM expression. There was however, a reduction in the p-catenin detergent insoluble 

fraction in transfected cells. O f more significance, was a reduction in both the total 

and detergent insoluble fractions of a-catenin (i.e. the fraction associated with the cell 

membrane focal adhesions). Thus, Ep-CAM expression effects E-CAD junctions by a 

reduction in a-catenin. Similar results were obtained in cells where the main cadherin 

is N-CAD, e.g. the human mammary cell line HBL-100. When the Ep-CAM levels 

are elevated in a cell, adhesion mediated by E-CAD and N-CAD is weakened and 

replaced with Ep-CAM intercellular adhesion, suggesting a co-ordination between the 

molecules rather then a simple anti-adhesion effect (Litvinov et al., 1997).

Induction of high levels of Ep-CAM also changes morphology and leads to a more 

scattered phenotype, although the cells still remain attached to each other. Cells 

transfected with a mutant Ep-CAM molecule, which was lacking the cytoplasmic 

domain showed no alteration to E-CAD distribution and binding (Litvinov et al.,

1997). This result implies that the cytoplasmic domain of Ep-CAM is important for 

the co-ordinated regulation o f the two molecules. Ep-CAM interacts with the actin- 

based cytoskeleton via a-actinin without the involvement of either a - or P-catenin 

(figure 1.7.2.(b)) (Balzar et al., 1998). Ep-CAM appears to possess two potential 

binding sites for a-actinin on its cytoplamic tail at positions 289 to 269 and 304 to 

314 (Balzar et al., 1998). This suggests that Ep-CAMs negative effect on cadherin
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junctions may be due to a redistribution o f a-actinin molecules away from cadherin 

molecules to Ep-CAM. An alternative mechanism may be Ep-CAM actively 

signalling which leads ultimately to a down-regulation o f a-catenin, This mechanism 

for action exists for ICAM-1 which down-regulates Pi integrin expression to which 

Ep-CAM possess some similarities (Litvinov et al., 1997).

E-cadherin is capable o f down-regulating Pi integrin expression during terminal 

differentiation in keratinocytes (Hodivala and Watt, 1994). Thus if Ep-CAM alters the 

function o f E-cadherin an increase in Pi-integrin should occur. Such a relationship can 

be observed in cervical intraepithelial neoplasia lesions where the expression o f Pi 

integrin is similar to that o f Ep-CAM (Litvinov et al., 1996).

Figure 1.7.2 Schematic diagram of E-Cadherin binding to the actin
cytoskeleton (A). Schematic diagram of Ep-CAM binding to the 
actin cytoskeleton (B). Note that in both cases a number of other 
proteins may also be involved to form focal adhesions e.g.
Vinculin.

An alternative function for the GA733 family has been suggested by study by Fomaro 

et al. (1995). They found that both GA733-1 and GA733-2 had homology to IGF-II
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binding proteins and could find no role for the proteins in cell adhesion. Ripani et al. 

(1998) found that the cytoplasmic tail of GA733-1 possesses potential serine and 

tyrosine phosphorylation sites and a phosphatidyl-inositol binding consensus 

sequence. Using antibodies against the protein, increased internal calcium levels were 

observed in MCF-7 (breast) and OvCA-432 (ovarian) cell lines. Thus, the alternative 

proposed function for the GA733 family is that o f a cell receptor for a yet unidentified 

ligand.

1.7.4 REGULATION OF Ep-CAM EXPRESSION.

The regulation o f Ep-CAM expression is still not fully elucidated. However, it does 

appear that cell density is important. In a series of experiments, Litivinov et al. (1994) 

observed that in cultures where single cells predominated (5% confluency), Ep-CAM 

was present at the pseudo-apical domains of the cell membrane. In cultures of greater 

density (70% confluency), the majority of Ep-CAM molecules relocated to the cell

cell boundaries. The formation of intercellular contacts seems to cause a slight 

decrease in Ep-CAM at the surface, as shown by flow cytometry. Low calcium caused 

a slight decrease in surface expression in the differentiated cell lines RC-6 and MCF-7 

(Litivinov et al., 1994).

1.7.5 TISSUE DISTRIBUTION OF Ep-CAM.

Ep-CAM has a wide distribution in normal human epithelia, with expression to be 

found on most simple, columnar and pseudostratified epithelia e.g. bronchiolar and 

alveolar epithelial cells, mucous acinar cells in the gastrointestinal tract, pancreatic 

islet cells and thyroid follicular cells (Momberg et al., 1987). No Ep-CAM expression 

occurs in squamous stratified epithelial cells, epidermal keratinocytes, gastric parietal
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cells, fibroblasts, thymic cortical epithelium, myoepithelial cells, hepatocytes and the 

peripheral blood of bone marrow (Momberg et a l,  1987; Moldenhauer et a l , 1987; 

Pantel et a l ,  1993; Litvinov et al., 1994; Litvinov et al., 1996). As no expression of 

Ep-CAM is detected in peripheral blood of bone marrow with MAbs, it is considered 

a useful tumour marker for circulating tumour cells and bone marrow development 

(Momberg et a l ,  1987).

In most adenocarcinomas increased levels of Ep-CAM can be found (Varki et al., 

1984), and in carcinomas that originate from squamous epithelia, de novo expression 

of Ep-CAM can be observed (Litvinov et al., 1996). Particularly strong staining 

reactions are usually seen in colon carcinoma and small cell lung carcinoma cell lines 

(Moldenhauer et al., 1987). Ep-CAM is believed to function as the main intercellular 

adhesion protein for some carcinoma cells (Litvinov et al., 1994). The distribution of 

Ep-CAM on the cell membrane of the breast cell line RC-6 is different in single cells 

as compared to colonies. In single cells the molecule is distributed more widely to 

include the pseudoapical domain, but when two cells form a stable intercellular 

contact, the Ep-CAM molecules relocate to the lateral domains (Litvinov et al., 1994). 

The membrane distribution o f Ep-CAM differs between normal cells and tumour 

cells, with normal cells exhibiting an apolarised expression while tumour cells show a 

more homogenous staining (Simon et a l,  1990). For example, in normal glandular 

tissues e.g. mammary gland epithelium Ep-CAM is found localised mainly at cell-cell 

boundaries between epithelial cells. In some mammary carcinomas the intensity of 

staining may be less then in normal tissue with some showing an increase in 

cytoplasmic staining compared to membrane staining (Litvinov et a l, 1994). In a 

study by Moldenhauer et a l (1987) using the anti- Ep-CAM antibody HEA125 

against a panel of human cell lines, no reaction was observed in any of the non

carcinoma cell lines used, which were derived from melanoma, neuroblastoma, 

sarcoma and leukaemia/lymphoma.

Litvinov et a l  (1996) investigated the expression of Ep-CAM in cervical squamous 

epithelia. It was noted that reserve cells, which are capable of differentiating into 

squamous epithelia both in vitro and in nude mice, expressed Ep-CAM. This normal 

expression o f Ep-CAM is repressed as soon as the trans-differentiating cells acquired 

the squamous phenotype. However, in dysplastic/neoplastic squamous epithelium this
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expression continues. The survey also showed that the appearance of Ep-CAM in 

cervical squamous epithelia correlated with loss of tissue-specific markers, including 

the markers for terminal differentiation of squamous epithelial cells and expression of 

markers for simple epithelia and enhanced proliferative activity. Cytokeratin 13 (a 

squamous differentiation related cytokeratin) expression was observed mainly in Ep- 

CAM negative regions of mature squamous metaplasia. Ep-CAM positive cells also 

failed to express involucrin (a marker o f terminal differentiation o f keratinocytes).

The expression patterns of simple epithelial cell cytokeratins 8 and 18 and of Ep- 

CAM were identical in metaplastic tissue o f the utrine cervix (Litvinov et al., 1996). 

The expression of Ki-67, a marker for proliferation, was found to be concurrent with 

Ep-CAM expression. Co-expression also occurred with cytokeratins 5 and 14, which 

mark proliferating cell populations. The expression of Ep-CAM in squamous cervix 

epithelia is clearly a disturbance of normal proliferation and differentiation, and 

reflects an early event in cervical carcinogenesis. Hence, Ep-CAM may serve as an 

early marker o f dysplastic/neoplastic changes in cervical squamous epithelium.

1.7.6 CLINICAL RELEVANCE OF Ep-CAM.

Ep-CAM is of clinical interest as a prognostic indicator (Varki et al., 1984; Songun el 

al., 1996), as a means of detecting metastatic cells in peripheral blood, microtumour 

visualisation via radioimmunolocalization (Momburg et al., 1987; Kievit at al., 1997) 

and as a possible target of various therapies.

Clinical interest exists in the detection of circulating tumour cells in peripheral blood 

as such detection may aid in the choice o f treatment given to a patient. For example, 

in treatments involving the use o f intensive high-dose chemotherapy combined with 

autologous bone marrow transplantation or peripheral stem cell reinfusion, the 

presence of contaminating tumour cells may worsen the prognosis (Helfrich et al., 

1997; de Graaf et al., 1997). As Ep-CAM has not been found with monoclonal 

antibodies on peripheral blood cells or bone marrow (Moldenhauer et al., 1987) to this
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end, RT-PCR of Ep-CAM has been investigated as a possible highly sensitive and 

reliable method of detection and quantification of circulating tumour cells (Helfrich el 

a l, 1997; de Graaf el al., 1997). Both labs found that this method was not reliable 

enough to use in a clinical situation. The potential problems included low level 

illegitimate (ectopic) expression of Ep-CAM in bone marrow and peripheral blood 

cells. The significance o f this illegitimate expression is not known, but similar 

expression has been found for cytokeratin 19 (Krissmann et al., 1995) and prostate- 

specific antigen (Smith et al., 1995) and PGP-9.5 (Norris et al., 1994).

It was also found that among a panel of cell lines, widely different levels of 

expression was detected with cell lines such as MDA-MB431 (breast carcinoma) and 

GLC4 (small-cell lung carcinoma) showing very low levels o f expression and cell 

lines such as MCF-7 (breast carcinoma) and T47D (breast carcinoma) showing very 

high levels of expression. Thus, quantification of the number of tumour cells present 

was not possible. In spiking experiments, de Graaf et al. (1997) could detect only one 

positive cell per 2 x 104 mononucleucocytes where as Helfrich et al. (1997) could 

detect one positive cell per 1 x 105 mononucleucocytes. Monoclonal antibody 

techniques can usually detect one carcinoma cell per lx l  04 - 5 x 105 

mononucleucocytes (de Graaf et al. 1997; Helfrich et al. 1997). Thus, further 

refinement is needed before RT-PCR is suited to a clinical setting. However, it may 

prove to be more reliable when used in conjunction with monoclonal antibody 

methods.

Due to its high expression in tumour cells, Ep-CAM has been tested for its ability to 

induce tumour kill by cytotoxic T lymphocytes. In a study by Ras et al. (1997) 410 

peptides derived from Ep-CAM were screened by their binding characteristics to the 

human leukocyte antigen, HLA-A*0201. From this, six peptides were selected for 

further studies. HLA-A*0210Kb transgenic mice were immunised with these peptides 

and the T lymphocytes were isolated from the spleens and tested for their ability to 

lyse Jurkat HLA-A*0210Kb cells exposed to peptide. Only one peptide, with the 

sequence GLKAGVIAV, showed a response. In a different approach, Kroesen et al. 

(1997) developed a chimeric MAb (called BIS-1) which has specificity for the CD3 

complex present on all T lymphocytes and is specific for Ep-CAM. The T-cells were 

pre-activated in vitro prior to treatment o f the carcinoma patients involved in the study
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(who suffered from malignant ascites or interpleural effusions). Though the in vitro 

assays with the patients blood demonstrated anti-tumour activity and previous studies 

with rat models showed that BIS-l/IL-2 could be effective against low systemic 

tumour burdens, no clear clinical responses were observed in the patients (Kroesen et 

al., 1997).

Ep-CAM is o f interest to those investigating the use o f MAb conjugates for the 

treatment o f various malignancies. In one such study, Zimmerman et al. (1997) 

combined the MAb MOC31 with a recombinant form o f Pseudomonas exotoxin A, 

which lacks the cell-binding domain ETA252-613. This construct, at concentrations 

of 0.0InM to 0.3nM, gave a 50% inhibition in the growth of the small cell lung 

carcinoma (SCLC) and adenocarcinoma cell lines tested. In athymic mice, regression 

was seen in small (40 mm ) chemoresistant tumour xenografts. In larger tumours (120 

mm3), growth was delayed. In another study, Elias et al. (1990) evaluated a KS1/4- 

methotrexate immunoconjugate in patients with stage IIIB or IV NSCLC. Patients 

received a dose maximum of 1661 mg. The study yielded just one possible clinical 

response, which reveals the problems associated with MAb conjugated to 

chemotherapy agents, toxins, or radioisotopes infused into patients. As most 

monoclonal antibodies utilised are murine, treatment often elicits a human anti-murine 

antibody response. Such responses can cause IgE-mediated allergic reactions or even 

more serious type 3 immune responses with associated organ and/or tissue damage. 

Such reactions may also effect MAb distribution and may neutralise it or prevent 

adequate tumour binding. In a study looking at this anti-murine antibody response, 

Petersen et al. (1991) investigated two KS1/4 Vinca alkaloid conjugates KS1/4- 

desacetylvinblastine and KSl/4-desacetyl-vinblastine-3-carboxyhydrazide. In the 44 

patients treated, 32 elicited an anti-mouse antibody response.
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1.8 AIMS OF THESIS

Previous research in this laboratory has shown that the halogenated thymidine 

analogue, bromodeoxyuridine (BrdU) induces the in vitro differentiation of the lung 

cell lines DLKP and A549. This differentiation is indicated by induction of the early 

cytokeratins -8 , -18 and -19  (McBride et o l ,  1999; Meleady and Clynes, manuscript 

submitted). Also shown to be induced by BrdU are the integrins ai(3i and a2Pi (Paula 

Meleady, Ph.D thesis 1997, DCU). Preliminary research by Dr. Meleady indicated 

that the cell-cell adhesion molecule Ep-CAM was also induced in these cell lines 

following BrdU treatment.

1.8.1 THE ROLE OF EP-CAM IN EPITHELIAL LUNG CELL LINE 

DIFFERENTIATION.

♦ The main aim of this thesis to confirm, and expand on this preliminary result. 

Knowledge of the role and function of Ep-CAM in the differentiation o f epithelial 

lung cells is very limited. It was the aim o f this work to use the induction of 

differentiation in DLKP and A549 as models for the role of Ep-CAM in lung 

differentiation. In this thesis, the molecular mechanism by which BrdU modulates 

Ep-CAM induction was to be addressed. Such information may aid in the 

elucidation of the control o f expression of Ep-CAM in vivo.

♦ It is believed that Ep-CAM may cause an alteration in the levels of focal adhesion 

proteins, thereby modulating the function of other cell adhesion proteins; it may 

therefore have a role in cell-cell sorting. Another aim o f the work conducted in 

this thesis was to investigate the effect of Ep-CAM induction on two focal 

adhesion proteins, utilising BrdU-treated DLKP and A549 as models.

♦ It was also decided to perform preliminary research on the effect o f BrdU on the 

translation of GA733-1 (a homologue o f Ep-CAM). There is no literature 

available on the role of GA733-1 in differentiation, and only limited studies have 

been performed on its expression in vivo.
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1.8.2 THE EFFECT OF OTHER HALOGENATED THYMIDINE

ANALOGUES ON EPITHELIAL LUNG CELL DIFFERENTIATION.

♦ The halogenated thymidine analogue BrdU has been shown in this laboratory to 

induce the expression o f cytokeratin and integrin proteins. The ability o f other 

halogenated thymidine analogues to alter the expression of these proteins was also 

to be investigated.

♦ It was hoped that such an investigation would help us gain a better understanding 

o f the mechanisms by which differentiation may be regulated. Potentially, this 

knowledge could be used in the design of therapeutics for differentiation therapy.

1.8.3 THE DEVELOPMENT OF IN  VITRO  MODELS THAT REFLECTED 

I N  VIVO  DIFFERENTIATION.

♦ As part of our programme to design in vitro models of in vivo differentiation, we 

decided to build on the research of Emura (1997). Who described a complex 

hormone supplemented media that induced differentiation in hamster fetal 

epithelial lung cell line. Work presented in this thesis investigated if various 

modifications of the medium induced differentiation in the lung epithelial cell 

lines DLKP and A549. Further investigations were conducted to identify which 

were most significant modulators of differentiation, by the deletion of specific 

components of this media.

♦ Investigations were conducted into the development o f in vitro models that 

reflected in vivo differentiation. This involved the establishment of primary 

cultures of type II pneumocytes to represent normal cells and primary cultures of 

lung tumours to represent cancer states. In the course o f this study, fibroblast cells 

were isolated; unusually these were found to be cytokeratin positive. Preliminary 

investigations were conducted into the expression o f cytokeratin, by the fibroblast 

cells derived in the course of this thesis and by three primary cultures of 

fibroblasts sourced from other established culture collections.
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2.0 MATERIALS AND METHODS.
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2.1 WATER

Ultrapure water was used in the preparation of all media and solutions. This water 

was purified by a reverse osmosis system (Millipore Milli-RO 10 Plus, Elgastat UHP) 

to a standard of 12 - 18 MQ/cm resistance.

2.2 GLASSWARE

All solutions for to cell culture and maintenance were prepared and stored in sterile 

glass bottles. Bottles (and lids) and all other glassware used for any cell-related work 

was prepared as follows: - all glassware and lids were soaked in a 2% (v/v) solution of 

RBS-25 (AGB Scientific) for at least 1-hour. This is a deproteinising agent, which 

removes proteineous material from the bottles. Glassware was scrubbed and rinsed 

several times in tap water, the bottles were then washed by machine using Neodisher 

detergent, an organic, phosphate-based acid detergent. The bottles were then rinsed 

twice with distilled water, once with ultrapure water and sterilised by autoclaving.

2.3 STERILISATION

Water, glassware and all thermostable solutions were sterilised by autoclaving at 

121 °C for 20 minutes (min) under pressure o f lbar. Thermolabile solutions were 

filtered through a 0.22^m sterile filter (Millipore, millex-gv, SLGV-025BS). Low 

protein-binding filters were used for all protein-containing solutions.

42



2.4 MEDIA PREPARATION

Medium was routinely prepared and sterility checked by Mr. Joe Carey (technician) 

as in SOP NCTCC 003-02. The basal media used during routine cell culture were 

prepared according to the formulations shown in Table 2.4.1. lOx media were added 

to sterile ultrapure water, buffered with HEPES and NaHC0 3  and adjusted to a pH of 

7.45 - 7.55 using sterile 1.5M NaOH and 1.5M HC1. The media were then filtered 

through sterile 0.22(j.m bell filters (Gelman, 121-58) and stored in 500ml sterile 

bottles at 4°C. Sterility checks were carried out on each 500ml bottle o f medium as 

described in Section 2.5.5.

The basal media were stored at 4°C up to their expiry dates as specified on each 

individual lOx medium container. Working stocks of culture media was prepared as 

100ml aliquots, supplemented with 2mM L-glutamine (Gibco, 25030-024) and 5% 

fetal calf serum (Bio-Whittaker; 14-601F, Lot No.- 55B007; Sigma, F7524, Lot No.- 

48H3377). This was stored for up to 2 weeks at 4°C, after which time, fresh culture 

medium was prepared.
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DMEM

(Gibco, 12501- 

029)

Hams F12

(Gibco, 21700- 

109)

MEM

(Gibco, 21430- 

020)

10X Medium 500ml Powder 500ml

Ultrapure H2O 4300ml 4700ml 4300ml

1M HEPES*

Sigm a, H-9136

100ml 100ml 100ml

7.5% NaHCOs

BDH, 30151

45ml 45ml 45ml

* HEPES = N-(2-Hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid)

Table 2.4.1 Preparation of basal media

For most cell lines, ATCC (Ham’s F 12/ DMEM (1:1)) supplemented with 5% FCS 

and 2mM L-glutamine was routinely used. MEM was supplemented with 5% FCS, 

2mM L-glutamine, lx  NEAA (Gibco, 11140-035) and lx  sodium pyruvate (Gibco, 

11360-039).

2.5 CELL LINES

All cell culture work was carried out in a class II down-flow re-circulating laminar 

flow cabinet (Nuaire Biological Cabinet) and any work, which involved toxic 

compounds, was carried out in a cytoguard (Gelman). Strict aseptic techniques were 

adhered to at all times. The laminar flow cabinet was swabbed with 70% industrial 

methylated spirits (IMS) before and after use, as were all items used in the cabinet. 

Each cell line was assigned specific media and waste bottles and only one cell line 

was worked with at a time in the cabinet which was allowed to clear for 15min 

between different cell lines. The cabinet itself was cleaned each week with industrial
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detergents (Virkon, Antec. International; TEGO, TH.Goldschmidt Ltd.), as were the 

incubators.

The cell lines used during the course of this study, their sources and their basal media
* •  •  2 requirements are listed in Table 2.5.1. Lines were maintained in 25cm flasks (Costar;

3050) or 75cm2 flasks (Costar; 3075) at 37°C and fed every two to three days.

2.5.1 SUBCULTURE OF ADHERENT LINES

During routine sub-culturing or harvesting of adherent lines, cells were removed from 

their flasks by enzymatic detachment.

Waste medium was removed from the flasks and rinsed with a pre-warmed (37°C) 

trypsin/EDTA (TV) solution (0.25% trypsin (Gibco, 25090-028), 0.01% EDTA 

(Sigma, EDS) solution in PBS A (Oxoid, BR14a)). The purpose of this was to inhibit 

any naturally occurring trypsin inhibitor, which would be present in residual serum.
      ̂ o
Fresh TV was then placed on the cells (2ml/25cm flask or 4ml/75cm flask) and the 

flasks incubated at 37°C until the cells were seen to have detached (5-10 min). The 

trypsin was deactivated by addition of an equal volume of growth medium (i.e. 

containing 5% serum). The entire solution was transferred to a 30ml sterile universal 

tube (Sterilin; 128a) and centrifuged at 1,000 rpm for 5 min. The resulting cell pellet 

was resuspended in pre-warmed (37°C) fresh growth medium, counted (Section 2.5.3) 

and used to re-seed a flask at the required cell density or to set up an assay.
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Cell Line Cell Type Source Basal Medium

DLKP Human poorly- 

differentiated lung 

carcinoma

Dr. Geraldine Grant, 

NCTCC

Hams F-12:DME 

(1:1) (ATCC).

A549 Human lung 

adenocarcinoma

ATCC 

American Type 

Culture Collection

Hams F-12:DME 

(1:1) (ATCC).

MCF-7 Human breast carcinoma ATCC 

American Type 

Culture Collection

MEM

Table 2.5.1 Cell lines used during the course of study.

2.5.3 CELL COUNTING

Cell counting and viability determinations were carried out using a trypan-blue 

(Gibco, 15250-012) dye exclusion technique.

An aliquot of trypan-blue was added to a sample from a single cell suspension in a 

ratio of 1:5. After 3 min incubation at room temperature, a sample of this mixture was 

applied to the chamber of a haemocytometer over which a glass coverslip had been 

placed. Cells in the 16 squares of the four outer corner grids of the chamber were 

counted microscopically, an average per comer grid was calculated with the dilution 

factor being taken into account and final cell numbers were multiplied by 104 to 

determine the number of cells per ml (volume occupied by sample in chamber is 

0.1cm x 0.1cm x 0.01cm i.e. 0.0001cm3 therefore cell number x 104 is equivalent to 

cells per ml). Non-viable cells were those, which stained blue while viable cells 

excluded the trypan-blue dye and remained unstained.
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2.5.4 CELL FREEZING

To allow long term storage o f cell stocks, cells were frozen and cryo-preserved in 

liquid nitrogen at temperatures below -180°C. Once frozen properly, such stocks 

should last indefinitely.

Cells to be frozen were harvested in the log phase o f growth (i.e. actively growing and 

approximately 50-70% confluent) and counted as described in Sections 2.5.3. 

Pelleted cells were re-suspended in serum and an equal volume of a DMSO/serum 

(1:9, v/v). The solution was slowly added drop-wise to the cell suspension, as DMSO 

is toxic to cells. A final concentration of at least 5x106 cells/ml was generated. The 

suspension was then aliquoted into cryovials (Greiner, 122 278) which were then 

quickly placed in the vapour phase o f liquid nitrogen containers (approximately - 

80°C). After 2.5 to 3.5 hours, the cryovials were lowered down into the liquid 

nitrogen where they were stored until required.

