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Abstract

Low Energy Electron Diffraction (LEED) has been used extensively in the study
of surface structures. Structures are typically determined in a trial and error pro-
cess whereby theoretical calculations for an initially proposed structure are refined
until a good fit to experimentally measured data is found. In this thesis LEED has
been used to study the structure of the clean Ni(I11O) and N i(l1l) surfaces. For
the clean Ni(llO) surface a 7% relaxation in the outermost Ni layer spacing is
found compared to 0% for the N i(l1l1) surface. The variation in surface relax-
ation is explained in terms of the reduccd valence electron density and atomic
packing density at the surface. The trial and error approach to determining struc-
tures is not only time consuming but can also be highly inaccurate. An automated
approach to structure determination using an Evolutionary Strategy called Differ-
ential Evolution is developed in this work. The algorithmis found to be extremely
fast and reliable and provides a 25-37% increase in speed compared to the best

competing method.
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Chapter 1

Introduction

1.1 Surface Science

One of the most fundamental properties of any material is its structure. In the
study of bulk crystals the determination of their bulk structure is essential to an
understanding of the electronic and chemical properties of the material. At the
surface of any material the forces and stresses on the atoms are different from
those in the bulk. This generally results in a different structure at the surface than
that in bulk which in turn affects the chemical and electronic properties at the sur-
face. Surface Science is the study of how a material interacts with its environment
through its surface and the study of the structure and electronic properties of the
material at its surface. Surface Science is a very broad discipline and some of the
many areas being investigated include heterogeneous catalysis, microelectronics,

adhesion, lubrication, corrosion, coatings, solid-solid and solid-liquid interfaces.
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1.1.1 Surface Crystallography

Several experimental techniques exist to study surface structure. Among them are
lon scattering, X-ray Standing Waves (XSW) and Surface X-ray diffraction but
by far the most common technique is Low Energy Electron Diffraction (LEED).

LEEDs popularity is due to a number of facts.

 Itis simple to use, and by UHV standards a cheap technique. Other tech-
niques tend to require specialised equipment such as synchrotron radiation

sources, ion sources, or high voltage electron guns.
» LEED theory is well developed

* Itis an extremely flexible technique that can be applied to the study of both

metal and semiconductor surfaces.

* |t can be used to examine growth, periodicity and order on a surface at a
superficial level or in conjunction with computational models it can be used

to determine bond lengths and atomic arrangement.

1.1.2 Aim of the Thesis

In this thesis the basic background to LEED will be explained and the accuracy of
the theory will be demonstrated through the application of LEED to study of the
clean Ni(l110O) and the Ni(l 11) surfaces. LEED theory is extremely well developed
[1,2] but the study of complex structural models is complicated by the possibility
that several solutions can exist with only one solution being the correct one. This
problem will be addressed with the implementation of an Evolutionary Strategy
[3] called Differential Evolution [4], Results will be presented on the algorithms

performance and compared to alternate algorithms.
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Chapter 2

Experimental and Theoretical

D etails

2.1 Introduction

The structure at the surface of amaterial can be significantly different to the bulk.
The atoms at the surface experience appreciably different forces from those in the
bulk due the reduction in symmetry and loss of neighbouring atoms. The struc-
tural changes that result from this reduction in coordination can be contractions
or expansions of the surface layers, referred to as relaxations or they can be a
complete restructuring of the surface plane referred to as reconstructions.

Low Energy Electron diffraction is one of the oldest diffraction techniques
applied to the study of surfaces dating back to the experiments of Davisson and
Germer in 1927. LEED is used in two basic ways, firstly as a qualitative probe
of surface order and symmetry, and secondly as a quantitative tool for determin-

ing exact surface structure. LEED has become the technique to beat for surface
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Figure 2.1: Diffraction from a one dimensional chain of atoms

structure determination, with currently over 500 surface structures solved with this
technique alone. One of the biggest successes of LEED theory was the elucida-
tion of the structure of the infamous Si(ll1)-(7x7) surface [2]. The DAS (Dimer-
Adatom-Stacking Fault) model proposed by (Van Hove,Tong et al) was later vin-
dicated with the arrival of the STM ,which although not measuring bond lengths
did reveal the basic structure predicted by LEED to be correct. This chapter will
start with an introduction to simple diffraction in one and two dimensions and how
this applies to LEED. The method by which exact structural information can be

obtained from the diffraction process will then be outlined.

2.2 Basic Diffraction

Consider a one-dimensional chain of atoms separated by a distance a, with an

electron beam incident on them as shown in figure 2.1. Consider the backscatter-
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n =—=- ) n il n O nd= +1 +2

1
fl |

sin 6

Figure 2.2: Intensity profile resulting from diffraction from a 1-D atom chain

ing wavefront from the second nearest neighbour 1atoms at a well defined angle
6 to the surface normal then there is a path difference (pd) in the distance the ra-
diation has to travel from the scattering centres to the detector. The size of this
path difference is 2asin &ndmust be equal to anintegralorder of wavelengths

for constructive interference to occur i.e.,
pd =2asin6 = hX (2.1)

where Ais the wavelength of the incident electron beam and h is an integer. The
intensity profile produced by such a diffraction condition is shown in figure 2.2.
We note from this pattern that the pattern is symmetric about 0=0 and that
sin 6 is inversely proportional to a. Given this inverse proportionality it is useful to
consider the diffraction process again by examining the wavevector of the incident

beam. The incident electron beam has a wave vector k such that,

=y (2.2)

IThe choice of second nearest neighbour is simply to keep the arguments clearer later on



CHAPTER 2. EXPERIMENTAL AND THEORETICAL DETAILS 7

Figure 2.3: Digram of the change in wavevector A Ain the diffraction process

substituting for Ain equation 2.1 gives,
. 21
2\k\sin0 = = h (2.3)

But what does 2\k\sin 0 represent ? In figure 2.3 the backscattering of an elec-
tronbeam is described. The length 2\k\ sin O represents a change inthe direction

of the wavevector. So diffraction occurs when the wavevector undergoes a change

Ak such that,
Ak= —h 2.4
. (24)
In two dimensions this becomes
. 0 A
A* = 2_a|r h J—ng (2.5)

where h and k areintegersand b is the second dimension of the 2D lattice. A

reciprocallattice can beconstructed with vectors a*, b* whichrelate to the real-
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space vectors a,b by

2.6
. (2.6)
(2.7)
The translational vector of the reciprocal lattice, Ghk, is
Ghk = ha* + kb* (2.8)
which implies that
Ak = Ghk (2.9)

or that every point on the reciprocal lattice corresponds to a diffraction maxima.

