
Linking Programs and Specifications in

S e m a n t i c B a s i s a n d P r o o f S t r u c t u r e s

A THESIS SUBMITTED FOR THE DEGREE OF MSC.

James Power BSc.

School of Computer Applications
Dublin City University

Dublin 9

August 12, 1991.

Supervisor: Dr. Tony Moynihan

This thesis is based on the candidate’s own work, and has not
previously been submitted for a degree at any academic institution.

CONTENTS

CHAPTER 1 - DESCRIBING PROGRAMS 1

1.1 Importance of the Program-Specification Link 1
1.2 The Purpose of Formal Semantics 3
1.3 Denotational Semantics 3
1.4 Axiomatic Semantics 12
1.5 Program Annotation 19

CHAPTER 2 - SPECIFYING PROGRAMS 25

2.1 The Nature of a Specification 25
2.2 Specification Methods 27
2.3 The Specification Language Z 28
2.4 Models and Programs 33
2.5 A Predicative Basis for the Schema Calculus 35

CHAPTER 3 - REFINING SPECIFICATIONS 43

3.1 The Idea of a Refinement Calculus 43
3.2 Refinement as Interpretations between Theories 44
3.3 The Refinement Relation and Specification Bias 47
3.4 Refinement Proof Obligations in Z 49
3.5 The Refinement Rules in Practice 52
3.6 Motivation for a semantics in Z 55

CHAPTER 4 - SEMANTICS OF A SMALL LANGUAGE 58

4.1 A Simple Programming Language 58
4.2 The Semantic Domain 61
4.3 Strictness 63
4.4 Semantic Functions 64

C H APTER 5 - ANALYSIS OF TH E SEMANTICS 88

5.1 What was specified? 88
5.2 The Iterative Statement 90
5.3 Equivalence with Hoare Rules 94
5.4 Schema before- and after-states 101
5.5 Incorporating the wp-calculus 102
5.6 Annotations and Guarded Commands 111
5.7 Meaning Functions 114

CHAPTER 6 - SAMPLE PROGRAMS 116

6.1 Reversing Algorithm Development? 117
6.2 Some notational conveniences 121
6.3 The Dutch National Flag 122
6.4 Integer Square Root 135
6.5 McCarthy’s 91 Function 139
6.6 A Singly-Linked List 144

CONCLUSION v 157

REFERENCES 160

APPENDIX A - Summary of Z Notation

ABSTRACT

Linking Programs and Specifications in Z

by James Power

This thesis uses the Z specification language notation to discuss the relationship between
programs and specifications. We give a brief introduction to formal semantics, and the
Z specification language. We provide an adaptation of the Z schema calculus which is
based on predicates rather than propositions: this is constructed from the standard
calculus and is thus intended as an enhancement rather than a replacement.

We discuss the process of refining a specification towards a program as an exposition
of the relationship between the Z language (in particular) and standard programming
languages. We formulate the standard refinement proof obligations in our calculus, and
briefly examine some applications.

The focal point of the thesis is the provision of the semantics for a small language in
Z. We believe our approach to be unique, in that we have not only described the
semantic mapping functions using Z, but we are also taking Z to be our semantic
domain; that is, our semantics will map a program into a corresponding Z specification.
We assert the usefulness of such a specification as a basis for the analysis of the
program.

The semantics are analyzed in detail, and further work is done towards the unification
of various aspects of program analysis under the Z notation, and in particular, under our
predicate version of the schema calculus; the use of this notation and calculus to explore
the link between programs and specifications is a dominant theme throughout the thesis.

Using the same structures to describe programs and specifications is becoming
increasingly common; in the light of this we claim that constructing a link between one
and the other should not be considered solely in directional terms; the techniques in
moving from the former to the latter are likely to be just as useful when moving in the
opposite "direction".

We present a number of small examples to illustrate the above concepts.

CHAPTER 1 - DESCRIBING PROGRAMS

1.1 Importance of the Program-Specification Link

Let us define, for the moment, a specification as being some formal description of the

properties of a program, or of a system which that program is supposed to implement

We can identify three main reasons why we would want to study the link between such

descriptions and their corresponding programs: if we have a specification and want a

corresponding program, if we have a program and need a corresponding specification,

or if we have both, but are unsure that they actually correspond.

1. Developing programs

The task of developing a program to solve some problem will conventionally start with

some description of what that program is expected to do. Any program we develop will

be a formal, unambiguous, and hopefully correct description o f the solution to the

problem. Characterising the specification in equally unambiguous terms will be of

obvious benefit for the analysis o f that specification, but also as a starting point for the

development of a program: if we have the start point (the specification) and the end

point (the program) of the development process expressed formally, then it makes sense

to adhere to such formality as we attempt to develop the latter from the former. Such

a formalised description o f the development can then be examined to ensure that it has

proceeded correctly: the program is thus verified by asserting the correctness of the

development steps.

1

2. Documenting Programs

If a program can be seen as a formal description of the solution to the problem, then it

can also be seen as the documentation which explains that solution; unfortunately this

is often the case. The nature of an explanation of a program will naturally depend on

why that explanation was required, but it is a safe bet that a description other than the

program itself will be useful. A formal specification provides a "summary" of the

program, from which some the detail has been abstracted away; this form of description

can be used to assess the usefulness o f the program for a particular task, or as a basis

for altering the program. We would hope that studying the link between programs and

specifications will provide a "ladder" which we might use to ascend from programs to

their specifications.

3. Certifying programs

Even if we have been given a description o f .what the program is supposed to do, there

is no guarantee that this description is correct and does not contain inaccuracies

(accidental or otherwise). The idea of software certification envisages some sort of

independent body which would be able to "approve" the program as one which fully

realises the claims made for it in its documentation. If a formal specification can be

constructed from whatever form of documentation is provided, then the program-

specification link can be seen as a common platform, from which the relative features

of the program and the putative specification can be compared.

2

1.2 The Purpose of Formal Semantics

If we wish to analyze a program, then we will want to have a fairly definite idea of its

exact meaning; in order to have this, we must fully understand the programming

language in which it is written. Since we will be exploring the connection between

programs and formal specifications we will want a description of the programming

language in formal mathematical terms which we can reason about This type of formal

description of a language is referred to as the formal semantics of that language; it

usually involves describing elements of the syntax of the language in terms of some set

paradigm.

One of the earlier semantic techniques was operational semantics, which involved

describing an abstract machine, and then characterising the program in terms of some

sequence of actions which would be performed by the machine. This method was

prominent in the early days of semantics (based on the success of the idea for dealing

with program complexity issues), but will be less of interest to us than its more

"abstract" counterparts. We will be considering two of these approaches - the

denotational and axiomatic method.

1.3 Denotational Semantics

The denotational method (also known as mathematical semantics) is based on a

significant amount of mathematical theory, investigation of which was pioneered by

Dana Scott; for our purposes we will only deal with this theory superficially, but a fuller

description of the underlying principles can be found in Scott’s article in [BrSc82], or

3

in chapter 5 of [Mann74] (or in books dealing with denotational semantics such as

[Schm86]).

We will be describing program constructs by means of their actions modelled in some

group of semantic domains, which we can regard as being sets with particular properties

We usually start out with some basic group of domains, such as the Integers, Booleans,

Natural Numbers, etc. We can then build on these domain by defining functions, tuples,

unions, sequences and so on over existing domains.

Providing a semantics for a language will consist of giving a number of functions which

map constructs of (the syntax of) the language into elements of some group of pre

defined domains. These functions are usually defined recursively over the language; the

semantics of some construct is defined as some form of composition of the semantics

of its sub-components. This emphasis on the denotation of the constructs gives the

semantics its name; the style of depicting a component in terms of its sub-components

is the hallmark of denotational semantics.

We would usually start the definition of the semantics o f a language with some sort of

formal definition of the syntax; these syntactic domains will then provide the basis for

our mapping. The simplest way to describe this process is to take a small example of

a programming language1, and to attempt to formulate its semantics.

^ a s e d on the descriptions in [Gord79] chapters 4 and 6, [Paga81] § 4.2, and [Stoy77] chapter 9.

1.3.1 Denotational Semantics for a (very) small language

Syntactic Domains

We will need consider just five syntactic domains:

Name Description Sample Members Type

Ident Identifiers I Primitive

Bas Basic constants B Primitive

Opr Binary Operators 0 Primitive

Cmd Commands (Statements) C, Cj, C2 Compound

Exp Expressions E, Ej, Ej Compound

If we assume that our language operates over the natural numbers, then the domain Bas

will consist of the constants {0, 1,2, . . .} , and the operators in Opr will be +, =, < and

so on.

The domains Ident, Bas, and Opr are primitive domains, whereas Cmd and Exp are

compound domains, and are defined by the equations:

C ::= skip | I := E | if E then S! else S2 | while E do S | Sj;S2

E ::= True | False | not E | I | B | Ej O Ej

5

Semantic Domains

We will need just two primitive semantic domains: N the Natural Numbers, and Bool

the Boolean values TRUE and FALSE. To simplify things we will use the same

identifiers for both the syntax and the semantics, and so we need define just two

compound semantic domains, Dval and State.

Name Meaning Sample Members Type

N The Natural Numbers Primitive

Bool Boolean Values Primitive

Dval Denotable values d Compound

State Machine States s Compound

The compound domains are defined by the equations:

Dval = [N + Bool + {co}]

State = Ident —> Dval

Thus the program state is simply a mapping from identifiers to their current value, or

to (D if they are undefined.

Semantic Functions

Before we define the semantic functions, we will first need two expressions which will

prove useful. For some function/; [A —» B] and domain elements a : A and b : B, the

6

update expression f&(a~-tb) returns a function which is the same as /ex cep t that a is

mapped to b. If a and b are elements of the same domain, then the conditional

expression t -> a, b evaluates to a if t is true, or b if t is false2.

For any two functions / and g, we use f e g to denote the application of /fo llow ed by

the application of g; if the result of applying/w as undefined, then so will / & g.

Now that we have defined the syntactic and semantic domains, we can define a mapping

between them using just three semantic functions, 9?, © and % which are defined as

follows:

© : Cmd —» [State -» State]

© [skip] = X s. s

© P := E] = X s. (s © (I 2[E]s))

© [if E then Sj else S2] = X s. (^E]s -» ©[SJs, ©[SJs)

© [while E do S] = X, s. (£[E]s —> ©[S]s 0 ©[while E do S], s)

© [Si;S2] = ©[SJ ® ©[S2]

Exp —> [State —» Dval]

rU ru e] = X s. TRUE,

¿"[False] = X s. FALSE

2* [not E] = X s. (-. r [E]s)

rp] = Xs. 1
[B] = X s. 9* [B]

r i E j O E j] = X s. SR[0] (#fE,]s, «[EJs)

make the additional assumption that if any of the arguments to the update or conditional

expression are undefined, then the result will also be undefined.

7

We shall not describe the function 91 in detail; it is a trivial mapping from the constant

and operator symbols of the program into the corresponding symbols of the semantic

domain.

Thus, a command is regarded as being a state to state mapping (ie. something which can

possibly change the values that the identifiers are mapped to), while an expression

simply represents some value which can be calculated from the current state.

One of the main points o f interest here is the definition of the while loop by recursion.

If we let:

W = ©[while E do S]

F = X w. (X, s. (#[E]s —» ©[S]s o w, s))

then the definition of the while loop becomes the equation W = F(W), which asserts that

the meaning of the while loop is the fixpoint o f the function F. To examine this

definition in greater detail would involve going further into the mathematical background

of denotational semantics than we will need; suffice to say that the uniqueness of the

solution is guaranteed by choosing the least fixpoint, while the existence o f a solution

will depend on the monotonic properties of the functions.

1.3.2 Dealing with scope and parameters

One obvious omission from the above language is a provision for the declaration of

identifiers representing variables, as is common in most languages. The notion of the

scope of the variable is closely connected with how we deal with its declaration, and

8

will be fundamental to parameter passing and dealing with procedure calls in general.

We will just look briefly at a common approach.

If we wish to treat the variables which an identifier represents as being dependent on

the current context, then we must first of all make the link between identifiers and the

values which they denote a litde bit more flexible. We can do this by choosing to

define this link in terms that would perhaps be somewhat close to the way in which a

machine might view it; in terms of memory locations. Let us we have some arbitrarily

large domain of memory locations called Loc; the we can define the memory, or store,

by the function;

Store = Loc —» Dval

Each identifier is then associated with a particular "address" in the store; we get the

corresponding value by examining the contents o f this address. We use an environment

function Env to define this mapping;

Env = Ident —» Loc

Thus, in order to find the value of any identifier, we will have to first work out the

corresponding location using the environment, and then use the store to map this to a

value; this means in practice that we will now have to introduce Env as an extra

parameter to our semantic functions. We can now distinguish between an identifier’s

appearance on the left-hand-side and on the right-hand-side of an assignment statement;

the former will represent a location, the latter will represent a value.

s

The environment allows us to model issues concerning scoping during a procedure call.

9

Each time the procedure executes, the environment will be augmented with mappings

for the local variables for that procedure. However, we will also be able to represent

the situation where two identifiers both reference the same location (as in the case of

the call-by-name parameter mechanism); we can just map both identifiers to the same

element of Loc. Thus the environment is a many-to-one mapping from identifiers to

locations, while the store will be a many-to-one mapping from locations to values.

1.3.3 Meaning Functions

The last topic we will consider in our discussion of denotational semantics is the idea

of a meaning function. We have defined a program in terms of functions over domains;

the purpose of a meaning function is to pick out some aspect o f this definition which

we will regard as being the "meaning" of the program as far as we are concerned. We

choose to highlight three such aspects3:

1.

Each command will involve some operation which can change the value of any identifier

which is currently in scope. In a manner reminiscent of § 1.3.1 we could characterise

the state of the program at any instant as a set of pairs of identifiers and values.

Commands can change the values, while declarations and procedure calls can change the

identifiers (and the number of identifier-value pairs). One way of defining the meaning

of a program therefore would be simply to list the sequence of states which would

correspond to an execution of the program. This type of meaning is perhaps closest to

the operational approach, and we shall denote it as M ^ , since it effectively captures all

*We do not claim, of course, that these are the only three aspects, or even that they must be

exclusive.

10

of the information that the program has to provide; the level of abstraction here is thus

at a minimum.

2 . M enu

A description which lacks in abstractness to the degree of has the disadvantage that

it may distinguish between programs which we would like to regard as identical. We

might only want to know what a program "does", and choose to characterise this in

terms of the values of the identifiers upon termination; we will call this What we

are really concentrating on here is what the program has done, rather than how it has

done i t This approach is more abstract that the preceding one, since will not

distinguish between two programs which use different methods to achieve the same

results, while would.

3. M|0

We did not deal with input and output commands in our discussion so far, but it is clear

that they are fundamental to any program that we might hope to execute on a machine.

One natural way to characterise a program is on its observable behaviour, that is, on

how its outputs relate to its inputs - we call this Mlo. From the point of view of the

semantics, dealing with input and output may involve introducing special I/O domains,

and passing these between semantic functions along with the store; we could then pick

out some properties o f these domains as being a suitable characterisation of the

input/output behaviour of the program.

11

1.4 Axiomatic Semantics

Axiomatic semantics are usually regarded as operating at a more abstract level than

either denotational or operational semantics. A language is defined by including its

constructs in a proof theory, based on mathematical logic; this involves adding structures

for describing the language components, and of adding new deduction rules to standard

logic. One of the first methods of achieving this was by means of Hoare triples in

[Hoar69], with a definition of the Pascal language following in [HoWi73]. A variation

of this method, using a predicate transformer called wp, was detailed in [Dijk76]; we

will give a brief outline of both methods.

1.4.1 Hoare’s Rules

The basis of these rules is the triple {PJ S {QJ, where P and Q are predicates, and S is

a statement, or group of statements4. The predicates assert some property of the

program variables, and correspondingly, the triple asserts some property of the

statements S. We regard P as describing the relationship between the variables before

the execution of S, and Q as describing the relationship after S has been executed.

When we assert that {P} S {Q} , we are saying that if the statements S are executed

starting from a situation when the variables satisfy P, then the termination of S will

result in the variables being given values which satisfy Q.

We do not insist that the statements S will terminate; nothing is asserted about the

situation which occurs when they don’t. The assertion that {PJ S {FALSE} states that

S, when executed from a situation where P holds, will never terminate (since no

assignment of values to the program variables can ever satisfy FALSE). If we claim that

4This triple is also sometimes written as P {S} Q with the same meaning for P , S and Q

12

{TRUE} S (QJ holds, then we are effectively characterising the final values of the

variables after any terminating execution of S by the predicate Q. For the triple

{P} S (Q), let us refer to P and Q as the pre- and post-condition respectively, and regard

the assignment o f values to the program variables as constituting a program state.

If we assert {P} S {QJ, then we require from Q that any post-condition resulting from

a pre-condition characterised by P can be characterised by Q; we do not care if extra

states, even if they do not correspond to any pre-conditions, are also characterised by

Q so long as it contains the ones we want. Therefore we can feel free to either

strengthen P (and possibly reduce the set of possible corresponding post-conditions), or

we can weaken Q, without changing the validity of the assertion. Using the turnstile

symbol w to represent deduction, we can thus formulate rules for the system such as:

{P} S {R}, R = > Q i- {P} S {Q}

and

P =* R, {R} S {Q} h {P} S {Q}

Various other rules exist which allow the formulae to be manipulated in this manner.

We can now define the statements of the program using these triples, by describing the

effect that the statements have on arbitrary predicates. We define the most basic

command, the assignment statement x := t by means of an axiom:

{P[t/x]} x := t {P}

We use P[t/x] to denote the predicate P which has had all free occurrences of the

variable x replaced by the variable t. The assignment statement is thus regarded as a

13

means of taking the properties which were true for t, as represented by P, and asserting

that they now hold true for x.

Compound statements are represented by deduction rules, whose prerequisites usually

assert properties of the component statements.

The composition rule allows us to assert properties of the sequential composition of two

statements based on a common "intermediate" state:

i

{P} S, {R}, {R} S2 {Q} h {P} S,;Sa {Q}

The if-then-else rule is equally straightforward, picking out a pre-condition for the

statement which is a specific weakened form of the pre-condition for the two branches

of the statement:

{P a E} S, {Q}, {P a -E} Sj {Q} h {P] if E then Sj else S2 fi {Q}

The rule for the while statement depends on selecting a suitable strengthening of the

negation o f the guard which will remain invariant for the execution of the loop body:

(P a E) S {P} h {P} while E do S od (P a -E }

The rules for procedure statements is not unlike that for the assignment in that it also

depends on variable substitution; we will not discuss here the various different cases

which correspond to the different types of parameter mechanisms. Suffice to say that

most of the detail involved in describing the rules involves ensuring that there are no

14

name clashes brought about by the replacements; a number of rules are discussed in

[Apt81].

1.42 Dijkstra’s wp

A more commonly-used variant of the axiomatic method is the wp predicate transformer

(references include [Dijk75], [Dijk76], [Grie81], [Drom89]) which defines the

relationship between a terminating program, a post-condition, and their weakest

precondition. We write wp(S,Q) for statements S and post-condition Q to specify the

weakest pre-condition that must be true in order for the program to terminate and

establish Q. Note that we are interested in partial correctness, since we deal only with

programs which terminate, unlike the Hoare rules which can be applied to non-

terminating programs. Thus, if we know that S is guaranteed to terminate for every

input, the assertion that {PJ S {QJ is equivalent to saying that P => wp(S,Q) (since any

valid pre-condition will always be contained in the weakest pre-condition).

Since we will meet wp again in later chapters, it will be useful to elaborate on four of

its characteristic properties:

1. For any statements S we have wp(S,FALSE) - FALSE. This is known as the Law

of the Excluded Miracle. In the previous section we identified the post-condition

FALSE with non-termination; what we are saying here is that the wp of any group of

statements will never include a state that causes the statements not to terminate.

2. For any S and post-conditions Q and R such that Q => R, we have wp(S,Q) => wp(Sft),

ie. wp is monotonie with respect to implication (or, as we weaken the post-condition,

15 I

we also weaken the corresponding weakest pre-condition). The weakest possible post

condition is TRUE, (since for any R,R=t> TRUE), and so wp(S,TRUE) will contain all

those states which, for any R, satisfy wp(SJl) (in other words, it characterises the set of

states for which S will halt).

3. The transformer wp is distributive with respect to conjunction and disjunction; ie. for

5, Q and R as above we have: wp(S,Q) a wp(SJi) <=> wp(S,QaR) and also that: wp(S,Q)

v wp(SJl) <=* wp(S,QyR). Note that the equivalence of the latter assertion depends on

the determinicity of the statements S.

4. If we have some non-deterministic set of statements N, then we may be able to talk

about the weakest pre-condition for some post-condition (Q v R) if this predicate

represents the aggregate results from choosing any o f the non-deterministic routes.

However, there is absolutely no guarantee that we can divide those pre-conditions into

two groups, one of which will be guaranteed to establish Q and the Other of which will

be guaranteed to establish R, since the notion of "guaranteeing" the result may infringe

upon the non-determinicity of the choice. Thus, for any non-deterministic statements N,

we have wp(N,Q) v wp(NJZ) => wp(N,QvR)

Now that we have an alternative to using the Hoare triples, we can begin to give a

semantics for parts of a programming language. We can define the assignment

statement in a corresponding manner to the definition of the previous section, ie:

wp(x := t,P) = P[t/x]

Sequential composition is equally straightforward:

16

wpCSjjS^R) = wp(Sx, wp(S2,R)

The language commonly used with the wp calculus utilises the idea of guarded

commands, where a sequence of statements is executed only if their preceding guard is

true; for guard B and statements S, this is usually written B S. This can then be used

to construct the familiar conditional statement, but this is further generalised to the non-

deterministic version5,

if B! -» Sj 0 B2 -» S2 0 ... 0 B„ Sn fi

where the statement to be executed is chosen non-deterministically from those statements

whose guard is true (execution "halts" if none of them are true). Let IF denote the

above statement and let BB denote (B, v B2 v v B J, so that we can define a

semantics for the conditional statement as:

wp(IF,R) = BB a (Bj => wp(S1(R)) a (B2 => wp(S2,R)) a . . . a (Bn =̂> wp(Sn,R))

The pre-condition BB is necessary to ensure that at least one of the guards will be true,

and we also assert that the truth of any guard must imply that the corresponding

statement produces the required result.

The iterative command is structured similarly:

do Bj —> Sj 0 B2 —> S2 0 ... 0 Bn —> S„ od

*We use the symbol 0 to represent the choice: the standard rectangular symbol does not appear to

be in our character set!

17

where the loop body is repeatedly executed until all the guards are false; a single

iteration corresponds to the if .. 0 .. fi statement above. Let us denote the above

statement by DO , and define the functions H£R) as:

Ho(R) = (R a -iBB)

Hj(R) = Ho(R) v wp(IF>Hi.1(R)) for any i > 0

Each H j(R) corresponds to the situation where the loop iterates i times and then

terminates. The while loop will then terminate if we can find just one such i for which

this holds:

wp(DO,R) = (3 i : N ■ HjCR))

In practice it is easier to describe a loop by asserting that some predicate P is invariant

for the loop body, and to prove termination by showing that some bound function (3 is

decreased by each loop iteration and reaches a minimum when the loop guard is false.

Let us assume for simplicity that P is a function over the program variables which

returns an element of N. If for each guard £,• and corresponding statement 5; in the loop

body, we can show that:

P a Bj ^ 3 t : Nj • (P = t) a wpCSj, P a (p < t))

then this implies that P => wp(DO, P a

1.5 Program Annotation

1.5.1 What is involved

The major benefit in axiomatising a programming language is that it facilitates the

formal derivation of programs from a given specification. The ideal is that we should

manipulate the initial specification into some form which is then amenable to expression

in terms of one of the programming commands; various techniques, examples and

heuristics are given in text such as [Grie81], [Back86] and [Drom89]. The end result

of such a process would be a program whose derivation has been verified, and which

has been annotated accordingly with various predicates which are deemed to hold true
\

at a certain point in the program.

