
Institu tional Approaches to
Program m ing Language Specification

A T h e s i s s u b m i t t e d f o r t h e d e g r e e o f P hD.

Jam es Power BSc. MSc.

School of Com puter Applications

Dublin City University

August, 1994.

Supervisor: Prof. Tony M oynihan

This thesis is based on the candidate’s own work, and has not

■previously been submitted for a degree at any academic institution.

I hereby certify th a t this m aterial, which I now subm it for assessment on the pro

gramme of study leading to the award of PhD. is entirely my own work and has not

been taken from the work of others save and to the extent that such work has been

cited and acknowledged within the text of my work.

James Power

February 9, 1995

C ontents

1 Introduction 1

1.1 The Structure of a Programming L anguage... 1

1.2 Specification of Programming L a n g u a g e s .. 3

1.3 Integrating Specification F o rm a lis m s ... 6

1.4 Structure of the T h e s is 8

2 Institutions 10

2.1 I n s t i tu t io n s .. 11

2.2 Working with I n s t i tu t io n s ..14

2.2.1 Modularising Specifications ...16

2.2.2 P a ra m e te r isa tio n .. 18

2.3 Combining In s ti tu tio n s .. 19

2.3.1 C o n s tr a in ts .. 20

2.3.2 R e s tra in ts ..22

2.3.3 Presentation-Based R e s tra in ts ...25

2 A C o n c lu s io n s .. 27

3 Syntax-B ased Definitions 29

3.1 Introduction .. 29

3.1.1 Languages - Basic D e f in itio n s ...29

3.2 The Regular Institution .. 31

3.2.1 Basic D e f in itio n s .. 31

3.2.2 Properties of the Regular I n s t i tu t io n ...35

3.3 Context-Free G ra m m a rs ...37

3.3.1 Basic D e f in itio n s 38

iii

3.3.2 Properties of the Context-Free I n s t i t u t i o n .. 41

3.4 Relating Regular and Context-Free D efin itions...44

4 Tw o-Level G ram m ars 46

4.1 In tro d u c tio n • 46

4.2 A ttribute G ra m m a rs .. 47

4.2.1 Basic D e f in it io n s .. 48

4.2.2 Properties of the A ttribute I n s t i t u t i o n .. 55

4.3 Relating A ttribute and Context-Free G ra m m a rs ...55

4.4 van W ijngaarden Grammars58

4.4.1 Basic D e f in it io n s .. 59

4.5 Relating van-W and Context-Free Gram m ars 67

4.6 C onclusion... 70

5 Sem antic Definitions 72

5.1 In tro d u c tio n .. 72

5.2 Denotational Sem antics... 73

5.3 Relating Denotational and Context-Free D e sc rip tio n s 76

5.4 Axiomatic D efinitions... 79

5.5 C onclusion.................... *81

6 A Sm all E xam ple 82

6.1 A Small Language .. 82

6.2 Preliminaries .. 84

6.3 B lo c k s .. 87

6.4 S ta tem en ts ... 89

6.5 Expressions 93

6.6 O p e r a to r s ... 96

6.7 C o n s ta n ts ...97

6.8 Id e n tif ie r s ...98

6.9 C onclusion ... 100

IV

7 Conclusions 101

7.1 W hat’s been d o n e ? ..101

7.2 W hat use is i t ? ...104

7.3 W hat n e x t ? ... 105

A Category Theory A - l

v

In s t itu t io n a l A p p ro a ch es to

P ro g ra m m in g L an gu age S p e c if ica tio n

James Power

A bstract

Formal specification has become increasingly im portant

both as a design tool, and as a basis for verified software

have long been in use in the field of programming language design and implemen

tation, and many formalisms, in both the syntactic and semantic domains, have

evolved for this purpose.

In this thesis we examine the possibilities of integrating specifications written in

different formalisms used in the description of programming languages within a

single framework. We suggest th a t the theory of institutions provides a suitable

background for such integration, and we develop descriptions of several formalisms

within this framework. While we do not merge the formalisms themselves, we see

tha t it is possible to relate modules from specifications in each of them , and this is

dem onstrated in a small example.

in software engineering,

design. Formal methods

A cknow ledgem ents

I want to thank Tony for being an ideal supervisor! W ithout his enthusiasm and

encouragement over the last four years, it is extremely unlikely tha t I would ever

have reached this stage.

All the staff in the School of Com puter Applications have contributed to the produc

tion of this thesis by their interest and support; particularly I would like to thank

Alan Smeaton (for getting me here in the first place) and, of course, (Dr.) John

Murphy and (Dr.) John Waldron.

This document was prepared using Leslie Lam port’s IATgX document preparation

system. The mathem atical symbols and Z-style schema boxes were produced using

Paul King’s o z .s ty style file, while the com m utative diagrams were constructed

with Paul Taylor’s d ia g ra m s .te x package (version 3.8).

Chapter 1

Introduction

In this chapter we seek to m otivate the work contained in this thesis, and to explain

some of its background in the field of programming language design and implemen

tation.

1.1 The Structure of a Program m ing Language

Broadly speaking, the description of programming languages can fall into the main

categories used in linguistics for natural languages; specifically, we can speak of its:

• syntax , or the symbols used to denote specific concepts, and the correct gram

m atical form for their usage

• semantics, which is the m ethod of assigning a meaning to some given text

from the language

One of the simplest ways of providing a definition of a programming language’s

syntax and semantics is to write a compiler for it. This functions as a definition in

two ways:

• it is a recogniser for the language: it will tell us which input programs belong

to the language and which don’t

• it gives a meaning to any correct program by translating it into some other

language (such as assembly language)

1

In operational terms, these are often referred to as the analytical and generative

phases of the compiler respectively.

Obviously the expectations which are nowadays associated with software engineer

ing projects of any significance would suggest tha t some further description be given

in addition to the final version of the working program. However, it will serve our

purpose to consider a programming language definition in terms of the com putations

involved in its implementation.

Broadly speaking, compilation can be divided into four phases:

1. Lexical analysis, or scanning, which determines if the correct symbols have

been used in the input; some basic grouping may occur here such as the for

m ation of words from these symbols. Irrelevances such as whitespace and

comments are usually removed at this stage.

2. Syntax analysis, or parsing, checks to see th a t the words identified in the

input have been put together in the correct sequence. Such checking is free of

global context, in that a phrase is checked only w ith reference to its immediate

neighbours. Often this process proceeds iteratively from the output of the

scanning phase, by grouping together larger and larger phrases until the entire

input is structured hierarchically.

3. Static semantics, which involves conducting the remaining analysis operations

on the source code which cannot be handled by the formalisms used for syntax

analysis. Typically this phase will include checking details such as scope rules,

type consistencies etc.

4. Dynamic semantics, or code generation, defines the (now fully-analysed) pro

gram in terms of some other formal system; for a compiler this will be some

form of interm ediate, object or target code.

These divisions are not, of course, absolute; for example

2

- many systems do not bother to differentiate between lexical and syntax anal

ysis

- more advanced formalisms may incorporate some semantic operations (such

as symbol-table maintenance) into the syntax definition

- often the static and dynamic semantics are merged (this turns the la tte r into

a partial operation over syntactically well-formed sentences, instead of a total

operation over semantically correct programs).

- The dynamic semantics may themselves be broken into several phases in order

to facilitate optimisation, retargetting etc.

Even the division between syntax and semantics may be made less distinct by the

presence of ambiguity, where some aspects of the syntactic analysis depend on se

m antic information.

The division of the process will depend on various factors such as the complexity of

the language, the purpose of the definition and, not least, the nature of the formal

specification m ethod used (often itself a product of the intended use). Indeed, it is

fair to say th a t the above division owes much to the (empirically justifiable) assump

tion of a context-free-grammar formalism for describing the syntax of a language.

Standard texts which describe the above phases in detail include [ASU86] and

[PP92].

1.2 Specification o f Program m ing Languages

W riting a compiler for a programming language is basically just another software

engineering process, and may be expected to benefit from the techniques commonly

associated with this field. A well-established practice in this area is the formulation

of a formal specification prior to, and as a basis for, program implementation.

3

The formal specification of a compiler is what is more usually regarded as the defini

tion of a particular programming language. More specifically, definitions are usually

developed at a level of abstraction which is independent of a particular compiler

implementation; maximum abstraction is desirable for a general-purpose language

whose designers wish to encourage implementation on many platforms.

Many of the reasons for requiring a form al definition of a programming language are

elaborations of the general case:

• Even if implementation is not directly considered, the formal specification of a

project can be seen as worthy in itself, as it allows for the formal consideration

of design decisions and the full exploration of the implications of the definition.

The abstraction of im plem entation details allows the language designer to

work in an environment more likely to lead to improvements in the nature of

programming languages themselves, as opposed to just efficiency of operation.

• The autom ation of the program derivation process in general is highly desir

able, as much of this work is detailed and error-prone. In a restricted domain

of application such as programming languages it is reasonable to assume that

the scope for such autom ation should be increased. Indeed, the compiler-

generation tools lex and yacc [LMB92], and their many variants, provide some

degree of functionality in this area. A ttem pts at autom atically generating

complete compilers have had various degrees of success, but all are at least

noteworthy for their value as prototype implementations.

• The whole process of formal program derivation (or specification refinement) in

an arbitrary domain of application depends on having a formal definition of the

target programming language, so that the transform ation from specification

to im plem entation can take place within a homogeneous framework. While

the definition of the specification and programming languages cannot always

be guaranteed to be expressed using the same formalism, it should at least be

possible to construct a suitable mapping between them.

• One of the m ajor goals of formal specification as a tool in software engineer

ing is the development of provably correct programs. In order for this to be

meaningful, the result of a process of formal refinement, the program, should

not then be subjected to software which itself has not been formally derived:

if we cannot depend on the compiler, then the whose process is in doubt.

The need for formality in the description programming languages has given rise to

a variety of specification languages; some of the m ain approaches include:

• Expressions

This is the simplest way of describing any language, where we simply use the

elements of a set, along with some given collection of operations over th a t set:

one example is regular expressions, commonly used to describe a languages

lexical syntax. A particular characteristic of such definitions is tha t they are

“flat” , providing no hierarchical structuring on the language

• Grammars

The syntactic description formalism of choice is, unquestionably, the context-

free grammar (CFG). Almost every programming language will at least have

a formal description of its syntax either as a standard CFG, or using one of

its variants such as BNF. More powerful grammars, such as context-sensitive

or free grammars could be use to describe semantics, but in practice have not

been found useful for this.

• Two-Level Grammars

These seek to stick with the general concept of grammar-based approaches

by augmenting ordinary CFGs with specific operations for dealing with se

mantics. Examples here include attribu te grammars, affix grammars and van-

W ijngaarden grammars. The first of these lies at the heart of most of the

popular tools for compiler construction.

• Operational Semantics

One of the earliest formalisms: here the concept of a “com putation” is de

scribed formally (perhaps by using an abstract machine), and the constructs of

the programming language are translated into these computations (see [Hen90]

5

for some examples). The Vienna Definition Language, an ancestor of VDM,

was originally used for this purpose.

• Denotational Semantics

Also called “Scott-Strachey semantics” , or simply “m athem atical” semantics,

these seek to describe a program ’s components in term s of known m athem atical

constructs, many of which originate in category theory. Often the functional

nature of such descriptions allows them to be quickly translated into programs,

blurring the distinction with operational semantics somewhat. [Sch86] is a

standard reference.

• Algebraic Semantics

Here an abstraction of the program ’s syntax is taken to be an algebraic sig

nature, and all other aspects of the language, including its concrete syntax

and various aspects of its semantics, are seen as models of tha t signature.

Formalisms based on this approach include the ASF of [Kli93].

For a general overview of semantic formalisms, see [Pag81], [Wat91] or [vL90, Vol.

2]-

1.3 Integrating Specification Formalisms

It is fundam ental to our approach that we do not consider a programming language

as a single specification entity, but as the result of combining specifications from a

number of different formalisms. Each of these formalisms may be seen as a logic,

possessing its own syntax and semantics: these should not be confused with the syn

tax and semantics of the programming language itself. Our goal then is to provide

a framework where each of these individual specification formalisms can interact to

provide, jointly, the definition of the programming language.

Roughly speaking we might regard the traditional decomposition of a program

ming language specification as being “horizontal” in nature with clear, well-defined

boundaries between the different layers. As an alternative, we wish to incorporate

6

“vertical” slicing between the specifications, so th a t components from different spec

ification languages which describe the same program m ing language concepts may

be linked.

Combining horizontal and vertical m odularisation

Note that we do not wish to provide one single specification language th a t can

describe all aspects of a programming language: ordinary languages such as VDM

[BJ82], Z [Spi89] or any of the algebraic languages (see particularly [BHK89]) will do

nicely for this. R ather we wish to m aintain the heterogeneity between the languages,

on the grounds tha t this

7

• allows different aspects of the language to be described by formalisms specifi

cally suited to th a t task thus, presumably, m aking the specification easier to

construct and read

• perm its different implementation strategies to be considered, some of which

may possess greater optim ality for specific tasks (e.g. using Finite-State Au

tom ata to implement regular definitions, rather than more powerful context-

free parsing algorithms)

• facilitates the incorporation of existing descriptions using some of the for

malisms mentioned above, or others, since a considerable body of such speci

fications already exists

• may allow the integration of specification for different programming languages,

where the num ber of different formalisms involved may further increase

Hence we need some sort of structure which is abstract enough to incorporate ex

isting formalisms at the object level. In general: we use programming languages

to describe algorithms; we can use specification languages to describe programming

languages; what we want is a language th a t will describe specification languages.

Our thesis is that the theory of institutions provides a suitable framework for this

type of integration. This theory is based on category theory, a formalism which is

increasingly being used to give high-level descriptions of algebraic and logic based

languages. Indeed, much of the theory of institutions is based on a categorical

semantics for CLEAR [BG80], as is much of the work in denotational semantics on

which the semantics of Z as given in [Spi88] is based. Many of the higher-order type-

theoretic formalisms which incorporate ordinary classical logic as a sub-components

also look towards category theory for a formal definition (see e.g. [AL91] or [Cro93]).

1.4 Structure of the Thesis

In chapter 2 we describe the theory of institutions; while they are based in category

theory, m any of the concepts should look familiar to anyone with a background in

8

algebraic specification. As well as presenting the basic structures, we augment these

slightly by providing a new construct, which we call a restraint, for linking specifi

cations from different formalisms.

Chapters three, four and five contain institutional descriptions of six program

ming language specification formalisms: regular expressions, context-free grammars,

a ttribu te grammars, van W ijngaarden grammars, denotational semantics and ax

iomatic semantics. The purpose of this presentation is twofold:

1 . to dem onstrate the suitability of this framework for such descriptions

2 . to present the basic results needed to incorporate the different formalisms

within the theory of institutions.

In chapter 6 we present an example of a simple programming language, and demon

strate the application of our work by giving a m odular, heterogeneous description

of aspects of its syntax and semantics, and integrating these in the institutional

framework.

Note th a t while the example is presented as a unit in chapter 6, it should also be read

in conjunction with the previous chapters, as components of it will help illum inate

the definitions given there.

9

Chapter 2

Institu tions

If a language has a precise, formal semantics, then any sentences from th a t language

constitute a formal specification. Typically, formal specification languages as used

in computer science are thought of as working at a “higher” level than programming

languages, in that the objects they describe need not be computable or algorithmic

in nature. Such languages are generally based on abstract m athem atical concepts

such as set theory, first-order logic or algebra. In order to compare or integrate

formal specification languages we thus require a framework which is general enough

to be able to contain each of these, already quite general, formalisms.

A ttem pts to generalise the concept of a logic can be traced back to Tarski’s original

works on consequence relations, and emerges most notably in a category-theoretic

framework in [Bar74]. Here, in answer to the question “W hat is a logic?” Barwise

takes seven different types of logic and attem pts to distill their common properties.

While each of these logics has its own language, semantics and form of assertions,

the relationships between the la tte r two under change of language form the basis of a

translation axiom which asserts th a t logical consequence is preserved independently

of the language used.

Around the same tim e, and again based on ideas from category theory, much work

was being done on algebraic specification languages. The most common approach

regarded a set of equations over some signature as denoting the (isomorphism class

of the) corresponding initial algebra (see e.g. [GTW78]). One alternative to this

approach was th a t taken with the algebraic language Clear [BG81], where specifi

cations were interpreted “loosely” , in that any model which satisfied the equations

was acceptable. The formal semantics of Clear in [BG80] made use of constructions

which, it was found, could be generalised to specification languages not based on

algebra. By parameterising out the algebraic content the remaining skeleton forms

the basis of the theory of institutions, as described in a series of articles culminating

in [GB92],

Closely related approaches include 7r-institutions [FS88], galleries [May85], founda

tions [Poi89], logical systems [HST89b] and general logics [Mes89].

2.1 Institutions

W hen attem pting to formally define something we must first fix on a notation or set

of term s with which to denote the objects we wish to work with. Once these have

been listed out they must then be defined by specifying their relationship with the

objects that they are supposed to denote. Next we must specify (usually by means

of a grammar) how to form assertions with the term s, with the understanding tha t

these sentences will describe properties of and relationships between the objects.

Finally we must describe some way of giving meaning to the assertions so th a t their

tru th or falsehood can be worked out.

terms — >• objects

sentences — >■ truth values

The one condition we place on this structure is tha t if we change the notation being

used then, since we have not changed the underlying objects, there should be some

way of changing the sentences so th a t their denotation is also static. This is the

property which is taken as the distinguishing feature of a logic; specifically:

“Truth is invariant under change of notation”

We note tha t this approach is entirely denotational in nature. The truth/falsehood

:thod

ame-

rs in-

iance

: and

inces

age’s

ihose

orop-

ature

) the

ional

When the name of the institution is clear from the context it will be om itted; thus,

assuming afixed institution, we might rephrase the satisfaction condition as:

m |= [a] e [f f] m f= e

Further generalisation, not used here, would use C a t as the target of Sen, with the

extra morphisms representing deduction; i.e. an arrow between objects A and B

would imply that for any model in which A is true it will be the case th a t B is true

also. Another possibility is to enhance the concept of satisfaction beyond a simple

truth-valued answer, and allow something of the form m \= t to denote an object

from some chosen value category. In this context, the definition given above could

be seen as using the category 2 as its value-category.

Based on the model-theoretic definition of satisfaction, we can define a syntactic

notion of consequence which gives a relation between sentences. We say th a t a sen

tence e is a consequence of some set of sentences E iff it is satisfied in all models

which satisfy E. Note tha t this is entirely defined in term s of satisfaction, and does

not relate to a particular proof system. For any set of sentences E , we write E * for

the set of sentences which are the consequences of E ; this echoes the original Tarki-

style definition of consequence as developed in papers such as [Sco74] and [Avr91].

(As an alternative to institutions, the 7r-institutions of [FS88] treat the concept of

consequence as primitive, and involve models only as a defined concept).

A number of institutions are described in [GB92]. The institution £Q of many-sorted

equational logic has

• as signatures pairs of the form (S , £), where S is a set (of sort-names) and E

is a ¿'-indexed set of operators

• a model involves interpreting the sorts as sets and the operators as (appropriately-

typed) functions over these sets.