2.3 Experimental Arrangement

The basic experimental setup for performing a LEED experiment is shown in
figure 2.4. An electron beam with a well defined energy is produced by an
electron gun and is incident on a sample. The electrons are then backscattered
from the sample surface onto a system of grids surrounding the LEED gun. The
backscattered electrons will be of two types, elasticity scattered and inelastically
scattered. The elastically scattered electrons are those which possess purely dif-
fraction information and have not been influenced by phonons, plasmons etc. The
inelastically scattered electrons which have lost energy due to electron-electron,
phonon, and plasmon interactions , constitute the majority of the backscattered
flux. These electron are removed by the grids as follows. After reaching the
first grid G1 which is earthed the electrons are accelerated toward the fluores-

cent screen S, which has a 5kV potential on it. The grids G2 and G3 are held at a
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variable negative potential which is used to reject the majority of the inelastic elec-
trons. The LEED pattern which is produced on the fluorescent screen is recorded

using either a video or camera.

2.4 LEED as a qualitative probe

As shown in section 2.2 the diffraction pattern produced from a surface is a

(scaled) representation of the reciprocal lattice. Therefore by examining these
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diffraction spots, information on the symmetry and order of the surface can be
obtained. The simple analysis of spot positions and spot symmetry is by far the
most common use of LEED. In sample preparation under UHV conditions a sharp
LEED pattern is regarded as indicating an atomically ordered clean surface. The
LEED spots can show whether the surface is reconstructed and may also indicate
the presence of steps on a surface. When the surface of a material differs from
that of the bulk either through reconstructions or the presence of an absorbate on
the surface , it is convenient to label this difference between the bulk and surface
layers. Given the bulk vectors aband bothe surface vectors as ,bs can be related to

the bulk (or substrate) vectors by

as —Muab + MI2h (2.10)

bs —M21ah+ M2® (2.11)

where are coefficients of a matrix,

(2.12)
M2t M2

This matrix notation is useful because the determinant of the M is the ratio of
the surface mesh to the bulk mesh and provides a classification scheme for surface

structures, as follows

(@ If the determinant M is an integral and all matrix components are integ-

ral,the two meshes are simply related.

(b) If the determinant M is a rational fraction, the true surface mesh is larger
than either the bulk or apparent surface mesh. The size of the true surface
mesh is dictated by the distance over which the two meshes come into co-

incidence. This is sometimes referred to as a coincidence lattice.
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(b) If the determinant M is irrational. Then the two meshes are incommensurate

and no true surface mesh exists.

A more popular, but less versatile, representation of surface meshes is WWood nota-
tion. Wood notation defines the ratio of the lengths of the unit meshes together
with the angle through which they are rotated. For an absorbate A on the hkl
surface of a material X having translation vectors such that

as = mab and bs = nbbwith a unit mesh rotation of >the structure is repres-

ented in wood notation as,
X(hkl) —(m x n) - Rg>—A (2.13)

where Ry>indicates that the surface mesh is rotated through an angle $with

respect to the bulk mesh.

2.5 LEED as a quantitative probe

The location of beams in the diffraction pattern gives general information about
the surface but for exact structural information a study of the intensity of the dif-
fracted beams as a function of the incident beam energy must be performed. The
Intensity vs. Energy curves are commonly referred to as IV curves. When an
electron is incident on a crystal, the strong potential fields scatter the electron.
The electron can be forward scattered, that is into the crystal or it can be backs-
caltered which reverses its direction away from the crystal. LEED relies heavily
on backscattering, as this is obviously what is being observed on the fluorescent
screen, but it is the forward scattering that really affects the LEED intensities. If
forward scattering were weak compared to backscattering the result would be a

diffraction pattern and an intensity Vs energy profile which result from the simple
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Bragg condition. However if forward scattering is strong an incident electron
beam will be scattered into several strong forward travelling beams as well as the
incident beam. From this simple argument we see that strong forward scattering
will have the effect of producing additional peaks other than the Bragg peaks and
could also effect the Bragg peak positions due to interference affects. It is the
latter case of strong forward scattering that dominates in LEED and as a result a
simple analysis of the intensities of the diffracted beams with energy will not yield
any useful information regarding surface structure. Consider an electron beam in-
cident on the first layer at the surface of a crystal. When the beam is scattered ,
interference between the scattered waves will result in a set of diffracted beams at

points determined by the reciprocal lattice,

ok = hai & ka2 (2.14)

One set of diffracted beams will be propagating backward ( the reflection set)
another will be propagated forward with the unscattered incidence beam ( the
transmission set). The wavefield incident on the second layer will now be com-
prised of the forward scattered beams from the first layer, which will be sub-
sequently forward and backscattered by the second layer. The process is indicated
in figure 2.5.

The total backscattered intensity therefore comprises of backscattered beams
from several surface layers. Any diffracted beam snm will pick up contributions
from from the scattering of each of member of the beam set from each layer. Any
diffacted beam s\ can be described by the sum of the scattering from each plane

of an incident beam,
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N A =)

it . -— .

Figure 2.5: Diffraction from a bulk crystal. Note how scattering from a plane pro-
duces both a reflected (backscattered) and transmitted (forward scattered) beam
set.
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s{=mimsi + M2ms2+ W+ MjV *sn (2.15)

Each element of the matrix m, referred to as the scattering matrix, describes
the change in both the amplitude and phase a given layer causes to aincident beam.
The changes are represented by complex numbers with the real part describing the
amplitude change and the imaginary parts describing the phase changes. There-
fore given an incident beam set S, and a diffracted beam set S', these may be

related by a square matrix M, the scattering matrix, such that

S'=M S (2.16)

Consequently a complete description of the scattering from a plane of peri-
odic scatterers may be given by two complex(NxN) matrices, one describing the
reflected set” and the other describing the "transmitted’ set.

When an electron enters acrystal it gains energy due to the potential inside the
crystal referred to as the ’inner potential’. The size of the inner potential is approx-
imately equal to the sum of the work function and fermi energy. This effectively
shifts the energy of the diffraction peaks in energy. In addition to this energy shift
electrons incident on a crystal also suffer energy losses due to scattering from
plasmons and phonons in the crystal. The general effect of this inelastic scattering
is the exponential decay of the beam intensity as it travels into the crystal. This
results in a broadening of the diffraction peaks. This energy loss is represented
by introducing an imaginary component VG to the inner potential, typically equal
to 4eV for most materials. As seen above LEED diffraction spectra cannot be
described in terms of a single scattering model and in order to correctly interpret

the LEED IV curves we need to use dynamic or multiple scattering calculations.
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2.6 Tensor LEED

There are several techniques and methods used for calculating scattering matrices
and summing the forward and backscattered electron beams, explanations of which
would be beyond the scope of this thesis. These calculations usually take a lot of
CPU time, e.g. anything from 5mins to 24hrs depending on the complexity of the
structural model. Tensor LEED was developed in an effort to reduce the compu-
tational effort involved by allowing the user to examine several structural models
which are simply variations on some base model [5]. Tensor LEED examines how
the scattering matrices of a basic model structure are affected by small changes
in positions of the atoms in the structure. A knowledge of how the scattering
matrices vary with atomic movement allows approximate IV curves to be gener-
ated for a range of structures. The approximated IV curves are usually only valid

for atomic movements within 0.4A of the base structure.

