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In s t itu t io n a l A p p ro a ch es  to  

P ro g ra m m in g  L an gu age S p e c if ica tio n

James Power

A bstract

Formal specification has become increasingly im portant 

both as a design tool, and as a basis for verified software 

have long been in use in the field of programming language design and implemen

tation, and many formalisms, in both the syntactic and semantic domains, have 

evolved for this purpose.

In this thesis we examine the possibilities of integrating specifications written in 

different formalisms used in the description of programming languages within a 

single framework. We suggest th a t the theory of institutions provides a suitable 

background for such integration, and we develop descriptions of several formalisms 

within this framework. While we do not merge the formalisms themselves, we see 

tha t it is possible to relate modules from specifications in each of them , and this is 

dem onstrated in a small example.

in software engineering, 

design. Formal methods
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Chapter 1

Introduction

In this chapter we seek to m otivate the work contained in this thesis, and to explain 

some of its background in the field of programming language design and implemen

tation.

1.1 The Structure of a Program m ing Language

Broadly speaking, the description of programming languages can fall into the main 

categories used in linguistics for natural languages; specifically, we can speak of its:

• syntax , or the symbols used to denote specific concepts, and the correct gram

m atical form for their usage

• semantics, which is the m ethod of assigning a meaning to some given text 

from the language

One of the simplest ways of providing a definition of a programming language’s 

syntax and semantics is to write a compiler for it. This functions as a definition in 

two ways:

•  it is a recogniser for the language: it will tell us which input programs belong 

to the language and which don’t

• it gives a meaning to any correct program by translating it into some other 

language (such as assembly language)
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In operational terms, these are often referred to as the analytical and generative 

phases of the compiler respectively.

Obviously the expectations which are nowadays associated with software engineer

ing projects of any significance would suggest tha t some further description be given 

in addition to the final version of the working program. However, it will serve our 

purpose to consider a programming language definition in terms of the com putations 

involved in its implementation.

Broadly speaking, compilation can be divided into four phases:

1. Lexical analysis, or scanning, which determines if the correct symbols have 

been used in the input; some basic grouping may occur here such as the  for

m ation of words from these symbols. Irrelevances such as whitespace and 

comments are usually removed at this stage.

2. Syntax analysis, or parsing, checks to see th a t the words identified in the 

input have been put together in the correct sequence. Such checking is free of 

global context, in that a phrase is checked only w ith reference to its immediate 

neighbours. Often this process proceeds iteratively from the output of the 

scanning phase, by grouping together larger and larger phrases until the entire 

input is structured hierarchically.

3. Static semantics, which involves conducting the remaining analysis operations 

on the source code which cannot be handled by the formalisms used for syntax 

analysis. Typically this phase will include checking details such as scope rules, 

type consistencies etc.

4. Dynamic semantics, or code generation, defines the (now fully-analysed) pro

gram in terms of some other formal system; for a compiler this will be some 

form of interm ediate, object or target code.

These divisions are not, of course, absolute; for example
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- many systems do not bother to differentiate between lexical and syntax anal

ysis

- more advanced formalisms may incorporate some semantic operations (such 

as symbol-table maintenance) into the syntax definition

- often the static and dynamic semantics are merged (this turns the la tte r into 

a partial operation over syntactically well-formed sentences, instead of a total 

operation over semantically correct programs).

- The dynamic semantics may themselves be broken into several phases in order 

to facilitate optimisation, retargetting etc.

Even the division between syntax and semantics may be made less distinct by the 

presence of ambiguity, where some aspects of the syntactic analysis depend on se

m antic information.

The division of the process will depend on various factors such as the complexity of 

the language, the purpose of the definition and, not least, the nature of the formal 

specification m ethod used (often itself a product of the intended use). Indeed, it is 

fair to say th a t the above division owes much to the (empirically justifiable) assump

tion of a context-free-grammar formalism for describing the syntax of a language.

Standard texts which describe the above phases in detail include [ASU86] and 

[PP92].

1.2 Specification o f Program m ing Languages

W riting a compiler for a programming language is basically just another software 

engineering process, and may be expected to benefit from the techniques commonly 

associated with this field. A well-established practice in this area is the formulation 

of a formal specification prior to, and as a basis for, program implementation.
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The formal specification of a compiler is what is more usually regarded as the defini

tion of a particular programming language. More specifically, definitions are usually 

developed at a level of abstraction which is independent of a particular compiler 

implementation; maximum abstraction is desirable for a general-purpose language 

whose designers wish to encourage implementation on many platforms.

Many of the reasons for requiring a form al definition of a programming language are 

elaborations of the general case:

• Even if implementation is not directly considered, the formal specification of a 

project can be seen as worthy in itself, as it allows for the formal consideration 

of design decisions and the full exploration of the implications of the definition. 

The abstraction of im plem entation details allows the language designer to 

work in an environment more likely to lead to improvements in the nature of 

programming languages themselves, as opposed to just efficiency of operation.

• The autom ation of the program derivation process in general is highly desir

able, as much of this work is detailed and error-prone. In a restricted domain 

of application such as programming languages it is reasonable to assume that 

the scope for such autom ation should be increased. Indeed, the compiler- 

generation tools lex and yacc [LMB92], and their many variants, provide some 

degree of functionality in this area. A ttem pts at autom atically generating 

complete compilers have had various degrees of success, but all are at least 

noteworthy for their value as prototype implementations.

• The whole process of formal program derivation (or specification refinement) in 

an arbitrary domain of application depends on having a formal definition of the 

target programming language, so that the transform ation from specification 

to im plem entation can take place within a homogeneous framework. While 

the definition of the specification and programming languages cannot always 

be guaranteed to be expressed using the same formalism, it should at least be 

possible to construct a suitable mapping between them.

• One of the m ajor goals of formal specification as a tool in software engineer



ing is the development of provably correct programs. In order for this to be 

meaningful, the result of a process of formal refinement, the program, should 

not then be subjected to software which itself has not been formally derived: 

if we cannot depend on the compiler, then the whose process is in doubt.

The need for formality in the description programming languages has given rise to 

a variety of specification languages; some of the m ain approaches include:

• Expressions

This is the simplest way of describing any language, where we simply use the 

elements of a set, along with some given collection of operations over th a t set: 

one example is regular expressions, commonly used to describe a languages 

lexical syntax. A particular characteristic of such definitions is tha t they are 

“flat” , providing no hierarchical structuring on the language

• Grammars

The syntactic description formalism of choice is, unquestionably, the context- 

free grammar (CFG). Almost every programming language will at least have 

a formal description of its syntax either as a standard CFG, or using one of 

its variants such as BNF. More powerful grammars, such as context-sensitive 

or free grammars could be use to describe semantics, but in practice have not 

been found useful for this.

• Two-Level Grammars

These seek to stick with the general concept of grammar-based approaches 

by augmenting ordinary CFGs with specific operations for dealing with se

mantics. Examples here include attribu te  grammars, affix grammars and van- 

W ijngaarden grammars. The first of these lies at the heart of most of the 

popular tools for compiler construction.

• Operational Semantics

One of the earliest formalisms: here the concept of a “com putation” is de

scribed formally (perhaps by using an abstract machine), and the constructs of 

the programming language are translated into these computations (see [Hen90]
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for some examples). The Vienna Definition Language, an ancestor of VDM, 

was originally used for this purpose.

• Denotational Semantics

Also called “Scott-Strachey semantics” , or simply “m athem atical” semantics, 

these seek to describe a program ’s components in term s of known m athem atical 

constructs, many of which originate in category theory. Often the functional 

nature of such descriptions allows them  to be quickly translated into programs, 

blurring the distinction with operational semantics somewhat. [Sch86] is a 

standard reference.

• Algebraic Semantics

Here an abstraction of the program ’s syntax is taken to be an algebraic sig

nature, and all other aspects of the language, including its concrete syntax 

and various aspects of its semantics, are seen as models of tha t signature. 

Formalisms based on this approach include the ASF of [Kli93].

For a general overview of semantic formalisms, see [Pag81], [Wat91] or [vL90, Vol. 

2]-

1.3 Integrating Specification Formalisms

It is fundam ental to our approach that we do not consider a programming language 

as a single specification entity, but as the result of combining specifications from a 

number of different formalisms. Each of these formalisms may be seen as a logic, 

possessing its own syntax and semantics: these should not be confused with the syn

tax and semantics of the programming language itself. Our goal then is to provide 

a framework where each of these individual specification formalisms can interact to 

provide, jointly, the definition of the programming language.

Roughly speaking we might regard the traditional decomposition of a program

ming language specification as being “horizontal” in nature with clear, well-defined 

boundaries between the different layers. As an alternative, we wish to incorporate

6



“vertical” slicing between the specifications, so th a t components from different spec

ification languages which describe the same program m ing language concepts may 

be linked.

Combining horizontal and vertical m odularisation

Note that we do not wish to provide one single specification language th a t can 

describe all aspects of a programming language: ordinary languages such as VDM 

[BJ82], Z [Spi89] or any of the algebraic languages (see particularly [BHK89]) will do 

nicely for this. R ather we wish to m aintain the heterogeneity between the languages, 

on the grounds tha t this
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• allows different aspects of the language to be described by formalisms specifi

cally suited to th a t task thus, presumably, m aking the specification easier to 

construct and read

• perm its different implementation strategies to be considered, some of which 

may possess greater optim ality for specific tasks (e.g. using Finite-State Au

tom ata to implement regular definitions, rather than  more powerful context- 

free parsing algorithms)

• facilitates the incorporation of existing descriptions using some of the for

malisms mentioned above, or others, since a considerable body of such speci

fications already exists

• may allow the integration of specification for different programming languages, 

where the num ber of different formalisms involved may further increase

Hence we need some sort of structure which is abstract enough to incorporate ex

isting formalisms at the object level. In general: we use programming languages 

to describe algorithms; we can use specification languages to describe programming 

languages; what we want is a language th a t will describe specification languages.

Our thesis is that the theory of institutions provides a suitable framework for this 

type of integration. This theory is based on category theory, a formalism which is 

increasingly being used to give high-level descriptions of algebraic and logic based 

languages. Indeed, much of the theory of institutions is based on a categorical 

semantics for CLEAR [BG80], as is much of the work in denotational semantics on 

which the semantics of Z as given in [Spi88] is based. Many of the higher-order type- 

theoretic formalisms which incorporate ordinary classical logic as a sub-components 

also look towards category theory for a formal definition (see e.g. [AL91] or [Cro93]).

1.4 Structure of the Thesis

In chapter 2 we describe the theory of institutions; while they are based in category 

theory, m any of the concepts should look familiar to anyone with a background in
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algebraic specification. As well as presenting the basic structures, we augment these 

slightly by providing a new construct, which we call a restraint, for linking specifi

cations from different formalisms.

Chapters three, four and five contain institutional descriptions of six program

ming language specification formalisms: regular expressions, context-free grammars, 

a ttribu te  grammars, van W ijngaarden grammars, denotational semantics and ax

iomatic semantics. The purpose of this presentation is twofold:

1 . to dem onstrate the suitability of this framework for such descriptions

2 . to present the basic results needed to incorporate the different formalisms 

within the theory of institutions.

In chapter 6 we present an example of a simple programming language, and demon

strate the application of our work by giving a m odular, heterogeneous description 

of aspects of its syntax and semantics, and integrating these in the institutional 

framework.

Note th a t while the example is presented as a unit in chapter 6, it should also be read 

in conjunction with the previous chapters, as components of it will help illum inate 

the definitions given there.
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Chapter 2

Institu tions

If a language has a precise, formal semantics, then any sentences from th a t language 

constitute a formal specification. Typically, formal specification languages as used 

in computer science are thought of as working at a “higher” level than  programming 

languages, in that the objects they describe need not be computable or algorithmic 

in nature. Such languages are generally based on abstract m athem atical concepts 

such as set theory, first-order logic or algebra. In order to compare or integrate 

formal specification languages we thus require a framework which is general enough 

to be able to contain each of these, already quite general, formalisms.

A ttem pts to generalise the concept of a logic can be traced back to Tarski’s original 

works on consequence relations, and emerges most notably in a category-theoretic 

framework in [Bar74]. Here, in answer to the question “W hat is a logic?” Barwise 

takes seven different types of logic and attem pts to distill their common properties. 

While each of these logics has its own language, semantics and form of assertions, 

the relationships between the la tte r two under change of language form the basis of a 

translation axiom which asserts th a t logical consequence is preserved independently 

of the language used.

Around the same tim e, and again based on ideas from category theory, much work 

was being done on algebraic specification languages. The most common approach 

regarded a set of equations over some signature as denoting the (isomorphism class



of the) corresponding initial algebra (see e.g. [GTW78]). One alternative to this 

approach was th a t taken with the algebraic language Clear [BG81], where specifi

cations were interpreted “loosely” , in that any model which satisfied the equations 

was acceptable. The formal semantics of Clear in [BG80] made use of constructions 

which, it was found, could be generalised to specification languages not based on 

algebra. By parameterising out the algebraic content the remaining skeleton forms 

the basis of the theory of institutions, as described in a series of articles culminating 

in [GB92],

Closely related approaches include 7r-institutions [FS88], galleries [May85], founda

tions [Poi89], logical systems [HST89b] and general logics [Mes89].

2.1 Institutions

W hen attem pting to formally define something we must first fix on a notation or set 

of term s with which to denote the objects we wish to work with. Once these have 

been listed out they must then be defined by specifying their relationship with the 

objects that they are supposed to denote. Next we must specify (usually by means 

of a grammar) how to form assertions with the term s, with the understanding tha t 

these sentences will describe properties of and relationships between the objects. 

Finally we must describe some way of giving meaning to the assertions so th a t their 

tru th  or falsehood can be worked out.

terms — >• objects 

sentences — >■ truth values 

The one condition we place on this structure is tha t if we change the notation being 

used then, since we have not changed the underlying objects, there should be some 

way of changing the sentences so th a t their denotation is also static. This is the 

property which is taken as the distinguishing feature of a logic; specifically:

“Truth is invariant under change of notation”

We note tha t this approach is entirely denotational in nature. The truth/falsehood
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When the name of the institution is clear from the context it will be om itted; thus, 

assuming afixed institution, we might rephrase the satisfaction condition as:

m  |= [ a ] e  [ f f ] m  f=  e

Further generalisation, not used here, would use C a t as the target of Sen, with the 

extra morphisms representing deduction; i.e. an arrow between objects A  and B 

would imply that for any model in which A is true it will be the case th a t B  is true 

also. Another possibility is to enhance the concept of satisfaction beyond a simple 

truth-valued answer, and allow something of the form m \= t  to denote an object 

from some chosen value category. In this context, the definition given above could 

be seen as using the category 2  as its value-category.

Based on the model-theoretic definition of satisfaction, we can define a syntactic 

notion of consequence which gives a relation between sentences. We say th a t a sen

tence e is a consequence of some set of sentences E  iff it is satisfied in all models 

which satisfy E. Note tha t this is entirely defined in term s of satisfaction, and does 

not relate to a particular proof system. For any set of sentences E , we write E * for 

the set of sentences which are the consequences of E ; this echoes the original Tarki- 

style definition of consequence as developed in papers such as [Sco74] and [Avr91]. 

(As an alternative to institutions, the 7r-institutions of [FS88] treat the concept of 

consequence as primitive, and involve models only as a defined concept).

A number of institutions are described in [GB92]. The institution £Q  of many-sorted 

equational logic has

• as signatures pairs of the form (S , £ ), where S  is a set (of sort-names) and E 

is a ¿'-indexed set of operators

• a model involves interpreting the sorts as sets and the operators as (appropriately- 

typed) functions over these sets.

• a sentence assumes the existence of some set of sort-indexed variables, and 

takes the form (VX ) ti  =  i2? where X  is a list of variables, and ¿i and t2 are 

term s formed from the operators and variables (in a sort-consistent manner).



• A sentence over a signature is then “satisfied” in a given model of tha t signa

ture if for all possible assignments to the values of the variables, the interpre

tation of ti and ¿2 yield the same object

W ith any such definition comes a num ber of proof obligations: it is necessary to 

show that the objects defined do in fact form categories and functors and, most im

portantly  from the institutional point of view, th a t the satisfaction condition holds. 

The construction of this last proof can, in certain situations, be facilitated using the 

structures of charters and parchments; examples using the above institu tion can be 

found in [GB85].

The above institution can be extended to the institu tion of (many-sorted) first-order 

logic with equality, F O Z Q , by adding in predicate symbols to the signature, inter

preting them  as relations in the model, and allowing the use of the standard logical 

connectives such as conjunction, implication etc. in the sentences.

Other applications of the theory of institutions include:

• Horn-Clause Logic [GB92]

• Modal Logic [Ste92]

• Power algebras [Mos89]

• Logics for information hiding [RR92]

• Specification refinem ent/im plem entation [BV87]

• Algebras for dynamic systems [Reg90]

2.2 Working w ith Institutions

Once we have “set up” an institution for a given specification formalism we are ready 

to deal with specifications w ritten in th a t language. At its simplest, a specification 

consists of a list of sentences over a given signature; in institutional term s, given 

some signature E, a specification in this language would be called a E-presentation.
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Note th a t the set of sentences involved in a presentation is not necessarily finite, 

although this is clearly desirable in many cases.

The standard denotation of a given presentation is taken to be the collection of 

all those models which satisfy all the sentences in the presentation. For any given 

E-presentation, the collection of models which it denotes forms a full subcategory of 

[EJ. For any given presentation we can speak of its closure under the consequence 

operator. A theory is a presentation which is closed; in the absence of models it 

would not be unreasonable to take a theory as being the denotation of a given pre

sentation.

We can define a category Pres of presentations whose objects are pairs of the form 

(E, A) for any set of E-sentences A. There is a m orphism between any two objects 

(S ', A 1) and (E, A) if there is a signature morphism a: S ' —» E such tha t cri^A'*) C A*. 

This has a full subcategory The of theories whose objects are of the form (E. A) 

such th a t A is closed. We note in addition the existence of a forgetful functor 

Sign : Pres —> Sign sending presentations to their underlying signature.

It is not usual to build whole specifications from just a single presentation; usually we 

will want operations within the language which allow us to modularise the descrip

tions. Thus we envisage some kind of language for working with these “modules” 

in order to produce presentations; one of the most useful features of institutions is 

the ability to define an algebra for m anipulating these modules in a m anner which 

applies uniformly to a broad range of specification languages.