• a sentence assumes the existence of some set of sort-indexed variables, and

takes the form (VX) ti = i2? where X is a list of variables, and ¿i and t2 are

term s formed from the operators and variables (in a sort-consistent manner).

• A sentence over a signature is then “satisfied” in a given model of tha t signa

ture if for all possible assignments to the values of the variables, the interpre

tation of ti and ¿2 yield the same object

W ith any such definition comes a num ber of proof obligations: it is necessary to

show that the objects defined do in fact form categories and functors and, most im

portantly from the institutional point of view, th a t the satisfaction condition holds.

The construction of this last proof can, in certain situations, be facilitated using the

structures of charters and parchments; examples using the above institu tion can be

found in [GB85].

The above institution can be extended to the institu tion of (many-sorted) first-order

logic with equality, F O Z Q , by adding in predicate symbols to the signature, inter

preting them as relations in the model, and allowing the use of the standard logical

connectives such as conjunction, implication etc. in the sentences.

Other applications of the theory of institutions include:

• Horn-Clause Logic [GB92]

• Modal Logic [Ste92]

• Power algebras [Mos89]

• Logics for information hiding [RR92]

• Specification refinem ent/im plem entation [BV87]

• Algebras for dynamic systems [Reg90]

2.2 Working w ith Institutions

Once we have “set up” an institution for a given specification formalism we are ready

to deal with specifications w ritten in th a t language. At its simplest, a specification

consists of a list of sentences over a given signature; in institutional term s, given

some signature E, a specification in this language would be called a E-presentation.

14

Note th a t the set of sentences involved in a presentation is not necessarily finite,

although this is clearly desirable in many cases.

The standard denotation of a given presentation is taken to be the collection of

all those models which satisfy all the sentences in the presentation. For any given

E-presentation, the collection of models which it denotes forms a full subcategory of

[EJ. For any given presentation we can speak of its closure under the consequence

operator. A theory is a presentation which is closed; in the absence of models it

would not be unreasonable to take a theory as being the denotation of a given pre

sentation.

We can define a category Pres of presentations whose objects are pairs of the form

(E, A) for any set of E-sentences A. There is a m orphism between any two objects

(S ', A 1) and (E, A) if there is a signature morphism a: S ' —» E such tha t cri^A'*) C A*.

This has a full subcategory The of theories whose objects are of the form (E. A)

such th a t A is closed. We note in addition the existence of a forgetful functor

Sign : Pres —> Sign sending presentations to their underlying signature.

It is not usual to build whole specifications from just a single presentation; usually we

will want operations within the language which allow us to modularise the descrip

tions. Thus we envisage some kind of language for working with these “modules”

in order to produce presentations; one of the most useful features of institutions is

the ability to define an algebra for m anipulating these modules in a m anner which

applies uniformly to a broad range of specification languages.

In the next section we present such a module algebra; as such it parallels closely the

Clear specification language. In such definitions it is common to blur the distinction

between presentations and components of the module algebra; however, to ensure

clarity we will be somewhat pedantic in differentiating between these. 1

1The m atter is somewhat worse in Clear, as the standard name for a module is a “theory” !

15

This section presents a notation for constructing “m odules”; we assume th a t each

such module can denote a presentation from any given institution. We will use the

term “specification” in future to refer to any list of modules.

Recent work on m odular algebraic specification languages such as [EM90] and [BEPP87]

picture any module as consisting of four component specifications:

BOD the body of the specification

EXP along with a morphism v: E X P —> BOD, which specifies those components of

the module visible to any module which im ports it

IMP and a morphism s\ IM P —»■ BOD, which specifies the im ported modules

PAR specifying the param eters, and two morphisms e: PAR —y E X P and i : PAR —>

IM P.

PAR — — EXP

i v

IM P — — BOD

For simplicity in our discussion we will omit dealing w ith any E X P presentation;

we suggest tha t this can be compensated for by means of appropriate selection of

inclusion morphisms between theories, renaming some of their elements so as to

avoid clashes. Similarly, we will assume th a t the param eter and im port modules are

disjoint.

First of all we assert that any presentation is a module. To define some module, let

us call it Mod, we will use a Z-like notation, and write:

M od___
[Signature Part]

[Sentences]

2.2.1 M odularising Specifications

16

W hat actually appears in the definition will depend on the particular institution; we

do not seek to fix any kind of notation for this. In situations where more than one in

stitu tion is involved, we will join this to the name of the module, such as Z A fS : Mod.

The simplest way of combining two modules is to include one of them within another;

the corresponding presentation then will contain the presentation of the included

module as a sub-part. To include some module I within some other m odule M we

will write:

Import I into M

Any module may im port a number of other modules, and each of these may also

contain (not necessarily disjoint) sets of im ported modules. Based on this we can

envisage, for any given specification, a graph-like structure where the nodes are

presentations corresponding to modules and the edges correspond to (inclusion)

presentation morphisms. The graph for any given module m ay be seen as a cone in

P re s in which the presentation corresponding to the module itself is the apex, and

those corresponding to its its im ported modules form the diagram at the base.

Given any two modules M l and M2 we can also combine two modules on an “equal”

basis - effectively taking their union. The most basic way of doing this would be,

assuming the existence of sums in Sign, to define the presentation corresponding

to the union of M l and M2, which we write as M l + M2 as containing the sum of

their signatures and the union of their sentences. However, this disjoint summing is

a rather blunt operation, since we will wish to equate common sub-modules. Thus

the appropriate categorical construction here is to regard the meaning of M l + M2

as the co-limit of the corresponding diagrams in the category P res .

Another useful operation is renaming; given a signature morphism between two

signatures S ' and £ , we can then apply this to any module M ' with signature S ' to

get a module with signature S. This module will be written as:

Translate M ' by a

Numerous other operations may be specified over these modules but we will have

)n and

ter to

le had

ther a

result

:ess of

ormal

nimal

it the

dde a

meter

srised

l the

ule

>f the

following diagram in Pres:

B

 A

This gives a presentation containing both B and A in which their common elements,

as specified by R , have been identified.

2.3 Combining Institutions

We have seen tha t one an institu tion has been constructed for a particular specifi

cation formalism it is possible to structure and combine different presentations from

that formalism. Given tha t this framework is not specific to a particular institution,

it seems natural to examine the possibilities for combining presentations from differ

ent institutions. To do this it will be necessary to specify the relationship between

their components.

Since an institution consists of a category and two functors, any a ttem pt to relate

a pair of them will involve a functor and two natural transformations. Suppose we

have two institutions X = (Sign, Sen, Mod, |=/) and X + = (Sign+ , Sen+, Mod+,)=/+

). The simplest way of relating these is to define a mechanism for translating I

presentations into X+ (or vice-versa, depending on which is more suitable for the

given instance). To do this [Mes89] defines the following:

Definition 2.2 Institution Mapping

Given two institutions X and X + as above, we define an institution mapping =£>

X+ as consisting of:

1. a functor <?: Sign -» Sign+

2. a natural transformation a: Sen => % 5en+)

a natural transformation (3: (<P § Mod+) =>• Mod

that fo r each S in S ign, the following condition holds:

b$(E) a s (e) / ? s (w +) [=s e

e m+ ¿5 a $ (£) -model from X + and e is a set o f £ -sentences from I .

sort of operation is useful in a number of situations. Perhaps X represents

: weaker formalism (and which is thus easier to implement) in which part of a

Lem has been defined, and this now needs to be linked in to the main body of

pecification. Another possibility is tha t the specification consists of a number

fferent formalisms, and X+ is some language which connects them all together.

is is quite common in software engineering, X could be “more abstract” than

ind the mapping constitutes the basis of a refinement step (with ¡3 representing

nany-to-one relationship between concrete and abstract models).

tote tha t institutions and institution mappings form a category with the obvi-

dentity and composition of functors between signatures and a- and /3-generated

vs in S e t and C a top respectively. If the signature categories of any two insti-

ms X and X+ allow, then we can conceive of structures such as product and sum

tutions etc.

,1 C o n stra in ts

definition of institution mappings given above would seem to be intuitively

;ct; however an alternative version is presented in [GB92] in which the natural

sformations go in the opposite direction; these are called institution morphisms.

n itio n 2.3 Institution Morphism

•n two institutions X andX + as before, we define an institution morphism <$>:X =£►

is consisting of:

a functor <P\ S ign -» S ig n +

20

rrom X +.

hat mappings en-

sls), while the use

ormations can be

G!B92]. Given an

luplex-constraint

ation morphism,

ences from [£] -

treat constraints

iy <t: E E' we

9; <&(cr)) via $

ures and models

lowed to include

[its as follows:

:$(E) P +

; to allow X to

itax present to

enable other aspects to be modelled (presumably) more successfully in which is

more suited to this purpose. We note tha t it can be shown th a t the co-completeness

of the category of signatures in X is enough to also ensure the same in T>($>).

As noted in noted in [Mes89, §4.2], the definitions of an institution morphism and

an institution mapping are not dual, and both may be needed to exploit the full

power of translations between institutions in general.

2 .3 .2 R e stra in ts

While the concept of a constraint is generally useful, it will not always suit our

purposes here, particularly in relation to checking static semantics. Suppose, for ex

ample, tha t we are given some institution S y N which describes the (context-free)

syntax of our language. We might then envisage some other set of institutions each

of which describes some aspect of the static semantics of the language (such as scope

rules, type rules, valuations etc.).

Clearly the structures as specified by S y j \ f , while being syntactically-correct pro

grams, need not necessarily be semantically valid, and should thus be constrained

by some presentation from each of the semantic institutions. To preserve orthog

onality, it is desirable that these semantic descriptions be kept separate from each

other: their only correspondence is via the syntactic institution.

Suppose then that we have some institution SSM . specifying a static-sem antic com

ponent. So, given a syntactic presentation Syn and a semantic presentation Sem , we

want to relate them in some way, so tha t models of the former can be constrained

to fit in with models of the la tter. In order to use constraints on iS^A^-models, we

might try to construct an institu tion morphism S T ' .S y N => S S M ., where:

• <P: Signs^jv —► S i g n s ^ which “upgrades” a syntactic signature to a semantic

one whose specifically semantic component is em pty

22

• a: (<P l SznseM) Sensytf extracts from the semantic description the piece

of syntax to which it refers

• f3: M odsytf ($ 9 ModssM.) maps any syntactically correct program straight

into the semantic domain, since a model of a signature in the range of $ can

impose no (semantic) constraints on it

We would then envisage constraining presentations in S y M which specify syntac

tically correct fragments, with presentations from S E M which restrict the models

to those which are also semantically correct. The problem with this is th a t the

satisfaction of a constraint by some model m from S y M is defined in term s of the

model f3(m). By the construction this cannot carry semantic information (since

then it would be unclear how to find a target for every model in S y M) , and thus

its satisfaction or otherwise in S E M does not specify the sort of information we are

looking for.

Thus it would seem tha t we m ust settle on a definition of ¡3 which goes in the oppo

site direction; however, if we try to construct an institu tion morphism from S E M

to S y N , we find ourselves constraining semantic models rather than syntactic ones.

W hat we need is to also reverse our concept of constraint; to do this we introduce

restraints. The basic idea here is tha t given any two institutions X and J there will

nearly always be a “natural” choice of morphism between them, based on their con

struction and on the intended use of the morphism. The problem is that, given such

a choice, say from X to J , if we use constraints we necessarily qualify X-theories by

those from J : the end result, however, is still an X-theory. Restraints, on the other

hand, allow us to keep the morphism in the same direction, but this tim e qualify

^-theories by X-theories: the result is still a J ’-theory. (We require the existence of

a suitable model in X).

Formally we define:

Definition 2.4 Restraints

23

Given two institutions X and X +, some institution morphism <£:Z =>-X+, and some

signature E + fro m X +, a E +-restraint is o f the form :

Restrain E+ by (.P ,9) via $

where P is a presentation from I and 9: $ (S ign(P)) —> E + is a signature morphism

from I +.

We suggest tha t these can play the role of sentences from X+ in a similar m anner

to constraints, and, given any signature morphism cr: E + —> E' from Z +, we define:

[cr](Restrain E+ by (P , 9) via $) = Restrain E' by (P , (9 ; cr)) via $

Most im portantly, we can define satisfaction for these sentences:

Definition 2.5 Satisfaction o f Restraints

Given an institution morphism and E +-restraint as above, and some E +-model m +,

we define satisfaction as:

m + [=2 + Restrain S + by (P,0) via $

<£►

3 m £ \lSign(P)}\ ■ m \ = Sign(P)P A /3(m) = [0](m +)

We suggest now that given any institution and institution morphism, we can con

struct a new institution by allowing restraints to appear as sentences; to verify this

we need to prove the satisfaction condition:

L em m a 2.6 Satisfaction condition fo r Restraints

Given any institution morphism 3>:Z => I + as above, any signature morphism

cr: E + —y E ' from X+, any E '-model m ' and E +-restraint r, we have:

M (m ') (=4 r <£> m' (=E» [<r](r)

Proof:

Letting r be Restrain E + by (P , 9) via <3>, the left-hand-side of the satisfaction condi

tion tells us that:

3 m e | [% n (P)] | • m \=sign(P) P A /9(m) = M (M (m '))

24

Since [■] is a functor (into C a top) we know that ([cr]; [0]) = [0; cr], and thus can

assert that:

3 m 6 |[5*>n(P)]| ■ m \=sign(P) P A P(m) = [0; arj(m')

which is exactly the definition for:

m |=s' Restrain S ' by (P , (0; cr)) via $

□

2 .3 .3 P re se n ta t io n -B a se d R estra in ts

A wide number of variations on the basic concepts of constraint and restraints are

possible; one more tha t we will require is th a t of a presentation-based restraint. The

need for this occurs in situations when we cannot define a functor between the sig

nature of the institutions th a t will suit our purpose - instead we wish to define a

similar mapping in the context of some specific group of sentences involved. Thus

we will define a mechanism for mapping presentations (i.e. signatures and sentences)

from one institution into presentations in the other.

We have already noted the existence of a category P r e s for any institu tion whose

objects are presentations, and whose morphisms are presentation morphisms (all

of which are based on signature morphisms). We can extend this to define a

functor ModP: P re s —v C a top, associating with any presentation P a category

M o d P (P) whose elements are all models of the presentation (this is a sub-category

of |5 i^n (P)]). We will overload our notation and write M o d P (P) as [P]; it should

be clear from the context which functor is intended.

Using this functor, we can then define:

D e fin itio n 2.7 Presentation-based mappings

Given two institutions X and X + we can construct a presentation-based mapping

between them by specifying:

25

• A functor P re s —y P r e s +

• A natural transformation ¡3: M odP+ =£> ModP

such that fo r any presentations P and P + in X and X + respectively, and any P +-

model m +, we have:

m + f= $ (P) ^ f3(m+) h P

We do not need to define a natural transform ation a as before, since $ will now take

care of sentences as well. Based on this we can now restrain (models of) presentations

in one institution by those in another:

D e fin itio n 2.8 Presentation-based restraints

Given some presentation-based mapping 3>:Z =>- X +, and some presentation P + from

X+, we can define a presentation-based restraint as being of the form:

Restrain P + by (P ,6) via $

where P is a presentation from X, and 6:<&(P) —y P + is a presentation morphism

from P r e s + .

Any signature morphism is, by definition, consequence preserving and so, given some

signature E and some E-presentation P +, a signature morphism a: E —> E ' naturally

gives rise to a presentation morphism from P + into [cr](P+). If we denote this by

[a] also, we can then regard constraints as sentences by defining:

[cr](Restrain P + by (P,9) via $) = Restrain [cr](/ 3+) by (P, 9; [<r]) via $

A 5'i^n(P+)-model satisfies a constraint such as the one above if it can be regarded

as being both a model of P and of P + in the following way:

D e fin itio n 2.9 Satisfaction o f presentation-based constraints

Given any presentation-based mapping $: X => X+, any presentation-based constraint

Restrain P + by (P,9) via $ as above, and any P +-model m +, we define:

m + \=sign(P+) Restrain P + by (P,0) via $ <£> / 5 (M (" i +)) =̂si9n(P) P

26

We can use such sentences just like any others over S ign(P +) since they are consis

tent with the satisfaction condition:

L e m m a 2 . 1 0 Satisfaction condition fo r presentation-based restraints

Given any presentation-based institution mapping <t>:Z =>- Z + as above, any signature

morphism a: £ —> S ' and any S -presentation P + from Z +, any [a](P+)-model m *

and any presentation-based restraint c on P +, we have:

[0-1(771*) (=2 c O m *)=£' [cr](c)

P ro o f:

The proof is similar to tha t for previous types of contraint; letting c be the constraint

Restrain P + by (P,9) via $ as above, we have

[cJKm*) [=£ Restrain P + by (P,9) via $
& ^ (M (W (m4f))) ^Sign(P) P
& l=s»»(P) p
^ m * (=S/ Restrain (o'](P+) by (P , [<r]; 9) via $

m * |=e' [<x](Restrain P + by (P , 9) via $)

2.4 Conclusions

In this chapter we have laid the basic foundation on which we propose to build and

integrate specifications of programming language formalisms. We have introduced

the theory of institutions, and fixed our notation for dealing with modules in an

institutional specification. Additionally, we have added a new type of constraint to

the theory: a restraint, which works in the opposite direction.

In so far as using the abstract syntax of a language as an initial algebra in its

class of models characterises the “algebraic approach” to programming language

semantics, the use of restraints in the above m anner could be said to characterise

the “institutional approach” . We envisage a situation where a language’s context-

free syntax is restrained by its semantic definition, allowing them to be defined in

27

separate, but related institutions. As we still deal with context-free models with this

strategy, the syntax may be restrained by a number of different sem antic institutions.

We note finally tha t since these are all linked back to the weaker institution they

do not share semantic information, and so this method applies specifically to static,

rather than dynamic, semantics.

‘28

C hapter 3

Syntax-B ased D efinitions

3.1 Introduction

In this chapter we begin the process of casting programming language specification

formalisms into an institutional setting. We start w ith syntax, and with institutions

for two of the formalisms most commonly used for defining syntax:

• 1Z£Q the institution for regular languages

• CJ-7ZSS the institution for context-free definitions

While regular expressions are not essential to language definition, they are used

quite commonly, and lay much of the groundwork for dealing with context-free lan

guages.

The reader may wish to refer to the examples given in chapter 6 while reading the

definitions given here.

Before we define the actual institutions, we will first fix some concepts and notation

from formal language theory.

3.1 .1 L an gu ages - B a sic D e fin itio n s

The three most basic definitions in formal language theory are those of an alphabet,

string and language:

29

• An alphabet is any set of symbols

• A string over some alphabet E is any sequence (including the em pty sequence)

of symbols from E.

• A language over an alphabet E is any set of strings over E (including the empty

set).

Rather than adopt a generic notation for sequences, we shall follow convention and

adopt the usual notation for strings. Thus for any given alphabet E, we suggest:

- £ 2 denotes the (unique) em pty string

- For any a £ E, “a” is the string of length 1 containing only the symbol a

- For any strings s and t, s • t will denote the concatenation of s and t.

