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Abstract 

The objective of this thesis was to investigate the use of mid-infrared spectroscopy 

(MIR) as a PAT tool in bioprocessing.  This was achieved through the development of 

chemometric models from MIR spectroscopic data.  Models were applied to both 

upstream and downstream bioprocess steps to evaluate the potential of MIR as a PAT 

tool in each scenario.   

 

The first study included a preliminary examination of 8 typical components found in a 

mammalian cell culture medium.  A multivariate limit of detection (LOD) analysis was 

performed to establish the monitoring potential of the instrument for the given 

application.  This initial work identified the components which were unlikely to be 

accurately detected, such as glutamine, but also highlighted the components that 

showed promise, such as glucose.  A 7-level experimental design was used to develop 

partial least squares regression (PLS) models for each of the 8 components, with 

optimal model errors ranging from 6.03% for glucose to 63.06% for glutamine.  An 

external influence investigation into the factors likely to impact model prediction 

ability was also performed.  A statistical analysis on these influences enabled the 

significance of the effect to be determined.  Finally, all investigative work performed 

in this study was completed using 2 MIR immersion probes; the first, a fixed conduit 

immersion probe and the second, a flexible fibre-optic immersion probe.  This allowed 

for a comparative analysis of probes and identified the fixed conduit probe as the most 

suitable for the given application. 

 

The second study applied models developed for glucose and lactate, in the first study, 

to a series of CHO DP12 cell cultures.  The objective of this work was to investigate 
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how effective the previously developed models were at predicting glucose and lactate 

concentrations when applied in-situ, in a bioreactor.  This study explored the at-line 

application of MIR and showed an improvement of 60.27% for glucose and 13.22% 

for lactate predictions, when applied at-line rather than in-situ.  Central to this study 

was the optimisation of the models used, in an effort to improve their accuracy and 

robustness.  The impact of the size and nature of the calibration set was investigated to 

identify the optimum calibration set for in-situ and at-line model development.  When 

offline data was used as part of the optimised calibration training set, models 

consistently performed better than the original partial least squares regression (PLS) 

models, created solely from synthetic samples.  Optimised glucose model results 

showed an improvement in RMSEP of 37.93% while optimised lactate model results 

had an improved RMSEP of 61.98%.  

 

The third and final study presented here investigated the use of MIR as a qualitative 

and quantitative tool for total and recombinant protein detection.  Exploratory work to 

establish the instruments capability in distinguishing between differing proteins was 

initially performed via principal component analysis (PCA).  This showed that the 

instrument used could identify the recombinant protein of interest among a group of 5 

other standard proteins.  In-process samples, provided by an industrial collaborator, 

were used to develop PLS models for total and recombinant protein prediction.  

Results indicated that models performed better for total protein quantification, with the 

minimum percentage error of prediction, (PEP) 2.39%.  The smallest PEP for the 

recombinant protein was found to be 6.66%.  This study was completed with an 

investigation into the likely impact of 2 detergents on model performance.  Due to the 

common usage of detergents in protein production, for e.g. protein solubilisation or 
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virus inactivation, the effect of these on MIR spectra and consequently models 

predictions was investigated.  This analysis indicated that detergents were likely to 

impact results, particularly at concentrations at the higher end of the typically used 

range.   

 

This thesis establishes and evaluates the potential of MIR spectroscopy as a PAT tool.  

It presents 3 studies which highlight development methodologies and outline possible 

applications, all the while seeking to optimise results obtained.  Through systematic, 

novel investigations this thesis shows that MIR can be used as a PAT tool, but equally, 

it raises warnings of when the technique or analysis methods may fall short of the 

desired result.      
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Chapter 1:  Introduction 

The field of biotechnology has undergone exceptional growth in the last decade.  There 

is an ever increasing global demand for high quality biopharmaceuticals at lower costs.  

The pharmaceutical industry has previously experienced such mounting pressure; but 

with market focus shifting to biopharmaceuticals, it is now the turn of the 

biotechnology sector to accept the torch and take a leading role in embracing dynamic 

initiatives such as “Process Analytical Technology (PAT) and Quality by Design 

(QbD)”.  Although these initiatives are almost a decade old, their introduction to the 

biopharmaceutical industry is still in its infancy.  However the search has begun to find 

robust and reliable techniques to enable the concept of Process Analytical Technology 

(PAT) to take root within the industry. 

 

The production of recombinant proteins for therapeutic and diagnostic applications is 

developing at an extremely high rate, principally based on microbial and animal cell 

production systems.  The efficient control of cell culture conditions such that very high 

cell densities may be attained, is hugely desirable.  However, reaching high cell 

densities is not the only challenge.  Maintaining and controlling this high cell 

concentration over the course of the cell culture is even more critical. Uncontrolled 

systems may lead to extreme loss in viability, high release of proteolytic enzymes and, 

hence lower protein productivity and increase protein degradation in the bioreactor.1  

Therefore systems capable of tight control to ensure high product yield and quality are 

imperative.  This is generally achieved by careful formulation of the culture medium, 

coupled with controlled feeding of the medium through fed-batch or perfusion 

systems, to simultaneously maintain high cell viability and high production rates, 

while maintaining the required product quality.   
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The increasing demand for improved process efficiency and consistent product quality 

in bioprocessing has fuelled extensive research efforts in the area of on-line bioprocess 

monitoring and control.  An important driving force for this growth was set in place by 

the Process Analytical Technology (PAT) initiative, proposed in 2002 by the Food and 

Drug Administration (FDA).2  PAT endeavours to establish in the pharmaceutical 

industry, the ideology of Quality by Design, QbD, where continuous on-line process 

monitoring and supervision ensure optimum manufacturing conditions, allow complete 

product traceability and quality control, as well as improve early fault detection.  In 

addition, the implementation of PAT to a process ultimately results in greater process 

understanding as it effectively monitors, and controls if necessary, all the Critical 

Process Parameters (CPP’s) hence providing considerable insight into the Critical 

Quality Attributes (CQA’s) of the process.3  The availability of real-time analytical 

results has been shown to reduce production costs by reducing losses caused by 

unnecessary waiting periods between process steps, for example, results from in-

process testing.  Also, costs incurred due to batch failures and reworks are significantly 

reduced.4 

 

Several ‘conventional’ bioprocess monitoring techniques are widely used; temperature, 

pH, dissolved oxygen, carbon dioxide etc.  These analysers, most often in the form of 

in-situ probes, are used mainly for controlling the corresponding process parameters, 

although they do not provide much insight into the reaction itself.  Analysers capable 

of providing information on the contents of a bioreactor at any point in time perhaps 

provide the greatest insight into the bioprocess.  A major challenge currently in the 

area of bioprocess monitoring lies in ensuring the reliability of monitoring tools and 
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the accuracy of the measurements they provide in on-line conditions.  As the 

concentrations of the major analytes and metabolites in biotechnological applications 

are typically very low, achieving the required reliability and precision of on-line 

measurements often proves a difficult task.  On-line monitoring tools provide reliable, 

instantaneous analytical information about the bioprocess, which in turn can be used 

for advanced control schemes aimed at optimising the process in real-time.  PAT 

instruments in a bioprocess application should meet certain criteria.  They should be 

capable of rapid and accurate on-line monitoring with the ability to be integrated into 

reliable and robust calibration systems as well as being non-invasive and non-

destructive.  These applications should also provide dependable analytical feedback to 

continually maintain the desired operational parameters and allow for implementation 

of stringent process control mechanisms.  

 

Vibrational spectroscopy has huge potential as a PAT tool in bioprocess monitoring.  

In-situ probes meet much, if not all of the criteria listed above.  These probes can be 

sterilised in place, do not require any sample preparation and can produce 

spectroscopic data in seconds.5  Infrared spectroscopy; near-infrared (NIR) and mid 

infra-red (MIR), work on the basis of detecting the vibration characteristics (stretching, 

contracting, bending, etc.) of various chemical functional groups over the specific 

infrared frequency range of light.  Another vibrational spectroscopic technique, Raman 

spectroscopy, is complementary to infrared spectroscopy and is based on light 

scattering.  Previous studies have demonstrated the application of NIR, MIR and 

Raman spectroscopy to cell cultures for the simultaneous on-line monitoring of media 

analytes and metabolites.6-12  Other studies have highlighted the use of infra-red 

spectroscopy as a rapid technique for recombinant protein detection, outlining its 
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capabilities in protein characterisation and quantification.13-16  However these uses 

have yet to be significantly demonstrated in an on-line capacity.   

 

The useful information embedded within spectral data sets needs to be extracted if it is 

to be of use as part of a monitoring and/or control strategy.  It is the development of 

multivariate calibration models which is the key to unlocking this information.  In the 

case of spectroscopic data, a large number of independent variables are generated 

which relate to one predicted dependent variable e.g. absorbance values (independent 

variables) over a range of wavenumbers in the mid-infrared region can be used to 

predict the concentration (dependent variable) of a particular component.  These 

variables are related to each other by a calibration model.   

 

Chemometrics (multivariate analysis techniques) are used to establish correlations 

between a dependent variable, such as concentration, and absorbance.  They are often 

used as data reduction techniques since chemometric analysis allows multivariate data 

to be transformed into a much smaller number of variables.  The important information 

is maximised and system noise is minimised.  A number of chemometric techniques 

can be employed, depending on the required information.  In the studies presented in 

this thesis, the chemometric techniques used were principle component analysis (PCA) 

and partial least squares regression (PLS).  PCA is often used for exploratory analysis 

and pattern recognition.  In bioprocessing, PCA can be used as a qualification 

technique for raw materials or products where differences between samples may be 

highlighted.  PLS is a supervised method which requires the use of a training or 

calibration set to develop a predictive model.  It is frequently used in the generation of 
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calibration models capable of predicting the concentrations of various components 

present in a system.   

 

The overall aim of this thesis was to establish the potential of MIR as a PAT tool in 

bioprocessing.  This was achieved by employing chemometric techniques to develop 

calibration models capable of predicting the concentrations of analytes and metabolites 

present in a mammalian cell culture medium.  These models were applied in real-time 

to a series of cultures and the efficacy of the technique for analyte and metabolite 

measurement was evaluated.  The applicability of this technique in the monitoring of 

product, in the form of recombinant protein, was investigated by development of PLS 

models from spectral data obtained from in-process culture samples.  Three separate 

studies were completed in order to carry out all aspects of the research outlined above. 

 

Study 1 proposed a methodology on how to develop and evaluate MIR spectroscopy as 

a PAT tool in the quantification of media components.  This work identified 8 

components typically present in a mammalian cell culture medium and systematically 

examined each one in terms of the ability of MIR to detect and accurately predict its 

concentration.   

 

Study 2 applied the PLS models developed for glucose and lactate in study 1, to 

mammalian cell cultures in real time to determine the accuracy of these models.  This 

study also highlighted the differences when the technique was applied on-line and at-

line. 
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Finally, study 3 focused on the ability of MIR to detect total and recombinant protein 

in samples taken directly from the primary recovery stage of an industrial process.  

This exploratory work investigated the potential of in-situ MIR as a PAT tool for 

qualitative and quantitative protein analysis. 

 

All 3 studies presented in this thesis provide a cohesive approach to determining the 

ability of MIR to perform effectively as a PAT tool in bioprocessing.  Both upstream 

(in the form of mammalian cell culture cultivation) and downstream (in the form of 

primary recovery) processing is considered.  In addition to evaluating the potential of 

MIR as a PAT tool, each of the individual studies raises questions as to optimum 

methodologies, with limit of detection, calibration set type and means of evaluation, all 

scrutinised.     
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Chapter 2:  Literature Review 

The choice of suitable on-line analytical techniques and data processing for 

monitoring of bioprocesses 

 

Adapted from the Springer Berlin Heidelberg publication:  Advances in Biochemical 

Engineering Biotechnology, Volume “Stage of the Art of M3C”, 2012.  Series ISSN 

0724-6145 

 

Abstract 
With increasing pressure from regulatory authorities on industry to develop processes 

embracing ‘Process Analytical Technology’ (PAT) initiatives, there is a growing 

demand to establish reliable tools and systems capable of meeting this need.  With 

regard to monitoring and control of bioprocesses, this need translates to a search for 

robust instrumentation capable of monitoring the critical process parameters in real 

time.  The application of such technologies at all stages of the process, from the initial 

R&D phase, to process optimisation and production enhances process understanding 

and paves the way for the development of control platforms.  

 

An examination of the PAT concept and selected tools are presented here.  A 

description of each tool is given, with particular emphasis on the nature of the signal 

produced and how these relate to measurements of biomass, metabolites and product.  

A description of the signal processing that is necessary to gain meaningful results from 

the different tools is also given.  Many techniques such as those based on vibrational 

spectroscopy are of particular interest, since they are capable of monitoring several 

critical process parameters which are typically controlled in a bioprocess.   A window 
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of application for each of the techniques, when used in the area of bioprocessing, is 

suggested based on their uses and inherent limitations.            

 

Keywords PAT, Critical Process Parameters, Bioprocess Monitoring, Spectroscopy, 

Calorimetry, Data Reconciliation, Bioprocess Control 

 

2.1  Introduction  
The last decade has introduced a significant number of changes to the pharmaceutical 

and biopharmaceutical industries, not least in the area of quality assurance and 

regulatory compliance.  This new focus has largely been driven by the Food and Drug 

Administration (FDA).  In 2002 the FDA announced a new initiative, “Pharmaceutical 

cGMPs for the 21st Century”, the purpose of which was to modernise the regulation of 

pharmaceutical quality.  The initiative supports and promotes the use of risk-based and 

science-based approaches for regulatory decision making, throughout the entire life-

cycle of a product.1  After 2 years in development, the final report outlines the 

envisioned direction in which the pharmaceutical and biopharmaceutical industries 

should be moving, but also provides guidance on how to make the proposed changes 

and embrace the new concepts put forward.   

 

Central to the implementation of this new system is the use of science and engineering 

knowledge to establish boundaries and evaluate processes.  Previously, a 

manufacturing process was developed and quality control and quality assurance tests 

were then applied to ensure compliance.  This new initiative aims to use science and 

engineering knowledge to mitigate risk, by reducing process and product variability 

and applying continuous process improvement.  Industry guidelines published by the 



  Chapter 2
   

 12 
 

FDA in May 2006, “Q8 Pharmaceutical Development”, state, “quality cannot be tested 

into the products, it should be built in by design”.2  Essentially this means that the 

rigorous testing of the past cannot improve product quality or enhance the process but 

rather quality should be pivotal throughout the lifecycle of a process and a key factor 

from the initial stages of development and process design.  This introduces the concept 

of “Quality by Design” (QbD), whereby a “design space” is established, within which, 

the product quality profile is defined, the critical quality attributes (CQAs) and critical 

process parameters (CPPs) are identified and the manufacturing process is controlled.  

Process changes that occur within the design space are acceptable as the design space 

would have been subject to regulatory assessment and approval at the time the 

manufacturing process was filed.  However movement outside the design boundary is 

considered a change and as such would most likely require regulatory post approval. 

 

In order to establish a design space that will allow for maximum process flexibility 

while ensuring all CPPs and CQAs are identified and maintained, a large degree of 

process understanding is essential.  Process analytical technology (PAT) is a 

“pillar/guiding principle” of the cGMP initiative.1  The PAT framework published in 

September 2004 defines process understanding and highlights the tools required to 

achieve this standard of process knowledge: 

“A process is generally considered well understood when (1) all critical sources of 

variability are identified and explained; (2) variability is managed by the process; 

and, (3) product quality attributes can be accurately and reliably predicted over the 

design space established”3  
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PAT provides in depth process understanding, but to implement PAT and operate 

under the principle of Quality by Design the process must be well understood.  At the 

point of writing this chapter, the initiative is still in its infancy with regard to industrial 

implementation, and so a large degree of progress has been in the area of PAT tool 

development.  With research and development focused on process analysers and data 

acquisition tools, many in the industry have applied these to processes to glean greater 

process knowledge.  However, although PAT is a relatively new concept it has evolved 

over the last decade.  It has transitioned from being an analysis in the process, to 

supplement quality control, to being an analysis of the process.4  

 

As already mentioned the main driver of this initiative is the FDA, however the 

pharmaceutical and biopharmaceutical industries are a close second.  They strive to 

ensure that products released to market are of the highest quality and compliant with 

regulations.  This reason alone merits acceptance of these new guidelines, however 

there are other benefits.  Live feedback and process control, reduced cycle times, 

laboratory test replacement and improved safety result in increased product yield and 

quality, reduction in batch failures and rework costs and increased throughput.  Such 

changes result in continuous improvement and operational excellence, which in turn 

increases business value.   As a result of PAT being embraced by industry, tools must 

be developed that are capable of real-time monitoring and control.  Currently very few 

developed tools exist and even fewer have actually been implemented in a 

manufacturing environment.  

 

This chapter explores the use of selected PAT tools which can be used in the context of 

M3C in bioprocess applications and looks at the advantages and limitations of each.  
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Vibrational spectroscopic instruments as PAT analysers are examined.  The theory 

behind the use of MIR, NIR and Raman spectroscopy for bioprocessing applications is 

stated and necessity of using multivariate data processing is explained.  Reported uses 

of these techniques for bioprocess monitoring and control applications are summarised 

and the current state of the different technologies are compared. 

 

2.2  Vibrational Spectroscopy 

The energy of a molecule is quantised and can only exist in certain discrete energy 

levels, E0, E1, E2 etc.  When a photon (energy in the form of light) is emitted from a 

light source, a molecule will only absorb this energy if it equates to the difference in 

energy between these discrete energy levels.  The energy emitted by the light or 

absorbed by the molecule is related to the frequency by the following equation: 

E = hυ                                                            (2.1) 

where; E is the energy emitted or absorbed, h is Plank’s constant and υ is the 

frequency.  As the energy is directly proportional to the frequency, it therefore follows 

that a photon with higher frequency has a higher energy.  The energy absorbed by the 

molecule results in molecular vibrations.  These vibrations can take any of the 

following forms: stretching, bending, rocking, wagging and twisting.  In order for a 

molecule to absorb infrared radiation the frequency of the radiation must equal the 

frequency of the molecular vibration and this vibration must cause a change in the 

dipole moment of the molecule.  

 

Infrared spectroscopy is concerned with the region of the electromagnetic spectrum 

between the visible and microwave regions.  This region, the infrared region, is further 

broken down into the near-infrared region (12,500-4000cm-1/800-2500nm), mid-
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infrared region (4000-400cm-1/2500-25000nm), and far-infrared region (<400cm-

1/>25000nm).   

 

 

 

 

Fig. 2.1  Electromagnetic Spectrum 

 

Energy in the mid-infrared region has lower frequency and so lower energy than that 

of the near-infrared region.  Mid-infrared spectroscopy looks at the change in energy 

when the molecule is radiated and moves from the ground state to the next excited 

energy level.  This is the fundamental energy change.  As a result absorption bands 

within the mid-infrared region can be attributed to specific molecules or functional 

groups within the molecule; hence MIR spectroscopy is sometimes referred to as a 

“fingerprinting” technique.  The higher energy of the near-infrared region results in the 

radiated molecule moving from the ground state to excited energy levels above the 
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fundamental absorption state, therefore NIR is focused on the combination bands and 

overtones.   

 

 

Fig. 2.2  MIR energy level diagram 

 

 

 

 

 

 

 

 

Fig. 2.3  NIR energy level diagram 

 

Spectra are most commonly presented in terms of “intensity ‘v’ wavenumber” or 

“absorbance ‘v’ wavenumber”.  The absorbance and concentration can be calculated 

using the Beer-Lambert Law as follows: 
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where : 

Av = absorbance at wavenumber v 

Iv = intensity of the light emitted from the sample at wavenumber v  

Iv,0 = intensity of the light emitted from the background (usually water or air) at 

wavenumber v 

ε = Molar absorption coefficient  

b = pathlength 

c  =  concentration 

 

Put more simply, the absorbance of a component at a particular 

wavenumber/wavelength is directly proportional to the concentration of that 

component.  In order to transform spectral data into meaningful results it is necessary 

to develop a calibration model which relates the absorbance to concentration values, 

much the same as a mercury thermometer relates increase in height to temperature.  In 

the case of the thermometer there is only one independent (measured) variable; the 

height of the mercury in the tube. This is referred to as a univariate model.  Where 

spectral data are concerned, there are several independent variables; the multiple 

absorbance values over the range of the MIR or NIR spectrum.  This is referred to as a 

multivariate model.  Chemometric techniques are exploited to extract the relevant data, 

and in this way act as a key to unlocking the information buried within the spectral 

data. 

 

Raman spectroscopy is a technique which is complementary to infrared spectroscopy 

and is based on the scattering of light. When a monochromatic light of given frequency 
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is directed at a molecule, most photons of energy will be elastically scattered and this 

is known as Rayleigh scattering.  A small fraction (1 in 108 photons) of the light will 

exchange energy with the molecule.  This is inelastic or Raman scattering. 5, 6  Figure 

2.4 is an energy level diagram showing the different scattering phenomena.  Scattering 

is a two photon process with one photon being absorbed and a second photon being 

emitted.  With elastic Rayleigh scattering, the energy of the photon absorbed and the 

molecule is excited to a virtual state.  The energy of the photon emitted is equal to the 

energy of the photon absorbed but with Raman scattering there is a difference between 

the energy of the absorbed and emitted photon 7  Energy can be transferred to a 

molecule excited to a virtual state and when the emitted light is scattered, the 

frequency of the photon is higher than the frequency of the original photon of light.  

This phenomenon is known as Stokes Raman scattering.  An already excited molecule 

that interacts with another photon will have excessive energy so, when scattering 

occurs, the frequency of the emitted photon is lower than that of the original photon 

and this is known as anti-Stokes Raman scattering.  In order for Raman scattering to 

occur, a change in polarizability of the molecule is necessary.  Polarizability is the 

relative ease with which a dipole moment is induced when the oscillating electric field 

of a light source interacts with a molecule. 8 
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Fig. 2.4  Energy level diagram of scattering phenomena; Rayleigh scattering (R), 

Stokes Raman scattering (S) and anti-Stokes Raman scatting (AS) 

 

In order to transform spectral data into meaningful results it is necessary to develop a 

calibration model which relates the spectra to a process parameter e.g. concentration 

values of a substrate.  Chemometric techniques are exploited to extract the relevant 

data; this will be discussed further in following sections. 

 

2.3  Development of MIR spectroscopy 

Infrared radiation was discovered in 1800 by Sir William Herschel and following this, 

the first mid-infrared spectrometer was constructed by Melloni in 1833.  In 1891 

Albert Michelson invented the interferometer which produced an interference pattern 

by splitting a beam of light into two paths, bouncing the beams back and recombining 

them.  A year later Lord Rayleigh proposed that this interference pattern could be 

converted into a spectrum using the Fourier Transformation mathematical technique.  