In the next section we present such a module algebra; as such it parallels closely the 

Clear specification language. In such definitions it is common to blur the distinction 

between presentations and components of the module algebra; however, to ensure 

clarity we will be somewhat pedantic in differentiating between these. 1

1The m atter is somewhat worse in Clear, as the standard name for a module is a “theory” !
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This section presents a notation for constructing “m odules”; we assume th a t each 

such module can denote a presentation from any given institution. We will use the 

term  “specification” in future to refer to any list of modules.

Recent work on m odular algebraic specification languages such as [EM90] and [BEPP87] 

picture any module as consisting of four component specifications:

BOD the body of the specification

EXP along with a morphism v: E X P  —> BOD, which specifies those components of 

the module visible to any module which im ports it

IMP and a morphism s\ IM P  —»■ BOD, which specifies the im ported modules

PAR specifying the param eters, and two morphisms e: PAR  —y E X P  and i : PAR —> 

IM P.

PAR  — —  EXP  

i v

IM P  — —  BOD

For simplicity in our discussion we will omit dealing w ith any E X P  presentation; 

we suggest tha t this can be compensated for by means of appropriate selection of 

inclusion morphisms between theories, renaming some of their elements so as to 

avoid clashes. Similarly, we will assume th a t the param eter and im port modules are 

disjoint.

First of all we assert that any presentation is a module. To define some module, let 

us call it Mod, we will use a Z-like notation, and write:

M od___________________________________________________________
[Signature Part]

[Sentences]

2.2.1 M odularising Specifications

16



W hat actually appears in the definition will depend on the particular institution; we 

do not seek to fix any kind of notation for this. In situations where more than  one in

stitu tion is involved, we will join this to the name of the module, such as Z A fS  : Mod.

The simplest way of combining two modules is to include one of them within another; 

the corresponding presentation then will contain the presentation of the included 

module as a sub-part. To include some module I  within some other m odule M  we 

will write:

Import I  into M

Any module may im port a number of other modules, and each of these may also 

contain (not necessarily disjoint) sets of im ported modules. Based on this we can 

envisage, for any given specification, a graph-like structure where the nodes are 

presentations corresponding to modules and the edges correspond to (inclusion) 

presentation morphisms. The graph for any given module m ay be seen as a cone in 

P re s  in which the presentation corresponding to the module itself is the apex, and 

those corresponding to its its im ported modules form the diagram at the base.

Given any two modules M l and M2 we can also combine two modules on an “equal” 

basis - effectively taking their union. The most basic way of doing this would be, 

assuming the existence of sums in Sign, to define the presentation corresponding 

to the union of M l and M2, which we write as M l +  M2 as containing the sum of 

their signatures and the union of their sentences. However, this disjoint summing is 

a rather blunt operation, since we will wish to equate common sub-modules. Thus 

the appropriate categorical construction here is to regard the meaning of M l +  M2 

as the co-limit of the corresponding diagrams in the category P res .

Another useful operation is renaming; given a signature morphism between two 

signatures S ' and £ , we can then apply this to any module M ' with signature S ' to 

get a module with signature S. This module will be written as:

Translate M ' by a

Numerous other operations may be specified over these modules but we will have
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following diagram in Pres:

B

   A

This gives a presentation containing both B  and A in which their common elements, 

as specified by R , have been identified.

2.3 Combining Institutions

We have seen tha t one an institu tion has been constructed for a particular specifi

cation formalism it is possible to structure and combine different presentations from 

that formalism. Given tha t this framework is not specific to a particular institution, 

it seems natural to examine the possibilities for combining presentations from differ

ent institutions. To do this it will be necessary to specify the relationship between 

their components.

Since an institution consists of a category and two functors, any a ttem pt to relate 

a pair of them  will involve a functor and two natural transformations. Suppose we 

have two institutions X  =  (Sign, Sen, Mod, |=/) and X + = (Sign+ , Sen+, Mod+, )=/+ 

). The simplest way of relating these is to define a mechanism for translating I  

presentations into X+ (or vice-versa, depending on which is more suitable for the 

given instance). To do this [Mes89] defines the following:

Definition 2.2 Institution Mapping

Given two institutions X and X + as above, we define an institution mapping =£> 

X+ as consisting of:

1. a functor  <?: Sign -»  Sign+

2. a natural transformation a: Sen => % 5en+)



a natural transformation (3: (<P § Mod+) =>• Mod 

that fo r  each S  in S ign, the following condition holds:

b$(E) a s ( e )  / ? s (w + ) [=s e

e m+ ¿5 a $  (£ ) -model from  X + and e is a set o f £  -sentences from  I .

sort of operation is useful in a number of situations. Perhaps X  represents 

: weaker formalism (and which is thus easier to implement) in which part of a 

Lem has been defined, and this now needs to be linked in to the main body of 

pecification. Another possibility is tha t the specification consists of a number 

fferent formalisms, and X+ is some language which connects them all together. 

is is quite common in software engineering, X  could be “more abstract” than 

ind the mapping constitutes the basis of a refinement step (with ¡3 representing 

nany-to-one relationship between concrete and abstract models).

tote tha t institutions and institution mappings form a category with the obvi- 

dentity and composition of functors between signatures and a- and /3-generated 

vs in S e t and C a top respectively. If the signature categories of any two insti- 

ms X  and X+ allow, then we can conceive of structures such as product and sum 

tutions etc.

,1 C o n stra in ts

definition of institution mappings given above would seem to be intuitively 

;ct; however an alternative version is presented in [GB92] in which the natural 

sformations go in the opposite direction; these are called institution morphisms.

n itio n  2.3 Institution Morphism

•n two institutions X andX + as before, we define an institution morphism <$>:X =£► 

is consisting of:

a functor <P\ S ign  -» S ig n +

20

rrom X +.

hat mappings en- 

sls), while the use

ormations can be 

G!B92]. Given an 

luplex-constraint

ation morphism,

ences from [£] - 

treat constraints 

iy  <t: E E' we

9; <&(cr)) via $

ures and models 

lowed to include 

[its as follows:

:$(E) P +

; to allow X  to 

itax  present to



enable other aspects to be modelled (presumably) more successfully in which is 

more suited to this purpose. We note tha t it can be shown th a t the co-completeness 

of the category of signatures in X  is enough to also ensure the same in T>($>).

As noted in noted in [Mes89, §4.2], the definitions of an institution morphism and 

an institution mapping are not dual, and both may be needed to exploit the full 

power of translations between institutions in general.

2 .3 .2  R e stra in ts

While the concept of a constraint is generally useful, it will not always suit our 

purposes here, particularly in relation to checking static semantics. Suppose, for ex

ample, tha t we are given some institution S y N  which describes the (context-free) 

syntax of our language. We might then envisage some other set of institutions each 

of which describes some aspect of the static semantics of the language (such as scope 

rules, type rules, valuations etc.).

Clearly the structures as specified by S y j \ f ,  while being syntactically-correct pro

grams, need not necessarily be semantically valid, and should thus be constrained 

by some presentation from each of the semantic institutions. To preserve orthog

onality, it is desirable that these semantic descriptions be kept separate from each 

other: their only correspondence is via the syntactic institution.

Suppose then that we have some institution SSM . specifying a static-sem antic com

ponent. So, given a syntactic presentation Syn  and a semantic presentation Sem , we 

want to relate them  in some way, so tha t models of the former can be constrained 

to fit in with models of the la tter. In order to use constraints on iS^A^-models, we 

might try  to construct an institu tion morphism S T ' .S y N  => S S M ., where:

• <P: Signs^jv —► S i g n s ^  which “upgrades” a syntactic signature to a semantic 

one whose specifically semantic component is em pty

22



• a: (<P l SznseM) Sensytf extracts from the semantic description the piece 

of syntax to which it refers

• f3: M odsytf ( $  9 ModssM.) maps any syntactically correct program straight 

into the semantic domain, since a model of a signature in the range of $  can 

impose no (semantic) constraints on it

We would then envisage constraining presentations in S y M  which specify syntac

tically correct fragments, with presentations from S E M  which restrict the models 

to those which are also semantically correct. The problem with this is th a t the 

satisfaction of a constraint by some model m  from S y M  is defined in term s of the 

model f3(m). By the construction this cannot carry semantic information (since 

then it would be unclear how to find a target for every model in S y M ) ,  and thus 

its satisfaction or otherwise in S E M  does not specify the sort of information we are 

looking for.

Thus it would seem tha t we m ust settle on a definition of ¡3 which goes in the oppo

site direction; however, if we try  to construct an institu tion morphism from S E M  

to S y N ,  we find ourselves constraining semantic models rather than syntactic ones.

W hat we need is to also reverse our concept of constraint; to do this we introduce 

restraints. The basic idea here is tha t given any two institutions X and J  there will 

nearly always be a “natural” choice of morphism between them, based on their con

struction and on the intended use of the morphism. The problem is that, given such 

a choice, say from X  to J , if we use constraints we necessarily qualify X-theories by 

those from J : the end result, however, is still an X-theory. Restraints, on the other 

hand, allow us to keep the morphism in the same direction, but this tim e qualify 

^-theories by X-theories: the result is still a J ’-theory. (We require the existence of 

a suitable model in X).

Formally we define:

Definition 2.4 Restraints
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Given two institutions X and X +, some institution morphism  <£:Z =>-X+, and some 

signature E + fro m X +, a E +-restraint is o f the form :

Restrain E+ by (.P ,9 ) via $

where P  is a presentation from  I  and 9: $ (S ign(P )) —> E + is a signature morphism  

from  I +.

We suggest tha t these can play the role of sentences from X+ in a similar m anner 

to constraints, and, given any signature morphism cr: E + —> E' from Z +, we define:

[cr](Restrain E+ by (P , 9 ) via $ ) =  Restrain E' by (P , ( 9 ; cr)) via $

Most im portantly, we can define satisfaction for these sentences:

Definition 2.5 Satisfaction o f Restraints

Given an institution morphism and E +-restraint as above, and some E +-model m +, 

we define satisfaction as:

m + [=2 + Restrain S + by (P,0)  via $

<£►

3 m  £ \lSign(P)}\ ■ m \ = Sign(P)P A /3(m) =  [0](m +)

We suggest now that given any institution and institution morphism, we can con

struct a new institution by allowing restraints to appear as sentences; to verify this 

we need to prove the satisfaction condition:

L em m a 2.6 Satisfaction condition fo r  Restraints

Given any institution morphism  3>:Z => I + as above, any signature morphism  

cr: E + —y E ' from  X+, any E '-model m ' and E +-restraint r, we have:

M (m ')  (=4  r <£> m' (=E» [<r](r)

Proof:

Letting r be Restrain E + by (P , 9) via <3>, the left-hand-side of the satisfaction condi

tion tells us that:

3 m  e  | [% n (P ) ] |  • m  \=sign(P) P  A /9(m) =  M (M (m ') )

24



Since [■] is a functor (into C a top) we know that ([cr]; [0]) =  [0; cr], and thus can 

assert that:

3 m 6  |[5*>n(P)]| ■ m \=sign(P) P  A P(m)  = [0; arj(m') 

which is exactly the definition for:

m  |=s' Restrain S ' by (P , (0; cr)) via $

□

2 .3 .3  P re se n ta t io n -B a se d  R estra in ts

A wide number of variations on the basic concepts of constraint and restraints are 

possible; one more tha t we will require is th a t of a presentation-based restraint. The 

need for this occurs in situations when we cannot define a functor between the  sig

nature of the institutions th a t will suit our purpose - instead we wish to define a 

similar mapping in the context of some specific group of sentences involved. Thus 

we will define a mechanism for mapping presentations (i.e. signatures and sentences) 

from one institution into presentations in the other.

We have already noted the existence of a category P r e s  for any institu tion whose 

objects are presentations, and whose morphisms are presentation morphisms (all 

of which are based on signature morphisms). We can extend this to define a 

functor ModP: P re s  —v C a top, associating with any presentation P a category 

M o d P (P )  whose elements are all models of the presentation (this is a sub-category 

of |5 i^n (P )]). We will overload our notation and write M o d P (P )  as [P ]; it should 

be clear from the context which functor is intended.

Using this functor, we can then define:

D e fin itio n  2.7 Presentation-based mappings

Given two institutions X  and X + we can construct a presentation-based mapping 

between them by specifying:
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• A functor  P re s  —y P r e s +

• A natural transformation ¡3: M odP+ =£> ModP

such that fo r  any presentations P  and P + in X and X + respectively, and any P +- 

model m +, we have:

m + f= $ (P )  ^  f3(m+) h  P

We do not need to define a natural transform ation a  as before, since $  will now take 

care of sentences as well. Based on this we can now restrain (models of) presentations 

in one institution by those in another:

D e fin itio n  2.8 Presentation-based restraints

Given some presentation-based mapping 3>:Z =>- X +, and some presentation P + from  

X+, we can define a presentation-based restraint as being of the form:

Restrain P + by ( P ,6 ) via $

where P is a presentation from  X, and 6:<&(P) —y P + is a presentation morphism  

from  P r e s + .

Any signature morphism is, by definition, consequence preserving and so, given some 

signature E and some E-presentation P +, a signature morphism a: E —> E ' naturally 

gives rise to a presentation morphism from P + into [cr](P+). If we denote this by 

[a] also, we can then regard constraints as sentences by defining:

[cr](Restrain P + by (P,9)  via $ )  =  Restrain [cr]( / 3+) by (P, 9; [<r]) via $

A 5'i^n(P+)-model satisfies a constraint such as the one above if it can be regarded

as being both a model of P  and of P + in the following way:

D e fin itio n  2.9 Satisfaction o f presentation-based constraints

Given any presentation-based mapping $  : X => X+, any presentation-based constraint

Restrain P + by (P,9)  via $  as above, and any P +-model m +, we define:

m + \=sign(P+) Restrain P + by (P,0)  via $  <£> / 5 ( M ( " i + ) )  =̂si9n(P) P
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We can use such sentences just like any others over S ign(P +) since they are consis

tent with the satisfaction condition:

L e m m a  2 . 1 0  Satisfaction condition fo r  presentation-based restraints

Given any presentation-based institution mapping <t>:Z =>- Z + as above, any signature 

morphism a: £  —> S ' and any S -presentation P + from  Z +, any [a](P+)-model m *  

and any presentation-based restraint c on P +, we have:

[0-1(771*) (=2  c O  m *  )=£' [cr](c)

P ro o f:

The proof is similar to tha t for previous types of contraint; letting c be the constraint 

Restrain P + by (P,9)  via $  as above, we have

[cJKm*) [=£ Restrain P + by (P,9)  via $
&  ^ ( M ( W ( m4f))) ^Sign(P) P
&  l=s»»(P) p
^  m *  (=S/ Restrain (o'](P+) by (P , [<r]; 9) via $

m *  |=e' [<x](Restrain P + by (P , 9) via $)

2.4 Conclusions

In this chapter we have laid the basic foundation on which we propose to build and 

integrate specifications of programming language formalisms. We have introduced 

the theory of institutions, and fixed our notation for dealing with modules in an 

institutional specification. Additionally, we have added a new type of constraint to 

the theory: a restraint, which works in the opposite direction.

In so far as using the abstract syntax of a language as an initial algebra in its 

class of models characterises the “algebraic approach” to programming language 

semantics, the use of restraints in the above m anner could be said to characterise 

the “institutional approach” . We envisage a situation where a language’s context- 

free syntax is restrained by its semantic definition, allowing them  to be defined in
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separate, but related institutions. As we still deal with context-free models with this 

strategy, the syntax may be restrained by a number of different sem antic institutions. 

We note finally tha t since these are all linked back to the weaker institution they 

do not share semantic information, and so this method applies specifically to static, 

rather than dynamic, semantics.
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C hapter 3 

Syntax-B ased  D efinitions

3.1 Introduction

In this chapter we begin the process of casting programming language specification 

formalisms into an institutional setting. We start w ith syntax, and with institutions 

for two of the formalisms most commonly used for defining syntax:

• 1Z£Q the institution for regular languages

• CJ-7ZSS the institution for context-free definitions

While regular expressions are not essential to language definition, they are used 

quite commonly, and lay much of the groundwork for dealing with context-free lan

guages.

The reader may wish to refer to the examples given in chapter 6 while reading the 

definitions given here.

Before we define the actual institutions, we will first fix some concepts and notation 

from formal language theory.

3.1 .1  L an gu ages - B a sic  D e fin itio n s

The three most basic definitions in formal language theory are those of an alphabet, 

string and language:
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• An alphabet is any set of symbols

• A string  over some alphabet E is any sequence (including the em pty sequence) 

of symbols from E.

• A language over an alphabet E is any set of strings over E (including the empty 

set).

Rather than  adopt a generic notation for sequences, we shall follow convention and 

adopt the usual notation for strings. Thus for any given alphabet E, we suggest:

- £ 2  denotes the (unique) em pty string

- For any a £ E, “a” is the string of length 1 containing only the symbol a

- For any strings s and t, s • t will denote the concatenation of s and t.

The set E, along with concatenation as the distinguished binary operator and as 

its identity, forms a monoid.

Finally, given any two languages M  and N  over the same alphabet, we can define:

• M  U N  to be the union of the two languages

• M  N  to be the language whose strings are of the form m • n for any m g M  

and n 6  N .

• M* to be the language whose strings are formed by taking the reflexive and 

transitive closure of the concatenation operation over the strings in M  (this is 

known as the Kleene closure of M ).

We are now ready to define our first institution.
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3.2 The Regular Institution

A regular language is one which can be constructed from an alphabet of characters 

using only the operations of union, concatenation and Kleene closure. It forms 

the most basic of the levels in the Chomsky Hierarchy, and is distinguished by 

the simplicity of its iteration mechanism. The following section gives the basic 

definitions for 7ZSQ, the regular institution.

3.2 .1  B a s ic  D efin itio n s

The most straightforward approach would be to have alphabets for signatures, lan

guages for models and regular expressions for sentences. However, the operation 

of languages which deal with regular expressions, such as lex, is generally a little 

more subtle, in th a t they allow specific subsets of the defined language to be named, 

so that these names may be used in later parts of the compilation where they are 

referred to as tokens. Thus we will take the viewpoint th a t the purpose of a specifi

cation in the regular institution is to construct a m apping between language names 

and sets of symbols.