2.7 Comparison of Theory to Experiment

The IV spectra resulting from different structural models are usually significantly
different and so visual comparison of the theoretical and experimental 1V curves
is sufficient to distinguish between correct and incorrect models. However when
fine tuning the parameters to obtain an accurate structural model this method is
quite inadequate. Jona and Zanazzi [7] were the first to tackle this problem with
the introduction of the so called reliability or R-factor, which is a measure of the
discrepancy between experimental and theoretical 1V beams. The R-factor was
proposed as a common guide to the quality of a structural model. The first R-

factors used were adapted from those used in x-ray diffraction analysis, but these
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did not apply well to LEED spectra. However several other R-factors were later
proposed, most notably by Pendry [9] and Van Hove [7] which although equally
valid, undermined the universality that Jona proposed. The various R-factors pro-
posed emphasise different aspects of the match between the experimental and the-
oretical 1V curves. The basis of the Zanazzi-Jona R-factor, Rzj, is to emphasise
peak position rather than peak heights, because peak positions are highly struc-
turally dependent whereas peak heights are due to non-structural parameters such
as vibrational amplitudes etc. The Pendry R-factor, Rp, probably the most pop-
ular R-factor, emphasises peak positions but also emphasises the importance of
overlapping peaks and points where the intensity falls to zero in the spectra. Zero
points are obviously important as they are a result of destructive interference and
as such are related to the structure of the crystal. A comparison of the two meth-
ods carried out by Clarke [10], showed that the Zanzzi-Jona R-factor is much less
sensitive than the Pendry R-factor to structural change. He showed thata 1 percent
change in a single structural parameter leads to a 1.6% change in Rz and a4.8%
change in Rp. He also found that a 1% change in the inner potential changed Rz
by 1% and Rp by 0.5%. The requirements of a good R-factor are that it is chiefly
sensitive to peak positions. It should not be at all sensitive to absolute intensit-
ies, but should pay some attention to relative intensities especially features that
are close in energy. It should also be a simple function not requiring more than
a first derivative. Pendry deals with this problem as follows. He first assumes a
LEED IV curve to be composed of a series of Lorentzian peaks located at various

energies Ej, and of various various intenisties aj, such that

I{E) ~ £ (E- Ej)2+ V* @17)
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Their widths are dictated by the imaginary part of the electron self energy
VOi. In most materials Voi is approximately independent of energy above 30eV,
and takes a value of approximately -4eV. For a series of roughly spaced peaks
, the criterion of insensitivity to the amplitudes is met by using the logarithmic

derivative

HE) = (2..8)

which from equation 2.17 reduces to

L(Ey-~ v ~2(A ~ Ej) /2

L w - L {E _ )2 o+ Vot (
The logarithmic derivative, L, has removed the relative intensities of the Lorent-

zian peaks, aj, and in their place there are peaks of amplitude,

L = xI/\Voi\ at E = Ej+ |voil (2.20)

This completely eliminates the relative amplitudes of the peaks and if peaks
overlap to some extent then their relative intensities do affectL. This works well
except when the intensity, I, is zero , so a new function is defined which gives
equal emphasis to intensity zeros and Lorentzian peaks. This new function ,Y

which shall be referred to as a modified logarithmic derivative, takes the form,

Y(E) = L-'"KL-2+ Vi) (2.21)

It can be shown that Y (E) takes a maximum value of

Ymax = x]r\Voi\ when L = +1/\Voi\ (2.22)

it



CHAPTER 2. EXPERIMENTAL AND THEORETICAL DETAILS 18
W hich for a series of lorentzian peaks occurs when
E = Ej £ \Voi\ (2.23)

The new reliability factor Rp is defined as,

CIW + YD) -

where Ye and Yt are the modified logarithmic derivatives of the experimental
and theoretical curves respectively. Pendry also proposed a method for estimating
the error in the R-factor, Rp and the error in the best model. The estimate of the
errorcomes from a general statistical treatmentofa LEED IV curve. Given an IV
curve with N well separated peaks, the ratio of the variance (var Rn) to the mean

R-value (Rn)is,

var HN 1
- N rr (2.25)
R n sgqgrtN

This is obviously a reasonable assumption to make, i.e. increasing the number
of features ,(or 1V curves) in an R-factor analysis will increase the accuracy of the
result. Given an IV curve of energy range 6E there can be N well resolved peaks

where,

N = m <226)

This permits us to define a double reliability factor, RR, such that

RR = 21$*. = (2.27)

The statistical error in the R-factor minimum is then,
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VarRmin — -fi-fi X Rmin (2.28)

2.8 Surface Composition

Surface structure analysis is primarily concerned with the study of clean surfaces
or the effects of an adsé6rbate on the surface. It is therefore essential to be able to
verify that a surface is free of contaminants and to be able to measure the exact
amount of a material adsorbed on the surface. The techniques used in surface
science to study surface composition are Auger Electron Spectroscopy, and X-ray
Photoelectron Spectroscopy. These techniques will be outlined in the following

sections.

2.8.1 Auger Electron Spectroscopy

The basic Auger process starts with an incident electron (or photon) causing ion-
isation of a core level electron. The electron vacancy or hole created in the core
level may be neutralised by an electron transition from an electrén level of lower
binding energy. A quantum of energy, (A E), the difference between the core hole
and the electron falling into it is transferred to a third electron which escapes as
an Auger electron. The process is described graphically in figure 2.6. The kinetic

energy of an Auger electron for the process shown in figure 2.6 is ,
Ekin = EK —E1i — EL2j3 (2.29)

Ek —E ij is the quantum of energy released by an electron falling from the L\
shell to the core hole in the K shell and E |23 is the binding energy of the elec-

tron in the i/23 shell. This Auger transition is assigned the term KL 1i,L 23- The
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Figure 2.6: Energetics of the Auger process

probability of relaxation by Auger emission is the dominantprocess for core holes
with binding energies below about 2keV for K shell ionisation. The kinetic en-
ergy of the Auger electron is independent of the energy of the ionising particle
or the incident radiation giving rise to the initial core hole. The kinetic energy of
the Auger electron is characteristic solely of the binding energies of the electrons
within the atom. Hence, Auger electrons may be used for chemical identification.

