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Title: Investigation of Compression Algorithms for the Purpose of Medical
Archiving and Remote Diagnostics.

Author: Raymond Rochford
Abstract

The objective of this research is to investigate compression algorithms for the
purposes of medical archiving and remote diagnostics. A single X-ray of size 1024
by 1024 pixels at 8 bit resolution occupies approximately 1 Mbyte of storage space
and takes approximately 8 minutes to transmit over a standard telephone line. There
is a need to reduce both required storage space and transmission time. This is
achieved by compressing the image. For archiving, a lossless compression algorithm
is used and for remote diagnostics a lossy compression algorithm is used. The
development of an application for the transmission of images from the server
application to a client application using the Internet is also investigated.

The performances of three lossless compression algorithms are investigated:
Huffman Coding, Arithmetic Coding and Huffman Coding using Splay Trees. These
algorithms are written in C, transformed into (Dynamic Linked Library) DLLs using
Visual C++ for use in a Visual Basic application. The algorithms are tested on five
images, three X-rays and two standard images, and compression ratio, compression
time and decompression time are recorded for each.

The lossy algorithm investigated is Transform Image coding using the
Discrete Cosine Transform (DCT). This algorithm is written in C, transformed into a
DLL using Visual C++ for use in a Visual Basic application. The algorithm is tested
on five images, three X-rays and two standard images, and compression ratio,
compression time, decompression time and mean square error for different quality
factors are recorded for each image.

The application is developed with a user-friendly Graphic User Interface
(GUI) using Visual Basic. The client could choose an image from the server and
then zoom in on any section of it. This can be used for remote diagnostics or as a
reference tool. The application could also determine which DCT method to use to
optimise the bandwidth, depending on the speed ofthe medium used.



CHAPTER 1
INTRODUCTION

1.1 Objective

The objective of this project is to investigate lossless and lossy compression
algorithms for the archiving and transmission of images respectively and to
determine the algorithms to be used in a software application which utilises the
Internet.  The software application should incorporate a user-friendly graphic
interface for the archiving and transmission of images over the Internet.

The lossless algorithms tested are Huffman coding, Huffman coding using
splay trees and arithmetic coding. They are chosen for their speed and compression
ratio with the main emphasis on a fast and simple algorithm. The lossy algorithm
tested is the Discrete Cosine Transform (DCT) and is chosen because of the need for
speed and the optimisation ofthe bandwidth used.

The software application is developed to optimise the bandwidth used where
the original image is compressed at a default resolution at the server application
using the lossy algorithm. The compressed image is then transmitted to the client
application where it is viewed at this default resolution. The client can then select a
section of the image at a new resolution and only this section would be transmitted at
the new resolution from the server application to the client application, thus

optimising the bandwidth used.

1.2 Digital image processing
When discussing the digital processing of images, where an image is a two
dimensional (2-D) array of values that specifies the intensity of the image at a
particular spatial position, the study of the human visual system is important because
this system is the most sophisticated image detection, formation and analysis system
known [1]. The proverb 'A picture tells a thousand words' expresses the idea of the
amount o f information contained in a single picture.

The large volume of optical information in many disciplines and the need for

its processing and transmission led to the development of image processing by digital



computers. The relevant efforts started around 1964 at the Jet Propulsion Laboratory
in Pasadena, California and concerned the digital processing of satellite photographic
images coming from the moon. A new branch of science called digital image
processing emerged and has in the past three decades exhibited an impressive growth
in terms of both theoretical development and applications. It constitutes a leading
technology in a number of important areas (e.g. digital communications,
broadcasting and medical imaging). The evaluation of the results of image
processing operations is affected by how the human visual system responds to image
data with the eye acting as a camera and the visual portions of the brain as a complex
image processing system [2].

Digital image processing concerns the transformation of an image to a digital
format and its processing by digital computers where both the input and output of
this transformation are digital images [3]. The first step in any digital image
processing application is the digital image formation system.

This system basically consists of an optical system, a sensor and a digitiser.
The optical signal is transformed to an analogue electrical signal by using a sensing
device (e.g. CCD (Charged Coupled Device) sensor). The analogue signal is
transformed to a digital one by using a video digitiser (frame grabber). Thus, the
optical image is transformed to a digital one.

The analogue image must be sampled and digitised (by the use of a frame
grabber) before it can be processed by the computer. Sampling is the process by
which an image is broken down into a set of pixels (picture element) and the grey
level in each pixel digitised. A pixel is the basic spatial element of a computer image
and a digital image is composed of these pixels distributed in a rectangular array.
Each pixel in the digital image takes on a value that indicates the intensity of the
analogue image at its location. Shown schematically in Figure 1.1 is an analogue
image and its corresponding digital image. The analogue image is sampled at
discrete locations and assigned a value in the digital image which corresponds to the
intensity at that location in the analogue image. The digital image is thus a
representation of the analogue image. Sampling and digitisation are performed by an

A/D (analogue to digital) converter.



Sampled at discrete location
\ Discrete samples

= EMmUuUuuuu
Sampled

Analogue image Digital image

Figure 1.1: Sampling example

The pixels are also quantised by the A/D converter. The process of
guantisation is the assignment of a meaningful range of values to individual pixels
according to the intensity at a location in the image. An image with pixel values of
only 0 or 1 is called a binary image. In a monochrome image, the range of
guantisation values is called the grey scale. The range begins with black 0, and
increases to white 255, with lighter and lighter shades of grey in between. The
individual quantisation values are called grey levels. The use of two hundred and
fifty six levels of grey to describe a pixel’s quantisation value corresponds to an eight
bit binary number and so is important because the basic unit of computer memory
storage is the byte (eight bits). Shown in Figure 1.2 is a discrete sample from the
digitised image and its corresponding value. This is a pixel in the digital image.
Since the image is viewed in grey scale then the quantisation range is from 0 to 255

where each value is an integer. So the discrete sample will be quantised to 253.

-255
254
253,456 .253.456 253
253
252
Discrete sample value Quantisation levels Quantised sample value

Figure 1.2: Quantisation example



1.3 Digital image compression

Digital images require a large amount of disk space for their storage. A grey scale
image of size 1024 x 1024 x 8 bits occupies approximately 1Mb of disk space. Thus,
the reduction of disk space requirements is very important in applications such as
image storage or transmission.

There are two types of compression. Lossless compression is where the
reconstructed image (after it has been compressed and decompressed) is identical to
the original. There is no loss of information in the compression-decompression
process. Lossless compression is used for archiving since medical images have to be
stored without any loss of information. Lossy compression is where the
reconstructed image, after it has been compressed and decompressed, is not identical
to the original. There is a loss of information in this case but this loss is not
generally visible. Visually the reconstructed image looks identical to the original
image. Lossy compression produces higher compression ratios than lossless
compression so it is used to compress an image before it is to be transmitted as in the
case of remote diagnostics.

Digital image coding and compression take advantage of the information
redundancy existing in the image, by coding the information content more efficiently
[4]. Redundancy relates to how data is distributed throughout the image. Shown in
Figure 1.3 is a section of a digital image. The information content is not coded
efficiently as the value 152 appears several times occupying 8 bits each time. This
can be coded more efficiently by reducing the number of bits required to represent
some of the 152 values and can be achieved simply by using a code , & , which
indicates that 152 will appear a number of times, dependent on the value immediately

following the code, in the file, thus reducing the number of bits required.

152 163 101
152 152 152
152 92 152 152 163 107 152 152 152 152, 92 152 152 163 101, 152&4 ,92 152
Section of . . .
Digital Image 32 bits [8 bits per 152] 20 bits [152 (8) + & (9) + 4 (3)]
How section appears in file Section coded more efficiently

Figure 1.3: Example of redundancy



Large compression ratios (e.g. 1:10) can be obtained by thorough exploitation
of the information redundancy. Excessive image compression however results in
image degradation after decompression. A good compromise between image
degradation and compression ratio must be found. Intensive research over recent
years has led to a large number of digital image compression techniques. Some of
these are already CCITT (Consultative Committee for International Telephony and
Telegraphy) standards [5].

Digital image frequency content plays an important role in digital image
compression. Discrete Cosine Transform (DCT) is used to obtain the digital image
frequency content, shown schematically in Figure 1.4. So transform theory is an
integral part of digital‘image processing. The transforms used are 2-dimensional
(2-D), because the digital image itself is a 2-D signal. The computation of this
transform requires a large number of numerical operations (multiplications and
additions). Therefore, the development of fast transform algorithms has been a very

important advance in this work.

. Vertical
Vertical . DPT .
. Pixels Frequencies
Time
Horizontal Time Horizontal Frequency
Digital Image Image transformed to

frequency domain

Figure 1.4: Transform using DCT

1.4 Application to the medical environment

An average X-ray department takes an X-ray approximately every six minutes during
the working day. Ifeach X-ray is digitised to a 1024 x 1024 x 8 bits digital image,
over one week a substantial amount of memory space would be required. If each
image could be compressed to one quarter of the above size using lossless
compression, there would be a corresponding reduction in the memory space

required. Due to the nature of medical images they must be stored (archived) without



loss of information and lossless compression achieves this [6]. An example would be
acompact disk of size 800 Mb which can now hold 800 X-ray images. Ifthe images
were compressed, this compact disk could hold 3200 X-ray images and each X-ray
image could be faithfully decompressed when required.

If an image is to be transmitted for diagnosis or as a reference image it takes
approximately 300 s using a standard 14.4 Kb/s modem. This time required for the
image to download is not acceptable and adds to the telephony costs. If the image
could be compressed to one tenth its size, using lossy compression without any
visible loss of information, the transmission time would be reduced to approximately
30s. Lossy compression achieves this level of compression and yields an acceptable
decompressed image since the final receiver is the human eye which can compensate
for a certain level of image imperfection.

Therefore the implementation of an appropriate lossless or lossy algorithm is
very significant in the medical imaging field for archiving and also for the

transmission of medical images.

1.5 Summary ofwork
This Chapter introduces the objective of this project and gives a background to
image processing and image compression. It also introduces some of the principles

and techniques involved in image compression.

In Chapter 2, the subject of image compression is discussed in some detail. The two
compression techniques, lossless and lossy, are introduced. The lossless algorithms
investigated are static Huffman coding, adaptive Huffman coding, Huffman coding
using splay trees and arithmetic coding. These algorithms are discussed and so also
is run length encoding as used in the lossy compression algorithm. The lossy
compression algorithm investigated is the Discrete Cosine Transform (DCT)

compression algorithm.

In Chapter 3, the use of the Internet for transmitting and receiving data is

introduced. The client-server principle is described, as is also the requirement to



change from OSI (Open System Interconnection) to TCP/IP (Transport Control
Protocol / Internet Protocol) protocols. Next the TCP/IP addressing scheme is

introduced and the principle of data transmission using the Internet is discussed.

In Chapter 4, the implementation of the overall objective is discussed. The software
application for the transmission ofthe images and the functionality ofthis application
is described. The choice of the language environment is also discussed. The test
images which are to be used, as well as their relevant histograms, are introduced.

The implementation of each lossless compression algorithm is discussed, as
well as the results of these implementations and the appropriate lossless algorithm is
chosen for the specific software application.

The implementation of the lossy algorithm is investigated using different size
guantisation matrices and different lossless encoding algorithms. The results ofthese
implementations are shown and the optimal method is chosen for the software
application.

Finally, the Internet software application is discussed and the transmission
times are shown for each method evaluated using an Internet LAN (Local Area
Network) and a 14.4 Kb/s modem. The method of sending only the difference
instead of the image when zooming in is investigated and the resulting transmission

times are shown over an Internet LAN and a 14.4 Kb/s modem.

In Chapter 5 the application-specific use of lossless and lossy algorithms is
discussed. Future development of the work is introduced. The extension to colour
medical images is discussed. Also discussed briefly is a lossy algorithms which
could be incorporated into the application, wavelet transforms. Finally the

introduction of encryption into the application is discussed.

Appendix A contains an example of Huffman coding using splay trees and shows

how this can result in the attainment of higher image compression ratios.



Appendix B contains the derivation of the l-dimensional DCT and the
1-dimensional inverse DCT. The 2-dimensional DCT and the 2-dimensional inverse

DCT are then derived from the 1-dimensional equations.

Appendix C shows the headers for the bitmap format which is the format for
viewing images in a Visual Basic environment. The process of transformation of

colour images from the RGB plane to the YUV plane is also shown.

In Appendix D, the lossless compression results for the test images, a chest X-ray

image, a pelvis X-ray image, a mandrill image and a Lenna image, are shown.

In Appendix E the quantisation matrices are shown.

Appendix F shows the lossy compression results for the four test images, for

different quantisation sizes, 8x8,16x16 and 32 x 32.

In Appendix G screenshots from the Visual Basic software application are shown
and the use of the client software to view an archived image on the server is

discussed.

In Appendix H the results for transmitting only the difference between the four test

images, at different resolutions, are shown.

Appendix | shows the abstract of a presentation of some of this work given at the
first annual scientific meeting of the Biomedical Engineering Association of Ireland

on 9 March 1996.

In Appendix J the paper on this work presented at the IDSPCC in Trinity College,

Dublin on 24 June is shown.



CHAPTER 2
DIGITAL IMAGE COMPRESSION

2.1 Image compression

Digital image compression is concerned with the minimisation of the number of
bytes needed to represent a digital image. Compression therefore reduces the amount
of disk space required for image archiving in a variety of applications, e.g. medical
imaging and remote sensing. Digital image compression techniques can be divided
into two classes, lossless and lossy [7].

Lossless compression is used in applications where raw image data contain
vital information that must not be altered in any way by the process e.g. medical
diagnostic imaging.

Lossy compression can be used when raw image data can be easily
reproduced or when the information loss can be tolerated at the receiver site. Typical
cases are in video conferencing and digital TV applications where the final receiver
is the human eye.

All digital image compression techniques are based on the exploitation of
information redundancy in the digital images. The redundancy stems from the
statistics of the image data (e.g. strong spatial correlation). The aim of compression
algorithms is to represent the image, using a lower number of bits per pixel without
losing the ability to reconstruct the image. No non-redundant image data may be lost
in the data compression process, otherwise error-free reconstruction is impossible.
Image redundancy can be described in various ways and each of these leads to a
particular class of digital image compression algorithms.

Statistical redundancy is directly related to the image data probability
distribution and can be treated by information theory techniques using image entropy
concepts. Its removal results in lossless image compression techniques (Huffman
coding, run-length coding). Predictability in a local image neighbourhood is another
way of describing image redundancy. Local prediction models take advantage of the
strong spatial correlation and try to decorrelate the pixels in a local neighbourhood.

The transmission or storage of the decorrelated (error) image results in image

10



compression. Most predictive compression schemes, e.g. Linear Predictive Coding
(LPC), result in lossy compression [8],

Image compression can also be achieved by information packing through
image transforms. This is obtained by exploiting the fact that certain transforms (e.g.
Discrete Cosine Transform) can concentrate image energy in a few transform
coefficients. Thus, coding of transform coefficients can lead to considerable data

compression [9].

2.2 Lossless image compression

2.2.1 Huffman coding

Binary coding is a process by which numbers are represented by corresponding
strings of Os and Is called code words. This form of coding is ideally suited to meet
the requirements for the storage or transmission of data. The inverse process, the
reconstruction ofthe data is called decoding.

The single feature assuring unambiguous decoding is called the prefix
condition. No word inthe code book should appear as the first bits, or prefix, in any
other word. When a codeword, codes representing each number, has been received,
there should be no possibility that it is part of a longer word. That means that, the
next bit must be the beginning of a new word [10].

An image is sampled to a size N x M pixel matrix and each pixel quantised
to B bits. Each of the 2B image intensity levels is transmitted by using B bits. The
average number of bits per pixel is reduced by assigning binary codes of different bit
lengths to the various image intensities.

Let p(i) be the probability density function (pdf) of the image intensities i, for
0 <i<2B. Once the pdfis known, short codewords can be assignhed to intensities
having a high probability of occurrence and larger codewords can be assigned to less
frequent intensity levels. This coding scheme is called entropy coding. Suppose a
code word of length L (i) is assigned to intensity levels i, 0 <i<2B. Average code

word length is then given by
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Length L(i) must be chosen in such a way that L is minimised. Information
theory gives a lower bound H(B) on the average codeword length

_ b1
L>H(B) where H(B) = -~*p (i)log2(p(i)), the image entropy.....cccceeuruenrne 2.2
i=0

If the image intensity levels are coded by using variable length codewords,
then the codewords are joined to form a binary data stream. This stream must be
decoded at the receiver site. Therefore the combinations of the joined code words
must be decipherable. The Huffman code possesses this property [11]. Its average
code word length is very close to the image entropy value H(B).

In the Huffman code, no codeword can be the prefix of another code word.
This guarantees that the encoded binary data stream is decipherable. The resulting
code has atree form. The Huffman code can be constructed by using a tree.

The Huffman algorithm [12] builds up a weighted binary tree according to the
rate of occurrence of the intensities. Each element of this tree is assigned a new
code, where the length of the codeword is determined by its position in the tree. The
intensity which has the highest rate of occurrence then becomes the root of the tree
and is assigned the shortest code. Each less frequent intensity is assigned a longer

code word. Shown is an example to demonstrate the method of Huffman coding

p(J)=[\2 .26 .3 .15 1 .03 .02 .02]
Suppose that the image has eight intensity levels i=0—7. We assume that the
probabilities p(i) are known and a column of intensity levels with descending

probabilities can be used.

.26
.15
12

~
1

= o O A O W N
[SN

.03
.02
.02
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The intensities of this column constitute the so-called leaves of the Huffman
code tree. The tree is constructed in individual steps. At each step the two tree nodes
having minimal probabilities are connected to form an intermediate node. The
probability assigned to this node is the sum of the probabilities of the two branches.
This procedure is repeated until all branches (intensity levels) are used and the

probability sum is 1.

w 0.3 »0.3 » 0.3 >0.3 »0.3 »0.3 —-1

4 0.26 $0.26 »).26--——- »0.26------- »0.26 — 0.57-1
=3 0.15 10.15 "DO.15 ----- >0-lﬁ3 L »0.27- 0.27—1

=00.12 SO I J— »0.12 >0.12—1 ‘0 430 43
=4 0.10------ »0.10------ »0.10 .. 4 0.17 -commeee »0.17 —1

=5 0.03--—---- »0.03 0.07—1 . .

=6 002 0041 D

=7 0.02

The code tree is unscrambled to eliminate branch crossovers.

=0 0.12
0.27
=3 0.15 0.57---—--- ®.57------- »0.57
= 0.3 0.3 _ 1
=1 026 0.26 »0.26 »0.20—i
=4 0.10 0.10 ¢0.10-]1_017J S s8-1
f5 0.03 0.03 »0.07—J
=7 0.02

The code words are constructed by travelling through the decoding tree from its root
to its leaves. At each level a 0 is assigned to the top branch and a 1 to the bottom
branch. The procedure is repeated until all tree leaves are reached. Each leaf

corresponds to a unique intensity level.
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=0 0.12

=3 015 . 0.57- 30575057

= 0.3 03 4 q

4 0.6 0.26  »0.26- >0.26—1 S
0.10 0.10 “ji— »0.10 0 1 _5—’0-43 1

-5 0034--0.03A. 00717->0'1

=6 002 0.04-— | 1

=7 002 ,

The code word for each intensity consists of the zeros and ones that exist in the path

from the root to this specific leaf

i P (i) Code word
2 0.3 01
1 0.26 10
3 0.15 001
0 0.12 000
4 0.10 110
5 0.03 1110
6 0.02 11110
7 0.02 11111
The intensity levels i=1,2 are assigned small code words since they have a

high probability density function while the intensities with low probability density

functions have longer cbde words.

As these intensities appear in the image they are assigned their code words to

form a binary data stream and are decoded at the receiving end to reconstruct these

intensities.

