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A b s tra c t

In this thesis we consider a financial m arket model consisting of a bond with 

determ inistic growth rate , and d risky assets, governed by Brownian m otion 

w ith drift. We can shift money from one asset to the other w ithout loss of 

capital.

Optim al investment and consumption (spending) decisions are exam ined for 

different types of investors w ith various criteria for optimality. An investor’s 

level of satisfaction with any am ount of wealth is m easured by a u tility  func­

tion. The problem has been solved by M erton [4] and others for the small  

investor with no transaction costs. Here we suppose the investor is large, i.e., 

his strategy has an effect on the  asset price evolution.

The approach parallels th a t taken by Cvitanic and K aratzas [5] for con­

strained portfolios. The theorems therein are adjusted appropriately to ac­

count for the investor’s effect on prices instead of constraining the portfolios 

as Cvitanic and Karatzas do.

As in Cvitanic and Karatzas [5], Karatzas et al.[6] and several others duality 

theory and m artingale m ethods are introduced to prove the existence of the 

optim al portfolio which maximises the expected final utility. An algorithm  

is suggested to find this portfolio under certain m arket conditions.
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G lossary

I. G e n e ra l N o ta t io n

Let a and 6 be real numbers. As usual ' means is defined to be.

a A 6 :=  min{a, 6}.

a~ :=  m ax{—a,o}.  

ess sup X  :=  inf {a : P ( X  <  a) =  1}.

Ia (x ) :=  1 if x  €  A,  0 if x  $  A.

|| • || :=  The Euclidean norm.

II . S e ts  an d  S p aces

v4(x) : The set of all admissible policies.

C(x) : The set defined in (2.26).

'D(x) : The set of (2.26) w ith equality.

D, : The set of processes v for which g{t,v)  is finite.

D : The set of processes in Dt for all times t.

D' : The set of processes for which (  is finite.

C(x)  : The set defined in (2.27).

M.(x)  : The set (2.27) w ith equality.

V ( x )  : The set defined in (2.28).

Q : The set of Rational numbers.

7Zd : ¿-dimensional Euclidean space ; TV — 71.

S  : The set of all ^ -s to p p in g  tim es, r  in [0, T],

S ,>'0 : The set of all ^ -s to p p in g  times in [0,T] such th a t />(t^) <  < a(u>).

I1 : The H ilbert space defined in (3.53).
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III. Probability

E  : Expectation operator corresponding to  probability P.

T * \  <j ( X s : 0 <  s <  £)> the smallest (7-field with respect to which the random 

variable X s is measurable V s  €  [0,f]. 

jFi+ : o^O oo.T ’i+e)-

T t-  : o ^ U ,^ ^ 7,).
P : Probability measure corresponding to Brownian motion.

W  : Standard ¿-dimensional Brownian motion.

H : The sample space 011 which probability measures can be placed. 

u> : A sample point of the sample space.

IV . F u n c tio n s

/o : The m arket effect function for the bond.

f i  : The m arket cfFect function for the i th stock.

g : The function defined in (3.3).

g : The function defined in (3.4).

I  : The inverse marginal utility.

J  : The objective function of (2.59).

J  : The extended functional defined in (3.54).

u : The utility function. 

u' : The marginal utility.

u : The Legendre Fenschel transform of definition 2.20.

V(x) : The value function of (2.61).

V ( t )  : The random variable defined in (3.22).

£ : The function defined in (2.67).

4> : The inverse of the function

$  : the function defined in (3.36).
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V . Defined P rocesses

&(•) : Growth rate vector of the stocks. 

c(-) : The consumption rate process.

//(•) : The deflating process of (2.18).

M(-)  : The process defined in (2.17). 

yV(-) : The process defined in (2.20).

Po : Value process of the bond.

Pi : Value process of the i th stock. 

r(-) : Short interest ra te  of the bond.

x  : The initial capital endowed.

X (-) : The wealth process.

Z(-) : Exponential m artingale of (2.8).

7 (-) : Discount process of (2.12).

7r(-) : Vector of fractions invested in stocks. 

ir(-) : Volatility m atrix  of the stocks.

#(•) : Relative risk process of (2.7).

V I. M isc e lla n eo u s

t  : Any stopping time.

Tg ' Bankruptcy tim e defined in (2.24).

B  : The random  variable representing the contingent claim. 

h(0) : The minimal hedging price.

■< : The partial ordering defined in Appendix A.4.

[•] : The H ilbert Space norm of (3.53).

( , ) : The inner product of (3.53).

[ , J : A stochastic interval.
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Chapter 1

Introduction to O ptim al 
Portfolio Theory

1.1 Objectives

In this thesis we are prim arily concerned with the happiness of an investor 

in the stock market. More precisely, we have a m arket consisting of various 

assets in which an agent can invest his wealth. We a ttem p t to allocate this 

wealth in such a way as to ensure the agent’s maximum satisfaction with the 

final return of the investment portfolio.

This problem is im portant for several reasons :

• The resulting solution, although merely an estim ate, gives an insight 

into the behaviour of a shrewd investor given different criteria  for in­

vestment.

• It is of considerable interest to  any educated investor in a m arket to 

have an appropriate model of th a t market. But perhaps more im por­

tant, particularly from any potential investor’s point of view, is the need 

for a probabilistically sound model for the recommended behaviour and 

preferred investm ent strategy m ost likely to yield a  high return.
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• Economically, the aforementioned model of the  stock m arket and in­

vestor behaviour can be examined to see if m athem atical solutions are 

reflected in the overall behaviour within the  m arket and in the  evolution 

of the m arket itself.

•  The approach taken and methodology used also yield a m ethod for 

pricing financial derivatives and other commodities.

For our part, we will confine our interest, and approach this thesis purely 

from the potential investor’s viewpoint. More precisely, our aim is to optimise 

the investor’s level of satisfaction w ith the term inal return  on his investm ent 

portfolio, m easured by a u tility  function; cf Section 2.4.

We rem ark here th a t maximising the  u tility  of final wealth is not the only 

criterion on which one could base portfolio investm ent. This is m ost appro­

priate for an investor who wishes to get rich. Alternatively, the methodology 

of the thesis could be used to maximise the u tility  (satisfaction) from con­

sumption (spending). This would be m ore appropriate for an investor whose 

prim ary concern is to enjoy living. For a small investor, this problem  is ex­

amined in Karatzas et al. [7], Xu and Shreve [8] and others. The approach 

is identical to th a t for u tility  of final wealth w ith obvious changes in the 

objective function. Indeed Karatzas [9] shows th a t there is an investment 

strategy th a t will maximise an objective function of both final wealth and 

consumption. In this way the investor can live well and get rich.

11



1.2 Approach Taken

The thesis studies prim arily the problem  of an agent who receives a deter­

ministic capital, which he may then invest in a m arket of assets in order to 

maximise the expected utility  of his wealth at some pre-specified final tim e 

T.  The m arket consists of ¿ stocks, driven by a ¿-dimensional Brownian 

motion (in the case of a complete m arket1), and a bond. The investor is 

allowed to  spend money at any tim e via a cum ulative consumption process. 

However he is not allowed to input m ore capital during the interval [0,T]. 

The m arket coefficients - the interest ra te , the appreciation ra te  of the  stocks 

and the volatility coefficients of the  stocks - are random  processes adapted 

to the full ¿-dimensional Brownian motion.

The principal result of the paper focuses on the strategy for a large in­

vestor, i.e., one whose policies affect the asset price evolution. Theorem  3.41 

provides conditions under which the expected utility  is maximised in this 

market. We then characterise this optim al strategy in term s of a solution 

to the Dual optim isation problem. The m ain m athem atical tool, namely the 

m artingale approach to  stochastic control, is utilised throughout the thesis.

In Chapter 2 we examine the more elem entary problem of u tility  m aximisa­

tion faced by a small agent. In §2.1 the standard  generalisation of the m arket 

model of M erton [4] is introduced. In §2.2 we derive a necessary condition 

for the investment policy to be admissible, i.e., for the investor to avoid debt 

at all times t  in the interval [0, T]. We also prove the extent to which the 

opposite implications are true. In §2.3 we define the problem of pricing and 

hedging a contingent claim. We solve the pricing problem and suggest a way 

to find the hedging policy in feedback form.

xT he incom plete m arket case, where the  num ber of driving B row nian m otions is greater 

than  the num ber of stocks, is dealt w ith in K ara tzas et al. [6].
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In §2.4 we introduce the concept of u tility  functions used to m easure an in­

vestor’s degree of satisfaction. In §2.5 the u tility  maxim isation problem of 

a small investor is defined. We then present the solution which proceeds in 

several steps. Firstly, using results of §2.2 on the  sufficiency of the conditions 

we reform ulate the problem as a standard linear optim isation problem  with 

equality constraints. Secondly, we conjecture an optim al form for the final 

wealth using elem entary duality theory. Thirdly, it is shown th a t a portfolio 

can be constructed tha t a ttains this most desirable form as its final wealth. 

This portfolio is optimal.

In Chapter 3 we deal with the  case of the large investor. We parallel the 

approach taken by Cvitanic and K aratzas [5] for constrained portfolios. This 

is summarised as follows. In §3.1 we adjust the old model to account for 

the effect of the agent’s actions on asset behaviour. We introduce a suitably 

large family of probability measures, each of which defines a linear problem 

similar to the one solved in Chapter 2. In §3.2 we show tha t, under appro­

priate conditions, all contingent claims can be replicated. In fact for a large 

investor this can be done with zero consumption. The minimal initial capital 

th a t makes this replication possible is equal to the supremum of the expected 

discounted values of the claim under these new probability measures. Also, 

the existence of a hedging portfolio process is proved and the form of the 

wealth process is found in Theorem 3.21. It is later shown in C hapter 4 how 

to find the portfolio process in feedback form for certain utility  functions. 

In §3.3 we approach the utility  maxim isation problem via the results of the 

previous section. As before, we specify the  problem, reform ulate it using the 

sufficiency of certain conditions and approach it using established duality 

theory. We use informal arguments to conjecture the optim al form of ter­

minal wealth and prove rigidly tha t it is optim al. We find conditions under 

which an optim al solution exists. In §3.4 we ensure these conditions are satis­

fied and we then use Theorem 3.21 to hedge this optim al form. We thus find 

the form of the optim al wealth process. The optim al portfolio and wealth

13



processes depend on the solution to a  dual problem. The dual problem m ust 

then be solved. We show th a t the  dual problem has a solution which is in 

fact unique and dem onstrate the dependence of the optimal processes on the 

solution to  the particular dual problem.

In Chapter 4 we illustrate some applications of the previous theory through 

examples and show how some of the  calculations of dual solutions are per­

formed.

Finally, C hapter 5 gives a brief sum m ary of other works in this area includ­

ing the problem of transaction costs (brokerage fees). Conclusions are also 

drawn from the thesis and suggestions for possible further work are made.
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Chapter 2 

The Sm all Investor Problem

In Uiis chapter we wish to consider only small investors, agents whose deci­

sions cannot affect the asset prices. The approach taken here is the standard 

approach taken by Merton [4] and Karatzas et al. [7].

2.1 The Stock Market Model

2.1 .1  T h e P ro b a b ilis tic  S e ttin g

In order to trea t the questions being asked in the context of a  financial 

market, we require a financial m arket model. We begin with the  standard 

assumption of continuous trading. The basic securities consist of d +  1 as­

sets which include one risk-free asset called the bond1 whose value, Po(t) is 

governed by the equation

dP0(t) = P0(t)r(t)di,

(2.1)

f i> (0 )  =  1.

The d risky assets are called stocks and can be traded continuously. The 

'This is more commonly known as a zero-coupcm bond.

15



prices of these la tte r are driven by an equal num ber of independent stan­

dard Brownian motions (see Appendix A .1.16). This is the complete market 

model. These driving Brownian motions model the external exogenous forces 

of uncertainty th a t influence the m arket. The price Pi(t) of the i th stock is 

modelled by the linear stochastic differential equation

dPi{t) =  Pj(t) bj(t)dt +  Y ]  (Tjj(t)dWj(t)
3=1

Pi{ 0) =  pi,

(2 .2)

for i =  l..d.

The process W  =  ( W 1 , . . .Wd)T is the standard d-dimensional W iener process 

defined on the probability space (fi, (F ^ t e [o,t ] j P)  as in Appendix A .1.16. P  
is called the objective probability measure. In general we assume th a t the 

filtration (J-t) is the natural filtration (see Appendix A. 1.4) generated by the 

W iener process W ,  i.e.,

<t ( V F ( s ) : 0 <  s < t), t  G [0,oo). (2.3)

W ith this in terpretation of the stock m arket :

The process {r(i) : t 6  [0,oo)} is the short rate of interest process for the 

bond.

The process {£(i) =  (b1(t)....bd(t))T : t £ [0,oo)} is the appreciation rate 

vector for the d stocks.

The volatility matrix is given by a(t)  :=  [o'tj(i)] where {uij(t) : t £ [0,oo)} is 

the volatility coefficient and models the instantaneous intensity w ith which 

the j th source of uncertainty influences the price of the i th stock.

16



These are called the coefficients of  the market model. They are all assumed 

to  be random , uniformly bounded in (t,u>) G [0, oo) x f2 and progressively 

measurable processes (see Appendix A .1.9) with values in R , R d and R dxd 

respectively. They are also adapted (see Appendix A. 1.8) to the Brownian 

filtration of (2.3).

For our purposes we fix, from here onwards, a finite tim e horizon [0,T]2 

on which all our problems will be treated.

The following Standing Assumptions are m ade :

/  IIKOII2̂  <  °°> (2-4)Jo

[  \r(t)\dt <  L, (2-5)
Jo

for some real constant L  >  0. We assume also th a t the square m atrix  a(t)  

is of full rank, V i  £ [0,T]. Finally, we assume that, the covariance matrix 

defined by a(t) := a ( t ) a T(t) is strongly nondegenerate, i.e., 3 e >  0 such tha t

£Ter(ii,a>)crT(i,u;)£ >  e||£||2 V £ G R d, (f, w) G [0, oo) x SI. (2.6)

It follows from (2.6) th a t cr_1 and (crT)-1 exist and are bounded above and 

below by 5 and 1/5 respectively, where 8 is some positive real constant.

2 .1 .2  A u x iliary  P ro b a b ility  M easu res

In order to utilise m artingale theory we require the asset prices to behave 

like martingales. The nondegeneracy condition allows us to introduce an 

auxiliary probability measure P , equivalent to P,  which will be catalyst to 

all future developments. Now let us introduce the R evalued  process

0(t) :=  (CT(i))_1[6(i) -  r{t) 1], (2.7)

2Infinite tim e horizons are dealt w ith in T aksar et al. [10] and M orton and P liska [11].

In  these articles the logarithm ic grow th ra te  of wealth is m axim ised.

17



where 1 is the ¿-dimensional vector whose every component is 1. This is 

called the  risk premium vector or relative risk process. By (2.6) and (2.4) it 

is well-defined and bounded. It is also measurable and adapted due to the 

assumptions on the m arket model coefficients.

We also introduce the exponential martingale (see Appendix A. 1.10)

Z( t)  :=  exp { -  f o £ ( s ) d W ( s )  -  \  J ‘ ||£ M ||a</.} (2.8)

and the auxiliary probability measure P  defined on (i), ( T t )) by

P (A )  :=  E [ Z ( T ) I a\. (2.9)

Hence, according to the Girsanov Theorem (see Appendix A.2) the process 

defined by

W (t)  :=  W (t)  +  re_(s)ds,  t G [0,T ], (2.10)
Jo

is an R evalued  Brownian motion under P. Rewriting (2.2) using (2.7) and 

(2.10) we obtain

d __
dPi(t) =  Pi(t) r( t)d t  +  y : aij(t)dWj(t)  . (2-11)

L i=i

Comparing this with (2.1) we can see th a t P  equates the appreciation rate 

of all the stocks to the interest ra te  of the  bond, i.e., P  is the risk-neutral 

probability measure of the m arket model.

Alternatively, under the discount factor  defined by :

7 (/) :=  exp |  -  ^  r ( s )d s j ,  t G [0,T], (2.12)

we can use Ito ’s Lemma (see Appendix A.5) to solve the equation (2.11) for 

the discounted stock prices -y(t)Pi(t) given by

7  (t)Pi(t) =  pi exp |  a J (s )d W (s )  j Q I M s ) | |2ck}j, (2.13)

18



where cr,(<) =  (<rtl....crI(i)T. This is completed in Appendix B.2. Therefore 

the discounted stock prices are martingales under P.

2.1 Remark

The existence of P  with the above properties guarantees th a t the model 

is arbitrage free; cf Definition 2.8. This means it is impossible to m ake risk­

less profits out of nothing - no free Imich.

The uniqueness of P  ensures tha t all risk in the m arket can be offset or 

hedged against by an appropriate trading strategy in the assets.

These properties allow us to solve the contingent claim hedging problem, 

option pricing and investment problems in the context of the current model.

19



2.2 The Small Investor’s Portfolio

A natural requirement for any investor is the necessity to  rem ain liquid. For 

this reason we m ust ensure th a t, at all times, the value of an investor’s 

portfolio is nonnegative. In order to  apply duality theory to our problem 

we require constraints which ensure liquidity. In other words, we m ust find 

conditions which will ensure th a t our portfolio is admissible. To this end, we 

firstly derive conditions necessary to avoid debt. We then examine to what 

extent these conditions are sufficient.

2 .2 .1  N ecessa ry  C on d ition s for A d m iss ib ility

We denote by X ( t ) the wealth th a t the agent has at his disposal at tim e, t. 

We have the following definitions :

2.2 D e fin itio n . A p o r tfo lio  p ro cess  is an H d-valued process,

{2L(0 =  (7Ti(i)....7rd{t ) )T : t e  [o ,r ] }  

which is progressively measurable with respect to {J-t} and satisfies

[  \\aT(t)]i{t)\\2dt < oo a.s. P. (2-14)
Jo

For our purpose ni(t) represents the proportion of wealth invested in the ith 

stock at time, t. We allow n¿(¿) to become negative. This is called short- 

selling. Similarly J2i=i n i(t) can exceed 1. This represents borrowing at the 
interest rate r(t) of the bond. The investor is also allowed to spend via the 

cumulative consumption process3. This is defined by :

2 .3 D e fin itio n . A c u m u la tiv e  c o n su m p tio n  p ro c e ss

{ c ( t ) : i€ [ 0 ,T ] } ,

3M ost of the theory developed to  da te  uses a consum ption ra te  process b u t the  trea t­

m ent is fundam entally  the same.
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is a nonnegative, nondecreasing R -valued process which is progressively mea­

surable with respect to {T t}  and satisfies

c(0) =  0 and c{T) <  oo a.s. (2.15)

The adaptivity of both  processes above (their unpredictability) arises because 

the agent cannot anticipate future values of the prices, i.e., no insider trading.

We assume th a t the agent adopts a self-financing strategy - one with no 

input of capital during [0,T]. Under the above notation, for an agent given 

non-random  initial wealth x > 0, the wealth X ( t )  evolves as follows :

" W  =  E  + (1 ~  * (< W ) -  M t )

= X  7r*(i ) bi(t)dt +  ^ 2  CijdWi1 |
I i=1 j=1 J

+  X (i) ( l  — K1 {t)X)r {t)dt — dc(t)

=  X( t ) r ( t )d t  +  X  (i)zrT (t)a(t)[dW(t)  +  cr_1(i)( b(t) — r(t)l)dt] — dc(t).

This yields the evolution equation given by

dX( t )  =  X ( t ) r ( t )d t  +  X  (tyirj (t)cr(t)dW(t)  — dc(t),

X(0)  = x > 0 . 1

(2.16)

2.4  D e fin itio n . We define the c o r re sp o n d in g  w e a lth  p ro c e ss  for  port­

folio policy (7r_, c) and initial capital x £ (0,oo) to be the solution X(-)  = 

X x,- ’c(-) of  equation (S.16) above.
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2.5 D e fin itio n . A portfolio policy (zl, c) is called a d m is s ib le  fo r  initial 

capital x  G (0, oo) if

X * * * { t ) >  0, V / G [0, T],

holds almost surely.

i.e., if it avoids debt at all times during the interval [0,T],

The set of admissible policies is denoted by

A ( x )  :=  {(21, c) : X x*'c(t) > 0 V / G  [0 ,T ]}.

By lto ’s Rule, the solution of (2.16) satisfies (see Appendix B.3) :

M{t) := [ l i(s)dc(s) +  j ( t )X ( t )  (2.17)
JO

=  x +  f  7(5)Ar(s)7rT(5)cr(.s)(/H/ (5).
Jo

The left-hand side consists of the current discounted wealth plus the total 

discounted consumption to-date. It is a continuous local m artingale under 

the risk-neutral probability measure, P.

Also, if we define the process II(t)  by

/ /(* ) :=  7 ( 0 m  (2-18)

which, by Ito’s Lemma, (2.12) and (2.8), satisfies the linear stochastic equa­

tion

dH(t)  = -H { t ) [ r ( t )d t  +  0T(t)dW(t)) ,  (2.19)

then, analogously, we can solve for the process N(t) defined by

N{t)  :=  [ l H(s)dc(s) +  H { t )X ( t )  (2.20)
Jo

x  +  [ l H ( s ) X ( s )[k T(s )<x(s ) -  0T{s)]dW{s), 
Jo
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which is a local m artingale under P.