The first half of the 20th century saw little development in FT-IR spectroscopy and its 

potential as an analytical tool remained largely untapped until the late 1950’s and early 



  Chapter 2
   

 20 
 

1960’s.  With huge technological advances and the advent of the computer age fast 

approaching a need for highly sensitive, rapid detection devices over a broad range of 

applications arose.  Early systems did not meet their goals, as they were hindered by 

memory size, poor stability and low resolution, so it was not until the late 1960’s and 

early 1970’s, when major technological improvements we made, that FT-IR 

instruments became commercially available.  These systems were a welcome addition 

to their dispersive counterparts as they were more sensitive, had greater wavelength 

accuracy, and allowed for rapid spectral acquisition and manipulation in the form of 

spectral subtraction.  Spectral subtraction allows the user to study mixtures of 

components without having to complete sample processing and separation prior to 

testing, thus expanding the boundaries of FT-IR spectroscopy and increasing it’s 

applicability in a number of areas e.g. bioprocess applications.   

 

Since the commercial debut of the FT-IR system in the 1970’s the technology has been 

embraced by manufacturing industries and research communities alike.  Instruments 

have been adapted and improved to meet the specific needs of the end user.  Spectral 

measurements can be in several forms; transmission of radiation, internal reflectance 

(attenuated total reflectance), external reflectance, bulk diffuse reflectance and 

photoacoustic determinations.9  In addition, the sampling configuration must be 

suitable for the instruments use.  Given the variety of sampling techniques and sample 

interfacing available; from off–line transmission cells to in-situ fibre-optic reflectance 

probes, mid-infrared spectroscopy is adaptable to almost any area.  The focus here is 

on its applicability as an on-line monitor in bioprocess applications. 
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MIR immersion probes have been available since the late 1980’s.  Improvements in the 

design and material of construction are on-going.  At the early stages of development 

MIR fibres suffered from high material absorption and scattering and poor mechanical 

and chemical stability therefore “fixed” arm probes with parallel light pipes using 

internal reflection spectroscopy were found to be more suitable.  However when 

placed in a process environment this design is far from ideal.  These probes need to be 

precisely aligned and are highly sensitive to vibrations in the surrounding area, which 

can result in alignment changes and hence spectral differences.10-12  There have been 

major advances in the development of fibre-optic materials over the last 10 years and 

these improvements have had far reaching consequences.  In the case of MIR 

instrumentation it has resulted in flexible, more robust immersion probes which 

address many of the problems encountered with the rigid conduit probes.  However 

regardless of probe type, process disturbances will regularly impact the spectra 

collected and these disturbances need to be accounted for when developing 

multivariate calibration models.  The short pathlength of MIR, when compared to that 

of NIR means that from a sampling perspective the MIR does not penetrate as far into 

the material and may not be as representative of the sample as NIR would be, however, 

in the presence of particulate matter the shorter pathlength of MIR reduces light 

scattering, which is commonly experienced when NIR is used in a similar situation.9 

 

2.4  Development of NIR spectroscopy 

In 1800, Sir William Herschel separated the electromagnetic spectrum by passing light 

through a prism.  He noted that the temperature increased significantly towards and 

beyond the red region, now referred to as the near-infrared region.  This experiment 

marked the discovery of near-infrared radiation.  However, as with mid-infrared 
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spectroscopy, near-infrared spectroscopy was not widely used in any applications until 

the second half of the 20th century when optical techniques and computers capable of 

complex analysis were rapidly developing. 

 

In the 1950’s NIR showed potential as a quantitative analysis tool, however it lagged 

behind the development of other optical devices such as MIR spectrometers, and many 

of its initial uses were as an accessory to these devices.  The US Dept. of Agriculture, 

under the work of Karl Norris, began to investigate the use of NIR in the measurement 

of moisture content in cereals.  Major difficulties existed such as interference and 

absorption of other constituents, and these were only resolved with the development of 

multivariate statistical methods which allowed the correlation of NIR spectral features.  

Following the introduction of such powerful computer aided tools; the first stand alone 

instrument became available in the early 1980’s.  Development of NIR spectroscopy as 

a quality and process control tool is largely due to the availability of efficient 

chemometric techniques and varying spectrometer configurations.13  Its use within the 

pharmaceutical/biopharmaceutical industry is fast growing, but it remains relatively 

new in terms of its status as a process analytical tool. 

 

Central to the development of NIR spectroscopy as a PAT tool is the availability of 

adequate sampling devices.  Process environments vary considerably and selecting the 

most appropriate sampling interface is of paramount importance.  A large degree of 

process understanding is vital prior to choosing the sampling interface.  The physical, 

chemical and optical nature of the process stream should be known in order to 

determine if the results will be significantly impacted by light scattering.  This is 

particularly important where NIR is concerned as the strong light source and the weak 
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absorbance allow infrared radiation to penetrate further into the sample, allowing 

particulates present in a suspension or slurry to cause light scattering.   Other aspects 

such as the potential of the process fluid to foul the probe or sample system should also 

be evaluated.9  Typically NIR sampling systems for in-situ process monitoring are in 

the form of one of the following two types:  extractive sampling systems, where the 

sample is removed from the main process line analysed and returned to the process or 

immersion probe sampling, where a probe is placed in the process stream of interest 

and a number of intermittent scans taken using fibre-optics to connect the analyser to 

the probe interface.  A number of variations of each of the above two types exist.  

Invariably, it is the process conditions which will dictate the system of choice.  

 

2.5  Development of Raman spectroscopy 

During the 1920s the scattering effect theory was investigated by a number of 

researchers including physicist C. V. Raman, who in 1928 was the first to 

experimentally demonstrate the Raman effect in liquids. 14  Originally instruments 

consisted of a mercury lamp passed through a filter to produce monochromatic light 

which was then used to excite the sample.  Scattered radiation was observed at 90o 

degrees from the incident radiation, dispersed using a glass prism and recorded on a 

photographic plate. 7  Such a system is known as dispersive Raman spectroscopy.  A 

modified FT-IR instrument was also used to collect Raman spectra and the use of such 

instruments is now known as FT-Raman spectroscopy.  Dispersive Raman 

spectroscopy and FT-Raman spectroscopy each have their own specific advantages 

and both continue to be used for different applications.7, 15     
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The basic components of any Raman spectrometer are the excitation source, the 

spectrometer and the detector. Significant advances in all three areas 16 have lead to the 

possibility of using Raman spectroscopy as a PAT tool. A major development in 

modern instruments was the incorporation of the laser as the monochromatic light 

source since the 1960s.  As such a small fraction of light is Raman scattered, a 

powerful excitation source is necessary and powerful laser light has led to the 

possibility of measuring smaller samples in a shorter amount of time.5, 7  Optical 

filtering devices are used to filter out a large portion of the Rayleigh scattered photons 

and so maximise the amount of Raman scattered photons which can be detected.  In 

the early 1990s holographic notch filters were introduced.   Their efficacy is due to the 

fact that the optical density of the notch filter is high and the spectral bandwidth of the 

notch can be extremely narrow. They are also free from extraneous reflection bands 

and provide significantly higher laser damage thresholds than standard interference 

filters.16, 17  Silicon based charged couple devices (CCD) are replacing 

photomultipliers as detectors in dispersive Raman instruments and this has allowed 

simultaneous measurement of multiple locations.  Detectors in FT-Raman instruments 

have also been improved.5, 18  Fibre-optics allow probes to be inserted directly into a 

reactor and cables up to 100 meters may be used to connect the instrument to the 

measurement point.  Non-contact sampling where a probe can make measurements 

through a sight glass is also possible.8  All of these advances mean that Raman 

spectroscopy has developed into a versatile PAT tool.  

 

2.6  Interpretation of spectral data using chemometrics 

It is almost impossible to discuss the use of spectral data without a discussion on 

concept of chemometrics as the various chemometric techniques maximise the 
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information available from the spectroscopic instruments.  Chemometrics can be 

defined as the chemical discipline that uses mathematical, statistical and other methods 

employing formal logic (a) to design or select optimal measurement procedures and 

experiments, and (b) to provide maximum relevant chemical information by analysing 

chemical data.19  When applied to the spectra collected on-line during a bioprocess by 

MIR or NIR spectrometers, it is the second function of chemometrics that is of most 

interest.  Process data from a spectrometer is analysed in a multivariate rather than a 

univariate way, i.e. for each sample, the response at multiple wavenumbers are taken 

into account.  If the spectrum of a sample was recorded at three wavenumbers using 

any spectroscopic technique, a simple 2-dimensional plot of response versus 

wavenumber could be used to visualise the data. The same data can also represented 

by a single point in 3 dimensions where each dimension is corresponds to a 

wavenumber.  

42000

62000

82000

102000

122000

142000

162000

1400 1500 1600 1700 1800 1900

R
e

sp
o

n
se

Wavenumber

sample 1

sample 2

sample 3

A
b

so
rb

a
n

ce
 (

-)

 

 



  Chapter 2
   

 26 
 

 

 

W
av

e
n

u
m

b
e

r
3

(c
m

-1
)

 

 

Fig. 2.5  Samples represented in 2-dimensional with the same samples represented 

by 1 point 3-dimensional space 

 

An individual spectrum recorded on a spectrometer can have hundreds of data points 

and a single component can have a response in multiple places within the one region 

making the data highly correlated.  Rather than representing the spectral data in 2-

dimensional space, chemometric techniques use multi-dimensional space or 

hyperspace to represent the same spectrum by a single point.  As there is usually much 

redundant information in spectra due to variables being highly correlated, data does 

not need to be represented in space with as many dimensions as there was original data 

points.  The spectral data containing hundreds of data points can be fully characterised 
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in as few as twenty dimensions.20  Chemometric or multivariate calibration techniques 

allow the concentration of a given analyte to be related to spectral features.  They are 

also useful for distinguishing real chemical information from instrument noise. 

 

2.6.1  Pre-treatments 

Prior to analysing spectral data, a mathematical pre-treatment may be necessary.  

Common pre-treatments include mean centering, mean normalisation and using the 

first or second derivative of the spectra.  To perform mean centring on a data set, the 

mean spectrum of the set is computed and then is subtracted from each spectrum in the 

set.  This is done to prevent data points that are further from the origin from exerting 

an undue amount of leverage over the points that are closer to the origin.20  Leverage is 

a measure of how extreme a data point is compared to the majority. A data point with 

high leverage will have a high influence on any model created.  Mean normalisation is 

an adjustment to a data set that equalizes the magnitude of each sample. When the 

spectra have been normalized, qualitative information that distinguishes one sample 

from another is retained but information that would separate two samples of identical 

composition but different concentration is removed.  A standard normal variate (SNV) 

pre-treatment is one which centres and scales individual spectra. The effect of this pre-

treatment is that on the vertical scale each spectrum is centred on zero and varies 

roughly from -2 to +2.  This effectively removes the multiplicative interferences of 

scatter and particle size in spectral data.21 

 

The first derivate of a spectrum is the slope of the curve at every point. It has peaks 

where the original has maximum slope and crosses zero where there was a peak in the 

original spectrum. As the slope is not affected by additive baseline offsets in the 
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spectrum; calculating the first derivative is an effective method of removing baseline 

effects. The second derivative is the slope of the first derivative. It has peaks in 

roughly the same places as the original spectrum but these peaks are in the inverted 

direction. Calculating the second derivative of a spectrum will remove additive 

baseline effects and as well as multiplicative baseline effect.22, 23  Small spectral 

differences are enhanced and overlapping peaks are separated by the use of derivative 

pre-treatments.  

 

As a measured spectrum is not a continuous mathematic curve, but rather a series of 

equally-spaced points, traditional derivative calculation performed by using the 

difference in values between two adjacent points has the effect of reducing the signal 

to noise ratio in the data.  It is necessary therefore to include some form of smoothing 

in the calculation.  One method of calculating the derivate of spectra is to use the 

algorithm described by Savitzky and Golay.24  This works by taking a narrow window 

centred at the wavelength of interest, and fitting a low order polynomial to the data 

points in this window using least squares.  The calculated polynomial is a continuous 

curve of the form y=a+bx+cx2...where x is the wavelength and y is the spectral 

response.  The first and second derivative of this fitted curve are then used as estimate 

of the derivatives of the underlying spectrum. 

 

The choice of pre-treatment can depend on the type of spectra being analysed e.g. NIR 

will often have derivative pre-treatments applied.25-27  A multi-component mixture or a 

sample collected on-line which may be subject to instrument drift will also be pre-

treated with a procedure such as SNV or derivatives.  Many other pre-treatments are 
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possible and the nature of the application will dictate the most suitable one or indeed 

combination to choose.  

 

2.6.2  Quantitative analysis 

Interpretation of spectra can be a challenge as many different components can have a 

response in similar regions of the electromagnetic spectrum.  This becomes an issue 

when you want to indentify and quantify individual components in a mixture. The first 

step in developing a calibration model is to do a simple feasibility study such as that 

described in the ASTM international standards28 for each component of interest.  The 

procedure described involves the collection of spectra from 30-50 samples 

incorporating the expected variations in particle size, sample presentation, and process 

conditions which are expected during analysis.  If the results from this simple study are 

favourable as judged by error values from cross validation methods and the precision 

required was obtained, the study can be expanded to see if multi-component mixtures 

can be adequately modelled.    

 

In order to make a good calibration model, a suitable experimental design must be 

employed.  The samples used for developing the model are known as the training or 

calibration set and should ideally comprise several uniformly distributed 

concentrations for each component of interest.  The factors in an experimental design 

for a multi-component mixture are the individual components and these factors should 

be mutually independent or orthogonal, i.e. the correlation coefficient between each 

pair of factors is zero.29 There has been some discussion in the literature on the 

importance of using uncorrelated samples in the development of chemometric models 

for on-line metabolite monitoring.30-33  As the performance of any model is directly 
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affected by the training set used in its development, the training set should fulfil 

certain criteria.  It should:  

• contain all expected components 

• span the concentration ranges of interest 

• span the conditions of interest 

• contain mutually independent samples 

The calibration should also be validated using a set of samples (validation set) which is 

independent of the training set.  Strategies on how to determine an experimental design 

which will achieve these aims can be found elsewhere.29, 34, 35 

 

2.6.3  Partial least squares regression 

An often used chemometric calibration technique for bioprocessing applications is 

partial least squares regression (PLS).  This is a multivariate statistical technique 

developed from classical least squares and inverse least squares regression by Swedish 

statistician Herman Wold for use in economic forecasting.  His son Svante Wold along 

with other Scandinavian scientists including Harold Martens promoted its use in 

chemical applications.34   

 

As mentioned earlier, spectra can be described by wavenumbers and responses in 2-

dimensional space or as single points in hyperspace.  In this way PLS works as a 

variable reduction system and new axes in hyperspace are computed using both the 

chemical and spectral data.  These new axes are computed in the direction of the most 

variance within the data and with PLS, the axis is the best compromise between the 

spectral variance and the concentration variance. 
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In an ideal case of noise free spectra, the factor space for the spectral data and the 

corresponding factor space for the concentration data are congruent i.e. the scores of 

the spectral data points are proportional to the corresponding eigenvector of the scores 

of the concentration data points. This relationship can be expressed by equation 2.3, 

where Yf is projection or score of a single concentration point onto the fth concentration 

factor, Xf is the score of a single spectral point onto the fth spectral factor and Bf is the 

proportionality constant for the fth pair of concentration and spectral factors.  

 

Yf=BfXf                                                                                              (2.3) 

 

 
The aim of PLS is to find a vector W that represents the best compromise between the 

spectral factor and the concentration factor. This vector is a factor that maximises the 

covariance between the concentration data matrix and all possible linear functions of the 

spectral data matrix. The factor W will have the same number of elements as there were 

wavelengths in the original spectra and the elements are called the loading weights. The 

first vector W1, is the most significant optimum factor and the portion of the variance in 

the spectral data spanned by this factor is removed as is the spanned variance in the 

concentration data. The next factor W2 is found for the spectral and concentration residuals 

that are not spanned by W1. The process is continued until all possible factors have been 

found.  The first new axis or factor is the most significant and accounts for the largest 

amount of variance in the spectral and concentration data.  A graphical representation 

of this can be seen in figure 2.6.20  
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Fig. 2.6  Graphical representation of PLS 

 
 
In physical terms PLS assumes that there are errors in both blocks which are of equal 

importance.  The concentrations used in a calibration model are subject to error (e.g. 

dilution and weighing) just as much as the spectra or chromatograms.  An important 

feature of PLS is that it is possible to determine how well the data have been modelled 

either by using x (spectral data) or y (concentration data) blocks. Fig. 2.7 illustrates 

the change in training set error as different numbers of components are calculated for 

both x and y in a typical dataset. This means that two different answers for the optimal 

number of components can be obtained, one based on the spectral data and the other 

based on the concentration data.34 
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Fig. 2.7 PLS training set errors using both the concentration and spectral estimates34 

 

2.7  PAT applications of vibrational spectroscopy in bioprocessing          

The applications or potential applications of vibrational spectroscopy in bioprocessing 

are largely dependent on the sampling interfaces available.  A number of instruments 

exist and sample interfaces vary from sample cavities using cuvettes or vials to 

immersion probes.  Where real-time data is required for monitoring and control 

purposes, the type of available instruments is very much reduced as all off-line 

techniques are eliminated.  Bioprocess applications to date have either used flow cells, 

where the sample of interest is passed through a measuring chamber, or immersion 

probes, where a probe is inserted into a reactor and the sample is scanned in-situ by 

transflectance, transmission or reflectance methods.  The development of high quality 

fibre-optics and autoclavable probes has increased the capabilities of these techniques.  

The most common applications in bioprocessing are analyte, metabolite and biomass 

monitoring, with monitoring systems in some cases further developed to enable 

process control.  
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2.7.1  MIR applications 

MIR lags behind its infrared counterpart, NIR, when it comes to its applications in 

bioprocessing.  Despite the fact that MIR can detect and quantify components in 

aqueous solutions at significantly lower levels than that of NIR,27 MIR is less 

extensively used.  Only in the last decade has MIR been considered a potentially useful 

tool for bioprocess monitoring.  Work to date has mainly focused on detection of 

substrates and metabolites in yeast and bacterial cultures but it has also been applied to 

suspended and immobilised animal cell cultures.36  Most methods use synthetic 

samples or samples taken from cell cultures to build multivariate models capable of 

predicting changing concentration values.  

 

The most common component modelled is glucose.  This is the predominant substrate 

in cell culturing and so, is of most interest from a detection and monitoring point of 

view.37-39  Other substrates detected using on-line MIR techniques include fructose, 

lactose, galactose, ammonia and methyl oleate. 40-42  Accuracy values vary between 

studies with standard prediction errors ranging from 0.26g/L to 0.86g/L for glucose.  

Subtle differences exist between the various techniques developed.  The sample 

presentation method is of some importance for this application as many cell cultures 

require aeration resulting in gas bubbles forming on the probe tip.  Automated flow 

systems can help mitigate this problem, while the recessed geometry of the probe tip 

can facilitate the formation of pockets on the crystal surface.27  In addition to the 

sampling interface, the models employed are specific to each individual set up.  

Although multivariate chemometric modelling is used to develop these models, each 

model is unique. 
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This technique has also been applied to determine the rate of product formation.  Cell 

culture products that have been successfully detected using MIR include ethanol, lactic 

acid and glucuronic acid.38, 39, 43   

 

On-line MIR measurements have been used not just to detect or monitor cell culture 

substrates and metabolites, but also to control cultures.  Kornmann et al used 

Gluconacetobactor xylinus to develop a control strategy based on the depletion of two 

substrates, fructose and ethanol.44   Real-time spectroscopic scans were collected every 

5 minutes, concentrations were sent to an adaptive control algorithm and fructose and 

ethanol were fed to the culture in controlled volumes.  Schenk et al showed that a 

similar system could be used to control methanol feeding to Pichia pastoris cultures.12 

 

 

2.7.2  NIR applications     

NIR spectroscopy can provide on-line information on substrate, biomass, product and 

metabolite concentrations.45, 46  This information can be further used to control and 

optimise cell cultures.  Extensive work has been carried out in this area to date.  NIR 

has been used to monitor concentration changes in yeast, bacterial and even 

mammalian cell cultures.  Crowley et al used NIR to monitor the main substrates, 

glycerol and methanol, as well as biomass, in a Pichia pastoris culture,46 Petersen et al 

used NIR to predict the changing concentrations of glucose, ammonium and biomass 

in a Streptomyces coelicolor culture,31 while Rodrigues et al developed an NIR model 

to monitor clavulanic acid, the product of a fed batch process with S. clavuligerus.47   
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The technique has also been applied to monitoring of mammalian cell cultures.  Four 

key analytes of a CHO-K1 mammalian cell culture, glucose, lactate, glutamine and 

ammonia, were monitored by Arnold et al. 48 and this work was further developed by 

Roychoudhury et al. 49 where a multiplexed calibration technique was used. 

 

As with MIR, NIR predictive models have also been applied to control systems in 

order to allow fed-batch cultures to react in “real time”.  As early as 1994 Vaccari et 

al. proposed using NIR to control the glucose feed in the production of lactic acid by 

Lactobacillus casei.50  Many others have developed control strategies for various yeast 

and microbial cultures. 51, 52 

 

2.7.3  Raman applications 

The reported use of Raman spectroscopy for monitoring bioprocesses in-situ and in 

real time is limited and this is most likely due to the need for low frequency lasers to 

avoid  fluorescence which can have heating effects due to the long exposure times 

necessary for such lasers.  Most reported studies describe the use of Raman 

spectroscopy to monitor yeast cultures.  One of the earliest applications of in-situ 

Raman spectroscopy was monitoring the production of ethanol in yeast 

fermentations.53  In this study the concentrations of fructose and glucose were also 

measured.  Shaw et al. used a dispersive Raman instrument to monitor the change in 

substrate and metabolite concentrations as well as product formation in yeast 

fermentation and found it necessary to include a by-pass filter to remove cells as they 

were causing interference to the photon scattering process.54  The production of 

carotenoids in Phaffia rhodozyma cultures has also been monitored by dispersive 

Raman spectroscopy.55  Bacterial cultures have also been monitored with in-situ 
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measurements of glucose, acetate, formate, lactate and phenylalanine being reported.56  

In a more recent study Raman spectra have been collected in-situ in a mammalian cell 

bioreactor.  As well as monitoring substrates and metabolites, the spectra were 

correlated to total cell density and viable cell density showing that it may be possible 

for Raman spectroscopy to distinguish between live and dead cells.57  While these 

studies all demonstrate the potential of Raman spectroscopy as a monitoring tool, it has 

yet to be proved capable of control in industrial bioprocesses.     