2.5.5 CELL THAWING

Immediately prior to the removal of a cryovial from the liquid nitrogen stores for 

thawing, a sterile universal tube containing growth medium was prepared for the rapid 

transfer and dilution of thawed cells to reduce their exposure time to the DMSO 

freezing solution which is toxic at room temperature. The suspension was centrifuged 

at 1,000 rpm. for 5 min, the DMSO-containing supernatant removed and the pellet re

suspended in fresh growth medium. A viability count was carried out (Section 2.5.3)

to determine the efficacy of the freezing/ thawing procedures. Thawed cells were
• 2placed into tissue culture flasks with the appropriate volume of medium (10ml/25cm 

flask and 15ml/75cm2 flask) and allowed to attach overnight. After 24 hours, the cells 

were re-fed with fresh medium to remove any residual traces o f DMSO.
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2.5.6 STERILITY CHECKS

Sterility checks were routinely carried out on all media, supplements and trypsin used 

for cell culture. Samples o f basal media were inoculated into Columbia (Oxoid, 

CM331) blood agar plates, Sabauraud (Oxoid, CM217) dextrose and Thioglycollate 

(Oxoid, CM173) broth’s which should between them detect most contaminants 

including bacteria, fungus and yeast. Growth media (i.e. supplemented with serum 

and L-glutamine) were sterility checked at least 2 days prior to use by incubating 

samples at 37°C which were subsequently examined for turbidity and other 

indications of contamination.
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2.6 MYCOPLASMA ANALYSIS

Mycoplasma examinations were carried out routinely (at least every 3 months) on all 

cell lines used in this study. These analyses were performed by Dr. Mary Heenan, 

Ms. Bojana Cumpf, and Mr. Michael Henry.

2.6.1 INDIRECT STAINING PROCEDURE

In this procedure, Mycoplasma-nQgaXi\Q NRK cells (a normal rat kidney fibroblast 

line) were used as indicator cells. As such, these cells were incubated with 

supernatant from test cell lines and then examined for Mycoplasma contamination. 

NRK cells were used for this procedure because cell integrity is well maintained 

during fixation. A fluorescent Hoechst stain was utilised which binds specifically to 

DNA and so will stain the nucleus of the cell in addition to any Mycoplasma DNA 

present. A Mycoplasma infection would thus be seen as small fluorescent bodies in 

the cytoplasm of the NRK cells and sometimes outside the cells.

NRK cells were seeded onto sterile coverslips in sterile Petri dishes at a cell density of 

2 x l03 cells per ml and allowed to attach overnight at 37°C in a 5% CO2, humidified 

incubator. 1ml of cell-free (cleared by centrifugation at 1,000 rpm for 5 min) 

supernatant from each test cell line was then inoculated onto a NRK Petri dish and 

incubated as before until the cells reached 20 - 50% confluency (4-5 days). After this 

time, the waste medium was removed from the Petri dishes, the coverslips washed 

twice with sterile PBS A, once with a cold PBS/Carnoys (50/50) solution and fixed 

with 2ml of Carnoys solution (acetic acid:methanol-l:3)for 10 min. The fixative was 

then removed and after air drying, the coverslips were washed twice in deionised 

water and stained with 2ml of Hoechst 33258 stain (BDH)(50ng/ml) for 10 min.
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From this point on, work proceeded in the dark to limit quenching o f the fluorescent 

stain.

The coverslips were rinsed three times in PBS. They were then mounted in 50% (v/v) 

glycerol in 0.05M citric acid and 0.1M disodium phosphate and examined using a 

fluorescent microscope with a UV filter.

2.6.2 DIRECT STAINING

The direct stain for Mycoplasma involved a culture method where test samples were 

inoculated onto an enriched Mycoplasma culture broth (Oxoid, CM403) - 

supplemented with 16% serum. 0.002% DNA (BDH; 42026), 2mg/ml fungizone 

(Gibco, 15290-026), 2 x l0 3 units penicillin (Sigma, Pen-3) and 10ml of a 25% (w/v) 

yeast extract solution - to optimise growth of any contaminants and incubated at 37°C 

for 48 hours. Sample of this broth were then streaked onto plates of Mycoplasma agar 

base (Oxoid, CM401) which had also been supplemented as above and the plates were 

incubated for 3 weeks at 37°C in a CO2 environment. The plates were viewed 

microscopically at least every 7 days and the appearance of small, “fried egg” -shaped 

colonies would be indicative o f a mycoplasma infection.
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2.7 DIFFERENTIATION STUDIES

2.7.1 HALOGENATED THYMIDINE ANALOGUES.

Differentiation studies were conducted using various halogenated thymidine 

analogues. The preparation, source, and final concentration o f usage are summarised 

in table 2.7.1. All compounds were stored at -20°C

Compound Source and Cat 

No.

Stock

Concentration

Treatment

Concentration

5-Bromo-2’-

DeoxyUridine

(BrdU)

Sigma, B5002 1 OmM in sterile 

UHP, and filter 

sterilise.

lOfxM

5-Fluro-5’-

DeoxyUridinc

(5,5'-5,5'-FdU)

Sigma F8791 lOmM in sterile 

UHP, and filter 

sterilise.

2 |iM

5-Chloro-2’-

DeoxyUridine

(CdU)

Sigma, C6891 1 OmM in sterile 

UHP, and filter 

sterilise.

lOfxM

5-BromoUridine

(5-BUr)

Sigma, B9752 1 OmM in sterile 

UHP, and filter 

sterilise.

70(iM

Table 2.7.1 Halogenated thymidine anloges used in differentiation studies.
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2.7.2 HORMONE SUPPLEMENTED MEDIUM.

Differentiation studies were conducted using a hormone supplemented medium 

(HSM). To ATCC supplemented with 5% FCS, and 2mM L-glutamine was added the 

components in the concentrations stated in table 2.7.2. This was prepared on the day 

of use.

Component Source and Cat. No. Final Concentration.

Insulin Sigma; I 1882 8|^g/ml

Hydrocortisone Sigma; H 0135 3fJ.g/ml

Oestrogen Sigma; E 2257 2.7r|g/ml

Epidermal Growth 

Factor (EGF)

Sigma; E 1264 20rig/ml

Cholera Toxin Sigma; C 8052 0.25fig/ml

Table 2.7.2 Components used for the preparation of HSM.

2.7.3 DIFFERENTIATION ASSAYS. IMMUNOCYTOCHEMISTRY.

2.7.3.1 Immunocytochemistry. Preparation of sample.

In all experiments, cells were plated onto 6-well plates (Costar, 3516) at densities of 

5x103 per well for DLKP and A549 1.5ml o f medium was sufficient for each well. 

The cells were allowed to attach and form colonies by incubating at 37°C, 5% CO2 for 

48 hours. The plates were covered with parafilm to prevent contamination. The 

medium was then removed and replaced with medium with the required 

concentrations o f halogenated thymidine analogue, or with HSM. Plates were 

wrapped in aluminium foil because of the light-sensitive nature of some of the 

compounds being used e.g. oestrogen. The plates were incubated for up to 7 days. 

Medium was replaced every 2-3 days over the course of the assay. All waste medium
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was retained for disposal by incineration.

At the end of the assay, medium was removed from the cells, the plates were rinsed 3 

times with PBS A and the cells were fixed with methanol as described in Section 

2.7.3.2. Immunocytochemistry was the carried out using a range of antibodies as 

described in Section 2.7.3.3.

2.132  Immunocytochemistry. Fixation of cells.

This procedure was used for all cells whether they were grown on 6-well plates, 

multiwell slides, or cytospins had been prepared from them. For fixation, cells were 

rinsed 3 times with PBS A and then incubated at -20°C for 7 minutes using ice-cold 

methanol. The methanol was the removed from the cells and the cells were allowed to 

air-dry for a number of hours or overnight and then stored at -20°C until required. 

This method appeared to be successful for all antibodies investigated during the 

course of the study.

2 .133  Immunocytochemistry. Procedure.

The avidin-biotin complex (ABC) immunoperoxidase technique combined with the 

diaminobenzidine (DAB) visualisation procedure was used in all 

immunocytochemistry experiments. The ABC method involves application of a 

biotin-labelled secondary antibody to cells probed with a primary antibody, followed 

by the addition of avidin-biotin-peroxidase complex which results in a high staining 

intensity due to the formation of an avidin-biotin lattice which contains peroxidase 

molecules. The peroxidase enzyme then reacts with a DAB solution to give an 

insoluble, brown-coloured precipitate. The formation of this brown precipitate- 

coloured precipitate is indicative of primary antibody reactivity.

The procedure used is as follows:

Cell preparations (cytospins, multiwell slides, 6-well tissue culture plates) which had 

been previously fixed in methanol and frozen at -20°C were allowed to thaw and 

equilibrate at room temperature. A grease pen (DAKO, S2002) was used to encircle
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cells on cytospins, multiwell slides and in tissue culture plates to contain the various 

solutions involved. The cells were incubated for 5 minutes with a 3% H2O2 solution 

to quench any endogenous peroxidase activity that may be present in the cells and 

could lead to false positive results. The cells were then rinsed with UHP water and 

placed in Tris-buffered saline (TBS) (0.05M Tris/HCl, 0.15M NaCl, pH 7.6) for 5 

minutes. The slides were then incubated for 20 minutes at room temperature (RT) 

with normal rabbit serum (DAKO, X092) diluted 1:5 in TBS to block non-specific 

binding. This was then removed and 25-30pl o f optimally diluted primary antibody 

was placed on the cells. The slides and tissue-culture plates were placed on a tray 

containing moistened tissue paper and incubated at 37°C for 2 hours. The primary 

antibodies used in the study are listed in Table 2.7.3. The slides were then rinsed in 

TBS/ 0.1% Tween (Sigma, P-1379), x3 in 15 min, and then incubated for 30 min with 

biotinylated rabbit anti-mouse immunoglobulins (DAKO, E354) diluted 1:300 in 

TBS. The slides were rinsed as before and incubated with strepABComplex/ Horse 

Radish Peroxidase (HRP) (DAKO, K377) for 30 min at RT, after they were rinsed x3 

in TBS/ 0.1% Tween in 15 min. The cells were then incubated with a DAB solution 

(DAKO, S3000) for 10-15 min. Excess DAB solution was then rinsed off with UHP 

water and the slides were counter-stained with a 3% methyl green (Sigma, M-5015). 

Slides were then mounted using a commercial mounting solution (DAKO, S3023).
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Antibody Dilution Supplier Catalogue No.

323/A3

(anti-Ep-CAM) *

1 : 150 NeoMarkers MS-181-P1

Ep-CAM Abl 

(VU-1D9) *

1 : 150 NeoMarkers MS-144-P1

Cytokcratin-8 1 : 200 Sigma C 5301

Cytokeratin-18 1 : 800 Sigma C 8541

Cytokcratin-19 1 : 50 Sigma C 6930

Pan-Cytokeratin 1 : 100 Sigma C 2562

Bi-Intcgrin 1 : 100 Serotech MCA 1188

* These anti-bodies were used together to increase sensitivity.

Table 2.7.3 Primary antibodies used in immunocytochcmical studies.
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2.7.4 DIFFERENTIATION STUDIES. WESTERN BLOT ANALYSIS.

Proteins for western blot analysis were separated by SDS-polyacylamide gel 

electrophoresis (SDS-PAGE).

2.7.4.1 Sample preparation

Cells were inoculated into 75cm2 flasks at a density of lx lO 5 cells per flask and 

allowed to attach and form colonies. Medium, at concentrations from 0-1 OuM. was 

then added to the cells after 48 hours. The medium was then removed and replaced 

with medium with the required concentrations of halogenated thymidine analogue, or 

with HSM. Flasks were wrapped in aluminium foil because of the light-sensitive 

nature o f some o f the compounds being used e.g. oestrogen. The flasks were 

incubated for 7 and 14 days. Medium was replaced every 2-3 days over the course of 

the assay. All waste medium was retained for disposal by incineration. The cells were 

then harvested by trypsinisation, washed three times in cold, sterile PBS A, pelleted 

and stored at -80°C until required.

Cells were then lysed in buffer containing 62.5mM Tris-HCl pH 6.8, 12.5% glycerol, 

2% Nonidet P40 (Sigma, N6507), 2.5mM phenylmethylsulphonyl fluoride (PMSF) 

(Sigma, P7626), 1.25mM EDTA, 12.5(j.g/ml leupeptin (Sigma, L2884), 116|j.g/ml 

aprotinin (Sigma, A 1153) for 30 min on ice. The extracts were used immediately for 

western blot analysis.

2.7.4.2 Gel electrophoresis

Resolving and stacking gels were prepared as outlined in Table 2.7.4 and poured into 

clean 10cm x 8cm gel cassettes which consisted of 1 glass and 1 aluminium plate, 

separated by 0.75cm plastic spacers. The resolving gel was poured first and allowed 

to set. The stacking gel was then poured and a comb was placed into the stacking gel 

in order to create wells for sample loading. Once set, the gels could be used 

immediately or wrapped in aluminium foil and stored at 4°C for 24 hours.
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Before samples were loaded onto the stacking gels, equal cell numbers (usually 2x104 

cells per lane) were further lysed in 2x loading buffer (2.5ml 1.25M-Tris/HCl, l.Og 

SDS, 5.8ml glycerol and 0.1% bromophenol blue (Sigma, B8026) made up to 25ml 

with distilled water). The samples were then loaded including 6(al of molecular weight 

colour protein markers (Sigma, C-3437). The gels were run at 250V, 45mA for 

approximately 1.5 hours. When the bromophenol blue dye front was seen to have 

reached the end o f the gels, electrophoresis was stopped.

Components Resolving gel 

(7.5%)

Resolving gel 

(12%)

Stacking gel

Acrylamide stock* 3.8ml 5.25ml 0.8ml

Ultrapure water 8.0ml 6.45ml 3.6ml

1,875M-Tris/HCl, pH 8.8 3.0ml 3.0ml -

1.25M-Tris/HCl, pH 6.8 - - 0.5ml

10% SDS (Sigma, L-4509) 150jil 150fj,l 50(il

10% Ammonium 

persulphate 

(Sigma, A-1433)

60(0,1 60(j.l 17 pi

TEMED 

(Sigma, T-8133)

lOfal I0[i\ 6 pi

Acrylamide stock = 29.lg  acrylamide (Sigma, A-8887) and 0.9g N N ’-methylene bis- 

acrylamide (Sigma, N-7256) made up to 100ml with distilled water 

Table 2.7.4. Preparation of electrophoresis gels

2.7.4.3 Western blotting

Following electrophoresis, the acrylamide gels were equilibrated in transfer buffer 

(25mM Tris, 192mM glycine (Sigma, G-7126) pH 8.3-8.5 without adjusting) for 20 

min. Protein in gels were transferred onto Hybond ECL nitrocellulose membranes
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(Amersham, RPN 2020D) by semi-dry electroblotting. Five sheets o f Whatman 3mm 

filter paper (Whatman, 1001824) were soaked in transfer buffer and placed on the 

cathode plate o f a semi-dry blotting apparatus. Excess air was removed from between 

the filters by moving a glass pipette over the filter paper. Nitrocellulose, cut to the 

same size of the gel, was soaked in transfer buffer and placed over the filter paper, 

making sure there were no air bubbles. The acrylamide gel was placed over the 

nitrocellulose and five more sheets o f pre-soaked filter paper were placed on top of 

the gel. Excess air was again removed by rolling the pipette over the filter paper. The 

proteins were transferred from the gel to the nitrocellulose at a current o f 34mA at 

15V for 23 min.

All incubation steps from now on, including the blocking step, were carried out on a 

revolving apparatus to ensure even exposure o f the nitrocellulose blot to all reagents.

The nitrocellulose membranes were blocked for 2 hours at room temperature with 

fresh filtered 5% non-fat dried milk (Cadburys; Marvel skimmed milk) in TBS/ 0.1% 

Tween. pH 7.5.

After blocking, the membranes were rinsed with PBS A and incubated with primary 

antibody (table 7.2.5) overnight at 4°C. The primary antibody was removed and the 

membranes rinsed 3 times with TBS/ 0.1% Tween. The membranes were then washed 

for 15 min, and then twice for 5 mins in TBS/ Tween. Bound antibody was detected 

using enhanced chemiluminescence (ECL).
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Antibody Dilution Supplier Catalogue No.

323/A3

(anti-Ep-CAM) *

1 : 300 NeoMarkers MS-181-P1

Ep-CAM A bl 

(VU-1D9) *

1 : 300 NeoMarkers MS-144-P1

Cytokeratin-8 1 : 400 Sigma C-5301

Cytokeratin-18 1 : 1000 Sigma C8541

Cytokeratin-19 1 : 300 Sigma C-6930

Bi Integrin 1 : 10,000 Chemicon AB1937

Table 2.4.5 Primary antibodies used in western blot analysis.

2.7.4.5 Enhanced chemiluminescence detection

Protein bands were developed using the Enhanced Chemiluminescence Kit (ECL) 

(Amersham, RPN2109) according to the manufacturer’s instructions.

Secondary antibody (1/1,000 dilution of anti-mouse IgG peroxidase conjugate 

(Sigma, A-6782) in TBS) was added for 1 hour. The secondary antibody was 

removed and the membranes were washed as before. A sheet o f parafilm was 

flattened over a smooth surface, e.g. a glass plate, making sure all air bubbles were 

removed. The membrane was then placed on the parafilm, and excess fluid removed. 

1.5ml o f ECL detection reagent 1 and 1.5ml o f reagent 2 were mixed and covered 

over the membrane. Charges on the parafilm ensured the fluid stayed on the 

membrane. The reagent was removed after one minute and the membrane wrapped in 

cling film. The membrane was exposed to autoradiographic film (Kodak; X-OMAT 

S, 500 9907) in an autoradiographic cassette for various times, depending on the
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signal. The autoradiographic film was then developed.

The exposed film was developed for 5min in developer (Kodak, LX24) diluted 1:6.5 

in water. The film was briefly immersed in water and transferred to a Fixer solution 

(Kodak, FX-40) diluted 1:5 in water, for 5min. The film was transferred to water for 5 

min and then air-dried.
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2.8 RNA EXTRACTION

For all procedures using RNA, most glassware, solutions and plastics were treated 

with 0.1% diethyl pyrocarbonate (DEPC) before use, which is a strong inhibitor of 

RNases.

RNA was extracted from the cells as follows:

Cells were seeded into 175cm2 flasks (Nunc, I-56502A) at a density of approximately 

2x l06 per flask and allowed to attach and form colonies for 48-72 hours at 37°C. The 

flasks were then treated with BrdU for time periods of 7 and 14 days. The cells were 

trypsinised and the pellet was washed once with PBS A. The cells were pelletted and 

lysed using 1ml of TRI REAGENT™ (Sigma, T-9424). The samples were allowed to 

stand for 5 min at RT to allow complete dissociation of nucleoprotein complexes. 

0.2ml of chlorofom was then added per ml of TRI REAGENT™ used and the sample 

was shaken vigorously for 15 sec and allowed to stand for 15 min at RT. The sample 

was then centrifuged at 13000rpm for 15 min at 4°C. This step separated the mixture 

into 3 phases; the RNA was contained in the colourless upper aqueous layer. This 

layer was then transferred to a new Eppendorf and 0.5ml o f isopropanol was added. 

The sample was mixed and allowed to stand at RT for 10 min before being 

centrifuged at 13000rpm for 10 min at 4 C. The RNA formed a precipitate at the 

bottom of the tube. The supernatant was removed and the pellet was washed with 1ml 

of 75% ethanol and centrifuged at 4°C for 5 min at 13000rpm. The supernatant was 

removed and the pellet was briefly allowed to air-dry. 20-30(0.1 of DEP-C water was 

then added to the RNA to resuspend the pellet.

RNA concentration was calculated by determining its OD at 260nm and 280nm and 

using the following formula:-

OD260nm x Dilution factor x 40 = (og/ml RNA
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The purity of the RNA extraction was calculated by determining its OD at 260nm and 

280nm. An A260nm : A280nm ratio of 2 is indicative of pure RNA. Only those samples 

with ratios between 1.7 and 2.1 were used.
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2.9 REVERSE TRANSCRIPTASE REACTION

Reverse transcriptase (RT) reactions were carried out in laminar flow cabinets using 

micropipettes, which were specifically allocated to this work.

cDNA was formed using the following procedure 

lfj,l oligo (dT)12'18 primers (l|ig/|ol) (Promega; C l 101) 

l(il total RNA (l|ig/|al) (see 2.20)

3fal water

Were mixed in a 0.5ml Eppendorf (Eppendorf, 0030 121.023), heated to 70°_C for 10

min and then chilled on ice. To this, the following were added:-

4|ol of a 5x buffer (250mM-Tris/HCl pH 8.3, 375mM-KCl and 15mM-MgCl2)

2|_il DTT (lOOmM) (Gibco; 510-8025 SA)

1 fol RNasin (4011/^1) (Promega; N 2511)

1 (j,l dNTPs (lOmM of each dNTP)

6fal water

1 (al Moloney murine leukaemia virus-reverse transcriptase (MMLY-RT) (40,000U/(j,l) 

(Gibco; 510-8025 SA).

The solutions were mixed and the RT reaction was carried out by incubating the 

Eppendorfs at 37°C for 1 hour. The MMLV-RT enzyme was then inactivated by 

heating to 95°C for 2 min. The cDNA was stored at -20°C until required for use in 

PCR reactions as outlined in Section 2.10.
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2.10 POLYMERASE CHAIN REACTION

A standardised polymerase chain reaction (PCR) procedure was followed in this 

study. The Eppendorf tubes used (Eppendorf, 0030 121 023) and the sterile water 

were DEPC-treated. All reagents had been aliquoted and were stored at -20°C  and all 

reactions were carried out in a laminar flow cabinet.

Each PCR tube contained the following:-

24.5 jj.1 water

5|ol lOx buffer* (lOOmM-Tris/HCl, pH 9.0, 50mM-KCl, 1% Triton X-100)

3(ji 25mM-MgCl2*

8(j,l dNTPs (1.25mM each o f dATP, dCTP, dGTP and dTTP) (Promega; U1240) 

l|j,l each o f first and second strand target primers (250ng/ml) (keratin 19 - Table 

2 .22 .1)
1 (al each o f first and second strand endogenous control primer (250ng/ml) (P-actin)

0.5|ol of 5U/)ol Taq DNA polymerase enzyme*

5(̂ 1 cDNA 

*(Promega; N1862)

A drop of autoclaved mineral oil was placed in each reaction tube to prevent 

evaporation and the DNA was amplified by PCR as follows:

95°C for 1.5 min - to denature double-stranded DNA 

30 cycles: 95°C for 1.5 min. - denature

55°C for 1 min - anneal 

72°C for 3 min. - extend 

72°C for 7 min. - extend 

The reaction tubes were then stored at 4°C until analysed by gel electrophoresis as 

described in Section 2.13.
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2.11 GUIDELINES USED IN THE SELECTION OF PRIMERS.

To successfully amplify cDNA by PCR, specific primers to the gene of interest must be 

chosen to prime the cDNA for PCR amplification, a number of guidelines should be 

followed, when feasible, to design the primer pair to give successful amplification of a 

PCR product of suitable size.

♦ Specificity to the gene of interest: The fundamental requirement for a primer is that 

it should hybridise efficiently to the sequence/genes of interest with negligible 

hybridisation to other sequences/genes present in the sample. To find the most 

homologous sequences to be used as primers, DNA bases (such as the one held by 

EMBL) must be searched.

♦ Target length: The distance between the primers for which optimum amplification 

can be achieved is generally considered to between 180 and 500 bp. However, much 

longer targets may be amplified efficiently.

♦ Primer length and base composition: The length of a primer contributes to its 

specificity. It is generally considered ideal to choose oligonucleotide primers 

between 18 and 30 bases in length; however, shorter and longer primers will work. 

Long stretches of purines or pyrimidines must also be avoided. If possible primers 

should have a balanced G/C and A/T concentration and the distribution of bases 

should be as random as possible. These precautions are required to avoid areas of 

secondary structure formation or complimentarily between primers.

