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Abstract: Fasciola hepatica’s tegumental antigens modulate macrophage 

phenotype and function – Paul Adams 

Alternatively activated macrophages (M2) are antigen presenting cells that have a 

critical role in host tissue repair, regulation of host metabolism and modulation of 

adaptive immune responses. During helminth infection, they also act as powerful 

immune suppressors by suppressing Th1 immune responses. Fasciola hepatica 

infection drives a Th2 immune response, which is associated with the induction of M2 

macrophages, in its mammalian host. The induction of Th2 immune responses and M2 

macrophages can be mimicked by Fasciola excretory-secretory products (FhES). Here a 

second Fasciola antigen preparation consisting of the tegumental coat of F. hepatica 

was examined for its immune-modulatory properties on macrophages. In contrast to 

FhES, FhTeg does not induce antigen specific Th1 (IFN-γ) or Th2 (IL-4/IL-5/IL-13) 

cytokine responses during F. hepatica infection or following treatment intra-

peritoneally with FhTeg.Despite the lack of Th2 cytokines, similar to FhES, FhTeg can 

modulate macrophages in vivo by inducing a M2-like phenotype that exhibited T-cell 

suppressive functional ability. This M2-like phenotype was largely STAT6 dependent 

and while FhTeg cannot induce Th2 specific adaptive immune responses it can induce 

IL-13 producing macrophages in vivo. FhTeg could not induce the M2-likemacrophages 

directly in vitro but rather indirectly through the stimulation of dendritic cells. M2 

macrophages express c-type lectin receptors (CLR), a family of receptors that recognize 

specific pathogen-associated glycoconjugate structures. CLRs are involved in helminth 

antigen recognition, influencing immune responses associated with helminth infection. 

The CLRs, Mannose receptor and Macrophage Galactose Lectin were up-regulated 

during F. hepatica infection and this was mimicked by FhTeg in vivo and in vitro. This 

study was important because it helps us further understand the role FhTeg plays in F. 

hepatica host/parasite interactions. 
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1.1. Introduction: 

Helminths are a diverse group of parasitic worm-like organisms that spend a portion of 

their lifecycle in a vertebrate host. They are prominent infectious agents in developing 

countries with approximately 3 billion humans infected globally and in both the 

developing and developed world helminth infection is highly prevalent in domestic and 

wild animals (Hotez et al., 2008).  

 

Once helminths infect their host, they seek to modulate the host immune system for 

their own benefit. They are master regulators of host immunity, evolving strategies of 

evasion and suppression to survive and propagate within their host (Daniłowicz-Luebert 

et al., 2011). Helminths induce strong Th2/Treg immune responses and are potent 

suppressors of Th1/Th17 immunity (Maizels et al., 2009; Dowling et al., 2010). This 

skewing of Th1/Th17 immune responses increases the risk of the host to bystander 

bacterial, viral and protozoan infections that require Th1 immunity for protection 

(Brady et al., 1999; Wolday et al., 2002; Hartgers & Yazdanbakhsh, 2006).The 

molecules that helminths release cause this skewing of the immune response which help 

the parasite to avoid immune detection and subsequent damage (Hewitson et al., 2009). 

 

Helminths are categorised into two phylum Platyhelminthes (flatworms) and Nematoda 

(roundworms). The focus of this research is on the helminth Fasciola hepatica that 

belongs to the phylum Platyhelminthes (flatworms), which have bilaterian unsegmented 

soft-bodies and range in length from a few millimetres to thirty centimetres (Dalton, 

1999). F. hepatica, as a member of the trematode family, has both an oral and ventral 
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sucker which can be used to adhere to host tissues (Dalton, 1999). The outer protein 

coating of flukes, called tegument (FhTeg), is morphologically and physiologically 

complex; it is shed every 2-3 hours during infection and is in constant contact with host 

immune cells (Threadgold, 1976). A second source of immune modulatory molecules is 

the released excretory-secretory products (FhES) from their branched intestine that 

contain numerous enzyme filled excretory vesicles (Threadgold, 1976). Both of these 

antigen sources were shown to display potent immune modulatory responses (Donnelly 

et al., 2005; Hamilton et al., 2009).  

 

Using F. hepatica as a model, we seek to understand how these antigen sources 

modulate the host immune system. Previous studies have shown that FhES induce T 

helper type 2 (Th2)/regulatory T-cells (Treg)responses (Donnelly et al., 2008; Donnelly 

et al., 2005) in vivo which in turn suppress immune responses to bystander infections 

(Brady, 1999) and autoimmune diseases (Walsh et al., 2009). FhES can drive alternative 

activated macrophages and modulate dendritic cell function altering its ability to drive 

Th1/Th17 immune response (Donnelly et al., 2005; Dowling et al., 2010).  

 

FhTeg has been studied in the context of dendritic cells (DC) and mast cells. In DC, 

FhTeg was shown to inhibit pro-inflammatory cytokines in a model of septic shock and 

in response to Toll-like receptor (TLR) and non-TLR ligands. FhTeg was also shown to 

impair dendritic cell phagocytic capacity and their ability to prime T-cells (Hamilton et 

al., 2009). In mast cells, FhTeg fails to produce Th2 associated cytokine production but 

instead impairs their ability to drive Th1 immune responses (Vukman et al., 2013; 
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Vukman et al., 2013) by inducing suppressor of cytokine secretion-3 (SOCS3) a 

negative regulator of the TLR4 pathway. The focus of this work is to understand how 

FhTeg interacts with macrophages. 

 

1.2. Helminth immunology 

Helminth infections drive Th2/Treg immune responses from their host (Maizels et al., 

2009) as characterised by the differentiation of Th2 cells and the production of high 

levels of interleukin (IL)-4, IL-5, IL-9 and IL-13 and low levels of interferon (IFN)-γ. 

These cytokines affect antibody class switching, resulting in IgE and IgG1 in mice 

(IgG4 in humans) production. IgE antibodies bind to the surface of helminths allowing 

eosinophils and mast cells to attach through Fcε receptors (Hogan et al., 2008).  

 

Regulatory cytokines such as TGF-β and IL-10, which suppress pro-inflammatory Th1 

immune response, are released by host immune cells upon contact with helminth 

molecules and it has been shown that helminth molecules can directly impair immune 

cells to drive a Th1/Th17 immune response (Mulcahy et al., 2004; Song et al., 2011; 

Whelan et al., 2012; Hogan et al., 2008; Allen & Maizels, 2011). Helminths therefore 

leave their host more susceptible to bystander infections such as malaria and 

tuberculosis while simultaneously protecting them against Th1-mediated autoimmune 

disorders such as multiple sclerosis and Crohn’s disease (Mulcahy et al., 2004; De 

Winter et al., 2012; Nacher, 2011; Song et al., 2011). 
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1.3. Helminth elicited Th2 induction 

There are a number of endogenous candidate molecules that have been proposed to be 

responsible for Th2 responses such as the cytokines IL-4, IL-13, IL-33, IL-25 cytokines 

and thymic stromal lymphopoietin (TSLP). IL-4 can trigger antigen-specific Th2 

responses but it has been shown that Th2 cell differentiation can also occur in the 

absence of IL-4 signalling (Jankovic et al., 2000; Finkelman et al., 2000). IL-25 and IL-

33 have the ability to induce rapid production of Th2 cytokines independently of T or B 

cells (Hurst et al., 2002; Humphreys et al., 2008). IL-25 is a member of the IL-17 family 

but is functionally different in that it induces eosinophilia and IgE production (Fort et 

al., 2001), while IL-33 is a member of the IL-1 family. Active IL-33 is released during 

necrotic cell death and functions as an alarmin which stimulates various cell types such 

as mast cells to produce IL-5 and IL-13 (Cayrol & Girard, 2009; Ho et al., 2007). TSLP 

is thought to support growth and differentiation of T and B cells. TSLP stimulated DC 

can induce the differentiation of CD4
+
 cells to Th2 in an OX40L dependent manner 

(Soumelis et al., 2002; Ying et al., 2005; Ito et al., 2005). 