2.6 Remark

Note tha t the process H ( t ) modifies the discount factor  7 (t) with Z { t ) which 

has been used to equate the growth rates of all assets to th a t of the bond. In 

other words we have accounted for the presence of the financial m arket and 

multiplication by H ( t ) deflates wealth at tim e t to the equivalent am ount at 

tim e 0 .

For any admissible (tt, c) € A ( x )  the left-hand side of (2.17) is nonnega­

tive. It follows from an application of Fatou’s Lemma (see Appendix A.3) 

tha t the process M { t ) is a P-superm artingale and consequently, by the  op­

tional sampling theorem  (see Appendix A. 12),

E 7 (t ) X ( t ) +  f  j ( s )dc( s ) ]  <  x,  (2.21)
L Jo

for every r  € <?[o,r] {All Tt  stopping tim es in [0,7"]}. This yields the 

following necessary conditions for admissibility.

E f f  7 (s)o fc(.s)| <  x,  (2 .2 2 )
0

Ë [y{T )X (T ) }  < x. (2.23)

This can be stated  similarly for the process N (t )  w ith obvious equivalent 

necessary conditions under expectation E  and process H(T).

2.7 Remark

For any given (7r, c )  £ A (x )  define the bankruptcy time as

tb  :=  inf{i G [0, T] : X ( t )  = 0} A T.  (2.24)
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Since M (t)  is a P-superm artingale, then for any t £  [t b ,T]  on the  event 

{tb < T ]  we have

E [ y ( t ) X ( t )  + 7 (a)rfc(a)] <  E [ j (tb ) X ( tb ) +  7 (a)<fc(a),_

=>• £  [7 (i)X (i)j <  0 a.s.,

since

E[fQB 7 (5)dc(s)] - E \ J q 7(«)dc(3)] <  0.

Hence for admissible policies, X ( t )  =  0, V t  £ [ t b , T ]  almost surely on 

{ tb  < T}, i.e., if the wealth X(-)  becomes equal to zero before the term inal 

tim e T  it stays there. Further values of 7r are irrelevant and are ignored.

2.8 D e fin itio n . An  a rb i t r a g e  o p p o r tu n i ty  is a policy (7r,c) such that

(i) (tt,o) e  .4.(0),

(ii) The wealth process X x'-'°(-) satisfies

P [ X ( T ) >  0] >  0. (2.25)

In other words an arbitrage opportunity  is the existence of an investm ent 

strategy th a t achieves, with zero initial capital and no interm ediate invest­

m ent, an am ount of term inal wealth which is almost surely nonnegative and 

positive with positive probability. Our model excludes arbitrage by virtue of 

condition (2.23).

2 .2 .2  Sufficiency o f  th e  C o n d itio n s for A d m iss ib ility

This section examines the sufficiency of conditions (2.22) and (2.23) for ad­

missibility. It turns out th a t these conditions are sufficient in the sense of

24



Lemmas 2.9 and 2.11. Again the standard  approach of K aratzas et al. [7] is 

followed. Once we can prove their sufficiency they shall acquire the  signifi­

cance of budget constraints for the u tility  m axim isation problem; cf Section 

2.5. According to conditions (2.22) and (2.23) we define the following, for 

any x  > 0 :

C(x) := {All processes c(i) satisfying inequality (2.22)}, (2.26)

respectively T>(x) for equality in (2.22),

C(x)  :=  {Nonnegative R .V .’s X t  satisfying inequality (2.23)}, (2.27)

respectively A4(x)  for equality in (2.23). Finally we define

V ( x )  {All portfolios ZL such th a t ( zl, 0) £ A(x )

and X T G M { x )}. (2.28)

We are prim arily interested in C{x)A. This set consists of all attainable levels 

of wealth. For any random variable B  £ C(x)  an agent can construct a policy 

(iL, c) G A ( x )  with corresponding wealth process X (-) such th a t X ( T )  =  B  

almost surely P. Lemma 2.9 formalises the  result.

2.9 L e m m a

For every B  £ C(x) there exists a pair (zr, c) £ A (x )  with corresponding 

wealth X (-) such that X ( T )  =  B  almost surely P.

P ro o f:

Define the processes

v(t) := E [ y (T ) B  \ F t] -  E[y(T)B],  t £ [0,T], (2.29)

4We wish to maximise utility of final wealth. The maximisation of utility from con­
sumption is dealt with briefly in Karatzas [9] and Karatzas et al. [7] but is primarily a 
parallel problem.
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which is a /■’-m artingale, and

X ( t )  := ^ r [ *  +  » (0  +  B h ( T ) B - * ] < / r ]  (2.30)

=  ^ - [ e \-){T)B | JF,] +  (*  -  ¿ [7 (T )B ))( 1 -  i / r ) ] .

For all B  G £(a:), this is nonnegative by (2.23) and X ( T )  =  B, P  almost

surely. Applying the Fundam ental m artingale representation theorem  (see

Appendix A. 10) to i>(i) shows it can be w ritten  its a  stochastic integral

[ ' <f>T(s)dW(s) ,  (2.31)
Jo

for some T t-progressively m easurable, R""-valued process <p(t) satisfying

f  ll^(s )li2^5 <  00 a -s . (2.32)Jo

Now define the process

- w  := 7 - ' ( 0 K ( 0 ) - V (0 (2 33)
_V '  X{ t )  K '

This is a valid portfolio process due to (2.32), Remark 2.7 and the adaptivity 

and boundedness of (crT)-1 . It also means th a t v(t)  can be represented as

t , ( i ) =  f  X { s ) t T (s)-y{s)a{s)dW{s).  (2.34)
Jo

Now define the process

m  :=  (2.35)
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Finally we m ust show that the corresponding wealth process X x,-'° for the 

policy (zl, c) defined by (2.33) and (2.35) is in fact X (-). From (2.30) and 

(2.35) we have

f  l{ s )dc(s)  + -y(t)X(t) = [ \ x - E { ~ , ( t ) D ) ) I T d s
J o  Jo

-fz  +  u (0  +  (E[y(t)B] -  x ) t / T

=  x  4- v(t)

= x  + I Aa(s)7tt (.s)7(.s)<t(s)<:/M/’’(s),
Jo

from (2.34). This is exactly equation (2.17) so th a t X  is the corresponding 

wealth process for the policy defined and X ( T ) =  B, P  alm ost surely.

2.10 C o ro lla ry

For any random variable B in the class A4(x),  the policy (tt, c) of Lemma

2.9 is unique and in the class V (x) .  Furthermore it. has corresponding wealth 

process given by

l ( t ) X ( t )  =  E M T ) B  | F t). (2.36)

Lemma 2.9 and relation (2.22) says th a t C(x)  consists of precisely those 

’levels of terminal wealth’ which are atta inab le  from the initial endowment 

x  >  0, via the choice of some portfolio/consum ption pair which avoids debt. 

However Corollary 2.10 shows th a t the ’extrem e’ elem ents of C(x)  are at­

tainable by strategies that mandate zero consumption.
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On the other hand C(x) consists of all reasonable consum ption processes 

for which an agent can construct a portfolio 7r w ith corresponding wealth 

process -^(-) >  0, i.e., one avoiding debt. Lemma 2.11 gives this result.

2 .11 L e m m a

For every c(-) (E C(x ) there exists a portfolio process 7r such that (7r, c )  £ A(x) ,  

P ro o f:

The proof is similar to th a t of Lemma 2.9 and is om itted. 2 .12  C o ro l­

la ry

For any consumption rate process c(t) in the class T>(x), the portfolio 7r of  

Lemma 2.9 is unique and the corresponding wealth process given by :

7 (f)X (O  =  E [ j \ ( s ) d c ( s )  I f t \ ,  t e  [0,T ], (2.37)

and X ( t )  = 0 almost surely.

The final four results of this section characterise the possible levels of wealth 

attainable and the financable consum ption policies. The results are utilised 

in Sections 2.3 and 2.5. We note here th a t, a lthouth the conditions (2.22) and

(2.23) are not suffucient to ensure a process (7r, c )  avoids debt, they are each 

sufficient for admissibility in their respective problems. This means th a t if

(2.23) holds we can find a suitable corresponding portfolio to avoid debt, in  

fact, in the case of those elements of A4(x),  the consumption process m ust be 

zero. Analogotisly if (2.22) holds then a suitable corresponding consumption 

process exists to avoid debt. We note th a t (2.22) and (2.23) together are not 

sufficient for admissibility but th a t we do not require the sufficiency of these 

conditions to solve the respective problems of maxim isation of u tility  from 

consumption and utility from final wealth.
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2.3 Hedging Contingent Claims

Let’s suppose th a t the investor promises to pay someone a random  amount 

B ( lo) >  0 at tim e t =  T. W hat is the value of this promise at tim e t =  0 ? In 

other words, how much should the investor charge for selling the contractual 

obligation th a t entitles its holder to a paym ent of size B{to) at tim e T. To 

solve the problem, suppose the investor sets aside the am ount x  > 0 at tim e

0. He invests the am ount in the m arket according to the  portfolio 7r(t) and 

withdraws funds according to the cumulative consumption process c(t). At 

tim e t= T  he wants to be certain th a t he can cover his obligation, i.e.,

X X'^ C(T) >  B  a.s.

His wish is to find the cheapest way to cover his obligation, i.e., the least 

x  >  0 for which this hedging is possible. For the investor (seller) this is a 

fair selling price of the contract at tim e 0. Any price above this represents 

an arbitrage opportunity.

2.13 D e fin itio n . A c o n tin g e n t c la im  is a nonnegative Tt-measurable ran­

dom variable B.

It can be thought of as a contract or agreement th a t pays B at m aturity  

T. We are interested, not only in the fair price of this contract, bu t in the 

hedging portfolio mentioned above. The results of Section 2.2 are particu­

larly im portant in this respect.

2 .14  D e fin itio n . The h e d g in g  p r ic e  of the contingent claim B  is defined 

h(0) :=  inf x £ (0, oo) : 3(7r, c) £ A (x )  s.t. X x’-'C(T) >  B  a.s. . (2.38)

Corollary 2.10 states th a t A4(x)  is the set of all exactly replicable levels of 

wealth m andating zero consumption given initial capital x. It also says the
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corresponding initial wealth is A"(0) =  E[y(t)B}.  This leads us to conjecture 

th a t once Z£[7 (i)P ] is finite it will be the minimal hedging price for the claim, 

B  (since no consumption occured). Corollary 2.10 also gives us the form of 

the wealth process corresponding to the hedging portfolio. T he result is given 

in Theorem 2.15.

2.15 T h e o re m

The infimum in (2.38) is attained. In -particular

h{0) = E[i{ t)B).  (2.39)

Furthermore there exists a policy (zl, 0) such that X  = X h^ ’- ,0(-) is given by

A'(i) =  | Ti\ ,  t € [0,7']. (2.40)

P ro o f:

Assume li(0) < oo and equal to x , say. In other words there exists some 

admissible pair (¿ , c) £ A ( x )  such th a t X X,-'C(T) > B  alm ost surely. Then, 

necessarily from (2.23),

u :=  E [ 'y ( T ) B ] < x ,

=> u <  h(0).

For the opposite inequality, define the process

X ( t )  =  i i b ( T ) B  | A ], I € [0,71, (2.41)

with A'(0) =  u, X ( T )  =  B. B ut since E [y (T )B  | .F,] is a P -m art ingale then,

by the M artingale representation theorem X ( t )  can be represented as

(2.42)
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for a suitable T r progressively measurable process <f)(t) w ith values in R ci and 

satisfying

[  ||</.>(i)||2c/£ < oo a.s. (2.43)
Jo

Then we can define ¿(¿) by

7 ( t )± ( t )X ( t )  :=  ). (2.44)

This gives a well defined portfolio process (recall the boundedness of cr-1 (0  

and 7 (t) and Remark 2.7). Clearly, from (2.42) and (2.44)

7 (*)A'(0 =  u  +  I '  - f ( s ) X { s ) tT{s)cr{s)dW(s). (2.45)
Jo

Comparing (2.45) with (2.17) it is clear tha t X  = X u'- ,0(-). Therefore there 

exists a portfolio process with initial capital u which always hedges R. This 

implies th a t /i(0 ) <  u.
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2.4 Utility Functions

To formulate meaningful optim isation problems for the investor we will re­

quire the concept of utility functions m entioned in C hapter 1. The utility  is a 

function which quantifies precisely the satisfaction derived from any positive 

level of wealth.

2 .16 D e fin itio n . A function u : (0, oo) i—)■ R  is called a u t i l i ty  fu n c ­

t io n  if  it has the following properties :

(i) u is strictly increasing,

(ii) u is strictly concave,

(Hi) u is continuously differentiable,

and can satisfy

u'(  0 + )  

u'( oo)

2 .17  Remark

Property (i) implies th a t the investor prefers higher levels of wealth to lower 

levels. Concavity implies th a t if the investor with wealth x were offered 

a bet w ith resultant wealths x +  a and x — a, each w ith probability | ,  

his current utility  u(x)  would exceed the expected u tility  from the  gam­

ble, \[u(x  +  a) +  u(x  — a)]. The investor is decreasingly risk averse, i.e., his 

marginal utility is decreasing in x and tends to zero as x —> oo. This is 

known as the saturation effect.

2.18 D e fin itio n . We define the m a rg in a l u t i l i ty  u ' : (0,oo) i-» (0, oo) 

in the obvious way.

:=  lim u^x) =  oo, (2-46)
240

:=  lim u'(x) — 0. (2.47)
i-i-oo v v '
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This function satisfies

(i) u’ is continuous,

(ii) u' is strictly decreasing,

(iii) u' is strictly positive.

These properties follow obviously from (iii),(ii),(i) of Definition 2.16 respec­

tively.

2 .19 D e fin itio n . We denote by I : (0,oo) (0,oo) the in v e rse  m a rg in a l

u t i l i ty  such that I satisfies i l ' ( I ( x ) )  =  I(u '(x))  — x.

I ( x ) also satisfies :

(i) I is continuous,

(ii) /  is strictly  decreasing,

(iii) / is strictly positive.

These follow from properties (i),(ii),(iii) of Definition 2.18 respectively. The 

following conditions may also hold :

1(0+) :=  \ im l ( y )  =  oo, (2.48)j/4.0
/(oo) :=  Hm I(y)  = 0. (2.49)

2 .20 D e fin itio n . Finally we define the L eg e n d re -F e n ch e l t r a n s fo rm  u

of —u(x) on (0,oo) as :

u (y ) :=  max[u(a:) — xy], (2.50)

=  u ( I ( y ) ) - y H y ) .  (2.51)

This function satisfies :
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(Ì) ù is strictly decreasing,

(ii) ù  is strictly convex, and

(iii)

u(x) = mm[ù(y) +  art/], x £ ( 0 ,o o ) ,  (2.52)

=  u(u'(x))  +  xu'(ar), x  6  (0,oo). (2.53)

2.21 Remark

We can see tha t the maximum in (2.50) is achieved at

it'(.r) — y =  0,

=> x  =  f{y).

Similarly we can find the minimum in (2.52) which is achieved a t y = u'(x).  

Also, properties (i) and (ii) follow from the fact tha t

u(y)  =  u ( l ( y ) ) - y l ( y ) ,

=> u‘(y) = u*{I{y))I \y)  -  y l ' ( y )  -  I (y)  

=  - / ( y ) < 0 ,

=*ft"(y) = - I \ y ) >  0.

Following from (2.50) and (2.52) respectively we have, for all x , y  >  0, the 

inequalities

u(I(y))  >  u(x) - f  y(I (y)  -  x), (2.54)

u(t('(®)) <  u(y)  -  x ( u \ x )  -  y). (2.55)
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u(0+ ) :=  lim ti(x), u(oo) :=  lnrwi(a:), (2.56)

{¿(0+) :=  limu(;t/), ii(oo) :=  Jim  u(y),  (2.57)

exist in the extended real number system.

2.22 L em m a

(i) ti(0) =  u(oo),

(a) u(o) =  u(oo).

P ro o f:

(i) Firstly note th a t, from Definition 2.16 and Definition 2.19 (iii), we have 

for all y > 0

tt(y) =  u { l { y ) ) - y l ( y )

<  « ( / (y ) ) .

The monotonicity of u and u guarantees the lim its

lim u(y)  <  lim i t(I(y))y —̂ oo “  y-*oo  V W  / /

=  u(0) .

Also, from (2.50), we have for all x  >  0

H y )  >  «(-i') ~  x y

=  u ( e / y ) - e ,  Vc > 0,

lim u(y) > lim u i c / y ) — e. Ve > 0,
y—»00 y—too
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=  t/(0) — c, Vc >  0,

(ii) Similarly, from Definition 2.20 (iii) and Definition 2.18 (iii), we have 

for all x > 0

ii(x) =  u(ii'(x')) +  xu'(x)

>  {¿ (i/{ a ;)) ,

whence fi(oo) =  ti(0).

=  m -

Also from (2.52)

u(.t) <  u(y) + x y ,  V y > 0

=  u(c /x )  +  e, V c > 0,

=> lim u(x)  <  lim u(c /x )  +  c, V e > 0,
s:-+qc> v i--+oo

=  £t(0) +  c, V e > 0,

whence u(oo) =  ii(0).

We will have reason to use the following assum ptions in the theory to follow, 

in particular to prove the existence of the dual solution of section 3.4.
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2.23 A ss u m p tio n  x  i-> x u ' ( x )  is non-decreasing on (0, oo)

2.24 A ss u m p tio n  For some or £ (0 ,1 ) , 7  £ ( l,o o ) we have

au'(x)  >  1/ ( 7 ®), V x £ (0 ,oo).

2.25 L e m m a

I f  the utility functions satisfy assumptions 2.23 and 2.24, then

(i) y l ( y )  is non-increasing,

(ii) x  «(e*) is convex on R ,

(Hi) V a  £ (0 ,1 ) ,3  7  >  1 such that I (ay )  <  7 /(y ) , V y > 0.

P ro o f:

(i) By assum ption 2.23

xu"(x)  +  u '(x) >  0 , V x £ ( 0 ,oo),

I(y)u"{I(y))  + y > 0, V y £ ( 0 ,o o ) ,

by letting a: =  /(y ) and y  =  u'(a:). Also, since u'(I (y) )  = y implies th a t 

u " ( I ( y ) ) I \ y )  =  1 then

=> i ( y ) P ' ( y )  + y > V y £ ( 0 ,oo),

=> K v )  + y i \ y )  < V y £ ( 0 ,o o ) ,

=> ( yT(y))' <  v  y £ (o, 00).

llcnce y /(y ) is non-increasing.
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(ii) By Rem ark 2.21

=  ~exI{ex),

which from part (i) is non-decreasing for all ex € (0 ,oo) and hence for all 

x € R . Therefore u(ex) is convex on R .

(iii) Again, setting y = u'(x) => x =  I(y)  we obtain from Assumption 2.24

au'(x) > u ( 7 x), V x £ (0,oo),

=► ay  >  u '(7 /(y )), V y € ( 0 ,o o ) ,

=> /(a y )  <  7 /(y ) , V y € ( 0 ,o o ) ,  (2.58)

for some a  € (0 ,1 ) , 7  € ( l,o o ) since I is decreasing. Therefore, assuming 

a  € [a, 1 ),

/(a y )  =  / ( a ( a / a ) y )

<  7 / ( ( a /a ) y )

< Tr/(y),

using the property (2.58) above and the decreasing property of / .  Now, 

reiterating (2.58) for a  € (0 ,a ) ,

/(a y )  =  / ( a ( a / a ) y )

<  7 / ( ( a /a ) y )

<  7 n/ ( ( a / « n)y),
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until a / a n > a

Hence for all a  6  (0 , 1 ), 3 some 7  >  1 such th a t I ( a y ) <  7 1(y), V y > 0.

2 .26 Remark 

Assumption 2.23 means

—x u ”(x) /u ' (x )  <  1,

i.e., the well known Arrow-Pratt measure of risk aversion does not exceed 1. 

The function In x  is the limiting case.

=$■ I (ay) <  7 n+1I(y).
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2.5 Utility Maximisation

2 .5 .1  D efin in g  th e  P ro b lem

In this section we address the following question. How should an investor 

endowed with initial capital x > 0 choose, a t every tim e t, his stock portfolio 

7r and his cumulative consumption process c(t), from among all admissible 

pairs (n, c) £  A ( x ), in order to obtain the  maxim um  expected utility  from 

his term inal wealth. More precisely, consider the u tility  function of Section 

2.4. We want to maximise

c )  := E [u {X x'^ c{T))\. (2.59)

over the set of admissible policies given in Definition 2.5. We introduce for­

mally :

2 .27 D e fin itio n . The u t i l i ty  m a x im is a t io n  p ro b le m  is to maximise 

J(x]Tr,,c) over the class A ( x )  o f  processes (7r, c) that satisfy

E [ u ~ (X x'-'c(T))] <  0 0 . (2.60)

Recall th a t u~ :=  max[—u,0].

