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Abstract

In this thesis we consider a financial market model consisting of a bond with
deterministic growth rate, and d risky assets, governed by Brownian motion
with drift. We can shift money from one asset to the other without loss of

capital.

Optimal investment and consumption (spending) decisions are examined for
different types of investors with various criteria for optimality. An investor’s
level of satisfaction with any amount of wealth is measured by a utility func-
tion. The problem has been solved by Merton [4] and others for the small
investor with no transaction costs. Here we suppose the investor is large, i.e.,

his strategy has an effect on the asset price evolution.

The approach parallels that taken by Cvitanic and Karatzas [5] for con-
strained portfolios. The theorems therein are adjusted appropriately to ac-
count for the investor’s effect on prices instead of constraining the portfolios

as Cvitanic and Karatzas do.

As in Cvitanic and Karatzas [5], Karatzas et al.[6] and several others duality
theory and martingale methods are introduced to prove the existence of the
optimal portfolio which maximises the expected final utility. An algorithm

is suggested to find this portfolio under certain market conditions.



Glossary

I. General Notation

Let a and 6 be real numbers. As usual ' means is defined to be.
aAb = min{a, 6}.
a~ = max{—a,o0}.
esssup X := inf{a :P(X < a) = 1}
la(x) = 1lifx€ A, 0ifx $ A.
I el = The Euclidean norm.
Il. Sets and Spaces
v4(x) : The set of all admissible policies.
C(x) : The set defined in (2.26).
'D(x) : The set of (2.26) with equality.
D, : The set of processes v for which g{t,v) is finite.
D : The set of processes in Dt for all times t.
D' : The set of processes for which ( is finite.
C(x) : The set defined in (2.27).
M.(x) : The set (2.27) with equality.
V(x) : The set defined in (2.28).
Q : The set of Rational numbers.
7Zd : ¢-dimensional Euclidean space ; TV — 71
S . Theset of all *-stopping times, r in [0, T],
S>0 : Theset of all *-stopping times in [0,T] such that />(t") <
11 : The Hilbert space defined in (3.53).

< a(u>).



I11. Probability

E : Expectation operator corresponding to probability P.
T*\ §(Xs:0< s < £>the smallest (7-field with respect to which the random
variable X's is measurable Vs € [0,f].

jFi+ : 07000.T’i+e)-
Tt- :0"U AT

P : Probability measure corresponding to Brownian motion.

W :Standard ¢-dimensional Brownian motion.

H : The sample space 011 which probability measures can be placed.

> A sample point of the sample space.

IV. Functions

/o : The market effect function for the bond.
fi : The market cfFect function for the ith stock.
g : The function defined in (3.3).
g : The function defined in (3.4).
: The inverse marginal utility.

J 1 The objective function of (2.59).
J : The extended functional defined in (3.54).
u : The utility function.
u' : The marginal utility.

u : The Legendre Fenschel transform of definition 2.20.
V(x) : The value function of (2.61).
v (t) : The random variable defined in (3.22).

£ : The function defined in (2.67).

4> : The inverse of the function

$ : the function defined in (3.36).



V. Defined Processes

&) : Growth rate vector of the stocks.
c(-) : The consumption rate process.
/I(*) : The deflating process of (2.18).
M(-) : The process defined in (2.17).
YW(-) : The process defined in (2.20).

Po : Value process of the bond.

Pi : Value process of the ith stock.
r(-) : Short interest rate of the bond.
X : The initial capital endowed.
X(-) : The wealth process.

Z(-) : Exponential martingale of (2.8).
7(-) : Discount process of (2.12).

7r(-) : Vector of fractions invested in stocks.
ir(-) : Volatility matrix of the stocks.
#(*) : Relative risk process of (2.7).

V1. Miscellaneous

¢ : Any stopping time.

Tg ' Bankruptcy time defined in (2.24).

B : The random variable representing the contingent claim.
h(0) : The minimal hedging price.

< : The partial ordering defined in Appendix A.4.

[*(] : The Hilbert Space norm of (3.53).
(, ) : The inner product of (3.53).

[, J: A stochastic interval.



Chapter 1

Introduction to Optimal
Portfolio Theory

1.1 Objectives

In this thesis we are primarily concerned with the happiness of an investor
in the stock market. More precisely, we have a market consisting of various
assets in which an agent can invest his wealth. We attempt to allocate this
wealth in such a way as to ensure the agent’s maximum satisfaction with the

final return of the investment portfolio.

This problem is important for several reasons :

e The resulting solution, although merely an estimate, gives an insight
into the behaviour of a shrewd investor given different criteria for in-

vestment.

» It is of considerable interest to any educated investor in a market to
have an appropriate model of that market. But perhaps more impor-
tant, particularly from any potential investor’s point of view, is the need
for a probabilistically sound model for the recommended behaviour and

preferred investment strategy most likely to yield a high return.
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* Economically, the aforementioned model of the stock market and in-
vestor behaviour can be examined to see if mathematical solutions are
reflected in the overall behaviour within the market and in the evolution
of the market itself.

e The approach taken and methodology used also yield a method for

pricing financial derivatives and other commodities.

For our part, we will confine our interest, and approach this thesis purely
from the potential investor’sviewpoint. More precisely, our aim is to optimise
the investor’s level of satisfaction with the terminal return on his investment

portfolio, measured by a utility function; cf Section 2.4.

We remark here that maximising the utility of final wealth is not the only
criterion on which one could base portfolio investment. This is most appro-
priate for an investor who wishes to get rich. Alternatively, the methodology
of the thesis could be used to maximise the utility (satisfaction) from con-
sumption (spending). This would be more appropriate for an investor whose
primary concern is to enjoy living. For a small investor, this problem is ex-
amined in Karatzas et al. [7], Xu and Shreve [8] and others. The approach
is identical to that for utility of final wealth with obvious changes in the
objective function. Indeed Karatzas [9] shows that there is an investment
strategy that will maximise an objective function of both final wealth and

consumption. In this way the investor can live well and get rich.

11



1.2 Approach Taken

The thesis studies primarily the problem of an agent who receives a deter-
ministic capital, which he may then invest in a market of assets in order to
maximise the expected utility of his wealth at some pre-specified final time
T. The market consists of ¢ stocks, driven by a ¢-dimensional Brownian
motion (in the case of a complete marketl), and a bond. The investor is
allowed to spend money at any time via a cumulative consumption process.
However he is not allowed to input more capital during the interval [0,T].
The market coefficients - the interest rate, the appreciation rate of the stocks
and the volatility coefficients of the stocks - are random processes adapted
to the full ;-dimensional Brownian motion.

The principal result of the paper focuses on the strategy for a large in-
vestor, i.e., one whose policies affect the asset price evolution. Theorem 3.41
provides conditions under which the expected utility is maximised in this
market. We then characterise this optimal strategy in terms of a solution
to the Dual optimisation problem. The main mathematical tool, namely the

martingale approach to stochastic control, is utilised throughout the thesis.

In Chapter 2 we examine the more elementary problem of utility maximisa-
tion faced by a small agent. In 82.1 the standard generalisation of the market
model of Merton [4] is introduced. In 82.2 we derive a necessary condition
for the investment policy to be admissible, i.e., for the investor to avoid debt
at all times t in the interval [0, T]. We also prove the extent to which the
opposite implications are true. In 82.3 we define the problem of pricing and
hedging a contingent claim. We solve the pricing problem and suggest a way
to find the hedging policy in feedback form.

XThe incomplete market case, where the number of driving Brownian motions is greater

than the number of stocks, is dealt with in Karatzas et al. [6].

12



In §2.4 we introduce the concept of utility functions used to measure an in-
vestor’s degree of satisfaction. In 82.5 the utility maximisation problem of
a small investor is defined. We then present the solution which proceeds in
several steps. Firstly, using results of 82.2 on the sufficiency of the conditions
we reformulate the problem as a standard linear optimisation problem with
equality constraints. Secondly, we conjecture an optimal form for the final
wealth using elementary duality theory. Thirdly, it is shown that a portfolio
can be constructed that attains this most desirable form as its final wealth.
This portfolio is optimal.

In Chapter 3 we deal with the case of the large investor. We parallel the
approach taken by Cvitanic and Karatzas [5] for constrained portfolios. This
is summarised as follows. In 83.1 we adjust the old model to account for
the effect of the agent’s actions on asset behaviour. We introduce a suitably
large family of probability measures, each of which defines a linear problem
similar to the one solved in Chapter 2. In 83.2 we show that, under appro-
priate conditions, all contingent claims can be replicated. In fact for a large
investor this can be done with zero consumption. The minimal initial capital
that makes this replication possible is equal to the supremum of the expected
discounted values of the claim under these new probability measures. Also,
the existence of a hedging portfolio process is proved and the form of the
wealth process is found in Theorem 3.21. It is later shown in Chapter 4 how
to find the portfolio process in feedback form for certain utility functions.
In 83.3 we approach the utility maximisation problem via the results of the
previous section. As before, we specify the problem, reformulate it using the
sufficiency of certain conditions and approach it using established duality
theory. We use informal arguments to conjecture the optimal form of ter-
minal wealth and prove rigidly that it is optimal. We find conditions under
which an optimal solution exists. In 83.4 we ensure these conditions are satis-
fied and we then use Theorem 3.21 to hedge this optimal form. We thus find

the form of the optimal wealth process. The optimal portfolio and wealth

13



processes depend on the solution to a dual problem. The dual problem must
then be solved. We show that the dual problem has a solution which is in
fact unique and demonstrate the dependence of the optimal processes on the

solution to the particular dual problem.

In Chapter 4 we illustrate some applications of the previous theory through
examples and show how some of the calculations of dual solutions are per-

formed.
Finally, Chapter 5 gives a brief summary of other works in this area includ-

ing the problem of transaction costs (brokerage fees). Conclusions are also
drawn from the thesis and suggestions for possible further work are made.

14



Chapter 2
The Small Investor Problem

In Uiis chapter we wish to consider only small investors, agents whose deci-
sions cannot affect the asset prices. The approach taken here is the standard

approach taken by Merton [4] and Karatzas et al. [7].

2.1 The Stock Market Model

2.1.1 The Probabilistic Setting

In order to treat the questions being asked in the context of a financial
market, we require a financial market model. We begin with the standard
assumption of continuous trading. The basic securities consist of d + 1 as-
sets which include one risk-free asset called the bondl whose value, Po(t) is

governed by the equation

dPO(t) = PO(t)r(t)di,
(2.1)
fis(0) = 1

The d risky assets are called stocks and can be traded continuously. The

"This is more commonly known as a zero-coupcm bond.
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prices of these latter are driven by an equal number of independent stan-
dard Brownian motions (see Appendix A.1.16). This is the complete market
model. These driving Brownian motions model the external exogenous forces
of uncertainty that influence the market. The price Pi(t) of the ith stock is

modelled by the linear stochastic differential equation

dPi{t)

Pj(t) bj(t)dt + Y] (Tjj(t)dWj(t)
3=1

2.2
Pi{0)

pi,

fori = I..d.

The process W = (W1,...Wd)T is the standard d-dimensional Wiener process
defined on the probability space (fi, (F te[,c];P) as in Appendix A.1.16. P
is called the objective probability measure. In general we assume that the
filtration (J-t) is the natural filtration (see Appendix A.1.4) generated by the
Wiener process W, i.e.,

«(VF(s) :0< s <), t ¢ [0,00). (2.3)

Wi ith this interpretation of the stock market :

The process {r(i) :t 6 [0,00)} is the short rate of interest process for the
bond.

The process {£(i) = (bl(t)....bd(t))T : t £ [0,00)} is the appreciation rate
vector for the d stocks.

The volatility matrix is given by a(t) := [0'tj(i)] where {uij(t) :t £ [0,00)} is

the volatility coefficient and models the instantaneous intensity with which

the j th source of uncertainty influences the price of the ith stock.
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These are called the coefficients of the market model. They are all assumed
to be random, uniformly bounded in (t,u>) G [0, o0) x f2 and progressively
measurable processes (see Appendix A.1.9) with values in R, Rd and R dxd
respectively. They are also adapted (see Appendix A.1.8) to the Brownian
filtration of (2.3).

For our purposes we fix, from here onwards, a finite time horizon [0,T]2

on which all our problems will be treated.

The following Standing Assumptions are made :

o NIKOH2N < o> (2-4)

I\t < L, (2-5)

for some real constant L > 0. We assume also that the square matrix a(t)
is of full rank, Vi £ [0,T]. Finally, we assume that, the covariance matrix

defined by a(t) := a(t)aT(t) is strongly nondegenerate, i.e., 3 e > 0 such that
ETer(ii,a>)crT(i,u;)E > el|£]|2 V£ GRd, (f,w) G [0,00) x SI. (2.6)

It follows from (2.6) that cr_ 1 and (crT)-1 exist and are bounded above and

below by 5 and 1/5 respectively, where 8 is some positive real constant.

2.1.2 Auxiliary Probability Measures

In order to utilise martingale theory we require the asset prices to behave
like martingales. The nondegeneracy condition allows us to introduce an
auxiliary probability measure P, equivalent to P, which will be catalyst to

all future developments. Now let us introduce the Revalued process

o(t) := (CT())_1[6(i) - r{t)1], (2.7)
2Infinite time horizons are dealt with in Taksar et al. [10] and Morton and Pliska [11].

In these articles the logarithmic growth rate of wealth is maximised.
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where 1 is the ¢-dimensional vector whose every component is 1. This is
called the risk premium vector or relative risk process. By (2.6) and (2.4) it
is well-defined and bounded. It is also measurable and adapted due to the
assumptions on the market model coefficients.

We also introduce the exponential martingale (see Appendix A.1.10)
Z(t) == exp{- fo£(s)dW(s) - \ J “||[EM|ja</} (2.8)
and the auxiliary probability measure P defined on (i), (Tt)) by
P(A) := E[Z(T)la\ (2.9)

Hence, according to the Girsanov Theorem (see Appendix A.2) the process
defined by
W(t) := W(t) + Jge_(s)ds, t G[O0,T], (2.10)

is an Revalued Brownian motion under P. Rewriting (2.2) using (2.7) and
(2.10) we obtain

d
dPi(t) = Pi(t) r(t)dt + y :aij(t)dWj(t) . (2-11)
L i=i

Comparing this with (2.1) we can see that P equates the appreciation rate
of all the stocks to the interest rate of the bond, i.e., P is the risk-neutral

probability measure of the market model.

Alternatively, under the discount factor defined by :
7(/) == exp| - N r(s)dsj, t G[0,T], (2.12)

we can use Ito’s Lemma (see Appendix A.5) to solve the equation (2.11) for

the discounted stock prices -y(t)Pi(t) given by

7 (t)Pi(t) = piexp | al(s)dW(s) jQ IM s)||2ck}j, (2.13)

18



where cr(<) = (<tl...crli)T. This is completed in Appendix B.2. Therefore

the discounted stock prices are martingales under P.

2.1 Remark

The existence of P with the above properties guarantees that the model
is arbitrage free; cf Definition 2.8. This means it is impossible to make risk-

less profits out of nothing - no free Imich.

The uniqueness of P ensures that all risk in the market can be offset or
hedged against by an appropriate trading strategy in the assets.

These properties allow us to solve the contingent claim hedging problem,
option pricing and investment problems in the context of the current model.

19



2.2 The Small Investor’s Portfolio

A natural requirement for any investor is the necessity to remain liquid. For
this reason we must ensure that, at all times, the value of an investor’s
portfolio is nonnegative. In order to apply duality theory to our problem
we require constraints which ensure liquidity. In other words, we must find
conditions which will ensure that our portfolio is admissible. To this end, we
firstly derive conditions necessary to avoid debt. We then examine to what
extent these conditions are sufficient.

2.2.1 Necessary Conditions for Admissibility

We denote by X (t) the wealth that the agent has at his disposal at time, t.

We have the following definitions :

2.2 Definition. A portfolio process is an Hd-valued process,
{2L(0 = (7Ti(i)....7rd{t))T :t e [o,r]}
which is progressively measurable with respect to {J-t} and satisfies

JIo \aT(t)]i{t)\\2dt < oo a.s. P. (2-14)

For our purpose ni(t) represents the proportion of wealth invested in the ith
stock at time, t. We allow n¢(;) to become negative. This is called short-
selling. Similarly J2i=i ni(t) can exceed 1. This represents borrowing at the
interest rate r(t) of the bond. The investor is also allowed to spend via the

cumulative consumption process3. This is defined by :

2.3 Definition. A cumulative consumption process

{c(t):i€[0,T]},
3Most of the theory developed to date uses a consumption rate process but the treat-

ment is fundamentally the same.
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is a nonnegative, nondecreasing R -valued process which is progressively mea-

surable with respect to {Tt} and satisfies

c(0) = 0 and c¢{T) < oo a.s. (2.15)

The adaptivity of both processes above (their unpredictability) arises because

the agent cannot anticipate future values of the prices, i.e., no insider trading.
We assume that the agent adopts a self-financing strategy - one with no

input of capital during [0,T]. Under the above notation, for an agent given

non-random initial wealth x > 0, the wealth X(t) evolves as follows :

"W = E + (1~ * W ) - Mt)

X i) bi(t)dt + A2 Cijdwi1 |
li=1 j=1 J

+ X (i) (I —K1{O)X)r{t)dt —dc(t)

X()r(t)dt + X ()zrT(®)a(t) [dW(t) + or 1) (b(t) —r(t)1)dt] —dc(t).

This yields the evolution equation given by

dX(t) = X()r(t)dt + X (tyirj ()cr(t)dW(t) —dc(t),
(2.16)
X(0) = x>0. 1

2.4 Definition. We define the corresponding wealth process for port-
folio policy (#,c) and initial capital x £ (0,00) to be the solution X(-) =
X x-'c(-) of equation (S.16) above.

21



2.5 Definition. A portfolio policy (zl,c) is called admissible for initial

capital x G (0, oo) if
X***{t)> 0, V/G[0,T],

holds almost surely.
i.e., if it avoids debt at all times during the interval [0,T],

The set of admissible policies is denoted by

A(x) := {(21,¢) : X x*'c(t) >0V /G [0,T]}.