The set E, along with concatenation as the distinguished binary operator and as

its identity, forms a monoid.

Finally, given any two languages M and N over the same alphabet, we can define:

• M U N to be the union of the two languages

• M N to be the language whose strings are of the form m • n for any m g M

and n 6 N .

• M* to be the language whose strings are formed by taking the reflexive and

transitive closure of the concatenation operation over the strings in M (this is

known as the Kleene closure of M).

We are now ready to define our first institution.

30

3.2 The Regular Institution

A regular language is one which can be constructed from an alphabet of characters

using only the operations of union, concatenation and Kleene closure. It forms

the most basic of the levels in the Chomsky Hierarchy, and is distinguished by

the simplicity of its iteration mechanism. The following section gives the basic

definitions for 7ZSQ, the regular institution.

3.2 .1 B a s ic D efin itio n s

The most straightforward approach would be to have alphabets for signatures, lan

guages for models and regular expressions for sentences. However, the operation

of languages which deal with regular expressions, such as lex, is generally a little

more subtle, in th a t they allow specific subsets of the defined language to be named,

so that these names may be used in later parts of the compilation where they are

referred to as tokens. Thus we will take the viewpoint th a t the purpose of a specifi

cation in the regular institution is to construct a m apping between language names

and sets of symbols.

A signature then will consists of an alphabet, over which to define the regular ex

pressions, and names for the sets which are defined by them. Formally we define:

Definition 3.1 Signatures in 1Z£Q

A regular signature E consists o f two sets:

1. T,a , a finite set o f alphabet symbols

2. Eyy, a finite set o f names (tokens) fo r the languages being defined

Morphisms consists of pairs of functions (aa , (?n), one for each set; this is easily seen

to form a category.

A model of an alphabet will involve mapping the elements of to languages. To

allow full flexibility we will not re-use the alphabet symbols in the model; instead

we will interpret them into some new set, whose elements we shall refer to simply

as “characters” . In addition we will allow one term inal symbol to be related to a

number of such characters; the idea here is tha t we allow for the possibility th a t the

specification mechanism may be “too b lunt” , and th a t some other formalism may

constrain these values further. This is particularly im portant in the context-free case

(an enhancement of the regular case), but we allow for it here to ease comparison.

Thus we define:

Definition 3.2 Models in 1Z£Q

For any signature (S 4 , Ejy), a model I is a triple o f the form (I c , 1a -, In) where:

1. Ic is some set o f characters

2. Ia '- E a —y $P{Ic) is a function interpreting alphabet symbols as sets o f charac

ters

3. 1^'. Ejv —> P (/£) is a function associating with each name in Ejv the language

“corresponding to ” that name.

A morphism fi between two E-models / and J consists of a function fxs : Ic —> Jo,

with its obvious extension defining J a and Jyv-

Given any Sign-morphism a: E ' —> E, we define:

M ({ / c , I a , I n)) = (I c i ^ a 1 1 a , & n I I n)

A sentence in the institution will associate a name with a regular expression; we

note th a t a number of different regular expressions m ay be associated w ith the same

name.

Definition 3 .3 Regular Expressions

Given some signature E, we can define REG e , the set o f regular expressions over

the signature inductively as follows:

1. A is a regular expression

2. For any a G E^, ‘a ’ is a regular expression

32

4- I f q and r are regular expressions, then so is q.r

5. I f q and r are regular expressions, then so is q \ r

Now we can define:

Definition 3 .4 Sentences in 1Z£Q

For any signature E, the sentences over this signature are all o f the fo rm (r : N) ,

where r G REG-^ and iVçEjy

Sentence morphisms are defined inductively over the components of the sentence:

Definition 3.5 Sentence morphism s in 7Z£Q

For any signature m orphism a, the corresponding sentence m orphism is defined by:

[cr](r : N) = ([or](r) : crN (N))

where [cr](r) is defined as:

3. If r is a regular expression, then so is r*

M A = A

Va G E • [a]‘a ’ = W (a) ’

V r G [S] ■ [cr](r*) = ([or]r)*

V q ,r G [E] • [a] (q.r) =

V q ,r G [E] • I r) = ([a]q) I ([a]r)

A sentence of the form (r : N) is satisfied in some model iff the regular language

which corresponds to r is contained in the language assoicated with N . To make

this precise, we define the language associated with a regular expression:

Definition 3.6 L A N i(r) , the regular language corresponding to r

For any Ti-model I as above, we define:

L A N ¡(A) = {£/c}

V a e E - L A N I (‘a ’) = { “c ” G I*c I c G /(a)}

V r G [S] • L A N j(r *) = (L A N ^ r))*

V ?, r G [E] • L A N ^ q . r) = (L A N ^ q)) ~ (L A N ^ r))

V <7, r G [S] • L A N r{q I r) = (L A N T(q)) U (L A N r(r))

33

2. r = V

We note that this function L A N , commutes in a natural way with signature mor-

phisms:

Lem m a 3 .7 For any Y,-model I , any r € REGe, arwi any Signn£Q-morphism

cr: S' —y S , we have:

LAN]([<j}r) = LAN«., i (r)

Proof: By induction over the regular expression r

1. r = A
L/lyV/([cr]A) = L A N ,(A)

= {e/c>

= LAN„. /(A)

L/iyV/([cr] ‘ a’) = L /l /V /iV ^ a) ’)

= { “c” 6 / a | e € / (^ (o)) }

= { V ’ 6 (HR/e))* I c 6 W (/)(«)}

= L ^ ; / (‘ a’)

LAN,([a](p*)) = LANi(([cr]p)*)

= (L/tyV/CHp))*

= (L A N 0.t i (p)Y

= / (/;*)

^ ^ / (H (p-<7)) = Lj4W/((Mp)-(M?))
= LAN,([<r}p) ~ LANj[[<r]q)

= LAN„. , (p) ~ L A N a.t / (q)

= LAN«. i (p.q)

LA N ,({o)(p | q)) = LANi(([cr)p) | ([a]?))

= LAN,(\cr]p) U LAN,([a]q)

= LA N ,., , (p) U L A N , . , , (q)

= LAN,,. i (p \ q)

3. r = p*

4. r = /;.<7

5. r = p | 7

34

□

Definition 3.8 Satisfaction in 7Z£Q

For any r € [£],

(I c , I a , I n) N (r : N) <=> L A N j(r) C In (N)

The satisfaction condition now follows from the previous lemma:

L em m a 3 .9 In the insititution 7Z£Q, the satisfaction condition holds

Proof:

The satisfaction condition states that for any E-model / , and Sign^f^-morphism

cr: £' —> S and any S'-sentence r' : N 1,

{I c , I a , I n) hs [<T]ir> '■ L') [<rj(I c , I a , I n) |=£' (r * : N)

Applying the sentence and model morphisms, we see that this is:

(Ic , Ia , I n) |=£ : v n {N ')) (Ic , v a % I a ,&n % In) \=y,> (r ' ■ N)

By the definition of satisfaction we can restate this as:

L A N ^ r ') C IN(aN (N ')) & L A N , , ! (r') C °9 In) (N)

which is true, since LA N i([a \r ') = L A N a; / (r 1) by the lemma.

□

3.2.2 Properties of the Regular Institution

Any presentation in the regular institution is simply a list of pairs of regular expres

sions and language names. A model of this presentation is one which satisfies every

sentence in the presentation. Thus while combining specifications is normally re

garded as a “conjunction” operation in, say, first-order logic, it actually corresponds

to the union operation here. We can state:

Finally we are ready to define satisfaction:

35

Lemma 3.10 For any signature £, any 'L-model I , any token N , and any two

regular expressions p and q, we have that:

I hs (P '■ AQ, I f=s (q : N)
I bs (p I q) ■ N

Proof:

By the definition of satisfaction we can rewrite this as:

L A N jjp) C In {N), L A N j(g) C In (N)
{ L A N j{ p)y jL A N i(q)) C I n (N)

which is easily seen to be true.

Choosing a model for a presentation basically involves choosing “big enough” lan

guages for the tokens to hold all of the corresponding regular expressions. Using the

above lemma, we can see that it is possible to merge all the sentences involving a

particular token into just one sentence. Based on this, we can pick as our model the

regular language which corresponds exactly to this regular expression. Doing this

for each sentence, and assuming that Ia is bijective, yields an initial model for the

presentation.

It is common to assume that presentations are of finite length, since the nature of

a model can differ considerably for an infinite presentation. In fact we can see that

an infinite presentation in the regular institution would simply allow us to list all

strings in a given language. Since there are no restrictions on this, the language

need not be regular; thus models may specify context-free or any other type of lan

guage. We note therefore that only finite length presentations give us the standard

interpretation of a regular expression.

Since the initial model is minimal it maximally constrains the theory of the pre

sentation. Thus, for a given token N , if we take all sentences of the form (r : N)

in the theory, and exclude those involving union or Kleene closure, we get exactly

the language corresponding to N . For a finite presentation, this is always a regular

l a n g u a g e .

As the objects of Signusq are just sets, it is easily seen that this category has all

colimits, using set-theoretic union in the ordinary way. We get the sum of two mod

ules simply by taking the union of the corresponding regular languages; a parameter

to a module specifies a minimal language that must be satisfied by any argument.

Similarly, the process of actualising a parameter involves identifying the subcompo

nent specified by the formal parameter and taking the union of the modules for the

argument and the body.

We are now ready to deal with the next formalism in line, that of context-free lan

guages. Based on our definition above, we can see that there will be many similarities

between a presentation in the regular institution and a context-free grammar. The

main difference of course, and the reason why the context-free formalism is more

powerful, is the possibility of recursion in the context-free rules.

3.3 C ontext-Free Grammars

Context-Free Grammars are sets of production rules involving terminal and non

terminal symbols, referred to collectively as the vocabulary. A production rule de

fines a rewrite equivalence between a non-terminal and any string of symbols from

the vocabulary. For the duration of this section only, let us choose to allow any

regular expression over the vocabulary to appear on the right-hand-side of a rule,

and call such a string a rightpart.1

From an operational point of view, we apply a rule to a string by replacing its left-

hand-side with the symbols on the right-hand-side (or an arbitrarily long sequence

of them in the case of Kleene closure). Based on a grammar, one string is derivable

from another if we can find a set of rules which, when applied, will rewrite the first

string to the second.

1Such gram m ars are often called right-part-regular gram m ars, to distinguish them from ordinary

context-free gram m ars which do not use Kleene closure.

37

Based on the definitions given for regular languages, it seems evident that terminal

symbols should appear in the signature. However, we suggest that non-teminals

should also appear here. The view taken is that they act not merely as placehold

ers (like variables) but act to define sub-components of the language. Hence, the

inclusion of non-terminals at this level will allow greater flexability in terms of the

modularisation of context-free specifications later. Thus:

Definition 3.11 The category Signcttlse

The category of context-free signatures has as objects pairs (E i-e. sets o f

terminals and non-terminals. Morphisms are the products o f set-theoretic functions.

In a similar manner to the last institution, we will interpret terminal symbols as sets

of characters, and non-terminal symbols as languages. In addition, we will choose to

formally denote some language as being the language defined by the model; this could

be regarded as the language associated with the start symbol. When considering

the regular institution we did not need this, since “the” language was effectively

the union of the language for each individual name; here, because a context-free

specification is hierarchical (whereas our list of regular expressions was basically

“flat”), we need to make this distinction. Note that the language corresponding to

any given non-terminal is not necessarily a sublanguage of this language.

Definition 3.12 Models in CJ-7ZSS

A model o f a signature (Er,Ejv) consists o f fo u r components:

1. A set o f characters Ic

2. A function —> P(-fc) mapping terminal symbols to sets o f characters

3. A function /jv:E# —> $P{Ic) mapping non-terminal symbols to languages over

Ic

4- A language I i over Ic , being “the” language defined by the model

3.3 .1 B asic D e fin it io n s

38

For any two £-models, we can define a morphism between them by using a mapping

on Ic , and extending this to the other components as for the regular case.

Given any SigncjFftff-morphism a with components (< j t , o - ^) , we define

M ((I c , I t , In, h)) = (Ic, 9 I t) , (<̂ n I In), h)

The immediate choice for the [-Jc^ tzss functor would be to map a vocabulary to the

set of context-free production rules over the vocabulary. However, we will also allow

a sentence to be any rightpart for that signature, the idea being that for any pre

sentation these form a set of “given” strings, from which all the others are derived

(axioms as opposed to rules).

Thus we extend the definition for the regular case

Definition 3.13 Sentences in OFIZEE

y4s fo r regular expressions with the addition that fo r any non-terminal A, ‘A ’ is a

rightpart, and fo r any rightpart r, (A —» r) is a sentence.

Morphisms are defined by adapting the definition fo r the regular case, replacing S

with £ t , and adding the following rules:

V A e Z N - [a]‘A ’ = ‘ajv(A) ’

V A e Z N , r £ R E G x - [<t] (A - > r) = ([cr](A) -» [<r](r)

Satisfaction will describe derivability. As before we will need to define what is meant

by a context-free language:

Definition 3.14 L A N i(r) , the context-free language associated with r:

For any model I , we adapt the rules fo r the regular case thus:

V a e S T ■ L A N I (‘a f) = { “c ” G I*c | c e IT (a)}

VAeEyy- L A N ^ A *) = IN (A)

Once again, this commutes appropriately with signature morphisms:

39

Lemma 3.15 For any Z-model (Ic , I t , I n , h) , any rightpart r, and any signature

morphism a: S' —> S, we have:

LANi([<r\r) = L A N a;I{r)

Proof: B y induction over the sentence r

The proof is as for 7Z£G, with only one new case:

6. r = lA'1 (for some A 6 £jv)

L A N ^ t r Y A ') = L A N I (icrN (A y)

= I n (c n (A))

= L A N a. i (A)

□

We are now ready to define satisfaction:

Definition 3.16 Satisfaction in CT1ZZE :

1. For any rightpart r, we define:

(Ic, I t , In, h) b s r L A N j(r) Ç IL

2. For any rule (A —y r) we define:

(Ic, I t , In, h) bs (A —y r) L A N i(r) Ç L A N i(A)

Note that, as we would expect, satisfaction of a production rule is defined in model-

theoretic rather than proof-theoretic terms; we do not need to explicitly state the

intuitive version of replacing one string with another. This has the effect of making

the appearance of Kleene closure operations in a rightpart more natural and, of

course, not committing us to a bottom-up or top-down parsing strategy.

Verification of the satisfaction condition follows from the regular case:

40

Lemma 3.17 In the institution CFTZSS, the satisfaction condition holds

Proof:

The satisfaction condition for CJ-7ZSE may be stated as follows: For any cr: S' —> E,

any E-model (Ic , I t , In , I I) , and any S'-sentence e', we have:

(Ic , I t , I n , I l) M e/ ^ I t J n , I l) t=s' e'

By the definition of satisfaction, we can break this into two cases; for any rightpart

r' and any non-terminal A! from X/,

(L A N ^ a y) Ç 1L) (L A N . , j (r ') C IL)

and

(LAN¡([cr] A') C L A N ^ W)) (LAN«, i (A ') C L A N a;I(r '))

Both of these follow directly from the previous lemma.

3.3.2 Properties of the Context-Free Institution

Any presentation in this institution is effectively a context-free grammar. We have

not explicitly provided for a start symbol; however, the collection of rightparts in

any presentation may be taken to represent the right-hand-sides of start rules. Thus

we need only pick some “new” non-terminal S as the start symbol, add it to the

signature, and add in a rule of the form (S —> r) for every rightpart r in the presen

tation. Any presentation which doesn’t have any standalone rightparts (i.e. consists

only of rules) will have the empty language as its initial model.

We note that neither the models of a grammar or a non-terminal are required to

be context-free. However, we can see that the initial model will construct those

languages which minimally satisfy the rules, and this will give rise to mappings into

context-free languages for finite-length presentations. As before, the possibility of

41

infinitely-long presentations allows for models which are not context-free.

Given any presentation, its corresponding theory will contain rules and rightparts:

1 . The rules in the theory represent all possible derivation steps, or equivalently,

every possible node that could be found in any parse tree

2. The rightparts are usually called sentential fo rm s ; those sentential forms which

only contain terminal symbols are called sentences, and correspond to the

context-free language generated by the grammar.

Again the conjunction of two sentences is effectively represented internally by the

union operation; i.e. :

/ |=s (A 7"i), / f=E (A - > r2)
/ |=s (A -)> n I r2)

The proof is almost identical to the regular case.

We can prove a similar (expected) result for Kleene closure:

Lemma 3.18 For any signature 2, any E-model I , non-terminal A and rightpart

7 |= s (¿ -> A), 7 (=£ (A r . A)
I (=E (A —> r*)

Proof:

By the definition of satisfaction; we can rewrite the statement as:

L A N i(A) C L A N I (A)) L A N r(r .A) C L A N ^ A)
L A N T(r*) C L A N i(A)

This is the same as:

{ec} C L A N í(A) , (L A N ^ r) ~ L A N r (A)) C LA N r(A)
LAN i[r)* C L A N j(A)

Let L A N i(r) ' represent the maximal subset of L A N i(r)* in which no string has

length greater than i. The proof proceeds by induction over i.

• Base case: i = 0

In this case L A N ¡ (r)’ = {ec}> which is a subset of LA N r(A) by the first

assumption

42

• Inductive case: Assume L A N j (r)' C L A N ,(A)

By the second assumption (L A N i(r) ^ L A N i(A)) C L A N j (A),

thus (L A N ^ r) ~ L A N i{ r)1) C L A N ^ A) ,

which is LAA^(r) 1+1 C L A N j(A)

□

Thus, for any presentation in the institution, we will be able to formulate another

presentation which does not make use of union or Kleene closure, but which has

exactly the same theory. To ease relating CTIZEE to other institutions, we will

assume from this point on that all rules involve only union and concatenation, but

that the results proved are extendible to the full institution as specified above.

We also note that we can demonstrate the implicative nature of production rules by

proving a version of modus ponens:

Lemma 3.19 For any signature E, model I , non-terminal A and rightpart r

I [=s (A -> r), I \=x A

I |=s r

Proof:

The proof follows directly from the definition of satisfaction; we can rewrite the

statement as:
L A N i(r) Ç L A N ^ A) , L A N ¡(A) C IL

L A N f(r) Ç IL

□

Similarly (and equally strightforwarly), we can verify that the more operational

proof rule for context-free grammars also holds:

Lemma 3.20 For any signature £, model I , non-terminals A and B and rightparts

x , y and z
I |=s (A —>• x. ‘B \ z) , I ¡=s (B —>• y)

I |=e A -> x .y .z

43

Proof:

Once again we need only use the definition of satisfaction to verify that this is valid:

L A N i j x) 2 L A N i(B) ~ L A N T(z)) C L A N r(A), L A N T(y) C L A N T(B)

L A N i(x) ~ L A N ^ y) ~ L A N T(z)) C L A N ^ A)

Since the signature consists of a pair of sets we assert the presence of co-limits, and

thus we can transform, sum and parameterise context-free presentations as required.