We denote by A ( x , u )  the set of policies in A ( x ,u )  which satisfy condition 

(2.60) above.

2.28 D e fin itio n . The v a lu e  fu n c tio n  of this problem is defined by

V(x)  := sup J(x]]£,c). (2.61)
(7T ,c ) £ > 1 ( : e ,u )

W ithin this set-up, the investor a ttem pts to maximise utility  from final 

wealth X t , within the constraints imposed by the level of his initial cap­

ital and quantified by the condition of (2.21). We will require the results
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of Section 2.2. By Lemma 2.9 once B  6 C(x)  the existence of a policy 

(7r, c) E A ( x , u )  such th a t X ( T ) — B , P-a.s. is assured. This gives us the 

sufficiency of condition (2.23) for any distribution of wealth B  to  be attained. 

Therefore we can treat it as a constraint in the sense of duality  theory as it 

is necessary and sufficient.

Thus the problem of (2.61) am ounts to  maximising the expression above 

over the  class C(x)  of nonnegative ^ -m easu rab le  random  variables. But 

this problem is straightforward. Since u tility  is derived solely from term inal 

wealth, it seems reasonable to increase X t  w ithin the limits allowed by con­

straint (2.23). In other words we ensure tha t X t  £ M.(x)  and we can then 

apply Corollary 2.10. This result is given in Theorem  2.29.

2.29 T h e o re m

For every x  >  0 we have

V(x)  =  sup J(x] 7T, 0). (2.62)
(7 r ,0 )£ v 4 (a :,u )

Tl£V(x)

where V (x )  is the class given by (2.28).

P ro o f:

For any (tt, c) £ A ( x , u ) we know th a t its corresponding final wealth X ( T )  

is in the class C(x)  and therefore the  num ber

S := E[7 (T)A'(T)],

is in [0,a;], by (2.23).

If 8 > 0 then the number
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B  :=  f  * r .

belongs to M ( x ) .  Then, from Lemma 2.9 and Corollary 2.10, there exists 

a portfolio 7r € V ( x ) with corresponding wealth X ( T )  = B  > X ( T )  almost 

surely.

Obviously this means th a t E [ u ( X j )] >  E[u(Xr) \  which bounds £[u(AV)] 

from below and since (7T, c) € A ( x , u )  then the policy (tt, 0) is also in

Hence, for every (zr, c) 6 A ( x , u ) ,  3 (¿ ,0 ) € A ( x , u )  with expected util­

ity at least as great. This implies th a t

J(x;7r, c) <  J(x;zr, 0).

If S = 0 then X ( T )  =  0 and we define

B  :=  W n > ° ’

belonging to A'i(a:) and, again applying Corollary 2.10, we obtain as before a 

portfolio with corresponding wealth X  (T) = B > X (T ) implying J ( x ;tt, c) <  

J (x ;n ,  0).

According to Theorem 2.29 we can reform ulate the problem of (2.61). There­

fore we ignore consumption and our new problem now has the equality con­

strain t given below.

V'(rr) =  sup «/(.r;7r,0),
E€~P (*)

s.t. E [y (T )X (T )]  = x.

(2.63)
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This can be viewed as a linear optim isation problem in X t . To conjecture the 

form of the optim al portffolio we a ttem pt to find the so called optimal form - 

the special form of the final wealth X t  which will guarantee optim ality in the 

problem of (2.63). We apply the theory of Lagrange m ultipliers to  optimise 

the above with respect to X t - From the standard Lagrange m ultiplier op­

tim ality conditions we have the following conditions necessary for optim ality:

Firstly

É[- , (T)X(T)\  = x. (2.64)

Secondly, treating the objective function as a function of X t  only

^ { s [ . ( J f r ) ] - ï ( l [ 7 ( T ) J t ( T ) ] - ! ) } = û ,

=4 J ^ { e {u( X t ) -  y H ( T ) X ( T )  + xy]}  = 0,

=4- j f  H X t ) -  y H ( T ) X ( T )  +  x y ] i p }  =  0,

=4- Ja - ^ { u { X T ) - y H ( T ) X ( T )  + x y } d P  =  0,

=4 E[u' ( X t ) — yH (T)]  =  0,

for some suitable Lagrange m ultiplier y > 0, by dom inated convergence. We 

note here th a t the lim it can be taken inside the expectation operator once

the expression [u(J(r7’ +  e) — u( X t )]/£ is bounded above for all e > 0. However

we are merely conjecturing the optim al form and we propose th a t this is

X ( T )  = I ( y H ( T )) a .s , (2.65)
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and from (2.64) we obtain :

E h ( T ) I ( y H ( T ) ) \  =  x  a.s., (2 .66)

which must be solved for y > 0.

2 .5 .2  F orm alising  th e  D iscu ss io n

We have conjectured the form of the optim al final wealth in a non-rigourous 

fashion. We must now prove th a t this form does in fact ensure optimality. 

Introduce the function

belongs to the class M. (a:). Hence from Corollary 2.10 there exists a unique 

(¿, c) such tha t X X'-,C(T) = I ('i^(x) f i  (T))  almost surely. In fact c =  0 and 

the corresponding wealth process is given by

C(y) < oo- (2.68)

This is necessary for a  solution to (2.66) to  exist. Introduce also the inverse of 

( ,  denoted by ij>. Fixing the initial capital x  > 0, the jFr m easurable random 

variable

(2.69)

X ( t )  = E [ y ( t , T ) X ( T )  | Ft)

(2.70)
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We have conjectured the form of the optim al final wealth. Theorem 2.30 

gives the result.

2.30 T h e o re m

Assume  V’(a:) <  0 0  and consider the random variable given by X ( T )  =
I(tjj(x)Fi(T)). The pair (zl, 0) of Lemma 2.9 belongs to .4 (x ,ii) and is opti­

mal for  the problem of (2.61).

P ro o f:

It suffices to show th a t X t  of the form given by (2.69) satisfies (2.60) and 

th a t for any other X ( T )  G £ (x ) satisfying (2.60) we have

£[«(A 'r)] <  E[u( X t )\ a.s. (2.71)

Recall the inequality (2.54) which states th a t for all a  > 0,t/ >  0

u( I (y) )  > u(a)  + y[I{y) -  a}.

This implies th a t

« ( % ) )  >  u ( X T) +  y[I(y) -  A t] ,

holds almost surely for any X t  G ^ (x )  (since X t  is nonnegative). W ith 

y = ■0(x)//(T) > 0 for fixed ciipital x  and wealth from (2.69), we obtain

u { X T) > u ( X T ) +  xJ}(x ) H (T ) [ X t  -  X T] a.s. (2.72)

Now, with the particular choice of

X T =  B  = X , >  0,

from Theorem 2.29, which is in the class M ( x ), we can say th a t the right- 

hand side of (2.72) is P-integrable. In fact

E{u( X t )\ > U[u( X t )\ +  t ' [>«3; ) //(7 ') (AV -  x/iH-,(T)])

=  E\u{Xr) \ ,
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since X t  belongs to the  class M ( x ) .  Now £ [u (X r)] is bounded below by
A A

E[u(Xr)\  and, since X t  is a constant B,  condition (2.60) holds. For the 

inequality (2.71) note tha t

E[u(X t )} >  E[u{Xt )] +  E[1>{z) H ( T ) { X t - X t )]

= E[u( X t )} + W x ) ( x - E [ H ( T ) X t }).
>0

The expression above is nonnegative once X r  E £ (.r). Therefore for any 

X t  € the inequality (2.71) holds.

We have found the optim al form for the  term inal wealth. We can use Ito’s 

lemma to solve for the corresponding wealth process in term s of the m arket 

param eters. We then use Corollary 2.10 to obtain a  second form for the 

optimal wealth in term s of n. We compare both forms to find the optimal 

portfolio. The exact strategy is given in C hapter 4.
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Chapter 3 

The Large Investor Problem

3.1 The New Model

We consider now the type of investor whose investment policy influences 

the behaviour of the  prices Pq, {P,}i<;<<i of the d +  i financial assets. More 

precisely, these prices evolve according to the adjusted m arket described by 

the stochastic differential equations :

dPQ(t) ' =  P0(t)[r(t) +  /o(zCt)L

(3.1)

P o (0 ) =  1,

for the bond, and with the stocks given by

dPi(t) = Pi(t) [bi(t) + f i fet )]dt  + a>3d w t
L 3 - 1

(3.2)

Pi( 0 )  =  P i ,

for i =  1 ...d.
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The functions : R d —► R  for i = 0...d are some given functions describing 

the effect of the investor’s strategy on the  asset prices. As before the investor 

is allowed to invest by way of a portfolio process 7L(t) defined as in Defini­

tion 2.2 and to spend via the cumulative consum ption process c(t) given in 

Definition 2.3.

Similarly to  before the  wealth X ( t )  of the investor evolves according to the

evolution equation given by

d X ( t ) =  X{t)g{t,'Ki )dt +  X ( t ) j iT ( t )a ( t )dW (t)  — dc(t)

X (0 )  = x > 0 ,  

where

g{t,7Li) ■■= r ( t ) +  fo(z t)  +  $^2Ei(*)[(&iC0 +  M î t )  ~  r (0  ~
i=l

(3.3)

3.1 Remark

The im pact of the investor’s strategy may arise because of size only or merely 

because other traders believe the large investor has superior information. 

However we m ust note th a t the m arket described above need not be inter­

preted as a large investor’s m arket. The in terpretation of policy-dependent 

prices is not the only one. We could ju s t s ta rt w ith any economy whose wealth 

process is, for whatever reasons, given by (3.3) above and forget about the 

prices.

3.2 D e fin itio n . Similarly we define the c o r re sp o n d in g  w e a lth  p ro c e ss

for portfolio policy (zr, c) and initial capital x E (0, oo) to be the solution 

X (-) =  X x’- ,c(-) of  equation (3.3) above.

,4s before a portfolio policy (zr, c) is called a d m iss ib le  for initial capital
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x £ (0,oo) i f  X x'-,c(t) > 0 V t £ [0 ,r]  holds almost surely and the set of  

admissible policies is denoted by

A ( x )  :=  {(tt,c) : X x^ ’c{t) > 0 V t £ [0,T]}.

We wish to introduce a set of auxiliary m arkets, indexed by v, and struc­

tured in the  same way as those m arkets of C hapter 2. Each m arket will have 

an short interest rate, denoted later by g(t ,v ) ,  and appreciation rates which 

are independent of the portfolio process. The volatility m atrix  a(t )  will re­

main the same. There exists a solution to the u tility  m axim isation problem 

in each of these markets. We require the appropriate v such th a t the  large 

investor assumptions hold. To this end, we restrict ourselves by imposing 

the following standing assumptions.

3.3 S ta n d in g  A ss u m p tio n  The function g{t,-) is concave V t  £ [0,T].

3 .4  S ta n d in g  A ss u m p tio n  The function g(t, •) is also uniformly (w.r.t. 

t) Lipschitz, i.e.,

\g{t,x) -  g(t ,y)\  < k \ \ x - y\\, V t£ [ 0 ,T ] ,

for some k £ (0, oo).

3.5 D e fin itio n . We now define the co n v ex  c o n ju g a te  fu n c tio n  g of g

g( t ,v)  :=  sup [g(t, 7r) + i l t u]. (3.4)
7reRd

We note also th a t, by definition, g(t, ■) is convex (see Appendix B .l).

3.6 D e fin itio n . g ( t , v ) is finite on its e ffec tiv e  d o m a in

D, :=  {u : g{t,v)  < oo},
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and associated with this is the class o f  processes D defined by 

D  :=  |u ( i )  : g{t,vf )  <  oo V i}.

We also m ake the  following assumptions on the set D.

3 .7  S ta n d in g  A ss u m p tio n  We assume D  is not empty.

3 .8 S ta n d in g  A ss u m p tio n  We also assume th a t the function g(t,  •) is 

bounded uniformly in t, on its effective dom ain Dt , i.e.,

g(t , ■) < M,  V v £  Dt , V t.

3.9 Remark

Assumptions 3.3 and 3.4 imply th a t the sets Dt are uniformly bounded. We 

also impose the following conditions on the set D. In the theory to  follow we 

require the set D to satisfy

(i) v is .Tvmeasurable,

(ii) v is uniformly bounded,

(iii) £ [ /o ' ||y ,||2c/i +  ¡0  g { t ,v t)dt\ < oo.

The set D is convex (see Appendix B .l).

Now for all v 6 D define the processes

0v_{t) :=  - V

(3.5)

(3.6)
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Wv{t) :=  W (t)  + f l Ov(s)ds,  (3.8)
J o

with 7 v(i) :=  7 v(0 ,i )  and Z j j , )  Zy(0,t) .  Also define the measure

P V-[A] :=  E-[Ia] =  E[Z v(T ) I a \- (3.9)

Zy(u,t)  :=  exp | -  j  0v(s)dWs - ̂  J ||0j,(s)||2cis J , (3.7)

It is clear th a t, since the set D is uniformly bounded, (•) is a m artin­

gale, the measure P -  is a probability measure and by the Girsanov Theorem

(see Appendix A.2), Wy is a Brownian motion. From (3.5) and (3.7), the 

stochastic equations

^7t,(0 =  -g{ t , iu .hv[ t )d t ,  (3.10)

dZ„(t) = - 0 v_(t)Zv_(t)dWt, (3.11)

are satisfied by 7 „(i), .£„(/) respectively. Hence, by Ito’s Lemma (see Ap­

pendix A.5) the process defined by

Hv(t) := Zv_ ( t ) l S ) d U  (3.12)

satisfies the  stochastic differential equation

dH v_{t) = H v ( l ) [ -g { l ,v t)dt -  0v_{i)dWt}. (3.13)

Reapplying Ito’s Rule and by equations (3.3) and (3.13) we have for all v € D

d(tf„(i)A '(i)) =  HJit)X(t)[g(t ,E4)dt + n T(t)cr{l)dWt\ -  Hy{t)dc{t)
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+ Hy( t ) X  ( t ) n T (t ) w( t ) dl 

= H J i t f X W n J ( t ) v ( t )  +5'(<,7ri) Hv(t)dc(t)

+ H J l t )X ( t ) [ zT(t)<T(t) +  v - ' W u J d W t .  (3.14)

Tlien for all v £ I)

Hv( t )X ( t )  +  [  Hxl( s )X ( s ) [g ( s ,v a) — g(s,]r3) — n j V j ] d s f  Hv(s)dc(s)
~ Jo '------------------ -̂---------------- ' Jo V------ -̂----- "

>0 >0

=  x  +  f  Hv(s)X(s)[7rT(s)or(s) + ¿’-“ '(sJuJc/H ^s). (3.15)
Jo

Recall th a t for any admissible policy (zr, c),A '(/) >  0. Hence the expres­

sion on the left-hand side above is non-negative. In particular the right-hand 

side is a non-negative local m artingale and hence, by Fatou’s lemma, a  super­

m artingale under P. Applying the superm artingale property to the left-hand 

side we obtain

H y ( T ) X ( T )  +  F  HJls)dc(s)  (3.16)
Jo

/*T
+  I I iv(s )X{s)[g(s ,vs ) - g { s , n 3) -  zrT (su je ts  

Jo .
<  X.

This is sim ilar to the process Ar(i) of (2.17). In Appendix B.5 the sam e proce­

dure is applied for the analogy of M (t)  of (2.20). Since the above expression 

must hold V v G D, under all admissible policies, we have the following defi­

nition.
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3.10 D e fin itio n . The n e c e s sa ry  a d m is s ib ili ty  c o n d itio n  fo r  policy (n, c)

3.11 Remark

The superm artingale property excludes arbitrage opportunity  from  the m ar­

ket. If x  =  0 then necessarily X ( t )  =  0 and c(t) =  0, V i  £ [0, X1] almost 

surely, i.e., no free lunch.

3.12 Remark

If fi  =  0, V ! =  0...<i, then  g(t , i r) =  r(t)  +  7rT(i)[6(<) — r( i)I] . Hence D

counted stock prices are martingales. This can be shown analogously to 

the discounted stock prices of C hapter 2 by using Ito ’s Rule to solve for 

7 J t )P i ( t ) .  The result is similar to th a t of Appendix B.2. The next section 

uses the m artingale property of each auxiliary m arket to hedge a claim in

sup E  H V( T ) X ( T )  +  [  H„(s)X(s)\jg(s,yj) -  g ( s , i ^ )  -  nJ(s)Us]ds
v g d  L J o

■T
+ (3.17)

consists of only one process v = r ( 0 i  — an<̂  we are ^he standard 
complete m arket model w ith 9(t) =  <r_1[fe — r( i) l]  and the unique equivalent 

m artingale measure P  is defined as previously.

We have just introduced a set of probability measures under which the dis

each m arket and then choose the appropriate v in D to ensure the  large in­

vestor assumptions hold. It uses the procedures of Cvitanic and K aratzas [5] 

for constrained portfolios.
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3.2 Hedging Contingent Claims

We now wish to hedge a contingent claim under large investor assumptions. 

We take a similar approach to  th a t of Chapter 2. However, the use of duality 

theory is complicated by the nonlinearity of the evolution equation of (3.3) 

w ith respect to portfolio 7r.

3 .2 .1  A u x iliary  M arkets

We have introduced a set of auxiliary m arkets, each one corresponding to 

an element v £ D. In each of these m arkets, the discounted stock price is 

a m artingale under the new probability measure P-.  Therefore, in each of 

the m arkets the hedging price of a claim can be found. We introduce the 

following definition :

3 .13 D e fin itio n . A contingent claim B is called h e d g e a b le  i f  it satisfies

1/(0) :=  sup E - [ y j T ) B ]  (3.18)
v£ D  

<  OO.

We conjecture tha t the fair (selling) price of a claim for a large investor is 

the supremum of the prices from the  auxiliary m arkets. The definition is 

justified in the subsequent discussion. In particular it will be shown th a t for 

any hedgeable claim B, there exists a pair (zr, c) £ ^4(V(0)) such th a t the 

corresponding wealth process satisfies

X V(°)>2t-c(T) =  B  a.s., (3.19)

and th a t V(0) is the minimal initial wealth for which this can be achieved.

We now introduce the hedging price of a contingent claim B under poi't-

folios confined to satisfy (3.3) for the  large investor. We then show th a t this
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price coincides with V(0).

3 .14  D e fin itio n . The h e d g in g  p r ic e  u n d e r  la rg e  in v e s to r  a s s u m p ­

tio n s  of a contingent claim B is defined by

h(0) =

inf x G (0,oo) : 3 (z ,c )  G ^4(x) s.t. X T,- ,C(T)  >  B a.s. 

oo i f  the above set is empty,

(3.20)

Let us define the following

S  { All J-'r-stopping times r  with values in [0,T] },

Sp,a :=  { All stopping times r  s.t. p(u)  <  r(w ) <  cr(u>) V u> 6 },

for any p,cr G S  such th a t p < a  almost surely.

3.15 D e fin itio n . For every r  G <S define the J-T -measurable random vari­

able V (r )  by

V(r)  :=  ess sup E -[B y v(r ,T )  \ F r\.
v€D

(3.21)

3 .16  Remark

Note th a t

V(0) -  sup E-[/?7„(7’)],
vÇD

V ( T )  =  B  a.s.

We now show th a t the minimal hedging price for the claim B  under large 

investor assumptions is given by the supremum of the hedging prices in the 

auxiliary markets. In order to prove th a t this minimal hedging price is in
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fact V (0) we require the following three lemmas. We note th a t the  restriction 

of a random  variable to a stochastic interval means we consider the  random  

variable only for times w ithin th a t interval.

3 .17  L e m m a

For any contingent claim satisfying K(0) <  oo the family of  random variables 

{ V ( t ) U s satisfies the following dynamic programming equation

V ( t ) =  ess sup E v-[V(0)lv_(r, 9) \ T t ], V 0 £ S Tit , (3.22)

where DT}e is the restriction of  D to the stochastic interval [ t , 9J .

P ro o f:

Recall D is the convex, uniformly bounded set of Rem ark 3.9 

any 9 E <S, the random  variable

J v_{9) -  E v-[V{T) lv_ ( 0 , T ) \ F e]

= E[Zv_{6 ,T)V{T) lv_(9 ,T)  \ F 0\,

by Bayes Rule (Appendix A .6) with Zy(t)  the exponential m artingale of (3.7). 

This depends only on the restriction of v_ to the  stochastic interval [9 , T \ . 

Now let f i_ ,vED  and define

A := {(i,w ) : > Jv(t,Lu)}.

Also define the process A :=  fi I a +  vJA- By convexity of D the process \  is 

in D and we have almost surely

J\(9)  =  m ax [J ^(0), Jy(6) .

Therefore the family {Jv(&)}veD is directed upwards (in the sense of ^ ,th e  

relation defined in Appendix A.4). From Definition 3.15

V(9) := ess sup E v-[V{T)lv_(9, T) \ F e\
veD

. Define for 

(3.23)
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— ess sup J„(0). 
ueo

By Neveu [1] (see Appendix A.4) with {Jv(0)}veD as our family F of real 

measurable functions we can say th a t there exists at least one sequence

{vk}keN Q D, 

such tha t Jvk(0) is increasing and

V(0) = sup Jvk{0).