 

Some heterologous mixtures of molecules that can induce Th2 cytokines and associated 

physiological changes have been identified, but to date no single molecule has been 

shown to be critical for the induction of a Th2 response, which suggests a level of 

redundancy that makes no one molecule indispensable. What makes the task of 

understanding Th2 immunity difficult is that the cells responsible for producing Th2 

cytokines remain obscure (Koyasu & Moro, 2011). An early theory for inducing Th2 

responses was put forward, called the “default” hypothesis. This hypothesis stated that 

Th2 responses occurred in the absence of Th1 signals. The idea for this hypothesis came 
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forward due to the muted phenotype observed when DC were exposed to helminth 

products. Also, addition of IL-12 (Th1 associated) was seen to be able to reverse the 

Th2 response after injection with S. mansoni eggs (Th2 provoking) (Oswald et al., 

1994). Although this theory seemed plausible, contrary evidence showed that helminth 

products could alter Toll-like receptor (TLR)-mediated Th1 responses to Th2 (Van Riet 

et al., 2009; Kane et al., 2004). When exposed to microbial pathogens that normally 

produce a Th1 response, IL-12 deficient mice did not develop a Th2 response (Jankovic 

et al., 2002). Other Th2 theories have been put forward such as reduced TLR triggering 

caused by helminth products or tissue factors that are not seen in vitro (Everts et al., 

2010). 

 

1.4. T-regulatory immune response 

Successful parasitic infections are related to the down-regulation on Th2 immune 

responses. A Treg response is commonly seen during chronic infection and is responsible 

for suppressing the host immune response once the infection is established. Host-

helminth interactions can also lead to the induction and expansion of Treg cells that are 

characterised by TGF-β and IL-10 production. Although the molecular mechanisms of 

how Treg responses are primed have not yet been elucidated (Everts et al., 2010). This 

knowledge is lacking despite studies showing that helminth-derived components can 

drive a Treg response (Van der Kleij et al., 2002; Segura et al., 2007). The presence of 

apoptotic cells during infection  have also been linked with producing a Treg response 

(Steinman et al., 2000).  
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The beneficial Treg response that the host uses to dampen the immune response can also 

be beneficial for the parasite. For a parasite, a Treg response can dampen the Th2 

response, which is associated with parasite expulsion. For the host, an overzealous Th2 

response during persistent parasite infection can lead to aggravation of pathology in the 

form of tissue fibrosis. Evidence for this was found in IL-10 deficient helminth mice 

models where increased mortality and pathology were observed (Bliss et al., 2003; 

Schopf et al., 2002; Sadler et al., 2003).  

 

1.5. Dendritic cells in helminth infections 

Critical to propagating an immune response are a group of antigen presenting cells 

(APC). The most well defined APC are dendritic cells (DC) that link innate and 

adaptive immunity by controlling the development of adaptive immune responses. DC 

sense their environment and when they encounter pathogens they become activated, 

present antigens on MHC complexes and up-regulate co-stimulatory molecules on their 

surface (Sher et al., 2003; Banchereau & Steinman, 1998; Wu & Liu, 2007). The 

activated DC then stimulate naïve T-cells to differentiate and proliferate (Banchereau & 

Steinman, 1998; Banchereau et al., 2000). Cytokine mixtures are released by activated 

DC which produces an appropriate T-cell mediated immune response dependent on the 

initial stimulant. 

 

When the initial stimulant is an intracellular pathogen, virus, tumour or bacteria DC can 

drive a Th1 response. This is mediated in many cases by bioactive IL-12p70, released 

by DC, and by the up-regulation of the co-stimulatory molecules CD80, CD86 and 
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CD40. These Th1 inducing DC are commonly known as “classically activated” DC. 

When DC are exposed to helminth products they only display partial maturation (Balic 

et al., 2004; Kane et al., 2004; Hamilton et al., 2009). This partial maturation refers to 

the low expression of the co-stimulatory receptors, MHC molecules and muted 

secretion of both cytokines and chemokines. While these helminth-activated DC are not 

as phenotypically mature they do still possess the ability to drive a Th2/Treg response 

(Balic et al., 2004). 

 

Helminth studies have largely focused on using heterogeneous mixtures of soluble 

preparations from whole or partial parasites. The most studied helminth product on DC 

is schistosome soluble egg antigens (SEA). DC pulsed with SEA antigens do not 

conventionally mature; this is seen by a lack of co-stimulatory marker expression and 

low cytokine secretion (MacDonald et al., 2001). However, SEA has been shown to 

drive Th2 responses (Vella & Pearce, 1992). This Th2 response can be mimicked by 

isolated glycans from SEA (Faveeuw et al., 2003). SEA suppresses IL-12 production 

and co-stimulatory marker up-regulation in response to TLR activation. It also has the 

ability to suppress gene expression linked to LPS activation in DC (Kane et al., 2004). 

Lipids from S. mansoni have also been shown to promote Th2 responses by suppressing 

IL-12 and inducing Treg cells through TLR2 (Van der Kleij et al., 2002). Conversely, 

SEA has been shown to produce Th2 responses independently of TLR2 or TLR4 

suggesting TLR are not involved (Kane et al., 2008). 
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The nematode Nippostrongylus brasiliensis excretory/secretory antigens cause partial 

maturation of DC with up-regulation of CD86 and OX40L. These DC can prime a Th2 

response (Balic et al., 2004). Excretory/secretory antigens from another nematode 

Heligmosomoides polygrus failed to induce DC maturation, suppressing both Th1 and 

Th2 responses and promoted a Treg phenotype (Segura et al., 2007). Also two T. spiralis 

preparations were shown to partially up-regulate DC co-stimulatory molecules and 

induce a Th2 response (Ilic et al., 2008). 

 

Rather than soluble mixes of antigens, individual antigens from parasite preparations 

have also been examined, with ES-62 from the nematode Acanthocheilonema vitae 

being the most widely studied. ES-62 contains phosphorylcholine (PC) which is a 

structural component implicated in many immunological processes (Harnett &Harnett, 

1999). ES-62 exposed DC increased CD40, CD80 and CD86 co-stimulatory molecules 

and induced a low level increase in the expression of IL-12p40 and TNF-α production. 

While ES-62 also increased TLR-4 expression, it inhibited IL-12 and TNF-α production 

induced by TLR ligation (Goodridge et al., 2005). ES-62 does induce a strong Th2 

response and is not sufficient to skew the Th1 associated T. gondii infection to Th2 

(Couper et al., 2005). Other examples of helminth antigens examined include both 

Neoglycoconjugate lacto-N-fucopentaose III derived from S. mansoni and purified 

antigens from Echinococcus granulosus that partially activate DCs and can produce a 

Th2 response (Thomas et al., 2005; Riganò et al., 2007). While most studies seem to 

confirm the partial activation of DC, there are slight variations as would be expected 

due to the vast variety of helminth species and molecules involved. 
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1.6. Macrophages in helminth infections 

Macrophages are immune cells that have a great capacity to recognise and phagocytose 

invading pathogens along with acting as antigen presenting cells. Macrophages can also 

act as effector cells by directly eliminating pathogens. The secretion/presence of the 

Th2 associated IL-4 and IL-13 cytokines evokes macrophages to become alternatively 

activated (M2) and these cells are now recognised as a feature of Th2 responses 

associated with helminth infections (Zhang et al., 1997; Paul, 1991). However, helminth 

infections do not always result in M2, which are defined by their activation by IL-4/IL-

13 (Gordon & Martinez, 2010). Macrophages can share phenotype characteristics of M2 

without being induced by IL-4/IL-13 but they can be difficult to define as macrophages 

may retain a plasticity of function and phenotype depending on the environment and 

local stimulants at a given time (Cassetta et al., 2011).  

 

Arginase out-competes inducible nitric oxide synthase (iNOS) for their common 

catalyst L-arginine, resulting in the production of urea and L-ornithine. This ultimately 

leads to the production of proline and polyamines which contribute to tissue repair and 

fibrosis (Witte & Barbul, 2003). Other makers distinguish M2 populations, such as IL-

4Rα and mannose receptor cell surface up-regulation. Proteins from chitinase and FIZZ 

family members such as RELM α and Ym 1/2 are also nearly universally expressed by 

M2 (Nair et al., 2005). RELM α is a family member of cysteine-rich molecules related 

to a resistin which is involved in glucose metabolism (Steppan et al., 2001). Ym 1/2 

while having no chitinolytic activity is a member of the chitinase family (Sutherland et 

al., 2009). 
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The presence of macrophages that display alternative activation markers can be seen 

throughout all classes of helminth infection. For example, peritoneal macrophages 

isolated by adherence from a mouse model of filariasis, where B. malayi adults were 

intraperitoneally introduced, displayed Arg 1 gene expression. When they were co-

cultured with antigen-specific or naïve T-cells, an inhibited proliferation response was 

observed (MacDonald et al., 1998). The alternative activation and suppressive function 

was shown to be IL-4 dependent and IL-10 independent (Loke et al., 2000). Further 

studies using this model revealed RELM α and Ym 1/2 gene expression up-regulation 

(Loke et al., 2002). Experiments using another filarial model of L. sigmodontis resulted 

in very similar findings as in that of B. malayi. Macrophage suppressive activity was 

seen along with the expression of the Arg 1, RELM α and Ym 1/2 genes in 

macrophages found at the sites of parasite migration and in the pleural cavity (Nair et 

al., 2003; Nair et al., 2005).  