3.4 R elating Regular and C ontext-Free D efini

tions

While it is possible to describe the entire sytnax of a programming language using

a context-free grammar, it is quite common to break this into a two-step process,

using regular expressions to specify some of the allowable words from the language,

and then using context-free grammars to specify the allowable combinations of these

words. One benefit of this approach is that simpler (or more efficient) algorithms

may then be used to implement recognisers for the regular parts of the specification.

To describe this institutionally, we will need to be able to relate the regular and

context-free institutions; that is, we will need to define an institution morphism

between them. The choice as regards the direction of the morphism is easily made

by noting that the natural transformation a. can really only go in one direction, as

we cannot hope to translate context-free grammar rules back to regular expressions.

Thus we construct:

Definition 3.21 The institution m orphism CFtoR'.CT'R.ZZ =>- 7ZSQ

The three components o f the institution morphism are:

1. The func tor $: Signctties Sign^g which sends any context-free signature

o f the fo rm (Sy, Ejv) to a regular signature with S 71 as the alphabet characters,

and Ew as the tokens

44

2. The natural transformation a:(<Pi Sen-jzsg) => S e n c m e e taking any sentence

fro m the regular institution o f the fo rm (r : N) and mapping it to (N —>• r)

3. The natural transformation /?: Modcj^nee => ($ g Mod-jisg) mapping a context-

free model o f the fo rm (I c , I t , In , II) to a model in 1ZSQ o f the fo rm (I c , I t , In)

Verifying that this is in fact an institution morphism is straightforward:

L em m a 3.22

C F toR '.C T lZE E ZSQ, as defined above, is an institution m oprhism

Proof:

We must show that for every 7££C/-signature E, every sentence (r : N) in [£], and

every context-free model I in [<!>(£)] we have:

(I c , I t , I n , h) h^(E) a (r : N) & P ({ Ic , I t , In , h)) |=e (r : N)

By the definition of a and /? this becomes:

(I c , I t , I n , h) |=$(£) [N ->• r) (Ic , I t , I n) He (r : N)

which is easily seen to be true via the definition of satisfaction in each institution.

Thus for any regular module R , and any context free module C, we can construct

modules of the form:

Constrain C by (R ,6) via C F to R

This is a sentence in CT1ZEE, and thus specifes models in that institution.

The signature morphism 9: S ign(R) —y S ign(C) above establishes the relationship

between the tokens and symbols from the regular module and the context-free gram

mar symbols. This morphism can be used in situations where a number of different

lexical symbols correspond to just a single non-terminal from the context-free gram

mar. While this in itself is quite common in such mappings, it may also be useful if

a number of different regular modules are involved.

45

Chapter 4

Two-Level Grammars

4.1 Introduction

The basic reason for the inability of context-free grammars to describe semantic

features is indicated by their name - they cannot deal with context-sensitive infor

mation. Semantic analysis depends crucially on such information, since e.g. type and

scope correctness are usually determined in the context of having previously pro

cessed some sort of declaration which presents the relevant information. Of course

this could be remedied by just using a context-sensitive or free grammar, but these

yield unintuitive descriptions and are rarely used.

Another grammar-based approach seeks to enhance context-free grammars in other

ways so as to allow them deal with contextual information. By far the most popular

such method is that of attribute gramm ars , which augment ordinary context-free

grammar rules with assertions or statements from some completely different lan

guage to specify semantics. (See [DJ90] or [AM91] for surveys). A closely related

formalism is that of affix grammars ([Kos91] contains a comparison)

An alternative approach is to provide a homogeneous framework for the specifica

tion of context: i.e. to use another, different, grammar. This is the view taken by

van-Wijngaarden grammars, which consists of two “levels” of rules, with compo

nents of the lower level being restricted by rules from the higher level (in much the

46

same way as second-order logic can be used to define meta-concepts from first-order

logic). Descriptions and examples of this sort of grammar can be found in [Pag81]

and [GJ90].

In the following sections then we present two institutions:

• A T Q for attribute grammars

• V A N W for van-Wijngaarden grammars

and relate them both back into CT1ZEE. As before, examples of their use can be

found in chapter 6 .

4.2 A ttribute Grammars

Compiler design tools such as yacc allow context-free definitions to be enhanced

with semantic details to give a full description of a programming language. Gener

ally this is based on the use of attributes, the name given to special values associated

with (certain) terminal and non-terminal symbols in the grammar. The rules of the

grammar are then extended with additional rules governing the relationships be

tween the attribute values of the symbols in the grammar rule. In yacc these rules

are expressed by using constructs from the programming language C, and evaluating

these as the parse takes place. More sophisticated parser generators incorporate a

special language for attributes, whose evaluation phase, often by necessity, takes

place separately from parsing.

It is common to distinguish two types of attribute - synthesised attributes which

involve transferring information from the rightpart of a rule to the non-terminal on

the left, and inherited attributes which flow in the opposite direction. As might

be expected, the choice of attribute type can be strongly influenced by the parsing

strategy.

Since the main task of the semantic rules in an attributed grammar will be to control

the values of those attributes, we will assume that all attributes are in equational

form. We will not impose any restriction on the flow of values around the grammar,

since this would be inconsistent with the parse-strategy-independent view of gram

mars taken previously. Also, for simplicity, (and based on lemmas proved earlier)

we will assume that the rightparts of rules do not use the union or Kleene closure

operations.

We will define the institution of attributed grammars by expanding CJ-TZSE with

attribute-handling capabilities. In general terms this means that sentences will

contain attribute evaluation information as well as grammar rules, and that models

can refer to values as well as sentences.

4.2.1 Basic Definitions

We can now formally define the components of A T G , the institution of attributed

grammars.

Definition 4.1 Signatures in A T G

A signature £ consists o f fo u r sets:

1. £ 5 , a set o f sort names,

2. £ 0 a set o f operators indexed by sort-sequences

3. £ t a set o f terminal symbols,

4- £yv a set o f sort-indexed non-terminal symbols

The purpose of the sort-index of each non-terminal symbol is to give the type of the

attribute-values that can be associated with that symbol. The operators form a very

simple algebraic-style language for forming expressions over the attributes. In order

to give full meaning to these operators, we would envisage them being constrained

by theories from some suitably more powerful institution, such as e.g. £Q .

Morphisms are the four-fold products of set morphisms, with the conditions that for

any such morphism a, the indexing is preserved, i.e. :

48

• For any operator op \ S\ x ... x Sn —» S , we insist that <r(op) is an operator

of sort (j(5'i) X ... x cr(Sn) cr(S)

• If non-terminal symbol N is of sort 5, then non-terminal cr(N) is of sort cr(S)

To construct a model of an attributed signature will will again extend the context-

free case - this time we need to allow for the presence of attributes. One option

would be to use parse trees whose non-leaf nodes have been annotated with attribute

values in a manner consistent with the grammar rules. However, as before, we will

try to avoid the use of parse trees and look for less “operational” models.

Thus we will choose to model non-terminals as sets whose elements are pairs of

the form (s ,v) , where s is a string, and v is some value, sort-consistent with the

attribute-type of the non-terminal. The interpretation of this is that, based on the

grammar, the non-terminal can derive the string s and, when it does, the resulting

attribute value associated with it will be v. Despite appearances, this should not be

seen as a necessarily “bottom-up” approach, since the application of the attribute

equations will take place (in both directions) later when we define satisfaction for

rules.

We can now define a model of an attributed signature as consisting of six compo

nents:

Definition 4.2 Models in ATQ

• The attribute part, consisting of

1. A function Is mapping sort names from £ to sets

2. A function Io mapping operator symbols into functions over the appropriate

sets (operators o f arity zero being mapped to constants).

• The context-free part, consisting of

3. Som e countable set Ic o f characters

4. A function I t which, which will map any terminal symbol into a subset o f I c

49

5 . A function In which, which will map any non-terminal symbol o f the fo rm A 's

into a set whose elements are o f the fo rm (s , v) where s £ I q and v £ [S].

• The actual language defined by the model

6. Som e set I i whose elements are all o f the fo rm (s, v), being the language and

evaluation defined by the grammar.

We note that the images of In and h are relations between strings and values - they

are not necessarily functional in either direction. It is quite possible that different

derivations would cause different values to be associated with a non-terminal for the

same string (this would indicate that grammars corresponding to the model can be

ambiguous).

Since not every non-terminal need have an attribute, In could be seen as a partial

function. However we shall not pursue this issue here; we suggest that such partial

ity can be dealt with by whatever formalism the attribute equations will ultimately

be mapped into. Where necessary, we shall denote the lack of an attribute by using

the value

It is common to have a number of different attributes, whether synthesised or in

herited associated with a grammar symbol, representing different semantic features.

Even though we have only allowed one specific variable in the above description,

it is still possible for the sort of this variable to be a product, thus allowing for

arbitrarily many components of a variable to be considered (in the manner of fields

in a record). Thus we have not lost any generality in this respect from the standard

definition.

Given a signature morphism a: S' —y S, we can construct a model of S' by compos

ing a with each of I s , I o , I t , and In , and by leaving I c and l i the same.

To construct sentences in the institution we will need to assume some ordered set

of attribute variables, which we will denote {$$, $1, $2,...}. The attribute variable

50

$$ will denote the value of the attribute associated with the left-hand-side of the

grammar rule; one of the form $i refers to attribute associated with the i th symbol

on the right-hand-side of the rule.

We will use the term attribute expression to describe any well-typed expression

formed from the operator symbols and the attribute variables. (For the moment, we

assume that “well-typed” means “consistently-typed”, with type inferencing begin

used for the variables). Given a model 7, and some sequence of (correctly typed)

values to substitute in for the variables, we can evaluate an expression in this context.

Formally, for any expression r), we define its evaluation EVALj(rj) as:

Definition 4.3 Evaluating an attribute expression

For some n 6 N, and any sequence o f values a

E V A L T(%%,~a) = 7r^o)

E V A L [($ i , a) = 7r’+1(a)

E V A L ^ o p f a , ... ,r/n), a) = I 0 {op)(E V A LI (T } i ,a) , . . . ,E V A L i(r)n, a))

where op is an operator, and T]i,.. . ,rjn are attribute expressions

We note at this point that signature morphisms can be extended to attribute ex

pressions (componentwise), and that these interact with evaluation in a natural

way:

Lemma 4.4 For any attribute expression r] over a signature E; any correctly typed

sequence o f values a, any model I , and any signature morphism a into E,

EVAL/(cr(?j), a) = E V A L0. i(r), a)

Proof: B y induction over the size o f an expression

We consider the two cases from the previous definition:

1 . E V A L ,{ (r { n) ,a) = EVAL¡{%%,a)

= 7T ' (a)

= E V A L ^ t i n ^ a)

2. EVAL¡(<r(%i), a) = EVAL,(%i, a)

= 7r,+1(a)

= E V A L a-t /($¿, a)

3. E V A L r((r(op(T]i a) = EVAL¡(<j(op){a(i]X) , . . . , <x(yn)), a)

= I0 (cr{op))(EVAL[((T(T]i), a),. . . , EVAL,(<T(Vn), a))

= 10 (cr{op))(EVALc. /(r/i, a) , . . . , E V A L C] /(7/n, a))

= /((op(»7i, • - - , 7?»)), a)

□

Sentences in the institution will be context-free sentences extended with equations

over attribute expressions:

Definition 4.5 Sentences in A T Q

Sentences are o f the form :

1. (i4 ->• n . . . r„) {pi = pm = <7m}

or j'tzsi

2. n .. .r „ {pi = 7 i , . . . , p m = qm }

where A is a non-terminal, each r,- ¿s a terminal or non-terminal, m > 0, an¿

the pj and qj are attribute-expressions which can contain a variable $i only i f the

corresponding gramm ar symbol occurs at position i in the rule (with A being at

position 0).

Signature morphisms can be extended to sentence morphisms componentwise in the

expected way, acting as the identity on the attrbiute variables.

52

In order to deal with rightparts in a uniform way, we will define an simple auxiliary

function. For any given signature, any model I , and any single grammar symbol 7 ,

we can define A T T i (7) to be the set of attributions for 7 , each element of which

consists of a string and an attribute value.

D efin ition 4 .6 A T T i (i) , the attribution associated with 7

A T T j(A) = {{eIo , ±)}

V a e E r - A T T i (‘a) = { (V ’,_L) | c G I T {a)}

V A e Z N - A T T J { ‘A ’) = In (A)

We note that A T T / commutes with signature morphisms, that is we assert that

A T T I (<r(r)) = A T T in I (r).

Now we are ready to define satisfaction in the institution; this will have two com

ponents: the language part, and the attribute part:

D efin ition 4 .7 Satisfaction in A T Q

Satisfaction is defined as follows:

I (=s {A -» n ... rn) {pi = qu pm = qm}

V (su V i) G A T T ^ r 1) , . . . ,V(s„, vn) G A T T] (r n) • 3 (s0, u0) G A T T r (A) ■

1̂ * * * — *5o A

Aj=r E V A L ^ p j , (u0, ux, . . . , w„)) = /s(s7) E V A L t(qh . . . , vn))

or ju s t

I |=s n . . . r n {pi = qx, . . . , p m = qm}

&

V(s1,ui) G A T T i (r i) , . . . , V (sn, vn) G A T T i (r n) ■ 3 (s0,v 0) G h •

1̂ * * * 7̂1 — So A

Aj=r E V A L i(p j , (v 0 , «1, . . . , «„)) = 7s(Sj) E V A L ^ q j^ v o V i , . .., u„))

53

where we assume that Sj is the sort associated with pj and qj, and = is (Sj)

denotes the (strict1) identity relation over this set. (In the case where m — 0 we

assume that the equation part is trivially satisfied).

The satisfaction condition follows from the definitions of E V A L i and A T T j and their

commutation with <r; we state:

L em m a 4.8 Satisfaction Condition fo r A T G

For any signatures S' and E, any signature m orphism a: S' —> £, any E-model I ,

and £ ' -sentence s,

i bs M 5 & M K t=s' s

Proof:

The proof breaks into two cases; we shall just prove the first, as the second is almost

identical.

I |=S (cr(A) ^ c r ^) . . . a (r n)) {a(p{) = a (q i) , . . . , a (p m) = a(qm)}

V (s u vi) G A T T I (a (r 1)) , . . . ^ (s n, v n) e A T T j (a (r n)) • 3 (s0, «o) e A T T r(a (A)) -

*̂1 $n — 50 A

Aj=r E V A L I (a(pj), (vo, V i , . . . , vn)) = CT; ¡s{S]) E V A L i(a (q j), (t*,, vu . . . , vn})

V(5!,ui) € A T T a. i (n) , . . . , V (sn, vn) e A T T a]I(rn) ■ 3 (s 0,v 0) G A T T a. I (A)-

$1 ’ * * $n = $0 A

A j = r EVAL o r ; i(pj, (v0, V i , . . . , vn)) /s (5j) ¡(qj, (v0, Hi , . . . , u„))

H U t=S' (A n . . . r n) {pi = qu . . . , p m = qm}

□

lrrh a t is, we assume the operation fails if any of the com ponents involved are J.

54

4.2.2 Properties of the Attribute Institution

Whereas with the syntactic institutions we were able to pick out a distinguished

canonical model (the minimal one in each case), we cannot necessarily do so here.

The reason for this is that the sorts in £ 5 cannot be fully specified within the formal

ism, and a minimal interpretation here would omit much of the intuitively expected

structure. Thus the specifications here are genuinely “loose”, and, as mentioned, we

would expect to tie them down by constraints from other insitutions.

By direct substitution of their definitions, we can immediately prove some straight

forward results such as:

I 1= (A -fr r) { p i -- gi}, I |= (A -)• r) { p 2 = }
I N (A ->• r){i>! = qu p2 = 92}

and intuitively-correct results such as:

I \ = (A - > x. ‘ B \ z) { U = $»}, I \ = (B - > y){$$ = c}
I \= (A ^ a:.?/.2:){$$ = c}

(where we assume that the non-terminal B is at position i in xJ'B'.z)

Once again co-limits of signatures stem from set-theoretic union, so we are free to

sum, parameterise and constrain attribute grammars.

4.3 R elating A ttribute and Context-Free Gram

mars

As we have seen, the attribute grammar is built “on top of” a context-free grammar.

However, in certain circumstances, it may be desirable to keep the actual description

of the context-free syntax of the language separate from the semantics, perhaps

because

- The context-free grammar is more “concrete” than the grammar on which the

attributes are built, containing low-level details about the program text which

are irrelevant at the semantic stage

55

- The attribute grammar describes constructs at a level of granularity which is

not required to give a valid syntactical description of the language

- It is intended to implmement the parsing and attribution processes separately

using different algorithms, and this is reflected at the specification level in

both

- The attribute grammar takes care of a self-contained part of the anaysis pro

cess, and we wish to limit its interaction with other parts of the specification;

any links will be made via the context-free grammar

For whichever of the above reasons, we envisage specifying the context-free syntax,

and then making (parts of) this subject to additional specification from the attribute

grammar. To do this we will construct an institution morphism from A T Q back

into CT'REE, and seek to restrain context-free grammar modules by sections of the

attribute grammar.

To make things slightly easier, we will assume that the right-hand sides of context-

free grammars involve only the union of concatenated vocabulary symbols. This

does not in any way restrict the power of specification of the grammar (and indeed

could be formally specified by using an institution mapping from CJ-’TISS to itself).

Now we can define:

Definition 4.9 The institution morphism AG toCF: A T Q =>• CTTZ££

We define the three components as:

1. The functor <P: Sign^r^ —> Signcjrnse which takes any attribute signature

of the fo rm (£ 5 , So, £ r , Ejv) and “loses” the sorts and operators giving the

context-free signature (£ j i Sat)

2. The natural transformation a: (<£ § SencTnee) Sen_\rQ takes any context-

free rightpart or grammar rule and promotes it directly to the attribute insti

tution (without change), since this is ju s t an attribute gramm ar rule whose

equations are trivially satisfied

56

3. The natural transformation ¡3: M od^rg => ($ 9 M o d cm ee) takes an attribute-

grammar-model o f the fo rm (I s , Io , I c , I t , In , II) and sends it to the context-

free model (I c , I t , J n , J l), where J n and J i are the result o f removing the

value-component from the pairs in In and I i respectively

Since there has been so little actual change to the sentences and models (other than

simplification), verification that this is in fact an institution morphism causes no

problems:

L em m a 4.10

AGtoCF-. A T Q =>■ C T 'R S S , as defined above, is an institution m orphism

Proof:

We must show that for every CjP7?,££-signature E, every context-free sentence of

the form (A —> r) in [£] (sentences involving only rightparts follow the obvious

simplification), and every attributed model I in [$(£)] we have:

(Is , Io , Ic , I t , In , h) (=$(£) a (A r) ^ P (h , Io , Ic , I t , In , h) (=£ -> r)

By the definition of a and (3 this becomes:

(ISi Io, Io, I t , In , h) |=$(£) ^ —> r {} (Ic , I t , J n , Jl) (= s (-4 —> r)

(with J t and J n as earlier), which is easily seen to be true, since the attribute-

grammar rule makes no use of the actual attribute values.