♦ Annealing temperature: The annealing temperature of primers is determined by 

their length and base composition. Increasing this temperature enhances 

discrimination against incorrectly annealing primers and so reduces the extension of 

incorrect nucleotides at the 3' end of the primer. It is considered advisable to choose 

primers whose melting temperature (Tm) (i.e. the temperature at which half o f the 

duplex is dissociated are between 55°C and 75°C. The Tm for a primer can be 

estimated from the following equation:

Tm=2°C (no. of A+T residues) 4°C (no. of G+C residues)
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Gene Primer Sequence/cDNA position Product size/ Reference

Cytokeratin-8

AAC AAC CTT AGG CGG CAG CT 

(cDNA position 449-468) 244 bp

Burchill et al., 1995GCC TGA GGA AGT TGA TCT CG (cDNA 

position 673-692)

Cytokeratin-18

CAA GAT CAT CGA AGG ACC TG

(cDNA position 436-454)

444bp

designed from corresponding 

rat primers in Fridm acher et 

al., 1995

CTC TCC TCA ATC TGC TGA GA 

(cDNA position 860-879)

Cytokeratin-19

GCG GGA CAA GAT TCT TGG TG

Burchill et al. (1995)CTT CAG GCC TTC GAT CTG CAT

Ep-CAM

(GA733-2)

CTG TCA TTT GCT CAA AGC TG 

(cDNA position 167-186) 368bp

Designed at NCTCCTGG ATC CAG TTG ATA ACG 

(cDNA position 517-534)

GA733-1

CAC ACC GAC GTC TGG TTG CA (cDNA 

position 355-374) 164bp

Designed at NCTCCTCC AAG TGT CTG CTG CTC A 

(cDNA position 211-229)

Table 2.8.1 Primer sequences used in RT-PCR reactions.
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2.12 USING cDNA SEQUENCE DATABASES TO CHECK 

UNIQUENESS OF PRIMERS (BLAST).

The most critical element in choice of primers for PCR is obviously that the primers 
were unique i. e. that they did not cross-react with sequences likely to be present in the 
mRNA of the cells/tissues being studied. This involved choosing primers using the 

criteria described in Section 2.11, and checking via a DNA database (e.g. EMBL, 
GenBank) what similar sequences existed. This approach is essential if  no references 

are available on RT-PCR of the mRNA in question. Even where references do exist, 

there is need for checking because:
I. The cDNA data-base is expanding rapidly and new cross-reactions may have

been discovered since the choice of primers was published;
II. Occasionally, published primers have not been well chosen and cross

reactions have been overlooked; also, occasionally, probably due to
typographical errors, incorrect primer sequences are published.

III. Because o f the excellent search facilities available, checking sequence

uniqueness of primer sequences is a straightforward procedure.

DNA databases were accessed via the Internet by linking to large mainframe 
computers (e.g. VAX) and connecting to a UNIX system run by the Irish National 

Centre for Bioinformatics, Trinity College, Dublin.

• A mRNA or cDNA sequence of interest can be extracted from the database once 
its name(s) is known. (If the accession number or sequence deposition number are 
known these can be used to in a similar way). The following is an example of how 
to access a mRNA sequence through this system.

LOCATION: http://www3.ncbi.nlm.nih.gov/Entrez/nucleotide.htm

Then enter name of the sequence required e.g. GA733-1 [Enter]

The response to this is a list of sequences submitted which have GA733-1 as part of 
their name - including full and partial cDNA sequences from various species of 
origin. The sequence required for these studies was identified in this list as "human 
mRNA for pancreatic carcinoma marker GA733-1"; accession number: X13425.
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To reveal the complete mRNA sequence, the option GenBank Report was selected.

• BLAST (Basic Local Alignment Search Tool), a set o f similarity search programs 
designed to explore all o f the available sequence data-bases was used for 
homology searching of primers being considered as potentially suitable. The 
following is an example of how such a search was done to identify suitable 

primers.

LOCATION: http://acer.geu.tcd.ie

Select option: Biolnf Servers

Select option: US (NCBI) Servers: Blast server at NCBI
(An option to check the European (EBI) server, Fasta, is also available at this stage. 
Either the US or European servers may be used for access as they both link to the 
same databases. However, before finally selecting primers it is wise to check via both 

servers to ensure that all relevant information is accessed).

Select option: Advance BLAST search

A window then becomes available to enter the primer sequence to be checked. 
Alignment and description of the (first 0, 10, 50, 100 or 500) sequences with strongest 
homology may be requested.

Select option: Search

Depending on how busy the system is the results may be returned immediately or 
after some time. The option is available to enter an e-mail address to which the results 
will be posted.
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2.13 ELECTROPHORESIS OF PCR PRODUCTS

A 3% agarose gel (NuSieve, GTG) was prepared in TBE buffer (5.4g Tris, 2.75g 

boric acid, 2ml 0.5M-EDTA pH 8.0 in 500ml water) and melted in a microwave oven. 

After allowing to cool, 0.003% of a lOmg/ml ethidium bromide solution was added to 

the gel, which was then poured into an electrophoresis apparatus (BioRad). Combs 

were placed in the gel to form wells and the gel was allowed to set.

10f.il loading buffer (50% glycerol, lmg/ml xylene cyanol, ling/ml bromophenol blue, 

ImM EDTA) was added to each 50(.il PCR sample and 20|iU was run on the gel at 80- 

90mV for approximately 2 hours. When the dye front was seen to have migrated the 

required distance, the gel was removed from the apparatus and examined on a 

transilluminator and photographed.
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2.14 ISOLATION OF RAT TYPE II PNEUMOCYTES.

2.14.1 ANIMALS AND ANAESTHESIA.

2.14.1.1 Animals.

Male Sprague-Dawley rats of 180 - 200 g were used in the experiments. The animals 

were allowed water and food ad librium.

2.14.1.2 Anaesthesia.

The animals were lightly anaesthetised with halothane prior to receiving a lethal 

intraperitioneal injection o f pentobarbital (60 mg/kg = lml/kg). The animal was laid

on its back and the areas to be incised dampened with IMS. The ventral surface skin

was removed and the abdominal vessels exposed. The major dorsal blood vessels 

were cut through with a large straight scissors.

2.14.2 DISSECTION AND PERFUSION.

The trachea was cannulated and the chest opened without puncturing the lungs. A 

portion of the thymus was removed to expose the heart. An incision was made into the 

pericardium and a cannula fed into the pulmonary artery. The cannula was connected 

by gravity feed to a reservoir of 0.15 mol/1 NaCl, which upon flowing increased the 

size of the right atrium. The atrium was cut to allow fluid to drain free. The lungs 

were artificially ventilated with 8 to lOmls o f air by means of a syringe. This was 

repeated 5 times, after which the lungs were free o f blood and white in appearance.
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2.14.3 LAVAGE AND DIGESTION.

2.14.3.1 Lavage.

The lungs were dissected free and lavaged exactly 5 times with 6-8 ml o f 0.15 mol/1 

NaCl solution. The lavage fluid was removed from the lungs by gravity, this fluid 

contained lung macrophage population.

2.14.3.2 Digestion.

The lung were digested using crystalline trypsin (Sigma T8003; 250 mg/ 100ml) 

dissolved in +Mg/Ca solution The trypsin was perfused into the lungs via the 

cannula, so that the lungs were continuously filled with trypsin solution (using about 

60 ml per lung). The lungs were allowed to digest for 30 minutes. The lobes were 

dissected from the airways and cut into cubes of 1 - 2 mm3 with a scissors. These 

were added to 5 ml of FCS and tire total volume was brought to 20 ml by the addition 

of DNase solution I (250 (.ig/ml in -M g/Ca solution). The suspension was shaken for 

5 minutes prior to filtering through a course sterile wire mesh (stainless steel tea 

strainer) and then through two sterile nylon filters (Falcon) of 100 |um and 30 ¡urn 

respectively.
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♦ Mg/Ca Solutions

Stock solutions:-

0.9%w/v NaCl

0.11M CaCl

0.15M KC1

0.10M Phosphate buffer

0.10M Na2H P 04

0.10M NaH2P 0 4

p H  to 7.4 by adding H aH 2P04 to Na2HP04  

0.20M HEPES

0.15M M gS04

+Mg/Ca Solution -Mg/Ca Solution

0.9%w/v NaCl 250ml 250ml

O.llM CaCl 5ml

0.15M KC1 10ml 10ml

Phosphate Buffer 7.5ml 7.5ml

HEPES 15ml 15ml

0.15 M gS04 2.5ml

Glucose 3.15mg 315mg

Table2.13.1 Recipe for Mg/Ca solutions for isolation of type II pneumocytes

from 1 rat.

2.14.4 PERCOLL GRADIENT CENTRIFUGATION AND DIFFERENTIAL 

CELL ATTACHMENT.

2.14.4.1 Percoll Gradient Centrifugation.

To purify the primary digest, which contains a mixture of cell types a density
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centrifugation with percoll was performed. The cell suspension was layered upon two 

percoll layers: a heavy percoll solution [65 % percoll (1.089 g/ml)] and a light percoll 

solution [27 % percoll (10.39 g/ml)]. The discontinuous density centrifugation was 

carried out at a speed of 1,850 rpm for 20 minutes at 10 °C. Following centrifugation 

the fraction located at the interface between the heavy and light percoll layers, which 

contains an enriched fraction o f type II pneumocytes was carefully removed.

2.14.4.2 Differential Cell Attachment.

The removed fraction was brought to a volume o f 40 ml by the addition of DNase 

solution II. This cell suspension was spun at 1,000 rpm for 10 minutes. The cell pellet 

was re-suspended in growth medium, ATCC supplemented with 5% v/v FCS, 2mM 

L-glutamine, 2% Penicillin-Streptomycin (Sigma Cat. No. P4458), 0.5% v/v 

Fungizone and plated on tissue culture plastic for two hours at 37 °C. The non

adherent cells were gently removed and centrifuged. The resulting pellet was re

suspended and a cell yield obtained. This cell suspension was then plated at the 

required density for the experiment.
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2.15 PRIMARY CULTURE OF HUMAN LUNG TUMOURS.

2.15.1 COLLECTION OF TUMOUR TISSUE SAMPLES AND 

TRANSPORTATION MEDIUM.

Primary tissue was collected in theatre after surgical resection at St. Vincents 

Hospital, Elm Park, Stillorgan, Dublin 4. This material was kindly provided by 

thorasic surgeon Mr. Vincent Lynch only after the requirements o f the hospital’s 

histopathology service for such tissue has been met. Tissue samples were placed in a 

transportation medium immediately and taken at 4 °C to the NCTCC at DCU for 

processing on the same day.

♦ Transportation Medium:

This consisted of Leibovitz L-15 medium as basal medium. As this media is 

bicarbonate free there is minimal pH fluctuation during transit. This was 

supplemented with 1% w/v o f PVP-360, 2 mM L-glutamine, 1% v/v Penicillin- 

Streptomycin (Sigma Cat. No. P4458) and 0.5%v/v fungizone.

2.15.2 DISSECTION OF TUMOUR TISSUE.

All procedures from this point on were performed in a class 2 laminar flow cabinet. 

Surgical quality gloves were worn and due care and diligence was taken in the 

disposal of any waste.

Samples were rinsed in PBS-A 3 times to remove extraneous blood prior to 

dissection. Fatty deposits, necrotic tissue and blood vessels were removed where 

possible using sterile surgical scalpels and scissors. These manipulations were 

performed on sterile petri dishes.
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2.15.3 ENZYMATIC DIGESTION.

The remain tissue was cut in to small chunks 3 - 4  mm3. These tissue fragments were 

placed in a universal and washed once with PBS-A by inversion. The tissue was then 

incubated with proteolytic enzyme mixture A or B, while stirring with a sterile 

magnetic stirrer at 37 °C.

After 30 minutes the supernatant was removed from the digest and the cells recovered 

by centrifugation at 1000 rpm for 10 minutes. The pellet was resuspened in 

prewarmed growth media.

The remaining tissue fragments from the digest were reincubated with fresh 

proteolytic enzyme for a further 30 minutes. The supernatant from the second digest 

was treated as above.

The cell suspensions from both digests were pooled and centrifuged at 1000 rpm for 

10 minutes. The resulting cell pellet was resuspended in prewarmed growth media 

and plated at high density, i.e. 10 cell per 25cm flask.

♦ Proteolytic enzyme mixture A:

Consisted of trypsin 2ml of lOx Gibco BRL trypsin in 18 ml o f MEM 

supplemented with lOU/ml o f DNase I.

♦ Proteolytic enzyme mixture B:

Consisted of 0.4mg/ml Collagenase A, 0.6mg/ml Dispase, 0.6mg/ml Pronase E in 

MEM supplemented with lOU/ml of DNase I.

2.15.4 EXPLANT TECHNIQUE.

Lung tumour tissue was cut into small cubes (2-4mm ) these were aseptically 

transferred to the growth surface of 25cm flasks. These flasks had been pre-wetted 

with 2.5mls of growth medium (which contained serum) and the excess media was 

removed. This was performed 10-15 minutes prior to the placing o f explant tissue in
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the flask. Approximately 15-20 fragments of tissue were carefully placed in the flask 

with a scalpel blade or sterile tweezers. The tissue was allowed to adhere in this 

position for approximately 30 minutes with the lids slightly loosened. Taking care not 

to dislodge the explants, 2.5mls of growth medium was added. The flasks were then 

incubated at 37°C.

2.15.5 DIFFERENTIAL TRYPSINISATION FOR THE REMOVAL OF 

FIBROBLASTS.

The procedure utilises the phenomenon that fibroblast cells detach first in a mixed 

culture treated with trypsin. Thus the presence of contaminating fibroblasts in a 

culture can be reduced or eliminated by the trypsinisation the mixed culture.

All operations were performed aseptically in a laminar flow. The culture media was 

removed from the flask and pre-warmed trypsin EDTA solution pipetted into the flask 

and the lid replaced. The flask was placed on an inverted microscope stage and the 

progress o f the trypsinisation monitored continuously under 40x and lOOx 

magnification.

As soon as the fibroblasts had detached but before the cells of interest, the flask was 

returned to the laminar flow. Avoiding unnecessary agitation of the flask, growth 

media was gently added to terminate the trypsinisation procedure. This solution which 

now contains the fibroblast cells, was gently removed by aspiration and fresh growth 

medium added.
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2.16 TIME-LAPSE VIDEO MICROSCOPY.

Time-lapse video microscopy was carried out on a Nikon diahot inverted microscope 

(Micron Optical, Bray, Ireland) equipped with a phase contrast optics, linked to a 

Mitsubishi CCD-100 colour video camera. Images were recorded in S-VHS onto a 

Mitsubishi HS-S5600 video recorder with time-lapse capabilities. All time-lapse 

video-equipment was obtained from Laboratory Instruments (Ashbome, Ireland). 

Recording speed was set at 3.22sec/field (480 hour mode), which at normal playback 

speed resulted in an acceleration factor o f 160.

The temperature of the culture vessel was controlled by a Linkam CO 102 warm stage 

controller. This controller was adjusted to keep the culture medium inside the vessel 

at 37 C, as measured using a TB3301 probe.
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3.0 RESULTS.
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3.1 INVESTIGATION OF THE EFFECT OF BrdU EXPOSURE 

ON Ep-CAM EXPRESSION IN THE HUMAN LUNG 

CARCINOMA CELL LINES DLKP AND A549.

Previous studies in this laboratory have shown that 10|jM 5,2’-Bromodeoxyuridine 

(BrdU) induces cytokeratin (CK) 8, and 18 expression in DLKP and enhances their 

expression in A549 (McBride et al, ‘99). BrdU also induces CK-19 expression in 

DLKP and enhanced expression in A549 (Meleady et al, manuscript in preparation). 

Induced a i and a 2 integrin and enhanced (3i expression has been observed in both 

DLKP and A549 (Meleady and Clynes, manuscript submitted).

Ep-CAM is a transmembrane protein that is expressed on the baso-lateral domains of 

epithelial cell membranes. It is a homophilic cell-cell adhesion protein and is believed 

to play role in cell sorting during development. Preliminary results (Dr. Paula 

Meleady, PhD thesis, DCU 1997) suggested that Ep-CAM was induced following 

treatment with IO îM BrdU in both DLKP and A549. Studies were thus conducted to 

further investigate this apparent induction.
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3.1.1 IMMUNOCYTOCHEMICAL ANALYSIS OF Ep-CAM EXPRESSION.

Immunocytochemistry was used to qualitatively investigate the changes in Ep-CAM 

in DLKP and A549 following treatment for 7 days with 1 OyM BrdU.

Untreated DLKP were found to be negative for Ep-CAM, Following treatment for 7 

days with 10|.iM BrdU a faint staining was observed on the cell membrane in about 

80% of the cell population with some cells showing strong staining (figure 3.1.1)

A549 cells that are untreated exhibit a slight positive staining for Ep-CAM. Following 

BrdU treatment this staining is strongly enhanced in approximately 70% of the cell 

population (figure 3.1.2).
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Figure 3.1.1 Ep-CAM expression on untreated DLKP (A) and BrdU treated DLKP (B)
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Figure 3.1.2 Ep-CAM expression on untreated A549 (A) and BrdU treated A549 (B)
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3.1.2 WESTERN BLOT ANALYSIS OF Ep-CAM EXPRESSION.

In order to obtain a quantitative assessment for BrdU induced expression of Ep-CAM 

in the lung cell lines DLKP and A549 western blot analysis was performed. Cells 

were treated for up to 21 days and time points taken at day 7, day 14 and day 21. The 

breast adenocarcinoma cell line MCF-7, which is known to express high levels of Ep- 

CAM, was used as a positive control.

In untreated DLKP cells no clearly visible band was detected in untreated cells. A 

faint band with the equivalent molecular weight for Ep-CAM (40-43 KDa.) was 

detected in cells treated for 7 days with BrdU. The intensity o f this band increased in 

cells treated for 14 days with BrdU. In cells treated for 21 days with BrdU there was 

no apparent change in the intensity of the detected band compared to the band 

obtained for 14 days BrdU (figure 3.1.3).

In A549 a faint band (40-43 KDa.) equating to the molecular weight o f Ep-CAM was 

detected in untreated cells. The intensity of this band increased slightly in cells treated 

over 14 days with 10uM BrdU. There was no apparent change in the intensity of the 

band obtained in cells treated for 21 days with BrdU compared to the band detected 

after 14 days treatment (figure 3.1.4).

The western blots for both cell lines showed unidentified lower molecular weight 

protein bands. Balzar et al. (1998) obtained a similar pattern of lower molecular 

weight products in their experiments, which they regarded as breakdown products of 

Ep-CAM.
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Figu re 3.1.3 Western blot analysis of Ep-CAM expression in DLKP
treated with BrdU.
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40 KDa

Figure 3.1.4 Western blot analysis of Ep-CAM expression in A549 treated 
with BrdU.
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3.1.3 RT-PCR ANALYSIS OF Ep-CAM mRNA EXPRESSION FOLLOWING 

BrdU TREATMENT.

RT-PCR analysis was conducted to investigate the effect o f BrdU treatment on the 

Ep-CAM (GA733-2) mRNA transcript in DLKP and A549. Time points o f 7 days, 14 

days, and 21 days o f BrdU treatment were selected. The breast adenocarcinoma cell 

line MCF-7 was used as a positive control.

Optimal primers for the gene sequence were designed and the specificity was checked 

using BLAST (see methods section 2.11) (Table 3.1.1.).

Sequence Position on cDNA

Forward Primer 5’ CTG TCA TTT GCT CAA AGC TG 3’ 167-186

Reverse Primer 5’ TGG ATC CAG TTG ATA ACG 3’ 517-534

Table 3.1.1. Sequence of primers for Ep-CAM and their cDNA nucleotide 

position.

The primers selected amplified a product of 368 base pairs as predicted

No change in the level of mRNA transcript was detected in DLKP that were treated 

with BrdU for up to 21 days (figure 3.1.5). Similarly in A549 the level o f Ep-CAM 

mRNA transcript remained unchanged over 21 days of BrdU treatment.

Thus in both cell lines the mRNA level was unchanged by treatment with 10|iM BrdU 

though both showed induced Ep-CAM protein expression. This indicated that the 

regulation o f Ep-CAM expression by BrdU is at the post-transcriptional level 

(possibly translational) level.
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3.1.4 INVESTIGATION OF THE mRNA LEVELS OF GA733-1 IN BrdU

TREATED DLKP AND A549 CELLS.

RT-PCR analysis was conducted on lOfiM BrdU treated DLKP and A549 to 

investigate if  there was any change in the level o f mRNA transcript for GA733-1 

following BrdU treatment. Time points of 7 days, 14 days, and 21 days of BrdU 

treatment were selected. The breast adenocarcinoma cell line MCF-7 was used as a 

positive control.

Optimal primers for the gene sequence were designed and the specificity was checked 

using BLAST (see methods section 2.11) (Table 3.1.2).

Sequence Nucleotides

Forward Primer 5’ TCC AAG TGT CTG CTG CTC A 3’ 211-229

Reverse Primer 5’ CAC ACC GAC GTC TGG TTG CA 3’ 355-374

Table 3.1.2 Sequence of primers for GA733-1 and their cDNA nucleotide 

position.

The primers selected amplified a product of 164 base pairs as predicted.

In untreated DLKP no band equivalent to the amplified GA733-1 sequence was 

detected. In DLKP cells that had been treated for 7 days with BrdU a band was 

detected for GA733-1 product. The intensity o f this band increased after 14 days of 

BrdU treatment, and remained unchanged in intensity after 21 days o f BrdU treatment 

(figure 3.1.6).

In untreated A549 no amplified RT-PCR product was detected. In A549 cells that had 

been treated for 7, 14 and 21 days with BrdU there was also no detectable RT-PCR 

product (figure 3.1.6). Thus the induction appears to be DLKP specific, which is

8 6



unusal since induction is observed in both DLKP and A549 for most o f the markers 

studied in this laboratory.

Unfortunately we were unable to source any GA733-1 specific antibodies to examine 

changes in the levels o f the relevant protein.
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3.1.6 INVESTIGATION OF CHANGES IN FOCAL ADHESION PROTEINS

IN BRDU TREATED DLKP AND A549.

It is believed that Ep-CAM may decrease E-cadherin mediated cell-cell binding by 

decreasing the level o f the focal adhesion proteins a-catenin, P-catenin, and either 

sequestering or decreasing a-actinin.

Preliminary experiments were conducted using western blot analysis to investigate the 

changes in a-catenin and a-actinin following BrdU treatment and the induction of Ep- 

CAM. Time points were taken at 7 days, and 14 days o f BrdU treatment.

In untreated DLKP a strong band was detected at the expected molecular weight for 

a-catenin. The intensity of this band dropped after 7 days o f BrdU treatment and 

continued to drop over 14 days of BrdU treatment (figure 3.1.7).

Similarly, in A549 a strong band was detected in untreated cells for a-catenin, the 

intensity of which dropped over 14 days of BrdU treatment (figure 3.1.7)

A strong band for a-actinin was detected in untreated DLKP. The intensity o f this 

band dropped after 7 days of BrdU treatment and continued to drop in intensity after 

14 days of BrdU treatment. A similar pattern o f decrease was observed in A549 

(figure 3.1.8).
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3.2 HALOGENATED ANALOGUES OF THYMIDINE AND 

THEIR EFFECTS ON DIFFERENTIATION.

The halogenated thymidine analogue 5-bromo-2'-deoxyuridine has been shown to 

alter the differentiation status of various cell types. The effect of other halogenated 

thymidine analogues on differentiation is less well researched, with only a limited 

number of studies existing. It was decided to investigate the ability of other 

halogenated thymidine analogues to induce differentiation in the D L K P  and A549 cell 

line models.

The following compounds were selected 5-chloro-2’-deoxyuridine (CdU), 5-fluro-5- 

deoxyuridine (5,5'-FdU), 5-bromouridine (5-BUr).
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3.2.1 SELECTION OF CONCENTRATIONS FOR DIFFERENTIATION 

ASSAYS AND MORPHOLOGICAL EFFECTS OF THYMIDINE 

ANALOGUES ON DLKP AND A549.

3.2.1.1 Toxicity profiles of thymidine analogues on DLKP and A549.

Preliminary toxicity assays were performed to determine the toxic effect o f CdU, 5,5'- 

FdU, and 5-BU. Figures 3.2.1 and 3.2.2 show the toxicity profiles obtained for DLKP 

and A549. Concentrations were chosen that would allow a 75% survival rate or 

greater (table 3.2.1). Both DLKP and A549 show a similar response profile to FdU 

and appear to have an IC50 around 3.5(iM. DLKP and A549 exhibited different CdU 

profiles. DLKP appeared to have an apparent IC50 of 13.5(iM, while A549 appeared to 

have an IC50 slightly greater then 30jaM. However subsequent studies showed that 

CdU appeared to be cumulatively cytotoxic (data not shown), thus a lower 

concentration was chosen then the toxicity profiles suggested. Both DLKP and A549 

5-BUr did not exhibit any toxicity to DLKP and A549 even at 70|oM.

jiM

5,5’ FdU 2

CdU 10

5-BU 70

Table 3.2.1 Concentrations of halogenated analogues selected for 

differentiation assays.
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3.2.1.2 Cellular morphology of A549 and DLKP exposed to thymidine analogues.