 

Similarly, N. brasiliensis which causes lung fibrosis, produces M2 in the lungs as 

suggested by the presence of Arg 1, RELM α and Ym 1/2 (Reece et al., 2006). These 

M2 were seen in both wild-type (WT) and also severe combined immunodeficiency 

(SCID) mice. They were induced as early as day 2 post-infection in both WT and SCID 

mice and M2 were maintained in the WT mice whereas they decreased over time in the 

SCID mice, demonstrating that only mice with functioning T-cells could maintain the 

M2 phenotype which suggested that innate immunity was not sufficient for sustained 

presence of a Th2 phenotype. Another observation was that WT mice resolved damage 

and inflammation due to N. brasiliensis infection whereas in SCID mice the damage 

and inflammation persisted (Reece et al., 2006). This study clearly indicated that the 
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innate immune responses or direct pathogen-cell interactions can induce M2 but that a 

Th2 response maintains these M2. STAT6
-/-

 mice, in which IL-4 or IL-13 have no 

effect, fail to expel N. brasiliensis and also fail to induce M2 (Sakamoto et al., 2004; 

Reece et al., 2008). Arginase was shown to have a protective role in H. polygyrus 

infection. During the infection arginase was chemically depleted and as a result a higher 

larval load was recovered when compared to untreated mice (Anthony et al., 2006). 

 

The cestode Taenia crassiceps produces a Th2 response after a period of a mixed 

Th1/Th2 response (Toenjes et al., 1999). During acute infections, macrophages produce 

high levels of IL-12 and NO with low levels of IL-6 and PGE2. They also possess the 

ability to induce strong antigen specific CD4
+
 T-cells. During chronic infections, the 

opposite is seen; macrophages produce higher levels of IL-6 and PGE2, suppress 

production of IL-12 and NO while failing to induce T-cell proliferation (Rodriguez-

Sosa et al., 2002). These alternative chronic stage macrophages were however able to 

induce IL-4 producing T-cells. STAT6
-/- 

proved essential for the expansion of these M2 

macrophages by use of KO mice. It has also been indicated that PD-L1 and PD-L2 have 

a role in the suppressive activity of M2 during T. crassiceps infection (Terrazas et al., 

2005). Interestingly, glycoproteins isolated from T. crassiceps also display some M2 

induction properties (Gómez-García et al., 2006). In the trematode infection S. mansoni 

M2 are found in the liver granulomas and have been shown to have a suppressive 

function on T-cells. This suppression involves PD-L1 up-regulation on macrophages 

which interact with PD-1 on T-cells (Smith et al., 2004). Mice lacking IL-4Rα on their 

macrophages within a Th2 environment fail to recruit M2 and suffer acute 

schistosomiasis (Herbert et al., 2004). It is clear from the above studies that M2 
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macrophages have important roles in controlling helminth infection and are a worthy 

topic for study. 

 

1.7. Fasciola hepatica 

Fasciolosis is a disease caused by the trematodes Fasciola hepatica and gigantica. The 

disease has been designated as one of the neglected tropical diseases by the World 

Health Organisation (WHO, 2008). Human fasciolosis is a major food-borne zoonosis 

found through-out the world with no continent being free from infection. The risk of 

human cases is increased in regions where people and animals live in close proximity 

such as Bolivia, Peru, Iran, Cuba and Egypt (Moghaddam et al., 2004; Mas-Coma et al., 

1999). The lack of sanitary conditions in developing countries has seen fasciolosis 

become particularly prevalent (Sierra et al., 2011). There is an estimated 2.4 million 

people infected world-wide each year with 180 million people thought to be at risk 

(Rim et al., 1994; Mas-Coma et al., 2005).  

 

Fasciola hepatica, commonly known as liver fluke, is the more prevalent parasite when 

compared to Fasciola gigantica. F. hepatica inhabits temperate climates as opposed to 

the tropically located F. gigantica. Adult flukes, which typically measure 20-30mm by 

13mm wide, reside in the bile ducts of its mammalian host (Dalton, 1999). Within the 

bile ducts individual flukes can release up to 50,000 eggs per day (Moxon et al., 2010). 

Hosts can regularly be infected with 50 or more flukes so the number of eggs released 

from an individual infected host can reach millions per day. Pathogenesis differs 

depending on the stage of disease. The disease occurs in two stages; the first when the 



24 

 

flukes are migrating through the liver tissue and secondly when they enter and reside in 

the bile ducts. Pathogenesis also depends on the host and fluke burden, where the 

smaller the host and larger fluke population the more detrimental effect on the hosts 

health (Mas-Coma et al., 2005). Symptoms are characterised by weight loss, anaemia 

and hypoproteinemia, reduction in body weight, milk and wool production which 

contributes to the loss in productivity (Dalton, 1999). Coupled with this is the cost of 

drugs to treat fasciolosis, as well as increased susceptibility to secondary bacterial 

infection. These examples deem Fasciola infection a great burden in the agricultural 

sector. In humans the severity of infection can vary from being asymptomatic to a 

severe and debilitating disease, if left untreated. Fever and abdominal pain are usually 

experienced.  

 

The life cycle of F. hepatica is complex and requires a mollusc intermediate host 

(Figure 1.1.). Eggs are released from adult flukes which are then carried out along with 

its host’s faeces through the intestine into the outside environment. When they contact 

water, free-swimming miracidia emerge from the eggs. The miracidia then seek out 

Fasciola’s intermediate host which are predominantly freshwater snail species of the 

family Lymnaeidae (Gastropoda: Basommatophora) (Dalton, 1999). Upon finding a 

snail, the miracidia will penetrate the tissue and reach the digestive gland where it 

undergoes a series of developments from sporocysts to rediae to the eventual cercariae. 

This results in the production of thousands of free-swimming cercariae that escape the 

snail. The cercariae search for and encyst on water vegetation and are now called 

metacercariae. The metacercariae wait to be ingested by passing grazing mammals. 

Once in the mammalian host, they pass through the digestive tract until they reach the 
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intestine. Here they excyst and the juvenile flukes that emerge penetrate the host 

intestinal wall. Once they have burrowed through the intestinal wall the juvenile flukes 

enter the peritoneal cavity. The flukes then migrate along the peritoneal wall until they 

reach liver tissue. They enter into the liver tissue and migrate for several weeks until 

they reach the bile ducts. Once in the bile ducts they mature into full adult flukes where 

they feed on blood and begin to release eggs. 

 

Figure 1.1. Life cycle of Fasciola hepatica. Image obtained from the Institute of 

Tropical Medicine (ITM), Antwerp, Belgium. 

 

1.8. The immune response to F. hepatica 

F. hepatica can live in its definitive hosts, such as cattle and sheep, for many years 

(Dalton, 1999). This feat is due to the fluke’s ability to modulate the host’s immune 

response for its own benefit. It does this by creating an immunological environment that 
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allows its migration from the intestine to the bile ducts. It has been shown in cattle, 

sheep and mouse models that infection with F. hepatica suppressed Th1/Th17 responses 

while promoting Th2/Treg responses (Clery et al., 1998; Donnelly et al., 2005; Donnelly 

et al., 2008; Mulcahy et al., 1999; Walsh et al., 2009). This is characterised by 

production and presence of interleukin (IL)-4, IL-5, IL-10 and TGF-β and absence of 

IFN-γ and IL-2 (Donnelly et al., 2005; Donnelly et al., 2008).  Th2 immune responses 

are non-protective for the host as it suppresses protective Th1 responses (Moreau & 

Chauvin, 2010). Treg cells, that are also induced, limit the magnitude of the Th2 

response, reducing its potential to produce excessive fibrotic damage. F. hepatica does 

this by manipulating the host’s immune system through the molecules it secretes.  

 

Hosts that are infected with F. hepatica are susceptible to secondary infections as their 

immune system has been compromised. A Th1 response has been shown to be 

protective against bystander infections such as tuberculosis and Bordetella pertussis 

infection in the context of F. hepatica infection (Flynn et al., 2009; Brady et al., 1999; 

Claridge et al., 2012). Mice which are co-infected with F. hepatica and Bordetella 

pertussis have a reduced ability to clear the bacterial infection. Mice infected with F. 

hepatica also reduced vaccine efficacy when they were immunized against whooping 

cough (caused by Bordetella pertussis) by suppressing IFN-γ production (Brady et al., 

1999; Dalton, 1999; O’Neill et al., 2001). It has also been demonstrated that suppression 

of Th1/Th17 immune responses by FhES can attenuate experimental autoimmune 

encephalomyelitis (EAE) (Walsh et al., 2009). 