A signature then will consists of an alphabet, over which to define the regular ex

pressions, and names for the sets which are defined by them. Formally we define:

Definition 3.1 Signatures in 1Z£Q 

A regular signature E consists o f two sets:

1. T,a , a finite set o f alphabet symbols

2. Eyy, a finite set o f names (tokens) fo r  the languages being defined

Morphisms consists of pairs of functions (aa , (?n ), one for each set; this is easily seen 

to form a category.

A model of an alphabet will involve mapping the elements of to languages. To 

allow full flexibility we will not re-use the alphabet symbols in the model; instead 

we will interpret them  into some new set, whose elements we shall refer to simply



as “characters” . In addition we will allow one term inal symbol to be related to a 

number of such characters; the idea here is tha t we allow for the possibility th a t the 

specification mechanism may be “too b lunt” , and th a t some other formalism may 

constrain these values further. This is particularly im portant in the context-free case 

(an enhancement of the regular case), but we allow for it here to ease comparison.

Thus we define:

Definition 3.2  Models in 1Z£Q

For any signature (S 4 , Ejy), a model I  is a triple o f the form  (I c , 1a -, In ) where:

1. Ic  is some set o f characters

2. Ia '- E a —y $P{Ic) is a function interpreting alphabet symbols as sets o f charac

ters

3. 1^'. Ejv —> P ( /£ )  is a function associating with each name in Ejv the language 

“corresponding to ” that name.

A morphism fi between two E-models /  and J  consists of a function fxs : Ic  —> Jo, 

with its obvious extension defining J  a and Jyv-

Given any Sign-morphism a: E ' —> E, we define:

M ( { / c ,  I a , I n ) )  =  ( I c i ^ a  1 1  a , & n  I I n )

A sentence in the institution will associate a name with a regular expression; we 

note th a t a number of different regular expressions m ay be associated w ith the same 

name.

Definition 3 .3  Regular Expressions

Given some signature E, we can define REG e , the set o f regular expressions over 

the signature inductively as follows:

1. A  is a regular expression

2. For any a G E^, ‘a ’ is a regular expression
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4- I f  q and r are regular expressions, then so is q.r

5. I f  q and r are regular expressions, then so is q \ r

Now we can define:

Definition 3 .4  Sentences in 1Z£Q

For any signature E, the sentences over this signature are all o f  the fo rm  ( r : N ) ,  

where r G REG-^ and iVçEjy

Sentence morphisms are defined inductively over the components of the sentence: 

Definition 3.5 Sentence morphism s in 7Z£Q

For any signature m orphism  a, the corresponding sentence m orphism  is defined by:

[cr](r : N )  =  ([or](r) : crN (N ) )

where [cr](r) is defined as:

3. If r is a regular expression, then so is r*

M A = A

Va G E • [a]‘a ’ = W (a) ’

V r G [S] ■ [cr](r*) = ([or]r)*

V q ,r  G [E] • [a] (q.r) =

V q ,r  G [E] • I r ) = ([a]q) I ([a]r)

A sentence of the form (r : N ) is satisfied in some model iff the regular language 

which corresponds to r is contained in the language assoicated with N . To make 

this precise, we define the language associated with a regular expression:

Definition 3.6  L A N i(r ) ,  the regular language corresponding to r 

For any Ti-model I  as above, we define:

L A N  ¡(A) =  {£/c}

V a e E -  L A N I ( ‘a ’) = { “c ” G I*c  I c G /(a )}

V r G [S] • L A N j(r * )  = (L A N ^ r ) )*

V ?, r G [E] • L A N ^ q . r )  = ( L A N ^ q ) )  ~  ( L A N ^ r ) )

V <7, r G [S] • L A N r{q I r) =  ( L A N T(q)) U (L A N r( r ))

33



2. r =  V

We note that this function L A N ,  commutes in a natural way with signature mor- 

phisms:

Lem m a 3 .7  For any Y,-model I , any r € REGe, arwi any Signn£Q-morphism 

cr: S' —y S , we have:

LAN]([<j}r) =  LAN«., i (r )

Proof: By induction over the regular expression r

1. r =  A
L/lyV/([cr]A) = L A N ,(A )

=  {e/c>

=  LAN„. /(A )

L/iyV/([cr] ‘ a’) =  L /l /V /iV ^ a ) ’)

=  { “c” 6 / a  | e €  / ( ^ ( o ) ) }

= { V ’ 6 (HR/e))* I c 6 W (/)(« )}

=  L ^ ; / (‘ a’)

LAN,([a](p*)) =  LANi(([cr]p)*)

=  (L/tyV/CHp))*

= (L A N 0.t i (p )Y  

=  / (/;*)

^ ^ / (H ( p-<7)) = Lj4W/((Mp)-(M?))
= LAN,([<r}p) ~  LANj[[<r]q) 

= LAN„. ,  (p) ~  L A N a.t / (q) 

= LAN«. i (p.q)  

LA N ,({o)(p  | q)) = LANi(([cr)p) | ([a]?)) 

= LAN,(\cr]p) U LAN,([a]q)  

= LA N ,., ,  ( p ) U L A N , . , ,  (q) 

= LAN,,. i ( p \ q )

3. r = p*

4. r =  /;.<7

5. r  =  p | 7
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□

Definition 3.8  Satisfaction in 7Z£Q 

For any r € [£],

( I c , I a , I n ) N  (r : N )  <=> L A N j( r )  C In (N )

The satisfaction condition now follows from the previous lemma:

L em m a 3 .9  In the insititution 7Z£Q, the satisfaction condition holds

Proof:

The satisfaction condition states that for any E-model / ,  and Sign^f^-morphism 

cr: £' —> S and any S'-sentence r' : N 1,

{I c , I a , I n ) hs [<T]ir> '■ L') [<rj( I c , I a , I n ) |=£' ( r * : N )

Applying the sentence and model morphisms, we see that this is:

( Ic ,  Ia , I n ) |=£ : v n {N '))  ( Ic , v a % I a ,&n  % In ) \=y,> ( r ' ■ N )

By the definition of satisfaction we can restate this as:

L A N ^ r ' )  C IN(aN (N ') )  &  L A N , , !  (r') C °9 In ) (N )

which is true, since LA N i([a \r ')  =  L A N a; / ( r 1) by the lemma.

□

3.2.2 Properties of the Regular Institution

Any presentation in the regular institution is simply a list of pairs of regular expres

sions and language names. A model of this presentation is one which satisfies every 

sentence in the presentation. Thus while combining specifications is normally re

garded as a “conjunction” operation in, say, first-order logic, it actually corresponds 

to the union operation here. We can state:

Finally we are ready to define satisfaction:
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Lemma 3.10 For any signature £, any 'L-model I , any token N , and any two 

regular expressions p and q, we have that:

I  hs (P '■ AQ, I  f=s (q : N )
I  bs (p  I q) ■ N

Proof:

By the definition of satisfaction we can rewrite this as:

L A N jjp )  C In {N ),  L A N j(g )  C In (N )  
{ L A N j{ p )y jL A N i(q ) )  C I n ( N)

which is easily seen to be true.

Choosing a model for a presentation basically involves choosing “big enough” lan

guages for the tokens to hold all of the corresponding regular expressions. Using the 

above lemma, we can see that it is possible to merge all the sentences involving a 

particular token into just one sentence. Based on this, we can pick as our model the 

regular language which corresponds exactly to this regular expression. Doing this 

for each sentence, and assuming that Ia is bijective, yields an initial model for the 

presentation.

It is common to assume that presentations are of finite length, since the nature of 

a model can differ considerably for an infinite presentation. In fact we can see that 

an infinite presentation in the regular institution would simply allow us to list all 

strings in a given language. Since there are no restrictions on this, the language 

need not be regular; thus models may specify context-free or any other type of lan

guage. We note therefore that only finite length presentations give us the standard 

interpretation of a regular expression.

Since the initial model is minimal it maximally constrains the theory of the pre

sentation. Thus, for a given token N ,  if we take all sentences of the form (r : N ) 

in the theory, and exclude those involving union or Kleene closure, we get exactly 

the language corresponding to N .  For a finite presentation, this is always a regular



l a n g u a g e .

As the objects of Signusq are just sets, it is easily seen that this category has all 

colimits, using set-theoretic union in the ordinary way. We get the sum of two mod

ules simply by taking the union of the corresponding regular languages; a parameter 

to a module specifies a minimal language that must be satisfied by any argument. 

Similarly, the process of actualising a parameter involves identifying the subcompo

nent specified by the formal parameter and taking the union of the modules for the 

argument and the body.

We are now ready to deal with the next formalism in line, that of context-free lan

guages. Based on our definition above, we can see that there will be many similarities 

between a presentation in the regular institution and a context-free grammar. The 

main difference of course, and the reason why the context-free formalism is more 

powerful, is the possibility of recursion in the context-free rules.

3.3 C ontext-Free Grammars

Context-Free Grammars are sets of production rules involving terminal and non

terminal symbols, referred to collectively as the vocabulary. A production rule de

fines a rewrite equivalence between a non-terminal and any string of symbols from 

the vocabulary. For the duration of this section only, let us choose to allow any 

regular expression over the vocabulary to appear on the right-hand-side of a rule, 

and call such a string a rightpart.1

From an operational point of view, we apply a rule to a string by replacing its left-

hand-side with the symbols on the right-hand-side (or an arbitrarily long sequence

of them in the case of Kleene closure). Based on a grammar, one string is derivable

from another if we can find a set of rules which, when applied, will rewrite the first

string to the second.

1Such gram m ars are often called right-part-regular gram m ars, to  distinguish them  from  ordinary 

context-free gram m ars which do not use Kleene closure.

37



Based on the definitions given for regular languages, it seems evident that terminal 

symbols should appear in the signature. However, we suggest that non-teminals 

should also appear here. The view taken is that they act not merely as placehold

ers (like variables) but act to define sub-components of the language. Hence, the 

inclusion of non-terminals at this level will allow greater flexability in terms of the 

modularisation of context-free specifications later. Thus:

Definition 3.11 The category Signcttlse

The category of context-free signatures has as objects pairs ( E i-e. sets o f  

terminals and non-terminals. Morphisms are the products o f  set-theoretic functions.

In a similar manner to the last institution, we will interpret terminal symbols as sets 

of characters, and non-terminal symbols as languages. In addition, we will choose to 

formally denote some language as being the language defined by the model; this could 

be regarded as the language associated with the start symbol. When considering 

the regular institution we did not need this, since “the” language was effectively 

the union of the language for each individual name; here, because a context-free 

specification is hierarchical (whereas our list of regular expressions was basically 

“flat”), we need to make this distinction. Note that the language corresponding to 

any given non-terminal is not necessarily a sublanguage of this language.

Definition 3.12 Models in CJ-7ZSS

A model o f  a signature (Er,Ejv) consists o f  fo u r  components:

1. A set o f  characters Ic

2. A function —> P(-fc) mapping terminal symbols to sets o f  characters

3. A function  /jv:E# —> $P{Ic) mapping non-terminal symbols to languages over

Ic

4- A language I i  over Ic ,  being “the” language defined by the model

3.3 .1  B asic  D e fin it io n s
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For any two £-models, we can define a morphism between them by using a mapping 

on Ic , and extending this to the other components as for the regular case.

Given any SigncjFftff-morphism a  with components (< j t , o - ^ ) ,  we define 

M ( ( I c , I t ,  In, h ) )  = (Ic,  9 I t ) ,  (<̂ n I In), h )

The immediate choice for the [-Jc^ tzss functor would be to map a vocabulary to the 

set of context-free production rules over the vocabulary. However, we will also allow 

a sentence to be any rightpart for that signature, the idea being that for any pre

sentation these form a set of “given” strings, from which all the others are derived 

(axioms as opposed to rules).

Thus we extend the definition for the regular case 

Definition 3.13 Sentences in OFIZEE

y4s fo r  regular expressions with the addition that fo r  any non-terminal A, ‘A  ’ is a 

rightpart, and fo r  any rightpart r, (A  —» r) is a sentence.

Morphisms are defined by adapting the definition fo r  the regular case, replacing S 

with £ t , and adding the following rules:

V A e Z N - [a]‘A ’ =  ‘ajv(A) ’

V A e Z N , r  £ R E G x -  [<t ] (A - > r )  =  ([cr](A) -» [<r](r)

Satisfaction will describe derivability. As before we will need to define what is meant 

by a context-free language:

Definition 3.14 L A N i( r ) ,  the context-free language associated with r:

For any model I , we adapt the rules fo r  the regular case thus:

V a e S T ■ L A N I ( ‘a f) = { “c ” G I*c  | c e  IT (a)}

VAeEyy-  L A N ^ A * )  = IN (A)

Once again, this commutes appropriately with signature morphisms:
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Lemma 3.15 For any Z-model ( Ic ,  I t , I n , h ) ,  any rightpart r, and any signature 

morphism a: S' —> S, we have:

LANi([<r\r) = L A N a;I{r)

Proof: B y induction over the sentence r

The proof is as for 7Z£G, with only one new case:

6. r =  lA'1 (for some A  6 £jv)

L A N ^ t r Y A ' )  = L A N I (icrN (A y )

=  I n (c n (A))

= L A N a. i (A )

□

We are now ready to define satisfaction:

Definition 3.16 Satisfaction in CT1ZZE :

1. For any rightpart r, we define:

(Ic,  I t ,  In, h )  b s  r L A N j( r )  Ç IL

2. For any rule ( A —y r) we define:

(Ic, I t ,  In, h )  bs (A —y r) L A N i( r )  Ç L A N i(A )

Note that, as we would expect, satisfaction of a production rule is defined in model- 

theoretic rather than proof-theoretic terms; we do not need to explicitly state the 

intuitive version of replacing one string with another. This has the effect of making 

the appearance of Kleene closure operations in a rightpart more natural and, of 

course, not committing us to a bottom-up or top-down parsing strategy.

Verification of the satisfaction condition follows from the regular case:
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Lemma 3.17 In  the institution CFTZSS, the satisfaction condition holds 

Proof:

The satisfaction condition for CJ-7ZSE may be stated as follows: For any cr: S' —> E, 

any E-model ( Ic ,  I t , In , I I ) ,  and any S'-sentence e', we have:

( Ic , I t , I n , I l) M e/ ^  I t J n , I l ) t=s' e'

By the definition of satisfaction, we can break this into two cases; for any rightpart 

r' and any non-terminal A! from X/,

( L A N ^ a y )  Ç 1L) (L A N . ,  j ( r ' )  C IL)

and

(LAN¡([cr] A') C L A N ^ W ) )  (LAN«, i (A ')  C L A N a;I(r '))

Both of these follow directly from the previous lemma.

3.3.2 Properties of the Context-Free Institution

Any presentation in this institution is effectively a context-free grammar. We have 

not explicitly provided for a start symbol; however, the collection of rightparts in 

any presentation may be taken to represent the right-hand-sides of start rules. Thus 

we need only pick some “new” non-terminal S  as the start symbol, add it to the 

signature, and add in a rule of the form (S  —> r) for every rightpart r in the presen

tation. Any presentation which doesn’t have any standalone rightparts (i.e. consists 

only of rules) will have the empty language as its initial model.

We note that neither the models of a grammar or a non-terminal are required to 

be context-free. However, we can see that the initial model will construct those 

languages which minimally satisfy the rules, and this will give rise to mappings into 

context-free languages for finite-length presentations. As before, the possibility of

41



infinitely-long presentations allows for models which are not context-free.

Given any presentation, its corresponding theory will contain rules and rightparts:

1 . The rules in the theory represent all possible derivation steps, or equivalently, 

every possible node that could be found in any parse tree

2. The rightparts are usually called sentential fo rm s ; those sentential forms which 

only contain terminal symbols are called sentences, and correspond to the 

context-free language generated by the grammar.

Again the conjunction of two sentences is effectively represented internally by the 

union operation; i.e. :

/  |=s (A  7"i), /  f=E (A - > r2)
/  |=s (A -)> n  I r2)

The proof is almost identical to the regular case.

We can prove a similar (expected) result for Kleene closure:

Lemma 3.18 For any signature 2, any E-model I , non-terminal A and rightpart

7 |= s (¿ ->  A), 7 (=£ ( A r . A )
I  (=E (A  —> r*)

Proof:

By the definition of satisfaction; we can rewrite the statement as:

L A N i(A )  C L A N I ( A ) ) L A N r(r .A )  C L A N ^ A )
L A N T(r*) C L A N i(A )

This is the same as:

{ec} C L A N í(A ) ,  ( L A N ^ r )  ~ L A N r ( A )) C LA N r(A )
LAN i[r)*  C L A N j(A )

Let L A N i( r ) '  represent the maximal subset of L A N i(r )*  in which no string has

length greater than i. The proof proceeds by induction over i.

• Base case: i =  0

In this case L A N ¡ ( r )’ =  {ec}> which is a subset of LA N r(A )  by the first 

assumption
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• Inductive case: Assume L A N j ( r )' C L A N ,(A )

By the second assumption (L A N i( r )  ^  L A N i(A ) )  C L A N j ( A ), 

thus ( L A N ^ r )  ~  L A N i{ r )1) C L A N ^ A ) ,  

which is LAA^(r) 1+1 C L A N j(A )

□

Thus, for any presentation in the institution, we will be able to formulate another 

presentation which does not make use of union or Kleene closure, but which has 

exactly the same theory. To ease relating CTIZEE  to other institutions, we will 

assume from this point on that all rules involve only union and concatenation, but 

that the results proved are extendible to the full institution as specified above.

We also note that we can demonstrate the implicative nature of production rules by 

proving a version of modus ponens:

Lemma 3.19 For any signature E, model I , non-terminal A and rightpart r

I  [=s (A  -> r), I  \=x A

I |=s r

Proof:

The proof follows directly from the definition of satisfaction; we can rewrite the 

statement as:
L A N i( r )  Ç L A N ^ A ) ,  L A N ¡(A )  C IL

L A N f( r )  Ç IL

□

Similarly (and equally strightforwarly), we can verify that the more operational 

proof rule for context-free grammars also holds:

Lemma 3.20 For any signature £, model I , non-terminals A and B  and rightparts 

x , y and z
I  |=s (A  —>• x. ‘B  \ z ) ,  I  ¡=s (B  —>• y)

I  |=e A  -> x .y .z
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Proof:

Once again we need only use the definition of satisfaction to verify that this is valid:

L A N i j x )  2  L A N i(B )  ~  L A N T(z)) C L A N r(A), L A N T(y) C L A N T(B)  

L A N i(x )  ~  L A N ^ y )  ~  L A N T(z))  C L A N ^ A )

Since the signature consists of a pair of sets we assert the presence of co-limits, and 

thus we can transform, sum and parameterise context-free presentations as required.