DLKP cells treated with 5,5'-FdU had a more spread morphology (figure 3.2.3 E and 

F) than the control DLKP cells (figure 3.2.3 A and B), which existed both as single 

cells and colonies. Though there was a change in cellular morphology following 5,5'- 

FdU treatment the degree o f cell flattening and spreading was not as great as that for 

BrdU (figure 3.2.3 C and D).

DLKP cells treated with CdU were highly flattened and cells grew predominantly as 

single cells (figure 3.2.3 G and H). The change in cellular morphology of DLKP 

treated with CdU was reminiscent of the change in cell morphology that occurs in 

DLKP following BrdU treatment. However, as noted earlier as CdU treatment is 

extended beyond 7 days a cumulative cytotoxic effect occurs, unlike BrdU, which 

does not show any cumulative cytotoxicity. 5-BUr treatment did not appear to visibly 

alter the cellular morphology of DLKP (figure 3.2.3 I and J).

A549 cells treated with 5,5'-FdU exhibited a stretched morphology (figure 3.2.4 E and 

F) compared to untreated A549 (figure 3.2.4 A and B). The increased stretching and 

flattening in morphology is not as great as observed in BrdU treated cells (figure 3.2.4 

C and D). CdU treatment o f A549 induced extensive cellular flattening and cells grew 

predominantly as single cells (figure 3.2.4 G and H). The flattening in cellular 

morphology observed following CdU treatment was more extreme than in BrdU 

treated A549 cells (figure 3.2.4 C and D). 5-BUr treatment did not appear to visibly 

alter the cellular morphology of A549 (figure 3.2.4 I and J).
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A. Untreated ceils xlOO B Untreated cells x400

£. FdU treated cells xlOO

Figure 3.2.3 The effect of haolgenated thymidine analogues on the cellular 
morphology of DLKP.

F. FdU treated cells x400
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G. CdU treated cells xlOO H. CdU treated cells x400

1.5-BU treated cells xlOO J. S-BU treated cells x400

Figure 3.2.3 Continued. The effect of halogenated thymidine analogues on the cellular 
morphology of DLKP.
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A. Untreated cells xlOO B. Untreated cells x400

C. BrdU treated cells x l 00 C. BrdU treated cells x400

D. FdU treated cells xlOO E. FdU treated cells x400

Figure 3.2.4 The effect of halogenated thymidine analogues on the cellular 
morphology of A549.
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F. CdU treated cells xlOO G. CdU treated cells x400

H. 5-BUr treated cells xlOO I. 5-BUr treated cells x400

Figure 3.2.4 Continued. The effect of halogcnated thymidine analogues on the cellular
morphology of A549

98



3.2.2 ANALYSIS OF CHANGES IN MASKER PROTEIN EXPRESSION IN 

THYMIDINE ANALOGUE TREATED DLKP AND A549.

In both DLKP and A549 cells, exposure to 10|iM BrdU was found to induce or 

increase expression of CK-8, CK-18, CK-19, pi-integrin, and Ep-CAM (McBride et 

al 1999; Meleady and Clynes, manuscript submitted; results presented in this thesis). 

Using immunocytochemistry, western blot and RT-PCR analysis the expression of 

these proteins was investigated in DLKP and A549 cells exposed to CdU, 5,5'-FdU, 

and 5-BUr. A summary o f the results obtained are presented in tables 3.2.2 and 3.2.3.



Control.
TRE

BrdU Treated
ATMENT PERFOR 

5,5'-FdU Treated
VIED
CdU Treated 5-BU Treated

Immunocytochemistry Negative Induced Expression Induced Expression Induced Expression Negative-No Change

CK-8 Western Blot N/A N/A N/A N/A N/A

RT-PCR N/A N/A N/A N/A

Immunocytochemistry Negative Induced Expression Induced Expression Induced Expression Negative-No Change

CK-18 Western Blot N/A N/A N/A N/A N/A

RT-PCR N/A N/A N/A N/A N/A

Immunocytochemistry Negative Induced Expression Induced Expression Induced Expression Negative-No Change

CK-19 Western Blot N/A N/A N/A N/A N/A

RT-PCR N/A N/A N/A N/A N/A

Immunocytochemistry Slightly Positive Induced Expression Induced Expression Induced Expression Slightly Positive-No 
Change

pi Integrin Western Blot Positive Induced Expression N/A N/A N/A

RT-PCR Positive Positive-No Change N/A N/A N/A

Immunocytochemistry Negative Induced Expression Induced Expression Induced Expression Negative-No Change

Ep-CAM Western Blot Negative Induced Expression N/A N/A N/A

RT-PCR Positive Positive-No Change N/A N/A N/A

N/A = NOT AVAILABLE
Table 3.2.1 Summary of results obtained for different marker proteins in DLKP treated with various halogenated thymidine 

analogues.



• I Control.
TRE

BrdU Treated
ATMENT PERFOR 

5,5'-FdU Treated
MED
CdU Treated 5-BU Treated

Immunocytochemistry Positive Induced Expression Induced Expression Induced Expression Positive-No Change 
(same as untreated)

CK-8 Western Blot Positive Induced Expression Induced Expression Induced expression Positive-No Change 
(same as untreated)

RT-PCR Positive Positive-No Change 
(same as untreated)

Positive-No Change 
(same as untreated)

Positive-No Change 
(same as untreated)

Positive-No Change 
(same as untreated)

Immunocytochemistry Positive Induced Expression Induced Expression Induced Expression Positive-No Change 
(same as untreated)

CK-18 Western Blot Positive Induced Expression Induced Expression Induced Expression Positive-No Change
(same as untreated)

RT-PCR Positive Positive-No Change 
(same as untreated)

Positive-No Change 
(same as untreated)

Positive-No Change 
(same as untreated)

Positive-No Change 
(same as untreated)

Immunocytochemistry Positive Induced Expression Induced Expression Unclear Positive-No Change 
(same as untreated)

CK-19 Western Blot Positive Induced Expression Induced Expression Induced Expression Positive-No Change
(same as untreated)

RT-PCR Positive Positive-No Change 
(same as untreated)

Positive-No Change 
(same as untreated)

Positive-No Change 
(same as untreated)

Positive-No Change 
(same as untreated)

Immunocytochemistry Positive Induced Expression Down Regulation? Induced Expression Positive-No Change 
(same as untreated)

pi Integrin Western Blot Positive Induced Expression Induced Expression Induced Expression Positive-No Change
(same as untreated)

RT-PCR Positive N/A N/A N/A N/A

Immunocytochemistry Positive Induced Expression Down Regulation? Induced Expression Positive-No Change 
(same as untreated)

Ep-CAM Western Blot Positive Induced Expression Induced Expression Induced Expression Positive-No Change
(same as untreated)

RT-PCR Positive Positive-No Change 
(same as untreated)

Positive-No Change 
(same as untreated)

Positive-No Changes 
(same as untreated)

Positive-No Change 
(same as untreated)

N/A = Not Available.
Table 3.2.2 Summary of results obtained for different marker proteins in A549 treated with various halogenated thymidine 

analogues.



3.2.2.1 Changes in cytokeratin-8 expression following treatment with 

halogenated thymidine analogues.

Immunocytochemical analysis of DLKP cells for expression o f cytokeratin-8 (CK-8) 

showed induction by 2(aM 5,5'-FdU (at a level greater than or equal to 10p,M BrdU) 

(figure 3.2.5 C); and by 10pM CdU (at a level equal to 1 OpM BrdU) (figure 3.2.5 D). 

Treatment with 70pM 5-BUr did not however, induce any alteration (figure 3.2.5 E).

Immunocytochemical analysis o f A549 treated with 2j.iM 5,5'-FdU showed induction 

of CK-8 expression (which appeared greater than 10|oM BrdU) (figure 3.2.6 C). lOpM 

CdU treatment revealed enhanced expression for CK-8 protein (figure 3.2.6 D) (at a 

level comparable to 10pM BrdU); treatment with 70p.M 5-BUr did not, however 

induce any alteration (figure 3.2.6 E).

In order to obtain a quantitative result, western blot analysis was conducted for CK-8 

expression in A549 cells exposed to the halogenated thymidine analogues for up to 14 

days (figure 3.2.7).

♦ It was previously shown in this laboratory that the level o f CK-8 was enhanced 

over 14 days of treatment with BrdU (McBride et al 1999). However, such an 

induction was not observed in this experiment, though it was clearly visable with 

immunocytochemistry (figure 3.2.6 B).

♦ An increase in CK-8 protein was observed at day 7 and day 14 in 5,5'-FdU treated 

cells, this induction was greater than that observed for 10pM BrdU.

♦ 5-BU treatment appeared to decrease CK-8 substantially, this is followed by re

induction of CK-8 by day 14. Though no such change was visible with 

immunocytochemical techniques (figure 3.2.6 E).

♦ Treatment with 10|aM CdU induced an increase in CK-8 expression. 

Unfortunately, due to the apparent cumulative cytotoxicity of CdU it was not 

possible to study changes in protein level over 14 days.

No change in the levels of CK-8 mRNA were detected by RT-RCR (figure 3.2.8) 

following 7-day treatment with 5,5'-FdU (2|a,M), BrdU (lOpM), CdU (10p.M) or 5-

1 0 2



BUr (70|iM). The main conclusion from this experiment is that the induction, at 

protein level observed for CK-8 following treatment with the base analogues must be 

at a post-transcriptional level.
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Figure 3.2.5 Immunocytochemcial analysis for cytokeratin-8 (CK-8) expression
in DLKP cells (xlOO) treated with various halogenated thymidine
analogues.
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Figure 3.2.6 Immunocytochemical analysis of cytokeratin-8 (CK-8)
expression in A549 cells (xlOO) treated with various
halogenated thymidine analogues.
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Figure 3.2.7 Western blot analysis for cytokeratin-8 (CK-8) expression in 
A549 cells following treatment with various halogenated 
thymidine analogues.
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Figure 3.2.8 RT-PCR analysis for cytokeratin-8 (CK-8) expression in A549 cells 
following treatment with various halogenated thymidine 
analogues.
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3.2.2.2 Changes in cytokeratin-18 expression following treatment with 

halogenated thymidine analogues.

Analysis by immunocytochemistry of DLKP cells treated with 2(iM 5,5'-FdU, showed 

induced expression of cytokeratin-18 (CK-18) (figure 3.2.9 C), similar to that 

obtained following 1OfiM BrdU treatment (figure 3.2.9 B). A strong induction of CK- 

18 protein expression also occurred in 10|jM  CdU treated DLKP (figure 3.2.9 D) (at a 

level greater than or equal to lOpM BrdU); treatment with 70 |jM  5-BUr did not 

appear to alter CK-18 protein expression (figure 3.2.9 E).

Immunocytochemical analysis of A549 treated with 2(iM 5,5'-FdU showed enhanced 

expression for CK-18 (figure 3.2.10 C). The level o f induced protein expression 

appears greater than enhanced expression following 10(.iM BrdU treatment (figure 

3.2.10 B). Similarly, treatment with IOjiM CdU revealed enhanced expression for 

CK-18 protein (figure 3.2.10 D), which appeared comparable to that observed in BrdU 

treatments. Accurate assessments were difficult due to the enlargement in morphology 

following 10pM CdU treatment. Exposure to 70|j,M 5-BUr did not appear to change 

protein expression levels (figure 3.2.10 E).

Western blot analysis was conducted for CK-18 expression in A549 cells treated with 

the halogenated thymidine analogues for up to 14 days to obtain a quantitative result 

(figure 3.2.11).

♦ It was previously shown in this laboratory the level o f CK-18 was enhanced 

following treatment with BrdU (McBride et al, 1999). In the data presented here, 

this increase was not clearly seen.

♦ Treatment with 5,5'-FdU resulted in an induction of CK-18 expression in the day 7 

and day 14 time points. The level o f this increase was significantly larger then that 

observed for BrdU (figure 3.2.11).

♦ 10|aM treatment of CdU for 7 days appeared to induce enhanced expression of 

CK-18. Unfortunately, due to the cumulative cytotoxicity associated with 10pM 

CdU treatment it was not possible to assess the change in CK-18 expression 

following 14 days of treatment.
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♦ The level of CK-18 appeared to be decreased after 7 days o f 5-BUr treatment, 

followed by a partial restoration by day 14. Due to time constraints it was not 

possible to investigate the validity o f this result with fresh treatments at various 

concentrations o f 5-BUr.

No change in the levels of CK-18 inRNA were detected by RT-RCR (figure 3.2.12) 

following 7-day treatment with 5,5'-FdU (2(.iM), BrdU (10p.M), CdU (10(.iM) or 5- 

BUr (70|iM). The main conclusion from this experiment is that the induction, at 

protein level observed for CK-18 following treatment with the base analogues must be 

at a post-transcriptional level.
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Figure 3.2.9 Immunocytochemical analysis of cytokeratin-18 (CK-18)
expression in DLKP cells (xlOO) treated with various
halogenated thymidine analogues.
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Figure 3.2.10 Immunocytochemical analysis of cytokeratin-18 (CK-18)
expression in A549 cells (xlOO) treated with various
halogenated thymidine analogues.
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Figure 3.2.11 Western blot analysis for cytokeratin-18 (CK-18) expression in 
A549 cells following treatment with various halogenated 
thymidine analogues.
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Figure 3.2.12 RT-PCR analysis for cytokeratin-18 (CK-18) expression in A549 
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3.2.2.3 Changes in cytokeratin-19 expression following treatment with 

halogenated thymidine analogues.

Immunocytochemical analysis of DLKP cells treated with 2\xM 5,5'-FdU, showed the 

expression of cytokeratin-19 (CK-19) to be induced (figure 3.2.13 C). The intensity of 

the observed staining was comparable to that obtained following 1 OfiM BrdU 

treatment (figure 3.2.13 B). Immunocytochemical analysis also suggested an induction 

of CK-19 protein expression in 10|jM CdU treated cells (figure 3.2.13 D), (greater 

than that observed in 10|xM BrdU treatment). In contrast immunocytochemistry 

treatment with 70|aM 5-BUr did not exhibit any changes in CK-19 protein expression 

(figure 3.2.13 E).

Immunocytochemical analysis of A549 treated with 2jxM 5,5'-FdU showed induction 

for cytokeratin-19 (CK-19) expression (figure 3.2.14 C), which appeared equal to the 

expression observed following 10|j,M BrdU treatment (figure 3.2.14 B).

Immunocytochemistry of 10|J,M CdU treated cells revealed enhanced expression for 

CK-8 protein (figure 3.2.14 D) (comparable to that observed in BrdU treatment). No 

change in CK-19 protein expression occurred, in A549 treated with 70fxM 5-BUr 

(figure 3.2.14 E).

Western blot analysis for CK-19 expression in A549, following treatment with the 

halogenated thymidine analogues, was conducted (figure 3.2.15).

♦ In agreement with previous experiments the level of CK-19 was enhanced at the 

day 7 and day 14 time points following treatment with BrdU (Meleady el al, 

manuscript in preparation).

♦ In cells treated with 5,5'-FdU, an increase in CK-19 expression was observered at 

the day 7-time point. The day 14-time point o f 5,5'-FdU treatment produced a 

substantial increase in CK-19 expression.

♦ 5-BUr treated cells the expression of CK-19 appeared unchanged at the day 7 and 

day 14 time points.

♦ Treatment with 1 OjjM  CdU appears to show CK-19 expression at the day-7 time 

point.
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The effect of the halogenated thymidine analogues on CK-19 transcription rates in 

A549 was investigated with RT-PCR analysis (figure 3.2.16). Treatment by 5,5'-FdU 

(2|iiM) for 7 and 14 days did not produce any obvious alteration in the mRNA levels in 

A549. Similarly the levels if mRNA in A549 cells treated with CdU (10p.M) or 5-BUr 

(70f.iM) over 7 and 14 days did not alter mRNA levels o f CK-19. Exposure to 5-BUr 

did not appear to alter the mRNA level at the day 7 and day 14 lime points.
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Figure 3.2.14 Immunocytochemical analysis for cytokeratin-19 (CK-19)
expression in A549 cells (xlOO) treated with various
halogenated thymidine analogues.
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Figure 3.2.15 Western blot analysis of cytokeratin-19 (CK-19) expression in 
A549 cells following treatment with various thymidine 
analogues.
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Figure 3.2.16 RT-PCR analysis for cytokeratin-19 (CK-19) expression in A549 
cells following treatment with various halogenated thymidine 
analogues
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3.2.2.4 Changes in Ep-CAM expression following treatment with halogenated 

thymidine analogues.

Analysis by immunocytochemistry o f DLKP treated with 5,5'-FdU revealed an 

apparent induction of Ep-CAM expression (figure 3.2.17 C). Similarly CdU treatment 

induced an expression o f Ep-CAM (figure 3.2.17 D) (that was equal to or greater than 

that observed following BrdU treatment). Immunocytochemical analysis did not 

reveal an induction of Ep-CAM in 70(aM 5-BUr treated cells (figure 3.2.17 E).

A549 treated with 5,5'-FdU revealed an apparent reduction o f Ep-CAM expression by 

immunocytochemistry analysis (figure 3.2.18 C), in contrast with 1 OuM BrdU 

treatment, which induces Ep-CAM expression (figure 3.2.18 B). 10uM CdU treatment 

induced an expression of Ep-CAM (figure 3.2.18 D) (at least equal to that of 10(oM 

BrdU). Immunocytochemical analysis did not reveal an induction of Ep-CAM in 

70jj,M 5-BUr treated cells (figure 3.2.18 E).

Figure 3.2.19 shows the results o f western blot analysis of A549 treated with 

halogenated thymidine analogues.

♦ In agreement with earlier experiments (section 3.1.2) the treatment with 10|_iM 

BrdU induced Ep-CAM expression at 7 and 14 days.

♦ Exposure to 5,5'-FdU (2|iM) for 7 days induced Ep-CAM expression, Ep-CAM 

expression was further induced after 14 days of treatment, and the level of 

induction appeared to be greater than for BrdU. This result contradicts the 

observations made by immunocytochemistry, which showed a decrease in Ep- 

CAM expression. Unfortunately due to time constraints repeat experiments with 

fresh treatments was not possible.

♦ In 5-BUr treated cells there was an apparent induction o f Ep-CAM in the day 7

and day 14 time points. It is an interesting feature, since no induction of

cytokeratin-8, -18, or -19 was observed with 5-BUr treatment.

♦ Treatment with CdU did appear to induce Ep-CAM slightly over 7 days.

1 2 0



The effect o f the halogenated thymidine analogues on Ep-CAM mRNA expression 

was investigated with RT-PCR analysis (figure 3.2.20). Treatment with (10|iM) CdU 

and (70|.iM) 5-BUr for 7 days did not appear to alter the mRNA level o f Ep-CAM in 

A549. Treatment with 5,5'-FdU appeared to slightly decrease the Ep-CAM mRNA 

level. Since an increase in protein expression was observed in immunocytochemistry 

and western blot analysis, the validity of this result is questionable and may be due to 

sample degradation.
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following treatment with various thymidine analogues.
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3.2.2.5 Changes in Pi integrin expression following treatment with halogenated 

thymidine analogues.

Immunocytochemical analysis of DLKP cells treated with 2\iM  5,5'-FdU, showed 

induced expression of Pi integrin (figure 3.2.21 C), which was equivalent to that 

observed for IOjiM BrdU (figure 3.2.21 B). An induction for (3i integrin expression 

was also observed in 10pM CdU treatments (figure 3.2.21 D) (equal to 10p,M BrdU 

treatment), in contrast 70|_iM 5-BUr did not exhibit any changes in Pi integrin protein 

expression (figure 3.2.21 E).

Analysis of A549 treated with 2(iM 5,5'-FdU by immunocytochemical methods 

showed reduced expression for Pi-integrin (figure 3.2.22 C) (less then untreated A549 

cells (figure 3.2.22 A)). Induced expression for Pi integrin protein with 10(.iM CdU 

treatment (figure 3.2.22 D) (comparable to BrdU treatment); no change in protein 

expression appeared to occur in 70pM 5-BUr treatment (figure 3.2.22 E).

In order to obtain a quantitative result western blot analysis was conducted for Pi 

integrin expression in A549 cells exposed to the halogenated thymidine analogues for 

up to 14 days (figure 3.2.23).

♦ As shown previously in this laboratory the level of pi integrin expression was 

enhanced at day 7 and day 14 following treatment with BrdU (Meleady et al., 

manuscript in preparation).

♦ Induction of Pi integrin protein occurred over the 14 days of 5,5'-FdU treatment, 

which was greater then the increase observed for BrdU treatment. It also calls into 

doubt the validity of the immunocytochemical result (figure 3.2.23 C), which 

showed inhibition of Pi-integrin expression. Unfortunately due to time constraints 

it was not possible to conduct repeat experiments necessary for further 

investigation.

♦ 5-BUr treatment may have caused a slight induction in Pi integrin expression.

♦ Treatment with lOpM CdU over 7 days induced a slight increase in pi integrin 

protein expression, due to the difficulty of culturing enough cells for the assay it
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was not possible to investigate an increase in (3i integrin protein expression 

beyond 7 days.
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Figure 3.2.22 Immunocytoehemistry analysis for (31 Integrin expression in 
A549 cells (xlOO) treated with various halogenated thymidine 
analogues.
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3.3 INVESTIGATION INTO THE ABILITY OF A COMPLEX 

HORMONE SUPPLEMENTED MEDIA TO INDUCE 

DIFFERENTIATION IN THE LUNG CELL LINES DLKP 

AND A549.

Previous reports from Prof. Emura's laboratory in Hannover had shown the fetal 

hamster lung cell line M3E3/C3 had properties suggestive of a possible lung stem cell 

e.g. it is, like DLKP, cytokeratin negative. The use of a hormone supplemented 

medium caused these cells to differentiate in vitro and to acquire a type II 

pneumocyte-like phenotype (Germann et al, 1993).

The culture medium was adapted for the DLKP and A549 cell line models by 

eliminating the soft agar overlay and reducing the serum concentration to 5%.

Since the medium contained several biologically active compounds, it was proposed 

that this study would allow an assessment of alternative in v itro  induced 

differentiation pathways which might or might not be similar with the pathway(s) 

induced by the halogenated thymidine analogues, to be made of the physiological 

relevance of BrdU induced differentiation.
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3.3.1 MORPHOLOGICAL ANALYSIS.

The lung cell lines were grown for 7 days in the hormone supplemented medium 

(HSM) and any change in morphology was noted. The DLKP cells obtained a more 

squamous morphology in HSM (figure 3.3.1 B) compared to cells in normal medium 

(figure 3.3.1 A).

The cell line A549, which is often used as a model for type II pneumocytes, also 

developed a squamous morphology and an increase in the number of cytoplasmic 

granules also appeared to occur (figure 3.3.2 B) when compared to cells grown in 

normal media (figure 3.3.2 A).
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A. DLKP Untreated. B. DKLP grown in HSM.

Figure 3.3.1 Morphology change in DLKP following growth in HSM (xlOO).

A. A549 Untreated. B. A549 grown in HSM,

Figure 3.3.2 Morphology change in A549 following growth in HSM (xlOO).
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3.3.2 IMMUNOCYTOCHEMICAL ANALYSIS OF MARKER PROTEINS IN 

DLKP AND A549 GROWN IN HSM.

Immunocytochemical analysis for CK-8 expression in DLKP following growth in 

HSM showed an induction of CK-8 expression (figure 3.3.3). Similarly, cytokeratin- 

18 (figure 3.3.5) and cytokeratin-19 (figure 3.3.7) showed induction by HSM. 

Immunocytochemistry for Ep-CAM showed strong induction following growth in 

HSM (figure 3.3.9).

According to immunocytochemical analysis, A549 cells appeared to show a slight 

induction of cytokeratin-8 expression following growth in HSM (figure 3.3.4), 

cytokeratins -18 (figure 3.3.6) and -19 (figure 3.3.8) also appeared to be induced 

following growth in HSM. The expression of Ep-CAM was induced following growth 

of A549 in HSM (figure 3.3.10).
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A. Untreated DLKP. (xlOO) B. DLKP grown in HSM. (xlOO)

Figure 3.3.3 Immunocytochemistry for CK-8 expression in DLKP grown in HSM.