Auger excitation is usually carried out using electron sources due to the rel-
ative ease of producing sufficiently energetic beams of high intensity. The use of
electron beams to produce the initial ionisation process is advantageous in that the
incident beam can be focused thus giving good spatial resolution. For the light
elements (atomic number Z < 20) Auger emission is more probable than X-ray
emission for a K-shell initial-state hole and for Z < 15 it is almost the exclusive
process. For higher Z, Auger processes dominate for initial state holes in outer

shells.
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2.8.2 X-ray Photoelectron Spectroscopy

Photoelectron spectroscopy is, in principle, a particularly simple process. A photon
of energy hv (h is planks constant and V is the frequency) penetrates the surface
and is absorbed by an electron with a binding energy Eb below the vacuum level,

which then emerges with a kinetic energy Ekin,
Ekiu= v —Eb —¢> (2.30)

The process is described in figure 2.7. The kinetic energies of the ejected
electrons have an energy spread characteristic of the binding energies and as a
result can be used to identify atomic species. Any photon whose energy exceeds
the work function of a solid can be used for photoelectron spectroscopy but the
most common sources used in the lab are the Ka lines of A1 and Mg at 1486.6 and

1253.6 eV respectively.
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Figure 2.7: An example of the photoemission process, where an incident X-ray

photon transfers its energy to a Is core level electron
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Chapter 3

LEED study of the Ni(I'l10) and

NT(ltl) surfaces

3.1 Introduction

In this chapter experimental LEED data taken for the Ni(110) and Ni(l 11) sur-
faces is compared to theory. A detailed analysis of the structure of clean Ni sur-
faces is particularly important because it provides a basis for studies of the LEED
spectra of chemically adsorbed ordered overlayers of atoms or molecules on Ni
single crystal surfaces. | will first outline the experimental and computational is-
sues pertinent to the analysis and the results of the structural analysis will then be

presented and discussed.

3.2 Experimental Details

The experiments were conducted using a standard ultra high vacuum chamber

equipped with a range of facilities for sample preparation and surface charac-

24
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lerisation together with a computer controlled LEED diffractometer. The base
pressure of the chamber was typically 1 X 10-10 mbar. The Ni crystals were cut
by spark erosion from a crystal initially orientated by X-ray Laue alignment. The
surface was then polished using progressively finer grades of diamond paste to
produce a mirror finish. After insertion into vacuum the crystals were cleaned and
polishing damage was removed by repeated cycles of sputtering with lkeV Ar+
ions and subsequent annealing to 900K. The temperature was monitored using a
chromel-alumel thermocouple in contact with the sample. The cleaning cycles
were repeated until no carbon, oxygen, or sulphur (sulphur is used in the growth
of Ni crystals) were detectable using x-ray photoclectron spectroscopy and the
LEED indicated a sharp Ix | diffraction pattern.

Quantitative LEED intensities were recorded from 60eV to 500eV at room
temperature using the Omicron LEEDstar video system. Normal incidence was
verified by comparison of symmetry equivalent diffraction beams. The intens-
ities were accumulated over nine runs to improve the signal to noise ratio. For
the N i(lll) surface the IV curves for 17 diffraction beams were measured. The
symmetry equivalentbeams were then averaged reducing the beam set to five sym -
metry inequivalenl beams, namely the (0,1), (1,0), (2,0), (0,2) and (1,1). For the
Ni(110) surface 25 beams were collected which were averaged to produce a re-
duced beam set of nine symmetry inequivalent beams the (0,1), (1,0), (1,1), (0,2),

(2,0), (2.,1), (1,2), (3,0), and (3.,1)

3.3 Computational Issues

The LEED calculations were performed on a Sun UltraSparcl using the sym-

metrized automated tensor LEED (SATLEED) package [9,10]. The phase shifts
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were calculated using the Barbieri/Van Hove phase shift package [9,10]. Different
scattering phase shifts were generated for both the N i(lll) and Ni(110) surfaces.
Nine phase shifts were used in the calculations. The number of phase shifts used
depends on two quantities. Firstly the energy range used; The higher the energy
the more phase shifts have to be included in the calculation. Secondly the higher
the atomic number the larger the number of phase shifts required. Previous stud-
ies on the Nickel surfaces have been performed with 5 phase shifts so 9 is more
than adequate. The bulk Debye temperature was taken to be 450K. The real and
imaginary parts of the inner potential were initially assumed to be VOr =10eV and
V0 =-4eV .The real and imaginary parts of the inner potential were then adjusted
as partof the optimisation procedure. LEED intensities were calculated at2eV in-
tervals. The interlayer spacing of the top three layers for the Ni(l 10) and Ni(l 11)

surfaces were allowed to vary as pail of the optimisation procedure.

3.4 Results and Discussion

Plotted in Figures 3.1 to 3.5 are the best fits of theory to experimentfor the Ni(l 10)
and Ni(l11) surfaces.

The fitting of experiment to theory was performed using the Davidson Fletcher
Powell search algorithm. The algorithm was started at several random points in
the parameter space to ensure thatthe minimum found was the true minimum. The
quality of the fit between experiment and theory was evaluated using the Pendry
R-factor, the properties of which are explained in chapter 2. The interlayer spacing
determined from the fits together with the overall R-factor are displayed in table
3.1. The Debye temperature was optimised at 435K and the imaginery part of

the inner potential was found to be -3.75eV. The real part of the inner potential
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Figure 3.1: Graph of the best fit theory to expt IV curves for the (1,0), (0,1) and
(1,1) diffraction beams for the Ni(110) surface
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Figure 3.2: Graph of the best fit theory to expt IV curves for the (0,2),(2,0) and
(3,0) diffraction beams for the N i(l 10) surface
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Figure 3.3: Graph of the best fit theory to expt IV curves for the (2,1),(1,2) and
(1,3) diffraction beams for the N i(l 10) surface
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Figure 3.4: Graph of the best fit theory to expt IV curves for the (1,1),(2,0) and
(0,2) diffraction beams for the N i(l 11) surface
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Figure 3.5: Graph of the best fit theory to expt IV curves for the (1,1),(2,0) and
(0,2) diffraction beams for the N i(lll) surface
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Parameter Ni(110) N i(lIl)