2.2.2 Arithmetic coding

Huffman codes clearly have to be an integral number of bits long. If the probability
of an intensity occurring is 0.33, then the optimum number of bits to code that
intensity is around 1.6. Huffman coding has to assign either one or two bits to the

code and this leads to a longer compressed code.
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The Huffman coding method is optimal when and only when the intensity
probabilities are integral powers of Vi. The method of arithmetic coding [13] does
not have this restriction. It treats the stream of intensities as a single unit, and thus
attains the theoretical entropy bound to compression entropy.

Instead of representing each input intensity with a specific code, arithmetic
coding represents a stream of input intensities with a floating-point number.
Arithmetic coding works by representing each intensity by an interval of real
numbers between 0 and 1, therefore the output from arithmetic coding is a single
number less than 1 and greater than or equal to 0 [14], a floating-point number. As
the input stream becomes longer the interval needed to represent it becomes smaller
and smaller. This floating-point number can be uniquely decoded to create the exact

stream of intensities that went into its construction.

Consider an example stream ofinput intensities [34838989117321 12156110] to

demonstrate the method of arithmetic coding.

Probabilitv
11 0.1
21 0.1
34 0.1
56 0.1
73 0.1
83 0.1
89 0.2
110 0.1
121 0.1

Once intensity probabilities are known individual intensities are assigned a range

along a “probability line”, nominally 0 to 1. Each intensity is assigned the portion of

the 0 to 1 range that corresponds to its probability of occurrence.



Range

Intensity  Probability Low Range High Range
1 0.1 0.00 to 0.1
21 0.1 0.1 to 0.2
34 0.1 0.2 to 0.3
56 0.1 0.3 to 0.4
73 0.1 0.4 to 0.5
83 0.1 0.5 to 0.6
89 0.2 0.6 to 0.8
110 0.1 0.8 to 0.9
121 0.1 0.9 to 1.0

Intensity Table

Intensity 121 has the range 0.9 to 0.999. The most significant intensity is 34 which
has the range 0.20 to 0.30, and so all other subranges are calculated from this range.

Intensity Low Value Hieh Value
34 0.20 0.30

The following transforms are used to calculate the subranges

range = high value - low value
high value = low value + range * low range
low value = low value + range * high range

From intensity 83: range = 0.3-0.2 = 0.10
low value = 0.2 + 0.1*0.5 = 0.25
high value = 0.2 + 0.1*0.6 = 0.26

Intensity Low Value Hieh Value
34 0.20 0.30
83 0.25 0.26

From intensity 89: range = 0.26-0.25 = 0.01
low value = 0.25 + 0.01 *0.6 = 0.256
high value = 0.25 + 0.01*0.8 = 0.258

Intensity Low <<lue  High Value

34 0.20 0.30
83 0.25 0.26
89 0.256 0.258
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From intensity 89:

Intensity Low Value
34 0.20

83 0.25

89 0.256

89 0.2572

From intensity 11:

Tntensitv Low Value
34 0.20

83 0.25

89 0.256

89 0.2572

11 0.25720

From intensity 73:

Tntensitvy Low Value
34 0.20

83 0.25

89 0.256

89 0.2572

11 0.25720

73 0.257216

range = 0.258-0.256 = 0.002
low value = 0.256 + 0.002*0.6 = 0.2572
high value = 0.256 + 0.002*0.8 = 0.2576

range = 0.2576-0.2572 = 0.0004
low value = 0.2572 + 0.0004*0.00 = 0.25720
high value = 0.2572 + 0.0004*0.01 = 0.25724

High Value
0.30

0.26

0.258
0.2576
0.25724

range = 0.25724-0.25720 = 0.00004
low value = 0.25720 + 0.00004*0.4 = 0.257216
high value = 0.25720 + 0.00004*0.5 = 0.257220

High Value
0.30

0.26

0.258
0.2576
0.25724
0.257220

and so on for other intensities until a final low number is obtained

Intensity . r .

34 0.20

83 0,25

89 0.256

89 0.2572

1 0.25720

73 0.257216

21 0.2572164
121 0.25721676
56 0.257216772

110

0.2572167752

Hi»h Value
0.30

0.26

0.258

0.2576
0.25724
0.257220
0.2572168
0.25721680
0.257216776
0.2572167756

Thus 0.2572167752 uniquely encodes the stream of intensities.
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To decode the floating point number, the number 0.257168852 has a low value 0.2
and when compared to the intensity table gives an intensity of 34.
Transform used to calculate the individual intensities
range -high range - low range
number = number - low range
number = number / range
Therefore range = 0.3 - 0.2 = 0.1

number = 0.2572167752 - 0.2
number = 0.0572167752 / 0.1

0.0572167752
0.572167752

Low value is 0.5 and when compared to intensity table gives an intensity of 83

Therefore range = 0.6 - 0.5 =0.1
number = 0.572167752 - 0.5
number = 0.072167752 / 0.1

0.072167752
0.72167752

Low value is 0.6 and when compared to intensity table gives an intensity of 89

Therefore range = 0.8 - 0.6 = 0.2
number = 0.72167752 - 0.6 = 0.12167752
number = 0.12167752 / 0.2 = 0.6083876

Low value is 0.6 and when compared to intensity table gives an intensity of 89
Therefore range = 0.8 - 0.6 = 0.2

number = 0.6083876 - 0.6 = 0.0083876

number = 0.0083876 / 0.2 = 0.041938
Low value is 0.0 and when compared to intensity table gives an intensity of 11
Therefore range= 0.1 - 0.0 =0.1

number = 0.041938 - 0.0 = 0.041938
number 0.041938 /0.1 = 0.0041938

Low value is 0.4 and when compared to intensity table gives an intensity of 73

And so on to reconstruct other intensities to obtain

[34 83 89 89 11 73 21 121 56 110]
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2.2.3 Splay trees

Huffman compression algorithms require the use of a tree balancing scheme. Splay
trees are ordered binary search trees, which when applied to Huffman coding, lead to
a locally adaptive compression algorithm.

A binary code used in the compressed data file may not be the prefix of any
other code. Prefix codes are part of a binary tree and can be read by following the
path from the root of the tree to the intensity leaf and associating a 0 with each left
branch followed and a 1 with each right branch followed. The code tree for Huffman
coding is a weight balanced tree where each leaf is weighted with an intensity
frequency value and internal nodes have no weight. Huffman coding requires two
passes through the data to be compressed. First pass is to obtain the intensity
frequencies and the second pass is to perform the actual compression.

When a node in a tree is accessed the tree is splayed [15]. That means that
the accessed node becomes the root and all nodes to the left of it form a new left
subtree while all roots to the right form a new right subtree. Splaying is
accomplished by following the path from the old root to the target root, making only
local changes along the way

Splaying applies to the trees where there are data stored in the internal roots
and not in the leaves. Semi-splaying is applied to prefix code trees. The target node
is not saved to the root and the path from the root to the target is reduced by a factor
of two.

Since a Huffman tree is a statically balanced tree, splaying is applicable to
data compression. Shown in Figure 2.1 is an example of splaying. Figure 2.1 (a)
shows a Huffman code tree and its corresponding Huffman codes assigned to the
values. The total number of bits is 14. Shown in Figure 2.1 (b) is the Huffman tree
from the top down. The length from root to node 1is 4. Figure 2.1 (c) shows the
tree splayed around node 1 so that new subtrees have been created. The length from
the root to node 1 has been halved, giving the length now 2 and the total number of
bits required to represent the numbers now 12. See Appendix A for a larger example

of splaying when applied to Huffman coding.
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No. Prob.

1 0.05

2 0.10 1 0000

3 0.15 6 0_ 2 0001

4 0.3 ' 3 001

5 0.4 4 o

5 1
(a) Huffman tree and corresponding Huffman codes

1 00
2 010
3 011
4 10
5 1

(b)

(c) Tree after splaying and corresponding new codes

Figure 2.1: Example of splaying

2.2.4 Run length encoding

In an input intensity stream, intensity values are often identical. Run Length
Encoding (RLE) [16,17] checks the stream of intensity values for this and inserts a
code each time a chain of more than two equal intensities are found. This code tells
the decoder to insert the following intensity n times into the output stream. Figure
2.2 is an example of RLE. Figure 2.2 (a) shows a section of an image and how it
would appear in a file, scanned from left to right. Also shown is the run length
encoding of this data. Figure 2.2 (b) shows the section when it has been zig-zag

coded and then run length encoded. As can be seen, when zig-zag coded longer run

lengths are produced.
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— » 112 112 122 > 1&22 1&2212&2

(a) Run length encoding

111112222 > 1&5 2&4

(b) Zig-zag coding and the RLE

2 Example of run length encoding

Show is another example to demonstrate the method of RLE.

A selection of input intensities is shown.
[147 134 140 140 140 140 140 140 67 56]
The output from the run length coder would be
[147 134 %6140 67 56]
Thus the amount of information to be stored or transmitted has been reduced and the

coded intensities can be easily decoded

2.3 Lossy compression

2.3.1 Transform image coding

Another approach to digital image coding is to use image transforms to concentrate
the image energy in a few transform coefficients [18]. In transform image coding, an
image is transformed to a domain different from the image intensity domain and the
transform coefficients are then coded. If energy packing is obtained, a large number
of transform coefficients can be discarded and the rest coded with variable length

codewords, thereby giving data compression. Let f represent an image of size
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L= N x M. The transform vector is given by F=Afwhere A is the transform matrix

and the inverse transform is defined as f = A_1F .

Figure 2.3: Transform image coding block diagram

Transform image coding techniques attempt to reduce the correlation that
exists among image pixel intensities. The energy compaction property arises from
the fact that a large amount of energy is concentrated in a small fraction of the
transform coefficients. In most practical cases, the signal energy is unevenly
distributed in the transform coefficients. The d.c. coefficient and some other low
frequency coefficients F(k), 1<k < K <L tend to concentrate most of the signal
energy [19].

Many transform coefficients (e.g. F(k), k>K) may be discarded without
significant loss of information. A variable number of bits nk, 1< k < K, may be
allocated to each coefficient, so that the average number of bits per pixel is equal to a
predefined number B.

Once the number of bits allocated is determined, the transform coefficients
F(k), 1< k < K, may be quantised to produce the encoded image. To obtain a good
transform coding algorithm several problems must be solved [20].

1. The choice of the transform to be used, e.g. Discrete Fourier Transform, Discrete
Cosine Transform etc. The DCT is used in the JPEG (Joint Photographic Experts
Group) compression standard of CCITT (see section 2.3.2).

2. The choice ofimage block size. Itis not advisable to apply one transform to the
entire image because of the changing image statistics in the various image
regions. The image is split into a number of non-overlapping blocks that are
coded independently. A typical block size in this application
N x M, is8x 8or 16 x 16.

3. Determination of bits allocation. Suppose nk, k=1— L, is the number of bits

allocated to each transform coefficient F(k), k=1— L. If nk=0, it means that the
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corresponding coefficient F(K) is discarded. The average number of bits per pixel

2.3.2 JPEG (Joint Photographic Experts Group)

The primary example of the transform coding of still pictures is the JPEG
international standard prepared by the ISO/IEC [21] JTC1/SC2/W G10 photographic
committee. This group collaborated informally with a special rapporteur com mittee
of CCITT SGVIIIL. In this joint work the ISO/IEC selected, developed and tested
coding techniques, whereas CCITT SGVIII provided coding specifications for image
communication applications. The JPEG standard provides algorithms for lossless

and lossy compression [22],

2.3.3 Discrete Cosine Transform (DCT)
The Discrete Fourier Transform (DFT) [23] is a transform which has a fixed set of
basis functions, an efficient algorithm for its computation and good energy
compaction. The transform of x(n,,n2) is X(iy, ,&2). The DFT of typical images
have most of their energy concentrated in a small region in the frequency domain
near the origin and along the & and &2 axes. Energy concentration occurs near the
origin because most images have large regions where the intensities change slowly.
Sharp discontinuities contribute to high frequency components. The energy
concentration along the @, and &2 axes is due to the rectangular window used to
obtain a finite extent image. The rectangular window creates artificial sharp
discontinuities at the four boundaries. Discontinuities at the top and bottom of the
image contribute energy along the a2 (vertical) axis and discontinuities at the two
sides contribute energy along the &l (horizontal) axis [24],

Since most of the signal energy is concentrated in a small region an image
may be reconstructed without significant loss of quality and intelligibility from a

small percentage of transform coefficients. It is possible to improve the energy



compaction property of the DFT without sacrificing other qualities such as the
existence of a computationally efficient algorithm, this is because most of the energy
is packed into the fewest coefficients. In transform coding the transform coefficients
of an image rather than its intensities are coded. The DCT [25] can be derived from
the DFT since it is so closely related to it. Appendix B gives the derivations of the
Discrete Cosine Transform.

The DCT is used instead of other transforms such as the Haar and the
Hadamaard even though they require fewer computations than the DCT, because
their energy compaction properties are not as good as that of the DCT for typical
images.

The Discrete Cosine Transform was introduced by Ahmed and his colleagues
in 1974 [26, pp 1-25], Since then it has been extensively used in various image
coding schemes, because of its excellent performance in typical images exhibiting
high spatial correlation. In most practical cases, the use of a DCT-based transform
scheme has a computational advantage over other transform schemes due to its use of
the FFT [26, pp 123-135]. The DCT forms the basis of the JPEG standard for still
image compression and also the standard for moving image compression standard,

MPEG. For images the 2-D DCT is used. Shown is an example of the DCT.

Case 1. The image in the intensity domain is a white vertical stripe. When

transformed to the frequency domain all the energy is contained in the low horizontal

frequencies.

Intensity Domain Frequency Domain

0 0 0 0 20 0 -20 0 20

0 0 0 0 DCT 0 0 0 0 0

0 0 0 0 o> 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
Case 1

Case 2. The image in the intensity domain is a white horizontal stripe. When

transformed to the frequency domain all the energy is contained in the low vertical

frequencies.
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Intensity Domain Frequency Domain

0 0 0 O 0 20 0 o0 0 0

0 0 o0 O 0 DCT 0 0 0 0 0

1 1 1 1 1 o 20 0 0 0 0

0o 0 0 o0 O 0 0 0 0 0

0 0 0 o0 0 20 0 o 0 o
Case 2

Case 3. The image is a white plus sign. When transformed to the frequency domain

most of the energy is concentrated in the DC coefficient which is 36.

Intensity Domain Frequency Domain
0 0 0 0 36 0 16 0 -16
0 0 0 0 DCT 0 0 0 0
1 1 1 1 o> -16 0 -4 0
0 0 0 0 0 0 0 0
0 0 0 0 16 0 -4 0 -4

Case 3

2.3.4 Sub-image by sub-image coding

In transform image coding an image is divided into many sub-images, each of which
is transformed and coded separately [26, pp 166], By coding each sub-image
separately the coder can be made adaptive to local image characteristics.
Quantisation and bit allocation methods may differ between uniform background
regions and edge regions. Sub-image by sub-image coding reduces storage and
computational requirements. Since one sub-image is processed at a time, it is not
necessary to store the entire image.

To illustrate the resulting reduction in computational requirements, consider

an image f(nI5n2) with N xN pixels where N can be expressed as a power of 2.

f(n,,n2) is divided into sub-images. Each sub-image is M x M where M can be
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N2
expressed as a power of 2. The number of sub-images in the image is —-. The
M

number of arithmetic operations in computing an M x M point transform is
M 2log2M 2. The total number of arithmetic operations required in computing all the

transforms in an image is

M210g2M 2 = N 210g2M 2 .ot 2.4
M 2

Computing the transform of one N xN point image requires N 2log2N 2 arithmetic
operations. Since M « N then there are less arithmetic operations in the sub-image
by sub-image approach.

Although a smaller sized sub-image is more efficient computationally and
allows a coder to be more adaptive to local image characteristics, the sub-image size
cannot be reduced indefinitely. As the image is divided into smaller segments,
transform coding exploits less of the correlation present among image pixel
intensities. As sub-image size decreases the correlation among neighbouring
subimages increases. Since each sub-image is coded independently, possible
correlation among neighbouring sub-images is not exploited. This decreases the
performance of transform image coding and imposes a limit on the sub-image size.

Typical sub-image sizes are 8x 8 and 6x16.

2.3.5 Bit allocation
Transform image coding seeks to exploit the energy compaction property of the
transform. Selection procedures are required since only a small percentage of the
transform coefficients are typically coded. Two approaches which are used to
determine which transform coefficients are to be coded are zonal and threshold
coding [26, pp 167-175].

In zonal coding, only the coefficients within a specified region are coded.
The zone shapes are consistent with the observation that most of the energy in typical

images is concentrated in the low frequency region.
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In threshold coding, transform coefficients are compared with a given
threshold and those above the threshold are coded. From the energy compaction
point of view threshold coding is preferable to zonal coding. In zonal coding some
transform coefficients with small magnitudes may be coded while those with large
magnitudes are discarded since zones are pre-specified. In threshold coding only the
coefficients with large magnitudes are selected. Choice of which transform
coefficients are to be coded depends on the local image characteristics.

It is beneficial to allocate more bits to a coefficient with a large expected
variance. For the DCT, the expected variance is much larger for low frequency
coefficients than for high frequency coefficients.

Quantisation of one transform coefficient affects all the image intensities
within the sub-image. Several types of image degradation result from quantisation
noise in transform image coding. One type is loss of spatial resolution. In DCT
coding of images, the discarded transform coefficients are typically high frequency
components. The result is a loss of detail in the image. Another type of degradation
results from quantisation of the retained transform coefficients. Degradation in this
case appears as graininess in the image. A third type of degradation arises from
sub-image by sub-image coding. Since each sub-image is coded independently, the
pixels at the sub-image boundaries may have artificial intensity discontinuities. This
is known as the blocking effect and becomes more pronounced as the compression
ratio increases.

The DCT is used in the algorithm to compress the image before it has been
transmitted to decrease the bandwidth required to transmit the image. Chapter 3
provides a discussion of the Internet principles for the transmission of images, which

illustrate the value of compression in this application.
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CHAPTER 3
INTERNET COMMUNICATIONS

3.1 The Internet

The Internet consists of thousands of networks that use the TCP/IP (Transport
Control Protocol / Internet Protocol) suite [27]. Protocols are rules that define how
the software application must work to handle the flow of information that passes
from application to application. The TCP/IP protocol suite manages all information

that moves across the Internet.

3.2 Network programming models
Network programming can be thought of in two primary contexts, client/server and
distributed. For the purposes ofthis project a client/server model is used [28],

An application is split into two parts. A front-end client that presents
information to the user and collects information from the user, and a back-end server
that stores, retrieves and manipulates data, and generally handles the bulk of the
computing tasks for the client.

A server is any program that runs on a networked computer and can provide a
service. On receipt of a request via the network, a server performs the necessary
processing to service the request and returns the result to the requester. The client is
the program that sends a request to a server and waits for a response. For a client and
server to communicate and co-ordinate their work, an interprocess communication
(IPC) facility is needed.

In the client/server environment data are sent in their raw format from the
server to the client. The specific application running on the client computer

determines how the data is displayed.

3.3 TCP/IP
The experimental network called ARPANET gave rise to the TCP/IP protocol [29],

The TCP/IP protocol includes a set of standards that specify how networked
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computers communicate and how data is routed through the interconnected
computers. TCP/IP provides two primary services: connectionless packet delivery
and reliable stream transport.

The International Standards Organisation (ISO) introduced the Open System
Interconnection (OSI) reference model, a layered network architecture. The OSI
model is said to be an open systems architecture because it connects computer
systems that are open for communication with other systems. Connected computer
systems do not have to run the same operating system [30].