Figure 3.3.4 Immunocytochemistry for CK-8 expression in A549 grown in HSM.
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Figure 3.3.5 Immunocytochemistry for CK-18 expression in DLKP grown in HSM.
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Figure 3.3.6 immunocytochemistry for CK-18 expression in A549 grown in HSM.

136



r 'i: 9
* '«•. y* ' t  - ,

r o

,  ^  ■
Ü

l

^  O, ° 0

> t  » . •

t . * , j*:

cP

■ 3  V

i*  : ‘

Í*'S¡L '  ' ■■ '•<.
t j V ' . i  .  ¿  , ■ «
! ■*> ■>' 5L' .  V  - ’

•j

■V’j}

s
'

<Cj  V t

A. Untreated DLKP. (xIOO) B. DLKP grown in HSM. (xIOO)

Figure 3.3.7 Immunocytochemistry for CK-19 expression in DLKP grown in HSM.
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Figure 3.3.8 Immunocytochemistry for CK-19 expression in A549 grown in HSM.

A. Untreated A549. (xIOO)

137



-c /> o
1» (1 'r. >
■ c

1
fc8loi

o°* [><• - . 7
(» ao

\ - . j  ■ ■'*'**<a
$>0 -

m W f  * * V
» I < y

a ?  i> >■
■Q-', - , ' ‘ V

O, - ~ ̂ k °  12? 
a ’

S'. ' t.K
<?

t ]<sh v.
W o o \ °  °

A. Untreated DLKP. (xlOO) B. DLKP grown in HSM. (xlOO)

Figure 3.3.9 Immunocytochemistry for Ep-CAM expression in DLKP grown in 
HSM.

, '  V i , . / s  0  • -. . /:■ '■. i ...
' ■ • * , ‘ y.-** ■ . •*,

r  <U

0 ~ 4 .  ■ ■  ■' m

A. Untreated AS49. (xlOO) B. A549 grown in HSM. (x 100)
v> .

i tr.

Figure 3.3.10 Immunocytochemistry for Ep-CAM expression in A549 grown in 
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3.3.3 WESTERN BLOT ANALYSIS OF MARKER PROTEINS IN DLKP 

AND A549 GROWN IN HSM.

To quantify the changes observed in the immunocytochemical analysis (section 3.3.2),

western blot analysis was performed on DLKP and A549 cells that had been treated

with HSM for 7 and 14 days.

♦ No detectable CK-8, CK-18, and CK-19 was observed in DLKP grown in HSM, 

suggesting that immunoprecipitation was required (figure 3.3.11, 3.3.12, 3.3.13).

♦ An induction in Ep-CAM expression was observed in DLKP grown in HSM for 

21 days (figure 3.3.14) confirming the result obtained by immunocytochemistry.

♦ In A549 no obvious increase was observed for CK-8 when they were grown in 

HSM (figure 3.3.11).

♦ There was an increase in CK-18 expression in A549 grown in HSM (figure 

3.3.12).

♦ CK-19 expression increased in the A549 cells cultured in HSM over 14 days, thus 

confirming the results that were obtained by immunocytochemistry (figure 3.3.13).

♦ Ep-CAM expression increased in A549 cultured in HSM for 21 days (figure 

3.3.14)
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Figure 3.3.11 Western Blot analysis of CK 8 expression in DLKP and A549 
grown in HSM.
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Figure 3.3.12 Western Blot analysis of C K 18 expression in DLKP and A549
grown in HSM.

141

Dayl4 
A

549



Figure 3.3-13 Western blot analysis for C K 19 expression in A549 and DLKP 
grown in HSM

142



Day 21 DLKP 

Day 14 DLKP

Day 7 DLKP

Untreated
DLKP

Day 21 A549 

Day 14 A549

Day 7 A549

Untreated
A549

I

t :

B

Fi
gu

re
 

3.3
.14

 
W

es
te

rn
 

bl
ot

 a
na

ly
sis

 
of 

Ep
-C

AM
 

ex
pr

es
sio

n 
gr

ow
n 

in 
H

SM





3.3.4 RT-PCR ANALYSIS OF MARKER PROTEIN mRNA EXPRESSION IN 

DLKP AND A549 FOLLOWING CULTURE IN HSM.

RT-PCR analysis was conducted to determine the effect of growth in HSM had on

CK-8, CK-18, and CK-19 mRNA transcript levels.

♦ There was no CK-8 (figure 3.3.15), CK-18 (figure 3.3.16), CK-19 (figure3.3.17) 

mRNA detected in DLKP. These samples were in storage (at -80°C) for some 

time. Thus degradation of sample was deemed the most likely cause for this result.

♦ Growth in HSM by A549 did not appear to alter CK-8 mRNA expression levels 

(figure 3.3.15). In contrast a slight decrease is observed in CK-18 mRNA levels 

(figure 3.3.16), even though induction of protein was obtained by western blot 

analysis. Concurrently, a slight increase in CK-19 mRNA transcript levels was 

observed over the 21 days of growth (figure 3.3.17).
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Figure 3.3.16 RT-PCR analysis for CK-18 expression in A549 and DLKP grown 
in HSM.
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3.3.5 PRELIMINARY INVESTIGATION ON THE EFFECTS OF 

DELETION OF SPECIFIC COMPONENTS IN HSM.

In order to assess what influence that various components of HSM had on the 

differentiation, experiments were conducted in which a specific factor was deleted 

from the medium. A549 cells were cultivated for 14 days and subsequently analysed 

for changes in morphology and selected marker proteins (cy to keratin-8, cytokcrat in- 

18, cytokeratin-19, and Ep-CAM) summarised in table 3.3.1.
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HSM with various components deleted
Marker Untreated. Complete HSM. EGF -Ve HSM. Hydrocortisone - 

Ve HSM.
Oestrogen -Ve 
HSM.

Insulin -Ve HSM. Cholera Toxin - 
Ve HSM.

Cytokeratin-8 Positive Same as Untreated Same as Untreated 
Definitive assessment 
not possible

Same as Untreated 
Definitive assessment 
not possible

Same as Untreated 
Definitive assessment 
not possible

Same as Untreated 
Definitive assessment 
not possible

Same as Untreated 
Definitive assessment 
not possible

Cytokeratin-18 Positive Same as Untreated Same as Untreated
Definitive assessment 
not possible

Same as Untreated
Definitive assessment 
not possible

Same as Untreated
Definitive assessment 
not possible

Same as Untreated
Definitive assessment 
not possible

Same as Untreated
Definitive assessment 
not possible

Cytokeratin-19 Positive Induced expression Induced expression Strong induction of 
expression

Induced expression No induction of 
expression

Very strong 
induction of 
expression

Ep-C AM Positive Induced expression Induced expression Strong induction of 
expression

Strong induction of 
expression

No induction o f 
expression

Strong induction of 
expression

Table 3.3.1 Comparison of changes in A549 of marker proteins grown in various ‘orms of HSM.



3.3.5.1 Alterations in A549 morphology and protein expression following deletion 

of EGF from HSM.

♦ Growth in HSM from which EGF had been deleted was accompanied by an 

alteration in morphology, when compared to untreated A549 cells and cells grown 

in complete HSM (figure 3.3.18 B). The cells still grew in tight colonies when 

compared, though some cells within these colonies showed increased flattening. 

This increased flattening was often accompanied by the formation of vacuoles 

within the cytoplasm.

♦ The expression of CK-8 in cells grown in HSM lacking EGF did not appear to 

alter (figure 3.3.19). However, assessment of this result was hampered by a 

saturation of signal, which means that subtle differences in protein level were not 

detectable.

♦ Similarly CK-18 expression did not appear to be altered following growth in HSM 

with EGF deleted. Once more assessment was hampered by a high signal strength 

(figure 3.3.20).

♦ Omission of EGF from HSM added did not seem to alter the ability of HSM to 

induce CK-19 expression in A549 cells (figure 3.3.21)

♦ Likewise the induction of Ep-CAM by HSM did not appear to be affected by the 

removal of EGF (figure 3.3.22).

3.3.5.2 Alterations in A549 morphology and protein expression following deletion 

of Hydrocortisone from HSM.

♦ Growth in HSM which had hydrocortisone deleted, had a very altered morphology 

and was unlike either untreated A549 or cells grown in complete HSM. The cells 

appeared to be much smaller in cell volume with a ‘spiky’ appearance and grew in 

loose colonies (figure 3.3.18 C). The culture also contained a sub-population of 

cells, which possessed a flattened morphology and usually grew as isolated cells.

♦ HSM from which hydrocortisone had been withdrawn did not appear to alter the 

expression of CK-8 (figure 3.3.19), though due to the high signal strength 

assessment was difficult.
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♦ Likewise the expression of CK-18 did not appear to be altered in HSM from 

which hydrocortisone was deleted (figure 3.3.20). However, in common with the 

CK-8 result, assessment was difficult due to the strong signal strength.

♦ HSM from which hydrocortisone was deleted, induced strong expression of CK- 

19 (figure 3.3.21). The strength of this induction was greater than the induction of 

CK-19 expression induced by complete HSM.

♦ Similarly the expression of Ep-CAM was greatly increased in HSM lacking 

hydrocortisone (figure 3.3.22). The level of induction was greater than the 

induction observed in complete HSM.

3.3.5.3 Alterations in A549 morphology and protein expression following deletion 

of oestrogen from HSM.

♦ The growth of A549 in oestrogen deleted HSM did not appear to alter the cellular 

morphology greatly, with the cells growing in tight colonies (figure 3.3.18 D).

♦ HSM lacking oestrogen did not appear to alter the expression of CK-8 (figure 

3.3.19). Assessment of this result was hampered by a saturation of signal, which 

prevented subtle differences in protein level to be observed.

♦ Similarly, CK-18 expression did not appear to be altered following growth in 

HSM with oestrogen deleted. Thought assessment was once more hindered by a 

high signal strength (figure 3.3.20).

♦ The removal of oestrogen from HSM did not obviously alter the ability to induce 

the expression of CK-19 (figure 3.3.21).

♦ HSM which was lacks oestrogen appeared to have an enhanced ability to induce 

Ep-CAM expression (figure 3.3.22)

3.3.5.4 Alterations in A549 morphology and protein expression following deletion 

of insulin from HSM.

♦ The withdrawal of insulin from HSM did not appear to alter the cellular 

morphology of A549 greatly from that of untreated A549 cells (figure 3.3.18 E)
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♦ HSM lacking insulin did not appear to alter the expression of CK-8, though high 

signal level made it difficult to be conclusive (figure 3.3.19).

♦ The expression of CK-18 did not appear to be induced in cells grown in insulin 

deleted HSM. This result cannot be taken as being completely definite due to the 

high signal level (figure 3.3.20).

♦ The removal of insulin did not appear to alter the ability of HSM to induce CK-19 

expression (figure 3.3.21).

♦ Insulin depleted HSM appeared to possess a decreased ability to induce Ep-CAM 

expression (figure3.3.22).

3.3.5.5 Alterations in A549 morphology and protein expression following deletion 

of cholera toxin from HSM.

♦ The deletion of cholera toxin from HSM induced a more squamous morphology, 

with an apparent increase in the number of cytoplasmic granules (figure 3.3.18 F).

♦ HSM from which cholera toxin had been withdrawn did not appear to alter the 

expression of CK-8 (figure 3.3.19). Though due to the high signal strength it is 

difficult to make a conclusive judgement.

♦ Likewise the expression of CK-18 did not appear to be altered in HSM from 

which cholera toxin was deleted (figure 3.3.20). However in common with the 

CK-8 result, assessment was difficult due to the strength of the signal.

♦ The removal of cholera toxin from HSM, increased the ability of HSM to induce 

CK-19 expression (figure 3.3.21). The strength of this signal was substantially 

greater then that observed from complete HSM.

♦ HSM from which cholera toxin was deleted induced a much stronger expression 

of Ep-CAM than that observered with cells grown in complete HSM (figure 

3.3.22).
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A. Complete HSM. (xlOO) B. EGF Deleted. (xlOO)

C. Hydrocortisone Deleted. (xlOO) D. Oestrogen Deleted. (xlOO)

Figure 3.3.18 Morphology of A549 grown in HSM with various components deleted.
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E. Insulin Deleted. (xlOO) F. Cholera Toxin. (xlOO)

Figure 3.3.18 (Continued) Morphology of A549 grown in HSM with various components
deleted .
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Figure 3.3.19 Western blot analysis of cytokeratin-8 (CK-8) expression in A549 cells 
following growth in HSM with various components deleted.
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Figure 3.3.20 Western blot analysis of cytokeratin-18 (CK-18) expression in A549 
cells following growth in HSM with various components deleted
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Figure 3.3.21 Western blot analysis of cytokeratin-19 (CK-19) expression in A549 
cells following growth in HSM with various components deleted.

Figure 3.3.22 Western blot analysis of Ep-CAM expression in A549 cells following 
growth in HSM with various components deleted.
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3.4 DEVELOPMENT OF IN VITRO MODELS OF

DIFFERENTIATION WITH PRIMARY CULTURES OF 

NORMAL LUNG AND LUNG CARCINOMA CELLS.

3.4.1 PRIMARY CUTURE AND PRELIMINARY DIFFERENTIATION 

STUDIES OF TYPE IIPNEUMOCYTES.

Type II pneumocytes were isolated from rat lung. These, were used to investigate the 

behaviour of normal cell populations in vitro and to establish a foundation for their 

use in modelling differentiation

3.4.1.1 Time-Lapse observations of isolated rat type II pneumocytes.

To investigate the effect of seeding density on proliferation and differentiation in 

isolated rat type II pneumocytes cells time-lapse studies were performed. Freshly 

isolated rat type II pneumocyte cells were plated at low density 5 x 105 and at high 

density 1.5 x 106 per well of a 12 well plate. These were then allowed to attach for 16 

hours, before the media was changed and the culture observed by time lapse.

In summary both low- and high-density cultures exhibited no proliferation from 16 

hours after isolation till the end of the experiment, which occurred when the cells died 

by apoptosis. During the assay the cells in both low- and high-density cultures became 

progressively flatter and larger, with a small decrease in lamellar body content. This is 

suggestive of the type II pneumocytes adopting a type I cell morphology. The cells in 

the high-density culture appeared to change their morphology and enter apoptosis 

slightly later then those type II cells in low-density culture.
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Figure 3.4.1 shows photos of selected time points from the time-lapse video of a low- 

density culture (LD). The observations made for this low-density culture of type II 

pneumocyte are summarised in table 3.4.1.

Figure 3.4.2 shows photos of selected time points from the time-lapse video of a high- 

density culture (HD). The observations of these cultures are summarised in table 3.4.2

Time : 16 Hrs. 

Fig. 3.4.1 A

9 cells are present in a colony. The lamellar bodies are not very 

clear.

Time : 24Hrs. 

Fig. 3.4.1 B

A large increase in the size of the colony has occurred, but with not 

increase in cell number.

Time : 32 Hrs. 

Fig. 3.4.1 C

The cells in the colony are still spreading out. The colony still 

contains 9 cells

Time : 24 Hrs. 

Fig. 3.4.1.D

The cells are now very flat and cover a large surface area.

Time : 48 Hrs. 

Fig. 3.4.1 E

Some cells have died by apoptosis

Time : 72 Hrs. 

Fig. 3.4.1 F

All cells have died buy apoptosis.

Table 3.4.1 Summary of time-lapse observations for low density culture of rat

type II pneumocytes (figure 3.4.1)
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C. 32 Hours in culture D. 40 Hours in culture.

v*

0 1 - 0 8 - 9 8  SAT 
1 2 : 1 5  03 480

E. SO Hours in culture F. 84 Hours in culture.

Figure 3.4.1 Rat type II pneumocytes cultured at low density followed by time- 
lapse video microscopy (x400).
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Time : 16 Hrs. 

Fig. 3.4.2 A

A large colony of cells is present (approx. 48 cells). These cells 

express clear lamellar bodies (arrow).

Time : 24 Hrs. 

Fig. 3.4.2 B

The cells are now covering a larger surface area. However there has 

been no cell division observed and the cell number is still approx. 48

Time : 32 Hrs. 

Fig. 3.4.2 C

The cells now cover a large surface area. The cells while obviously 

larger and flatter still possess lamellar bodies.

Time : 40 Hrs. 

Fig. 3.4.2 D

The cells now cover all the surface area. This is due to the cells 

spreading rather then cell proliferation. The cell number is still 

approx. 48.

Time: 48 Hrs. 

Fig. 3.4.2 E

Cells appear to have flattened further and some cells have begun to 

die by apoptosis

Time : 72 Hrs. 

Fig. 3.4.2 F

More cells have died by apoptosis. No cell proliferation has 

occurred.

Table 3.4.2 Summary of time lapse observations for high density culture of rat 

type II pneumocytes, (figure 3.4.2)
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A. 16 Hours in culture B. 24 Hours in culture.

C. 32 Hours in culture. D. 40 Hours in  culture.

F. 84 Hours in culture.E. §0 hours in culture.

Figure 3.4.2 Rat type II pneumocytes cultured at high density followed by time- 
lapse video microscopy (x400).
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3.4.1.2 Immunocytochemistry of isolated rat type II pneumocytes.

Preliminary investigations of changes in antigenic expression in rat type II 

pneumocytes over time in culture, were conducted. The type II pneumocytes were 

cultured for 8 days and were stained at fixed time points. The antigen chosen for study 

were:

♦ Alkaline phosphatase, which is an enzyme important in the lipid surfactant 

pathway, thus it is indicative of type II pneumocytes.

♦ Surfactant protein D, a kind gift from Dr Henk Haagsman (University of Utrecht), 

it is one of the component proteins of the surfactant produced by type II 

pneumocytes.

♦ Cytokeratin 18, is one of the main structural proteins of type I pneumocytes.

♦ Cytokeratin 19, is one of the main structural proteins of type II pneumocytes.

A summary of the results obtained is presented in table 3.4.3.

M H H D a y  0 D a y  2 D a y  4 D a y  6 D a y  8

A lka lin e  Phosphatase 90 -  95% 55 -  60% 5 0 -4 5 % 25 - 30 % 1 5 - 1 0 %

S urfac tan t P ro te in  D 95 -100 % 70 - 75 % 3 5 - 3 0 % 1 0 - 1 5 % 5 - 0 %

C y to ke ra tin -18 5 - 10% 5 - 10% 10-15 % 20 - 25 % 40 - 45 %

C ytokera tin -19 80 - 85 % 55 - 60 % 10-15 % 1 0 -1 5 % 5 - 10 %

Table 3.4.3 Percentage of cells stained for various markers over time in

culture.
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3.4.2 SELECTION AND CHARATERISATION OF HUMAN LUNG 

CARCINOMA SAMPLES.

The aim of this work was to establish the foundation for the routine primary culture of 

human carcinoma cells. Such cultures would form the bases of an in vitro model for 

studying differentiation in human lung carcinomas.

A total of 52 lung carcinoma samples were utilised in the investigation. A number of 

oesophageal tumour samples were also obtained.

The majority of samples came from patients undergoing lobectomy (removal of one or 

more constituent lobes of the lung or pneumonectomy (removal of one of the lungs). 

This type of resection for large tumours was normally reserved for non-small cell lung 

carcinoma. The second source of tissue came from investigative procedures such as 

bronchoscopy and mediastinoscopy. Both procedures are usually performed 

sequentially on the patient. The amount of tissue available from these procedures is 

very limited, usually in the range of 2-3 cm3. The tissue samples were placed 

immediately into cool (4 °C) transport media upon resection and transported at 4 °C 

promptly to the lab.

At the time of collecting the samples the histology may not have been known or 

available. However, most samples appear to have been from patients with either 

adenocarinoma or squamous cell carcinoma. It was not always clear if the samples 

were from patients with malignant or benign tumours. In a limited number of cases 

some tissue specimens were metastases from other tissues e.g. an ovarian tumour, a 

sarcoma of the uterus, and melanoma. Within the 52 samples a great deal of tissue 

heterogeneity existed e.g. size, texture, associated adipose tissue, necrosis and 

vascularisation.
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3.4.3 ENZYMATIC DISAGGREGATION OF TISSUE SAMPLES.

Two types of enzymatic digestion were investigated for their ability to dissagregate 

sample tissue and generate cultures of viable epithelial cells.

♦ The first method utilised trypsin 2 ml of lOx Gibco BRL trypsin in 18ml of MEM 

supplemented with lOU/ml of DNase I. In which the tissue was digested for 2 x 30 

minutes.

♦ The second treatment utilised 0.4 mg/ml Collagenase A, 0.6 mg/ml Dispase, 0.6 

mg/ml Pronase E in MEM supplemented with 10 U/ml of DNase I. the tissue was 

digested for 2 x 3 0  minutes.

See methods section 2.15 for a more detail account of the isolation procedure.

Neither method of enzymatic treatment appeared to confer an advantage for the 

isolation and culture of epithelial cells, (figure 3.4.3 A and B).

Epithelial colonies were usually obtained from the enzymatic digestion of the sample 

tissue. These usually only lasted for 1 or 2 passages at most and never reached 

confluency. The cultures usually became dominated by fibroblasts (figure 3.4.4).

Explants were also investigated for their ability to promote epithelial growth in vivo. 

These took longer for cells to become established and appeared to suffer similar 

amounts of fibroblast overgrowth as those cultures generated by enzymatic methods 

(figure 3.4.5).

A number of methods were investigated for their ability to prevent fibroblast 

overgrowth. These included using D-valine MEM as the basal media, the 

supplementation of the culture media with putrescence, differential trypsinisation, and 

panning of cells during isolation. None of these methods conveyed an advantage over 

a long culture time. The panning for fibroblasts during isolation was incorporated into 

the final protocol adopted as it may allow the epithelial cells some selective advantage 

during the initial culture period.
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The ability to obtain relatively pure cultures of lung carcinoma epithelial cells and to 

work with such cultures beyond 1 passage was very poor. The one culture most 

successful was from a highly malignant melanoma of the oesophagus, this culture was 

known as WS-111 (figure 3.4.6 A and B). The culture was passaged 3 times over two 

months before the melanoma cells died. The culture was slow in its growth, and 

contained a handful of contaminating fibroblast like cells, these cells subsequently 

took over (figure 3.4.6 C and D).
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A. Trypsin digest. B. Collagenase, dispase, and pronase-E digest

Figure 3.4.3 Comparison of primary culture MS-25.6 generated using different 

enzyme systems (xlOO).

Trypsin digest.
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Figure 3.4.4 Overgrowth of primary culture GOK-65 with fibroblast (xlOO).

Figure 3.4.5 Outgrowth from explant after 18 days (xlOO).
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A xlOO B x400

C xlOO D x400

Figure 3.4.6 Primary culture WS-111 at passage 0 (A) and (B) showing cells with a

myeloma morphology; at passage 6 (C) and (D) showing overgrowth and 

replacement with fibroblast cells.
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3.4.4 INVESTIGATION INTO CYTOSKELETAL EXPRESSION IN 

FIBROBLAST CELLS IN  VITRO.

This study arose serendipitously when it was decided to use fibroblast cells derived 

from primary culture as negative controls for cytokeratin expression. Surprisingly, 

these cells proved to be positive.

Subsequent immunocytochemistry studies were performed on three primary cultures

of fibroblasts derived from lung carcinoma samples, which were designated -

JK-13.10 

HG-18.10 

BD-25.10

Three normal fibroblast cell cultures available from external cell culture collections 

were also analyzed

AG02603 Normal lung clinically unaffected (Source: NIH; Institute of aging)

AG02602A Normal skin clinically unaffected (Source : NIH; Institute of aging)

CCD-371u Normal lung (Source: ATCC)

The normal fibroblast cells AG02603 (lung) and AG02602A (skin) are a matched pair 

from the same patient. The skin cells are supplied at a later passage.

Immunocytochemistry was carried out using antibodies to the following antigens; 

Pan-Cytokeratin; Cytokeratin 8; Cytokeratin 18 and the results obtained are 

summarised in table 3.4.4.