(3.24)

Hence, since the family {Jv{0)} is directed upwards

V(0)  =  fcIim t ^ ( 0 )  a.s. (3.25)

Returning to the proof observe th a t, using the tower property and taking out 

what’s known (see Appendix A .3), for r  <  0,

V (r )  := ess sup E~\B'yv(T,T)  ] T t 
vzd 1 ~

ess sup J J j )  
v€DTit

ess sup e A e v- \ V ( T ) 1v_ { t ,T )  \ T e \ \ T T 
v£DTtT L 1 J

ess sup E-
OJEDr.T

1v_(t , 0 ) E v-[V(T)~(v_(0 ,T )  \Te \  \ T ,

=  ess  sup E -  7 „(r, 9)J!L(6) \ T t
l/6/?r,T

<  ess  sup E - l j J i r ,  0)V(0) \ T r
i;6 0 r ,r  L
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The last inequality here is by definition of JJ^O) and V(6).  This completes 

the first half of the proof.

To prove the opposite inequality it suffices to  show th a t for any G D

V (r )  > £K[7s(r,# )V (» ) | JFT], 

holds almost surely. Let ¿i G D  and define

M t<o '■= { All processes v G D s.t. v =  /i on [r, 0\ }, 

and M T)o C Dt j .  By Definition 3.15

V ( r ) :=  ess sup e A b ^ v{t , T )  \ T t \
v £ D  1 "  J

=  ess sup E - \ V { T ) y J j , T )  \ T r
v£.DT'T

> ess sup E v-\V [T )^_ ( t , T ) \ 7 t 
v€Mt ,6

By the tower property and taking out what is known we have, for t  < 0,

V{t~) > ess sup e A e A v (T ) 1v[t , T ) \ F o\  |
v6 Mr.o L

ess sup ^  7 « ( n ^ f V ( T ) 7 v ( « , r ) l ^ > l  l ^ r  
«€Mr,9 L "  L J

ess sup £?-[7 t,(rsi/)J„(0 ) |
v6Mr,f)

Now for every v  G M r,e we have, by Bayes Rule, V r  <  0

V ( r ) >  ^ 7v(r, 0 ) J # )  | ^ T
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=  E ^ E ^ t ^ J ^ Z ^ T )  I T e \  | T r

=  JB[Ji,(0)7ii(r,0)Z!i(r1i?)/5[2i,(0,71) | | Jv]

=  E [J vi 0 ) lv_{T,0)Zv_ { T , 0 ) \ F T],

since E[Zy(0,T) \ !Fo\ =  1 by the m artingale property. Therefore, since v 

coincides with /x on the stochastic interval [r, 0\ ,

v (t ) >  e [j v_ ( 0 ) ^ ( t , 0 ) z }L( t , 0) \ r T)

=  E [ j ^ e y , , ( T , f f ) z t ( T , e ) \ T , \

= e ï W t , « ) ; # )  i j ^ ] ,

for all v 6 MTi<? by working backwards through the previous four steps. Note 

here tha t all expressions above except Jy(0) depend only on the interval [r, 0 \ .

Now Jv(0) depends only on the restriction of v to  [0 ,T J, so the sequence 

{Jvk{0)}keN with Wjt € D in (3.24) can be taken using {«jtWK-eAr Q M Tto 
and from the above, for all vj. Ç M Tig,

V ( t )  >  \ 7 , \ ,
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=  i % £M )  Jim  t  •/*,(») I

= E ^ r tg  r ,i)V (« )|^ r]a.8.,

using (3.25) and Monotone Convergence (see Appendix A.7).

3 .18 Remark

The immediate significance of this lem m a (to be used in Lemma 3.19) is 

tha t
V (r )7k(r)  >  E ”-[V{0)lv_(0) \ T r\ (3.26)

holds almost surely for any given r  € S , 0  S Tir  and v <E D.

3.19 L e m m a

Let T  satisfy the usual conditions (see Appendix A. 1.7). There exists an 

RCLL process (see Appendix A. 1.18), still denoted by V(t) such that for  all 

t €  [0,T]

V{t)  =  ess sup E^[Bl v ( t ,T )  \ T<). 
v 6  D

In other words, the process V =  { V(t),!Fi] can be considered in its RCLL  

modification.

Furthermore {Qv(l) ■— V{t)'yv(t),Jrl, V t € [0,7’]} is a P-supermartingale  

with RCLL paths.

Also V(-) is the smallest adapted, RC L L  process satisfying Qv{t) is a P--  

supcrmar ting ale and V (T) = B  almost surely.
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P ro o f:

(i) Let S t  =  [0,T] flQ. Consider {V(t,u>),J-t} defined on S t  which is positive 

and adapted. From Rem ark 3.18 we have for t ,0  € S t ,

m n o ' n . w  i n  <  ' / (‘ )7.(<).

holds almost surely for all t < 0.

Therefore {<2^(2), 3~t} *s a -superm artingale on S t - Then, from Karatzas 

and Shreve [2] Proposition 1.3.14 (see Appendix A.8), the positive adapted 

process {V( t ) ,J - t} defined on S t  has at each point t € S t almost surely finite 

limits from the right and from the left. The limits

lim V  (s ,u>),

v ( M  =
S-J-f
s£Sj-

V ( T ,u ) , t — T,

lim V (5,u;), ¿ 6 ( 0 ,7 ’],
sti
sESt

\ /(0) t =  0,

are well-defined and finite for every u> G Cl* :=  {/ <E Q} with P(SY) =  1. The 

resulting processes

are adapted due to the right continuity of J-,. Furtherm ore, by Appendix 

A.8, the process

{ V (i+ )7 „(/), Ft+j is a RCLL P —superm artingale, V v € D.
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By right continuity of T  this implies th a t for all v €  D the process

is a RCLL P—superm artingale. In particular, by the superm artingale prop­

erty of V'(i-l-)7u(0> V v G £?

EV-[V{T)^(T)  | Ft\ < V (i+ )7 3L(i) a.s.,

=► Ev-[V{T)lv_{t,T) \ T t] <  V(l+)  a.s.,

=► ess sup E-[V (T) jv ( t ,  T )  \ T t\ < V (i+ ) a.s.,
veD

V[t)  i  ^ ( i+ )  a.s.

On the other hand, setting $ =  t +  £ a  stopping tim e, and letting n 

obtain

oo we

V (i+ ) :=  lim V ^ jw )
s4.i
s€St

= lim v ( t  4- - , w ) 7 ,  ( t , t  +  —\ ,  
«-*«» V n )  \  n j

Since V (t+ ) is J^ -m easu rab le

V( t+ )  = E*-[V(t+) \ T t+]

= E*[v(<+) | T%

= E v-

<  lim E v-
n~too

lim V ft, +  - )  7 „ ( m  +  - )  I Fttt->oo \  n )  ~ \  nJ

K i + n)7“(M + n) \ T l
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by Fatou’s lemma (see Appendix A.3). The above implies th a t, with t and 

t  +  £ stopping times and using Remark 3.18

y (^+ ) <  Jim V(t)  a.s.

=  V(t)  a.s.

The result follows by taking V (t) equal to the above process V (t+ ) for all 

times t.

(ii) This follows autom atically from the right continuity of T  and part (i).

(iii) Finally, let V  be an adapted RCLL process satisfying { Qy(t) :=

is a P -  -superm artingale and V(T) =  B almost surely. Then for all t € [0,T] 

and for all v  €D

E*{V(TMT)  | T,\ <  V(i)i„ ( i ) ,

=> e I [ P ( 7 ') 7 i, ( / , T )  | ^ ] 7 „ ( 1 )  <  V ( i ) 7 » ( i ) ,

=> < v ( t j ,

=> ess  sup E - [ B ^ J t ,  T )  \ T,\  <  V(t) ,  
veD

=» V ( t ) < V ( t ) ,

holds almost surely and the proof is complete.

o
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y* is optimal, i.e.,

V(t)  = E -  [i?7v*(T) | F t] a.s.,

i f  and only i f  Qy*(t) is a P -  -martingale.

P ro o f:

Using the tower property twice we obtain

I :F,] = E ° - [v ( t ) iJ t ) I T,]

>  T , ( s )E'-'\I'7-[b 1.(1 ,T )  I I :r,

=  I J i ]  I

=  7!t(S)B 4 B 7 1, ( s , r ) | ^ , ] .

3 .20 L e m m a

(=») If there exists some optim al v * then we have equality above and 

FX  [Qs.( i)  | 7,]  = 7s.( s ) f i ‘‘[fl7!,.(s , r ) | ^ ]

"  Qv‘ (s ) .

(<=) Also if Qv‘ (t) is a P - ’-m art in gale then

E-[Qv-( t ) | Fs] =  QVJ(s)

=  Tv-t^V ^s).
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But from the definition of Q J t ) and taking out what is known, V s < t  

E *  [QvJ (t) | F.] =  7a. { s )Ev-  [V( i)7v* (s, t ) | F s\ .

Comparing the previous two expressions implies

and taking t  — T  gives us

V{ , )  = E 2* [v/( T ) 7 j,*(s , T )  | T t,]

=  F X [ b 1 e. ( s , T )  I T,]  a.s.

Hence v* is optim al.

3 .2 .2  T h e  Hedging P rice

We now prove the  main result of this chapter, namely th a t the  minimal 

hedging price of any claim B is given by V'(O). Furtherm ore it is possible to 

construct a portfolio to ensure th a t the claim is covered at the term inal time.

3 . 2 1  T h e o r e m

(i) For an arbitrary contingent claim B we have h(0) = V(0).

(ii) Furthermore 3 a pair (£, c) €  *4(V(0)) such that

P ro o f:



(i) /i(0) <  V(0). Clearly we m ay assume V(0) <  oo. From lem m a 3.19 

we know th a t Qy(t) :=  V(t)~fy(t) is a P —superm artingale with RCLL paths. 

By the Doob-Meyer Decomposition (see Appendix A.9) we can rew rite Qy(t)

Qv(t) = Qv_{0) +  M v_{t) -  A v_{t), (3.27)

where My(t ) is a local m artingale and Ay[t) is a non-decreasing, adapted 

process with RCLL paths and AH(0) =  0, A J T ) <  oo almost surely.

Applying the M artingale Representation Theorem  (see Appendix A. 10) to 

My(t) yields

Qv(t) =  V{0) + f  {s)dWy{s) -  Ay(t ), (3.28)
~ J o  -

where •¡/»J(i) is an R evalued , {^rt}-measurable and a.s. square integrable 

process.

Consider the positive, adapted RCLL process defined for all v £ D  by

= t £ [0 ,r ] , (3.29)
7y\t)

with A (0) =  V"(0) and X [ T ) =  V ( T ) =  B  almost surely.

The idea is to find any pair (¿ , c) £ ^4(V(0)) such th a t its corresponding

wealth process is actually equal to X (-). T hat is, if we can find at least

one admissible policy (ÍL, c) with resulting term inal wealth X(T) =  B almost 

surely and initial capital V(0). This will prove /i(0) <  V^O). F irstly  recall 

from (3.28) th a t

dQy(t) =  4>l(t)dWy(t) -  dAy(t),  \ / v e D ,  (3.30)
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dWy(t) = dWt (t) -  ¿r-1 (i)[u(i) -  f±(t)]dt. 

Now, by definition of Q J t ) , for all , v £  D

Q f f l h s f t )  =  Q S ) h S ) -

Hence

Qafjt) =  Q S )  exP 9(s,Us) -  g(s ^ ) di

Therefore

¿ Q £(i) =  d(3„(i)exp f  g(s,Vs) -  g i sy / ^ds
.  J 0

and, from (2 .7) and (2 .10) th a t, for all ¿t, v E  D ,

(3.31)

+

Q „(i)exp f  g f a y t ) - g ( s , f i j d s  g(t,Ut) -  g{t, f£t)
. J  0 J

dt

exp

- exp

f  g{s iV-s) g{s i!£ )̂ds d Q j t )  +  Qv{t)(g(t ,vt ) g(t,fj^j)dt
. J 0 J L

Jo g(s,y*) -  g{s, i^)ds ^ ( t ) d W j t )  -  d A j t )

+Qv ( t ) ( g ( t , y i ) ~  g{ t ,Ht ))dt

Therefore

d Q ^ t )  = exp [  g ( s , v 3) - g ( s , f ^ ) d 3
.  J 0

—dAv(t) +  X[t)nfy{t)(g(i,vt) -  g{U^)).dt ,(3.32)

using both (3.30) and (3.31). Comparing the above expression (3.32) with
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(3.30) for d Q ^ t )  and equating random  parts we obtain

=  exp [jT ^ ( s . v ^ - ^ s ^ ^ d s  ^ J ( t ) d W y ( t ),

=> exp [ j 0 9(s ^ ) ds < ( 0 = e x p  ^  y(5,ji,)f/5 0 j ( i ) -

Since the expressions are independent of /i and v respectively it follows th a t 

they are tim e dependent only. Therefore we can define

exp /  == A ( i ) i T(0<7(i)» (3-33).Jo 1 ~

for some appropriate ¿(-) which is R^-valued and adapted (since ipj^t) is 

.^-m easurable V t). Now, by equating the determ inistic parts of (3.30) and 

(3.32) we obtain

dAt (t) = exp f  g(s,Zs) -  g i s j ^ d s  -ipj(t)a~l (t)[v(t) -  ¡¿(t)]dt
. */ 01 J L

+dAv(t) -  ■X(t)jy(t){g(t,vl) -  g ( t , u ) ) d t

Therefore, by (3.33)

dA)t(t )exp (  g ( s , f i ) d s  =  X (i)2 .T(i)[ii(i) — n(t)]dt
.Jo ~ s ] ~

+  exp /  g{s,Vj)ds d A v( i ) 
.Jo

- X { t ) { g ( t , v , )  - g ( t , u ) ) d t ,

and we obtain



As before these expressions are independent of [i and v respectively and 

therefore are tim e dependent only. We can then define

7 ~l (t)dAy(t) -  A'(i)[.9 (£, -  ± T(t)vi]dt =: d c ( t)  -  g(t,jri )X ( t )d t ,  (3.34)

which depends on i, X ( t )  and We m ust now prove th a t X ( t )  is actually 

a  corresponding wealth process for (¿ , c) and th a t the defined processes ¿(1) 

and c(t) satisfy all admissibility conditions.

Firstly, recall from Appendix B.5 th a t the discounted wealth process can 

be w ritten in the form

d(i„(t)X(t)) =  jy(l)X(t)[g(t,Ej) - g { t , i u )  +  1LT(Oiu]^ -  7v(t)dc(t)

+ 7 „( t ) X  (i ) 7rT (t ) a  (t) d W„ (I).

Now, from (3.30) and the defined processes c and jr_, we have

dQv_{t) =  d(lv_( t)X{t ))

-  ip^(t)dWjJ.) -  dAJit)  

=  t v( t )X( t )±T(t )a( t )dW1L(l ) - 7v(t)dc(t) 

+ j 1L{t )X( t ) [g( tyz l ) -  g{t,Vt) + k r(i)vi]dt,
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subject to the boundary conditions

X (  0) =  1/(0), 

X ( T )  = B  a.s.,

which is equation (3.3) for the process X (-). This proves th a t Â (-) =  

X y (°)’- ,c(‘). It remains to show th a t n(t)  and c(t) are valid processes.

Firstly, since t/’J  (t ) is R evalued , .^-m easurable V t and almost surely square 

integrable, then n_(t) is also R evalued  and adapted and satisfies

[  \\(rT (t)±(t)\\2dt  <  oo,
Jo

and hence all conditions of Definition 2.2 are satisfied. We recall here th a t if 

X ( t )  =  0 in (3.33) for any t  G [0,T] then -Â(î) =  0 and 7r(.s) =  0, V 5 >  t.

By Definition 2.3, we require the process c(t) to  be nonnegative, nonde­

creasing, jFt-m easurable w ith RCLL paths and c(0) =  0 and c (T ) <  oo. 

Under Assumption 3.4, g is concave and uniformly Lipschitz. Therefore, by 

El Karoui et al. [12] we can say th a t for every jr there exists a v G D  such 

tha t

9(t ,y t)  = 9{t,Kt) +  K (t)v(t).

The required properties of c(t) follow from those of the  process Ay(t).

(ii) /i(0) >  V'(O). We can assume /i(0) <  oo and is actually equal to  x, 

say. This implies there exists some admissible pair (7r, c) G A ( x )  such th a t 

X X,- ’C(T)  >  B  a.s. But we know from Definition 3.10 tha t for any admissible 

(7r, c) the wealth process m ust satisfy, for all v G D,

e \ H v( T ) X ( T )  +  f  Hv(s )X(s)[g(s ,vs ) -  g i s , ] ^ )  -  KT{s)vs]ds 
Jo
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=► E[Hv_ { T ) X ( T ) \ < x ,

=» E * h £ T ) B )  <  x,

=S> sup £?-[7„(T)J3] <  x, 
v£D

=► V(0) <  /i(0).

The theorem gives us the minimal hedging price for a claim B, namely V(0).

3 .22 Remark

In fact, the portfolio process ¿(-), consumption process c(-) and the wealth 

process X(-) of the theorem are actually the hedging processes for the claim 

B. So we have characterised the appropriate processes required to hedge a 

claim.

We now ask if we require consumption to hedge the claim B. Theorem 3.27 

gives the answer. We require the following definition.

3 .23 D e fin itio n . A contingent claim B is called a t ta in a b le  i f  there ex­

ist a portfolio process n which is admissible and such that ( t t , 0) € «4(V(0)) 

and

X V(0)'±>°{T) = B  a.s.

To prove Theorem 3.27 we will also require the following three lemmas, 

which give us compactness of the set of m artingales Zv(t) over the set D.
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3.24 L e m m a

The set F :=  { Z V(-) : v G D} is a convex set o f  real-valued processes de­

fined on [0,T].

P r o o f :

For every A > 0, /i >  0 with A +  fi =  1, and for every v u v 2 € D define 

the two processes

£(i) :=  \ Z v t 4- /iZv2,

Clearly v € D by convexity of D and the fact tha t

, Il ^v_2 _  |

m  m  ~  '
Also

d((l)  =  A dZKi + /ulZy2

= - \ Z v_i {t)[i{t) + a - \ t ) v , ( t ) Y d W t

=  - e ( i ) ( i ) i a < ) + ^ '( i ) i ( 0 ] T^ . ,

((0) =  1.

Therefore, since they are both solutions of the same stochastic differential 

equation, £(i) =  % (/)  G P.

72



The set IV :=  {Zv{T)  : v € D} is bounded in £ 2(P).

P ro o f:

Recall tha t for all bounded the exponential m artingale

Z S )  :=  exP { - ^ ^ ( S) ^ - i | j | ^ ( 5) ||2̂ } ,

satisfies E[Zy{T)\ — 1. Therefore

[ ¡ ¡ ¿ n *  =  i ^ { -  6S W , - \ [  w o n 2* } )

,  rj? v

=  exp { -  J  2 e ^ d W . - J "  P M f d l j  

=  exp { -  j '  2t £ ) d W ,  -  l-  £  ||2 0 » (f)f  *  +  J f  ll«v(<)l|2* }

=  exp |  -  J f  20„(t)dW, -  £  ||2i,,(i)||s<ft} exp H ^ W If '* }

=  %(7')ex-pjj'7 HS.fiJII2*}.

Using the boundedness of 0„ and hence of this lias finite expectation, i.e.,

S ([Z „(T )])2 <  oo,

=> Z,JT)  e  £ 2( P ) .

3.25 L em m a
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3.26 L e m m a

3.27 T h e o re m

Every hedgeable contingent claim B is attainable, namely the process c(-) 

from Theorem 3.21 is a zero process.

P ro o f:

Let {u„ : n  € N } C D be a  maximising sequence for VfO), tha t is

The set Ty is strongly closed in C2(P).

We know from Appendix B.5 tha t a  necessary condition for any admissible 

(n, c) is, for all v €E D,

\ \ m E ^ [ B lu_n( T ) } = V ( 0 ) . (3.35)

+  [  ' ïv(t)X{t)\g(t ,yJ) -  g{ t ,Zi) ~  7Ltv t]dt\ < x .
J o  ~

The wealth process of Theorem 3.21 corresponding to (zl, c) is given by
A A

A'(-) =  !/(•) and since B < X ( T )  alm ost surely we have

where

xl ' - " ' - ( t )  ■ =  9 ( t , v n ( t ) )  -  g { t , Z i )  ~  K t U n i i ) . (3.36)

Taking limits of both sides as n —» oo
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lim £ M 7„ (T )B \  +  lim  E ^ \  / % „  (t)dc(t)
I-+ O O  L ' - n v '  J n -to o  I J q  ' - n v '  v

+  jl i m E “~ [ / oT 7li, ( i ) i ' ( i ) ® “ (iM i] <  V (0 ),

whence from (3.35)

lim  E - nn—>00

limn—̂00

JQ 'Yun(t)dKt) =  0 ,

=  0.

The processes

{7«B(i ) :=  exP [ “  f  9(s,y.n{s))ds] : n G N } ,

are bounded away from zero. Hence

lim E ^
n —>oo

lim E*«
n —too

Jq 7vn{t)dc(t) =  0 ,

rT 1 / dc(t) 
Jo = 0,

lim £ M c (T )l =  0, n—Hx>

=*• H m £ [ Z ^ ( T ) ]  =  0.