Rp 0.18 0.25
d\2 1.15 2.03
d3 1.28 2.03
34 1.24 2.03

Table 3.1: Best-fit interplanar spacings and Pendry R-factors, Rp obtained for the
Ni(I10) and N i(ll1l) surfaces. 012,d23 and d7A represent the distances from the

first to second, second to third and third to fourth Ni layers respectively.

was also adjusted during the fitting procedure. Although the real part of the inner
potential contains information about the work function and fermi energy of the
material it is very rarely quoted. This is because in computerised setups it is
common for a fixed energy difference to develop between the actual electron gun

energy and the computer recorded energy. This is merely a calibration problem

Previous studies of the N i(lll) surface have been carried out using between
three and five diffracted beams for the analysis [1-3] . These studies concluded
that the surface layers are notcontracted butremain attheir bulk values, i.e. 2.03A .
This resultis consistent with our result and the general trend observed in fcc(l11)
surfaces for which little or no relaxation of the surface layer is generally expec-
ted or observed [4—6]. The results for the Ni(llO) surface are also in excellent
agreement with previous studies [1,7,8]. The Ni(llO) surface structure is found
to exhibit a damped oscillatory relaxation of the interlayer spacings of A dl2 =
-7.3% , A ¢23 = +2.4% and Ad34 = -0.8% . The results for this study are compared
with previous results in table 3.2

The results of the analysis although consistent with previous work did not

produce exceptionally good R-factors. There are both experimental and theoret-
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Parameter This Work Adams [7] Feidenhans [8]

A Q12 -7.3% -8.7% -4.8%
Ai/B +2.4% +3.0% +2.4%
A 134 -0.8% -0.5% Bulk

Table 3.2: Comparison of the results of this study of the Ni(l11O) surface with pre-
vious studies of this surface. A d represents the difference between the interlayer

spacing found from experiment and the bulk Ni(l 10)value.

ical reasons for this. An essential part of any LEED experiment is the ability to
achieve normal incidence to an accuracy of 0.1°. Normal incidence is achieved
by adjusting the crystal until the symmetry equivalent beams are identical. This
comparison is also performed by estimating the Pendry R-factor of equivalent
beams. The R-factor resulting from comparison of symmetric beams should be,
according to a general rule of thumb < 0.02. In figure 3.6 and 3.7 the raw data
for the (0,1) and (1,0) diffraction beams for the N i(lll) surface are shown. It can
be clearly seen that there are both intensity and peak position differences between
the beams which is a clear indication that the crystal is not aligned at normal in-
cidence. This stems from aproblem with the manipulator upon which the crystal
was mounted and the fact that the chamber was not properly shielded from stray
magnetic fields. These stray fields can deflect the incident electron beam. The
symmetrized tensor LEED codes use a technique known as RFS (renormalised
forward scattering) to calculate the diffraction beam intensities. This method ba-
sically involves passing the electron beam forward and back through the crystal
until the diffraction beam intensities converge to some value. The RFS method
only works for interplanar spacings greater than 1.2A. The N i(110) crystal has an
interplanar spacing of 1.24A which is on the limit of the techniques capabilities

and so can suffer convergence problems.
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3.5 Conclusion

In this chapter we demonstrated that LEED is a powerful technique for the study
of surface structures due to the well developed theory of multiple scattering. The
N i(lll) surface showed no change in the surface interlayer spacings compared
to the bulk whereas the Ni(lIl1O) showed an oscillatory relaxation of the top three
layers. The results are consistent with previous works but the results could be
improved with better experimental conditions and an analysis of the structure us-
ing an alternative LEED code e.g. Layer Doubling which should improve or even

solve the convergence problems.
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Chapter 4

An Evolutionary Strategy for L E E D

4.1 Introduction

Mathematical Optimisation is the formal title given to the branch of computational
science concerned with finding the best solution for problems in which the quality
of an answer can be expressed as a numerical value. Such problems arise in all
areas of mathematics, the physical, chemical and biological sciences, engineering,
economics and managementto name a few and the range of techniques designed to
solve these problems is equally as wide. Optimisation techniques can be broadly
split into two classes local and global. Local techniques are generally applied
where it is known that only one best solution exists. Global search methods are
concerned with problems in which several good solutions exist but only one best
solution exists.

Low Energy Electron Diffraction (LEED) has undergone many improvements
over the last number of years. Increases in speed in the analysis of LEED data
have been the result of two distinct efforts. The development of pertubative tech-

niques such as Tensor LEED, Kinematic LEED, and Linear LEED has led to huge
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increases in computational speed compared to full dynamical LEED calculations.
A parallel effort has been in the development of search strategies for global min-
imisation of the reliability factor (R-factor) that quantifies the agreement between
the experimental and theoretical data. Itis the aim of this chapter to present a new
approach to this problem.

Clean metal surfaces, like the Ni(l 10) and Ni(l 11) surfaces discussed in chapte
2 have been extensively studied in the past. Itis well documented that the struc-
tures of clean metal surfaces generally undergo some relaxation of the outer most
layers but the resulting structure is not significantly different from that of the bulk
crystal. The number of parameters involved in a clean metal structural determin-
ation is also quite small and so Tensor LEED or a simply grid search can be per-
formed to find a structural solution reasonably quickly. Reconstructed surfaces are
significantly more complex and R-factor minimisation becomes a difficult prob-
lem due to strong coupling between the structural parameters involved and the ex-
istence of many local minima in the R-factor parameter space. For many years the
basic method of finding the global minimum was to use an exhaustive grid search.
Improvements came with the application of steepest decent methods [1,2].These
methods worked well in finding minima but to find the true global minimum the
search has to be started from several randomly chosen parameters, the lowest min-
imum found being taken as the global minimum. This is the so called "multiple
launch” approach. A review of standard search strategies and their application to
LEED can be found in references [1,2]. Two general classes of methods have
been developed to solve such global minimisation problems. These are simulated
annealing (SA) [3] and what could be called biological algorithms. Biological al-

gorithms aim to find the global minimum by mimicking to some extentbiological

-
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processes. Examples of theses are genetic algorithms»evolutionary strategies and

Neural networks.