Though all fibroblast cells stained positive for pan-cytokeratin (figure 3.4.8) the 

staining for specific cytokeratins was variable (figures 3.4.9 and 3.4.10). For example 

the JK-13.10 fibroblasts were negative for cytokeratins 8 and 18, the HG-18.10 

fibroblast cells were weakly positive for cytokeratin 8 and positive for cytokeratin 18, 

and BD-25.10 fibroblasts strongly positive for cytokeratins 8 and 18 (figures 3.4.9 and 

3.4.10).
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Pan-Cytokeratin Cytokeratin-8 Cytokeratin-18

AG02603
(Normal lung)

Positive Positive Positive

AG02602A
(Normal skin)

Positive Positive Positive

CCD-341u

(Normal lung)

Positive Positive Positive

JK-13.10 Positive Negative Negative

HG-18.10 Positive Weakly-Positive Positive

BD-25.10 Positive Positive N/A

Table 3.4.4 Summary of immunocytochemical analysis for cytokeratin 

expression in fibroblasts.
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Figure 3.4.8 Staining for pan-cytokeratin in various fibroblast cultures (x400).
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Figure 3.4.9 Staining for cytokeratin-8 in various fibroblast cultures (x400).

AG02603 (Lung)
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CCD-371u AG 02603 Skin AG 02603 Lung

k

.
HG-18.10 JK-13.10

AS49 Positive control

Figure 3.4.10 Staining for cytokeratin 18 in various fibroblast cultures (x400).
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4.0 DISSCUSSION.
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4.1 GENERAL INTRODUCTION.

The lung is a complex organ consisting of over 40 different cell types (Plopper, 1996), 

whose development has been divided into four chronological stages; I) the 

pseudoglandular stage, II) the canalicular stage, III) the terminal sac stage, and IV) the 

alveolar stage. It is only recently from studies of Drosophila mutants that tentative 

identification has been made of some of the developmental genes involved in lung 

morphology e.g. trachealess (Wilk et a l 1996) and branchless (Glazer and Shilo, 

1991). While progress has been made in the developmental genetics of lung 

morphogenesis, the differentiation pathway and the genes involved in development of 

specific cell types in the lung are still largely unknown. Research in this area has been 

hampered by the lack of identification of a stem cell population in vivo and/or the lack 

of in vitro cell line models to study lung cell differentiation.

What is known about lung cell differentiation comes from studies of the terminal parts 

of the differentiation tree where a specific basal cell will give rise to a discrete 

differentiated cell type, e.g. type II pneumocytes give rise to type I pneumocytes 

(Adamson and Bowden, 1979). Steps in the differentiation pathway earlier than this 

are unknown. It is hypothesised by Emura (1997) that a hierarchy exists within the 

lung cell differentiation pathway. His model envisages that a single stem cell exists 

for both the pseudostratified and simple epithelia. This single stem cell population 

conducts its role through various predifferentiated secretory cell populations, which in 

turn give rise to various functional cell types that may differentiate into further 

terminal stage cells (figure 1.3.3)

One of the principal aims of this thesis was to investigate the possible role of the cell

cell adhesion molecule Ep-CAM in epithelial lung cell line differentiation, following 

BrdU treatment. The study utilised the poorly differentiated lung carcinoma cell line 

DLKP and the lung adenocarcinoma cell line A549 as models. The ability of 

halogenated thymidine analogues to induce differentiation was investigated. The 

investigation utilised Ep-CAM as a marker for differentiation to complement on going
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investigations of changes recently discovered in this laboratory in cytokeratin 

expression and Pi integrin expression (McBride et al., 1999; Meleady and Clynes, 

manuscript submitted).
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4.2 INDUCTION BY BrdU OF Ep-CAM EXPRESSION IN LUNG 

CELL LINES.

It is speculated that the cell line DLKP, which was derived from a lung tumour which 

was diagnosed as a poorly differentiated lung carcinoma, may serve as a model for a 

stem cell iike-population of the lung (McBride et a l, 1998). It thus may represent a 

valuable model for investigating the role of Ep-CAM in differentiating lung epithelial 

cells. The studies included a comparison with the cell line A549, which represents a 

more differentiated lung cell type, as it has been reported to express features of a type 

II pneumocyte cell (Lieber et al., 1976).
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4.2.1 BrdU INDUCES Ep-CAM EXPRESSION IN BOTH DLKP AND A549.

Ep-CAM is described as having a wide distribution in normal human epithelia with 

expression found on the most simple, columnar and pseudostratified epithelia 

including bronchiolar and alveolar cells (Mombuerg et al., 1987)

Analysis of Ep-CAM expression by immunocytochemistry with the anti- Ep-CAM 

antibodies VU-1D9 and 323/A3 showed DLKP to be negative for Ep-CAM (figure

3.1.1) whereas A549 to be slightly positive for Ep-CAM (figure 3.1.2).

The lack of Ep-CAM expression in DLKP and the low level of expression in A549 

could be considered unusual, as Ep-CAM expression is reported to increase in most 

adenocarcinomas and de novo expression frequently occurs in carcinomas from 

squamous epithelia (Litvinov et al., 1996; Varki et al., 1984). In particular, strong Ep- 

CAM expression has been reported for small cell lung carcinoma cell lines 

(Moldenhauer et al., 1987).

Following exposure to 10 pM BrdU for 7 days, the morphology of both A549 and 

DLKP changed with the cells becoming enlarged and flattened in appearance. 

Immunocytochemical analysis revealed that the changes observed in morphology 

were accompanied by changes in the expression of Ep-CAM protein. DLKP was 

shown to express Ep-CAM de novo following BrdU treatment for 7 days. This 

staining appeared strongest in the cell membrane indicating that the protein was likely 

to be functional and to be active in the cellular physiology of BrdU-treated DLKP 

cells. In A549 cells immunocytochemical analysis revealed a similar increase and 

staining pattern for Ep-CAM protein expression following exposure to lOpM BrdU 

exposure.

While immunocytochemistry has the advantage of detecting changes in sub

populations, which might not be noticeable in bulk methods such as western blotting, 

it should only be regarded a qualitative method, since changes in cell morphology 

may give the appearance of changes in protein expression. For this reason, western
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blot analysis was performed (section 3.1.2) to obtain quantitative results. DLKP and 

A549 were treated for 21 days with 10 (iM BrdU and time points were taken at day 7, 

day 14 and day 21. Treatment of DLKP with 10 (iM BrdU seemed to trigger de novo 

expression of Ep-CAM; as in untreated cells no protein could be detected but after 7 

days of treatment a protein band was detectable (figure 3.1.3). The expression of 

protein continued to increase until day 14, at which point it appears to have plateaued 

with no visible increase occurring between day 14 and day 21 of BrdU treatment. In 

A549 a similar pattern was observed (figure 3.1.4); untreated cells were found to 

express a low level of Ep-CAM which increased within 7 days of BrdU treatment. 

The expression of Ep-CAM continued to increase until day 14 at which point a 

plateau level was also reached.

Litvinov et al. (1996) reported that Ep-CAM was expressed in a stem cell-like 

population of cervical epithelial cells and that this expression was decreased when 

these stem cells differentiated into squamous epithelia. In metastatic disease states of 

the uterine cervix the expression patterns of the simple epithelial cell cytokeratins 8 

and 18 and of Ep-CAM were identically high (Litvinov et al., 1996).

Previous studies in our laboratory have shown that DLKP lacks the major 

cytokeratins, including cytokeratins 8 and 18 (McBride et al., 1999). The expression 

of cytokeratins 8 and 18 are indicative of early epithelial differentiation (Daly et al., 

1998). Thus the lack of these cytokeratins and of Ep-CAM expression would appear 

to confirm the theory that DLKP represents a cell population early in the 

differentiation pathway of lung epithelia.

It could be theorised that BrdU induces DLKP into a cell phenotype that represents an 

early stage in lung stem cell differentiation, involving changes in the cytoskeletal 

structure (induction of cytokeratin expression), a change in cell-cell binding as 

suggested by the induction of Ep-CAM, and a change in the recognition and affinity 

of extra-cellular matrix as implied by the induction of ai(3i and OC2 P1 integrins 

(McBride et al., 1999; Meleady and Clynes, manuscript submitted). It could be 

speculated that this stage of differentiation occurs prior to the expression of more
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specialised lung cell features such as surfactant proteins, microvilli, etc., and may be 

within stage II of the scheme proposed by Emura (section 1.3.2).

4.2.2 Ep-CAM INDUCTION BY BrdU IS AT THE POST- 

TRANSCRIPTIONAL LEVEL.

To investigate what effect BrdU had on the mRNA transcript levels for Ep-CAM, RT- 

PCR analysis was performed. The transcript levels were assessed over 21 days of 

BrdU treatment with time points of 7, 14 and 21 days.

Little is known about the regulation of Ep-CAM expression. Northern blot analysis 

identifies a 1.5kb mRNA species, which contains some recognition sequences that 

occur in the post-transcriptional control of certain proto-oncogenes and inflammatory 

mediators (Perez and Walker, 1989). Included in the 3’-non coding region of the Ep- 

CAM mRNA transcript is the consensus sequence TTATTTAT, associated with the 

inflammatory mediators (Perez and Walker, 1989). In addition, the 3’-non coding 

region of Ep-CAM contains the sequence ATTTA, which is a proposed recognition 

signal for the degradation processing of mRNA coding for a number of proto

oncogenes, lymphokines and cytokines (Perez and Walker, 1989).

In both DLKP and A549, constitutive expression of Ep-CAM at the mRNA level 

occurred in untreated cells (figure 3.1.5). Following treatment with BrdU no change 

in levels of Ep-CAM mRNA was observed in either DLKP or A549. This result 

suggests that the BrdU induced de novo Ep-CAM protein expression in DLKP (and 

increased its expression in A549) is via post-transcriptional control mechanisms.

Studies in our laboratory (Derek Walsh, PhD. Thesis 1999) indicate that following 

BrdU treatment, the protein level and activity of eIF-4E, one of the rate limiting 

factors in translation of mRNAs with complex 5’ untranslated regions (5’-UTR), is 

increased. This increase provides for a possible explanation for an increase in Ep- 

CAM translation following BrdU treatment.
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4.2.3 ALTERATION IN FOCAL ADHESION PROTEINS FOLLOWING 

INDUCTION OF Ep-CAM BY BrdU.

Ep-CAM is believed to be a Ca2+ independent cell-cell adhesion molecule, which is 

involved in cell sorting. In vitro studies of cells transfected with Ep-CAM and non

transfected cells show that when mixed the two cell populations will aggregate 

separately (Litvinov el al., 1994). Studies investigating the differentiation effects of 

the lectin Vicia faba  in the colon cancer cell line LS174T showed that Ep-CAM was a 

key regulatory molecule in the promotion of differentiation (Jordinson et al., 1999). 

These in vitro observations have been reflected in vivo studies which implicated Ep- 

CAM as important in the development of human fetal pancreas (Cirulli et al., 1998).

This homophilic cell-cell sorting by Ep-CAM is achieved by a disruption of cadherin 

(e.g. E-cadherin) mediated cell-cell adhesion. Litvinov et al., (1997) proposed the 

following model in which Ep-CAM-mediated disruption of adherens junctions was 

due to a redistribution of E-cadherin on the cell surface, rather than a down- 

regulation. This redistribution of E-cadherin, and hence disruption of its function, by 

Ep-CAM was via alterations in the focal adhesion proteins involved in binding E- 

cadherin to the cytoskeleton (figure 1.4.1). Specifically the focal adhesion proteins a- 

catenin, and P-catenin were down-regulated.

It was decided to investigate if the induction of Ep-CAM by BrdU induced such 

changes in focal adhesion proteins, a-catenin and a-actinin, in DLKP and A549.

The expression of Ep-CAM following BrdU exposure did induce a down-regulation 

of a-catenin in both DLKP and A549 that were treated for 21 days (figure 3.1.7). The 

level of decrease is quite impressive with a-catenin levels in both cell lines at half 

their original level following 7 days of 10|iM BrdU treatment. The level of detectable 

protein continued to decrease over the 21 days of BrdU treatment, so that by day 21 

only a very low level of a-catenin could be detected. This result is in agreement with 

the model proposed by Litvinov et al. (1997) which proposes that a-catenin levels 

decrease in response to Ep-CAM expression. This reduction of a-catenin levels would
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disrupt E-cadherin binding to the actin cytoskeleton, and hence cause its redistribution 

on the cell surface.

The expression level of a-actinin was also investigated in DLKP and A549 following 

BrdU induced expression of Ep-CAM (figure 3.1.8). A sharp level of decrease 

appeared between the level of protein detected in untreated DLKP and A549 and the 

same cells treated for 7 days with BrdU. This decrease was repeated though perhaps 

not as dramatically in cells treated for 14 day with BrdU. The observed decrease in 

the level of a-actinin of both DLKP and A549 that occurred over the 14 days of BrdU 

exposure was unexpected. The study by Litvinov et al. (1997) upon which the model 

of Ep-CAM action is based did not report any decrease in a-actinin. Rather Ep-CAM 

is believed to interact with the actin cytoskeleton via a-actinin. It possesses two 

potential binding sites on its cytoplasmic tail for the binding of a-actinin (see figure

1.5.2) (Balzar et al., 1998).

It would be interesting, in further work, to examine mRNA levels for a-catenin and a- 

actinin, and to determine if the down-regulation observed is at the transcriptional or 

post-transcriptional levels.

While disruption to E-cadherin binding is often seen as a prelude to metastatic events 

in cellular physiology, its down-regulation is also considered a normal element during 

development and differentiation (Christofori and Semb, 1999). One way E-cadherin 

function is known to be regulated is via the Rho family of small GTPases. These 

molecules regulate cellular processes by the phosphorylation of key regulatory 

proteins, members of this family include Rho A, Cdc42 and Racl, which are known to 

be involved in cell shape, cell growth and cell polarity (Tapon and Hall, 1997). 

Modulation of E-cadherin mediated cell-cell adhesion can occur via Cdc42 and Racl 

phosporylation of an intermediate target molecule IQGAP1, which competes for a- 

catenin binding with (3-catenin. This causes a reduction of a-catenin in the focal 

adhesion anchoring E-cadherin to the actin cytoskeleton, which subsequently causes 

E-cadherin to be localised on the cell membrane (Kuroda et al., 1998). It can be 

speculated that Ep-CAM modulates E-cadherin utilising this family of signalling 

molecules.
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Disruption of E-cadherin-mediated cell adhesion can also involve p-catenin. This 

mediation involves the phosporylation of tyrosine on p-catenin by the non-receptor 

tyrosine kinase Src, leading to the disassembly of the cadherin-catenin complex 

(Behrens et al., 1993). P-Catenin is an interesting protein as it is extremely 

multifunctional with roles in cell adhesion (Peifer, 1995), activation of transcription 

factors (Molenaar et al., 1996), and it is possibly involved in signal transduction via 

the EGF pathway (Hoschvetzky et al., 1999) and WNT pathways (Molenaar et al., 

1996). It is hypothesised that disruption of E-cadherin may lead to an increase in free 

P-catenin which may translocate to the nucleus and activate members of the 

TCF/LEF-1 family of transcription factors. A target for up-regulation by this family is 

the proto-oncogene myc (He et al., 1998). Such an increase in Myc protein levels has 

been observed in DLKP and A549 following BrdU treatment (Derek Walsh, PhD. 

Thesis 1999). Thus it is possible to contemplate that induction of Ep-CAM may have 

a significant influence on cell differentiation in DLKP and A549.
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4.2.4 INDUCTION OF mRNA TRANSCRIPT FOR GA733-1 IN BrdU

TREATED DLKP.

The GA733-1 gene is highly homologous to the gene for Ep-CAM (GA733-2). It is an 

intronless gene suggesting that it is due to a retro transposition (Linnenbach et al.,

1989). The mRNA transcript o f GA733-1 codes for a 35.7 KDa protein (Szala et al.,

1990). Little is known about the expression of this protein product. Limited northern 

blot data indicates that the GA733-1 mRNA and Ep-CAM mRNA is expressed 

differentially (Szala et al., 1990).

RT-PCR analysis o f untreated DLKP did not show any detectable transcripts for 

GA733-1 (figure 3.1.6). Following treatment with 10|aM BrdU, however, mRNA for 

GA733-1 was detected in DLKP after 7 days. The level o f this mRNA increased 

slightly after 14 days, at which point a plateau appeared to be reached with no 

discernible increase in cells treated for 21 days. This contrasted sharply with the 

results obtained for A549 where no mRNA for GA733-1 was detected in pre- and 

post- BrdU treated cells.

It appears that GA733-1 transcription is induced differently following 10|iM BrdU 

treatment in DLKP and A549. It could be speculated that in DLKP, BrdU induces a 

promoter or removes a suppresser o f transcription for GA733-1, while in A549 this 

change in transcription is blocked by a failure to induce such changes. This may be 

due to the difference in the differentiation status of these cells (i.e. A549 is more 

differentiated then DLKP), hence certain genes may be under different degrees of 

control. Furthermore, it suggests that Ep-CAM and GA733-1 protein expression is 

controlled via different mechanisms (at least in the cell line, DLKP), the former being 

post-transcriptional while the latter is transcriptional.

Investigation into the protein expression of GA733-1 was hindered by the lack of a 

commercially available antibody. After several attempts an antibody to the GA733-1 

protein was sourced and this was still being waited upon at the time o f writing. It was 

not known if  the antibodies used for Ep-CAM detection were able to cross-react with
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GA733-1 protein. However, protein bands with molecular weight lower than Ep- 

CAM were detected but these were regarded as background bands. Balzar el al. 

(1998) obtained a similar pattern of lower molecular weight products in their 

experiments, which they regarded as breakdown products o f Ep-CAM.
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4.3 INVESTIGATION OF THE EFFECTS HALOGENATED

THYMIDINE ANALOGUES HAVE ON THE

DIFFERENTIATION OF DLKP AND A549.

The halogenated thymidine analogue 5-Bromo-2’-deoxyUridine (BrdU) is known to 

stimulate or inhibit the differentiation o f different cell types. McBride et al. (1999) 

demonstrated that the differentiation-inducing effects of BrdU on DLKP and A549 

were not the result of simple toxic exposure, as adriamycin, for example, did not 

produce the same effect.

The exact mechanism by which BrdU exerts its differentiation-modulating effects is 

unknown though incorporation in DNA would seem to be critical (O’Neill and 

Stockdale, 1974). It was thus decided to investigate the ability o f other halogenated 

thymidine analogues to induce differentiation in DLKP and A549. For this study it 

was decided to utilise the expression of cytokeratin (CK) -8, -18, and -19, Ep-CAM, 

and Pi integrin as markers o f differentiation in the two cell lines. The halogenated 

analogues of thymidine chosen for comparison with BrdU were 5-Fluro-5- 

deoxyUridine, 5-Chloro-2-deoxyUridine, and 5-BromoUridine (their structures are 

shown in figure 4.3.1). Preliminary experiments were performed to establish toxicity 

profiles of each analogue, and from these results concentrations were selected that 

would allow a 75% or greater survival rate.
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4.3.1 THE EFFECTS OF 5-FLURO-5-DEOXYURIDINE ON THE

DIFFERENTIATION STATUS OF DLKP AND A549.

The toxicity profile for 5-Fluro-5-deoxyUridine (5,5’-FdU) revealed that it was 

particularly cytotoxic (figure 3.2.1). A concentration of 2(j,M was selected as the 

optimum concentration to allow 75% survival in both DLKP and A549.

The change of morphology in both cell lines following 7 days of treatment with 5,5- 

FdU was investigated (figures 3.2.3 and 3.2.4). Both cell lines exhibit a reduction in 

growth compared with untreated cells, and the cells adopted a more flattened 

morphology, though not as stretched as those cells treated with BrdU. It was noted 

that DLKP seem to grow in loose colonies following treatment with 5,5'-FdU, 

whereas A549 cells were inclined to grow as single cells.

Immunocytochemical analysis was conducted to investigate if  the observed alterations 

in morphology were accompanied by changes in marker protein expression in 5,5'- 

FdU treated DLKP and A549. CK-8 expression appeared to be induced in DLKP 

(figure 3.2.5 C) following 7 days treatment. Similarly, in A549 treated with 2 |_iM 

5,5'-FdU an increase in CK-8 was observed (figure 3.2.6 C). A comparable increase 

occurred in the expression of CK-18 in both DLKP and A549 (figure 3.2.9 C and 

3.2.10 C). The expression of CK-8 and CK-18 are associated with early epithelial 

differentiation (Daly et al., 1998), hence their induction in DLKP is indicative of an 

early stage in the differentiation pathway. Both cell lines also exhibited an increase in 

CK-19, which can partner CK-8. This increase is often used as a marker for type II 

pneumocytes (Paine et al., 1995). The expression of these cytokeratins appear to 

match the expression patterns observed for BrdU-treated DLKP and A549. To 

quantify the changes in protein expression, western blot analysis was performed. 

Western blot analysis o f CK-8 expression in A549 treated with 5,5’-FdU showed a 

strong increase in protein expression after 7 days treatment, which further increased 

after 14 days treatment (figure 3.2.7). The observed increase appeared to be greater 

then that seen after BrdU treatment. Similar increase in expression was observed for 

CK-18 (figure 3.2.11) and CK-19 (figure 3.2.15) expression following 5,5’-FdU
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treatment. These also showed greater expression than BrdU treated cells. RT-PCR 

analysis lead to the conclusion that the induction of CK-8, CK-18, and CK-19 by 5,5'- 

FdU was at a post-transcriptional level

DLKP appears to exhibit an increase in (3j integrin expression and an induction in Ep- 

CAM expression. The observations made for Pi integrin and Ep-CAM induction 5,5'- 

FdU treated DLKP are similar to those made in BrdU treated DLKP.

Immunocytochemical analysis o f A549 appeared to indicate that Pi integrin 

expression was reduced and no induction of Ep-CAM occurred. However, western 

blot analysis showed an increase in Pi integrin and an induction o f Ep-CAM 

expression. Unfortunately, due to time constraints repeat experiments with fresh 

treatments were not possible to clarify this anomaly. RT-PCR analysis o f A549 did 

not indicate any significant alteration in Ep-CAM mRNA levels indicating that 

protein induction was at a post-transcriptional level.
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4.3.2 THE EFFECTS OF 5-CHLORO-2-DEOXYURIDINE (CdU) ON THE

DIFFERENTIATION STATUS OF DLKP AND A549.

The ability of 5-Chloro-2-deoxyUridine (CdU) to induce differentiation was also 

investigated. Initial investigation into the toxicity o f CdU (figure 3.2.2) suggested that 

the ideal concentration for a 75% survival rate in DLKP was 10(oM and for A549 was 

30(iM. It was discovered subsequently that cumulative exposure to CdU was 

especially cytotoxic to A549. Thus a concentration o f 10(j,M was chosen as being less 

cytotoxic to A549 over the treatment periods.

DLKP and A549 treated with CdU for 7 days were investigated for morphological 

change. Both DLKP and A549 became very flattened and stretched (figures 3.2.3 G 

and H, and 3.2.4 G and H). The observed alteration in morphology after CdU 

treatment was very reminiscent o f the changes exhibited in DLKP and A549 after 

BrdU treatment.

Analysis of the selected marker proteins by immunocytochemistry revealed that CK- 

8, CK-18, and CK-19 were induced in DLKP following CdU treatment. In particular, 

CK-18 was strongly expressed in DLKP. Assessment o f the immunocytochemistry 

results in A549 was difficult due to the increase in cell size. It appeared that CK-8 and 

CK-18 expression was increased following CdU treatment o f A549. An increase of 

CK-19 in A549 post-CdU was also suggested.

Since immunocytochemistry is only qualitative, western blot analysis was performed 

to obtain a more quantitative result for changes in expression in A549. Unfortunately, 

due to the cumulative toxicity it was difficult to obtain a sample for 14 days treatment. 

The western blot analysis confirmed that 7 days o f CdU treatment increased the 

expression of CK-8 (figure 3.2.7), CK-18 (figure 3.2.11), CK-19 (figure 3.2.15). The 

level of increase observed for each of the cytokeratins in A549 after 7 days CdU 

treatment was comparable to the level of increase in cytokeratins in A549 after 7 days 

BrdU treatment. Treatment with (10(iM) CdU induced Ep-CAM and Pi integrin 

protein expression.
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RT-PCR analysis o f 10|jM  treated A549 indicated that the mRNA level for CK-8, 

CK-18, CK-19, and Ep-CAM were not altered. This leads to the conclusion that CdU 

induces these proteins at a post-transcriptional level.
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4.3.3 THE EFFECTS OF 5-BROMOURIDINE (5-BUr) ON THE

DIFFERENTIATION STATUS OF DLKP AND A549.

The toxicity profiles for 5-BUr in both DLKP and A549 revealed that it did not 

appear to be very toxic. A concentration of 70|aM was chosen for the differentiation 

experiments as being the most practical. Morphological studies for DLKP and A549 

treated for 7 days with 5-BUr (figures 3.2.3 and 3.2.4) did not reveal any obvious 

alterations in morphology.