The OSI model is composed of seven layers as shown in Figure 3.1. These
layers define the function of data communication protocols. Each layer of the OSI
model represents a function performed when data is transferred between co-operating
applications across a connecting network. A layer does not have to define a single

protocol, but rather a function that is performed by any number of protocols.

Sending Application Receiving Application
Application Layer Application Layer
; _ t
Presentation Layer Presentation Layer
Session Layer Session Layer
Transport Layer Transport Layer
Network Layer Network Layer
Datalink Layer Datalink Layer
1
Physical Layer Physical Layer

Figure 3.1: OSI model
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The Application Layer provides end-user services. This is the layer closest to
what the user of the computers sees and manipulates. The Presentation Layer
controls how data is represented. Data compression and decompression may take
place at this point. The Session Layer manages process-to-process communication
sessions between hosts and is responsible for establishing and terminating
connections between co-operating applications. The Transport Layer performs end-
to-end error detection and correction. This layer guarantees that the receiving
application receives the data exactly as it was sent. The Network Layer manages the
network connection. This layer takes care of data packet routing between source and
destination computers as well as network congestion. The Datalink Layer provides
reliable data delivery across the physical network and does not assume that the
physical network is necessarily reliable. The Physical Layer is concerned with
transmitting and receiving raw bits over a physical communication channel. The
Ethernet is an example of a channel. This layer defines voltage levels and connection

points appropriate to the physical hardware [31].

Figure 3.2: TCP/IP model
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TCP/IP as shown in Figure 3.2 does not directly follow the OSI model. The
Application Layer consists of applications that make use of the network application
and presentation layers of the OSI model e.g. if data transferred between two
programs is going to be compressed the Application Layer is responsible for
compression and decompression. The Transport Layer provides end-to-end data
delivery. OSI’s Session and Transport Layers fit into this layer. OSI’s session
connection can be compared to TCP/IP’s socket mechanism.

A socket is one end of two way communications link between two programs
running on a network and is a low level connection. The client and server both
communicate through a stream of bytes written to their sockets. Before
communication the client and server must agree on a protocol, that is, they must
agree on the language of the information transferred back and forth through the
socket. In this case the protocol is TCP which inherits the behaviour ofthe Transport
layer from the OSI model.

TCP/IP socket is an end-point of communications composed of a computers
address and a specific port on that computer. TCP provides for reliable data delivery
and guarantees that packets of data will arrive in the order they were sent, with no
duplication and with no data corruption. The Internet Layer defines datagrams and
handles their routing. A datagram is the packet of data manipulated by the IP
protocol. Itcontains the source address, destination address and data as well as other
control fields. This is equivalent to OSI’s Network and Datalink Layers. [IP is
analogous to the network layer. It is responsible for encapsulating the underlying
network from the upper layers. It also handles addresses and delivery of datagrams.
In the Physical Layer TCP/IP makes no effort to define the underlying network
physical connectivity. Instead, it makes use of existing standards provided by IEEE,
which defines RS232, Ethernet and other electronic interfaces used in data
communications.

When a packet is sent, it travels to the Transport Layer where the transport
header is added. The Internet Layer then adds its header, and finally the Physical

Layer attaches its header. When a packet is received, the process is reversed [32].
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3.4 TCP/IP addressing schemes
TCP/IP has a universal addressing scheme [33]. Each computer on a TCP/IP
network has an address that uniquely identifies it. Its IP’s responsibility is to deliver
datagrams among the TCP/IP network’s computers. Each computer has an unique IP
address composed of a 32 bit number. The IP address contains enough information
to uniquely identify a network and a specific computer on the network.

A computer’s IP address must uniquely identify not only the computer but
also the network the computer is attached to, the IP address is split between a
network identifier (net id) and a host identifier (host id) part, as shown in Figure 3.3.
The split between these two identifiers is not the same for all addresses. The class of
address determines how many bits of IP address are reserved for net id and how may
are reserved for host id.

31 0
Class Id Netld HostlId

Figure 3.3: IP Address

There are three classes and each class has its own class id. Class A has a 0 in
bit 31. The net id is from bit 24 to 30, and the host id is from bit 0 to 23. Class B
has a 1in bit 31, and a 0 in bit 30. The net id is from bit 24 to 29, and the host id is
from bit 0 to 23. Class C has a 1in bit 31, and a 1 in bit 30. The netid is from bit 24
to 28, and the host id is from bit 0 to 23.

An [P address is represented by four decimal numbers from 0 to 255
separated by a (.) e.g. 166.78.4.139 which is 10100110 0100110 00000100 10001011
so that the net id is 166.78 and host id 4.139. This is a class B addressing model.

A Name Server is a computer which provides a name to an IP address. When
arequest to translate a name to its IP address arrives at the name server, it checks the
database to see if this information is there.

Network hardware does not understand IP addresses and so Address
Resolution Protocol (ARP) is used to map IP address and host names into a physical
address that the network hardware understands. A message is transmitted to check if
the computer with the IP address exists and if it is listening. If so, it will return a

message with its physical hardware address to the source. Any other computer
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ignores the request message. This protocol only works on the local network because
the format of the physical address is dependent on the hardware used in the network

[31] e.g. Ethernet.

3.5 Data transmission

TCP verifies that data is delivered in order and without corruption. There is extra
overhead and maintenance involved in this connection. Reliability comes from
inclusion of a checksum with each packet of data transmitted. When the packet is
received the checksum is generated and compared to the checksum included in the
header of the data packet. If checksums do not match, this is communicated to the
sender and the data is re-sent. We do not have to be concerned with this function
because lower layers mask it. TCP is connection-oriented because two end-points of
communications exchange a handshaking dialogue before data transmission can
begin. This handshake guarantees that the receiver is ready to accept data [34].

A socket is simply an end-point of communication. A TCP/IP socket is
comprised of an IP address and a port. Some ports are reserved for well-known
services and others for use by applications. Sockets may be set up to provide either a
reliable connection-oriented stream service or an unreliable connectionless datagram
service.

The most reliable stream socket is based on TCP. This requires that a
connection be established before two processes can send or receive data. Data is then
sent in a stream of bytes. A connection-oriented stream service is best suited to
client/server architecture. In client/server interaction, the server creates a socket,
gives the socket a name and waits for clients to connect to the socket. The client
creates a socket and connects to the named socket on the server. When the server
detects a connection to the named socket, it creates a new socket and uses that new
socket for communication with the client. The servers named socket waits for

connections from other clients.

33



CHAPTER 4
IMPLEMENTATION OF COMPRESSION ALGORITHMS

4.1 Objectives

This chapter first discusses the implementation of the objective of the project. Next
the language that the software application is written in is chosen. The lossless
algorithms are then described: Huffman coding, arithmetic coding and Huffman
coding using splay trees. These algorithms are investigated using the test images and
an appropriate algorithm is chosen. Next the lossy algorithm implemented,
transform image coding using the DCT, is discussed. Several modifications to this
algorithm are investigated and the results are discussed. Finally the Internet software
application is then discussed using these algorithms and their transmission over a
LAN are investigated.

The objective of this project is to develop a software application using
appropriate lossless and lossy algorithms for archiving or transmitting medical
images over the Internet. The application should have a user friendly Graphic User
Interface (GUI) and so the application should be preferably Windows-based and not
DOS-based, since Windows is more user-friendly than DOS. Also the compression
algorithms should be invisible to the user. The user should not need to have
knowledge of how the actual algorithms work

Figure 4.1 shows the flow chart for the application. The algorithm for
archiving is lossless and for transmission is lossy. X-ray images are archived on the
server PC and when a client request is received, an X-ray image is chosen,
decompressed from the server database using the lossless algorithm, compressed
using the lossy algorithm at a default resolution and then transmitted to the client

over the Internet where it is decompressed and viewed on the monitor.
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The user can then zoom in on a section of the image and increase the
resolution of that area. This section only of the image is transmitted at the new
resolution to the client where it is viewed. The user can then restore to the full X-ray
at default resolution and view another section of the image at increased resolution.
This is to ensure that only the section that is of interest is sent to the user at a
required resolution, so that time is not wasted in sending the whole image at a high

resolution when only a small section is required.

4.2 Choice of language environment

An early decision that had to be made was the language in which the application was
developed. Initially MATLAB® [35] was investigated because it is a high level
modular language. This language had the advantage that image processing functions
were already available and that a GUI could be developed in a Windows
environment.

A GUI was developed in MATLAB® to compress and decompress an image
using a DCT lossy algorithm for different image resolutions. It was seen to be
computationally very slow in compressing or decompressing and it was concluded
that developing an application using MATLAB® would not be practical. For
example, the compression ofa512x512x8bit image took approximately 35 min
on a 66 MHz 486 PC with 8 Mb of RAM.

C was then considered as an environment in which to develop the
compression algorithms. The advantage of C is that algorithms developed in this
environment are computationally fast, but, since C is a DOS-based language and part
of the overall objective is to develop a user friendly GUI, the actual front end
interface could not be developed in C. Visual C++ was the obvious environment in
which to develop a fast Windows-based application. The algorithms developed in C
could be expanded and developed in Visual C++. This route was investigated but
Visual C++ was seen to be too complex to develop a simple front end interface when
Visual Basic could achieve this with less complexity.

Consequently the algorithms for lossless and lossy compression were written

in C, imported into Visual C++ and developed into a Dynamic Linked Library
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(DLL). The front end GUI was then developed in Visual Basic and the functions for
lossy and lossless compression were declared in Visual Basic and are transparent to

the user.

4.3 Test images

The five images shown in Figures 4.2 to 4.6 are the images on which the lossless and
lossy algorithms were tested. The three X-ray images, wrist, chest and pelvis were
obtained from the Medical Imaging Department in St. James’ Hospital, Dublin. The
final two images, Mandrill and Lenna, are standard test images. The test images are
1024 x 1024 x 8 bits.

The standard format for storing and viewing bitmap images in Windows
applications is the bitmap (bmp) file format [36]. To view an image in Visual Basic
the image intensity data needs to be transformed to a bmp file. So programs for
reading and writing bitmaps were written in C and developed into DLLs where they
could then be used in Visual Basic. Appendix C gives the header structures for the
bitmap format and a description of the transform from a single intensity matrix to the

bmp RGB format.

Figure 4.2: Wrist X-ray image
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Figure 4.4: Chest X-ray image

Figure 4.5: Standard Mandrill image
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Figure 4.6: Standard Lenna image

Figures 4.7 to 4.11 are the histograms of the test images. The histograms
show the number of pixels per intensity in an image. These demonstrate the
frequency of intensities appearing in an image. The probability distribution can be
interpreted from the histograms. The higher the number of pixels per intensity, the
greater the probability. The lossless algorithms are based on this probability, where
the codes generated by the lossless algorithm depend on each probability. In Figure
4.7 it can be seen that two intensities have a high probability since they appear more
often than others. This makes the image easier to compress. Compare this to Figure
4.11 where the intensities are distributed more evenly making this image harder to

compress.

Figure 4.7: Histogram ofwrist X-ray image
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Figure 4.8: Histogram of chest X-ray image

0 Grey Scale

Figure 4.9: Histogram of pelvis X-ray image

0 Grey Scale

Figure 4.10: Histogram of Mandrill image
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Figure 4.11: Histogram of Lenna image

4.4 Implementation of lossless compression algorithms
Lossless algorithms investigated were static Huffman coding, adaptive huffman
coding, arithmetic coding and Huffman coding using splay trees. These algorithms

were investigated due to their computational speed and simplicity [37].

4.4.1 Implementation of static Huffman coding

Figure 4.12 shows the flowchart for the static Huffman encoding algorithm [38, 39,
pp. 186-195]. Section 2.2.1 gives an explanation of Huffman coding. The
probability of each intensity in the image is determined and this probability is the
weight at each node, where the intensity is the node. Leaves in the Huffman tree are
the starting nodes.

To decode, the decoder needs a copy of the Huffman tree identical to the one
used by the encoder. Therefore a header is passed to the output file. The header
contains intensity counts, which consists of runs of counts. A count-run consists of
values of the first intensity in the run, followed by the value of the last intensity in
the run, followed by the counts for all the intensities in the run for first and last. The
output file is a stream of bits which has been created from the intensities

corresponding Huffman codes.
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Original file

Figure 4.12: Flowchart of static Huffman encoding algorithm
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Compressed file

43



Figure 4.13 shows the flowchart for the static Huffman decoding algorithm.
The Huffman tree is built from the header read in from the compressed file. The
original file can be reconstructed from the Huffman codes read in from the
compressed file.

For the static Huffman encoding algorithm the Huffman tree has to be passed
to the decoder ahead of the compressed code stream. In order for the decoder to
function correctly it requires foreknowledge of the probability table code

assignments.

4.4.2 Implementation of adaptive Huffman coding

For adaptive Huffman coding, statistics are continually modified as new intensities
are read in and coded [39, pp. 217-241]. The Huffman tree is adjusted continuously
based on data previously seen. The adaptive Huffman encoder and decoder start with
identical models so when the encoder puts out the first encoded intensity, the decoder
will be able to interpret it.

Figure 4.14 gives the adaptive Huffman encoding algorithm. Each intensity
is read in and if the intensity is not already found in the Huffman tree the unencoded
intensity is output together with an escape code so that the decoder will know what
intensity to add to the table. The escape code is a code to inform the decoder that an
intensity to be used to reconstruct the Huffman tree is being transmitted. The
intensity is then added to the tree as a leaf node. Encoding of the intensity is
performed by starting at the leaf node and moving through the parent nodes to the
root node assigning a 0 bit to one child node and a 1 bit to the other child node.
Starting at the leaf node each bit is added to the Huffman codeword.

The Huffman tree is reconstructed at the decoder so that the Huffman codes
can be associated with the corresponding intensities. Figure 4.15 shows the adaptive
Huffman decoder algorithm.

If the escape code is read in and decoded, the escape code is rejected and the
unencoded intensity is read in and added to the Huffman tree as a leaf node. Then
the update model is reconstructed as the compressed file is read. As the Huffman

codes are read in the corresponding intensity is output.
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Original file

Figure 4.14: Flowchart of adaptive Huffman encoding algorithm
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Compressed file

Figure 4.15: Flowchart of adaptive decoding algorithm

4.4.3 Implementation of Huffman coding using splay trees

Figure 4.16 shows the Huffman coding using splay trees encoding algorithm [40].
Section 2.2.3 gives an explanation of splay trees and shown in Appendix A is an
example of splay trees when applied to Huffman coding. An initial balanced code
tree is generated which is used for the encoding and decoding algorithm. The
intensity read in is encoded using the current Huffman code tree and then output to
the compression file. Encoding is performed by following the path from the leaf to
the root ofthe tree. The code bits are then reversed since they are in the reverse order
to which they will be transmitted. After each intensity is encoded using the current
version of the code tree, the tree is then splayed around the code for that intensity. If

an intensity is read in that has not be seen before, it will be sent to the compression

46



file with an escape code so that the decoder can build up the Huffman code tree as

each new intensity is read in.

Original file

Figure 4.16: Flowchart of Huffman coding using splay trees encoding algorithm
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Compressed file

Figure 4.17: Flowchart of Huffman coding using splay trees decoding algorithm

Figure 4.17 shows the Huffman coding using splay trees decoding algorithm.
As the codes are read in, if an escape code is read in then the next code is an intensity

which is to be added to the Huffman free. As each code which is not new, the
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corresponding intensity is output and the tree is splayed to reconstruct the Huffman

tree that had been generated at the encoding end.

4.4.4 Implementation of arithmetic coding
Figure 4.18 gives the algorithm for arithmetic encoding [41]. Section 2.2.2 gives an

explanation of arithmetic coding.

Original file

Figure 4.18: Flowchart of arithmetic encoding algorithm

The table which contains the ranges are only added to the table as they
appear. The encoder and decoder start with the same model, where the model is the

table of ranges. Each intensity is read in and if the intensity is not already found in
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the table then an escape code and a predefined code for the intensity is output. This
is so that the decoder can build the table at the decoding end. This is to ensure that

the intensity is added to the table.

Compressed file

Figure 4.19: Flowchart of arithmetic decoding algorithm

The escape code is a code to inform the decoder that an intensity to be used to
reconstruct the table is being output. The intensity is then encoded using the existing
table, that is, the high and low ranges. The table is then updated to account for the
new intensity.

Figure 4.19 shows the flowchart for the arithmetic decoding algorithm. The
table is reconstructed at the decoder so that the codes read in can be associated with

the corresponding intensities.
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If the escape code is read in and decoded then the corresponding intensity is
added to the table. The update table is reconstructed as the compressed file is read,

so that as the codes are read in the corresponding intensity is output.

4.5 Lossless compression results

The performance of a number of lossless algorithms were tested: static Huffman
coding, adaptive Huffman coding, arithmetic coding and Huffman coding using splay
trees. The algorithms were applied to each of the test images and in each case the
compression ratio, compression time and decompression time were recorded. The
mean square error was recorded for each algorithm in each case and was found to be
zero. This was done to verify that the algorithms are indeed lossless, i.e. that no

information was lost.

4.5.1 Lossless compression results for 1024 x 1024 images
Table 4.1 gives the results for the lossless compression algorithms when applied to

the wrist X-ray image. Appendix D shows the tabulated results for the other test

images.

Static Huffman Adaptive Huffman  Splay Trees  Arithmetic
Compression ratio 1:1.69 1:1.93 1:3.40 1:8.63
486, 66 MHz
Compression Time /s 25.46 40.51 19.68 297.45
Decompression Time /s  24.31 35.88 15.05 333.33
Pentium, 90 MHz
Compression Time /s 9.26 12.73 4.63 76.39
Decompression Time /s 9.26 12.73 4.63 78.52

Table 4.1: Lossless compression results for wrist X-ray (1024 x 1024) image

The Decompression Rate, defined by

Compression Ratio

. [l To. ssssssssssssssssss 41
Decompression Time

Decompression Rate =

is a figure of merit for the compression / decompression process. Since the image

must be decompressed from the archive before it is to be transmitted the trade-off
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between decompression time and compression ratio is crucial. The decompression
time is approximately equal to the compression time for algorithms tested as can be

seen in the tables.

Decompression Rate for Images

4 Static Huffman
B Adaptive Huffman

Huffman using splay trees

X Arithmetic
X-ray X-ray X-ray
image image image
Images

Figure 4.20: Decompression Rate for 1024 X 1024 images

Figure 4.20 gives the decompression rate for each image tested. From this
figure it is clear that the decompression rate for Huffman coding using splay trees is
high compared to the other algorithms tested for all images tested. So this algorithm
has a high compression ratio with a short decompression and compression time.

Figure 4.21 shows the compression ratio plotted against compression time for
the test images, on a 66 MHz 486 and 90 MHz Pentium. It can be seen that as the
processing power of the PC increases the decompression and compression times
decrease. The arithmetic coding algorithm produces the highest compression ratio
but with a long compression and decompression time. The Huffman coding
algorithm using splay trees produces a high compression ratio with a relatively short
compression and decompression time.

The Huffman coding using splay trees algorithm performs better than the
static Huffman coding because it does not have to scan the data twice in order to
build the tree. Its performance is superior to adaptive Huffman coding algorithm
since by splaying it reduces the distance from the root to the leaves, and this

increases the compression ratio and decreases the compression time. It performs
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better than arithmetic coding since there are no floating point numbers involved.
Therefore the Huffman coding using splay trees produces a high compression ratio
with short compression and decompression time compared to the other algorithms.
This algorithm was therefore selected as the lossless algorithm for use in the Visual

Basic archiving and remote diagnostics software application.

Compression Ratio vs Compression Time
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Figure 4.21: Compression Ratio vs. Compression Time for 1024 x 1024 images

4.5.2 Lossless compression results for 512 x 512 images

The lossless compression algorithms were tested on a 512 x 512 x 8 bit wrist X-ray
image to investigate if the compression time, decompression time and compression
ratio were adequate for smaller images. The results are shown in Table 4.2.

