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Abstract

Abstract

The objective of this thesis was to investigate wse of mid-infrared spectroscopy
(MIR) as a PAT tool in bioprocessing. This wasiaeld through the development of
chemometric models from MIR spectroscopic data. dél® were applied to both
upstream and downstream bioprocess steps to eedh&potential of MIR as a PAT

tool in each scenario.

The first study included a preliminary examinatafr8 typical components found in a
mammalian cell culture medium. A multivariate liraf detection (LOD) analysis was
performed to establish the monitoring potential tbé instrument for the given
application. This initial work identified the compents which were unlikely to be
accurately detected, such as glutamine, but algbliphted the components that
showed promise, such as glucose. A 7-level exmariah design was used to develop
partial least squares regression (PLS) models &h eof the 8 components, with
optimal model errors ranging from 6.03% for gluceses3.06% for glutamine. An
external influence investigation into the factoisely to impact model prediction
ability was also performed. A statistical analysis these influences enabled the
significance of the effect to be determined. Hinalll investigative work performed
in this study was completed using 2 MIR immersioobes; the first, a fixed conduit
immersion probe and the second, a flexible fibreeapnmersion probe. This allowed
for a comparative analysis of probes and identifiexifixed conduit probe as the most

suitable for the given application.

The second study applied models developed for geiemd lactate, in the first study,

to a series of CHO DP12 cell cultures. The obyectf this work was to investigate

Vi
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how effective the previously developed models warpredicting glucose and lactate
concentrations when applied in-situ, in a bioreactdhis study explored the at-line
application of MIR and showed an improvement of289 for glucose and 13.22%
for lactate predictions, when applied at-line ratti&an in-situ. Central to this study
was the optimisation of the models used, in anretfm improve their accuracy and
robustness. The impact of the size and naturkeotalibration set was investigated to
identify the optimum calibration set for in-situchat-line model development. When
offine data was used as part of the optimisedbcation training set, models
consistently performed better than the originattiphteast squares regression (PLS)
models, created solely from synthetic samples. indged glucose model results
showed an improvement in RMSEP of 37.93% whilerosied lactate model results

had an improved RMSEP of 61.98%.

The third and final study presented here investdidhe use of MIR as a qualitative
and quantitative tool for total and recombinanttgiro detection. Exploratory work to
establish the instruments capability in distinginghbetween differing proteins was
initially performed via principal component anal/§iPCA). This showed that the
instrument used could identify the recombinant girobf interest among a group of 5
other standard proteins. In-process samples, gedvby an industrial collaborator,
were used to develop PLS models for total and réooamt protein prediction.
Results indicated that models performed bettetdt@l protein quantification, with the
minimum percentage error of prediction, (PEP) 2.39%he smallest PEP for the
recombinant protein was found to be 6.66%. Thiglystwas completed with an
investigation into the likely impact of 2 detergewin model performance. Due to the

common usage of detergents in protein productionefg. protein solubilisation or

Vil
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virus inactivation, the effect of these on MIR dpacand consequently models
predictions was investigated. This analysis inmidathat detergents were likely to
impact results, particularly at concentrationshet higher end of the typically used

range.

This thesis establishes and evaluates the potaitMIR spectroscopy as a PAT tool.
It presents 3 studies which highlight developmepthudologies and outline possible
applications, all the while seeking to optimiseutts obtained. Through systematic,
novel investigations this thesis shows that MIR barused as a PAT tool, but equally,
it raises warnings of when the technique or anslysethods may fall short of the

desired result.
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Chapter 1

Chapter 1: Introduction

The field of biotechnology has undergone exceptignawth in the last decade. There
is an ever increasing global demand for high quélibpharmaceuticals at lower costs.
The pharmaceutical industry has previously expeadnsuch mounting pressure; but
with market focus shifting to biopharmaceutical$, i$ now the turn of the
biotechnology sector to accept the torch and talea@ding role in embracing dynamic
initiatives such as “Process Analytical Technold@AT) and Quality by Design
(QbD)”. Although these initiatives are almost aa#e old, their introduction to the
biopharmaceutical industry is still in its infancidowever the search has begun to find
robust and reliable techniques to enable the cdrafeprocess Analytical Technology

(PAT) to take root within the industry.

The production of recombinant proteins for therajgeand diagnostic applications is
developing at an extremely high rate, principalas&éd on microbial and animal cell
production systems. The efficient control of @ellture conditions such that very high
cell densities may be attained, is hugely desirabldowever, reaching high cell
densities is not the only challenge. Maintainingd acontrolling this high cell
concentration over the course of the cell cultsreven more critical. Uncontrolled
systems may lead to extreme loss in viability, mgllease of proteolytic enzymes and,
hence lower protein productivity and increase protiegradation in the bioreactbr.
Therefore systems capable of tight control to emsigh product yield and quality are
imperative. This is generally achieved by caréfumulation of the culture medium,
coupled with controlled feeding of the medium thgbufed-batch or perfusion
systems, to simultaneously maintain high cell \Jigbiand high production rates,

while maintaining the required product quality.
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The increasing demand for improved process effayieand consistent product quality
in bioprocessing has fuelled extensive researdrtsfin the area of on-line bioprocess
monitoring and control. An important driving forfer this growth was set in place by
the Process Analytical Technology (PAT) initiatipepposed in 2002 by the Food and
Drug Administration (FDAY. PAT endeavours to establish in the pharmaceutical
industry, the ideology of Quality by Design, QbDhave continuous on-line process
monitoring and supervision ensure optimum manufagguconditions, allow complete
product traceability and quality control, as wedl improve early fault detection. In
addition, the implementation of PAT to a procedsnmately results in greater process
understanding as it effectively monitors, and calstrif necessary, all the Critical
Process Parameters (CPP’s) hence providing coabigeinsight into the Critical
Quality Attributes (CQA's) of the proceds.The availability of real-time analytical
results has been shown to reduce production costeeducing losses caused by
unnecessary waiting periods between process stepsgsxample, results from in-
process testing. Also, costs incurred due to bfaitlres and reworks are significantly

reduced

Several ‘conventional’ bioprocess monitoring tecfugs are widely used; temperature,
pH, dissolved oxygen, carbon dioxide etc. Thesdyarrs, most often in the form of
in-situ probes, are used mainly for controlling teeresponding process parameters,
although they do not provide much insight into teaction itself. Analysers capable
of providing information on the contents of a bewtor at any point in time perhaps
provide the greatest insight into the bioprocegsmajor challenge currently in the

area of bioprocess monitoring lies in ensuring rl@bility of monitoring tools and
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the accuracy of the measurements they provide Hinenconditions. As the
concentrations of the major analytes and metalsointebiotechnological applications
are typically very low, achieving the required ablility and precision of on-line
measurements often proves a difficult tagékn-line monitoring tools provide reliable,
instantaneous analytical information about the tmopss, which in turn can be used
for advanced control schemes aimed at optimisireg gfocess in real-time. PAT
instruments in a bioprocess application should needhin criteria. They should be
capable of rapid and accurate on-line monitorinthuwhe ability to be integrated into
reliable and robust calibration systems as wellbaghg non-invasive and non-
destructive. These applications should also pedependable analytical feedback to
continually maintain the desired operational part@nseand allow for implementation

of stringent process control mechanisms.

Vibrational spectroscopy has huge potential as & B®I in bioprocess monitoring.
In-situ probes meet much, if not all of the cri¢elisted above. These probes can be
sterilised in place, do not require any sample gm&on and can produce
spectroscopic data in secoridsinfrared spectroscopy; near-infrared (NIR) andl mi
infra-red (MIR), work on the basis of detecting thieration characteristics (stretching,
contracting, bending, etc.) of various chemicalctional groups over the specific
infrared frequency range of light. Another viboaial spectroscopic technique, Raman
spectroscopy, is complementary to infrared spectq@g and is based on light
scattering. Previous studies have demonstratedapipiication of NIR, MIR and
Raman spectroscopy to cell cultures for the simelbais on-line monitoring of media
analytes and metabolités? Other studies have highlighted the use of iné@-r

spectroscopy as a rapid technique for recombinaoiein detection, outlining its
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capabilities in protein characterisation and quiation'*'® However these uses

have yet to be significantly demonstrated in arin@-capacity.

The useful information embedded within spectrabdagdts needs to be extracted if it is
to be of use as part of a monitoring and/or cordtrdtegy. It is the development of
multivariate calibration models which is the keyutalocking this information. In the
case of spectroscopic data, a large number of et variables are generated
which relate to one predicted dependent varialgje absorbance values (independent
variables) over a range of wavenumbers in the midiied region can be used to
predict the concentration (dependent variable) gbaaticular component. These

variables are related to each other by a calibrahodel.

Chemometrics (multivariate analysis techniques) @sed to establish correlations
between a dependent variable, such as concentratonabsorbance. They are often
used as data reduction techniques since chemonaetlygsis allows multivariate data
to be transformed into a much smaller number obbées. The important information
Is maximised and system noise is minimised. A nemdd chemometric techniques
can be employed, depending on the required infoomatin the studies presented in
this thesis, the chemometric techniques used wiateiple component analysis (PCA)
and partial least squares regression (PLS). Pites used for exploratory analysis
and pattern recognition. In bioprocessing, PCA t&nused as a qualification
technigue for raw materials or products where diffiees between samples may be
highlighted. PLS is a supervised method which ireguthe use of a training or

calibration set to develop a predictive modelis frequently used in the generation of
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calibration models capable of predicting the cotreglons of various components

present in a system.

The overall aim of this thesis was to establishgbeential of MIR as a PAT tool in
bioprocessing. This was achieved by employing areetric techniques to develop
calibration models capable of predicting the cotreions of analytes and metabolites
present in a mammalian cell culture medium. Theedels were applied in real-time
to a series of cultures and the efficacy of théntegue for analyte and metabolite
measurement was evaluated. The applicability isf tdchnique in the monitoring of
product, in the form of recombinant protein, wasestigated by development of PLS
models from spectral data obtained from in-proaestire samples. Three separate

studies were completed in order to carry out glkats of the research outlined above.

Study 1 proposed a methodology on how to develdpeaaluate MIR spectroscopy as
a PAT tool in the quantification of media comporgent This work identified 8

components typically present in a mammalian cdluce medium and systematically
examined each one in terms of the ability of MIRd&tect and accurately predict its

concentration.

Study 2 applied the PLS models developed for gleicasd lactate in study 1, to
mammalian cell cultures in real time to determine &ccuracy of these models. This
study also highlighted the differences when thénege was applied on-line and at-

line.
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Finally, study 3 focused on the ability of MIR tetdct total and recombinant protein
in samples taken directly from the primary recovetgge of an industrial process.
This exploratory work investigated the potentialiofsitu MIR as a PAT tool for

qualitative and quantitative protein analysis.

All 3 studies presented in this thesis provide hesive approach to determining the
ability of MIR to perform effectively as a PAT tool bioprocessing. Both upstream
(in the form of mammalian cell culture cultivatioahd downstream (in the form of
primary recovery) processing is considered. Initamfdto evaluating the potential of
MIR as a PAT tool, each of the individual studiesses questions as to optimum
methodologies, with limit of detection, calibratieat type and means of evaluation, all

scrutinised.



Chapter 1

References

1. Ryll, T.et al Performance of small-scale CHO perfusion cultusseg an acoustic
cell filtration device for cell retention: Charagdttion of separation efficiency and
impact of perfusion on product quali§iotechnology and bioengineerig®, 440-449

(2000).

2. FDA.Pharmaceutical cGMPS for the 21st Century — A Biaked Approach -

Final Report 2004).

3. U.S. Department of Health and Human Servicesdfemd Drug Administration. in
Guidance for Industry PAT — A Framework for Innov@tPharmaceutical

Development, Manufacturing, and Quality Assuran2@04).

4. Bakeev, K. Process Analytical Technology; Smesttopic Tools and
Implementation Strategies for the Chemical and lRhaeutical Industried, 451

(2005).

5. Landgrebe, Det al On-line infrared spectroscopy for bioprocess rtaimg. Appl.

Microbiol. Biotechnol 88, 11-22 (2010).

6. Dabros, M., Amrhein, M., Gujral, P. & von Stockd. On-line Recalibration of
Spectral Measurements using Metabolite Injectior@synamic Orthogonal

Projection. Appl. Spectrosdl, 507-513 (2007).

7. Kornmann, H., Valentinotti, S., Duboc, P., Marisl. & von Stockar, U.
Monitoring and control of Gluconacetobacter xylirfad-batch cultures using in situ

mid-IR spectroscopyl. Biotechnoll113 231-245 (2004).



Chapter 1

8. Schenk, J., Marison, I. W. & von Stockar, U.ifgle method to monitor and
control methanol feeding of Pichia pastoris ferraéiahs using mid-IR spectroscopy.

J. Biotechnol128 344-353 (2007).

9. Arnold, S. A., Gaensakoo, R., Harvey, L. M. & N&il, B. Use of at-line and in-situ
near-infrared spectroscopy to monitor biomass imdastrial fed-batch Escherichia

coli processBiotechnol. Bioeng80, 405-413 (2002).

10. Cervera, A. E., Petersen, N., Lantz, A. E.skar A. & Gernaey, K. V.
Application of near-infrared spectroscopy for monitg and control of cell culture

and fermentatiorBiotechnol. Prog25, 1561-1581 (2009).

11. Doak, D. L. & Phillips, J. A. In Situ Monitorgnof anEscherichia coli
Fermentation using a Diamond Composition ATR Pra@ Mid-infrared

SpectroscopyBiotechnol. Progl5, 529-539 (1999).

12. Whelan, J., Craven, S. & Glennon, B. In situmda spectroscopy for simultaneous
monitoring of multiple process parameters in manmmatell culture bioreactors.

Biotechnol. Prog28, 1355-1362 (2012).

13. Sellick, C. Aet al Rapid monitoring of recombinant antibody prodotby
mammalian cell cultures using fourier transfornranéd spectroscopy and

chemometricsBiotechnol. Bioengl06 432-442 (2010).

14. Haris, P. I. & Severcan, F. FTIR spectroscapigracterization of protein structure

in aqueous and non-aqueous mediglolec Catal B7, 207-221 (1999).



Chapter 1

15. Crowley, J., McCarthy, B., Nunn, N. S., HarveyM. & McNeil, B. Monitoring a
recombinant Pichia pastoris fed batch process usmgier transform mid-infrared

spectroscopy (FT-MIRSBiotechnol. Lett22, 1907-1912 (2000).

16. Barth, A. Infrared spectroscopy of proteiBgmchim. Biophys. Acta-Bioenerg.

1767, 1073-1101 (2007).



Chapter 2

Chapter 2: Literature Review

The choice of suitable on-line analytical technique and data processing for

monitoring of bioprocesses

Adapted from the Springer Berlin Heidelberg puliima: Advances in Biochemical
Engineering Biotechnology, Volume “Stage of the AftM3C”, 2012. Series ISSN

0724-6145

Abstract
With increasing pressure from regulatory authasitbe industry to develop processes

embracing ‘Process Analytical Technology (PAT)tiaives, there is a growing
demand to establish reliable tools and systemsbtap#d meeting this need. With
regard to monitoring and control of bioprocessks heed translates to a search for
robust instrumentation capable of monitoring thiéicad process parameters in real
time. The application of such technologies astdljes of the process, from the initial
R&D phase, to process optimisation and productioimaaces process understanding

and paves the way for the development of contiatf@ms.

An examination of the PAT concept and selectedstcarle presented here. A
description of each tool is given, with particuanphasis on the nature of the signal
produced and how these relate to measurement®wfass, metabolites and product.
A description of the signal processing that is 8saey to gain meaningful results from
the different tools is also given. Many techniqsesh as those based on vibrational
spectroscopy are of particular interest, since they capable of monitoring several

critical process parameters which are typicallytaaled in a bioprocess. A window

10
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of application for each of the techniques, whendusethe area of bioprocessing, is

suggested based on their uses and inherent liomtati

Keywords PAT, Critical Process Parameters, Bioprocess Manio Spectroscopy,

Calorimetry, Data Reconciliation, Bioprocess Cohtro

2.1 Introduction
The last decade has introduced a significant nurabehanges to the pharmaceutical

and biopharmaceutical industries, not least in &nea of quality assurance and
regulatory compliance. This new focus has lardpelgn driven by the Food and Drug
Administration (FDA). In 2002 the FDA announcedew initiative, “Pharmaceutical
cGMPs for the 2% Century”, the purpose of which was to modernigertigulation of
pharmaceutical quality. The initiative supportsl gmomotes the use of risk-based and
science-based approaches for regulatory decisiddngyathroughout the entire life-
cycle of a product. After 2 years in development, the final reportlioes the
envisioned direction in which the pharmaceuticatl dmopharmaceutical industries
should be moving, but also provides guidance on towake the proposed changes

and embrace the new concepts put forward.

Central to the implementation of this new systertihésuse of science and engineering
knowledge to establish boundaries and evaluate epses. Previously, a
manufacturing process was developed and qualityraloand quality assurance tests
were then applied to ensure compliance. This metiaiive aims to use science and
engineering knowledge to mitigate risk, by reducprgcess and product variability

and applying continuous process improvement. limgwguidelines published by the

11
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FDA in May 2006, “Q8 Pharmaceutical Developmentate, “quality cannot be tested
into the products, it should be built in by design’Essentially this means that the
rigorous testing of the past cannot improve produetlity or enhance the process but
rather quality should be pivotal throughout thedifcle of a process and a key factor
from the initial stages of development and processgn. This introduces the concept
of “Quality by Design” (QbD), whereby a “design spais established, within which,
the product quality profile is defined, the criticmality attributes (CQAS) and critical
process parameters (CPPs) are identified and timeifaccturing process is controlled.
Process changes that occur within the design spr&cacceptable as the design space
would have been subject to regulatory assessmemtagproval at the time the
manufacturing process was filed. However movenoetsgide the design boundary is

considered a change and as such would most likglyire regulatory post approval.

In order to establish a design space that willvalfor maximum process flexibility

while ensuring all CPPs and CQAs are identified amaintained, a large degree of
process understanding is essential. Process maalyechnology (PAT) is a

“pillar/guiding principle” of the cGMP initiativé. The PAT framework published in
September 2004 defines process understanding adighits the tools required to
achieve this standard of process knowledge:

“A process is generally considered well understadaen (1) all critical sources of

variability are identified and explained; (2) vahdity is managed by the process;
and, (3) product quality attributes can be accuhatend reliably predicted over the

design space established”

12
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PAT provides in depth process understanding, butmjplement PAT and operate
under the principle of Quality by Design the pracesust be well understood. At the
point of writing this chapter, the initiative idlkin its infancy with regard to industrial
implementation, and so a large degree of prograssbeen in the area of PAT tool
development. With research and development focosegrocess analysers and data
acquisition tools, many in the industry have appligese to processes to glean greater
process knowledge. However, although PAT is aivelly new concept it has evolved
over the last decade. It has transitioned frormdpen analysis ithe process, to

supplement quality control, to being an analysithefprocess.

As already mentioned the main driver of this ititia is the FDA, however the
pharmaceutical and biopharmaceutical industriesaacdose second. They strive to
ensure that products released to market are dfitieest quality and compliant with
regulations. This reason alone merits acceptafdhese new guidelines, however
there are other benefits. Live feedback and psooemtrol, reduced cycle times,
laboratory test replacement and improved safetyltr@s increased product yield and
quality, reduction in batch failures and reworktsosnd increased throughput. Such
changes result in continuous improvement and opeidtexcellence, which in turn
increases business value. As a result of PATgbembraced by industry, tools must
be developed that are capable of real-time monigoaind control. Currently very few
developed tools exist and even fewer have actublgn implemented in a

manufacturing environment.

This chapter explores the use of selected PAT twhblsh can be used in the context of

M3C in bioprocess applications and looks at the aideps and limitations of each.
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Vibrational spectroscopic instruments as PAT amak/sare examined. The theory
behind the use of MIR, NIR and Raman spectroscopypibprocessing applications is
stated and necessity of using multivariate datagssing is explained. Reported uses
of these techniques for bioprocess monitoring androl applications are summarised

and the current state of the different technologrescompared.

2.2 Vibrational Spectroscopy

The energy of a molecule is quantised and can exist in certain discrete energy
levels, k&, Ei, E; etc. When a photon (energy in the form of ligetemitted from a
light source, a molecule will only absorb this eneif it equates to the difference in
energy between these discrete energy levels. Tkegg emitted by the light or
absorbed by the molecule is related to the frequbgdhe following equation:

E=h (2.1)
where; E is the energy emitted or absorbed, h &3 constant anad is the
frequency. As the energy is directly proportiotmathe frequency, it therefore follows
that a photon with higher frequency has a highergn The energy absorbed by the
molecule results in molecular vibrations. Thesbrations can take any of the
following forms: stretching, bending, rocking, wagg and twisting. In order for a
molecule to absorb infrared radiation the frequeatyhe radiation must equal the
frequency of the molecular vibration and this vilma must cause a change in the

dipole moment of the molecule.

Infrared spectroscopy is concerned with the regibithe electromagnetic spectrum

between the visible and microwave regions. Thysorg the infrared region, is further

broken down into the near-infrared region (12,5009tn/800-2500nm), mid-

14



Chapter 2

infrared region (4000-400ch2500-25000nm), and far-infrared region (<400cm

1/>25000nm).