However, if a program has not been developed using formal derivation techniques (or

if details of this derivation are no longer available) then in order to deal with it in an

axiomatic framework, we are faced with the task of providing predicates to annotate the

program based solely on the actual program code. This involves using the semantics

of the programming language to deduce some predicate which describes the relationship

between the variables at a particular point in the program, and attempting to work out

what effect ensuing commands will have on this predicate. The best description o f the

program will be the one which uses the strongest possible (valid) predicates to describe

the program state.

We essentially have three groups of rules to deal with when attempting to analyze a

program in this manner. First of all, we must consider the rules o f the semantic

framework in which we are working; for our purpose these rules will be the familiar

rules of standard mathematical logic. Other situations might involve different proof

19

I

structures: for example, if we were attempting to analyze a system with concurrency

facilities, we might choose to work in the realm of temporal logic.

Secondly, we will have the rules associated with the particular programming language

that we are using. As we have seen, this may involve an augmentation of the basic

rules of the semantic framework to incorporate the individual commands o f the

language. We can thus regard the program as an "assertion" in some form of logic,

from which we can draw various consequences, depending on each of the individual

statements, and groups of statements. When dealing with a proof in standard logic, we

will use certain conventions to document our progress. Usually we will start off with

the facts that we are given, and then we will write any deductions that we may make

one after the other, perhaps giving some clue as to how they were arrived at. Thus we

assume that an assertion at any point in the proof depends on what has gone before. In

the same way a program can be regarded as such a structure, since we may write an

assertion at a particular point in the program text, and feel justified in deducing that a

some other assertion will hold further on in the program text, based on the semantic

rules that we have defined for the relevant programming language.

Our third set of rules involves the data types used in the programs. When these are

modelled in the semantic domain, we do not consider them to be just a set o f named

elements and operations, but we also assume that ceratin properties hold true for them.

This may be done implicitly if we are using familiar domains (such as Integers or

Natural numbers), or we may choose to provide some form of axiomatisation to aid in

the description of the domain. When we come to prove properties of any program

which uses a type corresponding to one of these domains, we will want to exploit these

properties; for example, if we were considering the Integers, then we will expect to be

able to use the transitivity property o f equality in our proofs (that is, for integers a, b

20

and c, we have (a = b) a (b = c) => (a = c)). Some algebraic specification techniques

provide methods for representing such properties formally - very often in terms of

abstractions such as groups and rings.

We can thus regard the program annotation process o f being one where we are provided

with the above three groups of rules, and an assertion based on these rules (ie. the

program), and asked to deduce some set of facts; the particular emphasis that we will

place on some facts over others will depend on how we represent the meaning of a

program (as in § 1.3.3 above). ,,

1.5.2 Annotation Rules

It is worthwhile to illustrate the above discussion (and to motivate some o f the work we

do in chapter 4 of this thesis) by considering an attempt to systematise the annotation

process described in [Mann80] and [Ders83].

%
The types of annotations that we may write in a program text are divided into three

categories. For some predicate P, the annotation assert P in Prog is called a global

invariant, and it describes some properties of the variables which are invariant

throughout the section of the program which corresponds to Prog. This can be used to

characterise some property which has been established by another section of the program

and upon the validity of which the operation of Prog has been based; for example, after

an input statement with some form of input-validation procedure, we might assert that

the input will consequently possess the properties established by this validation.

\

21

The second type of annotation is the local invariant, which is of the form L: assert P

where L is some position (or label) in the program This annotation asserts that the

predicate P is true whenever execution reaches that point in the program We could use

this type of assertion to describe a loop invariant, by annotating the program with the

predicate which represents the invariant after the initialisation and after the execution

of the loop body.

The third type of annotation is the candidate invariant L : suggest P. This simply says

that it is possible for the assertion P to be true at point L, but that we have not formally

verified it as yet. We would use this type o f invariant in the course of the annotation

process, and we would hope that all such invariants would have been verified or

eliminated by the end of that process.

In practice, these rules are closely associated with the axiomatic semantics for the given

language. We will describe (a small number of) the rules by giving a fragment of

possibly annotated program text, and writing in any new assertions that we feel entitled

to make in italics. All of the rules involve local invariants, so we shall not worry about

prefixing them with a label.
A

There is one obvious condition that we can establish after an assignment:

x := a {assert x = a]

We can also move invariants forwards through an assignment:

{assert P(u,y)} x := u {assert P(x,y)}

22

and, of course, backwards:

{assert P(u,y)} x := u {assert P(x,y)}

Rules for the conditional statement include the immediate observation:

{assert P} if B then {assert P a BJ S, else {assert P a ->B} S2 fi

and rules such as:

if B then {assert P} else S2 {assert Q} fi {assert P v Q}

An important rule for the while statement would be:

{assert P} while B do {assert B} S {assert P} od {assert P a ->B)

A number of rules such as these are presented in Appendix 4 of [Ders83], along with

heuristics such as:

if B then {assert P} else S2 {assert Q} fi {suggest P a Q]

We will not be considering such rules and heuristics in any great detail. The purpose

of this thesis is to provide a framework within which rules such as these have been

implicitly incorporated; this framework will be the semantics (in Z) which we will

construct for a sample programming language. We are not attempting for one moment

to dismiss the usefulness of such guidelines; indeed, we argue that one effect o f our

23

approach will be to facilitate their use. We will be returning to this theme in chapter

6, when we attempt to analyze some sample program s, and consider the nature of the

techniques which must augment our framework in order to do this.

24

CHAPTER 2 - SPECIFYING PROGRAMS

2.1 The Nature of a Specification

The purpose of a specification of any system is to describe, in some way, what that

system is supposed to do. The exact nature of the specification will depend on the

composition and operation of the system - we will build our specification so as to

highlight those aspects of the system that we have deemed to be important As with the

process of describing the semantics of some language, we will build a specification by

describing the system in terms of structures which are familiar to us. A specification

language provides a standard notation for describing these structures.

One critical aspect of a specification is that we will usually not wish to describe how

the system is to be implemented. This "abstract" view allows us to reason about the

specification, to consider aspects such as its correctness and completeness, without being

constrained by having to work in an environment defined by some programming

language. Presumably (although not necessarily) we will want to implement the

specification at some stage; this will involve a process of adding commitments to the

specification which prejudice it in favour of some programming language or paradigm.

Since a specification only describes what a system will do, it is possible to have

specifications which can never be implemented - the Halting Problem would constitute

such a specification. It is also possible to have specifications where we do not know

if they can be implemented (for example, to generate solutions to an unsolved existence

theorem such as Fermat’s Last Theorem). As we refine a specification we may make

25

implementation choices which will not represent a full implementation, but which we

will deem to be acceptable compromises: in most cases we could use a programming

language representation for natural numbers in place o f the infinite set of natural

numbers mentioned in a specification.

Another important feature of a specification is non-determinism. This occurs when we

specify the range for an acceptable result of some operation, rather than distinguishing

a unique result for each case. This may be due to the fact that we are not interested in

the actual result, or because we have deliberately built in a "don’t care" situation to the

specification. In all instances, if we are attempting to implement the specification in a

deterministic language, we will be forced to make some kind of decision as to a single

acceptable result Thus the process of implementation can be seen as one of adding

information to the specification, or of constraining it to a greater degree.

When we talk of a specification possessing a degree o f abstraction, we are, to a large

extent making an essentially subjective decision. The abstractness of a specification

depends on what you are comparing it against: usually we would have some informal

notion of the problem domain and some idea of a target programming environment upon

which to base such a decision, but, in the absence o f these, the notion of abstraction is

entirely arbitrary. When we have two or more specifications we can begin to make

comparisons and possibly formulate some hierarchy of abstractness, with each

specification being regarded as being at a particular level o f abstraction when compared

to the others. This is central to the idea o f stepwise refinement where an

implementation will, in turn, become a specification for future implementation steps.

26

2.2 Specification Methods

As a prelude to our discussion of Z we will take a (very) brief look at the two principal

specification paradigms. Examples of the property-oriented method (also known as

algebraic, or equational, specification) include CLEAR ([BuGo77]), Larch ([GHW85])

and OBJ ([EhMa85]), while the main examples of the model-oriented method are Z

([Spiv87]) and VDM ([Jone90]).

2.2.1 Property-Oriented Methods

The property-oriented specification method seeks to describe a system by stipulating

how the operations interact with each other. The method therefore concentrates on a

description of the properties o f the system (as described by these operations).

A property-oriented specification is composed of building blocks which we will call

theories; these theories usually consists of two parts - a signature, and a set of axioms

(or equations). The signature gives the names of the types being defined and the names

of the functions along with the types of their domain and range. Individual elements

may be distinguished as being of a certain type. The set of axioms describe the

properties o f the types, functions and elements by describing how they interact with each

other. These equations typically would involve some combination of the applications

of some of the functions being equated with an application of different functions, or

possibly the same functions in a different order. Common properties such as inverses,

transitivity etc. can be described in this manner.

A specification of a system can be constructed by combining theories; various strategies

27

exist for the combination methods. A specification will start from some basic set of

theories, and will then combine and extend these to describe the operation o f the system

It is thus possible to build up a library (or "heritage'') o f theories which express basic

properties that may be useful in describing a system. For example, the Larch Handbook

[GuHo86b] starts with definitions o f basic properties such as associativity, transitivity,

partial and total orderings, and builds up to specifications of sets, queues, trees, rings,

lattices etc., most o f which w ill have parameterised types and operations.

2.2.2 M odel-Oriented M ethods

The model-oriented method regards a system as consisting of a group o f states, each of

which corresponds to some configuration o f the components o f the system. An

operation in the system is regarded as something which moves that system from one

state to another, The building blocks o f a model-oriented specification are sets, and the

associated ideas o f tuples, functions, sequences etc.; these arc used to build a model o f

the system by constructing a model o f a state of that system Operations are modelled

by specifying the states before the operation, and the corresponding states after the

operation has taken place.

2.3 The Specification Language Z

2.3.1 A Brief Introduction

The basic unit of specification in Z is the schema, which consists o f a declaration part

28

and a predicate part. The declaration part introduces some group of variables (giving

their name and the set to which they belong), while the predicate part constrains their

values by presenting a predicate in which they appear. A schema is written as:

Name = [Xj : tx; ...; xn : ^ | P(xlf xn)]

where x1,...txn are variable names, are their corresponding type (ie. the set, or

tuple, function etc., to which they belong), and P(x1,...,xn) is some predicate ranging over

the variables. We can, if needed, associate some unique Name to a schema, and future

references to Name are taken to be references to the variables of the declaration part of

that schema (suitably constrained by the predicate part, of course). Every variable, when

first introduced, must be given a type which associates it with a set (or function, tuple...)

of some previously defined type. We take sets such as Z, N, R etc. as our basic types.

The most fundamental type of schema is that which describes what it means to be a

state of the system; this is called the state invariant schema, and it effectively specifies

a set, each member of which will be a valid state. We will also designate a subset of

this set of states as being the valid set of start-states for the system as a whole; these

are usually called the initial states of the system.

Operations are also modelled using schemas, except that these will be different from the

state-invariant schema in that they must specify two sets of states - the valid before- and

after-states of the operation. To distinguish between the value of some variable x before

and after an operation, it is conventional to write the latter as x ' in a schema.

29

2.3.2 The Schema Calculus

Since Z schemas consist basically o f a predicate, we can construct new schemas from

old by using standard logical operators such as a , v , => and <=>. Thus for some

schemas named A and B we can construct the schema A a B whose declaration part is

the combination of the declaration parts o f A and B, and whose predicate part is the

conjunction of the predicate parts o f A and B. Schemas for the other operators are

defined similarly.

We can also use the quantifiers V and 3 with schemas; the phrase V B for some schema

B is formed by universally quantifying all the variables in B, and similarly for 3 B. The

concept of "hiding" some of the variables o f a schema simply means to existentially

quantify those variables in the schema. Thus for the schema Name defined above, we

could hide some variable, say, in Name by writing:

[x, : t,; ... Xj., : t*.,; x*, : t*,; ... x„ : t„ | 3 x,: t, • PCx,,..̂)]

This schema would usually be denoted Name \ (xj. We can hide a group of variables

by projecting one schema onto another, A projected onto B, written A t B consists of

A a B from which all o f those variables in A not shared by B have been hidden.

2.33 Schema Binding and 6

When we use the schema name A in some logical sentence, we are introducing all the

variables of that schema, and any logical operation such as conjunction, quantification

30

etc. involving the schema will be over all the variables o f that schema. We can talk

about an individual variable of A by writing Ajc, where has been declared in the

predicate part of A; however, this will not always be exactly what we want.

Special variables in Z can be decorated; for instance variables representing the after-state

o f an operation are decorated by priming them (as in jc"), while output and input

variables would be distinguished by decorating them with an exclamation mark and

question mark respectively (as in x! and x?). It w ill be useful for us to be able to talk

about these variables in certain circumstances without wanting to drag in all the other

variables of the schema; we can use the binding operator for this purpose.

Suppose we have some schema S containing the variables x ,, . . .^ and x, and

suppose we want to be able to assert some extra condition about the primed variables

of 5. What we do is to use some other schema, call it B, which contains the variables

X],...jc„. Assuming that the variables xt ',...pcK' have been brought into scope in the

sentence (by mentioning the schema S, presumably), then we also can use the schema

QB' which will refer, whenever used, to all the primed variables of S; that is the 6

operator has bound all the variables in B ' with the corresponding variables which are

currently in scope.

\

In a similar manner, if the variables in some schema O had the same names and types

as the output variables of 5, then we could use the schema 0(9/ whenever we wanted

to assert some attribute of these variables. Note that schema binding only works when

the variables of the decorated schema (ie. B ' or O!) have previously been introduced

by some other schema.

31

2.3.4 Scoping Rules

Since we will be hoping later on to model a programming language using Z, it will be

worthwhile to take some time to investigate the scoping rules o f Z, and how they

compare with standard programming language.

For our purposes we w ill regard a variable in a programming language as being

associated with some block. Each variable has to be declared, along with its type, and

may be used from then on until the end of the block. If another block is declared from

within that block, then we w ill expect to be able to use all the variables which were in

scope for the original block. Thus we envisage a situation where variable declarations

correspond to blocks which are arranged in a nested structure, being added and removed

from scope in a stack-like Cast in, first out) manner.

Variable names could be used for two different variables. In this case, a reference to

a particular variable name is deemed to be a reference to the variable which was most

recently declared; that is, the declaration o f a variable will hide any variable with the

same name which is currently in scope. When we move back out of the block in which

the new variable was declared, the old variable will be "restored", and all references will

again be taken as being to that variable. We could therefore envisage something like

a tree-structure with blocks as nodes, with a sub-block definition inside a block being

regarded as a child o f that block. To find the declaration corresponding to a variable

reference, we start in the current block, and then move back through the block’s

ancestors, stopping at the first declaration we find.

Z, on the other hand, is fla t The closest replica we have of blocks in Z are schemas

which, in a specification, are presented sequentially. Once a variable has been declared,

32

it stays in scope, and is available to all the schemas which follow . There is some

correspondence, however, since the re-introduction of a variable name w ill "mask out"

any previous references; thus variable names refer to the most recently introduced

declaration o f that variable. Basically, once introduced, a variable stays in scope until

its name is re-introduced by the declaration o f (what is effectively) some other variable.

It would be surprising if Z schemas did not operate in this manner, since they are

basically predicates, and the scoping and binding rules arc those o f any variable in a

sentence of predicate logic. What it means for us is that we are going to have to be

fairly careful when dealing with scoping rules in a language definition. Issues involving

the introduction o f a variable, and having two variables with the same name should not

cause us much trouble, since w e will endeavour to ensure that we exploit these features

in Z. However, we w ill expend most of our energy when dealing with scoping in

ensuring that we can get the variables back out o f scope when appropriate. We will

deal with this matter further in chapter 4.

2.4 Models and Programs

Before going on to our schema calculus, let us pause for a moment to consider a

possible relationship between models o f systems and programs. We have identified

three basic components o f a model: the state invariant, the set of initial states, and a set

o f operations (over states satisfying the state invariant). In this light, let us examine a

simple program consisting o f just a while loop, as we would define it using the

axiomatic method o f § 1.4. We would formulate some predicate, call it / , which would

be an invariant for the loop. This would mean that I would be established before the

first iteration of the loop, and the execution of each subsequent iteration would also

33

establish /.

* **
Both specifications and programs essentially woik with variables, so we can use this as

a starting point for relating them. A state in a specification is effectively defined by a

predicate which constrains the values those variables may take; we now assume the

same description for a program state. Thus, regarding commands as predicate
\

transformers means that we are effectively regarding them as state-to-state mappings;

in a specification we would describe such mappings as operations. A state invariant is

some schema whose properties hold for the before and after states of all the operations;

in programming terms, a predicate is invariant for a command if whenever it is true

before execution of the command, it w ill be true afterwards. Also, given the right

"conditions" (ie. the existence o f intermediate states), the composition of two operations

may itself be an operation; the same is true for program statements.

Going back to our simple while loop - we identify two groups o f statements which are

of particular interest: the initialisation statements (basically, all those before the actual

while command), and the loop body. We have asserted that the invariant I must be true

before the loop is executed, so the initialisation commands must establish i t If use

specification parlance to describe the loop invariant as the "state invariant", then we

could regard the set of states which are established by the initialisation commands as our

set o f initial states. Similarly, since I w ill be true before and after an iteration o f the

loop, we can regard the loop body as an "operation" over the state-space defined by /.

In order to ensure loop termination, some subset o f the after-states will not satisfy the

loop guard; this subset, or rather the predicate which defines them, is the post-condition

o f the program.

For larger programs, which possibly include a number of such loops, we could envisage

34

a hierarchy of invariants. At the highest (or "outermost") level the invariant w ill simply

specify the values that we would expect the variables to have during the entirety o f the

program (this corresponds to the idea o f a global invariant in § 1.5.2). This will

basically be a definition o f the role o f those variables in the program, and it could be

anything from just the declaration of the variable (ie. confining it to membership of

some set), or some assertion telling us that we need only consider values o f the variables

within a certain range. (The facility provided by some languages for declaring an

identifier to be a constant with a specific value would be a particularly strong invariant).

If we wished to formulate some Qoop) invariant later on in the program, then we would

use any invariant which had been defined at a higher level as a starting point, and

strengthen it to get the new invariant1.

The purpose of this discussion is to tie together from the outset the notion of a program

and a specification as both being "models" of some process. We will specify in chapter

4 a process which will transform a program-model into a Z-model, and which w ill cater

for the preservation of invariants as we have discussed. Before we attempt this

however, we have a little work to do on that schema calculus...

2.5 A Predicative Basis for the Schema Calculus

The Z schema language allows us to deal with specifications as though they were

propositions; however using a prepositional-like calculus become quite confusing and

it can often be difficult to discern the relationship between individual schemas in a

sentence. We could o f course use the schema binding operator which can provide some

^ o t e that there are two types of invariants here: the global invariant is true at the beginning and end

of the program, and at all points in between, whereas we require o f a loop invariant only that it is true
o f the before- and after-states.

35

quite elegant methods of expression. We have found it useful to introduce a predicate

calculus to deal with schemas; we believe that this notation can often provide a more

familiar basis for studying a statement involving a Z schema, especially to someone who

is not that familiar with the nature of a Z schema, and who wishes to regard schemas

as just a pre-condition/post-condition paii2.

We w ill only consider two types o f schema variable - those representing "before" values

(unprimed) and those representing "after" values (primed). Since the semantics to be

introduced in chapter 4 does not make much use o f input and output variables, we feel

justified in not considering them for the moment; besides, we can always adopt the

strategy of regarding input/output operations as reference and assignment to designated

I/O variables.

What we want to be able to do is to distinguish the primed and unprimed variables in

a schema so that we can illuminate the correspondence between these variables in some

assertion. Effectively what we are looking for is a description of a state; we defined this

as being just a schema consisting of variable declarations; for our purposes here we will

have to constrain this a little further.

2.5.1 Meaning of S(x,y)
\

Suppose x and y ' are sets of variable declarations (ie. schemas consisting solely o f

declarations), and let S be some schema: then we w ill write S(x,y') to denote the

schema S which has had its unprimed variables replaced by the variables in x and its

2This is somewhat similar to the way specifications can be treated in VDM: see for example [Jone90]

§ 32

primed variables replaced by those in y W e therefore make the assumption that the

signatures of x and y ' are compatible with the signature o f S.

Thus if S consists of the variables {s, ... sb si+f ' , ..., st '}, and x and y ' have variables

{My, ... u j and { v , ... x^ '} respectively then S(x,y') would be the same as

S [u, / Sj, Uk / s* v , ' / s * , ' , ... v / s ,']

Although each of S, x and y ' are schemas (the latter two having no predicate part), we

will maintain a convention of using lower-case letters to refer to schemas representing

groups of replacement variables, and use upper-case letters for the names of the schemas

in which this replacement occurs. When we refer to some schema z+, where + is any

decoration (or none), we will be indicating that all the variables in the schema have been

decorated with +, as for y ' above. In statements where the primed variables in a

schema are bound by a quantifier outside the schema, we will not feel obliged to ensure

that our replacement variables are primed; when it adds to the clarity o f the sentence we

will do so. Note that if S(x,y) appears in a sentence, then the names of the variables

contained in x and y are always assumed to be unique.

On occasion we will take the liberty of referring to schemas such as x and y as "states".

2.52 A replacement mechanism

However, one problem immediately arises - which variables should be replaced for

which? The variables which occur in the declaration part o f a schema are not in any

particular order, yet we will want to ensure that the replacement strategy we use is

37

unique; ie. that S(x,y') will mean the same thing if it is mentioned twice in the same

assertion (for the same S, x and y ' of course). Thus we need to indicate which

variables arc to be replaced by which. We get around this problem by demanding that

each variable in x and y " contain some unique subscript as part o f its name which will

indicate the variable that it will replace.

Let us investigate the feasibility of such a replacement Suppose the declaration part of

5 looks like:

[S j . t j , . . . , S j . t j p s * , . t^+ j , . . . ; S jj . t j

Now each declaration in S occurs only once; therefore the declaration o f a variable is

unique for each variable. For 1 < j <; n, let dj represent the result o f applying some

mapping function J to the characters in the declaration S j: tj. We require of J that each

dj is distinct and that we can distinguish the corresponding declaration uniquely from

i t (That is both J and J 1 are injective - such a mapping is central to the idea of Godel

numbers; see eg. [Herm69] § 1.3) We will thus expect the variables in x and y ' to be

indexed by the set of djs; we will want x to be something like [u^ : tt ; ... u+ : t j and

y ' to be /v* +/ : tM ; ... v * ' : t j . These conditions will ensure that our replacement

mechanism will maintain the meaning of assertions involving schemas.

Note that an important consequence of this strategy is that we do not need to worry

about issues such as the order or decoration o f variables. Thus we can write something

like S(x,y) without priming the y in situations where it is useful; we will of course

attempt to keep the convention o f priming the after-state variables when possible. Also

we can technically write S (y '¿x) instead of S(x,y ') with the same meaning; strictly

speaking this depends on the names given to the individual variables, so such a change

is unlikely to lead to greater clarity; for the moment we will just note that it is possible.

38

We do not need to investigate the issue of replacement strategies further, it is sufficient

that we know that the replacement paradigm we desire is possible. From now on when

we speak of some S(x,y) we assume that a replacement strategy equivalent to the one

described above has been adopted

2 .53 Schema pre- and post-conditions as predicates

We can immediately start to use our this notation. If a schema 5 is represented as a

two-place predicate, then pre-S will be represented as a one-place predicate, defined as:

V x • pre-S (x) « 3 y ' - S(x,y')

We assume that the set o f variables x have already been brought into scope.