By Lemmas 3.24 to 3.26 the set IV is weakly compact in C2(P).  Therefore 

3 v  G D and a new (relabelled) sequence {2̂  : n  G N} such th a t along this 

subsequence

Jim  E[Zv_n(i)c(T)} =  E[Zv_(t)c(T)\ = 0.

It follows, since c(t) is nondecreasing, th a t c(t,u>) =  0, C x V  almost every­

where.
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3.3 The Portfolio Optimisation Problem

3.3 .1  P ro b lem  Specification

The problem considered is to maximise expected utility  from term inal wealth 

for the large investor. More precisely, we want to maximise

J(x-  7T, c) :=  E [ u ( X x'-'°(T))\, (3.37)

over the set of admissible policies given in Definition 3.2. We define the fol­

lowing :

3.29 D e fin itio n . The u t i l i ty  m a x im is a t io n  p ro b le m  is to maximise 

J (x; 7T, c) over the class A ( x , u )  of  processes (zl, c) that satisfy

E [ u - ( X X’7L'C( T ))] <  oo. (3.38)

We denote by A ( x , u ) the set of policies in A ( x , u )  which satisfy condition 

(3.38) above. .

3.30 D e fin itio n . The v a lu e  fu n c tio n  of this problem is defined by

V ( x ) : =  sup J(x;7r, c). (3.39)
(7t,c)Ĝ 4(i;,u)

We may wish to  make the following assum ption on utility  which is sufficient 

but not necessary for the value function to  be finite.

3.31 A ssu m p tio n , u satisfies the growth condition

0 <  u(x)  <  /t(l +  / ) ,  V x £ (0,oo), (3.40)

for some k £ (0,oo) and a  G (0,1). We can characterise the value function

by the following three lemmas. The following lem m a is stated  w ithout proof
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(the proof is sim ilar to  th a t in Karatzas [9]).

3 .32 L e m m a

The function V (x) is increasing and concave on (0,oo).

We will require the  following lemma. The proof is trivial and is om itted.

3 .33  L em m a

I f  the utility function satisfies the growth condition (3.40) then 3 c >  0 such 

that

up(,t ) <  c(l +  .t"p), V i G (0 ,oo),

for  any p  €

3 .34  L e m m a

I f  the utility function satisfies the growth condition then

V{ic) <  oo, V x € (0,oo).

P ro o f:

From Assumptions 3.7 and 3.8 we concluded th a t the sets Dt are uniformly 

bounded. We assume that for all v £ D

C  \\ov(t)\\2dt < a ,Jo

holds for the relative risk process of (3.6) and some suitable constant G > 0. 

From Appendix B.6 the wealth is given by
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X ( T )  = { x  -  J  e x p [ - J o g i s . K , ) +  TLT{s)Vs-^\\TL($)cr(s)\\2ds 

— j  7TT(s)a(.s)diyv(s)]r/c(f) j  

• exp i f  (J(S,T^) -+- 7LT(-5)Hs -̂S|

•exp{  j i  nj{s)cr(s)dWJ<s) -  ^  ||ir(,s) cr(s) || | .

Since g is bounded we have

X ( T ) <  x e x p ^ J ^ g ( s , n s) + TTr (s)vsd s ^
' » '

<L

' exP { f0 2LT(5)cr(s)dVK„(s) ||7r(s)o-(.s)||2f/s}.

W ith ap  <  1 we have 

[X (T)]“P <  xapexp[apL] -exp |  -  ^  ||7 r(s)a(s)||2c/s}

•exp {<xpjQ 2LT(-s)^ ( ) < n i ) -  - 7j - f Q

<  x"pexp [apL\Z(T),

where Z ( T )  is an exponential m artingale since otpnr (t)cr(l) is bounded. Tak­

ing expectations with respect to P -  we obtain

J5-[[X(T)]“P] <  (eLx ) ° vE v-[z{T)]

= (eLx ) a\
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E-[Z-*(T)\  =  E [ Z l~'{T)\

from the m artingale property. Now

=  E

=  E

expj(<7 - l ) JQ Oy(s)dWs -  ~(q -  I) ||0,,(s)||2£&}

exp { ( q - 1 )  Jo Oy{s)dWs -  l- {q  -  1 ) 2 | |^ ( s ) | |2d s j

• e x p | ì ( g - l ) ( 9 - 2 )jo | | 0 v ( s ) | | 2 c i s } J

< e x p | i ( g - l ) ( g - 2 ) c | ,

due to the boundedness of Oy. Returning to the proof note th a t, using 

Holder’s inequality for j; +   ̂ =  1,

£ [« (X (T ))] =  E ° { Z ; \ T ) u ( X ( T ) ) }

5  eX pl 2 i
- i ) ( ? - 2 ) c } ( £ % ( i +  * ? ’ ) ] ) J

{ i ( 9 - i ) ( ? - 2 ) c } ( c ( i  +  (et * r ) ) i

<  oo.
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3 .3 .2  Discussing th e  P rob lem

It is intuitive th a t to maximise his utility  from final wealth the  large investor 

would not consume during [0,T]. Indeed Appendix B.6 contains a solution 

of the  general form

X x’- 'c(t) = (x — J  exp[/i(zr, s, W)]c/c(.s)) exp ( J  fc(zr,

This suggests setting c(t) =  0 to maximise the wealth process. Theorem  3.21 

gives us the  minimal initial capital V(0) required to ensure the  existence of 

some (zr, c) £ *4.(V(0)) such th a t

X v (0)&£(t) > B  a.s.,

and the policy (zr, c) is given in the theorem. However, Theorem  3.27 says 

tha t every claim B is attainable, in particular c from Theorem  3.21 is zero.

U tility is derived solely from final wealth, X t  so th a t to m aximise the  ex­

pected utility  it makes sense th a t the investor would ensure the  final level of 

wealth is ju st within the constraints of the  m arket. We pursue an optim ality 

condition for term inal wealth which ensures th a t once X ( T )  is of a certain 

form, called the optimal form,  then E[u ( X t )\ is maximised over all admissi­

ble policies. This optim al form obviously depends on x.

The investor is endowed with initial capital, x  and for all policies (zr, c) the 

necessary admissibility condition of Definition 3.10 places a natu ral bound 

on all possible levels of term inal wealth.

We find the optimal form  of X t , denoted by B(x).  Theorem  3.21 says th a t 

there exists an admissible policy to hedge B(x). B ut, by Theorem  3.27 we 

can exactly replicate it. Indeed, since B(x) is the optimal fo rm , we must 

ensure th a t

X x'^°(T) = B (x )  a.s.,
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for optim ality to be ensured. Consequent to our discussion we wish to  solve 

the  problem given by

V ( x ) =  sup J(a:;7r, 0), (3-41)
(7r,0)ê 4(x,u)

subject to the constraint

E \ H V( T ) X ( T )  +  [ T
u£D

T
sup e \Hv{ T ) X ( T )  + [  Hy(s)X(s)[g(s,v^) -  g(s,]Ls) -
v&D 1 JO

<  X .

3.3 .3  Form ulation o f  th e  D ual P rob lem

We now introduce a stochastic problem which is dual to the problem of (3.41). 

We define the  Dual, establish its basic properties and explore the relationship 

between the Prim al and the Dual. This methodology was introduced in Xu 

and Shreve [8] under short-selling prohibition. This section follows loosely 

their approach.

3 .36  D e fin itio n . An  o p tim a l p o r tfo lio  p ro c e ss  is one ivhich attains 

the supremum in (3-41)-

Because of the strict concavity of u if such a process exists then the cor­

responding term inal wealth, X ( T )  is uniquely determ ined (see Xu [13] The­

orem 1.4.5).

3 .37 D e fin itio n . A d u a l c o n tro l p ro c e ss  is any v £ D .

3.38 D e fin itio n . For u of  Definition 2.20, y > 0 and v 6 D we define

the d u a l o b je c tiv e  fu n c tio n  by

J (y , v )  :=  E[u{yHv_{T))]. (3.42)

3 .39 D e fin itio n . The d u a l v a lu e  fu n c tio n  is defined for  all y > 0 by

V{y)  := inf J (y ,u ) . (3.43)vED
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3.40  D e fin itio n . An  o p tim a l d u a l p ro c e ss  with initial condition y is a 

process v_y E D which attains the infimum above.

Due to the strict convexity of u, if such a process exists it is unique (proof 

similar to Xu [13] Theorem 3.3.1). The following theorem  gives the rela­

tionship between the Prim al and Dual problems. More im portantly  we have 

sufficient conditions for optim ality in the problem of Definition 3.29. Duality 

Theory forms the basis for the proof. It is used explicitly in K aratzas et al.

[6] and Xu and Shreve [8] for special types of constraints and implicitly in

Karatzas et al. [7] and Cox and Huang [14].

3 .41 T h e o re m  (W eak  D u a lity )

For any x > 0, y  >  0, 7L € A ( x ,u ) ,  v E D  the inequality

<  J i y . v )  +  xy,  (3.44)

holds. Furthermore, equality holds in (3-44) iff the following three conditions 

hold :

X x% T )  =  I ( y H j T ) )  a.s., (3.45)

£(*>£*) =  9(t ,Zt)  +2LT(i)w(i) a-e.( (3.46)

E [ H J J ) X X'HT))  =  x. (3.47)

Proof:
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We know that for any admissible portfolio, V v  6  D,

E HV( T ) X X* (T )  +  [  -  g(s,zr j  -  7rT(s)t;(s)]rfs
, ~  Jo

<  X .

Young’s inequality states th a t for all a  >  0 , 7  >  0

w(a) <  £1(7 ) +  « 7 ,

with equality <i=S- «  =  / ( 7 ) from (2.50). Letting «  =  X r  and 7  =  yHJ^T)  

in the above we obtain

u ( X ( T ) )  < u{yHv_{T)) + X { T ) y I l v_ (T ), 

E l« (X (T ))l <  E[u(yHv_(T))\ + y E [ X ( T ) H v_(T)\ 

< E [ u ( y l i jT ) ) }  +  xy,

for all zl € *4(.r,u), due to the positivity of 'P-'-(s) of (3.36) for all t € [0,7’]. 

Obviously, equality holds above

X ( T )  =  I{ijHv_(T))  a.s., 

E [ H J T ) X X'*-(T)\ =  x,

and therefore

+  JLJ {t)v{t) a.e.

3 . 4 2  C o r o l l a r y

For every x  > 0 ,  y > 0

V (x )  <  V ( y )  +  xy.
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Furthermore, i f  7ry £ A ( x ,  u) and vy 6 D satisfy (3.45) to (3-47) then they 

are optimal for  their respective problems; that is

v{y) =  j { y , v y).

P ro o f:

For all a- >  0 ,y  >  0, n 6 A(x,u)> v E D

J ( x , n )  < J {y ,v )  + x y ,

=>• sup J ( x ,  7r) <  inf J ( y , v )  +  xy.  
zeA{x,u) v£D

Therefore

J{ x , k ) <  V(af) <  V (y ) +  xj/ <  J ( y , v )  4- xy.  

The result follows immediately from Theorem 3.41.
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3.4 Formalising the Discussion

Now introduce the function

C M  :=  E[Hv_(T ) I{yH v_(T))\,  (3.48)

for all y £ (0, oo) and the set

D' {v £  D : £v(y) <  oo V y  £ (0, oo) j .  (3.49)

3.43 Remark

Under Assumption 2.24, Lemma 2.25 (iii) and the decrease of I  we know 

th a t if (v{y) <  oo for some y £ (0, oo) then it is finite V y  £ (0, oo) and

hence v £ D ' . For every v £ D ' , the function (v{y) is continuous and strictly 

decreasing with

(<¿(0+) =  oo,

C*(oo) = 0.

We denote its inverse by Now the optim ality  condition (3.47) is equiv­

alent to v £ D' and y =  'ipyfx) once (3.45) holds.

A four step strategy

From Theorem 3.41 and its corollary we have three conditions (3.45) to (3.47) 

which are sufficient for the optim ality of n  and v in both the Prim al and Dual 

problems. We now devise a strategy which will ensure the existence of two 

such processes.

• S te p  1 : We show th a t, for any initial condition y >  0 an optim al 

dual process exists, i.e., we guarantee the existence of a dual solution 

V y £ (0,oo). This is a necessary condition for (3.45)-(3.47) to hold.
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•  S t e p  2  : We will then prove th a t for any initial capital x > 0  there is 

a number y(x)  > 0 such tha t

E =  X

i.e., given initial capital x >  0  we can find a particular Lagrange m ulti­

plier y ( x ), solve the corresponding dual problem by step 1 and ensure 

(3.47) holds.

S t e p  3  : Third, with initial condition y, we will use Theorem  3.21 to 

show the existence of, and to characterise, the  portfolio n y to hedge 

any claim given by

(3.50)

The portfolio will require the initial hedging price

/i,(0) := s u p B [ / / !, ( T ) / ( !, / / !,>(7’)) ] . (3.51)

However we will show th a t this suprem um  is in fact achieved by the 

dual solution vy corresponding to y

(3.52)

We can ensure then th a t our initial capital is actually x  by choosing y 

to be the particular y(x)  of Step 2. Hence our final wealth will be of 

the form (3.45) using initial capital x.

•  S t e p  4  : Finally having found vy^  and Kv(x) we must prove th a t (3.46) 

holds for these processes.

In such a m anner we find U.y(x) and 7Ly(x)> the optim al dual and prim al pro­

cesses. In the next four sections we deal with the above scheme step by 

step.
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3.4 .1  E x isten ce  o f  a D ual P ro b lem  solution

We establish here the  fundam ental existence result required for our strategy. 

We begin by inroducing P, the  space of all progressively m easurable functions 

v with norm  defined by
rT

[iil2 : = E  f  ||2;,||2^
. J o

< oo. (3.53)

T is a H ilbert Space when endowed with inner product

rT

Note tha t D is a  subspace of T. For any given y  € (0,oo) we defined the 

function J ( y , t ¿) of (3.42) for all v ( z D .  We now extend this definition to the 

entirety of T by setting

Jy{v) :=
E[u (y IU T ) )} ,  v  € D

oo, n e  T /D .
(3.54)

3.44 Remark

Note th a t the above definition is m otivated by the following :

Jy(v) := E u (y  exp { -  f Q §(*>U»)d8 -  Vv(T)Ÿj

where

r]v(T)  :=  [ ‘ Ov(s )dW(s)  + \  F  ||0„(a)||3«te. (3.55)
-  J o  ~ ¿ J o  ~

Now, by Jensen’s inequality (see Appendix A.3) and the convexity of ii(e2), 

we have

Jy(v) > Ù fi/exp  { # [  -  ^  g ( s , v 3)ds -  i?„(T)] |
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and, unless v 6 D, the  expression within the expectation operator is not 

bounded from below and we have for all v £ V/ D

Jy(v ) =  €t(0+) =  u(oo)

=  oo.

The dual solution exists under certain conditions. To prove the existence of 

the dual solution for all y > 0 we will require the following condition. We 

will in the future need to assume the existence of some v  £ D such tha t

J ( y , v )  :=  E[u{yHv_(T))\ < oo, (3.56)

for all y 6 (0,oo). Condition (3.56) will be required to prove the existence 

of a dual solution. However, in most circum stances it is easier to check th a t 

the growth condition is satisfied by the utility function. Lemma 3.45 gives 

this useful result.

3.45 L e m m a

Under the growth condition, 3 v 6 D such that, for  all y  £ (0,oo), (3.56) 

holds.

P ro o f:

Under the growth condition



By elem entary calculus this m axim um  occurs a t x* =  (a.K)l- ay 1_a and its 

value is

«(y) - « 1 +  (a/c) 1~a (1 — a)y  ^

By choosing large enough k  6 (0,oo) we obtain

u(y) < «[i + y ~ p],

where p — and this implies

i (y l l . (T))\  <  S ( l  + y - '  E { H - ’ (T)}).

Now, for arbitrary  y > 0, choose v = 0

B[a(!,tf„(r))] < s(i + <r'£[ff0-'(r)])

=  * ( l  +  y - ' E { H ^ ( T ) \ )

=  k 1 + y  PE exp { ~ p f 0 a(s ’° )d$}

< CO,

from the boundedness provided in Assumption 3.8.

Theorem 3.48 to follow is the main result giving the existence of a dual so­

lution. We will firstly require the following assumption and lemma.

3 . 4 6  A s s u m p t i o n

i/.(0+) >  —oo, 

îi(oo) =  oo.
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Under Assumptions 2.23, 2.24, 3Jt 6 and the condition (3.56), the functional  

Jy(u0  : T i 4  R U  { + ° ° }  ¿s

(i) Convex,

(ii) Coercive, i.e.,

3.47  L e m m a

(Hi) Lower semi-continuous, i.e., for  all v € P and any sequence {u„} C P 

with [un — —> 0 we have

(i) Convexity : Firstly, we have the convexity of g by Appendix B .l im­

plying
g(t ,Xv1 -H ¡iv2) < \ g ( t , v 1) +  fig(t,v2).

Secondly, we prove the convexity of T ]y (t )  of (3.55).

[V|-+oolim J ( y , v )  =  oo, (3.57)

Jy{v) < lim inf Jy(vn). (3.58)

P r o o f :

rl i
+»*22(0  “  Ja Q\vl+iiv^dW(s) -f — II ds

by (3.6). By the convexity of the Euclidean norm we obtain
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+ f i L  d ^ d w ^ + \ f x i 0 i i ^ n 2^

— ^77«1 (0  “I" A^ujiO» 

since A ,/i € [0,1]. Returning to the proof itself we have

jy(Xv.i +  m i )  = E^u(yIIx Jil +>‘0.2 m)]

1u ( y  exp { -  J  g ( t , Av x 4- ¡.w7)dt -  77,w1+Wi2

i ( y e x p { -  \ g ( t t Vx) + H 9 (t ,vs)dt

= E

< E

+ w vj r ) \ } )

by the decrease of u and the convexity of g ( t , - )  and ?/.(/). B ut, by the 

convexity of u(ex) from Lemma 2.25 under Assumptions 2.23 and 2.24, we 

obtain

■Mi exp |  -  j f  g i i . v ^ d t  -  7?Hl i7")}) 

+ /« i(y e x p  { ~  Jq g{t,Va{t))dt ~  *fe»CO})

i +  ¡.iv2) < E

=  +  fiJy{v2) .

From Ekeland and 'I'crnam [3] (see Appendix A. 11), the extended functional 

J y{v) is convex since ,/(y, u) is convex over D and the set D is convex.

(ii) Coerciveness : By (3.54) and Jensen’s inequality we have

M U )  > E it.
/  pT* \

[ y exp { -  f o g(t>v(t)dt -  Vv(T)} j Vue r,
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>  « ^ y e x p  |  — J  g(t,v(t))dt  — ̂ ( T ) ]  , ' i v E D U T / D .

*

By Rem ark 3.9, for all v E D, Jq g(t,Vt)dt^ < oo so th a t the  expres­

sion highlighted is bounded from below. From the  definition of Jy(v) for all 

v E T/  D  the  expression on the left-hand side is infinity. Hence for all v £  T

Jy(v) > u ( y  exp

=  u^yeM e x p |  -  \E[jQ l l^ ( s ) | |2rfs] |  j

=  « ^ e ^ e x p j  -

by definition of i?£(i) of (3.55) and the norm defined in (3.53). Since | |c _1(f)|[ 

is bounded below by 1/5 then as [V] —» oo the expression above tends to 

zero.

lim Jy[v) — 5(0+-) =  u(oo)

=  oo,

from Lemma 2.22 and Assumption 3.46.

(iii) Lower semi-continuity : It suffices to prove th a t if {i!n}neAf a  sequence 

in F which converges in norm to v,  i.e.,

lim — ul = 0 ,n-+oo'

then

JM  -  j im  inf J y(un).
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Firstly

j i m B ^ n i ^ w r - i i ^ w r M í ]

=  Mm e [ ¡ ‘ I ( í f c ( í )  -  0,(t))T(O.Jt) +  0,(t)) | dt

— tI-Í+OO ~  ^ItCOl * [ ^ „ ( 0  +  ^<¿(01

=  0.