□

Thus, given two specifications (H e, S c) from CTTZES and (E^, S a) from A T Q we

would envisage adding a sentence of the form

Restrain £c by {(£a , S a) , 9) via A G toC F

into the context-free specification to make sure that the syntactically-correct models

of (E c , S c) were also semantically correct.

Here, the morphism 9: $(S/i) —> £c has two purposes:

ution

se (a

ill, if

pro-

;tors

T wo-

?1 to

of a

ne a

thus

ates

ter-

ngs,

rre-

;ual

ard

57

2. The “upper”-Ievel rules are called meta-rules, and their purpose is to define

valid arguments which may be substituted in for the meta-notions. This is

achieved by presenting a context-free grammar in which the meta-notions are

the non-terminals, and correspond to languages of proto-notions.

Thus a context-free rule can be derived from a van-W grammar by taking any

hyper-rule and substituting the meta-notions with one of their corresponding string

of proto-notions, as defined by the meta-rules. This must work as for a parameteri-

sation, in that the substitution for a particular meta-notion must be uniform within

a given hyper-rule.

As a notion sequence may eventually correspond to either a terminal or non-terminal

grammar symbol when regarded as a unit, it is usual to distinguish those which cor

respond to terminals by appending the word “symbol” to them. We will generalise

this slightly and assume that some arbitrary syntactic differentiation is possible.

4.4.1 Basic Definitions

With this in mind, we are ready to define the format of a signature in the institution

VA N W of van-W grammars:

Definition 4.11 Signatures in V A J V W

A n y object in the category o f signature from V A N W has four components:

1. SM> the (finite) set o f meta-notions

2. E p , the (finite) set o f proto-notions

Thus a “notion-sequence” is any element o f (E m U Sp)+

3. A finite set E t Ç (E m U E p)+, disjoint from E n , consisting o f those notion-

sequences which can correspond to terminal symbols

4- A finite set E ^ Ç (EjVf U E/0+, consisting o f those notion-sequences which can

correspond to non-terminal symbols

59

This definition may appear to be somewhat more restrictive than necessary, since

we might just have specified E m and E p , along with some predicate over notion-

sequences which recognises (non-)terminal grammar symbols. However, the above

definition will make the process of constructing mappings into other formalisms con

siderably easier.

We shall choose to write any notion sequence n from either or S 7 as though it

were indexed by the elements of E m thus: n :rni’'"’mk) where each m,- £ E m occurs

somewhere in n. Note that this indexing is derived, and that all such notion-

sequences n are unique, independently of their indices.

A signature morphism u: E' —> E consists of any pair of set theoretic morphisms

&m - E'm E m and <7 4 : Ep —> E^, such that their extension to strings in the

usual way maintains the division between terminals and non-terminals i.e. cr(Ejv) fl

er(Et) = 0- By its definition, this extension preserves the indexing on the notion-

sequences in a homomorphic way.

When defining the functor [■], a little care is required in dealing with the proto

notions, since they play a role in both the syntactic and semantic aspect of the

grammar. As we have seen, we will use these symbols to build up hyper-rules,

which are sentences. However, the language defined by the meta-rules will consist

of strings over these symbols, so they may also be regarded as components of the

model. It is common in denotational definitions to gloss over such differences, but it

will serve us well to be pedantic here, since model-morphisms induced by signature

morphisms will change Ep, but will also be expected to preserve the basic structure

of the model. The net result of all this is the inclusion of an alphabet in the model

into which the proto-notions are interpreted.

The other components of the model will involve interpreting each meta-notion as

a language over proto-notions. We will keep with the “parameter” analogy, and

interpret the notion-sequences as functions which, when provided with arguments of

60

the appropriate type, will yield languages (for non-terminals) or characters (for ter

minals). As usual, we shall also provide form some set which defines “the” language

described by the model.

D efin ition 4.12 Models in VAJ \ fW

Given any signature £, a model I o f £ consists o f two “levels”:

• The meta-level:

1 . A finite set o f proto-notion “alphabet characters”, Ip

2. A mapping, I&, sending each element o f E p to an element o f Ip,

3. A mapping, Im , sending each element o f 'E m to a language over Ip

• The hyper-level:

4. A finite set o f characters, l c

5. A mapping, I t , sending each element fro m E t o f the fo rm t :mi’"',mk into some

function o f type (£jvf(mi) x ... x (m„) —> fP (Ic)) yielding (parameterised)

sets o f characters

6. A mapping, In , sending each element from E n o f the fo rm n :mu'"’mk into some

function o f type (E m (m i) x ... x Sm(to,i) —> P (/£))j yielding (parameterised)

languages

7. A language, over the alphabet Ic , being “the” language defined by the gram

m ar

For some fixed signature £, we can construct a morphism between £-models straight

forwardly by taking set-theoretic morphisms with its components.

Given any signature morphism (ctm, cta) as above, and any E-model /, we define:

l& i ib , Ia , Im , Ic , I t , In , h) = (I p , (< ? p I a),(&m \ Im) , I c ,(°", I t),(°", In) , I l)

We note that this implies, for example,

Vn:mi m k e E N ■ (|(r]/^)(n:mi mk) = IN (a (n) :̂ mi)' - ’,7{mk))

61

which has type (Em ^ Í ^ i)) x ... x Ejif(cr(m„)) —» P (/^))

As we have stated, sentences in the institution will consist of meta-rules and hyper

rules. It is usual with van-W grammars to use different notation for concatenation

and union in each of these rule-sets. While this is not strictly necessary (and indeed

is somewhat of a syntactic burden), we will adopt it here for ease of reference. The

following table gives the standard symbols we have been using in context-free rules,

and the corresponding symbols for the van-W rules: 2

Context-Free ->• . 1

Meta-Rule • Î
Hyper-Rule ; Î

We note that since the hyper-rules are dealing with concepts defined by the meta

rules - strings over the proto-notions - the syntax of the hyper-rules will use elements

from the semantics of the meta-rules. Thus there will in fact be two versions of con

catenation on the right-hand-side of a hyper-rule: the syntactic , and the semantic

(We did not have to “look closely enough” to see the latter when dealing with

ordinary context-free grammars.)

We can now give a formal definition of meta- and hyper-rules. The meta-rules are,

for all practical purposes, identical to ordinary context-free grammar rules:

Definition 4.13 Format o f meta-rules

Given any signature £ = ('Em, Ea, E t) , a meta-rule over E is o f the form :

‘m ’ :: M R.

where m G £ m , and M R is a meta-rightpart, defined as:

1. A is a meta-rightpart

2. For any a G E a , ‘a ’ is a meta-rightpart

2As w ith context-free rules, concatenation is usually denoted by jux taposition in m eta-rules:

here we will explicitly represent this by a

62

3. For any m € E m , ‘m ’ is a meta-rightpart

4- I f m\ and m 2 are meta-rightparts, then so are m i .m 2 and m\\ m2

Hyper-rules are similar to context-free grammars where Eyv and £ t are used as the

vocabularly. For simplicity here we will restrict the format of right-hand sides to

the simplest possible, and not allow arbitrary mixing of union and concatention.

Definition 4.14 Format o f hyper-rules

Given any signature £, a hyper-rule over E is o f the fo r m :

‘p ’ : HR.

where p £ E n , and HR is a hyper-rightpart, defined as:

1. A is a hyper-rightpart

2. Given any finite set o f notion-sequences {ni , . . . , n*} Ç (E# U Er), then

‘n\ \ . . . , Vijfe ’ is a hyper-rightpart

3. I f hi and h2 are hyper-rightparts, then so is h i; h2

As with the context-free institution, we will allow hyper-rightparts to act as “ax

ioms”, collectively defining the start symbol. In this case, a collection of hyper-

rightparts can define a (possibly infinite) set of start symbols.

Definition 4.15 Sentences in V A A f W

Given a signature £ from V A M W , the set o f sentences [E] m ay be partitioned into

three subsets:

• [£]a/, a set o f meta-rules

• [£]», a set o f hyper-rules

a set o f hyper-rightparts.

63

We assert that with Ep as terminals and Em as non-terminals, we can formulate the

same auxiliary definitions (including a version of L A N ,) and independently verify

the satisfaction condition for meta-rules as we did for the context-free institution.

We will not deal with this in any more detail here.

Hyper-rules are evaluated in the context of the definitions of the meta-notions. Since

these are effectively free variables, we must have some concept of an “environment”

(or “value-assignment”) which will allow us to plug in values, and evaluate notion

sequences. Thus, given any set of meta-notions M C E m , and any E-model / as

above, we define an /-consistent environment for M as:

E N V i(M) = { e : M Ip \ V m g l l ■ e(m) £ Im (fn)}

In the context of these environments, it is now possible to define a language (over

I c) which will correspond to a (terminal or non-terminal) notion sequence. Since Im

can yield an arbitrarily large language for any meta-notion, the number of languages

over I c corresponding to a notion-sequence may be infinite.

Definition 4.16 L A N i(n) , the language associated with a notion-sequence

Given any signature E and any E-model I , we can define the function L A N j to eval

uate a notion-sequence from Ejv or E x in the context o f an appropriate environment

as follows:

1 V n :mu"',mk £ E/v • V e £ E N V i({ m \ , . . . , m k}) •
L A N i(n) (e) = IN (n (e (m {),. . ., e (m k)))

2, V £ E t ■ V e £ E N V j ({ m \ , . . . , m^}) •
L A N i(t) (e) = { "c(e(mx) , . . ., e (m k)) ” \ c £ h { t) }

This can, of course, be extended to hyper-rightparts by interpreting the concatena

tion and union operators in the usual manner.

The important result here is that there is a method of changing environments with a

signature change that preserves the language defined by a notion-sequence; indeed,

this can take place in either direction.

64

L em m a 4 .17

F or a n y s i gn a tu r e m o r p h i sm cr: £' —>• E, a n y (t e rm in a l o r n o n - t e rm in a l) n o t io n -

s e q u e n c e o f th e f o r m n' : m f r o m w e h a v e tha t :

Ve e EN VI ({ a (m [) , . . . , a (m [) }) • e) = L/LV/(cr(n'))(e)

Proof:

The proof follows directly from the definition of L A N j. □

Satisfaction is defined as for the context-free case.

D efin ition 4.18 Satisfaction in V A V W

For any signature £, and any T-model I , we consider the three possibilities fo r an

element o f [E] :

1. The sentence is a meta-rule:

I \ = ‘m ’ :: M R . & L A N T(M R) C L A N ,{ ‘m)

2. The sentence is a hyper-rule; then:

(a) I \= T\, : Ni; . . . ; N k.
I \= no : iVi. A ... A I |= no : N k.

V e e E N V i(M o U Ml U ... U M k) ■
L A N i(n [Ml)(e) ~ ~ C / ^ / (n ^ X e)

(c) I 1= A ^ Ve € E N V j(M 0) • e L A N I (niiMo)(e)

3. The sentence is a hyper-rightpart; then

(а) I (= TVi; . . . ; Nk
I \= N\ A ... A / |= iVjt

(б) / |= njMl,..., n f k &

Ve e E N V I (M 1 \J . . .U M k) ■
L A N I (n[Ml)(e) ~ L A N ^ n f ^ e) C IL

(c) / f= A ^ e/c € / i

Notice that in the definition of satisfaction for the hyper-rules, we take an environ

ment over the union of the meta-notions on the right- and left-hand side. This is

65

the “consistent substitution” rule associated with van-W grammars, which requires

that each meta-notion be substitued uniformly accross the rule before it is applied.

Lastly, the work done to date establishes the following:

Lemma 4.19 Satisfaction Condition fo r V A M W

For any signature morphism cr: E7 —> S, any T-m odel I , and £ ' -sentence s,

I (=2 M-s & \=l> s

Proof: (Sketch)

The proof for the first case follows from CJ-71SS, and that for the third case closely

resembles that for the second.

Expanded out, the satsifaction condition for hyper-rules whose right-hand-sides con

sists of notion-sequences is:

V e G E N V i(a (M 0) U cr(Mi) U ... U cr(Mk)) ■
L A N f a i m y W ^ e) ~ ~ LA7V/((j(ni):<r(^))(e) C L A N ^ n o) " ^) ^)

V e G ENV[c](i)(M q U Mi U ... U Mk) •
L A N i,m (n\u ') (e) L A N M m (n f ') (t) C ¿¿JVw(i)(ni *) (e)

To prove this by contradiction, we negate the statement, yielding the disjunction:

(V e G ENVj(cr(Mo) U <x(Mi) U . .. U a(M k)) ■
L A N ^ a i m Y ^ ^ i e) ~ ~ L A N j ^ n k y ^ ^ i e) C L A N I {a(n0y r^) { e)

A

3 e G E N V [a]{I)(M0 U Ml U ... U M k) ■

L A N m (/)(«;"'X<0 ~ ~ L A N w) (n f ‘)(e) g L A N ^ n ^ e))

V

(V e G E N V ia](i)(M0 U Mi U ... U MO ■
L A N w ^ n f ' X e) - . . . - L A N M (I)(n f ‘)(e) C L A N M W (ni,M’)(e)

66

A

3 e e E N V I (a (M 0) U <7(Mi) U ... U a (M k)) ■

L A N i((r (n \) ' a^M̂) (e) ~ ~ LAiV/((T (^) :̂)) (e) £ L/liV/(cr(no):̂ A/o))(e))

Both components of this are seen to be falsified by the previous lemma, thus proving

the original hypothesis. □

4.5 R elating van-W and Context-Free Grammars

For much the same reasons as for attribute grammars we might want to relate van-W

grammars back down to the corresponding syntactic descriptions in CTIZEE. The

procedure we will use here is essentially the same as that for attribute grammars,

with the only major difference being the fact that we cannot distinguish the “seman

tic” parts of a van-W grammar as easily. Thus we will make an arbitrary abstraction,

where all of the syntactic and semantic details contained in a notion-sequence are

bundled into a single context-free vocabulary symbol. The mappings for signatures

and models are once again of the “forgetful” type, in that their purpose is to lose

semantic details.

The first two components of the morphism can be defined easily; thus we state:

Definition 4.20 The institution morphism VW toCF: V A A f W => CT'R.EE

We define the three components as:

1. The functor Signy^w Sig n c m s s which takes a van -W signature o f the

fo rm (Em, Ep, £t? Ejv) and forgets about the internals o f the notion-sequences,

giving the context-free signature (£ t , £ t v) , where the elements o f each set are

now non-decomposable.

2. The natural transformation a: (<P I Sencrnes) => Senv^jyw maps context-free

grammar rules into hyper-rules; that is, a context-free sentence o f the fo rm

(A —y r) is mapped to A : r., with and being used in place o f and
UI V

67

3. The natural transformation f3: ModvAMw ($ 9 Modernise) takes a va n -W

model and merges together the sets o f languages corresponding to the notion

sequences. Thus given a van -W model o f the fo r m (Ip, Ia , Im , I c , I t , In , I I) ,

we can construct the context-free model (J c , J t , Jn , J l)> where . . .

The mapping for models will not be so simple however. Basically, each individual

/-consistent environment defines its own context-free model - what we want to do

is to merge these models. Thus a first attempt might let J c = Ic and J i = II , and

define the following mappings for terminals and non-terminals:
y t m u - , m k g .

J r (t) = U «i 6 IM(Mi) ■ / r (imi- - “ *)(ui,. . . , vt)

Vij“ 1 m* € E# •
Jn (ti) = u Vi e 4 f(M t) • IN(n mx m*)(v1, . . . , v k)

To see how this might work, suppose we have a van-W signature E, two notion-

sequences Is and rs both from Ey. Let us assume that these contain some meta

notion M which can correspond to one of two proto-notion sequences: p or q. Then,

if we are given some some E-model I which defines:

I t (Is) = {p c, q t-y d)
I t (t s) = {p c, q d}

we will translate this as:

J t (Is) = {c, d}
J T (rs) = {c, d}

Thus, as we expect, the context-free sentence (Is rs) is satisfied in /?(/) because

{ “c V d ”} C { “c”, “<T}

and its its a-image Is : rs. is satisfed in /, since

{ “c”} C { “c”} A { “d”} C

However, this does not always work both ways, since if we take some other model,

call it I ' defined as:

I'T (ls) = {p (->■ c, q d}
I'T (r s) = {p 4 5 4 c}

68

we get exactly the same value for (3(I 1) as before, except that now while this satisfies

(Is —>• rs), its a-image Is : rs. translates under / ' to:

{ “d”} C { “c”} A { “c”} C { “d”}

which is false, and thus we have not defined an insitution morphism.

In order to correct this we must cause the context-free sentence to be falsified; the

problem is that we have been too general with our “forgetting” of the environments.

Noting that we have only a finite set of meta-notions, we suggest that any envi

ronment (a finite mapping) could be mapped to a unique character over some new

alphabet3. We propose to index each of the symbols in the j3 image of a van-W

model by these symbols.

In the above example, if we let the two environments be called E l and E 2, then the

sentence (Is —> rs) translates under the model /?(/) to

“dEl”} C { “c£1”, “dE1”}

which is true, but under /3(I') it translates to:

{ “c£1”, “d£1”} C { ucE2,\ “dE2”}

which is false, as required.

So, if we suppose that we have some new set of character symbols C, and a function

mapping /-consistent environments into C, then we can proceed to define the

components of our model. They are as follows:

1. Jc = (I c x C)

2. Vimi-"'ra* 6 S t •
J r (t) = U e <E E N V j P m) • m a rk (IT(t m m*)(e(mi), . . . , e (m k)), ^ i (e))

3One m ethod: im pose an arb itra ry ordering on the m eta notions, and list out the environm ent

m eta-notion, proto-notion pairs in order. This yields a finite-length string over (E m U £ p) , which

we may regard as a new character

69

3. V n mi e Sat •

J i f(n) = U e € E N V i ^ m) ■ rnark(IN (n m' m*)(e(mi),. . . , c(m*)), ^/(e))

4. </l = U e ^ E N V i (T,m) ■ m ark(IL, ^ /(e))

We assume that the function

mark: P (/£) x C - > P (/c X C)*

denotes the annotation of each character of each string in the language with the

symbol corresponding to the environment.

From this construction it can readily be seen that the construction is now an insi-

tution morphism, since most of the structure of the van-W model has been copied

across (and internalised) into the context-free model. Thus we assert:

Lemma 4.21

V W to C F : V A A fW =>• CJ-IZES, as defined above, is an institution m oprhism

Proof: Sketch

We must show that for every CjFT^if’-signature E, every context-free sentence of

the form (A —> r) in [£], and every van-W model I in |$(E)J we have:

(Is, Io , Ic , I t , In , h) h=4(E) A : r. <& (J c , J t , J n , J l) (=e (-4 —> r)

which, based on the above construction, can be seen to be true. □

This then allows us to set up restraints on context-free signatures in exactly the

same way as for attribute grammars.

4.6 Conclusion

In this chapter we have extended our syntactic institutions by examining two grammar-

based formalisms for semantic definition. We note that while conceptually similar,

the models from A T Q display one specific feature not present in VAA/’W, in that

they associate values with languages. This greatly facilitates their role as a genera

tive, rather than solely analytical, tool in programming language specification.

70

We have linked both formalisms back to CJ-TZ££, thus permitting context-free de

scription to be restricted by semantic specifications from either institution; an ex

ample of this is presented in chapter 6.