In a similar manner, we could also define:

V y • post-S(y) <=* 3 z • S(z,y)

2.5.4 Schema composition as a predicate

Next take the schema composition S;T, which we can define (as per [Spiv89]), for some

appropriate State as

3 State" •

(3 State' • [S | ©State7 = GState' ']) a (3 State • [T | GState = 0State' '])

39

Using our notation, this definition becomes:

V x,z' • S;T(x,z') <=> (3 y • S(x,y) a T(y,z'))

Because we can use y with both schemas we do not need to introduce two more states

representing the "before" state o f T and the "after" state of S and assert the appropriate

equality. Also, we highlight the fact that S;T is a schema by writing it as a two-place

predicate in x and z '. %

In [Spiv89], § 5.4 a rule is given which will ensure that the specification S;T is correctly

implemented by the program S;T (that is, we are replacing schema composition,

represented by with program statement composition, represented by The rule

insists that every valid after-state of S will be a valid before-state o f T, or, for an

appropriate State, in standard Z notation we can write:

V State' • (3 S • ©State' = ©State' ') = > (3 T - ©State = ©State")

We can now write this condition as:

V y • (3 x • S(x,y)) => (3 z • T(y,z))

or, using the predicates defined above, as:

V y • post-S(y) => pre-T(y)

40

2.5 .5 Other schema operations

Schema composition insists that the variables in both schemas have the same name and

type. However, we can use a , v or => between schemas without any such restriction.

For schemas S(xpc') and T(y,y') we will form their conjunction by merging the

declaration parts and conjoining the predicate parts (and similarly for disjunction and

implication). Thus we can write

V x, x ', y, y ' • S(x,x') a T (x,x') £ SAT(x;y,x';y')

V x, x ', y, y ' * S(x,x') v T (x,x') ■ SvT(x;y,x';y')

V x, x ', y, y ' • S(x,x') => T (x,x') h S=>T(x;y,x';y')

We may also wish to quantify some of the schema variables. Suppose the variables that

we wish to quantify are listed in q and q ' - we can simply write V q # ' • S(xjc') as

you would expect. If we wish to indicate that all the variables in q and q ' are variables

from the schema S(xjc'), we can write q => x and q ' => x ' . (This is using the fact that

our "lists" of variables are really schemas containing the declarations of these variables.)

To emphasise this point we could describe the remaining variables using some schemas

r and r ' (such that (q a r) «=> x and (q ' a r ') <=> x ') , and we can then write

V q, q ' -S(q;r,q';r').

2.5.6 Predicates defining a state

Up to now we have dealt with schemas which specified an operation - thus they were

defined over two states. However, we can also have schemas which operate over just

one state: the state invariant for any specification is an example. As you might expect,

41

if P was such a schema, we would represent it as P(x).

For a particular specification, we can represent the state invariant by some schema I(x)

(or by convention in Z, we might write I(x ')). Then, if Ofxjc ') is any operation in the

specification, we would expect its valid before- and after-states to be a subset of those

states defined by the invariant - we would thus have V x , x ' - 0 (x j c ') => (I(x) a I(x ')).

One-state schemas may also be used for constraining the valid before- or after-states of

some schema by conjoining them with that schema. Thus we could restrict the before

states of some specification S(xjc ') by writing P(x) a S(xjc '), which we will usually

write PaS(xjc '). In a similar manner we can write S;T(xpc ') a P(x ') as (S;(TaP))(xj ')

and S ;T (x j') a P(x) as ((SaP);T)(xj').

42

CHAPTER 3 - REFINING SPECIFICATIONS
I

We have thus far considered formal descriptions of programs and specifications; we now

turn to describing the link between them. The job of a specification is to formally

define the set of valid states o f the system being modelled, and to describe the effects

of the operations over these states. A program will have a greater burden: it must

realize (or implement) valid states in terms of the constructs available to it, and it must

describe a method of establishing the required results o f each operation.

In this chapter we provide a general description of the process o f developing a program

from a specification, known as the refinement process, and look at some of the principal

ideas. We give the Z proof rules in terms of the calculus introduced in the preceding

chapter, and we demonstrate the application of these rules to specific types of program

statements.

3.1 The Idea of a Refinement Calculus

Rather than regard programs and specifications as being two entirely different entities

which are to be eventually reconciled through some sort of formal link, there is a

growing trend (as in [HoHe87], [MoVi90], [Morr90a] etc.) towards using the same

framework which can handle both. The view taken is that a program is simply a

specification which can be expressed using only certain operations and certain data

types; refinement then becomes a matter of moving between specifications, until we

eventually reach one which is "implementable".

43

I

Since we have introduced the vtp-calculus, we will follow [Mon90a] and use this as our

method of defining programs and specifications. We discussed earlier the meaning of

P = wp(S,Q) in the situation where S is a statement; we now extend this to cover the

situation where S can also be a specification. In chapter 5 we will provide a formal

meaning for wp, but for now we will just regard the statement as saying that S will map

any before-state satisfying P onto an after-state which satisfies Q. This definition of wp

will allow us to use specifications and programs interchangeably.

The refinement process will involve starting with some specification Slt and constructing

a list of specifications SJt ..., Sn such that Sn is implementable, and each St is a

refinement of the preceding Sw. Each refinement step can involve operation or data

refinement, or both. We will be discussing the proof-obligations necessary for showing

that one specification 5, refines some other specification 5,.,; if these obligations are

discharged correctly, then we write S,.; c S„ where c means "is refined by". From our

discussion of refinement, it will be evident that c must be reflexive and transitive, and

thus defines a partial ordering over specifications (and programs). Transitivity is

important, since we will want to be able to assert that for our list of specifications S, t
s

... c SH, we thus have Sj c S„, which corresponds to the assertion that the program

correctly refines the specification Sj.

3.2 Refinement as Interpretations between Theories

If we wish to build up an axiomatic system in some logical framework, we must start

off with a set of symbols (an alphabet) and a group of axioms. The symbols will be

used for variable, constant, predicate and function names; the axioms will be formed

44

from combinations of these symbols. An interpretation gives a semantics to these

symbols (and therefore to the axioms) by mapping them into constants, variables,

predicates and functions from some chosen set. The result is termed a theory. We can

form the extension of a theory by adding in new symbols and axioms. We can also

form a theory by combining other theories; the new theory consists of the union of the

languages and the axiom sets.

We can regard the basic given sets (such as N, Z or Bool) of a specification language

as theories: writing a specification then involves constructing new operations over these

theories. Defining an operation entails introducing a new function name and a number

of axioms to specify its properties. Adding a number of such operation definitions to

a set of theories is equivalent to constructing an extension to that set. For some

specification Q, we can say that the theory which Q represents, denoted TH[Q], is an

extension of the combination o f some base-set o f theories; we will denote this base set

as BS[Q]. Thus one measure of the "abstractness" of a specification might be the degree

to which this base-set can be implemented; as we refine the specification, we would

hope to replace each member of the base-set with an implementable equivalent.

Suppose Q is refined to some specification R. First o f all we will have to refine the

theories involved in the base-set of Q to some "more concrete" equivalent If the base

set of theories for specification R is BS[R], then we will want to extend this so as to

represent the theories in BS[Q]; let us call this extension the base-image in R, or BI[R],

We must also declare which elements of BS[Q] correspond to BI[R] - this is done by

means of an interpretation, call it IB, between the two theories.

Once we have modelled the base set, we can construct an equivalent to TH[Q] by

extending BI[R] by the concrete operations; the result o f this extension will be TH[R].

45

We will also have to specify which concrete operations refine which abstract operations;

again this is done using an interpretation, call it IT between the languages of the theories

of Q and R.

We can represent the above refinement from Q to R diagrammatically, using horizontal

arrows to represent interpretations, and vertical arrows to represent extensions, as:

Ix
T H [Q]-----------------------------TH[R]

i i

I II I
I I
* Ib 1

BS[Q] ---------------------------- BI[R]
i
I
I
I
l

BS[R]

The basic building block o f the whole process is the interpretation between one theory

and the extension of another, this is what [TuMa87] describe as the "canonical step".

Once this interpretation has been defined, we can then set about verifying our refinement

by showing that for each axiom a in TH[Q], the corresponding version, IT<a>, holds

true in TH[R]. This gives us a basis for demonstrating that there exists a morphism, or

property-preserving transformation, between the theories; that is for each abstract

operation A, and for every state a in its domain (satisfying its pre-conditions), we will

want to assert that IT<A(a)> = Ix<A>(Ix<a>). If we look at the interpretation from the

46

i

concrete to abstract theories, then the morphism which best represents an abstraction

would be one which is suijective; this many-to-one map is called an epimorphism. A

special case occurs where the mapping is a bijection - this is known as an isomorphism.

Two theories which are isomorphic are essentially the same from the perspective of

some higher level of abstraction.

Since refinement will be proceeding step-by-step, if R is not concrete enough we would

have to refine it in a similar manner, starting with BS[R], and so on, until eventually we

reach some theory S whose base set is implementable directly in the target programming

language.

3.3 The Refinement Relation and Specification Bias

We will usually want our first model of any system to be as abstract as possible, with

the proviso that it should contain a full and useful description of all its important

features. In some situations however, the model may contain more information than is

apparently necessary - we say that the specification is biased if this is the case. When

we specify the state invariant, we are identifying a set which will contain the before and

after states of all the subsequently described operations. Each operation will induce

some equivalence classes over these states, where one state is deemed to be equivalent

to another with respect to a given operation if they cannot be distinguished from each

other by that operation. An operation cannot distinguish between two states if (i) neither

are valid before-states, or both are mapped to the same (set of) after states and (ii) for

each valid before state neither are valid corresponding after-states, or they both are.

47

We need not worry if two states cannot be distinguished by one particular operation;

usually they will have been introduced because they are needed by some other operation

in the specification. However, when two (or more) states cannot be distinguished by

any operation then we regard our specification as being biased. Our justification for

distinguishing between such states could be that their existence will make it easier to

work towards some particular implementation that we have in mind; thus these extra

states form a sort of implicit specification which has placed extra constraints on our

model. We could also use these states to bound the range of acceptable after-states for

some non-deterministic operation; realisation of this operation (which includes a move

towards greater determinism) may pick just one of these as being acceptable.1

What effect will specification bias have on the refinement process? When attempting

to refine a biased specification we are faced with the situation where some abstract

states may not have any corresponding concrete representation, or several different

abstract states may not be distinguished in the concrete model (they are mapped to the

same concrete state). If the specification is not biased then we are faced with a simpler

situation: no longer do we have a many-to-many relation, but instead a much more

manageable one-to-many relation whose domain is the whole of the abstract state-space.

The inverse of this relation is thus a function from concrete states into abstract states

which is smjective; this will correspond to the notion of an epimorphism as mentioned

above. (This suijectivity is the adequacy condition of [Jone90] and corresponds to the

notion of functional refinement described in [Spiv89] § 5.7) Our proof rules will be

simpler in this case since we will not have to introduce the condition of the existence

of an abstract state for each corresponding concrete state each time. In what follows we

will deal with rules which cover the more general case; it should be apparent which

constraints can be deleted when dealing with an unbiased specification.

 ____ i

'Some examples of biased specifications can be found in [Jone90] § 9.3

48

3.4 Refinement Proof Obligations in Z

We have already introduced the idea of a morphism as being a suitable representation

of the refinement process, since it involves preserving the properties which held for the

abstract operations even after they have been translated into their concrete counterparts.

We now need to address the problem of proving that our mapping is indeed a morphism

- we do this by ensuring that a set of proof obligations are discharged by the concrete

representation.

We consider a single step between an abstract and concrete specification (in future steps

this concrete specification will become itself the "abstract" specification as we set about

refining it). Each specification will consist of schemas specifying the state-invariant, a

set of initial states and a number of operations. Let us name the state-invariant and

initial-state schemas respectively as Abs and Abslnit for the abstract specification and

Con and Conlnit for the concrete specification. Thus, for any abstract state a and

concrete state c, we can assert that Abslnit(a) => Abs(a) and Conlnit(c) => Con(c).

We will also presume that we have constructed a schema which describes the connection

between the concrete and abstract states; let this relation be described by the schema

Rel, which will have Abs and Con as its declaration part. We can thus assert that

V a,c •Rel(a,c) => Abs(a) a Con(c). In certain situations we will want to regard the

relation as being directional (from abstract to concrete states, or vice-versa). If we have

some abstract state a ' and concrete state c ' then R el(a,c') is a mapping from abstract

into concrete states, and similarly Rel(a',c) is a mapping from concrete into abstract

states (this is the retrieval relation).

49

3.4.1 Refining Initial States

Our first proof obligation is to ensure that each concrete initial state has a corresponding

abstract state, and that this abstract state is an initial state in the abstract specification.

This can be expressed straightforwardly as:

V c • Conlnit(c) => 3 a • Abslnit(a) a Rel(a,c)

3.4.2 Proof of Applicability

Next we must prove that each concrete operation correctly models the corresponding

abstract operation. Suppose that we are checking a concrete operation, called ConOp

against an abstract operation AbsOp. We would certainly hope that the concrete

operation is at least as likely to terminate as the abstract operation - this is known as

applicability. What we are asserting is that whenever the abstract operation is

guaranteed to terminate for a state, then the concrete operation will also terminate for

the corresponding concrete states. An operation terminates for a given state if that state

satisfies the pre-conditions of the operation; thus the applicability condition is:

V a,c • pre-AbsOp(a) a Rel(a,c) => pre-ConOp(c)

This is also known as the domain condition, since we are basically asserting that the

domain of the abstract operation is mapped into a subset of the domain of the concrete

operation.

50

3.43 Proof of Correctness

Our main proof obligation (known as the correctness condition) is obviously to ensure

that the concrete operation produces the correct results for all the abstract states to

which it is applicable. For each of these states the concrete operation must produce an

after-state that can be mapped back to an after-state of the abstract operation when

applied to the corresponding abstract before-state.

V a , c , c ' •

pre-AbsOp(a) a Rel(a,c) a ConOp(c,c') => 3 a' • R el(a',c') a AbsOp(a,a')

This is a formal statement of the homomorphism property: that is, the result of mapping

any valid before-state of AbsOp into a corresponding concrete state, carrying out ConOp

on this state, and mapping the resulting concrete state back into its abstract counterpart,

is the same as the result we can get by applying AbsOp to a.

3.4.4 Functional and Operational Refinem ent

As we mentioned earlier, functional refinement is a special case of this, and we would

be allowed to drop the existential quantifier from the proof-obligation for initial states,

and from the right-hand-side of the correctness condition. A special case of functional

refinement involves the situation where the state-space is the same in the abstract and

concrete models, and the refinement step only involves the operations. This case,

known as operational refinement, has similar proof rules to the applicability and

correctness conditions given above, except that now we can also drop all the references

to Rel. The two conditions will now be:

51

Applicability: V s • pre-AbsOp(s) => prc-ConOp(s)

Correctness: V s, s' • pre-AbsOp(s) a ConOp(s,s') =* AbsOp(s.s')

where s is a state (we do not need to distinguish between abstract and concrete states

since they are now both described by the same state invariant). These can then be

combined2 into one condition:

V s,s' • pre-AbsOp(s) => (pre-ConOp(s) a (ConOp(s,s') => AbsOp(s,s')))

3.5 The Refinement Rules in Practice

We have seen how specifications may be refined step-by-step, so that each time we

move closer to a more "implementable" version. The last step of this process will

involve translating suitably refined specifications into individual program statements; we

will take look at the form of the proof obligations for refinement from Z specifications

into sequential, alternative and iterative statements.

For these three situations we are assuming that we have reached a stage where the state-

space has been expressed in terms used by the programming language, so that we will

only consider operational refinement. Each of these refinements will involve

deterministic statements only, so a choice may be involved when actually using them

if the specification being refined was non-deterministic.

2Using the rules that for any propositions A, B, C and D, we have

A => B A => B . _ .
A a C =* D h A => (C => D) h A => (B a (C => D))

52

3.5.1 Sequential Composition

Suppose we have some schema A which we would like to refine to S;T, where S and T

can be refined directly to program statements. The proof obligations demand that we

must show:

V x -pre-A(x) => pre-(S;T)(x) a (V x' ♦ S;T(x,x') => A (x,x'))

But since S and T may be represented by program statements, we can assume that they

are deterministic, and so we can simplify this to:

V x • pre-A(x) => 3 z • S;T(x,z) a A(x,z)

3.5.2 The Alternative Statement

We assume that we want to refine the specification A to a (deterministic) alternative

statement of the form:

if Bi then St elseif B2 then S2 elseif ... elseif Bn then Sn else S0 fi

Let us also assume that each of the BI ... Bn are disjoint (ie. V i,j : N / 1 < i < j < n *

~'(Bi a Bj)) - this is not much of a restriction since the guards are checked in strict

sequence, and we could always conjoin the negation of the disjunction of all the

previous guards to each of them.

We regard each Bi as a one-state schema which constrains the before-states of S,; thus

53

we can form the schema (BJx) => SJxpc')) which we will denote BS,{xpc'). Let B0 be

defined as ->(B1 v ... v B J , so that we can also form BS0.

The if .. f i statement will terminate if one of its branches terminates; thus its pre

condition is the disjunction of the pre-conditions for each of the branches

V x • pre-A(x) => ((pre-BS0(x) v ... v pre-BS„(x)) a

(V x' • BS0(x,x') =*■ A (x,x') v ... v BSn(x,x') => A(x,x')))

We can tidy this up a little by letting IF(xpc') = B S ^ x j.') v ... v BSn(xjc'), and using

some of the rules3 from chapter 2 to get the condition

V x *pre-A(x) => pre-IF(x) a V x ' • IF(x,x') => A (x,x')

3 .53 The Iterative Statement

We will want to refine the specification A to a statement o f the form

while B do S od

Analogous to what we did for the alternative statement above, we can define a schema

WH(xpc') to describe an iteration of the loop body:

V x , x ' * W H(x,x') o ((B(x) a S(x,x')) v (-B(x) a Id(x,x')))

3And also the fact that for any A, B and C, we have (A =» C) a (B => C) -tb (A a B) => C

54

As we discussed earlier, the standard approach here is to formulate some invariant, call

it I(x) which effectively describes the operation o f the loop for us. We will want this

invariant to be true before and after the execution o f the loop, and we can define a

schema which asserts this property:

V x , x ' • W ffl(x ,x ') o (I(x) a W H (x,x ') a I(x '))

We are now ready to define the proof obligation for the iterative statement, remembering

that we will only want the equivalence with A to be established upon termination of the

loop (when we have ->B(x ')):

V x * pre-A(x) =» pre-WHI(x) a (V x ' • W HI(x,x') a - B (x ') => A(x,x'))

3.6 Motivation for a semantics in Z

Up to now in this chapter we have concentrated on describing various features of the

link between program and specifications, and attempting to unify sòme of the notation

using Z. However, it is fundamental to any attempt to refine a specification into a

programming langauge that we have a formal description o f what a program in that

language actually means; we have discussed some such formal definitions in chapter 1.

The basic assumption is therefore that a specification is regarded as being already

expressed in "formal" terms, and we must make the link between these terms and

suitable equivalents in the programming language.

55

I

The starting point in the move from an existing program back towards a formal
s

description of its operation or properties will obviously be the sequence of statements

in the programming language which constitute the actual program. We will presumably

utilise some form of formal semantics in order to provide a basis for our work, and we

will then begin to work back towards a specification. The main concern of this paper

is to provide such a basis using the Z notation.

The idea of applying formal specification techniques to the field of formal semantics is

not new; this was the original motivation behind the VDL language, an early ancestor

of VDM. Much of the early work on VDM has concentrated on describing the

denotational semantics of programming languages, including comprehensive definitions

of full-scale languages such as Pascal and Algol (as in [BjJo82]). The basis of any

denotational description is a set of functions over a domain, and a specification language

such as VDM can be used to formalise the definitions of these functions. The mapping

functions from the program statements into the semantic domain can be described in the

same manner, VDM also allows us to address separately the issues of the semantic well-

formedness and the meaning of phrases in the language.

We do not seek here to just echo these techniques in Z. The result of our semantic

mapping will not be a set of well-defined functions (as such), but an actual Z

specification which will describe the program. This specification will involve the

sequential composition of a number of smaller schemas, each of which will represent

a statement from the program. We will thus be regarding a program statement as

specifying an operation over those variables of the program which are currently in

scope. Although much of this work is denotational in style, we will not be relying on

(or establishing) the existence of the properties of certain types of domains (such as

continuity and monotonicity) which are central to denotational semantics in the style of

56

Scott. Our semantics are intended to be reconcilable with specifications, which are

expressed in terms of predicates, and so whenever we look for a label, we shall claim

that the semantics presented in the following chapter belong to the axiomatic category.

Our task then will be to take a program and to construct a specification which represents

in Z. To do this we will need to define a mapping from individual statements of the

language into Z schemas; we will do this using the Z notation. Chapter 4 will thus refer

to two types of specifications. First of all its main task will be to specify the mapping

from programs into specifications, which will be done explicitly by the presentation of

a number of functions for this purpose. Secondly, this mapping will involve describing

and constructing elements of the target specification; we will therefore also be implicitly

illustrating of the nature of such a specification.

The purpose of this is to provide structures by which a program can be converted

directly into a Z specification, and this specification can then be used as a basis for

further study of the program. Since our specification will be relying on the composition

of schemas as its basic element, there will obviously be much scope for the

simplification o f such a specification. The rules for such simplification depends on the

properties of the data types (such as integers, natural numbers), are largely heuristic in

nature, and will be one of the topics for discussion in chapter 6. However, the essential

feature o f the next chapter is that it constructs a framework within which this work can

take place, based around the Z notation.

57

CHAPTER 4 - SEMANTICS OF A SMALL LANGUAGE

it-'

4.1 A Simple Programming Language

Describing the formal semantics o f any language involves constructing a mapping from

elements of the syntactic domain into particular elements in the semantic domain. The

syntactic domain consists o f those phrases which describe the syntax of the

programming language, from which the non-essential details (such as statement

delimiters) have been abstracted away; this is the abstract syntax of the language. The

abstract syntax of the language which we will be using is given below.
i.

4.1.1 Informal description o f the language

It is a simple block-structured language; the main program block is distinguished by the

keyword Program. Each block may contain procedure definitions as sub-blocks; such

a definition may optionally include formal parameters. There are two types of

parameters - value and variable parameters. Value parameters take an expression as

argument; their initial value is the value o f that expression at the time of procedure

invocation. The value o f any variable in the expression is not changed by passing it as

an argument in this way. Variable parameters take an identifier (ie. variable name) as

argument; references to a variable parameter in the procedure body are then treated

exactly as if they were references to the actual argument As a result of this, the value

of a variable passed as argument to a variable parameter may be changed.

58

Basic data types are the Natural numbers, Integers and Booleans. Composite data types

may be (multi-dimensional) arrays or records. An identifier may be declared directly

as an array; for an identifier to be of type record, the record must already have been

declared and named

The basic statements are the (concurrent) assignment and the skip (or null) statement

Communication to an external environment is via the read and write commands. The

call command invokes the named procedure with a list of arguments. Composite

statements are the conditional (if-then-else-fi) and iterative (while-do-od).

We distinguish terminal symbols by writing them in bold print; also, for any non

terminal N, we use N* to denote zero or more occurrences of N, and N+ to denote one

or more occurrences. When dealing with these (as types) later on in this chapter, we

may, on occasion, take the liberty of regarding N* and N+ as being equivalent to seq N

and seq] N respectively.