2 Frequency (Hz)
Wavelength

1

1
°
>

Gamma-rays

X-rays
400 nm

Tuttraviolet 500 nm
/100 nm

15
Visible

{ 1o0amm
lum 600 nm

Electromagnetic

Spectrum
i

Infra-red 10 um

700 nm
I~ 100 um

I 7000 um
1000 MHz 1 mm

500 MHz

100 MHz

50 MHz

Louis E. Keiner - Coastal Carolina University

Fig. 2.1 Electromagnetic Spectrum

Energy in the mid-infrared region has lower frequeand so lower energy than that
of the near-infrared region. Mid-infrared spectagsy looks at the change in energy
when the molecule is radiated and moves from tloeirgt state to the next excited
energy level. This is the fundamental energy cbangs a result absorption bands
within the mid-infrared region can be attributedsjeecific molecules or functional

groups within the molecule; hence MIR spectroscigpgometimes referred to as a
“fingerprinting” technique. The higher energy bétnear-infrared region results in the

radiated molecule moving from the ground state xoited energy levels above the
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fundamental absorption state, therefore NIR is $eduon the combination bands and

overtones.

incident shoton

v=73
= e v=2
a
=
"” L] w— 1
z/‘r i=0 I absorption in thz MIR region
— -

Fig. 2.2 MIR energy level diagram

incident photon

. V=3——=
2" overtone in the NIR region

————@- v=2
T 15 overtone in the NIR region

@ v=1-5
fundamental absorption

Energy

Fig. 2.3 NIR energy level diagram

Spectra are most commonly presented in terms déerisity ‘v’ wavenumber” or

“absorbance ‘v’ wavenumber”. The absorbance andt&otration can be calculated

using the Beer-Lambert Law as follows:

(2.2)

A, =-log ( y J:sbc
10 l

v,0
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where :

A, = absorbance at wavenumber v

Iy = intensity of the light emitted from the samptevavenumber v

lvo = intensity of the light emitted from the backgrdufusually water or air) at
wavenumber v

€ = Molar absorption coefficient

b = pathlength

C = concentration

Put more simply, the absorbance of a component at particular
wavenumber/wavelength is directly proportional tbe t concentration of that
component. In order to transform spectral data meaningful results it is necessary
to develop a calibration model which relates theoabance to concentration values,
much the same as a mercury thermometer relatesagenn height to temperature. In
the case of the thermometer there is only one mnidgnt (measured) variable; the
height of the mercury in the tube. This is refertedas a univariate model. Where
spectral data are concerned, there are severapendent variables; the multiple
absorbance values over the range of the MIR or $pi&ctrum. This is referred to as a
multivariate model. Chemometric techniques ardagtqul to extract the relevant data,
and in this way act as a key to unlocking the imfation buried within the spectral

data.

Raman spectroscopy is a technique which is compleaneto infrared spectroscopy

and is based on the scattering of light. When acdoromatic light of given frequency
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is directed at a molecule, most photons of enerdjybe elastically scattered and this
is known as Rayleigh scattering. A small fract{@nin 1 photons) of the light will
exchange energy with the molecule. This is in&last Raman scattering.® Figure
2.4 is an energy level diagram showing the diffesmattering phenomena. Scattering
is a two photon process with one photon being desband a second photon being
emitted. With elastic Rayleigh scattering, therggeof the photon absorbed and the
molecule is excited to a virtual state. The enafythe photon emitted is equal to the
energy of the photon absorbed but with Raman soaitéhere is a difference between
the energy of the absorbed and emitted phdtofEnergy can be transferred to a
molecule excited to a virtual state and when thattedh light is scattered, the
frequency of the photon is higher than the freqyenicthe original photon of light.
This phenomenon is known as Stokes Raman scatteAingalready excited molecule
that interacts with another photon will have exbessnergy so, when scattering
occurs, the frequency of the emitted photon is lothan that of the original photon
and this is known as anti-Stokes Raman scatteringorder for Raman scattering to
occur, a change in polarizability of the molecudenecessary. Polarizability is the
relative ease with which a dipole moment is induet@n the oscillating electric field

of a light source interacts with a molecle.
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Virtual energy states
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Fig. 2.4 Energy level diagram of scattering phenoana; Rayleigh scattering (R),

Stokes Raman scattering (S) and anti-Stokes Ramanadting (AS)

In order to transform spectral data into meaningésults it is necessary to develop a
calibration model which relates the spectra to ac@ss parameter e.g. concentration
values of a substrate. Chemometric techniques@ptoited to extract the relevant

data; this will be discussed further in followingctions.

2.3 Development of MIR spectroscopy

Infrared radiation was discovered in 1800 by SitlMf Herschel and following this,
the first mid-infrared spectrometer was construdigdMelloni in 1833. In 1891
Albert Michelson invented the interferometer whmtoduced an interference pattern
by splitting a beam of light into two paths, bourgcthe beams back and recombining
them. A year later Lord Rayleigh proposed thas tinterference pattern could be
converted into a spectrum using the Fourier Transition mathematical technique.
The first half of the 20 century saw little development in FT-IR spectrggcand its

potential as an analytical tool remained largeltapped until the late 1950’s and early
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1960’s. With huge technological advances and thesrat of the computer age fast
approaching a need for highly sensitive, rapid cteie devices over a broad range of
applications arose. Early systems did not meet goals, as they were hindered by
memory size, poor stability and low resolution,itsavas not until the late 1960’s and
early 1970’s, when major technological improvemente made, that FT-IR

instruments became commercially available. Thgseems were a welcome addition
to their dispersive counterparts as they were nseresitive, had greater wavelength
accuracy, and allowed for rapid spectral acquisidmd manipulation in the form of

spectral subtraction. Spectral subtraction alldive user to study mixtures of
components without having to complete sample psiogsand separation prior to
testing, thus expanding the boundaries of FT-IRcspscopy and increasing it's

applicability in a number of areas e.g. bioprocggslications.

Since the commercial debut of the FT-IR systenin@é1970’s the technology has been
embraced by manufacturing industries and reseasaimuinities alike. Instruments
have been adapted and improved to meet the speeids of the end user. Spectral
measurements can be in several forms; transmisdioadiation, internal reflectance
(attenuated total reflectance), external refleaanbulk diffuse reflectance and
photoacoustic determinatiofs. In addition, the sampling configuration must be
suitable for the instruments use. Given the wamétsampling techniques and sample
interfacing available; from off—line transmissioells to in-situ fibre-optic reflectance
probes, mid-infrared spectroscopy is adaptabldnmst any area. The focus here is

on its applicability as an on-line monitor in biopess applications.
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MIR immersion probes have been available sincéatiee1980's. Improvements in the
design and material of construction are on-goiAd.the early stages of development
MIR fibres suffered from high material absorptiamascattering and poor mechanical
and chemical stability therefore “fixed” arm probegh parallel light pipes using
internal reflection spectroscopy were found to bereamsuitable. However when
placed in a process environment this design isrdan ideal. These probes need to be
precisely aligned and are highly sensitive to Mibres in the surrounding area, which
can result in alignment changes and hence spetiffatences®*? There have been
major advances in the development of fibre-opti¢emals over the last 10 years and
these improvements have had far reaching consegsiendn the case of MIR
instrumentation it has resulted in flexible, mo@bust immersion probes which
address many of the problems encountered withigi@ conduit probes. However
regardless of probe type, process disturbances regularly impact the spectra
collected and these disturbances need to be a®wbufdr when developing
multivariate calibration models. The short patigténof MIR, when compared to that
of NIR means that from a sampling perspective thR Bfbes not penetrate as far into
the material and may not be as representativeeaddmple as NIR would be, however,
in the presence of particulate matter the shorahlength of MIR reduces light

scattering, which is commonly experienced when NIBsed in a similar situatich.

2.4 Development of NIR spectroscopy

In 1800, Sir William Herschel separated the elenaagnetic spectrum by passing light
through a prism. He noted that the temperatureeased significantly towards and
beyond the red region, now referred to as the iméared region. This experiment

marked the discovery of near-infrared radiation.owldver, as with mid-infrared
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spectroscopy, near-infrared spectroscopy was raelwiused in any applications until
the second half of the 20century when optical techniques and computershdaps

complex analysis were rapidly developing.

In the 1950’s NIR showed potential as a quantieainalysis tool, however it lagged
behind the development of other optical deviceh /sEtMIR spectrometers, and many
of its initial uses were as an accessory to thesecds. The US Dept. of Agriculture,
under the work of Karl Norris, began to investigtite use of NIR in the measurement
of moisture content in cereals. Major difficultiegisted such as interference and
absorption of other constituents, and these welyeresolved with the development of
multivariate statistical methods which allowed toerelation of NIR spectral features.
Following the introduction of such powerful compuseded tools; the first stand alone
instrument became available in the early 1980’svdlopment of NIR spectroscopy as
a quality and process control tool is largely doethe availability of efficient
chemometric techniques and varying spectrometeiigeontions™® Its use within the
pharmaceutical/biopharmaceutical industry is fastwing, but it remains relatively

new in terms of its status as a process analycdl

Central to the development of NIR spectroscopy &#Ad tool is the availability of

adequate sampling devices. Process environmentsoasiderably and selecting the
most appropriate sampling interface is of paramaonmortance. A large degree of
process understanding is vital prior to choosirggghmpling interface. The physical,
chemical and optical nature of the process strehould be known in order to
determine if the results will be significantly ingted by light scattering. This is

particularly important where NIR is concerned as $trong light source and the weak
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absorbance allow infrared radiation to penetratéhés into the sample, allowing
particulates present in a suspension or slurryatese light scattering. Other aspects
such as the potential of the process fluid to thalprobe or sample system should also
be evaluated. Typically NIR sampling systems for in-situ prosesonitoring are in
the form of one of the following two types: extige sampling systems, where the
sample is removed from the main process line aedlgnd returned to the process or
immersion probe sampling, where a probe is plaoetthe process stream of interest
and a number of intermittent scans taken using{dptics to connect the analyser to
the probe interface. A number of variations ofheaf the above two types exist.

Invariably, it is the process conditions which wdittate the system of choice.

2.5 Development of Raman spectroscopy

During the 1920s the scattering effect theory wagestigated by a number of
researchers including physicist C. V. Raman, who 1828 was the first to
experimentally demonstrate the Raman effect inidigu™® Originally instruments
consisted of a mercury lamp passed through a fittggroduce monochromatic light
which was then used to excite the sample. Scdttergiation was observed at°90
degrees from the incident radiation, dispersedguairmglass prism and recorded on a
photographic plate’. Such a system is known as dispersive Raman sgeopy. A
modified FT-IR instrument was also used to collRatman spectra and the use of such
instruments is now known as FT-Raman spectroscopyispersive Raman
spectroscopy and FT-Raman spectroscopy each haireothin specific advantages

and both continue to be used for different appiticet’ *
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The basic components of any Raman spectrometeithareexcitation source, the
spectrometer and the detector. Significant advainca three area®¥ have lead to the
possibility of using Raman spectroscopy as a PAdlL t& major development in
modern instruments was the incorporation of therlas the monochromatic light
source since the 1960s. As such a small fractiohght is Raman scattered, a
powerful excitation source is necessary and powddser light has led to the
possibility of measuring smaller samples in a sogmount of timé&. ’ Optical
filtering devices are used to filter out a largetpm of the Rayleigh scattered photons
and so maximise the amount of Raman scattered phatbich can be detected. In
the early 1990s holographic notch filters wereadtrced. Their efficacy is due to the
fact that the optical density of the notch filterhigh and the spectral bandwidth of the
notch can be extremely narrow. They are also frem fextraneous reflection bands
and provide significantly higher laser damage thoéds than standard interference
filters!® 7  Silicon based charged couple devices (CCD) arplacing
photomultipliers as detectors in dispersive Ramrastruments and this has allowed
simultaneous measurement of multiple locationste@ers in FT-Raman instruments
have also been improvéd'® Fibre-optics allow probes to be inserted directitpia
reactor and cables up to 100 meters may be usedroect the instrument to the
measurement point. Non-contact sampling whereochepican make measurements
through a sight glass is also possfbleAll of these advances mean that Raman

spectroscopy has developed into a versatile PAIT too

2.6 Interpretation of spectral data using chemomeics

It is almost impossible to discuss the use of spkectata without a discussion on

concept of chemometrics as the various chemoméeohniques maximise the
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information available from the spectroscopic instemts. Chemometrics can be
defined as the chemical discipline that uses madiieal, statistical and other methods
employing formal logic (a) to design or select ol measurement procedures and
experiments, and (b) to provide maximum relevamingical information by analysing
chemical data® When applied to the spectra collected on-linérdua bioprocess by
MIR or NIR spectrometers, it is the second functadrchemometrics that is of most
interest. Process data from a spectrometer ig/sedhlin a multivariate rather than a
univariate way, i.e. for each sample, the resp@tsaultiple wavenumbers are taken
into account. If the spectrum of a sample wasrdsmb at three wavenumbers using
any spectroscopic technique, a simple 2-dimensigmlat of response versus
wavenumber could be used to visualise the data.s@hee data can also represented

by a single point in 3 dimensions where each dino@nss corresponds to a

wavenumber.
162000 -
*
142000 -
+ samplel
= sample2
<
102000 -
L 2
T 82000 -
[J]
(&)
c
(5]
£ 6000 m
2 =
2
<
42000 : =
1400 1500 1600 1700 1800 1900
Wavenumber

25



Chapter 2

x 10
1.6+
1.64
14 E
o
18d &
€ »
1.2 5 + sample 1
114 ¢
3 + sample 2
1-, ;
sample 3
D'g} Wa,/
Fi enalhb
e[' 1E

» 10

Fig. 2.5 Samples represented in 2-dimensional withe same samples represented

by 1 point 3-dimensional space

An individual spectrum recorded on a spectromeder ltave hundreds of data points
and a single component can have a response inpheuftiaces within the one region
making the data highly correlated. Rather thamresgnting the spectral data in 2-
dimensional space, chemometric techniques use -diglgnsional space or
hyperspace to represent the same spectrum by lea pioigt. As there is usually much
redundant information in spectra due to variablemdp highly correlated, data does
not need to be represented in space with as mamgndions as there was original data

points. The spectral data containing hundredsatd goints can be fully characterised
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in as few as twenty dimensioffs.Chemometric or multivariate calibration technisue
allow the concentration of a given analyte to Hateel to spectral features. They are

also useful for distinguishing real chemical infatnon from instrument noise.

2.6.1 Pre-treatments

Prior to analysing spectral data, a mathematicattyf@atment may be necessary.
Common pre-treatments include mean centering, nm@amalisation and using the
first or second derivative of the spectra. To @erf mean centring on a data set, the
mean spectrum of the set is computed and therbisastied from each spectrum in the
set. This is done to prevent data points thaffuateer from the origin from exerting
an undue amount of leverage over the points tleatlaser to the origif® Leverage is

a measure of how extreme a data point is comparédaetmajority. A data point with
high leverage will have a high influence on any eladeated. Mean normalisation is
an adjustment to a data set that equalizes the itndgnof each sample. When the
spectra have been normalized, qualitative inforomathat distinguishes one sample
from another is retained but information that woséparate two samples of identical
composition but different concentration is removeédstandard normal variate (SNV)
pre-treatment is one which centres and scalesithdiV spectra. The effect of this pre-
treatment is that on the vertical scale each specis centred on zero and varies
roughly from -2 to +2. This effectively removestmultiplicative interferences of

scatter and particle size in spectral data.

The first derivate of a spectrum is the slope @f thrve at every point. It has peaks

where the original has maximum slope and crossesveleere there was a peak in the

original spectrum. As the slope is not affected dalditive baseline offsets in the
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spectrum; calculating the first derivative is afeefive method of removing baseline
effects. The second derivative is the slope of firet derivative. It has peaks in
roughly the same places as the original spectrunthase peaks are in the inverted
direction. Calculating the second derivative of medrum will remove additive
baseline effects and as well as multiplicative taseeffect?” * Small spectral
differences are enhanced and overlapping peaksepagated by the use of derivative

pre-treatments.

As a measured spectrum is not a continuous mathemate, but rather a series of
equally-spaced points, traditional derivative chlton performed by using the
difference in values between two adjacent pointstha effect of reducing the signal
to noise ratio in the data. It is necessary tloeesto include some form of smoothing
in the calculation. One method of calculating tezivate of spectra is to use the
algorithm described by Savitzky and GofdyThis works by taking a narrow window
centred at the wavelength of interest, and fitintpw order polynomial to the data
points in this window using least squares. Theuwated polynomial is a continuous
curve of the formy=a+bx+cx2..wherex is the wavelength and y is the spectral
response. The first and second derivative offttiexd curve are then used as estimate

of the derivatives of the underlying spectrum.

The choice of pre-treatment can depend on thedfgpectra being analysed e.g. NIR
will often have derivative pre-treatments appfigd’ A multi-component mixture or a
sample collected on-line which may be subject &irument drift will also be pre-

treated with a procedure such as SNV or derivativdany other pre-treatments are
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possible and the nature of the application wiltate the most suitable one or indeed

combination to choose.

2.6.2 Quantitative analysis

Interpretation of spectra can be a challenge as/rddferent components can have a
response in similar regions of the electromagngtiectrum. This becomes an issue
when you want to indentify and quantify individiw@mponents in a mixture. The first
step in developing a calibration model is to danapée feasibility study such as that
described in the ASTM international stand&fder each component of interest. The
procedure described involves the collection of #pecfrom 30-50 samples
incorporating the expected variations in parti¢ke ssample presentation, and process
conditions which are expected during analysighéfresults from this simple study are
favourable as judged by error values from crosglaabn methods and the precision
required was obtained, the study can be expandedeaf multi-component mixtures

can be adequately modelled.

In order to make a good calibration model, a sigtaxperimental design must be
employed. The samples used for developing the hergeknown as the training or
calibration set and should ideally comprise severaliformly distributed
concentrations for each component of interest. fab®rs in an experimental design
for a multi-component mixture are the individuahgmonents and these factors should
be mutually independent or orthogonal, i.e. theatation coefficient between each
pair of factors is zer® There has been some discussion in the literatare¢he
importance of using uncorrelated samples in theeldgwment of chemometric models

for on-line metabolite monitoring:** As the performance of any model is directly
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affected by the training set used in its developmére training set should fulfil

certain criteria. It should:

contain all expected components

* span the concentration ranges of interest

e span the conditions of interest

e contain mutually independent samples
The calibration should also be validated usingtatsamples (validation set) which is
independent of the training set. Strategies on twogletermine an experimental design

which will achieve these aims can be found elseafier* >

2.6.3 Partial least squaresregression

An often used chemometric calibration technique Bmprocessing applications is
partial least squares regression (PLS). This mudtivariate statistical technique
developed from classical least squares and inVeast squares regression by Swedish
statistician Herman Wold for use in economic fostice. His son Svante Wold along
with other Scandinavian scientists including Hardldrtens promoted its use in

chemical applicationd'

As mentioned earlier, spectra can be described dyemumbers and responses in 2-
dimensional space or as single points in hyperspdoethis way PLS works as a
variable reduction system and new axes in hypeespae computed using both the
chemical and spectral data. These new axes arputechin the direction of the most
variance within the data and with PLS, the axithiss best compromise between the

spectral variance and the concentration variance.
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In an ideal case of noise free spectra, the fagpace for the spectral data and the
corresponding factor space for the concentratida dee congruent i.e. the scores of
the spectral data points are proportional to threesponding eigenvector of the scores
of the concentration data points. This relationgdap be expressed by equation 2.3,
where Yis projection or score of a single concentratioimponto the ' concentration
factor, X% is the score of a single spectral point onto thegfectral factor and;Bs the

proportionality constant for thd foair of concentration and spectral factors.

Yf: Bfo (23)

The aim of PLS is to find a vector W that represehe best compromise between the
spectral factor and the concentration factor. Mastor is a factor that maximises the
covariance between the concentration data matidxadinpossible linear functions of the
spectral data matrix. The factor W will have thensanumber of elements as there were
wavelengths in the original spectra and the eleshare called the loading weights. The
first vector W, is the most significant optimum factor and thetijpo of the variance in
the spectral data spanned by this factor is remaseds the spanned variance in the
concentration data. The next factoe M/found for the spectral and concentration redgdua
that are not spanned byiWrhe process is continued until all possible fexttave been
found. The first new axis or factor is the most significand accounts for the largest

amount of variance in the spectral and concentradetta. A graphical representation

of this can be seen in figure Z%.
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Factor 1

Factor 2

g

Fig. 2.6 Graphical representation of PLS

In physical terms PLS assumes that there are arrdysth blocks which are of equal
importance. The concentrations used in a calimmatnodel are subject to error (e.qg.
dilution and weighing) just as much as the speotrahromatograms. An important
feature of PLS is that it is possible to deternfiogv well the data have been modelled
either by usingk (spectral datapr y (concentration databplocks. Fig. 2.7 illustrates
the change in training set error as different numloé components are calculated for
bothx andy in a typical dataset. This means that two diffesemgwers for the optimal
number of components can be obtained, one basédeospectral data and the other

based on the concentration dita.
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Fig. 2.7 PLS training set errors using both the carentration and spectral estimate¥

2.7 PAT applications of vibrational spectroscopyn bioprocessing

The applications or potential applications of vilwaal spectroscopy in bioprocessing
are largely dependent on the sampling interfacedladle. A number of instruments
exist and sample interfaces vary from sample @wvitising cuvettes or vials to
immersion probes. Where real-time data is requi@dmonitoring and control
purposes, the type of available instruments is varych reduced as all off-line
techniques are eliminated. Bioprocess applicatiordate have either used flow cells,
where the sample of interest is passed through asum@g chamber, or immersion
probes, where a probe is inserted into a reactdrtla® sample is scannausitu by
transflectance, transmission or reflectance methddee development of high quality
fibre-optics and autoclavable probes has incretdsedapabilities of these techniques.
The most common applications in bioprocessing asdyge, metabolite and biomass
monitoring, with monitoring systems in some caseghkr developed to enable

process control.
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2.7.1 MIR applications

MIR lags behind its infrared counterpart, NIR, wherromes to its applications in
bioprocessing. Despite the fact that MIR can detew quantify components in
aqueous solutions at significantly lower levelsnthidat of NIR?’ MIR is less
extensively used. Only in the last decade has Mdé&nh considered a potentially useful
tool for bioprocess monitoring. Work to date haaimty focused on detection of
substrates and metabolites in yeast and bactetiakes but it has also been applied to
suspended and immobilised animal cell cultdfesMost methods use synthetic
samples or samples taken from cell cultures todbonultivariate models capable of

predicting changing concentration values.