 

 

Although separate techniques, both MIR and NIR have similar applications in 

bioprocessing; both have been used for monitoring and control purposes.  Raman 

spectroscopy has been used to monitor bioprocesses but to a lesser degree than the 

other vibrational spectroscopies.  The manner in which these techniques are exploited 

is similar.  In all cases multivariate chemometric models are developed based on 

synthetic, semi-synthetic or actual samples from a cell culture.  Typically these models 

are then validated and applied to a culture on-line.  These techniques all have their 

benefits and limitations, but to date NIR has been the subject of more investigation and 

as a result is more developed in terms of applications in bioprocessing.  However, the 

potential of MIR and Raman should not be underestimated or overshadowed.        

 

2.8  Conclusions 

Choosing a suitable on-line analytical technique and data processing method for 

bioprocess applications is essential if reliable monitoring and control are to be 

achieved.  Each of the process analysers described here has the potential to be used for 

on-line measurement but it is only through proper understanding of their specific 
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advantages and limitations that they can be applied to monitor the appropriate process 

variables.  The relationship between the measureable parameters and critical process 

parameters needs to be recognised in order to develop calibrations for the critical 

process parameters of interest and knowledge of the likely signal interferences will 

allow the employment of data treatments which can minimise or even eliminate their 

effects.  Advanced data processing methods such as data reconciliation and artificial 

neural networks can also enhance the accuracy of the measured variables by using 

inputs from a number of on-line sensors.  The combination of suitable analytical 

techniques and data processing methods should provide an increase in bioprocess 

knowledge which will in turn allow the process to be tightly controlled and operate 

within a previously established design space. 
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Chapter 3 

Study 1:  Potential of Mid-infrared spectroscopy for on-line monitoring of 

mammalian cell culture medium components 

 

As published in Applied Spectroscopy, 2012, Vol. 66 (1), 33-39 

 

Abstract  

This study proposed a methodology to evaluate the potential of mid-infrared 

spectroscopy (MIR) as a process analytical technology (PAT) tool for in-situ (in-line) 

monitoring of cell culture media constituents, paving the way for on-line bioprocess 

monitoring and control of mammalian cell cultures.  The methodology included a limit 

of detection (LOD) analysis and external influence investigation in addition to the 

calibration model development.  The LOD analysis in the initial step provided a 

detailed procedure by which to evaluate the monitoring potential of the instrument of 

choice, for the application in question.  The external influence study highlighted the 

potential difficulties when applying this technique to a typical mammalian cell culture.  

   

A comparative investigation between a fixed conduit immersion probe and flexible 

fibre-optic immersion probe was also carried out.  Limitations associated with the use 

of MIR in the cell culture environment were also examined.  A preliminary 

investigation, on components typically found in mammalian cell cultures, involving 

spectral characterisation and limit of detection analysis was completed.  It was evident 

at this initial stage that glutamine, could not be accurately detected at levels typically 

found in a mammalian cell culture medium.  Results for glucose and ammonia, 
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however, proved promising.  A 7-concentration level experimental design was used, 

and partial least squares regression employed, to develop calibration models.  

Optimized model results echoed the results of the preliminary analysis with the 

percentage error of prediction for glucose as low as 6.03% with the fixed conduit 

probe, and glutamine having a higher error of 63.06% for the same probe.  Comparison 

of model results obtained from both probes supported the fixed conduit as the more 

accurate of the two probes, for this experimental set up.  The effect of external 

influences on the MIR spectra and hence the concentrations predicted by the model 

were also examined. These were subjected to statistical analysis to determine the 

significance of the effect.  This study demonstrates that MIR as a PAT tool, has limited 

potential for mammalian cell culture monitoring due to low concentrations of analytes 

present and outlines a method to allow the system to be evaluated.   

 

3.1  Introduction 

With increasing pressure from regulatory authorities on industry to develop processes 

embracing ‘Quality by Design’ initiatives, there is a growing demand to establish 

reliable tools and systems capable of meeting this need. 1, 2 With regard to monitoring 

and control of bioprocesses, this need translates to a search for robust instrumentation 

capable of monitoring the key process analytes and metabolites in real time.  Such 

information could potentially be used in the development of process control tools and 

hence would meet the fundamental principles of ‘Quality by Design’ and ‘Design 

Space’.3  Achieving on-line or real-time measurement and control allows for 

instantaneous analysis of the results and correction of offsets before the process moves 

outside of its design space.4  In a typical bioprocess a quantitative and qualitative 

analysis of all the major analytes in real time will provide vital information on the 
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process and facilitate the identification of key parameters capable of improving 

process outputs e.g. biomass, product secreted etc.5 The first step in developing such a 

system lies in the identification of a reliable monitoring technique, which could further 

be used as an integral part of an advanced control system.  

 

Infrared spectroscopy has the ability to monitor several of the analytes present in the 

culture media at any one time and as such is potentially a powerful tool in bioprocess 

monitoring.5-7  Such techniques can be used in-situ (in-line) making them non-invasive 

and eliminating the need for sample removal thereby reducing the risk of culture 

contamination due to possible compromised sterility.8  Sample preparation is not 

required and spectral information is obtained instantaneously.  These features make 

infrared techniques suitable for inclusion in control systems developed to function 

within a Process Analytical Technology (PAT) environment, an initiative proposed by 

the FDA in 20049 and further supported by the International Conference on 

Harmonisation10 in 2006.  The spectral data gleaned from such sensors must undergo 

some form of multivariate analysis in order to extract the desired information.11 With 

respect to the monitoring of bioprocesses, both the chemometric and infrared 

techniques serve as a lock and key to releasing bioprocess data.  Both near infrared 

(NIR) and mid infrared (MIR) spectroscopy have been used for bioprocess monitoring 

but with mammalian cell culturing, sterility is critical, so in-situ probes are 

preferable.12  In-situ sampling is possible with both techniques and is well documented 

for NIR,12-17  but less so for MIR spectroscopy, when applied to mammalian cell 

culture media components.18, 19  
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A preliminary step to developing a multi-analyte calibration model is to identify the 

instrument detection limits for each of the analytes under investigation.  The limit of 

detection (LOD) is the lowest concentration of analyte in a sample that can be detected 

but not necessarily quantified under the experimental conditions of the method.20 

Determining the LOD for a multivariate calibration is significantly more complex than 

establishing that of a univariate model.  To date, few studies have included this 

preliminary step in similar works despite its importance in an initial feasibility study.          

 

A number of external influences are likely to be present throughout the course of a cell 

culture.  The effect of these influences on the collected spectra and the media 

concentration values predicted by the model are of interest when considering the 

implementation of a calibration model in a monitoring or control application.  The 

significance of the impact of the external influence can be examined using hypothesis 

testing.  This can provide an insight into the effect of changing environmental factors 

on cell culture measurements using MIR.  It also highlights when and where influences 

should be incorporated into the model, so as to ensure optimum results.    

 

The aim of this work was to outline a method to examine the potential of MIR as a 

PAT tool to measure the varying media component concentrations of mammalian cell 

cultures in real time. This was achieved by developing a partial least squares (PLS) 

calibration model using synthetic samples, which ensure that the model remained 

generic and non-specific to any single bioprocess.  The methodology also included a 

logical sequence of preliminary steps, including a detailed limit of detection analysis, 

prior to the application of MIR to a mammalian cell culture.  In addition, two probe 
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types were used to determine the effect, if any, on results when the sampling device 

was varied, but the detector remained the same.   

 

3.2  Materials and Methods 

3.2.1  Samples 

Eight individual components made up of typical cell culture medium substrates, 

buffers and products of cell metabolism were examined.  These were, glucose (Sigma 

Aldrich Ireland Ltd.), L-glutamine (Sigma Aldrich Ireland Ltd.), HEPES (Sigma 

Aldrich Ireland Ltd.); glutamate, (Oxoid Ltd.); calcium lactate pentahydrate (Fisher 

Scientific UK); sodium hydrogen carbonate (Fisher Scientific UK); potassium 

phosphate (Sigma Aldrich Ireland Ltd.) and ammonium sulphate (Fisher Scientific 

U.K.).  Five of these (glucose, lactate, ammonia, glutamine and glutamate), are 

mammalian cell metabolites or by-products.  Such metabolites and by-products are 

likely to vary considerably throughout the course of a cell culture and therefore are of 

most interest from a monitoring and potentially, control, standpoint.  The remaining 

three elements, (HEPES, potassium phosphate and sodium hydrogen carbonate) are 

typically used to buffer a cell culture medium.  These do not vary considerably over 

the course of a cell culture; however they may vary over a range of different media.  In 

order to make the model generally applicable to a range of mammalian cell culture 

media these were included in its development.  Although the precise concentration of 

these buffers is not known for each commercial medium they tend to be present at high 

enough concentrations to impact the spectrum and so were included in the model.  

Other potential elements likely to be present in the media e.g. amino acids/vitamins are 

at lower concentrations and hence the impact on the spectrum and on the prediction 

ability of the model is minimal.  A cell culture medium, EX-CELL CHO DHFR− 
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Medium AF (Sigma Aldrich, Ireland Ltd.), was used in model validation steps and 

external influence investigation.  Table 3.1 outlines the concentration ranges used for 

model development for each of the 8 components selected. 

 

Table 3.1 Component concentration ranges 

Component Concentration Range 

g/L 

Glucose 0-6 

Lactate 0-1 

Ammonia 0-1 

Glutamine 0-0.6 

Glutamate 0-0.7 

Phosphate 0-1 

Sodium Bicarbonate 0-1.25 

HEPES 0-4.5 

  

 

3.2.2  Instrumentation 

All scans were taken using a Fourier transform mid-infrared ReactIR iC10 instrument 

with MCT detector (Mettler Toledo AutoChem, Inc., Columbia, US).  Two immersion 

probes were tested in all cases (i) AgX 9.5mm x 2m fibre silver halide probe and (ii) 

K6 conduit 16 mm probe, both of which have a fixed optical pathlength of approx. 1 – 

2 µm and use a diamond ATR crystal with 6 internal reflections.  Fig. 3.1 shows both 

probe types.  The sampling procedure was as follows:   a background scan of deionised 

water at 37oC was taken followed by 3 replicates of 128 co-added scans of each 

sample also at 37oC as this temperature is optimum for mammalian cell growth.  
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(i)        (ii) 

Fig. 3.1 (i) Flexible Fibre-Optic and (ii) Fixed Conduit Probes 

 

 

3.2.3  Preliminary analysis 

Concentrated solutions of each of the 8 main components were made up using 

deionised water.  The spectra for each component were collected and then plotted.  The 

wavenumber ranges over which each of the components absorbed was noted, to be 

later used in the development of the calibration model.  Fig. 3.2 shows the raw spectra 

of the 8 components modelled and indicates their main regions of absorbance.    
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Fig. 3.2 Raw spectra of the 8 matrix components over the usable spectral regions  
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The concentrated stock solutions described above were used to prepare a series of 

dilute solutions. These were then scanned in triplicate, with the K6 conduit probe and 

the collected spectra plotted and examined.  This allowed for a preliminary 

investigation into the presence of outliers and also an investigation into the LOD based 

on a simple visual test.  The point where the component peaks could not be clearly 

distinguished from the instrument noise was defined as the observed LOD.  This is 

only possible for MIR spectroscopy as it is based on fundamental vibrations and the 

peaks can be directly related to a chemical bond but such a step could not be done for 

NIR spectroscopy.  Fig. 3.3 below indicates how peak height increases with increasing 

concentration.    

 

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

9501000105011001150120012501300135014001450

A
b

so
rb

a
n

ce
 (-

)

Wavenumber (cm-1)

5g/L

1g/L

2g/L

0.5g/L

 

Fig. 3.3 Glucose spectra at varying concentrations 

 

As multivariate analysis techniques are usually necessary to fully exploit vibrational 

spectroscopy data, a method for determination of LOD for multivariate spectral data is 

needed.  Unfortunately there is no generally accepted method for this but an approach 

used by many authors is to transform the multivariate data to univariate data by the use 
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of chemometric techniques21 such as PLS regression.22 The method outlined by Ortiz 

et al23, 24 is used here.  It allows for the assessment of the LOD of an analytical method 

by evaluating false positive and false negative probabilities after data has been 

transformed by PLS.  The false positive probability follows a Student’s t-distribution 

with (n-2) degrees of freedom where n is the number of samples while the false 

negative probability has a non-central Student’s t-distribution with (n-2) degrees of 

freedom and a parameter of non-centrality which needs to be established. Critical 

values for both types of Student’s t-tests and the parameter of non-centrality were 

determined using the statistical toolbox in MATLAB (v7.9.0.529 (R2009b), The 

MathWorks Inc., Cambridge, UK).   Development of PLS models was carried out 

using the PLS toolbox (V6.2 Eigenvector Research Inc, Washington, US) for 

MATLAB.  In all cases the spectral data were mean centered and first and second 

derivative pre-treatments using a segment size of 15 points were calculated using 

quadratic Savitzky-Golay25 filters.  Statistical analysis was applied to the regression 

between actual concentration values and those predicted by leave-one-out cross 

validation. 

 

3.2.4  Calibration model development 

In order to develop a robust reliable model for a multivariate calibration, several 

concentrations are necessary, which require all possible combinations of levels for all 

the factors, i.e. a full factorial multilevel design.  This is impractical as it would result 

in a huge number of samples, therefore, for this calibration model, a partial factorial 

design for a multivariate calibration was employed.  A 7 concentration-level 

experimental design was chosen, which accounts for the orthogonality between 

successive factors.  This resulted in the generation of 49 samples, each containing 
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varying concentrations of the 8 components.26   Concentrated solutions of the 8 

components were made and based on the experimental design, specified units of each 

solution were used to create each of the 49 samples.  The concentration of each bulk 

solution was such that it reached the expected maximum concentration of that 

component in a typical cell culture medium.  The purpose of this was to ensure that the 

calibration model under development catered for the entire concentration range of each 

of the 8 components in the medium, but at the same time did not compromise the 

accuracy of the model by using too wide a concentration range in its development.  

Each of the 49 samples was scanned with both probe types.   

 

The spectral data were exported from the iCIR software (Mettler Toledo AutoChem, 

Inc., Columbia, US) and imported into MATLAB.  Mean values of the triplicate scans 

were used for model development.  Pre-processing in the form of mean-centering was 

initially applied to all spectra.  A second derivative pre-treatment using a segment size 

of 15 points was also examined as second derivative pre-treatments can eliminate the 

effect of linear baseline spectral off-sets27 that are likely to occur over the course of a 

culture.  Partial least squares regression, optimized by leave-one-out cross-validation, 

was used to develop separate calibration models for each of the 8 components.   

    

The calibration model was validated in two ways.  Firstly, a 4-level multivariate design 

was employed.  This was similar to the 7-level design used for the creation of the 

model, however only 16 samples of varying concentration were generated.  There are a 

number of suggested validation methods in use but the “Rule of 3” is widely accepted 

as a suitable technique for evaluating the accuracy of a model.22  This rule proposes 

that the calibration set be 3 times larger than the validation set.  In this case the 
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calibration set, a 7-level design, resulted in the generation of 49 samples, therefore, the 

4-level design, resulting in a sample set of 16 samples and almost one third the size, 

was chosen to validate the models.  Each of these 16 samples was scanned with both 

probes as before.  The spectral data resulting from these scans was then inputted into 

the model and the component concentrations in each of the 16 samples were predicted 

by the model.  These predicted values were then compared to the actual values.  

Secondly the cell culture medium was spiked with known concentrations of different 

components and the model was used to predict the resulting increase in concentration.  

The results of all models were evaluated by the root mean square errors of calibration, 

cross validation and prediction (RMSEC, RMSECV and RMSEP) as well as the LOD 

for a multicomponent mixture. 

 

3.2.5  External influence investigation 

In order to establish if the model would accurately predict cell culture concentrations 

when exposed to the conditions typically found in a cell culture environment, a series 

of experiments were carried out.  The effect of varying temperature, agitation, 

biomass, and pH were investigated.  In addition, the presence or lack of antifoam and 

pluronic was also examined.  For each external influence examined, a background of 

water was initially scanned within a bioreactor; the bioreactor was then drained and 

dried and filled with EX-CELL CHO DHFR− medium.  The bioreactor environment 

was varied as outlined in Table 3.2.  Both the agitation and temperature were varied by 

adjusting the appropriate settings on the reactor control system.  The pH of the media 

was varied by the addition of hydrochloric acid and sodium hydroxide to create acidic 

and alkaline conditions respectively.  The biomass was altered by simulating the 

growth of a cell culture during the exponential growth phase; with the cumulative 
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addition of a fixed cell density over time.  Each variation in bioreactor conditions was 

scanned in triplicate using 128 co-added scans.  These scans were ratioed against the 

initial background of deionised water.   
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TABLE 3.2  External influence investigation summary  

Exp. 

#  

Temperature 

(oC) 

pH 

(-) 

Agitation 

(rpm) 

Biomass 

(cells/ml) 

Antifoam 

(% v/v) 

Pluronic 

(g/L) 

1 30 – 44 ± 0.2  7.9 150  - - - 

2 37 ± 0.2  5 - 10 150  - - - 

3 37 ± 0.2  7.9 40 - 400 - - - 

4 37 ± 0.2  7.9 150  0 - 4.5x106 - - 

5 37 ± 0.2  7.9 150  - 0.05 - 

6 37 ± 0.2  7.9 150  - - 0.1 
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PLS regression was the multivariate technique employed to assess the effect of an 

influence when the influence was varied (temperature, pH, agitation, and biomass) and 

PLS-DA (Partial least squares discriminant analysis)28 was the multivariate method 

used for examination if an influence impacted the spectra when present (antifoam and 

pluronic). The data was subjected to two tests, a spectral test and a relevance test.  The 

spectral test involved the data undergoing a multivariate transformation followed by 

hypothesis testing.  The relevance test examined the effect (if any), on the predicted 

glucose concentration values.  Pre-treatments in the form of mean centering followed 

by second derivative using the Savitzky-Golay method were applied to all spectra prior 

to modeling, and in all cases, cross validation was used to optimize the models.  

 

A PLS model was constructed to determine whether there was a relationship between 

the spectra and the external influence variables, temperature, pH, agitation, and 

biomass.  Plots of predicted magnitude of influence applied versus actual values for 

each of the tests yielded the coefficient of determination (r2) and hence the correlation 

coefficient (r) was calculated.  Based on a Student’s t-test, Pearson’s correlation29 was 

used to test the significance between the influence and the spectral measurement. The 

null hypothesis (H0) was that the influence had no effect on the spectra. Where t>tcritical 

at a significance level (α) of 0.05, H0 was rejected and this implied that the external 

influence under investigation had a significant effect on the spectra.   Where t<tcritical at 

α=0.05, H0 was accepted and this implied that the external influence under 

investigation did not have a significant effect on the spectra. 
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The same statistical test was employed when determining the relevance of the impact 

of each influence on the predicted glucose concentration values.  In this case, the 

optimum PLS model for glucose, established in the calibration model development 

section, was used to predict the glucose concentration.  A plot of magnitude of external 

influence versus predicted glucose concentration provided r2 values for each of the 

external influences, and as before, a Student’s t-test was used to establish if the 

influence had a significant impact on the predicted glucose concentration values at 

α=0.05. 

 

Multivariate discriminant analysis was used for tests involving antifoam and pluronic 

as these were not varied.  In both cases concentrations typically used in cell culture 

media were added.  A PLS-DA model was used to transform the data with respect to 

the presence or lack of influence applied.  A Student’s t-test was used to interpret the 

results of the PLS-DA and determine the significance of the effect of both antifoam 

and pluronic on the spectra.  In this case, H0 was that all samples were the same and 

the alternative hypothesis (Ha) was that samples with the influence applied were 

different.  The same hypothesis test was also applied to the predicted glucose 

concentrations for the same sample set. 

All experiments were carried out using both the AgX 9.5mm x 2m fibre silver halide 

probe (flexible) and the K6 conduit 16 mm probe (fixed).         
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3.3  Results and Discussion 

3.3.1  Preliminary analysis 

The spectrum of commercial media exhibited a number of peaks.  The region of 

highest absorbance (1250 – 1000 cm-1) is as a result of the overlapping absorbances of 

the constituent components.  This highlighted the problems associated with attributing 

the absorbance to a particular component given the overlapping nature of the pure 

component spectra.     

  

The spectra of concentrated solutions of each of the pure components were examined 

to determine the wavenumber ranges over which absorbance occurs.  Concentrated 

stock solutions, within the water solubility limits of each of the components were used 

as all absorbance features may not be clearly evident in dilute solutions.  The 

wavenumber ranges established at this stage are shown in Table 3.3.  These were used 

when developing and applying the calibration model.  This ensured that the predictions 

were based on the underlying chemical principle and not metabolism induced 

correlations.19, 30 

 

The observed LOD for all components can be found in Table 3.3 alongside the LOD 

determined using a PLS model which has been subjected to hypothesis testing 

ensuring false positive and false negative probabilities of 0.05.  The PLS model details 

used in the calculation of these LODs have also been included in Table 3.3.  The 

observed and calculated LODs differ by an order of magnitude for all components with 

the exception of glutamine and glutamate which differ by a factor of 4.  This shows 

that a visual inspection is not sufficient to determine such a parameter and more 
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information can be gleaned using a chemometric technique which is as expected for a 

multivariate data set.  Glucose, ammonia, phosphate, lactate, HEPES and bicarbonate 

could all be detected to levels of 0.09 g/L or lower. Glutamine and glutamate were not 

detected to as low a level as the other components.  This is most likely due to the fact 

that the molecular bonds present in these components tend to have weak absorbances 

in the MIR region detectable with the instrument used in this study.31 These LOD 

values are based on pure component solutions and are only applicable to single 

component measurements.  This is a simple feasibility study and it establishes at an 

early stage the ability of the MIR instrument to measure the components at the low 

levels found in mammalian cell cultures. 
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TABLE 3.3  Preliminary analysis results 

Component 
Wavenumber 

Range (cm-1) 

Pre-treatment 

 
# LVs 

Calculated LOD 

(g/L) 

Observed LOD 

(g/L) 

Glucose 950-1450 Mean centered 5 
0.09 

 
1.0 

Glutamine 950-1700 Mean centered, 1st derivative 6 
0.30 

 
1.2 

Ammonia 950-1500 Mean centered, 1st derivative 2 
0.01 

 
0.1 

Phosphate 900-1320 Mean centered 5 
0.03 

 
0.3 

Glutamate 900-1760 Mean centered 5 
0.35 

 
1.3 

Lactate 1000-1620 Mean centered 6 
0.03 

 
0.5 

HEPES 1000-1250 Mean centered, 1st derivative 6 
0.05 

 
0.6 

Bicarbonate 960-1750 Mean centered, 1st derivative 2 
0.06 

 
0.5 
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3.3.2  Calibration model development and validation 

As stated previously, calibration model development was completed using both probes, 

the K6 conduit fixed probe and the flexible fibre-optic probe.  The detector used in 

both cases was the same.  Previous studies have used fixed conduit ATR probes18, 32 

and discussed the importance of alignment of such probes as well as spectral 

differences which can occur when the alignment is changed.33-35  The development of 

infrared fibre-optic immersion probes is relatively new,13 in particular for mid-infrared 

probes;36 hence the evaluation of such a probe for the monitoring of mammalian cell 

culture media components is quite relevant.   The fibre-optic configuration should 

eliminate the alignment issues inherent in the fixed conduit configuration.    