 



27 

 

During infection, M2 are produced in the peritoneum where Arg 1, RELM α and Ym 

1/2 gene up-regulation is observed (Donnelly et al., 2005). This activation was also 

mimicked in vivo and in vitro by injecting protein fractions containing peroxiredoxin 

from F. hepatica excretory/secretory products (Donnelly et al., 2005; Donnelly et al., 

2008). The stimulated macrophages also secrete PGE2, IL-10, and TGF-β which 

suggests a possible suppressive effect although this has not been shown. Peroxiredoxin 

can also activate macrophages independently from IL-4 or IL-13 as seen from the use of 

knockout mice. However in IL-4 deficient mice, IL-13 may have been causing 

activation and vice versa in IL-13 deficient mice (Donnelly et al., 2008). This possible 

redundancy needs to be addressed with either IL-Rα deficient (
-/-

) or STAT6
-/-

 mice.   

 

1.9. F. hepatica’s immunomodulatory properties 

F. hepatica is clearly a very successful parasite with its ability to survive within its 

hosts for years without being eliminated (Dalton, 1999). Its success is due to its 

manipulation of the host immune system by secreting and shedding a variety of 

molecules into its environment which can render the host immune system ineffective 

against the fluke. The main antigen source that the host is exposed to during F. hepatica 

infection is its secretory/excretory products (FhES) that originate in the gut of the 

parasite and are expelled into its host. The major components of FhES have been 

studied, these include; cathepsin L1 and L2, peroxiredoxin, helminth defence molecule, 

leucine aminopeptidase, glutathione s-transferase and fatty acid-binding protein 

(Robinson et al. 2013). 
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Cathepsin L cysteine peptidases are secreted in large quantities into F. hepatica gut 

where they are then expelled from the parasite into the host environment. They are 

secreted by both immature and adult flukes. They are important as they degrade host 

proteins which help with fluke migration and also serve in degrading host blood and 

tissue that are used by the fluke as nutrients (Robinson et al., 2011). F. hepatica 

cysteine peptidases have been shown to alter the function of innate immune cells and 

lead to prevention of the formation of Th1/Th17 cells. This suppression is independent 

of Th2 cytokine production (Donnelly et al., 2005; Donnelly et al., 2008). Vaccines 

against Cathepsin L have shown a marked reduction of 55-72% in fluke burden (Golden 

et al., 2010; Dalton et al., 1996). Antibodies produced after vaccination prevented 

Cathepsin L from suppressing Th1 response resulting in less fluke surviving (Mulcahy 

et al., 1999).  

 

Exposure to reactive oxygen species (ROS) can severely damage helminths during 

infection. Peroxiredoxins are a family of antioxidant enzymes that counteract the effects 

of ROS. F. hepatica expresses peroxiredoxin at different levels during each stage of 

infection (Robinson et al., 2009). This variation in peroxiredoxin production may be 

attributed to the differing levels of attack the fluke experiences due to ROS. Inactivation 

of ROS is not the only function of peroxiredoxin. As previously mentioned, 

peroxiredoxin has been shown to induce M2 in the peritoneum of mice. This occurred 

when both a protein fraction of FhES containing peroxiredoxin and a recombinant 

peroxiredoxin were injected intraperitoneally into mice (Donnelly et al., 2008). The 

same experiment was also performed in IL-4/IL-13 knockout mice suggesting that 

peroxiredoxin acts directly to induce M2. An inactive form of peroxiredoxin was also 
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examined, this induced M2 showing that this M2 phenotype was independent of its 

antioxidant activity (Donnelly et al., 2008). 

 

A breach of the integrity of the intestinal wall barrier within the peritoneum is 

characteristic of helminth infections. Following this, immune cells are exposed to LPS 

from bacterial sources. F. hepatica compromises the intestinal wall during the juvenile 

fluke infection stage yet pro-inflammatory responses are absent. This may be due to the 

presence of F. hepatica host defence molecule (HDM)-1 which is secreted by the fluke. 

It has been shown that HDM-1 can reduce inflammatory mediator release from 

macrophages (Robinson et al., 2011). This process may explain the reduced 

effectiveness of the host immune response to bystander infections, during F. hepatica 

infection (O’Neill et al., 2001). 

 

Glutathione transferases (GST) constitute 4% of the total soluble protein of F. hepatica. 

Proteomic and EST (expressed sequence tag) analysis has uncovered two new classes of 

GST (Chemale et al., 2006), one of which, Sigma, is closely related to the Schistosome 

vaccine candidate Sm28 (Capron et al., 2005). A recent paper has shown that a 

recombinant form of F. hepatica Sigma class GST possesses prostaglandin synthase 

activity and influences activity of host immune cells (LaCourse et al., 2012). This study 

also assessed the Sigma class GST vaccine potential but no reduction in worm burden 

was found, however there was a significant reduction in the pathology normally 

associated with liver fluke infection. 
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1.10. F. hepatica’s tegumental coat 

The tegumental coat of F. hepatica is shed and constantly replenished every 2 to 3hr 

during infection and so represents a constant source of antigen that directly contacts the 

host’s immune cells. The surface contains a single membrane which is covered by a 

polyanionic glycocalyx composed of glycoproteins with side chains of oligosaccharides 

and gangliosides terminating in sialic acids (Threadgold, 1976). The membrane is 15 

µm thick and contains mitochondria and secretory vesicles. The tegument has a number 

of functions such as osmoregulation, absorption of nutrients and secretions of 

substances (Dalton, 1999). It also acts in a sensory role and confers protection against 

the host immune response.  

 

It has been shown that complement proteins attach to the surface of F. hepatica (Dalton, 

1999). The complement cascade can directly kill cells or act as beacons for other 

immune cells to find the target. This strategy is countered by the fluke as it sheds its 

glycocalyx coat; thereby discarding the complement proteins that had become attached. 

These shed products may also act as a decoy for immune complexes (Duffus & Franks, 

1980). The surface proteins of tegument and their antigenicity were found to change 

during F. hepatica’s development (Bennett & Threadgold, 1973; Dalton & Joyce, 

1987). A recent study has explored the tegumental proteome and it found the presence 

of an inhibitor to the complement pathway along with proteins that have lectin, cubulin 

and von Willebrand factor domains, among others (Wilson et al., 2011).  
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Few studies have looked specifically at the immune response of FhTeg. Our group was 

the first to study the effects of FhTeg on DC maturation and function. Here DC failed to 

produce a mature phenotype but they were found to be hypo-responsive to a range of 

TLR ligands, with both decreased production of cytokines and expression of co-

stimulatory markers. The suppressive effect is not mediated through the common 

MAPKs found in the TLR pathway and is independent of MyD88 and TLR4. DC 

phagocytic function was also investigated; with FhTeg primed DC displaying reduced 

phagocytic ability. FhTegs effect on DC was not affected by the lack of TLR4 either in 

TLR4 mutant or knockout mice. FhTeg was found to suppress the transcription factor 

NF-κBp65, ERK, P38 and JNK (Vukman et al., 2013) along with suppressor of 

cytokine signalling (SOCS) 3, a negative regulator of the TLR pathway, which could 

explain the decrease in pro-inflammatory cytokine release. FhTeg maintains DC in an 

immature state, impairing their function and hence the development of the adaptive 

immune response (Hamilton et al., 2009; Vukman et al., 2013). 

 

Recent studies by our group, which have focused on mast cells, have shown FhTeg to 

impair mast cells ability to drive Th1 immune responses by inhibiting the release of key 

mediators, such as TNF-α, IL-6, IFN-γ, and IL-10. FhTeg also induced the TLR 

negative regulator SOCS3 in mast cells (Vukman et al., 2013). SOCS3 is a member of a 

family of molecules that play an important role in auto regulation of pathogen induced 

inflammatory responses (Yoshimura et al., 2012). ICAM1, which is a molecule that has 

an important role in mast cell/T-cell crosstalk (Brill et al., 2004), was also shown to 

have its expression inhibited by FhTeg (Vukman et al., 2013). We also found that 

FhTeg suppressed LPS-induced NF-kβ and MAPK pathway activation in mast cells 
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(Vukman et al., 2013). NF-kβ and MAPKs are important signalling molecules that lead 

to the expression of ICAM1 and the secretion of pro-inflammatory cytokines (Tsang et 

al., 2005). 