Appendix D shows the corresponding results for the other test images.

Static Huffman Adaptive Huffman Splay Trees  Arithmetic

Compression ratio 1:1.68 1:1.84 1:2.66 1:6.03
486, 66 MHz

Compression Time /s 9.26 13.89 5.79 90.28
Decompression Time /s 9.26 13.89 5.79 100.69
Pentium, 90 MHz

Compression Time /s 4.79 5.79 1.16 25.46
Decompression Time /s 4.79 5.79 1.16 26.79

Table 4.2: Lossless compression results for wrist X-ray (512x512) image
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Figure 4.22: Decompression rate for 512 x 512 images

Again decompression rate was calculated for each image and is shown in Figure
4.22. As can be seen Huffman coding using splay trees gives the highest
decompression rate for each image compared to the other algorithms in the case of
smaller images.

Figure 4.23 shows the compression ratio versus compression time for the test
images on average. As can be seen arithmetic coding gives the best compression
ratio but with a long compression and decompression time. Again Huffman coding
using splay trees gives a high compression ratio with short compression and
decompression times and is therefore the lossless algorithm to be used even with

smaller images.
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Figure 4.23: Compression ratio vs. compression time for 512 x 512 images

4.6 Implementation of lossy compression algorithm

The lossy algorithm chosen because of its simplicity and computational speed was
transform image coding using the DCT [42], Figure 4.24 shows the flowchart for
the DCT encoding algorithm. Section 2.3.1 provides an explanation of transform
image coding using the DCT. When using the DCT as a transform the calculation
time has to be considered. The calculation time required for each element in the
DCT is heavily dependent on the size of the matrix. Therefore the image that is to
be transformed is divided into a number of sub-images of size N x N [43]. The sizes
of the sub-image investigated were 8x8, 16x16 and 32 x 32. As the size of the
sub-image increases so too does the time required to calculate the DCT of the image.
Depending on the degree of correlation present between the pixels, the compression

ratio may increase.



Original image

Figure 4.24: Flowchart of DCT encoding algorithm

The image has therefore been broken into smaller, more manageable blocks. Figure

4.25 shows an 8 x 8 sub-image from the wrist X-ray image.
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Figure 4.25: 8x 8 sub-image from wrist X-ray image

Before transforming the sub-image it is scaled between -128 and 127 by
subtracting 128. This sub-image is then transformed to the frequency domain using
the DCT [44] and Figure 4.26 shows the DCT transform of the 8 x 8 sub-image from

the wrist X-ray image.

-168 14 -19 -30 4 11 50 -
9 -10 -20 3 7 2 7 9
-16 -3 -2 10 302 9 -5
5 4 -3 1 3 6 un -4
0 -9 -2 7 -4 -5 4 2
7 -2 -2 -2 -6 4 -1 -2
-6 15 -3 14 -7 4 2 -2
1 1 -7 -3 0 -8 1 3

Figure 4.26: DCT of 8 x 8 sub-image from wrist X-ray image

As can be seen in Figure 4.26, most of the energy is contained in the d.c. and
other low frequency coefficients. The DCT output takes more space to store than the
original matrix of pixels, since the largest coefficient value in the DCT output
requires a precision of more than 8 bits, and these coefficients must be quantised.

Quantisation is the process of reducing the number of bits needed to store a
value by reducing the precision of the value. The precision of the coefficients is
reduced as one moves away from the d.c. coefficient at the origin. The further one
moves from the d.c. coefficient, the less contribution is made to the image, and so the
less care needs to be taken in maintaining rigorous precision in its value.

Quantisation is implemented using a quantisation matrix, using zonal coding.

DCT Coefficient A
Quantised Coefficient = ROUND(—'— —— 4.2
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Quantisation matrices allow for run-time selection of quality as shown in Appendix
E. This allows the user to select the quality required which in turn will select the
quantisation matrix.

Figure 4.27 shows a quantisation matrix used to quantise the DCT
transformed coefficients. This quantisation matrix is based on the human visual
system’s sensitivity. The quantisation levels are the same value all ranging the same
distance from the origin [45]. Figure 4.28 shows the quantised transform

coefficients.

5 7 9 n 13 15 17
7 9 n 13 15 17 19
9 n 13 15 17 19 21
n 13 15 17 19 21 23
3 15 17 19 21 23 25
3 15 17 19 21 23 25 27
15 17 19 21 23 25 27 29
17 19 21 23 25 27 29 31

Figure 4.27: 8x 8 quantisation matrix
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Figure 4.28: Quantised 8 x 8 transform coefficients

Instead of encoding the sub-image from left to right the sub-image is encoded
in a zig-zag fashion. This creates longer run lengths when the sub-image is to be

encoded. Shown in Figure 4.29 is zig zag encoding of an 8 x 8 size sub-image.
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Figure 4.29: Zig-zag encoding ofan 8 x 8 sub-image

Shown in Figure 4.30 is the quantised transform coefficients zig-zag encoded

5% 2 1 -2 1 -2 3 2 0 0 0O O O O 0 o0 O
0 0 0 O 0 0 0 o 0o 0 0 0 0 0 0 0 O
0 0O 0 O 0 0 0 o 0 0 0 0 0 0 O 0 O
0 0O 0 O 0 0 0 0o 0 0 0 0 O

Figure 4.30: 8 x8 Quantised coefficients zig-zag encoded

Once the transform coefficients have been zig zag encoded the coefficients
can be encoded using a lossless compression algorithm. The lossless algorithms
tested were run length encoding and Huffman coding using splay trees.

Figure 4.31 gives the flowchart for the DCT decoding algorithm. The codes
are read in, and decoded into transform coefficients using the lossless algorithm, for
an N x N number of coefficients. In this example when 64 coefficients have been
decoded the coefficients were zig-zag decoded to form the 8 x 8 transform

coefficients. These coefficients were then dequantised using

DCT Value = Coefficientread in * Quantisation Matrix Coefficient 4.3

59



Compressed image

I
Read each hit at a time

Figure 4.31 : Flowchart of DCT decoding algorithm
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The quantisation matrix coefficients are given in the quantisation matrix
shown in Figure 4.27. When the coefficients have been dequantised the sub-image is
transformed to the intensity domain using the inverse DCT transform.. Shown in

Figure 4.32 is the reconstructed intensity sub-image.

95 104 113 115 109 104 102 103
97 106 114 115 110 104 103 105
101 108 115 116 110 105 105 107
104 110 116 115 110 105 106 109
106 111 116 114 108 104 106 110
106 111 114 111 104 101 104 109
106 109 111 107 101 98 102 107
105 108 110 105 99 96 101 106

Figure 4.32: Reconstructed 8 x 8 sub-image of wrist X-ray image

As can be seen the reconstructed image is not identical to the original. The loss or
error is shown in Figure 4.33 but the difference between the original and

reconstructed sub-image is not large.

4 5 2 0 6 n -3 -4
2 71 0 5 5 -4 10
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5 5 -1 0 5 6 9 6
-1 4 -1 1 7 5 -7 5
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-7 6 4 8 2 1 -3 8
6 7 -1 6 0 3 -2 -1

Figure 4.33: Error between original and reconstructed sub-image

Shown in Figure 4.34 is the 8 x8 section of the wrist X-ray image before it
was compressed and after it had been reconstructed from compression. As can be
seen there is not a great difference between the original and reconstructed image, but
the difference is still visible. If one now looks at the wrist X-ray image, before and
after compression one can see that the difference is not apparent when the whole
image is viewed in Figure 4.35. Nevertheless the size of the original image was

263,222 bytes and that of the compressed image is 27,789 bytes.
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Original sub-image Reconstructed sub-image
Figure 4.34: 8x8 before and after compression

8 x 8 Section

Original image

Reconstructed image

Figure 4.35: Wrist X-ray image before and after compression
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4.7 Lossy compression results

The lossy algorithm was also developed as a DLL and called in Visual Basic. The
algorithm was tested on a 66 MHz 486 and a 90 MHz Pentium PCs. Compression
ratio, mean square error, compression time and decompression time were recorded
for each image using different quality factors. As the quality factor increases the
resolution decreases so that a quality factor of 1 would have the highest resolution.
The DCT algorithm was tested using two different encoding schemes, that is, run
length encoding and Huffman coding using splay trees, and also using different size
quantisation matrices. Appendix E shows the 8 x 8 quantisation matrices used to
compress the images. The 16x16 and 32 x 32 quantisation matrices have the same
shape as the 8 x 8 quantisation matrix.

The application developed uses zonal coding to allow the client the facility to
choose the resolution of the image to be viewed. Thresholding was investigated and
was seen to give an optimal compression ratio but did not have the flexibility to
allow the user to choose differing resolutions. The amount of bandwidth required is
decreased since the client can choose a low resolution on a large image and a high
resolution on only a small section of that image.

There are two ways of assessing image quality, subjectively and objectively
[46]. Subjective assessment is when the image is viewed and any noticeable
distortion or degradation compared to the original is perceived as a level of
degradation. These subjective levels are shown in Table 4.3. The original and
reconstructed images were viewed by six people and a value of degradation was
assigned to each reconstructed image from the degradation levels.

An objective measure is a quantitative evaluation which produces a single
number. A standard method is the mean square error between the reconstructed
image and original image. Quantitative methods take no account of factors such as
distribution of the error throughout the image and aspects of human visual

perception.
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No Visual Degradation
Low Level of Degradation
Visually Degraded
Significant Degradation
Highly Degraded

g dwWwN e

Table 4.3: Subjective levels of degradation

4.7.1 8x8 quantisation matrix results for 1024 x 1024 images
Table 4.4 shows the results for the lossy compression algorithm for the wrist X-ray
image of size 1024 x 1024 pixels using a quantisation matrix of size 8x8. The

results for the other test images are shown in Appendix F.

486 66 MHz Pentium 90 MHz

Compression Time /s 82.69 18.52

Decompression Time /s 83.84 s 17.36

Quality Factor 1 3 5 7 9 1 25

Mean Square Error 1.42 2.82 4.15 5.53 6.88 8.26 20.4
Visual Degradation 1 2 2 2 3 4 5

Using Run Length Encoding

Compression Ratio 1:9.39 1:11.77 1:12.69 1:13.24 1:13.74 1:14.03 1:15.20 j
Using Splay Trees

Compression Ratio 1:8.90 1:12.75 1:13.31 1:14.24 1:1424 1:16.55 1:18.45 j

Table 4.4: Lossy compression of wrist X-ray image (1024 x 1024) using 8 x8 matrix

4.7.2 8x8 quantisation matrix results for 512 x 512 images

The lossy algorithm was tested on a 512 x 512 x 8 bit wrist X-ray image to
investigate if the compression time, decompression time and compression ratio were
adequate for smaller images. The results are shown in Table 4.5. Appendix F shows

the results for the other test images.



486 66 MHz  Pentium 90 MHz

Compression Time /s 22.41 4.63

Decompression Time /s 24.72 4.63

Quality Factor 1 3 5 7 9 1 25

Mean Square Error 2.23 5.26 8.24 11.3 141 16.82 36.4
Visual Degradation 1 2 4 4 5 5 5

Using Run Length Encoding

Compression Ratio 1:7.94 1:10.32  1:11.48 1:12.21 1:12.82 1:13.18 1:14.68 |
Using Splay Trees

Compression Ratio 1:7.22 1:10.31  1:11.29 1:12.47 1:13.83 1:1440 1:16.95 |

Table 4.5: Lossy compression of wrist X-ray image (512x512) using 8 x 8 matrix

4.7.3 16 x 16 quantisation matrix results for 1024 x 1024 images

An investigation using a quantisation matrix of size 16 x 16 on 1024 x 1024 size
images to see if there is a substantial increase in compression ratio, while not trading
off too much degradation in the reconstructed image produced the results shown in
Table 4.6. The results for the other test images are shown in Appendix F. The test
images were compressed and decompressed on the Pentium PC. It has already been
seen that there is a great reduction in processing time using a Pentium PC, since this

processor’s architecture is faster when calculating floating point arithmetic.

Pentium 90 MHz
Compression Time /s 28.94
Decompression Time /s 27.78

Quality Factor 1 3 5 7 9 1 25

Mean Square Error 1.99 3.96 5.72 7.46 9.11 10.57 20.13
Visual Degradation 1 2 2 2 3 4 5

Using Run Length Encoding

Compression Ratio 1:13.1 1:1553 1:16.44 1:16.98 1:17.37 1:17.61 1:18.54 |
Using Splay Trees

Compression Ratio 1:15.77  1:21.03 1:2451 1:26.18 1:26.44 1:27.26 1:32.33 |

Table 4.6: Lossy compression of wrist X-ray image (1024 x 1024) using 16x16 matrix

4.7.4 16 x 16 quantisation matrix results for 512 x 512 images
The lossy compression algorithm was tested on a 512 x 512 x 8 bit wrist X-ray image
to investigate the use ofthe 16 x 16 matrix on a smaller image. Results are shown in

Table 4.7. Appendix F shows the results for the other test images.
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Pentium 90 MHz
Compression Time /s 6.94
Decompression Time /s 6.94

Quality Factor 1 3 5 7 9 1 25

Mean Square Error 3.71 9.42 13.97 18.28 21.81 26.18 51.19
Visual Degradation 1 2 3 4 5 5 5

Using Run Length Encoding

Compression Ratio 1:10.79  1:13.71  1:14.87 1.:1561 1:16.13 1:16.46 1:17.82 |
Using Splay Trees

Compression Ratio 1:11.44  1:16.62 1:19.70 1:21.58 1:22.43 1:2346  1:28.36 |

Table 4.7: Lossy compression ofwrist X-ray image (512x512) using 16x16 matrix

4.7.5 32 x 32 quantisation matrix results for 1024 x 1024 images

Now using a quantisation matrix of 32 x 32 on 1024 x 1024 images to again
determine if an increase in the size of the quantisation matrix will increase the
compression ratio while not substantially increasing the degradation yielded the
results are shown in Table 4.8. Appendix F shows the results for the other test

images.

Pentium 90 MHz
Compression Time /s 53.24
Decompression Time Is 52.08

Quality Factor 1 3 5 7 9 25

Mean Square Error 6.45 9.41 11.95 14.48 16.46 31.01
Visual Degradation 2 3 3 4 4 5

Using Run Length Encoding

Compression Ratio 1:17.65 1:18.42 1:18.81 1:19.08 1:19.27 1:19.93 ]
Using Splay Trees

Compression Ratio 1:30.99 1:34.02 1:36.13 1:38.00 1:39.24 1:42.90 |

Table 4.8: Lossy compression of wrist X-ray image (1024 x 1024) using 32 x 32 matrix

4.7.6 32 x 32 quantisation matrix results for 512 x 512 images
The lossy algorithm was tested on a 512 x 512 x 8 bit wrist X-ray image to
investigate the use of a 32 x 32 quantisation matrix on a smaller image. The results

are shown in Table 4.9. Appendix F shows the results for the other test images.
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Pentium 90 MHz
Compression Time /s 12.73
Decompression Time /s 13.81

Quality Factor 1 3 5 7 9 25

Mean Square Error 16.14 23.94 29.8 36.48 42.8 79.63
Visual Degradation 4 5 5 5 5 5

Using Run Length Encoding

Compression Ratio 1:1592 1:17.01 1:17.62 1:18.05 1:18.38 1:19.37 |
Using Splay Trees

Compression Ratio 1:2426 1:27.86 1:30.44 1:3240 1:33.99 1:39.03

Table 4.9: Lossy compression of wrist X-ray image (512 x 512) using 32 x 32 matrix

4.7.7 Comparison of results using different size quantisation matrices

The DCT may give rise to distortion in the reconstructed image, typically causing
rings to be observed at sharp boundaries in the reconstructed image. These rings are
attributable to Gibb’s phenomenon, an effect produced by the inability of the DCT
Cosine basis functions to exactly reproduce square wave functions. Also high
compression rates a block pattern is produced in images. It is caused by the fact that
sub-image blocks are compressed independently and so the distortion introduced is
discontinuous between blocks [47].

If the quantisation of high frequencies is too severe, a visible degradation in
fine detail can result. As the size of the sub-image increases the visibility of
distortions such as blocking and ringing increases. As the size of the quantisation
matrix, which is the size of the sub-image, increases from 8 x 8 through 16 x 16 to
32 x 32 it can be seen that blocking becomes more noticeable as the sub-image size
increases. Shown in Figure 4.36 is the original Lenna image and the effect of

blocking when using a 32 x 32 quantisation matrix
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Original image Reconstructed image

Figure 4.36: Lenna image before and after compression

From the results it can be seen that as the sub-image increases there is an
increase in compression ratio, but the visual degradation and mean square error also
increase. There is also a substantial increase in processing time. It can be seen in the
tables that at a low quality factor, which produces the best resolution, the run length
encoding gives a slightly higher compression ratio. This is because the correlation
between coefficients is not as high as in the case when a high quality factor is used.
The Huffman coding using splay trees algorithm does perform as well as run length
encoding for the low quality factor because it is an adaptive algorithm, as described
in Section 4.4.3, so that initially there is an overhead which may decrease the
compression ratio, but as the correlation in the sub-image increases the compression
ratio increases. Also as the size of the sub-image increases so too does the
correlation, and therefore the Huffman coding using splay trees algorithm delivers
the best compression ratio.

In some cases the reconstructed image was seen to have a sharper appearance.
This is the result of ringing increasing the local contrast of edges thus giving the
image a sharper appearance In some cases the reconstructed image was also
observed to contain more detail than the original. Ifthe image contains large areas of
near constant tone, as in some of the X-ray images, then a slight blocking effect

introduces noise which could be interpreted as detail. Shown in Figure 4.37 is the
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compression/decompression rate for a quality factor of 25, for the test images where

_ Compression Ratio
Compression Time + Decompression Time

Compression / Decompression Rate =

The trade-off between the compression time and decompression time and the
compression ratio is crucial, since the image is compressed at the server, transmitted
and then decompressed at the client, so that the method which produces the highest
compression/decompression rate is most desirable.

As can be seen in Figure 4.37, for quality factor 25, the DCT method using an
8 x 8 sub-image and Huffman coding using splay trees gives the highest
compression/decompression rate, while the method using 32 x 32 sub-image with run
length encoding performs the worst. Also shown in Figure 4.38 is the mean square
error for the X-ray images. The DCT method using the 8 x8 sub-image also has the
lowest mean square error in these cases.

As can be seen in Figure 4.39, for quality factor 1, the method using a 32 x 32
sub-image with Huffman coding using splay trees performs the best. This is because
there is a higher correlation in each sub-image compared to using a quality factor of
25. Again the mean square error is shown in Figure 4.40 for the X-ray images. The
DCT method using a 32 x 32 sub-image also has the highest mean square error which
means it would look visually degraded compared to using the other methods. The
compression/decompression rate for the 512 x 512 images is comparable to that for

the 1024 x 1024 images.
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Compression/Decompression Rate for Test Images
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Figure 4.37: Decompression rate for 1024 x 1024 images at a quality factor of 25

Mean Square Error for X-ray images
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Figure 4.38: Mean square error of 1024 x 1024 X-rays at a quality factor of 25
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Compression/Decompression Rate for Test Images
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Figure 4.39: Decompression rate for 1024 x 1024 images at a quality factorof 1
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Figure 4.40: Mean square error for 1024 x 1024 X-rays at a quality factor of 1

Before choosing a method that is to be used in the archiving and remote
diagnostics software application, transmission times of compressed images using the

different methods must be considered and not just the compression/decompression

rate.
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4.8 Internet software application

An application was developed in Visual Basic to connect to a remote system and
view an image from that remote system. Figure 4.41 shows the functions available
for the client application. The “zoom”, “increase resolution”, and “restore image”
are only available when “view remote image” has been selected and the images has
been transmitted and received. Shown in Figure 4.42 is the flowchart for the
software applications. The socket (remote connection) can be closed at any stage
after the connection has been established. Appendix G provides screenshots on how

to use the application.