59

ABSTRACT SYNTAX

program ::= [Program ident decl* block* stat+]

block ::= [Proc ident (param*) decl* block* stat+]

decl ::= sdecl | rdecl

sdecl ::= ident: stype

rdecl ::= ident: record sdecl+ endrec s

stype ::= Bool | Int | Nat | ident | array const to const of stype | t st

param ::= val sdecl | var sdecl

stat ::= v ref := expr+ |
skip |
if expr then stat+ else stat+ fi |
while expr do stat+ od |
read (ident) |
write (expr) |
call ident (expr*) |
new (vref st)

expr ::= vref |
const |
expr binop expr |
unop expr |
(expr)

vref ::= ident | vref subsc | T (vref)

subsc ::= [expr] | . ident

binop ::= + I I * I / | mod | ^ | = | < | < | > | > |
and | or

unop ::= + | - | not

const ::= true | false | NULL | number

number ::= natural or integer numbers
ident ::= identifiers

60

4.1.2 Context Conditions

The above syntax does not fully describe the acceptable class of programs. Further

conditions could be introduced by using a more complicated grammar to restrict the

valid set of programs, or by imposing them as preconditions on the semantic functions

(so that some syntactically correct programs would be denied a semantics). However,

it is more usual, and more convenient, to augment the syntax of a language with context

conditions. For our language these conditions will include:

1) Procedure, variable and record field names at the same level must be unique

2) After their use in a declaration, record and procedure names may only be

subsequently used in other declarations and the call statement respectively.

3) Arguments for procedure calls must exactly match the number and type of the

corresponding formal parameters. Arguments matching variable parameters must be

identifiers. We do not allow procedure names to be passed as arguments.

4) Input and output is restricted to integer variables and expressions only

5) We do not allow procedures to call themselves - ie. no recursion

6) We reserve the use of the identifiers in, out and mem (we will use them in § 4.4.6)

4.2 The Semantic Domain

The semantic domain consists of elements whose meaning is deemed to be "understood”;

thus, constructing a function from the abstract syntax into this domain allows us to give

a meaning to any phrase of the language. Two major criteria for the choice of a domain

are that it should be useful for our ultimate purposes, and that its semantics should be

unambiguously defined.

61

The semantic domain which we have chosen is that o f Z schemas which, thanks to

[Spiv89] is unambiguously defined. In his description of the semantics of Z, Spivey

gives a syntax for the schema language, which he uses as his starting point. Since this

language is therefore formally defined, we will use it as the target for our mapping

function; that is, Spivey’s syntax will define our semantic domain.

The parts of Spivey’s syntax which we shall need are reproduced below, with an

informal explanation. Our main use for this syntax is to use its components in the

signatures of variables and functions. We regard our semantic domain as consisting of

the following sets:

SPEC is the set o f all Z specifications. This can consist of given set names, global

variables or functions, or schema expressions.

SEXP contains all schema expressions. These may be individual schemas, or the

disjunction, conjunction, quantification etc. of schemas.

SCHEMA is the set of all schemas, each of which consists of a declaration part and a

predicate part

DECL describes the declaration part of a schema. Its elements may be schema

designators or identifier declarations. The latter consists o f an identifier followed by a

term.

PRED describes the predicate part of a schema

TERM is the set of all terms which are used in the signature of a variable declaration.

62

This includes other identifiers, schema designators, power sets, tuples etc.

IDENT is the set o f all identifiers

We will assume that basic sets such as N, Z and R are available to us. It will prove

useful to take as given the set [WORDS] which consists simply of any sequence of

characters. In order to distinguish between (constant) elements of this set and

identifiers, we will enclose the former in inverted commas: that is, word will be

regarded as an identifier (ie. a variable name), whereas *word" is a constant, and a

member of the set WORDS (in the same way that 1 is a constant, and member of the

set N).

4.3 Strictness

There are two main approaches to dealing with undefinedness in programs - ie.

programs which are syntactically correct and fulfil the context conditions, but which

could be rendered meaningless depending on the values taken by variables at run time

(exceeding array bounds is an example). We could add in checks to the semantics to

rule out such situations - this would mean that our mapping was now partial over

syntactically correct programs - or we could ensue that such programs are not mappedN
to anything meaningful. The latter approach would mean that our mapping is strict -

meaningless programs are mapped into undefined elements of the semantic domain

(possibly by introducing a distinguished "undefined" element)

Our approach is similar to using a strict mapping in that a meaningless program will be

mapped into a similarly meaningless specification. For example, an array reference with

63

an index value outside the declared range is translated into a function application to a

value which is not in the domain of that function. We will find it useful to introduce

a special element, denoted 1 , which is distinguished by the fact that it is not an element

of any set that we will be using to represent a type: this is the undefined element We

will also make use of a shorthand notation1: for any set T we will write T1 when we
\

mean T u {±}. We will also insist that all the operations which we will need over the

integers, natural numbers and booleans are strict in that if one of the arguments is

undefined, then the result will be undefined.

4.4 Semantic Functions

The syntax of a programming language was described above by giving a set of basic

elements (or terminal symbols), and then describing how phrases o f the language may

be constructed from these. Giving a semantics to the language mirrors this process: we

first map the basic elements into the semantic domain, and then use this to construct

mappings for the phrases from which they are built In order to differentiate between

pieces of the programming language and pieces of Z semantics, we will adopt the

convention of enclosing syntactic elements (fragments of the program) in Strachey

brackets - [and].

The mapping for the operators and constants is trivial since, in most cases, the syntax

is identical in both domains. However, the meaning which we give to the identifiers of

the syntactic domain will serve as a basis for the rest o f the semantics. The most

^ o t e that in some of the literature on semantics the undefined element is denoted by <D. Also, the

union of some set T with this element is usually denoted T ; we do not use this notation in order to avoid

confusion with earlier notation for a non-empty sequence.
M

64

common approach is to construct a function, known as the environment, which describes

the association between identifiers and elements of Z. Indeed, the environment function

is often one of the best clues towards understanding a particular denotational description.

4.4.1 The environment

The environment function which we are about to describe will have three main uses:

* It will provide a mapping from identifiers representing program variables into

appropriate Z identifiers

* It will be used for assigning the correct scope to these program variables

* It will be used to store the meaning of procedure blocks which are currently in scope

4.4.1.1 Definition of the environmentf

We will start with the third of these. The main part of our representation of procedures

will be a schema which will correspond to the body of that procedure. However, if we

wish to use it later on with a list of arguments, we will also need to have a list of the

formal parameters (in the correct order, so that we can match them one for one with the

arguments). We define P r o c E n v to hold this information:

I— ProcEnv----------------------

| formals : {VAL,VAR} <-> N —> IDENT

| body : SEXP

i______________________________

65

The formals are simply a sequence o f the identifiers which represent the formal

parameters, along with a tag saying whether they are call-by-value or call-by-variable.

\

The environment function will map identifiers into either DECL or ProcEnv, depending

on whether they represent variable or procedure names respectively:

ENV = ident —> (DECL u ProcEnv)

A declaration in Z (something of type DECL) is composed o f a variable name

(identifier) and a description of the set to which the variable belongs. An environment

therefore provides a means of mapping a program identifier into the corresponding Z

identifier, or to a declaration which, when introduced in a schema, will bring the

variable into scope.

4.4.1.2 Functions dealing with the environment

We will next define some functions over environments which will come in useful later.

The function i retrieves the corresponding Z identifier to a program variable from a

given environment

i : ident —> ENV —> IDENT

i = X id : ident, E : ENV •

\i Id : IDENT | 3 Tm : TERM | E(id) = ad : Tm)

v

MakeSch constructs a schema which consists of a declaration o f all variables in the

66

range of some environment (we assume that the mapping which is passed represents

variables only and not procedures). This will be used as a signature when we are

constructing schemas from statements in the function a defined later.

MakeSch : (ident —> DECL) —» SEXP

V id.ijv.j,,: ident, Di,...,Dn : DECL, Id: IDENT, Tm : TERM, Pr : PiocEnv •

MakeSch({ii D,,..., i„ *-*■ D„)) = MakeSch({i, -> D ^) ; . . . ; MakeSchiii, D ,})

MakeSch({id —t Id : Tm}) = Id : Tm

4.4.1.3 Memory Allocation

Since we will be using pointers in our language, we will need to be able to distinguish

between an identifer (representing a variable) and a "memory location". First of all, we
s.

will name the set of memory locations as MLoc; it will not be necessary to define this

set further. We will let GIVEN be the set of all those sets which are formable using the

integers, natural numbers and Booleans; basically, any identifier in our program will

represent a member of this set We justify the use of such a set by noting that it would

be possible to statically analyse any given program and work out exactly the required

sets; for our purposes, we will just assume it as a given set o f our specification.

Now we can define the function:

AT : MLoc -» GIVEN

This function will "de-reference" a pointer - it will return the element that is stored at

67

the "address". Note that we have defined the domain as MLoc and not M Loc\ so that

it is not possible to dereference NULL (which is mapped to ±).

4.42 Declarations:

Now that we have defined a mapping for identifiers, our next step is to define a

meaning for the parts o f the program which operate on this mapping, the declarations.

First of all, we need an auxiliary function to deal with the right-hand side of declarations

(except records). We will assume that the set Boolean has been defined somewhere (we

will attend to this later), and we will extend the basic sets Z and N by the undefined

element. Also, we use the standard definition o f arrays as functions from the elements

of the index set into the array type.

x : stype —> ENV —> TERM

V E : ENV, id : ident, s t : stype, a,b : const | a < b •

x [Bool] E = Boolean^

x PntJ E = Z1

x (Nat] E = N1

X [id] E = I p d] E

x [array a to b of st] E = {e [a] E .. e [b-1] E} -» (x [st] e)

x [T st] E = MLoc1

68

We have defined anything which has been declared as a pointer to be of type MLoc, we

will deal with the exact type of the corresponding Z identifier (as given by AT) when we

deal with the new statement

N ext using the function 8, we interpret declarations (of variables or parameters) as

functions mapping environments to environments, where the output is the input

environment plus the new declaration. We will want to ensure that each program

identifier is mapped to a "new" Z identifier - one that has not been used for anything

else. It is not simply enough to test that the new identifier is not in the environment

since it may have been overwritten by the definition o f some local variable; what we

want is to check that the variable is not and has never been in the environment We

could define a set containing all the Z identifiers which have been used to date, but it

would be cumbersome to cany around this extra "baggage" from function to function.
s

Instead, let us define an ordering on identifiers: w e’ll call it <

_ ■< _ : IDENT x IDENT {TRUEfALSE}

V Idj, Id* Id3 : IDENT •

-a d , -< Id,)

(ad, -cld^ a (Id2 -< Id3)) => Gd, -< Id3)

Thus ■< is iireflexive and transitive; just what we need to ensure that if identifiers are

used in a sequence which is monotonic with reference to ■<, we will not use the same

identifier twice. We are now ready to define 8:

69

8 : (decl u param)* -» ENV —> ENV

V E : ENV, dl : decl, dls : decl*, id4d1,...id„ : ident, sust^-st,,: stype |

3 Id : IDENT | (V (MtTm) : DECL | adt:Tm) e ran(E) • Idt ■< Id)

8 [] E = E

8 [dl dls] E = 8 [dls] (8 [dl] E)

8 [VAL id : st] E = E © {fid] -> Id : (x [st] E)}

8 [VAR id : st] E * E © [[id] — Id : (x [st] E)}

8 fid : st] E = e © {fid] -♦ Id : (x [st] E)}

8 fid : record id! : st, ... id„ : st„ endrec] E =

E © {[id] ^ ad : ["id,") -> (x [st,] E) u ... u {"id,"} (x [stj E))}

We use the ordering imposed by < above to ensure that Id does not already form a part

of some declaration in the environment.

Note “that the definition of (8 [dl dls] E) ensures that a declaration operates over an

environment to which the preceding declarations have already been added. We deal

with ordinary declarations by simply finding a suitable Z identifer, working out the Z

equivalent of the type, and adding this new Z declaration to the environment as the

image of the associated program identifier. The function overriding operator © ensures

that we will only have one mapping for each program identifier - thus a local declaration

of a variable will overwrite prior declarations (at a higher level) of variables with the

same name.

We regard record declarations as introducing a new type: all records are treated as if

70

use of the Z set WORDS which we introduced earlier in order to allow us to use the

field names (exactly as they appear in the program) in the corresponding specification.

Let us take a definition o f a tree node as an example: w e might use the record

mode : record
contents : Nat
le f t : t mode
righ t: T mode

endrec

Assuming that we select the Z identifier TNODE to represent the program identifier

[mode], we would get the following definition:
•V

TNODE : {"contents”) -» S 1 u {"left"} M W u {"right") MLocr1

Thus we regard TNODE as being a function whose domain consists of the three words

"contents", "left" and "right", and whose range is {N u M L oc}\ with the added

restriction that it w ill only map "contents" to something o f type N x, and "left" and

"right" to something o f type MLocA.

they were functions from the field names into the respective field type. Thus we make

4.4.3 Blocks

The next element for definition is a block. Throughout this discussion, let us assume

that we have some function c which will map statements and an environment into an

appropriate schema (we w ill be defining this function later).

We defined ProcEnv above as consisting o f two parts - formals and body which between

71

I

them provide the information needed to describe a block in the environment We will

now describe a function which will give the appropriate semantics for a block in

ProcEnv.

Firstly, we will need a list o f the formal parameters of the block; the function tc maps

a list of parameters into a form suitable for inclusion in the formals part o f a ProcEnv.

For simplicity, we will treat something o f type param as though it were a sequence of

param.

n : param* -> ENV -4 {[VAL,VAR] N IDENT)

it = X pms : param’, E : ENV •

\i p list: {VAL,VAR} N -* IDENT |

V i : N • (pms(i) = [var id st]) <=> [VAR _♦ i _ (i fid] E)} 6 plist

a (pms(i) = [val id st]) <=> [VAL i (i fid] E)} € plist

Each Z identifier representing a parameter is thus identified with its position in the

sequence and whether it is either VAR or VAL. Note that the above function assumes

that we have already added the parameters to the environment (presumably using the 8

function defined above).

We regard a block in much the same way as declarations above: as representing a

mapping from one environment to another. The output environment is just the input

environment with the definitions of all the procedures in the block added to it

72

1

When giving the semantics for blocks, it is essential that we respect the scoping rules

of the language. We ensure that everything in scope for a particular block is in scope

for its sub-blocks by making each block pass its environment (after the declarations have

been added) to its sub-blocks. Also, we nest the definition of P for sequences o f blocks

to ensure that each block is in scope for succeeding blocks at the same level.

p : block* -> ENV ENV

V E : ENV, blkSjj, blks : block*, pms : param*, dls : decl*, sts : stat* •

p [j E = E

P [[Proc N (pms) dls blks,, sts] blks] E =

P [blks] (p [[Proc N (pms) dls blks,, sts]] E)

P [[Proc N (pms) dls blks,,- sts]] E = E ® {[N] _+ PE)

where PE : ProcEnv |

PE.formals = 7t [pms] Ej

PE.body = (£2 [dls] Ej) a (o [sts] (P [blks] E^)

and E z: ENV |

Ej = 5 [dls] (8 [pms] E)

The net result of applying P to a block and an environment is to add a mapping for that

block to the environment. Note that the same environment Ej is passed to both o and

7t which are used to create the procedure’s representation in the new environment.

73

4.4.4 Initialisation

We made use of a function ft in the previous definition - the purpose of this function

is to initialise the local variables of the block to the appropriate value. We define it as:

ft : decl* -> ENV -4 SEXP

V E : ENV, d l: decl, dls : decl*, idadj.-.id, : ident, st,st1,...stn : stype •

ft [] E = TRUE

ft [dl dls] E = (ft [dl] E) a (ft [dls] E)

ft pd : St] E = (Cl) (T St E) E)

ft pd : record idx : s t , ... id„ : st„ endrec] E = TRUE

The function to simply works out whether the initialisation that corresponds to a

particular type is the undefined element or the empty set, and is defined as:

© : TERM -»ENV ->

V Tm : TERM, E : ENV •

Tm € {N-1, Z \ Boolean\ MLoci } => (co Tm E) = 1

3 Tmj, T m j: TERM • Tm = Tit^ —> Tmj => (co Tm E) = {}

Tm € IDENT =* (3 Tmt : TERM | Tm : Tm! e ran(E) • (co Tm E) = (co Tmt E))

The net result of this is to ensure that any program which attempts to use variables on

the right-hand-side of an assignment statement before they have been explicitly

initialised (by assigning them a value) will be meaningless.

74

The next step from the semantics of identifiers is to define the semantics for expressions

containing them. This is done fairly routinely using the following function:

[e : expr —> ENV —» TERM

4.4.5 Expressions

| V E : ENV, e x .e ^ : expr, id : ident, vr : vref, bop : binop, uop : unop, c : const •

I

| e [et bop e j e = (e [e j e) (6 [bop]) (e [e2] e)

| e [uop ex] E = (6 [uop]) (e [ex] E)

I e I(ex)] E = (e ex E)

| e [vr[ex]] E = (e [vr] E) (e [ex] E)

| e [vr.id] e = (e [vr] e) ("id")

I e [t (vr)] e = AT(e [vr] e)

| e [id] E = (i [id] E)

| e [NULL] E = ±

| e [true] E = TRUE ... and so on for the other constants

We have assumed the existence of some (trivial) function 6, which maps unary and

binary operators into their Z counterparts; we shall not bother to define it further.

Similarly, we will not elaborate on the mapping for constants. Array and record

references have been defined as function application, as discussed earlier. We make use

of the function AT to give a meaning for the dereferencing of a pointer.

75

4.4.6 Statements

We are now in a position to define a function o which gives a semantics to individual

statements. Since this function is central to the whole definition of a program, we

divide our discussion into five parts: semantics for the assignment statement, the new

statement, input/output statements, compound statements, and the procedure call. For

reference, we will give the definition of the whole function first, and then explain how

it works afterwards (we will also define the functions y, ̂ and a later).

4.4.6.1 The basic concept behind o

The central idea of what we are trying to do above goes something like this: At the

start of every block of statements we have a set of variables, say x,...x„, which are

introduced by Sch. Each statement introduces a new set of variables x / . . .x , ' ; the

relationship between each Xj and the corresponding depends on the statement. Any

variables which are not affected by a statement are deemed to be equal to the

corresponding variable before the statement - this is indicated above by the presence of

E Sch as a basis for some of the definitions. The assignment, read and write statements

replace old equalities with new ones, while the conditional and iterative statements

provide assertions about the variables.

We introduce the relevant variables into the schema by the inclusion o f Sch, which is

formed from those variables currently listed in the environment. We can use the range

restriction operator ► to make sure that only variable declarations are passed to MakeSch

(and not procedure definitions). Thus for the simplest statement, [skip], is just mapped

to the identity operation over the environment, E Sch.

76

a : stat* -> ENV —» SEXP

V E : ENV, s t : stat, sts.sts^stsj : stat\ V,VJ..VB: vref, e,ei..en : expr, args : expr*.
Sch : SEXP | Sch = MakeSch(DECL ► E) •

c [st sts] E = (a [st] e) ; (a [sts] E)
a [] e = E Sch

a [skip] E = E Sch

a [vj,..,v, := ej,..,cB], E) =
E S c h \((U v i] E) ' ,...(U v B]E)') a

[A Sch | 7 Y<a([vi],(e [e,] E)) E ,..., a([vn],(e [e j E)) E>]

o [read (v)] E =
E Sch \ ((i [v] E)', inseq') a [(i [v] E)' = head(inseq)] a [inseq' = tail(inseq)]

o [write (e)] E = E Sch \ (outseq') a [outseq' = outseq — (e [e] E)]

V vr : vref, ty : stype, Id : IDENT | Id = [vr] E) a Ty = (t [ty] E) •
c [new (vr ty)] E =

E Sch \ (ATM d') a [A Sch | (Id' « dom(AT)) a a ([Tvr],o) Ty E) E]

o [if e then sts, else s ts j E =
[Sch | (e [e] E) a (a [stsj e)] v [Sch | [e] E) a (a [s ts j E)]

a [while e do sts od] E =
[Sch | (e [e] E) a (a [sts] E)]* a [Sch' | -<e [e] E)']

V P : ident, args : expr*, | P = E([P]) •

<5 [call P (args)] E = ([Sch | a! = f, a a* = f,J
a P.body [fk+1/ak+i , ...
t A Sch

where
k, m : N, f„...,4, : IDENT, a ,... .^ : TERM |
{f, ... fk) = ran (P.formals(J{VAL)D) a

{fk+, ... fm} = ran (P.formals(I{VAÄ}0) a

V i j : {l..m} • (P.formalsfliVAL,VAR}D(i) = fj) <=> ((e [args](i) E) = aj)

77

4A.6.2 The Assignment Statement

Basically, what we want to do is to assert the equality o f the (post-execution) left- and

(pre-execution) right-hand-side o f the assignment statement; that is, we wish to assert

that for a simple assignment to an identifier such as [x := e], in some environment E,
we will have the assertion (e [x] E)' = (e [e] E) holding after the statement

If the assignment consists o f just variable names, then this assertion will suffice as it

stands, but if array or record references are involved, we must be a little more careful.

Take as an example the assignment [a S! ... sn := z] where a is an array or record name,

and each of are subscripts, and z is a suitable expression, and suppose that these

are mapped to A and St,..SK and Z respectively. After the assignment has taken place
\

we will want to assert that A ' (Sj) ... (SJ = Z. If only one subscript is involved (ie. n

= 1), we can simply state that A ' = A © {St ^ Z } . If we have two subscripts, then we

must assert something like A ' = A © {Sj (A(Sj) © {S2 -*Z})}. For larger numbers

of subscripts this notation could quickly become cumbersome, so we will define a

shorthand version called which, for the assignment with n subscripts, will allow us

to write A ' = A ® {(Sj,..JSJ Z}.

— tX„..JC.,Y] -

_ ® _ • (Xj —>... —> (X, —> Y)) x ((Xj x ... x X J —> Y) —> (Xj —>... —> (X, —> Y))

® = X. R : (Xx (X„ -> Y)), N : ((Xj x ... x X J -» Y) •

H R' : (X, —>... —> (X„ —> Y)) • .

V i, (ilt. . j j : (X, x ... x X J | i = (i^.-.ij •

((ie dom N)=>(R '(i1)...(in) = N(i))) A ((i « domN) =>(R'(i,)...(iB) = R(i))))

78

Thus the ® function simply builds a new R ' from the old R, by replacing some of the

mappings of R with new mappings from N. We could not use the function overriding

operator © here since R and N do not have exactly the same domain (and are thus not

of the same type), and the definition o f © (as in [Spiv89, § 4.3) is based on domain

corestriction. The domain of R (and o f R 0 is just X„ while the domain of N is the n-

tuple QCj x ... x XJ.

The purpose of the function a (as used in the function o) is to take what is basically the

right- and left-hand-side of a single assignment, and build an equation that represents

the situation which we would like to hold after that assignment.

a : (vref x TERM) ENV -> TERM

V id : ident, tm : TERM, vr : vref, sl,...sn : subsc, E : ENV •

a ([Id],tm) E = (i pd] E)' = tm

a (fid s, ... a t m) E = (i [id] E)' = (i pd] E) ® {(S„...Sn) ~ (tm)}

a ([î(vr)],tm) e = AT' = AT © {(e [vr] E) —► tm)

a ([î(vr) s, ... sj.tm) E = AT' = AT 0 {((e [vr] E),S„...SJ ~ tm}

where, for i : 1 .. n, we have the n equations:

((B id, : ident | s, = [.id,]) => (S; = "id,")) a

((3 ex, : expr | st = [[ex,]) => (S} = e [ex,] E))

We are now at the stage where we can map an assignment statement incorporating n

concurrent assignments, /v, := e j, into n separate equations looking like /, ' = r,. If we

were to use the sequential composition operator to combine these equations then we

79

would be treating them as sequential assignments, so evidently we will wish to conjoin

them.