71

Chapter 5

Semantic Definitions

5.1 Introduction

In this chapter we examine some formalisms for describing programming language

semantics which are not directly grammar-based. The two we concentrate on here

• denotational semantics and

• axiomatic semantics

Many other formalisms exist; we might mention in particular operational and alge

braic semantics. Denotational semantics may be regarded as fitting into the general

“algebraic” style, which involves specifying an abstract syntax and defining the se

mantics “structurally” (also called “compositionally”) over the terms of this syntax.

The reason this approach may be seen as algebraic is that if the abstract syntax is

expressed as a signature, then the collection of all programs forms an initial algebra

(a sort of Herbrand-expansion of the terms), and maps to semantic elements form

algebraic homomorphisms from this syntactic algebra. Modern approaches to oper

ational semantics are also quite similar to this, basically just involving a change in

the nature of the target semantic elements.

In this chapter we first present denotational semantics; we suggest that the definition

could be modified straightforwardly to deal with algebraic or operational semantics

72

by changing the functor [•] to deal with sets or some abstract definition of “com

putations”. As with previous formalisms, we relate our definition back to CJ-TZ.££

so that specification of other aspects of a language may be tied in. Examples of

modules from this institution can be found in chapter 6 .

We deal with axiomatic definitions quite differently to denotational ones however,

in that we see them as the amalgamation of some existing compositional-style se

mantics, and some suitable logic of assertions; specifically we choose denotational

semantics and first-order logic.

5.2 D enotational Semantics

Of all the formalisms we will be considering, the denotational style is the one most

naturally associated with category theory. While the term “denotational” has quite

a general meaning, in programming language semantics it is usually taken to indi

cate the definition of a language in terms of equations over some category of domains

which are Cartesian closed. For our purposes here we will take the simplest form of

domain - i.e. a chain-complete partially-ordered set, or CPO.

The definition of an institution for denotational-style specifications, call it T>£Af, will

involve a fairly straightforward modification of the definition for general algebra. To

make it easier to relate to other formalisms, we will split each denotational definition

up into three components:

1. The abstract syntax , which defines the syntactic domains

2. The semantic algebra, which constraints the semantic domains

3. The meaning functions, which relate the syntactic to the semantic domains

Based on this we can define the components of a denotational signature:

Definition 5.1 Signatures in V £ M

We can define any signature as consisting of:

73

1. A set o f syntactic domains T syd

2. A set o f T s y d -indexed syntactic operators Esro

3. A set o f semantic domains T sed

4. A set o f T s e d -indexed semantic operators, T s e o

5. A set o f meaning functions T m indexed by the elements o f T syd

A signature morphism consists of a map for the syntactic anti semantic domains,

and a type-consistent map for the operators and meaning functions.

A model of any signature will involve mapping its components into either domains

or continuous functions over those domains; thus we define:

Definition 5.2 Models in VSN "

Given any signature E, a T-m odel I consists of:

1. A function I d mapping the elements o f T s y d and T s e d into CPOs

2. A function Io mapping the operators in T s y o , T s e o and Em into continuous

functions over these domains, in a m anner which is type-consistent with their

indexing

To support this we must assume that the category [EJ has products; it is common to

also allow exponents and sums and other, more specialised operations. For simplic

ity we omit specific operations for these CPOs, but suggest that their incorporation

would not pose any major theoretical difficulties.

Sentences in the institution will consist of equations over the domains defining the

semantic algebra and the meaning functions. We will not need to specify equations

for the abstract syntax, since all the information we require is provided by the

indexing of the operators. To construct sentences, let us assume the existence of

some infinité set of E^-indexed variables, while elements we will write as u,-, and

define

74

Definition 5.3 Sentences in V S A i

Given any signature E, the set [E] can be partitioned into two subsets o f closed

equations:

1. The set [E]$ of semantic equations; these take the form

V Vi : A , . . . , vn : Dn • ex = e2

where each Di G Esed , a,nd e\ and e2 are expressions built from the semantic

operators in E seo

2. The set [E]m of equations defining the meaning functions; all o f these are o f

the fo rm

Vui : A, ■ • •, vn : Dn ■ M((se))e i = e2

where each A can be from either Esyd orY^sED> M € Em , se is an expression

over the syntactic domains (o f the appropriate type fo r M) , and e\ and e2 are

expressions over the syntactic and semantic domains. 1

Sentence morphisms are the obvious extension of syntax morphisms to terms, pre

serving the divide between the semantic algebra and the meaning equations.

A sentence of either form is satisfied in some model / if and only if the interpreta

tions of the expressions are equal under all possible assignments of values (from the

appropriate CPO) to the universally quantified variables.

As noted in [GB85], the proof of the satisfaction condition for such structures can

be seen as a modification of the algebraic institution; we will not deal with it further

here.

1We will use the angular double-brackets ((•)) in the deno tational definitions to denote pieces of

syntax since the m ore conventional square brackets [■] are already in use.

5.3 R elating D enotational and Context-Free D e

scriptions

Usually when we come to write a denotation definition we assume that the syntactic

aspects of the specification have been taken care of by some other, more suitable

formalism. Hence, the abstract syntax component of the a denotational specification

is really just a base for a linkage to some more concrete syntax, specified elsewhere.

Thus, as we have done for other institutions, we will want to be able to constrain the

abstract syntax so that it corresponds to some language specified in the context-free

institution.

This mapping is slightly less straightforward than the others, since the information

describing the language is carried in the signature part of a module from D E N , while

roughly the same information requires specification by sentences in CJ-7ZEE. Clearly

what is needed here is a presentation-based mapping. We note also that models of

syntactic signatures in D E N , while possibly representing a more abstract language,

actually carry more information than models in CJ-7ZEE. We have the obvious corre

spondence between non-terminals and syntactic domains, but each domain element

that corresponds to some ground term over the operators will implicitly carry with

it parsing information which is not present in a string from a context-free language.

This suggests that we have little choice over the direction of model-mappings, since

the natural transformation ¡3 will be many-to-one from terms in D E N to strings in

CT1Z.EE.

This then leads us to a definition of $ for presentations in the opposite direction.

Here we envisage any production rule giving rise to an operator representing a

function from the (domains corresponding to the) non-terminals on the right-hand-

side to the (domain corresponding to the) non-terminal on the left. For this to be

accurate we have to make sure that each operator gets a unique name; since we

are dealing with a given set of rules, this poses no real problems. Let us use the

delimiters |_-J to denote this function; thus, for example, we might have an operator

76

of the form [S —¥ while E do S odj : E x S —>■ S

Definition 5.4 The functor $

Given any context-free signature E, and some T-presentation, we construct its image

under $ by

1. letting Es y d in T>£J\f be En , along with some new sort, let us call it £ which

is not in Tin

2. letting Es y o be the set o f sentences in the presentation. For each rule, the

corresponding operator is indexed as a function from the non-terminals on the

left to the non-terminal on the right; fo r rightparts, the corresponding operators

are indexed as function fro m the non-terminals it contains into £.

A model in some $-image of a context-free definition is effectively an abstract syntax

tree whose nodes are indexed by the concrete syntax rules that can be used to derive

it. To translate this back to a string from the language, we simply traverse the tree

and apply the rules. To perform this mapping we define a function Ts which will

translate expressions to strings:

Definition 5.5 Mapping abstract to concrete syntax

For any E-presentation P in C TIZE S , we define the function T^: |[$(P)]| —>■ |[-PJ|

T e(L4 ->• r \ (E u . .. , Ej)) = v E(r) (E u . . . , Ej)

where [̂ 4 —>- rj e Es y d , E i , . . . ,E j 6 |[$(-P)1I and we define as:

v z (‘n1 ’. . . ‘nk % E u . . . , E j) =

A i f k = 0

v x (‘n2 ’. . . ink % E 1, . . . , E j) i f n, = A
<

“n i ” - v z (‘n2 . . ‘nk % E t , . . . ,E j) i f nx 6 Er

'T v { e \) - v z { ‘n2 , . . . ink t)(E 2, . . . , E j) i f nx e T,N

We note that Tg is a partial function, since there may be elements of the domain

which are not mapped to by the interpretation (unless we insist on a minimal model).

However, this causes no problems, since we are only interested in those elements to

which Ts applies; the others can be “lost” in the translation. Based on this function

we can now define the translation between models:

77

Definition 5.6 The natural transformation j3 For any Ti-presentation P in CTIZEE,

and any model I f= $ (P) from V E A f , we define

k { I) = (E t , A t : E r • t, A n : ZN • T E(/ ^ (n)) , T z(ID(i)))

Lemma 5.7 The functor $ and natural transformation ¡3 as defined above consti

tute a presentation-based mapping CFtoD EN'.CTlZEE => V E A f . That is, fo r any

presentations D in V E A f and C in CT1ZEE, and any D -model d, we have:

d \ = $ (C) & P (d) \ = C

Proof: (Outline)

Since the presentation $((7) has no sentences (by our construction), the left-hand-

side of this biconditional is vacuously true2 Thus we need only show that:

d \ = ^ { C) => /3(d) \= C

To prove this we need to take any sentence A —y r in C, and show that LA N p (d)(r) C

L A N 0 {d)(A).

By the definition of T we can associate with any rightpart a set of parse trees which

have that rightpart at their root. It is straightforward to show that the strings de

fined by the leaves of these parse trees correspond to the language associated with

that rightpart.

Hence since A —> r generates an operator [A —> rj which converts parse trees from

r into ones for A, the strings corresponding to r must also correspond to A.

We emphasize again that his mapping is different from the other mappings con

cerning CTTlEEi since they all left us with context-free models, whereas CFtoD EN

keeps us in V E A f . The understanding is that we have carried out the analytical part

of the description, and now wish to transform it into some other form.

2In fact any statement of the form . . . |= <!>(...) that is correctly typed (with respect to the

signatures involved) will be true.

78

5.4 A xiom atic D efinitions

One of the earliest approaches to dealing with programs in a formal way was ax

iomatic semantics. This involved annotating a program text with boolean state

ments (called assertions), the inference being that the condition specified by the

statement should always be true when control passed through that point in the

program. Much work has been done in establishing formal software derivation tech

niques based on this form of annotation.

In meta-logical terms it is common to regard the program text and the assertions

as belonging to two different languages, with some degree of identification between

variables. Thus many texts which deal with axiomatic semantics regard the asser

tions as being general statements from first-order logic, and quite separate from the

actual program itself. It should also be noted that axiomatic definitions tend to be

more “abstract” than their operational or denotational counterparts, since they are

only concerned with making assertions about the program, rather than providing a

specific model of its semantics or operation.

While axiomatic definitions can be used to describe a language, it is more common

to regard them as an additional structure on top of some existing formal semantics.

For example, in giving a formal definition of axiomatic semantics (similar to that

for first-order logic) [Cou90] assumes the existence of a relational semantics for the

language, and builds the definition on top of this. At the other end of the scale,

[MA86] interpret the assertions as guards, enabling the whole annotated program

to be described homogeneously using their partially additive categories.

In general terms then we can regard the concept of an “axiomatic definition” as noth

ing more than the formulation of a specification in some suitable logic institution,

which is then constrained to apply to the programming language via an institution

morphism into some semantic institution. The standard choice here would be to use

F O S Q , the institution of first-order equational logic of [GB92], for the assertions,

and V S M as the semantic institution; other choices might include:

79

• Using a logical institution specifically suited to the type of programming lan

guage involved: perhaps £ Q for functional programming languages, or 7-LCC,

the institution of Horn-Clause logic, for Prolog-like languages

• Using the institution of modal logic as described in [Ste92] ; this might be

useful for languages involving non-deterministic features, where we envisage

the semantics being extended with some suitable structure (such as power-

domains).

• We could replace V £J\f with some other semantic definition formalism; per

haps we could use A T T G to give a more operational-style semantics, or U AfX

the institution of unified algebras [Mos89], and attempt a combination with

Mosses’ action semantics.

Taking the standard approach then, let us assume that we wish to write axiomatic

definitions in first-order logic, and give them meaning by association with existing

denotational specifications. To do this we would define:

Definition 5.8 Relating axiomatic and denotational definitions The components o f

the institution mapping D E N to A X '.V E M =>■ J -O SQ are:

1. The functor <?: S i g n v £ j f S ig n j r o f e takes any denotational signature E,

and performs the mapping:

$ (£) = ((E5y£) U E s ^) , (E ^ ko U U E m), 0)

2. The natural transformation a: Sen-p£M =r> SenyrosQ is the identity, since

denotational sentences are jus t quantified equations, and are valid first-order

logic sentences

3. The natural transformation a: P h i; Mod^osQ =*• M odvstf simply involves split

ting back up the mappings fo r the distinguished subsets o f sorts and operators;

this is valid since any set m ay be regarded as a discrete domain.

Proof that this is in fact an institution mapping (and commutes appropriately with

satisfaction) is trivial, since both of the natural transformations make almost no

80

changes.

Thus we can take any standard Hoare-style definition of a programming language,

and rewrite it as a module from F O S Q , with the understanding that its meaning is

really only fully understood by appropriate restraints along D E N to A X . This may

be seen as specifying further conditions on specific programs over and above their

denotational definition; thus their main effect will be to nullify the denotational

model. This might be seen as something similar to assertions in the C programming

language, which cause a particular program’s execution to abort if they are falsified

when processed during that execution.

5.5 Conclusion

In this chapter we turned our attention to the generative aspects of programming

language specification. Here we were no longer interested in further constraining

specifications in CJ-7Z££, but rather sought to translate these specifications into

some other formalisms which seeks to given them a “meaning” in the usual, trans

lational, sense. We chose to describe denotational definitions, and relate these back

into context-free specifications, and forwards into axiomatic-style definitions.

We have noted that the connection from CTTL££ was different to that presented for

other formalisms, as it left us in V £ A f . In terms of programming language definition

the relation to axiomatic definitions is different too, since it is not usual for such

specifications to give us extra information about a language’s semantics. Instead we

may see it as a starting point for a mapping into some other formalism, such as a

suitable refinement calculus, or some “software engineering” specification language.

81

Chapter 6

A Small Example

The work in the preceding chapters has established the basic framework in which

programming language specifications can be constructed and integrated. In this

chapter we give a small example of using these formalisms within the structure of

institutions, by specifying the syntax and semantics of a simple imperative block-

structured language.

Rather than burden ourselves with excess syntactic baggage we will share nomen

clature between modules in the same institution without pointing out specifically

the intended shared sub-theories. However, sharing between modules from different

institutions will be noted explicitly in the specification.

6.1 A Small Language

The language which we will be specifying consists of nested blocks, each of which

consists of declarations followed by statements. Declarations consists of either in

teger or boolean (scalar) variables. Statements can be assignments, if-then-else

constructs or while loops. A variable is in scope in the block where it is declared,

and in any sub-blocks defined within that block. Type-checking is done statically

based on the declarations seen to date.

82

The full syntax of the language is as follows:

B L O C K begin DECL* STAT* end

D E C L ::= int ID E N T | bool ID E N T

ST A T ID E N T := EXPR

| if EXPR then STATS else STATS fi

| while EXPR do STATS od

| B LO C K

EX PR EXPR B IN O P EXPR

| UNOP EXPR

i CONST

| ID E N T

CONST ::= N U M | true | false

N U M ::= D IG IT D IG IT *

ID E N T ::= L E T T E R [L E T T E R | D IG IT)*

L E T T E R ::= A \ . . . | Z | a | . . . | z

D IG IT ::= 1 | . . . | 9 | 0

B IN O P ::= + | - | * | H- | A | V

UNOP ::= + 1 - 1 -

We propose to use specifications in all the institutions constructed to date as follows

• 7Z£Q to specify (parts of) the lexical syntax

• CJ-7ZSS to specify the remainder of the syntax

• VAA/’W to give the scope rules

• A T Q to perform type checking

• V S A f to give the basic dynamic semantics

The core of the specification will be the modules from CTIZES. As we have discussed

in previous chapters, we propose to constrain these by specifications from 7ZEG, to

restrain them by the static semantics as specified in V A J \ fW and A T G , and then

to map this to V £ A f to give its dynamic semantics. Implicit in this strategy is

the assumption that information (other then validity) gained from the scope- and

type-checking is not passed on to the dynamic semantics. This strict delineation

between static analysis and the dynamic definition may not always be suitable for

more complex examples (such as those involving dynamic typing, for example). For

such cases we might still employ the same morphisms between institutions, but use

constraints (specified into O F 7 i£ £) which would allow us to stay in one of the se

mantic institutions.

The diagram below gives an overview of the main modules we will be defining; the

actual definitions constitute the reaminder of this chapter.

6.2 Prelim inaries

One of the key features of a semantic definition is that of the context; this is ob

viously not a feature of the context-free syntactic definition. The context usually

contains details about the user-defined names in a program (such as variables, con

stants, functions etc.); the exact content depends on the type of semantics being

defined. Traditionally in compiler design the context is represented by a data struc

ture known as a symbol table; the more common term used in semantics, and the

one which we shall adopt here, is environment.

Since it must give details about the identifiers used in a program, the environment

is usually represented as a function from these identifiers into some sort of “record”.

What is held in this record (if anything) depends on what sort of information we

will need to perform the analysis; four our purposes here we suggest:

• For scope checking in VAA/”W we need only know the names of the variables

84

The basic modules and their interconnections

85

• For type checking in A T Q we must record the type of each declared variable

• For dynamic semantics in V £ M we will need to associate some value with each

identifier that may be referenced

For van-W grammars it is clear that an environment will have to be a meta-level

concept; the hyper-rules may then use such environments, and thus represent an

infinity of context-free rules, with one (derived) grammar for each possible environ

ment. As we have noted, an environment at this stage need only consist of a list of

identifiers currently in scope; thus we define:

 VAATyV : Envs__
E m = { E N V }
Ep = = E t = {}

ENV :: ENV IDENT; A.

The attribute grammars will need to enhance this environment by allowing identifiers

be mapped to types. Unlike the van-W grammars, we do not assume that the

mechanism for dealing with the semantic aspects is entirely built into A T Q , but

expect to flesh out these definitions in some other institution. Thus we define the

shell:

A T Q : Envs__
£ 5 = [Name, Type, Env}

declared to date (i.e. currently “in scope”)

int, bool Type,

s 0 = « em pty Env ,

combine Env -» Env
£ t = Sjv = { }

This simply declares the names of the types and operators that we will be using

in our attribute language. We would then expect to constrain this by a module in,

say, the algebraic institution (or in some set-theory based notation such as Z) which

would assert Env as a synonym for (N am e —> Type), and impose suitable axioms

on empty and combine so that the former represents an empty function, and the

latter represents function overriding. We assume that Name is mapped to some

86

representation for strings.

Finally, we turn to the denotational definition. This time an environment will hold

dynamic information: the value associated with a particular variable at some stage

of the execution. Let us assume that we have defined the domains Dval of denotable

values, and Nam e of variable names; then we can complete the definition as:

 V S N : SemAlg__________________
E s y d = 'Esyo = {}
Used = {Denv, Bool, Name, Dval}

true, false Bool,

E seO ~ < update Denv x Name x Dval —y Denv ,

cond Bool x Denv x Denv -y Denv

cond(t ru e , e l , e2) = e l
cond (false, e l , e2) = e2
update(e, n, v) = A n' : Name • cond(n = n', v, e(n'))

(Here we use Denv as an abbreviation for the domain Nam e —y Dval.)