 

The results obtained using both probe types varied considerably and as the 

experimental design and detector were unchanged, a comparison between both probes 

was carried out in an attempt to establish possible causes for the differing results.  The 

MIR range is generally considered to lie between 4000-400 cm-1.  Both probes have a 

reduced effective range due to absorbance of the diamond ATR crystal over the range 

of 2250-1950 cm-1.  In addition the fibre-optics of the flexible probe themselves absorb 

infrared radiation, further reducing the effective range of this probe to wavenumbers 

less than 1950 cm-1.  While the K6 conduit fixed probe measured absorbance between 

4000-2250 cm-1, spectra in this region were extremely noisy and therefore unusable.  

At lower wavenumbers and also, close to the ATR absorbance region, the spectra 

exhibited a large degree of noise, so this meant that the two probes under investigation 

had the same usable wavenumber range (1800-900 cm-1) therefore any discrepancies in 

results between the two probes cannot be attributed to differing wavenumber ranges.   
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The most significant difference between both probes is the geometry of the probe tip.  

The K6 conduit probe contains a recessed diamond crystal.  The outer probe casing 

forms a gradual slope to the ATR crystal, thus allowing for shearing of bubbles, which 

may adhere to the crystal surface.  The silver halide fibre-optic probe also contains a 

recessed diamond crystal, however in this case the outer casing does not form a 

gradual slope, but rather the crystal is set at a 90o angle to the casing and hence a 

“pocket” at the probe tip allows for the entrapment of bubbles.  Removing bubbles 

from the tip of this probe proves more difficult as the shear forces at the probe tip do 

not reach the bubble trapped inside.  In addition, the high surface tension of water 

results in bubbles in aqueous solutions adhering to the probe tip,21 making this 

application (to an aqueous based cell culture media), more problematic than typical 

applications in reaction chemistry.  Fig. 3.4 shows the problems encountered with 

bubble entrapment.  

 

 

Fig. 3.4 Air bubble on probe tip 
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Calibration model results for all samples are shown in Table 3.4.  These models are 

based on calibration samples which contain varying amounts of all 8 components of 

interest.  In the majority of cases, the RMSEC values are lower for the K6 conduit 

probe than those for the silver halide fibre-optic probe.  All the RMSEC values are less 

than 0.25 g/L, and in the case of ammonia, it was as low as 0.02 g/L.  Different 

concentrations of each of the 8 components were used, corresponding to typical values 

in cell culture media.  In order to put the RMSEC in perspective, a percentage error of 

calibration (PEC) was calculated for each of the models, by dividing the RMSEC by 

the average concentration used in the calibration.  While the RMSEC for glutamate 

and glutamine appear quite low for both probes, they represent quite high percentage 

errors, indicating that problems are likely with the prediction ability of the glutamate 

and glutamine models.  The percentage errors of cross validation and prediction, 

(PECV and PEP), calculated in a similar manner to the PEC, were greater than 60% 

for glutamate and glutamine, thereby indicating that the predicted concentrations of 

glutamate and glutamine are not reliable.  This supports the results of the preliminary 

analysis, where the LODs were higher than those of the other components and close to 

the maximum concentrations typically found in a cell culture environment.  Based on 

this information, these components models were not further validated using the spiking 

test.                    

 

All other components had lower percentage errors than glutamine and glutamate with 

glucose and ammonia showing the lowest percentage errors of approximately 15% or 

less regardless of probe type or validation set used (Table 3.5).  A plot of predicted 

glucose concentration versus actual glucose concentration as measured with the K6 



  Chapter 3
   

 69 
 

conduit probe can be seen in Fig. 3.5.   This model had low percentage errors and it 

can be seen that all samples lie close to the 1:1 calibration line.  

 

 



  Chapter 3
   

 70 
 

TABLE 3.4  Calibration model results 

Component Probe # LVs RMSEC PEC RMSECV PECV 

Glucose K6 conduit 4 0.25 8.64 0.34 11.65 

 Fibre-optic 5 0.31 10.38 0.44 14.81 

Glutamine K6 conduit 12 0.02 7.48 0.24 77.24 

 Fibre-optic 3 0.12 40.07 0.25 82.89 

Ammonia K6 conduit 3 0.02 4.49 0.03 5.91 

 Fibre-optic 4 0.03 5.04 0.04 7.16 

Phosphate K6 conduit 4 0.14 30.38 0.19 40.60 

 Fibre-optic 5 0.11 24.28 0.15 32.82 

Glutamate K6 conduit 6 0.09 26.43 0.22 62.88 

 Fibre-optic 3 0.12 35.39 0.27 77.68 

Lactate K6 conduit 4 0.04 9.30 0.06 13.84 

 Fibre-optic 3 0.20 45.37 0.24 54.60 

HEPES K6 conduit 4 0.21 9.94 0.29 13.86 

 Fibre-optic 4 0.21 10.23 0.27 13.05 

Bicarbonate K6 conduit 8 0.07 12.25 0.23 37.26 

 Fibre-optic 5 0.12 19.05 0.31 51.39 
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TABLE 3.5  Validation results 

Component Probe RMSEP 
matrix 

PEP 
matrix 

RMSEP 
spiked 

PEP 
spiked LOD 

Glucose K6 conduit 0.17 6.03 0.41 13.53 0.41 

 Fibre-optic 0.35 
 
12.42 
 

0.24 
 
15.40 
 

 
0.80 
 

Glutamine K6 conduit 
 
0.19 
 

 
63.06 
 

- - 
 
1.31 
 

 Fibre-optic 
 

0.31 
 

 
104.25 
 

- - 
 
5.58 
 

Ammonia K6 conduit 
 
0.06 
 

 
13.17 
 

 
0.09 
 

 
16.14 
 

 
0.14 
 

 Fibre-optic 
 
0.06 
 

 
11.53 
 

 
0.10 
 

 
18.23 
 

 
0.12 
 

Phosphate K6 conduit 
 
0.14 
 

 
31.58 
 

 
0.07 
 

 
10.49 
 

 
0.33 
 

 Fibre-optic 
 

0.18 
 

 
41.85 
 

 
0.07 
 

 
10.57 
 

 
0.45 
 

Glutamate K6 conduit 
 

0.21 
 

 
64.45 
 

- - 
 
0.67 

 

 Fibre-optic 
 

0.32 
 

 
96.93 
 

- - 
 
1.93 
 

Lactate K6 conduit 
 
0.07 
 

 
16.77 
 

 
0.32 
 

 
78.56 
 

 
0.16 
 

 Fibre-optic 0.13 30.81 0.18 44.69 0.28 

HEPES K6 conduit 0.30 14.97 0.08 8.26 0.71 

 Fibre-optic 0.26 12.91 0.49 48.47 0.66 

Bicarbonate K6 conduit 0.37 45.72 0.60 24.49 1.64 

 Fibre-optic 0.52 64.76 0.72 30.13 2.68 
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Fig. 3.5  Plot of predicted versus actual glucose concentrations for calibration and 

validation data, as measured with K6 conduit probe 

 

 

Table 3.6 provides a summary of literature examples of infrared spectroscopy 

instruments with different types of sampling being used to measure glucose 

concentration; with glucose being the most common metabolite measured in 

bioprocesses.  For the sake of comparison with the results in this study, any values 

reported as mM were converted to g/L and reduced to 2 significant figures. 
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   TABLE 3.6   Infrared spectroscopy instruments being used to measure glucose in bioprocesses 

Technique Sampling Accessory Culture type #Cal #Val RMSEC RMSECV RMSEP % error Ref. 

     g/L g/L g/L   

NIR Off-line Transmission Mammalian 58 14 0.60  0.53  
37 

NIR Off-line Transmission Mammalian   0.04  0.07 1.86 38 

NIR In-line Transmission/Fibre optic  104 24 0.10  0.15 3.98 14 

NIR In-line Reflectance/Fibre optic Bacteria 80 30 1.79 4.70 2.90  13 

NIR In-line Transmission/Fibre optic Mammalian 217  0.13 0.07 0.10  12 

NIR On-line Transmission Mammalian     0.17  39 

NIR-Vis Off-line Transmission Yeast 126 70 0.79  0.80  40 

NIR In-line Transflectance/Fibre optic Mammalian 50 16 0.10  0.20  15 

NIR In-line Transflectance/Fibre optic Bacteria    1.90 2.00 9.70 16 

NIR In-line Transflectance/Fibre optic Mammalian    0.23 0.19  17 
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Technique Sampling Accessory Culture type #Cal #Val RMSEC RMSECV RMSEP % error Ref. 

     g/L g/L g/L   

NIR In-line Transflectance/Fibre optic Mammalian 73 12 0.30 0.36 0.36  30 

MIR In-line ATR/Fibre optic Bacteria   2.80  3.50  36 

MIR In-line ATR/Conduit Bacteria 91   0.26   32 

MIR In-line ATR Mammalian 60 225 0.09  0.11  18 

MIR Off-line Transmission Yeast/Bacteria    0.38   41 

MIR On-line ATR Yeast   0.35 0.40 0.27  42 

MIR Off-line HATR Bacteria 70 20 0.69  0.56  43 
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When results from this study are compared to those listed in Table 3.6, it can be seen 

that the RMSEC values are of the same order of magnitude but without a percentage 

error value, it is not always appropriate to compare these.  The most comparable study 

was that of Rhiel et al,18 where an RMSEC value of 0.09 g/L was obtained.  While this 

value is lower than that achieved in this study, models were developed with a larger 

number of calibration samples which could improve the error values.  As stated 

previously, an experimental design requiring a minimal number of samples (49) was 

used in this study.26  When the model was applied to the validation matrix samples, 

phosphate, lactate, and bicarbonate all had lower errors when the K6 conduit probe 

was used.   The errors for HEPES were lower for the fibre-optic probe but only by a 

small amount.  Samples of media spiked with known amounts of a given component 

represent a slightly more difficult test for the model as these samples had unknown 

components present as the exact composition of the commercial medium used was not 

known.  Spiked sample PEPs for glucose, ammonia and lactate were all higher than for 

the validation matrix samples.  The results for the other components did not give 

consistent results for the different validation sets.   Of the 9 studies with in-situ probes 

in Table 3.6, only 3 of these achieve a lower RMSEP than that reported in this study 

but as stated above, a direct comparison is not always possible without details on the 

percentage error. 

 

In a similar way to the calibration models of single components in the preliminary 

analysis section, the models made from multicomponent samples were subjected to the 

same hypothesis test to determine an LOD with a false positive and false negative 

probability of 0.05.  Every component had a higher LOD value in a multicomponent 
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mixture than that calculated using single components samples.  In almost all cases the 

value was an order of magnitude higher and for glutamine, glutamate and bicarbonate, 

the LOD value was larger than the maximum concentration of each component that 

was used to make the calibration samples.  

 

3.3.3  External Influence investigation 

The results of the external influence tests can be seen in Table 3.7.  In all cases of the 

agitation test, H0 was accepted, strongly suggesting that variation in impeller speed had 

little effect on the spectra and hence the predicted concentration of the model.  

Hypothesis testing of the antifoam results indicated that the presence of antifoam did 

not appear to impact the spectra significantly; therefore it is not necessary to account 

for this when developing a calibration model. 

 

Based on the results of the statistical tests applied to variation in pH, as expected, H0 

was rejected both for the spectral test and the relevance test, for both probes.  Varying 

pH changes the chemical constitution of the media and based on the underlying 

principle of infrared spectroscopy,33 it follows that the spectra will also change.  The 

cell culture environment requires tight control of the pH; therefore major shifts in pH, 

resulting in inaccurately predicted values are unlikely to occur.  However, for the 

development of a calibration model where the system is likely to experience pH 

changes, pH should be used as an additional factor in the experimental design.   
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TABLE 3.7  Hypothesis test results for external influences 

  Agitation Biomass pH Temperature  Antifoam Pluronic 

Fibre optic accept Ho reject Ho reject Ho reject Ho  accept Ho reject Ho Multivariate  

test K6 conduit accept Ho reject Ho reject Ho reject Ho  accept Ho reject Ho 

         

Fibre optic accept Ho accept Ho reject Ho reject Ho  accept Ho reject Ho Relevance  

test K6 conduit accept Ho reject Ho reject Ho reject Ho  accept Ho accept Ho 
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Statistical analysis of biomass concentration indicates that the spectra and hence the 

predicted concentration values will change as the biomass concentration increases.  By 

simulating the growth of a cell culture the sample media could possibly have been 

altered with the addition of small amounts of spent media in which the cells were 

suspended prior to addition.    This potential change which would not occur over the 

course of an actual cell culture could have been confounded with the effect of the 

increasing biomass concentration.  The relevance test indicated that this is not a 

significant result for the fibre optic probe while for the K6 conduit probe it was 

calculated to be significant at α=0.05. Previous studies have shown that biomass 

concentration can have an effect on NIR spectra due to light scatter and the fact that 

biomass absorbs in the NIR region.14, 16  The ATR sample method for MIR instruments 

results in a short penetration depth of the MIR light source44, 45 so scatter effects will 

not be present.36  

 

The effect of varying temperature was calculated to have a significant effect for both 

the spectral and relevance tests, for both probes.  This is not unexpected as temperature 

impacts the bonds between the molecules which is the underlying principle of 

vibrational spectroscopy including MIR.46   As with pH, temperature is tightly 

controlled in mammalian cell cultures so unless deliberate temperature shifts are 

necessary, this factor does not need to be accounted for in the model.  If the same 

model was to be applied to a cell culture with identical parameters with the exception 

of temperature, it would need to be recalibrated accounting for the temperature change 

by including temperature as a factor in the experimental design. 
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Pluronic can sometimes be added to mammalian cell cultures and the effect of addition 

at typical concentrations appears to have a significant effect on a spectral level. This 

result was  

 

found using both probes.  The relevance test indicated that it was not significant for the 

K6 conduit probe but that it was a significant effect for the fibre-optic probe.  Given 

this difference, it would be recommended that if pluronic is to be added to a cell 

culture, it should be included in the experimental stage.  This would not be difficult to 

do as it would be present at the same concentration in each sample. 

 

3.4  Conclusion  

This study outlines a methodology for evaluating the potential of mid-infrared 

spectroscopy as an on-line tool for monitoring mammalian cell culture media 

constituents.  This method is beneficial as it identifies at an early stage where the 

technique may be best applied.  A detailed comparison of two sampling systems is also 

outlined.  This highlights any issues due to differing design of ‘sample to crystal’ 

interface areas.   The importance of a chemometric technique, in the treatment of the 

data for the LOD analysis, is clearly evident as the observed LOD was always found to 

be greater than the calculated LOD.  The LOD results indicate that at concentration 

levels found in cell cultures, certain components e.g. glutamine, lie below the detection 

ability of the instrument.  Also, the LOD for each component is significantly higher in 

the multicomponent mixture than in the single component mixture.            

 

An experimental design using a sample set of 49 and concentrations typically found in 

a mammalian cell culture were used in the development of the calibration models.   
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The study indicates the applicability of the technique in the monitoring of glucose and 

ammonia, both of which are major media constituents in mammalian cell cultures.  

Although all 8 components investigated cannot be reliably monitored, due to their 

presence at such low concentration levels, there is potential for the development of a 

control platform, of a mammalian cell  

 

culture, based on glucose and ammonia.  It should be noted that the accuracy of the 

prediction ability of a model is very much dependent on the sample set size and the 

concentration level of each of the components present.   An increase in the number of 

samples in the sample set should improve the accuracy of the model.   

 

Finally the external influence series of experiments indicate that changes in certain 

environmental conditions will impact spectra.  However is must be noted that 

maintaining these environmental conditions relatively constant is crucial to the overall 

bioprocess.  Therefore changes will impact results, however, the range over which 

these changes can occur, without impacting the bioprocess is so tight that the process 

will be affected before the spectra are impacted. 
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Chapter 4 

Study 2:  Application and optimisation of in-situ MIR calibration models for the 

prediction of glucose and lactate in mammalian cell cultures 

 

As submitted to Applied Spectroscopy, January 2013 

 

Abstract 

The primary aim of this study was to apply multivariate calibration models to data 

collected in real time during the course of a CHO DP12 cell culture in bioreactors to 

predict glucose and lactate concentrations.  To achieve this aim, an investigation into 

the optimisation of these models was performed in an effort to improve their accuracy 

and robustness.  The study comprised a series of 3 cultures which were monitored in-

situ using mid-infrared (MIR) spectroscopy.  Samples for reference HPLC analysis 

were taken daily to compare to the in-situ MIR predicted data.  Aliquots of these daily 

samples were scanned using the same instrument once all cultures were complete and 

the same partial least squares regression (PLS) models applied in order to evaluate the 

set- up when applied in an offline or at-line scenario.  The PLS models used exhibited 

expected trends when applied in-situ, with glucose depletion and lactate formation 

clearly evident.  The accuracy of prediction however was low, with RMSEP values for 

glucose and lactate, 0.73g/L and 1.21g/L respectively.  When the same models were 

applied to the spectra of culture samples taken offline the glucose and lactate errors 

were reduced by 60.27 and 13.22% respectively.  Optimisation of glucose and lactate 

models for in-situ use was achieved by developing PLS models using spectral data 

generated in-situ and offline from all 3 cell cultures.  When offline data was used as 
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part of the optimised calibration training set, such models consistently performed 

better than the original PLS models.  Optimised glucose model results showed an 

improvement in RMSEP as high as 37.93% while optimised lactate model results had 

an improved RMSEP of 61.98%.       

    

4.1  Introduction 

Over a decade since its conception in August 2002, the Food and Drug 

Administration’s (FDA) initiative, “Pharmaceutical Current Good Manufacturing 

Practices”, (cGMP’s), has had a significant impact on the pharmaceutical and 

biopharmaceutical industries.1-3  The purpose of this initiative is to modernise the 

regulation of pharmaceutical quality through the support and promotion of risk-based 

and science-based approaches.4  Central to the implementation of this initiative is the 

concept of Quality by Design (QbD) which utilises Process Analytical Technologies 

(PAT) to gain in-depth process understanding, leading to the eventual application of 

these technologies to monitor and control processes, thus mitigating risk and reducing 

variability.5    

 

Quantitative analysis of the key analytes and metabolites in a bioprocess can provide a 

plethora of information, which, when applied, can yield powerful results such as 

improved product quality and enhanced biomass production.6  PAT tools should be 

capable of providing rapid yet reliable measurements, be possible to calibrate and 

preferably be non-invasive.  Infrared (IR) spectroscopy meets these criteria and has 

been shown to monitor key analytes both in-situ and at-line.6-8  Development of 

chemometric models for quantitative measurement of cell culture components via IR 

has been documented, with the greater portion of this work focused on the use of near-



  Chapter 4  

 87 
 

infrared (NIR) spectroscopy.9-14  The development of such models using mid-infrared 

(MIR) spectroscopy has also been reported, but evaluations of its online application to 

mammalian cell cultures are minimal.15,16 

A number of studies have been carried out using multivariate analysis of spectroscopic 

data to develop calibration models capable of simultaneous monitoring of several key 

analytes in a bioreactor.17-20  Emphasis has been placed on the importance of the 

calibration set and Cervera et al. outline various techniques employed for NIR 

spectroscopy.21  There has been much debate on the selection of the optimum 

calibration sample set, with some researchers choosing purely synthetic sample 

matrices arguing that the use of such samples provides accurate results over wide 

concentration ranges and proves a more difficult validation test for the model.22  

Others favour the use of real fermentation samples highlighting fermentation are 

broths impossible to simulate.9,11  The final option is that of a combined sample set, 

one containing spectra obtained from real samples and/or spiked samples and/or 

synthetic samples.  This method has also been used by researchers when developing 

calibration matrices.23,24  The study presented here performs a comparative 

investigation by examining the efficacy of various MIR models for glucose and lactate 

prediction both in-situ and at-line.  Models were created using spectra collected from 

synthetic samples only, a combination of synthetic and real cultures samples (collected 

offline) and finally from all sample types; synthetic samples and real culture samples 

(collected online and offline).   

The purpose of this study was to evaluate the capability of MIR as both an online in-

situ and at-line tool for glucose and lactate monitoring when applied to a mammalian 

cell culture.  This was achieved by application to a series of CHO DP12 cultures in a 
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bioreactor, but also by further analysis of spectroscopic data collated.  A direct 

comparison between models, with various calibration sets and also spectral pre-

treatments is provided in order to identify an optimum methodology for MIR 

calibration model development for the purpose of monitoring media constituents 

within a bioreactor.     

 

4.2  Materials & Methods 

4.2.1  Cell culture 

A series of 3 batch cultures was completed in a bio-reaction calorimeter, RC1e 

(Mettler-Toledo AutoChem Inc., Columbia MD, USA).  CHO DP12 cells were 

cultivated in suspension in 1.6L of media (ExCellTM 325 PF CHO, Sigma Aldrich 

Ireland Ltd.) which was supplemented with Antifoam C, glutamine, insulin & MTX 

(Sigma Aldrich Ireland Ltd.).  Samples were removed every 24 hours and cell counts 

performed manually.  The pH of the culture was controlled and maintained between 

pH 7.0 and pH 7.2 using 2 M NaOH and CO2.  Dissolved oxygen was also monitored 

and entered the reactor via a ring sparger.  The reactor temperature was controlled at 

37 oC for the duration of each of the 3 cultures. 

 

 

Fig. 4.1 Bio-reaction calorimeter, RC1e, with controller set up 



  Chapter 4  

 89 
 

4.2.2  Instrumentation and real time monitoring 

The cell culture environment within the reactor was monitored in real time using a 

Fourier transform mid-infrared ReactIR iC10 instrument with MCT detector (Mettler 

Toledo AutoChem, Inc., Columbia, US).  A K6 conduit 16 mm immersion probe was 

used with a fixed path length of approx. 1-2 µm and a diamond ATR crystal with 6 

internal reflections.  The detector and probe were purged with nitrogen gas 

continuously.  Prior to media transfer to the reactor, the vessel was filled with 

deionised water and heated to 37 oC.  A background scan was taken at this point.  