However, consider for some airay £ , the assignment ¡B[i], B[j] := x, yJ. As it stands,

our definition would produce something like: B ' = B ® {I *->X] a B ' = B ® fJ ->Y),

whereas we really would want to combine this as: B ' = B ® {I J ~ Y) . We

therefore will define a "grouping" function y to do this for us. To make things a little

easier, we will form a sequence from our equations, and thus y will operate over

sequences of TERMs:

y : seq TERM —» seq TERM

V S : seq TERM, 1 : IDENT, t„ t j : TERM | head S = (T = 1 ® { t j) •

(#S = 1) =» (t(S) = S)

3 i : N • (i * 1) a (S(i) = 0 ' = 1 ® {tj})) =>

y(S) = TCtail (S © {i ^ (1' = 1 ® {t,,^}))))

3 i : N • (i * 1) a (S(i) = O' = 1 ® {ta})) =>

=> 7(S) = (head S) — y(tail S)

The result of applying y will be a sequence o f equations (where no term / will appear

on the left-hand-side of two separate equations), so we will want to convert this into a

conjunction of the equations. To do this we need to distribute the conjunction through

the sequence; we thus use the conjunctive equivalent to distributed concatenation —/,

which we write as 7 , and could define (as per [Spiv89] § 4.5) as

80

7 : seq TERM -> TERM

7 < > = < >

V t : TERM • 7<t> = t

V qj : seq TERM • 7(q ~ r) = (7q) a (7 0

We now have a set of equations which specify the effect of the assignment statement

on the variables concerned; the last step is then to add in an assertion stating the

invariance of all the other variables. This assertion is just £ Sch which has had all the

"changing" variables hidden: we use the function simple £, to extract the variable which

is to be hidden, where £ is defined as:

£ : vref -> ENV -> IDENT

V id : ident, vr : vref, ss : subsc, E : ENV •

£[T(vr)]E = AT'
£ [vr ss] E = £ [vr] E

U d] E = (l [id] E)'

4.4.6.3 Input and Output

We regard input and output as operations on the special variables inseq and ouiseq,

which will both be declared (in § 4.4.6) as sequences o f integers. One reason for this

is that it models the idea o f a "program input" and a "program output" which can both

be dealt with by a meaning function (such as MI0 as mentioned in chapter 1). This also

81

corresponds to the idea of a "standard input" and "standard output" as being actual

entities which can be changed by the program itself (with a larger set of commands, of

course) or by its calling environment. We might choose to allow some sort of

redirection by changing the variables inseq or outseq.

There are also less high-minded reasons than this for not allowing individual schemas

have access to specific identifiers representing input sources and output destinations.

First of all, when we come to analyze this semantic definition in terms of the calculus

of chapter 2, it will simplify things if we only have to consider schemas as consisting

of primed and unprimed variables, and can disregard the possibility of there being

variables with other (special) decorations. Also, we will be making frequent use of

schema composition, since this will model statement composition in the program, and

if inputs and outputs were involved, then the I/O variables (those decorated with ? and

/) would be all lumped in together in the resulting schema. As we have defined it we

will only have one special variable for each, and there can be no ambiguity as to the

sequence of input or output of values.

The definitions of both statements are fairly routine. The read statement is similar to
\

a single assignment, except that we must also note the fact that we have removed the

front element from the input sequence, inseq. For the write statement, we must assert

that we have added a new element to the sequence outseq.

4.4.6A The new statement

The easiest way to explain the new statement is to look at an example. Suppose we had

82

processed the declaration [p : t ptype] which had added the declaration P : MLoc1 to

the environment. Then the statement [new(p ptype)} would result in two values

changing: the value of P itself, and the value of the function AT at P. We do not

specify the value of P exactly, except to say that it is some "new" location that was not

previously in AT; the new value of the function AT at P will be the initialisation value

corresponding to P. Thus the statement will produce the schema:

E Sch / (AT'.P') a [A Sch | (P' e dom(AT)) a (AT' = A T © {P' _ _L})]

4.4.6.5 Compound Statements

Sequential composition in the programming language is modelled using ;, the schema

composition operator. This simply has the effect of identifying the post state of the first

schema with the pre state of the second, forming a schema whose pre and post states

are the pre and post states of the first and second schema respectively. In order for this

schema to be defined in general, we must know that the variables in the first and second

schema can be matched up - we know this is so above, since all schemas will have Sch

as their declaration part.

The conditional, or if-then-else, statement is represented by the disjunction of two

schemas, each representing one of the alternative branches of the statement We add an

assertion that the guard holds to the schema representing the first branch, and an

assertion that the negation of the guard holds to the schema for the second branch.

In defining a meaning for the while loop, we apply the * operation to schemas. This

83

f

denotes the reflexive-transitive closure of the composition operation, That is, if S

is a schema, then S * = S° v S' v S2 v where S° is the identity schema and each

S" = Sfrl ; S.

In the above situation, S° is S Sch - this corresponds to the situation where no iterations

take place. Each S' in the disjunction represents the possibility of the loop iterating i

times and then terminating. Since we do not impose any upper bound on i, the

reflexive-transitive closure describes all iterations to infinity, thus including the situation

where the loop does not terminate at all.

4.4.6.6 Procedure Calls

We now need to take care of the one remaining type of statement, the procedure call.

Just as a reminder, we dealt with the procedure call in the definition of c? as follows:

o [call P (args)] E = ([Sch | a, = f, a a* = f J
a P.body [fk+j/afc+j, fm/2™» 4+i /®t+i * ^])
t A Sch

where
k, m : N, f„...,4, *• IDENT, a^....a* : TERM |
{fj ... fk) = ran (P.formals(]{VAL}\) a

[ft+1 ... 4) = ran (P.formalsOiVA/?}!)) a

V ij : {l..m} • (P.formals({VAL,VAR})(i) = fj) <=> ((e [argsKi) E) = a,)

The basis of this definition is the schema which represents P in the environment, namely

E([P]).body. However, we then need to allow for the substitution of variable and value

84

parameters, and to take the "internal" variables of the procedure back out of scope.

The predicate in the second part of the definition tells us that f, ... fk are the call-by-

value formal parameters, fk+l ••• fm are the call-by-variable parameters and for each

parameter f;, the corresponding argument is a*.

We deal with the value parameters by simply introducing a sequence of predicates

before the schema which equate the start value of the parameters with their respective

arguments. Variable parameters are easily taken care of by replacing them with the

appropriate argument throughout the body of the schema.

We then take all the variables of the procedure which are not global out of scope by

projecting the schema onto Sch (which has the effect of hiding any variables which are

not in Sch).

4.4.7 Programs:

We now have all the tools necessary to provide a semantics for any program written in

the language defined earlier - all that is left is to define a function tying it all together.

We first need to define the starting environment, GlobEnv for the program, which has

just three elements. The identifiers in, out and mem are just "dummy" identifiers, whose

only purpose is to get inseq, outseq and AT into the range of the environment - this

ensures that when we form some schema Sch from the environment we will know that

S Sch will include (inseq' = inseq) a (outseq' = outseq) a (AT' = AT).

85

GlobEnv : ENV

GlobEnv =

{[in] —► inseq : seq Z, [out] outscq : seq Z, [mem] -» AT : MLoc —> GIVEN}

We can define the initial values of these elements using the following schema:

 INTT------------------------------

input?, output! : seq Z

inseq, outseq : seq Z

AT : MLoc —> GIVEN

inseq = input?

outseq = < >

AT = { }

We identify the start value of inseq with the input to the whole program, represented by

the variable input?. The other two initialisations assert that we start with an empty

output, and no "memory locations" have been assigned to program identifiers.

We are now ready to define the function <>, which maps a program into a specification,

as was the original purpose of the exercise. Its definition is somewhat similar to that

of P earlier, except that the environment passed to 8 in this case is GlobEnv.

86

<t> : program -» SPEC

V P : ident, blks : block*, dls : deci*, sts : stat*, E : ENV |

E = (5 [dls] GlobEnv) •

<)) [[Program P dls blks sts]] =

[SPEC, SEXP, SCHEMA, DECL, PRED, TERM, IDENT]

[GIVEN] [WORDS] [MLoc]

Boolean = [TRUE, FALSE}

INIT

(Q [dls] E) a (o [sts] (ß [blks] E))
[(input? = inseq') a (output! = outseq')]

87

CHAPTER 5 - ANALYSIS OF THE SEMANTICS

In this chapter we study issues relating to the semantic definition given in chapter 4,

with the purpose of demonstrating how we can reason about programs using those

semantics. We justify some of the decisions made by relating our definition to familiar

concepts in the realm of axiomatic semantics using the notation for dealing with Z

schemas which was introduced in chapter 2. We also examine some o f the issues from

chapter 3 in the light of our semantics, and discuss their implications.

5.1 What was specified?

The most familiar way of looking at a specification is as a description of something

which we would hope to implement somewhere down the line. We did not write the

specifications given in the previous chapter with an implementation in mind, but merely

to provide a formal, unambiguous description o f how a program could be mapped into

the Z notation. However, it may help our understanding of the specification if we ask

what an "implementation" of the specification would involve.

First of all, let us consider what the preceding chapter actually deals with. We gave at

the start an abstract syntax for a simple programming language, and we gave a sketchy

outline of the syntactic classes which go to make up a Z specification. We then

presented a specification of a number of functions to map the programming language

into what we claimed was a corresponding specification. Therefore we are dealing with

two specifications: the "transformation" specification which defined thè mapping

88

functions, and the "target" specification which was what we were trying to map the

programming language to.

An implementation of the transformation specification would be a program which took

a program (text) as input, and produced a specification (text) as output Implementation

details would thus involve worrying about parsing the program, and about presenting the

resulting specifications in an orderly manner. Those elements of the specification which

we have not described in full detail (such as the procedure for choosing the Z identifier

to correspond to a newly-declared program variable) would also have to be thrashed out

Ambitious implementations might even try to tidy up the resulting specification by

simplifying some of the schemas.

We already have an implementation of the target specification - the program that was

the source of the mapping; we constructed the mapping so that this would be the case.

(Accordingly we could even view the abstract syntax as a language for expressing

implementations.) The target specification describes a mapping (or function, since the

language is deterministic) from the initial values o f the input output and outermost

variables of the program to their final values - an implementation is any program which

also correctly performs this mapping. The target specification thus describes a set of

programs which are semantically equivalent to the program that we started with.

However, we could also take the view that the target specification was just a model of

the abstract syntax. Suppose someone had constructed a new language without giving

it a formal semantics, and wanted us to provide one. We would expect to be given a

definition of the syntax of the language (using BNF or an equivalent), and some sort of

informal description of how the language works. From this description we could then

construct the appropriate mapping functions, as in the previous chapter, and provide a

89

semantics for the language. This process is analogous to constructing a model of a

system given an informal description o f how that system works; this would be the

starting point for any refinements towards an implementation. If we did not have the

original programming language available to us, then perhaps the ultimate implementation

from the specification would be an interpreter for the language.
v

5.2 The Iterative Statement

Usually in denotational semantics recursion is dealt with by treating the meaning of

recursively defined functions as the fixpoint o f an equation. In fact, this approach is

central to the definition of all parts o f the language in this manner, since the

mathematical basis for the use of fixpoint equations imposes certain constraints on the

type of domain over which they may be used. By eliminating recursion from our small

language given in chapter 4 we have managed to side-step this issue and simplify our

presentation of the semantics; for our purposes the language will be adequate, since we

will also endeavour to side-step the use of recursion in our examples. Some work has

been done on relating the fixpoint approach with program specifications (eg. in

[Hoar87]), but we will not reflect on the matter any further at this point

Also, denotational semantics tends to regard iteration as a special case o f recursion.

Since we do not allow recursion, it seems proper that we should consider further the

definition of iteration in our language at this point The definition in terms of the

reflexive-transitive-closure operation is unlikely to cause any intuitive difficulties, but

there are still some issues which merit a closer look.

It is usual in axiomatic-type semantics to provide a meaning for the iterative statement

90

in terms of an invariant Although we have not defined it as such in our semantics, we

will show later in this chapter how the two concepts can be reconciled. We chose not

to introduce the invariant in the previous chapter in order to provide a semantics that

was, to some degree, mechanisable. That is, the "translation" involved in the previous

chapter does not involve any real decision-making; the only choices involve routine

matters such as keeping track of the names of identifiers. To introduce the invariant at

this point would have meant that we would have to do much of our reasoning about the

program while still dealing with it as expressed in the programming language: this

clearly was not the intention of providing the semantics in the first place. Also, if we

had chosen an invariant that was too weak at this point then any backtracking would

have to go right back to the original program, even though all the intervening work

would have involved reasoning about the specification in Z. Our definition captures the

full meaning of the iterative statement in a manner that is directly relatable to the

original program, even if it is a little difficult to work with. When we come to choosing

an invariant for the loop, we will be working with Z schemas, and we will have all the

information expressed by that loop available to us; this was the aim of providing the

semantics in the first place.

5.2.1 Uniqueness of while loop

We have defined the while loop as an infinite disjunction of schemas. It seems natural

to ask whether or not the execution of these schemas are mutually exclusive; that is, is

is possible for more than one of the terms in the disjunction to be true for the same

values of the before-state. Intuitively we expect only one of the terms to be true - it

should be the term which corresponds exactly to the number of iterations of the loop

when started in that particular before-state.

91

I

Let us first of all expand the definition of the while statement. We have been given

that:

V E : ENV, sts : stat\ e : expr, Sch : SEXP | Sch = MakeSch(DECL ► E) *
v

c ([while e do sts od], E) =

[Sch | e ([e p) a c([sts],E)]* a [Sch' | -e([e],E)']

Since the environment E is constant throughout, we abbreviate the schemas E Sch as Id,

e([e],E) as E, and c([sts],E) as S. If we use these abbreviations in the right-hand side

of the definition, then we have (for some n : N):

(Id v (E a S) v ((E a S);(E a S)) v v (E a S)“ v) a -> E'

which is equivalent to:

(Id a ->E') v (E a S a “'E') v ((E a S);(E a S) a ^E') v ... v ((E a S)b a ~iE ') v ...

We want to show that for some m,n : N j m * n that it is not possible for the mth and

/ith term above to hold true for the same start-state. This can be expressed as:

3 n,m : N | m *■ n *

V x, y ' • (E a S)"(x,y') a --E (y') => 3 z' • (E a S)"(x,z ') a -E (z')

We can make things a little easier by noting that m * n can be replaced by m > n

without loss of generality. Let us assume that we have some n, m such that m > n, and

92

attempt to derive a contradiction from assuming that for some x,

V y ' • (E a S)n(x,y') a ^E(y') (A)

and

3 z • (E a S)“(x,z') a -*E(z') (B)

Since m > n, (B) can be expressed as:

3 z' • (E a S)";(E a S r ' t o ') a ->E(z')

which by the definition of ; is the same as:

3 z 3 u • (E a S)"(x,u) a (E a S)’Mn(u ^ ') a -Æ (z ')

But (E a S)*(x,u) coupled with (A) gives us -'E(u), and

(E a S H u ,z ') => pre-(E a S r m(u)

=> pre-(E a S)(u) (by the defn. of ;)

=> pre-E(u) a pre-S(u)

=» E(u) (since E is a schema over just one state)

- contradiction o f ->E(u).

This contradicts our assumption which was that two terms o f the disjunction could be

true for the same input state. This verifies that the definition of the while loop

corresponds with our intuitive notion o f how it is executed.

93

5.3 Equivalence with Hoare Rules

When we were discussing axiomatic semantics in Chapter 1 we have a series of rules

for constructing proofs about programs. In order to further justify the semantics given

in Chapter 4, and to relate them to the conventional framework, we will demonstrate that

these rules apply to the constructs as we have defined them

5.3.1 Two states for the price o f one

We have seen that the basis of the Hoare rules is a triple such as {P} S {Q} where P and

Q are predicates and S is a statement; this means that for our purposes, P and Q can be

considered as a schemas over one state, and 5 as a schema over two states. After our

discussion of Z schema post-conditions in terms of two-state predicates, this choice of

characterisation for Q might seem a little strange. Strictly speaking, if a predicate is to

express some property of a schema post-condition then it will need to be able to refer

both to attributes of the after-state, and of its relationship with the before-state.

On the other hand if we do decide to make Q a two-state schema, then we run into

difficulties when we are dealing with conditions (such as the rule for statement

composition) which would need Q to be both a before- and after-state (for different

schemas, of course), and thus would lead us towards the description of schema pre

conditions in terms of two-state schemas. We will avoid this issue for the moment by

noting that Hoare triples will always be just that - triples - in that they will always

consist of a predicate for the before- and after-state, and a schema for the statement

We can thus contend that anything that we might express using one- and two-state

schemas P and Q could just as well be expressed by using a one-state schema for Q,

94

and constraining it with respect to the schema for P.

To elaborate on this point: the variables of both P and Q may be initialised by giving

specific values which satisfy them; let us call such an initialisation a configuration.

Thus any predicate will specify a set of such configurations, and the assertion that {PJ

S {Q} is really an assertion involving a set o f pairs of configurations. For each such

configuration we can present a predicate which specifies that configuration uniquely;

thus a configuration which satisfies P can itself be described uniquely by some predicate

which is a strengthened version of P. Therefore, when we write {P} S {QJ we could

just as well be writing {PJ S {QJ a ... a {PJ S {QJ where (Pj a ... a PJ<=*P and

(Qj a ... a QJ <=> Q, except that now each Qi is just specifying a configuration, and is

thus a one-state schema.

Consequently, for the rest of this discussion we will feel justified in treating Q as a one-

state schema specifying a configuration, and presume that we will use a number of these

should we ever want to assert something about the relationship between before- and

after-states. This approach, albeit a little circuitous, has the advantage of simplifying

our proofs a great deal, and so we shall employ it. However, this matter will raise its

head again when we come to deal with a definition for wp (see § 5.4.1), and we shall

confront the issue a little more directly at that point.

We can now express the meaning of {PJ S {QJ in the schema calculus as follows:

V x • P(x) => (V x' S(x,x') =» Q (x'))

This simply states that if a state x satisfies P, and is mapped to some state x ' by 5, then

95

x ' will satisfy Q. We note that this formula is logically equivalent to:

V x, x" • (P(x) a S(x,x')) => Q (x')

5.3.2 The Assignment Axiom: {P[tlx]} x:= t {P}

We will consider the single assignment to one variable; the same argument can easily

be extended to the general case involving a number of variables. Let us suppose that

the variables brought into scope by Sch correspond to some state x, containing the

variables x2 ... xn. The assignment statement will then involve one of these variables,

and will look something like: *,• := t, where t is some expression of the appropriate type.

We can thus expand P(x) to P(x1,..,xi,..,xJ, and P(x)[t/xJ becomes P(x1,..,t,..,xn). What

we want to show is that:

V X , x ' • (P(x)[t/xJ A S(x,x')) => P(x')

But S(x,x') is the schema representing assignment, so that we can expand the left-hand-

side of the implication to:

V A Sch | X x ' = X j a . . . a x / = t a . . . a xn" = xn

96

It is thus obvious that direct substitution will allow us to assert that

V A Sch |

(PCx^^t»..^ A X / = X j A ... A X j ' = t A ... A X , ' = x j => P C X j , . . . ^ . . ^)

which is what we needed to show.

5.3.3 The Composition Rule: {P} s} [R], {R} s2 {Q} h (P) sj;s2 {R}

If we let Sj and S2 be the schemas representing the statements Sj and s2 respectively,

then the first two triples of the composition rule are:

V x , x ' • P(x) a SjÎXjX') => R (x') (A)

V y, y ' • R(y) a S2(y,y') => Q (y') (B)

We can replace x ' in (A) and y in (B) with some state z without changing their meaning

and we can then rewrite (B) using implications only, so that by the transitivity of => we

can combine (A) and (B) to get:

V x, z, y ' • (P(x) a St(x,z) a S2(z,y')) => Q (y')

Since z does not occur free in Q(y '), this can be rewritten as

V x , y ' • (P(x) a (3 z • S ^ z) a S2(z,y'))) =» Q (y')

97

But we know that the definition of S,;S2(x ,y') is V x 3 z * S /x j) a S^z.y'), so that our

resulting statement is:

V x , y ' * P (x) a S,;S2(x ,y ') => Q (y') '

which, since chapter 4 defines statement composition in terms o f schema composition,

is equivalent to saying that {P} s,;s2 {Q}, as required.

5.3.4 The if-then-else Rule:

{P a E) Sj {Q}, {P a ->E) s2 {Q} h {P} i f e then s, else s2f i {R}

In our statement of the above rule we assume that the schema E represents the Boolean

expression e, and we now assume that Sj and S2 are the schemas representing Sj and s2

respectively. Noting that (PaE)(x) can be written as P(x) a E(x) (and similarly for

(PA->E)(y)) we can expand the first two triples to give us

V x , x ' • P(x) a E(x) a S^x^t') => Q (x')

V y . y ' • P(y) A -iE(y) A S2(y ,y ') => Q (y')

Renaming y and y ' to x and x ' in the second of these, and then combining gives us:

V x, x ' • (P(x) a E(x) a S ,(x ,x ')) v (P(x) a -E (x) a S2(x ,x ')) => Q (x')

98

Since P(x) is common to both terms in the disjunction, this can be written as:

V x, x ' *P(x) a ((E(x) a SjCx^c')) v (->E(x) a S jCx ^ ') » => Q (x')

The term (E(x) a S/xjc ')) v (->E(x) a S2(xjc')) obviously corresponds with our

definition of the semantics for if e then st else s2f i , and is thus what we were required

to prove.

5.3.5 The while Rule: [P a E) s fP} h fP} while e do s od (P a ->E)

Assuming that E and 5 represent e and s respectively, w e are given:

V x, x' • P(x) a E(x) a S(xpt') => P(x') (G)

and we must show:

V y, y' -P(y) a (E a S)*(y,y') a -E (y ') => P(y') a -E (y ')

Given that (E a S f(y ,y ') is simply y = y w e are in effect being asked to prove

V n : N, V y, y' * P(y) a (E a S)B(y ,y ') a -E (y ') => P(y') a -Æ(y')

We can prove this by induction over n.

99

V y, y ' *P(y) a (y = y ') a -E (y ') => P (y') a -E (y ')

which is obviously true by simple substitution.

For the inductive step we assume:

V y, y ' *P(y) a (E a S)"(y,y') a -E (y ') => P(y') a -E (y ')

which we will write as:

V y, y ' • P(y) => (E a S)°(y,y') a -E (y ') => P(y') a -E (y ') (//)

and we must examine the proposition that:

V y, y ' • P(y) a (E a Sr'C y.y') a -E (y ') => P(y') a -E (y ')

Expanding the schema composition by one term, this can be written as

V y, y ' • P(y) a (E a S);(E a S)"(y,y') a -E (y ') => P (y') a -Æ(y')

or, by using the definition of as

V y, y ' -P(y) a (3 z ■ E(y) a S(y,z) a (E a S)"(z,y')) a -Æ(y') => P (y') a -Æ(y')

For the base case n = 0, we are required to show:

100

which is equivalent to:

V y, y ' , z • P(y) a E(y) a S(y,z) => ((E a S)n(z,y') a -E (y ') => (P(y') a -E (y')))

and this can be deduced by combining (G) and (H), using the transitivity of => and a

suitable renaming.

5.4 Schema before- and after-states

We will take a brief interlude here to note two properties of the schemas which define

groups of statements.

First of all, we are moving forward through the program, so we are effectively starting

from a pre-condition of true. At the end of the program - or of the schema which

corresponds to the program - we should have a predicate which defines the relationship

between all the variables which are in scope at that point. Thus in analyzing a program

in this way we are attempting to characterise its strongest post-state, as opposed to

picking some post-state and identifying the corresponding pre-state (this would, of

course, be possible to do once we have constructed our strongest post-state.) An

implication of this approach is that any schema which defines a statement effectively has

a pre-condition which is true. More precisely, its pre-condition is exacdy that of the

state invariant. Since this state-invariant is Sch, which has no predicate part, the only

pre-condition to a statement being executed from a particular state is that the variables

in that state have the right names and types.

101

Secondly, we had pointed out that one of the goals of any refinement strategy is the

introduction of determinism, since this will make the specification more

"implementable". When dealing with programs, the implementability factor has

obviously reached a maximum and so has the corresponding degree of determinism

Our language contains no non-deterministic constructs; that is, for any before-state and

any statement, there can exist only one corresponding after-state. We could thus

describe the schema as being "functional" over its inputs (as opposed to relational), and

we can assert that for a state x and a schema 5 representing a group of statements, we

have V x • 3 ; y ' -S(x,y')

5.5 Incorporating the wp-calculus

5.5.1 A one-state version

Once we have defined Hoare triples, we are not far from a definition of the wp operator.