 

Another group completed a study using synthetically produced short peptides that had 

homologous sequences to that found in FhTeg proteins. They found degranulation of rat 

peritoneal mast cells by measuring histamine release was caused by these peptides 

(Trudgett et al., 2003). Another study alluded to the possible increase in arginase 

activity in rat peritoneal macrophages due to FhTeg exposure (Haçarız et al., 2011). Our 

group has found that FhTeg treated mast cells do not produce Th2 cytokines, drive Th2 

immune responses or inhibit IgE degranulation of mast cells. FhTeg does however 

cause increase in mast cell number in vivo and also inhibits their ability to drive 

protective Th1 immune responses by suppressing cytokine secretion. The increase in 

mast cell numbers occurs in a STAT6 independent manner demonstrating that a Th2 

environment is not required for mast cell activation during infection (Vukman et al., 

2013).  

 

1.11. Study Objectives 

The overall objective of the study was to further understand the immune response to 

FhTeg. A main goal of the study was to determine the effect that FhTeg had on 

macrophages, their phenotype and function. This is crucial to understand as 

macrophages are vital immune cells and there has been little reported work on 

macrophages in relation to FhTeg exposure. Investigating innate and adaptive immune 
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responses both in vitro and in vitro was also a key objective along with studying C-type 

lectin receptor expression patterns in various immune cells post FhTeg exposure to try 

build a more complete picture of how FhTeg interacts with the immune system. 

The project aimed to complete this objective through: 

1. Determining if FhTeg can drive Th2/Treg immune responses. 

2. Examining macrophage phenotype and function following exposure to F. 

hepatica tegument. 

3. Examining the role of STAT6
-/-

 in F. hepatica infection and F. hepatica 

tegument treatment in mice. 

4. Examining C-type lectins receptor expression on macrophages during F. 

hepatica infection and after exposure to F. hepatica tegumental antigens. 
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Chapter 2 
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2.1. Animals and Cell Lines 

PRODUCT COMPANY 

BALB/c mice (female) Harlan UK Ltd (Oxfordshire,UK)/Charles River 

(Kent, UK) 

C57BL/6 mice (female) Harlan UK Ltd (Oxfordshire,UK)/Charles River 

(Kent, UK) 

STAT6
-/- 

 mice (female) Charles River (Ireland) 

Adult Fasciola hepatica Abattoir (Ballyjamesduff, Ireland) 

F. hepatica metacercariae Baldwin Aquatics Ltd (USA) 

 
RAW 264.7 macrophages LGC Standards (Middlesex, UK) 

 

2.2. Cell Culture 

PRODUCT CATALOGUE # COMPANY 

Fetal Calf Serum (FCS) 10270-106 Gibco, Invitrogen (Paisley, UK) 

L-Glutamine G7513 Sigma-Aldrich (Wicklow, Ireland) 

Phosphate Buffer Saline 

(PBS) 

14190 Gibco, Invitrogen (Paisley, UK) 

Penicillin/Streptomycin 1570-063 Gibco, Invitrogen (Paisley, UK) 

RPMI 1640 31870-074 Invitrogen (Paisley, UK) 

Trypan blue T8154 Sigma-Aldrich (Wicklow, Ireland) 

X VIVO-15 BE04-48Q Lonza (Walkersville, USA) 

DMEM 12491-015 Gibco, Invitrogen (Paisley, UK) 
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2.3. Stimulants 

PRODUCT CATALOGUE 

# 

COMPANY 

Lipopolysaccharide 

(LPS) (E. coli) 

ALX-581-007 Alexis Biochemicals (Lausanne, 

Switzerland) 

Phorbalmyristate acetate 

(PMA) 

P8139 Sigma-Aldrich (Wicklow, Ireland) 

anti-CD3 16-0031-86 eBioscience (Hatfield, UK) 

 

2.4. Commercial Kits 

PRODUCT CATALOGUE 

# 

COMPANY 

Annexin V-FITC apoptosis detection 

kit 

556547 BD Biosciences (Oxford, 

UK) 

BCA protein kit 23288, 23224 Promega (Madison, USA) 

CD4
+
 Isolation kit 130-095-248 Milltenyi Biotech (UK) 

DNAse kit 18068-015 Invitrogen (Paisley, UK) 

Griess reagent system G2930  Promega (Madison, USA) 

Mouse IFN-γ ELISA Set 555138 BD Biosciences (Oxford, 

UK) 

Mouse IL-10 ELISA Set 555252 BD Biosciences (Oxford, 

UK) 

Mouse IL-4 ELISA Set 555232 BD Biosciences (Oxford, 

UK) 

Mouse IL-5 ELISA Set 555236 BD Biosciences (Oxford, 

UK) 

Mouse IL-13 ELISA Set 88-7137-86 eBioscience (Hatfield, 

UK) 

PCR Mastermix
+ 

DNAse free water M7505 Promega (Madison, USA) 

Pyrogene Recombinant Factor C 

Endotoxin Detection System 

50-658U Lonza (Walkersville, 

USA) 

MycoSensor PCR Assay Kit 302109 Agilent Technologies 

(Cork, Ireland) 

rt-PCR kit A5001 Promega (Madison, USA) 
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2.5. Reagents 

PRODUCT CATALOGUE 

# 

COMPANY 

2-Mercaptoethanol  63689 Sigma-Aldrich 

(Wicklow, Ireland) 

2-Propanol  24137 Sigma-Aldrich 

(Wicklow, Ireland) 

3,3′,5,5′-Tetramethylbenzidine 

dihydrochloride hydrate  

T8768  Sigma-Aldrich 

(Wicklow, Ireland) 

Agarose BIO-4125 Bioline (London, UK) 

Buffer solution pH 10.0 (20 °C) 33668 Sigma-Aldrich 

(Wicklow, Ireland) 

Buffer solution pH 4.0 (20 °C) 33665 Sigma-Aldrich 

(Wicklow, Ireland) 

Buffer solution pH 7.0 (20 °C) 33666 Sigma-Aldrich 

(Wicklow, Ireland) 

Calcium chloride 383147 Sigma-Aldrich 

(Wicklow, Ireland) 

Chloroform 3505 Fisher Scientific 

(Dublin, Ireland) 

Coverslips  MLS17-20  Lennox Ltd (Dublin 12, 

Ireland) 

Dimethyl sulfoxide D2650  Sigma-Aldrich 

(Wicklow, Ireland) 

Ethanol E7023  Sigma-Aldrich 

(Wicklow, Ireland) 

Ethylenediamine-tetraacetic acid (EDTA) E9884 Sigma-Aldrich 

(Wicklow, Ireland) 

FACS tubes 352054 Unitech/BD (Dublin 24, 

Ireland) 

FACS clean 340345  BD Biosciences 

(Oxford, UK) 

FACS flow sheath  342003  BD Biosciences 

(Oxford, UK) 

FACS rinse  340346  BD Biosciences 

(Oxford, UK) 

Formaldehyde solution  F8775  Sigma-Aldrich 

(Wicklow, Ireland) 

Glycine G/0800 Fisher Scientific 

(Dublin, Ireland) 

Hydrochloric acid H1758 Sigma-Aldrich 

(Wicklow, Ireland) 

HyperLadder IV BIO33029 Bioline (London, UK) 
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HEPES H3375  Sigma-Aldrich 

(Wicklow, Ireland) 

Immobilon Western Chemiluminescent 

HRP Substrate 

WBKLS0100 Millipore (MA, USA) 

Magnesium chloride  M8266  Sigma-Aldrich 

(Wicklow, Ireland) 

Methanol 65543 Sigma-Aldrich 

(Wicklow, Ireland) 

N,N,N′,N′-Tetramethylethylenediamine T9281  Sigma-Aldrich 

(Wicklow, Ireland) 

Nonidet™ P 40 Substitute  74385 Sigma-Aldrich 

(Wicklow, Ireland) 

Paraffin wax 107250 Merck (Darmstadt, 

Germany) 

Phosphate-Citrate Buffer with Sodium 

Perborate 

P4922  Sigma-Aldrich 

(Wicklow, Ireland) 

Protease inhibitor Cocktail P8340 Sigma-Aldrich 

(Wicklow, Ireland) 

Sodium azide 13412 Sigma-Aldrich 

(Wicklow, Ireland) 

Sodium carbonate S7795 Sigma-Aldrich 

(Wicklow, Ireland) 

Sodium Chloride S/3160 Fisher Scientific 

(Dublin, Ireland) 

Sodium hydroxide S5881 Sigma-Aldrich 

(Wicklow, Ireland) 

Sodium phosphate S8282 Sigma-Aldrich 

(Wicklow, Ireland) 