Under sterile conditions the water was removed, the media added and the reactor 

inoculated.  The instrument was set to scan every 10 minutes, with each scan 

comprising 128 co-added scans.  All data was collected on the instrument software, iC 

IRTM (Mettler-Toledo AutoChem Inc., Columbia MD, USA).  As the spectral files 

were generated, they were exported to a MATLAB program (v7.9.0.529 (R2009b), 

The MathWorks Inc., Cambridge, UK), where previously developed PLS models25 

developed on the PLS toolbox for MATLAB (V6.2 Eigenvector Research Inc, 

Wenatchee, WA, US) were used to predict the concentration of glucose and lactate 

present inside the bioreactor.  A check was included in the program in an attempt to 

eliminate predicted concentrations that were impossible, i.e. sudden drops or increases 

in concentration which could not reasonably be obtained within the 10 minutes 

between each scan.   

 

4.2.3  Reference analysis  

The first of the 3 cultures ran until day 7, after which time cell counts indicated that the 

culture had moved from stationary to death phase.  The following 2 cultures ran to day 

6.  All cultures were sampled daily.  Once cell counts were completed the samples 
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were prepared for offline analysis.  Raw samples were centrifuged and the supernatant 

retained.  Glucose and lactate concentrations were determined by HPLC analysis.  The 

supernatant was filtered using a 0.22 µm hydrophilic PTFE filter (Millipore 

Corporation, Billerica, MA, USA).  A sample volume of 12 µl was injected onto a 

SUPELCOGEL C-610H column (Sigma-Aldrich Corporation, St. Louis, MO, USA) 

equilibrated with 0.01 M sulphuric acid solution at a flowrate of 0.5 ml/min 

 

4.2.4  Offline/at-line spectra collection and analysis 

The supernatant samples (total of 22) were stored at -80 oC until all 3 cultures were 

complete, after which time they were thawed, heated to 37 oC and scanned offline and 

in triplicate against a background of deionised water at 37 oC.  The calibration models 

used to predict the concentrations of the 2 components of interest in real time (see 

Table 4.1) were then applied to the spectral data generated from the offline scans in 

order to determine if the accuracy was improved when the instrument was not subject 

to the environmental conditions of a cell culture.  This study was performed in order to 

investigate the at-line capabilities of both the instrument and the models.   

 

4.2.5  Model development and optimisation 

The development of the multivariate models applied to the spectral data collected 

during the 3 cell cultures has been fully described in a previous study.25  All models 

created were based on a 7-level partial factorial design.26  Synthetic samples (49) were 

generated to reflect the conditions of a cell culture environment, however actual 

culture samples, were not included in the model development.  Table 4.1 summaries 

the PLS regression models used for in-situ application.  These models, developed in a 

previous study, both use mean centering and 2nd derivative Savitzky-Golay as pre-
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treatments.  Mean centering is often performed as a default pre-treatment.  It was 

selected here as it prevents data points that are further from the origin exerting an 

undue amount of leverage over the points that are closer to the origin.  In this case, as 

the cultures were run over the course of a week, it minimised the effect of instrument 

drift on the model results.  Second derivative Savitzky-Golay or S-G smoothing, as it 

is also known; enhances small spectral differences and separates overlapping peaks.  

As the culture medium contains several components, some of which are unknown, this 

form of pre-treatment was selected to separate merging spectral peaks occurring as a 

result of the many components present in the culture.   
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TABLE 4.1  PLS regression models for in-situ & at-line application  
 
Model # Component Pre-treatment No. Latent 

Variables 

Wavenumber 

Range (cm-1) 

1 Glucose Mean centered 

2nd derivative Savitzky-

Golay, filter width 15 

4 950-1450 

1 Lactate Mean centered 

2nd derivative Savitzky-

Golay, filter width 15 

4 1000-1620 

 

Models used to predict glucose and lactate concentrations were further processed in an 

effort to optimise such models and create more robust and reliable predictions.  The 

calibration sets were expanded to include spectra taken in-situ during the culture, 

and/or culture sample spectra collected offline.  These models are referred to 

throughout this text as “hybrid models” as the x-data required in generating these 

regression models is a composite of spectral data obtained from synthetic and real 

culture samples.   

 

Four model categories are presented, the first of which has been outlined in detail in 

Table 4.1.  PLS regression, optimised by leave-one-out cross validation was used to 

develop all calibration models.  All data was mean centered and second derivative pre-

treatments, of filter widths 15 and 21 were applied, calculated using Savitzky-Golay 

filters.27  Second derivative pre-treatments were chosen as they can eliminate the effect 

of linear baseline off-sets28 that are likely to occur over the course of a culture and 

smooth noisy spectra.  Standard normal variate (SNV) pre-treatment was also applied 

to mean centred data.  This pre-treatment is predominantly used for NIR spectra as it 

removes multiplicative interferences of scatter and particle size29 however it was also 
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examined in this study as a potential pre-treatment due to the nature of the cell culture 

environment (increasing turbidity due to biomass growth). 

 

The second model category was divided into 2 sub-models:  Model 2a and Model 2b, 

as they were largely similar, however the calibration set size of Model 2b was smaller 

and the validation sets used for both models were different.  Model 2a consisted of the 

49 original spectra obtained from scans of the synthetic samples and also spectra 

collected offline from all 3 cultures (22 culture samples) creating a training set of 71 

samples.  Using this data 3 models were developed for both glucose and lactate.  These 

models differed in pre-treatments applied and/or the number of latent variables used.  

Table 4.2 provides specific details for all models developed.  All versions of Model 2a 

were applied to the in-situ data generated during cultures 1, 2 and 3. 
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TABLE 4.2  Hybrid model details 
 

Model Type Component 
Pre-treatments & 

Latent Variables 
Calibration data set Validation data set 

2a Glucose MC_2der15_4LVa 49 synthetic samples, 22 offline spectra (cultures 1,2 &3) In-situ spectra:  Cultures 1,2 & 3 

2a Glucose MC_2der21_5LV 49 synthetic samples, 22 offline spectra (cultures 1,2 &3) In-situ spectra:  Cultures 1,2 & 3 

2a Glucose MC_SNV_5LV 49 synthetic samples, 22 offline spectra (cultures 1,2 &3) In-situ spectra:  Cultures 1,2 & 3 

2a Lactate MC_2der15_4LV 49 synthetic samples, 22 offline spectra (cultures 1,2 &3) In-situ spectra:  Cultures 1,2 & 3 

2a Lactate MC_2der21_3LV 49 synthetic samples, 22 offline spectra (cultures 1,2 &3) In-situ spectra:  Cultures 1,2 & 3 

2a Lactate MC_SNV_4LV 49 synthetic samples, 22 offline spectra (cultures 1,2 &3) In-situ spectra:  Cultures 1,2 & 3 

2b Glucose MC_2der15_4LV 49 synthetic samples, 11 offline spectra (cultures 1,2 &3) 11 offline spectra:  Cultures 1,2 & 3 

2b Glucose MC_2der21_6LV 49 synthetic samples, 11 offline spectra (cultures 1,2&3) 11 offline spectra:  Cultures 1,2 & 3 

2b Glucose MC_SNV_4LV 49 synthetic samples, 11 offline spectra (cultures 1,2&3) 11 offline spectra:  Cultures 1,2 & 3 

2b Lactate MC_2der15_3LV 49 synthetic samples, 11 offline spectra (cultures 1,2&3) 11 offline spectra:  Cultures 1,2 & 3 

2b Lactate MC_2der21_3LV 49 synthetic samples, 11 offline spectra (cultures 1,2&3) 11 offline spectra:  Cultures 1,2 & 3 

2b Lactate MC_SNV_4LV 49 synthetic samples, 11 offline spectra (cultures 1,2&3) 11 offline spectra:  Cultures 1,2 & 3 
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Model Type Component 
Pre-treatments & 

Latent Variables 
Calibration data set Validation data set 

3 Glucose MC_2der15_4LV 49 synthetic samples, in-situ spectra (cultures 1&2) In-situ spectra: Culture 3 

3 Glucose MC_2der21_4LV 49 synthetic samples, in-situ spectra (cultures 1&2) In-situ spectra: Culture 3 

3 Glucose MC_SNV_6LV 49 synthetic samples, in-situ spectra (cultures 1&2) In-situ spectra: Culture 3 

3 Lactate MC_2der15_3LV 49 synthetic samples, in-situ spectra (cultures 1&2) In-situ spectra: Culture 3 

3 Lactate MC_2der21_3LV 49 synthetic samples, in-situ spectra (cultures 1&2) In-situ spectra: Culture 3 

3 Lactate MC_SNV_4LV 49 synthetic samples, in-situ spectra (cultures 1&2) In-situ spectra: Culture 3 

4 Glucose MC_2der15_4LV 
49 synthetic samples, in-situ spectra (cultures 1&2), offline 

spectra (cultures 1,2&3) 
In-situ spectra: Culture 3 

4 Glucose MC_2der21_5LV 
49 synthetic samples, in-situ spectra (cultures 1&2), offline 

spectra (cultures 1,2&3) 
In-situ spectra: Culture 3 

4 Glucose MC_SNV_5LV 
49 synthetic samples, in-situ spectra (cultures 1&2), offline 

spectra (cultures 1,2&3) 
In-situ spectra: Culture 3 
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Model Type Component 
Pre-treatments & 

Latent Variables 
Calibration data set Validation data set 

4 Lactate MC_2der15_3LV 
49 synthetic samples, in-situ spectra (cultures 1&2), offline 

spectra (cultures 1,2&3) 
In-situ spectra: Culture 3 

4 Lactate MC_2der21_3LV 
49 synthetic samples, in-situ spectra (cultures 1&2), offline 

spectra (cultures 1,2&3) 
In-situ spectra: Culture 3 

4 Lactate MC_SNV_4LV 
49 synthetic samples, in-situ spectra (cultures 1&2), offline 

spectra (cultures 1,2&3) 
In-situ spectra: Culture 3 

a:  MC = mean centered; 2der15 = Savitzky-Golay 2nd derivative pre-treatment with filter with of 15; 2der21 = Savitzky-Golay 2nd derivative pre-treatment with filter with of 21; LV = latent variables 
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The calibration set used in the development of Model 2b also contained the 49 original 

spectra collected from the synthetic samples, but in this case only 11 of the 22 spectra 

obtained from the offline culture samples were added.  Model 2b was then applied to 

the remaining 11 offline spectra in order to establish if the addition of spectral data 

obtained from an actual cell culture sample enhanced the predictive ability of an at-line 

model.  As with model 2a, 3 PLS regression models were developed for each of the 2 

components of interest.   

 

Model 3 comprised the original 49 spectra and spectra obtained each day, in-situ, at the 

time of sampling, during the first 2 cultures.  This model was then applied to the online 

spectra generated over the course of the third culture.  The training sets for glucose and 

lactate for Model 3 differed slightly.  Based on the in-situ application analysis in this 

study and the limit of detection investigation completed in an earlier study,25 the 

glucose scans were found to be unreliable once the glucose concentration fell below its 

limit of detection. Only spectra collected prior to this point were included in the 

development of the new glucose models.  Therefore only spectra collected at the 

sample time from day 0 to day 3 were used.  Lactate was formed and from day 0 

lactate levels lay above the minimum detection limit, therefore all spectra collected at 

the sample time during the first two cultures were used in the newly developed lactate 

models.  

 

In the final model, Model 4, the 22 spectra collected offline were added to the training 

sets of Model 3, for glucose and lactate.  This model was then applied to the in-situ 

spectral data of the third culture.      
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4.3  Results and Discussion 

4.3.1  In-situ application  

Glucose and lactate concentrations were predicted in real time as all 3 cultures 

progressed.  Reference analysis via HPLC showed that the actual glucose 

concentration in each of the cultures began at 3.0g/L ± 0.2g/L and fell to 0g/L.  The 

glucose versus time plots in Fig. 4.1 show that the online predicted glucose 

concentrations followed this trend in depletion.  This trend has been reported in other 

studies.30-32 However to the authors’ knowledge, only two other studies exist where 

measurements of a mammalian cell culture were taken in real time using an MIR 

immersion probe, and therefore directly comparable.15,16  As the glucose approached 

its limit of detection (LOD) of 0.41g/L, established in a previous study,25 the results 

became unreliable.  In cultures 1 and 3, in-situ results predicted an increase in glucose, 

having reached a minimum of 0g/L, and culture 2 predicted negative concentrations.  

(Note: due to unplanned instrument downtime during culture 2 there are 15 hours on 

day 5 over which in-situ data was not collected).  These spurious spectra, exhibited by 

all 3 cultures may be as a result of increased biomass concentration from day 4, 

causing probe fouling, however, the lactate results did not appear to be impacted by 

possible physical changes in the cell culture environment, and so it is most likely that 

in-situ, predicted glucose values after day 4 were unreliable as the glucose 

concentration in the bioreactor had fallen below a detectable limit.   

 

The root mean squared error of prediction, (RMSEP), was used to evaluate each of the 

models.33  The RMSEP was calculated based on data collected in-situ from all 3 

cultures.  This was found to be 0.73g/L; quite a large error given the maximum value 

of glucose at anytime was 3.0g/L ±0.2g/L.  This value was recalculated using only data 
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generated from day 0 to day 3 of all cultures and was reduced to 0.6g/L, thereby 

improving the error by 17.80%.  An obvious trend in glucose depletion was observed, 

however the level of accuracy required for application to real time monitoring and 

control of mammalian cell cultures was not reached using this set up and method of 

model development.  Therefore further optimisation of the model was investigated. 

 

HPLC results for lactate showed that the minimum starting concentration was 0g/L.  

The lactate concentration reached a maximum on day 4 where concentrations of all 3 

cultures were 2.78g/L ± 0.06g/L with a slight drop in concentration over the remaining 

days of each culture.  The lactate versus time plots in Fig. 4.1 show that the in-situ 

predicted lactate concentrations followed the observed trend, with in-situ 

concentrations peaking on day 4 and then dropping by ~0.35g/L.  However all 3 

cultures indicate that predicted lactate concentrations consistently fell below actual 

lactate values.  The average maximum difference between actual and predicted 

concentrations, over the course of all 3 cultures was 1.65g/L, a considerable difference 

and over 50% of the maximum lactate concentration reached for all 3 cultures.  

However the clear and precise trending exhibited by all 3 cultures suggests that further 

optimisation of the model used may further reduce the deficit and create more robust 

and reliable models.  An RMSEP value of 1.21g/L was calculated for lactate.  Spectral 

data and predicted concentrations did not indicate unreliable, spurious results after day 

4, therefore unlike glucose, a second RMSEP value based on days 0-3 was not 

calculated.  
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Fig. 4.2 (a) 
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Fig. 4.2 (b) 
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Fig. 4.2 (c) 
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Fig. 4.2 (d) 
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Fig. 4.2 (e) 
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Fig. 4.2 (f) 

 

Fig. 4.2 (a-f)  Online, offline & HPLC results of glucose & lactate ‘v’ time for 

cultures 1, 2 & 3 
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4.3.2  At-line application 

Daily samples from all 3 cultures were retained to perform offline/at-line analysis.  

Glucose and lactate concentrations for all 22 samples were predicted using the PLS 

regression models outlined in Table 4.1.  Fig. 4.2 summarises the in-situ, offline and 

HPLC results for glucose and lactate trends for all 3 cultures.  Based on these plots it is 

evident that the offline method is more effective.  RMSEP values were calculated as a 

means of evaluating the comparison between both in-situ and at-line applications.  At-

line prediction yielded a glucose RMSEP value of 0.26g/L, a 60.27% decrease on the 

real time value of 0.73g/L, while the lactate RMSEP fell to 1.02g/L, a 13.22% 

reduction on the in-situ RMSEP of 1.21g/L.  Table 4.3 summarises the comparison of 

both methods. 

 

 

Table 4.3  In-situ versus at-line prediction comparison 

 

Glucose Lactate 

In-situ At-line In-situ At-line 

RMSEP 

(g/L) 

RMSEP 

(g/L) 

RMSEP 

(g/L) 

RMSEP 

(g/L) 

0.73 0.29 1.21 1.05 

 
 

The improvement in the predictive abilities of the instrument may be attributed to a 

number of factors:  the constant flux within the reactor and the possible minor 
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vibrations of the probe due to instrumentation mechanics were eliminated.  All 

samples were scanned in a controlled environment without agitation and impact of 

external physical influences.  A known cause of spurious scans was removed by 

application of this technique; that being the formation of gaseous bubbles on the probe 

tip.  In the aqueous cell culture environment of a bioreactor, real time monitoring using 

an immersion probe is subject to frequent and unpreventable formation of bubbles on 

monitoring devices.34  This is further compounded by the required aeration of the cell 

culture.  Such bubbles, either partially or fully covering the probe tip, skew the results 

as the IR may penetrate into the gas within the bubble thereby producing an inaccurate 

“snapshot” of the contents of the reactor.  The effect of this may be mitigated by 

programming the data acquisition system to reject scans that are not plausible, as was 

done in this case.  At-line analysis allows for the removal of bubbles prior to initiation 

of scanning.   

 

Though not appearing to be problematic in this instance, potential fouling of the probe 

in the latter stages of the cell culture, due to high cell densities is also eliminated.  The 

at-line method removed cellular matter by centrifugation of samples and scanning of 

the resulting supernatant.  

 

4.3.3  Model optimisation 

Spectral data generated both in-situ and offline was used to further develop optimised 

PLS models.  The details of these hybrid models are outlined in Table 4.2.  Second 

derivative pre-treatments consistently resulted in improved predictions; however the 

optimum filter window varied depending on the model type.  The SNV pre-treatment 

did not show the same improved prediction, see Fig. 4.3 and Fig. 4.4, and in the case of 
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glucose, the RMSEP values of hybrid models using SNV pre-treatment failed to 

improve upon the RMSEP values of the original model (Table 4.1).  Hybrid model 

results are outlined in Table 4.4 and Table 4.5.      
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Fig. 4.3 (a)  Model 2a; Culture I 
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Fig. 4.3 (b)  Model 2a; Culture I 
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Fig. 4.3 (c)  Model 2a; Culture II 
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Fig. 4.3 (d)  Model 2a; Culture II 
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Fig. 4.3 (e)  Model 2a; Culture III 
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Fig. 4.3 (f) Model 2a; Culture III 
 
 
Fig. 4.3 (a-f) Hybrid models type “2a” applied to cultures 1, 2 &  
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Fig. 4.4 (a) Model 3; Culture III 
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Fig. 4.4 (b) Model 3; Culture III 
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Fig. 4.4 (c) Model 4; Culture III 
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Fig. 4.4 (d) Model 4; Culture III 
 

Fig. 4.4 (a-d) Hybrid models type “3 & 4” applied to culture III 
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Table 4.4  Glucose hybrid model results 

 

Model 

 

RMSEP 

(g/L) 

Test set 

 

49 syn_mc_2der15_4LV 

 

0.73 

 

in-situ spectra, cultures 1,2&3 

glucose_2a_MC_2der15_4LV 0.65 in-situ spectra, cultures 1,2&3 

glucose_2a_MC_2der21_5LV 0.77 in-situ spectra, cultures 1,2&3 

glucose_2a_MC_SNV_5LV 1.17 in-situ spectra, cultures 1,2&3 

 

49 syn_mc_2der15_4LV 

 

0.29 

 

off-line spectra, cultures 1,2&3 

glucose_2b_MC_2der15_4LV 0.18 off-line spectra, cultures 1,2&3 

glucose_2b_MC_2der21_6LV 0.21 off-line spectra, cultures 1,2&3 

glucose_2b_MC_SNV_4LV 0.44 off-line spectra, cultures 1,2&3 

 

49 syn_mc_2der15_4LV 

 

0.14 

 

in-situ spectra, culture 3 

glucose_3_MC_2der15_4LV 0.34 in-situ spectra, culture 3 

glucose_3_MC_2der21_4LV 0.72 in-situ spectra, culture 3 

glucose_3_MC_SNV_6LV 0.63 in-situ spectra, culture 3 

 

49 syn_mc_2der15_4LV 

 

0.14 

 

in-situ spectra, culture 3 

glucose_4_MC_2der15_4LV 0.31 in-situ spectra, culture 3 

glucose_4_MC_2der21_5LV 0.39 in-situ spectra, culture 3 

glucose_4_MC_SNV_5LV 0.57 in-situ spectra, culture 3 
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Table 4.5  Lactate hybrid model results 
 

Model 

 

RMSEP 

(g/L) 

Test set 

 

49 syn_mc_2der15_4LV 

 

1.21 

 

in-situ spectra, cultures 1,2&3 

lactate_2a_mc_2der15_4LV 0.46 in-situ spectra, cultures 1,2&3 

lactate_2a_MC_2der21_3LV 1.02 in-situ spectra, cultures 1,2&3 

lactate_2a_MC_SNV_4LV 0.69 in-situ spectra, cultures 1,2&3 

 

49 syn_mc_2der15_4LV 

 

1.05 

 

off-line spectra, cultures 1,2&3 

lactate_2b_MC_2der15_3LV 0.38 off-line spectra, cultures 1,2&3 

lactate_2b_MC_2der21_3LV 0.36 off-line spectra, cultures 1,2&3 

lactate_2b_MC_SNV_4LV 0.93 off-line spectra, cultures 1,2&3 

 

49 syn_mc_2der15_4LV 

 

0.96 

 

in-situ spectra, culture 3 

lactate_3_MC_2der15_3LV 0.49 in-situ spectra, culture 3 

lactate_3_MC_2der21_3LV 0.46 in-situ spectra, culture 3 

lactate_3_MC_SNV_4LV 0.87 in-situ spectra, culture 3 

 

49 syn_mc_2der15_4LV 

 

0.96 

 

in-situ spectra, culture 3 

lactate_4_MC_2der15_3LV 0.96 in-situ spectra, culture 3 

lactate_4_MC_2der21_3LV 0.50 in-situ spectra, culture 3 

lactate_4_MC_SNV_4LV 0.87 in-situ spectra, culture 3 
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The original glucose and lactate models were developed based on the identification of 

8 common cell culture components (glucose, lactate, ammonia, glutamine, glutamate, 

sodium bicarbonate, phosphate and HEPES).  Using these 8 components a cell culture 

environment was simulated and the calibration models developed.  To optimise these 

models the effects of both unknown media components and products produced during 

the cell culture were accounted for in the model development.  Model type 2a (Table 

4.2), which consisted of synthetic samples and culture samples collected offline, was 

applied to the in-situ spectra of all cultures.  Glucose results indicated an improvement 

on the RMSEP of 10.96% while the lactate error fell from 1.21g/L to 0.46g/L, 

resulting in a 61.98% improvement.  Optimum models for predictions of in-situ 

glucose and lactate spectra were hybrid models utilising mean centering and Savitzky-

Golay second derivative (filter width of 15) pre-treatments.  The addition of actual 

culture samples to the calibration sets fortified the models and improved the accuracy 

of the model when applied to spectra collected in-situ in the reactor. 

 

Model type 2b was applied to the offline spectra not included in the calibration set in 

order to determine if the offline/at-line predictions could be improved.  It has already 

been seen that the original models preformed better when applied to offline/at-line 

culture spectra.  Again, hybrid 2b models   performed better than the original models.  