3.4 R elating Regular and C ontext-Free D efini

tions

While it is possible to describe the entire sytnax of a programming language using 

a context-free grammar, it is quite common to break this into a two-step process, 

using regular expressions to specify some of the allowable words from the language, 

and then using context-free grammars to specify the allowable combinations of these 

words. One benefit of this approach is that simpler (or more efficient) algorithms 

may then be used to implement recognisers for the regular parts of the specification.

To describe this institutionally, we will need to be able to relate the regular and 

context-free institutions; that is, we will need to define an institution morphism 

between them. The choice as regards the direction of the morphism is easily made 

by noting that the natural transformation a. can really only go in one direction, as 

we cannot hope to translate context-free grammar rules back to regular expressions. 

Thus we construct:

Definition 3.21 The institution m orphism  CFtoR'.CT'R.ZZ  =>- 7ZSQ

The three components o f  the institution morphism  are:

1. The func tor  $: Signctties Sign^g which sends any context-free signature 

o f the fo rm  (Sy, Ejv) to a regular signature with S 71 as the alphabet characters, 

and Ew as the tokens
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2. The natural transformation a:(<Pi Sen-jzsg) => S e n c m e e  taking any sentence 

fro m  the regular institution o f  the fo rm  (r  : N ) and mapping it to ( N  —>• r)

3. The natural transformation /?: Modcj^nee => ($  g Mod-jisg) mapping a context- 

free model o f the fo rm  (I c , I t , In , II)  to a model in 1ZSQ o f  the fo rm  (I c , I t , In )

Verifying that this is in fact an institution morphism is straightforward:

L em m a 3.22

C F toR '.C T lZE E  ZSQ, as defined above, is an institution m oprhism  

Proof:

We must show that for every 7££C/-signature E, every sentence (r : N )  in [£], and 

every context-free model I  in [<!>(£)] we have:

( I c , I t , I n , h )  h^(E) a ( r  : N ) &  P ( { Ic ,  I t , In , h ) )  |=e ( r  : N )

By the definition of a  and /? this becomes:

( I c ,  I t , I n , h )  |=$(£) [ N  ->• r )  ( Ic ,  I t , I n ) He (r  : N )

which is easily seen to be true via the definition of satisfaction in each institution.

Thus for any regular module R , and any context free module C, we can construct 

modules of the form:

Constrain C  by (R ,6 )  via C F to R  

This is a sentence in CT1ZEE, and thus specifes models in that institution.

The signature morphism 9: S ign(R ) —y S ign(C )  above establishes the relationship 

between the tokens and symbols from the regular module and the context-free gram

mar symbols. This morphism can be used in situations where a number of different 

lexical symbols correspond to just a single non-terminal from the context-free gram

mar. While this in itself is quite common in such mappings, it may also be useful if 

a number of different regular modules are involved.
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Chapter 4

Two-Level Grammars

4.1 Introduction

The basic reason for the inability of context-free grammars to describe semantic 

features is indicated by their name -  they cannot deal with context-sensitive infor

mation. Semantic analysis depends crucially on such information, since e.g. type and 

scope correctness are usually determined in the context of having previously pro

cessed some sort of declaration which presents the relevant information. Of course 

this could be remedied by just using a context-sensitive or free grammar, but these 

yield unintuitive descriptions and are rarely used.

Another grammar-based approach seeks to enhance context-free grammars in other 

ways so as to allow them deal with contextual information. By far the most popular 

such method is that of attribute gramm ars , which augment ordinary context-free 

grammar rules with assertions or statements from some completely different lan

guage to specify semantics. (See [DJ90] or [AM91] for surveys). A closely related 

formalism is that of affix grammars ([Kos91] contains a comparison)

An alternative approach is to provide a homogeneous framework for the specifica

tion of context: i.e. to use another, different, grammar. This is the view taken by 

van-Wijngaarden grammars, which consists of two “levels” of rules, with compo

nents of the lower level being restricted by rules from the higher level (in much the
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same way as second-order logic can be used to define meta-concepts from first-order 

logic). Descriptions and examples of this sort of grammar can be found in [Pag81] 

and [GJ90].

In the following sections then we present two institutions:

• A T Q  for attribute grammars

• V A N W  for van-Wijngaarden grammars

and relate them both back into CT1ZEE. As before, examples of their use can be 

found in chapter 6 .

4.2 A ttribute Grammars

Compiler design tools such as yacc allow context-free definitions to be enhanced 

with semantic details to give a full description of a programming language. Gener

ally this is based on the use of attributes, the name given to special values associated 

with (certain) terminal and non-terminal symbols in the grammar. The rules of the 

grammar are then extended with additional rules governing the relationships be

tween the attribute values of the symbols in the grammar rule. In yacc these rules 

are expressed by using constructs from the programming language C, and evaluating 

these as the parse takes place. More sophisticated parser generators incorporate a 

special language for attributes, whose evaluation phase, often by necessity, takes 

place separately from parsing.

It is common to distinguish two types of attribute - synthesised attributes which 

involve transferring information from the rightpart of a rule to the non-terminal on 

the left, and inherited attributes which flow in the opposite direction. As might 

be expected, the choice of attribute type can be strongly influenced by the parsing 

strategy.

Since the main task of the semantic rules in an attributed grammar will be to control 

the values of those attributes, we will assume that all attributes are in equational



form. We will not impose any restriction on the flow of values around the grammar, 

since this would be inconsistent with the parse-strategy-independent view of gram

mars taken previously. Also, for simplicity, (and based on lemmas proved earlier) 

we will assume that the rightparts of rules do not use the union or Kleene closure 

operations.

We will define the institution of attributed grammars by expanding CJ-TZSE with 

attribute-handling capabilities. In general terms this means that sentences will 

contain attribute evaluation information as well as grammar rules, and that models 

can refer to values as well as sentences.

4.2.1 Basic Definitions

We can now formally define the components of A T G ,  the institution of attributed 

grammars.

Definition 4.1 Signatures in A T G  

A signature £ consists o f  fo u r  sets:

1. £ 5 , a set o f  sort names,

2. £ 0  a set o f  operators indexed by sort-sequences

3. £ t  a set o f  terminal symbols,

4- £yv a set o f  sort-indexed non-terminal symbols

The purpose of the sort-index of each non-terminal symbol is to give the type of the 

attribute-values that can be associated with that symbol. The operators form a very 

simple algebraic-style language for forming expressions over the attributes. In order 

to give full meaning to these operators, we would envisage them being constrained 

by theories from some suitably more powerful institution, such as e.g. £Q .

Morphisms are the four-fold products of set morphisms, with the conditions that for 

any such morphism a, the indexing is preserved, i.e. :
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• For any operator op \ S\ x ... x Sn —» S , we insist that <r(op) is an operator 

of sort (j(5'i) X ... x cr(Sn) cr(S)

• If non-terminal symbol N  is of sort 5, then non-terminal cr(N ) is of sort cr(S)

To construct a model of an attributed signature will will again extend the context- 

free case -  this time we need to allow for the presence of attributes. One option 

would be to use parse trees whose non-leaf nodes have been annotated with attribute 

values in a manner consistent with the grammar rules. However, as before, we will 

try to avoid the use of parse trees and look for less “operational” models.

Thus we will choose to model non-terminals as sets whose elements are pairs of 

the form ( s ,v ) ,  where s is a string, and v is some value, sort-consistent with the 

attribute-type of the non-terminal. The interpretation of this is that, based on the 

grammar, the non-terminal can derive the string s and, when it does, the resulting 

attribute value associated with it will be v. Despite appearances, this should not be 

seen as a necessarily “bottom-up” approach, since the application of the attribute 

equations will take place (in both directions) later when we define satisfaction for 

rules.

We can now define a model of an attributed signature as consisting of six compo

nents:

Definition 4.2 Models in ATQ

• The attribute part, consisting of

1. A function Is mapping sort names from  £ to sets

2. A function  Io mapping operator symbols into functions over the appropriate 

sets (operators o f  arity zero being mapped to constants).

• The context-free part, consisting of

3. Som e countable set Ic  o f  characters

4. A function  I t  which, which will map any terminal symbol into a subset o f  I c
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5 . A function In  which, which will map any non-terminal symbol o f  the fo rm  A 's

into a set whose elements are o f  the fo rm  (s , v ) where s £  I q and v £ [S].

• The actual language defined by the model

6. Som e set I i  whose elements are all o f  the fo rm  (s, v), being the language and  

evaluation defined by the grammar.

We note that the images of In and h  are relations between strings and values - they 

are not necessarily functional in either direction. It is quite possible that different 

derivations would cause different values to be associated with a non-terminal for the 

same string (this would indicate that grammars corresponding to the model can be 

ambiguous).

Since not every non-terminal need have an attribute, In  could be seen as a partial 

function. However we shall not pursue this issue here; we suggest that such partial

ity can be dealt with by whatever formalism the attribute equations will ultimately 

be mapped into. Where necessary, we shall denote the lack of an attribute by using 

the value

It is common to have a number of different attributes, whether synthesised or in

herited associated with a grammar symbol, representing different semantic features. 

Even though we have only allowed one specific variable in the above description, 

it is still possible for the sort of this variable to be a product, thus allowing for 

arbitrarily many components of a variable to be considered (in the manner of fields 

in a record). Thus we have not lost any generality in this respect from the standard 

definition.

Given a signature morphism a: S' —y S, we can construct a model of S' by compos

ing a with each of I s ,  I o ,  I t , and In , and by leaving I c and l i the same.

To construct sentences in the institution we will need to assume some ordered set 

of attribute variables, which we will denote {$$, $1, $2,...}. The attribute variable
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$$ will denote the value of the attribute associated with the left-hand-side of the 

grammar rule; one of the form $i refers to attribute associated with the i th symbol 

on the right-hand-side of the rule.

We will use the term attribute expression to describe any well-typed expression 

formed from the operator symbols and the attribute variables. (For the moment, we 

assume that “well-typed” means “consistently-typed”, with type inferencing begin 

used for the variables). Given a model 7, and some sequence of (correctly typed) 

values to substitute in for the variables, we can evaluate an expression in this context. 

Formally, for any expression r), we define its evaluation EVALj(rj) as:

Definition 4.3 Evaluating an attribute expression 

For some n 6  N, and any sequence o f values a

E V A L T(%%,~a) = 7r^o)

E V A L [($ i ,  a) =  7r’+1(a)

E V A L ^ o p f a , ... ,r/n), a) = I 0 {op)(E V A LI (T } i ,a ) , . . . ,E V A L i(r )n, a ))

where op is an operator, and T]i,.. .  ,rjn are attribute expressions

We note at this point that signature morphisms can be extended to attribute ex

pressions (componentwise), and that these interact with evaluation in a natural

way:

Lemma 4.4 For any attribute expression r] over a signature E; any correctly typed 

sequence o f  values a, any model I , and any signature morphism  a  into E,

EVAL/(cr(?j), a) = E V A L0. i(r), a)



Proof: B y  induction over the size o f  an expression 

We consider the two cases from the previous definition:

1 . E V A L ,{ ( r { n ) ,a )  = EVAL¡{%%,a)

=  7T ' ( a )

= E V A L ^ t i n ^ a )

2. EVAL¡(<r(%i), a) = EVAL,(%i, a)

=  7r,+1(a)

= E V A L a-t /($¿, a)

3. E V A L r((r(op(T]i a) = EVAL¡(<j(op){a(i]X) , . . . ,  <x(yn)), a)

= I0 (cr{op))(EVAL[((T(T]i), a),. . . ,  EVAL,(<T(Vn), a)) 

= 10 (cr{op))(EVALc. /(r/i, a ) , . . . ,  E V A L C] /(7/n, a))

=  /((op(»7i, • - - ,  7?»)), a)

□

Sentences in the institution will be context-free sentences extended with equations 

over attribute expressions:

Definition 4.5 Sentences in A T Q  

Sentences are o f  the form :

1. (i4 ->• n  . . .  r„) {pi =  pm = <7m}

or j'tzsi

2. n .. .r „  {pi  =  7 i , . . . , p m =  qm }

where A is a non-terminal, each r,- ¿s a terminal or non-terminal, m  > 0, an¿ 

the pj and qj are attribute-expressions which can contain a variable $i only i f  the 

corresponding gramm ar symbol occurs at position i in the rule (with A being at 

position 0).

Signature morphisms can be extended to sentence morphisms componentwise in the 

expected way, acting as the identity on the attrbiute variables.
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In order to deal with rightparts in a uniform way, we will define an simple auxiliary 

function. For any given signature, any model I , and any single grammar symbol 7 , 

we can define A T T i (7 ) to be the set of attributions for 7 , each element of which 

consists of a string and an attribute value.

D efin ition  4 .6 A T T i ( i ) ,  the attribution associated with 7

A T T j(A )  =  {{eIo , ± )}

V a e E r -  A T T i (  ‘a )  = { ( V ’,_L) | c G I T {a)}

V A e Z N - A T T J { ‘A ’) = In (A)

We note that A T T /  commutes with signature morphisms, that is we assert that 

A T T I (<r(r)) = A T T in I (r).

Now we are ready to define satisfaction in the institution; this will have two com

ponents: the language part, and the attribute part:

D efin ition  4 .7 Satisfaction in A T Q  

Satisfaction is defined as follows:

I  (=s {A -» n ... rn) {pi = qu  pm = qm}

V (su  V i) G A T T ^ r  1) , . . .  ,V(s„, vn) G A T T ] ( r n) • 3 (s0, u0) G A T T r (A) ■

1̂ * * * — *5o A

Aj=r E V A L ^ p j , (u0, ux, . . . ,  w„)) = /s(s7) E V A L t(qh  . . . ,  vn))

or ju s t

I  |=s n . . . r n {pi = qx, . . . , p m = qm}

&

V(s1,ui) G A T T i ( r i ) , . . . ,  V (sn, vn) G A T T i ( r n) ■ 3 (s0,v 0) G h  •

1̂ * * * 7̂1 — So A

Aj=r E V A L i(p j , ( v 0 , «1, . . . ,  «„)) = 7s(Sj) E V A L ^ q j^ v o V i , . .., u„))

53



where we assume that Sj is the sort associated with pj and qj, and = is (Sj) 

denotes the (strict1)  identity relation over this set. (In  the case where m  — 0 we 

assume that the equation part is trivially satisfied).

The satisfaction condition follows from the definitions of E V A L i  and A T T j  and their 

commutation with <r; we state:

L em m a 4.8 Satisfaction Condition fo r  A T G

For any signatures S' and E, any signature m orphism  a: S' —> £, any E-model I , 

and £ ' -sentence s,

i  bs M 5 &  M K  t=s' s

Proof:

The proof breaks into two cases; we shall just prove the first, as the second is almost 

identical.

I  |=S (cr(A) ^  c r ^ )  . . . a ( r n)) {a(p{) = a (q i) , .  . . , a ( p m) = a(qm)}

V ( s u vi) G A T T I (a (r 1) ) , . . . ^ ( s n, v n) e A T T j ( a ( r n)) • 3 (s0, «o) e A T T r(a (A )) -

*̂1 $n — 50 A

Aj=r E V A L I (a(pj ), (vo, V i , . . . ,  vn)) = CT; ¡s{S]) E V A L i(a (q j), (t*,, vu . . . ,  vn})

V(5!,ui) € A T T a. i ( n ) , . . . ,  V (sn, vn) e A T T a]I(rn) ■ 3 ( s 0,v 0) G A T T a. I (A )-

$1 ’ * * $n =  $0 A

A j = r  EVAL o r ;  i(pj, (v0, V i , . . . ,  vn))  /s (5j) ¡(qj, (v0, Hi , . . . ,  u„))

H U  t=S' (A  n  . .  . r n) {pi = qu  . . .  , p m = qm}

□

lrrh a t is, we assume the operation  fails if any of the com ponents involved are J.
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4.2.2 Properties of the Attribute Institution

Whereas with the syntactic institutions we were able to pick out a distinguished 

canonical model (the minimal one in each case), we cannot necessarily do so here. 

The reason for this is that the sorts in £ 5  cannot be fully specified within the formal

ism, and a minimal interpretation here would omit much of the intuitively expected 

structure. Thus the specifications here are genuinely “loose”, and, as mentioned, we 

would expect to tie them down by constraints from other insitutions.

By direct substitution of their definitions, we can immediately prove some straight

forward results such as:

I  1= (A  -fr r ) { p i  -- gi}, I  |= (A  -)• r ) { p 2 =  }
I  N (A  ->• r){i>! =  qu p2 =  92}

and intuitively-correct results such as:

I \ = ( A - >  x. ‘ B \ z ) { U  =  $»}, I \ = ( B - >  y){$$ =  c}
I  \= (A ^  a:.?/.2:){$$ =  c}

(where we assume that the non-terminal B  is at position i in xJ'B'.z)

Once again co-limits of signatures stem from set-theoretic union, so we are free to 

sum, parameterise and constrain attribute grammars.

4.3 R elating A ttribute and Context-Free Gram

mars

As we have seen, the attribute grammar is built “on top of” a context-free grammar. 

However, in certain circumstances, it may be desirable to keep the actual description 

of the context-free syntax of the language separate from the semantics, perhaps 

because

- The context-free grammar is more “concrete” than the grammar on which the 

attributes are built, containing low-level details about the program text which 

are irrelevant at the semantic stage
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- The attribute grammar describes constructs at a level of granularity which is 

not required to give a valid syntactical description of the language

- It is intended to implmement the parsing and attribution processes separately 

using different algorithms, and this is reflected at the specification level in 

both

- The attribute grammar takes care of a self-contained part of the anaysis pro

cess, and we wish to limit its interaction with other parts of the specification; 

any links will be made via the context-free grammar

For whichever of the above reasons, we envisage specifying the context-free syntax, 

and then making (parts of) this subject to additional specification from the attribute 

grammar. To do this we will construct an institution morphism from A T Q  back 

into CT'REE, and seek to restrain context-free grammar modules by sections of the 

attribute grammar.