By Ito’s Rule, the solution of (2.16) satisfies (see Appendix B.3) :

M{t) := [li(s)dc(s) + j(t)X(t) (2.17)

= x+ Jfo 7(5)Ar(s)7rT(5)cr(.s)(/H/ (5).

The left-hand side consists of the current discounted wealth plus the total
discounted consumption to-date. It is a continuous local martingale under

the risk-neutral probability measure, P.

Also, if we define the process I1(t) by

H(*):=7(0 m (2-18)
which, by Ito’s Lemma, (2.12) and (2.8), satisfies the linear stochastic equa-
tion

dH(t) = -H{t)[r(t)dt + OT(t)dW(t)), (2.19)

then, analogously, we can solve for the process N(t) defined by

N{t) = [THE)E) + H{HX(©) (2.20)

X+ LIH(S)X($)KTE)() - 0T{s)]dW{s),

22



which is a local martingale under P.
2.6 Remark

Note that the process H(t) modifies the discount factor 7 (t) with Z{t) which
has been used to equate the growth rates of all assets to that of the bond. In
other words we have accounted for the presence of the financial market and
multiplication by H(t) deflates wealth at time t to the equivalent amount at
time 0.

For any admissible (tt,c) € A(x) the left-hand side of (2.17) is nonnega-
tive. It follows from an application of Fatou’s Lemma (see Appendix A.3)
that the process M{t) is a P-supermartingale and consequently, by the op-

tional sampling theorem (see Appendix A.12),

E /(0)X(60)+ {j(s)de(s)] < x, (2.21)

for every r € <7oy] {All Tt stopping times in [0,7"]}. This yields the
following necessary conditions for admissibility.

Ef fO 7 (s)ofc(.s)] < X, (2.22)

E[y{T)X(T)} < x. (2.23)

This can be stated similarly for the process N(t) with obvious equivalent

necessary conditions under expectation E and process H(T).
2.7 Remark

For any given (m, <) £ A(x) define the bankruptcy time as
tb = inf{i G[0, T] : X(t) = 0} AT. (2.24)
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Since M(t) is a P-supermartingale, then for any t £ [tb,T] on the event
{tb < T] we have

ELy(t)X(t) + 7 ()rfc(a)] < E[j (tb)X(tb) + 7 (a)<fc(a),_
= £ [7 ()X (i)j < 0 as.,

since

E[fQB?(S)dc(s)] 'E\\]qY(«)dc(B)] < 0.

Hence for admissible policies, X(t) = 0, V¢ £ [tv,71 almost surely on
{tb < T}, i.e., if the wealth X(-) becomes equal to zero before the terminal

time T it stays there. Further values of 7 are irrelevant and are ignored.
2.8 Definition. An arbitrage opportunity is a policy (7r,c) such that
(i) (tt,0) e .4.(0),

(if) The wealth process X x'-"°(-) satisfies

P[X(T)> 0] > 0. (2.25)

In other words an arbitrage opportunity is the existence of an investment
strategy that achieves, with zero initial capital and no intermediate invest-
ment, an amount of terminal wealth which is almost surely nonnegative and
positive with positive probability. Our model excludes arbitrage by virtue of
condition (2.23).

2.2.2 Sufficiency of the Conditions for Admissibility

This section examines the sufficiency of conditions (2.22) and (2.23) for ad-

missibility. It turns out that these conditions are sufficient in the sense of
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Lemmas 2.9 and 2.11. Again the standard approach of Karatzas et al. [7] is
followed. Once we can prove their sufficiency they shall acquire the signifi-
cance of budget constraints for the utility maximisation problem; cf Section
2.5. According to conditions (2.22) and (2.23) we define the following, for

any x > 0 :
C(x) := {All processes c(i) satisfying inequality (2.22)}, (2.26)
respectively T>(x) for equality in (2.22),
C(x) := {Nonnegative R.V.’s X t satisfying inequality (2.23)}, (2.27)
respectively A4(x) for equality in (2.23). Finally we define

V(X) {All portfolios z such that (z1,0) £ A(x)
and XT GM {x)}. (2.28)

We are primarily interested in C{x)A This set consists of all attainable levels
of wealth. For any random variable B £ C(x) an agent can construct a policy
(iL,c) & A(x) with corresponding wealth process X(-) such that X(T) = B
almost surely P. Lemma 2.9 formalises the result.

29 Lemma

For every B £ C(x) there exists a pair (zr,c) £ A(x) with corresponding
wealth X (-) such that X(T) = B almost surely P.

Proof:

Define the processes

v(t) := E[y(T)B \Ft]- E[y(T)B], t£ [0,T], (2.29)

4We wish to maximise utility of final wealth. The maximisation of utility from con-
sumption is dealt with briefly in Karatzas [9 and Karatzas et al. [7] but is primarily a
parallel problem.
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which is a M-martingale, and

Ar[* +»(0+ Bh(T)B-*]</r] (2.30)

X (1)

N-Le\W){MB IR+ (* - ¢ [7(T)B))(1- i/r)].

For all B G £(a:), this is nonnegative by (2.23) and X(T)=B, P almost
surely. Applyingthe Fundamental martingale representation theorem (see

Appendix A.10) to i>(i) shows it can be written its a stochastic integral

LT ()dW(s), (2.31)

for some T t-progressively measurable, R"*valued process <p(t) satisfying

jo I~ (s)li2h5 < 00 a-=s. (2.32)

Now define the process
-w =7-"(0OK(0)-V (O (2 33)
K 1

A X{t)

This is a valid portfolio process due to (2.32), Remark 2.7 and the adaptivity

and boundedness of (crT)-1. It also means that v(t) can be represented as
(2.34)

t,(i)= Jfo X{s)tT(s)-y{s)a{s)dW{s).

Now define the process
(2.35)
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Finally we must show that the corresponding wealth process X x,-'° for the
policy (zl, c) defined by (2.33) and (2.35) is in fact X(-). From (2.30) and
(2.35) we have

f Hs)de(s) + -y(OX(®) [\-E{~,(1)D))ITds

-fz + u(0 + (E[y(t)B] - x)t/T
= x4 v(t)

= X+ JI0 Aa(s)7tt (.S)7(.s)<t(s)<:/IM/*(s),

from (2.34). This is exactly equation (2.17) so that X is the corresponding

wealth process for the policy defined and X (T) = B, P almost surely.

2.10 Corollary

For any random variable B in the class A4(x), the policy (tt,c) of Lemma
2.9 isunique and in the class V(x). Furthermore it has corresponding wealth
process given by

[(t)X(t) = EMT)B |FU). (2.36)

Lemma 2.9 and relation (2.22) says that C(x) consists of precisely those
‘levels of terminal wealth’ which are attainable from the initial endowment
x > 0, via the choice of some portfolio/consumption pair which avoids debt.
However Corollary 2.10 shows that the ’extreme’ elements of C(x) are at-

tainable by strategies that mandate zero consumption.
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On the other hand C(x) consists of all reasonable consumption processes
for which an agent can construct a portfolio # with corresponding wealth

process -*(-) > 0, i.e., one avoiding debt. Lemma 2.11 gives this result.

2.11 Lemma

For every c(-) EC(x) there exists a portfolio process # such that (7r,c) £ A(x),

Proof:

The proof is similar to that of Lemma 2.9 and is omitted. 2.12 Corol-
lary

For any consumption rate process c(t) in the class T>(x), the portfolio 7 of

Lemma 2.9 is unique and the corresponding wealth process given by :
7(H)X(O = E[j\(s)dc(s) Ift\, te [0,T], (2.37)

and X(t) = 0 almost surely.

The final four results of this section characterise the possible levels of wealth
attainable and the financable consumption policies. The results are utilised
in Sections 2.3 and 2.5. We note here that, althouth the conditions (2.22) and
(2.23) are not suffucient to ensure a process (7r,c) avoids debt, they are each
sufficient for admissibility in their respective problems. This means that if
(2.23) holds we can find a suitable corresponding portfolio to avoid debt, in
fact, in the case of those elements of A4(x), the consumption process must be
zero. Analogotisly if (2.22) holds then a suitable corresponding consumption
process exists to avoid debt. We note that (2.22) and (2.23) together are not
sufficient for admissibility but that we do not require the sufficiency of these
conditions to solve the respective problems of maximisation of utility from

consumption and utility from final wealth.
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2.3 Hedging Contingent Claims

Let’s suppose that the investor promises to pay someone a random amount
B(lg > Oattimet = T. What is the value of this promise at timet = 0? In
other words, how much should the investor charge for selling the contractual
obligation that entitles its holder to a payment of size B{to) at time T. To
solve the problem, suppose the investor sets aside the amount x > 0 at time
0. He invests the amount in the market according to the portfolio 7r(t) and
withdraws funds according to the cumulative consumption process c(t). At

time t=T he wants to be certain that he can cover his obligation, i.e.,
X XAJT) > B as.

His wish is to find the cheapest way to cover his obligation, i.e., the least
x > 0 for which this hedging is possible. For the investor (seller) this is a
fair selling price of the contract at time 0. Any price above this represents

an arbitrage opportunity.

2.13 Definition. A contingent claim is a nonnegative Tt-measurable ran-

dom variable B.

It can be thought of as a contract or agreement that pays B at maturity
T. We are interested, not only in the fair price of this contract, but in the
hedging portfolio mentioned above. The results of Section 2.2 are particu-

larly important in this respect.

2.14 Definition. The hedging price of the contingent claim B is defined
h(0) := inf x £ (0,00) : 3(7r,c) £ A(x) s.t. XX-'QT) > B as. . (2.38)
Corollary 2.10 states that A4(x) is the set of all exactly replicable levels of

wealth mandating zero consumption given initial capital x. It also says the
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corresponding initial wealth is A"(0) = E[y(t)B}. This leads us to conjecture
that once ZJ7 (i)P] is finite it will be the minimal hedging price for the claim,
B (since no consumption occured). Corollary 2.10 also gives us the form of
the wealth process corresponding to the hedging portfolio. The result is given
in Theorem 2.15.

2.15 Theorem

The infimum in (2.38) is attained. In -particular
h{0) = E[i{t)B). (2.39)
Furthermore there exists a policy (zl, 0) such that X = X h* ~,0(-)is given by
A'(i) = | Ti\, t€ [0,71]. (2.40)

Proof:

Assume li(0) < oo and equal to x, say. In other words there exists some
admissible pair (¢, c) £ A(x) such that X X-'GT) > B almost surely. Then,

necessarily from (2.23),

u = E['y(T)B]<x,

= u < h(0).
For the opposite inequality, define the process

X(t) =iib (T )B |A], 1€ [0,71, (2.41)

with A'(0) = u, X(T) = B. But since E[y(T)B|.F] isa P-martingale then,

by the Martingale representation theorem X(t) can be represented as

(2.42)
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for a suitable T r progressively measurable process <f)(t) with values in R d and
satisfying
}o ||</>(i)||]2¢E < o0 a.s. (2.43)
Then we can define ¢(¢) by
7 ()£ (t)X(t) := ). (2.44)
This gives a well defined portfolio process (recall the boundedness of cr-1(0

and 7 (t) and Remark 2.7). Clearly, from (2.42) and (2.44)

7(*)A'(0 = u + JIO' -f(s)X{s)tT{s)cr{s)dW(s). (2.45)

Comparing (2.45) with (2.17) it is clear that X = X u'-,0(-). Therefore there
exists a portfolio process with initial capital u which always hedges R. This
implies that /i(0) < wu.

31



2.4 Utility Functions

To formulate meaningful optimisation problems for the investor we will re-
quire the concept of utility functions mentioned in Chapter 1. The utility is a
function which quantifies precisely the satisfaction derived from any positive

level of wealth.

2.16 Definition. A function u : (0,00) HmR is called a utility func-

tion if it has the following properties :
() u is strictly increasing,
(i) u is strictly concave,

(Hi) u is continuously differentiable,

and can satisfy

u'(0+) u"x) = oo, (2-46)

=
3 °3

u'(oo)

u'(/x) —0. 62.47)

o

0

2.17 Remark

Property (i) implies that the investor prefers higher levels of wealth to lower
levels. Concavity implies that if the investor with wealth x were offered
a bet with resultant wealths x + a and x —a, each with probability |,
his current utility u(x) would exceed the expected utility from the gam-
ble, \[u(x + a) + u(x —a)]. The investor is decreasingly risk averse, i.e., his
marginal utility is decreasing in x and tends to zero as x —>o00. This is

known as the saturation effect.

2.18 Definition. We define the marginal utility u' : (0,00) i-» (0, 00)

in the obvious way.
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This function satisfies

(i) u’ is continuous,
(ii) u' is strictly decreasing,

(iii) u' is strictly positive.

These properties follow obviously from (iii),(ii),(i) of Definition 2.16 respec-

tively.

2.19 Definition. We denote by | : (0,00) (0,00) the inverse marginal

utility such that | satisfies i (1(x)) = I{(u'(x)) —x.
I (x) also satisfies :

(i) 1 is continuous,
(if) / is strictly decreasing,

(iti) / is strictly positive.

These follow from properties (i),(ii),(iii) of Definition 2.18 respectively. The

following conditions may also hold :

1(0+) := \J}'igl(y) = 00, (2.48)
/(00) := Hm I(y) = 0. (2.49)

2.20 Definition. Finally we define the Legendre-Fenchel transform u

of —u(x) on (0,00) as :

u(y) := maxfu(a:) —xy], (2.50)
= u(l(y))-yHy). (2.51)

This function satisfies :
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() U is strictly decreasing,

(i) u is strictly convex, and

(iii)

u(x) mm[u(y) + art/], x£(0,00), (2.52)

u(u'(x)) + xu'(ar), x 6 (0,00). (2.53)

2.21 Remark

We can see that the maximum in (2.50) is achieved at
it'(r) —y = 0,
= x = f{y).

Similarly we can find the minimum in (2.52) which is achieved at y = u'(x).

Also, properties (i) and (ii) follow from the fact that

u(y) = u(l(y))-yl(y),
= u‘(y) = u*{l{y))l\y) - ylI'(y) - I(y)
= -I(y)<O0,
=*ft"(y) = -l\y)> 0.

Following from (2.50) and (2.52) respectively we have, for all x,y > 0, the

inequalities

u(l(y)) > u(x)-fy(l(y) - x), (2.54)
ut('(®)) < u(y) - x(u\x) - vy). (2.55)
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The monotonicity of u andu guarantees the limits

u(o+)
{¢(0+)

limti(x), wu(oo) := Inrwi(a:), (2.56)

limuGt),  ii(00) :

Jim u(y), (2.57)

exist in the extended real number system.

2.22 Lemma

(i) ti(0) = u(00),

(a) u(o) = u(oo0).
Proof:

(i) Firstly note that, from Definition 2.16 and Definition 2.19 (iii), we have
forally >0

tt(y) u{l{y))-yl(y)

< «(/(y)).

N

Jim uty) < i, iti(y)

= u(0).

Also, from (2.50), we have for all x > 0

Hy) > «(-i') ~ xy

u(ely)-e, Ve > 0,

yIi»rraou(y) > yl_i{go uicly) —e. Ve > 0,
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= t/(0) —c, Ve > 0,

whence fi(oo) = ti(0).

(i) Similarly, from Definition 2.20 (iii) and Definition 2.18 (iii), we have

forall x >0

ix) = u(ii'(x")) + xu'(x)

> {e(i{ay)),
= m -
Also from (2.52)
u(.t) < u(y) +xy, Vy >0
= u(c/x) + e V>0,
:>Sl_im¢>u(;<) < ligyu(e/x) + ¢, Ve>0,

= £1(0) + c, Ve>0,

whence u(oo) = ii(0).

We will have reason to use the following assumptions in the theory to follow,

in particular to prove the existence of the dual solution of section 3.4.
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2.23 Assumption X i-=>xu(x) is non-decreasing on (0, 00)

2.24 Assumption For some or £ (0,1),7 £ (I,00) we have
au'(x) > ¥(7®), Vx £ (0,00).

2.25 Lemma

If the utility functions satisfy assumptions 2.23 and 2.24, then

(i) yI(y) is non-increasing,

(i) x «(e*) is convex on R,

(Hh)Va £ (0,1),3 7 > 1 such that I(ay) <7/(y), Vy > 0.

Proof:

(i) By assumption 2.23

xu"(x) +u'(x) > o, V x £ (0,00),

[(y)u"{I(y)) +y > 0, Vy£(0,00),

by letting a = /(y) and y = u'(a:). Also, since u'(I(y)) = y implies that
u"(l(y))I\y) = 1then

= i(y)P'(y) +y > Vy£(o0,00),
= Kv) +yily) < Vy£(0,00),
= (yT(y))" < vy £ (o, 00).

llcnce y/(y) is non-increasing.
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(if) By Remark 2.21

= ~exl{ex),

which from part (i) is non-decreasing for all ex € (0,00) and hence for all
X € R. Therefore u(ex) is convex on R.

(ili) Again, setting y = u'(x) =>x = I(y) we obtain from Assumption 2.24

au'(x) > u(7x), V x £ (0,00),
=>ay > u'(7/(y)), Vy€(0,00),
= [(ay) < 71/(y), Vy€(0,00), (2.58)

for some a € (0,1),7 € (l,00) since | is decreasing. Therefore, assuming
a € [a, 1),

I(ay) = [I(a(ala)y)
< 7/((ala)y)
< Tri(y),

using the property (2.58) above and the decreasing property of /. Now,
reiterating (2.58) for a € (0,a),

/(ay) /(a(ala)y)

< 7/((ala)y)

< 7n/((al«n)y),
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until a/an > a
Gml(ay) < 7n+ll(y).

Hence for all a 6 (0,1), 3 some 7 > 1 such that I(ay) < 71(y), Vy > 0.

2.26 Remark

Assumption 2.23 means
—Xxu”(x)/u'(x) < 1,

i.e., the well known Arrow-Pratt measure of risk aversion does not exceed 1.