The most common component modelled is glucoses iBhthe predominant substrate
in cell culturing and so, is of most interest frardetection and monitoring point of
view.>®% Other substrates detected using on-line MIR tegtas include fructose,
lactose, galactose, ammonia and methyl olédt&. Accuracy values vary between
studies with standard prediction errors rangingnfr@.26g/L to 0.86g/L for glucose.
Subtle differences exist between the various teples developed. The sample
presentation method is of some importance for dipiglication as many cell cultures
require aeration resulting in gas bubbles formingtlee probe tip. Automated flow
systems can help mitigate this problem, while #@essed geometry of the probe tip
can facilitate the formation of pockets on the @ysurfacé’ In addition to the
sampling interface, the models employed are spec¢di each individual set up.
Although multivariate chemometric modelling is ugeddevelop these models, each

model is unique.
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This technique has also been applied to deternmimedte of product formation. Cell
culture products that have been successfully dedacsing MIR include ethanol, lactic

acid and glucuronic acif; 3% 43

On-line MIR measurements have been used not judetect or monitor cell culture
substrates and metabolites, but also to controlued. Kornmann et al used
Gluconacetobactor xylinu® develop a control strategy based on the depletf two
substrates, fructose and ethaffol Real-time spectroscopic scans were collectetyeve
5 minutes, concentrations were sent to an adaptowéol algorithm and fructose and
ethanol were fed to the culture in controlled vodsm Schenk et al showed that a

similar system could be used to control methanedlifeg toPichia pastoriscultures*?

2.7.2 NIR applications

NIR spectroscopy can provide on-line informationsmstrate, biomass, product and
metabolite concentratiof3.“® This information can be further used to contmoti a
optimise cell cultures. Extensive work has beemied out in this area to date. NIR
has been used to monitor concentration changesemsty bacterial and even
mammalian cell cultures. Crowley et al used NIRntonitor the main substrates,
glycerol and methanol, as well as biomass, Richia pastorisculture?® Petersen et al
used NIR to predict the changing concentrationglofose, ammonium and biomass
in a Streptomyces coelicolaulture>! while Rodrigues et al developed an NIR model

to monitor clavulanic acid, the product of a fedchaprocess witl$. clavuligerug’
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The technique has also been applied to monitorfrgammalian cell cultures. Four
key analytes of a CHO-K1 mammalian cell culturejcglse, lactate, glutamine and
ammonia, were monitored by Arnodd al *® and this work was further developed by

Roychoudhuret al.*®

where a multiplexed calibration technique was used

As with MIR, NIR predictive models have also beepléed to control systems in
order to allow fed-batch cultures to react in “raale”. As early as 1994 Vaccaat
al. proposed using NIR to control the glucose feethenproduction of lactic acid by
Lactobacillus casel® Many others have developed control strategiesdoipus yeast

and microbial cultures? >

2.7.3 Raman applications

The reported use of Raman spectroscopy for mongadbioprocesses-situ and in
real time is limited and this is most likely duettee need for low frequency lasers to
avoid fluorescence which can have heating effdais to the long exposure times
necessary for such lasers. Most reported studescridbe the use of Raman
spectroscopy to monitor yeast cultures. One ofdadiest applications oh-situ
Raman spectroscopy was monitoring the production eathanol in yeast
fermentations® In this study the concentrations of fructose ghttose were also
measured. Shaet al. used a dispersive Raman instrument to monitockhange in
substrate and metabolite concentrations as wellp@sluct formation in yeast
fermentation and found it necessary to include -p&ss filter to remove cells as they
were causing interference to the photon scattepiragess® The production of
carotenoids inPhaffia rhodozymacultures has also been monitored by dispersive

Raman spectroscopy. Bacterial cultures have also been monitored viisitu
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measurements @flucose, acetate, formate, lactate and phenyladréing reported®

In a more recent study Raman spectra have beesctamin-situ in a mammalian cell
bioreactor. As well as monitoring substrates anetatmolites, the spectra were
correlated to total cell density and viable celhsiey showing that it may be possible
for Raman spectroscopy to distinguish between dmd dead cell¥. While these
studies all demonstrate the potential of Ramantspsopy as a monitoring tool, it has

yet to be proved capable of control in industrialpocesses.

Although separate techniques, both MIR and NIR haimsilar applications in

bioprocessing; both have been used for monitoring eontrol purposes. Raman
spectroscopy has been used to monitor bioprocdaget a lesser degree than the
other vibrational spectroscopies. The manner irchvthese techniques are exploited
is similar. In all cases multivariate chemometmodels are developed based on
synthetic, semi-synthetic or actual samples fromelaculture. Typically these models
are then validated and applied to a culture on-lifdese techniques all have their
benefits and limitations, but to date NIR has biéensubject of more investigation and
as a result is more developed in terms of appbaoatin bioprocessing. However, the

potential of MIR and Raman should not be underestioh or overshadowed.

2.8 Conclusions

Choosing a suitable on-line analytical techniquel a@ata processing method for
bioprocess applications is essential if reliablenitwsing and control are to be

achieved. Each of the process analysers desdndredhas the potential to be used for

on-line measurement but it is only through propedearstanding of their specific
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advantages and limitations that they can be appliedonitor the appropriate process
variables. The relationship between the measwgadameters and critical process
parameters needs to be recognised in order to ajewlibrations for the critical
process parameters of interest and knowledge ofikbly signal interferences will
allow the employment of data treatments which cammse or even eliminate their
effects. Advanced data processing methods suctatasreconciliation and artificial
neural networks can also enhance the accuracyeofmasured variables by using
inputs from a number of on-line sensors. The comimn of suitable analytical
techniqgues and data processing methods should dercam increase in bioprocess
knowledge which will in turn allow the process te tightly controlled and operate

within a previously established design space.
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Chapter 3

Study 1: Potential of Mid-infrared spectroscopy fo on-line monitoring of

mammalian cell culture medium components

As published in Applied Spectroscopy, 2012, Vol (6f 33-39

Abstract

This study proposed a methodology to evaluate tbeenpial of mid-infrared

spectroscopy (MIR) as a process analytical teclgyo(BAT) tool for in-situ (in-line)

monitoring of cell culture media constituents, paythe way for on-line bioprocess
monitoring and control of mammalian cell culturéhe methodology included a limit
of detection (LOD) analysis and external influenoeestigation in addition to the
calibration model development. The LOD analysisthe initial step provided a
detailed procedure by which to evaluate the moimigopotential of the instrument of
choice, for the application in question. The ax&rinfluence study highlighted the

potential difficulties when applying this techniqigea typical mammalian cell culture.

A comparative investigation between a fixed conduitmersion probe and flexible
fibre-optic immersion probe was also carried ouimitations associated with the use
of MIR in the cell culture environment were alsoaexned. A preliminary
investigation, on components typically found in nmaatian cell cultures, involving
spectral characterisation and limit of detectioalgsis was completed. It was evident
at this initial stage that glutamine, could notdmeurately detected at levels typically

found in a mammalian cell culture medium. Resiiits glucose and ammonia,
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however, proved promising. A 7-concentration leseperimental design was used,
and partial least squares regression employed, eeelob calibration models.
Optimized model results echoed the results of theirpinary analysis with the
percentage error of prediction for glucose as l®v683% with the fixed conduit
probe, and glutamine having a higher error of 6&06r the same probe. Comparison
of model results obtained from both probes suppgotte fixed conduit as the more
accurate of the two probes, for this experiment&dl . The effect of external
influences on the MIR spectra and hence the corat@nis predicted by the model
were also examined. These were subjected to statisinalysis to determine the
significance of the effect. This study demonstdbat MIR as a PAT tool, has limited
potential for mammalian cell culture monitoring dodow concentrations of analytes

present and outlines a method to allow the systebe tevaluated.

3.1 Introduction

With increasing pressure from regulatory authasitoe industry to develop processes
embracing ‘Quality by Design’ initiatives, there & growing demand to establish
reliable tools and systems capable of meetingrtéed > ? With regard to monitoring
and control of bioprocesses, this need translatessearch for robust instrumentation
capable of monitoring the key process analytes rapthbolites in real time. Such
information could potentially be used in the depeh@nt of process control tools and
hence would meet the fundamental principles of 1@Qudy Design’ and ‘Design
Space® Achieving on-line or real-time measurement anchtad allows for
instantaneous analysis of the results and corredtfimffsets before the process moves
outside of its design spate.In a typical bioprocess a quantitative and qatlie

analysis of all the major analytes in real timelwilovide vital information on the

48



Chapter 3

process and facilitate the identification of keyrgmaeters capable of improving
process outputs e.g. biomass, product secretedTéte first step in developing such a
system lies in the identification of a reliable ritoring technique, which could further

be used as an integral part of an advanced caystém.

Infrared spectroscopy has the ability to monitoresal of the analytes present in the
culture media at any one time and as such is patisnd powerful tool in bioprocess
monitoring®”’ Such techniques can be used in-situ (in-line)inathem non-invasive
and eliminating the need for sample removal theredjucing the risk of culture
contamination due to possible compromised stefilitytSample preparation is not
required and spectral information is obtained imstacously. These features make
infrared techniques suitable for inclusion in cohtsystems developed to function
within a Process Analytical Technology (PAT) enwinzent, an initiative proposed by
the FDA in 2004 and further supported by the International Comfeee on
Harmonisatio® in 2006. The spectral data gleaned from suchossmaust undergo
some form of multivariate analysis in order to agtrthe desired informatidn.With
respect to the monitoring of bioprocesses, both ¢hemometric and infrared
technigues serve as a lock and key to releasingrdiess data. Both near infrared
(NIR) and mid infrared (MIR) spectroscopy have basad for bioprocess monitoring
but with mammalian cell culturing, sterility is tdal, so in-situ probes are
preferable’? In-situ sampling is possible with both techniqaesl is well documented
for NIR,***" but less so for MIR spectroscopy, when appliedn@mmalian cell

culture media component$ '
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A preliminary step to developing a multi-analytdilmation model is to identify the
instrument detection limits for each of the anaytmder investigation. The limit of
detection (LOD) is the lowest concentration of gtealn a sample that can be detected
but not necessarily quantified under the experimlenonditions of the methdd.
Determining the LOD for a multivariate calibratiensignificantly more complex than
establishing that of a univariate model. To ddesy studies have included this

preliminary step in similar works despite its im@aorce in an initial feasibility study.

A number of external influences are likely to begant throughout the course of a cell
culture. The effect of these influences on thelectéd spectra and the media
concentration values predicted by the model arentdrest when considering the
implementation of a calibration model in a monmgrior control application. The
significance of the impact of the external influer@an be examined using hypothesis
testing. This can provide an insight into the effef changing environmental factors
on cell culture measurements using MIR. It alsghhghts when and where influences

should be incorporated into the model, so as tarengptimum results.

The aim of this work was to outline a method torekee the potential of MIR as a
PAT tool to measure the varying media componenteotnations of mammalian cell
cultures in real time. This was achieved by devielp@a partial least squares (PLS)
calibration model using synthetic samples, whiclsuea that the model remained
generic and non-specific to any single bioprocefke methodology also included a
logical sequence of preliminary steps, includindegailed limit of detection analysis,

prior to the application of MIR to a mammalian celllture. In addition, two probe
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types were used to determine the effect, if anyresults when the sampling device

was varied, but the detector remained the same.

3.2 Materials and Methods

3.2.1 Samples

Eight individual components made up of typical celllture medium substrates,
buffers and products of cell metabolism were exachinThese were, glucose (Sigma
Aldrich Ireland Ltd.), L-glutamine (Sigma Aldrichrdland Ltd.), HEPES (Sigma
Aldrich Ireland Ltd.); glutamate, (Oxoid Ltd.); calim lactate pentahydrate (Fisher
Scientific UK); sodium hydrogen carbonate (FishetieStific UK); potassium
phosphate (Sigma Aldrich Ireland Ltd.) and ammonisafphate (Fisher Scientific
U.K.). Five of these (glucose, lactate, ammonikmtagnine and glutamate), are
mammalian cell metabolites or by-products. Suchabwdites and by-products are
likely to vary considerably throughout the course@ell culture and therefore are of
most interest from a monitoring and potentiallynizol, standpoint. The remaining
three elements, (HEPES, potassium phosphate andnsdd/drogen carbonate) are
typically used to buffer a cell culture medium. €6k do not vary considerably over
the course of a cell culture; however they may \agr a range of different media. In
order to make the model generally applicable t@rage of mammalian cell culture
media these were included in its development. Algh the precise concentration of
these buffers is not known for each commercial omedihey tend to be present at high
enough concentrations to impact the spectrum andiese included in the model.
Other potential elements likely to be present sriredia e.g. amino acids/vitamins are
at lower concentrations and hence the impact orspleetrum and on the prediction

ability of the model is minimal. A cell culture medium, EX-CELL CHO DHFR
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Medium AF (Sigma Aldrich, Ireland Ltd.), was used model validation steps and
external influence investigation. Table 3.1 owfirthe concentration ranges used for

model development for each of the 8 componentstsele

Table 3.1 Component concentration ranges

Component Concentration Range
g/L
Glucose 0-6
Lactate 0-1
Ammonia 0-1
Glutamine 0-0.6
Glutamate 0-0.7
Phosphate 0-1
Sodium Bicarbonate 0-1.25
HEPES 0-4.5

3.2.2 Instrumentation

All scans were taken using a Fourier transform midared ReactIR iC10 instrument
with MCT detector (Mettler Toledo AutoChem, IncolGmbia, US). Two immersion
probes were tested in all cases (i) AgX 9.5mm xfime silver halide probe and (ii)
K6 conduit 16 mm probe, both of which have a fixgdical pathlength of approx. 1 —
2 um and use a diamond ATR crystal with 6 intereflections. Fig. 3.1 shows both
probe types. The sampling procedure was as folloa®ackground scan of deionised
water at 37C was taken followed by 3 replicates of 128 co-addeans of each

sample also at 3 as this temperature is optimum for mammaliangreiivth.
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=X

(i

(ii)

Fig. 3.1 (i) Flexible Fibre-Optic and (ii) Fixed Canduit Probes

3.2.3 Preliminary analysis

Concentrated solutions of each of the 8 main cormaptsnwere made up using
deionised water. The spectra for each componerd ealected and then plotted. The
wavenumber ranges over which each of the comporadrgsrbed was noted, to be
later used in the development of the calibratiordeho Fig. 3.2 shows the raw spectra

of the 8 components modelled and indicates thein megions of absorbance.
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The concentrated stock solutions described abowe wsed to prepare a series of
dilute solutions. These were then scanned in ¢apdi, with the K6 conduit probe and
the collected spectra plotted and examined. THiswad for a preliminary

investigation into the presence of outliers and als investigation into the LOD based
on a simple visual test. The point where the camepb peaks could not be clearly
distinguished from the instrument noise was definedhe observed LOD. This is
only possible for MIR spectroscopy as it is basadundamental vibrations and the
peaks can be directly related to a chemical boricich a step could not be done for
NIR spectroscopy. Fig. 3.3 below indicates howkpezight increases with increasing

concentration.
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Fig. 3.3 Glucose spectra at varying concentrations

As multivariate analysis techniques are usuallyessary to fully exploit vibrational
spectroscopy data, a method for determination dd @ multivariate spectral data is
needed. Unfortunately there is no generally aszkptethod for this but an approach

used by many authors is to transform the multivarikata to univariate data by the use
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of chemometric techniqu&ssuch as PLS regressiéhThe method outlined by Ortiz

et af>

is used here. It allows for the assessment oL@ of an analytical method
by evaluating false positive and false negativebabdities after data has been
transformed by PLS. The false positive probabiidjows a Student’s-distribution
with (n-2) degrees of freedom whereis the number of samples while the false
negative probability has a non-central Studebtistribution with (-2) degrees of
freedom and a parameter of non-centrality whichdeet® be established. Critical
values for both types of Studentgests and the parameter of non-centrality were
determined using the statistical toolbox in MATLA®7.9.0.529 (R2009b), The
MathWorks Inc., Cambridge, UK). Development ofS?models was carried out
using the PLS toolbox (V6.2 Eigenvector Research, IWashington, US) for
MATLAB. In all cases the spectral data were meantered and first and second
derivative pre-treatments using a segment size5opdints were calculated using
quadratic Savitzky-Goldy filters. Statistical analysis was applied to tegression

between actual concentration values and those qbeediby leave-one-out cross

validation.

3.2.4 Calibration model development

In order to develop a robust reliable model for altivariate calibration, several
concentrations are necessary, which require aliplesscombinations of levels for all
the factors, i.e. a full factorial multilevel desig This is impractical as it would result
in a huge number of samples, therefore, for thibmreion model, a partial factorial

design for a multivariate calibration was employedA 7 concentration-level

experimental design was chosen, which accountsther orthogonality between

successive factors. This resulted in the generatfo49 samples, each containing
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varying concentrations of the 8 componéfits. Concentrated solutions of the 8
components were made and based on the experintesigin, specified units of each
solution were used to create each of the 49 samplbes concentration of each bulk
solution was such that it reached the expected mmami concentration of that
component in a typical cell culture medium. Thepmse of this was to ensure that the
calibration model under development catered forethi@e concentration range of each
of the 8 components in the medium, but at the same did not compromise the
accuracy of the model by using too wide a concéntraange in its development.

Each of the 49 samples was scanned with both pyples.

The spectral data were exported from the ICIR safén(Mettler Toledo AutoChem,
Inc., Columbia, US) and imported into MATLAB. Meaalues of the triplicate scans
were used for model development. Pre-processitigeiriorm of mean-centering was
initially applied to all spectra. A second derivatpre-treatment using a segment size
of 15 points was also examined as second derivatiedreatments can eliminate the
effect of linear baseline spectral off-$étthat are likely to occur over the course of a
culture. Partial least squares regression, opéichlzy leave-one-out cross-validation,

was used to develop separate calibration modelsddn of the 8 components.

The calibration model was validated in two waysstfy, a 4-level multivariate design
was employed. This was similar to the 7-level giesised for the creation of the
model, however only 16 samples of varying concéisinavere generated. There are a
number of suggested validation methods in usehmitRule of 3” is widely accepted
as a suitable technique for evaluating the accucdigy modef? This rule proposes

that the calibration set be 3 times larger than wakdation set. In this case the
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calibration set, a 7-level design, resulted ingbaeration of 49 samples, therefore, the
4-level design, resulting in a sample set of 16 @amand almost one third the size,
was chosen to validate the models. Each of théssafnples was scanned with both
probes as before. The spectral data resulting frese scans was then inputted into
the model and the component concentrations in ehtie 16 samples were predicted
by the model. These predicted values were thenpaosd to the actual values.
Secondly the cell culture medium was spiked witbwn concentrations of different
components and the model was used to predict Hudtirey increase in concentration.
The results of all models were evaluated by the mo@an square errors of calibration,
cross validation and prediction (RMSEC, RMSECV &MSEP) as well as the LOD

for a multicomponent mixture.

3.2.5 External influence investigation

In order to establish if the model would accuratalgdict cell culture concentrations
when exposed to the conditions typically found icedl culture environment, a series
of experiments were carried out. The effect ofyway temperature, agitation,
biomass, and pH were investigated. In additioa,gtesence or lack of antifoam and
pluronic was also examined. For each externali@mite examined, a background of
water was initially scanned within a bioreactore thioreactor was then drained and
dried and filled with EX-CELL CHO DHFRmedium. The bioreactor environment
was varied as outlined in Table 3.2. Both theadigih and temperature were varied by
adjusting the appropriate settings on the reaatatrol system. The pH of the media
was varied by the addition of hydrochloric acid aodium hydroxide to create acidic
and alkaline conditions respectively. The biomass altered by simulating the

growth of a cell culture during the exponential wtio phase; with the cumulative
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addition of a fixed cell density over time. Eadrigtion in bioreactor conditions was
scanned in triplicate using 128 co-added scanss@lscans were ratioed against the

initial background of deionised water.
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Exp. Temperature pH Agitation Biomass Antifoam Pluronic

# (°C) ) (rpm) (cells/ml) (% viv) (g/L)

1 30-44+0.2 7.9 150 - - -

2 37+0.2 5-10 150 - - -

3 37+0.2 7.9 40 - 400 - - -

4 37+0.2 7.9 150  0-4.5x10 - -

S 37+0.2 7.9 150 - 0.05 )

6 37+0.2 7.9 150 - - 0.1
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PLS regression was the multivariate technique epgpldo assess the effect of an
influence when the influence was varied (tempeeggtpH, agitation, and biomass) and
PLS-DA (Partial least squares discriminant ana)$iwas the multivariate method
used for examination if an influence impacted thecsra when present (antifoam and
pluronic). The data was subjected to two testpeatsal test and a relevance test. The
spectral test involved the data undergoing a maitate transformation followed by
hypothesis testing. The relevance test examinecettect (if any), on the predicted
glucose concentration values. Pre-treatmentsarfdirm of mean centering followed
by second derivative using the Savitzky-Golay metivere applied to all spectra prior

to modeling, and in all cases, cross validation wsesl to optimize the models.

A PLS model was constructed to determine whethenetlvas a relationship between
the spectra and the external influence variablesmperature, pH, agitation, and
biomass. Plots of predicted magnitude of influeapglied versus actual values for
each of the tests yielded the coefficient of deteation () and hence the correlation
coefficient (r) was calculated. Based on a Studertest, Pearson’s correlatiorwas
used to test the significance between the influemzkthe spectral measurement. The
null hypothesis (k) was that the influence had no effect on the spe@here>tqisica

at a significance levela( of 0.05, H was rejected and this implied that the external
influence under investigation had a significaneeffon the spectra. Wherdiica at
0=0.05, H was accepted and this implied that the externaluenice under

investigation did not have a significant effecttba spectra.
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The same statistical test was employed when datergnihe relevance of the impact
of each influence on the predicted glucose conagatr values. In this case, the
optimum PLS model for glucose, established in thkbration model development
section, was used to predict the glucose concemiraf plot of magnitude of external
influence versus predicted glucose concentratimviged f values for each of the
external influences, and as before, a Studertsst was used to establish if the
influence had a significant impact on the predictdgicose concentration values at

0=0.05.