Figure 4.41: Client software application functions
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In Figure 4.42 as a function is called in the client application, a request is
made to the server application. For example, to view an image a request is made by
the client application to the server application to view a directory listing. The server
will then send the directory listing to the client application and an image can be
chosen from this listing and sent from the server application to the client application.

The opening, closing, reading and writing of the TCP/IP sockets were again
developed as DLLs and called in Visual Basic. All code in the use of the TCP/IP
sockets were developed in the Application Layer of the TCP/IP model. All of the
compression and decompression algorithms were also developed in the Application
Layer. The other layers of the TCP/IP model, as described in Section 3.3, take care
of the reliability of packet delivery and the headers associated with the transmission

of the packets.

4.8.1 Comparison of transmission times

Once the application was developed the different variations on the DCT compression
method were used to transmit a wrist X-ray image of size 1024 x 1024 pixels, at an
intensity resolution of 8 bits/pixel and the results were compared to find which
method was the fastest-overall to compress, transmit, and decompress. The methods

investigated are shown in Table 4.10. Figure 4.43 shows the comparison of these

methods.

METHOD

Image Transmitted without Compression
8x8 DCT

8x8 DCT with Splay

16 x 16 DCT

16x16 DCT with Splay

32x32DCT

32 x 32 DCT with splay

~N o o WN

Table 4.10: Compression methods for transmission comparison

As can be seen in this figure method 3 performs the best over a LAN system. Figure
4.44 shows the estimated transmission times using a 14.4 Kb/s modem, in this

system method 5 performs the best. Thus, as the transmission time increases there is
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more emphasis on the compression ratio but when there is a short transmission time
there is more emphasis on the client and server processing times.

Therefore using the Internet, as the traffic increases the application could
determine which method to use to optimise the bandwidth and decrease the amount
of time waiting to view the image. A packet would be transmitted from the server to
the client once the connection had been made. Depending how long it takes the
client to receive the packet will determine which method is to be used. If there is a
lot of traffic on the Internet or using a 14.4 Kb/s or slower modem, the client will
send a corresponding signal to the server. The signal will inform the server and
client which method to use. If there is a slow medium the emphasis will be placed
on compression ratio, and if there is a fast medium the emphasis will be placed on

compression and decompression time.

Comparison of Overall Viewing Times

120

0O Client Processing
flITransrrission Time

p Server Rocessing

2 3 4 5 6 7

Method

Figure 4.43: Comparison of overall viewing times over a LAN
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Overall Viewing Times using 14.4 kb/s Modem

1 2 3 4 5 6 7

Method

Figure 4.44: Estimated transmission times using a 14.4 kb/sec modem with
different size quantisation matrices.

4.8.2 Comparison of approaches when transmitting only difference

The difference when transmitting the image means that instead of transmitting the
image at a new resolution, only the difference between the image at original and new
resolution is compressed and transmitted. The comparison was made of transmitting
only the difference by different methods when zooming in on an image at the client
application instead of transmitting the entire section. Table 4.11 lists the methods
investigated. Table 4.12 shows the results when viewing the 1024 x 1024 wrist X-
ray image at default resolution 25, and then requesting increased resolution of 1 for
the entire image. Appendix H gives the corresponding results for the other test

images. All times in the tables are measured in seconds.

METHOD

8x8 DOT

8x8 DCT of difference

8x8 DCT with splay

8x 8 DCT with splay of difference
16 x 16 DCT

16x16 DCT of difference

16x16 DCT with Splay

16x16 DCT with splay of difference

W ~NO®UAWN R

Table 4.11: Methods to compare transmission of difference
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1 2 3 4 5 6 7 8

Compression Ratio 1:9.37 1:10.56 1:8.8 1:11.02 1:13.09 1:13.87 1:15.75 1:17.44
Compression Time /s 18.52 18.52 19.68 18.68 28.94 28.94 30.09 30.09
Decompression Time /s  17.36 17.36 17.36 17.36 27.78 27.78 27.778  26.62
Time For Difference/s — — 8.10 6.94 8.10 6.94
Time for Addition /s 6.94 6.94 6.94 8.10
Transmission Time /s 7.51 6.66 7.92 6.37 5.37 5.06 4.46 4.03
Overall Time /s 43.39 57.58 4496  57.29 62.09 76.82 62.33 75.78

Table 4.12 : Comparison of difference methods for wrist X-ray image

Figure 4.45 gives the comparison of the results for the eight methods investigated
over a LAN. As can be seen when using a LAN method 1 performs the best but
when using a 14.4 Kb/sec modem (shown in Figure 4.46) method 7 performs the
best. Transmitting the difference between the image at default resolution and the
new resolution does not necessarily decrease the time waiting to view the image.
This is because even though the compression ratio increases it does not increase
enough, because there is additional processing at the client and the server in
determining the difference and then adding the transmitted difference to the image at
default resolution at the client. As can be seen in the tables the transmission time
does decrease but the processing time at the client and server increases also, thus
decreasing the overall effectiveness.

When transmission time is short the processing times are crucial and
when there is a long transmission time the compression ratio of the compressed
image is crucial. Thus the software application could determine the method to use to

optimise the bandwidth used depending on the medium used, modem, LAN, WAN.
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Figure 4.45: Comparison of transmitting images using difference methods over a LAN
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Figure 4.46: Estimated times for transmitting images using difference methods over a
14.4 Kb/s modem

Chapter 5 discusses the software application and the implementation of the

algorithms. Future developments are also discussed.



CHAPTER 5
FUTURE DEVELOPMENT AND DISCUSSION OF THE
SOFTWARE APPLICATION

5.1 Extension to Colour Images

Thus for all the compression algorithms were tested on grey scale images. The
lossless and lossy algorithms developed for grey scale images can be however
extended to colour images. The lossless algorithm, Huffman coding using splay trees,
can easily be extended since the algorithm works on an input stream and does not care
what type of file it is whereas the lossy algorithm, Transform image coding using the
DCT, operates on a matrix.

The DCT algorithm can be extended by transforming the RGB value to
another set of tristimulus values. RGB is transformed to the luminance-chrominance
YIQ set, as described in appendix G. The Y component is the luminance component
and is responsible for the perception of brightness of a colour image. Most high
frequency components of an image are primarily in the Y component. The | and Q
components are the chrominance components and are responsible for the perception of
hue and saturation of a colour image. Once the RGB has been transformed to YIQ
each matrix, Y, | and Q, can be compressed individually using the DCT algorithm.

The lossless and lossy compression algorithms therefore can be applied to
colour images. Figure 5.1 displays the 24 bit standard Lenna image and in Figures 5.2
and 5.3 are two 24 bit images of blood samples obtained from “The Bristol

Biomedical Image Archive” from the University of Bristol [48].
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Figure 5.1: Standard 24 bit Lenna image (1024 X 1024)

Figure 5.2: Blood sample 1image
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Figure 5.3: Blood sample 2 image

Shown in Table 5.1 are the results for compressing and decompressing the
colour 24 bit Lenna image. The compression and decompression time are displayed.
So also is the compression ratio and the visual degradation. The levels of degradation
are as shown in Table 4.3. The results for the blood samples 1 and 2 images are

shown in Tables 5.2 and 5.3 respectively.

Pentium 90 MHz
Compression Time /s 55.56
Decompression Time /s 38.19

Oualitv factor 1 3 5 7 9 I 25
Visual Degradation 1 1 1 1 1 2 5
Compression Ratio  1:12.39  1:13.0 1:13.98 1:14.88 1:16.34 1:17.88 1:73.35

Table 5.1: Results for colour 24 bit Lenna image

Pentium 90 MHz
Compression Time/s 11.57
Decompression Time /s 6.94

Oualitv factor 1 3 5 7 9 n 25
Visual Degradation 1 1 1 2 2 2 5
Compression Ratio  1:9.32 1:9.85 1:10.56 1:11.28 1:12.38 1:13.59 1:47.48

Table 5.2: Results for colour 24 bit blood sample 1
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Compriission Time /s
Decompression Time /s

Quality factor
Visual Degradation

Compression Ratio

Pentium 90 MHz

11.57

8.10

| 3 o J o 9 Uu .. 25

1 1 1 2 2 2 5
1:7.48 1:7.87 1:841 1:8.95 1:9.72  1:10.59 1:43.70

Table 5.3: Results for colour 24 bitblood sample 2

Figure 5.4 shows a comparison of times for transmitting the uncompressed

image over the LAN and transmitting the image at different compressed quality

factors. As can be seen there is a 50% saving in time waiting to view the image. If a

slower medium is used, for example a 14.4 kb/sec modem, there would be an increase

in the time saved.

Transmission of Blood Sample

Figure 5.4: Transmission ofblood sample 1using a LAN

The algorithm for compressing colour images could be incorporated into the

software application. From the header of the image the application could determine

whether to use the grey scale or colour image compression algorithm. The colour

algorithm could be developed as a DLL and used in the Visual Basic software

application.
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5.2 Lossy Algorithms

Other lossy algorithms can be investigated to determine if they would produce a high
compression ratio with a short compression and decompression time and also with a
low level of visual degradation. These algorithms could be developed into DLLs and
inserted into the software application instead of the Transform Image coding using the
DCT. The present application has been developed so that the compression algorithms
can be exchanged very easily using other DLLs. One other lossy algorithm is Wavelet
Transform compression. This algorithm could be investigated as part of future

research. Shown in the next section is an introduction to Wavelet transforms.

5.2.1 Wavelet transform compression

Compression is accomplished in this case by applying a wavelet transform [49] to
decorrelate the image data, quantising the resulting transform coefficients and coding

the quantised values as shown in Figure 55 [50]. Image reconstruction is

accomplished by inverting the compression operation as shown in Figure 5.6.

Original image

Figure 5.5: Forward wavelet compression
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Compressed image

Figure 5.6: Reverse wavelet compression

The forward and inverse wavelet transforms can be implemented by a pair of
appropriately designed quadrature mirror filters [51]. Wavelet based image
compression can be viewed as a form of sub-band coding. Each quadrature mirror
filter pair consists of a lowpass filter and a highpass filter which split an image’s
bandwidth in half.

Figure 5.7 shows the flowchart for a single 2-D forward wavelet transform of
an image. This is accomplished by two separate 1-D transforms. Since the bandwidth
of the lowpass and highpass images are halfthat of the original image it is possible to
downsample by a factor of two without any loss of information. The image has been
decomposed into an average image and three detail images. Sub-image 1 is the
average image and sub-image 2 emphasises the horizontal image features, sub-image

3 emphasises the vertical image features and sub-image 4 the diagonal features.



Image

Figure 5.7: 2-D Forward wavelet transform

For compression the image is recursively transformed. For a high
compression ratio the transform is performed several times. After the forward wavelet
transform has been performed, a matrix of coefficients is left that contains the average
image and the detail images at each scale. Compression is achieved by quantising and
encoding coefficients. To achieve high compression ratios a separate quantiser should
be designed for each scale. Quantisation and encoding have already been discussed in
section 2.3.5.

Shown in Figure 5.8 is the flowchart of the 2-D inverse wavelet transform.
However sub-image 1 is the average image and sub-images 2 to 4 are the detail
images. Upsampling is accomplished by inserting a zero between each pair of values
in the y or x dimension. Upsampling is necessary to recover the proper bandwidth

required to add the sub-images back together.
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Sub-image 1 Sub-image 2 Sub-image 3 Sub-image 4

Figure 5.8: Reverse wavelet transform

There are differences between using Fourier analysis (DCT) and wavelets.
Fourier basis functions are localised in frequency but not in time. Small frequency
changes in the Fourier transform produce changes everywhere in the time domain.
Wavelets are local both in frequency/scale (via dilation) and in time (via translations).
In wavelet transforms there is a tradeoff between frequency and time.

Many images can be represented by wavelets in a more compact way. For
example, images with discontinuities and images with sharp spikes usually take
substantially fewer wavelet basis functions to achieve the same precision. Thus the
wavelet based method has the potential to achieve a higher image compression ratio

while decreasing the visual degradation at higher compression ratios [52],
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5.3 Encryption

Due to the nature of medical images security is very important. Security can be
implemented by introducing password protection of different levels into the software
application. The two levels would include an administration level where the database
could be modified and the user level where the information could be viewed only.
Another form of security is the encryption of the compressed images as they are
transmitted over a network such as the Internet. Encryption could be inserted into the
Software Application as part of future research. An introduction to encryption
follows.

Encryption [53] is the transformation of data into a form unreadable by anyone
without a secret decryption key. Its purpose is to ensure privacy by keeping the
information hidden from anyone for whom it is not intended, even those who can see
the encrypted data. Encryption allows secure communication over an insecure
channel.

Encryption works as follows. Bob wishes to view an image from the server.
The server encrypts the image, so that no one can view the image except Bob, with an
encryption key. The image is called plaintext and the encrypted image is called
ciphertext. The encrypted image is now sent to Bob. Bob decrypts the ciphertext
with the decryption key and views the image. In a secure cryptosystem, the plaintext
cannot be recovered from the ciphertext without using the decryption key. In a
symmetric cryptosystem a single key serves as both the encryption and decryption
keys. Figure 5.9 shows the addition of encryption to the software application. The
encryption and decryption algorithms can be developed as DLLs and are called in the
software application to encrypt and decrypt the compressed images respectively.

An example of an encryption algorithm is PGP (Pretty Good Privacy) [54].
PGP is a high security cryptographic software application that allows people to
exchange messages with both privacy and authentication. It provides privacy in that
only those intended to receive a message can read it. By providing the ability to
encrypt messages, PGP provides protection against anyone eavesdropping on the
Internet. Even if the packet is intercepted it will be unreadable by the eavesdropper.

It provides authentication because PGP ensures that a message appearing to be from a
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particular location can have originated from that location only and that the message

has not been altered.

Archived image

Figure 5.9: Addition of encryption to software application



5.4 Discussion of Software Application

The purpose of this project was to develop a software application using an appropriate
lossless algorithm and lossy algorithm for archiving and transmission over the Internet
respectively. The objective was to choose a fast algorithm which would optimise the
use of bandwidth over the Internet and reduce the amount of time waiting for the
image to be transmitted. The application was developed with a user friendly Graphic
User Interface (GUI) front-end in the Windows environment using Visual Basic.

The application allowed the user to connect from a remote PC to the server
using the Internet. They could then choose an image to be transmitted from the server
database. The user could then zoom in on a section of the image at a new resolution,
download the entire image at a new resolution or choose another image. The
application was designed so that this procedure could be accomplished quite easily.
The user does not have to have any knowledge of the algorithms for compression or
transmission of the images.

Several languages were investigated in which to develop the application,
MATLAB®, C, Visual C++ and Visual Basic. A decision was made that the
compression algorithms would be developed in C due to its speed and versatility and
then coded as DLLs in Visual C++ so that they could be used in the Windows
environment. Visual Basic was used to develop the Windows front end since it is
quite simple to develop a GUI in this environment. The compression DLLs were
declared and called in the Visual Basic application. The opening and closing of
sockets and also the reading and writing of data using TCP/IP protocols over the
Internet were also developed as a DLL and called in the Visual Basic application.

The lossless and lossy algorithms were tested on five images, three X-ray
images obtained from St. James’ Hospital and two standard test images. The lossless
algorithms investigated were static Huffman coding, adaptive Huffman coding,
Huffman coding using splay trees and arithmetic coding. The algorithms were applied
to each test image and in each case compression ratio, compression time and
decompression time were recorded. The mean square error was also recorded for each
algorithm in each case and-was seen to be zero. This was done to verify that the

algorithms were lossless. From these results the decompression rate was calculated,



i Compression Ratio i o
where Decompression Rate = . This parameter is important

since the image must be decompressed from the archive before it is transmitted and
the trade-off between the decompression time and the compression ratio is crucial.

The decompression rate for Huffman coding using splay trees was seen
to be high compared to that of the other algorithms tested. This algorithm has a high
compression ratio with short decompression and compression time. It was
demonstrated that Huffman coding using splay trees performed the best for each test
image. The arithmetic coding algorithm produced the highest compression ratio but
had long compression and decompression times. The Huffman coding using splay
trees algorithm performed better than the static Huffman coding algorithm since it is
adaptive and does not have to scan through the data twice to build the Huffman code
tree and then encode the leaves. Splaying reduces the distance from the root to the
leaves of the tree and so this increases the compression ratio and decreases the
compression time compared to the adaptive Huffman coding algorithm. Since the
Huffman coding using splay trees algorithm does not involve any floating point
calculations it is faster than the arithmetic coding algorithm. Therefore the Huffman
coding using splay trees was selected as the preferred lossless algorithm for use in the
Visual Basic application.

The lossy algorithm chosen was transform image coding using the
Discrete Cosine Transform. Compression ratio, mean square error, compression time
and decompression time were recorded for each test image using different quality
factors. The quality factor distinguishes the different resolutions available. As the
quality factor increases the resolution decreases. The DCT algorithm was tested using
different encoding algorithms, that is, run length encoding and Huffman coding using
splay trees and also using different size quantisation matrices. Sub-image sizes
investigated were 8x8, 16x16 and 32 x 32.

The use of the DCT transform can introduce a number of distortions
into the reconstructed image. High compression ratios can cause a block pattern to
appear in the images and also a visible degradation in fine detail if the high

frequencies are quantised too severely. As the size of the sub-image increases the



blocking becomes more noticeable. There is also a substantial increase in processing
time.

At the lowest quality factor (highest resolution) run length encoding
produces a higher compression ratio than does Huffman coding using splay trees.
This is because the correlation between coefficients is not as high as in the case when
a high quality factor is used. The Huffman coding using splay trees algorithm does
not perform as well as run length encoding for the low quality factors because it is an
adaptive algorithm and initially there is an overhead which may decrease the
compression ratio but as the correlation in the sub-image increases, either by
increasing the quality factor or the size of the sub-image, the compression ratio
increases.

From the results recorded the compression/decompression rate was
calculated where

. i Compression Ratio
Compression / Decompression Rate = — = S ——— -
Compression Time + Decompression Time

The trade-off between the compression time and decompression time and the
compression ratio is crucial since the image will be compressed at the server,
transmitted and then decompressed at the client. The lossy method which produces
the highest compression/decompression rate is optimal. For a quality factor of 25,
8 x 8 DCT using Huffman coding with splay trees produces the highest
compression/decompression rate and the lowest mean square error. For a quality
factor of the method using 32 x 32 sub-image with Huffman coding using splay trees
performs the best but has the highest mean square error. This is because there is a
higher correlation in each sub-image compared that when using a quality factor of 25
but the image will look blocky due to the size of the sub-image used.

The transmission times of compressed test images using the different methods
were considered. The times considered were the server processing time, transmission
time and the client processing time. As the size of the sub-image increases the
compression ratio decreases which decreases the transmission time but increases the
compression and decompression time.

Depending on which medium is used, for example LAN or 14.4 kb/sec

modem, different methods of compression produce optimum results. So as the

a1



transmission time increases more emphasis is placed on the compression ratio and the
method using 16x16 DCT with Huffman coding using splay trees would be used, but
when there is a short transmission time there is more emphasis on the client and server
processing time the 8x8 DCT with Huffman coding using splay trees would be used.

Using the Internet, as the traffic increases the application could
determine which method to use to optimise the bandwidth and decrease the amount of
time waiting to view the image. This would be accomplished by transmitting a packet
from the server to the client once the remote connection had been made. The
transmission time of the packet would determine which packet to use depending on
the speed of the transmission medium.