The function Inx is the limiting case.
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2.5 Utility Maximisation

2.5.1 Defining the Problem

In this section we address the following question. How should an investor
endowed with initial capital x > 0 choose, at every time t, his stock portfolio
7 and his cumulative consumption process c(t), from among all admissible
pairs (n,c) £ A(x), in order to obtain the maximum expected utility from
his terminal wealth. More precisely, consider the utility function of Section
2.4. We want to maximise

o 1= E[u{Xx' " c{T)\. (2.59)

over the set of admissible policies given in Definition 2.5. We introduce for-

mally :

2.27 Definition. The utility maximisation problem is to maximise

J(x]Tr,,c) over the class A(x) of processes (m, c) that satisfy
EJu~(Xx'-'¢(T))] < oo. (2.60)

Recall that u~ := max[—u,0].

We denote by A(x,u) the set of policies in A(x,u) which satisfy condition
(2.60) above.

2.28 Definition. The value function of this problem is defined by

V(x) := sup J(x]1£E,c). (2.61)

(7TT,c)E>1(ie,u)

Within this set-up, the investor attempts to maximise utility from final
wealth X t, within the constraints imposed by the level of hisinitial cap-

ital andquantified by the condition of (2.21). We willrequire the results
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of Section 2.2. By Lemma 2.9 once B 6 C(x) the existence of a policy
(7fr,c) E A(x,u) such that X(T) — B, P-a.s. is assured. This gives us the
sufficiency of condition (2.23) for any distribution of wealth B to be attained.
Therefore we can treat it as a constraint in the sense of duality theory as it

is necessary and sufficient.

Thus the problem of (2.61) amounts to maximising the expression above
over the class C(x) of nonnegative “-measurable random variables. But
this problem is straightforward. Since utility is derived solely from terminal
wealth, it seems reasonable to increase X t within the limits allowed by con-
straint (2.23). In other words we ensure that Xt £ M.(x) and we can then
apply Corollary 2.10. This result is given in Theorem 2.29.

2.29 Theorem

For every x > 0 we have

V(x) = sup  J(x] 7T, 0). (2.62)
(7r,0)Ev4(a:,u)

TIEV(X)
where V(x) is the class given by (2.28).

Proof:

For any (tt,c) £ A(x,u) we know that its corresponding final wealth X(T)

is in the class C(x) and therefore the number

S = E[7(T)A'(T)],

is in [0,a], by (2.23).

If 8 > 0 then the number
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belongs to M(x). Then, from Lemma 2.9 and Corollary 2.10, there exists
a portfolio 7 € V(x) with corresponding wealth X(T) = B > X(T) almost

surely.

Obviously this means that E[u(X]j)] > E[u(Xr)\ which bounds £[u(AV)]
from below and since (7T,c) € A(x,u) then the policy (tt, 0) is also in

Hence, for every (zr,c) 6 A(x,u), 3 (¢,0) € A(x,u) with expected util-

ity at least as great. This implies that

J(x;7r,c) < J(x;zr, 0).

IfS=0then X(T) = 0 and we define

B:=W n >°

belonging to A'i(a:) and, again applying Corollary 2.10, we obtain as before a
portfolio with corresponding wealth X (T) = B > X (T) implying J(x;tt,c) <
J(x;n, 0).

According to Theorem 2.29 we can reformulate the problem of (2.61). There-
fore we ignore consumption and our new problem now has the equality con-

straint given below.

V() = sup «/(.r;7r,0),
EE-P(*)
(2.63)

s.t. E[y(T)X(T)] = x.
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This can be viewed as a linear optimisation problem in X t. To conjecture the
form of the optimal portffolio we attempt to find the so called optimal form -
the special form of the final wealth X t which will guarantee optimality in the
problem of (2.63). We apply the theory of Lagrange multipliers to optimise
the above with respect to X t- From the standard Lagrange multiplier op-

timality conditions we have the following conditions necessary for optimality:

Firstly
E[-.(T)X(T)\ = x. (2.64)

Secondly, treating the objective function as a function of X t only

fLs QTN -TAL7 (T)IN(T)]-1} =10,

=4 J " { e fu(Xt)- yH(T)X(T) +xy]} =0,

=4 JFH X t) - yH(T)X(T) + xylip} =0,

2 Ja-"{u{XT)-yH(T)X(T) +xy}dP =0,

=4 E[u'(Xt) —yH(T)] = 0,

for some suitable Lagrange multiplier y > 0, by dominated convergence. We
note here that thelimit can be taken inside the expectationoperator once
the expression [u(J(r7’+ e€) —u(Xt)]/E is bounded above for all e > 0. However
we are merely conjecturing the optimal form and we propose that this is

X(T) = I(yH(T)) a.s, (2.65)
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and from (2.64) we obtain :
Eh(T)I(yH(T)\ = x as., (2.66)

which must be solved for y > 0.

2.5.2 Formalising the Discussion

We have conjectured the form of the optimal final wealth in a non-rigourous
fashion. We must now prove that this form does in fact ensure optimality.
Introduce the function

Q) < oo- (2.68)

This is necessary for a solution to (2.66) to exist. Introduce also the inverse of
(, denoted by ij> Fixing the initial capital x > 0, the jFr measurable random
variable

(2.69)

belongs to the class M. (a:). Hence from Corollary 2.10 there exists a unique

(¢, €) such that X X-QT) = 1(in(x)fi(T)) almost surely. In fact c = 0 and
the corresponding wealth process is given by
X(t) = E[y(t,T)X(T) | Ft)

(2.70)
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We have conjectured the form of the optimal final wealth. Theorem 2.30

gives the result.

2.30 Theorem

Assume V(a:)) < oo and consider the random variable given byX(T) =
I(tjj(x)Fi(T)). The pair (zI,0) of Lemma 2.9 belongs to.4(x,ii) and is opti-
mal for the problem of (2.61).

Proof:

It suffices to show that Xt of the form given by (2.69) satisfies (2.60) and
that for any other X(T) G £(x) satisfying (2.60) we have

£[«(A'T)] < E[u(Xt)\ as. (2.71)
Recall the inequality (2.54) which states that for all a > 0,t/ > 0
u(i(y)) > u(a) +y[Hy) - a}.
This implies that
«(%)) > u(XT) + y[I(y) - Atl,

holds almost surely for any Xt G ~(x) (since Xt is nonnegative). With

y = m0(x)//(T) > 0 for fixed ciipital x and wealth from (2.69), we obtain
U{XT) > u(XT)+ Jx)H(T)[Xt - XT]a.s. (2.72)
Now, with the particular choice of

XT=B = X ,>0,

from Theorem 2.29, which is in the class M (x), we can say that the right-
hand side of (2.72) is P-integrable. In fact

E{u(Xt)\ > U[u(Xt)\+ t'[>«z)//(7") (AV - x/iH-,(T)])

= E\u{Xn)\,
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since Xt belongs to the class M(x). Now £[u(Xr)] is bounded below by
A A

E[u(Xr)\ and, since Xt is a constant B, condition (2.60) holds. For the

inequality (2.71) note that

E[u(Xt)} > E[u{Xt)]+ E[1>z)H(T){Xt - X t)]

= E[u(Xt)}+Wx)(x-E[H(T)Xt}).
>0

The expression above is nonnegative once Xr E £(.r). Therefore for any
Xt € the inequality (2.71) holds.

We have found the optimal form for the terminal wealth. We can use Ito’s
lemma to solve for the corresponding wealth process in terms of the market
parameters. We then use Corollary 2.10 to obtain a second form for the
optimal wealth in terms of n. We compare both forms to find the optimal

portfolio. The exact strategy is given in Chapter 4.
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Chapter 3

The Large Investor Problem

3.1 The New Model

We consider now the type of investor whose investment policy influences
the behaviour of the prices Pq, {P,}i<;<<i of the d + i financial assets. More
precisely, these prices evolve according to the adjusted market described by

the stochastic differential equations :

dPQt) '= PO(t)[r(t) + /o(zCt)L
(3.1)
Po(0) = 1,
for the bond, and with the stocks given by
dPi(t) = Pi(t) [bi(t) + fifet)]dt + asglwt
L 3-1
(3.2)
Pi(o) = Pi,

fori = 1..d.
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The functions :Rd—»R for i = 0...d are some given functions describing
the effect of the investor’s strategy on the asset prices. As before the investor
is allowed to invest by way of a portfolio process 7A(t) defined as in Defini-
tion 2.2 and to spend via the cumulative consumption process c(t) given in
Definition 2.3.

Similarly to before the wealth X(t) of the investor evolves according to the
evolution equation given by

dX(t) = X{t)g{t,’Ki)dt + X(t)jiT(t)a(t)dW(t) —dc(t)
(3.3)
X(0) = x>0,

where

g{t,7Li) m=r(t) + fo(zt) + zl};i\IZEi(*)[(&iCO + MTt) ~r(0 ~

3.1 Remark

The impact of the investor’s strategy may arise because of size only or merely
because other traders believe the large investor has superior information.
However we must note that the market described above need not be inter-
preted as a large investor’s market. The interpretation of policy-dependent
prices is not the only one. We could just start with any economy whose wealth
process is, for whatever reasons, given by (3.3) above and forget about the

prices.

3.2 Definition. Similarly we define the corresponding wealth process
for portfolio policy (zr,c) and initial capital x E (0, o0) to be the solution
X(-) = X x-,c(-) of equation (3.3) above.

,4s before a portfolio policy (zr,c) is called admissible for initial capital
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x £ (0,00) if Xx'-¢c(t) > 0Vt £ [0,r] holds almost surely and the set of
admissible policies is denoted by

A(x) = {(tt,c) : Xx*c{t)y >0Vt£ [0,T]}

We wish to introduce a set of auxiliary markets, indexed by v, and struc-
tured in the same way as those markets of Chapter 2. Each market will have
an short interest rate, denoted later by g(t,v), and appreciation rates which
are independent of the portfolio process. The volatility matrix a(t) will re-
main the same. There exists a solution to the utility maximisation problem
in each of these markets. We require the appropriate v such that the large
investor assumptions hold. To this end, we restrict ourselves by imposing

the following standing assumptions.
3.3 Standing Assumption The function g{t,-) is concave Vt £ [0,T].

3.4 Standing Assumption The function g(t, ¢) is also uniformly (w.r.t.

t) Lipschitz, i.e.,
\g{t,x) - g(t,y)\ < k\\x-W\, VIE[O,T],

for some k £ (0, 00).

3.5 Definition. We now define the convex conjugate function g ofg

g(t,v) := sup [g(t, 7) +ilt u]. (3.4)
TreRd

We note also that, by definition, g(t, ® is convex (see Appendix B.I).

3.6 Definition. g(t,v) isfinite on its effective domain
D, := {u :g{t,v) < o0},
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and associated with this is the class of processes D defined by
D = |u(i) :g{t,vf) < oo Vi}.

We also make the following assumptions on the set D.

3.7 Standing Assumption We assume D is not empty.

3.8 Standing Assumption We also assume that the function g(t, ¢) is
bounded uniformly in t, on its effective domain Dt, i.e.,

g(t,m< M, VVE Dt, Vt.
3.9 Remark
Assumptions 3.3 and 3.4 imply that the sets Dt are uniformly bounded. We
also impose the following conditions on the set D. In the theory to follow we
require the set D to satisfy
(i) v is .Tvmeasurable,
(i) v is uniformly bounded,
(iii) £[/0" |ly,||2c/i + j0 g{t,vt)dt\ < oo.

The set D is convex (see Appendix B.l).

Now for all v 6 D define the processes

(3.5)

ov{t) = -V (3.6)

50



I : I
Zy(u,t) exp J Ov(s)dWs [10j,(s)|2cisJd, (3.7)

Wv{t) W (t) +}‘OI Qv(s)ds, (3.8)

with 7v(i) := 7v(o,i) and Zjj,) Zy(0,t). Also define the measure
PMA] := E-[la]l= E[Zv(T)la\ (3.9)

It is clear that,since the set D is uniformly bounded, (*) is a martin-
gale, the measureP- is a probability measure and bythe Girsanov Theorem
(see Appendix A.2), Wy is a Brownian motion. From (3.5) and (3.7), the
stochastic equations

ATt,(0 ~g{t,iu.hv[t)dt, (3.10)

dZ,,(t)

-0 v (t)Zv(t)dWt, (3.11)

are satisfied by 7,(i), .£,(/) respectively. Hence, by Ito’s Lemma (see Ap-
pendix A.5) the process defined by

Hv(t) := Zv (t)1S)dU (3.12)

satisfies the stochastic differential equation

dHv{t) = Hv(I)[-g{l,vt)dt - Ov{i)dWt}. (3.13)

Reapplying Ito’s Rule and by equations (3.3) and (3.13) we have forall v € D

d(tf,()A'(1)) = HIOXO)[g(t,E4)dt + nT(t)cr{)dWt - Hy{t)dc{t)
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+Hy(t)X (O)n T(t)w(t)dl

= HJIItIXWnJ(t)v(t) +5'(<,7ri) Hv(t)dc(t)

+HII)X () [2TO<T() + v-"WuJdWt. (3.14)

Tlien for all v £ 1)

>0

=X + Jf0 Hv(s)X(s)[7rT(s)or(s) + ¢~*'(sJuJc/H"s). (3.15)

Recall that for any admissible policy (zr,c),A'(/) > 0. Hence the expres-
sion on the left-hand side above is non-negative. In particular the right-hand
side is a non-negative local martingale and hence, by Fatou’s lemma, a super-
martingale under P. Applying the supermartingale property to the left-hand
side we obtain

Hy(T)X(T) + JI; HJls)dc(s) (3.16)
PT
+ JI0 liv(s)X{s)[g(s,vs) -g{s,n3) - zrT(sujets < X

This issimilar to the process Ar(i) of (2.17). In Appendix B.5 the same proce-
dure is applied for the analogy of M(t) of (2.20). Since the above expression
must hold Vv G D, under all admissible policies, we have the following defi-
nition.
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3.10 Definition. The necessary admissibility condition for policy (n, ¢)

sup E I_HV(T)X(T) + [ H,(s)X(s)\jg(s,yj) - g(s,i™) - nJ(s)Us]ds

vgd
ul
+ (3.17)

3.11 Remark

The supermartingale property excludes arbitrage opportunity from the mar-
ket. If x = 0 then necessarily X(t) = 0 and c(t) = 0, Vi £ [0, X] almost
surely, i.e., no free lunch.

3.12 Remark

Iffi = 0, V! = 0.<i, then g(t,ir) = r(t) + 7T()[6(<) —r(i)I]. Hence D
consists of only one process v = r(0i — an<" we are "he standard
complete market model with 9(t) = < 1ffe—r(i)l] and the unique equivalent

martingale measure P is defined as previously.

We have just introduced a set of probability measures under which the dis
counted stock prices are martingales. This can be shown analogously to
the discounted stock prices of Chapter 2 by using Ito’s Rule to solve for
7Jt)Pi(t). The result is similar to that of Appendix B.2. The next section
uses the martingale property of each auxiliary market to hedge a claim in
each market and then choose the appropriate v in D to ensure the large in-
vestor assumptions hold. It uses the procedures of Cvitanic and Karatzas [9]

for constrained portfolios.
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3.2 Hedging Contingent Claims

We now wish to hedge a contingent claim under large investor assumptions.
We take a similar approach to that of Chapter 2. However, the use of duality
theory is complicated by the nonlinearity of the evolution equation of (3.3)

with respect to portfolio 7r.

3.2.1 Auxiliary Markets

We have introduced a set of auxiliary markets, each one corresponding to
an element v £ D. In each of these markets, the discounted stock price is
a martingale under the new probability measure P-. Therefore, in each of
the markets the hedging price of a claim can be found. We introduce the

following definition :

3.13 Definition. A contingent claim B is called hedgeable if it satisfies

1/(0) := supE-[yjT)B] (3.18)
VED

We conjecture that the fair (selling) price of a claim for a large investor is
the supremum of the prices from the auxiliary markets. The definition is
justified in the subsequent discussion. In particular it will be shown that for
any hedgeable claim B, there exists a pair (zr,c) £ "4(V(0)) such that the

corresponding wealth process satisfies
X V(°p2c(T) = B a.s., (3.19)

and that V(0) is the minimal initial wealth for which this can be achieved.

We nowintroduce the hedging price of a contingent claim Bunder poi't-

foliosconfined tosatisfy (3.3) for the large investor.We then show that this
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price coincides with V(0).

3.14 Definition. The hedging price under large investor assump-
tions of a contingent claim B is defined by

inf x G (0,00) :3 (z,c) G™M(x) s.t. XT-QT) > B as.
h(0) = (3.20)
oo if the above set is empty,

Let us define the following

S { All J-'r-stopping times r with values in [0,T] },
Sp,a := { All stopping timesr s.t. p(u) < r(w) < o) V6 1}

for any p,cr G S such that p < a almost surely.

3.15 Definition. For every r G <S define the J-T -measurable random vari-
able V (r) by

V(r) := ess %BE-[Byv(r,T) \Fr\ (3.21)

3.16 Remark

Note that

Vv (0)

\S/LCJ:B E-[/?7,(7)],

V(T) B as.

We now show that the minimal hedging price for the claim B under large
investor assumptions is given by the supremum of the hedging prices in the

auxiliary markets. In order to prove that this minimal hedging price is in
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fact V (0) we require the following three lemmas. We note that the restriction
of a random variable to a stochastic interval means we consider the random

variable only for times within that interval.
3.17 Lemma

For any contingent claim satisfying K(0) < oo the family of random variables

{V(t) U s satisfies the following dynamic programming equation

V(t) = ess sup Ev[V(0)lv_(r,9) \Tt], V0 £ STit, (3.22)

where DTje is the restriction of D to the stochastic interval [+, 9.
Proof:

Recall D is the convex, uniformly bounded set of Remark 3.9. Define for

any 9 E <§ the random variable

I{9) - EV[V{T)N_(0,T)\Fe] (3.23)

= E[Zv{6,T)V{T)N_(9,T) \FO\,

by Bayes Rule (Appendix A.6) with Zy(t) the exponential martingale of (3.7).
This depends only on the restriction of v_to the stochastic interval [9,T\.
Now let fi_,vED and define

A= {(i,w) : > Jv(t,Lu)}.