4.2 Review of Current Global Search Methods

4.2.1 Simulated Annealing

The simulated annealing algorithm is a technique that has attracted a lot of atten-
tion in the last few years as it is a robust optimisation technique suitable for large
scale optimisation problems, especially problems in which the desired global min-
imum is located among many shallower local minima. The simulated annealing
algorithm is what is called a probabilistic hill-climbing algorithm. This means that
during the search process the moves that increase the R-factor (uphill moves) are
accepted in addition to moves which decrease the R-factor (downhill moves).This
is the central point that enables the search algorithm to locate the global minimum
among all the other local minimum. At the heart of the SA algorithm is the Metro-
polis criterion which controls the acceptance probability of every uphill” step in
the search. Starting from an initial point Xt a random step dx is chosen leading to
a new point X:. The change in the R-factor AR = R(x,)-R(.x'i) is evaluated. If the
function change is negative (AR < 0) i.e. abetter point has been found, the move
will be accepted and Xj will be a better approximation to the minimum that X{. I f
the change is positive (AR > 0) apoorer pointhas been found. This pointwill be
accepted with a probability given by the Boltzmann distribution P(AR) = e~>".
The acceptance of bad points is essential to finding the global minimum as other-
wise the algorithm can get trapped in a local minimum.

The probability is controlled by the dimensionless parameter T, an artificial
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temperature. T is initially set high to allow large steps around the parameter space
and is gradually decreased during the search. The SA algorithm is basically a
search based on randomly chosen steps accepted or rejected according to the Met-
ropolis criteria together with a gradual reduction of the temperature T. The main
issue regarding the performance of simulated annealing is to lower the temper-
ature as fast as possible while ensuring that one does not get trapped in a local
minimum. The basic outline of the simulated annealing algorithm is presented in

figure 4.1

4.2.2 Genetic Algorithms

Genetic Algorithms essentially simulate the natural evolution ofliving organisms.
At the beginning the user of aG A has to devise a way to encode possible solutions
of the optimisation problem into bit strings, each bit string is called a 'chromo-
some”. A ’fitness value” has to be defined as a measure of the chromosomes
performance in the problem. The goal is to maximise this fitness.

Initially a randomly chosen "population” of chromosomes is created. The
chromosomes in this first 'generation”, are chosen randomly in the sense that
they are distributed about the parameter space of the problem. Using a selec-
tion rule that combines chance and a preference for chromosomes with a high
fitness, several pairs of chromosomes are selected as ''parents” for the creation
of the next generation. The chromosomes (bit strings) of the parents are split at
some point and their parts combine to produce two new chromosomes in a pro-
cess called crossover. Each parent therefore hands some information to the next
generation. Occasionally some of the bits in achromosome are randomly inverted

thus simulating "mutation” in nature. In this way a new generation is produced
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Figure 4.1: A general overview of the Simulated Annealing algorithm
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Nth Generation Nth + 1 Generation
Rp bit code Rp bitcode
0.1258 010110001101111000001 0.0351 011000001010101000001
0.1422 o noo0o0o0o0KkKmmmioo 0.1113 011000101000111001010
0.1541 011000001000011000011 0.1142 011000001000111001010
0.1554 010010001101111000001 0.1218 011010101001111000001
0.1668 011000001000101001111 0.1258 010110001101111000001
0.1730 011000001101101000001 0.1422 011000001000101001100
0.2042 010000001101111000001 0.1422 011000001000101001100
0.2146 011010101000101010000 0.1478 010001000110111100000
0.2515 011010100111001000010 0.1505 011010001000011000010

0.2584 010010001070707000077 0.3630 010010001000101001100
0.2612 011100101000111001010 0.4476 010010000111001010010

Table 4.1: Example of the crossover procedure used in Genetic Algorithms The
chromosome fragments printed in italics and bold letters in the Nth generation re-
combine to form the italic and bold printed chromosomes in the Nth+1 generation

Note that mutation has occured in the formation of the Nth+1 italic chromosome

that replaces the previous generation. The process of producing new generations
is then repeated until a termination criteria is fulfilled. For more details about

Genetic algorithms see [11]

4.3 Review of Global Search Methods in LEED

Rous [3] was the first to apply true global minimization techniques to LEED
with the application of the simulated annealing technique to the Ir(110)-(2x1) sur-
face [5]. This surface has since been used as a benchmark for any global search
technique as it contains 41 local minima besides the global minimum. In the
Ir(110)-(2x1) [5] surface structure there arc 11 parameters but for the structural

analysis only three parameters, the interlayer spacing between the first and second
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layers, the spacing between the second and third layers and the row pairing in the
second layer were used. The search was conducted over al A x|l A x| A para-
meter space in O.05A steps. This is equivalent to some 8000 structuralevaluations
being needed for an exhaustive grid search.
Rous [5] found that application of an unoptimized simulated annealing algorithm
resulted in 4000 structures being needed on average to find the global minimum,
a 50% saving in computational time when compared with an exhaustive search
strategy. As SA is a stochastic method the number of structures which have to
be evaluated to locate the global minimum will depend on the choice of an initial
starting point. The most common way to evaluate a search algorithm is to run
the simulation a number of times and find the average number of runs required
to find the global minimum. Rous, however, evaluated the efficiency of global
search methods in a different manner. He asked how many function evaluations
are required to always find the minimum or to find the minimum with a given
probability. To evaluate the efficiency of the SA algorithm a statistical distribu-
tion of the number of structural evaluations needed to find the global minimum for
1000 random starting points, i.e. structures was generated. From this distribution
Rous [3] determined that although 4000 function evaluations were needed on av-
erage to locate the global minimum the probability of finding the global minimum,
Pgiobau with 4000 structural evaluations was 0.9. Optimization of all parameters
involved in the SA enabled him to find the minimum with a probability Pgiobai of
0.9 with 800 structure evaluations while 2500 structures were needed to attain a
Pglobal ClosetO].

An alternative global strategy based on an R-factor dependent gaussian distri-

bution of structures was developed by Kottcke and Heinz [6J. This method has
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the distinct advantage of using the more computationally efficient Tensor LEED
thereby improving the required computational times. However this method is in-
efficient when using low numbers of parameters and is restrictive in parameter
ranges. For example this method was applied to the Ir(110)-(2xl) with only the
top two interlayer spacings varied in 0.05 steps over a range of * 0.4A. They
found that 330 structural evaluations were needed to find the global minimum
whereas an exhaustive grid search would only take 256 structures. The efficiency
of the method increased as the number of parameters increased but the ranges over
which the parameters were varied also decreased making it difficult to assess the
quality of the search. The problem with using Tensor LEED for optimization is
that it is first and foremost an approximation method. Tensor LEED can generate
the general shape of the parameter space and in this way it can locate the min-
imum, but the R-factors produced can differ significantly. For example if the best
bit R-factor is at a distance 0.2 from the start point the Tensor LEED algorithm
will find the minimum and estimate the R-factor as 0.3. If the search is restarted
on the minimum the same result is found but the accuracy improves and the R-
factor drops to 0.25. This makes it difficult to use in a global search because not
only does the method have to contend with a parameter space with several minima
but the algorithm will produce spurious R-factors for trial structures.