Multivariate discriminant analysis was used foitgaavolving antifoam and pluronic
as these were not varied. In both cases concemsatypically used in cell culture
media were added. A PLS-DA model was used to fibamsthe data with respect to
the presence or lack of influence applied. A Stiidd-test was used to interpret the
results of the PLS-DA and determine the signifieaot the effect of both antifoam
and pluronic on the spectra. In this casgwds that all samples were the same and
the alternative hypothesis {Hwas that samples with the influence applied were
different. The same hypothesis test was also egpto the predicted glucose
concentrations for the same sample set.

All experiments were carried out using both the Ag8mm x 2m fibre silver halide

probe (flexible) and the K6 conduit 16 mm prob&€d).
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3.3 Results and Discussion

3.3.1 Preliminary analysis

The spectrum of commercial media exhibited a nundfepeaks. The region of
highest absorbance (1250 — 1000%1s as a result of the overlapping absorbances of
the constituent components. This highlighted tfeblems associated with attributing
the absorbance to a particular component givenottelapping nature of the pure

component spectra.

The spectra of concentrated solutions of each efptire components were examined
to determine the wavenumber ranges over which bBbhsoe occurs. Concentrated
stock solutions, within the water solubility limité each of the components were used
as all absorbance features may not be clearly ewide dilute solutions. The

wavenumber ranges established at this stage avensholable 3.3. These were used
when developing and applying the calibration modeéiis ensured that the predictions
were based on the underlying chemical principle amad metabolism induced

correlationg® 3°

The observed LOD for all components can be foundiahle 3.3 alongside the LOD
determined using a PLS model which has been swéietd hypothesis testing
ensuring false positive and false negative proliggslof 0.05. The PLS model details
used in the calculation of these LODs have alsobeeluded in Table 3.3. The
observed and calculated LODs differ by an ordenagnitude for all components with
the exception of glutamine and glutamate whichediffy a factor of 4. This shows

that a visual inspection is not sufficient to detere such a parameter and more
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information can be gleaned using a chemometricnigcie which is as expected for a
multivariate data set. Glucose, ammonia, phospleteate, HEPES and bicarbonate
could all be detected to levels of 0.09 g/L or low@lutamine and glutamate were not
detected to as low a level as the other componértss is most likely due to the fact
that the molecular bonds present in these compsrend to have weak absorbances
in the MIR region detectable with the instrumenedisn this study* These LOD
values are based on pure component solutions amdory applicable to single
component measurements. This is a simple fedgilsfudy and it establishes at an
early stage the ability of the MIR instrument toasere the components at the low

levels found in mammalian cell cultures.
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Wavenumber Pre-treatment Calculated LOD Observed LOD
Component L #LVs
Range (cn1) (g/L) (g/L)
0.09
Glucose 950-1450 Mean centered 1.0
. o 0.30
Glutamine 950-1700 Mean centeredl derivative 6 1.2
_ L 0.01
Ammonia 950-1500 Mean centered,derivative 2 0.1
0.03
Phosphate 900-1320 Mean centered 0.3
0.35
Glutamate 900-1760 Mean centered 1.3
0.03
Lactate 1000-1620 Mean centered 0.5
o 0.05
HEPES 1000-1250 Mean centereﬁd]arlvatlve 6 0.6
_ o 0.06
Bicarbonate 960-1750 Mean centeretidérivative 2 0.5
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3.3.2 Calibration model development and validation

As stated previously, calibration model developnmweas completed using both probes,
the K6 conduit fixed probe and the flexible fibrptic probe. The detector used in
both cases was the same. Previous studies hatefiwed conduit ATR probé& 32
and discussed the importance of alignment of sucibgs as well as spectral
differences which can occur when the alignmenhisnged>** The development of
infrared fibre-optic immersion probes is relativelgw? in particular for mid-infrared
probes®® hence the evaluation of such a probe for the mdnig of mammalian cell
culture media components is quite relevant.  Tibesfoptic configuration should

eliminate the alignment issues inherent in thediigenduit configuration.

The results obtained using both probe types vagedsiderably and as the
experimental design and detector were unchangedimgarison between both probes
was carried out in an attempt to establish possidleses for the differing results. The
MIR range is generally considered to lie betweef04800 cni. Both probes have a

reduced effective range due to absorbance of tiaahd ATR crystal over the range
of 2250-1950 crl. In addition the fibre-optics of the flexible p@themselves absorb
infrared radiation, further reducing the effectnange of this probe to wavenumbers
less than 1950 cih While the K6 conduit fixed probe measured absnde between

4000-2250 cril, spectra in this region were extremely noisy ametefore unusable.

At lower wavenumbers and also, close to the ATRodi@nce region, the spectra
exhibited a large degree of noise, so this meattttie two probes under investigation
had the same usable wavenumber range (1800-90ptberefore any discrepancies in

results between the two probes cannot be attriltotedfering wavenumber ranges.
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The most significant difference between both prababe geometry of the probe tip.
The K6 conduit probe contains a recessed diamoystatr The outer probe casing
forms a gradual slope to the ATR crystal, thusveilhg for shearing of bubbles, which
may adhere to the crystal surface. The silverdediibre-optic probe also contains a
recessed diamond crystal, however in this caseothier casing does not form a
gradual slope, but rather the crystal is set ab%a@gle to the casing and hence a
“pocket” at the probe tip allows for the entrapmehftbubbles. Removing bubbles
from the tip of this probe proves more difficult th& shear forces at the probe tip do
not reach the bubble trapped inside. In additibe, high surface tension of water
results in bubbles in aqueous solutions adheringh® probe tig} making this
application (to an aqueous based cell culture mediare problematic than typical
applications in reaction chemistry. Fig. 3.4 shaWws problems encountered with

bubble entrapment.

Fig. 3.4 Air bubble on probe tip
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Calibration model results for all samples are shawiable 3.4. These models are
based on calibration samples which contain vargngunts of all 8 components of
interest. In the majority of cases, the RMSEC &slare lower for the K6 conduit
probe than those for the silver halide fibre-optiocbe. All the RMSEC values are less
than 0.25 g/L, and in the case of ammonia, it wadoav as 0.02 g/L. Different
concentrations of each of the 8 components werd, eseresponding to typical values
in cell culture media. In order to put the RMSHEOQperspective, a percentage error of
calibration (PEC) was calculated for each of thelet®, by dividing the RMSEC by
the average concentration used in the calibratigvhile the RMSEC for glutamate
and glutamine appear quite low for both probesy tiepresent quite high percentage
errors, indicating that problems are likely witte thrediction ability of the glutamate
and glutamine models. The percentage errors adscrkalidation and prediction,
(PECV and PEP), calculated in a similar manneh®REC, were greater than 60%
for glutamate and glutamine, thereby indicatingt i@ predicted concentrations of
glutamate and glutamine are not reliable. Thigsug the results of the preliminary
analysis, where the LODs were higher than thogbeobther components and close to
the maximum concentrations typically found in a celture environment. Based on
this information, these components models werdurtier validated using the spiking

test.

All other components had lower percentage erraas tjlutamine and glutamate with
glucose and ammonia showing the lowest percentageseof approximately 15% or
less regardless of probe type or validation set $able 3.5). A plot of predicted

glucose concentration versus actual glucose coratemt as measured with the K6
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conduit probe can be seen in Fig. 3.5. This mbdel low percentage errors and it

can be seen that all samples lie close to thedlifiration line.
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Component Probe #LVs RMSEC PEC RMSECV PECV
Glucose K6 conduit 4 0.25 8.64 0.34 11.65
Fibre-optic 5 0.31 10.38 0.44 14.81
Glutamine K6 conduit 12 0.02 7.48 0.24 77.24
Fibre-optic 3 0.12 40.07 0.25 82.89
Ammonia K6 conduit 3 0.02 4.49 0.03 591
Fibre-optic 4 0.03 5.04 0.04 7.16
Phosphate K6 conduit 4 0.14 30.38 0.19 40.60
Fibre-optic 5 0.11 24.28 0.15 32.82
Glutamate K6 conduit 6 0.09 26.43 0.22 62.88
Fibre-optic 3 0.12 35.39 0.27 77.68
Lactate K6 conduit 4 0.04 9.30 0.06 13.84
Fibre-optic 3 0.20 45.37 0.24 54.60
HEPES K6 conduit 4 0.21 9.94 0.29 13.86
Fibre-optic 4 0.21 10.23 0.27 13.05
Bicarbonate K6 conduit 8 0.07 12.25 0.23 37.26
Fibre-optic 5 0.12 19.05 0.31 51.39
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Glucose K6 conduit 0.17 6.03 0.41 13.53 0.41
Fibre-optic 0.35 12.42 0.24 15.40 0.80
Glutamine K6 conduit 0.19 63.06 - - 1.31
Fibre-optic  0.31 104.25 - - 5.58
Ammonia K6 conduit  0.06 13.17 0.09 16.14 0.14
Fibre-optic  0.06 11.53 0.10 18.23 0.12
Phosphate K6 conduit  0.14 31.58 0.07 10.49 0.33
Fibre-optic  0.18 41.85 0.07 10.57 0.45
Glutamate K6 conduit 0.21 64.45 - - 0.67
Fibre-optic  0.32 96.93 - - 1.93
Lactate K6 conduit  0.07 16.77 0.32 78.56 0.16
Fibre-optic  0.13 30.81 0.18 44.69 0.28
HEPES K6 conduit  0.30 14.97 0.08 8.26 0.71
Fibre-optic 0.26 12.91 0.49 48.47 0.66
Bicarbonate K6 conduit 0.37 45,72 0.60 24.49 1.64
Fibre-optic 0.52 64.76 0.72 30.13 2.68
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Fig. 3.5 Plot of predicted versus actual glucos®wcentrations for calibration and

validation data, as measured with K6 conduit probe

Table 3.6 provides a summary of literature exampdésinfrared spectroscopy
instruments with different types of sampling beinged to measure glucose
concentration; with glucose being the most commoatabolite measured in
bioprocesses. For the sake of comparison withrélalts in this study, any values

reported as mM were converted to g/L and reduce&dsignificant figures.
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TABLE 3.6 Infrared spectroscopy instruments bag used to measure glucose in bioprocesses

Technigue  Sampling Accessory Culture type #Cal#Val RMSEC RMSECV RMSEP % error Ref.
g/L g/L g/L
37

NIR Off-line  Transmission Mammalian 58 14 0.60 D5

NIR Off-line  Transmission Mammalian 0.04 0.07 8da.
NIR In-line  Transmission/Fibre optic 104 24 0.10 0.15 398 M
NIR In-line  Reflectance/Fibre optic Bacteria 80 30 1.79 4.70 2.90 13
NIR In-line  Transmission/Fibre optic Mammalian 217 0.13 0.07 0.10 12
NIR On-line  Transmission Mammalian 0.17 39
NIR-Vis Off-line  Transmission Yeast 126 70 0.79 8. 40
NIR In-line  Transflectance/Fibre optic Mammalian 50 16 0.10 0.20 15
NIR In-line  Transflectance/Fibre optic Bacteria 1.90 2.00 970 1°
NIR In-line  Transflectance/Fibre optic Mammalian 0.23 0.19 17
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Techniqgue Sampling Accessory Culture type #Cal #Val RMSEC RMSECV RMSEP % error Ref.
g/L g/L g/L
NIR In-line  Transflectance/Fibre optic  Mammalian 73 12 0.30 0.36 0.36 30
MIR In-line  ATR/Fibre optic Bacteria 2.80 3.50 3
MIR In-line  ATR/Conduit Bacteria 91 0.26 3
MIR In-line  ATR Mammalian 60 225  0.09 0.11 18
MIR Off-line  Transmission Yeast/Bacteria 0.38 “
MIR On-ine  ATR Yeast 0.35 0.40 0.27 2
MIR Off-ine  HATR Bacteria 70 20 0.69 0.56 3

74



Chapter 3

When results from this study are compared to thisged in Table 3.6, it can be seen
that the RMSEC values are of the same order of mafmbut without a percentage
error value, it is not always appropriate to conspgtiese. The most comparable study
was that of Rhieet al*® where an RMSEC value of 0.09 g/L was obtained.il&this
value is lower than that achieved in this studydeis were developed with a larger
number of calibration samples which could improwe terror values. As stated
previously, an experimental design requiring a mali number of samples (49) was
used in this stud§f When the model was applied to the validation inatamples,
phosphate, lactate, and bicarbonate all had lowersswhen the K6 conduit probe
was used. The errors for HEPES were lower forfithre-optic probe but only by a
small amount. Samples of media spiked with knowroants of a given component
represent a slightly more difficult test for the deb as these samples had unknown
components present as the exact composition afdhmenercial medium used was not
known. Spiked sample PEPs for glucose, ammonidaatate were all higher than for
the validation matrix samples. The results for ttker components did not give
consistent results for the different validationssetOf the 9 studies with in-situ probes
in Table 3.6, only 3 of these achieve a lower RM3l&h that reported in this study
but as stated above, a direct comparison is nayawossible without details on the

percentage error.

In a similar way to the calibration models of seglomponents in the preliminary
analysis section, the models made from multicompbsamples were subjected to the
same hypothesis test to determine an LOD with sefglositive and false negative

probability of 0.05. Every component had a high®D value in a multicomponent
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mixture than that calculated using single companeamples. In almost all cases the
value was an order of magnitude higher and foraghine, glutamate and bicarbonate,
the LOD value was larger than the maximum conce&atreof each component that

was used to make the calibration samples.

3.3.3 External Influence investigation

The results of the external influence tests casdasmn in Table 3.7. In all cases of the
agitation test, bllwas accepted, strongly suggesting that variatiampeller speed had
little effect on the spectra and hence the prediatencentration of the model.
Hypothesis testing of the antifoam results indidateat the presence of antifoam did
not appear to impact the spectra significantlyrefae it is not necessary to account

for this when developing a calibration model.

Based on the results of the statistical tests eggh variation in pH, as expected; H
was rejected both for the spectral test and trevagice test, for both probes. Varying
pH changes the chemical constitution of the medid based on the underlying
principle of infrared spectroscopyit follows that the spectra will also change. The
cell culture environment requires tight controltioé pH; therefore major shifts in pH,
resulting in inaccurately predicted values are kahi to occur. However, for the
development of a calibration model where the sysignlikely to experience pH

changes, pH should be used as an additional fectbe experimental design.
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Agitation Biomass pH Temperature Antifoam  Pluronic
Multivariate  Fibre optic accept H reject H reject H reject H acceptd rejectH
test K6 conduit accept H reject H reject H reject H acceptd rejectH
Relevance  Fibre optic accept H accept 4 reject H reject H acceptd reject B
test K6 conduit accept H reject H reject H reject H acceptld acceptH
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Statistical analysis of biomass concentration iat#is that the spectra and hence the
predicted concentration values will change as theass concentration increases. By
simulating the growth of a cell culture the sampiedia could possibly have been
altered with the addition of small amounts of spewdia in which the cells were
suspended prior to addition.  This potential gegawhich would not occur over the
course of an actual cell culture could have bearfomded with the effect of the
increasing biomass concentration. The relevanse itelicated that this is not a
significant result for the fibre optic probe whifer the K6 conduit probe it was
calculated to be significant at=0.05. Previous studies have shown that biomass
concentration can have an effect on NIR spectratduight scatter and the fact that
biomass absorbs in the NIR regitin'® The ATR sample method for MIR instruments
results in a short penetration depth of the MIRtigourcé* *° so scatter effects will

not be present

The effect of varying temperature was calculatetidwee a significant effect for both
the spectral and relevance tests, for both probéss is not unexpected as temperature
impacts the bonds between the molecules which és uhderlying principle of
vibrational spectroscopy including M. As with pH, temperature is tightly
controlled in mammalian cell cultures so unlessibéehte temperature shifts are
necessary, this factor does not need to be acabdotein the model. If the same
model was to be applied to a cell culture with it parameters with the exception
of temperature, it would need to be recalibratezbanting for the temperature change

by including temperature as a factor in the expental design.
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Pluronic can sometimes be added to mammalian gklires and the effect of addition
at typical concentrations appears to have a saanifi effect on a spectral level. This

result was

found using both probes. The relevance test itelicthat it was not significant for the
K6 conduit probe but that it was a significant efféor the fibre-optic probe. Given
this difference, it would be recommended that iirphic is to be added to a cell
culture, it should be included in the experimestage. This would not be difficult to

do as it would be present at the same concentratieach sample.

3.4 Conclusion

This study outlines a methodology for evaluating tpotential of mid-infrared
spectroscopy as an on-line tool for monitoring maaam cell culture media
constituents. This method is beneficial as it tdis at an early stage where the
technigue may be best applied. A detailed compiarnis two sampling systems is also
outlined. This highlights any issues due to diffgrdesign of ‘sample to crystal’
interface areas. The importance of a chemomtdinique, in the treatment of the
data for the LOD analysis, is clearly evident asdbserved LOD was always found to
be greater than the calculated LOD. The LOD resumidicate that at concentration
levels found in cell cultures, certain componengs glutamine, lie below the detection
ability of the instrument. Also, the LOD for eacbmponent is significantly higher in

the multicomponent mixture than in the single congd mixture.

An experimental design using a sample set of 49candentrations typically found in

a mammalian cell culture were used in the developnoé the calibration models.
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The study indicates the applicability of the tecjua in the monitoring of glucose and
ammonia, both of which are major media constituentsnammalian cell cultures.
Although all 8 components investigated cannot Wmbly monitored, due to their
presence at such low concentration levels, thepotential for the development of a

control platform, of a mammalian cell

culture, based on glucose and ammonia. It shoelddied that the accuracy of the
prediction ability of a model is very much dependen the sample set size and the
concentration level of each of the components pteséAn increase in the number of

samples in the sample set should improve the acgwfathe model.

Finally the external influence series of experinsemidicate that changes in certain
environmental conditions will impact spectra. Heee is must be noted that
maintaining these environmental conditions reldyiv®nstant is crucial to the overall
bioprocess. Therefore changes will impact resiitsyever, the range over which
these changes can occur, without impacting therbagss is so tight that the process

will be affected before the spectra are impacted.
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Chapter 4

Study 2: Application and optimisation of in-situ MIR calibration models for the

prediction of glucose and lactate in mammalian celfultures

As submitted to Applied Spectroscopy, January 2013

Abstract

The primary aim of this study was to apply multiaée calibration models to data
collected in real time during the course of a CHBPI1R cell culture in bioreactors to

predict glucose and lactate concentrations. Tdesehthis aim, an investigation into

the optimisation of these models was performecdieffort to improve their accuracy

and robustness. The study comprised a seriescoft@es which were monitored in-

situ using mid-infrared (MIR) spectroscopy. Sarspler reference HPLC analysis
were taken daily to compare to the in-situ MIR jceztl data. Aliquots of these daily
samples were scanned using the same instrumentatinadtures were complete and
the same partial least squares regression (PLSgIsvagplied in order to evaluate the
set- up when applied in an offline or at-line sgemaThe PLS models used exhibited
expected trends when applied in-situ, with glucdseletion and lactate formation

clearly evident. The accuracy of prediction howewas low, with RMSEP values for

glucose and lactate, 0.73g/L and 1.21g/L respdgtiveVhen the same models were
applied to the spectra of culture samples takelnefthe glucose and lactate errors
were reduced by 60.27 and 13.22% respectively.in@igation of glucose and lactate
models for in-situ use was achieved by developib@ hodels using spectral data

generated in-situ and offline from all 3 cell cuds. When offline data was used as
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part of the optimised calibration training set, lIsunodels consistently performed
better than the original PLS models. Optimisedcgde model results showed an
improvement in RMSEP as high as 37.93% while ostadilactate model results had

an improved RMSEP of 61.98%.

4.1 Introduction

Over a decade since its conception in August 200 Food and Drug
Administration’s (FDA) initiative, “PharmaceuticaCurrent Good Manufacturing
Practices”, (cGMP’s), has had a significant impact the pharmaceutical and
biopharmaceutical industriés. The purpose of this initiative is to modernise th
regulation of pharmaceutical quality through themart and promotion of risk-based
and science-based approache€entral to the implementation of this initiatiiethe
concept of Quality by Design (QbD) which utilisemo&ess Analytical Technologies
(PAT) to gain in-depth process understanding, lgado the eventual application of
these technologies to monitor and control procesbas mitigating risk and reducing

variability.>

Quantitative analysis of the key analytes and nadit&ls in a bioprocess can provide a
plethora of information, which, when applied, caiel¢ powerful results such as
improved product quality and enhanced biomass mtozh® PAT tools should be
capable of providing rapid yet reliable measuremebe possible to calibrate and
preferably be non-invasive. Infrared (IR) speatops/ meets these criteria and has
been shown to monitor key analytes both in-situ antine®® Development of
chemometric models for quantitative measuremergetifculture components via IR

has been documented, with the greater portionisfwbrk focused on the use of near-
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infrared (NIR) spectroscopy** The development of such models using mid-infrared
(MIR) spectroscopy has also been reported, buueatiahs of its online application to

mammalian cell cultures are mininaft®

A number of studies have been carried out usindivauniate analysis of spectroscopic
data to develop calibration models capable of diamglous monitoring of several key
analytes in a bioreactéf*® Emphasis has been placed on the importance of the
calibration set and Cervera et. autline various techniques employed for NIR
spectroscopy® There has been much debate on the selection efoftimum
calibration sample set, with some researchers amgopurely synthetic sample
matrices arguing that the use of such samples geevaccurate results over wide
concentration ranges and proves a more difficulidation test for the modéf
Others favour the use of real fermentation sampigblighting fermentation are
broths impossible to simulalé! The final option is that of a combined sample set
one containing spectra obtained from real sampteoa spiked samples and/or
synthetic samples. This method has also been mgedsearchers when developing
calibration matrice$>** The study presented here performs a comparative
investigation by examining the efficacy of varidddR models for glucose and lactate
prediction both in-situ and at-line. Models wereated using spectra collected from
synthetic samples only, a combination of synthetid real cultures samples (collected

offline) and finally from all sample types; syntltesamples and real culture samples

(collected online and offline).