To make things slightly easier, we will assume that the right-hand sides of context- 

free grammars involve only the union of concatenated vocabulary symbols. This 

does not in any way restrict the power of specification of the grammar (and indeed 

could be formally specified by using an institution mapping from CJ-’TISS  to itself).

Now we can define:

Definition 4.9 The institution morphism  AG toCF: A T Q  =>• CTTZ££

We define the three components as:

1. The functor <P: Sign^r^ —> Signcjrnse which takes any attribute signature 

of the fo rm  (£ 5 , So, £ r , Ejv) and “loses” the sorts and operators giving the 

context-free signature ( £ j  i Sat)

2. The natural transformation  a: (<£ § SencTnee) Sen_\rQ takes any context- 

free rightpart or grammar rule and promotes it directly to the attribute insti

tution (without change), since this is ju s t  an attribute gramm ar rule whose 

equations are trivially satisfied
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3. The natural transformation ¡3: M od^rg  => ($  9 M o d cm ee)  takes an attribute- 

grammar-model o f the fo rm  ( I s , Io  , I c , I t  , In  , II) and sends it to the context- 

free model ( I c , I t , J n , J l), where J n  and J i  are the result o f  removing the 

value-component from  the pairs in In  and I i  respectively

Since there has been so little actual change to the sentences and models (other than 

simplification), verification that this is in fact an institution morphism causes no 

problems:

L em m a 4.10

AGtoCF-. A T Q  =>■ C T 'R S S ,  as defined above, is an institution m orphism  

Proof:

We must show that for every CjP7?,££-signature E, every context-free sentence of 

the form (A  —> r) in [£] (sentences involving only rightparts follow the obvious 

simplification), and every attributed model I  in [$(£)] we have:

(Is ,  Io , Ic , I t , In , h )  (=$(£) a (A r ) ^  P ( h ,  Io , Ic ,  I t , In , h )  (=£ -> r)

By the definition of a  and (3 this becomes:

(ISi Io, Io, I t , In , h )  |=$(£) ^ —> r {} ( Ic ,  I t , J n , Jl ) ( = s  (-4 —> r)

(with J t and J n as earlier), which is easily seen to be true, since the attribute- 

grammar rule makes no use of the actual attribute values.

□

Thus, given two specifications (H e, S c ) from CTTZES and (E^, S a ) from A T Q  we 

would envisage adding a sentence of the form

Restrain £c by {(£a , S a ) , 9 )  via A G toC F

into the context-free specification to make sure that the syntactically-correct models 

of ( E c , S c )  were also semantically correct.

Here, the morphism 9: $(S/i) —> £c has two purposes:
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2. The “upper”-Ievel rules are called meta-rules, and their purpose is to define 

valid arguments which may be substituted in for the meta-notions. This is 

achieved by presenting a context-free grammar in which the meta-notions are 

the non-terminals, and correspond to languages of proto-notions.

Thus a context-free rule can be derived from a van-W grammar by taking any 

hyper-rule and substituting the meta-notions with one of their corresponding string 

of proto-notions, as defined by the meta-rules. This must work as for a parameteri- 

sation, in that the substitution for a particular meta-notion must be uniform within 

a given hyper-rule.

As a notion sequence may eventually correspond to either a terminal or non-terminal 

grammar symbol when regarded as a unit, it is usual to distinguish those which cor

respond to terminals by appending the word “symbol” to them. We will generalise 

this slightly and assume that some arbitrary syntactic differentiation is possible.

4.4.1 Basic Definitions

With this in mind, we are ready to define the format of a signature in the institution 

VA N W of van-W grammars:

Definition 4.11 Signatures in V A J V W

A n y  object in the category o f signature from  V A N W  has four  components:

1. SM> the (finite) set o f meta-notions

2. E p , the (finite) set o f  proto-notions

Thus a “notion-sequence” is any element o f (E m U Sp)+

3. A finite set E t  Ç (E m  U E p )+, disjoint from  E n , consisting o f  those notion- 

sequences which can correspond to terminal symbols

4- A finite set E ^  Ç  (EjVf U  E/0+, consisting o f those notion-sequences which can 

correspond to non-terminal symbols
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This definition may appear to be somewhat more restrictive than necessary, since 

we might just have specified E m  and E p ,  along with some predicate over notion- 

sequences which recognises (non-)terminal grammar symbols. However, the above 

definition will make the process of constructing mappings into other formalisms con

siderably easier.

We shall choose to write any notion sequence n from either or S 7  as though it 

were indexed by the elements of E m  thus: n :rni’'"’mk) where each m,- £  E m  occurs 

somewhere in n. Note that this indexing is derived, and that all such notion- 

sequences n are unique, independently of their indices.

A signature morphism u: E' —> E consists of any pair of set theoretic morphisms 

&m - E'm E m  and <7 4 : Ep —> E^, such that their extension to strings in the 

usual way maintains the division between terminals and non-terminals i.e. cr(Ejv) fl 

er(Et ) =  0- By its definition, this extension preserves the indexing on the notion- 

sequences in a homomorphic way.

When defining the functor [■], a little care is required in dealing with the proto

notions, since they play a role in both the syntactic and semantic aspect of the 

grammar. As we have seen, we will use these symbols to build up hyper-rules, 

which are sentences. However, the language defined by the meta-rules will consist 

of strings over these symbols, so they may also be regarded as components of the 

model. It is common in denotational definitions to gloss over such differences, but it 

will serve us well to be pedantic here, since model-morphisms induced by signature 

morphisms will change Ep, but will also be expected to preserve the basic structure 

of the model. The net result of all this is the inclusion of an alphabet in the model 

into which the proto-notions are interpreted.

The other components of the model will involve interpreting each meta-notion as 

a language over proto-notions. We will keep with the “parameter” analogy, and 

interpret the notion-sequences as functions which, when provided with arguments of
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the appropriate type, will yield languages (for non-terminals) or characters (for ter

minals). As usual, we shall also provide form some set which defines “the” language 

described by the model.

D efin ition  4.12 Models in VAJ \ fW

Given any signature £, a model I  o f £ consists o f  two “levels”:

• The meta-level:

1 . A finite set o f  proto-notion “alphabet characters”, Ip

2. A mapping, I&, sending each element o f E p  to an element o f  Ip,

3. A mapping, Im , sending each element o f 'E m  to a language over Ip

• The hyper-level:

4. A finite set o f  characters, l c

5. A mapping, I t , sending each element fro m  E t  o f  the fo rm  t :mi’"',mk into some 

function  o f  type (£jvf(mi) x ... x (m„) —> fP (Ic ))  yielding (parameterised) 

sets o f  characters

6. A mapping, In , sending each element from  E n  o f  the fo rm  n :mu'"’mk into some 

function o f  type (E m  (m i) x ... x Sm(to,i) —> P (/£ ))j yielding (parameterised) 

languages

7. A language, over the alphabet Ic ,  being “the” language defined by the gram

m ar

For some fixed signature £, we can construct a morphism between £-models straight

forwardly by taking set-theoretic morphisms with its components.

Given any signature morphism (ctm, cta) as above, and any E-model /, we define:

l& i ib ,  Ia , Im , Ic ,  I t , In , h )  =  (I p , ( < ? p I a ),(&m \ Im ) , I c ,(°", I t ),(°", In ) , I l)

We note that this implies, for example,

Vn:mi m k e E N ■ (|(r]/^)(n:mi mk) = IN ( a (n ) :̂ mi)' - ’,7{mk))
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which has type (Em ^ Í ^ i )) x ... x Ejif(cr(m„)) —» P (/^ ))

As we have stated, sentences in the institution will consist of meta-rules and hyper

rules. It is usual with van-W grammars to use different notation for concatenation 

and union in each of these rule-sets. While this is not strictly necessary (and indeed 

is somewhat of a syntactic burden), we will adopt it here for ease of reference. The 

following table gives the standard symbols we have been using in context-free rules, 

and the corresponding symbols for the van-W rules: 2

Context-Free ->• . 1

Meta-Rule • Î
Hyper-Rule ; Î

We note that since the hyper-rules are dealing with concepts defined by the meta

rules - strings over the proto-notions - the syntax of the hyper-rules will use elements 

from the semantics of the meta-rules. Thus there will in fact be two versions of con

catenation on the right-hand-side of a hyper-rule: the syntactic , and the semantic 

(We did not have to “look closely enough” to see the latter when dealing with 

ordinary context-free grammars.)

We can now give a formal definition of meta- and hyper-rules. The meta-rules are, 

for all practical purposes, identical to ordinary context-free grammar rules:

Definition 4.13 Format o f  meta-rules

Given any signature £ = ('Em, Ea, E t ) , a meta-rule over E is o f  the form :

‘m  ’ :: M R.

where m  G £ m , and M R  is a meta-rightpart, defined as:

1. A  is a meta-rightpart

2. For any a G E a , ‘a ’ is a meta-rightpart

2As w ith  context-free rules, concatenation  is usually denoted by jux taposition  in m eta-rules: 

here we will explicitly represent this by a
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3. For any m  € E m , ‘m  ’ is a meta-rightpart

4- I f  m\ and m 2 are meta-rightparts, then so are m i .m 2 and m\\ m2

Hyper-rules are similar to context-free grammars where Eyv and £ t  are used as the 

vocabularly. For simplicity here we will restrict the format of right-hand sides to 

the simplest possible, and not allow arbitrary mixing of union and concatention.

Definition 4.14 Format o f  hyper-rules

Given any signature £, a hyper-rule over E is o f  the fo r m :

‘p ’ : HR.

where p £ E n , and HR is a hyper-rightpart, defined as:

1. A  is a hyper-rightpart

2. Given any finite set o f  notion-sequences {ni , . . . ,  n*} Ç (E# U Er), then 

‘n\ \ . . . ,  Vijfe ’ is a hyper-rightpart

3. I f  hi and h2 are hyper-rightparts, then so is h i; h2

As with the context-free institution, we will allow hyper-rightparts to act as “ax

ioms”, collectively defining the start symbol. In this case, a collection of hyper- 

rightparts can define a (possibly infinite) set of start symbols.

Definition 4.15 Sentences in V A A f W

Given a signature £ from  V A M W ,  the set o f  sentences [E] m ay be partitioned into 

three subsets:

• [£]a/, a set o f  meta-rules

• [£]», a set o f  hyper-rules

a set o f  hyper-rightparts.
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We assert that with Ep as terminals and Em as non-terminals, we can formulate the 

same auxiliary definitions (including a version of L A N ,)  and independently verify 

the satisfaction condition for meta-rules as we did for the context-free institution. 

We will not deal with this in any more detail here.

Hyper-rules are evaluated in the context of the definitions of the meta-notions. Since 

these are effectively free variables, we must have some concept of an “environment” 

(or “value-assignment”) which will allow us to plug in values, and evaluate notion 

sequences. Thus, given any set of meta-notions M  C E m , and any E-model /  as 

above, we define an /-consistent environment for M  as:

E N V i(M )  =  { e : M  Ip \ V m g l l  ■ e(m )  £ Im ( fn)}

In the context of these environments, it is now possible to define a language (over 

I c ) which will correspond to a (terminal or non-terminal) notion sequence. Since Im  

can yield an arbitrarily large language for any meta-notion, the number of languages 

over I c corresponding to a notion-sequence may be infinite.

Definition 4.16 L A N i(n ) ,  the language associated with a notion-sequence 

Given any signature E and any E-model I ,  we can define the function L A N j to eval

uate a notion-sequence from  Ejv or E x  in the context o f  an appropriate environment 

as follows:

1 V n :mu"',mk £ E/v • V e £ E N V i( { m \ , . . . ,  m k}) •
L A N i( n ) ( e ) = IN (n (e (m {),. . ., e (m k)))

2, V £ E t  ■ V e £ E N V j ( { m \ , . . . ,  m^}) •
L A N i( t ) ( e )  =  { "c(e(mx) , . . ., e (m k) ) ” \ c £ h { t ) }

This can, of course, be extended to hyper-rightparts by interpreting the concatena

tion and union operators in the usual manner.

The important result here is that there is a method of changing environments with a 

signature change that preserves the language defined by a notion-sequence; indeed, 

this can take place in either direction.
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L em m a 4 .17

F or  a n y  s i gn a tu r e  m o r p h i sm  cr: £' —>• E, a n y  ( t e rm in a l  o r  n o n - t e rm in a l )  n o t io n -  

s e q u e n c e  o f  th e  f o r m  n' : m f r o m w e h a v e  tha t :

Ve e  EN VI ( { a ( m [ ) , . . . , a ( m [ ) } )  • e) = L/LV/(cr(n'))(e)

Proof:

The proof follows directly from the definition of L A N j.  □

Satisfaction is defined as for the context-free case.

D efin ition  4.18 Satisfaction in V A V W

For any signature £, and any T-model I , we consider the three possibilities fo r  an 

element o f [E] :

1. The sentence is a meta-rule:

I  \ = ‘m ’ :: M R . &  L A N T(M R )  C L A N ,{ ‘m )

2. The sentence is a hyper-rule; then:

(a) I  \= T\, : Ni; . . . ;  N k.
I  \= no : iVi. A ... A I  |= no : N k.

V e e  E N V i(M o  U Ml U ... U M k) ■
L A N i(n [Ml)(e) ~  ~  C / ^ / ( n ^ X e )

(c) I  1= A ^  Ve € E N V j(M 0) • e L A N I (niiMo)(e)

3. The sentence is a hyper-rightpart; then

(а) I  (= TVi; . . . ;  Nk
I  \= N\ A ... A /  |= iVjt

(б) / |= njMl,..., n f k &

Ve e  E N V I (M 1 \J . . .U M k) ■
L A N I (n[Ml)(e) ~ L A N ^ n f ^ e )  C IL

(c) /  f= A ^  e/c € / i

Notice that in the definition of satisfaction for the hyper-rules, we take an environ

ment over the union of the meta-notions on the right- and left-hand side. This is
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the “consistent substitution” rule associated with van-W grammars, which requires 

that each meta-notion be substitued uniformly accross the rule before it is applied.

Lastly, the work done to date establishes the following:

Lemma 4.19 Satisfaction Condition fo r  V A M W

For any signature morphism  cr: E7 —> S, any T-m odel I , and £ ' -sentence s,

I (=2 M-s &  \=l> s

Proof: (Sketch)

The proof for the first case follows from CJ-71SS, and that for the third case closely 

resembles that for the second.

Expanded out, the satsifaction condition for hyper-rules whose right-hand-sides con

sists of notion-sequences is:

V e G E N V i(a (M 0) U cr(Mi) U ... U cr(Mk)) ■
L A N f a i m y W ^ e )  ~  ~ LA7V/((j(ni):<r(^))(e) C L A N ^ n o ) " ^ ) ^ )

V e G ENV[c](i )(M q U Mi U ... U Mk) •
L A N i,m (n\u ') (e )  L A N M m ( n f ' ) ( t )  C ¿¿JVw(i)(ni * ) (e)

To prove this by contradiction, we negate the statement, yielding the disjunction:

(V e G ENVj(cr(Mo) U <x(Mi) U . .. U a(M k)) ■
L A N ^ a i m Y ^ ^ i e )  ~  ~  L A N j ^ n k y ^ ^ i e )  C L A N I {a(n0y r^ ) { e )

A

3 e G E N V [a]{I)(M0 U Ml U ... U M k) ■

L A N m (/)(«;"'X<0 ~ ~  L A N w ) ( n f ‘ )(e) g L A N ^ n ^ e ) )

V

(V e G E N V ia](i)(M0 U Mi U ... U MO ■
L A N w ^ n f ' X e )  -  . . .  -  L A N M (I)( n f ‘ )(e )  C L A N M W (ni,M’ )(e)
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A

3 e e E N V I (a (M 0) U  <7(Mi) U  ... U a (M k)) ■

L A N i( ( r ( n \ ) ' a^M̂ ) ( e )  ~  ~  LAiV/((T ( ^ ) :̂ ) ) ( e )  £  L/liV/(cr(no):̂ A/o))(e))

Both components of this are seen to be falsified by the previous lemma, thus proving 

the original hypothesis. □

4.5 R elating van-W  and Context-Free Grammars

For much the same reasons as for attribute grammars we might want to relate van-W 

grammars back down to the corresponding syntactic descriptions in CTIZEE. The 

procedure we will use here is essentially the same as that for attribute grammars, 

with the only major difference being the fact that we cannot distinguish the “seman

tic” parts of a van-W grammar as easily. Thus we will make an arbitrary abstraction, 

where all of the syntactic and semantic details contained in a notion-sequence are 

bundled into a single context-free vocabulary symbol. The mappings for signatures 

and models are once again of the “forgetful” type, in that their purpose is to lose 

semantic details.

The first two components of the morphism can be defined easily; thus we state:

Definition 4.20 The institution morphism VW toCF: V A A f W  => CT'R.EE 

We define the three components as:

1. The functor  Signy^w Sig n c m s s  which takes a van -W  signature o f  the 

fo rm  (Em, Ep, £t? Ejv) and forgets about the internals o f the notion-sequences, 

giving the context-free signature ( £ t , £ t v ) ,  where the elements o f  each set are 

now non-decomposable.

2. The natural transformation a: (<P I Sencrnes)  => Senv^jyw  maps context-free 

grammar rules into hyper-rules; that is, a context-free sentence o f  the fo rm  

(A  —y r) is mapped to A  : r., with and being used in place o f  and
UI V
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3. The natural transformation f3: ModvAMw ($  9 Modernise) takes a va n -W  

model and merges together the sets o f  languages corresponding to the notion  

sequences. Thus given a van -W  model o f the fo r m  (Ip, Ia , Im , I c , I t , In , I I) ,  

we can construct the context-free model (J c ,  J t , Jn , J l )> where . . .

The mapping for models will not be so simple however. Basically, each individual 

/-consistent environment defines its own context-free model -  what we want to do 

is to merge these models. Thus a first attempt might let J c  =  Ic  and J i  = II , and 

define the following mappings for terminals and non-terminals:
y  t m u - , m k g  .