Sulfuric acid  435589 Sigma-Aldrich 

(Wicklow, Ireland) 

SYBRSafe DNA gel stain S33102 Invitrogen (Paisley, 

UK) 

TEMED T9281 Sigma-Aldrich 

(Wicklow, Ireland) 

TMB Substrate Reagent Set 421101 Biolegend (San Diego, 

USA) 

Trizma base 93352 Sigma-Aldrich 

(Wicklow, Ireland) 

Tri-sure BIO-38033 Bioline (London, UK) 

Triton X-100 BDH306324 VWR (East Grinstead, 

UK) 

Tween 20 P1379 Sigma-Aldrich 

(Wicklow, Ireland) 
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2.6. Flow cytometry antibodies 

PRODUCT CATALOGUE # COMPANY 

anti-CD16/CD32 (Fcγ III/II 

Receptor) 

101301 Biolegend (San Diego, 

USA) 

CD4 (FITC)  550280 BD Biosciences (Oxford, 

UK) 

CD11c 117310 Biolegend (San Diego, 

USA) 

F4/80 (APC) 17-4801-80 eBioscience Ltd (Hatfield, 

UK) 

F4/80 (FITC) 

 

123108 Biolegend (San Diego, 

USA) 

IL-13 50-7133-80 eBioscience Ltd (Hatfield, 

UK) 

MR (FITC) C068C2 Biolegend (San Diego, 

USA) 

MGL (Alexa Fluor-488) MCA2392A488T AbDSerotec (Oxford, UK) 

Siglec-f (PE) 552126 BD Biosciences (Oxford, 

UK) 

Hamster IgG 16-4888-81 eBioscience Ltd (Hatfield, 

UK) 

Hamster IgG1 553971 BD Biosciences (Oxford, 

UK) 

Hamster IgG 51-4888 eBioscience Ltd (Hatfield, 

UK) 

Rat IgG1, κ 50-4301 eBioscience Ltd (Hatfield, 

UK) 

Rat IgG2a 17-4321 eBioscience Ltd (Hatfield, 

UK) 

Rat IgG2a, κ 400505 Biolegend (San Diego, 

USA) 

Rat IgG2a  53-4321 eBioscience Ltd (Hatfield, 

UK) 

Rat IgG2b, κ 553989 BD Biosciences (Oxford, 

UK) 

Rat IgG2b 11-4031 eBioscience Ltd (Hatfield, 

UK) 

Rat IgG2a, κ 554688 BD Biosciences (Oxford, 

UK) 
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2.7. Equipment 

PRODUCT CATALOGUE 

# 

COMPANY 

Analogue Stirred Water bath      NE4-22T VWR (East Grinstead, 

UK) 

Benchtopmicrocentrifuge 4214 MSC Co. Ltd. (Dublin, 

Ireland) 

BIOQUEL Microflow Class II ABS 

Cabinet   

ABS1200F   VWR (East Grinstead, 

UK) 

Block Heater    BBA series    MSC Co. Ltd. (Dublin, 

Ireland) 

Consort nv electrophoresis power supply  AE-6450 Belgium 

Compressed carbon dioxide (CO2) 

industrial 

40-VK  BOC Gases Ireland 

(Dublin, Ireland) 

Bio-Instrument  Bunkyo (Japan) 

FacsAria 1 flow cytometer           BD Biosciences 

(Oxford, UK) 

G-Box Gel Imaging system                  Syngene (Cambridge, 

UK) 

Hemocytometer, Neubauer, Double cell   MSC Co. Ltd. (Dublin, 

Ireland) 

 
Hotplate Stirrer         AGB1000  Jenway (Stone, UK) 

Homogenizer  Janke and Kunkel, 

Staufen (Germany) 

Leica Inverted microscope        DMIL Leica Microsystems 

(Wetzlar, Germany) 

Mini horizontal electrophoresis unit 658         Z338796  Sigma-Aldrich 

(Wicklow, Ireland) 

Olympus transmitted-reflected light 

microscope wit BF/DF/DIC/Polarised light 

BX60 Olympus (Hamburg, 

Germany) 

Sigma 4K15 Benchtop Refrigerated 

Centrifuge      

10740  Sigma Centrifuges 

(Merringtn, UK) 

Stuart Scientific combined incubator and 

orbital shaker  

S150 MSC Co. Ltd. (Dublin, 

Ireland) 

TECAN GeniosMicroplate Reader            Tecan (Mannedorf, 

Switzerland) 

TECAN Safire2 UV/VIS/IR and 

fluorescence plate reader            

 MSC Co. Ltd. (Dublin, 

Ireland) 

Thermo Scientific CO2 Water Jacketed 

Incubator   

Model 3111 MSC Co. Ltd. (Dublin, 

Ireland) 

Vortex mixer    SA8   Stuart (Stone, UK) 



41 

 

West balance    BL120S  Sartons (Goettingen, 

Germany) 

 

2.8. Software 

PRODUCT          COMPANY 

Alpha View SA         Cell Bioscience Inc. (St Clara, USA) 

BD CellQuest Pro 

software                

BD Biosciences (Oxford, UK) 

FlowJo Tree Star (Ashland, USA) 

Origin           Origin Lab Corp. (Northampton, USA) 

 

2.9. Animals  

BALB/c and C57BL/6 mice, 6-8 weeks old were purchased from Harlan (Oxfordshire, 

UK) and Charles River (Kent, UK). STAT6
-/-

 (B6.129S2(C)-Stat6tm1Gru/J) mice 

(breeding pair) were obtained from Jackson Laboratories and bred in house. STAT6
-/-

 

mice were developed using a targeting vector containing a neomycin resistance cassette. 

This was used to replace the region of the endogenous gene that encodes amino acids 

505-584. The construct was electroporated into 129S2/SvPas-derived D3 embryonic 

stem cells. Embryonic stem cells were injected into BALB/c blastocysts. This resulted 

in chimeric animals which were then bred with BALB/c mice and maintained on that 

background for an unknown number of generations. The mutated mice were then mated 

to C57BL/6 for at least 10 generations before arrival at the Jackson Laboratory. Mice 

were kept under specific pathogen-free conditions at the Bioresource Unit, Faculty of 

Health and Science, Dublin City University, Ireland. All mice were maintained 

according to the guidelines of the Irish Department of Children and Health. Ethical 
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approval for mice experiments was obtained from DCU ethics committee and the Irish 

Department of Children and Health.  

 

2.10. Antigens 

2.10.1. Preparation of Fasciola hepatica excretory-secretory products (FhES)  

To prepare F. hepatica excretory-secretory products, live adult F. hepatica worms were 

obtained from infected cattle freshly slaughter in a local abattoir. The flukes were 

transferred from the bile ducts into a vessel containing fresh bovine bile for transport to 

the laboratory. The flukes were washed in warm sterile Dulbecco's Phosphate-Buffered 

Saline (PBS; pH 7.0-7.3; KCl 2.67mM, KH2PO4 1.47mM, NaCl 137.93mM, 

Na2HPO4-7H2O 8.07mM). Washed flukes were placed in RPMI supplemented with 

penicillin (100 U/ml), streptomycin (100 µg/ml), 2mM L-glutamine and 10% FCS at 

37
o
C and 5% CO2 for 8hr. Culture medium containing excretory-secretory products 

(FhES) were stored at -20
o
C. 

 

2.10.2. Preparation of F. hepatica tegumental antigens (FhTeg) 

FhTeg was prepared as described previously (Hamilton et al., 2009). 20-25 adult worms 

were twice washed in sterile PBS and then incubated in 1% NP40/PBS detergent for 30 

min at 37
o
C whilst shaking. NP40 detergent was removed from supernatant using 

extracti-gel D detergent removing gel (Pierce). The FhTeg extract was then dialysed 

against sterile PBS overnight in 12-30 ml Slide-A-Lyser dialysis cassette units (MWCO 

10,000) 
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2.10.3. Preparation of F. hepatica liver fluke homogenate (FhHom) 

Adult liver flukes were obtained from the infected livers of cattle at a local abattoir. The 

flukes were washed in sterile PBS and homogenized in a homogenizer. The homogenate 

was centrifuged at 13,000 g for 30 min and the supernatant (FhHom) was stored in PBS.  

 

2.10.4. Determining antigen protein concentration 

Protein concentrations of the prepared antigens were measured using a BCA assay kit 

(Pierce). This method is detergent compatible and quantifies total protein based on 

bicinchoninic acid (BCA). It relies on the reduction of Cu
2+ 

to Cu
1+

 by protein; Cu
1+

 

reacts with BCA producing a purple colour and exhibits a strong absorbance at 562nm 

that is nearly linear with increasing protein concentrations over a broad working range 

(20-2000 μg/mL).  