The purpose of this study was to evaluate the chiyads¥ MIR as both an online in-
situ and at-line tool for glucose and lactate nummiy when applied to a mammalian

cell culture. This was achieved by applicatiorateeries of CHO DP12 cultures in a
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bioreactor, but also by further analysis of spesdtopic data collated. A direct
comparison between models, with various calibratsgts and also spectral pre-
treatments is provided in order to identify an optm methodology for MIR

calibration model development for the purpose ofnitowing media constituents

within a bioreactor.

4.2 Materials & Methods

4.2.1 Cell culture

A series of 3 batch cultures was completed in aréaction calorimeter, RCle
(Mettler-Toledo AutoChem Inc., Columbia MD, USA).CHO DP12 cells were
cultivated in suspension in 1.6L of media (Ex®&I825 PF CHO, Sigma Aldrich
Ireland Ltd.) which was supplemented with Antifo&n glutamine, insulin & MTX
(Sigma Aldrich Ireland Ltd.). Samples were remoeséry 24 hours and cell counts
performed manually. The pH of the culture was walgd and maintained between
pH 7.0 and pH 7.2 using 2 M NaOH and £®issolved oxygen was also monitored
and entered the reactor via a ring sparger. Taetoetemperature was controlled at

37°C for the duration of each of the 3 cultures.

Fig. 4.1 Bio-reaction calorimeter, RC1e, with contoller set up

88



Chapter 4

4.2.2 Instrumentation and real time monitoring

The cell culture environment within the reactor wasnitored in real time using a
Fourier transform mid-infrared ReactIR iC10 instemhwith MCT detector (Mettler
Toledo AutoChem, Inc., Columbia, US). A K6 condi@® mm immersion probe was
used with a fixed path length of approx. 42 and a diamond ATR crystal with 6
internal reflections. The detector and probe weregged with nitrogen gas
continuously. Prior to media transfer to the regcthe vessel was filled with
deionised water and heated to %7. A background scan was taken at this point.
Under sterile conditions the water was removed, rtteglia added and the reactor
inoculated. The instrument was set to scan evéyminutes, with each scan
comprising 128 co-added scans. All data was delteon the instrument software, iC
IR™ (Mettler-Toledo AutoChem Inc., Columbia MD, USA)As the spectral files
were generated, they were exported to a MATLAB paog (v7.9.0.529 (R2009b),
The MathWorks Inc., Cambridge, UK), where previgudeveloped PLS modéfs
developed on the PLS toolbox for MATLAB (V6.2 Eigettor Research Inc,
Wenatchee, WA, US) were used to predict the conagom of glucose and lactate
present inside the bioreactor. A check was inauidethe program in an attempt to
eliminate predicted concentrations that were imidessi.e. sudden drops or increases
in concentration which could not reasonably be iokth within the 10 minutes

between each scan.

4.2.3 Reference analysis
The first of the 3 cultures ran until day 7, aftdrich time cell counts indicated that the
culture had moved from stationary to death phadee following 2 cultures ran to day

6. All cultures were sampled daily. Once cell misuwere completed the samples
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were prepared for offline analysis. Raw samplesewentrifuged and the supernatant
retained. Glucose and lactate concentrations determined by HPLC analysis. The
supernatant was filtered using a 0.28n hydrophilic PTFE filter (Millipore
Corporation, Billerica, MA, USA). A sample volunt 12 pl was injected onto a
SUPELCOGEL C-610H column (Sigma-Aldrich Corporati@t. Louis, MO, USA)

equilibrated with 0.01 M sulphuric acid solutionsaflowrate of 0.5 ml/min

4.2.4 Offline/at-line spectra collection and arssy

The supernatant samples (total of 22) were store8°C until all 3 cultures were
complete, after which time they were thawed, hette®i7 °C and scanned offline and
in triplicate against a background of deionisedervat 37°C. The calibration models
used to predict the concentrations of the 2 compisnef interest in real time (see
Table 4.1) were then applied to the spectral dateeated from the offline scans in
order to determine if the accuracy was improvedmiie instrument was not subject
to the environmental conditions of a cell cultuiéis study was performed in order to

investigate the at-line capabilities of both th&tinment and the models.

4.2.5 Model development and optimisation

The development of the multivariate models appliedhe spectral data collected
during the 3 cell cultures has been fully described previous stud§” All models
created were based on a 7-level partial factoealgh?® Synthetic samples (49) were
generated to reflect the conditions of a cell geltenvironment, however actual
culture samples, were not included in the modektigment. Table 4.1 summaries
the PLS regression models used for in-situ applinat These models, developed in a

previous study, both use mean centering alfdd@rivative Savitzky-Golay as pre-
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treatments. Mean centering is often performed atefault pre-treatment. It was
selected here as it prevents data points thatwatkef from the origin exerting an
undue amount of leverage over the points that lasecto the origin. In this case, as
the cultures were run over the course of a weakijnimised the effect of instrument
drift on the model results. Second derivative &ytGolay or S-G smoothing, as it
is also known; enhances small spectral differerzses separates overlapping peaks.
As the culture medium contains several componaotse of which are unknown, this
form of pre-treatment was selected to separate ingegpectral peaks occurring as a

result of the many components present in the altur
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TABLE 4.1 PLS regression models for in-situ & atdne application

Model # Component Pre-treatment No. Latent Wavenumber

Variables Range (cml)

1 Glucose Mean centered 4 950-1450
2" derivative Savitzky-
Golay, filter width 15

1 Lactate Mean centered 4 1000-1620
2" derivative Savitzky-
Golay, filter width 15

Models used to predict glucose and lactate conatemis were further processed in an
effort to optimise such models and create more sbbud reliable predictions. The
calibration sets were expanded to include speetkant in-situ during the culture,
and/or culture sample spectra collected offline.hede models are referred to
throughout this text as “hybrid models” as the xadeequired in generating these
regression models is a composite of spectral dataired from synthetic and real

culture samples.

Four model categories are presented, the firstto€lwhas been outlined in detail in

Table 4.1. PLS regression, optimised by leave-rtecross validation was used to

develop all calibration models. All data was meantered and second derivative pre
treatments, of filter widths 15 and 21 were appliealculated using Savitzky-Golay
filters.?” Second derivative pre-treatments were chosehegscan eliminate the effect
of linear baseline off-sétsthat are likely to occur over the course of auneltand

smooth noisy spectra. Standard normal variate (SN¥®-treatment was also applied
to mean centred data. This pre-treatment is predontly used for NIR spectra as it

removes multiplicative interferences of scatter padicle siz& however it was also
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examined in this study as a potential pre-treatrdertto the nature of the cell culture

environment (increasing turbidity due to biomassngh).

The second model category was divided into 2 sutletso Model 2a and Model 2b,
as they were largely similar, however the caliloratset size of Model 2b was smaller
and the validation sets used for both models wifereint. Model 2a consisted of the
49 original spectra obtained from scans of the hstit samples and also spectra
collected offline from all 3 cultures (22 culturansples) creating a training set of 71
samples. Using this data 3 models were developelath glucose and lactate. These
models differed in pre-treatments applied and/ernbmber of latent variables used.
Table 4.2 provides specific details for all mod#dseloped. All versions of Model 2a

were applied to the in-situ data generated durulgies 1, 2 and 3.
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Model Type

Component

Pre-treatments &

Latent Variables

Calibration data set

Validation data set

2a

2a

2a

2a

2a

2a

2b

2b

2b

2b

2b

2b

Glucose

Glucose

Glucose

Lactate

Lactate

Lactate

Glucose

Glucose

Glucose

Lactate

Lactate

Lactate

MC_2derl15 4BV
MC_2der21 5LV
MC_SNV_5LV
MC_2der15 4LV
MC_2der21 3LV
MC_SNV_4LV
MC_2der15_4LV
MC_2der21 6LV
MC_SNV_4LV
MC_2der15 3LV
MC_2der21 3LV

MC_SNV_4LV

49 synthetic samples, 22 offline spectra (cultdr@s&3)
49 synthetic samples,filid@ spectra (cultures 1,2 &3)
49 synthetic samples, 24radfspectra (cultures 1,2 &3)
49 synthetic samples, i@ spectra (cultures 1,2 &3)
49 synthetic samples,flid@ spectra (cultures 1,2 &3)
49 synthetic samples, 22mdfbpectra (cultures 1,2 &3)
49 synthetic samples,filihe spectra (cultures 1,2 &3)
49 synthetic samples,filihe spectra (cultures 1,2&3)
49 synthetic samples, 1limdfspectra (cultures 1,2&3)
49 synthetic samples,filihe spectra (cultures 1,2&3)
49 synthetic samples,fililhe spectra (cultures 1,2&3)

49 synthetic samples, 1lindflspectra (cultures 1,2&3)

In-situ spectra: Cultures 1,2 & 3
In-situ specti@ultures 1,2 & 3
In-situ spectra: tanels 1,2 & 3
In-situ specti@ultures 1,2 & 3
In-situ spect@ultures 1,2 & 3
In-situ spectra: tnals 1,2 & 3

11 offline specti@ultures 1,2 & 3

11 offline spectr@ultures 1,2 & 3

11 offline spectrailt@es 1,2 & 3

11 offline spectr@ultures 1,2 & 3

11 offline specti@ultures 1,2 & 3

11 offline spectrailt@es 1,2 & 3
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Pre-treatments &

Model Type Component Calibration data set Validation data set
Latent Variables
3 Glucose MC_2derl5 4LV 49 synthetic samples, tinspectra (cultures 1&2) In-situ spectra: CultBre
3 Glucose MC_2der21_4LV 49 synthetic samples, tim-spectra (cultures 1&2) In-situ spectra: CultBre
3 Glucose MC_SNV_6LV 49 synthetic samples, in-sjtectra (cultures 1&2) In-situ spectra: Culture 3
3 Lactate MC_2der15 3LV 49 synthetic samples, m-spectra (cultures 1&2) In-situ spectra: CultBre
3 Lactate MC_2der21 3LV 49 synthetic samples, tn-spectra (cultures 1&2) In-situ spectra: CultBre
3 Lactate MC_SNV_4LV 49 synthetic samples, in-sipectra (cultures 1&2) In-situ spectra: Culture 3
49 synthetic samples, in-situ spectra (cultures)1&#line
4 Glucose MC_2derl5 4LV In-situ spectra: Culture 3
spectra (cultures 1,2&3)
49 synthetic samples, in-situ spectra (cultures)1&#line
4 Glucose MC_2der21 5LV In-situ spectra: Culture 3
spectra (cultures 1,2&3)
49 synthetic samples, in-situ spectra (cultures)1&&#line
4 Glucose MC_SNV_5LV In-situ spectra: Culture 3

spectra (cultures 1,2&3)
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Pre-treatments &
Model Type Component
Latent Variables

Calibration data set

Validation data set

4 Lactate MC_2derl5 3LV
4 Lactate MC_2der21 3LV
4 Lactate MC_SNV_4LV

49 synthetic samples, in-situ spectra (cultures)1&#line
spectra (cultures 1,2&3)

49 synthetic samples, in-situ spectra (cultures)1&8#line
spectra (cultures 1,2&3)

49 synthetic samples, in-situ spectra (cultures)1&&#line

spectra (cultures 1,2&3)

In-situ spectra: Culture 3

In-situ spectra: Culture 3

In-situ spectra: Culture 3

a: MC = mean centered; 2der15 = Savitzky-Goldyl@rivative pre-treatment with filter with of 150@r21 = Savitzky-Golay™ derivative pre-treatment with filter with of 21VI= latent variables
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The calibration set used in the development of M@b8ealso contained the 49 original
spectra collected from the synthetic samples, ibtihis case only 11 of the 22 spectra
obtained from the offline culture samples were add®odel 2b was then applied to
the remaining 11 offline spectra in order to essblf the addition of spectral data
obtained from an actual cell culture sample enhéice predictive ability of an at-line
model. As with model 2a, 3 PLS regression modaeevdeveloped for each of the 2

components of interest.

Model 3 comprised the original 49 spectra and spatitained each day, in-situ, at the
time of sampling, during the first 2 cultures. §model was then applied to the online
spectra generated over the course of the thirdreultThe training sets for glucose and
lactate for Model 3 differed slightly. Based ore fim-situ application analysis in this
study and the limit of detection investigation cdeted in an earlier study, the
glucose scans were found to be unreliable oncgltltmse concentration fell below its
limit of detection. Only spectra collected prior tiois point were included in the
development of the new glucose models. Therefolg spectra collected at the
sample time from day O to day 3 were used. Laotate formed and from day O
lactate levels lay above the minimum detectiontlitiierefore all spectra collected at
the sample time during the first two cultures wesed in the newly developed lactate

models.

In the final model, Model 4, the 22 spectra cobelcoffline were added to the training

sets of Model 3, for glucose and lactate. This ehadhs then applied to the in-situ

spectral data of the third culture.
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4.3 Results and Discussion

4.3.1 In-situ application

Glucose and lactate concentrations were prediatedeal time as all 3 cultures
progressed. Reference analysis via HPLC showed tha actual glucose
concentration in each of the cultures began at/B.@¢.2g/L and fell to Og/L. The
glucose versus time plots in Fig.1l show that the online predicted glucose
concentrations followed this trend in depletionhisTtrend has been reported in other
studies’** However to the authors’ knowledge, only two otkardies exist where
measurements of a mammalian cell culture were takereal time using an MIR
immersion probe, and therefore directly comparabt. As the glucose approached
its limit of detection (LOD) of 0.41g/L, establighén a previous stud¥, the results
became unreliable. In cultures 1 and 3, in-sitwits predicted an increase in glucose,
having reached a minimum of Og/L, and culture Zmted negative concentrations.
(Note: due to unplanned instrument downtime dudafjure 2 there are 15 hours on
day 5 over which in-situ data was not collecte@inese spurious spectra, exhibited by
all 3 cultures may be as a result of increased assmnconcentration from day 4,
causing probe fouling, however, the lactate reddilisnot appear to be impacted by
possible physical changes in the cell culture @mirent, and so it is most likely that
in-situ, predicted glucose values after day 4 wergeliable as the glucose

concentration in the bioreactor had fallen belogetectable limit.

The root mean squared error of prediction, (RMSER) used to evaluate each of the
models*®* The RMSEP was calculated based on data colldotsitu from all 3
cultures. This was found to be 0.73g/L; quitergdaerror given the maximum value

of glucose at anytime was 3.0g/L £0.2g/L. Thisuealvas recalculated using only data
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generated from day O to day 3 of all cultures ara$ weduced to 0.6g/L, thereby
improving the error by 17.80%. An obvious trendglocose depletion was observed,
however the level of accuracy required for appicato real time monitoring and

control of mammalian cell cultures was not reachsuhg this set up and method of

model development. Therefore further optimisabbthe model was investigated.

HPLC results for lactate showed that the minimuartstg concentration was 0g/L.
The lactate concentration reached a maximum orddaliere concentrations of all 3
cultures were 2.78g/L + 0.06g/L with a slight diapconcentration over the remaining
days of each culture. The lactate versus timesglotFig.4.1 show that the in-situ
predicted lactate concentrations followed the oleskr trend, with in-situ
concentrations peaking on day 4 and then droppyng-®35g/L. However all 3
cultures indicate that predicted lactate conceiotnatconsistently fell below actual
lactate values. The average maximum differencevdrat actual and predicted
concentrations, over the course of all 3 culturas W.65g/L, a considerable difference
and over 50% of the maximum lactate concentratieached for all 3 cultures.
However the clear and precise trending exhibitedlb@ cultures suggests that further
optimisation of the model used may further redue deficit and create more robust
and reliable models. An RMSEP value of 1.21g/L walsulated for lactate. Spectral
data and predicted concentrations did not indinateliable, spurious results after day
4, therefore unlike glucose, a second RMSEP valasedb on days 0-3 was not

calculated.
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Daily samples from all 3 cultures were retainedptsform offline/at-line analysis.

Glucose and lactate concentrations for all 22 samplere predicted using the PLS
regression models outlined in Table 4.1. Fig. suthmarises the in-situ, offline and
HPLC results for glucose and lactate trends foBallltures. Based on these plots it is

evident that the offline method is more effectivR®MSEP values were calculated as a

means of evaluating the comparison between bosiitunand at-line applications. At-

line prediction yielded a glucose RMSEP value @6Q/L, a 60.27% decrease on the

real time value of 0.73g/L, while the lactate RMSEHM to 1.02g/L, a 13.22%

reduction on the in-situ RMSEP of 1.21g/L. Tabl@ dummarises the comparison of

both methods.

Table 4.3 In-situ versus at-line prediction compason

Glucose Lactate
In-situ At-line In-situ At-line
RMSEP RMSEP RMSEP RMSEP
(g/L) (g/L) (g/L) (g/L)
0.73 0.29 1.21 1.05

The improvement in the predictive abilities of tinstrument may be attributed to a

number of factors: the constant flux within theag®r and the possible minor
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vibrations of the probe due to instrumentation na@ots were eliminated. All
samples were scanned in a controlled environmetitowi agitation and impact of
external physical influences. A known cause ofrigus scans was removed by
application of this technique; that being the fotioraof gaseous bubbles on the probe
tip. In the aqueous cell culture environment bi@eactor, real time monitoring using
an immersion probe is subject to frequent and wgntable formation of bubbles on
monitoring devices? This is further compounded by the required aeradf the cell
culture. Such bubbles, either partially or fullyvering the probe tip, skew the results
as the IR may penetrate into the gas within théblauthereby producing an inaccurate
“snapshot” of the contents of the reactor. Theaffof this may be mitigated by
programming the data acquisition system to rejeahs that are not plausible, as was
done in this case. At-line analysis allows for temoval of bubbles prior to initiation

of scanning.

Though not appearing to be problematic in thisansg, potential fouling of the probe
in the latter stages of the cell culture, due ghttell densities is also eliminated. The
at-line method removed cellular matter by centfign of samples and scanning of

the resulting supernatant.

4.3.3 Model optimisation

Spectral data generated both in-situ and offline wsed to further develop optimised
PLS models. The details of these hybrid modelsoaténed in Table 4.2. Second
derivative pre-treatments consistently resultedmproved predictions; however the
optimum filter window varied depending on the motigle. The SNV pre-treatment

did not show the same improved prediction, see&RandFig. 4.4,and in the case of
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glucose, the RMSEP values of hybrid models using/ Sie-treatment failed to
improve upon the RMSEP values of the original madelble 4.1). Hybrid model

results are outlined in Table 4.4 and Table 4.5.
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Model RMSEP Test set
(g/L)

49 syn mc_2derl5 4LV 0.73 in-situ spectra, cultures 1,2&3
glucose2a MC_2derl5 4LV 0.65 in-situ spectra, cultures 1,2&3
glucose2a MC_2der21 5LV 0.77 in-situ spectra, cultures 1,2&3

glucose2a MC_SNV_5LV 1.17 in-situ spectra, cultures 1,2&3

49 syn mc_2derl5 4LV 0.29 off-line spectra, cultures 1,2&3
glucose2b MC_2derl5 4LV 0.18 off-line spectra, cultures 1¥2&
glucose2b MC_2der21 6LV 0.21 off-line spectra, cultures 1¥&

glucose2b MC_SNV_4LV 0.44 off-line spectra, cultures 1,2&3

49 syn mc_2derl5 4LV 0.14 in-situ spectra, culture 3
glucose3 MC_2derl5 4LV 0.34 in-situ spectra, culture 3
glucose3 MC_2der21 4LV 0.72 in-situ spectra, culture 3

glucose3 MC_SNV_6LV 0.63 in-situ spectra, culture 3

49 syn mc_2derl5 4LV 0.14 in-situ spectra, culture 3
glucose4 MC_2derl5 4LV 0.31 in-situ spectra, culture 3
glucose4 MC_2der21 5LV 0.39 in-situ spectra, culture 3

glucose4 MC_SNV_5LV 0.57 in-situ spectra, culture 3
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Model

RMSEP

(g/L)

Test set

49 syn mc_2derl5 4LV
lactate 2a_mc_2derl5 4LV
lactate 2a MC_2der21_3LV

lactate 2a MC_SNV_4LV

1.21

0.46

1.02

0.69

In-situ spectra, cultures 1,2&3
In-situ spectra, cultures 1,2&3
in-situ spectra, cultures 1,2&3

in-situ spectra, cultures 1,2&3

49 syn mc_2derl5 4LV
lactate 2b MC_2derl5 3LV
lactate 2b MC_2der21_ 3LV

lactate2b MC_SNV_4LV

1.05

0.38

0.36

0.93

off-line spectra, cultures 1,2&3
off-line spectra, cultures 1R &
off-line spectra, cultures 12&

off-line spectra, cultures 1,2&3

49 syn mc_2derl5 4LV
lactate 3 MC_2derl5 3LV
lactate 3 MC_2der21_ 3LV

lactate 3 MC_SNV_4LV

0.96

0.49

0.46

0.87

in-situ spectra, culture 3
in-situ spectra, culture 3
in-situ spectra, culture 3

in-situ spectra, culture 3

49 syn mc_2derl5 4LV
lactate4 MC_2derl5 3LV
lactate4 MC_2der21 3LV

lactate4 MC_SNV_4LV

0.96

0.96

0.50

0.87

in-situ spectra, culture 3
in-situ spectra, culture 3
in-situ spectra, culture 3

in-situ spectra, culture 3
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The original glucose and lactate models were d@eeldased on the identification of
8 common cell culture components (glucose, lacttenonia, glutamine, glutamate,
sodium bicarbonate, phosphate and HEPES). UsexgetB components a cell culture
environment was simulated and the calibration neodelveloped. To optimise these
models the effects of both unknown media componandsproducts produced during
the cell culture were accounted for in the modelettgoment. Model type 2a(Table
4.2), which consisted of synthetic samples anducellsamples collected offline, was
applied to then-situ spectra of all cultures. Glucose results indidate improvement
on the RMSEP of 10.96% while the lactate error feim 1.21g/L to 0.46g/L,
resulting in a 61.98% improvement. Optimum models predictions of in-situ
glucose and lactate spectra were hybrid modelsiatll mean centering and Savitzky-
Golay second derivative (filter width of 15) predtments. The addition of actual
culture samples to the calibration sets fortified models and improved the accuracy

of the model when applied to spectra collectedtinia the reactor.