The advantages of transmitting only the difference when zooming in on
an image at the client application instead of transmitting the entire section was
investigated. It was seen that transmitting the difference didn’t necessarily decrease
the time waiting to view the image. This is because even though the compression
ratio increases, thereby decreasing the transmission time there is also additional
processing at the server and client applications. Again depending on the speed of the
medium the appropriate method is selected to optimise the bandwidth.

The Visual Basic application could also be developed to archive and
transmit colour images over the Internet. Another lossy algorithms which could be
investigated to compare to the DCT is wavelet compression. Again the trade-off
between compression and decompression time and the compression ratio is crucial.
The inclusion of security into the application could be achieved by using password

protection and encryption of the compressed images before they are transmitted.
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Appendix A
Example of Splay Trees

Seven intensities and their probabilities are shown below.

Tntensitv

50

75

100
125
140
197
250

Probabilitv
0.015625
0.015625
0.03125
0.0625
0.125

0.25

0.5

A Huffman tree can be developed from these probabilities.

Intensity
50

75

100
125
140
197
250

Probability
0.015625

0.015625

0.03125
0.0625
0.125
0.25

0.5

-.03125 — 0
, — .0625 —
-.125 —

The intensities and their corresponding Huffman codes are shown.

Tntensitv Huffman Code

50

75

100
125
140
197
250

000000
000001
00001
0001
001

01

1

The Huffman tree from the top down is as follows.



Pair of

nodes

Moving along the path from the root,

successive internal nodes (node v to z) are rotated so that path length from root to the

leaf node is halved. The nodes in each pair that are farthest from the root stay on the

new path (nodes v, x, z) while those that are closest move off the path (nodes u, w,

Y-

So after splaying, the tree is as follows.

Tntensitv
50

75

100

125

140

197

250

node u, to leaf node 50.

Splav Code
000

0010

0011

010

011

10

11

Each pair of



Thus instead of coding these intensities using Huffman coding which requires twenty

seven bits these intensities can be coded using splaying which requires twenty one

bits.
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Appendix B
Derivation of Discrete Cosine Transform

To derive one dimensional (1-D) DCT
Let x(n) denote an N point sequence that is zero outside 0 < Nn<N - 1.

Consider one variation known as the even symmetrical DCT which is most
often used in signal coding applications. To derive the 1-dimensional DCT, one
relates the N point sequence x(n) to a new 2N point sequence y(n) which is then
related to its 2N point DFT Y(k). Then one relates Y (k) to Cx(k) which is the 2N
point DCT ofx(n). Thus
x(n) <>y(n) <-» Y(k) <-» Cx(k)

Relation between x(n) and y(n) is
y(n) -x(n)+I{2N -1 -n)

x[n) 0<n<N-1

n)=m
y(n) A(27-1-«) N<n<2N-I

x(n) y(n)
012 3 2 3 4 5 6 7

Relation between y(n) and Y (k) is
2N-1

Y{k)=2 y~ W2N 0<k <2N -1 where W2N =¢
n=0
ML 2AT-1

Y(K) =Y j +Z x{ZN - 1- ")W2N o<k<2N-1
«0 =\
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Relation between Y (k) and Cx(k) is

k
Cx(k) =W 2Y{k) 0< k<N-1
0 otherwise

The DCT of x(n) is shown below

Cx(A) =~ 2x(n)cos”— jk(2n+l)j 0<k<N-1

=0 otherwise

where Cx(k) is a N point sequence. 1fx(n) is real Cx(k) is real.

An algorithm for the fast calculation of the DCT is

Step 1. y[n) =a-(w) +x[2N - I- n)

Step 2. Y(k) = DF7[j»'(w)j (2N point DFT computation)

step 3. cx(k)= W& /(A) O0<k<N-1
0 otherwise

To derive one dimensional (1-D) Inverse DCT (IDCT)

To derive the IDCT relate C*(k) to Y (k), Y (k) to y(n) and then y(n) to x(n) which is,
Cx(@  Y[K) <>y[n) O *(«)

Although Y (k) is a 2N point sequence and Cxk) is an N point sequence, redundancy

in Y (k) due to the symmetry of y(n), allows Y (k) to be determined from Cx(k).



Now the relation between Y (k) and y(n) through the 2N pointinverse DFT is give by

2N-1

y(n) = 2 Y(kwZ ° 0<n<2N-1
A0

x(n) can be related to y(n) by

n 0O<n<N-I
<= Y
otherwise
1
0O<n<N-1
therefore x(n) = N
0 otherwise

x(n) can then be expressed as the IDCT of Cx(k), shown below

N\V2
] ~ w(k)ex(K)aoh A~ k(2n+ 1 0<n<N-I
iy n " W0ex® (2n+1)
otherwise
k=0
where w(c)= 2
1 1<k <N -l

An algorithm for the fast computation ofthe IDCT is

-k
2RI Cx(K) 0<k<N-1

step 1. Y(K)= 0 k=N
-k
-W2RICX(2N-K) N+I1<k<2N-I

Step 2.  y(n)=/DF7jV(A;)] (2N point Inverse DFT computation)

STep 3 x{n)\: Yy O<n<N-I
0 otherwise

The even symmetrical DCT is more commonly used since the odd symmetrical DCT
involves computing an odd length DFT, which is not very convenient when one is

using FFT algorithms.

102



To derive the two dimensional (2-D) DCT

The one dimensional DCT can be extended to the two dimensional DCT. Let x[nx r?)
denote a 2-D sequence of Nxxn 2 points that is zero outside

0<« <Nx-1, 0<n2<N2-1. The 2-D DCT pair can be derived by relating xfa,”) to
a new 2NXx2N2 point sequence y(nx«2) which is then related to its 2Nxx2N2 DFT

Y[kx,k2). Then relate Y[kx,k2) to Cx[kx,k2) the NxxN2DCT

~NOxAT2 2NXx2N2 2NXx2N2 Nxx N2
U ] U ]
x(nx,n2)  y{nx,n2) Y (kx, k2) Cx(kx,k2)
x(wi,«2) is related to y[i\,n2) by
y{ni’ni) = x{n\->2) +x(2Nx-\-n x,n2) +x(Nx,2N2-\-n 2) +Xx(2Nx- \-n x,2N2 - |-« 2)

The sequence y(nxn2) is related to Y(kx,k2) by

Y(k],k2) = DFI\y{nx,n2)\
The Nxxn2pointDCT of xfa,”), Cx(kxk2) is obtained from Y(kx,k2) by

kt kn

Cx(kx k2) - WZRIWZR) (k xk2)

therefore the 2-D DCT is given by

XY ja*(ci,@)cosMt _Ki2n\ +1)3 ™ {ir2ki(22+1)1 o-KI <NX1

Cx{k\,k2) - 0<k2<jw-1

otherwise

A Fast Algorithm for the computation of the 2-D Discrete Cosine Transform is

shown
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step 1.y(n1,n2) =x(nx,n2)+ x(2Nx-1-n x,n2) +x(nx,2N2 - 1- n2) + X(2Nx-1-n1,2N2-1-« 2)

step 2. Y[kx,k2) = DFN\y{nx,n2)» (2Nxx2N2 point DFT computation)

step 3. Cx{kx,k2) = W2N W2R"Y{kx, k 2) I,0<k2<N2-I

To derive the two dimensional (2-D) Inverse DCT (IDCT)

The inverse DCT can be derived by relating Cx(A;,, k2) to Y{kx,k2), exploiting the
redundancy in Y[kx k2) due to the symmetry of y{nx , Y[kx k2) can be related to
y(nxn2 through the Inverse DFT relationship and then relating ~(«,,«2) to X(NxN2 .

Therefore the 2-D IDCT is given by

WHAFi
,\13(2" %:o%:ow(*l (*2)Ci "kl) a0S2N x khi2”1+ ) cosi2 N2 kli272+1
for 0<rij<T-1 and0O<n2<N2-1

otherwise
- k, =0 k2 —0
where w,(A)= 2 1 and w2(k2) =
1 1<kj <A 1 1<k7<IW-1
An Algorithm for the fast computation of the IDCT is
*1
AN, Wel - Cx{kx k2) 0<kj< I,0<k2</V2 1
1 2
-W2iW 2" C x(2Nx-k x,k2) N, +1 <k, <2NX-1, 0<k2<N2-1
N 2
step 1. Y kx, k2) = -Win, W2 C x(kx,2N2-k2) OSKkj <N X1, N2+I<k2<2Jv2-1
1 R

W2W 232 CX(2NX- Kk X2N2- k2) N] +1<k, <2NX1, N2+I<k2 <2N2-\

Step 2. _y(¢j,«2)=/DFzJf"j,k2)] (2NXx 2N 2 point IDFT computation )

step 3. x(ni,n2) = N 0<,,<JV,-1,0S,IS A-~I
0 otherwise
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Appendix C
BMP Format

Bitmap (BMP) File Format

BMP was designed to work with systems based on the Intel processors with their
little-endian byte ordering scheme [55]. Whenever a multiple field is read, 16 or 32
bit integer, the first byte read will be the least significant and the last, the most
significant.

There are three structures to describe the Windows bitmap file. These are

1. Bitmapfileheader
2. Bitmapheader
3. RGB

The Bitmapfileheader structure (14 Bytes):
Type: Unsigned Integer 16 Bits: 2 Bytes: Type of image. The character

BM indicates the bitmap mnemonic describing each type.

Size: Unsigned Integer 32 Bits: 4 Bytes:  Size of entire bitmap file.
xHotspot: Integer 16 Bits: 2 Bytes: Not used for Windows Bitmaps.
yHotspot: Integer 16 Bits: 2 Bytes: Not used for Windows Bitmaps.

offsetToBits: Unsigned Integer 32 Bits: 4 Bytes: Byte offset from startof file to
the first pixel data. This is 1078 Bytes for windows bitmaps 8 bits

deep.

The Bitmapheader structure ( 40 Bytes):
This can be a maximum of 64 Bytes long. Since Windows bitmaps do not use all the

fields the Bitmapheader is 40 Bytes long.
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Size: Unsigned Integer 32 Bits: 4 Bytes: Size of structure on disk.
This contains the length in Bytes of the Bitmapheader

structure. For windows bitmaps the value is 40 Bytes.

Width: Integer 32 Bits: 4 Bytes: W idth in pixels of the image.
Height: Integer 32 Bits: 4 Bytes: Height in pixels ofthe image
numBitPlanes: Unsigned Integer 16 Bits: 2 Bytes: Indicates colour depth.

The value is 1 since Windows only supports single plane
BMPs.

numBitsPerPlane: Unsigned Integer 16 Bits: 2 Bytes: Indicates colour depth.
Windows only supports 1,4 and 8 bit depths,

compressionscheme: Unsigned Integer 32 Bits: 4 Bytes: 0 indicates no
compression.

sizeOflmageData: Unsigned Integer 32 Bits: 4 Bytes: Number of bytes an
images pixel data consumes. Pointed to by offsetToBits.
Usually 0 since size calculated using width, height and bit
depth. For 256 x 256 size image the value is 65536.

XResolution: Unsigned Integer 32 Bits: 4 Bytes: Resolution in pixels. If
non-zero, then can be used to generate a scaling factor to print
the image at the proper size.

yResolution: Unsigned Integer 32 Bits.: 4 Bytes: Resolution in pixels. If
non-zero, then can be used to generate a scaling factor to
print the image at the proper size.

numCollorsUsed: Unsigned Integer 32 Bits: 4 Bytes: Number of colours in

colour table. 0 indicates all of them.
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numlImportantColors: Unsigned Integer 32 Bits: 4 Bytes: Number of colours
required for proper rendering of the image. O indicates all of
them.

The RGB structure:

Immediately following the Bitmapheader is a colour table. For
windows bitmaps it is an array of RGB structures. When reading the pixel values of
such a bitmap, each pixel’s value will be an index into this array indicating the colour
their value represents. For bitmaps with normal colour tables the length ofthe colour
table is a function of the number of colours the image can have. The number of
possible colours is 200ph where bit depth is the number of colour planes multiplied
by the number of bits per plane. Each entry in the normal colour table is one RGB
structure . First byte is the blue value, second green and the third red. There is also a
further additional byte of padding. For windows bitmap at 8 bits deep therefore 2s =

256 there 256 * 4 bytes gives 1024 bytes for RGB and padding.

Reading the Bits:

Once the headers and RGB have been read, the offsettobits field
points to the start of the pixel data. Each row contains a multiple of 4 bytes. Each
row is a packed array of pixel values. Each pixels bit width is the image’s bit depth.
For a bit depth of 1, each byte represents 8 pixels, the most significant bits within a
byte are the left-most pixels. For bit depth of 4 each byte represents 2 pixels, the
most significant 4 bits representing the left side pixel and the least significant 4 bits,

the right side pixel. For a bit depth of 8, each byte represents a pixel.
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Intensity Levels:

Human perception of light is generally described in terms of
Brightness, Hue and Saturation. Brightness refers to how bright the light is. Hue
refers to the colour, an attribute which allows the colours red and blue to be
distinguished. Saturation, sometimes called chroma, refers to how vivid or dull a
colour is.

For a black and white image, it can be represented by one number |
where | is the luminance or intensity. A colour image can be viewed as three
monochrome images (tristimulus). For a colour image this is represented by three
numbers. The numbers used in practice are the RGB numbers.

These three values, RGB, can be transformed into another set of
tristimulus values. One particular set is known as luminance-chrominance. The
corresponding luminance-chrominance values YI1Q are related to RGB by

y "0.299 0.583 0114 -~R
i - 059% -0.274 -0.322 G
Q 0211 -0.523 0312 B

~R ~1  0.956 0.621 ' ~Y~
G -1 -0.273 -0.647 1
B 1 -1.104 1.701 Q
The Y component is called the luminance component and is primarily
responsible for the perception of brightness of a colour image and can be used for
black and white images. The | and Q components are the chrominance components
and are responsible for the perception of hue and saturation of a colour image. One
advantage of the YIQ set of tristimulus values over the RGB set of tristimulus values

is that the Y component can be processed individually . Most high frequency

components of an image are primarily in the Y component.
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Appendix D
Lossless Compression Results for Test Images

D. 1 Lossless Compression Results for 1024 x 1024 Images
The results when the lossless algorithms were applied to the 1024 x 1024 test images

are shown in the tables D .l to D.4.

Static Huffman Adaptive Huffman Splay Trees  Arithmetic

Compression ratio 1:1.54 1:1.79 1:4.74 1:9.75
486 66 MHz .

Compression Time /s 24.31 40.51 15.05 273.15
Decompression Time /s 24.31 35.88 13.89 307.87
Pentium 90 MHz

Compression Time /s 9.26 13.89 8.10 103.10
Decompression Time /s 9.26 13.89 6.94 105.79

Table D.l: Lossless compression results for chest x-ray (1024 X 1024) image

Static Huffman Adaptive Huffman Splay Trees  Arithmetic

Compression ratio 1:1.53 1:1.72 1:4.46 1:9.09
486 66 MHz

Compression Time /s 26.62 45.14 13.89 275.46
Decompression Time /s 27.78 39.35 13.89 311.34
Pentium 90 MHz

Compression Time /s 9.26 13.89 3.47 72.92
Decompression Time /s 9.26 13.89 4.63 74.35

Table D.2: Lossless compression results for pelvis X-ray (1024 x 1024) image

Static Huffman Adaptive Huffman  Splay Trees  Arithmetic

Compression ratio 1:1.54 1:1.79 1:4.74 1:9.75
486 66 MHz

Compression Time /s 24.31 40.51 15.05 273.15
Decompression Time /s 24.31 35.88 13.89 307.87
Pentium 90 MHz

Compression Time /s 9.26 12.73 8.10 103.10
Decompression Time /s 9.26 13.89 6.94 105.79

TableD.3: Lossless compression results for mandrill Image (1024 x 1024)
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Static Huffman Adaptive Huffman Splay Trees  Arithmetic

Compression ratio 1:1.07 1:1.10 1:1.29 1:4.03
486 66 MHz

Compression Time /s 324 69.44 32.4 307.87
Decompression Time /s 37.04 64.97 324 321.15
Pentium 90 MHz

Compression Time /s 10.42 19.68 10.42 113.10
Decompression Time /s 10.42 19.68 10.42 115.87

Table D.4: Lossless compression results for Lenna image (1024 x 1024)

D.2 Lossless Compression Results for 512 x 512 Images
The results when the lossless algorithms are applied to the 512 x 512 test images are

shown in the tables D.5 to D.8.

Static Huffman Adaptive Huffman Splay Trees  Arithmetic

Compression ratio 1:1.53 1:1.68 1:3.71 1:6.96
486 66 MHz

Compression Time /s 9.26 13.89 6.94 69.44
Decompression Time /s 9.26 12.73 5.79 79.86
Pentium 90 MHz

Compression Time /s 5.79 6.94 1.16 23.15
Decompression Time /s 5.79 6.94 1.16 25.35

Table D.5: Lossless compression results for chest X-ray (512 x 512) image

Static Huffman Adaptive Huffman Splay Trees  Arithmetic

Compression ratio 1:1.53 1:1.64 1:3.41 1:6.41
486 66 MHz

Compression Time /s 11.57 18.52 8.10 79.86
Decompression Time /s 11.57 17.36 5.79 89.12
Pentium 90 MHz

Compression Time /s 4.63 6.94 2.31 23.15
Decompression Time /s  4.63 6.94 2.31 25.46

Table D.6: Lossless compression results for pelvis X-ray (512 x 512) image
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Static Huffman

Compression ratio 1:1.48
486 66 MHz
Compression Time /s 11.57

Decompression Time /s 11.57
Pentium 90 MHz

Compression Time /s 4.63
Decompression Time /s 4.63

Adaptive Huffman
1:1.52

16.20
15.05

6.94
6.94

Splay Trees
1:1.55

10.42
9.26

231
231

Arithmetic
1:2.04

130.79
140.05

38.19
40.32

Table D.7: Lossless compression results for Mandrill image (512 x 512)

Static Huffman

Compression ratio 1:1.07
486 66 MHz
Compression Time /s 11.57

Decompression Time /s 13.89
Pentium 90 MHz

Compression Time /s 5.79
Decompression Time /s 5.79

Adaptive Huffman
1:1.09

2431
24.31

8.10
8.10

Splay Trees
1:1.04

13.42
12.46

3.47
3.47

Arithmetic
1:2.05

134.79
145.05

39.29
41.32

Table D.8: Lossless compression results for Lenna image (512 x 512)
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Appendix E

QUANTISATION MATRICES

Shown below are the 8 x 8 quantisation matrices used in the DCT algorithm to

compress the test images. The quantisation matrices are based on the human visual

system’s sensitivity. The quantisation levels are the same value all ranging the same

distance from the origin.

10 11 12 13 14 15

Quality = 1
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12
6 7 8 9 10 1 12 13
7 8 9 10 11 12 13 14
8 9
9

Quality = 3

10 13 16 19 22 25 28 31
13 16 19 22 25 28 31 34
16 19 22 25 28 31 34 37
19 22 25 28 31 34 37 40
22 25 28 31 34 37 40 43
25 28 31 34 37 40 43 46

Quality = 5

11 16 21 26 31 36 41 46
16 21 26 31 36 41 46 51
21 26 31 36 41 46 51 56
26 31 36 41 46 51 56 61
31 36 41 46 51 56 61 66
36 41 46 51 56 61 66 71
41 46 51 56 61 66 71 76

112



Quality = 7

15
22
29
36
43
50
57

Quality = 9

10
19
28
37
46
55
64
73

Quality =11

12
33
44
55
66
77
88
99

Quality = 25

26
51
76
101
126
151
176
201

15
22
29
36
43
50
57
64

19
28
37
46
55
64
73
82

33
44
55
66
77
88
99
110.