Immunocytochemical analysis of DLKP treated with 70|jM  5-BU for 7 days appeared 

to show no induction o f CK-8 (figure 3.2.5 E) and CK-19 expression (figure 3.2.13 

E). There appeared to be a very slight induction in CK-18 in DLKP. Treatment of 

A549 for 7 days with 5-BU did not reveal any alteration in CK-8, CK-18, CK-19, p i-  

integrin and Ep-CAM expression. Western blot analysis for A549 did not appear to 

show any obvious increases in CK-8 (figure 3.2.7), CK-18 (figure 3.2.11), and CK-19 

(figure 3.2.15) production, confirming the immunocytochemical observations. RT- 

PCR analysis did not indicate any change in mRNA levels of CK-8, CK-18, CK-19 in 

A549 indicating that induction is occurring at a post-transcriptional level.
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4.3.4 MECHANISMS OF BIOLOGICAL AND TOXIC ACTIONS VARY 

ACCORDING TO HALOGENATED THYMIDINE ANALOGUE.

The halogenated thymidine analogues 5,5'-FdU and CdU induced a similar pattern of 

differentiation in DLKP and A549 to that observed in BrdU treatments (Tables 4.2.1 

and 4.2.2), while according to markers investigated, the analogue 5-BUr did not 

generally induce any differentiation in either DLKP or A549, with the exception of 

Ep-CAM induction.

4.3.4.1 Mechanism of the biological action of BrdU.

The exact mechanism by which BrdU modulates differentiation has yet to be 

elucidated and a number o f models exist (section 1.4.2.1). All studies published to 

date indicate that its stable incorporation into DNA in competition with thymidine is 

required. This incorporation entails BrdU being converted to bromodeoxyuridine 

monophosphate by thymidine kinase (O’Neill and Stockdale, 1974; Morrill et al., 

1980; Cortés et al., 1987). BrdU incorporation into DNA occurs in a non-random 

fashion, with incorporation occurring into repeated nucleotide sequences (Schwartz 

and Snead, 1982). This consistency in the location of incorporation which may 

explain the reproducibility of BrdU-induced differentiation. These repeated nucleotide 

sequences include areas known as ‘fragile sites’ (Hecht et al., 1988). It is envisaged 

that breakage’s may occur at these points and these breakage’s and the associated 

chromosomal aberrations may be associated with stepwise changes in the 

differentiation o f a cell (Alexander et al., 1992). This substitution of BrdU into DNA 

may also induce effects similar to DNA-intercalating agents; these alter DNA bending 

at either major or minor groves, and in doing so alters the structure o f the promoter 

regions, and the affinity for DNA binding proteins. Lin and Riggs (1972) 

demonstrated this, when they showed that BrdU substitution in the lac operon allowed 

the lac supressor to bind with greater affinity. Thus, BrdU is likely to exert its effects 

on differentiation by alteration of an essential regulatory gene(s) that alters 

transcription o f genes involved in differentiation (Arnold et al., 1988; Rauth and 

Davidson, 1993). For example, in BrdU inhibition o f myoblast differentiation, such an
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alteration occurs with the down-regulation or complete inhibition o f the key 

regulatory gene M yoDl (Tapscott et a l,  1989; Nanthakumar and Henning 1995).

While BrdU is commonly used as an agent for the modulation of differentiation, only 

limited research has been performed on the ability o f other halogenated thymidine 

analogues. Three different analogues were selected for investigation, CdU, 5,5'-FdU, 

and 5-BUr, each possessing a different mechanism of action.

4.3.4.2 Mechanism of the biological action of CdU.

CdU like BrdU is converted into a nucleoside monophosphate (chlorodeoxyuridine 

monophosphate) by thimidine kinase and then incorporates into DNA for thymidine 

(Cortés et al., 1987). Most research on CdU has focused on its ability to generate 

chromosome breakage’s and sister chromatid exchanges. BrdU similarly possesses 

this capacity to generate such chromosome breakage’s, though CdU is a more potent 

inducer (Cortés et al., 1987). For instance, CdU is reported to induce 7-8 fold more 

sister-chromatid exchanges than BrdU, at an equal substitution level in cultured 

Chinese hamster ovary cells (O ’Neill et al., 1983). This higher rate o f sister chromatid 

exchanges associated with CdU may explain the cumulative cytotoxicity observed 

with CdU treatments of A549 and DLKP. Though only cells treated for 7 days were 

available for analysis, the pattern and strength o f induction of proteins appeared to be 

similar to that observed in BrdU treatment.

In the case o f the protein markers selected, the observed increase in protein level is 

due to changes in post-transcriptional control rather than an increase in transcription. 

This appears to be in contradiction with a mechanism of differentiation modulation 

involving alterations in DNA. Studies in our laboratory (Derek Walsh, PhD. Thesis 

1999) may reconcile this apparent contradiction, as they indicate that following BrdU 

treatment, the protein level and activity o f eIF-4E, the rate limiting factor in 

translation is increased. Thus, it appears that the substitution o f a chloro-group in 

place of a bromo-group, may induce similar alterations in DNA resulting in the 

ultimate induction o f the same marker proteins. Baker et al. (1979) noted that BrdU
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and CdU increased interferon production in the Namalwa line o f human 

lymphoblastoid cells.
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4.3.4.3 Mechanism of the biological action of 5,5'-FdU.

The treatment o f DLKP and A549 with 5,5'-FdU also induced similar changes in 

marker protein expression to treatment with BrdU. Although a similar pattern of 

expression o f differentiation exists between BrdU and 5,5'-FdU treated cells, the 

mechanisms by which these agents are thought to exert their biological effects is quite 

different.

As stated previously, BrdU is incorporated into DNA and this incorporation 

ultimately alters the expression of differentiation related proteins. In contrast, 5,5'- 

FdU is cleaved by a nucleoside phosphorylase enzyme to yield 5-flurouracil (5-FU) 

(Armstrong and Diasio, 1980). The 5-FU generated is subsequently metabolised via 

several steps to yield fluorodeoxyuridine monophosphate (FdUMP) (figure 4.3.2) 

(Pratt et al., 1994).

5,5'-FDU

1
5-FU

1
FU

J
RNA Incorporation 

MP m FUTP  ► FU-RNA

FUDP

i
5,2’ F d U -----------► FdUDP

dUM P----------------------------------------► dTMP

r  " \
Thymidine Synthase

Figure 4.3.2 Pathway of 5,5’-FdU metabolism.



FdUMP binds to thymidylate synthase, forming an irreversible covalent ternary 

complex in which enzyme, folate cofactor, and FdUMP are bound, thus inhibiting 

thymidine monophosphate production and hence DNA synthesis (Pratt et al., 1994). 

This inhibition o f DNA synthesis causes cells to be delayed in the S-phase (see figure

induce stem cell differentiation. For example, retinoic acid induced differentiation of 

the embryonal carcinoma cell line P C I3 to ‘endoderm-like’ cells is accompanied by 

such an increase in S-phase (Nishimure et al., 1983; Mummery et al., 1984). In 

contrast, terminal cell differentiation is associated with a prolonging o f the G1-phase 

of the cell cycle, thus suggesting that different molecular pathways are involved in 

terminal and stem cell differentiation (Nishimune et al., 1989). Thus, the inhibition of 

DNA synthesis and subsequent delay in S-phase in DLKP and A549 by 5,5'-FdU via 

the 5-FU metabolic pathway may trigger the molecular mechanisms required for 

differentiation.

4.2.3 for a summary o f the cell cycle). The inhibition o f cell growth in S-phase can

Sphase : begins 
when DNA synthesis

GiPhase'.
Separates the end 
of DNA synthesis 

from the 
beginning of the 

M phase

chromosomes have 
replicated

normally

Figure 4.2.3 Summary of the cell cycle.
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Though inhibition o f growth may be a side effect and not a cause o f differentiation. 

Baker et al. (1979) noted that BrdU increased interferon production by the Namalwa 

line o f lymphobastoid cells while inhibiting growth. Thymidine also inhibited growth 

but had no effect on interferon production.

The similarity in the induction of marker proteins in A549 and DLKP by BrdU and 

5,5'-FdU is thus most unusual, given their different mechanisms of action. Nishimune 

et al. (1989) reported that 5-Fluro-2-deoxyuridine (5,2'-FdU)(figure 4.2.2) induced 

differentiation of the teratocarcinoma cell line F9 to produce plasminogen activator, 

while similar treatment with BrdU failed to induce such expression. In contrast, 

Kidson and deHann (1990) reported that while BrdU induced differentiation in the 

mouse melanoma cell line BL-6 and reduced tyrosine activity, any similar reduction 

in tyrosine activity observed with 5-Fluro-2-deoxyuridine was due to cytotoxicity 

effects rather than differentiation. This suggests that in A549 and DLKP that 

induction of differentiation may be via a different mechanism than DNA 

incorporation or that the two compounds induce similar differentiation pathways via 

different mechanisms. Such a similar mechanism may be the inhibition o f poly ADP- 

ribose polymerase (PARP). Pivazylan et al. (1992) reported that BrdU, CdU and 5,2'- 

FdU along with several other halogenated analogues of thymidine were good 

inhibitors of PARP. The PARP enzyme is located in the nucleus and catalyses the 

transfer o f ADP-Ribose from NAD+ to target proteins (Pivazylan et al., 1992). 

Among the list o f target proteins is eEF-2, an elongation factor in the ribosomal 

complex involved in translation. The binding to eEF-2 o f poly-ADP-ribose inhibits its 

activity, thereby halting protein synthesis (D'amours et al., 1999)

Though the pattern o f marker protein induction was similar with BrdU, 5,5'-FdU 

appeared to produce stronger induction. This may be due to an alternative element of 

5,5'-FdU mechanism of action involving RNA. As the concentration of 5-FU 

increases within the cell, the 5-FU metabolic pathway may produce other metabolites 

most notably fluorouridine triphosphate (FUTP) (figure 4.2.2) which can become 

incorporated into RNA in place o f UTP (Pratt et al., 1994). This incorporation may 

alter post-transcriptional controls (e.g. specific mRNA stability) allowing the selective 

translation o f differentiation specific mRNAs. It has been demonstrated in this
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laboratory that CK-8 and CK-18 protein expression is under post-transcriptional 

control (McBride et ah, 1999) and furthermore, upon BrdU treatment this post- 

transcriptional control is released due to changes in eIF-4E levels and activity.

4.3.4.4 Mechanism of the biological action of 5-BUr.

5-BU is reported to affect cells most during S-phase when 5-BUr is maximally 

incorporated into cellular RNA (Li et al., 1994). The incorporation of 5-BUr at high 

levels into pre-mRNA prevents splicing o f the transcripts; only if  the level of 

substitution is low (1 out o f every 10 uridines) does splicing occur normally 

(Sierakowska et al., 1989, Wansink et al., 1994). From the results obtained for 5-BUr 

treated DLKP and A549, it would appear that the induction of differentiation by 

halogenated thymidine analogues requires an alteration in DNA to produce any 

changes in marker protein (Ep-CAM induction being an exception). However, the 

failure to observe any major effects following 5-BUr treatment in both cell lines may 

have been due to the concentration utilised not being sufficiently high to induce 

differentiation.
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4.4 ELUCIDATION OF IN  VIVO DIFFERENTIATION 

THROUGH THE DEVELOPMENT OF IN  VITRO 

MODELS.

In a further attempt to develop a range o f in vitro models to elucidate the pathways of 

epithelial lung differentiation in vivo, growth of the lung cell lines DLKP and A549 in 

a medium supplemented with a variety o f growth factors and hormones was 

investigated. The establishment of primary cultures from human lung tumour samples 

and normal type II pneumocytes from rat lung was also undertaken. Development of 

such models would allow the signals, mechanisms and stages o f in vivo epithelial lung 

cell differentiation to be investigated in a controlled environment. Such models may 

also aid in the elucidation of the putative epithelial stem cell o f the lung.
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4.4.1 A MEDIUM SUPPLEMENTED WITH A VARIETY OF HORMONES 

AND GROWTH FACTORS, INDUCES DIFFERENTIATION IN DLKP 

AND A549.

The lung cell line DLKP was isolated in our laboratory from a tumour histologically 

diagnosed as a poorly differentiated lung carcinoma. It lacks many of the 

ultrastructural features associated with normal differentiated cells o f the lung, such as 

dense core granules or lamellar bodies (McBride et al., 1998). DLKP also fails to 

express many of the normal cytochemical markers associated with differentiated 

epithelial lung cells for example cytokeratin proteins, desmosomal proteins, etc. 

(McBride el al., 1998). Due to this extensive deficiency of differentiation-associated 

markers and the ability to induce the expression of some o f these markers with the 

differentiation-modulating agent BrdU, it is reasonable to regard DLKP as behaving 

at least to some extent as a human lung stem cell (McBride et al., 1999).

To date there has been no positive identification o f the stem cell population in lung 

tissue. Prof. Emura’s group in Germany has isolated a cell line (M3E3/C3) from 

hamster fetal lung tissue, which has properties of being a lung stem cell Tike’ 

population. Emura and his colleagues have described the differentiation o f this cell 

line into different functional cell types e.g. type II pneumocytes, by utilising different 

culture conditions and a complex hormone supplemented media (Germann et al., 

1993). Since DLKP shares a lot o f the cytochemical features o f M3E3/C3 such as lack 

of cytokeratin protein expression, it was decided to investigate the ability o f such a 

hormone supplemented media (HSM) to induce differentiation in DLKP and A549. It 

was hoped that the complex interaction o f the various constituent hormones and 

growth factors may replicate the in vivo system.
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4.4.1.1 Effects of a Hormone Supplemented medium on cell morphology and the 

expression of differentiation markers in DLKP and A549.

It was observed that growth of DLKP cells grown in HSM for 7 days, resulted in the 

cells developing a squamous morphology (figure 3.3.1), similarly A549 also adopted 

a squamous morphology (figure 3.3.2). The number o f cytoplasmic granules appeared 

to be increased in A549 during the 7 days of growth under HSM conditions. Since 

A549 is believed to be derived from a type II pneumocyte cell, the increase in the 

number o f cytoplasmic granules may indicate an increase in the lamellar bodies 

associated with type II cells.

The changes in morphology were seen as indicative of possible changes in protein 

expression. Thus immunocytochemical analysis was performed using CK-8, CK-18, 

CK-19, Pi-integrin, and Ep-CAM protein expression as markers o f differentiation.

Immunocytochemistry o f DLKP showed expression o f CK-8, CK-18 and CK-19 

apparently induced following growth for 7 days in HSM. As stated previously the 

expression of CK-8 and CK-18 is associated with early epithelial development 

(Casanova et al., 1995). Ep-CAM expression was also induced, suggesting that Ep- 

CAM may play a role in early epithelial differentiation. Western blot analysis was 

performed to quantify the changes in marker protein expression observed by 

immunocytochemical analysis. It was not possible to detect the cytokeratin expression 

in DLKP cells, suggesting that immunoprecipation was required.

A549 cells cultivated in HSM for 7 days appear to show slight increases in CK-8 and 

CK-18 expression by immunocytochemical analysis. The predominant cytokeratin in 

type II pneumocytes is CK-19. The detected increase in CK-19 expression was 

significant, since A549 is considered a type II pneumocyte ‘like’ cell line (Paine et 

al., 1995; Lieber et al., 1976). A549 also exhibited an increase in Ep-CAM protein 

expression shown by immunocytochemistry and western blotting after 7 days of 

growth. In A549 cells the western blot analysis confirmed a slight increase in CK-18 

protein expression. A strong increase was also observed in A549 over the 14 days of 

growth in HSM in CK-19 expression confirming the immunocytochemical results.
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The increase in cytoplasmic granules and the increase in CK-19, a marker for type II 

pneumocyte cells, may indicate that in this medium A549 is reverting to a more 

normal type II pneumocyte phenotype. Further indication came from RT-PCR 

analysis which showed a decrease in mRNA levels for CK-18, and a concurrent 

increase in the levels in CK-19 mRNA. To confirm this, further research is required 

into the expression functional proteins such as surfactant proteins and the ability to 

produce surfactant lipid. If  A549 can be induced to revert to a more type II 

pneumocyte phenotype it may provide a useful in vitro model for investigation o f type 

II pneumocyte cell biology.

Several elements of the growth medium have been identified as having possible roles 

in differentiation. The importance o f the glucocorticoid steroids, for example, was 

shown important in the maturation o f type II pneumocytes and Clara cells (Muglia et 

al. 1999; Beaulieu and Calvert 1981). EGF has also been identified as a possible key 

regulatory molecule in lung epithelial cell differentiation (Sundell et al. 1980; Gross 

et al. 1986). Studies investigating fetal lung development have shown localisation of 

EGF in the developing bronchi and around both Clara cells and Type II pneumocytes 

(Raaberg et al. 1991). Also shown to be important in lung growth and differentiation 

is insulin, with receptors for insulin been demonstrated on whole fetal lung and their 

numbers to increase during late gestation (Ulane et al. 1982).

The growth in HSM induced the expression o f differentiation related markers in both 

DLKP and A549. Since it consists of a range o f factors found physiologically, further 

analysis of the components may indicate the physiological factors controlling 

epithelial lung cell differentiation in vivo. With this hormonal treatment it would be of 

interest to identify what components lead to differentiation or if  a combination of 

factors are required. For example, cell signal transduction often requires two separate 

events, the binding o f a growth factor to its receptor and the binding of an integrin to 

its ECM (Cunha et al., 1985). Prof. Emura and colleagues employed a range of 

substrata and extracellular matrix factors during their studies and these may have 

provided additional signals.
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4.4.1.2 Assessment of the role played by individual components of HSM in the 

differentiation of DLKP and A549.

To attempt an identification o f the elements important in HSM for the observed 

induction of differentiation, experiments deleting individual components from the 

media were performed. The effect of selective deletion was assessed after 14 days in 

culture by western blot.

The removal o f EGF from HSM did not seem to change its ability to induce the 

expression of the selected marker proteins i.e. CK-8, CK-18, CK-19, and Ep-CAM 

during 14 days o f growth. Several in vivo studies have suggested that EGF and the 

EGF family have a role in regulating early lung branching morphogenesis and with 

differentiation by the induction of surfactant protein C expression (Seth et al., 1993, 

Warburton et al., 1992). Another physiological role for EGF in lung tissue is the 

induction of proliferation in mature type II pneumocytes (Haigh et al., 1989; Raaberg 

et al., 1992). In contrast to these reports of EGF being a positive modulator o f lung 

development, McCormick et al. (1995) reported that regulation of differentiation in 

the form of induced alkaline phosphatase expression, was inhibited by EGF. This 

suggests that EGF may regulate different genes, and that this regulation is both time 

and co-signalling molecule-dependant.

Surprisingly, the removal o f hydrocortisone or oestrogen from the HSM resulted in a 

slight additional induction o f CK-8, CK-19, and Ep-CAM protein expression in A549. 

This suggests that the steriod hormones are damping the inducing effect o f other 

components in HSM. According to Spiers et al., (1991) the effect o f glucocorticoid 

steriods on induction o f alkaline phosphatase in A549 is very limited, and this may be 

due to a lack of distal elements of the glucocorticoid receptor system (Ballard et al., 

1978).

In contrast, the deletion of insulin caused a profound decrease in the ability of HSM to 

cause induction of differentiation in A549. This correlates with reports of insulin 

being important in differentiation and development in other tissues, for example in the 

induction o f breast secretory epithelium (Takahashi et al., 1991; McCormick et al.,

1995) also reported that insulin, along with interferon-a and interleukin-6, induced
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alkaline phosphatase expression in A549. Insulin is reported to be able bind to 

insulin-like growth factor receptors (IGF-R), though with a lower affinity than the 

insulin-like growth factors. It is possible that insulin in this system is exerting its 

influence by binding and signalling through the IGF-R pathways. In vivo studies have 

demonstrated that the IGF family, their binding proteins and their receptors, are 

expressed in both rodent and human fetal lung in a differential manner (Lallemand et 

al., 1995). For example, the insulin growth factor binding protein-2 showed strong 

gene and protein expression in the fetal lung epithelial alveoli and airways cells 

(Klempt et al., 1992). It has been suggested that the physiological role o f IGF- 

signalling is to facilitate the signalling o f other molecules. For example, IGF-1R 

signalling is required for the mitogenic and transforming activities o f the EGF 

receptor (Coppala et al., 1994). It is of interest that insulin was the only factor whose 

deletion resulted in a decrease in the ability o f HSM to induce differentiation.

The deletion of cholera toxin from HSM resulted in a large induction o f CK-19 and 

Ep-CAM expression, suggesting that this component had a damping effect on the 

induction of proteins. Cholera toxin stimulates the adenylate cyclase pathaway to 

induce its effects.

It appears from the deletion experiments that components such as hydrocortisone, 

oestrogen and cholera toxin all inhibit strong induction o f the selected marker 

proteins. This assessment may be a bit simplistic as removal o f cholera toxin allowed 

a very strong increase in protein expression, even though oestrogen and 

hydrocortisone appeared to also suppress protein induction. It may be speculated that 

individual components stimulate various elements required for differentiation, which 

then interrelate with each other. The differentiation induced by HSM is different from 

that induced by the halogenate thymidine analogues as it is more physiologically 

relevant. Furthermore RT-PCR analysis showed HSM induced changes in the levels 

of CK-18 and CK-19 mRNA, suggesting transcriptional control unlike the thymidine 

analogues which seem to act at a post-transcriptional level.
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4.4.2 PRIMARY CULTURE OF LUNG CARCINOMAS.

Though establishment o f tumour cell lines from solid human tissue appears relatively 

simple, reports in the literature are usually on singular successes. Thus, the successful 

routine establishment o f cell lines from primary cultures o f carcinomas is still a 

distant and elusive goal. The development o f such routine cultures would potentially 

allow clinicians to design optimum therapeutic schedules and scientists a better 

understanding of the biology of tumour growth.

The principal aim o f this investigation was to evaluate the different techniques for 

generating primary cultures from human lung carcinomas, and to develop the

foundation for in vitro models to study differentiation in such cells.

This project analysed a total of 52 lung tumour samples, mainly from lobectomy 

patients. Most produced epithelial cells that grew/survived in vitro for short periods 

only before dying out or becoming overgrown with fibroblasts. Unfortunately, no cell 

lines were generated, suggesting that primary tumours are not necessarily a good 

source of material for cell line generation. If  one investigates the literature it is found 

that most success has been with marrow aspirates and effusions from patients with 

metastatic lesions (Carney et al., 1985). It may be that the more malignant/metastatic 

a cell is the more it can adapt to the artificial in vitro environment of cell culture. 

Also, solid tumours are often very necrotic and only the leading edge is viable. It is 

optimistically estimated that only 10-20 % of cells in a large tumour mass are viable 

(Leibovitz 1986). The most successful culture obtained was from a malignant 

melanoma of the oesophagus (W S-lll)(see  figure 3.4.5). The ultimate failure of this 

culture may have been due to an unsuitable in vitro culture environment.

The work to date shows that primary tumours are not necessarily an ideal tissue 

source for cell lines. However, it could be quite successful as a source for short-term 

growth of epithelial cells from tumours.

In evaluating an optimum technique that would allow cultivation of epithelial tumour 

cells with little interference from stromal cells, i.e. fibroblasts, it was decided to
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concentrate on enzymatic versus explant techniques. It was found that the explant 

method was no more successful than the enzymatic methods in either cultivation of 

epithelial tumour cells or in the reduction o f fibroblast cells, as also noted by 

Leibovitz (1986).

In order to investigate if the enzymes used to disaggregate the tissue sample could 

adversely affect the ability of epithelial cells to grow in culture, two different types of 

enzymatic disaggregation were evaluated. One involved a mix of collagenase, 

dispase, and pronase E and the other used just trypsin. Neither method seemed to 

confer an advantage to the isolation and generation o f epithelial colonies, nor was any 

major difference noted in the level o f stromal cells.

When generating primary by enzymatic means it has been suggested that the clumps 

that are retained on the 40 and 100f.iM mesh cell strainers may be the best source for 

generating epithelial cell cultures and cell lines. Me Bain et al. (1984) reported a 33% 

success rate for generating colon carcinoma cell lines from such cell clumps. In the 

procedure utilised here for generating primary cultures, only a coarse filtering was 

employed with a stainless steel tea strainer in order to filter out very large fibrous 

tissue pieces. Thus the cell suspension plated contained clumps of cells. A future 

study looking at the culture of such clumps isolated using 40 and 100 |im mesh cell 

strainers may be a more successful option for the generation o f cell lines, or in the 

general culture o f epithelial cells from tumours.