Model type 2bwas applied to the offline spectra not includedhi@ calibration set in
order to determine if theffline/at-line predictions could be improved. It has already
been seen that the original models preformed bettem applied to offline/at-line
culture spectra. Again, hybrid 2b models perfednbetter than the original models.
The error of prediction for glucose fell from 0.29gto 0.18g/L, a 37.93%
improvement and for lactate fell from 1.05g/L t@8®y/L, an improvement of 60.95%.
In the case of glucose, a narrower filter widtiLB6fpoints in the second derivative pre-
treatment performed best, while lactate result©deed a larger filter width of 21

points. These results highlight the importance poé-treatment selection and
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application and show different components with edifig spectra may give better

predictions with different spectral pre-treatments.

Both model types 2a and 2b indicate that the imafusf real culture sample spectra,
which contain unknown components due to the prtgmeformulation of many cell
culture media, create more robust and reliable msofte both online and at-line

purposes.

Model type 3was developed in order to investigate if the addiobf spectra collected
in-situ could further enhance results. As with mlsd2a and 2b, the additional spectra
used in this calibration set were obtained fronualctell cultures, therefore allowing
for the effect of unknowns to be built into the rrbdHowever as the spectra used to
augment the calibration set were collected in-sather factors, not accounted for in
the previous hybrid models were incorporated i@ model, such as environmental

and external influences.

Table 4.4 shows the errors obtained for all modékype 3, for glucose. None of the
hybrid models resulted in an improvement on thgioal model when applied to the
selected validation set. Although data collectiéer glucose had reached its LOD was
omitted, the trends exhibited in Fig. 4.1 showedl thven at an early stage glucose
spectra collected online were not reliable, andpiteglictive error associated with the

online measurements was quite large (0.73g/L).

Therefore the addition of such unreliable speatr#he calibration set only served to
increase noise in the models and the additionahated information that improved the

performance of Model 2a was made ineffective.
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Fig. 4.1 indicates that although lactate conceitnatfell short of the reference values
consistently, the resulting online trends wereatd®. Smooth, steady trending was
observed, and the slight decrease in the lactateetration on day 4 was evident in
the predictions of in-situ spectra for all 3 cudétsr Addition of in-situ spectra created
more robust models which, unlike glucose, do nqgieap to be as affected by the
environmental factors in the reactor possibly dug¢he fact that the main absorbance
peaks for lactate are in a different region to éhfws glucose. All model type 3 hybrid

models performed better than the original modeth whe optimum model resulting in

a 52.08% improvement.

Model type 4 was in essence, an extension of model type 3. ptinpose of this

model was to investigate if a sheer volume of catibn samples could improve

already existing models. The training set usednfiedel type 4 contained spectra
collected from all possible scenarios — synthefiectra, online spectra and offline
spectra, thereby including all possible factorduc@se and lactate results for model 4
exhibited the same trend as for model 3, i.e. glacesults were not improved while
those for lactate were. This was as expectedeagdtition of the in-situ spectra to the

calibration set had a large influence on the effyoaf the models.

The optimisation of the models highlighted areagmhunreliable spectral data was

obtained, but also where reliable data could béurworked upon to create improved

and robust models (up to 62% improvement).
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4.4 Conclusion

This study evaluated the application of mid-infdargpectroscopy to the upstream
processing of a CHO DP12 cell line, for the purpokeonitoring glucose and lactate
concentrations during the cultivation. Both indséind at-line methods were assessed
using an FTIR immersion probe. Predictions frooakbration model developed with
only synthetic mixtures of typical cell culture n@dcomponents and products of
metabolism, exhibited the expected trends of glecesnsumption and lactate
production, however the prediction errors were merable for in-situ application,
and when glucose fell below its LOD, results becameeliable. Therefore in-situ,
real-time application of this system may only bensidered practicable where the
concentration of these components remains above.@i2, such as in a fed-batch

application or where simple trending of substrated metabolites is required.

Using the same calibration models as applied in-sih at-line study was carried out.
This application proved more reliable as prediceorors for both glucose and lactate
fell, indicating that at-line application may beveble means of monitoring these
components of interest. Despite the improvemengsalts for at-line application, this
method also poses a number of problems if it isetancorporated into a PAT system.
It requires the removal of the sample from the t@aand while it is faster than typical
laboratory analysis, it still requires a sterilemgding system, one of the major
advantages of online monitoring. An at-line monig system also cannot be

integrated into a control system to the same lage&ln online monitoring system.

An investigation was carried out to determine i tilucose and lactate calibration

models used for in-situ and at-line analysis cdoédoptimised. This optimisation
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study resulted in a number of hybrid models. Incakes where hybrid models were
developed using spectra collected offline/at-littee optimum model was always a
hybrid model. This highlights the importance otluding spectra collected from

actual culture samples in the model training set.

When in-situ spectra were used to augment thereéiin set, for glucose models,
predictions did not improve. This result emphasese important point, which is that a
model is only as good as the spectra used to ctaatethe glucose models containing
spectra collected in-situ, did not perform as vaslithose without. The addition of the
in-situ samples increased noise rather than treencdal information. In the case of

lactate, all hybrid models were an improvementrendriginal model.

In summary, this method can be applied in-situni@nitoring and potentially control

purposes and accuracy of the predictions can beowed by the addition of actual

culture samples to the training set and also byingmpre-treatments used.
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Chapter 5

Study 3: The use of Mid-infrared spectroscopy asraon-line PAT tool in total

and recombinant protein monitoring

Abstract:

The aim of this study was to establish the feagjbih using mid-infrared (MIR)
spectroscopy as on online monitoring tool for profoduction at various stages in a
bioprocess. This exploratory work involved a numiifesteps to determine firstly, the
possibility of using MIR for total and recombingsrbtein detection and secondly, the
efficacy of this technique for online use. An ialtprincipal component analysis
(PCA) was performed using 5 common proteins and rdembinant protein of
interest. Results indicated that the MIR immersmnobe used was capable of
distinguishing between the differing proteins, higiting the potential of MIR as a
qualitative process analytical technology (PAT) Itdor protein detection and
characterisation. Using process samples provigiemhlindustrial collaborator several
partial least squares regression (PLS) models vdereeloped to establish the
possibility of using this technique as a quant&tiPAT tool in online protein
monitoring. Models capable of evaluating total amtombinant protein were
constructed. Results indicated a greater accurathye prediction of the total protein
with a minimum percentage error of prediction (PBP2.39%. The smallest PEP for
the recombinant protein was found to be 6.66%. s&hesults highlight the existing
potential for the application of this techniquéanesitu protein monitoring. Due to the

limited available size of the calibration set, tbisidy also raised questions as to the
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best means of evaluation of results. This workired 2 possible methods for model
evaluation; standard error of cross validation atahdard error of prediction. Each
technique was examined and results based on theseods were presented for
comparative purposes. Finally, an investigatioto ithe impact of 2 detergents on
model performance was completed. As detergentbeqgaently used in the course of
the bioprocess for e.g. protein solubilisation aruy inactivation, a PCA was

completed to determine if the presence of detergenild be likely to affect protein

predictions. This analysis indicated that detetgiemere likely to impact results,

particularly at concentrations at the higher entheftypically used range.

5.1 Introduction

Traditional protein quantification techniques suels SDS-Page are laborious,
requiring considerable sample preparation and gsiceg time. Due to the amount of
interaction with the process sample, these methogislso open to error at any one of
the many analysis steps. Current, conventionahaust also require the removal of a
sample from the bioreactor and result in sampletrdetson.  Mid-infrared

spectroscopy offers an alternative to protein gtieation.

MIR is a well established technique in the detemtion of protein structur® The
amide | band located at 1700 — 1600 “crprovides a significant amount of
information®®> The C=O stretch at the amide | band is affectethb strength of the
hydrogen bonds between the C=0 bond and the N-tpgrd he resulting variation in
the absorption of proteins in this region has batlsed to determine secondary
protein structures. Gross-Selbeck et al have further shown that mibensity of the

absorption at the amide | band corresponds to taatify of protein in the sampfe.
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Based on this knowledge, MIR has huge potentigbrnotein analysis presenting a

serious case for its application as a process acalyechnology tool (PAT).

Infrared spectroscopy is a powerful tool in biogss monitorind:® It is capable of
simultaneously monitoring several of the componenésent in a cell culture medium.
Both near infrared (NIR) and MIR have been used doalyte and metabolite
monitoring!®*®> with NIR also being applied to cultures as a bissnanonitor:®
Previous studies in the use of MIR in protein died&cand classification have focused

on this technique as a rapid off-line metkd&® with few examining its in-situ

capabilities'’

Infrared spectroscopy can be used in-situ. In sagdlications it is non-invasive and
eliminates the need for sample removal. In biogssmg, where sterility is of the
utmost importance, obtaining samples without commsmng the sterility of the system
is always a major concern. Non-invasive methatls,ih-situ MIR, reduce the risk of
culture contaminatiof’ In addition, sample preparation is not required data is

obtained instantaneously. These features meet mltte criteria used to define a
Process Analytical Technology (PAT) tool, as owtinby the FDA in their “PAT

Guidance for Industry” framewor&.

The purpose of this study was to examine any exggpotential for protein detection
using an in-situ MIR instrument. The investigatiwerk completed used in-process
industrial samples to develop PCA and PLS modeé&x#mmine the feasibility of using
online MIR, to both qualify and quantify total arecombinant protein. This study is a

precursor to further work on model development aptimisation. It does not present
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a detailed evaluation of optimum chemometric modeld rather establishes a
methodology for preliminary, exploratory work intdemining the efficacy of online

MIR as a PAT tool for protein detection and monitgr In addition, the detergent
study highlighted the possible difficulties the Heijue may encounter during the
processing of recombinant protein. The impact afolhmonly used detergents on
spectral data was investigated to identify any ke influences on the PLS model
predictions.  Finally, results were evaluated gdooth root mean square error of
cross-validation (RMSECV) and root mean squarerefgrediction (RMSEP) in an

attempt to answer questions as to the best evatuatiethod given the size of the

training and validation sefS.

To the author’s knowledge, no other study exita/lmch recombinant and total protein
have been quantified in industrial samples using/i#R immersion probe capable of

online monitoring.

5.2 Materials & Methods

5.2.1 Preliminary analysis

Five commonly used proteins, bovine serum alburBi8A), human serum albumin
(HSA), amylase, pepsin and lipase, (Sigma Aldrickland, Ltd.) in addition to the

recombinant protein of interest, were selectedwiich to perform a preliminary

analysis. Standard solutions of each protein,oatentrations of 10, 5 and 2.5 g/L,
were made. These solutions were then scannedgiicdte using a Fourier transform
mid-infrared ReactIR iC10 instrument with MCT ddteqMettler Toledo AutoChem,

Inc., Columbia, US) against a background of deihivater. A K6 conduit 16mm

immersion probe was used with a fixed path lendthpprox. 1-2um and a diamond
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ATR crystal with 6 internal reflections. The detecand probe were purged with
nitrogen gas continuously. The mean spectrum ot ¢dplicate scan was calculated
and imported into MatLab (v7.9.0.529 (R2009b), TWathWorks Inc., Cambridge,
UK). A scan of each protein at 10 g/L was takenl @pectra were plotted for
preliminary examination. This allowed for spectsahilarities and differences to be
identified while also establishing the usable waweher range for further work. The
PLS toolbox for MatLab (V6.2 Eigenvector Reseamnsh, IWenatchee, WA, US) was
used to complete a principle component analysiAJRCG determine if it was possible
to distinguish between the six different proteinBre-treatments employed for PCA
investigation were mean centering combined withnmradisation and mean centering
combined with standard normal variate (SNV). Bibibse pre-treatments are effective

at scaling and normalising spectra.

5.2.2 Samples and reference analysis

Recovery process samples were obtained from anstinalucollaborator. These

samples contained the recombinant protein of iatene addition to a large number of
unknown host cell proteins. Also present in thesgreated samples were cell
particulates, as samples were previously lysed aadid, and sodium hydroxide, used
for pH adjustment. Using these samples, 3 sanyplestwere generated: untreated
samples, consisting of the samples in their origiftam; supernatant samples,

resulting from untreated sample centrifugation ac@htaining aqueous based
fermentation broth, sodium hydroxide, proteins atiter components soluble in water;
re-dissolved pellet samples generated by dissoludfothe remaining pellet in a Tris

(Sigma Aldrich, Ireland, Ltd.)/EDTA (VWR Internatal, West Chester, Pennsylvania
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(USA)) extraction buffer and containing, proteinkigh were not previously dissolved

and insoluble cell particulates.

An estimation of the concentration of NaOH predanthe untreated and supernatant
samples was calculated from process data avai(aslsamples were supplied by an
industrial partner the exact composition of othemponents was not provided and
was calculated based on limited data releaseddgdmpany) and both samples types
were scanned in triplicate against a backgroundeainised water and NaOH, at this
concentration. The re-dissolved pellet sampleeweanned against a background of
the Tris/EDTA extraction buffer used to dissolvee thellet. All samples were

vortexed prior to scanning to ensure homogeneity.

For reference analysis a Bradford assay (Sigmaidhdireland Ltd.) was used to
guantify the total protein present in the sampléssays were performed on all the
supernatant and re-dissolved pellet samples antbthkeprotein within the untreated
samples was quantified by summing the resultsegd¢h The recombinant protein was
determined via SDS-PAGE using precast gels, NuPABEex Bis-Tris Gel 4-12%
(Invitrogen, Carlsbad, CA, USA). Again, supernatand re-dissolved pellet samples

were used to quantify the recombinant protein presethe untreated samples.

5.2.3 Quantitative model development

Partial least squares regression (PLS) models dareloped to quantify both the total

protein and the recombinant protein present in gamples. Untreated in-process
samples were available from 12 batches and froreetli® samples, the 3 samples

types were generated as described above. Samples3 of these batches were
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randomly selected for model validation and the damfrom the 9 remaining batches
were used as the calibration set for the variouslalso Four model types were
generated: the first model type was developedgusith forms of samples, i.e.
untreated, supernatant and re-dissolved pellet lezmihe second, untreated samples
only; the third, supernatant samples only and ithed model type was developed using
re-dissolved pellet samples only. Model type lrdfere had 27 samples for
development and 9 for validation. The remaining@el types were created using 9
samples and validated with 3 samples. Figure btlines the experimental design
employed for total protein model development. Rwelgimant protein model
development followed the same procedure howevavatere order, filter width and

number of latent variables differed.

Bioreactor

Primary

recovery

untreated
supernatant

1der15_12LV/ re-dissolved pellet
27 calibration untreated
12 untreated 12 supernatant 12 re-dissolved 9 validation Model Type 1 2der15 4LV supernatant
sanples anple pellet samples - re-dissolved pellet
: \ 2der15_12LV \ untreated
L 1 ‘.. supernatant
9 calibration ,+* 9 calibration} 9 calibratiot re-dissolved pellet
3 validation ,* 3 validation § 3validation
Pl 1 \
Model Type 2 Model Type 3 Model Type 4
1der15 6LV 1derl5 4LV 2derl5 4LV 1der15_6LV 2der15 2LV 2derl5 6LV 1der15 6LV 2derl5_6LV 2der7_7LV

Fig. 5.1Schematic of experimental design for total proteimodel development
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Following the preliminary analysis the usable regod the spectrum was identified to
be 1700-900ci. Only spectral data lying within this region wealected for model
development. All other extraneous data was removEais ensured that all models
were developed based on absorbance data relevdme gorotein absorbance area of
the spectrum and eliminated all other regions whaghibited considerable spectral
noise and would negatively impact the models. spictra were mean centred. First
and second derivative pre-treatments, of filtertisd7, 15 and 21 were then applied,
calculated using Savitzky-Golay filtef$. These pre-treatments were selected as they
can eliminate the effect of linear baseline offssmtd smooth noisy specffa.Results
tables indicate whether first or second order derres were used, in addition to
specifying the filter width. These are denotedXderY, where X is the Savitzky-
Golay X" derivative pre-treatment and Y, the filter widtlror each of the 4 model
types, 3 models were developed for both the totate;n and recombinant protein
predictions. These models varied in the numbdateht variables (LV) used and the

order of the derivative and filter widths of thevBzky-Golay pre-treatment.

Model efficacy was evaluated in two ways. The moetan squared error of prediction,
(RMSEP), was used to assess the models predidiibty aising 3 sample batches not
used in the development of the mod&lsPercentage error of prediction (PEP) values
were calculated in order to put the RMSEP valuegpernspective. The PEP was
calculated by dividing the RMSEP by the averageltar recombinant protein
concentration in the 3 test samples. Using a i@ldn or training set to develop a
model, followed by the use of a completely indemamdvalidation set to test the
model is a procedure typically used and widely &gbin the field of chemometrics.

However this methodology comes with a caveat thatilsl be duly noted, that is, the
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impact of the size of the calibration and validatgets on the overall model results.
Where possible, calibration sets should be largrigh to contain all possible forms
of variation within the samples to ensure the mabtgounts for all scenarios, both
expected and unexpected. The validation set shbeldapable of unearthing any
model weaknesses, and should prove a difficultdegte model. Due to limitations in
sample availability this is not always feasibletaier acknowledges this and suggests
that in such circumstances other tests, such ass oralidation, be employed as a
means of evaluating model accurdtyAs this study was limited by the number of
samples available for training and validation sempilation, all results were also
evaluated based on the root mean squared erroosd-galidation (RMSECV) and for
model types 2, 3 and 4, where it was possible sm@ate a percentage value, the
percentage error of cross validation (PECV) wa® alslculated. ‘Leave-one-out’
cross validation was the selected cross validatemhnique and was used in the
development of all models generated. This metbadidely used where small sample
sets are in use. This procedure removed one safmpie the calibration set,
developed a PLS model from the remaining sampled,then applied this model to
the removed sample to predict the concentratioachEsample in turn was removed
and its concentration predicted. A prediction erfar each of the samples was
calculated and the RMSECV was determined by combithese errors to generate a

standard error.

5.2.4 Detergent investigation

A further, exploratory study was carried out toestigate the impact of the addition of

2 standard, industrially used detergents, deterdeand detergent B, on untreated
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samples. As detergent is likely to be introducetha raw, untreated stage, it was to
the untreated samples that detergent was added.
The following samples were scanned and spectréeplddr preliminary examination:

* Detergent A

* Detergent B

* Untreated sample, prior to the addition of any dyet

* Untreated sample with 3% detergent A

* Untreated sample with 3% detergent B
The area of interest was again localised to 1, 798-€ 900 cnit.
To 3 aliquots of an untreated sample, concentratimin0.006%, 1.5% and 3% of
detergent A were added respectively. Similarlyygamtrations of 0.3%, 1.5% and 3%
of detergent B were added to another 3 aliquotthefsame untreated sample. The
selected concentrations were based on recommersheg rof use for each of the
detergent$® All 6 samples were scanned in triplicate andrtfemn of each spectrum
obtained. A qualitative analysis was carried gupbrforming a PCA. In addition to
these 6 spectra collected, 2 spectra, one of eatelngdnt, and six spectra, of untreated
samples without any detergent present, were addetbtdata set. Pre-treatments used
in advance of the PCA were mean centering with St mean centering with

normalisation.

5.3 Results and discussion

5.3.1 Preliminary analysis

The MIR region is considered to lie between 4000-40i*. The ATR crystal of the
probe used in this study absorbs over the rang8-2950 cnt, therefore creating an

instrument ‘blind spot’. At regions of the spectrabove 2250 cthand below 900
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cm’ spectra exhibited considerable noise and were eéemnusable. Spectra
immediately adjacent to the lower end of the ‘bligglot’ were also noisy. This
effectively reduced the usable wavenumber rand&’@®-900 crit. Figure 5.2 shows

the absorbance, of all 6 proteins investigatedr te region.

0.02

0.015

Absorbance (-)

usable region !

-0.01

=== pepsin -0.015

=== recombinant protein

-0.02
Wavenumber (cm™)

Fig. 5.2 Usable MIR spectral region for protein absorbance

The infrared spectrum of protein is characterisg@ set of absorption regions known
as the amide modés.In the case of the reduced MIR spectral regioedusere,
absorption at the amide | and amide Il modes wearll visible at ~1650 cthand
~1550 cn respectively. Six overlapping peaks, represengiach of the 6 proteins,
were evident at these locations on the spectrurghlighting the difficulties
encountered when attempting to characterise psotasing MIR. Although each
protein was present at the same concentrationinteasity of the vibration varied.
This occurrence can be exploited to determine mgryirotein structures. At the

lower end of the spectrum shown in figure 5.2, hapseries of peaks was observed,
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however these peaks did not entirely overlap atghme point. Pepsin and the
recombinant protein reached a maximum at 1076, camylase at 1053 chand
lipase at 1080 cih while BSA and HSA did not exhibit any peaks dt aThis
observation supported the notion that it was péssthadequately distinguish between
all six proteins and a PCA was carried out to aetee this. Figure 5.3 shows the
optimum PCA, where separation of differing proteiasd clustering of the same

protein, but varying concentrations, occurred.

Scores on PC 2 (12.55%)
8 8 8 o B 8 8 &

)

<]

20
Scores onPC 1 (29.49%)

Fig. 5.3 Scores plot of 5 common proteins and the recombinaprotein of interest

The spectral data used for this PCA underwent meamering and SNV pre-
treatments before completing the analysis. Otheitigatments were also investigated
such as first and second derivatives however meatetcng combined with SNV was
found to be the most effective. This preliminatydy enabled identification of the

usable region of the MIR spectrum for protein asisly It also highlighted the ability
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of MIR to distinguish between differing proteinsipporting the development of PLS

calibration models for total and recombinant proigiantification.