Also define the process A := fila + vJA- By convexity of D the process \ is

in D and we have almost surely
J\(9) = max [J~(0), Jy(6) .

Therefore the family {Jv(&)}veD is directed upwards (in the sense of ”,the
relation defined in Appendix A.4). From Definition 3.15

V(9) := ess SUB Ev[V{T)N (9, T) \Fe\
ve
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— esssup J,,(0).
ueo

By Neveu [1] (see Appendix A.4) with {Jv(0)}veD as our family F of real
measurable functions we can say that there exists at least one sequence

{vk}keN Q D, (3.24)
such that Jvk(0) is increasing and

V(0) = sup Jvk{0).

Hence, since the family {Jv{0)} is directed upwards

V(0) = fim tA (0) as. (3.25)

Returning to the proof observe that, using the tower property and taking out

what’s known (see Appendix A.3), forr < 0,

V(r) := esssup E~\B'yv(T,T) ]JTt
vzd 1 "~

ess sup JJj)
vEDTit

ess sup eAev\V(T)]y{t T) \Te\\TT
VEDTIT L

ess sup E- 1v(t,0)EVEV(T)~(v(0,T) \Te\ \T,
QEXT

= ess sup E- 7,(r,9)JI6) \Tt
1/6/7r, T

< ess sup E- |jJII’ 0)vV(0) \Tr
i60rr
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The last inequality here is by definition of JJ*O) and V(6). This completes
the first half of the proof.

To prove the opposite inequality it suffices to show that forany GD
V(r) > EK[7s(r,#)V (») | JFT],
holds almost surely. Let ¢i G D and define
Mt<o 'm= { All processes v GD s.t. v=1/i on [r, 0\},

and m 1o C Dtj. By Definition 3.15

V(r esssup eA b Mv{t, T) \Tt\
() VEE 1 "{ ) J

ess sup E-\V{T)yJj,T) \Tr
VE.DPrT {T)yJj,T)

> ess sup EWV[T)M (&, T)\7t
vEML 6

By the tower property and taking out what is known we have, for t < 0,

V{9 > ess sup eAeAv(T)1v[t, T)\Fa
{v) VGI\X.O A (T)1vlt, T) |

ess sup N T« (nMV (T)7v(«,r)Ir>1 I~y
«€EMr 9 L" L J

ess sup £?-[7t,(rsi/)d,,(0) |
VGI\/F,f)
Now for every v G Mr,e we have, by Bayes Rule, Vr < 0
V(r) > ~ 7v(r,0)J#) |~ T
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= EN"MNE~tAN J N~ Z N~ T ) ITel |Tr

= B[Ji,(0)7ii(r,0)Z21(r1i?)/5[2i,(0,7) | | V]

= E[JW )N {T,0)Zv{T,0)\FT],

since E[Zy(0,T) \IFO\ = 1 by the martingale property. Therefore, since v
coincides with /x on the stochastic interval [r, O\,

v(t) > el[jv(0)~(t,0)z}(t,0) \rT)

= E[j"ey, (T,ff)zt(T,e)\T,\

= elW t,«);#) ij™],

for all v 6 MTi€by working backwards through the previous four steps. Note
here that all expressions above except Jy(0) depend only on the interval [r, O\.

Now Jv(0) depends only on the restriction of v to [0,TJ, so the sequence

{Jvk{0)}keN with Wt € D in (3.24) can be taken using {«jtWK-eAr Q MTio
and from the above, for all vj. C MTig,

vV (t) > \7 .\,
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= 1% £M ) Jim t o/*,() |

= E~rtgr,i)V(«)|r]a.8.,

using (3.25) and Monotone Convergence (see Appendix A.7).

3.18 Remark

The immediate significance of this lemma (to be used in Lemma 3.19) is

that
V (r)7k(r) > EZV{0O)N_(0) \ T\ (3.26)

holds almost surely for any givenr € S,0 STir and v <€D.

3.19 Lemma

Let T satisfy the usual conditions (see Appendix A.1.7). There exists an
RCLL process (see Appendix A.1.18), still denoted by V(t) such that for all

t € [0,T]

V{t) = esssup E*[BIv(t,T) \T<).

v6 D

In other words, the process V = {V(1),!Fi] can be considered in its RCLL

modification.

Furthermore {Qv(l) = V{t)'yv(t),Jrl, V't € [0,7°]} is a P-supermartingale
with RCLL paths.

Also V(-) is the smallest adapted, RCLL process satisfying Qv{t) is a P--

supcrmartingale and V(T) = B almost surely.
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Proof:

(i) LetSt = [0,T] flIQ. Consider {V(t,u>),J-t} defined on St which is positive
and adapted. From Remark 3.18 we have for t,0 € St,
mno'n.w in < '()7.(<).

holds almost surely for all t < 0.

Therefore {<27(2),3~t} % a -supermartingale on St- Then, from Karatzas
and Shreve [2] Proposition 1.3.14 (see Appendix A.8), the positive adapted
process {V(t),J-t} defined on St has at each point t € St almost surely finite
limits from the right and from the left. The limits

limV (s,u3,
SHf

SES]-

V(T,u), t—T,

limV(5,u;), ,6(0,77,

sti
sESt

\/(0) t=0,

are well-defined and finite for every v G O* := {/ €Q} with P(SY) = 1. The

resulting processes

are adapted due to the right continuity of J-,. Furthermore, by Appendix
A.8, the process

{V(it)7,(/), Ft+j isa RCLL P—supermartingale, Vv € D.
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By right continuity of T this implies that for all v€ D the process

isa RCLL P—supermartingale. In particular, by the supermartingale prop-

erty of V'(i-I-)7u(0>

On the other hand,
obtain

Vv GE£

EMV{T)™NT) | Ft\ < V(i+)7(i) as.,

Ev[V{T)N_{t,T) \Tt] < V(I+) a.s.,

ess suBE-[V(T)jv(t, T)\Tt\< V(i+) a.s,,
ve

V[t) i A(i+) as.

setting $= t+ £ a stopping time, and letting n

V(i+) := limVAjw)

HAi
s€St

= limvVv { 4- h,W}L\(t,t + n_J\

L=TKO>

Since V (t+) is JA-measurable

V(t+)

= E*[V(t+) \T t+]

= BEV(<H) | T%

= Ev t!gnaoV(t+ h)57ﬂ\(m + h}J I Ft

N

lim

o EY K i+ n) (M + n) \TI
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by Fatou’s lemma (see Appendix A.3). The above implies that, with t and
t + £ stopping times and using Remark 3.18

y("+) < Jim V(i) a.s.

= V(t) as.

The result follows by taking V(t) equal to the above process V (t+) for all
times t.

(i) This follows automatically from the right continuity of T and part (i).

(iii) Finally, let V be an adapted RCLL process satisfying { Qy(t) :=
isa P- -supermartingale and V(T) = B almost surely. Then for all t € [0,T]
and for all v €D

E*{V(TMT) | T\ < V(i)i,(),
=> e I[P(7)7i,(/,T) |"]7.,(1) < V(i)7»(i),
= < v(tj,
= essigBE-[B"Jt, T)\T,\ < V(1),

= V(1)<V(1),

holds almost surely and the proof is complete.
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3.20 Lemma

y* is optimal, i.e.,
V(t) = E- [i?7v*(T) | Ft] a.s.,

if and only if Qy*(t) is a P- -martingale.
Proof:

Using the tower property twice we obtain

I :F]

Ec-[v(t)ist) IT)]

\%

T,(s)E-\I'7-[b 1.(1,T) I o,

= 1Ji] |

7TH(S)B4B71(s,r)|",].

(=») If there exists some optimal v* then we have equality above and

FX [Qs.()) |7,] = 7s.(s)fi“[fI7V.(s,r) | ]
Qv*(s)

(<=) Also if Qv*(t) is a P-"-martingale then

E-[Qv-(t) IF9] QVJ(s)

TV-tAVAs).
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But from the definition of QJt) and taking out what is known, Vs <t

E* [QW(t) |F.] = 7a{s)Ev [V(i)7V*(s, t) | Fs\.

Comparing the previous two expressions implies

and taking t —T gives us

v{)) E2*[V/(T)7j*(s,T) | Tt]

FX[ble.(s,T) IT,] a.s.

Hence v* is optimal.

3.2.2 The Hedging Price

We now prove the main result of this chapter, namely that the minimal
hedging price of any claim B is given by V'(O). Furthermore it is possible to
construct a portfolio to ensure that the claim is covered at the terminal time.
3.21 Theorem

(i) For an arbitrary contingent claim B we have h(0) = V(0).

(it) Furthermore 3 a pair (£, ¢c) € *4(V(0)) such that

Proof:



() /i(0) < V(0). Clearly we may assume V(0) < oo. From lemma 3.19
we know that Qy(t) := V(t)~fy(t) is a P—supermartingale with RCLL paths.
By the Doob-Meyer Decomposition (see Appendix A.9) we can rewrite Qy(t)

Qv(t) = Qv{0) + Mv{t) - Av{D), (3.27)

where My(t) is a local martingale and Ay[t) is a non-decreasing, adapted
process with RCLL paths and AHO0) = 0, AJT) < oo almost surely.

Applying the Martingale Representation Theorem (see Appendix A.10) to
My(t) yields

Qv(t) = V{0) + f  {s)dWy{s) - Ay(t), (3.28)

where ¢j/»J(i) is an Revalued, {"*rt}-measurable and a.s. square integrable

process.

Consider the positive, adapted RCLL process defined for all v £ D by

= t £ [0,r], (3.29)
7y\t)

with A(0) = V"(0) and X[T) = V(T) = B almost surely.

The idea is to find any pair (¢, c) £ ~4(V(0)) such that itscorresponding
wealthprocess is actually equal to X(-). That is, if we can find at least
one admissible policy (iL, c) with resulting terminal wealth X(T) = B almost
surely and initial capital V(0). This will prove /i(0) < V*0). Firstly recall
from (3.28) that

dQy(t) = 4>I()dWy(t) - dAy(t), \/veD, (3.30)
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and, from (2.7) and (2.10) that, for all ¢t, VE D,
dWy(t) = dWt (t) - ¢r-1(D)[u(i) - f£(t)]dt. (3.31)

Now, by definition of Q Jt), forall , v £ D

Qfflhsft) = QS)hS)-

Hence
Qafjt) = QS) exP 9(s,Us) - g(s™ ) di

Therefore
¢QE@ = d@B,,(i)exp Jf0 g(s,Vs) - gisy/™ds +

Q.,()exp f gfayt)-g(s,fijds g(t,Ut) - oft, fét) dt

.Jo J
exp Jfo g{siVss) g{silEMNds dQjt) + Qv{t)(g(t,vt) g(t,fjj)dt
exp JOg(s,y*) - g{s,iM)ds ~(t)dWjt) - dAjt)
+Qv(t)(g(t,yi) ~ g{t,Ht))dt

Therefore

dQ~t) = exp J[Og(s,v3)-g(s,f")d3

—dAv(t) + X[Onfy{t)(g(i,vt) - g{U?)).dt ,(3.32)

using both (3.30) and (3.31). Comparing the above expression (3.32) with

67



(3.30) for dQ~t) and equating random parts we obtain

=exp [T ~(s.vr-~rsrnrds AJ(1)dWy(t),
= exp[jO9(s™ ) ds <(0=exp " y(5,i)f/5 0j(i)-

Since the expressions are independent of /i and v respectively it follows that
they are time dependent only. Therefore we can define
ex == i)i i -
p .\{O 1 - A (1)iTO<7(i)» (3-33)
for some appropriate ¢(-) which is R"-valued and adapted (since ipj*t) is

S-measurable Vt). Now, by equating the deterministic parts of (3.30) and
(3.32) we obtain

dAt(t) = exp ﬁlzlg(s,Zs) - gisj’\dsJ L-ipj(t)a~|(t)[v(t) - je(D]dt

+dAv(t) - mX(t)jy(t){g(t,vl) - g(t,u))dt
Therefore, by (3.33)

dA)t(t)exp .J% g(s,fis)ds] = X(i)2T()[ii(i) —n(t)]dt
+ exp .J/O g{s,Vj)ds dAv(i)

-X{t){g(t,v,) 'g(t,U))dt,

and we obtain



As before these expressions are independent of [i and v respectively and
therefore are time dependent only. We can then define

7~1()dAY(t) - A(LoE - =T(D)vildt =: dc(t) - g(t,jri)X(t)dt, (3.34)

which depends on i, X(t) and We must now prove that X(t) is actually
a corresponding wealth process for (¢, c) and that the defined processes ((1)

and c(t) satisfy all admissibility conditions.

Firstly, recall from Appendix B.5 that the discounted wealth process can
be written in the form

d(i,,(OX®) = Jy(DXOLO(L.E]) -g{t,iu) + AT(0iu]" - Tv(t)dc(t)

+7,(0)X (I)AT(t)a (t)dW,(I).

Now, from (3.30) and the defined processes c and jr, we have

dQv{t) d(i_(t) X{t))

ipA(t)dWjJ.) - dAJit)

tv(t)X (1) £T(t)a(t)dWI() - 7v(t)de(t)

+I KX [g(tyzl) - g{t,Vt) + k r(i)vi]dt,
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subject to the boundary conditions

X(0) = 1/(0),
X(T) = B as,

which is equation (3.3) for the process X(-). This proves that A(-) =
Xy(®)-,d. It remains to show that n(t) and c(t) are valid processes.

Firstly, since t/J (t) is Revalued, .~-measurable V't and almost surely square
integrable, then n (t) is also Revalued and adapted and satisfies

J[ W(IT (t)£(t)\\2dt < oo,
0
and hence all conditions of Definition 2.2 are satisfied. We recall here that if

X(t) = 0in (3.33) for any t ¢ [0,T] then -A(}) = 0 and 7r(s) = 0, V5> t.

By Definition 2.3, we require the process c(t) to be nonnegative, nonde-
creasing, jFt-measurable with RCLL paths and c(0) = 0 and c¢(T) < oo0.
Under Assumption 3.4, g is concave and uniformly Lipschitz. Therefore, by
El Karoui et al. [12] we can say that for every jr there exists a v G D such
that

9(t,yt) = 9{t,Kt) + K(t)v(t).

The required properties of c(t) follow from those of the process Ay(t).

(i) /i(0) > V'(O). We can assume /i(0) < oo and is actually equal to x,
say. This implies there exists some admissible pair (7r,c) G A(x) such that
X X-'GT) > B a.s. But we know from Definition 3.10 that for any admissible

(7, c) the wealth process must satisfy, for all v g D,

e\Hv(T)X(T) +Jf Hv(s)X(s)[g(s,vs) - gis,]") - KT{s)vs]ds
[0]

70



= E[Hv{T)X(T)\<Xx,

=» E*h£T)B) < X,

=S> sup £7-[7,,(T)J3] < x,
VED

= V(0) < /i(0).

The theorem gives us the minimal hedging price for a claim B, namely V(0).

3.22 Remark

In fact, the portfolio process ¢(-), consumption process c(-) and the wealth
process X(-) of the theorem are actually the hedging processes for the claim
B. So we have characterised the appropriate processes required to hedge a
claim.

We now ask if we require consumption to hedge the claim B. Theorem 3.27

gives the answer. We require the following definition.

3.23 Definition. A contingent claim B is called attainable if there ex-

ist a portfolio process n which is admissible and such that (tt,0) € «4(V(0))
and

X VO)+{T) = B as.

To prove Theorem 3.27 we will also require the following three lemmas,
which give us compactness of the set of martingales Zv(t) over the set D.
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3.24 Lemma

The set F := {Z\(-) : v G D} is a convex set of real-valued processes de-
fined on [0,T].

Proof:

For every A > 0,/i > 0 with A+ fi = 1, and for every vuv2 € D define

the two processes

£(1)) = \Zvt4-/izv2,

Clearly v € D by convexity of D and the fact that

v 2
m m ~
Also
d(() = AdZK + /ulzy2
= -\Zvi{t)[i{t) + a-\t)v,(t)YdWt
= -e(i)(i)ia<)+~"(D)i(0]T .,
(0 = 1

Therefore, since they are both solutions of the same stochastic differential
equation, £(i) = % (/) G P.
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3.25 Lemma

The set IV := {Zv{T) :v € D} is bounded in £2(P).

Proof:

Recall that for all bounded the exponential martingale

ZS) = exP{-"" (9 " - ifj[" (D2},

satisfies E[Zy{T)\ — 1. Therefore

i~ - 6S W ,-\[ won2})

[ii¢n™
: 1j? v
= exp{-J 2e7dW.-J" PMTfdlIj

= exp{-j" 2tE)dW, - F £ [20»(f)f* + I f ll«v(<)l|2*}

= exp| - Jf20,(0)dW, - £ |I2i,.@lls<ft exp HAW If*}

= W(7")ex-pjj"7 HS.FiJl2*}.

Using the boundedness of 0,, and hence of this lias finite expectation, i.e.,

S([Z2.,(T)])2< oo,

= ZJT) e £2(P).
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3.26 Lemma
The set Ty is strongly closed in C2(P).
3.27 Theorem

Every hedgeable contingent claim B is attainable, namely the process c(-)

from Theorem 3.21 is a zero process.
Proof:

Let {u, :n € N} C D be a maximising sequence for VfO), that is
\\mEA[Blun(T)}=V(0). (3.35)

We know from Appendix B.5 that a necessary condition for any admissible
(n, ¢) is, for all v €£D,

+ J[ v(t)X{t\g(t,yd) - g{t,zZi) ~ Ltvt]dt\ < x.
0~

The wealth process of Theorem 3.21 corresponding to (z1,c) is given by
AA\'(-) = 1I/(+) and since B < )?(T) almost surely we have

where

Ao (t) w= 9(t,vn(t)) - g{t.Zi) ~ KtUnii). (3.36)

Taking limits of both sides as n —» 00
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fim £M 7, (TIBY + lip £ 7\ 0, (0()

+ jlim E“~ [/oT 71i,(i)i'()®“ (iMi] < V(0),

whence from (3.35)

dim, E-n JQ Mn(t)aKt) = 0,

isg, = 0
The processes

{7«B(i) = exP [“ f 9(s,y.n{s))ds] :n G N},

are bounded away from zero. Hence

lim E~ Jg 7wn{t)de(t) = 0,
T 1
nllon « J); de(t) = o,
lim EMc(T)I = 0,
= HmE£[ZAN(T)] = 0.