J r ( t )  = U «i 6  IM(Mi) ■ / r ( imi- - “ *)(ui,. . . ,  vt )

Vij“ 1 m* € E# •
Jn ( ti) =  u Vi e  4 f(M t) • IN( n mx m*)(v1, . . . , v k)

To see how this might work, suppose we have a van-W signature E, two notion- 

sequences Is and rs both from Ey. Let us assume that these contain some meta

notion M  which can correspond to one of two proto-notion sequences: p or q. Then, 

if we are given some some E-model I  which defines:

I t  (Is) = {p c, q t-y d )
I t ( t s ) = {p  c, q d}

we will translate this as:

J t (Is ) = {c, d}
J T (rs) = {c, d}

Thus, as we expect, the context-free sentence (Is rs) is satisfied in /?(/) because

{ “c V d ”} C { “c”, “<T}

and its its a-image Is : rs. is satisfed in /,  since

{ “c”} C { “c”} A { “d”} C

However, this does not always work both ways, since if we take some other model, 

call it I '  defined as:

I'T (ls) = {p (->■ c, q d}
I'T (r s ) = {p 4  5 4  c}
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we get exactly the same value for (3( I 1) as before, except that now while this satisfies 

(Is —>• rs), its a-image Is : rs. translates under / '  to:

{ “d”} C { “c”} A { “c”} C { “d”}

which is false, and thus we have not defined an insitution morphism.

In order to correct this we must cause the context-free sentence to be falsified; the 

problem is that we have been too general with our “forgetting” of the environments. 

Noting that we have only a finite set of meta-notions, we suggest that any envi

ronment (a finite mapping) could be mapped to a unique character over some new 

alphabet3. We propose to index each of the symbols in the j3 image of a van-W 

model by these symbols.

In the above example, if we let the two environments be called E l  and E 2, then the 

sentence (Is —> rs) translates under the model /?(/) to

“dEl”} C { “c£1”, “dE1”}

which is true, but under /3(I') it translates to:

{ “c£1”, “d£1”} C { ucE2,\  “dE2”}

which is false, as required.

So, if we suppose that we have some new set of character symbols C, and a function 

mapping /-consistent environments into C, then we can proceed to define the 

components of our model. They are as follows:

1. Jc  =  ( I c  x C)

2. Vimi-"'ra* 6 S t •
J r ( t )  =  U e <E E N V j P m ) • m a rk (IT( t m  m*)(e(mi), . . . ,  e (m k)), ^ i ( e ) )

3One m ethod: im pose an arb itra ry  ordering on the m eta  notions, and list out the environm ent 

m eta-notion, proto-notion  pairs in  order. This yields a finite-length string over (E m  U £ p ) ,  which 

we may regard as a new character
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3. V n mi e Sat •

J i f(n )  = U e  € E N V i ^ m ) ■ rnark(IN ( n m'  m*)(e(mi),. . . ,  c(m*)), ^/(e))

4. </l =  U e ^ E N V i (T,m ) ■ m ark(IL, ^ /(e ))

We assume that the function

mark: P (/£) x C - >  P (/c  X C)*

denotes the annotation of each character of each string in the language with the 

symbol corresponding to the environment.

From this construction it can readily be seen that the construction is now an insi- 

tution morphism, since most of the structure of the van-W model has been copied 

across (and internalised) into the context-free model. Thus we assert:

Lemma 4.21

V W to C F : V A A fW  =>• CJ-IZES, as defined above, is an institution m oprhism  

Proof: Sketch

We must show that for every CjFT^if’-signature E, every context-free sentence of 

the form (A  —> r) in [£], and every van-W model I  in |$(E)J we have:

(Is, Io ,  Ic ,  I t , In , h )  h=4(E) A : r. <& (J c ,  J t , J n , J l) (=e (-4 —> r)

which, based on the above construction, can be seen to be true. □

This then allows us to set up restraints on context-free signatures in exactly the 

same way as for attribute grammars.

4.6 Conclusion

In this chapter we have extended our syntactic institutions by examining two grammar- 

based formalisms for semantic definition. We note that while conceptually similar, 

the models from A T Q  display one specific feature not present in VAA/’W, in that 

they associate values with languages. This greatly facilitates their role as a genera

tive, rather than solely analytical, tool in programming language specification.
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We have linked both formalisms back to CJ-TZ££, thus permitting context-free de

scription to be restricted by semantic specifications from either institution; an ex

ample of this is presented in chapter 6.
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Chapter 5

Semantic Definitions

5.1 Introduction

In this chapter we examine some formalisms for describing programming language 

semantics which are not directly grammar-based. The two we concentrate on here

• denotational semantics and

• axiomatic semantics

Many other formalisms exist; we might mention in particular operational and alge

braic semantics. Denotational semantics may be regarded as fitting into the general 

“algebraic” style, which involves specifying an abstract syntax and defining the se

mantics “structurally” (also called “compositionally”) over the terms of this syntax. 

The reason this approach may be seen as algebraic is that if the abstract syntax is 

expressed as a signature, then the collection of all programs forms an initial algebra 

(a sort of Herbrand-expansion of the terms), and maps to semantic elements form 

algebraic homomorphisms from this syntactic algebra. Modern approaches to oper

ational semantics are also quite similar to this, basically just involving a change in 

the nature of the target semantic elements.

In this chapter we first present denotational semantics; we suggest that the definition 

could be modified straightforwardly to deal with algebraic or operational semantics
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by changing the functor [•] to deal with sets or some abstract definition of “com

putations”. As with previous formalisms, we relate our definition back to CJ-TZ.££ 

so that specification of other aspects of a language may be tied in. Examples of 

modules from this institution can be found in chapter 6 .

We deal with axiomatic definitions quite differently to denotational ones however, 

in that we see them as the amalgamation of some existing compositional-style se

mantics, and some suitable logic of assertions; specifically we choose denotational 

semantics and first-order logic.

5.2 D enotational Semantics

Of all the formalisms we will be considering, the denotational style is the one most 

naturally associated with category theory. While the term “denotational” has quite 

a general meaning, in programming language semantics it is usually taken to indi

cate the definition of a language in terms of equations over some category of domains  

which are Cartesian closed. For our purposes here we will take the simplest form of 

domain - i.e. a chain-complete partially-ordered set, or CPO.

The definition of an institution for denotational-style specifications, call it T>£Af, will 

involve a fairly straightforward modification of the definition for general algebra. To 

make it easier to relate to other formalisms, we will split each denotational definition 

up into three components:

1. The abstract syntax , which defines the syntactic domains

2. The semantic algebra, which constraints the semantic domains

3. The meaning functions, which relate the syntactic to the semantic domains 

Based on this we can define the components of a denotational signature:

Definition 5.1 Signatures in V £ M

We can define any signature as consisting of:
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1. A set o f  syntactic domains T syd

2. A set o f  T s y d -indexed syntactic operators Esro

3. A set o f  semantic domains T sed

4. A set o f  T s e d  -indexed semantic operators, T s e o

5. A set o f  meaning functions T m  indexed by the elements o f  T syd

A signature morphism consists of a map for the syntactic anti semantic domains, 

and a type-consistent map for the operators and meaning functions.

A model of any signature will involve mapping its components into either domains 

or continuous functions over those domains; thus we define:

Definition 5.2 Models in VSN "

Given any signature E, a T-m odel I  consists of:

1. A function  I d  mapping the elements o f  T s y d  and T s e d  into CPOs

2. A function Io mapping the operators in T s y o ,  T s e o  and Em into continuous 

functions over these domains, in a m anner which is type-consistent with their 

indexing

To support this we must assume that the category [EJ has products; it is common to 

also allow exponents and sums and other, more specialised operations. For simplic

ity we omit specific operations for these CPOs, but suggest that their incorporation 

would not pose any major theoretical difficulties.

Sentences in the institution will consist of equations over the domains defining the 

semantic algebra and the meaning functions. We will not need to specify equations 

for the abstract syntax, since all the information we require is provided by the 

indexing of the operators. To construct sentences, let us assume the existence of 

some infinité set of E^-indexed variables, while elements we will write as u,-, and 

define
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Definition 5.3 Sentences in V S A i

Given any signature E, the set [E] can be partitioned into two subsets o f  closed 

equations:

1. The set [E]$ of semantic equations; these take the form

V Vi : A , . . . ,  vn : Dn • ex =  e2

where each Di G Esed , a,nd e\ and e2 are expressions built from  the semantic  

operators in E seo

2. The set [E]m of equations defining the meaning functions; all o f  these are o f  

the fo rm

Vui : A, ■ • •, vn : Dn ■ M((se))e i = e2

where each A  can be from  either Esyd orY^sED> M  € Em , se is an expression 

over the syntactic domains (o f the appropriate type fo r  M ) ,  and e\ and e2 are

expressions over the syntactic and semantic domains. 1

Sentence morphisms are the obvious extension of syntax morphisms to terms, pre

serving the divide between the semantic algebra and the meaning equations.

A sentence of either form is satisfied in some model /  if and only if the interpreta

tions of the expressions are equal under all possible assignments of values (from the 

appropriate CPO) to the universally quantified variables.

As noted in [GB85], the proof of the satisfaction condition for such structures can 

be seen as a modification of the algebraic institution; we will not deal with it further 

here.

1We will use the angular double-brackets ((•)) in the deno tational definitions to  denote pieces of 

syntax since the m ore conventional square brackets [■] are already in use.



5.3 R elating D enotational and Context-Free D e  

scriptions

Usually when we come to write a denotation definition we assume that the syntactic 

aspects of the specification have been taken care of by some other, more suitable 

formalism. Hence, the abstract syntax component of the a denotational specification 

is really just a base for a linkage to some more concrete syntax, specified elsewhere. 

Thus, as we have done for other institutions, we will want to be able to constrain the 

abstract syntax so that it corresponds to some language specified in the context-free 

institution.

This mapping is slightly less straightforward than the others, since the information 

describing the language is carried in the signature part of a module from D E N , while 

roughly the same information requires specification by sentences in CJ-7ZEE. Clearly 

what is needed here is a presentation-based mapping. We note also that models of 

syntactic signatures in D E N , while possibly representing a more abstract language, 

actually carry more information than models in CJ-7ZEE. We have the obvious corre

spondence between non-terminals and syntactic domains, but each domain element 

that corresponds to some ground term over the operators will implicitly carry with 

it parsing information which is not present in a string from a context-free language. 

This suggests that we have little choice over the direction of model-mappings, since 

the natural transformation ¡3 will be many-to-one from terms in D E N  to strings in 

CT1Z.EE.

This then leads us to a definition of $ for presentations in the opposite direction. 

Here we envisage any production rule giving rise to an operator representing a 

function from the (domains corresponding to the) non-terminals on the right-hand- 

side to the (domain corresponding to the) non-terminal on the left. For this to be 

accurate we have to make sure that each operator gets a unique name; since we 

are dealing with a given set of rules, this poses no real problems. Let us use the 

delimiters |_-J to denote this function; thus, for example, we might have an operator
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of the form [S —¥ while E  do S  odj : E  x S  —>■ S  

Definition 5.4 The functor  $

Given any context-free signature E, and some T-presentation, we construct its image 

under $ by

1. letting Es y d  in T>£J\f be En , along with some new sort, let us call it £ which 

is not in Tin

2. letting Es y o  be the set o f  sentences in the presentation. For each rule, the 

corresponding operator is indexed as a function from  the non-terminals on the 

left to the non-terminal on the right; fo r  rightparts, the corresponding operators 

are indexed as function fro m  the non-terminals it contains into £.

A model in some $-image of a context-free definition is effectively an abstract syntax 

tree whose nodes are indexed by the concrete syntax rules that can be used to derive 

it. To translate this back to a string from the language, we simply traverse the tree 

and apply the rules. To perform this mapping we define a function Ts which will 

translate expressions to strings:

Definition 5.5 Mapping abstract to concrete syntax

For any E-presentation P  in C TIZE S , we define the function  T^: |[$(P)]| —>■ |[-PJ|

T e(L4 ->• r \ ( E u . .. ,  Ej)) = v E( r ) (E u  . . . ,  Ej)

where [̂ 4 —>- rj e Es y d ,  E i , . . .  ,E j  6 |[$(-P)1I and we define as: 

v z ( ‘n1 ’. . . ‘nk % E u . . . , E j ) =

A i f  k = 0

v x ( ‘n2 ’. . .  ink % E 1, . . . , E j ) i f  n, =  A
<

“n i ” - v z ( ‘n2 . .  ‘nk % E t , . . .  ,E j)  i f  nx 6 Er

'T v { e \ ) - v z { ‘n2 , . . . ink t)(E 2, . . . , E j )  i f  nx e  T,N

We note that Tg is a partial function, since there may be elements of the domain 

which are not mapped to by the interpretation (unless we insist on a minimal model). 

However, this causes no problems, since we are only interested in those elements to 

which Ts applies; the others can be “lost” in the translation. Based on this function 

we can now define the translation between models:
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Definition 5.6 The natural transformation j3 For any Ti-presentation P  in CTIZEE,  

and any model I  f= $ ( P )  from  V E A f , we define

k { I )  =  ( E t , A t : E r  • t, A n : ZN • T E( / ^ ( n ) ) ,  T z(ID(i)))

Lemma 5.7 The functor  $ and natural transformation ¡3 as defined above consti

tute a presentation-based mapping CFtoD EN'.CTlZEE => V E A f . That is, fo r  any 

presentations D in V E A f and C  in CT1ZEE, and any D -model d, we have:

d \ = $ ( C )  &  P ( d ) \ = C

Proof: (Outline)

Since the presentation $((7) has no sentences (by our construction), the left-hand- 

side of this biconditional is vacuously true2 Thus we need only show that:

d \ = ^ { C )  => /3(d) \= C

To prove this we need to take any sentence A —y r in C, and show that LA N p (d )(r )  C 

L A N 0 {d)(A).

By the definition of T we can associate with any rightpart a set of parse trees which 

have that rightpart at their root. It is straightforward to show that the strings de

fined by the leaves of these parse trees correspond to the language associated with 

that rightpart.

Hence since A —> r generates an operator [A —> rj which converts parse trees from 

r into ones for A, the strings corresponding to r must also correspond to A.

We emphasize again that his mapping is different from the other mappings con

cerning CTTlEEi since they all left us with context-free models, whereas CFtoD EN  

keeps us in V E A f . The understanding is that we have carried out the analytical part 

of the description, and now wish to transform it into some other form.

2In fact any statement of the form . . .  |= <!>(...) that is correctly typed (with respect to the 

signatures involved) will be true.
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5.4 A xiom atic D efinitions

One of the earliest approaches to dealing with programs in a formal way was ax

iomatic semantics. This involved annotating a program text with boolean state

ments (called assertions), the inference being that the condition specified by the 

statement should always be true when control passed through that point in the 

program. Much work has been done in establishing formal software derivation tech

niques based on this form of annotation.

In meta-logical terms it is common to regard the program text and the assertions 

as belonging to two different languages, with some degree of identification between 

variables. Thus many texts which deal with axiomatic semantics regard the asser

tions as being general statements from first-order logic, and quite separate from the 

actual program itself. It should also be noted that axiomatic definitions tend to be 

more “abstract” than their operational or denotational counterparts, since they are 

only concerned with making assertions about the program, rather than providing a 

specific model of its semantics or operation.

While axiomatic definitions can be used to describe a language, it is more common 

to regard them as an additional structure on top of some existing formal semantics. 

For example, in giving a formal definition of axiomatic semantics (similar to that 

for first-order logic) [Cou90] assumes the existence of a relational semantics for the 

language, and builds the definition on top of this. At the other end of the scale, 

[MA86] interpret the assertions as guards, enabling the whole annotated program 

to be described homogeneously using their partially additive categories.

In general terms then we can regard the concept of an “axiomatic definition” as noth

ing more than the formulation of a specification in some suitable logic institution, 

which is then constrained to apply to the programming language via an institution 

morphism into some semantic institution. The standard choice here would be to use 

F O S Q ,  the institution of first-order equational logic of [GB92], for the assertions, 

and V S M  as the semantic institution; other choices might include:
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• Using a logical institution specifically suited to the type of programming lan

guage involved: perhaps £ Q  for functional programming languages, or 7-LCC, 

the institution of Horn-Clause logic, for Prolog-like languages

• Using the institution of modal logic as described in [Ste92] ; this might be 

useful for languages involving non-deterministic features, where we envisage 

the semantics being extended with some suitable structure (such as power- 

domains).

• We could replace V £J\f with some other semantic definition formalism; per

haps we could use A T T G  to give a more operational-style semantics, or U AfX  

the institution of unified algebras [Mos89], and attempt a combination with 

Mosses’ action semantics.

Taking the standard approach then, let us assume that we wish to write axiomatic 

definitions in first-order logic, and give them meaning by association with existing 

denotational specifications. To do this we would define:

Definition 5.8 Relating axiomatic and denotational definitions The components o f  

the institution mapping D E N to A X '.V E M  =>■ J -O SQ  are:

1. The functor  <?: S i g n v £ j f  S ig n j r o f e  takes any denotational signature E, 

and performs the mapping:

$ ( £ )  =  ((E5y£) U E s ^ ) ,  (E ^ ko U U E m ), 0 )

2. The natural transformation a: Sen-p£M =r> SenyrosQ is the identity, since 

denotational sentences are jus t  quantified equations, and are valid first-order  

logic sentences

3. The natural transformation a: P h i; Mod^osQ  =*• M odvstf  simply involves split

ting back up the mappings fo r  the distinguished subsets o f sorts and operators; 

this is valid since any set m ay be regarded as a discrete domain.

Proof that this is in fact an institution mapping (and commutes appropriately with 

satisfaction) is trivial, since both of the natural transformations make almost no
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changes.

Thus we can take any standard Hoare-style definition of a programming language, 

and rewrite it as a module from F O S Q ,  with the understanding that its meaning is 

really only fully understood by appropriate restraints along D E N to A X . This may 

be seen as specifying further conditions on specific programs over and above their 

denotational definition; thus their main effect will be to nullify the denotational 

model. This might be seen as something similar to assertions in the C programming 

language, which cause a particular program’s execution to abort if they are falsified 

when processed during that execution.

5.5 Conclusion

In this chapter we turned our attention to the generative aspects of programming 

language specification. Here we were no longer interested in further constraining 

specifications in CJ-7Z££, but rather sought to translate these specifications into 

some other formalisms which seeks to given them a “meaning” in the usual, trans

lational, sense. We chose to describe denotational definitions, and relate these back 

into context-free specifications, and forwards into axiomatic-style definitions.