This type of specification in a denotation definition is usually referred to as (part

of) the “semantic algebra”. It is distinguished by not referring to any syntax (Hsyd

or £ 5 7 0) or any meaning functions (S^)-

6.3 Blocks

A block is the basic program unit, and consists of a sequence of declarations, followed

by a sequence of statements. We can express this straightforwardly in the context-

free institution as:
 CFIZSE : Blocks__

E t = {b eg in , end, int, b o o l , ; }
£,,v = {B L O C K , DECLS , DECL, STATS, ID E N T }

B LO CK -y begin DECLS STA TS end

DECLS -y DECL DECLS \ A

DECL -y int IDENT I b o o l IDENT

87

We have used recursion here rather than Kleene closure in order to make the map

ping to other formalisms a little easier.

The corresponding definition in VAA/’W will need to change the environment in or

der to take account of the new declarations. Thus we declare two new environments

P R E and P O S T using meta-rules; in our definition P R E is changed to P O S T by

the addition of an identifier:

 VANW : Blocks ______________________________________
S M_ = {PRE, POST}

PRE :: ENV.
POST :: ENV.
block starting with PRE :

begin, decls mapping PRE to POST, stats with POST, end.
decls mapping PRE to POST :

declare IDENT, decls mapping PRE IDENT to POST,
decls mapping PRE to PRE : A.

The statements are dealt with in the context of P O S T , which is just P R E with

all the declarations of D E C L S added. Note that we have abstracted away the type

details since we do not require them for scope checking.

To link this to the context free definition we will use the institution morphism

V W to C F ; let us represent the translation by mapping e.g. the notion sequence

stats with P O S T to the non-terminal symbol s ta ts .w ith .P O S T . The we must define

some signature morphism which we shall call &bvc into the context-free signature,

thus:

&BVC-®(Sign(VANW : Blocks)) — > CF1ZES : Blocks

block.starting, with.PRE !->■ BLOCK

decls.mapping. PRE.to.POST H-)- DECLS

decls.mapping.PRE.IDENT.to. POST H-* DECLS

decls.mapping.PRE.to. PRE H * DECLS

declare.IDENT H-)- DECL

stats, with.POST y-+ STATS

Type checking in A T G will follow a similar pattern, except that this time we must

additionally store type information. To do this, we will assume that the non-

88

terminals D E C L S , DECL, S T A T S and S T A T all have attribute-type Env. Although

it is not necessary to specify an evaluation strategy, we may regard the attribute as

being synthesised for declarations and inherited for statements.

 ATQ : Blocks.-------------------------
T<s = {Env}
S o = { in t, bool, co m bine , em p ty }
Et = {begin, end, int, bool,; }
Etv = {BLOCK, DECLS, DECL, STATS, ID ENT}

BLOCK -»■ begin DECLS STATS end
{$2. en v = combine(S$.enu, $l.env)}

DECLS —■» DECL DECLS {$$.eni; = combine($l.em>, §2.env)}

A {$$.env — empty}
DECL —> int IDENT {$$.ercu = ($2.n am e h-y int)}

| bool IDENT {$$.enu = ($2.nam e i-4 bool)}

In all cases we have spelled out the name of the attribute, even though it is not

strictly necessary for types which do not involve a product. The grammar rules here

correspond one-to-one with those in CTIZES, so we take it that the $ components

of A G toC F strips away the equations, and the signature morphism Obac is just the

identity.

The denotational definition is the simplest of all at this stage, since we do not need

to pick up any information from the declarations: hence we do not need a module

specifically for blocks!

6.4 Statem ents

Next we turn to statements; once again the context-free definition is straightforward:

 CT1ZEE : Sta ts__________________________
E t = { if j th en , else, fi, w h ile , do, od, :=}
E N = {BLO CK, STATS, STAT, E X P R , W E N T }

ST A T S -> S T A T S T A T S | A

ST A T W E N T := £XP/?

| if EXPR th e n 57MTS e lse S T A T S fi

| w h ile EXPR do ST A T S od

I BLOCK

To scope check this we will need to check the identifier in the assignment statement,

and allow for some sort of checking of expressions; in both cases we just make sure

to pass the current environment down to the next level of definition.

 V A N W : Sta ts--
E M = {E N V }

stats with ENV :
stat with ENV, stats with ENV;
A.

stat with ENV :
IDENT from ENV, assign , expr in ENV;
if, expr in ENV, th en , stats with ENV, e lse , stats with ENV, fi;
w hile, expr in ENV, do, stats with ENV, od;
block starting with ENV .

This is in one-to-one correspondence with the context-free definition, and the mor-

phisms necessary to enable constraints are the obvious ones (mapping expr .in .E N V

to E X P R and so on).

The type-checking follows almost exactly the same pattern, with the additional task

of checking that the expressions used in the if and while statements are of boolean

type, and that the assignment is type compatible. If we assume the additional

attribute types of E X P R : Env x Type and ID E N T : Nam e, we can write:

90

 A T G : S ta ts -- ------------------
£ s = {E n v , N am e , 'Type}
So = {}

= {if, th en , e lse , fi, w h ile , do, od, :=}
£jv = {B L O C K , S T A T S , S T A T , E X P R , /£>£WT}

->• STA T iT A T S ' {Sl.emi = $S.cnu, $2.em> =

I A
S T A T -> /ZJjEWT := E X P R {S3.em; = $$.env,

$$.enu($l.name) = S3, type}

| if th e n S T A T S else S T A T S fi

{$2.enu = $<$.enu, $4.enu = $$.enu, $6 .env =

$2 .type = “bool”}

| w h ile E X P R do S T A T S od

{$2.cm) = $$.enu, $4 .env = 3>$.em>,

$2. type — “bool”}

| B LO C K {$2.env = SS.env}

O ne again these rules are in exac t correspondence w ith tlie contex t-free syn tax , and

so we will not spell o u t th e m app ing .

N ext th e deno ta t iona l definition. As is com m on for deno ta t iona l definitions, in this

and subsequen t m odules we will leave o u t th e explicit quan tif ica tion of the variables,

a ssum ing th a t this is ev iden t from the con tex t in which they are used.

N ote t h a t th e following m odu le defines b o th the (ab s tra c t) syn tax and the sem antics

o f s ta te m e n ts .

VE A i : Stats
Xsyd = {STATS, STAT, EXPR, ID E NT}

j o in STAT x STATS -> STATS,

n on e STATS,

ass ign IDENT x EXPR STAT,

i f EXPR x STATS x STATS -> STAT,

while EXPR x STATS -> STAT,

m ore STATS ->■ STAT
E sed — {Denv, Bool, Name, Dval}
E s e o = {update, cond}

M s 7 v i r s t M s t a t Denv —» Pen«
E m = < M i d ENT Name

M e x p r Denv —» Dval

M s t a t s ({j o i n (s t a t , s ta t s))) e = M s t a t s ((s t a t s)) (M STAT((sta t))e)
M s t a t s ((none)) e = e
M sT A T((a s s Wn (id e n t , ex p r)))e =

u p d a t e (e , M j d e n t ((i d e n t)) e , MEXPR.((exPr))e)
M s T A T ((i f { exP r i s t a t s 1 , s t a t s 2))) e =

c o n d (M e x p r ((e x p r)) e , M s t a t s ((s t a t s l)) e , M s t a t s ((s t a t s 2)) e)
MSTAT ((while (ex pr , s ta t s))) e =

c o n d (M e x p r ((expr)) e , M s t a t s ((stats)) e, e)

M s t a t ((more (s ta t s))) e = M s t a t s ((stats)) e

This needs to be connected to the context-free institution via the presentation-based
mapping CFtoDEN; to do this we need to define the morphism 9 required in the
constraint. If we assume that all the Tn components are mapped to the obvious
corresponding syntactic domain, with BLOCK being mapped to STATS, we can
write:

9scd'-^(CJ: 'R.EE : Stats) —> VEAf : Stats

[STATS STAT STATS\ i ^ j o in

[STATS AJ non e

[STAT -> Z M W T := >->• ass ign

LST4T -> if 15X77* then STATS else STAT5 fij • ^ i f
[STAT while EXPR do STATS odj H- while

[STAT ->• BLOCK\ more

This completes the definitions for statements.

92

6.5 E xp ression s

The last major section of the language is the set of expressions; we allow binary and

unary operations, identifiers and constants. Syntactically, we define:

 CTTl££ : Expr _________ _________________________
S t = { }
En = {EXPR, BINOP, UNOP, CONST, WENT}

EXPR EXPR BINOP EXPR

| UNOP EXPR

| CONST

| WENT

Defining scope details involves passing down the environment to sub-expressions;

the base cases involve constants, which have no scope, and identifiers, which are

checked separately.

 VAAfW : Expr__
Em = {ENV}

expr in ENV :
expr in ENV, binop, expr in ENV;
unop, expr in ENV;
co n st;
IDENT from ENV.

When doing type checking however we have some extra flexibility with the grammar

rules. It is usually possible to distinguish syntactically different types of expressions;

however, since this is not generally applicable, it is also usual to ignore this in the

specification. Since we have separated syntactic and semantic description, we may

add back in this possibility, and define three modules for expressions.

The first defines expressions which are obviously arithmetical:

93

Es = {Env, Type}
Eo = E t = {}
En = {EXPR, ABINOP, AUNOP, NUM}

EXPR -> EXPR AB IN O P EXPR

{$l.env = $$.env $3.env = $$.env,

$$.type — “int" ,$1. type = “int”, $3. type = “int”}

| AUNOP EXPR {$2.env = $$.env,

$$.type = “in f , $2.type = “int”}

\ NUM {$$.type = “int"}

The second defined those which are definitely boolean:

 ATQ : BoolExpr_________________________
E s = { Env, Type}
So = £ r = {}
E N = { EXPR, BB IN O P, BUNOP , BOOLVAL}

EXPR EXPR BBINOP EXPR

{$l.env = $$.env, $3.env = $$.env,

$$.type = “600/”, $l.ii/pe = “bool",$3.type = “600/”}

| BUNOP EXPR {$2.env = $$.env,

$$.i i/pe = “bool" ,$2. type = “600/”}

| BOOLVAL {U.type = “bool”}

And lastly we have those which cannot be identified specifically as either (not gram

matically, anyway):

 ^4TG '■ IdentExpr__
Es = {Env, Name, Type}
So = S r = {}
Ew = {EXPE, I D ENT}

EXPR —>■ ID EN T {$$.type = $$.env($l.name)}

This approach has the advantage of considerably simplifying the specification; it

might also be of use should we wish to extend the language later by adding in new

data types (we could perhaps also modularise the declarations section for this).

94

To map this back to the context-free case we perform an abstraction. The functor

$ for A G toC F will lose the equations, and letting

A T Q : Expr = A T Q : ArithExpr + A T Q : BoolExpr + A T Q : IdentExpr

we can define the signature morphism Oeac as follows:

Oeac- $ (S ign(ATG : Expr)) -* CTTISS : Expr

EXPR EXPR

ABINOP, BBINOP ^ B IN OP

AUNOP, BUNOP UNOP

NUM, BOOLVAL CONST

W E N T •-> W E N T

The denotational definition, relieved of type information, just passes on the envi

ronment to the lower levels:

 VSAf : Expr ______________________________________
£ s y d = {EXPR, BINOP, UNOP, C O N ST , W E N T }

apply BINOP x EXPfi x -> EXPR, '

apply C/7V0P x £XP,R -)• Z^PP,

a CO NST -+ E X P R ,

an /d p /vt -> £x p p

T,sed = {Denv , Dval, Name}
E seo = {}
E m = { M e x p r , M c o n s t , M j d e n t , M b o p , M u o p }

M e x p r ((ap p l y (binop, e z p r l , expr2)))e =

M b o p ((f t tn o p)) (M ^ x p p ((e z p r 1)) e , M Ex p r ((expr2)) e)
M e x p R e a p p l y (un o p , ex p r)))e = M UOp ((u n o p)) (M ExP R((cxpr))e)
M e x PR ((a (con s t))) e = M c o n s t ((const))
MEXPR((an(ident))) e = e(MiDENT^dent)))

This depends on the following link from the C FtoD E N image of the context-free

description:

Qe c d '-$(C'J:'R'££ ■ Expr) —>■ V SA f : Expr

[EXPR -> EXPR BINOP EXPR\ i-> apply

[EXPR -> UNOP E X P RJ apply

[EXPR -> CONST} i—> a

[£XPii->• mEWTJ an

95

6.6 O perators

We have made use of unary and binary operators in our specifications; we can give

them a precise definition at the lexical level:

 7ZSQ : ArithOps---
Sa - {+, *, -5-}

= {AUNOP , ABINOP}

(+ I - I * I -5-) : ABINOP
(+ | -) : AUNOP

 7ZSG '■ BoolOps--
S a = {A, V, —« }

= {BUNOP, B BIN OP)

(A | V) : BBINOP
: BUNOP

We take a number of approaches to linking these with the various expression mod

ules.

The link with the context-free syntax involves using the institution m orphism CFtoR ,

with CT1ZEE : Expr being constrained by the sum of the above modules (which we

call 1ZEQ : Ops) via the 1ZEQ signature morphism:

6OCR- Sign(TZEG : Ops) —> $(CT1Z£E : Expr)

ABINOP , BBINOP i-> BIN OP

AUNOP, BUNOP i—y UNOP

We do not need to worry about the definition in VAAfYV, since the mapping of

binop i-> BINOP and unop UNOP will cause the appropriate constraints to be

applied to the proto-notions.

However, we make specific use of the difference in type of the operators at the

type checking stage, and so we would envisage constraining A T Q : ArithExpr by

7ZEQ : ArithOps and A T Q : BoolExpr by 1ZEQ : BoolOps. This ex tra level of preci

sion at the type checking stage may seem to “bypass” the context-free definition, but

in reality all it does is to further lim it the models in A T Q by which the context-free

96

models are constrained (in an appropriate manner, of course).

The denotational definition will also need to make use of the actual operator symbols

in its translation of them into functions over domains.

 V £ M : O p s___
Z s y d = {BINOP, UNOP}

cross, dash, s tar, over, and, or :

cross, dash, not :

E sed = { D v a l}

add, subtract, m ult , div, co n j , disj

negate, Inegate

£ M = { M b o p , M u o p }

E s y o =

E s e o = <

B I N O P ,

U N O P

Dval x Dval -

Dval —> Dval

Dval,

M b o p {(cross)} = A v\, v2 : Dval ■ add(vi, v?)

Mgop((dash)) = \ v i , v2 : Dval ■ subtract(t>i, v2)
M b o p ((star)) = \ v i , v 2 : Dval • mult(v i , v?)
M b o p ((over)) = A v2 : Dval • div(vi} t ^)

Msop((and)) = A uj, v2 : Dval • conj(vi, v2)
M b o p ((or)) = A v i , U 2 : Dval ■ disj (vx, v2)
M u o p ((cross)) = A v\ : Dval ■ v\
M[/op((dash)) = A ui : Dval ■ negate(v{)
M[/op((not)) = A«i : • ln e ga t e (vi)

We will not quote here the rather obvious definitions of the above semantic operators,

or the standard link from the syntactic definition of the syntactic operator symbols.

6.7 C on stan ts

Constants can either be numbers, or the two boolean constants true and false; we

define the lexical syntax:

 1Z8G : B oolConst___
E a = {true, false}
E l = {BOOLVAL}

(true | false) : BOOLVAL

 7Z£G ■ D ig i t_____________
S a = { !) • • • , 9) 0}
E l = {D I G I T }

(1 | . . . | 9 | 0) : D IG IT

97

We can constrain the CONST in CTTZES : Expr with a signature morphism that

takes BO O LVAL ^ CO NST ; this can be further widened by summing in the rules:

 CTTZS8 : N umber______________________________________
£ r = {}
£yv = {CONST, NUM, DIGIT}

CONST -> NUM

NUM -> DIGIT DIGIT*

As before, the specifications in VANfW can safely ignore constants. The definitions

in A T G can be separately constrained by the regular definition of BOOLVAL , and

the context-free definition of N U M , to ensure tha t the constants are still separated

on type. And lastly, the denotational definition will need to interpret constants into

actual values:

 VZM : C on s t s___
Z sy d = { CONST, NUM, DIGIT}
Z s y o = {a : NUM ->■ CONST, truth, fa ls eh ood : CONST}
£ s e m — {Bool, Dval}
E s e o = {}
E m — {M c o n s t }

M c o n s t ((a(num))) = M NUM ({n u m))

M c o n s t ((truth)} = true
Mc o n s t ((falsehood)) = false

We omit the obvious definition of M ^ um-

6.8 Identifiers

Finally, we come to the definition of identifiers. We can define them in the usual

way syntactically:

 CT1ZCS : I d en t s__
£ r = {}
ZN = {IDENT, LETTER, DIGIT}

ID ENT LETTER (LETTER \ DIGIT)*

We will define the concepts of le tter and digit at the lexical level:

98

 1ZEQ : Letter______________________
= { -A, . . . , Z , a . . . , z }

E L = {LETTER}

(A | . . . \ Z \ a | . . . | z): LETTER

Here we assume that CFIZSS : Expr is

 7l£G : Digit---------------------------
£ a = { 1 ,...,9 ,0 }
E l = {DIGIT}

(1 | . . . | 9 | 0) : DIGIT

Imposing this as a constraint on the context-free gram m ar is straightforward.

Next we define identifiers from the scope point of view, with a built-in check to see

if they are in the current environment (this is a variable reference, as opposed to a

variable definition):

V A N W : Idents__
EM = {PRE, POST}

PRE :: ENV.
POST :: ENV.
IDENT from PRE IDENT POST : A.

The a ttribu te gram m ar will require some method of extracting an element of Name

from a variables syntactic appearance; we do not spell this out here, and just include

the following shell for completeness:

 ATQ : Idents__
Es — {Name}
E 0 = E t = { }
E n = {IDENT, LETTER, DIGIT}

IDENT -» LETTER (LETTER \ DIGIT)* { $ $.n a m e = . . . }

The denotational definition for M i d e n t will have to perform an analogous operation,

which we again omit.

6.9 C onclusion

In this chapter we have given a small example of a programming language spec

ification built from modules in five different specification languages, related using

institution mappings and morphisms. Apart from the general advantages of modu

larisation noted in previous chapters, we can see that it lias been possible to omit

modules for language components from some of the institutions altogether, and to

significantly simplify others, compared with standard definitions.

100

C hapter 7

Conclusions

The goal of this thesis was to dem onstrate the applicability of the theory of in

stitutions to the specification and integration of those formalisms used to describe

(various aspects of) programming languages. Here we wish to reflect on the work

done and on its implications.