We recall that the statement P = wp(S,Q) meant that the execution of 5 from a before

state satisfying P would terminate with an after-state satisfying Q. Based on the "one-

state" approach of § 5.3.1 above, we could regard wp(S,Q) as defining a one-state

schema thus:

V x • wp(S,Q)(x) <=> pre-S(x) a (V x' • S(x,x') =* Q(x'))

The main difference between this and the definition of Hoare triples would be the

insistence that pre-S(x) holds; ie. that 5 must terminate. wp(S,Q) is thus a restriction of

the before-states o f S to those that will produce Q as an after state; in other words it

102

consists of the pre-condition of S which has been strengthened in some way (or in terms

of the calculus, V x • wp(S,Q)(x) pre-S(x)). The weaker Q is, the closer we come to

specifying the full pre-condition of S; the weakest case is wp(S,true)(x) which is exactly

pre-S(x).

5.5.2 wp as a two-state schema

However, let us consider now the case where Q is a two-state schema, as would be

normal in the specification of an after-state in Z. Since we will want to be able to

compose the wp of two statements (in the manner of wp(S3, wp(SltQ))) we will also

want wp(S,Q) to be a two-state schema - but what exactly does it represent? In our one-

state version of wp, we would have expected that in the situation where

P(x) = wp(S,Q)(x), then the establishment o f P(x) followed by the execution of S(xjc')

would have led to the establishment o f Q (x'). The two-state situation is much the same,

except that we have schema composition in place of "followed by", and we will want

P;S(xpc 0 to be a sub-specification of Q(xpc'). This is equivalent to what [HoHe87] call

the weakest prespecification o f program S and specification Q (which they write as S\Q).

From now on when we speak of wp we will mean the two-state version, which we will

define as:

V x, y ' • wp(S,Q)(x,y') <=> pre-S(x) a V z ' • S (y ',z ') => Q(x,z')

The S(y ' ,z ') looks a little unconventional, but it is logically correct, and is equivalent

to (and simpler than) introducing something like V u • (y ' = u) a S(u ,z ')).

103

5.5.3 Characteristic properties of wp

In order to further justify our definition, let us look again at the properties of wp which

we introduced in § 1.4.2, and show that they hold for the wp defined above. First of

all we will need two schemas to represent the predicates TRUE and FALSE; we define

these as:

V x,x' • TRUE(x,x')

V x,x' • -iFALSE(x,x')

In other words, any pair of states will satisfy TRUE(xpc'), and no pair of states will ever

satisfy FALSE(xpc').

We can now deal with each o f the properties in turn:

5.5.3.1 Law of the Excluded Miracle

By our definition of wp, we can expand wp(S,FALSE)(x,y ') to:

V x, y ' • pre-S(x) a (V z' • S (y ',z ') => FALSE(x,z'))

We have asserted that 3 x ,z ' ’FALSE(x,z') and so this conjunction is obviously false,

as required.

104

5.5.3.2 Monotonicity of wp with respect to implication

Suppose that we have two schemas Q and R such that V x j . ' • Q(xpc') => R(xpc'); to

prove this property, we are required to show that:

V y . y ' • wp(S,Q)(y,y') => wp(S,R)(y,y')

However, the term pre-S(y) will be common to both these expansions, and so we will

just have to show that
V

V y, y ' • (V u' • S(y',u") Q (y ',u ')) => (V v ' • S(y',v ') => R (y',v '))

which is a straightforward consequence of our initial assumption and the transitivity of

implication.

5.5.3.3 Distributivity of conjunction and disjunction

First of all let us note two rules of logical equivalence1 that we will use; for arbitrary

predicates A and B, and some variable(s) r o f type T,

(V t : T • A) a (V t : T • B) (V t T • A a B) (Rl)

(V t : T • A) v (V t : T • B) t- (V c T - A v B) (R2)

Note that (R2) only allows deduction from left to right, while (R l) asserts full

equivalence between the two sequents.

’a list of such rules is given in [Dill90], § 20.3

105

I

V x, x' • wp(S,Q)(x,x') a wp(S,R)(x,x') <=> wp(S,QaR)(x,x ')

Since x and x ' are quantified over the whole expression we will not keep mentioning

them, and we can expand the left-hand-side of the implication to:

pre-S(x) a (V z' • S (x ',z ') =s> Q (x',z')) a (V y ' • S (x ',y ') => R (x',y '))

We can rename y ' to z a n d use (R1) to express this as:

pre-S(x) a (V z' • (S (x ',z ') => Q (x ',z ')) a (S (x ',z ') => R (x',z')))

which (since S (x ',z ') is common) is equivalent to:

pre-S(x) a (V z ' • S (x ',z ') =» (Q (x',z') a R(x' ,z')))

and this is simply wp(S,QaR)(xjc '), as required.

The proof for the distributivity of disjunction is the same, except that now we will be

using (R2) which, since it only allows deduction in one direction, only permits us to

establish implication, but not full equivalence.

5.5.3.4 Distributing the disjunction when the schema is deterministic

We have established the distributive properties in the situation where S (x ,x ') is any

schema, and thus may be non-deterministic. Let us now consider the definition of

To show that conjunction is distributive, we must prove that:

106

wp(S,QtJl)(xjc') in the simation where S(xpc') is definitely deterministic. As usual we

can expand the definition of the wp and make the assumption that we know:

pre-S(x) a (V z ' • S (x ',z ') => (Q (x 'X) a R (x ' , z ')))

But assuming that pre-S(x) holds is equivalent to assuming that 3 y ' • S(x,y') holds,

but since S(xpc') is deterministic this y ' is unique, and we coold write 3, y ' • S(x,y'),

and for this unique y ' we have Q(x \ y ') a R(x ' ,y '). Thus we can write:

3 t y ' • S(x,y') => (Q (x'.y ') a R (x',y '))

Which we can immediately rephrase as:

3x y ' * (S(x,y') => (Q (x',y')) a (S(x,y') => R (x \y '))

But we are now working under an existential quantifier, and can use the rule:

(3 t : T • A) v (3 t : T • B) ^ (3 t : T • A v B) (R3)

and thus deduce that:

(3 , y' * S(x ,y') => (Q (x',y')) a (3 , z' • S (x ,z ') a R (x ' , z '))

And by the definition of unique existence, we can convert this back to

^ u • S(x,u) => (V y' • S (x ,y ') => (Q (x ' ,y ')) a (V z ' • S (x ,z ') a R (x ' ,z '))

107

from which we can subsequently assert wp(S,Q)(xpc') a wp(SJl)(xpt'), and this

establishes equivalence, as required.

5.5.4 Other features of wp

This definition of wp means that if P(x,y ') = wp(S,Q)(x,y ') then every valid before-state

of P is a valid before state of Q, and is mapped by P to a state which is mapped by S

to the corresponding after-state of Q. We could thus write:

i

V x,x' • wp(S,Q);S(x,x') =» Q(x,x')

We can use the weakest prespecification in situations where we wish to split up a

specification into the composition of two simpler specifications.

The less "specific" S is, the closer we are to describing the specification Q, and, in the

situation where S is just the identity over x, we have

V x,x' • wp(Id,Q)(x,x') => Q(x,x')

where Id is such that: V i , ï ' ‘Id(xjc') <=» x = x

Another trivial case is where we have V x, x ' • wp(S,Q)(xjc ') = TRUE(xpc ') - this

corresponds to the situation where S is a total operation, and for every before-state we

can expect S to produce one of the corresponding after-states that Q would have

produced.

108

Since wp(S,Q) is the weakest prespecification, we have that for any other specification

T which is stronger,

V x, x ' ♦ (T(x,x') => wp(S,Q)(x,x')) <=> CT;S(x^') => Q(x,x'))

In other words, if T implies the weakest prespecification of 5 and Q, then it is strong

enough to be a prespecification o f S and Q , and so can be composed with S to give a

sub-specification of Q.

5.5£ wp and Operation Refinement

Recall that in § 3.4.4 we defined the proof obligation for operational refinement as:

V s,s' • pre-AbsOp(s) => (pre-ConOp(s) a (ConOp(s,s') => AbsOp(s,s')))

We can see now that the right-hand side of this definition has the same form as the

definition of wp, and we could thus replace it to get the condition:

V s * pre-AbsOp(s) => V s' • wp(ConOp,AbsOp)(s,s')

From our discussion above, this assertion states that over every valid before-state of

AbsOp we can expect ConOp to behave as AbsOp might. ConOp is more deterministic

than AbsOp since it is defined over a larger set of before-states (ie. ConOp will

terminate from a greater number o f states).

109

5.5.6 wp and Data Refinement

We can combine the correctness and applicability conditions for data refinement to give

the proof obligation:

V a, c, c' • (pre-AbsOp(a) a Rel(a,c)) =>

pre-ConOp(c) a (ConOp(c,c') => 3 a ' • R el(a ',c') a AbsOp(a.a'))

Finding an application for wp in this formula presents some problems with making sure

that we are dealing with schemas over the same state-space. Based on the structure of

the above formula, it seems that we would like to apply the wp to the terms

ConOp(c,c') and 3 a ' -R e l(a ',c ') a AbsO p(a,a'), except that we can’t do so directly,

since the latter is not defined solely over the states c and c '.

First of all we note that 3 a ' • R el(a ' ,c ') a AbsO p(a,a') is similar to the form of a

definition for the composition of two schemas, and thus we can write it as

Rel;AbsOp(a,c'). Now since this term is actually the right-hand-side o f an implication,

we are only interested in its value under certain conditions, namely those conditions

specified by the left-hand-side of the implication. Accordingly, in our case we are given

that Rel;AbsOp(a,c') must hold under the supposition that pre-AbsOp(a) a Rel(a,c)

holds. Immediately we can assert that if we have Rel(c,a) a Rel;AbsOp(a,c') then we

can deduce Rel;AbsOp;Rel(c,c'), which gives us a term in c and c ', as required.

We can now rewrite the proof obligation as:

V a, c, c ' • (pre-AbsOp(a) a Rel(a,c)) =»

pre-ConOp(c) a (ConOp(c,c') => Rel;AbsOp°Rel(c,c'))

110

This is much more amenable to representation using wp, and we can write:

V a, c • (pre-AbsOp(a) a Rel(a,c)) => V c ' • wp(ConOp, Rel;AbsOp;Rel)(c,c')

The proof obligation is thus to show that ConOp and Rel;AbsOp;Rel will produce the

same after-state in situations where the before-state can be mapped by Rel to a valid

before-state of AbsOp.

5.6 Annotations and Guarded Commands

When attempting to understand - or describe - the action of a program, it is quite

common to write down a predicate (as a comment) at a particular point, with the

implication being that whenever control reaches that point, then the particular predicate

should hold for the current value of the variables. In certain situations during the

development of a program we may include a predicate to indicate that our deduction is

based on the understanding that this predicate will hold true at the point indicated, even

if this is not necessarily implied by the preceding program statements. In the

terminology of [MoVi90] we will describe both these predicates as annotations, and call

the former assertions and the latter coercions.

5.6.1 Assertions

Assertions do not add anything to our program; they merely serve to highlight some

particular point that is of interest. In [Ders83] these assertions are used to document a

111

program, and rules are given which allow more assertions to be deduced from an

existing program and set of assertions. Some of these assertions may be written at a

particular point in the program based solely on the statement before or after i t Others

may be moved "backwards" and "forwards" through the program text with their final

form depending on the intervening statements.

These type of assertions are implicit in our semantics; for example, the guards in the

alternative and iterative commands are automatically introduced as pre-conditions to the

ensuing block of statements. We shall not examine this equivalence in any depth, since

we would just be reiterating much o f the proof of the equivalence o f the Hoare triples

to our semantics. It will suffice to note that if we wish to introduce an assertion A

between two blocks of statements S and T, (which might be written as S; {A} T) then

we would have to show that:

V x * post-S(x) a pre-T(x) ^ A(x)

S.62 Coercions

This type of annotation is basically a specification which has yet to be expressed in

programming terms. We may use it because we wish to reserve the realisation of some

part of the specification until later, or because we do not wish to be concerned with the

actual implementation details. For instance, after a statement like read(v) we may

introduce a coercion specified by the predicate P(v) which would indicate the range of

acceptable values for the variable; the method used to confine v to these values may not

interest us at this stage. (We would write such a coercion as: read(v) [P(v)J).

112

All of the commands that we have described in the previous chapter are total, in that

whenever we have introduced pre-conditions to a number of statements, we have made

sure that the conjunction of all these pre-conditions is true. However, if we use

coercions with the langauge then we will be insisting that some condition holds at a

particular point, and not considering at all the case where it does not hold. What this

means is that the rest of the statements in the block are basically the body of a guarded

command, to which the coercion is the guard.

When we have a coercion before a sequence of statements, such as [P(xpc')] S (x ,x ') we

are effectively specifying the operation (P a S)(xpc'). Thus a coercion is just a method

of constraining the valid before-states of an operation. The alternative statement

i f B then Sj else S2f i could just as well be regarded as the disjunction of two coerced

statements: ([B(x)] Sj(x,x ')) v ([->B(x)] S2(xpc')). The iterative statement

while B do S od would then be the reflexive-transitive closure of ([B(x)J S(xjc'))

composed with ([->B(x)J Id (xjc ')).

A program which consists simply of a coercion [Q (x,x ')] and nothing else is what we

would normally describe as a specification. During the process of refinement we would

hope to introduce statements in place of this coercion. This will be a step-by-step

process, so each type we would want to replace [Q (xjc')] with [P(xpc')] S, where the

statement S(x ,x ') will be guaranteed to establish Q(xpc') when started in a before-state

satisfying P(xpc'). This should look rather familiar, since the specification of P(xpc')

would be wp(S,Q)(x,x').

Consider again the maximally weak specification TRUE(xpc') which is basically an

indication that we do not constrain the before- or after-states in any way; TRUE maps

anything to anything. This will allow us to write [P(xpc')] S(xpc') as the total

113

command; namely i f P then S else TRUE fl.

5.7 Meaning Functions

We met the idea of a meaning function when we were discussing denotational semantics

in chapter 1. The basic idea was to concentrate on some particular aspect of the

semantics as being enough to describe the operation of the program.

Our semantics essentially regard a program as specifying an operation over those sets

of variables which are currently in scope. A fully-expanded semantics for some

program, where each statement was represented by its corresponding schema, would

amount to a detailed description of the program as a sequence of states; this corresponds

to the operational view, or the meaning function MALL. If we were to bring our

knowledge of mathematical logic, and of the rules governing members of the sets N and

Z (and whatever other data sets we were using), to bear on this, we could hope to

simplify the whole program down into just one schema which expressed the relationship

between the start and finish values of the variables directly, without giving any details

of their intermediate values. This would correspond to the more abstract view of MEm.

We could also regard the program purely in terms of a mapping from its input to output.

This would correspond to the meaning function M10 and could be achieved by

eliminating the schema 10 and changing the definition of (j> to:

114

$: program -» SPEC

V P : ident, biles : block*, d l s : dec!*, sts ; stat* •

<j> [[Program P dls blks sts]] =

[GIVEN]

Boolean = [TRUE, FALSE)

[outseq : seq Z | outseq = < >]

P I = X inseq : seq Z *

o([sts], PdblksJ, 8([dls], GlobEnv))).outseq'

115

CHAPTER 6 - SAMPLE PROGRAMS

Up to now we have been concerned with bringing together disparate elements involving

the link between programs and specifications, using the proof calculus of chapter 2 and

the semantic framework of chapter 4. In this chapter we relax the emphasis on

formality a little, and begin to deal with programs on a first-name basis. Later on we

will be taking some sample programs and attempting to fit them into our model, but first

of all let us consider the nature of the problem that we will be confronting.

We will not be attempting to provide some general set o f rules and heuristics which

might serve as some sort of "handbook" of the annotation and analysis process. Much

work has already been done on deriving programs from specifications; many texts give

examples and useful rules which can help with this task (see [Drom89] in particular for

an extensive selection). In the next section we argue that these rules and guidelines will

also be useful also for what we are trying to do. In previous chapters we have cast

programs and specifications into the same mould, regarding them as being different in

emphasis rather then in fundamental substance. We develop this theme to claim that the

link between programs and specifications should not be considered purely in directional

terms (from specifications to programs), but as a property o f the structures that

encompass both of them.

116

6.1 Reversing Algorithm Development?

Leaving aside the business of formalising representations for abstract objects, and

introducing refinements etc. for the moment, let us concentrate on the task of finding

an algorithm which will implement the specification.

Assume for the moment that we have been able to map each specification state into

some "equivalent” program state; we’ll refer to these as "abstract" and "concrete" states

respectively. Then for each operation we would hope to be able to present a state to the

program as input, and if its equivalent abstract state satisfies the pre-condition of the

operation, then we would expect our program to produce a state whose equivalent

abstract version satisfies the post-condition. Assuming that it is decidable whether or

not some state satisfies the pre- or post-condition, a rather naive program might simply

opt to search the set of valid states until it has found a suitable one. Efficiency

considerations seldom alow us to tolerate such innocence. Developing a realistic

algorithm to solve a problem involves exploiting properties o f the state-set, and of the

pre- and post-conditions, in order to narrow the range of our search.

Much of this "narrowing" is second nature to a programmer. For example, suppose we

are asked to sort an array of integers; our answer will lie somewhere in the set of arrays

of integers. It is trivial to eliminate infinitely many arrays from our search-space by

noting that the result must be a permutation of the initial array, and that it must be

sorted. Few programmers would feel a great deal of pride in asserting that their

program also made use of the transitivity o f the <, operator over integers. However,

increasing degrees of cunning (or "intuition") are involved as we progress towards more

and more efficient searching strategies: we would agree that the first person to discover

the Quicksort had something worth taking about Were we concerned here with

117

automating the programming process, we might be discussing the role of experience,

skill, inspiration, etc... As we are not, let us be content just to note their influence.

The above discussion is hardly profound, but it is important to us as we consider the

relative difficulty of re-constructing a specification from a program. If writing a

program involves "adding in" details to the specification (the task of deciding which

details being presumably what programmers are paid for), can we expect our task to be

simply "removing" these details until we have attained an acceptable degree of

abstractness? Deciding what to remove certainly sounds easier than thinking up things

to add in. After all, the fruits of our experience/skill/mtuition have been written into the

program, and are thus available to us.

Things are not quite that easy. Let us consider an example: suppose we are asked to

write a program to find the greatest common divisor of two natural numbers. Our

specification might look something like this:

divisors : Nj —» iPj Nj

divisors = A, n : Nj • {d : Nj | 3 c : N, • d * c = n}

gcd : ^ x N, -» Nj

gcd = X x,y : N t • max(divisors(x) n divisors(y))

118

We could fairly routinely deduce that the answer lies somewhere between 0 and the

smaller of the two numbers; we may begin working on the properties of divisibility to

see if this can help us. But suppose a mathematician passed by at this point and, when

hearing of our problem, pointed out that the g.c.d. of two numbers had a interesting

property: that it was equal to the g.c.d. of the smaller number, and the larger less the

smaller. We check that this is so, and could rewrite our specification accordingly:

gcd : N, x N, —> Nj

V x,y : Nj •

(x > y => gcd(x,y) = gcd(x-y,y)) a

(x < y =* gcd(x,y) = gcd(x,y-x)) a

(x = y => gcd(x,y) = x)

We can then proceed fairly routinely to an implementation looking something like:

[Program GCD
x : Nat
y : Nat
read (x)
read (y)
while (x * y) do

if (x > y) then x := x - y else y := y - x fi
od
write (x)]

Obviously the connection between the program and the second specification above is

relatively transparent; we would expect to be able to extract this type of recursive

equation from any loop body. However if we had hoped to be able to get back to

something like the original specification, then we would effectively be searching for

something which has the property given above. Yet there is nothing "inferior" about the

119

second specification; indeed it would probably form the basis for an algebraic (or

property-oriented) specification of the program. After all, if it did not fully specify the

g.c.d. function, we could not have used it so conveniently.

The nub of our argument is this: both of the above specifications detail properties of the

g.c.d. which are sufficient to describe the function over its input domain. We might

regard the first as being more useful to us, but a completely objective view would not

differentiate between them. In other words, starting with either specification, we could

expect to come across the other one in our search for an implementation, depending on

our search method. Thus there exists a symmetry here; we have moved to a new

expression of our problem (which is hopefully better oriented towards our target

domain), but moving back again will not necessarily be any easier.

Let us imagine a state-space consisting of "properties", and sets of properties, and so on,

where any set of properties will specify some kind of a relation (not always being

consistent/sufficient/sensible). We can regard a particular function as imposing an

equivalence relation on this state-space, consisting of all those sets of properties which

describe it fully. Our search for an algorithm involves moving around in one of these

equivalence classes; some moves may be easier than others, but we cannot guarantee a

strict hierarchy.

The bottom line here is that we do not intend to consider deeply the problem of finding

out what algorithms do; the heuristics involved in this process are likely to be as widely

varied as those used for developing programs. However, the introduction of formal

methods into program development was not designed just to provide inspiration to*

people to create new algorithms; its purpose it to provide a framework within which this

development can take place. In this thesis we have been concerned with providing a

120

rigorous basis for moving between programs and specifications; to illustrate this basis,

and to provide a sample of the techniques we can expect to employ, we will use the rest

of this chapter to analyze a small selection of sample programs.

6.2 Some notational conveniences

Before we deal with the specific examples, let us relax our program notation a little bit.

In order to eliminate unnecessary details, we will make some alterations to the way in

which we can write programs - these should be considered as notational abbreviations

rather that extensions to the language. We could have introduced some of them into our

language in chapter 4, but they do not add to the power of the language in any way, and

thus would have complicated our semantic definition unnecessarily.

1. We may write declarations as [i7, ... in : i], which is shorthand for {i, : t ... in : i]

2. Rather that use specific integer constants for certain values (such as array bounds)

we will allow identifiers (such as N) to represent the required values. Again, this should

not be seen as an extension to the language, but more as a first step towards the

generalisation of the program. We will introduce any such constants by declaring them

in a coercion before the start of the program.

3. We will write [if B then S fi] to mean {if B then S else skip fi}.

4. As a further simplification, we will abbreviate \ i fB 1 then else if B2 then S2f i fi]

to the more common \ if B1 then St elseifB 2 then S2fiJ. When we are translating this

to a schema we get something of the form [B, a S,] v [B2 a S2] v [~>Bt a ~>B2 a Id],

121

5. We will ignore the function AT in example not involving pointers.

where Id is the identity over the current environment.

6.3 The Dutch National Hag [Dijk76]

We will use this example to illustrate the process of giving a program its appropriate

semantics in terms of chapter 4; we will not go into as much detail in later examples.

[RED, WHITE, BLUE : Z]
[N : N | N > 1]

[Program DNF
r, w, b : Int
A : array 1 to N+ 1 of Int

[Proc READARR (var A : array 1 to N+ 1 of Int)
i : Nat
x : Int
i := 1
while i < N do

read(x)
A[i],i := x,i+ l

od]
call READARR (A)
r,w,b := 0,0^V+1
while (w * b-1) do

if A[w+1] = WHITE then
w := w + 1

elseif A[w+1] = BLUE then
A[w+l],A{b-l] := A[b-l],A[w+l]
b := b-1

elseif A[w+1] = RED
A[w+l],A[r+l] := A[r+l],A[w+l]
w,r := w +l,r+l

fi
od]

122

Applying (J) to the above program means that we must first apply 8 to the program

declarations, which produces the main program environment:

MEnv : ENV

MEnv == {[in] —► inseq : seq Z, [out] outseq : seq Z,

[r] ~ r : Zx, [w] ~ w : Z \ [b] ~ b : Z \ [A] ^ AA : {1 .. N } ->• Zx}

6.3.1 The procedure READARR

We will take the opportunity to go through READARR in some detail at this point.