51

76

101
126
151
176
201
226

22
29
36
43
50
57
64
71

28
37
46
55
64
73
82
91

4

2
3
4
5
5
6
7
7

4

55

6
7
8
9

6
7
8
9

110
121

76

101
126
151
176
201
226
251

9
6
3
0
.
4
1
8

37
46
55
64
73
82
91

36
43
50
57
64
71
78
85

100

55
66
77
88
99
110
121
132

101
126
151
176
201
226
251
276

46
55
64
73
82
91

43
50
57
64
71
78
85
92

100
109

66
77
88
99
110
121
132
143

126
151
176
201
226
251
276
301
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50
57
64
71
78
85
92
99

55
64
73
82
91
100
109
118

77
88

9

9

110
121
132
143
154

151
176
201
226
251
276
301
326

57
64
71
78
85
92
99

106

64
73
82
91
100
109
118
127

8
9

8
9

110
121
132
143
154
165

176
201
226
251
276
301
326
351

73
82
91
100
109
118
127
136

9

9

1101
121
132
143
154
165
176

201
226
251
276
301
326
351
376



Appendix F
Lossy Compression Results for Test Images

F-1 8 x 8 quantisation matrix results for 1024 x 1024 images

The results when the lossy algorithm is applied to the 1024 x 1024 test images using

a 8 x 8 quantisation matrix are shown in the tables F.I to F.4.

486 66 MHz  Pentium

Compression Time /s 78.06 18.52

Decompression Time /s 83.84 17.36

Quality Factor 1 3 5 7 9 1 25

Mean Square Error 1.62 2.67 3.77 5.36 6.48 7.47 16.00
Visual Degradation 1 2 2 2 3 5 5

Using Run Length Encoding

Compression Ratio 1:9.88 1:12.51 1:1353 1:1429 1:147 1:15.01 1:16.10 |
Using Splay Trees

Compression Ratio 1:9.33 1:12.79 1:1454 1:16.38 1:17.21 1:17.76  1:22.79 \

Table F.I: Lossy compression of chest X-ray image (1024 x 1024) using 8 x 8 matrix

486 66 MHz Pentium

Compression Time /s 78.06 18.52

Decompression Time /s 83.84 17.36

Quality Factor 1 3 5 7 9 11 25

Mean Square Error 1.55 2.63 3.76 5.02 6.53 7.59 16.47
Visual Degradation 1 2 2 3 4 4 5

Using Run Length Encoding

Compression Ratio 1:9.90 1:12.71  1:13.77 1:1481 1:14.9 1:15.19  1:16.20 |
Using Splay Trees

Compression Ratio 1:9.34 1:13.00 1:14.88 1:16.70 1:17.46 1:18.14 1:22.04 |

Table J.2: Lossy compression of pelvis X-ray image (1024 x 1024) using 8 x 8 matrix
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486 66 MHz Pentium

Compression Time /s 78.06 19.68
Decompression Time /s 83.10s 16.20
Quiality Factor 1 3

Mean Square Error 6.1 20.2
Visual Degradation 1 2

Using Run Length Encoding

Compression Ratio 1:3.82 1:6.07
Using Splay Trees

Compression Ratio 1:3.29 1:5.36

33.4

1:7.53

1:6.81

46.2

1:8.64

1:7.96

58.1

1:9.54

1:8.94

11
60.21

1:10.29

1:9.81

Table F.3: Lossy compression of mandrill image (1024 x 1024) using 8 x 8 matrix

486 66 MHz Pentium

Compression Time /s 78.06 19.68
Decompression Time /s 83.10 18.52
Quality Factor 1 3

Mean Square Error 4.02 11.00
Visual Degradation 1 1

Using Run Length Encoding

Compression Ratio 1:5.69 1:9.38
Using Splay Trees

Compression Ratio 1:5.01 1:8.72

5

16.26

1
1:11.14

1:10.79

7

20.25

1
1:12.20

1:12.14

9

23.66
2
1:12.93

1:13.29

11
26.88

1:13.48

1:1431

Table F.4: Lossy compression of Lenna image (1024 x 1024) using 8 x 8 matrix

F.2  8x8 quantisation matrix results for 512 x 512 images

25
137.62

1:13.54 ]

1:1451 ]

25
45.93

1:15.39 |

1:18.27 !

The results when the lossy algorithm is applied to the 512 x 512 test images using a

8 x 8 quantisation matrix are shown in the tables J.5 to J.8.
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486 66 MHz

Compression Time /s 27.04
Decompression Time /s 30.51
Quality Factor 1
Mean Square Error 2.26
Visual Degradation 1
Using Run Length Encoding
Compression Ratio 1:8.52
Using Splay Trees

Compression Ratio 1:7.75

Pentium

4.63

4.63
3 5
4.1 6.25
2 4
1:11.32 1:12.49
1:11.05 1:12.62

7
8.47

1:13.28

1:14.07

11.2
4

1:13.84

1:15.00

1n
13.27

1:14.27

1:15.78

Table F.5: Lossy compression of chest X-ray image (512 x 512) using 8 x8 matrix

486 66 MHz
Compression Time /s 22.41
Decompression Time /s 24.72
Quality Factor 1
Mean Square Error 231
Visual Degradation 1
Using Run Length Encoding
Compression Ratio 1:8.46
Using Splay Trees
Compression Ratio 1:7.69

Pentium

5.79

3.47

3 5

4.37 6.82

2 4
1:11.34 1:12.54
1:11.06 1:12.69

7

9.44
4
1:13.4

1:14.2

9
11.39
4
1:14

1:15.3

11

154

4
1:14.45

1:16.13

Table F.6: Lossy compression of pelvis X-ray image (512 x 512) using 8 x8 matrix

486 66 MHz
Compression Time /s 22.41
Decompression Time /s 24.72
Quality Factor 1
Mean Square Error 14.9
Visual Degradation 1

Using Run Length Encoding

Compression Ratio 1:2.64
Using Splay Trees
Compression Ratio 1:2.29

Pentium

4.63

4.63
3 5
54.2 88.4
2 3
1:4.8 1:6.32
1:4.2 1:5.63

118

1:7.53

1:6.81

145

1:8.55

1:7.86

11
169.5

1:9.41

1:8.80

Table F.7: Lossy compression of mandrill image (512 x 512) using 8 x 8 matrix
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28.95

1:15.78 |

1:20.68 |

25
32.4

1:15.82 |

1:20.16 |

25
289

1:13.26 |

1:13.87 |



486 66 MHz  Pentium

Compression Time /s 22.41 4.63

Decompression Time /s 24.72 4.63

Quality Factor 1 3 5 7 9 1 25

Mean Square Error 7.8 18.56 27.64 35.69 43.45 50.12 92.24
Visual Degradation 1 2 2 3 4 4 5

Using Run Length Encoding

Compression Ratio 1:4.88 1:7.97 1:9.6 1:10.66  1:11.51 1:12.15 1:14.72 |
Using Splay Trees

Compression Ratio 1:4.25 1:7.2 1:8.92 1:10.17 1:11.25 1:12.20 1:16.50 |

Table F.8: Lossy compression of Lenna image (512 x 512) using 8 x 8 matrix

F.3 16 x 16 quantisation matrix results for 1024 x 1024 images
The results when the lossy algorithm is applied to the 1024 x 1024 test images using

a 16 x 16 quantisation matrix are shown in the tables F.9 to F.12.

Pentium
Compression Time /s 30.09
Decompression Time /s 28.94

Quality Factor 1 3 5 7 9 11 25

Mean Square Error 2.05 3.78 5.49 7.06 8.50 9.97 17.89
Visual Degradation 1 2 2 3 4 4 5

Using Run Length Encoding

Compression Ratio 1:13.30 1:16.11  1:17.05 1:17.57 1:1791 1:18.19 1:19.07 |
Using Splay Trees

Compression Ratio 1:15.89  1:22.42 1:25.25 1:26.95 1:28.23 1:29.46  1:33.70 |

Table F.9: Lossy compression of chest X-ray image (1024 x 1024) using 16x16 matrix
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Pentium
Compression Time /s 30.09
Decompression Time /s 27.78

Quality Factor 1
Mean Square Error 2.1
Visual Degradation 1
Using Run Length Encoding
Compression Ratio 1:13.18
Using Splay Trees

Compression Ratio 1:15.71

3

3.88

2
1:16.07

1:22.23

5

5.79

2
1:17.04

1:25.30

7

7.66

3
1:17.58

1:26.96

9

9.61

4
1:17.93

1:28.23

11
11.24
4
1:18.21

1:29.46

25
23.23

1:19.18 1

1:34.24 |

Table F.10: Lossy compression of pelvis X-ray image (1024 x 1024) using 16 x 16 matrix

Pentium
Compression Time /s 30.09
Decompression Time /s 27.78

Quality Factor 1
Mean Square Error 11.46
Visual Degradation 1
Using Run Length Encoding
Compression Ratio 1:551
Using Splay Trees

Compression Ratio 1:5.02

3
34.45
1
1:8.81

1:8.92

5

54.47

1
1:10.69

1:11.57

7

72.92

2
1:11.99

1:13.68

9

89.59

2
1:12.96

1:15.43

1
104.95
3
1:13.70

1:16.88

25
193.85
4
1:16.61

1:24.01 |

Table F.11: Lossy compression of mandrill image(1024x 1024) using 16x 16matrix

Pentium
Compression Time /s 30.09
Decompression Time /s 28.94

Quality Factor 1
Mean Square Error 8.06
Visual Degradation 1
Using Run Length Encoding
Compression Ratio 1:8.70
Using Splay Trees

Compression Ratio 1:8.58

3

18.05

1
1:12.92

1:15.20

5

24.20

1
1:14.54

1:18.92

7

29.02
2
1:15.46

1:20.91

9

33.06

2
1:16.10

1:22.60

1
36.83

3
1:16.56

1:23.80

Table F, 12: Lossy compression of Lenna image (1024 x 1024) using 16x16 matrix
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F.4 16 x 16 quantisation matrix results for 512 x 512 images
The results when the lossy algorithm is applied to the 512 x 512 test images using a

16x16 quantisation matrix are shown in the tables F13 to F.16.

Pentium
Compression Time /s 6.94
Decompression Time /s 8.10

Quality Factor 1 3 5 7 9 11 25

Mean Square Error 3.10 6.44 10.48 14.13 18.70 21.32 42.54
Visual Degradation 1 2 3 4 4 5 5

Using Run Length Encoding

Compression Ratio 1:11.62 1:1462 1:15.83 1:16.5 1:16.99 1:17.29  1:18.50 |
Using Splay Trees

Compression Ratio 1:12.74 1:18.38 1:21.50 1:23.31 1:24.89 1:25.94 1:30.49 |

Table F.13: Lossy compression of chest X-ray image (512 x 512) using 16 x 16 matrix

Pentium
Compression Time /s 6.94
Decompression Time /s 6.94

Quality Factor 1 3 5 7 9 1 25

Mean Square Error 3.38 7.49 11.45 16.83 21.48 25.21 49.16
Visual Degradation 1 2 3 4 4 5 5

Using Run Length Encoding

Compression Ratio 1:11.43  1:14.43 1:1564 1:16.45 1:16.95 1:17.33  1:18.55 |
Using Splay Trees

Compression Ratio 1:12.47 1:18.08 1:20.90 1:23.34 1:2481 1:26.10 1:30.78 1

Table F.14: Lossy compression of pelvis X-ray image (512 x 512) using 16 x 16 matrix

Pentium
Compression Time /s 8.10
Decompression Time /s '8.10

Quality Factor 1 3 5 7 9 1n 25

Mean Square Error 334 96.28 14524 185.39 218.05 248.28 373.73
Visual Degradation 1 1 2 3 4 5 5

Using Run Length Encoding

Compression Ratio 1:3.99 1:7.36 1:9.52 1:11.09 1:1227 1:13.26 1:16.74 1
Using Splay Trees

Compression Ratio 1:3.94 1:7.09 1:9.80 1:12.13 1:1411 1:15.89 1:24.27

Table F.15: Lossy compression of mandrill image (512 x 512) using 16 x 16 matrix



Pentium

Compression Time Is 6.94

Decompression Time /s 6.94

Quality Factor 1 3 5
Mean Square Error 13.12 29.5 43.21
Visual Degradation 1 2 3
Using Run Length Encoding

Compression Ratio 1:7.24 1:10.94 1:12.69
Using Splay Trees

Compression Ratio 1:6.89 1:11.86 1:14.76

7 9 11 25

55.03 65.11 75.08 127.12

4 4 4 5

1:13.84 1:14.62 1:15.24 1:17.37 1
1:17.03 1:18.70 1:20.17 1:26.31 |

Table F.16: Lossy compression of Lenna image (512 x 512) using 16 x 16 matrix

F.5

32 x 32 quantisation matrix results for 1024 x 1024 images

The results when the lossy algorithm is applied to the 1024 x 1024 test images using

a 32 x 32 quantisation matrix are shown in the tables F.17 to F.20.

Pentium
Compression Time /s 53.24
Decompression Time /s 52.08
Quality Factor 1 3 5
Mean Square Error 5.84 8.36 10.7
Visual Degradation 2 3 3
Using Run Length Encoding
Compression Ratio 1:18.15 1:18.89 1:19.29
Using Splay Trees
Compression Ratio 1:32.8 1:36.57 1:38.20

7 9 25

12.78 14.02 23.78

4 4 5
1:19.53 1:19.69 1:20.21
1:40.21 1:414 1:44.86 |

Table F.17: Lossy compression of chest X-ray image (1024 x 1024) using 32 x 32 matrix

Pentium
Compression Time /s 53.24
Decompression Time /s 52.08
Quality Factor 1 3 5
Mean Square Error 6.39 9.93 12.96
Visual Degradation 2 3 3
Using Run Length Encoding
Compression Ratio 1:18.01 1:18.79 1:19.21
Using Splay Trees
Compression Ratio 1:32.26  1:36.08 1:38.24

7 9 25
1566  18.04  31.94

4 4 5

1:19.47  1:19.15 1:20.15 |
1:39.75 1:41.05 1:45.01 1

Table F.18: Lossy compression of pelvis X-ray image (1024 x 1024) using 32 x 32 matrix



Pentium
Compression Time /s 53.24
Decompression Time /s 52.08

Quality Factor 1 3 5 7 9 25

Mean Square Error 60.4 91.33 117.99 141.71 163.98 273.89
Visual Degradation 1 2 2 3 4 5

Using Run Length Encoding

Compression Ratio 1:11.72  1:13.73 1:15.02 1:1590 1:16.58 1:18.82 |
Using Splay Trees

Compression Ratio 1:1458 1:18.92 1:22.26 1:24.89 1:27.09 1:36.44 |

Table F.19: Lossy compression of mandrill image (1024 x 1024) using 32 x 32 matrix

Pentium
Compression Time /s 53.24
Decompression Time Is 52.08

Quality Factor 1 3 5 7 9 25

Mean Square Error 26.58 34.17 40.48 46.69 52.70 85.83
Visual Degradation 1 2 3 4 4 5

Using Run Length Encoding

Compression Ratio 1:15.61 1:16.89 1:17.57 1:18.06 1:18.40 1:19.54 |
Using Splay Trees

Compression Ratio 1:23.80 1:28.07 1:30.74 1:32.81 1:34.31 1:40.351

Table F.20: Lossy compression of Lenna image (1024 x 1024) using 32 x 32 matrix

F.6 32 x 32 quantisation matrix results for 512 x 512 images
The results when the lossy algorithm is applied to the 512 x 512 testimages using a

32 x 32 quantisation matrix are shown in the tables F.21 to F.24.

Pentium
Compression Time /s 12.73
Decompression Time /s 12.73

Quality Factor 1 3 5 7 9 25

Mean Square Error 12.01 18.89 24.05 28.86 34.48 65.15
Visual Degradation 5 5 5 5 5 5

Using Run Length Encoding

Compression Ratio 1:16.87 1:17.81 1:18.35 1:18.71 1:19.01 1:19.86
Using Splay Trees

Compression Ratio 1:27.45 1:31.21 1:3361 1:35.38 1:36.86 1:41.73 |

Table F.21: Lossy compression of destX-ray image (512 X 512) using 32 x 32 matrix



Compression Time /s
Decompression Time /s

Quality Factor
Mean Square Error
Visual Degradation

Pentium
12.73
12.73

13.56

Using Run Length Encoding

Compression Ratio
Using Splay Trees
Compression Ratio

1:16.70

1:26.84

3

22.09
5
1:17.73

1:30.94

5

28.29
5
1:18.27

1:33.37

7
34.13
5

1:18.65

1:35.18

9 25

38.99 76.91

5 5

1:18.92 1:19.84 |
1:36.34  1:41.87 |

Table F.22: Lossy compression of pelvis X-ray image (512x512) using 32 x 32 matrix

Compression Time /s
Decompression Time /s

Quality Factor
Mean Square Error
Visual Degradation

Pentium
13.89
12.73

166.66

Using Run Length Encoding

Compression Ratio
Using Splay Trees
Compression Ratio

1:10.53

1:12.26

3
230.54
4
1:13.06

1:17.24

5
278.33
5
1:14.68

1:21.20

7
315.37
5
1:15.81

1:24.44

9 25
344.24  459.37

5 5

1:16.62 1:19.04 1
1:27.08 1:37.34 |

Table F.23: Lossy compression of mandrill image (512 x 512) using 32 x 32 matrix

Pentium
Compression Time /s 12.73
Decompression Time /s 13.81
Quality Factor 1
Mean Square Error 48.70
Visual Degradation 3
Using Run Length Encoding
Compression Ratio 1:13.54
Using Splay Trees
Compression Ratio 1:18.24

3

69.17
4
1:15.28

1:22.67

5

85.83

5
1:16.26

1:25.68

7
100.46
5
1:16.93

1:28.05

9 25
113.78 181.53

5 5
1:17.42  1:19.01 |
1:29.86 1:37.14

Table F.24: Lossy compression of Lenna image (512 x 512) using 32 x 32 matrix



Appendix G
Visual Basic Software Application

There are two applications, the server application and the client application. The
server application, shown below, is situated on the remote system where the images
are archived. The server application is concerned with decompressing the image from
the archive using the lossless algorithm, compressing the image for transmission
using the lossy algorithm and then transmitting the image to the client.

Te:hnp Remote Tran?mi.: ;ion KT?

Shown below is the client application. The client is concerned with receiving the
image, decompressing the image using a lossy algorithm and displaying the image on
the screen.



To View a remote image.
Step 1:Set up the IP address of the local PC (client) using the options menu choice.

Step 2:Connect to remote system by choosing the open remote on the menu.
iijgg Viewimage

Spen Remote

adve

Another window will open allowing the user to enter the IP address of the remote
system (server)

The client will now try to connect to the server and if successful will change the
connection status to display where the client has been connected, thus.

Connected lo Ip Address 14?.252.134 21

Step 3:Once the client has connected to the server, more menu options will be
available. To view aremote image choose the menu option View Remote Image.

View Iffiage gpltarts \Vers

View Remote Image |

The server transmits to the client a directory listing of the archived images on the
server.
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The client can now choose an image to be viewed and the name of this file will be
transmitted to the server and the server will transmit a lossy compressed image at a
default resolution to the client. The file chosen in this case is wri2.ach, an archived
wrist x-ray image ofsize 512 x 512 pixels at an intensity resolution of 8 bits/pixel.

Step 4: wWhile the image is being transmitted the client application will inform the
user how much of the image is left to be transmitted. This is shown in the
Transmission Status section. This also displays the time the image took to be
transmitted and how fast the transfer system is.

The file statistics section displays what the actual client application is
doing, e.g. transmitting or decompressing. This section also displays information on
decompression time and compression ratio. All the sections can be turned on or off
using the options menu selection.