W hile research work into Evolutionary Strategies detailed in this thesis was
underway, Doll and Van Hove [4] independently applied Genetic Algorithms to
the problem. They found that for the Ir(110)-(2x1) [5] structure they could locate
the global minimum with an average of 314 structural evaluations, with 800 struc-
tures being needed to achieve a P giobai indistinguishable from 1 (0.9998). This

is a considerable improvement on the Simulated Annealing method [3]. It was



CHAPTER 4. AN EVOLUTIONARY STRATEGY FOR LEED 45

suggested by Doll and Van Hove [4] that an Evolutionary Strategy (ES) might
improve further on the Genetic Algorithm approach. An extremely simple and
promising Evolutionary Strategy is the Differential Evolution method developed
by Stom and Price [7]. This method is very fast and remarkably simple and is

described in the next section.

4.4 Differential Evolution

4.4.1 Overview

Differential Evolution (DE) is a global search strategy which in its simplest form
works as follows. Given a number of parameters D, one initially creates an ar-
ray of NP, D dimensional real valued vectors. Each member of the vector corres-
ponds to aparameter in the LEED analysis. These parameter vectors are randomly
chosen and should uniformly cover the entire parameter space. This array of vec-
tors is referred to as a target population and each subsequent target population
created is referred to as a generation. The R-factors of each of the parameter vec-
tors of this initial target population are evaluated. For a particular target vector,
three vectors are selected at random from the target population. A mutant vector
is created from these by adding the weighted difference of two of the vectors to
the third. From this mutant vector a trial vector is created by randomly mixing
parameters from the mutant vector and the target vector in a crossover procedure.
The R-factor for this trial vector is then evaluated and if it has a fitness better than
that of the target vector it will replace the target vector in the next population.
This procedure is repealed for every member of the current target population. In

this way a new target population, or generation is created. Typically this proced-
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Figure 4.2: A general overview of the Differential Evolution algorithm

ure is repeated until the target population converges towards some optimum set of
parameters. The process is outlined diagrammatically in figure 4.2 and in the next

section each step of the proccss shall be discussed in more detail.

4.4.2 Population Initialisation

The most common approach is to generate a uniform random distribution of val-
ues about the parameter space, or alternatively a gaussian distribution about some
estimated ’best” parameter set could be used. Both methods have been investig-

ated here the results of which will be discussed later.
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4.4.3 Mutation

In the introduction to this section an outline was given of the simplest DE method,
whereby three vectors were used to generate a targetvector. An alternative method
for generating target vectors is to add the weighted differences of four randomly
chosen vectors to the best member of a population (2). (The best member is the
member of the population with the lowest R-factor). In stricter terms, for each
target vector «e* of dimension D where i=1,2 ...NP a mutant vector 7mcan be

generated by either

Vio= xi + F-(xz- x 3) (4.1)
Vi = xbest + F mx1+ ®2 - *1 - >, (4.2)
where xi , x2 , x3 , x4 are four different vectors randomly chosen from the

population. F is a real factor that controls the size of the vector difference, and
is empirically chosen to be greater than O and less than 2.0. The most common
values used are between 0.5 and 1.0. However the value of F can be fine tuned to
optimise the performance of the DE algorithm for a particular cost function. The
two mutation schemes described above shall be referred to as DE method (1) and
DE method (2) respectively. Both methods were investigated and the effects of

initial population choice were investigated for method (2) and are discussed later.

4.4.4 Crossover

To increase diversity in the trial population a crossover operation is introduced
such that a trial vector is formed by randomly interchanging the individual

parameters of the target vector, x, and mutant vector v; according to,
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Vij ifrandom no. < CR orj = arandom vector index
Uij = { (4.3)

Xij ifrandom no. >= CR andj != arandom vector index

CR is the crossover probability [0 > CR < 1] which is determined by the user.
The choice of CR depends on the DE method used. The use of the randomly
chosen indexj = 1,2,... D to determine whether crossover occurs is to ensure

that the trial vector M , contains at least one parameter from the mutant vector W.

445 Selection

To decide whether the trial vector should become amember of the next generation,
the R- factors of the trial and the target vector are compared. The vector with the
lowest R- factor is kept and becomes a member of the next generation. In the
following analysis the Pendry R-factor was used to compare IV-spectra but in

practice any R-factor can be applied.

4.5 1r(110)-(2xl) Missing Row - Row Pairing Model

As outlined in 4.3 the Ir(110)-(2x1) [5] has been used to test the efficiency of
global search algorithms in LEED. In order to compare Differential Evolution
[7] to alternative algorithms the Ir(110)-(2x1) [5] structure was also used in this
work. Theoretical IV-curves were generated for the known structure of Ir(110)-
(2x1) [5] and used and used as pseudo-experimental data. Six integral order and
five half order spots over a range 45 eV to 250 eV were used. The Differential
Evolution method was applied to the standard Van Hove and Tong codes [10]

The two forms of the DE method, (1) and (2), mentioned above were tried and
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Figure 4.3: Schematic Diagram of the mutation and crossover processes in the
Differential Evolution algorithm, (a) A mutant vector i is formed by choosing
three random target vectors and adding the weighted difference of two of them to
a third vector (b) A trial vector is generated by swapping the parameters in the
target vector with parameters in the mutant vector. Swapping is determined by the
crossover probability CR. A random number is generated for each parameter in

the vector. If this number is < CR, then the parameters are swapped
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the effects of initial population choice on speed of convergence was examined
for DE method (2). For DE method (1) crossover probabilities, CR between 0.1
and 0.5 were found to work best. The data presented here is for a population
of 20, a crossover probability CR of 0.4 and mutation value F of 0.5. For DE
method (2) crossover probabilities between 0.5 and 1.0 were found to work best.
The data presented here is for a population of 50 a crossover probability, CR
of 0.8 and the mutation value, F was chosen to 0.5. The performance of the
algorithm depends to some extent on the choice of CR and F. The crossover and
mutation probabilities displayed were chosen based on previous experience with
the method [9]. Following the method of references [3,4,6] three parameters, the
interlayer spacing between the first and second layers, the second and third layer
spacing and the row pairing in the second layer were varied over a IA x 1A x |A

parameter space.