By Lemmas 3.24 to 3.26 the set IV is weakly compact in C2(P). Therefore
3 v G D and a new (relabelled) sequence {* : n G N} such that along this

subsequence
Jim E[Zvn(i)c(T)} = E[Zv(t)c(T)\ = 0.

It follows, since c(t) is nondecreasing, that c(t,u>) = 0, Cx V almost every-

where.
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3.3 The Portfolio Optimisation Problem

3.3.1 Problem Specification

The problem considered is to maximise expected utility from terminal wealth

for the large investor. More precisely, we want to maximise

J(x- T c) := E[u(Xx'-"°(M))\, (3.37)
over the set of admissible policies given in Definition 3.2. We define the fol-
lowing :
3.29 Definition. The utility maximisation problem is to maximise

J (x; 7T,c) over the class A(x,u) of processes (zl, c) that satisfy

E[u-(XX1QT))] < oo. (3.38)

We denote by A(x,u) the set of policies in A(x,u) which satisfy condition
(3.38) above.

3.30 Definition. The value function of this problem is defined by

V(x):= sup  J(x;7r, c). (3.39)
(feC4(i;u)

We may wish to make the following assumption on utility which is sufficient

but not necessary for the value function to be finite.

3.31 Assumption, u satisfies the growth condition
O<u(x) </t(l +/7),Vx £ (0,00), (3.40)

for somek £ (0,00) and a G (0,1). We can characterise the value function

by the following three lemmas. The following lemma is stated without proof
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(the proof is similar to that in Karatzas [9]).

3.32 Lemma

The function V (x) is increasing and concave on (0,00).

We will require the following lemma. The proof is trivial and is omitted.
3.33 Lemma

If the utility function satisfies the growth condition (3.40) then 3 ¢ > 0 such
that

up(t) < c(l + £"p), Vi G (0,00),

for anyp €
3.34 Lemma

If the utility function satisfies the growth condition then
V{ic) < oo, V x € (0,00).

Proof:

From Assumptions 3.7 and 3.8 we concluded that the sets Dt are uniformly

bounded. We assume that for all v £ D

£ Vot < a,

holds for the relative risk process of (3.6) and some suitable constant G > 0.

From Appendix B.6 the wealth is given by
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X(T) = {x-J expl[-Jogis.K,)+ TT{s)Vs-*\TL($)cr(s)\2ds
—j  TI(s)a(.s)diyv(s)]r/c(f)]
cexp | T (3(s7) + AT (H)Hss|
cexp{ ji nj{s)cr(s)dWis) - ~»  [lir(s)cr(s)| | .
Since g is bounded we have

X(T) < xexp™J™g(s,ns)+ Tr(s)vsds”

»

<L
‘exp {10 AT(E)er(s)dVK, (5) [76(s)0-(.5)[12F/} -
With ap < 1 we have
[X(T)]“P < xapexp[apL] -exp | - N 7r(s)a(s)||2¢/s}

exp {<xpjQ AT(-9* ()< ni)- -7-fQ

< x"pexp[apL\Z(T),

where Z(T) is an exponential martingale since otpnr (t)cr(l) is bounded. Tak-

ing expectations with respect to P- we obtain

I5-[[X(T)]“P] < (eLx)°VEv[z{T)]
= (eLx)a\
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from the martingale property. Now

E-[Z-*(T)\ E[ZI~{T)\

E expj(<7-1)JQ Oy(s)dWs - ~(q- 1)  [I0,,@)lI2£&}

E exp{(g-1) Jo Oy{s)dWs- {q - 1)2 [|I™(s)||2ds]

SR I )JO||0V(5]||2H5]J

N

expli(g-1)(g-2)c]|,

due to the boundedness of Oy. Returning to the proof note that, using

Holder’s inequality for j; + ~ = 1,

E[«(X(T))] ES{Z\T)u(X(T))}

5 expl2i i) (2 ) c(E% (i+ *2])d

£i(9-i)(?-2)c}(c(i + (et*r))i
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3.3.2 Discussing the Problem

It is intuitive that to maximise his utility from final wealth the large investor
would not consume during [0,T]. Indeed Appendix B.6 contains a solution

of the general form
X x='c(t) = (x —J exp[/i(zr, s, W)]c/c(.s)) exp (J fe(zr,

This suggests setting c(t) = 0 to maximise the wealth process. Theorem 3.21
gives us the minimal initial capital V(0) required to ensure the existence of
some (zr,c) £ *4.(V(0)) such that

X v(0)&£t) > B as.,

and the policy (zr,c) is given in the theorem. However, Theorem 3.27 says
that every claim B is attainable, in particular ¢ from Theorem 3.21 is zero.

Utility is derived solely from final wealth, X t so that to maximise the ex-
pected utility it makes sense that the investor would ensure the final level of
wealth is just within the constraints of the market. We pursue an optimality
condition for terminal wealth which ensures that once X(T) is of a certain
form, called the optimal form, then E[u(Xt)\ is maximised over all admissi-

ble policies. This optimal form obviously depends on x.

The investor is endowed with initial capital, x and for all policies (zr, c) the
necessary admissibility condition of Definition 3.10 places a natural bound

on all possible levels of terminal wealth.

We find the optimal form of X t, denoted by B(x). Theorem 3.21 says that
there exists an admissible policy to hedge B(x). But, by Theorem 3.27 we
can exactly replicate it. Indeed, since B(x) is the optimal form, we must

ensure that
X x'M(T) = B(x) a.s.,
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for optimality to be ensured. Consequent to our discussion we wish to solve

the problem given by

V(x) = sup  J(a:;7r, 0), (3-41)
(7r.0)e™(xu)

subject to the constraint

sup ENHW{T)X(T) + ['TI'Hy(s)X(s)[g(s,v") - g(s,]Ls) - < X.
weD 1 JO

3.3.3 Formulation of the Dual Problem

We now introduce a stochastic problem which is dual to the problem of (3.41).
We define the Dual, establish its basic properties and explore the relationship
between the Primal and the Dual. This methodology was introduced in Xu
and Shreve [8] under short-selling prohibition. This section follows loosely
their approach.

3.36 Definition. An optimal portfolio process is one ivhich attains

the supremum in (3-41)-

Because of the strict concavity of u if such a process exists then the cor-
responding terminal wealth, X(T) is uniquely determined (see Xu [13] The-
orem 1.4.5).

3.37 Definition. A dual control process is any vE D.

3.38 Definition. For u of Definition 2.20, y > 0 and v 6Dwedefine

the dual objective function by

J(y,v) = E[u{yHy{T))]. (3.42)
3.39 Definition. The dual value function is defined for ally> Oby
V{y) = igfIy,u). (3.43)
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3.40 Definition. An optimal dual process with initial condition y is a

process vy E D which attains the infimum above.

Due to the strict convexity of u, if such a process exists it is unique (proof
similar to Xu [13] Theorem 3.3.1). The following theorem gives the rela-
tionship between the Primal and Dual problems. More importantly we have
sufficient conditions for optimality in the problem of Definition 3.29. Duality
Theory forms the basis forthe proof. It is used explicitly inKaratzas et al.
[6] and XuandShreve [8] for special types of constraintsand implicitly in
Karatzas et al. [7] and Cox and Huang [14].

3.41 Theorem (Weak Duality)

For any x >0,y > 0, L€ A(x,u), v ED the inequality

< Jiy.v) + Xy, (3.44)

holds. Furthermore, equality holds in (3-44) iff the following three conditions
hold :

Xx%T) = I(yHjT)) as., (3.45)
£(*>£%) = 9(t,Zt) +2LT()w(i)  a-e.( (3.46)
E[HJJ)XXHT)) = x. (3.47)

Proof:
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We know that for any admissible portfolio, Vv 6 D,

E HMT)XX(T) + [ - g(s,zrj - wT(S)t;(s)]rfs < x.

Young’s inequality states that foralla > 0,7 > 0
w@) < £@7)+ «7,

with equality <i=S « = /(7) from (2.50). Letting « = Xr and 7 = yHJ"T)
in the above we obtain

u(X(T)) < u{yHv{T)) + X{T)ylly(T),
Ele(X(THI < E[u(yHV(T)\ + yE[X(T)HV(T)

< E[u(ylijT)} + xy,

for all zl € *4(.r,u), due to the positivity of 'P-'-(s) of (3.36) for all t € [0,7].
Obviously, equality holds above

X(T) = I{ijHv(T)) a.s.,

E[HJIT)XX*(T\ = X,
and therefore

+ JLI{t)v{t) a.e.

3.42 Corollary

For every x >0, y >0
V(X) < V(y) + XY.
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Furthermore, if 7y £ A(x, u) and vy 6 D satisfy (3.45) to (3-47) then they
are optimal for their respective problems; that is

viy) = j{y.vy).

Proof:

Forall &> 0,y >0, n 6 A(x,u)> vED

J(x,n) < J{y,v) +xy,

> sup J(x, 7 < infJ(y,v) + xy.
zeA{x,u) VvED

Therefore
J{x,k) < V(@f) < V(y) + xj/ < J(y,v) 4 xy.

The result follows immediately from Theorem 3.41.
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3.4 Formalising the Discussion
Now introduce the function

CM := E[HV(T)I{yHV(T))\, (3.48)
for all y £ (0, 00) and the set

D' {v£D:£vly)<ooVy £ (0,00)j. (3.49)

3.43 Remark

Under Assumption 2.24, Lemma 2.25 (iii) and the decrease of | we know
that if (v{y) < oo for some y £ (0,00) then it is finite Vy £ (0, oo) and
hencev £ D'. For every v £ D', the function (v{y) is continuous and strictly

decreasing with

(<¢(0+) = oo,
C*(oco) = 0.
We denote its inverse by Now the optimality condition (3.47) is equiv-

alent to v £ D' and y = 'ipyfx) once (3.45) holds.

A four step strategy

From Theorem 3.41 and its corollary we have three conditions (3.45) to (3.47)
which are sufficient for the optimality of n and v in both the Primal and Dual
problems. We now devise a strategy which will ensure the existence of two

such processes.

« Step 1 : We show that, for any initial condition y > 0 an optimal
dual process exists, i.e., we guarantee the existence of a dual solution
Vy £ (0,00). This is a necessary condition for (3.45)-(3.47) to hold.
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« Step 2 : We will then prove that for any initial capital x > 0 there is

a number y(x) > 0 such that
E = X

i.e., given initial capital x > 0 we can find a particular Lagrange multi-
plier y(x), solve the corresponding dual problem by step 1 and ensure
(3.47) holds.

Step 3 : Third, with initial condition y, we will use Theorem 3.21 to
show the existence of, and to characterise, the portfolio ny to hedge
any claim given by

(3.50)

The portfolio will require the initial hedging price
/1,(0) :=supB[//L(T)/(L11'>(7"))]. (3.51)

However we will show that this supremum is in fact achieved by the

dual solution vy corresponding to y

(3.52)

We can ensure then that our initial capital is actually x by choosing y
to be the particular y(x) of Step 2. Hence our final wealth will be of

the form (3.45) using initial capital x.

« Step 4 : Finally having found vy and Kv(x) we must prove that (3.46)
holds for these processes.

In such a manner we find Uy(x) and 1y(x)>the optimal dual and primal pro-
cesses. In the next four sections we deal with the above scheme step by
step.
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3.4.1 EXxistence of a Dual Problem solution

We establish here the fundamental existence result required for our strategy.
We begin by inroducing P, the space of all progressively measurable functions

v with norm defined by

rT
[iiI2:=E f |[2;]]2¢0 < oo. (3.53)
.Jo

T is a Hilbert Space when endowed with inner product

rT

Note that D is a subspace of T. For any given y € (0,00) we defined the
function J(y,t¢) of (3.42) for all v(zD. We now extend this definition to the
entirety of T by setting

Q) = E[u(ylUT))}, vED (3.54)
Y= 00, ne T/D. '

3.44 Remark

Note that the above definition is motivated by the following :

Jy(v) ;= E u(yexp{- fQ §(*>U»)d8 - Vv(T)Yj

where
r]_v(T) = EO‘ O/jS)dW(S) + ‘\JOF ||Q,,(a)||3«te. (3.55)

Now, by Jensen’s inequality (see Appendix A.3) and the convexity of ii(e2),

we have

Jy(v) > Ufilexp {#[ - ~ g(s,v3)ds - i?,(N]|
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and, unless v 6 D, the expression within the expectation operator is not

bounded from below and we have for all v £ V/D

Jy(v) €t(0+) = u(o0)

= o0o.

The dual solution exists under certain conditions. To prove the existence of
the dual solution for all y > 0 we will require the following condition. We

will in the future need to assume the existence of some v £ D such that
J(y,v) = E[u{yHy(T))\ < oo, (3.56)

for all y 6 (0,00). Condition (3.56) will be required to prove the existence
of a dual solution. However, in most circumstances it is easier to check that
the growth condition is satisfied by the utility function. Lemma 3.45 gives
this useful result.

3.45 Lemma

Under the growth condition, 3 v 6 D such that, for all y £ (0,00), (3.56)
holds.

Proof:

Under the growth condition



By elementary calculus this maximum occurs at x* = (a.K)l-ay 1 a and its

value is
«(w -« 1+ (alc) Fa(l —a)y ~

By choosing large enough k 6 (0,00) we obtain

uly) < <<|] +y~pl,

where p — and this implies

i(yll.(T))\ < S(I +y-"E{H-"(T)}).

Now, for arbitrary y > 0, choose v = 0

Bl < s(i +<rEffd ()

(L +y-"E{H(T)V)

k 1+y PE exp{~pfo0 a(s’°)d$}

< CO

from the boundedness provided in Assumption 3.8.

Theorem 3.48 to follow is the main result giving the existence of a dual so-
lution. We will firstly require the following assumption and lemma.
3.46 Assumption

i/.(0+) > —o0,

Ti(oo) = oo.
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3.47 Lemma

Under Assumptions 2.23, 2.24, 3Jt6 and the condition (3.56), the functional

Jy(uo : Ti4 RU {+°°} ¢s

(i) Convex,

(ii) Coercive, i.e.,

J = 3.57
iy V) = 0o, (3.57)
(Hi) Lower semi-continuous, i.e., for all v € P and any sequence {u,} C P
with Jun—  —0we have
Jy{v) < lim infJy(vn). (3.58)
Proof:

(i) Convexity : Firstly, we have the convexity of g by Appendix B.l im-

plying
g(t,Xvl-Hiiv2) < \g(t,v] + fig(t,v2).

Secondly, we prove the convexity of Tiy(t) of (3.55).

| [
+922(0 *  Ja QWl+ivAdW(s) -f — I ds

by (3.6). By the convexity of the Euclidean norm we obtain
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+fiL drdw~ + \fxio ii®*n2®

— ATIA(0 “T" AMUjiO»
since A/i € [0,1]. Returning to the proof itself we have

Jy(Xv.i + mi) Eru(ylixgieazim)]

E u(yexp{- J g(t, Avx4 jwr)dt - 77wWIN2
< E i(yexp{- \g(ttVx) +H9(t,vs)dt
+wyr)\})

by the decrease of u and the convexity of g(t,-) and ?/.(/). But, by the
convexity of u(ex) from Lemma 2.25 under Assumptions 2.23 and 2.24, we

obtain

i+ i) < E s exp]| - jf gii.vrdt - THI7")})

+/«i(yexp {~ Jg g{t,va{t))dt ~ *fexCO})
= + fiJy{v2).

From Ekeland and ‘I'crnam [3] (see Appendix A.11), the extended functional
Jy{v) is convex since ,/(y, u) is convex over D and the set D is convex.

(ii) Coerciveness : By (3.54) and Jensen’s inequality we have

pT*

MU) > E it-fyexp{— fo g(t>v(t)dt - VV(T)}} Vuer,
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>  «Myexp | —J g(t,v(t)dt —(T)] , '"iVEDUTI/D.

*

By Remark 3.9, for all v E D, Jg g(t,Vt)dt* < oo so that the expres-
sion highlighted is bounded from below. From the definition of Jy(v) for all
v E T/ D the expression on the left-hand side is infinity. Hence forall v £ T

Jy(v) > u(yexp

= u~ryeMexp]| - \E[JQ U~ (s)||2rfs] | j

«Nefhexpj -

by definition of i%E(i) of (3.55) and the norm defined in (3.53). Since ||c_1(f)|[
is bounded below by 1/5 then as [V] —» oo the expression above tends to
zero.

lim V) — 5(0+-) = u(oo)

= 00,

from Lemma 2.22 and Assumption 3.46.

(iii) Lower semi-continuity : It suffices to prove that if {iln}neAf a sequence
in F which converges in norm to v, i.e.,

lim.  —ul =0,
then
JM - jim infJy(un).
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Firstly

jim B Ani*w r-ii*w rM i]

= wMmel[jifec - 0,(t)T(O.Jt) + 0,(t)) | dt

— thaD ~ MCOI *[,, (0 + "< (01

Consequently

Hm £[ | INZ,(T) - InZ~tT)!]