The error of prediction for glucose fell from 0.29g/L to 0.18g/L, a 37.93% 

improvement and for lactate fell from 1.05g/L to 0.36g/L, an improvement of 60.95%.  

In the case of glucose, a narrower filter width of 15 points in the second derivative pre-

treatment performed best, while lactate results favoured a larger filter width of 21 

points.  These results highlight the importance of pre-treatment selection and 
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application and show different components with differing spectra may give better 

predictions with different spectral pre-treatments.  

 

Both model types 2a and 2b indicate that the inclusion of real culture sample spectra, 

which contain unknown components due to the proprietary formulation of many cell 

culture media, create more robust and reliable models for both online and at-line 

purposes. 

 

Model type 3 was developed in order to investigate if the addition of spectra collected 

in-situ could further enhance results.  As with models 2a and 2b, the additional spectra 

used in this calibration set were obtained from actual cell cultures, therefore allowing 

for the effect of unknowns to be built into the model.  However as the spectra used to 

augment the calibration set were collected in-situ, other factors, not accounted for in 

the previous hybrid models were incorporated into the model, such as environmental 

and external influences. 

 

Table 4.4 shows the errors obtained for all models of type 3, for glucose.  None of the 

hybrid models resulted in an improvement on the original model when applied to the 

selected validation set.  Although data collected after glucose had reached its LOD was 

omitted, the trends exhibited in Fig. 4.1 showed that even at an early stage glucose 

spectra collected online were not reliable, and the predictive error associated with the 

online measurements was quite large (0.73g/L).   

 
Therefore the addition of such unreliable spectra to the calibration set only served to 

increase noise in the models and the additional chemical information that improved the 

performance of Model 2a was made ineffective.  
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Fig. 4.1 indicates that although lactate concentrations fell short of the reference values 

consistently, the resulting online trends were reliable.  Smooth, steady trending was 

observed, and the slight decrease in the lactate concentration on day 4 was evident in 

the predictions of in-situ spectra for all 3 cultures.  Addition of in-situ spectra created 

more robust models which, unlike glucose, do not appear to be as affected by the 

environmental factors in the reactor possibly due to the fact that the main absorbance 

peaks for lactate are in a different region to those for glucose.  All model type 3 hybrid 

models performed better than the original model, with the optimum model resulting in 

a 52.08% improvement. 

 

Model type 4 was in essence, an extension of model type 3.  The purpose of this 

model was to investigate if a sheer volume of calibration samples could improve 

already existing models.  The training set used for model type 4 contained spectra 

collected from all possible scenarios – synthetic spectra, online spectra and offline 

spectra, thereby including all possible factors.  Glucose and lactate results for model 4 

exhibited the same trend as for model 3, i.e. glucose results were not improved while 

those for lactate were.  This was as expected as the addition of the in-situ spectra to the 

calibration set had a large influence on the efficacy of the models.  

 

The optimisation of the models highlighted areas where unreliable spectral data was 

obtained, but also where reliable data could be further worked upon to create improved 

and robust models (up to 62% improvement).     
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4.4  Conclusion 

This study evaluated the application of mid-infrared spectroscopy to the upstream 

processing of a CHO DP12 cell line, for the purpose of monitoring glucose and lactate 

concentrations during the cultivation.  Both in-situ and at-line methods were assessed 

using an FTIR immersion probe.  Predictions from a calibration model developed with 

only synthetic mixtures of typical cell culture media components and products of 

metabolism, exhibited the expected trends of glucose consumption and lactate 

production, however the prediction errors were considerable for in-situ application, 

and when glucose fell below its LOD, results became unreliable.  Therefore in-situ, 

real-time application of this system may only be considered practicable where the 

concentration of these components remains above the LOD, such as in a fed-batch 

application or where simple trending of substrates and metabolites is required.   

 

Using the same calibration models as applied in-situ, an at-line study was carried out.  

This application proved more reliable as prediction errors for both glucose and lactate 

fell, indicating that at-line application may be a viable means of monitoring these 

components of interest.  Despite the improvement in results for at-line application, this 

method also poses a number of problems if it is to be incorporated into a PAT system.  

It requires the removal of the sample from the reactor and while it is faster than typical 

laboratory analysis, it still requires a sterile sampling system, one of the major 

advantages of online monitoring.  An at-line monitoring system also cannot be 

integrated into a control system to the same level as an online monitoring system. 

  

An investigation was carried out to determine if the glucose and lactate calibration 

models used for in-situ and at-line analysis could be optimised.  This optimisation 
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study resulted in a number of hybrid models.  In all cases where hybrid models were 

developed using spectra collected offline/at-line, the optimum model was always a 

hybrid model.  This highlights the importance of including spectra collected from 

actual culture samples in the model training set. 

 

When in-situ spectra were used to augment the calibration set, for glucose models, 

predictions did not improve.  This result emphasises an important point, which is that a 

model is only as good as the spectra used to create it i.e. the glucose models containing 

spectra collected in-situ, did not perform as well as those without. The addition of the 

in-situ samples increased noise rather than true chemical information.  In the case of 

lactate, all hybrid models were an improvement on the original model.   

 

In summary, this method can be applied in-situ for monitoring and potentially control 

purposes and accuracy of the predictions can be improved by the addition of actual 

culture samples to the training set and also by varying pre-treatments used.             
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Chapter 5 

Study 3:  The use of Mid-infrared spectroscopy as an on-line PAT tool in total 

and recombinant protein monitoring 

 

Abstract: 

The aim of this study was to establish the feasibility in using mid-infrared (MIR) 

spectroscopy as on online monitoring tool for protein production at various stages in a 

bioprocess.  This exploratory work involved a number of steps to determine firstly, the 

possibility of using MIR for total and recombinant protein detection and secondly, the 

efficacy of this technique for online use.  An initial principal component analysis 

(PCA) was performed using 5 common proteins and the recombinant protein of 

interest.  Results indicated that the MIR immersion probe used was capable of 

distinguishing between the differing proteins, highlighting the potential of MIR as a 

qualitative process analytical technology (PAT) tool for protein detection and 

characterisation.  Using process samples provided by an industrial collaborator several 

partial least squares regression (PLS) models were developed to establish the 

possibility of using this technique as a quantitative PAT tool in online protein 

monitoring.  Models capable of evaluating total and recombinant protein were 

constructed.  Results indicated a greater accuracy in the prediction of the total protein 

with a minimum percentage error of prediction (PEP) of 2.39%.  The smallest PEP for 

the recombinant protein was found to be 6.66%.  These results highlight the existing 

potential for the application of this technique to in-situ protein monitoring.  Due to the 

limited available size of the calibration set, this study also raised questions as to the 
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best means of evaluation of results.  This work outlined 2 possible methods for model 

evaluation; standard error of cross validation and standard error of prediction.  Each 

technique was examined and results based on these methods were presented for 

comparative purposes.  Finally, an investigation into the impact of 2 detergents on 

model performance was completed.  As detergents are frequently used in the course of 

the bioprocess for e.g. protein solubilisation or virus inactivation, a PCA was 

completed to determine if the presence of detergent would be likely to affect protein 

predictions.  This analysis indicated that detergents were likely to impact results, 

particularly at concentrations at the higher end of the typically used range.  

 

5.1  Introduction   

Traditional protein quantification techniques such as SDS-Page are laborious, 

requiring considerable sample preparation and processing time.  Due to the amount of 

interaction with the process sample, these methods are also open to error at any one of 

the many analysis steps.  Current, conventional methods also require the removal of a 

sample from the bioreactor and result in sample destruction.  Mid-infrared 

spectroscopy offers an alternative to protein quantification.   

 

MIR is a well established technique in the determination of protein structure.1-3 The 

amide I band located at 1700 – 1600 cm-1 provides a significant amount of 

information.4,5  The C=O stretch at the amide I band is affected by the strength of the 

hydrogen bonds between the C=O bond and the N-H group.2  The resulting variation in 

the absorption of proteins in this region has been utilised to determine secondary 

protein structures.5  Gross-Selbeck et al have further shown that the intensity of the 

absorption at the amide I band corresponds to the quantity of protein in the sample.6  
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Based on this knowledge, MIR has huge potential in protein analysis presenting a 

serious case for its application as a process analytical technology tool (PAT).  

 

Infrared spectroscopy is a powerful tool in bioprocess monitoring.7-9  It is capable of 

simultaneously monitoring several of the components present in a cell culture medium.  

Both near infrared (NIR) and MIR have been used for analyte and metabolite 

monitoring,10-15 with NIR also being applied to cultures as a biomass monitor.16  

Previous studies in the use of MIR in protein detection and classification have focused 

on this technique as a rapid off-line method,2,17,18 with few examining its in-situ 

capabilities.19 

 

Infrared spectroscopy can be used in-situ. In such applications it is non-invasive and 

eliminates the need for sample removal.  In bioprocessing, where sterility is of the 

utmost importance, obtaining samples without compromising the sterility of the system 

is always a major concern.  Non-invasive methods, like in-situ MIR, reduce the risk of 

culture contamination.20  In addition, sample preparation is not required and data is 

obtained instantaneously.  These features meet much of the criteria used to define a 

Process Analytical Technology (PAT) tool, as outlined by the FDA in their “PAT 

Guidance for Industry” framework.21     

 

The purpose of this study was to examine any existing potential for protein detection 

using an in-situ MIR instrument.  The investigative work completed used in-process 

industrial samples to develop PCA and PLS models to examine the feasibility of using 

online MIR, to both qualify and quantify total and recombinant protein.  This study is a 

precursor to further work on model development and optimisation.  It does not present 
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a detailed evaluation of optimum chemometric models but rather establishes a 

methodology for preliminary, exploratory work in determining the efficacy of online 

MIR as a PAT tool for protein detection and monitoring.  In addition, the detergent 

study highlighted the possible difficulties the technique may encounter during the 

processing of recombinant protein.  The impact of 2 commonly used detergents on 

spectral data was investigated to identify any potential influences on the PLS model 

predictions.   Finally, results were evaluated using both root mean square error of 

cross-validation (RMSECV) and root mean square error of prediction (RMSEP) in an 

attempt to answer questions as to the best evaluation method given the size of the 

training and validation sets.22  

 

To the author’s knowledge, no other study exits in which recombinant and total protein 

have been quantified in industrial samples using an MIR immersion probe capable of 

online monitoring.       

 

5.2  Materials & Methods 

5.2.1  Preliminary analysis 

Five commonly used proteins, bovine serum albumin (BSA), human serum albumin 

(HSA), amylase, pepsin and lipase, (Sigma Aldrich, Ireland, Ltd.) in addition to the 

recombinant protein of interest, were selected, on which to perform a preliminary 

analysis.  Standard solutions of each protein, at concentrations of 10, 5 and 2.5 g/L, 

were made.  These solutions were then scanned in triplicate using a Fourier transform 

mid-infrared ReactIR iC10 instrument with MCT detector (Mettler Toledo AutoChem, 

Inc., Columbia, US) against a background of deionised water.  A K6 conduit 16mm 

immersion probe was used with a fixed path length of approx. 1-2 µm and a diamond 
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ATR crystal with 6 internal reflections.  The detector and probe were purged with 

nitrogen gas continuously.  The mean spectrum of each triplicate scan was calculated 

and imported into MatLab (v7.9.0.529 (R2009b), The MathWorks Inc., Cambridge, 

UK).  A scan of each protein at 10 g/L was taken and spectra were plotted for 

preliminary examination.  This allowed for spectral similarities and differences to be 

identified while also establishing the usable wavenumber range for further work.  The 

PLS toolbox for MatLab (V6.2 Eigenvector Research Inc, Wenatchee, WA, US) was 

used to complete a principle component analysis (PCA) to determine if it was possible 

to distinguish between the six different proteins.  Pre-treatments employed for PCA 

investigation were mean centering combined with normalisation and mean centering 

combined with standard normal variate (SNV).  Both these pre-treatments are effective 

at scaling and normalising spectra.   

 

5.2.2  Samples and reference analysis 

Recovery process samples were obtained from an industrial collaborator.  These 

samples contained the recombinant protein of interest, in addition to a large number of 

unknown host cell proteins.  Also present in these untreated samples were cell 

particulates, as samples were previously lysed with acid, and sodium hydroxide, used 

for pH adjustment.  Using these samples, 3 sample types were generated:  untreated 

samples, consisting of the samples in their original form; supernatant samples, 

resulting from untreated sample centrifugation and containing aqueous based 

fermentation broth, sodium hydroxide, proteins and other components soluble in water; 

re-dissolved pellet samples generated by dissolution of the remaining pellet in a Tris 

(Sigma Aldrich, Ireland, Ltd.)/EDTA (VWR International, West Chester, Pennsylvania 
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(USA)) extraction buffer and containing, proteins which were not previously dissolved 

and insoluble cell particulates. 

 

An estimation of the concentration of NaOH present in the untreated and supernatant 

samples was calculated from process data available (as samples were supplied by an 

industrial partner the exact composition of other components was not provided and 

was calculated based on limited data released by the company) and both samples types 

were scanned in triplicate against a background of deionised water and NaOH, at this 

concentration.  The re-dissolved pellet samples were scanned against a background of 

the Tris/EDTA extraction buffer used to dissolve the pellet.  All samples were 

vortexed prior to scanning to ensure homogeneity.       

 

For reference analysis a Bradford assay (Sigma Aldrich Ireland Ltd.) was used to 

quantify the total protein present in the samples.  Assays were performed on all the 

supernatant and re-dissolved pellet samples and the total protein within the untreated 

samples was quantified by summing the results of these.  The recombinant protein was 

determined via SDS-PAGE using precast gels, NuPAGE Novex Bis-Tris Gel 4-12% 

(Invitrogen, Carlsbad, CA, USA).  Again, supernatant and re-dissolved pellet samples 

were used to quantify the recombinant protein present in the untreated samples.    

 

5.2.3  Quantitative model development     

Partial least squares regression (PLS) models were developed to quantify both the total 

protein and the recombinant protein present in the samples.  Untreated in-process 

samples were available from 12 batches and from these 12 samples, the 3 samples 

types were generated as described above.  Samples from 3 of these batches were 
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randomly selected for model validation and the samples from the 9 remaining batches 

were used as the calibration set for the various models.  Four model types were 

generated:  the first model type was developed using all forms of samples, i.e. 

untreated, supernatant and re-dissolved pellet samples; the second, untreated samples 

only; the third, supernatant samples only and the final model type was developed using 

re-dissolved pellet samples only.  Model type 1 therefore had 27 samples for 

development and 9 for validation.  The remaining 3 model types were created using 9 

samples and validated with 3 samples.  Figure 5.1 outlines the experimental design 

employed for total protein model development.  Recombinant protein model 

development followed the same procedure however derivative order, filter width and 

number of latent variables differed.     

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Schematic of experimental design for total protein model development 
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Following the preliminary analysis the usable region of the spectrum was identified to 

be 1700-900cm-1.  Only spectral data lying within this region was selected for model 

development.  All other extraneous data was removed.  This ensured that all models 

were developed based on absorbance data relevant to the protein absorbance area of 

the spectrum and eliminated all other regions which exhibited considerable spectral 

noise and would negatively impact the models.  All spectra were mean centred.  First 

and second derivative pre-treatments, of filter widths 7, 15 and 21 were then applied, 

calculated using Savitzky-Golay filters.23  These pre-treatments were selected as they 

can eliminate the effect of linear baseline off-sets and smooth noisy spectra.24  Results 

tables indicate whether first or second order derivatives were used, in addition to 

specifying the filter width.  These are denoted by XderY, where X is the Savitzky-

Golay Xth derivative pre-treatment and Y, the filter width.  For each of the 4 model 

types, 3 models were developed for both the total protein and recombinant protein 

predictions.  These models varied in the number of latent variables (LV) used and the 

order of the derivative and filter widths of the Savitzky-Golay pre-treatment.   

 

Model efficacy was evaluated in two ways.  The root mean squared error of prediction, 

(RMSEP), was used to assess the models prediction ability using 3 sample batches not 

used in the development of the models.25  Percentage error of prediction (PEP) values 

were calculated in order to put the RMSEP values in perspective.  The PEP was 

calculated by dividing the RMSEP by the average total or recombinant protein 

concentration in the 3 test samples.  Using a calibration or training set to develop a 

model, followed by the use of a completely independent validation set to test the 

model is a procedure typically used and widely applied in the field of chemometrics.  

However this methodology comes with a caveat that should be duly noted, that is, the 
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impact of the size of the calibration and validation sets on the overall model results.  

Where possible, calibration sets should  be large enough to contain all possible forms 

of variation within the samples to ensure the model accounts for all scenarios, both 

expected and unexpected.  The validation set should be capable of unearthing any 

model weaknesses, and should prove a difficult test of the model.  Due to limitations in 

sample availability this is not always feasible.  Kramer acknowledges this and suggests 

that in such circumstances other tests, such as cross validation, be employed as a 

means of evaluating model accuracy.22  As this study was limited by the number of 

samples available for training and validation set compilation, all results were also 

evaluated based on the root mean squared error of cross-validation (RMSECV) and for 

model types 2, 3 and 4, where it was possible to associate a percentage value, the 

percentage error of cross validation (PECV) was also calculated.  ‘Leave-one-out’ 

cross validation was the selected cross validation technique and was used in the 

development of all models generated.  This method is widely used where small sample 

sets are in use.  This procedure removed one sample from the calibration set, 

developed a PLS model from the remaining samples, and then applied this model to 

the removed sample to predict the concentration.  Each sample in turn was removed 

and its concentration predicted.  A prediction error for each of the samples was 

calculated and the RMSECV was determined by combining these errors to generate a 

standard error.   

 

5.2.4  Detergent investigation 

A further, exploratory study was carried out to investigate the impact of the addition of 

2 standard, industrially used detergents, detergent A and detergent B, on untreated 
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samples.  As detergent is likely to be introduced at the raw, untreated stage, it was to 

the untreated samples that detergent was added.   

The following samples were scanned and spectra plotted for preliminary examination: 

• Detergent A 

• Detergent B 

• Untreated sample, prior to the addition of any detergent 

• Untreated sample with 3% detergent A 

• Untreated sample with 3% detergent B 

The area of interest was again localised to 1,700 cm-1 – 900 cm-1.   

To 3 aliquots of an untreated sample, concentrations of 0.006%, 1.5% and 3% of 

detergent A were added respectively.  Similarly, concentrations of 0.3%, 1.5% and 3% 

of detergent B were added to another 3 aliquots of the same untreated sample.  The 

selected concentrations were based on recommended range of use for each of the 

detergents.26  All 6 samples were scanned in triplicate and the mean of each spectrum 

obtained.  A qualitative analysis was carried out by performing a PCA.  In addition to 

these 6 spectra collected, 2 spectra, one of each detergent, and six spectra, of untreated 

samples without any detergent present, were added to the data set.  Pre-treatments used 

in advance of the PCA were mean centering with SNV and mean centering with 

normalisation. 

 

5.3  Results and discussion 

5.3.1  Preliminary analysis 

The MIR region is considered to lie between 4000-400 cm-1.  The ATR crystal of the 

probe used in this study absorbs over the range 2250-1950 cm-1, therefore creating an 

instrument ‘blind spot’.  At regions of the spectrum above 2250 cm-1 and below 900 
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cm-1 spectra exhibited considerable noise and were deemed unusable.  Spectra 

immediately adjacent to the lower end of the ‘blind spot’ were also noisy.  This 

effectively reduced the usable wavenumber range to 1700-900 cm-1.  Figure 5.2 shows 

the absorbance, of all 6 proteins investigated, over this region.   

 

 

 

 

 

 

 

 

 

 

Fig. 5.2  Usable MIR spectral region for protein absorbance 
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were evident at these locations on the spectrum, highlighting the difficulties 

encountered when attempting to characterise proteins using MIR.  Although each 
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however these peaks did not entirely overlap at the same point.  Pepsin and the 

recombinant protein reached a maximum at 1076 cm-1, amylase at 1053 cm-1 and 

lipase at 1080 cm-1, while BSA and HSA did not exhibit any peaks at all.  This 

observation supported the notion that it was possible to adequately distinguish between 

all six proteins and a PCA was carried out to determine this.  Figure 5.3 shows the 

optimum PCA, where separation of differing proteins, and clustering of the same 

protein, but varying concentrations, occurred.   

 

 

 

 

 

 

 

 

 

 

Fig. 5.3  Scores plot of 5 common proteins and the recombinant protein of interest 

 

The spectral data used for this PCA underwent mean centering and SNV pre-

treatments before completing the analysis.  Other pre-treatments were also investigated 

such as first and second derivatives however mean centering combined with SNV was 

found to be the most effective.  This preliminary study enabled identification of the 
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of MIR to distinguish between differing proteins, supporting the development of PLS 

calibration models for total and recombinant protein quantification.    

 

5.3.2  Quantitative model development     

For each model developed for model type 1, the RMSECV values for untreated, 

supernatant and re-dissolved pellet samples were the same.  This is because the 

RMSECV is based on the cross validation model error and not a predictive error.  

Therefore it was the same 3 models that were developed and applied to all 3 sample 

types.  Also, it was not possible to calculate a PECV for model type 1 as the actual 

differences in the concentration ranges of all 3 sample types were not comparable and 

so would not provide rational PECV results.  In the case of predictive errors, PEP was 

calculated.  Here a validation set containing all 3 sample types was used and the 

models applied.  Each prediction was therefore associated with a sample type and 

hence a specific RMSEP for each sample type could be calculated and in addition, a 

PEP.  This procedure was applied to both total and recombinant protein evaluations. 

 

Models 2, 3 and 4 were each developed for a specific sample type and as such should 

have a greater degree of accuracy than model type 1 when applied to their associated 

sample types.  This is evident by comparison between Table 5.1 and Table 5.2, which 

outline the total protein cross validation and prediction errors.  Lowest predictive 

errors for model type 1 of the untreated and supernatant models were 10.4% and 

40.23% respectively which remained above the highest predictive errors for the 

specific untreated (model type 2) and supernatant (model type 3) models of 6.97% and 

8.7%.  This trend was also observed for RMSECV values where the lowest RMSECV 

for model type 1 of 3.2961 g/L was greater than the highest RMSECV values for 
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model types 2 and 3, of 2.7282 g/L and 1.1091 g/L respectively.  A direct comparison 

between re-dissolved pellet RMSECV and RMSEP values shows that model type 4, 

which was specific to the re-dissolved pellet samples, did not always perform better 

than model type 1, however the lowest RMSECV and RMSEP values in all cases 

resulted from models generated from specific sample types i.e. model types 2, 3 and 4. 