4.6 Results

To examine the efficiency of the method, the statistical distribution of the num-
ber of structures evaluations required to obtain the global minimum must be ex-
amined. To generate such a distribution the method was executed for 100 random
initial populations. The algorithm was terminated when the best parameter in the
population was within 0.05 of the actual parameter values which are known apri-
ori. (This criteria was used in both previous optimisation methods [3,4]). The
number of evaluations carricd out is plotted in histogram form in figures 4.5,4.6
and 4.7. Fitting a normal distribution to these histograms, the average number of
structural evaluations needed, NaV can be determined along with the variance of

the distribution aN . The probability of finding a global minimum after a certain
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3rd Layer
2nd Layer

Q 1st Layer

Figure 4.4: A top view ofthe Ir(2xl) surface

number of structures, Nntoi is found from

Isiglobaiyntot) = e exp{-~"" " ”*“”)dx (4.4)
y/ZTran J-00 A cr

From the plots shown in figures 4.5 - 4.7 itwas found that DE method (1) re-
quired Navt a = 186 + 86 structures on average. This corresponds to a probability
of finding the global minimum, PgiOtai of 0.998 for 500 structures It was found
that DE method (2) required on average NaV + a =189 = 121 structures which
corresponds to a probability, P giobai 0f 0.998 for 600 structures. Differential Evol-
ution Method (2) with a gaussian deviate population required NaV* a=143 = 126

structures which corresponds to a probability, pgiobai of 0.998 for 600 structures.
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Frequency

No. of evaluations to find global minimum

Figure 4.5: Histogram resulting from DE method (1) with auniform initial popu-
lation
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Frequency

No. of evaluations to find global minimum

Figure 4.6: Histogram resulting from DE method (2) with a uniform initial popu-
lation
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Frequency

No. of evaluations to find global minimum

Figure 4.7: Histogram resulting from DE method (2) with a gaussian deviate ini-
tial parameter population
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Method used No. of structures pgigpal
Exhaustive Search 8000 1
Simulated Annealing 2500 0.998
Genetic Algorithm 800 0.998
DE method(l) 500 0.998
DE method(2) 600 0.998

Table 4.2: Comparison of search strategies as applied to the Ir(110)(2xl) surface

overa IA X 1A X |A parameter space

4.7 Discussion

The two Differential Evolution methods differ in their performance. The standard
Differential Evolution method (1) requires only a small initial population, (typic-
ally 5 times the number of parameters) and several generations, in this case 25,
to find the global minimum. Increasing the size of the population for this method
does not produce a marked increase in the speed of convergence. Differential
Evolution method (2) however requires a large initial population, (typically 20
times the number of parameters), but does not require several generations,12 gen-
erations being needed on average in this case. The results compare quite favorably
when compared with previous global search methods [3,4] Table 4.2.
The DE methods were 4 times faster than the Simulated Annealing method and
1.33 times faster than the Genetic algorithm

A gaussian initial population was chosen to see if some prior knowledge of
a system could increase the speed of convergence. Clean metal surface relaxa-
tion, for example, does not vary greatly from the guessed (bulk-like) structure.
Therefore in this situation it would be reasonable to distribute the initial para-
meter estimates around their bulk values. It was also hoped that the gaussian

population could complement the 'fingerprinting’ technique [8]. Fingerprinting is
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a technique whereby LEED intensity spectra measured from an unknown surface
structure are compared to previously studied structures on the same or similar ma-
terials. It has been shown that a good initial guess at a structure can be obtained
from this method. However, the results were disappointing. Although the method
resulted in a smaller average number of trials there was quite a wide distribution
which resulted in a larger number of structures being required to achieve a global
minimum to a probability of 0.998 when compared to DE method (1).

The majority of the calculations were done on a standard Pentium 100MHz
machine running the Linux operating system. All code was compiled using gnu
Fortran and on average it took between 18-24 hours to find a global minimum
(6 phase shifts were used in the psuedo-expermental data and in the search pro-
cess). These execution times could definitely be improved using a good worksta-
tion and an optimized compiler. (Doll and Van Hove quote 1.25 hours for a ge-
netic algorithm to evaluate 800 structures). The results presented here show that
stochastic search methods, such as the Differential Evolution algorithm, greatly
reduce the number of structures to be evaluated and permit the evaluation of
structural parameters on modest computational facilities, and in a relatively short
time. Accumulation of the statistical data given these computational facilities
was lengthy and time considerations limited further investigations of the scaling
behavior of the method with increasing parameters and of fully optimizing the
crossover probability, CR and mutation rate F. Stom [7] has shown that Differ-
ential Evolution can provide a 50% increase in speed over a conventional genetic
algorithm so it is reasonable to assume the values used in this analysis are quite
good although perhaps not fully optimized. It has been noted that genetic al-

gorithms and other stochastic methods can find the general location of a global
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minimum extremely quickly but take quite a long time to locate the actual min-
imum. Rous |3] suggests a hybrid search strategy, by which a global search
method is employed for a coarse search and then a descent method is used to find
the minimum exactly. A possible solution to this would be to use the mutation
rate of DE in a similar way to the artificial temperature, T, in Simulated Anneal-
ing. In the DE method the size of the mutation rate could be varied depending on
the spread of parameter values. So for example a large spread could resultin a
large initial mutation rate but as the population converges the size of the mutation
rate could decrease such that smaller steps are taken speeding convergence and
enabling the actual global minimum to be determined quite quickly. This idea has
not been tested and is an area that requires further research. The main advantage
to the DE method is its sheer simplicity. It requires little additional code to the

standard Van Hove Tong codes and it is extremely robust.

4.8 Conclusion

In this chapter an Evolutionary Strategy, Differential Evolution method has been
applied to the global search problem in LEED and has been found to be an ex-
tremely effective method for global optimization. It is hoped that application of
the algorithm to more complex systems will provide information on how the al-
gorithm scales with the number of parameters and prove itself a valuable tool for

LEED structural analysis.
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Chapter 5

Summary and Conclusion

5.1 Summary

In this thesis the general theory and application of LEED to the study of surface
structure has been outlined. As an example of the use of LEED results on the
Ni(ll1O) and Ni(lll) surfaces have been presented. The clean Ni(lll) surface
exhibits no surface relaxation which is to be expected of close packed surfaces.
The Ni(llO) surface which is the most open of the face centred cubic, fee, metal
faces shows an oscillatory relaxation of the top three Ni layers.

In LEED theoretical curves are compared to experiment by reliability factors
or R-factors. For complex systems multiple solutions can exist to a problem with
only one solution being the true solution. To deal with this problem an Evolution-
ary Strategy called Differential Evolution was applied to the problem and results
were presented. Differential evolution was found to be extremely fast at finding
the solution compared to alternative methods such as Simulated Annealing and
Genetic Algorithms. Overall the work presented in this thesis has demonstrated

that LEED is a highly accurate technique for determining the structure of surfaces

59
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and coupled with a global search algorithm such as Differential Evolution can be

apowerful tool for the analysis of surface stniCtUres.