Jim e [ijit ife)<fiv(y + i £ wom”™ - QMIWM - ;i “umolizx |

Jim ul 1jfw jO - e ())dW()+i] ‘nAtoiP - IMOII"™ |

N

UmJs[j[ 1(*(1) - »*(«) I<W (0

+Jim £[1/oT |p I'n(Q|J -fe (i), Ui

= O,
and since the exponential function is continuous everywhere we have

imZ,, n(T) = Zv (n

bolds almost surely on U. Secondly, by Patou’s lemma applied to the sequence
{g(s,zn(i9)}neN which is integrable, we have

Inn ian g(s}vn(s))ds > j Inn infg(s, vn(s))ds
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= ‘!;0 9(s,v(s))ds,

by continuity of g.
Returning to the proof we have, by definition of Jy[v)

Jigninfjo(v) = lip, infE u(yexp| - 0(s,wn(s))i/s}z,n(T)»

By positivity of u, we can apply Fatou’s lemma (see Appendix A.3) to obtain

JigpinfJy(v) = E Inn inf exp { - JO 9{s,vn(s))ds}Zil(T)»

Now since
nl_i(r)r(w> infj% g(s,vn(s))ds > J,[0 g(s,v(s))ds,

and the function u(e*) is decreasing we get

nl_!)rp> iang]v)z E Jim infu(yexp{- "

Finally since
nliw)o ZVn(T) = ZMT),

we can, by continuity of it, bring the limit inside to obtain

Jligy infIy(v) > Eu Vexp{- J ofs>n{s))ds}Jirm infZ" (T)J

= Jy(vVv
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We can now prove that, for all initial conditions y > 0, the existence of a
solution to the Dual problem of (3.43) is assured. This will complete the
first step. Indeed, to proceed to the solution of step 2, we will require the
additional fact that vy £ D".

3.48 Theorem

Under Assumptions 2.23, 2.24, 3-46 arid the condition (3.56) the dual prob-
lem of (3.43) admits a solution vy £ D for all y £ (0,00). Furthermore the
optimal dual process, vy is in the set D'.

Proof:

Fix y £ (0,00). From Lemma 3.47, the extended functional Jy(v) is con-
vex and lower semi-continuous over T. Thanks to the coercivity property
(3.57) we can use Ekeland and Temam [3], Proposition 2.1.2 (see Appendix
A.11) so that for all y £ (0,00) the infimum of Jy(v) is attained at some
solution VjGT such that

inf Jv(v) = Jy{vy).

Since Jy(v) = oo for every v £ T/D. Then by Lemma 3.45 we know that
there exists a vy £ D such that for all y £ (0, 00)

Jy{vy) < °0-

Hence vy ED and
inf Jy[v) = Jy(vy) < oo0. (3.59)

We now show vy £ D1 We must prove that (vy{y) < oo. By the decrease of
u we know that Va £ (0,1), 3> 0

u(/3) —u(oo) > u(/3) —u(/3/a)

95



[ uXOdt

J/3la

rP/a

b <K

(/1?2 1«-12)1(1?]«),

Y

from the decrease of /(¢). By Assumption 2.24
P) - > [?(- =1(17?). 3.60
u(P) - u(oo) o ;707 (3.60)

Now, applying (3.60) to j3= yH,, (T), we obtain

C>) =

a
< E " 7%/, (T)- «0o)
. a

< 00,

from (3.59), Lemma 2.22 and Assumption 3.46.

3.4.2 A particular choice of y(x)

We will now show that for any x > 0, there exists a number y(x) € (0,00)
with corresponding dual solution vy* guaranteed by Theorem 3.48 that sat-
isfies

EECW ) =4 W 7YKL way - X (3.61)
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First, we require the following lemma.
3.49 Lemma

Under Assumptions 2.24, 3.46 and the condition(3.56) andproviding the
existence of thedual solution corresponding to y £ (0O,0o0)denoted by vy we
have : the function

<?,(«:= JWvs,), (3.62)
is well defined, finite and continuously differentiable at P = 1. For all y €
(0, 00) it also satisfies

6y(1) = -»<*(»)= (3.63)

Proof:

As in the proof of Theorem 3.48 we have for all y € (0,00)

oo

u(y) - «(00) = -

Jy

roo

= \{y [(f)«,

roo

u(ay)-u(oo) = Jéy I(£)«

ro

= a 1],
Iy

substituting 7 = £/«-. Thus, from Lemma 2.25, for any given a 6 (0,1),

there exists a suitable constant 7 € (l,00) such that for all y 6 (0,00)

u(ay) —«(00) < «7 /roo 1{v)di]
Jy
= &) ~ (]
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= f/(ay) < at'yu(y) 4 (1 —07)11(00).

Therefore

< My(vy)+ (- a7)u(0)

< 00,

since vy is the optimal dual so the first expression on the right-hand side is
finite by Theorem 3.48 and the second by Assumption 3.46. Since a can be

chosen arbitrarily in (0,1)
E (3.64)

holds for all ft G (0,1)- But since u is decreasing, (3.64) holds for all 0 > 1
and the function Gy(/3) is well defined and finite. The upper finiteness of
Gy((3) means we can use dominated convergence (see Appendix A.3) to take
the limit inside. Now

= E Au(0yfLJT))

= yE H»(T)u'(f3yHv (T))

G{n -YE ndT)I(yHUT))

= -yCvAy)-
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The existence of a y(x) is ensured in Theorem 3.50 by the fact that vy G D'.
This was proved in Theorem 3.48.

3.50 Theorem

Under Assumptions 2.2\>3Jf6 and the condition (3.56) and providing the
existenceof thedual solution corresponding toy G (0,00)denoted by vy we
have : for any givenx G(0, 00) there exists a number y(x) G0, oo) that

achieves the infimum in

“PIVIY) + *yl- (3.65)

Furthermore this number satisfies condition (3.61) above.

Proof:

Define for all y G (0, 00) the convex function

hx(y) := V{y) + xy. (3.66)

We wish to show this function attains its infimum on (0, 00). To do this we
show that it satisfies
f/ia:(0+) = oo = hx(00). (3.67)

To this end, the boundedness of g (see Remark 3.9) and the supermartingale
property of ZJJ.) imply that for all I G [0,T]

y(t) < eM,

=*E[l-lv(t)] = E[ZS)N_(H\

< E[Z*{t)cM} < eM.
By convexity of U and Jensen’s Inequality we have

JM = E[fi(yff,.(T))]

99



> u(E[yH.(T)})

> u(yeM).
Then, from Lemma 2.22 and Assumption 3.46 we have

V(0+) = J,(B)]

> u(0+) = ii(oo0)

= 0o0.

Hence the function of (3.66) satisfies (3.67) and attains its infimum at some
y(x) G (0,00). Define for all (3 G (0, 0oo) the function

Fx(p):=pxy(x) + Gy*(p). (3.68)
Now, with the dual solution corresponding to y denoted by vy{), we have

mf Fx(0)

inf [x/3y(x) + J(fiy{xX)]Vv{xX))}
= inflxt/ + J{y\vy(x))}

> )r/n>1b(a:y+ V(t/)]

= hx(y(x))

= xy(x) + V(y{x)).

Hence by Theorem 3.48



So the function F achieves its infimum over (0,00) at i3 = 1. Hence the

derivative must equal zero there.

=#-° = = xy{Xx) +

xy(x) - y(x)Cvy{l)(y(x)),

X

{y(x))-

3.4.3 Hedging the Optimal Form

As explained in the strategy, Theorem 3.21 ensures the existence of an opti-

mal portfolio # for hedging any claim B with an initial capital
h{0) = su
=38

So the existence of portfolio n for hedging the claim of (3.50) is guaranteed

with initial capital
l,,(0) = sgg EgH,,(T)l(ylk(T))]J-

To utilise step 2 we require this supremum to be attained at v ~ vy. Theo-

rem 3.51 gives this result for any y > 0.
3.51 Theorem

Under the Assumption that for ally E I), y > 0
E[H,JT)I(yHit(r))] < oo, (3.69)

101



we have
E[HYT)I(yHMNT))\ < E[H,JT)I(yH,JT))],

forallv ED, y > 0.
Proof:

Fix £ (0,1), vE D and define the following functions

Gs(t) := (1-S AW + SHJJ),
SNONES +
Ai(0 = ~GMY) [il — +

Note that lim,5 )oGj = /7,, . The convexity of and the fact that

(I-f)ff*(<) 8HS) _
Gs{t) + Gs(t)
imply that m (/) E D. Moreover

clGs

(1 - 8)dHwy{t) + SdHJi)

(i-i)~(0[-",t;y(0)"-~(0"ao0]

Filly (i)[ —O(i,u(i))cft - A(i)dW (i)

= [ - SH,.y(D)a-lvy + 5H,,(D)a-Iv]d\V(t)

-[(L - i) (IEC>

= T ‘Gilijffivkil) - Gsfifdt.
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Recall that the convexity of g implies

9(i,«) == GIW  *y+ -G M v)

5 0,(0 gt )+ CIW g(i’-)

o /il
whence
i/ICi < Giler iiifi'F(i) -
d//w = I-llIf[er~li.isdW(t) - g{t,fis)dt\.

Comparing these we see that, since G{(0) = 1=

<%(*) < »,,(m) a.s.

It follows from the dual optimality of vy and the decrease of u respectively
that

e [<(U/12i(77))] < E£il«(i,».(7))]

With the random variable Ls defined by

L, :=5(ylhiT)) - u(yG,(.T)),

we have

\e[Ls\ < O.
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Fix u Gii and (suppressing the dependence on u>) assume < //,,. Then,
by continuity of u, we apply the mean value theorem to give

U = u(ylL(T))-u(yGs(T))

= - G,(T)),

where K € [yll*,yGs\- By the decrease of | and the definition of G&

+L, = ylI(K)£[Gs(T) - HAT)}
= yI(K)UUT) - HAT)}
> yI#HIIHIF) - 11, 117)].
We get the same result for //,, < . Consequently we can apply Fatou’s

Lemma (see Appendix A.3) to the sequence of positive random variables
given by

By the finiteness of E[yl (ylly)(Il,,(T) —I1,,(T))] we obtain
0 > IlimE
(09}

1L°

> E [|im -Ls
S-tco o

E y(Hv-1livl(ylL)

The result follows.



3.4.4 The Final Test

All that remains to prove is that the choice of Kyf) and vy(x) corresponding
to the particular choice of Lagrange multiplier y(x) satisfy the final optimal
condition (3.46). Theorem 3.51 states that for the claim of (3.50) the

process vy achieves the supremum in
V(0) = sup E\Hv(T)Bv). (3.74)
vED 1

We now show that once this condition holds so does condition (3.46).
3.52 Theorem

For any claim B with corresponding policy (¢, ¢) from Theorem 3.21 we have

: if v* achieves the supremum in (3.7/,) then

g(t,y*) = g(t,v*) + nv*.

Proof:

If v* achieves the supremum in (3.74)
V() = MHL(T)B) = E~[yIL.(T)B).
Hence from Theorem 3.21

Qv.(0) = E[II,,.(T)B] = E-[HL(T)XvA'icX(T)] as. P-

= E-"[Qy*(M].

Hence Q”(T) is a martingale under P-’ and the process A,,.(i) of (3.27) is
identically zero. Then with v = v* in the expression (3.34) by

c{t) J[O 'y_~1(s)dA!h(s) - J]Z) . g\j/{s,nS) - *ds,

¢ will be a negative decreasing process unless

5(i,s£) = g(t,vi)+
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We have completed the four steps of our scheme and proved the existence of
an optimal portfolio process 7y(x) corresponding to an endowed amount of
initial capital x. We summarise the result in the following conclusion.

Conclusion Under the Assumptions 2.24, 3.46 and condition (3.56); for
any given x > 0 there exists a particular Lagrange multiplier y(x) (given
by Theorem 3.50) with corresponding dual solution (guaranteed by Theorem
3-48) such that by minimally hedging the claim B,, of (3.50) with the port-
folio process of Theorem 3.21 we ensure the utility maximisation problem of
(3.37) is solved.

In Chapter 4, a strategy based upon this conclusion is derived. It is im-
portant to note that we have proved the existence of the optimal portfolio
and we can now devise an algorithm to calculate it either explicitly or nu-

merically under certain market assumptions.
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Chapter 4
Applications

In this chapter we apply the results of Chapters 2 and 3 to solve the utility
maximisationproblem for investors with certain utilities.Specifically, the

methods areapplied to investors with the following utilities :

u(x) =Inx, (4.1)
called the logarithmic utility cind

u(x) = a—x°, (4.2)

for a 6 (0, 1), called the power utility. Both belong to the class of utilities
known as HARA utilities. Asa —0, (4.2) tends to (4.1) at least, in terms of

relative risk aversion.

4.1 Small investor : Examples

The main result of Chapter 2 (Theorem 2.30) states that, provided X('l') =
I(tp(x)I1(T)), the portfolio ¢Lof Lemma 2.9 is admissible and is optimal for
the small investor problem of (2.61). Indeed this portfolio has corresponding

wealth process given by

T(OX() = Ffi[7(r)~(T) 1?2.}
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= X+ ‘i) T(S)ET(S)X(S)<7(s)i/I'K(.S).
Consequently, the method of solution will follow the four steps below :

1. Given the utility i/, find the function | and solve the Lagrange multi-
plier problem
ay)-=E[H(T)HYH{T))]=x, (4.3)

for "tp(x).
2. Find the value function
V(s) = E

Note that a general characterisation of this function is given in Karatzas
[9]. The value function does not affect the chosen portfolio strategy in
any way. However it is necessary to find the expected return on the
investment.

3. Apply Lemma 2.9 to the terminal wealth X (T) = j(ip(x)H(T)) by
solving
~I{i)X(t) = e[i{T)X(T) I.F], (4.5)

Expressthisin the form of an Ito integral with respect to the Brownian
motion W, i.e.,

I{)X(t) = x + j*[ — JdW(S$. (4.6)

4. The formabove isrequired for comparison purposes. Weobtain the

optimal portfolio fr by comparing it with

X + Jfo 7(8)irT(s)X(sW (sWM'r(s).
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In the following example, the scheme above is applied for the logarithmic

function of (4.1).

4.1 Example

Step 1 Since utility u(x) = Ina we have u'(x) = 1/x and I(y) — 1l/y. We
solve the Lagrange multiplier problem
1

T yhem

Step 2 The value function is then

V(x) = E

(w))

Inx + £[In // (T3

= Inx+ E\ £ r(i)dt+ jf O(t)dw(t) + + £ N\l

= Inx-fE

Step 3 For the optimal terminal wealth we have

T(T)X(T) = 7(T)/I(tf(*)ff(T))
T) = xz~\T)
H(T)

From Lemma 2.9 we must solve
7()Ar(t) = E\xZ~I(T) | Ti
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By Bayes Rule

E[Z(T)XZ-\T) | F¥Y)

7(0X(t) = 21

= xZ~I(t)

= XeXxpj Jq 0(s)dW {s) + ~ fQ l|E(s)H2<k}-

We must now apply Ito’s Rule to obtain the comparison form.

the above
</pn(@ (DX())] = eT(H)iW(l) + i]]«(0F*. .
We need to find A(t) and B (t) such that

TX(0) A(t)dW(t) + B(t)dt.

Now by Ito’s Rule

= A)AW(t) + B{t)dt - -A2{t)dt.

Equating the above two expressions for d[In(7(0A'(0)] gives

A(t)
B(t)

0T(1),
0T (1)0{t).

Hence we obtain the required comparison form
7(0*(0 = *+ J{0‘~t{s)X(s)0T(s)dW(s).
Step 4 Comparing this with
7(0-V(0 = x+ JL 7(s)FT(S)X(S)cr(s)ciM/(s)>
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gives the optimal portfolio

i T(*MO = £T(0>

= (1) = (cr(t)aT(t)) \b(t)-r(t)1).

It is clear then that the proportion of wealth invested in any stock will in-
crease linearly with its growth rate. However this investment will also de-
crease as the volatility coefficient of the stock increases.

4.2 Example

For the utility function ii(t) = < a < 1, the methodology above
is applied to derive the recommended optimal portfolio given by :

In the previous example, we found explicit formulas for the optimal processes
of wealth X(t) and value function V(x). Similarly, we can find the optimal
consumption process for the equivalent problem of utility from consumption;

see Karatzas [9].

However, for the optimal portfolio process jr the martingale methodology
that we have employed so far can ensure only the existence of jr; except of
course in the certain cases such as those above where jr. can be found in feed-

back form in terms of the random market coefficients.

In general there is no constructive algorithm or useful characterisation that
would lead to its computation. For constant market coefficients r(t) =
7b(t) = band a[i) = <, however it is possible to obtain jr in explicit form.
This is achieved in Xu [15].



4.2 Large investor : Examples

Similarly to that of Chapter 2 the main result of Chapter 3 tells us that once
we choose the appropriate y(x) and hedge the claim given by (3.50) with
y = y(x) then the portfolio process jr. of Theorem 3.21 with corresponding

wealth process given by

Tito, (*)*(*) + Jo - g(s,xs) ~ £(s)vy{x](s)}ds
4.7)

= X + [ TawW(s)* («kT(s)cr(s)</HA(,s),
achieves the supremum in (3.41).

Consequently our adjusted method of solution is :

1. Given the utility ti, find |1 and solve the Lagrange multiplier problem

such that
&,,(»(*)) = = *, 14-8)
where denotes the dual solution corresponding to y(x). This gives
us ipyfx).
2. Find the value function
V(x) := B fti(/(™(«)flrr))l. (4.9)

3. Find the space F and the Legendre-Fenchel transform and define the
dual problem as

inf E
wer

Solve this and denote the solution by A

1.12



4. Apply Theorem 3.21 to the terminal wealth X(T) = I(I=>\(x)H\(T))
by solving
Hx(t)X(t) = e [[IN(T)X(T) | JH], (4.10)

and express this in the form of an Ito integral with respect to the
Brownian motion W
H(t)X(t) = x + £[mem] dW(s), (4.11)
for comparison purposes.
5. Compare this with
X + J[ HX(s)X(s)[0x(s) - ¢ T(s)<7(s)]dW(s),
0 -~ -~

to find the optimal portfolio.
This strategy is illustrated in the following examples. The effect of the in-
vestment strategies on the asset prices, modelled by the functions /e ;i = 0..d
are also varied in Section 4.3 to represent the following situations :
(i) Price Pressure; cf Section 4.3.2.

(i) Different borrowing and lending rates for the bond.

To begin with, we examine the case of the large investor with logarithmic

utility.

4.3 Example

Step 1 For utility u(x) = Ina we have u'(x) = 1/.t and hence I(y) = 1/y.