 

2.10.5. Endotoxin testing of antigens 

All prepared antigens were tested for endotoxin contamination using Pyrogene 

Recombinant Factor C Endotoxin Detection System (Lonza). It has been demonstrated 

that endotoxin activates a serine protease catalytic coagulation cascade that results in the 

gelation of Limulus blood. Factor C which is isolated Limulus polyphemus is the first 

component in the cascade. When activated by endotoxin binding, recombinant Factor C 

acts upon the fluorogenic substrate in the assay mixture to produce a fluorescent signal 

in proportion to the endotoxin concentration in the sample. 
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2.11. F. hepatica infection model 

Metacercariae were obtained from Norman Baldwin (Baldwin Aquatics Ltd, USA). 

Using a 96 well plate, 20 F. hepatica metacercariae were aliquoted in 20 µl of the 

metacercariae storage water. 20 µl containing the 20 metacercariae were pipetted into 

the mouth of the mice. The mice were left for 2 weeks for the infection to take hold 

before sacrificing to examine adaptive immune responses. Livers were checked for 

signs of fascioliasis to confirm infection, such as tracts caused by the flukes migrating. 

Peritoneal exudate cells (PEC) and spleen cells were isolated and processed (section 

2.13. and 2.14. respectively).  

 

2.12. F. hepatica injection model 

Mice were injected intraperitoneally (i.p.) with PBS, FhES (20 µg) or FhTeg (10 µg) 

and culled after 1, 6 and 24hr time points or injected three times per week for three 

weeks. PEC were then taken from the mice and either analysed by flow cytometry, 

RNA analysis or used to isolate PEC macrophages. Spleen cells were removed after 

21days from initial injection for re-stimulation in vitro with PBS, FhTeg (10 µg/ml), 

FhES (20 µg/ml) or PMA (25 ng/ml)/anti-CD3 (1 µg/ml). After 72hr, supernatants were 

retained for analysis of cytokine levels (section 2.21.). 

 

2.13. Isolation of Peritoneal Excudate Cells (PEC) 

PEC were removed from mice by injecting 10ml of PBS into the peritoneal cavity and 

aspirating. The cells were centrifuged at 300g for 5mins and either used processed for 
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flow cytometric analysis or for macrophage isolation. To isolate macrophages, PEC 

were plated in 4ml of 10% FCS supplemented RPMI for 2hr, then the non-adherent 

cells were aspirated and the adherent cells washed. Adherent cells represented our 

macrophage population which were counted by trypan blue staining and were >90% 

F4/80
+
 as checked by flow cytometry analysis (section 2.20.). 

 

2.14. Isolation of spleen cells 

Spleens were removed from mice using sterile forceps and scissors. They were then put 

into wash medium (DMEM with 30 mM HEPES and Pen/Strep) in sterile tubes on ice. 

The spleens were mashed in a 70 µM cell strainer using wash media. The cells were 

then counted and the required volume of cells was removed and spun at 300g for 5min 

and resuspended in X-Vivo-15 media supplemented with 1 ml per 100 ml of L-Glu, and 

100 µl per 100 ml 2-Me.  

 

2.15. Cell culturing 

2.15.1. Culturing of in vitro macrophages 

The macrophage cell line RAW 264.7 (ATCC) was originally established from a 

tumour induced by Abelson murine leukemia virus. The cells are from a BALB/c mouse 

origin and grown in a monolayer. They were cultured in RPMI media supplemented 

with penicillin (100 U/ml), streptomycin (100 µg/ml), 2mM L-glutamine and 10% FCS 

in treated 75 cm
2
 flasks. Media was replenished every 2-3 days. Sub-culturing was 

performed by scraping adherent cells and sub-cultivating at a 1:5 dilution in fresh 
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media. Cells were stimulated with media, FhES (20 µg/ml), FhTeg (10 µg/ml), and LPS 

(100 ng/ml) for 18hr. 

 

2.15.2. Culturing of bone marrow-derived dendritic cells (BDMC)  

BDMC were generated from bone marrow of BALB/c mice using a modified method as 

previously described (Lutz et al., 1999). In brief, bone-marrow was removed from the 

femurs and tibias of mice and cultured for 10 days in media containing 20 ng/ml of 

GM-CSF obtained from a GM-CSF producing cell line X63 (a gift from Prof. Ton 

Rolink; University of Basel, Switzerland). The cells were fed on days 3, 6 and 8 by 

adding 10 ml of fresh media containing 20 ng/ml GM-CSF; with removal of 9ml media 

on day 6 and 8. On day 10 loosely adherent cells were harvested, counted and re-

suspended at 1X10
6
/ml ready for antigen stimulation. DC purity was >90% positive for 

the expression of CD11c as shown by flow cytometry analysis (section 2.20.).  

 

2.15.3. Testing for Mycoplasma  

Mycoplasma was tested for by using a commercial PCR kit (Agilent Technologies). In 

brief, 100 μl of supernatant from the cell culture is boiled for 5 min in a microcentrifuge 

tube. The tube is briefly spun in a microcentrifuge and resuspended in 10 μl of 

StrataClean resin to the supernatant. The tube is again spun and the supernatant taken 

and used as a template. A PCR master mix is made, containing PCR primers for 

mycoplasma. 5 μl of a positive and negative control along with our test template are 

added to their respective tubes along with 45 μl of the PCR mastermix. The samples 

were subjected to the following amplification conditions of 35 cycles at 94°C for 30 
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seconds, 55°C for 1 mi and 72°C for 1 min. PCR products were electrophorised on 1% 

agarose gels with SYBRSafe (Invitrogen) as our gel stain. A 315bp product signified 

the presence of mycoplasma in the cell culture. 

 

2.16. Adoptive cell transfer of BMDC 

BMDC were stimulated with Med, FhES (20 µg/ml) or FhTeg (10 µg/ml) for 18 hr and 

then washed followed by injection intraperitoneally into BALB/c mice (5X10
5
 cells per 

mouse). After 7 days PEC macrophage isolation was performed. The adherent 

macrophages were examined for the markers of alternative (Arg 1, RELM α, Ym 1/2) 

and classical activation (iNOS) by PCR. β-actin was used as a reference (section 2.19).  

 

2.17. Co-culturing experiments 

2.17.1. Co-culturing of CD4
+
T-cell with peritoneal macrophages 

Following stimulation with antigens, peritoneal macrophages were incubated with naïve 

spleenic CD4
+
 T-cells at a ratio of 1:4 on a plate pre-coated with 0.5 µg/well of anti-

CD3 (e-Bioscience). CD4
+
 T-cells were isolated using MACS CD4

+
 T-Cell Isolation 

Kit (MiltenyiBiotec) and were used if the purity was >95% CD4
+
 as determined by flow 

cytometry. Co-cultures were maintained at 37°C and 5% CO2 for 72 hr when 

supernatants were taken and IFN-γ, IL-4 and IL-5 were then measured by commercial 

ELISA (BD Biosciences). 
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2.17.2. Co-culturing of BMDC with RAW 264.7 macrophages 

DC were stimulated with Med, FhES (20 µg/ml) or FhTeg (10 µg/ml) and split into 2 

groups, supernatant from the DC (SN) and washed DC alone (W). The washed DC 

group samples were co-cultured in a 1:1 ratio with RAW 264.7 macrophages and the 

SN was added 1:1 (v/v) to the media containing the macrophages. Both groups were co-

cultured for 24hr. After 24hr the cells were counted and 1X10
6
 cells were used for an 

arginase activity assay. Total RNA was extracted from the remaining cells. 