We have noted that the connection from CTTL££ was different to that presented for 

other formalisms, as it left us in V £ A f .  In terms of programming language definition 

the relation to axiomatic definitions is different too, since it is not usual for such 

specifications to give us extra information about a language’s semantics. Instead we 

may see it as a starting point for a mapping into some other formalism, such as a 

suitable refinement calculus, or some “software engineering” specification language.
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Chapter 6 

A Small Example

The work in the preceding chapters has established the basic framework in which 

programming language specifications can be constructed and integrated. In this 

chapter we give a small example of using these formalisms within the structure of 

institutions, by specifying the syntax and semantics of a simple imperative block- 

structured language.

Rather than burden ourselves with excess syntactic baggage we will share nomen

clature between modules in the same institution without pointing out specifically 

the intended shared sub-theories. However, sharing between modules from different 

institutions will be noted explicitly in the specification.

6.1 A Small Language

The language which we will be specifying consists of nested blocks, each of which 

consists of declarations followed by statements. Declarations consists of either in

teger or boolean (scalar) variables. Statements can be assignments, if-then-else 

constructs or while loops. A variable is in scope in the block where it is declared, 

and in any sub-blocks defined within that block. Type-checking is done statically 

based on the declarations seen to date.
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The full syntax of the language is as follows:

B L O C K begin DECL* STAT*  end

D E C L ::= int ID E N T  | bool ID E N T

ST A T ID E N T  :=  EXPR

| if EXPR  then STATS  else STATS  fi

| while EXPR  do STATS  od

| B LO C K

EX PR EXPR B IN O P  EXPR

| UNOP EXPR

i CONST

| ID E N T

CONST ::= N U M  | true | false

N U M ::= D IG IT  D IG IT *

ID E N T ::= L E T T E R  [ L E T T E R  | D IG IT )*

L E T T E R ::= A \ . . .  | Z  | a | . . .  | z

D IG IT ::= 1 | . . .  | 9 | 0

B IN O P ::= +  | -  | * | H- | A | V

UNOP ::= +  1 - 1 -

We propose to use specifications in all the institutions constructed to date as follows

• 7Z£Q to specify (parts of) the lexical syntax

• CJ-7ZSS to specify the remainder of the syntax

• VAA/’W to give the scope rules

• A T Q  to perform type checking

• V S A f  to give the basic dynamic semantics



The core of the specification will be the modules from CTIZES. As we have discussed 

in previous chapters, we propose to constrain these by specifications from 7ZEG, to 

restrain them by the static semantics as specified in V A J \ fW  and A T G ,  and then 

to map this to V £ A f  to give its dynamic semantics. Implicit in this strategy is 

the assumption that information (other then validity) gained from the scope- and 

type-checking is not passed on to the dynamic semantics. This strict delineation 

between static analysis and the dynamic definition may not always be suitable for 

more complex examples (such as those involving dynamic typing, for example). For 

such cases we might still employ the same morphisms between institutions, but use 

constraints (specified into O F 7 i£ £ )  which would allow us to stay in one of the se

mantic institutions.

The diagram below gives an overview of the main modules we will be defining; the 

actual definitions constitute the reaminder of this chapter.

6.2 Prelim inaries

One of the key features of a semantic definition is that of the context; this is ob

viously not a feature of the context-free syntactic definition. The context usually 

contains details about the user-defined names in a program (such as variables, con

stants, functions etc.); the exact content depends on the type of semantics being 

defined. Traditionally in compiler design the context is represented by a data struc

ture known as a symbol table; the more common term used in semantics, and the 

one which we shall adopt here, is environment.

Since it must give details about the identifiers used in a program, the environment 

is usually represented as a function from these identifiers into some sort of “record”. 

What is held in this record (if anything) depends on what sort of information we 

will need to perform the analysis; four our purposes here we suggest:

• For scope checking in VAA/”W we need only know the names of the variables
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The basic modules and their interconnections
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• For type checking in A T Q  we must record the type of each declared variable

• For dynamic semantics in V £ M  we will need to associate some value with each 

identifier that may be referenced

For van-W grammars it is clear that an environment will have to be a meta-level 

concept; the hyper-rules may then use such environments, and thus represent an 

infinity of context-free rules, with one (derived) grammar for each possible environ

ment. As we have noted, an environment at this stage need only consist of a list of 

identifiers currently in scope; thus we define:

 VAATyV : Envs______________________________________________
E m  =  { E N V }
Ep =  =  E t = {}

ENV :: ENV IDENT; A.

The attribute grammars will need to enhance this environment by allowing identifiers 

be mapped to types. Unlike the van-W grammars, we do not assume that the 

mechanism for dealing with the semantic aspects is entirely built into A T Q , but 

expect to flesh out these definitions in some other institution. Thus we define the 

shell:

A T Q  : Envs______________________________________________
£ 5  = [Name, Type, Env}

declared to date (i.e. currently “in scope”)

int, bool Type,

s 0 = « em pty Env ,

combine Env -» Env
£ t =  Sjv =  { }

This simply declares the names of the types and operators that we will be using 

in our attribute language. We would then expect to constrain this by a module in, 

say, the algebraic institution (or in some set-theory based notation such as Z) which 

would assert Env as a synonym for (N am e  —> Type), and impose suitable axioms 

on empty and combine so that the former represents an empty function, and the 

latter represents function overriding. We assume that Name  is mapped to some
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representation for strings.

Finally, we turn to the denotational definition. This time an environment will hold 

dynamic information: the value associated with a particular variable at some stage 

of the execution. Let us assume that we have defined the domains Dval  of denotable 

values, and Nam e  of variable names; then we can complete the definition as:

 V S N  : SemAlg__________________
E s y d  =  'Esyo =  {}
Used =  {Denv, Bool, Name, Dval}

true, false Bool,

E seO ~  < update Denv x Name x Dval —y Denv ,

cond Bool x Denv x Denv -y  Denv

cond(t ru e , e l ,  e2) =  e l  
cond (false, e l ,  e2) =  e2
update(e, n, v) =  A n' : Name • cond(n =  n', v, e(n'))

(Here we use Denv  as an abbreviation for the domain Nam e —y Dval.)

This type of specification in a denotation definition is usually referred to as (part 

of) the “semantic algebra”. It is distinguished by not referring to any syntax (Hsyd 

or £ 5 7 0 ) or any meaning functions (S^)-

6.3 Blocks

A block is the basic program unit, and consists of a sequence of declarations, followed 

by a sequence of statements. We can express this straightforwardly in the context- 

free institution as:
 CFIZSE : Blocks______________________________________________________

E t  =  {b eg in , end, int, b o o l , ; }
£,,v =  {B L O C K , DECLS , DECL, STATS, ID E N T }

B LO CK -y  begin  DECLS STA TS  end  

DECLS -y DECL DECLS \ A 

DECL -y  int IDENT  I b o o l IDENT
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We have used recursion here rather than Kleene closure in order to make the map

ping to other formalisms a little easier.

The corresponding definition in VAA/’W will need to change the environment in or

der to take account of the new declarations. Thus we declare two new environments 

P R E  and P O S T  using meta-rules; in our definition P R E  is changed to P O S T  by 

the addition of an identifier:

 VANW : Blocks  ______________________________________
S M_ =  {PRE, POST}

PRE :: ENV.
POST :: ENV.
block starting with PRE :

begin, decls mapping PRE to POST, stats with POST, end. 
decls mapping PRE to POST :

declare IDENT, decls mapping PRE IDENT to POST, 
decls mapping PRE to PRE : A.

The statements are dealt with in the context of P O S T , which is just P R E  with 

all the declarations of D E C L S  added. Note that we have abstracted away the type 

details since we do not require them for scope checking.

To link this to the context free definition we will use the institution morphism 

V W to C F ; let us represent the translation by mapping e.g. the notion sequence 

stats with P O S T  to the non-terminal symbol s ta ts .w ith .P O S T . The we must define 

some signature morphism which we shall call &bvc into the context-free signature, 

thus:

&BVC-®(Sign(VANW : Blocks)) — > CF1ZES : Blocks

block.starting, with.PRE !->■ BLOCK

decls.mapping. PRE.to.POST H-)- DECLS

decls.mapping.PRE.IDENT.to. POST H-* DECLS

decls.mapping.PRE.to. PRE H * DECLS

declare.IDENT H-)- DECL

stats, with.POST y-+ STATS

Type checking in A T  G will follow a similar pattern, except that this time we must 

additionally store type information. To do this, we will assume that the non-
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terminals D E C L S , DECL, S T A T S  and S T A T  all have attribute-type Env. Although 

it is not necessary to specify an evaluation strategy, we may regard the attribute as 

being synthesised for declarations and inherited for statements.

 ATQ : Blocks.-------------------------
T<s = {Env}
S o  =  { in t, bool, co m bine , em p ty }
Et = {begin, end, int, bool,; }
Etv = {BLOCK, DECLS, DECL, STATS, ID ENT}

BLOCK -»■ begin DECLS STATS end
{$2. en v = combine(S$.enu, $l.env)} 

DECLS —■» DECL DECLS {$$.eni; = combine($l.em>, §2.env)} 

A {$$.env — empty}
DECL —> int IDENT {$$.ercu = ($2.n am e h-y int)}

| bool IDENT {$$.enu = ($2.nam e i-4 bool)}

In all cases we have spelled out the name of the attribute, even though it is not 

strictly necessary for types which do not involve a product. The grammar rules here 

correspond one-to-one with those in CTIZES, so we take it that the $ components 

of A G toC F  strips away the equations, and the signature morphism Obac is just the 

identity.

The denotational definition is the simplest of all at this stage, since we do not need 

to pick up any information from the declarations: hence we do not need a module 

specifically for blocks!

6.4 Statem ents

Next we turn to statements; once again the context-free definition is straightforward:



 CT1ZEE : Sta ts__________________________
E t  =  { if  j th en , else, fi, w h ile , do, od, :=}
E N = {BLO CK, STATS, STAT, E X P R , W E N T }

ST A T S  -> S T A T  S T A T S  | A 

ST A T  W E N T  := £XP/?

| if  EXPR  th e n  57MTS e lse  S T A T S  fi 

| w h ile  EXPR  do ST A T S  od  

I BLOCK

To scope check this we will need to check the identifier in the assignment statement, 

and allow for some sort of checking of expressions; in both cases we just make sure 

to pass the current environment down to the next level of definition.

 V A N W  : Sta ts--------------------------------------------------------------------
E M = {E N V }

stats with ENV :
stat with ENV, stats with ENV;
A.

stat with ENV :
IDENT from ENV, assign , expr in ENV;
if, expr in ENV, th en , stats with ENV, e lse , stats with ENV, fi; 
w hile, expr in ENV, do, stats with ENV, od; 
block starting with ENV .

This is in one-to-one correspondence with the context-free definition, and the mor- 

phisms necessary to enable constraints are the obvious ones (mapping expr .in .E N V  

to E X P R  and so on).

The type-checking follows almost exactly the same pattern, with the additional task 

of checking that the expressions used in the if and while statements are of boolean 

type, and that the assignment is type compatible. If we assume the additional 

attribute types of E X P R  : Env  x Type and ID E N T  : Nam e, we can write:
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 A T G  : S ta ts -------------------------------------------------------------- ------------------
£ s  =  {E n v , N am e , 'Type}
So = {}

=  {if, th en , e lse , fi, w h ile , do, od, :=}
£jv =  {B L O C K , S T A T S , S T  A T , E X P R , /£>£WT}

->• STA T iT A T S ' {Sl.emi =  $S.cnu, $2.em> =

I A
S T A T  -> /ZJjEWT :=  E X P R  {S3.em; =  $$.env,

$$.enu($l.name) =  S3, type}

| if  th e n  S T A T S  else  S T A T S  fi

{$2.enu =  $<$.enu, $4.enu =  $$.enu, $6 .env =

$2 .type = “bool”}

| w h ile  E X P R  do S T A T S  od

{$2.cm) =  $$.enu, $4 .env =  3>$.em>, 

$2. type — “bool”}

| B LO C K  {$2.env = SS.env}

O ne again these rules are  in exac t  correspondence  w ith  tlie contex t-free  syn tax , and 

so we will not spell o u t  th e  m app ing .

N ext th e  deno ta t iona l  definition. As is com m on for deno ta t iona l  definitions, in this 

and  subsequen t m odules  we will leave o u t  th e  explicit quan tif ica tion  of the  variables, 

a ssum ing  th a t  this is ev iden t  from the  con tex t in which they  are  used.

N ote  t h a t  th e  following m odu le  defines b o th  the  (ab s tra c t)  syn tax  and  the  sem antics  

o f  s ta te m e n ts .



VE A i : Stats
Xsyd = {STATS, STAT, EXPR, ID E NT}

j o in STAT x STATS -> STATS,

n on e STATS,

ass ign IDENT x EXPR STAT,

i f EXPR x STATS x STATS -> STAT,

while EXPR x STATS -> STAT,

m ore STATS ->■ STAT
E sed  — {Denv, Bool, Name, Dval} 
E s e o  = {update, cond}

M s 7 v i r s t  M s t a t Denv —» Pen«
E m  =  < M i d ENT Name

M e x p r Denv —» Dval

M s t a t s ({j o i n ( s t a t ,  s ta t s ) ) ) e  =  M s t a t s ((s t a t s ) ) ( M STAT((sta t ) )e )
M s t a t s  ( (none))  e =  e 
M sT A T( (a s s Wn ( id e n t ,  ex p r ) ) )e  =

u p d a t e ( e ,  M j d e n t (( i d e n t ) ) e , MEXPR.((exPr ))e )
M s T A T ( ( i f { exP r i s t a t s  1 , s t a t s 2 ) ) ) e  =

c o n d ( M e x p r ((e x p r ) ) e , M s t a t s ((s t a t s l ) ) e ,  M s t a t s ((s t a t s 2 ) ) e )  
MSTAT ((while ( ex pr ,  s ta t s ) ) )  e =

c o n d  ( M e x p r  ((expr ))  e , M s t a t s  ( (stats))  e,  e )

M s t a t  ( (more ( s ta t s ) ) )  e =  M s t a t s  ( (stats))  e

This needs to be connected to the context-free institution via the presentation-based 
mapping CFtoDEN; to do this we need to define the morphism 9 required in the 
constraint. If we assume that all the Tn components are mapped to the obvious 
corresponding syntactic domain, with BLOCK being mapped to STATS, we can 
write:

9scd'-^(CJ: 'R.EE : Stats) —> VEAf : Stats

[STATS STAT STATS\ i ^ j o in

[STATS AJ non e

[STAT -> Z M W T  := >->• ass ign

LST4T -> if 15X77* then STATS else STAT5 fij • ^ i f
[STAT while EXPR do STATS odj H- while

[STAT ->• BLOCK\ more

This completes the definitions for statements.
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6.5 E xp ression s

The last major section of the language is the set of expressions; we allow binary and 

unary operations, identifiers and constants. Syntactically, we define:

 CTTl££ : Expr   _________ _________________________
S t  =  { }
En = {EXPR, BINOP, UNOP, CONST, WENT}

EXPR EXPR BINOP EXPR 

| UNOP EXPR 

| CONST 

| WENT

Defining scope details involves passing down the environment to sub-expressions; 

the base cases involve constants, which have no scope, and identifiers, which are 

checked separately.

 VAAfW : Expr________________________________________
Em = {ENV}

expr in ENV :
expr in ENV, binop, expr in ENV;
unop, expr in ENV;
co n st;
IDENT from ENV.

When doing type checking however we have some extra flexibility with the grammar 

rules. It is usually possible to distinguish syntactically different types of expressions; 

however, since this is not generally applicable, it is also usual to ignore this in the 

specification. Since we have separated syntactic and semantic description, we may 

add back in this possibility, and define three modules for expressions.

The first defines expressions which are obviously arithmetical:
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Es = {Env, Type}
Eo = E t  = {}
En = {EXPR, ABINOP, AUNOP, NUM}

EXPR  -> EXPR AB IN O P  EXPR

{$l.env = $$.env $3.env = $$.env,

$$.type — “int" ,$1. type = “int”, $3. type = “int”}

| AUNOP EXPR {$2.env = $$.env,

$$.type = “in f , $2.type = “int”}

\ NUM {$$.type = “int"}

The second defined those which are definitely boolean: 

 ATQ : BoolExpr_________________________
E s =  { Env, Type} 
So = £ r  =  {}  
E N =  { EXPR, BB IN O P, BUNOP , BOOLVAL}

EXPR EXPR BBINOP EXPR

{$l.env = $$.env, $3.env = $$.env,

$$.type = “600/”, $l.ii/pe = “bool",$3.type = “600/”}

| BUNOP EXPR  {$2.env = $$.env,

$$.i i/pe = “bool" ,$2. type = “600/”}

| BOOLVAL {U.type = “bool”}

And lastly we have those which cannot be identified specifically as either (not gram

matically, anyway):

 ^4TG '■ IdentExpr__________________________________________
Es  = {Env, Name, Type} 
So = S r  =  {}
Ew = {EXPE, I  D ENT}

EXPR  —>■ ID EN T {$$.type = $$.env($l.name)}

This approach has the advantage of considerably simplifying the specification; it 

might also be of use should we wish to extend the language later by adding in new 

data types (we could perhaps also modularise the declarations section for this).
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To map this back to the context-free case we perform an abstraction. The functor 

$ for A G toC F  will lose the equations, and letting

A T Q  : Expr =  A T Q  : ArithExpr  +  A T Q  : BoolExpr + A T Q  : IdentExpr

we can define the signature morphism Oeac as follows:

Oeac- $ (S ign(ATG : Expr)) -* CTTISS : Expr

EXPR EXPR  

ABINOP, BBINOP ^  B IN  OP 

AUNOP, BUNOP UNOP 

NUM, BOOLVAL CONST  

W E N T  •-> W E N T

The denotational definition, relieved of type information, just passes on the envi

ronment to the lower levels:

 VSAf : Expr ______________________________________
£ s y d  = {EXPR, BINOP, UNOP, C O N ST , W E N T }

apply BINOP  x EXPfi x -> EXPR, '

apply C/7V0P x £XP,R -)• Z^PP,

a CO NST  -+ E X P R ,

an /d p /vt -> £x p p

T,sed = {Denv , Dval, Name}
E seo = {}
E m  =  { M e x p r , M c o n s t , M j d e n t , M b o p , M u o p }

M e x p r  ((ap p l y  ( binop, e z p r l ,  expr2)))e =

M b o p  (( f t tn o p ) )  ( M ^ x p p ( ( e z p r  1)) e , M Ex p r ((expr2) )  e)
M e x p  R e a p p l y  ( un o p ,  ex p r ) ) )e  =  M UOp ( ( u n o p ) ) ( M ExP R( (cxpr ) )e )
M e x  PR ((a ( con s t ) ) )  e =  M c o n s t  ( (const ))
MEXPR((an(ident))) e = e(MiDENT^dent)))

This depends on the following link from the C FtoD E N  image of the context-free 

description:

Qe c d '-$(C'J:'R'££ ■ Expr) —>■ V SA f : Expr

[EXPR  -> EXPR BINOP EXPR\ i-> apply 

[EXPR  -> UNOP E X P RJ apply 

[EXPR  -> CONST} i—> a 

[£XPii->• mEWTJ an
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6.6 O perators

We have made use of unary and binary operators in our specifications; we can give 

them  a precise definition at the lexical level:

 7ZSQ : ArithOps---------------------------------------------------------------------------
Sa -  {+, *, -5-}

=  {AUNOP , ABINOP}

(+ I -  I * I -5-) : ABINOP  
(+ | - )  : AUNOP

 7ZSG '■ BoolOps----------------------------------------------------------------------------
S a = {A, V, —« }

= {BUNOP, B BIN OP)

(A | V) : BBINOP 
: BUNOP

We take a number of approaches to linking these with the various expression mod

ules.