We require the Lagrange multiplier ip,\(x), where Ais the optimal dual
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process (to be solved for). We must solve

.= B[H1<MT)a9 HUut(T))] =z,

1pv(x) = 1/z.

Step 2 The value function is
V(x) = e \W(l{4>(z)Hx(T))

In
Jx{T),

= Inx+E[In//ALT)]
\nx + EI f 1g(t,Ut))dt+£ 4(*w *) +\ £ WhWwW

= In*+e\f +l- «'"'mm " dt

where Ais to be solved for in the dual.

Step 3 Since *v(x) = I/x this implies that F = D'. The Legendre-Fenchel

transform is given by
u(y) :=u(l(y))-yl(y) = -(1 +Iny).
Therefore

E[0(M x)UMT)\ = E - 1- In- - In(//,(T) ,
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and the dual problem is to find the A at which the infimum below is
attained

mf E[\n(H-\T))}

: }iH\DLKHD(SJM \\\d@%""QHW(SH

This is equivalent to the pointwise minimisation of the convex function
given by

i(i,£(*)) + (4.12)
at each t € [0,T].

We denote the solution to this problem by

A(l) = argmm  [2g(t,v(i)) + || - o-1(i)n(<) |5
This will be solved in the next section for certain market scenarios.

Step 4 As in example 4.1 we can use Ito’s rule to rewrite (4.7) as :

H\(H)X(t) + Jf 'Yx(s)X(s)[g(s, 10,) - g(s,xs) - x{s)vs]ds
(4.13)
= X+ JIO HXx(s)X(s)[0\(s) - 7IT(s)<7(s)]i/iy(s).

However, by theorem 3.52, at the optimal A the term g(s,v(s)) —
0(s,ZL(s)) —2A(-9)i;(.s) disappears and this implies that at timet

Hx(t)X(t) = x + jco Ih(s)X(s)[Ox(s) - Kr(s)a(s)]dW(s).
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The optimal terminal wealth is
X(T) = = 77" (4.14)

and from Theorem 3.21

HK (1) X (t)

e [Hx(T)X(T) | Tt

= X

Step 4 Comparing this with (4.14) we obtain the optimal portfolio in feed-
back form given by

i(f) = -(cr(i)erT(i))-1AM)i (4-15)

dependent on the market coefficients and the dual solution A

4.4 Example

The case where the investors utility is the power utility ~x° is similar to
Example 4.3 above. However, in this case H\(T)X(T) 7*a and our calcula-

tions lead to the optimal portfolio process

_KQ gTwW)-*A(i) (416)
l1—a

4.3 Some Market Scenarios

From Section 4.2 we have a dual problem to be solved which is dependent
on the utility function u and the function g. For u = Inx this dual problem

is to find Awhich minimises the expression below
+ I -<T_1(0£(Qir,
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where

d
o{t,Kt) := KO + fo(2Lt) + + M%i) ~ r(0 ~ fo(m)]t

t=1
and
i,u) := sup \g{t,H) + zJv\-
y(i,u) 7rGlg'fq{ )

This section is devoted to solving the dual problem under varying market
situations. We will concentrate on logarithmic utility. The theory applies
as above for power utilities. These results are also stated. For comparison

purposes, we start with the standard complete market setting.

4.3.1 Standard Setting

This is the setting in which prices are exogenously fixed. It has been examined
by Karatzas et al. [7] and Cox and Huang [14]. In this case, the market effect

functions are given by

foill) = 0,
and, for all i = I...d,
Mk) =0.
Therefore
d
g{t,Et) = KO + E"iIiIONO-KO]
¢l
= r(*)+2LT(o [EQ -r(01]-
Hence

= fr(i ET(t)[k(t) - I .
5P, r(i) + ET(OLk(®) - r(t) +t>]JI

Indeed we obtain

s j r{t) ifu=r(t)l-b(t)

t,v) = < .
g(t.v) | oo otherwise,
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yielding the set
D=ju:v=r(t)l —6(£)},
with corresponding trivial dual problem with solution
A = KOA-—¢(0 -
We conclude that the optimal investment strategy for an investor with loga-
rithmic utility is

¢ () = ((7(ert(f))  1(k(t) - r(i)l).

This coincides with the result of example 4.1. The corresponding strategy

for the investor with power utility is

i(i) = (ir()i7T{0) '(¢(0 “ r(0l) m

4.3.2 Price Pressure

Price Pressure occurs when the purchase of a risky asset decreases its ex-
pected return while shortselling a stock increases it expected return. In this

case, the market effect functions are given by

and, for all i = 1...d,

[ iTre. 0
fiu) =
0 ifn=0,

for some function a : [0,7'] R +. Therefore

g{t,Et) r(/) + 2T(O[K O -«(0j~] - r(01]

[(t) 4 TG " r(iyl] “ a©Jic>
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i.e., the expected return on wealth decreases in a concave fashion with the

absolute proportions invested in the risky assets. Therefore we obtain

g(t,v) = sulg fr(i) +ETt)b(t) ~ KOL+  * «(OlsXOll
TreRif

for(i) if }j; + b(t) - r(i)l|| < a{t)
| oo otherwise,

yielding the set
D = {u:[i>+ 6(0 - r(i)l|| < a(i)},

with corresponding dual problem given by
. 1
A= ara min r(t) H— Mr, 1774|2.
The minimum is achieved at
when |6(i) —KOU < a(0
m = r(t)l —b(t) + a(01I when 6(0 —»¥(01 ~ a(0

r(0l —b(t) —a (0l when 6(0 —r (01 < —a(t).

We conclude the optimal investment strategy for an investor with logarithmic
utility is

<r(0<rT(0] [KO —r(0 1~ G(0I1] *:(0 ~r(0l —a(o0
(0 = 0 if 6(0 —KOJLI < 0(0

ff(00T(0] [6(0 —r(0 1+ a(01]  if&(0 - r(01 —* a(0
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This demonstrates that the fraction of wealth invested in stock is lower than
what it would normally be in the absence of price pressure. Note that the
comparisons on the right-hand side above can be made component-wise but

are written in vector form.

The more general case is the one in which the market effect functions are
given by
i =42*
Me)= <
0 if = 0,

for i — 1...d and for some positive definite matrix A(t). The theory above

goes through similarly with optimal portfolio

<r(@orT(i)d  b(t) —r (i)l —"(01] A Ut)(b(t) — > 1

*yT®H1"[m - r(t)i+Awn] A-'mm -nm <-i-

4.3.3 Different Borrowing and Lending Rates

We now study the case where the borrowing rate is not necessarily equal to
the lending rate but the investor has no effect on asset prices. We denote the
borrowing rate by R(t) and the lending rate by r(£) where r(t) < R(t). We
assume the progressively measurable process R.(t) is bounded. Therefore, we

restrict ourselves to policies for which the relative amount borrowed at time
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171 —1 if 7TT1 > 1
(1-2LT1) =
0 otherwise.

We can model this by setting the market effect functions as follows

lo(w) = [i2(t) - r(t)]1{ve1>1},

where
1 if IT1> 1
0 otherwise.
Foralli=1..J
Me) = 0.
Therefore
g{t,Et) = (0 + (R(t) -

+Z0T)[6(3) - r(O)I - (R(t) - r(())iw

() + AT [c () - >'(ON + [I - LT OIIE2(<) - r() 1{wni>1>>

and as expected the evolution equation of (3.3) becomes

dX(t) = X(D)g(t,Kt)<lt + X(O)TLr (t)a(t)dW(t) —dc(t)
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r)X{t)dt - de(t) + X(t) [tit ()o-(i) (W (t) + - r(t))dt)

~(R(t) - r(t)){1- ATI)-dt\

r(t)X(t)dt - dc(t) + X(t) 7Ir (t)cr(t)dW(t) - (R(t) - r(i))( -

For illustrative purposes we restrict ourselves to the one-dimensional problem

of one risky asset and the bond. We obtain

g(t, ) = r(i) + 7r(i)[6(i)-KO] + [I* *(<)](#(*)~ KO)A*>1}-

Consequently

g{t,v(t)) = sup g(t,n) + irv(t)
iren

%JE% r(t) + 7r[&f) + v(t) - r(i)] + [I —

r(i) + + v(i) — r(f)] ifn< 1,

su
ir6
/?2(i) + 7r[6(0 + u (i)-~(0] if > 1.

Fixing tj we get three cases :

(i) The first case is
b+ v—R>Q=%$>b+v —r>0,
and the slopes on both intervals are positive, so that the supremum over ir
is infinity.
(ii) The case

b+ v—r<Q="b+v —7?<0,
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is very similar. Here, the slopes on both intervals are negative and the supre-

mum over 7 is also infinity.

(iii) The case
b+ v—R < 0and b+ v —r > 0,

means the slope is nonnegative before n = 1 and non-positive after. Now
the supremum is finite and attained at 7 = 1. The function value is b+ v.
Therefore, we obtain

if KO S + u(i) < R(1),
otherwise,

and the set
Dt = cr(t) < b(t) + v(t) < /?()}

with coi'responding dual problem given by

A=A 0=y 260 + «(O)+ 2w’

The global minimum is achieved at

However, confined to the set Dt, the minimum of the dual problem is achieved

at

R(t) —Db(t) once b(t) —R(t) > <2(t)
A@l) = —er2(0 once b(t) —R(i) < cr{t) < b(t) ~r(t)
r(l) —b(t) once b(t) —r(t) < cr2(t).
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We conclude the optimal investment strategy for an investor with logarithmic

utility is
-, ey)W) ~ #(0] ifo *(0(6(0 ~ R(t)) >1

A = 1

[6(f) - r(f)] ifa 2(t)(b(t) - r(t) < L

This shows that, as expected, the fraction of wealth invested in the risky asset
is lower than it would be without the spread between borrowing and lending
rates. The agent will shortsell the risky asset and lend if b(t) < r(f) and will
invest in the risky asset if b(t) > r(t). Borrowing will only occur when 6(f) >
R(t) + 02(O but as long as b{t) is in the interval [r(f) + cr2(f), (0 + 02(t)]
all wealth will be invested in the risky asset without the agent borrowing or
lending.

The d-dimensional case is computationally more difficult, but essentially sim-
ilar. We define

A(t) = Tr[a~1(t)Ter~1(0)],

The minimum of the dual problem is achieved at

KOIl_ W) + BA{ if0< B(t) - 1< A(t)(R(t) - r(t))
if B(t) < 1
[R{t)I - 6(0] if5(0~1>¢ M m ~KO)-
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We conclude that the optimal investment strategy for an investor with loga-
rithmic utility is

CLIGV T [« 1) --W 1-ig r1]  0< Bit) — 1< A(t)(R(t) —r(t))

B(t) < 1

We note that there are numerous market scenarios that can be modelled using
the large investor assumptions. It is possible, by choosing the appropriate
market effect functions, to model many current situations. The methodology
of solution above yields in all cases a minimisation problem which, in many
cases, can be solved analytically.
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Chapter 5

Summary

5.1 Conclusions

In Chapter 1 we state that our main objective is to ensure the satisfaction
of any investor with the return on his investment. We choose the utility of
final wealth as an optimality criterion. Again we stress that this is a suitable
choice for the investor who wishes to get rich. However it is clear that most
investors would prefer to spend during the interval and the utility should
therefore account for satisfaction derived in this way. This problem has been
researched and indeed solved in Karatzas et al. [7]. It is an essentially similar
problem and we have therefore concentrated on the problem of utility from

final wealth.

This problem has been extensively researched for a small investor. Indeed, to
all intents and purposes, the small investor problem is considered solved'. In
fact, for a small investor whose portfolio is confined to lie within a particular
region of Rd, the optimal form of the wealth process is known. However, the
optimal trading strategy n can only be calculated for certain utility functions
such as the logarithmic utility and the HARA utility

'‘See Karatzas et al. [6].
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We wish to solve the equivalent problem for a large investor, using the es-
tablished martingale methods. Our work has continued along this line of
approach - used by Cvitanic and Karatzas [16] for constrained portfolios.
More precisely, we define the convex conjugate function git, v) correspond-
ing to a large investor instead of the particular choice of 5(v) used in the
constrained portfolio case. We find that under the corresponding probabil-
ity measure P - and discount factor 7°(-) the discounted stock prices become
martingales. This introduces a new set of auxilary markets whose evolution
equation for wealth is linear and hence can be solved as in the small investor
problem. Our aim is then to find the appropriate v to reflect the given mar-
ket conditions. This is the dual problem, and it depends on the particular

choice of market effect functions.

We find that the non-linear large investor problem can be solved using the
strategy described in Chapter 4 for certain utilities. The form of both the
wealth and the optimal portfolio are known in this case. However, as in
the case for the small investor, for general utilities we must make certain
assumptions on the market coefficients to solve the portfolio problem. This
is done for the small investor in Xu [15]. Only to this extent has the large

investor problem been solved.

More precisely, as in Chapter 4, we can find the form of the optimal wealth
process from Theorem 3.21. We can also find explicitly the optimal portfolio
process which yields this wealth process. However this is only possible for
those same utility functions for which an explicit solution exists in the small

investor case.
The optimal portfolio 7 depends on the dual solution A In short, any prob-

lem solved explictly for the small investor can be solved similarly for the

large investor with solution dependent on A
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Our primary concern then, is how to solve for A In most cases this involves
a straightforward constrained minimisation problem of a concave function
(see Section 4.3). However the problem remains (as in the case of the small
investor under constrained portfolios) : namely, the existence of the optimal
portfolio has been proved, but an algorithm to find it explictly is not avail-

able for general utilities.

In addition, a fair price (selling) is found for a large investor selling any
claim B. Anything above this price would represent an arbitrage opportu-
nity. The fact that the hedging portfolio may not always be easy to find
explictly is not important to someone pricing the option or future derivative
in question. The same methods can be applied to find a fair (purchase) price
for the buyer of a claim. This would give a bid-ask spread for the price of a

claim.

5.2 Further Work

For most given market conditions the problem of solving for the dual solu-
tion is, as stated, a constrained maximisation of a concave function. This
should not, in general, present too much difficulty to solve - either explicitly

or numerically.

The main problem is that, similarly to the case of the small investor with
constrained portfolios, we can only find the optimal hedging portfolio % for
certain utilities. An approach similar to Xu [15] could be undertaken to find
the optimal portfolio in explicit form for a general utility under the extra
assumption of constant market coefficients r(t) = r, b(t) = band <r(t) = a.
It would be interesting to see if we could combine the function 5(v) used by
Cvitanic and Karatzas [16] for constrained portfolios and the function g(t,v)
for the large investor to model the case of a constrained large investor. In

particular a market controller may wish to limit the behaviour of a large
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investor to minimise his effect on market prices and stabilise the market.

Once the large investor decides on his preferred strategy the market will
immediately be affected by his actions. From a small investor’s point of view
the following question arises - how should he react to a large investor’s strat-
egy ? Does his optimal portfolio change in the presence of a large investor ?
Given the advantageous position (in terms of size or knowledge) of the large
investor, is he in fact better off or does he have an adverse effect on the prices
of the assets in which he trades ? If so, should the small investor adopt the

same utility and investment strategy as the large investor ?

Numerous articles were studied examining the effect of brokerage fees on
the agent’s investment strategy. These include Davis and Norman [17], Mor-
ton and Pliska [11] and Atkinson and Wilmott [18]. The general result of
all papers is that the small investor attempts to keep the proportion in-
vested in stock within a certain wedge in instead of a singular value as we
found in our examples. It is suspected that the same would be true for the
large investor. However, given certain extreme effects that he may have on
the stock evolution it should be examined whether or not the investor would
adopt a wedge strategy under prohibitively large brokerage fees or whether he
could afford to maintain an exact previsible portfolio process via continuous

trading.
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Appendix A

Some useful definitions and
theorems

The following useful theory is taken from Hull [19], Karatzas and Shreve [2]
and Williams [20].

A.1 Introduction

A stochastic process is a mathematical model for the occurence, at each mo-
ment after the initial time, of a random phenomenon. The randomness is
captured by the introduction of a measurable space (H, T) called the sample

space, on which probability measures can be placed.

A_1.1 Definition

For our purpose, a stochastic process is a collection of d random variables
X = {Xt,t > 0} on (fijjF, P) taking values in the state space (R][/,£3(11%))

where JEJRTJ is the smallest j7-field containing all open sets of R fi.

A.1.2 Definition
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X is measurable if, for every A € 5(R"i), the set
{(i,a;) : Xt(uj) € /4},

belongs to the tr-field 5[0,00) K T. In other words, X is measurable if the
mapping

(¢, oi) »m Xt(>) : ([0, 00) x ft,B[0,00) ®T) h» (Rd,"(R"))

is measurable.

A .1.3 Definition

We equip our sample space (il, J-) with a filtration; a non-decreasing family
{Tu i > 0} of sub-cr-fields of T :

C Ccf, 0< s< 1< oo,

where Tt represents the information known at time t.

A .1.4 Definition

The simplest choice of filtration is that generated by the process itself:
T? :=a(Xs:0<s <.

This is the smallest cr-field with respect to which A., is measurable for every

s E [0,¢], and is called the natural filtration.

A.1.5 Definition

Correspondingly, we define

Ft- := <r(\Js<t Ts) to be the tr- field of events strictly prior to L> 0.
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T* =ff(a>0"+.) ke the a-field of events immediately after t > 0.

A.1.6 Definition

The filtration Tt is left(right)-continuous if Tt —Ft- (respectively Tt =
Ft+) holds for every t > 0.

A. 1.7 Definition

A filtration is said to satisfy the usual conditions if it is right continu-
ous and Fq contains all P-negligible events in F.

A. 1.8 Definition

X is adapted to the filtration {Ft} if, for eacht > 0, X tisan ~(-measurable
random variable

A.1.9 Definition

A' is progressively measurable with respect to the filtration {Ft} if, for
each I > 0 and A £ £2(lln), the set

{(5,0;) : X3(>) e 4,0 < s< 1),
belongs to the <rfield £[0,/] ® Ft. In other words, if the mapping
(5,w)h+ X 9(ui) : ([0,i]xn,0[0, T]®~) ~ (Rd,B(Rd)>

is measurable for each t > 0.
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M artingales

We shall consider, exclusively, real-valued processes X = {Xt,t > 0} on
a probability space (fl,F, P), adapted to a given filtration jFt and such that
E\Xt\ < oo.