When generating primary cultures from lung carcinomas an added complication is the 

wide variety o f cell types from which the carcinoma can arise, as 40 or more different 

cell types occur within the lung (Crapo et al., 1982). Given this complexity, the 

development of optimal growth conditions is difficult. The development o f optimal 

culture conditions is important in primary culture as both growth factors and integrins 

can determine cell proliferation, differentiation and apoptosis. Hence, the 

identification o f a good general culture environment with equal emphasis on media 

and ECM would be important in any future primary culture work.
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If the generation of cell lines is deemed to be important two methods which could be 

evaluated for success are the transformation of cells by SV40, or the passaging of 

isolated cells in nude mice/rats several times prior to primary culture.
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4.4.3 IN VITRO DIFFERENTIATION OF FIBROBLAST CELLS.

This work arose from the serendipitous discovery that fibroblast-like cells isolated 

during primary culture o f lung carcinomas were positive for cytokeratin. The 

definition of a fibroblast is a cytokeratin-negative, vimentin-positive cell, and this 

expression pattern is considered a marker for such non-epithelial cells. Epithelial cells 

are identified as being cytokeratin-positive, and are negative for vimentin in vivo. 

However, once in an in vitro environment epithelial cells will quickly begin to express 

vimentin.

The results obtained from fibroblast cells obtained in the primary culture o f lung 

carcinoma and 3 normal fibroblast cell cultures obtained from external culture 

collections are at variance with this criterion of being a cytokeratin negative cell.

It should be noted that the pattern o f expression was not consistent across all the cells 

investigated. All cells were positive for pan-cytokeratin but varied in their expression 

for the specific cytokeratins 8 and 18, perhaps suggesting that other cytokeratins may 

be expressed besides 8 and 18, which are considered the early cytokeratin genes 

during in vivo development. As described in section 1.2.1. cytokeratin 19 can interact 

with the vimentin cytoskeleton, thus suggesting that in some cases the cytokeratin 

detected is not involved with a true cytokeratin cytoskeleton.

Since the cells were fibroblast-like only in morphology, it was important to 

investigate other antigenic markers to determine the true identity o f the cells. One 

such antigenic marker was proly-4 hydroxylase, which is considered a fibroblast 

marker (Dako). Immunocytochemical staining for this antigen indicated that the cells 

were fibroblasts. However, as staining was detected in the epithelial cells A549 and 

DLKP and the haemopoietic cell line, HL-60 (data not shown) the reliability o f using 

this antibody to define fibroblasts is questionable. Studies o f normal lung tissue 

sections have also shown that the P-subunit o f proly 4-hydroxalse can be selectively 

localised in type II pneumocytes (Kasper et al., 1994).

However, some studies have shown that under certain conditions fibroblasts can be
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induced to express cytokeratin. In a study by Giudice and Fuchs (1987) the 

transfection of epidermal keratin genes into fibroblasts was performed. It was found 

that expression o f foreign type II keratin could trigger the expression o f endogenous 

type I keratin. This induction was unidirectional i.e. type II keratin could stimulate 

endogenous type I, but type I keratin could not stimulate production of type II keratin. 

In the absence of type II keratin the type I keratin appears to associate with the 

vimentin network. Knapp and Franke (1987) found that in transformed lines of non- 

epithelial origin that rare cells emerge spontaneously that can synthesise cytokeratin - 

8 and -18. They found that in SV-40 transformed fibroblasts the cytokeratin-18 gene 

was constitutively transcribed, but broken down rapidly without its partner 

cytokeratin-8. These transformed fibroblasts were abundantly positive for vimentin 

and negative for other epithelial markers such as desmosomal protein and 

desmoplakin. The coexpression o f specific acid and basic cytokeratins can be induced 

in teratocarcinoma-derived fibroblasts treated with 5-azacytidine (5-azacytidine 

methylates DNA bases) (Darmon, 1985). Also transient cytokeratin 19 positive 

fibroblast cells have been observed in vivo during the development o f the periodontal 

ligament o f the rat molar tooth. This expression of cytokeratin was believed to be in 

response to mechanical loading (Webb et al., 1996).

Although the studies to date seem to indicate that the cells are fibroblast cells it would 

be desirable to investigate other antigens to further confirm this finding. Hence, by 

investigating the expression o f tropomyosin, and creatine phosphokinase, as markers 

for smooth muscle, along with EP-16, desmoplakin, and involcurin, as epithelial 

markers one should be able to confirm the identity of the cells. By using immunoglold 

labelling in conjugation with electron microscopy it should be possible to investigate 

the ultrastructure o f the filaments to confirm that they are true cytokeratin filaments 

and to further identify the exact cell type. It would also be desirable to perform 

western blot analysis to confirm the identity o f the antigens by their molecular weight, 

as the antibodies may be cross-reacting with some other protein type.

Thus the question arises as to why do these cells express cytokeratin? It is possible to 

create a number of theories to explain this unusual phenomenon. Knapp and Franke, 

(1987) reported the rare spontaneous synthesis of cytokeratin in transformed cells of 

non-epithelial origin. This suggests that perhaps a very low percentage sub-population
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of fibroblast cells might express cytokeratin and during routine cell culture it is 

possible that these cells are selected out. In turn, this leads to the view that fibroblasts 

are not the homogenous stromal cells as traditionally believed.

An alternative theory is that the in vitro situation mimics either a type of wound 

healing or stress on the fibroblast cells inducing cytokeratin expression. This theory 

gains some tentative evidence from two observations. During wound repair fibroblasts 

change to myofibroblasts with an accompanying expression o f a-smooth muscle actin 

(Zhang et al., 1996). The in vitro seeding density of fibroblasts can trigger this 

differentiation from fibroblast to myofibroblast and vica versa. A third theory is that 

the in vitro culture of fibroblast cells in some way causes an inappropriate expression 

of cytokeratin. Studies have shown that the mRNA for keratin 18 is constitutively 

transcribed in fibroblasts, though no protein expression occurs, as its partner 

cytokeratin 8 is not transcribed (Knapp and Franke 1987). Thus it is possible that in 

vitro cultivation in some way loosens the regulatory control of cytokeratin 8 and in 

doing so allows cytokeratin filaments to form.

To identify which, if  any, o f the above theories are valid, the following experiments 

are suggested. By performing dilution cloning, it should be possible to identify if  a 

subpopulation exists that is keratin-positive and is being inadvertently selected for, 

during culture.

The relationship between fibroblasts and myofibroblasts is unclear and their 

relationship in repair of injury and control o f the mechanism of cytoskeletal protein 

expression uncertain. Myofibroblasts have been found in a number o f normal and 

pathological conditions. Myofibroblasts are essential to wound contraction and 

healing. Myofibroblasts differ from fibroblasts by expressing stress fibres, which 

contain smooth muscle a-actin. The myofibroblast cells are larger than fibroblasts and 

contain more cellular protein. Upon the completion o f healing myofibroblasts 

disappear. Studies have often found cells that express the features of both fibroblasts 

and myofibroblasts (Masur et al., 1996). These cells often appear to be larger, have a 

slower growth rate, and stain positive for a-smooth muscle actin. A number of studies 

exist in which the expression o f a-smooth muscle actin by lung fibroblasts and
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myofibroblasts is observed especially in pathological conditions such as bleomycin- 

induced pulmonary fibrosis and wound repair. Smooth muscle cells are mostly 

responsible for increased type I collagen expression in the lung. The emergence of 

myofibroblasts is associated with an increase in the expression of TGF-p, which is 

known to enhance smooth muscle a-actin expression and PDGF. In their study, 

Zhang et al., (1996) showed that TGF-P enhanced the expression o f cc-smooth muscle 

actin in bleomycin treated fibroblasts whereas the level o f the non-muscular P-actin 

was the same in both cell types.

Since fibroblasts differentiate into myofibroblasts at low density culture (Masur et al., 

1996). The seeding of fibroblast cells at low density may induce a potential fibroblast- 

myofibroblast interconversion. This interconversion may affect the expression of 

cytokeratin and would be worth investigating. In a similar experiment to mimic 

wound healing, a confluent culture would be scraped and the leading edge of the cells 

investigated for cytokeratin expression. A positive result in the latter experiment 

would suggest that keratin expression was involved in some way in wound healing in 

tissue remodelling.

This work is unique, as the expression o f cytokeratin in normal fibroblast cells in vitro 

has not been previously reported. It is possible that we have identified a new sub

population within fibroblasts or a mechanism involved in wound repair and 

mechanical stress.
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4.4.4 ASSESSMENT OF DIFFERENTIATION IN ISOLATED RAT TYPE II 

CELLS BY TIME-LAPSE AND IMMUNOCYTOCHEMISTRY.

In-vitro type II pneumocytes are supposed to differentiate into type I “like” 

pneumocyte cells. Although this is widely accepted the exact sequence of 

differentiation events is poorly understood. Although reports exist on the proliferation 

of type II pneumocytes in various conditions, this proliferation is measured by 

indirect methods such as increased thymidine incorporation. As noted by Ulich et al.

(1994) this increased thymidine incorporation is not always accompanied by an 

increase in cell numbers.

It was decided to investigate the proliferation directly by using time-lapse 

photography of isolated rat type II pneumocytes. These were plated at different 

concentrations in a well of a 12-well plate. No proliferation was observed in the 

cultures from the start of the experimental observation, 16 hours after isolation. Thus, 

if  proliferation did occur with the isolated type II pneumocytes in the various culture 

conditions investigated, it transpired during the 16 hour period prior to the start o f the 

time-lapse study. During the observation period the type II pneumocytes underwent a 

morphology change to become more flattened, with substantial increase in cell surface 

area. This morphology is indicative o f a type I pneumocyte, although these cells still 

possessed lamellar bodies, thus demonstrating the potential danger o f relying on the 

presence of this feature as a sole marker for type II cells. This sequence of events 

occurred in both high and low density cultures. Other observations from the time- 

lapse study would appear to indicate that higher density cultures entered apoptosis 

later than low density cultures, and that the low density cultures produced a lot more 

membrane ruffling.

To investigate if  the observed changes in morphology o f the isolated type II 

pneumocytes were accompanied by antigenic changes indicative of the cells 

becoming type I pneumocyte ‘like’ cells, immunocytochemistry was performed. 

Isolated rat type II pneumocytes were cultured for 8 days and immunocytochemistry 

performed at certain time points. The antigens investigated showed alkaline 

phosphatase activity which is considered a marker of type II function; the expression 

of surfactant protein D, one o f the 4 surfactant proteins produced by type II cells;
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expression of cytokeratin 19, which is the dominant cytokeratin in type II 

pneumocytes; and expression of cytokeratin 18, which is the dominant cytokeratin in 

type I pneumocytes. During the 8 days in culture a gradual decrease in alkaline 

phosphatase activity was observed. This was accompanied by a decrease in surfactant 

protein D levels. Both of these results indicate a loss of type II pneumocyte surfactant 

function over time. Concurrently changes in the cytokeratin cytoskeleton occurred 

with cytokeratin 19 decreasing over the period while cytokeratin 18 levels increased, 

indicating that the isolated cells were adopting a type I cytokeratin cytoskeleton. This 

is line with the observation of Paine et al. (1995).

The lack of proliferation observed may have been due to inappropriate culture 

conditions. It is reported that the growth factor KGF (FGF-10) is important in 

proliferation of type II pneumocytes (Ulich et al., 1994). In the time-lapse studies 

conducted no proliferation was observed.

214



5.0 CONCLUSIONS AND FUTURE WORK.
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5.1 CONCLUSIONS

♦♦♦ BrdU induces Ep-CAM expression.
Ep-CAM is a homophilic cell-cell adhesion molecule, which was discovered only about 

10 years ago. Treatment o f the lung epithelial cell lines DLKP and A549 with the 

differentiation-inducing agent BrdU results in the induction o f Ep-CAM. The induction 

of Ep-CAM protein expression by a simple, chemical differentiation-inducing agent in 

lung epithelial cells has not been reported previously, although it has been reported that 

dimethylsulfoxide (DMSO) treatment of the colonic cell line SW620 results in a down 

regulation of Ep-CAM (Omary et al., 1992). Little is known about Ep-CAM expression 

in lung differentiation and development; evidence for a role in differentiation was shown 

in a study by Kasper el al. (1995) which found the main location for Ep-CAM 

immunoreactivity varied within fetal lung depending on development stage. By 

demonstrating its presence in lung cell lines following BrdU-induced differentiation, an 

important indication was gained of its potential role in in vivo differentiation of lung 

cells.

♦♦♦ Ep-CAM protein expression is regulated at a post-transcriptional level.

Ep-CAM regulation was demonstrated to be post-transcriptional in both DLKP and 

A549. The control o f Ep-CAM expression has not been fully elucidated, this result 

demonstrates that post-transcriptional control mechanisms may regulate the expression of 

Ep-CAM protein during differentiation. Our laboratory has shown that eIF-4E, the rate- 

limiting factor in translation, is a target for BrdU induction in DLKP and A549 (Derek 

Walsh PhD. Thesis 1999).

5.1.1 BrdU INDUCES EP-CAM EXPRESSION IN THE LUNG CELL LINES

DLKP AND A549.

216



♦♦♦ Ep-CAM induction causes a down-regulation in focal adhesion protein levels.

Down-regulation in levels of the focal adhesion proteins a-catenin and a-actinin were 

demonstrated to occur following Ep-CAM induction in DLKP and A549. The down- 

regulation of focal adhesion proteins signifies that various signalling events altering cell 

physiology occurs in response to BrdU treatment.

♦♦♦ The Ep-CAM homologue, GA733-1 is transcriptionally controlled in BrdU treated 

DLKP.

The expression of mRNA for the Ep-CAM homologue GA733-1 was induced in 10p.M 

BrdU treated DLKP. In contrast no mRNA for GA733-1 was detected prior to, or after 

10(j,M BrdU treatment o f A549. Western blot analysis was not possible due to difficulty 

in sourcing an antibody to GA733-1.

5.1.2 OTHER HALOGENATED THYMIDINE ANALOGUES HAVE

DIFFERENTIATION-INDUCING EFFECTS ON DLKP AND A549.

♦♦♦ CdU induces differentiation in DLKP andA549.

The biological action of CdU involves conversion to a nucleoside monophosphate 

(chlorodeoxyuridine monophosphate) by thymidine kinase, followed by incorporation 

into DNA in place o f thymidine. The ability o f CdU to induce differentiation in DLKP 

and A549 was assessed by its effects on protein expression levels for cytokeratin-8, 

cytokeratin-18, cytokeratin-19, Ep-CAM and Pi integrin. Studies in our laboratory have 

shown that these proteins are up-regulated in both DLKP and A549 following treatment 

with BrdU. It was demonstrated that treatment with CdU also induced up-regulation of 

these proteins. According to RT-PCR analysis, CdU did not induce any changes in the 

mRNA level for these proteins, indicating that CdU exposure alters the post-
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transcriptional/translational control of these proteins in A549. The biological action of 

CdU is similar to that o f BrdU, so it may be speculated that the similar pattern of 

differentiation observed in DLKP and A549 is as a result o f the insertion of a halogenated 

nucleotide into DNA.

♦♦♦ 5,5'-FdU induces differentiation in DLKP andA549.

The biological action of 5,5'-FdU in contrast requires its metabolism first of all to the 

base 5-flurouracil and then to Fluro-deoxyUridine Monophosphate (FdUMP). FdUMP 

inhibits thymidylate synthase and hence inhibits DNA synthesis by limiting TMP supply. 

The ability of 5,5'-FdU to induce differentiation in DLKP and A549 was assessed using 

changes in the expression o f cytokeratin-8, cytokeratin-18, cytokeratin-19, Ep-CAM and 

pi integrin. Protein analysis revealed that 2fiM 5,5'-FdU treatment induced a strong up- 

regulation of these proteins in DLKP and A549. RT-PCR analysis suggests that 5,5'-FdU 

treatment alters the post-transcriptional/ translational rather than transcriptional control of 

the expression these proteins in A549. The pattern of differentiation obtained in DLKP 

and A549 with 5,5'-FdU appeared similar to the pattern o f differentiation that results 

from BrdU treatment. This suggests that BrdU and 5,5'-FdU may activate two different 

differentiation pathways with overlapping properties. The induction of these proteins 

appeared to be stronger in cells treated with 5,5'-FdU , than BrdU. This difference in the 

strength of induction may be due to 5-FU being incorporated into RNA, thereby changing 

its structure to allow greater translation efficiency.

♦♦♦ 5-BUr does not appear to induce differentiation in DLKP orA549.

Investigations of the ability if  5-BUr (which incorporates into RNA) to induce 

differentiation revealed no such induction except for a slight induction o f Ep-CAM. 

Hence suggesting that the modulation of differentiation by thymidine analogues requires 

an interaction with DNA
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5.1.3 THE EFFECT OF A HORMONE SUPPLEMENTED MEDIUM ON LUNG 

CELL LINE DIFFERENTIATION.

*X* A complex hormone-supplemented medium induces differentiation in DLKP and 

A549.

Differentiation was induced in DLKP and A549 using a complex hormone-supplemented 

medium (HSM) to represent a more in vivo type environment. Both cells showed induced 

expression of Ep-CAM, cytokeratin-8, and -19 expression. It was unclear if  cytokeratin- 

18 was induced in A549 grown in HSM. In comparison DLKP grown in HSM appeared 

to show a slight induction in cytokeratin-18 expression. Experiments to identify the 

importance of specific components in HSM revealed that the deletion of hydrocortisone, 

and cholera toxin from HSM cause an increase in induction by the modified HSM of 

cytokeratin-19 and Ep-CAM in A549. In contrast the removal of insulin from HSM, 

reduced the ability of HSM to induce expression o f cytokeratin-19 and Ep-CAM in 

A549.

♦♦♦ Removal of specific components from HSM alters its effects on differentiation.

The differentiation-induction of HSM is due to a range of compounds found 

physiologically, acting singularly or in co-operation. It is therefore reasonable to assume 

that the observed differentiation is due to mechanisms different from that o f BrdU and the 

other halogenated thymidine analogues. It is possible to speculate that that cross talk of 

signalling between each of the components o f HSM is required to induce differentiation. 

It has been reported that culture o f a hamster fetal lung cell line in this medium, with 

different culture conditions induces differentiation to different specific lung types (Emura

1996). Thus the differentiation induced by HSM of DLKP and A549 may represent an in 

vitro model of epithelial lung cell differentiation in vivo
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5 .1 .4  D E V E L O P M E N T  O F  IN VITRO M O D E L S  O F  IN VIVO 

D I F F E R E N T I A T I O N .

♦♦♦ Preliminary development of in vitro models reflecting in vivo differentiation.

The methods for generating primary cultures for modelling differentiation in normal lung 

epithelial cells and lung tumours were established. These studies revealed that long term 

reproducible primary cultures were difficult to obtain. Further work is required to 

establish more optimum culture methods for primary cultures. Preliminary studies on the 

growth of isolated normal rat type I I  pneumocytes in vitro showed morphological and 

antigenic changes over time. These changes were consistent with the terminal 

differentiation o f type I I  pneumocytes into type I  pneumocytes. This spontaneous 

differentiation may be due to the culture environment e.g. growth factors present in the 

serum and/or extra-cellular matrix. During the isolation o f lung tumor cells cultures of 

fibroblasts were often established and these expressed the unusual feature o f cytokeratin 

protein expression, which is usually epithelial-specific. This expression may be due to the 

in vitro environment inducing changes within fibroblast cells, for example mechanical 

stress (Webb et al., 1996).
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5.2 FUTURE WORK.

♦ It has been reported that Ep-CAM directs cell-cell sorting by disrupting the function 

of E-cadherin, a Ca2+ dependent cell-cell adhesion molecule (Litvinov et a l,  1997). 

The demonstration of such disruption o f E-cadherin by protein and RT-PCR analysis 

in the lung cell lines DLKP and A549 would be o f interest, as it may form the basis of 

a model for in vivo cell-cell sorting during development.

♦ Experiments utilising BrdU-treated lung cells in 3-D culture to investigate the role of 

Ep-CAM in the formation of tissue architecture would be of great interest.

♦ BrdU alters the post-transcriptional/translational control o f Ep-CAM expression and 

it has been recently demonstrated in this laboratory that following BrdU treatment, 

the protein level and activity of eIF-4E, one of the rate limiting factors in translation 

o f mRNA is increased. (Derek Walsh PhD thesis, 1999). Future work requires 

investigation of the effect of eIF-4E transfection on Ep-CAM expression in lung 

epithelial cells.

♦ Ep-CAM is believed to disrupt E-cadherin function via alteration in the focal 

adhesion proteins. Thus further investigation is required into these focal adhesion 

proteins along with others such as p-catenin which has been implicated in a wide 

range of functions including control o f gene transcription. Also worthy o f further 

investigation are the signalling peptides from the Rho family, which are involved in 

transduction o f signals from a variety o f cell adhesion proteins e.g. the integrin 

family. Further investigation is also required on the possible targets of these changes 

in focal adhesion and signalling proteins, for example E-cadherin. It would be 

instructive to transfect Ep-CAM cDNA into DLKP and A549 to investigate what 

elements of the differentiation pathway it may control, for example a disruption of E- 

cadherin function leading to increased pi-integrin expression.

5.2.1 EP-CAM INDUCTION IN BRDU TREATED DLKP AND A549.
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♦ Increased expression of Ep-CAM is found in most adenocarcinomas and de novo 

expression also frequently occurs in carcinomas of squamous epithelia (Varki et al., 

1984, Litvinov et al., 1996). Due to these changes in expression, Ep-CAM is a target 

for those investigating the use of monoclonal antibody-chemotheraputic drug 

conjugates for anti-cancer treatment, e.g. in non small lung cell carcinoma (Elias et 

al., 1990). The ability of BrdU to enhance the expression o f Ep-CAM in carcinoma 

cells, may make it a useful adjuvant in such treatments. Preliminary in vitro and in 

vivo experiments are required to test this hypothesis.

♦ It is necessary to investigate if  the GA733-1 mRNA induction in BrdU treated DLKP 

is accompanied by protein expression.

5 .2 .2  I N V E S T I G A T I O N  O F  D I F F E R E N T I A T I O N  B Y  O T H E R  T H Y M I D I N E  

A N A L O G U E S .

♦ It would also be useful to investigate if  a wider range of haolgenated thymidine 

analogues induce differentiation in DLKP and A549 e.g. 5-FluroUridine, 5-Fluro-2- 

deoxyUridine and 5-Iodo-2’-deoxyUridine. These investigations may lead to the 

design of novel compounds that promote differentiation.

♦ The induction of differentiation by halogen thymidine analogues may be due to a 

common biological action. It has been reported that the halogenated thymidine 

analogues inhibit poly ADP-ribose polymerase (PARP) (Pivazylan et al., 1992) One 

of the results o f this inhibition is to relieve the inhibition of the ribosomal elongation 

factor eEF-2, thus allowing protein translation. Thus an investigation of eEF-2 and 

PARP activity may reveal if  such a common mechanism exists.
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5.2.3 THE EFFECT OF HSM ON LUNG CELL DIFFERENTIATION.

♦ Further development of this medium, with additional components and different 

extracellular matrices may allow the development of in vitro models o f lung function. 

Research into the components responsible for the observed differentiation in vitro, 

may lead to the identification of the in vivo mediators o f lung differentiation.

♦ Since the components o f this medium are physiologically relevant investigation is 

required to determine if markers specific for differentiated lung types (e.g. alkaline 

phosphatase and surfactant proteins for type II pneumocytes) are expressed following 

growth in HSM.

5 .2 .4  D E V E L O P M E N T  O F  IN VITRO M O D E L S  O F  IN VIVO 

D I F F E R E N T I A T I O N .

♦ Differentiation studies with primary cultures o f normal and tumour cells may allow 

an assessment to be made as to the in vivo relevance o f the results obtained from 

epithelial lung cell lines.

♦ Comparison o f the differentiation induced in A549 and DLKP by growth in HSM 

with the differentiation o f primary cultures would allow an assessment to be made of 

the in vivo relevance of HSM induced differentiation.

♦ Comparison o f the mechanism o f differentiation induced by halogenated thymidine 

analogues with that of the spontaneous differentiation in primary cultures of type II 

pneumocytes may allow the identification o f key elements of differentiation in lung 

epithelial cells. Identification such elements may allow the design of novel 

therapeutic compounds.
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