Testing Remote Receiving

;> W~ 'ei i
Time for Ttansmission is 3.47 sec’s

R e Statistics A - e — -,
/ . ;

Decompressed

Time taken for Decompression ii 8.10
Pl I v . _

Compression ration for transmission was 1:14.62

The server application also displays information about the transmission. The
connection status section displays to which client it has currently transmitted an
image Transmission status section displays how much of the image has been
transmitted The file statistics section displays information about the size of the
archived image, the size of the original image, the size of the image to be transmitted,
compression ratio and the time taken to compress the image. The sections can be
turned on or off using in the options menu selection.



Testim Remote Tramsnissian

- Tronsriiission Stalin—  ---.-yv -w-
Feesiztobe sat»17938

A 17936%*« m

«<T1. Yot
i Rie ChoseniiwnZ ach

! Trammisted fe « |ipft
Ks#l
Archive size 98627 Bytes
Original size 262144 8j*«s
j Compressed Size 17936 Bytes
Cocrasressiori ratio for transmission «was 1:14.62

I Time taken in seconds for Compression is 5.73
. . B
mmw

When the image has been transmitted and decompressed another window opens and
displays the image. This image is at a default resolution.
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The user can now choose to either increase resolution on the entire image or choose a
section ofthe image by using the zoom menu

ESIB U 1 Ooselm

Zoom
Restoie Image

Qesolution Save Image Zoom facility £tose Image A

Once the section has been zoomed in, the client can choose to increase the resolution
ofthis section by choosing the increase resolution on the menu

Resolution Save Image <

Increase Resolution

Another window will open allowing the client to choose a new resolution
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Once the resolution has been chosen, information about the size and location of the
section to be transmitted and also the new resolution is transmitted to the server.
Only the section ofthe image chosen will be transmitted from the server to the client.

This image can now be saved to the local hard disk using the save image menu

Save as Bitmap File 1 ffl
FHe name: Folders: 0K |
I B e et e e c:\vb_4.0\16-bit 1 e

- Caned

$traj>.bmp «ta cA A e
$Praj»2 hmp a Vb_4.0 Netwolk 1

©11 6 - b it «

U | bitmaps

Q clisvr r Head only

L J eamon

[ -Li




AppendixH

Comparison of Transmitting only Difference

The results when transmitting the difference are shown in the tables H.l to H.4.

1 2 3 4 5 6

Compression Ratio 1:9.87 1:10.99 1:9.32 1:10.75 1:13.28 1:13.91
Compression Time /s 19.68 18.52 19.68 19.68 28.94 28.94
Decompression Time /s  16.20 17.36 17.36 17.36 27.78 27.78
Time For Difference /s 8.10 6.94 8.10
Time for Addition/s -~ 694 6.94 6.94
Transmission Time /s 7.12 6.39 7.54 6.53 5.29 5.05
Overall Time /s 43 57.31 4458  57.48 62.01 76.81

Table H. 1: Comparison of difference methods for chest X-ray image

Compression Ratio
Compression Time /s

1 2 3 4 5 6
1:9.88 1:10.97 1:933 1:10.71 1:13.16  1:13.77
18.52 18.52 19.68 18.52 28.94 28.94

Decompression Time /s 17.36 17.36 16.20 17.36 27.78 27.78
Time For Difference /s 694 810 8.10
Time for Addition /s 6.94 810 - 6.94
Transmission Time /s 7.11 6.41 7.53 6.56 5.34 5.10

Overall Time /s

Table H.2 : Comparison of difference methods for pelvis X-ray image

Compression Ratio
Compression Time /s

Time For Difference /s
Time for Addition /s
Transmission Time /s

42.99 56.17 4341 58.64 62.06 76.86

1 2 3 4 5 6
1:3.82 1:4.05 1:329 1:3.53 1:5.50 1:5.71
19.68 20.83 23.15  21.99 30.09 30.09

Decompression Time/s 18.52 17.36 18.52 18.52 28.94 28.94
694 6.94 6.94

""""""" 8.10 6.94 -ttt 6.94

18.41 17.35 21.39 1991 12.77 12.30

56.61 70.58 63.06 74.3 71.8 85.21

Overall Time /s

Table H.3 : Comparison of difference methods for mandrill image

7
1:15.87
30.09
26.62

4.43
61.14

7
1:15.69
30.09
27.78

1:17.27
28.94
27.78
6.94
8.10
4.07
75.83

1:17.03
30.09
27.78
6.94
6.94
4.13
75.68

1:5.28
31.25
28.94
6.94
6.94
13.30
87.37



Compression Ratio

1 2 3 4 5 6
1:5.69 1:6.10 1:500 1:547 1:8.69 1:9.06

Compression Time /s 19.68 19.68 20.83  20.83 30.09 28.94
Decompression Time /s  17.36 17.36 17.36 17.36 27.78 27.78
Time For Difference /s  ——— 694 6.94 8.10
Time for Addition /s 6.94 8.10 8.10
Transmission Time /s 12.35 11.52 14.04 12.85 8.08 7.75

Overall Time /s

49.39 62.44 52.23  66.08 65.95 80.67
Table H.4: Comparison of difference methods for Lenna image

7
1:8.57
30.09
27.78

8.20
66.07

8
1:9.14
31.25
27.78
6.94
6.94
7.69
80.6
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1996

Medical Image Compression for Interactive Remote Diagnostics

over the Internet using a PC.
Raymond Rochford, Eamon Maher, Bob Lawlor, Frank Duignan

Abstract

This paper discusses a software application for the use of lossless
algorithms in archiving and lossy algorithms for the transmission of medical images
over the Internet.

A grey scale image 1024 x 1024 pixels 8 bits deep occupies
approximately 1 M Byte of disk space. There is a great necessity to reduce this
excessive use of storage, and also retrieval and transmission times.

Due to the nature of x-rays and legal considerations the images must
be archived without any loss of information, therefore for medical archiving the
images must be stored using a lossless algorithm

The lossless algorithms investigated are Huffman coding, arithmetic coding
and the use of splay trees. Each concept will compress and decompress a number of
different test images and the compression ratio, compression time and decompression
time will be recorded for each concept on each image. The objective is to find the
optimal method to compress an x-ray

For a clinician to remotely view an image all that is required is a PC
with a network card installed. The network card can then be connected to a LAN, a
W AN or a telephone line depending on the location of the clinician. Methods to
ensure the complete and accurate transmission of an image will be addressed, as will
the contingency for an interrupted connection.

To remotely view an image the image is compressed lossy and then
transmitted to the clinician. Lossy compression is acceptable since the final receiver
is the human eye and the eye can tolerate certain image imperfections. As the
clinician requires increased resolution of all or a section of the image, additional
information is transmitted accordingly.

The Discrete Cosine Transform (DCT) is used extensively in image coding
since it is a lossy algorithm. Algorithms using the DCT will be investigated and
compression ratio, compression time, decompression time and mean square error will
be calculated for each image.
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Medical Image Compression for Interactive Remote Diagnostics

Over the Internet Using a PC
Raymond Rochford, Eamon Maher, Bob Lawlor, Frank Duignan

Department of Control Systems and Electrical Engineering
DIT Kevin St.
Dublin 8

Abstract

This paper discusses a software application for the use of lossless algorithms in archiving
and lossy algorithms in the transmission of medical images. The lossless algorithms
investigated were Huffman coding, Arithmetic coding and Huffman coding using Splay
Trees. The algorithms were tested on four images and in each case the compression ratio,
compression time and decompression time were recorded for each.

The lossy algorithm investigated was transform coding using the Discrete Cosine
Transform. Again this algorithm was tested on four images and compression ratio,
compression time, decompression time and mean square error was recorded for different
quality factors.

The development of a graphic user interface for the transmission of images
from a server to a client was investigated. The algorithms were written in C, developed into
DLLs using Visual C++ and called in Visual Basic where the interface was developed.

Keywords
Lossless compression, Lossy compression, Internet, Huffman Coding, Arithmetic Coding,
Splay Trees, Discrete Cosine Transform (DCT)

1. Introduction

This paper discusses a software application for the use of lossless algorithms in archiving
and lossy algorithms in the transmission of medical images over the Internet. All software is
designed for use on any Windows based platform such as the 486 or Pentium PC as found in
numerous medical environments.

A grey scale image comprising of 1024 X 1024 pixels occupies
approximately 1M byte of disk space. There is a great necessity to reduce the excessive use
of storage, and also small retrieval times. There is also a necessity to reduce the
transmission time for an image.

Topics tackled in this paper are

e The use of a fast and effective lossless algorithm which would compress an image by
approximately 2:1 with a corresponding decrease in retrieval time for archiving.

A lossy algorithm with an approximate compression of 1:10 to reduce transmission thne
in remote diagnostics.

e The development, using Visual Basic and Visual C++, of a user friendly graphic
interface so that a clinician can perform interactive remote diagnosis of an image.



2. Lossless Compression For Archiving

Due to the nature of x-rays and legal considerations the images must be archived without
any loss of information, therefore for medical archiving the images must be stored using a
lossless algorithm. Lossless coding guarantees that the decompressed image is absolutely
identical to the image before compression.

All compression techniques are based on the exploitation of information
redundancy that exists in digital images. The redundancy stems from the statistics of the
image data (e.g. strong spatial correlation). The aim is to represent the image using a lower
number of bits per pixel without losing the ability to reconstruct the image. No non-
redundant image data may be lost in the data compression process, otherwise error free
reconstruction is impossible.

Statistical redundancy is directly related to the image data probability
distribution and can be treated by information theory techniques using image entropy
algorithms. Its removal results in lossless image compression techniques such as Huffman
coding and Arithmetic coding.

2.1 Huffman Coding
Huffman coding [1] is based on the fact that certain symbols, in this case intensities, appear
more often than others in an input stream. The average number of bits per pixel can be
reduced by assigning binary codes of different bit lengths to the various image intensities.
Once the probability density function of the image intensities is known,
short codewords can be assigned to intensities having a high probability of occurrence and
larger codewords can be assigned to less frequent image intensity levels. The codewords are
then joined to form a binary data stream. This stream must be decoded at the receiver end
and therefore the combination of the joined codewords must be decipherable, that is, no
codeword can be the same as the first bits, the prefix, of another codeword. This ensures
that when a codeword has been received, there should be no possibility that it is part of a
longer word.

2.2 Arithmetic Coding

Arithmetic coding [2] is based on the same principle as Huffman coding but instead of
replacing an input symbol with a specific code, it replaces a stream of input symbols with a
single floating point number. Once the symbol probabilities are known, each symbol is
assigned a range along a “probability line” from 0 to 1 which corresponds to its occurrence.
As each symbol is encoded it creates a subrange and the entire input stream becomes a
single floating point number.

2.3 Splay Tree
A Huffman tree is a weight balanced tree where each leaf is weighted with the intensity
frequency and the internal nodes have no weighting. When splaying [3] is applied to prefix
code trees, the path from the root to the target is reduced by a factor of two thus reducing the
number of bits required in the input stream.

The Huffman compression algorithm requires the use of a tree balancing
scheme and since splay trees are ordered binary search trees, when applied to Huffman
coding compression algorithm leads to a locally adaptive compression algorithm.

3. Lossy Compression For Transmission

Lossy compression can be used when the information loss can be tolerated at the receiving
end. For a clinician to remotely view an image all that is required is a PC with a network
card installed. The network card can be connected to a local area, LAN (within a medical
site), a wide area network, WAN (between medical sites), or a telephone line (for remote
users) depending on the location of the clinician.



If the remote computer (client) connects to the server over a telephone line
the cost of connection time needs to be considered. To minimise the time (and hence the
cost) of communicating over the specific connection, the archived image is decompressed
and compressed in a lossy format and then transmitted to the clinician. Lossy compression
is acceptable since the final receiver is the human eye and the eye can tolerate a certain level
of image imperfection. As the clinician requires increased resolution of all or a section of
the image, the additional information is transmitted accordingly.

3.1 Transform Image Coding

One approach is to use image transforms [4] to concentrate the image energy in a few
transform coefficients. An image is transformed to a domain different from the intensity
domain and the transform coefficients are then coded. If the energy packing is obtained, a
large number of transform coefficients can be discarded and the rest coded with variable
length codewords thereby resulting in data compression.

The energy packing property relies on the fact that a large amount of energy
is concentrated in a small fraction of the transform coefficients. The DC coefficients and
some other low frequency coefficients tend to concentrate most of the signal energy. This is
because images have large regions where the intensities change slowly. High frequency
components are mainly associated with sharp discontinuities in the image.

Many transform coefficients can be discarded without much loss of
information. Since most of the signal energy is concentrated in the DC coefficient and some
other low frequencies an image can be reconstructed without significant loss of quality and
intelligibility from a small percentage of transform coefficients. A varying number of bits
can be allocated to the remaining coefficients and the result is the encoded image.

Transform coding can be generalised into four stages.

* Image Subdivision

e Image Transformation

« Coefficient Quantisation
» Encoding

3.1.1 Image Subdivision

It is not advisable to apply one transform to the entire image because of the changing image
statistics in the various image regions. The image is split into a number of non-overlapping
blocks that are coded independently. Subdivision reduces storage and computational
requirements. Since one subdivision is processed at a time, it is not necessary to store the
entire image in memory. As the image is divided into smaller segments, transform coding
exploits less of the correlation among image pixel intensities and the correlation among
neighbouring subdivisions increases. There is a limit on the subdivision size.

3.1.2Image Transformation

The Discrete Cosine Transform (DCT) [5] is a transform which has energy packing
properties. The DCT is used because of its nearly optimal performance in typical images
having high correlation in adjacent image pixels.

3.1.3 Coefficient Quantisation)
The sub-image is transformed from intensity level to the transform domain and quantised.
The zone shapes (which 'defines quantisation resolution for each coefficient) are consistent
with the observation that most of the energy in typical images is concentrated in the low
frequency region (zonal coding).

Another form of coefficient quantisation is threshold coding. Transform
coefficients are compared with a threshold and those above the threshold are coded.

It is beneficial to allocate more bits to a coefficient with a large expected
variance. For the DCT the expected variance is much larger for low frequency coefficients



than for high frequency coefficients. Quantisation is not a reversible operation making this a
lossy method.

3.1.4 Encoding
The resulting remaining coefficients can then be encoded using a lossless coding scheme
such as Huffman coding or Run Length encoding.

4. Results

Shown in figure 1 is the flow chart for the application. The algorithm for archiving is
lossless and for transmission is lossy. The x-ray is archived on the server archive database
and when there was a request for transmission from the client, an x-ray would be chosen,
decompressed from the archive using the lossless algorithm, compressed at a default
resolution using the lossy algorithm and then transmitted over the Internet to the client where
it is decompressed and viewed on the monitor.

The user can then zoom in on a section of the x-ray and then request further
resolution of that area. Only this section of the x-ray is transmitted at the new resolution to
the client where it can be viewed. The user can then restore to the full x-ray at default
resolution and view another section of the x-ray at increased resolution. This is to ensure
that only the section that is of interest is sent to the user at the required resolution so that
bandwidth is not wasted in sending the whole image at a high resolution when only a small
section is required.

Test images are 1024 X 1024 pixels at an intensity resolution of 8 bits/pixel
as shown in figures 2 through 5. The lossless algorithms tested were static Huffman coding,
adaptive Huffman coding, Arithmetic coding and Huffman coding using Splay Trees. These
algorithms were written in C and transformed into Dynamic Linked Libraries using Visual
C++ and called in Visual Basic. Algorithms were tested on a 486 66 MHz and Pentium 90
MHz PC. The four algorithms were applied to each test image and in each case compression
ratio, compression and decompression times recorded. Figure 6 shows the average
compression time vs. average compression ratio for the four algorithms. The mean square
error was also recorded for each algorithm in each case and was seen to be zero. This was
done to verify that the algorithms used were lossless.
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Figure 1: Flow Chart of Application

Figure 2: Wrist x-ray



Figure 4: Pelvis x-ray Figure 5: Chest x-ray

Compression Ratio vs Compression Time
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Figure 6

As can be seen Huffman coding schemes do not achieve high compression ratios.
Arithmetic coding achieves high compression ratio but this requires an increase in
compression and decompression times. The algorithm using splay tree performs the best
when a high compression ratio is required with a fast compression and decompression time.
The Huffman coding algorithm using splay trees will be used as the lossless algorithm in the
software application.

The lossy algorithm was also developed as a DLL and used in Visual Basic
and tested on a 486 66 MHz and Pentium 90 MHz PC. Compression ratio, mean square
error, compression time and decompression time were recorded for each image using
different quality factors. As the quality factor increases the resolution decreases. So a
quality factor of 1 would have the highest resolution. Shown below in table 1 are the results
recorded for the wrist x-ray. Results recorded for the other images are similar. The DCT
algorithm was tested using different encoding schemes as seen in table 1 and also using
different size quantisation matrices.

This application uses zonal coding to allow the client the ability to choose
the resolution of the image to be viewed. Threshold coding as investigated and was seen to
give an optimal compression ratio but didn’t have the flexibility to allow the user to choose
differing resolutions. This also decreases the amount of bandwidth required since the client
can choose a low resolution on a large image and a high resolution on only a small section of
that image.
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Quality Factor

Mean Square Error

Visual Degradation

Using Run Length Encoding
Compression Ratio

Using Splay Trees
Compression Ratio

486 33 MHz
82.69 sec’s
83.84 sec’s

Compression Time
Decompression Time

1 No Visual Degradation

2 Low Level of Degradation

3 Visually Degraded

4 Significant Degradation

5 Highly Degraded
1 3 5 7
1.42 2.82 4.15 5.53
1 2 2 2
1:9.39 1:11.77  1:12.69
1:8.90 1:12.75 1:13.31

1:13.24

1:14.24

Pentium
18.52 sec’s
17.36 sec’s
9 11 25
6.88 8.26 20.4
3 4 5
1:13.74 1:1403 1:15.20 1
1:14.24 1:1655 1:18.45 1

Table 1 Lossy compression of Wrist x-ray

Figure 7 shows a comparison between overall viewing times using different
methods when using a quality factor of 25 on a Pentium. As the size of the quantisation
matrix increases the compression ratio increases but so also does the compression time, so

there is a tradeoff for optimal overall performance.

This was tested on a LAN so the

transmission times are short. As can be seen for such a short transmission time, method 2 or
3 performs the best but when using a different transmission medium, for example a modem
where the cost of transmission would be vital, the transmission time will increase so another
method may be applicable since it would have a greater compression ratio. Also as the
traffic on a LAN increases the transmission time will increase so again another method may

be applicable.
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Figure 7
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METHOD

Image Transmitted without Compression
8x8 DCT

8x8 DCT with Splay

16 x 16 DCT

16 x 16 DCT with Splay

32x 32 DCT

32 x 32 DCT with splay

~N o oA W N

5 Discussion
The lossless algorithm implemented was Huffman coding using Splay trees. This provides
the optimal tradeoff between compression ratio and compression time. The lossy method
employed was Transform Image coding using DCT with a quantisation matrix of size 8 X8
and Huffman coding using Splay trees as the final lossless encoding scheme. The image will
be transmitted from server to client using this lossy method. The client can calculate the
transmission time and decide which method would be preferable to use to transmit any other
images or sections of images. If the transmission rate was slow so that a method
incorporating a higher compression ratio would be optimal. Again there is a tradeoff
between transmission time and processing time. So if a modem at 14.4 Kb/sec is being used
a method with a higher compression ratio would be required to reduce transmission time.

When the client requests further resolution of all the image or a section of
the image only the difference is transmitted. This again gives the user control over the
selection of resolution thus compression ratio thus optimising the use of bandwidth.

With the latest generation of Web Browsers and the coming of age of Java
Applets the inclusion of interactive remote diagnostics using the World Wide Web could

Future developments of the software application would include the
investigation of wavelet compression and fractal compression as means of a higher
compressed lossy image. Again there would be a tradeoff between transmission time and
processing time. Also the inclusion of some spatial filtering in the client software.
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