We apply p to READARR, using the rule:

P [[Proc N (pms) dls blksN sts]J E = E © { pSTJ -+ PE}

where PE : ProcEnv |

PE.formals = n |pms] Ej

PE.body = (Q [dls] Ej) a (g [sts] (P [blks] e2))

and Ej : ENV | E2 = 8 [dls] (8 [pms] E)

Working out will involve adding the parameter and the two variable declarations to

the environment, to get:

SEnv : ENV

SEnv = MEnv © {[A] BA : {1 .. N} -> Z \ [i] ^ i : Nx, [x] ^ x : Z x}

123

Note that there is a new mapping for the program identifier [A] which will overwrite

the previous mapping.

In the function a we will be using MakeSch(SEnv > DECL) to bring the relevant Z

identifiers into scope; we will define the result of this application as the schema;

 S D ec------------------------------------

inseq, outseq : seq Zx

r, w, b : Zx

i : Nx

x : Zx

BA : {1 . . N} Zx

Since READARR has no sub-blocks, we can get right down to applying the mapping for

statements. The first statement is just a simple assignment, which leaves us with:

i— P S tatl---------------------------

A SDec

(BA = { }) A (x = 1) A (i = 1)

(inseq' = inseq) a (outseq' = outseq) a (r' = r) a (w ' = w) a (b' = b)

(BA' = BA) a (x ' = x) a (i' = 1)

The loop body can be straightforwardly interpreted as:

124

— PLBody

A SDec

inseq' = tail(inseq)

(outseq' = outseq) a (r' = r) a (w' = w) a (b' = b)

x ' = head(inseq)

(i £ AO a (i' = i+1)

(B A ' = B A ® { i - f x ' })

Accordingly, the schema which represents the procedure will consist of

PStatl ; PLBody* a [SDec' | i ' > N]

The loop body is fairly straightforward, so that we may formulate a loop invariant based

on i. If we let Ins be thé initial value of inseq before the loop, and note that since the

index set of the function BA is {1 .. N) we may treat it as though it were a sequence,

so that we get the invariant:

125

Ins : seq Z

— PInv —

SDec

1 < i

x = Ins(i-1)

(BA for (i-1)) = (Ins for (i-1))

inseq = (Ins after (i-1))

In order to verify the invariant, we must show that it is established by the initialisation:

[SDec; Ins : seq Z | inseq = Ins] a PStatl => PInv'

s,

which is trivially true (allowing for the fact that x has no value). We must then show

that each iteration of the loop preserves the invariant, or:

(PInv a PLBody a (Ins' = Ins)) => PInv'

which, since inseq = Ins after (i-1), we can verify by noting that:

inseq' = tail(inseq) = tail(Ins after (i-1)) = Ins after i

x ' = head(inseq) = head(Ins after (i-1)) = Ins(i)

and

B A ' = BA © { i r t x ") = (BA for (i-1)) © (i x ' } © (BA after i)

= (Ins for (i-1)) ® {i —► Ins(i)} © (BA after i)

= (Ins for i) © (BA after i)

126

Upon termination of the loop we have i = N+ l , and combining this with PInv allows

us to assert that the overall effect of the procedure is:

 ReadArr-------------------------------

A SDec

(outseq' = outseq) a (r' = r) a (w ' = w) a (V = b)

i ' = N +l

x ' = inseq(A0

BA ' = inseq for N

inseq' = inseq after N

The semantic function n when applied to the parameters of READARR will have

produced a mapping consisting of {VAR <-+ (1 — BA)}, and so the function ß will have

added ¡READARR] «-* RPE to MEnv, where we have:

\

RPE.formals = {VAR ^ (1 — BA)}

RPE.body = ReadArr

Thus MEnv([READARR]).body = ReadArr

6.3.2 Back in the main program...

We will need a corresponding version of SDec, called MDec which will be used to bring

the Z variables From the main part of the program into scope - this will be the result

127

of MakeSch(MEnv > DECL), which is:

 M D ec----------------------------------

inseq, outseq : seq Z

r, w, b : Z1

A A : {1 . . N) - > Z X

Note that the purpose of range-restricting MEnv to the set DECL is to exclude the

mapping for the procedure [READARR} (which is of type ProcEnv), since this has no

place among our declaration of Z variables.

So, to give a meaning for the statement in the main program [call READARR (A)], we

must take the schema ReadArr, replace all occurrences of the formal parameter BA with

the corresponding argument AA, and then use schema projection to hide all the "local"

variables of the procedure; this is expressed as ReadArr [AA/BA] t A MDec, which,

when we ignore the hidden variables, gives us:

— MStatl

A MDec

(AA = {}) a (r = 1) a (w = 1) a (b = ±)

(outseq' = outseq) a (r' = r) a (w ' = w) a (b' = b)

AA ' = inseq for N

inseq' = inseq after N

128

So far we have just given a semantics for the first command in the program! However,

we dealt with this command in such detail in order to illustrate the mechanism for

handling procedure calls: we will not be dealing with the rest of the commands at such

length.

Before we work out a definition for the main program loop, let us illustrate the

assignment command, by looking at the assignment which occurs in the last branch of

the conditional.

6.3.3 The concurrent assignment

The assignment we wish to specify can be written as:

, A[w+l],A[r+l],w,r := A [r+l],A[w+l],w+l,r+l

(We used two assignments in the program in order to make this look at little nicer; we

use the above version just for the sake of the example.)

We recall the rule for the assignment statement:

O [v i , . . , v B : = e) =

3 S c h \ ((Ç | v j e) ' , ... (Ç [v J e) ') a [A Sch | 7 y < a (v 1,e 1) E , . . . , a (v n,en) E >]

Working out the sequence that results from applying a to each individual assignment

is fairly straightforward, since it only involves variable and array references. Since the

array is one-dimensional, we can use © instead of ®, and we get:

129

< AA' = AA 0 {w+1 ■-* AA(r+l)}, A A ' = AA ® {r+1 AA(w+l)},

w ' = w+1, r' = r+1 >

Next we have to apply the grouping function y to this sequence. According to the

definition of this function we can see that the condition:

3 i : N • (i * 1) a (S(i) = (1' = 1 ® {t*}))

holds, with i = 2 , 1 = AA and t2 = r+1 AA(w+l). We thus apply the consequence:

y(S) = y(tail (S © {i ^ (r = 1 ® {t,,^})}))

to get the new sequence (with three elements) to which we must apply y:

< A A ' = AA © {w+1 —* AA(r+l), r+1 »-+ A A(w+l)}, w ' = w+1, r' = r+1 >

Further application of y leaves the sequence unchanged, and so our last step is just to

distribute the conjunction through this to get:

A A ' = AA © {w+1 —t- AA(r+l), r+1 _+ AA(w+l)} a w ' = w+1 a r' = r+1

This then gives us the schema for this statement:

130

— MAss3

A M Dec

(inseq' = inseq) a (outseq' = outseq)

<b' = b)

(AA' = AA © {w+1 AA(r+l), r + 1 A A (w + l) }) a (w' = w+1) a (r' = r+1)

6.3.4 The main loop body

In a similar manner we can characterise the other assignments and, if we add in the

preceding guard from the conditional (as we would do when writing the definition for

that assignment) we get the four schemas:

— MBrl ■

A MDec

AA(w+l) = WHITE

(inseq' = inseq) a (outseq' = outseq)

(b' = b) a (AA' = AA) a (r' = r)

(w' = w+1)

{i

131

[— M Br2 -

A M Dec

(AA(w+l) * WHITE) a (AA(w+l) = BLUE)

(inseq' = inseq) a (outseq' = outseq) *

(r' = r) a (w' = w)

(AA' = AA © {w+1 ~ AA(b-l), b-1 ~ AA(w +l)}) a (b' = b-1)

|— MBr3 ■

A MDec

(AA(w+l) * WHITE) a (AA(w+l)*B L U E) a (AA(w+1) = RED)

(inseq' = inseq) a (outseq" = outseq)

(b' = b)

(AA' = AA 0 {w+1 —f AA(r+l), r+1 <-* AA(w+l)}) a (w ' = w + 1) a (r '= r + l)

r— MBr4 -

E MDec

(AA(w+l) * WHITE) a (AA(w+l) * BLUE) a (AA(w+1) * RED)

132

MLBody = [MDec | w * b-1] a (MBrl v MBr2 v MBr3 v MBr4)

The statement executed just before this loop is \r,w,b := 0,0JJ+1], which gives us die

loop initialisation schema:

 MLInit---------------------------------

A MDec

The loop body is thus defined by:

(outseq' = outseq) a (inseq' = inseq)

AA' = AA

(r' = 0) a (w' = 0) a (b' = N+1)

We can now attempt to formulate the loop invariant:

 MLInv------------------------------------

MDec

V j : N | 1 £ j •

j e {1 .. r} => AA(j) = RED

j e {r+1 .. w} => AA(j) = WHITE

j e {b+1 .. N) => AA(j) = BLUE

133

To prove that it is an invariant, we will need to show that:
J

(MStatljMLInit => MLInv) a ((MLInv a MLBody) => MLInv')

We will not go through the details of the proof here; this is dealt with in any of the

texts which discuss this problem. On termination of the loop we have w = b-1, and so

we can fill the other variables into what is essentially M L Inv ' a (w ' = b '- l) to get the

schema:

 M Loop---------------------------------

A MDec

(outseq' = outseq) a (inseq' = inseq)

w ' = b ' - l

V j : N | 1 < j •

j e { L . r ' } => AA'(j) = RED

j e { r '+ l . . w ' } => AA'(j) = WHITE

j e {b'+ l .. N) => AA'(j)= B L U E

We can accordingly view our program as being represented by M Statl ; MLoop.

We did not include a write statement at the end of the program, so there is no indication

as to which variables we are interested in; presumably the partitioned array AA ' is of

interest, possibly we might want the indices r ' and w '.

134

6.4 Integer Square Root

W e’ll take a small example next which we hope will reinforce some of the points made

in § 6.1. The purpose of this program is to calculate the square root of a natural

number, rounded down to the nearest whole number.

[Program ISR
x, y, z : Nat
m : Nat
read (m)
x,y,z := 0,1,1
while (y < m) do

x,y,z := x+l,z+2,y+z
od
write (x)
]

r

The declarations can be translated routinely to the schema:

Dec = [inseq,outseq : seq Z; x,y,z,m : Nx]

Let us split the rest of the program into three parts - the first two (initialisation)

statements, the loop body, and the write statement; we get three corresponding schemas:

A Dec

(m = 1) a (x = 1) a (y = 1) a (z = 1)

(outseq' = outseq) a (inseq' = tail(inseq))

m' = head(inseq)

(x ' = 0) a (y' = 1) a (z ' = 1)

135

— LBody

A Dec

(outseq' = outseq) a (inseq' = inseq)

y < m

(x' = x+1) a (y' = y+2) a (z ' = z+y) a (m' = m)

— Outp

A Dec

(outseq' = <x>) a (inseq' = inseq)

(x' = x) a (y' = y) a (z ' = z) a (m' = m)

The whole program is thus defined as:

Init; (LBody* a [Dec' | y ' > m ']) ; Outp ^

To formulate the rather simple invariant we can attempt to relate the values of the

variables to the number of iterations of the loop (and thus transitively to each other).

If we wish to refer to the value of the variable jc after i iterations of the loop, assuming

that it iterates that many times, then we can write this in terms of i compositions of

schema for the loop body: it is just LBody'.x '.

[Aside - this definition is based on the assumption that the loop has not terminated

before i iterations; if we did not make this assumption, things would be a little bit more

complicated. We would first need to define something like S*<k for any schema S and

136

k : N, to mean 5° v S1 v ... v Sk'J (a restriction of the reflexive-transitive closure to at

most k-1 applications). Then we can write

((LBody**1 a [Dec' | y ' > m ']) v LBody*).x'

to denote the value of x after i "iterations", even if the loop has actually terminated in

fewer iterations (we could regard the rest of these "iterations" as just being successive

H Dec operations). Note that the uniqueness property that we proved in § 5.2.1 is

central to our definition. End o f aside]

The repeated application of addition is obviously central to our program. A

consequence of this is that we will need a notation to express summation of all members

of a set of integers? we define1 one as:

[I : F Z -> Z | (£{} = 0) a (V S : Fx Z, i : Z | i e S • ES = i + Z(S/{i}))]

n
We would thus write Z/7 :1 .. n •P(i)} instead of the more standard £ P(i).

i=l

(Our notation has the advantage of being more consistent with the rest of our

presentation, and of being much simpler to write!).
>

From the schema LBody we can postulate that for some k : N such that pre-LBodyk+1 (ie.

the loop has not terminated), we will have: LBodykJC' = k, LBody^.z' = 1 + 2k and

LBodyk.y ' = 1 + Z/7 :1 .. k - LBody1.z '}. The last of these can of course be expressed

as the summation 1 + 'Zfi : 1 .. k • (1 + 2i)}, or ' Z f i : 0 .. k ’ (1 + 2i)}.

The loop will terminate after k iterations if the loop guard is false; we can thus express

the function of our program as finding the smallest such k where the guard is true after

k-1 iterations but false after one more iteration, and then taking the value of x as this

xThis is similar to the notation defined in [Back86] § 2.4

137

point. W e can express this as:

min {k : N | (LBodyk'1.y / < m) a (m < LBody*.y') ■ LBodj^.x'}

v
= min {k : N | I { i : 0 .. k • (1 + 2i)} < m < X{i : 0 .. k • (1 + 2i)}}

We could feel justified in leaving things at this point - however, there is another piece

of information that we could use (if we happened to be familiar with it), namely that

Xfi : 0 .. k -(I + 2i)} = (k+1)2, ie. the sum of the first k odd numbers is actually the

square of k. We can thus rewrite the purpose of our program as finding some k such

that we have:

min {k : N | k2 <, m < (k+1)2}

which is the square root of m rounded down to the nearest whole number (and is thus

in accordance with the name given to the program!)

An important point of the above discussion is that had we not known that last property

of the summation of odd numbers, then we would have ended up with a different (but

equivalent) result. If we were attempting to write a program to find the integer square

root of a number, and we did not know this property of the squares of numbers, then

we would have ended up with a different (but equivalent) program. Thus we see that

this property will have played an equally important part whether we were going from

program to specification or vice-versa, which reinforces the argument we made in § 6.1.

This is not true for just the last equivalence above; during our reasoning we also made
s

use of the fact that 'Zfi : l..k •1} = k and that Z/7 : l..k "2} = 2k; neither of these are

138

very difficult to work out, but we must acknowledge their role in connecting the

program and specification. Accordingly, we observe that the process in which we are

interested is founded on a wealth of such equivalences (ie. mathematical properties)

which allow us to move from one expression of a problem to another; the properties

which have been used in deriving programs from specifications will thus be symmetric

to those needed for extracting specifications from programs.

6.5 McCarthy’s, 91 Function

We now look at an example of the involvement of a schema-based definition of a

program being used in "common sense" type reasoning about that program. Our

specimen this time is the rather simple looking program:

[Program Mc91
x, y : Nat
read (x)
y := 1
while (y * 0) do

if x < 100 then
x,y := x+l l ,y+l

else
x,y := x-10,y-l

fi
od
write (x)
]

We will skip the definition for the first two (initialisation) statements, and proceed

directly to examine the schemas which represent the two branches of the loop. If we

let Dec = [inseq,outseq : seq Z; x,y : N1], and since the loop body does not involve any

10, we let IDec = [A Dec / (inseq' = inseq) a (outseq' = outseq)], then we get:

139

IDec

---------------------------- and

(y > 0) a (x < 100)

(y ' = y + l) a (x ' = x+11)

— B r l --

IDec

— Bi2

(y > 0) a (x > 100)

(y ' = y-1) a (x' = x-10)

Rather than attempt to formulate an invariant at this point, it is useful to take a slightly

"operational" view of things. First of all, we note that if the loop terminates after some

iteration then, since y > 0 in the loop body, we must have executed the second branch

of the conditional: this corresponds to the schema Br2&Ex = Br2 a [D ec' f y ' = 0].

W e note the special situation which occurs when the value of x that is input is greater

than 100 and the program terminates after just one iteration; this situation can be

characterised by the schema lBr2&E = [Dec / x > 100 a y = 1] a Br2&Ex. The

expansion of both these schemas is:

— Br2&Ex

IDec

(y > 0) a (x > 100)

(y ' = 0) a (x ' = x-10)

— 1Bi2&E

IDec

(y = 1) a (x > 100)

(y ' = 0) a (x ' = x-10)

If x < 100 initially, then we are guaranteed at least two iterations, either Brl;Brl or

B rl ;Br2, which we can simplify to:

140

— BrlBrl

IDec

- BrlBr2 -

IDec

--------------------------- and

(y > 1) a (x < 89)

(y' = y+2) a (x ' = x+22)

(y > 1) a (90 < x < 100)

(y ' = y) a (x ' = x+i)

Similarly, the next iteration can be either of these, or either Br2;Br2, or Br2;Brl, which

can be simplified to:

— Br2Br2------------------------------------

IDec

---------------------------- and

(y > 2) a (x > 111)

(y ' = y-2) a (x ' = x-20)

— Bi2Brl

IDec

(y > 2) a (101 < x < 110)

(y/ = y) a (x ' = x+i)

Leaving aside the case where x > 100 on input and lBr2&E holds, we can characterise

the loop body by the disjunction of the other five schemas above. If we analyze these

schemas in terms of the possible ranges of value for x, x ' , y and y ' we get:

BrlBrl BrlBr2 Br2Br2 Br2Brl Br2&Ex

x < 89 90 < x < 100 x > 111 101 < x < 110 x > 101

y - 1 y - 1 y - 2 y ^ 2 y = l

x ' < 111 91 < x ' < 101 x ' > 91 102 < x ' < 111 x ' > 9 1

y ' > 3 \ IV s IV o y - 2

oII\

141

Let us allow ourselves some terminological leeway to talk about the "execution" of a

schema when we really mean the execution of the corresponding statements. W e can

assert that the last three of the above schemas are special in that they will only be

executed following one of the first two (since only B rlB rl or BrlBr2 can correspond

to the first two iterations of the loop). Based on the ranges for the after-state variables,

we note that Br2Br2 can only be executed after either B rlB rl or Br2Brl, and that

Br2&Ex can only happen after BrlBr2. We can strengthen the pre-conditions of these

two schemas to reflect this (and consequently narrow the range of possible values for

x ' and y 0 to get:

BrlBrl BrlBr2 Br2Br2 Br2Brl Br2&Ex

x < 89 90 < x < 100 x = 111 101 < x < 110 x = 100

y - 1 y * i IV to IV to y = l

x ' < 111 91 < x ' < 101 x ' = 91 102 < x ' < 111 x ' = 9 1

y ' > 3 y ' > l

oAl
\i->'* y' > 2

oII\s*.

W e will not go into the details, but it is plain from this table that the program must

terminate (based on reasoning such as: "once the pre-conditions of B rlB rl have become

false, they can never become true again" and so on). There are only two schemas here

which can possibly correspond to termination (ie y ' = 0): these are Br2Br2 and

Br2&Ex, both of which establish x ' = 91.

Bringing back the situation where lBr2&E holds, we can now formulate a schema to

represent our program. If we assume that the initial value of outseq was < >, then we

can represent the program in terms of an operation on just the input and output

sequences:

142

inseq, outseq : seq Z

— M c 9 1 ----------------

inseq" = tail(inseq)

(head(inseq) > 100) => (outseq = <head(inseq)-10>)

(head(inseq) < 100) => (outseq = <91>)

This example illustrates the usefulness of our schema definitions even in what seems to

be an "informal" type of reasoning about programs. W e mentioned earlier that we

would not approach the problem by formulating a loop invariant directly; however, we

have implicitly formulated such an invariant, albeit not in the usual form. If we let X

denote the initial value of the variable x, then directly from the table we can formulate

the schema which describes the values of the variables where the input is less than or

equal to 100:

I LE100--

Dec; X : N

X < 100

((x < 89 a y > 1) v (x < 111 a y > 3) v

(90 < x < 100 a y > 1) v (91 < x < 101 a y > 1) v

(x = 111 a y > 2) v (x = 91 a y > 0) v

(101 < x < 1 1 0 A y > 2) v (102 < x < l l l A y ^ 2) v

(x = 100 a y = 1) v (x = 91 a y = 0))

143

W e also have the situation corresponding to an input greater than 100:

GT100 = [Dec; X : N | (X > 100) a (x = X-10) a (y = 0)]

and the initial states just before loop execution:

Unit = [Dec; X : N | (X = x) a (y = 1)]

The loop invariant is thus U nit v LEI00 v GT100. If we conjoin this with the negation

of the loop guard, y = 0, we get the required result.

6.6 A Singly-Linked List

W e will now look at an example which makes use of a singly-linked list. W e will not

examine a complete program this time - just some declarations and three procedures.

The program represents a simplified view of a directory as consisting of an array, each

entry of which corresponds to one file. A file is deemed to consist of a label (ie. a

name) and a linked-list of blocks, which hold the contents of the file.

W e are assuming that the identifers NAME and BLOCK have already been appropriately

declared, and will thus assume that equivalent declarations exist in our specification.

We will also assume some integer value S which represents the total number of blocks

in the system at any time, and two integers EMPTY and FULL which will be used to

represent error conditions.

The global declarations for our program are therefore:

144

[EMPTY, FULL : Z]
[S : N]

system : array 1 to S of BLOCK

bnode : record
contents : BLOCK
next : t bnode

endrec

freelist : T bnode

direntry : record
label : NAME
blist : Î bnode

endrec

dir : array 1 to 33 of direntry

If we let the Z identifiers BNODE and DIRENTRY correspond to bnode and direntry

respectively, then these record declarations will produce the corresponding Z

declarations:

BNODE : {"contents")-» BLOCKx u {"next"} MLocx

DIRENTRY : { "label"} —» NAMEX u {"blist"} -4 MLocx

The array dir is simply mapped to DIR : {1 .. 32} —» DIRENTRY1.

Thus we regard a directory as consisting of 32 entries, each of which consists of a name

and a list of blocks. The pointer freelist holds the address of the first block in a linked

list of blocks which have not been assigned to any file in the directory.

The purpose of this example is to demonstrate our treatment of data structures involving

pointers; thus we will not be examining the actual mapping from the program to Z in

145

detail - we will just present the relevant schemas. W e will consider only three

procedures. Procedure initialise simply assigns all the system blocks to the free list and

initialises the directory to "empty". W e can add a new file to the directory using create,

which takes the filename and the number of blocks to be allocated as parameters; note

that this will automatically overwrite any previous entry. W e delete a file using the

procedure erase, which simply adds the relevant blocks to the free block list, and marks

the directory entry as "empty".

[Proc initialise ()
i : Nat
tmp : T bnode
i ;= 1
while i < 32 do

dir[i].label,dir[i].blist,i := NULL,NULL,i+1
od
new (freelist bnode)
T(freelist).contents,i,tmp := SYSTEM[0],1,freelist
while i < S do |

new (T(tmp).next bnode)
tmp := (Ttmp).next
T(tmp).contents,T(tmp).next := SYSTEM[i],NULL

od]

[Proc erase (val n : NAME)
i ; Nat
tmp,lend : t bnode
i := 1
while (i < 32) and (dir[i],label * NULL) and (dir[i] .label * n) do

i:= i+1
od
if (dir[i] .label = n) then

tmp,lend := dir[i].blist,NULL
while (tmp * NULL) do

tmp,lend := T(tmp).next,tmp
od
if (lend * NULL) then

dir[i].label := NULL
dir[i].blist,freelist,T(lend).next := NULL,dir[i].blist',freelist

fi

146

[Proc create (val n : NAME val nb : Nat)
i,j : Nat
tmp : T bnode

call erase (n)
i := 1
while (i < 32) and (dir[i].label * NULL) do

i := i+1
od
if (dir[i] .label = NULL) then

tmp,j := freelist, 1
while (tmp ^ NULL) and (j < nb) do

tmp,j := t(tmp).next,j+l
od
if (tmp * NULL) then

dir [i] .label := n
dir[i].blist,freelist := freelist,T(tmp).next
t(tmp).next := NULL

else
write (EMPTY)

fi
else

write (FULL) 1
fi]

There are only two error conditions, both of which apply to the creation of a file; an

error occurs if there are not enough blocks left on the free list, or if there are no slots

left in the array dir. The "message" corresponding to these situations is represented by

the integer constants EMPTY and FULL respectively.