7.1 W h a t’s b een done?

In the preceding chapters we have taken five programming language spécification

formalisms and constructed five institutions:

1. 7ZSQ for regular expressions

2. CTTZ££ for context-free descriptions

3. A T G for a ttribu te grammars

4. V A M W for van W ijngaarden grammars

5. V £ M for denotational semantics

We have suggested tluit a sixth formalism, axiomatic semantics, does not require a

separate institution but can be seen as the integration of a suitable semantic and

logic institution.

101

We have performed four basic tasks with each of these institutions:

1. We have shown how the formalism can be incorporated into the institu tional

framework

2. We have verified the necessary results, such as the satisfaction condition and

the existence of co-limits in the category of signatures, to ensure th a t these

are, in fact, valid institutions

3. We have discussed and provided examples of their use

4. We have provided institu tion m appings relating these to each other, most

particularly to CTTISS

Chapters three through five develop the individual institutions; an integrated exam

ple of their use was presented in chapter six.

In all cases the design of each institution was the crucial step. We found this to be
*

an iterative process which started w ith a basic definition which was then modified

as we:

- a ttem pted to prove the satisfaction condition

- began to formulate and use actual modules from the institution

- a ttem pted to integrate it with other institutions

It was quite often the case th a t each of these steps resulted in im portant, and oc

casionally quite substantial, modification of the initial definitions. Generally this

involved working on the concept of a model within the institution, but occasionally

modifications to the concept of signature and, less frequently, the sentences were

required. We believe this reflects the general nature of an institutional description

as being “denotational” in style: we already know what the formalism looks like in

practice (as represented by the sentences): our task is to provide a suitable model

for its meaning.

102

We have already m entioned th a t often one of the m ain tasks in constructing an

institution is proving th a t the satisfaction condition holds. Indeed, work has been

carried out (in [GB85]) on specific structures to facilitate this, using charters and

parchments as tools to construct institutions in which the satisfaction condition def-

initionally holds. On the other hand, the proofs of the satisfaction condition for the

institutions in this thesis were not complex. While some of this was undoubtedly

due to the inductive nature of the structures being dealt with, it should be pointed

out that in constructing these institutions originally, attem pting (and failing) to

prove the satisfaction condition provided a key “checkpoint” in their development.

It was often the case th a t the insight gained in checking this condition resulted in

substantial modifications being m ade to the concepts of models and sentences in the

institution, with this in tu rn facilitating the proof of the satisfaction condition.

It might be noted th a t the models are set-theoretic, rather than category-theoretic

in nature (this was perhaps contrary to our own initial expectations!). It should be

remembered that the role of category theory here is as a background to the semantics

of institutions themselves, and th a t this does not imply tha t the actual components

of a given institution need be categorical. Indeed, one of the most common example

of an institution, J-OEQ for first-order logic, is set-theoretic in nature, despite the

availability of alternatives in category theory (as in e.g. [LS86]). This does not, of

course, preclude the definition of more categorical alternatives to our own and their

incorporation within the framework.

On a similar theme, it should be pointed out that some of the power of the “cate

gorical” aspect of institutions has not been exploited here. Since the collection of

signatures in any institu tion is a category we are concerned not only with the sig

natures themselves, but also with the morphisms between them; this leads towards

mechanisms for providing m odularity and param eterisation in modules. While this

is necessarily in the background here in our use of information sharing between mod

ules, we have not pursued the issue fully. A possible development of this work might

include examining the role of parameterised modules in the institutions we have

103

presented, and also the interaction between param eterised modules from different

institutions.

7.2 W h at use is it?

We suggest tha t the contribution made by this work may be dealt with under four

main headings:

1. The theory of institutions

W hile we have not altered the basics of institu tion theory in any fundam ental

way, we have added the new concept of a restraint to the theory, which allows

for presentations in one specification to be “shadowed” by those in another

in a manner not previously possible. In addition, we have introduced the

concept of a presentation-based mapping, which provides for the translation of

signatures in the context of a particular set of sentences.

2. The application of institutions

W ith any new theory much of the initial work in using it involves a process of

familiarisation with the style and goals of tha t theory. One im portant resource

in this process is the existence of a pool of previous work in the area. We have

augmented this by providing examples of the design and definition of five new

institutions, and dem onstrated their application in a small example.

3. Formalisms for describing programming languages

In order to understand the various formalisms used to describe programming

languages, it is necessary to have some common frame of reference within

which to compare them. We suggest tha t the institutional descriptions, along

with the mappings and morphisms tha t we have defined, provide such a ref

erence point by building a homogeneous framework within which they can be

compared and contrasted

4. Programming language specification

As we have previously noted, the approach th a t we have taken has not involved

arbitrary integration of formalisms, but a deliberate policy of constraining the

104

concrete syntax with static semantic descriptions, and then imposing this on

the abstract syntax on which the dynamic definition is based. As such we

suggest tha t this is a style of definition which differs from standard algebraic

approaches, and could be seen as an “institu tional” approach to programming

language specification.

7.3 W h at n ext?

As with any work of this nature, further extensions are possible. We have attem pted

to provide a reasonable cross-sample of the types of formalisms used in programming

language definition; one obvious extension to our work would be the incorporation

of yet more specification languages.

Two other possibilities come to m ind, both under the heading of “im plem entation” ,

though at the object- and meta-level respectively.

• Implementing the specifications

In his work on general logics, [Mes89] incorporates the concept of proof cal

culi within the institutional system, providing an operational aspect to the

definition. In our terms, these proof calculi correspond to parsing strategies,

type-checking algorithms, and methods for prototyping semantic definitions.

Given our institutional descriptions, it might be useful to investigate their

operational side; this would involve

— Formulating institutional descriptions of the calculi involved

— Attem pting to investigate their possible integration along the line of the

institution mappings th a t we have specified

From the software engineering point of view, we might envisage a refinement

calculus being associated with some or all of the languages; it could be relevant

to investigate the possibilities of carrying out such refinements “in tandem ”

between formalisms connected by mappings or morphisms

105

• Implementing the framework

The theory of institutions itself forms a specification language, and would ben

efit from the availability of the types of tools associated with other specification

languages. In particular, some autom atic assistance in the verification of the

satisfaction condition would be a considerable help. The prospects here are

quite tangible: something close to this already exists with the logical frame

work LF [HST89a], and, with a suitable framework for describing category

theory, it should be possible to build up a suitable theory of institutions in

some meta-logical framework such as Isabelle [Pau90] or Coq [DF+93].

Both of these are worthy of further study and would, we believe, help to underline

the usefulness of the theory of institutions for the specification of programming

languages.

106

A ppendix A

C ategory T heory

Here we define some of the basic concepts from category theory used in this docu

m ent. The standard reference for category theory is [Mac71], for a computing-related

introduction [BW90] is particularly comprehensive; other references include [RB88],

[AL91] and [Pie91]. A general overview of the relevance of various categorical con

cepts in computing can be found in [Gog89].

Category

A category consists of:

• a collection of objects

• a collection of arrows (also called morphisms), indexed by two objects (called

its source and destination); we w rite /: A —> B if / is a morphism from object

A to object B

such tha t

• For any objects A , B and C, and arrows / : A B and g: B —► C there is an

arrow f - , g : A —> BC, called their composition, such tha t for any arrows f , g

and h which can be composed, we have

/ ; (<?; h) = (/; g)\ h

A-l

• For each object B there is an arrow ids, such th a t for any m orphism s/ : A -4 B

and g: B —► C we have

f - , i d A = f and idA\ g = g

The set of objects of any category C is usually written as \C\.

D uality

The dual of any category C has the same objects as C , with the arrows going in the

opposite direction; it is written C op

Functor

Given two categories C and D , we define a functor F: C —> D as consisting of:

• A function Fo mapping C-objects to D-objects

• A function Fa mapping C-arrows to D-arrows, where if / : A —> B is an arrow

in C then Fa (/) ' Fo(A) —> Fo(B) is an arrow in D

such that:

• For any C-object ,4,

Fa ^ a) = IDFq(a)

• For any composable C-arrows / and g,

FA{f\ g) = FA{f)- FA(g)

Given any two C-objects A and B , any functor F: C —> D induces a mapping from

the arrows between A and B to the arrows between F (A) and F (B); then

• A functor is said to be fu ll if this m apping is surjective

• A functor is said to be fa ith fu l if this mapping is injective

A-2

Sub-C ategory

A category C is a sub-category of some other category D. if it set of objects and

arrows are subsets of those from D. It is a full s u b -c a te g o ry if the induced

inclusion functor from C to D is full.

N atural Transform ation

Given any two functors F: C —> D and G'. C —> D , a natural transformation 77: F =>

G consists of:

• For each C-object A, a D-arrow 77.4 : F(A) G(A)

such that:

• For any C-arrow / : A —► B,

rM; G(f) = F(f) \ VB

Diagram

A diagram in a category is any collection of objects and arrows from tha t category

CoCones

A cocone a in some category C consists of:

• some C-diagram a D, called the base, of the cone

• some C-object o '1, called the apex of the cone

• for each node / in the diagram, an arrow a / : I A

such that:

• For any edge e: / —> J in a ,

a i = e; a j

A-3

CoLimits

A colimit in some category C is any C-cocone a such that

• If p is any other C-cocone with the same diagram as a then there is a unique

C-arrow / : a A —> ftA such th a t for any node / in the base

a r , f = Pi

Colimits for a diagram are unique up to isomorphism.

In itia l O bject

An object is initial in a category if it is the colimit of the empty diagram

Coproducts

The coproduct (or sum) of two objects is the colimit of the diagram containing those

objects (with no edges)

Pushouts

For any two morphisms in a category / : A -» B anti li: A C, their pushout is the

colimit of the corresponding diagram

Cones and Lim its

C ones are dual to cocones

L im its are dual to colimits

T e rm in a l O b je c ts are dual to initial objects

P ro d u cts are dual to sums

P u llbacks are dual to pushouts

A-4

Exam ples o f C ategories

Some of the standard categories mentioned in this thesis are:

• S e t whose objects are sets and morphisms are (total) functions

• C a t whose objects are categories and whose morphisms are functors

• C a top which is the dual of C a t; i.e. it has the same objects, but all the arrows

are reversed

• 2 which has two objects and no arrows

A-5

Bibliography

[AL91]

[AM91]

[ASU86]

[Avr91]

[Bar 74]

[BEPP87]

[BG80]

[BG81]

A. Asperti and G. Longo. Categories, Types and Structures. M IT Press,

1991.

H. Alblas and B. Melichar, editors. Attribute Grammars, Applications

and Systems , volume 545 of Lecture Notes in Computer Science. Springer

Verlag, 1991.

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques

and Tools. Addison-Wesley, 1986.

Arnon Avron. Simple consequence relations. Information and Computa

tion., 92:105-139, 1991.

K .J. Barwise. Axioms for abstract model theory. Annals o f Mathematical

Logic, 7:221-265, 1974.

E.K. Blum, H. Ehrig, and F. Parisi-Presicce. Algebraic specification

of modules and their basic interconnections. Journal o f Computer and

System Sciences, 34:293-339, 1987.

R.M. Burstall and J.A. Goguen. The semantics of clear, a specification

language. In G. Goos and J. Hartm anis, editors, Advanced Course on

Abstract Software Specification, volume 86 of Lecture Notes in Computer

Science, pages 292-332. Springer Verlag, 1980.

R.M. Burstall and J.A. Goguen. An informal introduction to specifica

tions using CLEAR. In R.S. Boyer and J.S. Moore, editors, The Cor

rectness problem in Computer Science, pages 185-213. Academic Press,

1981.

BIB-1

[BJ82]

[BV87]

[BW90]

[Cou90]

[Cro93]

[DF+93]

[DJ90]

[EM90]

[FS88]

[BHK89]

[GB85]

J.A. Bergstra, J. Heering, and P. Klint. Algebraic Specification. Addison-

Wesley, 1989.

D. Bjorner and C.B. Jones. Formal Specification and Software Develop

ment, chapter 9, pages 271-320. Prentice Hall, 1982.

C. Bierle and Angelika Vo/?. Viewing implementations as an institution.

In D.H.P itt, A.Poigne, and D.E. Rydeheard, editors, Category Theory

and Computer Science, volume 283 of Lecture Notes in Computer Science,

pages 196-218. Springer Verlag, 1987.

Michael Barr and Charles Wells. Category Theory for Computing Science.

Prentice Hall, 1990.

P. Cousot. Methods and logics for proving programs. In van Leeuwen

[vL90], chapter 15, pages 814-994.

Roy Crole. Categories for Types. Cambridge University Press, 1993.

G. Dowek, A. Felty, et al. The Coq proof assistant user’s guide. Technical

report, Project Formel, INRIA Rocquencourt, February 1993.

P. Deransart and M. Jourdan, editors. Attribute Grammars and their

Applications, volume 461 of Lecture Notes in Computer Science. Springer

Verlag, 1990.

H. Ehrig and B. Mahr. Fundamentals o f Algebraic Specification 2: Module

Specifications and Constraints. Springer Verlag, 1990.

Jose Fiadeiro and Amilcar Sernadas. Structuring theories on conse

quence. In D. Sanella and A. Tarlecki, editors, Recent Trends in Data

Type Specification, volume 332 of Lecture Notes in Computer Science,

pages 44-72. Springer Verlag, 1988.

J.A. Goguen and R.M. Burstall. A study in the foundations of pro

gramming methodology : Specifications, institutions, charters and parch

ments. In D.H. P itt, S. Abramsky, A. Poigne, and D.E. Rydeheard, ed-

BIB-2

[GJ90]

[Gog89]

[GTW78]

[Hen90]

[HST89a]

[HST89b]

[IEE89]

[K1Ì93]

[GB 92]

[Kos91]

itors, Category Theory and Computer Programming, volume 240 of Lec

ture Notes in Computer Science, pages 313-333. Springer Verlag, 1985.

J.A. Goguen and R.M. Burstall. Institutions: A bstract model theory for

specification and programming. Journal o f the A.C.M., 39(1):95—146,

January 1992.

D. Grune and C.J.H. Jacobs. Parsing Techniques: a practical guide. Ellis

Horwood, 1990.

Joseph Goguen. A categorical manifesto. Technical Monograph PRG-72,

Oxford University Computing Laboratory, M arch 1989.

J.A. Goguen, J.W . Thatcher, and E.G. Wagner. An initial algebra ap

proach to the specification, correctness and im plem entation of abstract

data types. In R.T. Yeh, editor, Current Trends in Programming Method

ology, volume IV, chapter 5, pages 80-149. Prentice Hall, 1978.

M atthew Hennessy. The Semantics of Programming Languages. Wiley,

1990.

R .Harper, D. Sanella, and A. Tarlecki. Logic representation in LF.

In D.H. P itt, D.E. Rydeheard, P. Dybjer, A.M. P itts, and A. Poigné,

editors, Category Theory and Computer Science, volume 389 of Lecture

Notes in Computer Science, pages 250-272. Springer Verlag, 1989.

R. Harper, D. Sannella, and A. Tarlecki. Structure and representation in

LF. In Fourth Annual Symposium on Logic in Computer Science [IEE89],

pages 226-237.

IEEE. Logic in Computer Science. IEEE Com puter Society Press, jun

1989.

P. Klint. The A SF+SD F m eta-environment user’s guide. Technical re

port, CWI, Am sterdam , 1993.

K. Koster. Affix grammars for programming languages. In Alblas and

Melichar [AM91], pages 358-373.

BIB-3

[LMB92]

[LS86]

[MA86]

[Mac71]

[May85]

[Mes89]

[Mos89]

[Pag81]

[Pau90]

[Pie91]

[Poi89]

J. Levine, T. Mason, and D. Brown. Lex and Yacc. O ’Reilly, 1992.

J. Lambek and P.J. Scott. Introduction to Higher Order Categorical Logic.

Cambridge Studies in Advanced m athem atics; 7. Cambridge University

Press, 1986.

E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Seman

tics. Springer Verlag, 1986.

Saunders MacLane. Categories for the Working Mathematician, volume 5

of Graduate Texts in Mathematics. Springer Verlag, 1971.

Brian Mayoh. Gallaries and institutions. Technical Report DAIMI PB-

191, Aarhus University, Com puter Science D epartm ent, March 1985.

Jose Meseguer. General logics. In H.D. Ebbinghaus et al., editors, Logic

Colloquium 1987, Studies in Logic and the Foundations of M athematics,

129, pages 275-329. Elsevier Science Publishers B.V. (North-Holland),

1989.

Peter Mosses. Unified algebras and institutions. In Fourth Annual Sym

posium on Logic in Computer Science [IEE89], pages 304-312.

F.G. Pagan. Formal Specification of Programming languages. Prentice

Hall, 1981.

L.C. Paulson. A formulation of the simple theory of types (for Isabelle).

In P. M artin-Löf and G. Mints, editors, COLOG-88 (Intl. Conf. on Com

puter Logic), volume 417 of Lecture Notes in Computer Science, pages

246-274. Springer Verlag, 1990.

B.C. Pierce. Basic Category Theory for Computer Scientists. M IT Press,

1991.

Axel Poigne. Foundations are rich institutions, but institutions are poor

foundations. In H. Ehrig, H. Herllich, H .J. Kerowski, and G. Pleuss,

editors, Categorical Methods in Computer Science, volume 393 of Lecture

Notes in Computer Science, pages 82-101. Springer Verlag, 1989.

BIB-4

[PP92] T. P ittm an and J. Peters. The Art o f Compiler Design. Prentice Hall,

1992.

[RB88] D.E. Rydeheard and R.M. Burstall. Computational Category Theory.

Prentice Hall, 1988.

[Reg90] Gianna Reggio. Entities: an institution for dynamic systems. In H. Ehrig,

K.P. Jantke, F.Orejas, and H.Reichel, editors, Recent Trends in Data

Type Specification, volume 534 of Lecture Notes in Computer Science,

pages 246-265. Springer Verlag, 1990.

[RR92] R .Burstall and R.Diaconescu. Hiding and behaviour: an institutional

approach. Technical report, Programming Research Group, Oxford, 1992.

[Sch86] David A. Schmidt. Denotational Semantics: a methodology for language

development. Allyn and Bacon, 1986.

[Sco74] Dana Scott. Completeness and axiom atizability in many-valued logic. In

Proceedings of the Tarski Symposium, pages 411-435, Providence, R.I.,

1974. A.M.S.

[Spi88] J.M. Spivey. Understanding Z: A specification language and its formal

semantics. Cambridge University Press, 1988.

[Spi89] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1989.

[ST84] Donald Sanella and Andrzej Tarlecki. Building specifications in an arbi

trary institution. In G. Khan, D.B. MacQueen, and G. Plotkin, editors,

Symposium on Semantics o f Data Types, volume 173 of Lecture Notes in

Computer Science, pages 337-356. Springer Verlag, 1984.

[Ste92] Petros Stefaneas. The modal charter. Technical Report PRG-TR-29-92,

Oxford University Computing Lab., 1992.

[Ten91] R.D. Tennent. Semantics o f Programming Languages. Prentice Hall,

1991.

BIB-5

[vL90]

[Wat 91]

J. van Leeuwen, editor. Handbook of Theoretical Computer Science. El

sevier, 1990.

David A. W att. Programming Language Syntax and Semantics. Prentice

Hall, 1991.

BIB-6