Consequently

Hm £ [  | In Z„(T) -  ln Z ^ t T ) ! ]

=  J i m  e [ i j í '  í f c ( t ) < f l v ( i )  +  i  £  w o ^ m ^ t  -  [  QMiWM  -  ¿  ¡ ‘ I I M O I I 2*  I 

= Jim u [  I j f w j O -  e„(í))dW (i) +  i  j ‘ n ^ to iP  -  IIM O II"*  I 

<  U m J s [ j [  1 ( ^ ( 1 )  -  »*(«)) l< W (0  

+  J i m £ [ Í / oT | p ]!n(<) ||J - f e ( ¡ ) l l , U i  

=  0,

and since the exponential function is continuous everywhere we have

ümZ„_n(T)  = Z v_ ( n

bolds almost surely on Ü. Secondly, by Patou’s lem m a applied to the sequence 

{g(s ,z¿n(iS))}neN which is integrable, we have

Inn inf J  g(s}vn (s))ds > j  Inn inf g(s, v n(s))ds
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=  [  9(s,v(s))ds,Jo

Returning to the proof we have, by definition of J y[v)

by continuity of g.

lim inf j„(v) = lim inf En  V J \  /   v tv I u (y  exp |  -  0 (s,wn(s))i/s}z„n(T)^

By positivity of u,  we can apply Fatou’s lemma (see Appendix A .3) to obtain

lim inf Jy(v) = E  »—>■00 * Inn inf exp { -  j 0 9{s,vn(s))ds}ZiLn(T)^

Now since

lim inf [  g ( s , v n(s))ds > [  g (s ,v (s))d s ,
n-Kx> j 0 j 0

and the function u(e*) is decreasing we get

lim inf J J v ) =  En-»«>  9 Jim  inf u ( y  exp { -  ^

Finally since

lim ZVn(T) = Z V( T ),
n —Koo —n '  '  —

we can, by continuity of it, bring the lim it inside to obtain

lim inf Jv(v) >  ETl—tOO J  '~ y — u V exp { -  J  9 {s>vn{s))ds}  Jirn inf Z ^  (T)J

= J y ( v V
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We can now prove th a t, for all in itial conditions y > 0, the  existence of a 

solution to the Dual problem of (3.43) is assured. This will complete the 

first step. Indeed, to proceed to  the solution of step 2, we will require the 

additional fact th a t vy £ D ' .

3 . 4 8  T h e o r e m

Under Assumptions 2.23, 2.24, 3-46 arid the condition (3.56) the dual prob­
lem of (3.43) admits a solution vy £  D for all y £ (0,oo). Furthermore the 

optimal dual process, vy is in the set D ' .

P r o o f :

Fix y  £ (0,oo). From Lemma 3.47, the extended functional J y(v ) is con­

vex and lower semi-continuous over T. Thanks to the coercivity property 

(3.57) we can use Ekeland and Temam [3], Proposition 2.1.2 (see Appendix 

A .11) so th a t for all y £ (0,oo) the  infimum of Jy(v.) is a tta ined  at some 

solution V j G T  such th a t

inf Jv(v) = Jy{vy).

Since Jy(v) =  0 0  for every v £ T/D .  Then by Lemma 3.45 we know th a t 

there exists a vy £ D such th a t for all y £ (0, 0 0 )

J y { v y )  <  ° o -

Hence vy E D  and

inf Jy[v) =  Jy(vy) < 0 0 . (3.59)

We now show vy £ D 1. We m ust prove tha t (vy{y) <  0 0 . By the  decrease of 

u we know that V a  £ (0,1), ¡3 > 0

u(/3) — u(  0 0 ) >  u(/3) — u(/3/a)
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=  [  u X O d t
J / 3 / a

r P / a

= f  / « Kjp

> ( /? /« - / ? ) / ( / ? /« ) ,

from the decrease of /(•). By Assumption 2.24

u(P)  -  u(oo) >  /? (-  - / ( /? ) .
\  o /  7

Now, applying (3.60) to ¡3 = yH„ (T),  we obtain

C .> ) =

< E
a

.1 — a
7 % / / „  (T )) -  «(oo)

<  oo,

from (3.59), Lemma 2.22 and Assumption 3.46.

(3.60)

3 .4 .2  A particu lar choice o f  y(x)

We will now show th a t for any x > 0, there exists a num ber y(x )  € (0,oo) 

with corresponding dual solution vy^  guaranteed by Theorem 3.48 th a t sat­

isfies

CE, (> W )  : =  4 ' W 7' ) / K , W ( 7’)) =  X. (3.61)
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First, we require the following lemma.

3 .49  L em m a

Under Assumptions 2.24, 3.46 and the condition (3.56) and providing the

existence of  the dual solution corresponding to y £  (0,oo) denoted by vy we

have : the function

< ? „(« :=  J W v s , ) ,  (3.62)

is well defined, finite and continuously differentiable at P =  1. For all y € 

(0 , oo) it also satisfies

6y(l) =  -»<*(»)• (3.63)

P ro o f:

As in the proof of Theorem 3.48 we have for all y  € (0,oo)
r  oo

u(y)  -  «(oo) = -
J y

roo

=  /  / ( f ) « ,
Jy

roo

u ( a y ) - u (  oo) =  / / ( £ ) «
J a y

roo

= a I(ai])dr],
Jy

substitu ting 7/ =  £/«-. Thus, from Lemma 2.25, for any given a  6  (0,1), 

there exists a suitable constant 7  € ( l,o o ) such th a t for all y 6  (0 ,oo)

roo

u(ay)  — « (00) <  «7 / I{v)di]
Jy

= <*7[«(y) ~ “(oo)]
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=> f/(ay) <  at'yu(y) -f- (1 — 0 7 )11(00).

Therefore

<  ^ J y ( v y) +  (1 -  a7 )u (0 )

<  0 0 ,

since v y is the optim al dual so the first expression on the right-hand side is 

finite by Theorem 3.48 and the second by Assumption 3.46. Since a  can be 

chosen arbitrarily in (0,1)

E (3.64)

holds for all ft G (0,1)- B ut since u is decreasing, (3.64) holds for all 0  >  1 

and the function Gy(/3) is well defined and finite. The upper finiteness of 

Gy((3) means we can use dom inated convergence (see Appendix A .3) to take 

the limit inside. Now

= E ^ u ( 0 y f L J T ) )

= yE H »(T )u ' ( f3yH v_ ( T ) )

G'{ 1) =  -yE n vJ T ) l ( y H vJ T ) )

=  -yCvAy)-
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The existence of a y(x)  is ensured in Theorem 3.50 by the fact th a t vy G D'. 

This was proved in Theorem 3.48.

3.50 T h e o re m

Under Assumptions 2 .2 \> 3Jf 6 and the condition (3.56) and providing the 

existence of  the dual solution corresponding to y G (0,oo) denoted by vy we

have : fo r  any given x  G (0, oo) there exists a number y (x )  G (0, oo) that

achieves the infimum in

“jJ[V’(y) +  *y]- (3.65)

Furthermore this number satisfies condition (3.61) above.

P ro o f:

Define for all y G (0, oo) the convex function

hx(y) := V{y)  +  xy.  (3.66)

We wish to show this function attains its infimum on (0, oo). To do this we 

show that it satisfies

/ia:(0+) =  oo =  hx( oo). (3.67)

To this end, the boundedness of g (see Remark 3.9) and the superm artingale 

property of ZJJ.) imply th a t for all I G [0,T]

7y(t) < eM,

= * E[l-Iv_(t)] =  E [ Z S ) lv_(t)\

< E[Z*{t)cM} < eM.

By convexity of ü and Jensen’s Inequality we have

J M  =  E[fi(yff„(T))]
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>  u(E[yH ,(T )} )

> u(yeM).

Then, from Lemma 2.22 and Assumption 3.46 we have

V (0+) :=  J , ( E)]

>  u (0 + )  =  i i(o o )

=  oo.

Hence the function of (3.66) satisfies (3.67) and a tta ins its infimum at some 

y (x ) G (0,oo). Define for all (3 G (0, oo) the function

Fx( p ) : = p x y ( x )  + Gy^ ( p ) .  (3.68)

Now, with the dual solution corresponding to y denoted by v y{x), we have

m f Fx(0) = inf [x/3y(x) + J(f iy{x)]Vv{x))}

= inf[xt/ +  J { y \ v y(x))}

>  m f ( a : y +  V ( t / ) ]
y> 0

=  hx(y(x))

Hence by Theorem  3.48

=  xy(x)  +  V(y{x)).



So the function F  achieves its infimum over (0,oo) a t ¡3 =  1. Hence the 

derivative must equal zero there.

=# -°  =  =  xy{x) +

= xy(x)  -  y(x)Cvy{l)(y(x)),

=$■ x = {y(x))-

3.4 .3  Hedging the O ptim al Form

As explained in the strategy, Theorem 3.21 ensures the existence of an opti­

mal portfolio 7r for hedging any claim B with an initial capital

h{0) =  sup
veD

So the existence of portfolio n  for hedging the claim of (3.50) is guaranteed 

with initial capital

l,,(0) = sup E [ H „ ( T ) I ( y l L ( T ) ) ] .
vG D  1 ^  J

To utilise step 2 we require this suprem um  to be attained  at v ~  v y. Theo­

rem 3.51 gives this result for any y > 0.

3 . 5 1  T h e o r e m

Under the Assumption that for all y_E I), y >  0

E [ H , J T ) I ( y H i t ( r ) )]  < oo, 

101

(3.69)



we have

E [H vJ T ) I ( y H ^ { T ) ) \  <  E [ H , J T ) I ( y H , J T ) ) ] ,  

for  all v_E D, y > 0.

Proof:

Fix (5 £ (0,1), v E D  and define the following functions 

Gs(t) := (1 - S ^ W  + SHJJ),

^ (i) :=  +

A i(0  :=  ~G^{t) [i1 ~~ +

Note th a t lim,5_).oGij =  /7„ . The convexity of and the fact tha t

( l - f ) f f * ( < )  8 H S )  _
Gs{t) + Gs( t )

imply th a t m (/.) E D. Moreover

clGs =  (1 -  8)dHv_y{t) +  SdHJi )

=  (i - i ) ^ ( 0 [ - ^ , t ; y( 0 ) ^ - ^ ( 0 ^ a 0 ]

-f i / /y ( i) [  — 0(i,u(i))cft -  ^ ( i)d W (i)J  

=  [(1 -  S)H„y( t ) a - l vy + 5H„(t )a - lv]d\V(t)

- [ (1  -  i ) ^  (*)£(*>

(3.70)

(3.71)

(3.72)

(3.73)

=  CT ‘ G i / i j f / V K i / )  -  Gsfifdt.
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Recall tha t the convexity of g implies

9 ( i , « )  == G i W  *y + - G M v- )

5  0 , ( 0  g ( t^ ) +  C l W g ( i’ - )

• /-til

whence

i/Ci <  Gi [cr_1/.ii i/i'F(i) -  

d / /w =  I-Illf[cr~'li.isdW(t) -  g{t , f is)dt\.

Comparing these we see tha t, since G{(0) =  1 =

<?«(•) <  » „ (■ ) a.s.

It follows from the dual optim ality of vy and the decrease of u  respectively 

that

e [.-<(!/ / / 2 i ( 7 ’ ) ) ]  <  £ ¡ [ « ( ¡ , » „ ( 7 ) ) ]

W ith the random variable Ls defined by

L,  :=  5 ( y l h i T ) )  -  u(yG,(.T)),

we have

\ e [ L s \  < 0. 
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Fix u  G ii and (suppressing the dependence on u>) assume <  //,,. Then, 

by continuity of u , we apply the mean value theorem to  give

U  = u ( y I L ( T ) ) - u ( y G s(T))

=  -  G, (T)) ,

where K  € [yI I^,yGs\-  By the decrease of I  and the definition of G& 

± L , =  y l ( K ) ± [ G s(T) -  H ^ T ) }

=  y l ( K ) U U T )  -  H ^ T ) }  

> y I ( # H J l H J F )  -  / / „ / / ’)].

We get the same result for //„ <  . Consequently we can apply Fatou’s

Lemma (see Appendix A.3) to the sequence of positive random variables 

given by

By the finiteness of E[y I  (y IIy)(II „(T) — I I„ (T))] we obtain

0 >  lim Eoo 1 L‘

> E lim - L s 
S -tco o

= E y (H v_ - I i vJ I ( y I L )

The result follows.



All tha t remains to prove is th a t the choice of Ky{x) and vy(x) corresponding 

to the particular choice of Lagrange m ultiplier y(x)  satisfy the  final optim al 

condition (3.46). Theorem 3.51 states th a t for the claim of (3.50) the 

process vy achieves the supremum in

V(0) =  sup E \ H v( T ) B v ). (3.74)
v£D 1

We now show th a t once this condition holds so does condition (3.46).

3 . 5 2  T h e o r e m

For any claim B with corresponding policy (¿ , c) from Theorem 3.21 we have 

: i f  v* achieves the supremum in (3.7/,) then

g(t,y*) =  g(t,v*) +  nv*.

P r o o f :

If v * achieves the supremum in (3.74)

V(0) =  M{H,L. (T)B)  =  E^[ y ll. (T)B) .

Hence from Theorem 3.21

Q v.(0) =  E[II„.(T)B] =  E - [ /y!L’ ( T ) X v ^ ' iĉ (T)] a.s. P-

= E - ‘ [Qy*(T)].

Hence Q ^ ( T )  is a m artingale under P - ’ and the process A„.(i) of (3.27) is 

identically zero. Then with v = v* in the  expression (3.34) by

c{t) [  'y~1(s)dA!L(s) -  f  g { s ,n 3) -  ds,
Jo -  Jo ' v *
' 0-----------------------

c. will be a negative decreasing process unless

5 (i,s£ ) =  g ( t , v ‘; ) +

3 .4 .4  T h e  F in a l T est
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We have completed the four steps of our scheme and proved the existence of 

an optimal portfolio process 7Ly(x) corresponding to an endowed am ount of 

initial capital x. We summarise the result in the following conclusion.

C o n c lu sio n  Under the Assumptions 2.24, 3.46 and condition (3.56); for  

any given x > 0 there exists a particular Lagrange multiplier y(x) (given 

by Theorem 3.50) with corresponding dual solution (guaranteed by Theorem 

3-48) such that by minimally hedging the claim B„ of (3.50) with the port­

folio process of  Theorem 3.21 we ensure the utility maximisation problem of  

(3.37) is solved.

In Chapter 4, a strategy based upon this conclusion is derived. It is im­

portant to note tha t we have proved the existence of the optim al portfolio 

and we can now devise an algorithm to calculate it either explicitly or nu­

merically under certain m arket assumptions.
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Chapter 4 

Applications

In this chapter we apply the results of Chapters 2 and 3 to solve the  utility 

maximisation problem for investors with certain utilities. Specifically, the

methods are applied to investors w ith the  following utilities :

u(x)  == In x,  (4.1)

called the logarithmic utility cind

u(x) =  — x° ,  (4.2)
a

for a  6 (0, 1), called the power utility. Both belong to the class of utilities 

known as HARA utilities. As a  —> 0, (4.2) tends to (4.1) at least, in term s of 

relative risk aversion.

4.1 Small investor : Examples

The main result of C hapter 2 (Theorem  2.30) states th a t, provided X('l ') = 

I ( tp (x ) I I (T)) , the portfolio ¿L of Lemma 2.9 is admissible and is optim al for 

the small investor problem of (2.61). Indeed this portfolio has corresponding 

wealth process given by

7 ( t )X( t )  =  f i [ 7 ( r ) ^ ( T )  | ?,}
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=  x  + [  7 (s )£ T(s)X(s)<7(s)i/l'K(.s).Jo
Consequently, the m ethod of solution will follow the four steps below :

1. Given the utility  i/, find the function I  and solve the Lagrange multi­

plier problem

a y ) - = E [ H ( T ) H y H { T ) ) ] = x ,  (4.3)

for 'tp(x).

2. Find the value function

V (s) :=  E

Note tha t a general characterisation of this function is given in Karatzas 

[9]. The value function does not affect the chosen portfolio strategy in 

any way. However it is necessary to find the expected return  on the 

investment.

3. Apply Lemma 2.9 to the terminal wealth X ( T ) =  ¡( ip(x)H(T))  by 

solving

~l{i)X(t)  =  e [ i { T ) X ( T )  I .F ,], (4.5)

Express this in the form of an Ito  integral with respect to the Brownian

motion W , i.e.,

l { t ) X ( t )  = x  + j * [  —  ] d W ( $ .  (4.6)

4. The form above is required for comparison purposes. We obtain the

optimal portfolio fr by comparing it with

x  +  f  7 (s)irT(s)X(sW (sW M 'r(s). 
Jo
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In the following example, the scheme above is applied for the logarithmic 

function of (4.1).

4 .1 E x a m p le

S te p  1 Since utility u(x) =  In a; we have u '(x) =  1 /x  and I (y)  — 1 /y .  We 

solve the Lagrange multiplier problem

1
H (T )

y H ( T )

S te p  2 The value function is then

V (x )  :=  E

=  E
( w ) )

=  Inx +  £[ln  / /  (T1)]

=  lnx  +  E \  £  r(i)dt +  jf' 0(t)dW(t) + l- £  \\Q{t)\\2dl

=  In x  -f E

S te p  3 For the optim al term inal wealth we have

7 ( T ) X ( T )  = 7 (T )/( tf (* )ff (T ))

iT )
H (T )

=  x Z ~ \ T )

From Lemma 2.9 we m ust solve

7(i)A r(t) = Ë \ x Z ~ l (T)  | Ti
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E [ Z ( T ) x Z - \ T )  | F t)

By Bayes Rule

7 (0  X ( t )  =
Z( t)  

=  x Z ~ l ( t )

=  x e x p j  Jq 0 (s)d W  {s) +  ^  f Q l|£(s)H2< k } -

We must now apply Ito ’s Rule to obtain the comparison form. From 

the above

</pn(7 (i)X(i))] =  eT( t ) iW(l ) +  i||«(Of*. .

We need to find A(t)  and B ( t ) such th a t

7 (l)X(t)

Now by Ito ’s Rule

A( t )dW ( t )  +  B(t)dt .

=  A(t)dW(t) +  B{t)dt -  - A 2{t)dt. 

Equating the above two expressions for d[ln(7(0A '(0)] gives

A(t) =  0T(t), 

B(t) =  0T(t)0{t).

Hence we obtain the required comparison form

7 ( 0 * ( 0  =  * +  [ ‘ ~t{s)X(s)0T(s)dW(s).Jo

S te p  4 Comparing this with

7 (0 -V(0 =  x +  [ 7 (s)7rT(s)X(s)cr(s)ciM/,(s)>
Jo
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gives th e  op tim al portfolio

i T(* M 0  =  £T(0> 

=>- ±(t)  =  (cr(t)aT(t)) \ b ( t ) - r ( t )  1).

It is clear then th a t the proportion of wealth invested in any stock will in­

crease linearly with its growth rate. However this investm ent will also de­

crease as the  volatility coefficient of the  stock increases.

4 . 2  E x a m p l e

For the utility  function ïî(.t ) =  <  a  <  1, the methodology above

is applied to derive the recommended optim al portfolio given by :

In the previous example, we found explicit formulas for the optimal processes 

of wealth X ( t )  and value function V(x) .  Similarly, we can find the optim al 

consumption process for the equivalent problem of utility  from consumption; 

see Karatzas [9].

However, for the optim al portfolio process jr the  m artingale methodology 

th a t we have employed so far can ensure only the existence of jr; except of 

course in the certain cases such as those above where jr. can be found in feed­

back form in term s of the random m arket coefficients.

In general there is no constructive algorithm or useful characterisation tha t 

would lead to its com putation. For constant m arket coefficients r(t)  =  

7-, b(t) =  b and a[i) =  <r, however it is possible to obtain jr in explicit form. 

This is achieved in Xu [15].
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4.2 Large investor : Examples

Similarly to tha t of Chapter 2 the m ain result of C hapter 3 tells us th a t once 

we choose the appropriate y ( x ) and hedge the claim given by (3.50) with 

y =  y(x)  then the portfolio process jr. of Theorem 3.21 with corresponding 

wealth process given by

Tito, (*)*(*) +  Jo -  g ( s , ± s) ~  ± (s )vy{x](s)}ds

(4.7)

=  X +  /  T«vW( s ) * ( « k T(s)cr(s)</H^(,s),

achieves the supremum in (3.41).

Consequently our adjusted m ethod of solution is :

1. Given the utility  ti, find I  and solve the Lagrange m ultiplier problem 

such tha t

& ,„ (» (* ) )  :=  =  *. I4-8)

where denotes the dual solution corresponding to  y(x).  This gives 

us ipyfx).

2. Find the value function

V(x)  :=  B f t i ( / ( ^ ( « ) f l ^ r ) ) l .  (4.9)

3. Find the  space F and the  Legendre-Fenchel transform and define the 

dual problem as

inf E  wer

Solve this and denote the solution by A.

1.12
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4. Apply Theorem 3.21 to the terminal wealth X ( T )  =  I(il>\(x)H\(T))  

by solving

H x( t )X ( t )  = e [ [ I \ (T )X (T )  | JFt] , (4.10)

and express this in the form of an Ito integral with respect to the 

Brownian motion W

H ( t ) X ( t )  =  x  + £ [ ■ • ■ ]  d W (s ) ,  (4.11)

for comparison purposes.

5. Compare this with

x + [  Hx(s)X(s)[0x(s)  -  ¿ T(s)<7(s)]dW(s),
J o  ~ ~

to find the optim al portfolio.

This strategy is illustrated in the following examples. The effect of the in­

vestment strategies on the asset prices, modelled by the functions /,• ; i =  0..d 

are also varied in Section 4.3 to represent the following situations :

(i) Price Pressure; cf Section 4.3.2.

(ii) Different borrowing and lending rates for the bond.

To begin with, we examine the case of the large investor with logarithm ic 

utility.

4.3 E x a m p le

S te p  1 For utility  u(x) = In a: we have u'(x)  =  1/.t and hence l(y)  =  1 /y .  