5.3.2 Quantitative model development

For each model developed for model type 1, the RONsEvalues for untreated,
supernatant and re-dissolved pellet samples wazesime. This is because the
RMSECYV is based on the cross validation model earmat not a predictive error.
Therefore it was the same 3 models that were dpedl@and applied to all 3 sample
types. Also, it was not possible to calculate &WHor model type 1 as the actual
differences in the concentration ranges of all iBda types were not comparable and
so would not provide rational PECV results. In tase of predictive errors, PEP was
calculated. Here a validation set containing alse@nple types was used and the
models applied. Each prediction was therefore aataa with a sample type and
hence a specific RMSEP for each sample type coelddiculated and in addition, a

PEP. This procedure was applied to both totalrandmbinant protein evaluations.

Models 2, 3 and 4 were each developed for a spesainple type and as such should
have a greater degree of accuracy than model typleeh applied to their associated
sample types. This is evident by comparison betwsble 5.1 and Table 5.2, which
outline the total protein cross validation and pr&dn errors. Lowest predictive
errors for model type 1 of the untreated and swgiam models were 10.4% and
40.23% respectively which remained above the higlpesdictive errors for the
specific untreated (model type 2) and supernatandél type 3) models of 6.97% and
8.7%. This trend was also observed for RMSECV eslvhere the lowest RMSECV

for model type 1 of 3.2961 g/L was greater than highest RMSECV values for
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model types 2 and 3, of 2.7282 g/L and 1.1091 géApectively. A direct comparison

between re-dissolved pellet RMSECV and RMSEP vaslesvs that model type 4,

which was specific to the re-dissolved pellet saspbid not always perform better

than model type 1, however the lowest RMSECV andSEM values in all cases

resulted from models generated from specific sarnyples i.e. model types 2, 3 and 4.

TABLE 5.1 Total protein errors for Model Type 1

RMSECV RMSEP PEP
Sample Type Model
(g/L) (g/L) (%)
lderl5 12LV 3.2961 2.8855 18.80
Untreated 2derl5_4LV 4.3027 2.0649 13.46

2derl5_12LV 4.6434 1.5955 10.40

lderl5 12LV 3.2961 1.1224 46.31
Supernatant  2derl5_4LV 4.3027 0.9751 40.23

2derl5_12LV 4.6434 1.3059 53.89

lderl5_12LV 3.2961 0.6368 5.29
Re-dissolved

2derl5 4LV 4.3027 1.6662 13.85

Pellet
2derl5_12LV 4.6434 0.4591 3.81
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TABLE 5.2 Total protein errors for Model Types 2,3 & 4

Model RMSECV PECV RMSEP PEP
Sample Type Model

Type (g/L) (%) (g/L) (%)

lderl5 6LV 2.0902 13.81 1.0701 6.97

Model
Untreated  1der15 4LV 2.0922 13.83 1.0391 6.77

Type 2
2derl5 4LV~ 2.7282 18.03  0.7633 4.97
1derl5 6LV 1.1091 3596  0.1127 3.69

Model

Supernatant 2derl5 2LV 0.5747 18.63 0.2213 7.24
Type 3

2derl5_6LV 0.7507 24.34 0.2651 8.67

lderl5_6LV 2.9132 25.56 0.2795 2.39

Model Re-dissolved
2derl5 6LV 3.8104 33.44 0.4757 4.07
Type 4 Pellet

2der7_7LV 4.0431 35.48 0.6915 5.91

Direct comparison of Table 5.1 and Table 5.2 sholat despite the evaluation
method applied; RMSECV or RMSEP, model type 1 ditl attain the same level of
accuracy as model types 2, 3 and 4. Thereforeowdh the training sets for model
types 2, 3 and 4 were one third the size of thatldsr model type one, the specificity
of the samples used created more accurate mothadaever this does not infer that

increased accuracy results in more robust modetkjtas imperative that variation be
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built into all models to protect against the oceunae of outliers which could cause the
model to fail®* Although not possible in this feasibility studyedto limitations in
sample availability, the training set should bgéaenough to represent all components
present at a number of concentration levels, rangmom the minimum to the
maximum concentrations likely to be encounterethafcalibration is to be applied to,

and trusted in, the monitoring of a bioprocess.

Recombinant protein errors, shown in Table 5.3 @alble 5.4, followed a similar

trend to those of the total protein, in that thghleist errors for the specific model types
(model types 2, 3 and 4) were all considerably lotan the lowest errors of the
general model type 1. This was true of both theSEI@V and RESEP values and in

this instance, there were no exceptions.
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TABLE 5.3 Recombinant Protein errors for Model Type 1

RMSECV RMSEP PEP
Sample Type Model
(9/L) (g/L) (%)
1derl5 7LV 0.1975 0.1035 17.30
Untreated 2der15_4LV 0.2796 0.1167 19.50
1der1l5 7LV 0.1975 0.1943 68.60
Supernatant 2der15 4LV 0.2796 0.1809 63.89
2der7 7LV 0.2400 0.1098 38.77
1derl5 7LV 0.1975 0.0905 26.23
Re-dissolved
2derl5 4LV 0.2796 0.0979 28.38
Pellet -
2der7 7LV 0.2400 0.0551 15.98
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TABLE 5.4 Recombinant Protein errors for Model Types 2, 3 & 4

Model RESECV PECV RMSEP PEP
Sample Type Model

Type (g/L) (%) (g/L) (%)

lderl5 4LV  0.0967 14.96 0.0754 12.59

Model
Untreated 2derl5 4LV 0.0890 13.76 0.0848 14.17

Type 2
2der7_4LV 0.1210 18.72 0.0908 15.18
lderl5 4LV 0.1205 42.41 0.0330 11.66

Model
Supernatant 2derl5_5LV 0.0874 30.75 0.0189 6.66

Type 3

2der21_4LV  0.1082 38.09 0.0253 8.94

lderl5_7LV  0.0898 23.43 0.0519 15.06

Model Re-dissolved
lderl5 3LV 0.0673 17.57 0.0489 14.19
Type 4 Pellet

2derl5_7LV ~ 0.0586 15.29 0.0424 12.30

Considering both the total and recombinant propeedictive errors for model types 2,

3 and 4, in Table 5.2 and Table 5.4, it was theeat¢d model type 2 that resulted in
the greatest errors in both cases. This was exghest the untreated samples contained
a large degree of particulates, including un-digswl proteins, thus making the
measurement of these samples and accuracy of tdelmreedictions, more difficult
and unreliable. However it should be noted that ¢hoss-validation errors did not

follow this trend.

Cross-validation errors of total and recombinardtgin were comparable and results

did not favour greater accuracy in the predictidrntatal protein over recombinant
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protein, or vice versa. Untreated and superngbagdiction errors however, were
greater for recombinant protein than those of tptaltein by a factor of 2, and re-
dissolved pellet errors increased by a factor ofol6 recombinant protein. The
concentration of recombinant protein present inheaample was an order of
magnitude lower than the total protein concentratnd therefore more difficult to
accurately detect. Also, off-line results for redmnant protein, quantified via SDS-
Page analysis, exhibited a higher variance (6.39%).than those for total protein
(3.8%) quantified via Bradford assay. Increasedawnae present in the y-data of the
training set most likely further impacted the aemyr of the recombinant protein

models.

The trends exhibited by the predictive errors wigmacal given the constitution of

each sample type and the concentration of totar@rmimbinant proteins present in the
samples. These trends were not exhibited in the&SREV values however and this
discrepancy highlights the issues encountered whensing the optimum technique
to evaluate all models. Correct selection involhstgking a balance between
independent validation samples and sufficienthigéasample number so as not to

excessively skew results.

5.3.3 Techniques for model evaluation

The lowest RMSECV and lowest RMSEP for all modglety did not always result
from the same model i.e. the optimum model for eackel type varied depending on
the method of evaluation. This result again hgttied the importance in accurately
assessing the predictive capabilities of the mot#ally a validation set used to test a

model should have as many samples, if not more legmghan the training set used to
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create i? However this is seldom the case and an astuesssent of the given
scenario is necessary. This study outlined twosipts ways of evaluating the
predictive ability of a model. As previously mented, the preferred technique is the
application of an independent validation set tot td® models accuracy and
robustness. This is considered a more rigorousofethe models capabilities and
results in the calculation of an RMSEP value. Hasve where calibration and
validation sets are limited in sample number thisat necessarily the best method. In
such sample sets, one sample can exert undue weitligr favourably or not, leading
to a conclusion on the predictive capacity of a elddat is not wholly accurate. The
second method used to evaluate the models capzhivas examining the RMSECV.
This test is considered to be less demanding omthael as each of the samples used
to cross validate the model were used in the dewedmt of the model and so this

technique is not entirely independent.

5.3.4 Detergent investigation

Figure 5.4 outlines the wavenumbers at which detgsy A and B and also the
untreated sample absorbed. Both detergents eathibliear and distinct peaks. It was
not possible to identify the spectrum of the urtedasample as spectra of samples
containing untreated sample and detergent maslsedorgsence. These initial
observations indicated that models used for thdigtien of protein from untreated

culture broth were likely to be impacted by theiidd of detergent to the culture.
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1.5
e===Untreated sample w/o detergent

e==Detergent A

DetergentB

e===Untreated sample & 3% detergent A

e===Untreated sample & 3% detergent B
r 0.5
Yo

18 1200

1100

Absorbance (-)

F-0.5

-1.5
Wavenumber (cm™)

Fig. 5.4 Spectra of untreated samples, detergents A & B andntreated samples

spiked with detergents A & B

The scores plot shown in figure 5.5 was generatedebforming a PCA using mean
centering and SNV as data pre-treatment methodse HCA indicated that both
detergents A and B in their pure form, were cledalistinguishable from untreated
samples. Samples containing 3 differing conceotmatof detergent A separated from
samples which were not spiked with any detergemtydver only the sample with the
highest concentration of detergent B separated fnom-spiked samples, with the

lower 2 concentrations clustering with these sasiple
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Fig. 5.5 Scores plot of untreated samples; detergents A & Bjntreated samples

spiked with detergents A & B

This preliminary investigation highlighted the pati@l impact the addition of
detergent may have on the quantitative proteiniptied models. Separate models
should be developed for protein prediction depemdin whether detergent is present
or not. Where detergent is present, the rangetofconcentration should be
incorporated into the model to include sample v@me The protein concentration
range of each model should also be consideredferétee samples analysed showed
that after the addition of detergent A, the coneidn of the protein remained the
same as before. Addition of detergent B to the eaatéd samples resulted in
solubilisation of the protein and an increase oftap4 times the original protein
concentration in the supernatant samples. Therefamdels constructed for use in the
presence of detergents that facilitate solubilsaghould include a higher upper limit

concentration to account for increased quantitiesmble protein in the sample.
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5.4 Conclusion

This exploratory study indicated that it was pokestb qualitatively and quantitatively
measure total and recombinant protein present-progess recovery samples using an
in-situ MIR immersion probe. This study highligtit¢he potential of MIR as an
online monitoring technique for the production of racombinant protein in a

bioprocess.

A preliminary PCA indicated that despite the cleaerlapping peaks at particular
wavenumbers, it was possible to distinguish betwtben6 proteins selected for this
study. It has previously been reported that MIR ba used in the characterisation of
protein structures however little work has beenentaken in this area using in-situ
MIR immersion probes. The specificity of the imstent and its application in a

particular environment have been shown to havege laearing on whether or not a
technigue may be deemed acceptable. Initial aisailyghis study indicated MIR has

potential as a qualitative analysis tool; when egapto protein solutions the technique

was capable of distinguishing between varying eltssof proteins.

Four model types were identified based on the sasnglailable. PLS models were
used to predict the total and recombinant proteasgnt in 9 validation samples in the
case of model type 1 and 3 validation samples fodehtypes 2, 3 and 4. Model type
1 was the least accurate for both total and recoamniprotein prediction with highest
predictive errors in the supernatant samples &9%38.and 68.60% respectively. The
calibration set used for model type 1 was a contbiget consisting of all sample
types. Although it is recommended that variatian ibtroduced into all models to

account for atypical scenarios, the samples usegeterate model type 1 differed
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considerably and failed to enhance the robustneseanodels. Results for specific
models 2, 3 and 4 were consistently more accukatéodth total and recombinant
protein prediction. Given the limited number obdable samples it was not possible
to develop a thorough model capable of preciseigreds while being easily able to
identify outliers. Kramer's “rule of 3” was empleg here? which he states should
only be used when completing “preliminary or exptory work”. However the

methodology applied did provide a proof of concdypghlighting the potential of an

MIR immersion probe in online protein monitoring.

Due to the limited calibration set number, thisdst@also resulted in a comparison of
model evaluation techniques. The cross-validateord prediction errors were
calculated, with cross-validation errors indicatanbigher degree of model inaccuracy.
However, major trends outlined by one method wése eeflected in the other; in the
case of total and recombinant protein predictimthlzross-validation and application
of an independent validation set indicated that egredicting total protein were
more accurate, and when comparing the accuracyodkehtype 1 compared to that of
the specific models, both techniques favoured geeific sample type models despite

the lower sample number used in the calibration set

The detergent investigation study provided insight the necessary requirements for
further model development, when detergent is ptegetime process. Results for both
detergents tested indicated that at typically us®ttentrations, the protein predictions
would be impacted by their presence and so condhatefurther model development

should account for detergent used in the process.
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Chapter 6: Conclusions and Recommendations

This thesis investigated the use of Fourier Tramsfimfrared (FT-IR) spectroscopy, in

the form of an in-situ MIR ATR probe, to determitie potential of this method as a
PAT tool. The 3 studies presented provided a ldetaccount of the capabilities of
the technique, outlining both the strengths andtdéiions of this application. The

entire work evaluated the use of this techniqueaaying process steps. This was
achieved in 3 studies, which examined its appliggband performance in upstream
cell cultivation and also, downstream primary resrgv Initial studies focused on the
use of in-situ MIR for monitoring of analytes andetabolites present in the

bioprocess, while the latter study investigatedpbssibility of using the technique for
protein quantification. Results indicated that M$Rdeserving of its place in the PAT

tool kit. Its capabilities lie both in qualitathand quantitative analysis.

6.1 Study 1: Potential of Mid-infrared spectroscpy for on-line monitoring of
mammalian cell culture medium components

This initial study developed a methodology for enaing the potential of MIR, for
monitoring cell cultures medium components. Thengarative probe investigation
allowed for the identification of the optimum samngl accessory for this given
application, which was then used in further studiéghe fixed conduit immersion
probe was found to be more reliable, with fibreiopprobe issues owing
predominately to the ‘sample to crystal’ interfaar@a. The design of the interface
area resulted in frequent bubble entrapment, wticisequently impacted results.

The spectral characterisation study completed ifiethtthe main areas of absorbance
for each of the 8 components under investigatiowl, provided an indication of the

areas of interest on the spectrum. The limit aéckgon (LOD) analysis highlighted at
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an early stage, components that were not likehetdetected when the instrument was
applied in-situ in a bioreactor. The concentratiohsome components, e.g. glutamine
and glutamate, in a cell culture medium, fell beline LOD. At this point therefore,
the preliminary analysis facilitated the identifica of components likely to be
detected on-line and those that were not likelype@odetected. Also, the LOD for a
given component in a multicomponent mixture wasntbwo be significantly higher
that of the same component in a single compondatico. It can be concluded that
the multivariate LOD analysis presented in thiglgtautlines a novel methodology for

initial evaluation of the technique for a given pose.

The calibration models developed in this study ¢atkd the applicability of the
technique in monitoring certain components suclglasose, ammonia and lactate,
while also highlighting the limitations encounteretien the technique is applied to
media components that are at much lower concemtrédvels. It should be noted that
the accuracy of the prediction ability of a modeVery much dependent on the sample
set size and the concentration level of each ofcttraponents present. This was

further investigated in study 2.

Finally, the external influence investigation peni@d provided a novel method for
pre-empting possible interferences the instrumentl hence the models, would
encounter when applied on-line. This allows foderstanding and mitigation of

possible influences, but cannot completely elimartaese prior to on-line application.
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6.2 Study 2: Application and optimisation of in-gu MIR calibration models for

the prediction of glucose and lactate in mammaliacell cultures

This second study evaluated the application of Mctroscopy to the upstream
processing of a CHO DP12 cell line, for the purpokeonitoring glucose and lactate
concentrations during the cultivation. The fixednduit FTIR immersion probe
identified in study 1, as the optimum probe forgsmcess monitoring was selected and
calibration models for glucose and lactate, dewadopsing synthetic samples, were
applied on-line and at-line. Both on-line and iaeltrends reflected the expected
trends, and those of the reference analysis, #iagkihe depletion of glucose and the
increase in lactate. However, as observed in siydyhen concentration values fell
below the LOD, results became unreliable. This axddent in the glucose results of
all 3 cultures, from day 4, when the glucose cotre¢ion fell below the LOD.
Therefore application of this system may only basidered practicable where the
concentration of these components remains above.@2. Despite the observed
trending, the prediction errors were considerabige for the in-situ application. At-
line detection proved more accurate, and preseatethble alternative to on-line
detection, however, at-line detection is not withais complications and further

optimisation of the models was investigated.

The optimisation study resulted in the developn@né number of hybrid models.
These models were generated using training setpaaftroscopic data collected from
synthetic samples, at-line samples and on-line EnpWhere at-line spectroscopic
data was used in the calibration set, models ctemdig performed better. It can
therefore be concluded that although synthetic $asrggmulate the composition of the

culture medium, the addition of spectra collectenif “real” culture samples fortifies
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the models as it accounts for minor unknowns thatccimpact the spectra, but are not

accounted for in synthetic samples.

The addition of spectra collected in-situ to thdibtation set provided interesting
results. In the case of glucose, predictions didimprove. As previously stated, in-
situ glucose results were not entirely reliable. haW these spectra were used to
increase the calibration set, they only servednioaace noise and inaccuracies, and
did not increase the robustness of the modelss i§kan important result. It highlights
that it is not the quantity of the spectra in aloakion set that will always strengthen
the model, but also the quality of the spectraoukhspectra of an inferior quality be
used in the creation of a model, the accuracy efnlodel may be compromised. In
the case of lactate, all hybrid models were an amwpment on the original model,

however unlike glucose, lactate did not exhibiagerpredictions.

From this study it can be concluded that this temlnn can be applied in-situ for
monitoring and potentially control purposes. A@ay of calibration models can be
improved by addition of spectra of actual cultueenples; however it is imperative
that care is taken when choosing spectra to enthayg are of good and reliable

quality.

6.3 Study 3: The use of Mid-infrared spectroscopy as an on-linBAT tool in total
and recombinant protein monitoring

This final study investigated the potential of MEpectroscopy in detecting and
quantifying total and recombinant protein duringm@ary recovery. A spectral

characterisation of 5 standard proteins and thememant protein of interest was
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initially performed. This allowed the region oftemest to be identified and clearly
highlighted the amide | and amide Il bands, locaed1650 crit and ~1550 ci
respectively, which are of great significance whBHR is used for protein
characterisation. A PCA was performed on varyiogoentrations of the 6 proteins.
This showed that the instrument in question wasloi@pof distinguishing between
differing proteins, and as a preliminary step, supgd the development of PLS

models suggesting potential for quantifying theorebinant protein of interest.

Using in-process samples, 3 sample types weread@jluntreated, supernatant and
re-dissolved pellet samples. Based on these, el types were identified; the
first, using a training set consisting of spect@f all 3 sample types, while each of

the remaining 3 models types used training setesponding to one of the 3 sample

types.

Model type 1 was the least accurate for both tata recombinant protein prediction
with highest predictive errors in the supernatamingles at 53.89% and 68.60%
respectively. Specific model types 2, 3 and 4 veergsistently more accurate for both
total and recombinant protein prediction. It mbhgrefore be concluded that varying
sample type did not enhance model robustness,dbually served to destabilise the

model.
This study also showed that although both total sewbmbinant protein could be

detected and quantified, models developed for ftatein prediction exhibited greater

accuracy than those for recombinant protein.
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Due to the limited number of samples available laenice the calibration set size, this
study outlined the potential of MIR when appliediore for protein detection. Also
as a result of the sample set size, this work ptede? possible methods of evaluating
the results, RMSECV and RMSEP. Both methods predwarying results; however

the trends observed were identifiable using eithethod.

Finally, the detergent investigation study providawsight into the necessary
requirements for further model development, whetergent is present in the process.
It can be concluded that at typically used detergencentrations, protein predictions
would be affected, hence further model developrsbould be used by their presence
and so conclude that further model developmentldhaccount for detergent used in

the process.

6.4 The role of chemometrics and pre-treatments

This work investigated the potential of MIR spesttopy as a PAT tool in the
monitoring of bioprocesses. However in order sealts full potential and harness its
capabilities, the importance of chemometrics aretBpscopic pre-treatments must be
understood. It is only through the use of chemoméechniques such as PCA and

PLS can the information obtained via MIR be trateslanto a usable form.

All 3 studies indicate the importance of carefuésgon of pre-treatments and number
of latent variables or principal components. F&SPmodels developed in all 3
studies, the pre-treatments of choice were meategeg followed by first or second

derivative application. These pre-treatments mialate the effect of linear baseline
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off-sets and smooth noisy spectra. For this imsémnt and this application, these were

found to be most effective.

For the PCA completed in study 3, the optimum pe@ttnents were mean-centering
with standard normal variate (SNV). SNV is a ndisaion type of pre-treatment.
The qualitative information that distinguishes @aenple from another is retained but
information that separates two samples of identicamposition, but different

concentration, is removed. Therefore this is nagglicable for this use.

6.5 Overall conclusions

The 3 studies presented in this thesis outlinepthesible applications of MIR when
used as a PAT tool. The technique has definiterpgatl in an on-line capacity, where
continuous real-time monitoring is required. Hoeelimitations do exist, one major
one of which is the low concentrations of the comgrds it is monitoring.
Identification of the LOD of a component is imp@&ratto determine if the technique is
a viable option. Integration into a control systehould only be considered when the
typical concentrations of components to be montt@ee significantly greater than the

LOD.