 

TABLE 5.1  Total protein errors for Model Type 1 

 

Sample Type Model 
RMSECV 

(g/L) 

RMSEP 

(g/L) 

PEP 

(%) 

1der15_12LV 3.2961 2.8855 18.80 

2der15_4LV 4.3027 2.0649 13.46 Untreated 

2der15_12LV 4.6434 1.5955 10.40 

1der15_12LV 3.2961 1.1224 46.31 

2der15_4LV 4.3027 0.9751 40.23 Supernatant 

2der15_12LV 4.6434 1.3059 53.89 

1der15_12LV 3.2961 0.6368 5.29 

2der15_4LV 4.3027 1.6662 13.85 
Re-dissolved 

Pellet 

2der15_12LV 4.6434 0.4591 3.81 
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TABLE 5.2  Total protein errors for Model Types 2, 3 & 4 

 

Model 

Type 
Sample Type Model 

RMSECV 

(g/L) 

PECV 

(%) 

RMSEP 

(g/L) 

PEP 

(%) 

1der15_6LV 2.0902 13.81 1.0701 6.97 

1der15_4LV 2.0922 13.83 1.0391 6.77 

Model 

Type 2 
Untreated 

2der15_4LV 2.7282 18.03 0.7633 4.97 

1der15_6LV 1.1091 35.96 0.1127 3.69 

2der15_2LV 0.5747 18.63 0.2213 7.24 
Model 

Type 3 
Supernatant 

2der15_6LV 0.7507 24.34 0.2651 8.67 

1der15_6LV 2.9132 25.56 0.2795 2.39 

2der15_6LV 3.8104 33.44 0.4757 4.07 
Model 

Type 4 

Re-dissolved 

Pellet 

2der7_7LV 4.0431 35.48 0.6915 5.91 

 

 

 

Direct comparison of Table 5.1 and Table 5.2 shows that despite the evaluation 

method applied; RMSECV or RMSEP, model type 1 did not attain the same level of 

accuracy as model types 2, 3 and 4.  Therefore, although the training sets for model 

types 2, 3 and 4 were one third the size of that used for model type one, the specificity 

of the samples used created more accurate models.  However this does not infer that 

increased accuracy results in more robust models, and it is imperative that variation be 
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built into all models to protect against the occurrence of outliers which could cause the 

model to fail.22  Although not possible in this feasibility study due to limitations in 

sample availability, the training set should be large enough to represent all components 

present at a number of concentration levels, ranging from the minimum to the 

maximum concentrations likely to be encountered, if the calibration is to be applied to, 

and trusted in, the monitoring of a bioprocess.    

 

Recombinant protein errors, shown in Table 5.3 and Table 5.4, followed a similar 

trend to those of the total protein, in that the highest errors for the specific model types 

(model types 2, 3 and 4) were all considerably lower than the lowest errors of the 

general model type 1.  This was true of both the RMSECV and RESEP values and in 

this instance, there were no exceptions. 
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TABLE 5.3  Recombinant Protein errors for Model Type 1 

Sample Type Model 
RMSECV 

(g/L) 

RMSEP 

(g/L) 

PEP 

(%) 

1der15_7LV 0.1975 0.1035 17.30 

2der15_4LV 0.2796 0.1167 19.50 Untreated 

2der7_7LV 0.2400 0.1724 28.80 

1der15_7LV 0.1975 0.1943 68.60 

2der15_4LV 0.2796 0.1809 63.89 Supernatant 

2der7_7LV 0.2400 0.1098 38.77 

1der15_7LV 0.1975 0.0905 26.23 

2der15_4LV 0.2796 0.0979 28.38 
Re-dissolved 

Pellet 

2der7_7LV 0.2400 0.0551 15.98 
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TABLE 5.4  Recombinant Protein errors for Model Types 2, 3 & 4 

Model 

Type 
Sample Type Model 

RESECV 

(g/L) 

PECV 

(%) 

RMSEP 

(g/L) 

PEP 

(%) 

1der15_4LV 0.0967 14.96 0.0754 12.59 

2der15_4LV 0.0890 13.76 0.0848 14.17 
Model 

Type 2 
Untreated 

2der7_4LV 0.1210 18.72 0.0908 15.18 

1der15_4LV 0.1205 42.41 0.0330 11.66 

2der15_5LV 0.0874 30.75 0.0189 6.66 
Model 

Type 3 
Supernatant 

2der21_4LV 0.1082 38.09 0.0253 8.94 

1der15_7LV 0.0898 23.43 0.0519 15.06 

1der15_3LV 0.0673 17.57 0.0489 14.19 
Model 

Type 4 

Re-dissolved 

Pellet 

2der15_7LV 0.0586 15.29 0.0424 12.30 

 

Considering both the total and recombinant protein predictive errors for model types 2, 

3 and 4, in Table 5.2 and Table 5.4, it was the untreated model type 2 that resulted in 

the greatest errors in both cases.  This was expected as the untreated samples contained 

a large degree of particulates, including un-dissolved proteins, thus making the 

measurement of these samples and accuracy of the model predictions, more difficult 

and unreliable.  However it should be noted that the cross-validation errors did not 

follow this trend.   

 

Cross-validation errors of total and recombinant protein were comparable and results 

did not favour greater accuracy in the prediction of total protein over recombinant 



  Chapter 5  

 141 
 

protein, or vice versa.  Untreated and supernatant prediction errors however, were 

greater for recombinant protein than those of total protein by a factor of 2, and re-

dissolved pellet errors increased by a factor of 6 for recombinant protein.  The 

concentration of recombinant protein present in each sample was an order of 

magnitude lower than the total protein concentration and therefore more difficult to 

accurately detect.  Also, off-line results for recombinant protein, quantified via SDS-

Page analysis, exhibited a higher variance (6.1-11.3%) than those for total protein 

(3.8%) quantified via Bradford assay.  Increased variance present in the y-data of the 

training set most likely further impacted the accuracy of the recombinant protein 

models.       

 

The trends exhibited by the predictive errors were typical given the constitution of 

each sample type and the concentration of total and recombinant proteins present in the 

samples.  These trends were not exhibited in the RMSECV values however and this 

discrepancy highlights the issues encountered when choosing the optimum technique 

to evaluate all models.  Correct selection involves striking a balance between 

independent validation samples and sufficiently large sample number so as not to 

excessively skew results. 

 

5.3.3 Techniques for model evaluation 

The lowest RMSECV and lowest RMSEP for all model types did not always result 

from the same model i.e. the optimum model for each model type varied depending on 

the method of evaluation.  This result again highlighted the importance in accurately 

assessing the predictive capabilities of the model.  Ideally a validation set used to test a 

model should have as many samples, if not more samples, than the training set used to 
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create it.22  However this is seldom the case and an astute assessment of the given 

scenario is necessary.  This study outlined two possible ways of evaluating the 

predictive ability of a model.  As previously mentioned, the preferred technique is the 

application of an independent validation set to test the models accuracy and 

robustness.  This is considered a more rigorous test of the models capabilities and 

results in the calculation of an RMSEP value.  However, where calibration and 

validation sets are limited in sample number this is not necessarily the best method.  In 

such sample sets, one sample can exert undue weight, either favourably or not, leading 

to a conclusion on the predictive capacity of a model that is not wholly accurate.  The 

second method used to evaluate the models capabilities was examining the RMSECV.  

This test is considered to be less demanding on the model as each of the samples used 

to cross validate the model were used in the development of the model and so this 

technique is not entirely independent. 

 

5.3.4  Detergent investigation 

Figure 5.4 outlines the wavenumbers at which detergents A and B and also the 

untreated sample absorbed.  Both detergents exhibited clear and distinct peaks.  It was 

not possible to identify the spectrum of the untreated sample as spectra of samples 

containing untreated sample and detergent masked its presence.  These initial 

observations indicated that models used for the prediction of protein from untreated 

culture broth were likely to be impacted by the addition of detergent to the culture.  
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Fig. 5.4  Spectra of untreated samples, detergents A & B and untreated samples 

spiked with detergents A & B 

 

The scores plot shown in figure 5.5 was generated by performing a PCA using mean 

centering and SNV as data pre-treatment methods.  The PCA indicated that both 

detergents A and B in their pure form, were clearly distinguishable from untreated 

samples.  Samples containing 3 differing concentrations of detergent A separated from 

samples which were not spiked with any detergent, however only the sample with the 

highest concentration of detergent B separated from non-spiked samples, with the 

lower 2 concentrations clustering with these samples.     
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Fig. 5.5  Scores plot of untreated samples; detergents A & B; untreated samples 

spiked with detergents A & B 

 

This preliminary investigation highlighted the potential impact the addition of 

detergent may have on the quantitative protein prediction models.  Separate models 

should be developed for protein prediction depending on whether detergent is present 

or not.  Where detergent is present, the range of its concentration should be 

incorporated into the model to include sample variation.  The protein concentration 

range of each model should also be considered.   Reference samples analysed showed 

that after the addition of detergent A, the concentration of the protein remained the 

same as before. Addition of detergent B to the untreated samples resulted in 

solubilisation of the protein and an increase of up to 4 times the original protein 

concentration in the supernatant samples.  Therefore models constructed for use in the 

presence of detergents that facilitate solubilisation should include a higher upper limit 

concentration to account for increased quantities of soluble protein in the sample.    
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5.4  Conclusion 

This exploratory study indicated that it was possible to qualitatively and quantitatively 

measure total and recombinant protein present in in-process recovery samples using an 

in-situ MIR immersion probe.  This study highlighted the potential of MIR as an 

online monitoring technique for the production of a recombinant protein in a 

bioprocess.    

 

A preliminary PCA indicated that despite the clear overlapping peaks at particular 

wavenumbers, it was possible to distinguish between the 6 proteins selected for this 

study.  It has previously been reported that MIR can be used in the characterisation of 

protein structures however little work has been undertaken in this area using in-situ 

MIR immersion probes.  The specificity of the instrument and its application in a 

particular environment have been shown to have a large bearing on whether or not a 

technique may be deemed acceptable.  Initial analysis in this study indicated MIR has 

potential as a qualitative analysis tool; when applied to protein solutions the technique 

was capable of distinguishing between varying clusters of proteins. 

 

Four model types were identified based on the samples available.  PLS models were 

used to predict the total and recombinant protein present in 9 validation samples in the 

case of model type 1 and 3 validation samples for model types 2, 3 and 4.  Model type 

1 was the least accurate for both total and recombinant protein prediction with highest 

predictive errors in the supernatant samples at 53.89% and 68.60% respectively.  The 

calibration set used for model type 1 was a combined set consisting of all sample 

types.  Although it is recommended that variation be introduced into all models to 

account for atypical scenarios, the samples used to generate model type 1 differed 
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considerably and failed to enhance the robustness of the models.  Results for specific 

models 2, 3 and 4 were consistently more accurate for both total and recombinant 

protein prediction.  Given the limited number of available samples it was not possible 

to develop a thorough model capable of precise predictions while being easily able to 

identify outliers.  Kramer’s “rule of 3” was employed here,22 which he states should 

only be used when completing “preliminary or exploratory work”.  However the 

methodology applied did provide a proof of concept, highlighting the potential of an 

MIR immersion probe in online protein monitoring. 

 

Due to the limited calibration set number, this study also resulted in a comparison of 

model evaluation techniques.  The cross-validation and prediction errors were 

calculated, with cross-validation errors indicating a higher degree of model inaccuracy.  

However, major trends outlined by one method were also reflected in the other; in the 

case of total and recombinant protein prediction, both cross-validation and application 

of an independent validation set indicated that models predicting total protein were 

more accurate, and when comparing the accuracy of model type 1 compared to that of 

the specific models, both techniques favoured the specific sample type models despite 

the lower sample number used in the calibration set.   

 

The detergent investigation study provided insight into the necessary requirements for 

further model development, when detergent is present in the process.  Results for both 

detergents tested indicated that at typically used concentrations, the protein predictions 

would be impacted by their presence and so conclude that further model development 

should account for detergent used in the process.   
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Chapter 6:  Conclusions and Recommendations 

This thesis investigated the use of Fourier Transform Infrared (FT-IR) spectroscopy, in 

the form of an in-situ MIR ATR probe, to determine the potential of this method as a 

PAT tool.  The 3 studies presented provided a detailed account of the capabilities of 

the technique, outlining both the strengths and limitations of this application.  The 

entire work evaluated the use of this technique at varying process steps.  This was 

achieved in 3 studies, which examined its applicability and performance in upstream 

cell cultivation and also, downstream primary recovery.  Initial studies focused on the 

use of in-situ MIR for monitoring of analytes and metabolites present in the 

bioprocess, while the latter study investigated the possibility of using the technique for 

protein quantification.  Results indicated that MIR is deserving of its place in the PAT 

tool kit.  Its capabilities lie both in qualitative and quantitative analysis.  

 

6.1  Study 1:  Potential of Mid-infrared spectroscopy for on-line monitoring of 

mammalian cell culture medium components 

This initial study developed a methodology for evaluating the potential of MIR, for 

monitoring cell cultures medium components.  The comparative probe investigation 

allowed for the identification of the optimum sampling accessory for this given 

application, which was then used in further studies.  The fixed conduit immersion 

probe was found to be more reliable, with fibre-optic probe issues owing 

predominately to the ‘sample to crystal’ interface area.  The design of the interface 

area resulted in frequent bubble entrapment, which consequently impacted results.   

The spectral characterisation study completed identified the main areas of absorbance 

for each of the 8 components under investigation, and provided an indication of the 

areas of interest on the spectrum.  The limit of detection (LOD) analysis highlighted at 
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an early stage, components that were not likely to be detected when the instrument was 

applied in-situ in a bioreactor.  The concentrations of some components, e.g. glutamine 

and glutamate, in a cell culture medium, fell below the LOD.  At this point therefore, 

the preliminary analysis facilitated the identification of components likely to be 

detected on-line and those that were not likely to be detected.  Also, the LOD for a 

given component in a multicomponent mixture was found to be significantly higher 

that of the same component in a single component solution.  It can be concluded that 

the multivariate LOD analysis presented in this study outlines a novel methodology for 

initial evaluation of the technique for a given purpose.   

 

The calibration models developed in this study indicated the applicability of the 

technique in monitoring certain components such as glucose, ammonia and lactate, 

while also highlighting the limitations encountered when the technique is applied to 

media components that are at much lower concentration levels.  It should be noted that 

the accuracy of the prediction ability of a model is very much dependent on the sample 

set size and the concentration level of each of the components present.  This was 

further investigated in study 2.     

 

Finally, the external influence investigation performed provided a novel method for 

pre-empting possible interferences the instrument, and hence the models, would 

encounter when applied on-line.  This allows for understanding and mitigation of 

possible influences, but cannot completely eliminate these prior to on-line application.    
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6.2  Study 2:  Application and optimisation of in-situ MIR calibration models for 

the prediction of glucose and lactate in mammalian cell cultures 

This second study evaluated the application of MIR spectroscopy to the upstream 

processing of a CHO DP12 cell line, for the purpose of monitoring glucose and lactate 

concentrations during the cultivation.  The fixed conduit FTIR immersion probe 

identified in study 1, as the optimum probe for bioprocess monitoring was selected and 

calibration models for glucose and lactate, developed using synthetic samples, were 

applied on-line and at-line.  Both on-line and at-line trends reflected the expected 

trends, and those of the reference analysis, that being the depletion of glucose and the 

increase in lactate.  However, as observed in study 1, when concentration values fell 

below the LOD, results became unreliable.  This was evident in the glucose results of 

all 3 cultures, from day 4, when the glucose concentration fell below the LOD.  

Therefore application of this system may only be considered practicable where the 

concentration of these components remains above the LOD.  Despite the observed 

trending, the prediction errors were considerably large for the in-situ application.  At-

line detection proved more accurate, and presented a viable alternative to on-line 

detection, however, at-line detection is not without its complications and further 

optimisation of the models was investigated.   

 

The optimisation study resulted in the development of a number of hybrid models.  

These models were generated using training sets of spectroscopic data collected from 

synthetic samples, at-line samples and on-line samples.  Where at-line spectroscopic 

data was used in the calibration set, models consistently performed better.  It can 

therefore be concluded that although synthetic samples simulate the composition of the 

culture medium, the addition of spectra collected from “real” culture samples fortifies 
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the models as it accounts for minor unknowns that could impact the spectra, but are not 

accounted for in synthetic samples. 

 

The addition of spectra collected in-situ to the calibration set provided interesting 

results.  In the case of glucose, predictions did not improve.  As previously stated, in-

situ glucose results were not entirely reliable.  When these spectra were used to 

increase the calibration set, they only served to enhance noise and inaccuracies, and 

did not increase the robustness of the models.  This is an important result.  It highlights 

that it is not the quantity of the spectra in a calibration set that will always strengthen 

the model, but also the quality of the spectra.  Should spectra of an inferior quality be 

used in the creation of a model, the accuracy of the model may be compromised.  In 

the case of lactate, all hybrid models were an improvement on the original model, 

however unlike glucose, lactate did not exhibit erratic predictions.   

 

From this study it can be concluded that this technique can be applied in-situ for 

monitoring and potentially control purposes.  Accuracy of calibration models can be 

improved by addition of spectra of actual culture samples; however it is imperative 

that care is taken when choosing spectra to ensure they are of good and reliable 

quality.   

 

6.3  Study 3:  The use of Mid-infrared spectroscopy as an on-line PAT tool in total 

and recombinant protein monitoring 

This final study investigated the potential of MIR spectroscopy in detecting and 

quantifying total and recombinant protein during primary recovery.  A spectral 

characterisation of 5 standard proteins and the recombinant protein of interest was 
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initially performed.  This allowed the region of interest to be identified and clearly 

highlighted the amide I and amide II bands, located at ~1650 cm-1 and ~1550 cm-1 

respectively, which are of great significance when MIR is used for protein 

characterisation.  A PCA was performed on varying concentrations of the 6 proteins.  

This showed that the instrument in question was capable of distinguishing between 

differing proteins, and as a preliminary step, supported the development of PLS 

models suggesting potential for quantifying the recombinant protein of interest.     

 

Using in-process samples, 3 sample types were available; untreated, supernatant and 

re-dissolved pellet samples.  Based on these, four model types were identified; the 

first, using a training set consisting of spectra from all 3 sample types, while each of 

the remaining 3 models types used training sets corresponding to one of the 3 sample 

types.   

 

Model type 1 was the least accurate for both total and recombinant protein prediction 

with highest predictive errors in the supernatant samples at 53.89% and 68.60% 

respectively.  Specific model types 2, 3 and 4 were consistently more accurate for both 

total and recombinant protein prediction.  It may therefore be concluded that varying 

sample type did not enhance model robustness, but actually served to destabilise the 

model.   

 

This study also showed that although both total and recombinant protein could be 

detected and quantified, models developed for total protein prediction exhibited greater 

accuracy than those for recombinant protein.  
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Due to the limited number of samples available and hence the calibration set size, this 

study outlined the potential of MIR when applied on-line for protein detection.  Also 

as a result of the sample set size, this work presented 2 possible methods of evaluating 

the results, RMSECV and RMSEP.  Both methods produced varying results; however 

the trends observed were identifiable using either method.    

 

Finally, the detergent investigation study provided insight into the necessary 

requirements for further model development, when detergent is present in the process.  

It can be concluded that at typically used detergent concentrations, protein predictions 

would be affected, hence further model development should be used by their presence 

and so conclude that further model development should account for detergent used in 

the process.  

 

6.4  The role of chemometrics and pre-treatments 

This work investigated the potential of MIR spectroscopy as a PAT tool in the 

monitoring of bioprocesses.  However in order realise its full potential and harness its 

capabilities, the importance of chemometrics and spectroscopic pre-treatments must be 

understood.  It is only through the use of chemometric techniques such as PCA and 

PLS can the information obtained via MIR be translated into a usable form.   

 

All 3 studies indicate the importance of careful selection of pre-treatments and number 

of latent variables or principal components.  For PLS models developed in all 3 

studies, the pre-treatments of choice were mean-centering followed by first or second 

derivative application.  These pre-treatments   eliminate the effect of linear baseline 
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off-sets and smooth noisy spectra.  For this instrument and this application, these were 

found to be most effective.   

 

For the PCA completed in study 3, the optimum pre-treatments were mean-centering 

with standard normal variate (SNV).  SNV is a normalisation type of pre-treatment.  

The qualitative information that distinguishes one sample from another is retained but 

information that separates two samples of identical composition, but different 

concentration, is removed.  Therefore this is more applicable for this use. 

 

6.5  Overall conclusions 

The 3 studies presented in this thesis outline the possible applications of MIR when 

used as a PAT tool.  The technique has definite potential in an on-line capacity, where 

continuous real-time monitoring is required.  However limitations do exist, one major 

one of which is the low concentrations of the components it is monitoring.  

Identification of the LOD of a component is imperative to determine if the technique is 

a viable option.  Integration into a control system should only be considered when the 

typical concentrations of components to be monitored are significantly greater than the 

LOD. 