We require the Lagrange multiplier ip,\(x), where A is the optim al dual
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process (to be solved for). We m ust solve

:=  B[H1<M(T)a9 HUut(T))] = z,

1pv(x) =  1 /z .

S te p  2 The value function is

V(x)  := e \u (I{4>(z )H x(T))

= E In
( / / a ( T ) )J Ix{T ) ,

=  l n x + E [ l n / / A- 1(T)]

\nx + El f 1 g(t,Ut))dt + £  4 ( * W * )  +  \  £  WhWW2̂

=  I n *  +  e \ £  +  ¿11 -  « ' ' m m ' dt

where A is to be solved for in the dual.

S te p  3 Since ^v(x)  = l / x  this implies th a t F =  D'. The Legendre-Fenchel 

transform  is given by

u(y) : = u ( l ( y ) ) - y l ( y )  = - ( 1  + l n y ) .

Therefore

E[ù( M x )U v(T))\  = E  -  1 -  In -  -  ln (//„(T ) , 
-  x ~ J

114



and the dual problem is to  find the A at which the infimum below is 

attained

m f E [ \n ( H - \T ) ) }

=  }g£,E[J0 ¿ K s > i > ( s ) ) +  \\\dv(s)\\2(ls + JQ ^ v ( 5 ) ^ ( s ) ] .

This is equivalent to the pointwise minimisation of the convex function 

given by

i ( i , £(*)) +  (4.12)

a t each t € [0,T].

We denote the solution to this problem by

A(i) =  arg m m  [2 g(t ,v ( i ) )  +  || -  o--1 (i)n(<) ||5

This will be solved in the next section for certain m arket scenarios.

S te p  4 As in example 4.1 we can use Ito’s rule to  rewrite (4.7) as :

H \( t ) X ( t )  +  f  'yx(s)X(s)[g(s,  11,) -  g ( s ,± s) -  ±{s)vs]ds
J 0

(4.13)

= x + l  Hx(s)X(s)[0\(s) -  7TT(s)<7(s)]i/iy(s).
Jo

However, by theorem 3.52, at the optim al A the term  g(s ,v (s ) )  — 

ö(s,ZL(s)) — 2l(-s)i;(.s) disappears and this implies th a t a t t im e t

Hx( t )X ( t )  = x  + f  Ih (s )X (s )[O x(s) -  Kr (s)a(s)]dW(s).
Jo
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The optim al term inal wealth is

X ( T )  =  =  77^ , (4.14)

and from Theorem 3.21

Hk ( t )X ( t )  = e [Hx( T ) X ( T )  | T t 

=  x.

S te p  4 Comparing this with (4.14) we obtain the optim al portfolio in feed­

back form given by

i ( f )  =  -(cr(i)erT(i))-1A(*)i (4-15)

dependent on the m arket coefficients and the dual solution A.

4 .4  E x a m p le

The case where the investors u tility  is the power utility  ^ x °  is similar to 

Example 4.3 above. However, in this case H \ ( T ) X ( T )  7  ̂ a: and our calcula­

tions lead to the optimal portfolio process

_ K Q g TW ) - ‘A(i) (416)
1 — a

4.3 Some Market Scenarios

From Section 4.2 we have a dual problem to be solved which is dependent 

on the utility function u and the function g. For u = In x  this dual problem 

is to find A which minimises the expression below

+  II -<T_1( 0 £ ( 0 ir ,
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9{t,Kt) :=  KO +  /o(2Lt) +  +  M%i) ~  r (0  ~  fo(m)]t
t=i

and

y (i,u ) :=  sup \g{t,H_) + zJv\-
7r6Rrf

This section is devoted to solving the dual problem under varying market 

situations. We will concentrate on logarithmic utility. The theory applies 

as above for power utilities. These results are also stated . For comparison 

purposes, we s ta rt with the standard complete m arket setting.

4 .3 .1  Standard Settin g

This is the setting in which prices are exogenously fixed. It has been examined 

by K aratzas et al. [7] and Cox and Huang [14]. In this case, the market effect 
functions are given by

foill) =  0,

and, for all i =  l...d,

M k ) =  0.

Therefore
d

g{t,Et) =  KO +  E ^ i i O N O - K O ]
¿=i

=  r ( * ) + 2LT(0 [£(0 - r ( 0 l]-

Hence

=  sup fr(i) +  ET(t)[k(t) -  r ( t ) l  +  t>]|.
2L€n.«' J

Indeed we obtain

s j  r{ t) if u =  r ( t ) l - b ( t )
g(t ,v)  =  <I oo otherwise,

where
d
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D =  ju  : v =  r(t)  1 — 6(£)},

with corresponding trivial dual problem with solution

A =  KOA-— ¿(0 -

We conclude tha t the optim al investment strategy for an investor w ith loga­

rithm ic utility  is

¿ ( f )  =  ((7 (i)crT ( f ) )  1 (k(t) -  r ( i ) l ) .

This coincides with the result of example 4.1. The corresponding strategy 

for the investor with power utility is

i ( i )  =  (ir(i)i7T{0) ' (¿ (0  “  r ( 0 l )  ■

4 .3 .2  P rice  Pressure

Price Pressure occurs when the purchase of a risky asset decreases its ex­

pected return while shortselling a stock increases it expected return . In this 

case, the  market effect functions  are given by

M e ) =  0,

and, for all i =  1 ...d,

f i U )  =

yielding the set

i f  7T ^  0 III — 7- -

0 if n =  0,

for some function a : [ 0 , 7 ' ]  R + . Therefore

g{t,Et) =  r ( / )  +  2LT ( 0 [ K 0 - « ( 0 j ^ |  - r ( 0 l ]

=  r(t) -j- irT(i)[ii(0 "  r(i)l] “  a(0|ld> 
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i.e., the expected return  on wealth decreases in a concave fashion with the 

absolute proportions invested in the risky assets. Therefore we obtain

g ( t , v )  =  sup f r ( i)  + E T(t)[b(t) ~  K 0 1  +  “  «(O lsXO ll
7reRrf

_  f r ( i)  if }|j; +  b(t) -  r ( i ) I | | <  a{t)
I 0 0  otherwise,

yielding the set

D = {u : ||i>+  6(0  -  r ( i ) l | |  <  a (i)} ,

with corresponding dual problem given by

1
A = ara  min r(t)  H— Mcr, 1z7#||2.

The minimum is achieved at

m  =

when |6(i) — KOU < a (0

r ( t ) l  — b(t) +  a ( 0 l  when 6(0 — »’(0 1  ^  a (0

r ( 0 l  — b(t) — a ( 0 l  when 6(0  — r ( 0 l  <  —a(t).

We conclude the optim al investm ent strategy for an investor with logarithmic 

utility is

<r(0<rT(0 ] [K 0 — r ( 0 l ~  G(0 l]  *f ¿ (0  ~  r ( 0 l  — a (0

¿ ( 0  =  0 if |6(0  — K0JLI <  o (0

ff(0o‘T(0 ] [6(0 — r ( 0 l + a (0 l]  if è (0  -  r (0 1  — “ a (0
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This dem onstrates th a t the  fraction of wealth invested in stock is lower than  

what it would normally be in the absence of price pressure. Note th a t the  

comparisons on the right-hand side above can be m ade component-wise bu t 

are w ritten  in vector form.

The m ore general case is the one in  which the  market effect functions  are 

given by

i = 4 2 *

M e ) =  <

0 if 7T =  0,

for i — 1 ...d and for some positive definite m atrix A(t).  The theory above 

goes through similarly with optim al portfolio

¿(0 =

<r(Z)crT(i)J b(t) — r ( i ) l  — ^ ( O l ]  A  1 (t)(b(t) — >  1

* ( t y T(f) ] " [ m  -  r ( t ) i + A w n ]  A - ' m m  -  n m  < - i -

4 .3 .3  Different Borrow ing and Lending R a te s

We now study the case where the borrowing rate is not necessarily equal to 

the lending ra te  but the investor has no effect on asset prices. We denote the 

borrowing rate  by R(t)  and the lending rate by r(£) where r(t) < R(t).  We 

assume the progressively measurable process R.(t) is bounded. Therefore, we 

restrict ourselves to policies for which the relative am ount borrowed at tim e
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t  is

7LT1 — 1 if 7TT1  >  1

( 1 - 2 L T 1 )  =

0 otherwise.

We can model this by setting the market effect functions  as follows

/ o( tt) =  [ i2 (t)  -  r(t)]I{vt1>1},

where

1 if 7TT 1 > 1

0 otherwise.

For all i = 1 . . J

M e ) =  0.

Therefore

g{t,Et) =  »’(0  +  (R( t )  -

+Z!lT(t)[6(i) -  r ( ( ) l  -  ( R(t) -  r ( ( ) ) iw  

=  !•(() +  2LT(t)[¿(i) -  >'(f)l] +  [l -  ¡LT(l)l](f2(<) -  r ( t ) ) I {w

and as expected the evolution equation of (3.3) becomes 

dX( t )  =  X(t)g(t,Kt)<lt +  X(t)TLr ( t )a ( t )dW (t)  — dc(t)

12.1

T i> I> >



=  r ( t )X{ t )dt  -  dc(t) +  X ( t )  [ t lt ( ì ) o - ( ì )  (<dW( t ) +  -  r ( t ) l )dt )

~ ( R ( t ) -  r(t)){  1 -  7LTl ) - d t \

=  r ( t )X ( t )d t  -  dc(t) +  X ( t )  7Tr (t)cr(t)dW(t) -  (R ( t ) -  r(i))(l -

For illustrative purposes we restrict ourselves to the  one-dimensional problem 

of one risky asset and the bond. We obtain

g(t,  TTt) =  r ( i )  +  7 r ( i ) [ 6 ( i ) - K O ]  +  [ l “ * ( < ) ] ( # ( * ) ~  K 0 ) A * > 1 } -

Consequently

g{t ,v( t ) )  = sup 
iren

sup
7r£R

sup
ir6R

g( t ,n )  +  irv(t)

r ( t )  +  7r[&(f) +  v(t)  -  r ( i ) ]  +  [ l  —  

r ( i )  +  +  v ( i )  —  r ( f ) ]  i f  n <  1,

/?(i) +  7r[6(0 +  u ( i ) - ^ ( 0 ]  i f  7T >  1 .

Fixing tj we get three cases :

(i) The first case is

b +  v — R>Q=$>b  +  v — r > 0 ,

and the slopes on both  intervals are positive, so th a t the suprem um  over ir 

is infinity.

( i i )  T h e  case

b + v — r < Q = ^ b + v  — 7 ? < 0 ,
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is very similar. Here, the  slopes on both  intervals are negative and the  supre- 

m um  over 7r is also infinity.

(iii) The case

b +  v — R  <  0 and b +  v — r >  0,

means the  slope is nonnegative before n  =  1 and non-positive after. Now 

the supremum is finite and a tta ined  a t 7r =  1. T he function value is b + v. 

Therefore, we obtain

However, confined to the set D t , the minimum of the dual problem is achieved

if K 0  S  +  u(i) <  R( t ) ,
otherwise,

and the set

Dt =  : r (t)  < b(t) +  v(t)  < /?(i)}

with coi'responding dual problem given by

A. =  arg mm
v:r(()<6(i)+v(t)</i(i) 2(6(i) +  « ( ( ) ) + “ »2W'

The global minimum is achieved at

at

R(t)  — b(t) once b(t) — R(t)  > <r2(t)

A(i) =  —cr2(0  once b(t) — R(i) < cr2{t) < b(t) ~ r ( t )

r(l)  — b(t) once b(t) — r(t)  < cr2(t).
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We conclude the optim al investment strategy for an investor w ith logarithm ic

utility  is

-¿èÿ)W) ~  # (0 ]  if o' * (0 (6(0  ~  R (t)) >  1

A (t) =  1

[6(f) -  r(f)] if a 2(t)(b(t) -  r ( t )) <  1.

This shows th a t, as expected, the fraction of wealth invested in the risky asset 

is lower than  it would be without the spread between borrowing and lending 

rates. The agent will shortsell the  risky asset and lend if b(t) < r ( f ) and will 

invest in the  risky asset if b(t) >  r(t).  Borrowing will only occur when 6(f) > 

R ( t ) +  0"2(O but as long as b{t) is in the interval [r(f) +  cr2(f), ^ ( 0  +  o 2(t)] 
all wealth will be invested in the risky asset w ithout the  agent borrowing or 

lending.

The d-dimensional case is com putationally more difficult, bu t essentially sim­

ilar. We define

A(t)  =  Tr[a~1(t)T cr~1(t)],

The minimum of the  dual problem is achieved at

K O I _  W )  +  BA(t) if 0 <  B( t )  -  1 <  A(t) (R( t )  -  r ( t ))

if B(t)  <  1

[R{t)l  -  6(0] if 5 (0  ~  1 >  ¿ M m  ~  K 0 )-
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We conclude tha t the optim al investment strategy for an investor with loga­

rithm ic utility is

' [,7( iV T( i ) ] " , [ « i ) - ’- W l - i g r l ]  0 < Bit)  — 1 <  A(t)(R(t) — r(t))

We note th a t there are numerous m arket scenarios th a t can be modelled using 

the large investor assumptions. It is possible, by choosing the appropriate 

m arket effect functions, to model many current situations. The methodology 

of solution above yields in all cases a m inim isation problem which, in many 

cases, can be solved analytically.

B(t)  <  1
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Chapter 5 

Sum mary

5.1 Conclusions

In Chapter 1 we sta te  th a t our main objective is t.o ensure the satisfaction 

of any investor with the return  on his investm ent. We choose the utility  of 

final wealth as an optim ality criterion. Again we stress th a t this is a suitable 

choice for the investor who wishes to get rich. However it is clear th a t most 

investors would prefer to  spend during the interval and the  utility should 

therefore account for satisfaction derived in this way. This problem has been 

researched and indeed solved in K aratzas et al. [7]. It is an essentially similar 

problem and we have therefore concentrated on the problem of u tility  from 

final wealth.

This problem has been extensively researched for a small investor. Indeed, to 

all intents and purposes, the small investor problem is considered solved ' .  In 

fact, for a  small investor whose portfolio is confined to lie within a particular 

region of R d, the optim al form of the wealth process is known. However, the 

optim al trading strategy n can only be calculated for certain utility  functions 

such as the  logarithmic utility  and the HARA utility

'S e e  K aratzas e t  a l. [6].
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We wish to solve the equivalent problem for a large investor, using the  es­

tablished m artingale methods. Our work has continued along this line of 

approach - used by Cvitanic and K aratzas [16] for constrained portfolios. 

More precisely, we define the convex conjugate function g it, v) correspond­

ing to a large investor instead of the particular choice of 5(v) used in the 

constrained portfolio case. We find th a t under the  corresponding probabil­

ity measure P -  and discount factor 7^(-) the discounted stock prices become 

martingales. This introduces a new set of auxilary m arkets whose evolution 

equation for wealth is linear and hence can be solved as in the small investor 

problem. Our aim  is then to find the appropriate v to reflect the  given m ar­

ket conditions. This is the dual problem, and it depends on the particular 

choice of m arket effect functions.

We find th a t the  non-linear large investor problem can be solved using the 

strategy described in Chapter 4 for certain utilities. The form of both  the 

wealth and the optim al portfolio are known in this case. However, as in 

the case for the small investor, for general utilities we m ust m ake certain 

assumptions on the  m arket coefficients to  solve the  portfolio problem. This 

is done for the small investor in Xu [15]. Only to  this extent has the large 

investor problem been solved.

More precisely, as in Chapter 4, we can find the form of the optim al wealth 

process from Theorem  3.21. We can also find explicitly the optim al portfolio 

process which yields this wealth process. However this is only possible for 

those same u tility  functions for which an explicit solution exists in the  small 

investor case.

The optim al portfolio 7r depends on the dual solution A. In short, any prob­

lem solved explictly for the small investor can be solved similarly for the 

large investor w ith solution dependent on A.
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Our prim ary concern then, is how to solve for A. In most cases this involves 

a straightforward constrained m inim isation problem of a concave function 

(see Section 4.3). However the problem rem ains (as in the case of the  small 

investor under constrained portfolios) : namely, the  existence of the optim al 

portfolio has been proved, but an algorithm  to find it explictly is not avail­

able for general utilities.

In addition, a fair price (selling) is found for a large investor selling any 

claim B. Anything above this price would represent an arbitrage opportu­

nity. The fact th a t the hedging portfolio m ay not always be easy to find 

explictly is not im portant to someone pricing the option or fu ture derivative 

in question. The same methods can be applied to find a fair (purchase) price 

for the buyer of a  claim. This would give a bid-ask spread for the price of a 

claim.

5.2 Further Work

For most given m arket conditions the problem of solving for the dual solu­

tion is, as stated, a constrained m axim isation of a concave function. This 

should not, in general, present too much difficulty to solve - either explicitly 

or numerically.

The m ain problem is th a t, similarly to the case of the small investor with 

constrained portfolios, we can only find the optim al hedging portfolio %_ for 

certain utilities. An approach similar to Xu [15] could be undertaken to find 

the optim al portfolio in explicit form for a general utility  under the  extra 

assumption of constant m arket coefficients r(t) = r, b(t) =  b and <r(t) =  a. 

It would be interesting to see if we could combine the function 5(v) used by 

Cvitanic and Karatzas [16] for constrained portfolios and the function g (t,v )  

for the large investor to model the case of a constrained large investor. In 

particular a m arket controller may wish to lim it the behaviour of a large
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Once the large investor decides on his preferred strategy the m arket will 

immediately be affected by his actions. From a small investor’s point of view 

the following question arises - how should he react to a large investor’s s tra t­

egy ? Does his optim al portfolio change in the  presence of a large investor ? 

Given the advantageous position (in term s of size or knowledge) of the  large 

investor, is he in fact be tter off or does he have an adverse effect on the  prices 

of the assets in which he trades ? If so, should the small investor adopt the 

same utility  and investment strategy as the large investor ?

Numerous articles were studied examining the  effect of brokerage fees on 

the agent’s investment strategy. These include Davis and Norman [17], Mor­

ton and Pliska [11] and Atkinson and W ilm ott [18]. The general result of 

all papers is th a t the small investor a ttem pts to keep the proportion in­

vested in stock within a certain wedge in instead of a singular value as we 

found in our examples. It is suspected th a t the same would be true  for the 

large investor. However, given certain extrem e effects th a t he m ay have on 

the stock evolution it should be examined whether or not the  investor would 

adopt a wedge strategy under prohibitively large brokerage fees or w hether he 

could afford to m aintain an exact previsible portfolio process via continuous 

trading.

investor to  minimise his effect on m arket prices and stabilise the m arket.
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A ppendix A

Som e useful definitions and  
theorem s

The following useful theory is taken from Hull [19], K aratzas and Shreve [2] 

and Williams [20].

A.1 Introduction

A stochastic process is a m athem atical model for the occurence, at each mo­

ment after the initial tim e, of a random phenomenon. The randomness is 

captured by the introduction of a measurable space (H, T )  called the sample 

space, on which probability measures can be placed.

A.1.1 Definition

For our purpose, a stochastic process is a collection of d random  variables 

X  =  { X t, t  >  0} on (fijjF , P) taking values in the state  space (R [/, £3(11'*)) 

where jEJfR“1) is the smallest ¡7-field containing all open sets of R fi.

A.I.2 Definition
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{(i,a;) : X t (uj) €  /4},

belongs to the tr-field 5[0 ,oo) <g) T .  In other words, X  is m easurable if the 

mapping

(¿, oj) »-)■ X t(u>) : ([0, oo) x ft, B[0, oo) ® T )  h-» (R d, ^ (R ^)) 

is measurable.

A .1.3 D efin ition

We equip our sample space (il, J-) with a filtration; a non-decreasing family 

{Tu  i >  0} of sub-cr-fields of T  :

C C  f , 0 <  s < I < oo,

where T t represents the information known at tim e t.

A .1.4 D e fin itio n

The simplest choice of filtration is th a t generated by the process i ts e lf :

T ?  :=  a (X s : 0 < s < t).

This is the smallest cr-field with respect to which A'., is m easurable for every 

s E [0,¿], and is called the  natural filtration.

A . 1.5 D efin ition

Correspondingly, we define

F t-  :=  <r(\Js<t T s) to be the tr- field of events strictly  prior to L > 0.

X  is m e a s u ra b le  if, for every A  € 5 (R 'i), the set
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T *  == f f ( a > o ^ + .)  ke the a-field of events im m ediately after t >  0.

A . 1 .6 Definition

The filtration T t is left(right)-continuous if T t — F t-  (respectively T t =  

Ft+) holds for every t > 0.

A. 1.7 Definition

A filtration is said to  satisfy the usual conditions if it is right continu­

ous and Fq contains all P-negligible events in F .

A. 1 .8 Definition

X  is adapted to the filtration {F t} if, for each t >  0, X t is an ^(-m easurable 

random variable

A . 1.9 Definition

A' is progressively measurable with respect to the filtration {F t}  if, for 

each I >  0 and A £ £?(Ilri), the  set

{(5 , 0 ;) : X 3(u>) e  .4;0 <  .s <  t) ,

belongs to the <7-field £[0 ,/] ® Ft. In other words, if the mapping

(5 ,w )h+ X 9(ui) : ([0, i ] x n , 0 [ 0 , T ] ® ^ )  ^  ( R d, B ( R d))>

is measurable for each t > 0.
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We shall consider, exclusively, real-valued processes X  =  { X t , t  > 0} on 

a probability space ( f l ,F,  P),  adapted to a given filtration jFt and such th a t

E \ X t\ <  oo.