Model stability should also be evaluated. Carsglection of an appropriate training
set is paramount, along with identification of didation set that rigorously tests the
model. As outlined in study 2, combining syntheinz real culture samples reinforces

the model, provided the spectra used are of goatitgu
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In terms of a PAT tool, on-line MIR has much toesff It is rapid, non-invasive and
relatively easy to calibrate. However this tecleigwhen applied to bioprocessing is
not quite yet “industry ready”. Industry requiressimple, easy to use, robust
instrument that is in effect, ready to “plug andyil Although MIR has far reaching
capabilities, they require further developmenthié ttechnique is to be applied on a
large scale across the biotechnology sector. Nesless, a little development may go
a very long way in securing its place as one ofahalytical tools of choice going

forward.
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Appendix | — MatLab Codes

%% Routi ne for online nonitoring of nedia conmponents

%% This programme uses command line functions from Eigenvector PLS
toolbox

% Siobhan Hennessy & Roaisin Foley, LiB, School of B iotechnology, DCU

%%

go =0;

count = 0; % Global counter which increases by 1 on each itera tion
tic

%% Import component quatification model

load comp _model data

while go==0 %§Starts a loop to begin programme

start_time = toc; % Loop start time

count = count + 1; % Update counter

time(count) = toc / 3600; % Time stamp

%Insert the directory where spectral files are bein g imported
dirlist=dir( '‘C:\Documents and Settings\LiB\My
Documents\MATLAB\online\*.spc' );

dirsize = length(dirlist);

if dirsize>0 %Statement to put spectral files in chronological o rder

for i=1:dirsize
filedates(i) = dirlist(i).datenum;
end
%Ensure the most recent spectrum is used
lastfiledate = max(filedates);
lastfileindex = findindx(filedates, lastfiledate); %Finds the index of
the array element closest to chosen value

filename = [ '‘C:\Documents and Settings\LiB\My
Documents\MATLAB\online\' , dirlist(lastfileindex).namef; % This
should be the same directory as above

s=spcreadr(filename); %Calls plstoolbox function spcreadr to import

.spc spectral file

wavenumber=s.axisscale{2}"; %assigned wavenumber data to the variable
wavenumber

spectrum=s.data; %assigned spectral data to the variable spectrum

%%sanity check 1 %%

% Test to see if spectra are of good quality - if a bsorbance value at
this

% point is greater than 0.5 it is likely that the M IR instrument has
run

% out of liquid nitrogen
if spectrum(909)>0.5
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%% start again
pause(300)
continue
else

% Defines regions of the spectrum for each componen

gluc=[950 1450]; glne=[950 1700];amm=[950 1500]; ph
1320];glte=[900 1760]; lact=[1000 1620];hep=[1000 1

1750];

wavenumrange = struct( ‘regions’ , {gluc,glne, amm, phos,
hep, bicarb});

j=length(wavenumrange);

for k=1:j %%SH for i=1:number of components

T(k).ex =];

%wnrange(i).regions = [950 1500]; % Override mechan
%% SH sets up an empty matrix for field S.

for r=length(wavenumrange(k).regions)/2 :-1:1

wavenumrange(k).downlimit(r) =
max(lamsel(wavenumber,[wavenumber(1l) wavenumrange(
1)1.0));

wavenumrange(k).uplimit(r) =
min(lamsel(wavenumber,[wavenumrange(k).regions(r*2)
wavenumber(length(wavenumber))],0));

T(k).ex = [T(k).ex
spectrum(:,wavenumrange(k).uplimit(r):wavenumrange(
end
T(K).ex;
end

X_glucose=T(1).ex;
x_lactate=T(2).ex;

% x_ammonia=T(3).ex;
% X_phosphate=T(4).ex;
% x_glutamate=T(5).ex;
% x_glutamine=T(6).ex;
% x_HEPES=T(7).ex;

% x_Bicarb=T(8).ex;

%load gluc_model_data

options.display = 'off ; options.plots = 'none' ;
plot options for pls function

% Defines variable conc which is the concentration

model

concl=pls(x_glucose, mc_2derl5 4lvs,options);
glucose_conc(count)=concl.pred{1,2};

conc2=pls(x_lactate, mc_2derl5_4lvs,options);
lactate_conc(count)=conc2.pred{1,2};
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%Series of additional criteria to be met to ensure no spurious
predictions

%are recorded i.e. If concentration is greater than initial media
%concentration, if concentration is a minus number or if the change
in

%concentration is too large to be physically possib ly then the
program

%waits for the next spectrum and does not send the concentration
value to

%csv file where it could be used as part of a contr ol system.

if glucose_conc(count)>10
elseif  glucose_conc(count)<0

elseif  glucose_conc(count)-glucose_conc(count-1)>abs(0.75 )
continue

else

timenow=clock;

csvwrite( 'concentration.csv' ,glucose_conc(count)); %Writes glucose

concentration to a csv file

if lactate_conc(count)>10
elseif  lactate_conc(count)<0

elseif lactate_conc(count)-lactate_conc(count-1)>abs(0.75 )
continue

else

timenow=clock;

csvwrite( 'concentration.csv' Jlactate_conc(count)); %Writes lactate

concentration to a csv file

elapsed_time = toc - start_time;
remaining_time = 300 - elapsed_time; %This figure can be changed
according to the frequency of spectral collection.
%It is currently set for collection every 5 mins
disp([ 'Waiting for next measurement... in"'
numz2str(remaining_time) "seconds' ]) %Displays message on screen
disp( "' )
%Records the predicted value for each spectrum in a text file in
%specified directory.
dimwrite( '‘C:\Documents and Settings\LiB\My
Documents\MATLAB\MATLAB\spectra_log.txt' [timenow,
glucose_conc(count),lactate_conc(count)], -
append' , 'delimiter’ ,\t', 'newline' , 'pc' );
pause(remaining_time)
if dirsize==1000 %Programme finished when 1000 spectra have been
collected. Alternatively press Ctrl+c
break ;
end
end
end
end
end
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%% Protein Quantification

filename=uigetfile( * Xls' ); % gets user to select the excel file
containing spectral data

importfile1(filename); % function to import data from sheet 1 of
excel file

X=deletecolumn(data,1)'; %deletes the 1st column of the data i.e. the
column of wavenumbers leaving only the spectral dat a.
wavenumber=selectcolumn(data,1); %selected the 1st column of data
i.e. the wavenumbers.

protein=[1200 1910];

wavenumrange = struct( ‘regions’ , {protein});

clear protein data data2 colheaders colheaders2  textdata textdata2
filename ;

plot(wavenumber, X); %plots the spectra for visual examination

protein.ex = [J; %% SH sets up an empty matrix for field S.calib
for r=length(wavenumrange.regions)/2 :-1:1
wavenumrange.downlimit(r) =
max(lamsel(wavenumber,[wavenumber(1l) wavenumrange.r egions(r2-
1)1.0));
wavenumrange.uplimit(r) =
min(lamsel(wavenumber,[wavenumrange.regions(r+2)
wavenumber(length(wavenumber))],0));

protein.ex =

[protein.ex X(:,wavenumrange.uplimit(r):wavenumrang e.downlimit(r))];
end

X_protein=protein.ex;

figure;
plot(wavenumrange.uplimit(r):wavenumrange.downlimit (), x_protein)

clear protein X and r wavenumber wavenumrange ;
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%0 I nport File Function
function  importfilel(fileToRead1l)

%IMPORTFILE(FILETOREAD1)
% Imports data from the specified file

% FILETOREAD1: file to read

% Import the file
sheetName= 'Sheetl" ;
[numbers, strings] = xIsread(fileToReadl, sheetName
if ~isempty(numbers)
newDatal.data = numbers;
end
if ~isempty(strings)
newDatal.textdata = strings;
newDatal.colheaders = strings;

end

% Create new variables in the base workspace from t
vars = fieldnames(newDatal);
for i= 1l:length(vars)

assignin( ‘base' , vars{i}, newDatal.(vars{i}));

end
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%80 Del et e Col unm Functi on

function  [spec] = deletecolumn(irdata,index)
irdata(:,index)=[];

spec=irdata;

%deletecol - deletes columns of matrices

% usage: [X]= deletecol(X1,index)

%The deleted columns are indicated by the vector in

booleans)

%% Sel ect Col utm Functi on

function  [spec] = selectcolumn(irdata,index)
spec=irdata(:,index);

%selectcol - creates a new data matrix with the sel
% the resulting file corresponds to the selected co

% index is a vector of indices (integer) or of bool
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Appendix Il — 7-Level & 4-Level design matrices

7-Level Partial Factorial Design (calibration matrix development)

Difference vector: {53014 2}

Cyclic generator: -3» 1—» -1-2— 3— -2— -3

Repeater level: 3
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7-level design [Sample no.|Glucose [Glutamine |Ammonia|Phosphate | Glutamate | Lactate | HEPES | Bicarbonate
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Sample no. |Glucose | Glutamine | Ammonium Sulphate | Potassium Phosphate | Glutamate | Lactate | HEPES | Bicarbonate
1 3.00 0.30 1.89 0.73 0.35 1.72 | 2.23 0.63
2 3.00 0.00 0.63 0.49 0.23 2.87 | 2.97 1.04
3 0.00 0.10 1.26 0.49 0.59 2.30 | 3.71 0.63
4 1.00 0.20 1.26 1.21 0.47 2.87 | 2.23 0.83
5 2.00 0.20 3.14 0.97 0.59 1.72 | 2.97 0.00
6 2.00 0.50 2.51 1.21 0.35 2.30 | 0.00 1.04
7 5.00 0.40 3.14 0.73 0.47 0.00 | 3.71 1.04
8 4.00 0.50 1.89 0.97 0.00 2.87 | 3.71 1.25
9 5.00 0.30 2.51 0.00 0.59 2.87 | 4.46 0.42
10 3.00 0.40 0.00 1.21 0.59 3.45 1.49 1.25
11 4.00 0.00 3.14 1.21 0.70 1.15 | 4.46 0.63
12 0.00 0.50 3.14 1.46 0.23 3.45 | 2.23 0.42
13 5.00 0.50 3.77 0.49 0.70 1.72 | 1.49 0.83
14 5.00 0.60 1.26 1.46 0.35 1.15 | 2.97 1.25
15 6.00 0.20 3.77 0.73 0.23 2.30 | 4.46 1.25
16 2.00 0.60 1.89 0.49 0.47 3.45 | 4.46 0.21
17 6.00 0.30 1.26 0.97 0.70 3.45 | 0.74 1.04
18 3.00 0.20 2.51 1.46 0.70 0.57 | 3.71 0.21
19 2.00 0.40 3.77 1.46 0.12 2.87 | 0.74 0.63
20 4.00 0.60 3.77 0.24 0.59 0.57 | 2.23 1.04
21 6.00 0.60 0.63 1.21 0.12 1.72 | 3.71 0.42
22 6.00 0.10 3.14 0.24 0.35 2.87 | 1.49 0.21
23 1.00 0.50 0.63 0.73 0.59 1.15 | 0.74 0.21
24 5.00 0.10 1.89 1.21 0.23 0.57 | 0.74 0.00
25 1.00 0.30 3.14 0.49 0.12 0.57 | 0.00 1.25
26 3.00 0.50 1.26 0.24 0.12 0.00 | 4.46 0.00
27 5.00 0.20 0.63 0.24 0.00 3.45 | 0.00 0.63
28 2.00 0.10 0.63 0.00 0.70 0.00 | 2.23 1.25
29 1.00 0.10 0.00 1.46 0.00 1.72 | 4.46 1.04
30 1.00 0.00 3.77 0.00 0.35 3.45 | 3.71 0.00
31 0.00 0.60 0.00 0.73 0.70 2.87 | 0.00 0.00
32 6.00 0.00 1.89 1.46 0.59 0.00 | 0.00 0.83
33 0.00 0.30 3.77 1.21 0.00 0.00 | 2.97 0.21
34 3.00 0.60 3.14 0.00 0.00 2.30 | 0.74 0.83
35 6.00 0.50 0.00 0.00 0.47 0.57 | 2.97 0.63
36 5.00 0.00 0.00 0.97 0.12 2.30 | 2.23 0.21
37 0.00 0.00 2.51 0.24 0.47 1.72 | 0.74 1.25
38 0.00 0.40 0.63 0.97 0.35 0.57 | 4.46 0.83
39 4.00 0.10 2.51 0.73 0.12 3.45 | 2.97 0.83
40 1.00 0.40 1.89 0.24 0.70 2.30 | 2.97 0.42
41 4.00 0.30 0.63 1.46 0.47 2.30 | 1.49 0.00
42 3.00 0.10 3.77 0.97 0.47 1.15 | 0.00 0.42
43 1.00 0.60 2.51 0.97 0.23 0.00 | 1.49 0.63
44 6.00 0.40 2.51 0.49 0.00 1.15 | 2.23 0.00
45 4.00 0.40 1.26 0.00 0.23 1.72 | 0.00 0.21
46 4.00 0.20 0.00 0.49 0.35 0.00 | 0.74 0.42
47 2.00 0.00 1.26 0.73 0.00 0.57 | 1.49 0.42
48 0.00 0.20 1.89 0.00 0.12 1.15 1.49 1.04
49 2.00 0.30 0.00 0.24 0.23 1.15 | 3.71 0.83
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Appendix Il

Sample no.|Glucose | Glutamine | Ammonia|Phosphate | Glutamate | Lactate | HEPES | Bicarbonate
1 3.00 0.30 0.52 0.51 0.35 0.50 | 2.23 0.62
2 3.00 0.00 0.17 0.34 0.23 0.83 | 2.97 1.04
3 0.00 0.10 0.34 0.34 0.59 0.66 | 3.71 0.62
4 1.00 0.20 0.34 0.85 0.47 0.83 | 2.23 0.83
5 2.00 0.20 0.86 0.68 0.59 0.50 | 2.97 0.00
6 2.00 0.50 0.69 0.85 0.35 0.66 | 0.00 1.04
7 5.00 0.40 0.86 0.51 0.47 0.00 | 3.71 1.04
8 4.00 0.50 0.52 0.68 0.00 0.83 | 3.71 1.25
9 5.00 0.30 0.69 0.00 0.59 0.83 | 4.46 0.42
10 3.00 0.40 0.00 0.85 0.59 1.00 | 1.49 1.25
11 4.00 0.00 0.86 0.85 0.70 0.33 | 4.46 0.62
12 0.00 0.50 0.86 1.02 0.23 1.00 | 2.23 0.42
13 5.00 0.50 1.03 0.34 0.70 0.50 1.49 0.83
14 5.00 0.60 0.34 1.02 0.35 0.33 | 2.97 1.25
15 6.00 0.20 1.03 0.51 0.23 0.66 | 4.46 1.25
16 2.00 0.60 0.52 0.34 0.47 1.00 | 4.46 0.21
17 6.00 0.30 0.34 0.68 0.70 1.00 | 0.74 1.04
18 3.00 0.20 0.69 1.02 0.70 0.17 | 3.71 0.21
19 2.00 0.40 1.03 1.02 0.12 0.83 | 0.74 0.62
20 4.00 0.60 1.03 0.17 0.59 0.17 | 2.23 1.04
21 6.00 0.60 0.17 0.85 0.12 0.50 | 3.71 0.42
22 6.00 0.10 0.86 0.17 0.35 0.83 1.49 0.21
23 1.00 0.50 0.17 0.51 0.59 0.33 | 0.74 0.21
24 5.00 0.10 0.52 0.85 0.23 0.17 | 0.74 0.00
25 1.00 0.30 0.86 0.34 0.12 0.17 | 0.00 1.25
26 3.00 0.50 0.34 0.17 0.12 0.00 | 4.46 0.00
27 5.00 0.20 0.17 0.17 0.00 1.00 | 0.00 0.62
28 2.00 0.10 0.17 0.00 0.70 0.00 | 2.23 1.25
29 1.00 0.10 0.00 1.02 0.00 0.50 | 4.46 1.04
30 1.00 0.00 1.03 0.00 0.35 1.00 | 3.71 0.00
31 0.00 0.60 0.00 0.51 0.70 0.83 | 0.00 0.00
32 6.00 0.00 0.52 1.02 0.59 0.00 | 0.00 0.83
33 0.00 0.30 1.03 0.85 0.00 0.00 | 2.97 0.21
34 3.00 0.60 0.86 0.00 0.00 0.66 | 0.74 0.83
35 6.00 0.50 0.00 0.00 0.47 0.17 | 2.97 0.62
36 5.00 0.00 0.00 0.68 0.12 0.66 | 2.23 0.21
37 0.00 0.00 0.69 0.17 0.47 0.50 | 0.74 1.25
38 0.00 0.40 0.17 0.68 0.35 0.17 | 4.46 0.83
39 4.00 0.10 0.69 0.51 0.12 1.00 | 2.97 0.83
40 1.00 0.40 0.52 0.17 0.70 0.66 | 2.97 0.42
41 4.00 0.30 0.17 1.02 0.47 0.66 | 1.49 0.00
42 3.00 0.10 1.03 0.68 0.47 0.33 | 0.00 0.42
43 1.00 0.60 0.69 0.68 0.23 0.00 | 1.49 0.62
44 6.00 0.40 0.69 0.34 0.00 0.33 | 2.23 0.00
45 4.00 0.40 0.34 0.00 0.23 0.50 | 0.00 0.21
46 4.00 0.20 0.00 0.34 0.35 0.00 | 0.74 0.42
47 2.00 0.00 0.34 0.51 0.00 0.17 | 1.49 0.42
48 0.00 0.20 0.52 0.00 0.12 0.33 | 1.49 1.04
49 2.00 0.30 0.00 0.17 0.23 033 | 3.71 0.83
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4-Level Partial Factorial Design (validation matrix development)

Difference vector: {0 2 1}

Cyclic generator: - 1->2—1

Repeater level: 2

Units added to each sample

Appendix Il

4-level design| Sample No. | Glucose | Glutamine | Ammonia| Phosphate [ Glutamate | Lactate | HEPES | Bicarbonate | Buffer
-2 1 0 0 0 0 0 0 0 0 25
-2 2 0 1 1 4 1 0 3 3 12
-1 3 1 1 4 1 0 3 3 1 11
-1 4 1 4 1 0 3 3 1 3 9
2 5 4 1 0 3 3 1 3 0 10
-1 6 1 0 3 3 1 3 0 4 10
-2 7 0 3 3 1 3 0 4 4 7
1 8 3 3 1 3 0 4 4 3 4
1 9 3 1 3 0 4 4 3 4 3
-1 10 1 3 0 4 4 3 4 0 6
1 11 3 0 4 4 3 4 0 1 6
-2 12 0 4 4 3 4 0 1 1 8
2 13 4 4 3 4 0 1 1 4 4
2 14 4 3 4 0 1 1 4 1 7
1 15 3 4 0 1 1 4 1 0 11
2 16 4 0 1 1 4 1 0 3 11
Concentration of each compound added to each sample
Sample No. |Glucose|Glutamine| Ammonium Sulphate | Potassium Phosphate | Glutamate| Calcuim Lactate | HEPES | Bicarbonate
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.15 0.92 1.46 0.16 0.00 3.39 0.94
3 1.52 0.15 3.68 0.36 0.00 2.62 3.39 0.31
4 1.52 0.60 0.92 0.00 0.49 2.62 1.13 0.94
5 6.08 0.15 0.00 1.09 0.49 0.87 3.39 0.00
6 1.52 0.00 2.76 1.09 0.16 2.62 0.00 1.25
7 0.00 0.45 2.76 0.36 0.49 0.00 4.52 1.25
8 4.56 0.45 0.92 1.09 0.00 3.49 4.52 0.94
9 4.56 0.15 2.76 0.00 0.66 3.49 3.39 1.25
10 1.52 0.45 0.00 1.46 0.66 2.62 4.52 0.00
11 4.56 0.00 3.68 1.46 0.49 3.49 0.00 0.31
12 0.00 0.60 3.68 1.09 0.66 0.00 113 0.31
13 6.08 0.60 2.76 1.46 0.00 0.87 113 1.25
14 6.08 0.45 3.68 0.00 0.16 0.87 4.52 0.31
15 4.56 0.60 0.00 0.36 0.16 3.49 113 0.00
16 6.08 0.00 0.92 0.36 0.66 0.87 0.00 0.94
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Appendix Il

Concentration of each component added to each sanepl

Sample No. |Glucose|Glutamine| Ammonia|Phosphate | Glutamate | Lactate | HEPES | Bicarbonate
1 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00
2 0.00 0.15 0.25 1.00 0.16 0.00 | 3.39 0.94
3 1.52 0.15 1.00 0.25 0.00 0.75 | 3.39 0.31
4 1.52 0.60 0.25 0.00 0.49 0.75 | 1.13 0.94
5 6.08 0.15 0.00 0.75 0.49 0.25 | 3.39 0.00
6 1.52 0.00 0.75 0.75 0.16 0.75 0.00 1.25
7 0.00 0.45 0.75 0.25 0.49 0.00 | 4.52 1.25
8 4.56 0.45 0.25 0.75 0.00 1.00 4.52 0.94
9 4.56 0.15 0.75 0.00 0.66 1.00 | 3.39 1.25
10 1.52 0.45 0.00 1.00 0.66 0.75 | 4.52 0.00
11 4.56 0.00 1.00 1.00 0.49 1.00 0.00 0.31
12 0.00 0.60 1.00 0.75 0.66 0.00 | 1.13 0.31
13 6.08 0.60 0.75 1.00 0.00 0.25 1.13 1.25
14 6.08 0.45 1.00 0.00 0.16 0.25 | 4.52 0.31
15 4.56 0.60 0.00 0.25 0.16 1.00 1.13 0.00
16 6.08 0.00 0.25 0.25 0.66 0.25 | 0.00 0.94
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