 

Model stability should also be evaluated.  Careful selection of an appropriate training 

set is paramount, along with identification of a validation set that rigorously tests the 

model.  As outlined in study 2, combining synthetic and real culture samples reinforces 

the model, provided the spectra used are of good quality.   
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In terms of a PAT tool, on-line MIR has much to offer.  It is rapid, non-invasive and 

relatively easy to calibrate.  However this technique, when applied to bioprocessing is 

not quite yet “industry ready”.  Industry requires a simple, easy to use, robust 

instrument that is in effect, ready to “plug and play”.  Although MIR has far reaching 

capabilities, they require further development if the technique is to be applied on a 

large scale across the biotechnology sector.  Nevertheless, a little development may go 

a very long way in securing its place as one of the analytical tools of choice going 

forward.          
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Appendix I – MatLab Codes 

 

%% Routine for online monitoring of media components 
 
%% This programme uses command line functions from Eigenvector PLS 
toolbox  
  
% Siobhán Hennessy & Róisín Foley, LiB, School of B iotechnology, DCU  
  
  
%% 
go = 0;  
count = 0; % Global counter which increases by 1 on each itera tion  
tic  
%% Import component quatification model  
load comp_model_data  
  
  
while  go==0 %Starts a loop to begin programme  
     
start_time = toc; % Loop start time  
count = count + 1; % Update counter  
time(count) = toc / 3600; % Time stamp  
%Insert the directory where spectral files are bein g imported  
dirlist=dir( 'C:\Documents and Settings\LiB\My 
Documents\MATLAB\online\*.spc' );  
dirsize = length(dirlist);  
  
if  dirsize>0 %Statement to put spectral files in chronological o rder  
     
    for  i = 1 : dirsize  
        filedates(i) = dirlist(i).datenum;  
    end  
%Ensure the most recent spectrum is used     
lastfiledate = max(filedates);  
lastfileindex = findindx(filedates,lastfiledate); %Finds the index of 
the array element closest to chosen value  
  
filename = [ 'C:\Documents and Settings\LiB\My 
Documents\MATLAB\online\' ,  dirlist(lastfileindex).name];  % This 
should be the same directory as above  
  
s=spcreadr(filename); %Calls plstoolbox function spcreadr to import 
.spc spectral file  
wavenumber=s.axisscale{2}'; %assigned wavenumber data to the variable 
wavenumber  
spectrum=s.data; %assigned spectral data to the variable spectrum  
  
%%sanity check 1 %%  
% Test to see if spectra are of good quality - if a bsorbance value at 
this  
% point is greater than 0.5 it is likely that the M IR instrument has 
run  
% out of liquid nitrogen  
if  spectrum(909)>0.5  
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    %% start again  
    pause(300)  
    continue  
else  
  
 
% Defines regions of the spectrum for each componen t  
gluc=[950 1450]; glne=[950 1700];amm=[950 1500]; ph os=[900 
1320];glte=[900 1760]; lact=[1000 1620];hep=[1000 1 250]; bicarb=[960 
1750];  
wavenumrange = struct( 'regions' , {gluc,glne, amm, phos, glte, lact, 
hep, bicarb});  
j=length(wavenumrange);  
  
for   k= 1 : j %%SH for i=1:number of components  
       T(k).ex = [];  
        %wnrange(i).regions = [950 1500]; % Override mechan ism  
         %% SH sets up an empty matrix for field S. calib  
for  r = length(wavenumrange(k).regions)/2 : -1 : 1  
        wavenumrange(k).downlimit(r) = 
max(lamsel(wavenumber,[wavenumber(1)  wavenumrange( k).regions(r*2-
1)],0));  
        wavenumrange(k).uplimit(r) = 
min(lamsel(wavenumber,[wavenumrange(k).regions(r*2)  
wavenumber(length(wavenumber))],0));  
         
        T(k).ex = [T(k).ex 
spectrum(:,wavenumrange(k).uplimit(r):wavenumrange( k).downlimit(r))];  
    end  
T(k).ex;  
end  
  
x_glucose=T(1).ex;  
x_lactate=T(2).ex;  
  
% x_ammonia=T(3).ex;  
% x_phosphate=T(4).ex;  
% x_glutamate=T(5).ex;  
% x_glutamine=T(6).ex;  
% x_HEPES=T(7).ex;  
% x_Bicarb=T(8).ex;  
  
%load gluc_model_data  
  
options.display = 'off' ; options.plots = 'none' ; %Turns off default 
plot options for pls function  
% Defines variable conc which is the concentration predicted by the 
model  
conc1=pls(x_glucose, mc_2der15_4lvs,options);  
glucose_conc(count)=conc1.pred{1,2};  
conc2=pls(x_lactate, mc_2der15_4lvs,options);  
lactate_conc(count)=conc2.pred{1,2};  
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%Series of additional criteria to be met to ensure no spurious 
predictions  
%are recorded i.e. If concentration is greater than  initial media  
%concentration, if concentration is a minus number or if the change 
in  
%concentration is too large to be physically possib ly then the 
program  
%waits for the next spectrum and does not send the concentration 
value to  
%csv file where it could be used as part of a contr ol system. 
 
if  glucose_conc(count)>10  
elseif  glucose_conc(count)<0  
elseif  glucose_conc(count)-glucose_conc(count-1)>abs(0.75 )  
   continue  
else  
timenow=clock;  
csvwrite( 'concentration.csv' ,glucose_conc(count)); %Writes glucose 
concentration to a csv file  
  
if  lactate_conc(count)>10  
elseif  lactate_conc(count)<0  
elseif  lactate_conc(count)-lactate_conc(count-1)>abs(0.75 )  
   continue  
else  
timenow=clock;  
csvwrite( 'concentration.csv' ,lactate_conc(count)); %Writes lactate 
concentration to a csv file  
  
  
elapsed_time = toc - start_time;  
    remaining_time = 300 - elapsed_time; %This figure can be changed 
according to the frequency of spectral collection.  
    %It is currently set for collection every 5 mins  
    disp([ 'Waiting for next measurement... in '  
num2str(remaining_time) ' seconds' ]) %Displays message on screen  
    disp( ' ' )  
    %Records the predicted value for each spectrum in a  text file in  
    %specified directory.  
    dlmwrite( 'C:\Documents and Settings\LiB\My 
Documents\MATLAB\MATLAB\spectra_log.txt' ,[timenow, 
glucose_conc(count),lactate_conc(count)], '-
append' , 'delimiter' , '\t' , 'newline' , 'pc' );  
    pause(remaining_time)  
    if  dirsize==1000 %Programme finished when 1000 spectra have been 
collected. Alternatively press Ctrl+c  
        break ;  
end  
end  
end  
end  
end  
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%% Protein Quantification 
 
filename=uigetfile( '*.xls' ); % gets user to select the excel file 
containing spectral data  
  
  
importfile1(filename); % function to import data from sheet 1 of 
excel file  
  
X=deletecolumn(data,1)'; %deletes the 1st column of the data i.e. the 
column of wavenumbers leaving only the spectral dat a.  
wavenumber=selectcolumn(data,1); %selected the 1st column of data 
i.e. the wavenumbers.  
  
protein=[1200 1910];  
wavenumrange = struct( 'regions' , {protein});  
clear protein  data  data2  colheaders  colheaders2  textdata  textdata2  
filename ;  
  
  
plot(wavenumber, X); %plots the spectra for visual examination  
  
  
  
protein.ex = []; %% SH sets up an empty matrix for field S.calib  
    for  r = length(wavenumrange.regions)/2 : -1 : 1  
        wavenumrange.downlimit(r) = 
max(lamsel(wavenumber,[wavenumber(1) wavenumrange.r egions(r*2-
1)],0));  
        wavenumrange.uplimit(r) = 
min(lamsel(wavenumber,[wavenumrange.regions(r*2) 
wavenumber(length(wavenumber))],0));  
         
protein.ex =  
[protein.ex X(:,wavenumrange.uplimit(r):wavenumrang e.downlimit(r))];  
    end  
x_protein=protein.ex;  
  
figure;  
plot(wavenumrange.uplimit(r):wavenumrange.downlimit (r), x_protein)  
  
clear protein  X and  r  wavenumber  wavenumrange ;  
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%% Import File Function  

 
function  importfile1(fileToRead1)  

%IMPORTFILE(FILETOREAD1) 

%  Imports data from the specified file  

%  FILETOREAD1:  file to read  

 

% Import the file  

sheetName= 'Sheet1' ;  

[numbers, strings] = xlsread(fileToRead1, sheetName );  

if  ~isempty(numbers)  

    newData1.data =  numbers;  

end  

if  ~isempty(strings)  

    newData1.textdata =  strings;  

    newData1.colheaders =  strings;  

end  

  

% Create new variables in the base workspace from t hose fields.  

vars = fieldnames(newData1);  

for  i = 1:length(vars)  

    assignin( 'base' , vars{i}, newData1.(vars{i}));  

end  
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%% Delete Column Function 

       

function  [spec] = deletecolumn(irdata,index)  

irdata(:,index)=[];  

spec=irdata;  

%deletecol - deletes columns of matrices  

% usage: [X]= deletecol(X1,index)  

%The deleted columns are indicated by the vector in dex (numbers of 

booleans)  

 

 

%% Select Column Function 

function  [spec] = selectcolumn(irdata,index)  

spec=irdata(:,index);  

%selectcol - creates a new data matrix with the sel ected columns  

% the resulting file corresponds to the selected co lumns  

% index is a vector of indices (integer) or of bool eans  
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Appendix II – 7-Level & 4-Level design matrices 

 

7-Level Partial Factorial Design (calibration matrix development) 

Difference vector:  {5 3 0 1 4 2} 

Cyclic generator:  -3→ 1→ -1→ 2 → 3 → -2→ -3   

Repeater level: 3 

7-level design Sample no. Glucose Glutamine Ammonia Phosphate Glutamate Lactate HEPES Bicarbonate Buffer

0 1 3 3 3 3 3 3 3 3 11

0 2 3 0 1 2 2 5 4 5 13

-3 3 0 1 2 2 5 4 5 3 13

-2 4 1 2 2 5 4 5 3 4 9

-1 5 2 2 5 4 5 3 4 0 10

-1 6 2 5 4 5 3 4 0 5 7

2 7 5 4 5 3 4 0 5 5 4

1 8 4 5 3 4 0 5 5 6 3

2 9 5 3 4 0 5 5 6 2 5

0 10 3 4 0 5 5 6 2 6 4

1 11 4 0 5 5 6 2 6 3 4

-3 12 0 5 5 6 2 6 3 2 6

2 13 5 5 6 2 6 3 2 4 2

2 14 5 6 2 6 3 2 4 6 1

3 15 6 2 6 3 2 4 6 6 0

-1 16 2 6 3 2 4 6 6 1 5

3 17 6 3 2 4 6 6 1 5 2

0 18 3 2 4 6 6 1 5 1 7

-1 19 2 4 6 6 1 5 1 3 7

1 20 4 6 6 1 5 1 3 5 4

3 21 6 6 1 5 1 3 5 2 6

3 22 6 1 5 1 3 5 2 1 11

-2 23 1 5 1 3 5 2 1 1 16

2 24 5 1 3 5 2 1 1 0 17

-2 25 1 3 5 2 1 1 0 6 16

0 26 3 5 2 1 1 0 6 0 17

2 27 5 2 1 1 0 6 0 3 17

-1 28 2 1 1 0 6 0 3 6 16

-2 29 1 1 0 6 0 3 6 5 13

-2 30 1 0 6 0 3 6 5 0 14

-3 31 0 6 0 3 6 5 0 0 15

3 32 6 0 3 6 5 0 0 4 11

-3 33 0 3 6 5 0 0 4 1 16

0 34 3 6 5 0 0 4 1 4 12

3 35 6 5 0 0 4 1 4 3 12

2 36 5 0 0 4 1 4 3 1 17

-3 37 0 0 4 1 4 3 1 6 16

-3 38 0 4 1 4 3 1 6 4 12

1 39 4 1 4 3 1 6 4 4 8

-2 40 1 4 3 1 6 4 4 2 10

1 41 4 3 1 6 4 4 2 0 11

0 42 3 1 6 4 4 2 0 2 13

-2 43 1 6 4 4 2 0 2 3 13

3 44 6 4 4 2 0 2 3 0 14

1 45 4 4 2 0 2 3 0 1 19

1 46 4 2 0 2 3 0 1 2 21

-1 47 2 0 2 3 0 1 2 2 23

-3 48 0 2 3 0 1 2 2 5 20

-1 49 2 3 0 1 2 2 5 4 16  
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Sample no. Glucose Glutamine Ammonium Sulphate Potassium Phosphate Glutamate Lactate HEPES Bicarbonate

1 3.00 0.30 1.89 0.73 0.35 1.72 2.23 0.63

2 3.00 0.00 0.63 0.49 0.23 2.87 2.97 1.04

3 0.00 0.10 1.26 0.49 0.59 2.30 3.71 0.63

4 1.00 0.20 1.26 1.21 0.47 2.87 2.23 0.83

5 2.00 0.20 3.14 0.97 0.59 1.72 2.97 0.00

6 2.00 0.50 2.51 1.21 0.35 2.30 0.00 1.04

7 5.00 0.40 3.14 0.73 0.47 0.00 3.71 1.04

8 4.00 0.50 1.89 0.97 0.00 2.87 3.71 1.25

9 5.00 0.30 2.51 0.00 0.59 2.87 4.46 0.42

10 3.00 0.40 0.00 1.21 0.59 3.45 1.49 1.25

11 4.00 0.00 3.14 1.21 0.70 1.15 4.46 0.63

12 0.00 0.50 3.14 1.46 0.23 3.45 2.23 0.42

13 5.00 0.50 3.77 0.49 0.70 1.72 1.49 0.83

14 5.00 0.60 1.26 1.46 0.35 1.15 2.97 1.25

15 6.00 0.20 3.77 0.73 0.23 2.30 4.46 1.25

16 2.00 0.60 1.89 0.49 0.47 3.45 4.46 0.21

17 6.00 0.30 1.26 0.97 0.70 3.45 0.74 1.04

18 3.00 0.20 2.51 1.46 0.70 0.57 3.71 0.21

19 2.00 0.40 3.77 1.46 0.12 2.87 0.74 0.63

20 4.00 0.60 3.77 0.24 0.59 0.57 2.23 1.04

21 6.00 0.60 0.63 1.21 0.12 1.72 3.71 0.42

22 6.00 0.10 3.14 0.24 0.35 2.87 1.49 0.21

23 1.00 0.50 0.63 0.73 0.59 1.15 0.74 0.21

24 5.00 0.10 1.89 1.21 0.23 0.57 0.74 0.00

25 1.00 0.30 3.14 0.49 0.12 0.57 0.00 1.25

26 3.00 0.50 1.26 0.24 0.12 0.00 4.46 0.00

27 5.00 0.20 0.63 0.24 0.00 3.45 0.00 0.63

28 2.00 0.10 0.63 0.00 0.70 0.00 2.23 1.25

29 1.00 0.10 0.00 1.46 0.00 1.72 4.46 1.04

30 1.00 0.00 3.77 0.00 0.35 3.45 3.71 0.00

31 0.00 0.60 0.00 0.73 0.70 2.87 0.00 0.00

32 6.00 0.00 1.89 1.46 0.59 0.00 0.00 0.83

33 0.00 0.30 3.77 1.21 0.00 0.00 2.97 0.21

34 3.00 0.60 3.14 0.00 0.00 2.30 0.74 0.83

35 6.00 0.50 0.00 0.00 0.47 0.57 2.97 0.63

36 5.00 0.00 0.00 0.97 0.12 2.30 2.23 0.21

37 0.00 0.00 2.51 0.24 0.47 1.72 0.74 1.25

38 0.00 0.40 0.63 0.97 0.35 0.57 4.46 0.83

39 4.00 0.10 2.51 0.73 0.12 3.45 2.97 0.83

40 1.00 0.40 1.89 0.24 0.70 2.30 2.97 0.42

41 4.00 0.30 0.63 1.46 0.47 2.30 1.49 0.00

42 3.00 0.10 3.77 0.97 0.47 1.15 0.00 0.42

43 1.00 0.60 2.51 0.97 0.23 0.00 1.49 0.63

44 6.00 0.40 2.51 0.49 0.00 1.15 2.23 0.00

45 4.00 0.40 1.26 0.00 0.23 1.72 0.00 0.21

46 4.00 0.20 0.00 0.49 0.35 0.00 0.74 0.42

47 2.00 0.00 1.26 0.73 0.00 0.57 1.49 0.42

48 0.00 0.20 1.89 0.00 0.12 1.15 1.49 1.04

49 2.00 0.30 0.00 0.24 0.23 1.15 3.71 0.83  
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Sample no. Glucose Glutamine Ammonia Phosphate Glutamate Lactate HEPES Bicarbonate

1 3.00 0.30 0.52 0.51 0.35 0.50 2.23 0.62

2 3.00 0.00 0.17 0.34 0.23 0.83 2.97 1.04

3 0.00 0.10 0.34 0.34 0.59 0.66 3.71 0.62

4 1.00 0.20 0.34 0.85 0.47 0.83 2.23 0.83

5 2.00 0.20 0.86 0.68 0.59 0.50 2.97 0.00

6 2.00 0.50 0.69 0.85 0.35 0.66 0.00 1.04

7 5.00 0.40 0.86 0.51 0.47 0.00 3.71 1.04

8 4.00 0.50 0.52 0.68 0.00 0.83 3.71 1.25

9 5.00 0.30 0.69 0.00 0.59 0.83 4.46 0.42

10 3.00 0.40 0.00 0.85 0.59 1.00 1.49 1.25

11 4.00 0.00 0.86 0.85 0.70 0.33 4.46 0.62

12 0.00 0.50 0.86 1.02 0.23 1.00 2.23 0.42

13 5.00 0.50 1.03 0.34 0.70 0.50 1.49 0.83

14 5.00 0.60 0.34 1.02 0.35 0.33 2.97 1.25

15 6.00 0.20 1.03 0.51 0.23 0.66 4.46 1.25

16 2.00 0.60 0.52 0.34 0.47 1.00 4.46 0.21

17 6.00 0.30 0.34 0.68 0.70 1.00 0.74 1.04

18 3.00 0.20 0.69 1.02 0.70 0.17 3.71 0.21

19 2.00 0.40 1.03 1.02 0.12 0.83 0.74 0.62

20 4.00 0.60 1.03 0.17 0.59 0.17 2.23 1.04

21 6.00 0.60 0.17 0.85 0.12 0.50 3.71 0.42

22 6.00 0.10 0.86 0.17 0.35 0.83 1.49 0.21

23 1.00 0.50 0.17 0.51 0.59 0.33 0.74 0.21

24 5.00 0.10 0.52 0.85 0.23 0.17 0.74 0.00

25 1.00 0.30 0.86 0.34 0.12 0.17 0.00 1.25

26 3.00 0.50 0.34 0.17 0.12 0.00 4.46 0.00

27 5.00 0.20 0.17 0.17 0.00 1.00 0.00 0.62

28 2.00 0.10 0.17 0.00 0.70 0.00 2.23 1.25

29 1.00 0.10 0.00 1.02 0.00 0.50 4.46 1.04

30 1.00 0.00 1.03 0.00 0.35 1.00 3.71 0.00

31 0.00 0.60 0.00 0.51 0.70 0.83 0.00 0.00

32 6.00 0.00 0.52 1.02 0.59 0.00 0.00 0.83

33 0.00 0.30 1.03 0.85 0.00 0.00 2.97 0.21

34 3.00 0.60 0.86 0.00 0.00 0.66 0.74 0.83

35 6.00 0.50 0.00 0.00 0.47 0.17 2.97 0.62

36 5.00 0.00 0.00 0.68 0.12 0.66 2.23 0.21

37 0.00 0.00 0.69 0.17 0.47 0.50 0.74 1.25

38 0.00 0.40 0.17 0.68 0.35 0.17 4.46 0.83

39 4.00 0.10 0.69 0.51 0.12 1.00 2.97 0.83

40 1.00 0.40 0.52 0.17 0.70 0.66 2.97 0.42

41 4.00 0.30 0.17 1.02 0.47 0.66 1.49 0.00

42 3.00 0.10 1.03 0.68 0.47 0.33 0.00 0.42

43 1.00 0.60 0.69 0.68 0.23 0.00 1.49 0.62

44 6.00 0.40 0.69 0.34 0.00 0.33 2.23 0.00

45 4.00 0.40 0.34 0.00 0.23 0.50 0.00 0.21

46 4.00 0.20 0.00 0.34 0.35 0.00 0.74 0.42

47 2.00 0.00 0.34 0.51 0.00 0.17 1.49 0.42

48 0.00 0.20 0.52 0.00 0.12 0.33 1.49 1.04

49 2.00 0.30 0.00 0.17 0.23 0.33 3.71 0.83  
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4-Level Partial Factorial Design (validation matrix development) 

Difference vector:  {0 2 1} 

Cyclic generator:  -1→ 1→ 2 → 1  

Repeater level: 2 

 

Units added to each sample 
 
4-level design Sample No. Glucose Glutamine Ammonia Phosphate Glutamate Lactate HEPES Bicarbonate Buffer

-2 1 0 0 0 0 0 0 0 0 25

-2 2 0 1 1 4 1 0 3 3 12

-1 3 1 1 4 1 0 3 3 1 11

-1 4 1 4 1 0 3 3 1 3 9

2 5 4 1 0 3 3 1 3 0 10

-1 6 1 0 3 3 1 3 0 4 10

-2 7 0 3 3 1 3 0 4 4 7

1 8 3 3 1 3 0 4 4 3 4

1 9 3 1 3 0 4 4 3 4 3

-1 10 1 3 0 4 4 3 4 0 6

1 11 3 0 4 4 3 4 0 1 6

-2 12 0 4 4 3 4 0 1 1 8

2 13 4 4 3 4 0 1 1 4 4

2 14 4 3 4 0 1 1 4 1 7

1 15 3 4 0 1 1 4 1 0 11

2 16 4 0 1 1 4 1 0 3 11  
 

 

 
Concentration of each compound added to each sample  
 
Sample No. Glucose Glutamine Ammonium Sulphate Potassium Phosphate Glutamate Calcuim Lactate HEPES Bicarbonate

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.15 0.92 1.46 0.16 0.00 3.39 0.94

3 1.52 0.15 3.68 0.36 0.00 2.62 3.39 0.31

4 1.52 0.60 0.92 0.00 0.49 2.62 1.13 0.94

5 6.08 0.15 0.00 1.09 0.49 0.87 3.39 0.00

6 1.52 0.00 2.76 1.09 0.16 2.62 0.00 1.25

7 0.00 0.45 2.76 0.36 0.49 0.00 4.52 1.25

8 4.56 0.45 0.92 1.09 0.00 3.49 4.52 0.94

9 4.56 0.15 2.76 0.00 0.66 3.49 3.39 1.25

10 1.52 0.45 0.00 1.46 0.66 2.62 4.52 0.00

11 4.56 0.00 3.68 1.46 0.49 3.49 0.00 0.31

12 0.00 0.60 3.68 1.09 0.66 0.00 1.13 0.31

13 6.08 0.60 2.76 1.46 0.00 0.87 1.13 1.25

14 6.08 0.45 3.68 0.00 0.16 0.87 4.52 0.31

15 4.56 0.60 0.00 0.36 0.16 3.49 1.13 0.00

16 6.08 0.00 0.92 0.36 0.66 0.87 0.00 0.94  
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Concentration of each component added to each sample 

Sample No. Glucose Glutamine Ammonia Phosphate Glutamate Lactate HEPES Bicarbonate

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.15 0.25 1.00 0.16 0.00 3.39 0.94

3 1.52 0.15 1.00 0.25 0.00 0.75 3.39 0.31

4 1.52 0.60 0.25 0.00 0.49 0.75 1.13 0.94

5 6.08 0.15 0.00 0.75 0.49 0.25 3.39 0.00

6 1.52 0.00 0.75 0.75 0.16 0.75 0.00 1.25

7 0.00 0.45 0.75 0.25 0.49 0.00 4.52 1.25

8 4.56 0.45 0.25 0.75 0.00 1.00 4.52 0.94

9 4.56 0.15 0.75 0.00 0.66 1.00 3.39 1.25

10 1.52 0.45 0.00 1.00 0.66 0.75 4.52 0.00

11 4.56 0.00 1.00 1.00 0.49 1.00 0.00 0.31

12 0.00 0.60 1.00 0.75 0.66 0.00 1.13 0.31

13 6.08 0.60 0.75 1.00 0.00 0.25 1.13 1.25

14 6.08 0.45 1.00 0.00 0.16 0.25 4.52 0.31

15 4.56 0.60 0.00 0.25 0.16 1.00 1.13 0.00

16 6.08 0.00 0.25 0.25 0.66 0.25 0.00 0.94  

 

   

 