A.1.10 Definition

The process X —{Xt,Ft,t > 0} is a martingale if, for every 0 < s <t, we

have
E[Xt |Fs] = Xa, P-a.s.

A.1.11 Definition

It is a supermartingale if, for every 0 < $ < t we have
E[Xt |Fs\ < Xs, P-a.s.

A.1.12 Definition

It is a submartingale if, for every 0 < s <t we have
E[Xt|Fs] > Xs, P-a.s.

A.1.13 Definition

If these properties hold only for the processes
A'W(i) = X(t,Arn),

for each r,,, where rn is a non-decreasing sequence of stopping times converg-
ing to infinity, then AX-) is a local martingale (respectively supermartin-
gale, submartingale).
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A.1.14 Definition

Arandom timer isan ~-measurable random variable with values in [0, 00).

A.l.15 Definition

A random time r is a stopping time of the filtration if the event
t(u>) < t} belongs to the cr-field Tu for everyt > 0.

A.1.16 Definition

A continuous adapted process W = > 0} defined on P)
is a standard Brownian motion if

() W) = o a.s.,

(i) Wt—Ws is independent of V £>

(iii) Wt— Ws is normal with mean zero and variance t —s.

Brownian motion can be one dimensional or d-dimensional. Brownian motion
in R is a martingale. A stochastic integral (one with respect to Brownian
motion) is also a martingale.

A.1.17 Definition

Consider the class S of all stopping times r of the filtration {Ft} which
satisfy P[r < oo] = 1, The right-continuous process :0 < t< oo} is

said to be of class D if the family {A't HGs is uniformly integrable.

Alternatively, if wc consider the class Sa with P[r < a] = 1, then the process
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{XtjFt mO< t < 00} is said to be of class DL ifthe family {XT}TGa is

uniformly integrable for every 0 < a < 00.

A.1.18 Definition

The process {Xt,Tt :0 < i< 00} issaid to be RCLL if it is right con-
tinuous on [0,00) and has finite left-hand limits on (0,00).
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A.2 Girsanov’s Theorem

Given W, the standard d-dimensional Brownian motion, let
X = {Xt,Fut> 0},
be a vector of measurable, adapted processes satisfying
p[j\x\fdt <o0] = 1, 0< T < oo,

fori = l..d. Define

Zx(t) ;= exp{£ £ XjdW; - i J“[X 1|22}

a continuous local martingale with Zx{0)= 1.

Under the Novikov conditionl E[Zx_(t)\ = 1 and Zx_(t) is a P-martingale.

Consider then a new probability measure Pt on (ft, Ft) given by

Pt(A) := Zx{t)P[A],
and hence

Et[la]= E[IAZX(t)\.
Girsanov 3Rule
If Zx(l) defined above isa martingale, then the process W = {Wt, Ft>t > 0}
given by

Wi = Wi - f Xids,

Jo

is a d-dimensional Brownian Motion on (ft, 7t Pt )-

‘The Novikov condition states that defined above for the process X is a martin-

gale once i?[exp(l/21& < co.
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A.3 Properties of Conditional Expectation

(H, JF, P) isour probability triple, and X a random variablewith £[|X]] < oo.
Let Q and % denote sub-cr-algebras of T . The following properties hold :

@) IFX is¢/-measurable then E(X |Q) = X as.
@i Linearity : E(a\X\ + 02X 2 [G) = a\E(X\ \Q) + a2E(X\ \Q) a.s.
(i) Positivity : IfFX > 0 then E(X \G) > 0 as.

(iv) Falous Lemma : Ifwe have a sequence of random variables>
0;n € N} then

E\ Llip inf Ig\ < lipm inFE[XnIG] as.
Ln—00 7 n—00

(v) Dominated Convergence ; If the sequence above satisfies |[Xn()] <
V(uj) V n with E[V] < 00 and lim»-*» Xn —X as., then

n“_% E}Xn |g\ = E[X | Q] as.

(vi) Jensen’ Inequality : Ifc :R ->R isconvex and £J[|c(-Y)J] < 00, then
E[c(X) 1G) > c(E[X IG}) as.

(vii) Tower Property : IfH isa sub-cr-algebra of g, then
e e [X\g}\n\= E[X \H) as.

(viii) Taking out what is known : IfZ is”~-measurable and bounded, then

E[zZzX |g) = ZE[X | G) as.
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A.4 Neveu [1]

Gemignani [21]
Firstly, we require some elementary definitions from Gemignani [21] :

A relation mon any set ,S with the following properties is a partial ordering

on S

@ x <x, VX 6 S,

(i) x <y, y<x3mx=y, Vx>yE£S,

liD)x<y,y<z=amxz, V x,y,z €S

The set (6 7;<) is a partially ordered set.

S is totally ordered under < ifgiven any $,;t 6S eithers< t or tkKs.

If / is partially ordered under m thenl issaid to be an upward directed
set if,giveni,j € /, 3 k E I such that i =k and j xKk.

Neveu [1]

Let P) be a probability space. A family of random variables {’m :
i € /} indexed by the ordered set | is directed upwards if:

(@) the ordered st; / s directed upwards under

(i) the mapping t (& is increasing for inclusion, ie., /2, < (3 when-

ever /i K j2-
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Proposition 6.1.1« from Neveu [1]

For every family F of real-valued measurable functions / : fi R de-
fined on the probability space (H,.F, P), there exists one and only one (up

to equivalence) measurable function g : Q >» R such that
(a)g>f as.,V/ € F,

(b) if h is a measurable function such that h > f almost surely for all / G F,

then h > g as.

This function g, which is the least upper bound of family F in the sense

of almost sure inequality is denoted by esssup(F).

Furthermore there exists at least one sequence {/n : n G N} from F such
that
esssup(F) = sup/,a.s.
n

If F is directed upwards the sequence {/,, : n £ iV) can be chosen to be

increasing almost surely and then
esssup(F) = hrm™t /« a-s.

In our case {Jv{0)}v<=n is the family of random variables of (3.23) indexed
by the set D. By construction, the family {Jv{0)}veD satisfies the two con-
ditions above and hence is directed upwards.

We apply the proposition above to the family F = {/I(")}v6« to obtain

esssunJJO) = lim t -h [0) a.s.,
veD

for some sequence ¢ D.
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A.5 1to’s Lemma

Define W = {W_t,Ft,t > 0}, as a standard d-dimensional Brownian Motion,

null at zero and defined on the Probability Space
X is an Ito Process if for some x € RJ
Xt=x+j (x{s)ds + 0S-dWs,

where 0 6 TVIxd,/i 6 R *or, written in differential form

dX_t

Adt £ Ot mdWi,

£o X.

Ito’s Rule:
If X _is an Ito Process in Rdand / € C21(Rd x [0,00)).

Then {/(2£tj0'>* ~ 0} 's an Ito Process with
f(Xtit) =f(Xo0,0)+ f Dsf(£ tis)ds+ f U ~s)0 adW3,
Ja Jo
where

D j{xtt) =4(2Q,i) *nt+ M & ,t) + \rr[otodjxx(xt,Ol].

It is easy to show that as a consequence of Ito’s Rule, for two processes

satisfying
dX7t) = kIYt)di+0lI(t)-dW I,
dXmjit) = fi2(t)dt (- $2(0 <dWt,
we have
d(x,(0*2(0) = *,(0~(0 + *2(0~*i(0 + "~ (0~ (0"-

This is used throughout the thesis.
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A.6 Bayes Rule

Fix T > 0 and assume that Zx_(t) as in Appendix A.2 is a martingale.
If0O< s <t<Tand Y is an *-measurable random variable satisfying
£[ly|] < oo then

ftp, ] . MMPpAIA a.,

Zx_(s)

A.7 Monotone Convergence

Let P) be a probability triple, and X be a random variable with
E[|A']] < oo. Let Q be a sub-er-algebra of T .

If we have a sequence of random variables {An > 0;n € N} satisfying
Jim, txn = A,
then

lim t E[Xn\Q] = E[X |Q] as.
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A.8 Karatzas and Shreve [Z]

Theorem 1.3.13

Let X = {Xt,Ft,t > 0} be a supermartingale with Ft satisfying the usual
conditions (see Appendix A.1.7). The process AT has a right continuous mod-
ification ¢&<H E\Xt\ : [0, 00) R is right continuous.

If this right continuous modification exists it can be chosen so asto be right-
continuous with left-handed limits (RCLL) and adapted to{T}}, hence a
supermartingale with respect to {Ft}.

Proposition 1.3.14

If X = {At,Ft, t > 0} is a supermartingale, we have

(i) 3 an event TI* £ F with P[fT] = 1 such that for every a £ fi* the
limits

At+(u>) = limX,(w), t>0
see

Xt-(uj) = limAT,(u>), t>0
sfl
sec

exist and (ii) these limits satisfy

E[Xt+ | Ft] < X, P-a.s.,
E[Xt|F-] < Xt. P-a.s.

(iti) {A't+ Ft+}i > 0} is an RCLL supermartingale.
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A.9 Doob-Meyer Decomposition

Theorem

If Ft satisfies the usual conditions and the right continuous submartingale
X = {XuFut > 0} is of class DL then it admits the decomposition

Xt — Mt + Ati

where M = {Mt,Ft,t > 0} is a right continuous martingale and A =

{At,Ft,t > 0} is an increasing process.

Furthermore if X is of class D, then M is uniformly integrable and A is

integrable.
Corollary

A supermartingale X can be uniquely decomposed as
Xt = X(0)+ Mt-Au

where M is a local martingale with M (0) = 0 and A is an non-decreasing
locally natural process with /1(0) = 0.

If X is also positive and of class DL, then M is a martingale.
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A. 10 Fundamental Martingale Representation
Theorem

If M(t) is an .~-adapted local martingale with RCLL paths and A/(0) = O,
then there exists an R d valued process with

M(t) = f ip($)dWs,
Jo
where -0 satisfies

§ 11 (s)lfarfs <

and if E[M2(T)] < oo, then

E[Ja ||#5)]|2ik] < oo,

and M (t) is a martingale.

If is another such process, then

bo I17(8) - ¢{snds = 0.
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A. 11 Ekeland and Temam [3]

If F is a mapping from C C V R we associate with it the functional
F :V h* R defined throughout V by

B F(u)y u€ C,
F(u) = + 00, uncC, (Al

and F is convex C CV isconvex and F : C iR is convex.

Let V be a reflexive Banach Space (with norm [m]) and C a non-empty
closed convex subset of V. Take a function F : C h> R and assume F is

convex and lower semi-continuous.

We are concerned with the problem
inf F(u).

This problem can be replaced with the identical problem (with the same
infimum and the same set of solutions) given by :

(A.2)

with the functional F defined above.

Proposition Assume that F is convex, lower semi-continuous and coercive

over V.

Then the problem (A.2) above has at least one solution. This is unique

if F is strictly convex over V.



A. 12 The Optional Sampling Theorem

Let {Xt,Tt : 0 < t < 00} be a right-continuous supermartingale and let
s < r be two optional stopping times of the filtration {Ft). We have

E[Xt | Fs+] < Xs P-a.s.

Ifs is a stopping time, then F, can replace Fs+ above. In particular E[Xt\ <
E[Xo].
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Appendix B

Some proofs and calculations

B.I Convexity of g and D
From Rockafellar [22], for a convex function /, the conjugate is defined as

/| = sup[xTv —f(x)],
xend
on R (i and is convex.

In our case g is concave, —¢g is convex with convex conjugate given by
h := sup [X7v-|- sr(x)],
xen.d
denoted by g{l,v) in our notation.

D lias been redefined by Remark 3.9. We check if these properties hold

taking v — Aw, -ffj,v2. We can see clearly that
(i) v is JFr measurable,

(if) v is also uniformly bounded.
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(iii) Finally
.
E[f Hte, +iw2\t +  gft, Auj -f nv?)dt]

< e[Jg[A%1f + ,2[|7]|12+ 2 H [M]|[].111~ + /o [Ag(t,vi) +ng{t,v2)\dt]

< 00,

due to uniform boundedness of D.

>v) + wK”SaiO) < Ap(i,vi(t) + /iv2(0) < oo follows from the
convexity of g
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B.2 Discounted stock prices

The following shows how the discounted stock prices are martingales under

the auxiliary probability measure P. We know that

dPi(t) = Pi()[bi(i)dt + crT(t)dW (1],

dy{t) = —7(Or(t)dt.

From the consequence of Ito’s lemma of Appendix A.5 we have

¢ (7007(0) lindPiit) + dj(t)Pi(t)

i(O)Pi(D)[bi{t)dt + crj(t)dW(t)]- Pi(t}y(t)r(i)dt>

Now, applying Ito’s lemma we obtain

d[In(7())P,'(1))]

A -iwrn)+ Lty
7«fi(0O " w " 2
6,0- r(0)* + - fIMIZ

Integrating both sides and taking the exponential gives

7()(0 = PiexP| ~ Jgaj(s)dW (s) - EJI<Tt(s)||2<is].



B.3 The process M(t)

From the evolution equation of (2.16) we have

dj ()X (1) + ~F(t)dX(t)

—7 (X r(t)dt + 7 O[XO)r)dt + X(1)]iT(t)a(t)dW(t) —dc(t)]
= J{OX(t)zT()a(t)dW (t) - 7 (i)flc(O.

Integrating as before we obtain

y(hXx )+ Jo 7(s)dc(s) = x+ }0 y(s)X(s)nT($)a(s)dW[s).

B.4 The process N(t)

Similarly for the process N (t), we use the consequence of I1to’s lemma applied

to (2.16) and the equation
dH{t) = —H(t)[r(t)dt + OT(t)dW (1)].
We obtain

d{HOX®) = dHO)X(t) + HG)dX{t) + [-H(t)Or ()X ()Kr (tMt)]dt
= X ©HO)r(t)dt - H{t)6r {t)dW{t)\

+FHO) [X{Or{t)dt + X()zI{t)a{t)dW(t) - dc(t)]



—H(t)X(t)dT()AI(t)<r(t)dt

SX () (D) OTHAW(L) + H(t)X(t)jLT{t)a{t) [dW(t) + O{t)dt}

SH (1) X (1) 0T(D)KT () a(t)dt - H(t)dc(t)

X{OOYH(\E(t)cr(t) - OT(t)]JdW(t) - H(t)dc(t),
yielding, by integration
H(t)X(t) + JB +11{s)dc(s) = Jf0 A'(S)I(S)[TT(SKI(S) - 0T(s)]<W(s).

B.5 The process Mv(t)

We know that

d(" (1) X(1))

() dX(t) + dy(t)X(t)

= yyO[X(Ogt,Ad t + X (H)nTa(t)dW (t) —dc(t)\

-g{t,vtyv(t)X(t)dt

= IvAX[1)[g{t, Kt)-9{t>Vi)]dt

+ V(DX TiTa(t)dW(T) - 7y(t)de(t)

= W(i)X()[g(t>£i) - g{t,vt) + Kr (H)v{t)]dt

(B.I)
+1v()X(t)ir_TairdWuit) - 7v(t.)de(t.).
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Therefore, by integration the process

My(t) = Ji$)X{t)+ Jfo7,,(s)dc(s)
+ 50 Yiv(s)X (s)[g(s,Vs) - AT (s)v(s)]ifii

= X+ 50 yg(s)X(s)nT(s)a(s)d\Vv(s).

My(l) is a nonnegative P—martingale. The same procedure can be followed
for the analog of N(t) of Chapter 2.

B.6 Required for Lemma 3.34
We have from (B.l) that

dCyIL()X (1)) = 7s(0*(O[ff(i »at)-ff(iilit)+2LT(Q3N9]rfi  (B-2)

+1v(t)X(i)nra(t)dWogt) - Til(t)de.(t).

We wish to solve this for the wealth process X (t) by firstly solving the ho-
mogenous part given by

d(iv(t)X(t)) = Ta(t)*(i)[ff(i,214)-5(i,w<) + AT(i)li£-0]<ii

+7U(t) X(t)zT(T(t)dWj<),

and then guessing a solution to the inhom.oge.nous equation and solving this

by variation of parameters. By Ito’s lemma
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= [g(t7LY) - £(<«*) + Ir (vidi +  (t)a(t)dW IF}

The solution to the homogenous equation is then given by

Tv()X(t) = zexpj™ g(s,Ks)-g(siVs) + ilt(s)u*4s|

‘exp | iIT{s)a(s)dWI(s) ~ \ fQ ILT(®M *j||2k J .

Therefore, we guess the solution to the inhomogenous equation is in the form

7, (X = f()hy(D),

with 73(0)X(0) = x = /(0) and hy(l) given above. Also note that hy(t)

satisfies the homogenous equation, i.e.,
dhy(t) = kv(t){[g(t,nt) - g(t,&) + j?2I{i)vi\dt

+2LT(i)a(t)dW Jt)~.

Now, assuming f(t) is deterministic we apply Ito’s Rule to obtain

d[70(i)*(i)] df(tyhy(t) -f dhv(t)f(t)

df(Oliy(t) + iy (i) X (D)ir[g[t,nt) - + z(t)vi]dt + 2i(D)a(t)dWv (D),

which from the inhomogenous equation of (B.2) must equal
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giving the separable equation

** df{t)

—*m/(*) = * - //0 7£(a)fcwl(«)cfc(a),

from the initial condition for /. Therefore the solution to the inhomogenous

equation is given by :

X (i)

Ire - jf 7v(s)Ai3iL(5)rfc(s)|/idi(i)/7,, (i)

|.t- ~ exp[- jf p(u,7ru) + ET(«)Hurf«]

exp [—/ WT(W)irCiH/() + 5 [ 7T (u)(r (120 </e(s)

ri
exp ¢ II0 g(s,ns) + 7r (s)ydds

+ N Kr {s)<7(s)d\VIL(s) - [7rT(s)ir(s)||2cis|.
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