The link with the context-free syntax involves using the institution m orphism CFtoR , 

with CT1ZEE : Expr being constrained by the sum of the above modules (which we 

call 1ZEQ : Ops) via the 1ZEQ signature morphism:

6OCR- Sign(TZEG : Ops) —> $(CT1Z£E : Expr)

ABINOP , BBINOP i-> BIN OP 

AUNOP, BUNOP i—y UNOP

We do not need to worry about the definition in VAAfYV, since the mapping of 

binop i-> BINOP  and unop UNOP will cause the appropriate constraints to be 

applied to the proto-notions.

However, we make specific use of the difference in type of the operators at the 

type checking stage, and so we would envisage constraining A T Q  : ArithExpr by 

7ZEQ : ArithOps and A T Q  : BoolExpr by 1ZEQ : BoolOps. This ex tra  level of preci

sion at the  type checking stage may seem to “bypass” the context-free definition, but 

in reality all it does is to further lim it the models in A T Q  by which the context-free
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models are constrained (in an appropriate manner, of course).

The denotational definition will also need to make use of the actual operator symbols 

in its translation of them  into functions over domains.

 V £ M  : O p s_______________________________________________________________
Z s y d  = {BINOP, UNOP}

cross, dash, s tar,  over, and, or :

cross, dash, not : 

E sed =  { D v a l}

add, subtract, m ult , div, co n j , disj 

negate, Inegate 

£ M  =  { M b o p ,  M u o p }

E s y o  =

E s e o  =  <

B I N O P , 

U N O P

Dval x Dval - 

Dval —> Dval

Dval,

M b o p  {(cross)} =  A  v\, v2 : Dval ■ add(vi,  v?) 

Mgop((dash)) =  \ v i ,  v2 : Dval ■ subtract(t>i, v2) 
M b o p  ((star)) =  \ v i , v 2 : Dval • mult(v i ,  v?) 
M b o p  ((over)) =  A  v2 : Dval • div(vi} t ^ )  

Msop((and )) =  A uj, v2 : Dval • conj(vi,  v2) 
M b o p  ((or)) =  A v i ,  U 2 : Dval ■ disj (vx, v2)
M u o p  ((cross)) =  A v\ : Dval ■ v\
M[/op((dash)) =  A ui : Dval ■ negate(v{) 
M[/op((not)) = A«i : • ln e ga t e ( vi)

We will not quote here the rather obvious definitions of the above semantic operators, 

or the standard link from the syntactic definition of the syntactic operator symbols.

6.7  C on stan ts

Constants can either be numbers, or the two boolean constants true and false; we

define the lexical syntax:

 1Z8G : B oolConst_________________________________________________________
E  a =  {true, false}
E l  =  {BOOLVAL}

(true | false) : BOOLVAL

 7Z£G ■ D ig i t_____________
S a  =  { ! ) • • • ,  9) 0}
E l  =  {D I G I T }

(1 | . . .  | 9 | 0) : D IG IT
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We can constrain the CONST in CTTZES : Expr with a signature morphism  that 

takes BO O LVAL ^  CO NST ; this can be further widened by summing in the rules:

 CTTZS8 : N umber______________________________________
£ r  =  {} 
£yv = {CONST, NUM, DIGIT} 

CONST -> NUM 

NUM -> DIGIT DIGIT*

As before, the specifications in VANfW can safely ignore constants. The definitions 

in A T G can be separately constrained by the regular definition of BOOLVAL , and 

the context-free definition of N U M , to ensure tha t the constants are still separated 

on type. And lastly, the denotational definition will need to interpret constants into 

actual values:

 VZM : C on s t s_________________________________________
Z sy d = { CONST, NUM, DIGIT} 
Z s y o  = {a : NUM ->■ CONST, truth, fa ls eh ood : CONST} 
£ s e m  — {Bool, Dval}
E s e o  =  {}
E m  — {M c o n s t }

M  c o n s t  ((a(num))) =  M NUM ({n u m ))

M c o n s t  ((truth)} = true 
Mc o n s t  ((falsehood)) = false

We omit the obvious definition of M ^ um-

6.8 Identifiers

Finally, we come to the definition of identifiers. We can define them  in the usual

way syntactically:

 CT1ZCS : I d en t s________________________________________
£ r  = {}
ZN = {IDENT, LETTER, DIGIT}

ID ENT LETTER (LETTER \ DIGIT)*

We will define the concepts of le tter and digit at the lexical level:
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 1ZEQ : Letter______________________
=  { -A, . . . ,  Z , a . . . ,  z }

E L = {LETTER}  

(A | . . .  \ Z \  a | . . .  | z ):  LETTER

Here we assume that CFIZSS : Expr is

 7l£G : Digit---------------------------
£ a =  { 1 ,...,9 ,0 }
E l =  {DIGIT} 

(1 | . . .  | 9 | 0) : DIGIT

Imposing this as a constraint on the context-free gram m ar is straightforward.

Next we define identifiers from the scope point of view, with a built-in check to see 

if they are in the current environment (this is a variable reference, as opposed to a 

variable definition):

V A N W  : Idents__________________________________________________
EM =  {PRE, POST} 

PRE :: ENV. 
POST :: ENV. 
IDENT from PRE IDENT POST : A.

The a ttribu te  gram m ar will require some method of extracting an element of Name 

from a variables syntactic appearance; we do not spell this out here, and just include 

the following shell for completeness:

 ATQ : Idents____________________________________________________
Es — {Name}
E 0 = E t  =  { }
E n  = {IDENT, LETTER, DIGIT}

IDENT  -» LETTER  (LETTER \ DIGIT)* { $ $ .n a m e  =  . . . }

The denotational definition for M i d e n t  will have to perform an analogous operation, 

which we again omit.



6.9 C onclusion

In this chapter we have given a small example of a programming language spec

ification built from modules in five different specification languages, related using 

institution mappings and morphisms. Apart from the general advantages of modu

larisation noted in previous chapters, we can see that it lias been possible to omit 

modules for language components from some of the institutions altogether, and to 

significantly simplify others, compared with standard definitions.
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C hapter 7

Conclusions

The goal of this thesis was to dem onstrate the applicability of the theory of in

stitutions to the specification and integration of those formalisms used to describe 

(various aspects of) programming languages. Here we wish to reflect on the work 

done and on its implications.

7.1 W h a t’s b een  done?

In the preceding chapters we have taken five programming language spécification 

formalisms and constructed five institutions:

1. 7ZSQ for regular expressions

2. CTTZ££ for context-free descriptions

3. A T  G for a ttribu te  grammars

4. V A M W  for van W ijngaarden grammars

5. V £ M  for denotational semantics

We have suggested tluit a sixth formalism, axiomatic semantics, does not require a 

separate institution but can be seen as the integration of a suitable semantic and 

logic institution.
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We have performed four basic tasks with each of these institutions:

1. We have shown how the  formalism can be incorporated into the  institu tional 

framework

2. We have verified the necessary results, such as the  satisfaction condition and 

the existence of co-limits in the category of signatures, to ensure th a t these 

are, in fact, valid institutions

3. We have discussed and provided examples of their use

4. We have provided institu tion m appings relating these to each other, most

particularly to CTTISS

Chapters three through five develop the  individual institutions; an integrated exam

ple of their use was presented in chapter six.

In all cases the design of each institution was the crucial step. We found this to be
*

an iterative process which started  w ith a basic definition which was then modified 

as we:

- a ttem pted  to prove the satisfaction condition

- began to formulate and use actual modules from the  institution

- a ttem pted  to integrate it with other institutions

It was quite often the case th a t each of these steps resulted in im portant, and oc

casionally quite substantial, modification of the initial definitions. Generally this 

involved working on the concept of a model within the institution, but occasionally 

modifications to the concept of signature and, less frequently, the sentences were 

required. We believe this reflects the general nature of an institutional description 

as being “denotational” in style: we already know what the formalism looks like in 

practice (as represented by the  sentences): our task is to provide a suitable model 

for its meaning.
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We have already m entioned th a t often one of the m ain tasks in constructing an 

institution is proving th a t the satisfaction condition holds. Indeed, work has been 

carried out (in [GB85]) on specific structures to facilitate this, using charters and 

parchments as tools to construct institutions in which the satisfaction condition def- 

initionally holds. On the other hand, the proofs of the satisfaction condition for the 

institutions in this thesis were not complex. While some of this was undoubtedly 

due to the inductive nature of the structures being dealt with, it should be pointed 

out that in constructing these institutions originally, attem pting (and failing) to 

prove the satisfaction condition provided a key “checkpoint” in their development. 

It was often the case th a t the insight gained in checking this condition resulted in 

substantial modifications being m ade to the concepts of models and sentences in the 

institution, with this in tu rn  facilitating the proof of the satisfaction condition.

It might be noted th a t the models are set-theoretic, rather than category-theoretic 

in nature (this was perhaps contrary to our own initial expectations!). It should be 

remembered that the role of category theory here is as a background to the semantics 

of institutions themselves, and th a t this does not imply tha t the actual components 

of a given institution need be categorical. Indeed, one of the most common example 

of an institution, J-OEQ  for first-order logic, is set-theoretic in nature, despite the 

availability of alternatives in category theory (as in e.g. [LS86]). This does not, of 

course, preclude the definition of more categorical alternatives to our own and their 

incorporation within the framework.

On a similar theme, it should be pointed out that some of the power of the “cate

gorical” aspect of institutions has not been exploited here. Since the collection of 

signatures in any institu tion is a category we are concerned not only with the sig

natures themselves, but also with the morphisms between them; this leads towards 

mechanisms for providing m odularity and param eterisation in modules. While this 

is necessarily in the background here in our use of information sharing between mod

ules, we have not pursued the issue fully. A possible development of this work might 

include examining the role of parameterised modules in the institutions we have
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presented, and also the interaction between param eterised modules from different 

institutions.

7.2 W h at use is it?

We suggest tha t the contribution made by this work may be dealt with under four 

main headings:

1. The theory of institutions

W hile we have not altered the basics of institu tion theory in any fundam ental 

way, we have added the new concept of a restraint to the theory, which allows 

for presentations in one specification to be “shadowed” by those in another 

in a manner not previously possible. In addition, we have introduced the 

concept of a presentation-based mapping, which provides for the translation of 

signatures in the context of a particular set of sentences.

2. The application of institutions

W ith any new theory much of the initial work in using it involves a process of 

familiarisation with the style and goals of tha t theory. One im portant resource 

in this process is the existence of a pool of previous work in the area. We have 

augmented this by providing examples of the design and definition of five new 

institutions, and dem onstrated their application in a small example.

3. Formalisms for describing programming languages

In order to understand the various formalisms used to describe programming 

languages, it is necessary to have some common frame of reference within 

which to compare them. We suggest tha t the institutional descriptions, along 

with the mappings and morphisms tha t we have defined, provide such a ref

erence point by building a homogeneous framework within which they can be 

compared and contrasted

4. Programming language specification

As we have previously noted, the approach th a t we have taken has not involved 

arbitrary  integration of formalisms, but a deliberate policy of constraining the

104



concrete syntax with static semantic descriptions, and then imposing this on 

the abstract syntax on which the dynamic definition is based. As such we 

suggest tha t this is a style of definition which differs from standard algebraic 

approaches, and could be seen as an “institu tional” approach to programming 

language specification.

7.3 W h at n ext?

As with any work of this nature, further extensions are possible. We have attem pted 

to provide a reasonable cross-sample of the types of formalisms used in programming 

language definition; one obvious extension to our work would be the incorporation 

of yet more specification languages.

Two other possibilities come to m ind, both under the heading of “im plem entation” , 

though at the object- and meta-level respectively.

• Implementing the specifications

In his work on general logics, [Mes89] incorporates the concept of proof cal

culi within the institutional system, providing an operational aspect to the 

definition. In our terms, these proof calculi correspond to parsing strategies, 

type-checking algorithms, and methods for prototyping semantic definitions. 

Given our institutional descriptions, it might be useful to investigate their 

operational side; this would involve

— Formulating institutional descriptions of the calculi involved

— Attem pting to investigate their possible integration along the line of the 

institution mappings th a t we have specified

From the software engineering point of view, we might envisage a refinement 

calculus being associated with some or all of the languages; it could be relevant 

to investigate the possibilities of carrying out such refinements “in tandem ” 

between formalisms connected by mappings or morphisms
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• Implementing the framework 

The theory of institutions itself forms a specification language, and would ben

efit from the availability of the types of tools associated with other specification 

languages. In particular, some autom atic assistance in the verification of the 

satisfaction condition would be a considerable help. The prospects here are 

quite tangible: something close to this already exists with the logical frame

work LF [HST89a], and, with a suitable framework for describing category 

theory, it should be possible to build up a suitable theory of institutions in 

some meta-logical framework such as Isabelle [Pau90] or Coq [DF+93].

Both of these are worthy of further study and would, we believe, help to underline 

the usefulness of the theory of institutions for the specification of programming 

languages.
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A ppendix  A  

C ategory T heory

Here we define some of the basic concepts from category theory used in this docu

m ent. The standard reference for category theory is [Mac71], for a computing-related 

introduction [BW90] is particularly comprehensive; other references include [RB88], 

[AL91] and [Pie91]. A general overview of the relevance of various categorical con

cepts in computing can be found in [Gog89].

Category

A category consists of:

• a collection of objects

• a collection of arrows (also called morphisms), indexed by two objects (called 

its source and destination); we w rite /:  A —> B if /  is a morphism from object 

A to object B

such tha t

•  For any objects A , B and C, and arrows / :  A B and g: B —► C  there is an 

arrow f - , g : A —> BC,  called their composition, such tha t for any arrows f , g  

and h which can be composed, we have

/ ;  (<?; h) =  ( /; g)\ h
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• For each object B there is an arrow ids, such th a t for any m orphism s/ :  A -4 B 

and g: B  —► C  we have

f - , i d A = f  and idA\ g =  g 

The set of objects of any category C is usually written as \C\.

D uality

The dual of any category C  has the same objects as C , with the arrows going in the 

opposite direction; it is written C op

Functor

Given two categories C  and D , we define a functor F: C  —> D as consisting of:

• A function Fo mapping C-objects to D-objects

• A function Fa mapping C-arrows to D-arrows, where if / :  A —> B is an arrow

in C  then Fa ( / ) '  Fo(A) —> Fo(B)  is an arrow in D

such that:

• For any C-object ,4,

Fa ^ a ) =  IDFq(a)

• For any composable C-arrows /  and g,

FA{f\ g ) = FA{f)- FA(g)

Given any two C-objects A and B , any functor F: C  —> D induces a mapping from 

the arrows between A and B  to the arrows between F (A )  and F ( B ); then

• A functor is said to be fu ll if this m apping is surjective

• A functor is said to be fa ith fu l if this mapping is injective
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Sub-C ategory

A category C is a sub-category of some other category D. if it set of objects and 

arrows are subsets of those from D. It is a full s u b -c a te g o ry  if the induced 

inclusion functor from C to D is full.

N atural Transform ation

Given any two functors F: C  —> D and G'. C —> D , a natural transformation 77: F => 

G consists of:

• For each C-object A, a D-arrow 77.4 : F(A) G(A) 

such that:

• For any C-arrow / :  A —► B,

rM; G( f )  = F( f ) \  VB

Diagram

A diagram in a category is any collection of objects and arrows from tha t category

CoCones

A cocone a  in some category C consists of:

• some C-diagram a D, called the base, of the cone

• some C-object o '1, called the apex of the cone

• for each node /  in the diagram, an arrow a / :  I A 

such that:

• For any edge e: /  —> J  in a  ,

a i  =  e; a j
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CoLimits

A colimit in some category C is any C-cocone a  such that

• If p  is any other C-cocone with the same diagram as a  then there is a unique 

C-arrow / :  a A —> ftA such th a t for any node /  in the base

a r , f  =  Pi

Colimits for a diagram are unique up to isomorphism.

In itia l O bject

An object is initial in a category if it is the colimit of the empty diagram

Coproducts

The coproduct (or sum) of two objects is the colimit of the diagram containing those 

objects (with no edges)

Pushouts

For any two morphisms in a category / :  A -»  B anti li: A C, their pushout is the 

colimit of the corresponding diagram

Cones and Lim its

C ones are dual to cocones

L im its  are dual to colimits

T e rm in a l O b je c ts  are dual to initial objects

P ro d u cts  are dual to  sums

P u llbacks are dual to pushouts
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Exam ples o f C ategories

Some of the standard categories mentioned in this thesis are:

• S e t whose objects are sets and morphisms are (total) functions

• C a t  whose objects are categories and whose morphisms are functors

• C a top which is the dual of C a t; i.e. it has the same objects, but all the arrows 

are reversed

• 2 which has two objects and no arrows
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