The constant S : N specifies the total number of blocks in the system at any one time;

during the procedure initialise we use the new statement exactly S times to create the

correct number of BNODEs to hold these blocks. The blocks are taken from the array

system - we will not consider the initialisation for this array, or include it in our

specification.

147

6.6.1 Defining schemas for the procedures

The program is fairly straightforward in operation. A file is created with nb blocks by

simply taking the first nb blocks off the free list and linking them with the appropriate

position in the array DIR. In order to delete a file we need to get to the last block in

the list for that file (this is represented by the variable lend), and then link this to the

first block in the free list. Before we deal with the procedures, it will be useful to

define a function linked, which maps a node of a list into the set consisting of all those

nodes which are "linked" after it.

linked : BNODE —» P BNODE

V bn : BNODE •

bn e linked(bn)

V In : BNODE | (In e linked(bn)) a (ln("next") * 1) •

AT(ln("next")) e linked(bn)

We will note (without offering a proof) that two consequences of this definition are:

V bn : BNODE • 3 t In : BNODE • In e linked(bn) a ln("next") = 1

and ' f

V bn,ln,sn : BNODE • (sn e linked(ln) a In e linked(bn)) => sn e linked(bn)

Using the schema PSystem = BNODE;FREEUST;DIRENTRY;DIR; A T : MLoc -> GIVEN

to represent the declarations of the system, we can now formulate a schema for the

result of the procedure initialise:

148

\

— PInit -

PSystem'

V i : 1 .. 32 • DIR'(i) = {"label" 1 , "blist" 1 }

3 Pl5...Ps : MLoc, Blv..Bs : BLOCK •

A T / (P1)("next") = P2 a ... a AT'CPsJCnext") = Ps a A T '(P s)("next") = 1

A T / (P1)("contents") = Bx a ... a A T / (Ps)("contents") = Bs

FREELIST' = Pj

We ignore the predicate (BNODE' = BNODE) a (DIRENTRY' = DIRENTRY) since it

will appear in all the relevant schemas.

We will be dealing with the two procedures create and erase in their own right without

examining them in an actual "calling" situation, and so we will take the liberty of adding

the parameter declarations into the predicate part of each.

W e can characterise procedure erase by the schema: PErase = PDelete v PNotThere,

where the schema PDelete represents the situation where the file name was found in the

directory, and its blocks are then returned to the free block list; PNotThere represents

the situation where the file was not in the directory - we do not regard this as an error

condition, we just do nothing.

If we assume that the schema PIO holds the declaration of inseq and outseq, then we

can straightforwardly extract the following definitions from the program:

149

PDelete

A PS y stem; S PIO

n : NAME

3 i : {1 ..32} | DIR(i)("label") = n •

DIR' = DIR ® {(i,"label") ~ 1 , (i,"blist") ~ 1 }

FREELIST' = DIR(i)("blist")

3 lend : MLoc | (AT(lend) e linked(AT(DIR(i)("blist"))) a AT(lend)("next") = 1

A T ' = AT © {(lend,"next") ~ FREELIST)

— PNotThere -— —

H PS y stem; S PIO

n : NAME

3 i : {1 ..32} • DIR(i)("label") = n

The schema which will represent create will contain PErase, since the corresponding

procedure erase is called at the start. W e define three schemas corresponding to the

three possible scenarios: PMake represents the successful creation of the file (with the

allocation of the appropriate number of blocks), PEmpty occurs when there are not

enough blocks in the free block list, and PFull corresponds to the situation where there

are no free positions in the array representing the directory.

Thus we can represent the creation of a new directory entry by the schema:

PCreate = PErase ; [PMake v PEmpty v PFull]

150

The schema PMake is defined as:

— PMake-------------

A PSystem; E PIO

n : NAME; nb : N

3 i : {1 ..32} | i = min{j : {1 ..32} | DIR(j)("label") = 1 }

3 tmp : MLoc • AT(tmp) e linked(AT(FREELIST)) a

#(linked(AT(tmp)) = #linked(AT(FREELIST)) - (nb - 1)

DIR' = DIR ® {(i,"label") ~ n, (i,"blist") ~ FREELIST}

FREELIST' = AT(tmp)("next")

A T ' = AT ® {(tmp,"next") ^ 1 }

The schemas PEmpty and PFull cater for the "error" situations where the first or second

conditions of PMake do not hold:

 PEmpty-------------------------------

3 PSystem; A PIO

n : NAME; nb : N

3 i : {1 ..32} I i = min{j : {1 ..32} | DIR(j)("label") = 1 }

3 tmp : MLoc • AT(tmp) e linked(AT(FREELIST)) a

#(linked(AT(tmp)) = #linked(AT(FREELIST)) - (nb - 1)

(inseq' = inseq) a (outseq' = outseq EMPTY)

151

PFull

S PSystem; A PIO

n : NAME; nb : N

3 i : {1 ..32} | i = min{j : {1 ..32} | DIR(j)("laber) = _L}

inseq' = inseq

outseq' = outseq — FULL

6.6.2 Linked lists as sequences

If we were to attempt to abstract the schemas PI nit, PErase and PCreate to a higher

level, we might begin by trying to characterise DIR and FREELIST in some form other

than arrays and linked lists: we will choose sequences.

Assuming that the types NAME and BLOCK are available to us, we can define:

FREESEQ == seq BLOCK | # FREESEQ < S

DIRSEQ == seq (NAMEX x seq BLOCK) | # DIRSEQ = 32

and then let ASystem = FREESEQ;DIRSEQ.

i i

We will next need to describe the relationship between these "abstract" definitions with

the "concrete" definitions FREELIST and DIR. In the manner discussed in § 3.2, we can

approach this by first of all relating linked lists and sequences; we do this using the

152

following schema:

MakeSeq : MLoc - » (MLoc -> GIVEN) seq BLOCK

MakeDeq = X mloc : MLoc, AT : MLoc —> GIVEN •

|i bseq : seq BLOCK |

(mloc = -L) <=> (bseq = < >)

3 bn : BNODE • AT(mloc) = bn =>

(bn("contents") = head(bseq)

V i : {1 .. #bseq-l}, In : BNODE | In e linked(bn) •

(ln("contents") = bseq(i) a (ln("next") * i.)

=> AT(ln("next"))("contents") = bseq(i+l))

(ln("next") = ± => ln("contents") = last(bseq)))

Thus the function MakeSeq will take what is basically a "pointer" to the first node in

a linked list of blocks, and return a sequence which corresponds to it in the obvious

way. W e note that for the node bn and sequence bseq as defined in the above function,

we have #bseq = Minked(bn).

W e can now use this function in the schema Rel which describes the relationship

between the abstract and concrete declarations. The "list" FREELIST and sequence

FREESEQ will correspond exactly (using MakeSeq, of course), while for each entry in

DIR, we will expect its counterpart in the sequence DIRSEQ to have the same label, and

to contain a corresponding (again via MakeSeq) list of blocks.

153

PSystem; ASystem

— R e l ----------------

MakeSeq(FREELIST AT) = FREESEQ

3 i : {1 .. 32} •

3 nm : NAME, bs : seq BLOCK • DIRSEQ(i) = (nm,bs) =>

DIR(i)("laber) = nm

MakeSeq(DIR(i)("blist") AT) = bs

W e can assert that a suitable initialisation for the abstract model issthe schema

 A lnit--

ASystem'

V i : 1 .. 32 • DIRSEQ'(i) = (1 , < >)

3 BX,...BS : BLOCK • {B ^ .B s} = ran(FREESEQ')

W e can then write the proof obligation for the initialisation as requiring us to show that:

PInit => (Alnit a Rel), which is trivially true.

In a similar manner we can formulate the abstract equivalent of file erasure as being

represented by the schema AErase = ADelete v ANofThere, where we have:

154

A AS ystem; S PIO

n : NAME

— A D ele te -----------

3 i : {1 ..32}, bs seq BLOCK • DIRSEQ(i) = (n,bs)

DIRSEQ' = DIRSEQ ® {i (1 , < >)}

FREESEQ' = bs —' FREESEQ

 ANotThere-------

S ASystem; S PIO

n : NAME

3 i : {1 ..32}, bs : seq BLOCK • DIRSEQ(i) = (n,bs)

Since we are given that the lists starting at addresses FREELIST and DIR(i)("blist")

correspond to the sequences FREESEQ and the second element of the tuple DIRSEQ(i)

respectively, discharging the proof obligation will hinge on showing that:

FREESEQ' = bs — FREESEQ

or, in terms of the elements of PDelete,

MakeSeq(FREELIST' A T ') =

MakeSeq(DIR(i)("blist") AT) — MakeSeq(FREELIST AT)

which is the same as showing that:

155

V i : {1 .. #bs}, j : {1 .. #FREESEQ} ■

MakeSeq(FREELIST' A T ')(i) = MakeSeq(DIR(i)("blist") AT)(i)

a MakeSeq(FREELIST' AT')(#bs+i) = MakeSeq(FREELIST AT)(i)

W e will not detail the proof of this here as it is fairly routine, since we know that no

node changes its "contents" field, and only the last node in linked(AT(DIR(i)("blist"))

changes its "next" field.

W e could continue in this manner to provide a representation for PCreate, the main part

of which will involve adding the sequence of blocks FREESEQfor nb to the appropriate

tuple in DIRSEQ, and asserting that FREESEQ ' = FREESEQ after nb. The proof

obligation here will centre around finding a representation for the sequence operations

for and after in terms of lists; this is similar to the proof obligation above which

involved sequence concatenation.

156

CONCLUSION

The central aim of this paper has been to explore the program-specification link using

the formal specification language Z as a unifying notation. The three most important

aspects of this were:

1. The provision of a predicate-based schema calculus which we believe can facilitate

reasoning about general instances of schemas. W e presented a basis for this calculus

in the ordinary propositional-like Z calculus, and reasserted the standard definitions such

as schema pre-conditions and composition. The proof obligations for specification

realisation were explored in detail using this calculus.

2. W e specified a collection of semantic functions which can be used to provide a

formal semantics for a simple programming language in Z. Program variables were

mapped into variables in a Z schema, and statements were interpreted as operations over

these variables. The description of these functions is close to the denotational style, but

the resulting schema which is constructed is based on the standard axiomatic approach.

Features such as call-by-name and call-by-yalue parameter passing, and variables

representing pointers have been incorporated into the model.

3. The purpose of giving a semantics in Z for the simple language was to provide a

basis for the study of programs written in that language. W e explored the implications

of our definition and used it, along with the predicate-based schema calculus introduced

earlier, to develop concepts such as coercions and the weakest pre-specification which

can be used in manipulating specifications.

157

The semantics given in chapter 4 form the core of the thesis, in that they act as a

foundation (and thus a justification) for many of the explorations in the rest of the work.

Fundamental to this was the belief that the application of our semantics to a program

should be relatively mechanical, should cover a range of features which was wide

enough to be generally useful, and should result in the construction of a schema which

could be intuitively identified with the initial program. W e have endeavoured to spell

out the semantic functions in as much detail as possible in order to fully explain and

justify our mappings; perhaps some of them may be better understood in the light of the

examples given in chapter 6.

While the language that we considered is relatively simple, it nevertheless contains many

of the important features of a "usable" programming language. W e have not provided

functions (ie. procedures which "return" a value) because they do not added to the power

of the language in any way. There is no significant barrier to the introduction and

definition of functions: for our purposes this would have added extra complexity to the

definition with little material gain.

Similarly, we have not allowed a "full scale" memory model where we could access the

address of arbitrary variables. Again we do not see any great difficulty in providing

such a definition - it would simply involve an extension of the function AT which we

defined, so that all the variables currently in scope were in its range. One feature of our

semantics is that we have mapped program identifiers to Z identifers, and associated a

memory location with these, rather than mapping the program identifier to a memory

location: this allows us to ignore the issue of memory allocation in pieces of code that

do not make use of it.

One notable omission from our language is recursion (either direct or indirect). An

158

essential part of any further work on these semantics would be the provision of some

facility which captured the meaning of a recursive call: we cannot, as yet, point to an

approach which would allow for the incorporation of recursion. However, our

experiences in formulating the semantics given here would indicate that it should be

possible to extend our framework to include most additional features, since we have not

deviated in essence from the main semantic techniques.

As can be judged from the examples in chapter 6, we do not consider it essential that

every program be dealt with in minute formal detail; however, any rigorous treatment

will need to have the assurance that such a formal framework exists in order to be used

with confidence. Tjhis underlines the importance of the intuitive association between a

program and its corresponding semantic specification - with experience, we can

construct such a specification without going through the detail of all the functions given

in chapter 4, but we will know that our work has a formal basis, and that this basis can

act as a final arbitrator should our results be challenged.

159

REFERENCES

[ArMa86]

[Babe87]

[Back86]

[BeBi80]

[BjJo82]

[BrSc82]

[BuGo77]

[Ders83]

[Dijk75]

[Dijk76]

[Dijk90]

[Dill90]

[Drom89]

[Apt81]

[EhMa85]

K.R. Apt. Ten Years of Hoare’ s Logic - A Survey. ACM Trans on Prog
Languages and Systems, Vol 3 No 4, (Oct. 1981), 431-483

M .A. Arbib & E.G. Manes. Algebraic Approaches to Program
Semantics. Springer-Verlag, 1986

Robert L. Baber. The Spine o f Software. John Wiley & Sons, 1987

Roland C. Backhouse. Program Construction and Verification.
Prentice-Hall, 1986

Pierre Berlioux & Philippe Bizard. Algorithms - The construction, proof
and analysis o f programs. Prentice-Hall, 1980

D. Bj0mer & C.B. Jones. Formal Specification and Software
Development. Prentice-Hall, 1982

M. Broy & G. Schmidt (eds.). Theoretical Foundations o f Programming
Methodology. D. Reidel Publishing Company, 1982.

R.M. Burstall & J.A. Goguen. Putting Theories together to make
Specifications. Proc 5th International Joint Conference on AI, 1045-
1058

Nachum Dershowitz. The Evolution o f Programs. Birkhauser, 1983

Edsger W . Dijkstra. Guarded Commands, Nondeterminicity, and Formal
Derivation of Programs. Communications o f the ACM, Vol 18 No. 8
(August 1975), 453-457 (Reprinted in [Grie78])

Edsger W . Dijkstra. A Discipline o f Programming. Prentice-Hall, 1986.

Edsger W . Dijkstra. Formal Development o f Programs and Proofs.
Addison-Wesley, 1990

Antoni Diller. Z - An Introduction to Formal Methods. John Wiley &
Sons, 1990

R.G. Dromey. Program Derivation - The development o f programs from
specifications. Addison-Wesley, 1989

H. Ehrig & B. Mahr. Fundamentals o f Algebraic Specification 1.
Springer-Verlag, 1985

160

[Gord79]

[Grie78]

[Grie81]

[GrPr85]

[GuHo86a]

[GuHo86b]

[HaJo89]

[Haye87]

[Hehn84]

[Hehn90]

[Herm69]

[HHS87]

[Hoar69]

[Hoar87]

[GHW85]

[HoHe87]

J.V. Guttag, JJ. Horning & J.M. Wing. The Larch Family of
Specification Languages. IEEE Software, Vol 2 No 5, (Sept 1985), 24-36

Michael Gordon. The Denotational Description o f Programming
Languages. Springer-Verlag, 1979.

David Gries (ed.) Programming Methodology - A collection o f Articles
by Members o f IF IP WG 2.3. Springer-Verlag, 1978.

David Gries. The Science o f Programming. Springer-Verlag, 1981

D. Gries & J. Prins. A New Notion of Encapsulation. Proceedings o f
the Symposium on Language Issues in Programming Environments.
SIGPLAN, 1985

J.V. Guttag & JJ Homing. Report on the Larch Shared Language.
Science o f Computer Programming, Vol 6, (1986), 103-134

J.V. Guttag & JJ Homing. A Larch Shared Language Handbook.
Science o f Computer Programming, Vol 6, (1986), 135-157

IJ. Hayes & C.B. Jones. Specifications are not (necessarily) executable.
Software Engineering Journal. Vol 4, No 6 (November 1989), 330-338

I. Hayes (ed.). Specification Case Studies. Prentice-Hall, 1987
i ,

E.C.R. Hehner. Predicative Programming Part 1. Communications o f the
ACM, Vol 27 No. 2 (February 1984), 134-143

E.C.R. Hehner. A Practical Theory of Programming. Science o f
Computer Programming, Vol 14 (1990), 133-158

H. Hermes. Enumerability, Decidability, Computability. Springer-
Verlag, 1969

C.A.R. Hoare, He, Jifeng & J.W. Sanders. PreSpecification in Data
Refinement. Information Processing Letters, Vol 25 (May 1987), 71-76

C.A.R. Hoare. An Axiomatic Basis for Computer Programming.
Communications o f the ACM, Vol 12, No. 10 (October 1969), 576-581
(Reprinted in [Grie7 8]) f-

C.A.R. Hoare et al. Laws of Programming. Communications o f the
ACM, Vol 30, No. 8 (August 1987), 672-686

C.A.R. Hoare & He, Jifeng. The Weakest PreSpecification. Information
Processing Letters, Vol 24 (1987), 127-132

161

[HoWi73]

[Jone80]

[Jone90]

[Jose88]

[JoSh90]

[KiSo89]

[Lips81]

[Lutz90]

[Mann74]

[Mann80]

[McDe89]

[MDR86]

[Morg88]

[Morr90a]

[Morr90b]

[HoSh85] C.A.R. Hoare & J.C. Shepherdson (eds.). Mathematical Logic and
Programming Languages. Prentice-Hall, 1985

C.A.R. Hoare & N. Wirth. An Axiomatic Definition of the Programming
Language PASCAL. Acta Informatica, Yol 2 (1973), 335-355

C.B., Jones. Software Development - A Rigorous Approach. Prentice-
Hall, 1980

C.B. Jones. Systematic Software Development Using VDM. Prentice-
Hall, 1990

M.B. Josephs. The Data Refinement Calculator for Z Specifications.
Information Processing Letters, Vol 27 (1988), 29-33

C.B. Jones & R.C. Shaw. Case Studies in Systematic Software
Development. Prentice-Hall, 1990

S. King & I.H. S0rensen. From Specification, through Design, to Code:
A Case Study in Refinement. In [McDe89]

John D. Lipson. Elements o f Algebra and Algebraic Computing.
Benjamin/Cummings, 1981

Earlin Lutz. Some Proofs of Data Refinement. Information Processing
Letters, Vol 34 (1990), 179-185

Zohar Manna. Mathematical Theory o f Computation. McGraw-Hill,
1974

Zohar Manna. Lectures on the Logic o f Computer Programming.
Society for Industrial and Applied Mathematics, 1980

J.A. McDermid (ed). The Theory and Practice o f Refinement.
Butterworths, 1989

A. Mili, J. Desharnais & J.R. Gagné. Formal Models of Stepwise
Refinement of Programs. ACM Computing Surveys, Vol 18, No. 3
(September 1986), 231-276

C. Morgan. The Specification Statement. ACM Trans on Prog
Languages and Systems, Vol 10, No. 3 (July 1988) 403-419

J.M. Morris. Programs from Specifications. In [Dijk.90]

J.M. Morris. Piecewise Data Refinement. In [Dijk90]

162

[Nels89]

[NHN80]

[Niel89]

[Paga81]

[Schm86]

[Spiv87]

[Spiv88]

[Spiv89]

[Stoy77]

[Tenn81]

[TuMa87]

[Wing87]

[Wood89]

[MoVi90] C. Morgan & T. Vickers. Types and Invariants in the Refinement
Calculus. Science o f Computer Programming, Vol 14 (1990), 281-304

G. Nelson. A Generalization of Dijkstra’s Calculus. ACM Trans on
Prog Languages and Systems, Vol 11 No. 4 (October 1989) 517-561

R. Nakajima, M. Honda & H. Nakahara. Hierarchical Program
Specification and Verification. Acta Informatica, 14, (1980), 135-155

D. Nielson. Hierarchical Refinement of a Z Specification. In [McDe89]

Frank G. Pagan. Formal Specification o f Programming Languages.
Prentice-Hall, 1981.

David A. Schmidt. Denotational Semantics - A Methodology for
Language Development. W.C. Brown Publishing Company, 1986

J.M. Spivey. The Z Notation - A Reference Manual. Prentice-Hall, 1987

J.M. Spivey. Understanding Z - A Specification Language and its
Formal Semantics. Cambridge University Press, 1988

J.M. Spivey. An Introduction to Z and Formal Specifications. Software
Engineering Journal, Vol 4 No 1, (Jan. 1989), 40-50

Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. MIT Press, 1977.

R.D. Tennent. Principles o f Programming Languages. Prentice-Hall,
1981.

W .M . Turski & T.S.E. Maibaum . The Specification o f Computer
Programs. Addison-Wesley, 1987

J.M. Wing. Writing Larch Interface Language Specifications. ACM
Trans on Prog Languages and Systems, Vol 9 No 1, (Jan. 1987), 1-24

J.C.P. Woodcock. Structuring Specifications in Z. Software Engineering
Journal, Vol 4 No 1, (Jan. 1989), 51-66

163

A P P E N D I X A - S u m m a r y o f Z N o t a t i o n

In what follows, S and T are sets, P and Q are predicates, R is a relation and F and G
are functions.

A.l Numbers

N Natural Numbers
Nj Natural numbers excluding 0
Z Integers

A.2 Declarations and Sets

x : T x is of type T (x is a member of the set T)
= is defined as
(S x T) Cartesian product of sets S and T
x : P S x is a subset of S (a member of the power set of S)
{D | P • x} The set of all t for which P holds, given the declarations D

A.3 Logic Symbols

P a Q P and Q (conjunction)
P v Q P or Q (disjunction)
-i P not P (negation)
P => Q if P then Q (implication)
P « Q P if and only if Q (bi-implication)

V x : T • P All * of type T satisfy P (universal quantification)
3 x : T • P There exists some x of type T satisfying P (existential quantification)
3 X x : T • P There exists a unique x of type T satisfying P

V x : T | P * Q = V x : T - P = > Q
3 x : T | P • Q = 3 x : T • P a Q

A - 1

A.4 Sequences

x : seq T x is a sequence of elements of type T
<xt, ... xn> The sequence consisting of x,,..jcn
< > The empty sequence

head <x1,x2,...,xn> = xt
tail = <x2,...xn>
front <x1,x2,...,xn> = <x1,...xn_1>
last <x1,x2,...,xn> = xn
< X j , . . . X n > — <xm,...xk> = <xlv..xn,xm,...xk>
<x1,...xi,xi+1,...xn> for i = <x1,...xi>
<x1,...xi,xi+1,...xn> after i = <xi+1,...xn>

A.5 Relations and Functions

F : S <-» T F is a relation from S to T
F : S —> T F is a total function from S to T
F : S -+» T F is a partial function from S to T
F : S T F is a finite partial function from S to T
F : S >-> T F is an injective (one-one) function from S to T
F : S - » T F is a suijective (onto) function from S to T
F : S T F is a bijective function from S to T
(x K y) The function consisting of the mapping from x to y

F"1 The inverse of F
F ; G F followed by G (relational composition)
Rk R composed with itself k times (where k : N)

dom F The domain of F
ran F The range of F
RflxD R applied to x (giving a subset of ran R)
F(x) F applied to x (giving an element of ran F)
F © G A function which agrees with G for values in the domain of G, and agrees

with F for all other values
S <1 G A function which is the same as G except that its domain is exactly S
F ► T A function which is the same as G except that its range is exactly T

A - 2