A . 1 .1 0  Definition

The process X  — { X t, F t, t  >  0} is a  martingale if, for every 0 < s < t ,  we 

have

E[Xt | F s] =  X a, P-a.s.

A . 1 .1 1 Definition

It is a supermartingale if, for every 0 < $ < t we have

E[ Xt | F s\ <  X s, P-a.s.

A . 1.12 Definition

It is a submartingale if, for every 0 <  s < t we have

E[ Xt | F s] >  X s, P-a.s.

A . 1.13 Definition

If these properties hold only for the processes

A'W(i) =  X ( t ,A rn),

for each r„, where r n is a non-decreasing sequence of stopping times converg­

ing to infinity, then AA(-) is a local martingale (respectively superm artin­

gale, subm artingale).

M a r tin g a le s
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A .1.14 D efinition

A r a n d o m  time r  is an ^-m easurab le  random  variable w ith values in [0, oo). 

A.I.15 Definition

A random  tim e r  is a stopping time of the  filtration if the event : 

t(u>) <  t } belongs to the cr-field T u  for every t  >  0.

A.1.16 Definition

A continuous adapted process W  =  >  0} defined on P )

is a standard Brownian motion if

(1) W'(O) =  o a.s.,

( i i )  W t — W s is in d epe nden t o f  V £ >

(iii) W t — Ws is normal with mean zero and variance t — s.

Brownian motion can be one dimensional or d-dimensional. Brownian motion 

in R  is a m artingale. A stochastic integral (one with respect to Brownian 

motion) is also a  martingale.

A.1 .17  Definition

Consider the class S  of all stopping times r  of the  filtration {F t}  which 

satisfy P[r < oo] =  1, The right-continuous process : 0  <  t <  oo} is

said to be of c lass  D if the family {A't }tGs  is uniformly integrable.

Alternatively, if wc consider the class S a with P[r < a] =  1, then the process
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{ Xt j Ft  ■ O <  t  <  00} is said to be of class DL  if the family {X T} TG5a is 

uniformly integrable for every 0 <  a <  00.

A . 1.18 Definition

The process { X t , T t : 0 <  i <  00} is said to be RCLL if it is right con­

tinuous on [0,oo) and has finite left-hand limits on (0,oo).
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A.2 Girsanov’s Theorem

Given W, the standard d-dimensional Brownian motion, let

X  =  { X t,Fu t >  0}, 

be a vector of measurable, adapted processes satisfying 

p [ j \ x \ f d t  < oo] =  1, 0 <  T  <  oo,

for i =  l..d. Define

Zx(t)  :=  exp { £  £  XjdW;  -  i  J ‘ ||X ,I|2̂ } '

a continuous local martingale with Zx{0) =  1.

Under the Novikov condition1 E[Zx_(t)\ =  1 and Zx_(t) is a P-martingale. 
Consider then a new probability measure Pt on (ft, Ft ) given by

Pt (A) := Zx{t)P[A],

and hence

Et [Ia ] =  E[IAZx(t)\.

Girsanov’s Rule

If Zx(l) defined above is a martingale, then the process W =  {Wt, Ft >t > 0} 

given by

Wi  := Wi -  f  Xids ,
Jo

is a d-dimensional Brownian Motion on (ft, T t -, P t )-

'T h e  N ov ik o v  co n d itio n  s ta te s  th a t  defin ed  a b o v e  for th e  process X_ is a m a rtin ­

g a le  once i? [ e x p ( l / 2 1 07 <  co .
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A.3 Properties of Conditional Expectation

(H, JF, P) is our probability triple, and X  a random variable with £[|X|] <  oo. 

Let Q and % denote sub-cr-algebras of T . The following properties hold :

(i) If X  is ¿/-measurable then E ( X  | Q) =  X  a.s.

(ii) Linearity : E (a \X \  +  0,2X 2 [ G) =  a \E (X \ \ Q) +  a2E (X \ \ Q) a.s.

(iii) Positivity : If X  >  0 then E ( X  \ G) >  0 a.s.

(iv) Falou’s Lemma : If we have a  sequence of random  variables >

0 ;n  € N} then

E \  lim inf I g \ < lim inf E [X n I G] a.s.
L n —>00 J n —»00

(v) Dominated Convergence ; If the sequence above satisfies |Xn(u>)| < 

V(uj) V n  with E[V] < 00 and lim»-*» X n — X  a.s., then

lim E \X n | g\ =  E [X  | G] a.s.
n—* 00 1

(vi) Jensen’s Inequality : If c : R  -> R  is convex and £J[|c(.Y)J] <  0 0, then

E [c(X) I G) > c (E [X  I G}) a.s.

(vii) Tower Property : If H is a sub-cr-algebra of g ,  then

e [e [X \ g } \ n \ =  E [X  \ H) a.s.

(viii) Taking out what is known : If Z  is ̂ -measurable and bounded, then

E [Z X  | g) =  Z E [X  | G) a.s.
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A.4 Neveu [1]

Gemignani [21]

Firstly, we require some elem entary definitions from Gemignani [21] :

A  relation ■< on any set ,S w ith the following properties is a partial ordering 

on S

(i) x < x , V x  6 S,

(ii) x < y ,  y < x =$■ x  =  y ,  V x>y € S,

(iii) x  <  y, y  < z  => a: ■< z , V x ,y , z  € S.

The set (6’, ;<) is a partially ordered set.

S is totally ordered under < if, given any $,t 6 S either s <  t or t ■< s.

If / is partially ordered under ■<, then I is said to be an upward directed

set if, given i , j  € /, 3 k E I such that i. ■< k and j  ■< k.

N ev eu  [1]

Let P) be a probability space. A  family of random variables {/?,■ :

i € /} indexed by the ordered set I is directed upwards if :

(i) the ordered set; / vs directed upwards under

(ii) the mapping t (3t is increasing for inclusion, i.e., /?;, <  ( 3 when­

ever ¿i ■< ¡2-
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Proposition  6.1.1« from  N eveu [1]

For every family F  of real-valued m easurable functions /  : fï R  de­

fined on the probability space (H ,.F, P), there exists one and only one (up 

to equivalence) measurable function g : Q >-» R such tha t

(a) g > f  a.s., V /  €  F ,

(b) if h is a measurable function such th a t h > f  almost surely for all /  G F , 

then h >  g a.s.

This function g , which is the least upper bound of family F  in the sense 

of almost sure inequality is denoted by e sssu p (F ).

Furtherm ore there exists at least one sequence { /n : n G N }  from F  such 

th a t

ess sup(F ) =  sup /„a.s.
n

If F  is directed upwards the sequence {/„ : n £ iV) can be chosen to be 

increasing almost surely and then

e sssu p (F ) =  hrn^ t  /« a-s.

In our case {Jv{0)}v<=n is the family of random variables of (3.23) indexed 

by the set D. By construction, the family {Jv{0)}veD  satisfies the two con­

ditions above and hence is directed upwards.

We apply the proposition above to the family F  =  {•/11(^)}v6« to obtain

esssu n JJO )  =  lim t  -h [0) a.s., 
veD

for some sequence Ç D.
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A.5 Ito’s Lemma

Define W  =  {W_t,Ft, t  >  0}, as a standard d-dimensional Brownian Motion, 

null at zero and defined on the Probability Space

X  is an I to  P ro c e s s  if for some x €  R J

X t = x  + j  (x{s)ds +  0S - dW s,

where 0 6 TVlxd,/i 6 R ‘* or, w ritten in differential form

dX_t =  ^ d t  -f- 0t ■ dW t ,

£ o  = x.

I to ’s R u le :

If X_ is an Ito  Process in R d and /  € C 2,1(R d x [0,oo)).

Then {/(2£tj0'>* ^  0} ' s an Ito  Process with

f ( X t i t) = f ( X o,0) +  f  Dsf ( £ t i s )d s+  f  U ^ s ) 0 adW 3,
J 01 Jo

where

D j { x t>t)  =  4 (2 Q ,i)  • n t +  M & , t )  + \ r r [ o toJ ¡xx( x t , O].

It is easy to show th a t as a consequence of Ito’s Rule, for two processes 

satisfying

d X ^ t )  = !±1( t ) d i+ 0 l( t ) -d W l , 

dX■jit) =  fi2(t)dt -(- $2 ( 0  • dW t ,

we have

d ( x  , ( 0 * 2 ( 0 )  =  * , ( 0 ^ ( 0  +  * 2 ( 0 ^ * i ( 0  +  ^ ( 0 ^ ( 0 ^ -

This is used throughout the thesis.
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A.6 Bayes Rule

Fix T  >  0 and assume that Zx_(t) as in Appendix A .2 is a m artingale. 

If 0 <  s < t < T  and Y  is an ^ -m easu rab le  random variable satisfying 

£ [ |y |]  <  oo then

ft.p, | .  M M p A IA  a. ,
Zx_(s)

A .7 Monotone Convergence

Let P) be a probability triple, and X  be a random variable with

£[|A '|] <  oo. Let Q be a sub-er-algebra of T .

If we have a sequence of random variables { Arn >  0 ;n  € N } satisfying

lim t  Xn  =  A',
I l - H X J

then

lim t  E [X n \ Q] =  E [X  | Q] a.s.
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A.8 Karatzas and Shreve [2]

Theorem  1.3.13

Let X  =  { X t ,F t, t >  0} be a superm artingale with Ft satisfying the usual 

conditions (see Appendix A .1.7). The process AT has a  right continuous mod­

ification <!=> < H  E \X t\ : [0, oo) R  is right continuous.

If this right continuous modification exists it can be chosen so as to be right-

continuous with left-handed limits (RCLL) and adapted to {•T'j}, hence a

superm artingale with respect to {Ft}.

P ro p o s i t io n  1 .3 .14

If X  = {A’t ,Ft ,  t > 0} is a  superm artingale, we have

(i) 3 an event ÎÎ* £ F  with P[fT] =  1 such tha t for every a> £ fi* the 

limits

At+(u>) :=  lim X ,(w ), t >  0 

see

X t-(uj) :=  lim AT,(u>), t > 0
s f l
sec

exist and (ii) these limits satisfy

E [ Xt+ | Ft] < X ,  P-a.s.,

E [ X t | F - ]  < X t.  P-a.s.

(iii) {A't+ ,Ft+}i > 0} is an RCLL superm artingale.
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A.9 Doob-Meyer Decomposition

Theorem

If Ft satisfies the usual conditions and the  right continuous subm artingale 

X  = { X u F u t  >  0} is of class DL then  it adm its the decomposition

X t — Mt +  A t i

where M  = {M t ,F t , t  >  0} is a right continuous m artingale and A  = 

{ A t,F t , t  > 0} is an increasing process.

Furtherm ore if X  is of class D, then M  is uniformly integrable and A  is 

integrable.

C o ro lla ry

A su perm art ingale X  can be uniquely decomposed as

Xt  =  X(0 ) +  M t - A u

where M  is a local m artingale with M (0) =  0 and A is an non-decreasing 

locally natural process with /l(0) =  0.

If X  is also positive and of class DL, then M  is a m artingale.
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A. 10 Fundamental Martingale Representation
Theorem

If M (t)  is an .^ -adap ted  local m artingale with RCLL paths and A/(0) =  0, 

then there exists an R d valued process with

M (t) = f  ip($)dWs,
Jo

where -0 satisfies

[  ll^(s )l|2rf5 <Jo

and if E [M 2(T)] <  oo, then

E[Jq | |# 5 ) | |2ik] <  oo,

and M (t)  is a martingale.

If is another such process, then

/  ||^ (s )  -  ¿ { s ^ d s  =  0.
Jo
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A. 11 Ekeland and Temam [3]

If F  is a  m apping from C  C V  R  we associate w ith it the  functional 

F  : V  h* R  defined throughout V  by

Let V be a reflexive Banach Space (with norm  [■]) and C  a  non-em pty 

closed convex subset of V . Take a function F  : C  h->- R  and assume F  is 

convex and lower semi-continuous.

We are concerned with the problem

inf F(u).

This problem can be replaced with the identical problem (with the same 

infimum and the same set of solutions) given by :

F (u) =
F (u )y u €  C, 

+ 00, u ̂  C,
(A .l)

and F  is convex C  C V  is convex and F  : C  i-> R  is convex.

(A.2)

with the functional F  defined above.

P ro p o s it io n  Assume that F  is convex, lower semi-continuous and coercive 

over V.

Then the problem (A.2) above has a t least one solution. This is unique 

if F  is strictly convex over V.



A. 12 The Optional Sampling Theorem

Let { X t ,T t  : 0 <  t <  0 0 } be a  right-continuous superm artingale and let 

s <  r  be two optional stopping tim es of the filtration {F t) . We have

E [X t | F s+] < X s P-a.s.

If s is a  stopping time, then F ,  can replace F s+ above. In particular E [X t \ <  

E [X 0].
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A ppendix B 

Som e proofs and calculations

B .l Convexity of g and D

From Rockafellar [22], for a convex function / ,  the conjugate is defined as

/  := s u p [ x T v - f ( x )], 
xend

on R (i and is convex.

In our case g is concave, — g is convex with convex conjugate given by

h :=  sup [x7 v-|- sr(x)], 
xen.d

denoted by g{l,v)  in our notation.

D  lias been redefined by Remark 3.9. We check if these properties hold 

taking v  — Aw, -f f j , v 2 . We can see clearly tha t

(i) v is JFr measurable,

(ii) v is also uniformly bounded.
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T
E [ f  Hte, + iw2\\2dt + g{t, Auj -f nv?)dt]

< e [Jq [ A % 1f  +  , 2 | | ^ | | 2 +  2 H | ^ | | | | , 1| | ] ^  +  / o [Ag(t,vi) + ng{t,v2)\dt]

<  oo,

due to uniform boundedness of D.

(>v) +  w K ^SaiO ) <  A p(i,v i( t)  +  /iv2(0 ) <  0 0  follows from the
convexity of g

(iii) Finally
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B.2 Discounted stock prices

The following shows how the discounted stock prices are m artingales under 

the auxiliary probability m easure P . We know th a t

dPi(t) = Pi(t)[bi(i)dt + crT(t)dW (t) ],

dy{t) =  —7 (t)r(t)dt.

From the consequence of Ito’s lemma of Appendix A.5 we have 

¿(700^(0) =  l i^dPi i t )  +  dj(t)Pi(t)

=  i(t)Pi(t)[bi{t)dt +  crj( t)dW(t)] -  Pi(t},y(t)r(i)dt>

Now, applying Ito ’s lemma we obtain

d[ln(7(i)P,'(i))]

A - i w r n ) + I t v
7 « f i ( 0  '  w  '  "  2

(6,(0 -  r(0)* + -  f  IMI2*

Integrating both sides and taking the exponential gives

7 ( i)^ ( 0  =  Pi exP |  ~  Jq a j( s )d W (s )  -  £||<Tt(s ) ||2<is j .



B.3 The process M(t)

From the evolution equation of (2.16) we have 

=  dj ( t )X( t )  +  ~f(t)dX(t)

=  —7 ( t)X(t)r(t)dt +  7  (t)[X(t)r(t)dt +  X(t )] iT (t)a(t)dW(t)  — dc(t)]

=  j { t ) X ( t ) z T ( t ) a ( t ) d W ( t )  -  7 ( i ) f / c ( 0 .

Integrating as before we obtain

'y ( l)X ( l)+  [  7 (s)dc(s) =  x  +  [  y ( s )X ( s )n T ($)a(s)dW [s).
Jo Jo

B.4 The process N(t)

Similarly for the process N (t) , we use the consequence of Ito’s lem m a applied 

to (2.16) and the equation

dH{t) =  — H(t)[r(t)dt +  0T (t)dW (t)].

We obtain

d{H(t)X(t)) =  dH(t)X(t ) +  H(i)dX{t)  + [-H(t )Or (t)X(t)Kr ( tMt ) ]d t  

=  X (£)[—H(t)r(t)dt  -  H{t)6r {t)dW{t)\  

+H(t)[X{t)r{ t )dt +  X(t )zJ{ t )a{ t )dW(t )  -  dc(t)]



— H ( t ) X ( t ) d T(t)^J(t)<r(t)dt

= - X ( t ) I I ( t ) 0 T[t )dW(t )  +  II ( t )X( t ) jLT{t)a{t)[dW(t)  +  0{t)dt}

- H ( t ) X ( t ) 0 T(t)KT (t)a(t )dt  -  H(t)dc(t )

= X { t ) H( t ) \ £ ( t ) c r ( t )  -  0T(t )]dW(t)  -  H(t)dc(t) ,

yielding, by integration

H( t ) X( t )  +  T  +II{s)dc(s) =  f  A '(S)//(S)[7TT(S)<7(S) -  0T(s)]<W(s).
Jo Jo

B.5 The process Mv(t)

We know th a t

d ( ^ ( t ) X ( t ) )  =  lv_(t )dX(t )  + dy( t )X( t )

=  -yy(t)[X(t)g(t, ^ d t  +  X  ( t)n T a (t)d W  (t) — dc(t)\ 

- g { t , v t)yv (t)X (t)d t  

= lv^)X[t)[g{t,Kt)-9{t>Vi)]dt

+ 7v(i)X(t)TiTa ( t ) d W ( T )  -  7y(t)dc(t)

= 'Yv(i)X(i)[g(t>£i ) -  g{ t , v t) +  Kr (t)v{t)]dt

(B .l)

+1v(t)X(t)ir_Ta i ^ dW u i t )  -  7v(t.)dc(t.). 
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My(t)  :=  J i $ ) X { t ) +  f  7 „(s)dc(s)
J 0

+  f  ' i v ( s ) X ( s ) [ g ( s , V s ) -  7LT(s)v(s)]i/ii
Jo

=  x + [  ‘yu( s ) X ( s ) n T(s)a(s)d\Vv(s).
Jo ~

My(l)  is a nonnegative P — martingale. The same procedure can be followed 

for the analog of N (t)  of Chapter 2.

B.6 Required for Lemma 3.34

We have from (B .l) that

d('yÌL( i )X( t ) )  =  7 s ( 0 * ( ’9[ff(i » a t ) - f f ( i i Ì ì t )+2LT(<)3!Ì<)]rfi (B -2)

+1v ( t ) X ( i ) n r a( t )dW%(t) -  7jL(t)dc.(t).

We wish to solve this for the wealth process X ( t)  by firstly solving the ho­

mogenous part given by

d( i v ( t )X( t ) )  =  7a( t ) * ( i ) [ f f ( i ,2 !4 ) -5 ( i ,w < )  +  2LT(i)li£-0 ]<ii 

+71L( t ) X ( t ) z T(T(t)dWj<t),

and then guessing a solution to the inhom.oge.nous equation and solving this 

by variation of param eters. By Ito ’s lem m a

Therefore, by integration the process
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The solution to  the homogenous equation is then given by 

7 v (t)X (t)  =  z e x p j ^  g ( s ,K s ) - g ( s iVs) + ilt (s)u*4s|

‘ exp |  ilT{s)a(s)dW !L(s) ~  \  f Q ll2LT(® M *j||2<k J .

Therefore, we guess the solution to the inhomogenous equation is in the form

7„ (t)X (t) = f ( t ) h v_(t),

with 73i(0)X(0) =  x = / (0 )  and hy(l) given above. Also note th a t hy(t) 

satisfies the homogenous equation, i.e.,

dhy(t) = k v ( t){ [g (t,n t) -  g (t ,& ) +  j?J{i)vt\dt 

+2LT ( i)a ( t)d W J t)^ .

Now, assuming f ( t )  is determ inistic we apply Ito’s Rule to obtain 

d[7o(i)*(i)] =  d f(t)hy(t)  -f d h v (t) f( t)

=  df(t)liy(t) + iy ( i)X (t) i^ [g [ t,n t) -  + z ( t ) v t]dt + ? i(t)a(t)dW v(t)^,

which from the inhomogenous equation of (B.2) must equal

=  [g(t,7Lt) -  £(<,«*) +  lLr (t)vt\di  +  ( t)a (t)dW Jf}
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giving the separable equation

** df{t) ~

=*■/(*) =  * - /  7£(a)fcw1(«)cfc(a), ./o '

from the  initial condition for / .  Therefore the  solution to  the inhomogenous 

equation is given by :

X (i)  =  |re  - j f  7v(s)/i3i1(5 )rfc (s ) |/iJi( i) /7 „ (i)

=  | . t -  ^  exp [ -  j f  p(u,7ru) +  ET(«)Hurf«]

exp [ — /  7rT(u)ir(?i)i/H/u(u) +  ^  [  ||7rT(u)(r(li)||2iii( </c(s) 
I Jo  ~ 2 Jo J

ri
exp <! I g ( s ,n s) + 7Lr (s)yJlds

Io

+  ^  Kr  {s)<7(s)d\V1L(s) -  ^  ||7rT(s)ir(s) ||2c is |.
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