 

2.18. Arginase activity assay 

1X10
6 

cells per sample were washed once with 200 μL of PBS. Cells were centrifuged 

at 300g, resuspended with 100 μL of protein lysis buffer containing 0.1% Triton-X and 

incubated for 15min at room temperature. 100 μL of 50mM Tris-HCl buffer (pH 7.5) 

and 10 μL of 100mM MnCl2 was then added to each sample and mixed. 100 μL from 

each sample was transferred to 1.5ml tube and incubated for 7min at 56°C to activate 

the arginase enzyme. After incubation, the samples were mixed with 100 μL of 0.5M L-

arginine (Sigma, St. Louis, MO) and incubated at 37°C for 60min. Meanwhile urea 

standards (100 µl) were prepared at concentrations of: 0 μg/ml, 1 μg/ml, 5 μg/ml, 10 

μg/ml, 15 μg/ml, 30 μg/ml, 45 μg/ml, and 60 μg/ml. After incubation, the reactions were 

stopped by adding 800 μl acid mix (7:3:1 of H2O: H3PO4: H2SO4) to the samples and 

900 μl acid mix to the standards. 40 μl of α-isonitrosopropiophenone (Sigma) was added 

to each sample and standard. Samples were vortexed and incubated for 5-30min at 95°C 

until samples were in range of the standards which turn a purple colour. Samples were 

then cooled and 200 μl of standards and samples were added in triplicate on a 96-well 
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micro-plate to determine the optical density at 540 nm. The concentration of urea was 

determined using the following equation: U of arginase activity per 10
6 

cells/min = [x 

μg urea/(60 μg/μmol)] X [40/incubation time with L-arginine (min)] 

 

2.19. RNA extraction and reverse-transcription PCR  

Total RNA was extracted from cultured cells using TRIsure (MyBio) as recommended 

by the manufacturer. Briefly, cell grown in a monolayer were washed with ice cold PBS 

followed by the addition of 1 ml of TRIsure reagent per 10 cm
2
 dish and scraped with a 

cell scraper. Cells were homogenized by pippetting and vortexing. The homogenate was 

incubated for 5 min at RT. 200 µl of chloroform was added per 1 ml of Tri Reagent 

used and samples vortexed for 15 sec and incubated for 2-3 min at RT followed by 

centrifugation at 12,000g for 15 min at 4
o
C. Following centrifugation, the upper 

aqueous phase (RNA layer) was transferred into a fresh tube. The RNA was precipitated 

from the aqueous phase by mixing with 500 µl isopropanol per 1 ml Tri reagent used. 

The sample was again vortexed for 5-15 sec and incubated at RT for 5-10 min followed 

by centrifugation at 12,000 g for 8 min @ 4-25
0
C. The supernatant was discarded and 

the pellet resuspended in 1 ml 75% ethanol per 1 ml Tri regent used. The sample was 

then centrifuged at 7,500g for 5 min at 2-8
o
C. Ethanol was removed by pipetting and the 

pellet was allowed to air dry until excess ethanol had evaporated. The pellet was then 

solubilized using pre-heated (70
o
C) nucleus free water (20-50 µl). The tubes were then 

incubated at 70
o
C for 10 min and transferred onto ice. RNA levels were measured using 

a Nanodrop machine.  
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First strand cDNA was synthesised with random primers from 1 µg total RNA using 

GoScript Reverse Transcription System (Promega) and then used as a template for PCR 

using primers specific for Arg 1, Ym 1/2, iNOS, RELM α, IL-4, IL-13 and β-actin 

(Table 2.1.). Each amplification step was preceded by a denaturation phase at 95
o
C for 

5min and preceded by a final extension phase of 72
o
C for 5 min. PCR products were 

electrophorised on 1% agarose gels with SYBRSafe (Invitrogen) as our gel stain. 

Table 2.1. 

Gene Arginase 1 Ym 1/2 iNOS IL-4 

Sense ATGGAAGAG

ACCTTCAGC

TAC 

TCACAGGTC

TGGCAATTC

TTCTG 

CCCTTCCGA

AGTTTCTGG

CAGCAGC 

ACGGAGATG

GATGTGCCA

AACGTC 

Anti- sense GCTGTCTTCC

CAAGAGTTG

GG 

TTTGTCCTTA

GGAGGGCTT

CCTC 

GGCTGTCAG

AGAGCCTCG

TGGCTTTGG 

CGAGTAATC

CATTTGCAT

GATGC 

Denaturation 60 sec at 94
o
C 60 sec at 95

o
C 40 sec at 95

o
C 45 sec at 94

o
C 

Annealing 45 sec at 55
o
C 5 sec at 63

o
C 60 sec at 65

o
C 30 sec at 60

o
C 

Elongation 60 sec at 72
o
C 12s ec at 72

o
C 60 sec at 72

o
C 90 sec at 72

o
C 

Cycle # 30 40 30 35 

Gene RELM α β-actin IL-13  

Sense TCCCAGTGA

ATACTGATG

AGA 

TGGAATCCT

GTGGCATCC

ATGAAAC 

GCCAGCCCA

CAGTCTACA

GC 

 

Anti- sense CCACTCTGG

ATCTCCCAA

GA 

TAAAACGCA

GCTCAGTAA

CAGTCCG 

GTGATGTTG

CTCAGCTCCT

CA 

 

Denaturation 60 sec at 94
o
C 60 sec at 95

o
C 60 sec at 94

o
C  

Annealing 45 sec at 55
o
C 5 sec at 63

o
C 30 sec at 60

o
C  

Elongation 60 sec at 72
o
C 12 sec at 72

o
C 60 sec at 72

o
C  

Cycle # 40 40 35  
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2.20. Flow cytometry 

Monoclonal antibodies with fluorescent tags were used which targeted cell surface 

markers (Table 2.2.).  In brief, cells were counted by trypan blue staining with 100,000 

cells added to each sample tube and washed twice with wash buffer (PBS buffer 

containing 2% FCS, 5mM EDTA and 0.05% NaN3).Cells were blocked for 15min with 

anti-CD16/CD32 (Fcγ III/II receptor) prior to incubation with fluorescent antibodies, 

except in the cases when macrophages were being stained. The cells were again washed 

twice with wash buffer. Antibody incubations were performed in the wash buffer with 

the manufacturers recommended dilutions. Isotype controls corresponding to the above 

antibodies were used to rule out non-specific binding. Unstained cells were used to set 

up the acquisition settings and gates. Single stained cells were used for compensation of 

overlapping fluorochromes. Acquisition was performed using a FACSAria I cell sorter 

(BD biosciences, Oxford), and data was analysed using FlowJo software (Treestar). 

Table 2.2. 

Antibody Purpose Colour Isotype Control 

F4/80 Cell surface pan 

marker for 

macrophages 

APC Rat IgG2a 

F4/80 

 

Cell surface pan 

marker for 

macrophages 

FITC Rat IgG2a, κ 

MR Cell surface marker 

found on leukocytes  

FITC Rat IgG2b 

MGL Cell surface marker 

found on leukocytes  

Alexa Fluor-488 Rat IgG2a 

CD4 Cell surface pan 

marker for T-helper 

cells 

FITC IgG2a, κ 



52 

 

Siglec-f Cell surface pan 

marker for 

eosinophils 

PE Rat IgG2, κ 

Cd11c Cell surface pan 

marker for dendritic 

cells 

APC Hamster IgG 

IL-13 ebio 50-7133-

80 

Intracellular stain efluor 660 Rat IgG1, κ 

 

2.21. Cytokines 

Cytokines in cells supernatants were measured using enzyme-linked immunosorbent 

assays (ELISA) (BD biosciences, Oxford). Assays were carried out by following the 

manufacturer’s instructions. In brief, a monoclonal capture antibody (mAb) specific for 

the cytokine of interest is added to the wells of a 96 well plate at the recommended 

concentration and incubated overnight at 4
o
C. The following steps were carried out at 

room temperature. Excess or unbound antibodies are removed by washing with wash 

buffer (1X PBS with 0.05% Tween-20) 3 times. The plate was blocked for 1hr with 200 

µl of assay diluent containing 10% FCS. The plates were then washed 3 times with 

wash buffer. Samples and standards are made in assay diluent and 100 µl of each added 

to the wells in triplicate and incubated for 2hr. The plate was washed 5 times in wash 

buffer and 100 µl working detector (detection Ab + SAv-HRP) added and incubated for 

1hr. The plates were then washed and 100 µl of tetramethylbenzidine (TMB) substrate 

solution added to each well and incubated for 30 min in the dark. 50 μl of stop solution 

was added to each well and the plates were then read in a Tecan plate reader at 450 nm 

with λ correction 570 nm. Kits for IFN-γ, IL-4, IL-5, IL-13 and IL-10 were used. 

 



53 

 

2.22. Statistics 

All data were analysed for normality prior to statistical testing by Origin® 6.1 software 

(OriginLab Corporation). Where multiple group comparisons were made, data were 

analysed using one-way ANOVA. For comparisons between two groups, the Student’s t 

test was used. In all tests, p < 0.05 was deemed significant. 
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3.1. Introduction  

Central to the Th2 response in helminth infections is the secretion/presence of two 

structurally and functionally similar cytokines, IL-4/IL-13 (Zhang et al., 1997). They 

exert various biological effects by regulating proliferation and differentiation of a wide 

variety of lymphoid and myeloid cells (Paul, 1991). It has been long known that IL-

4/IL-13 evoke macrophages to become alternatively activated. However, helminth 

infections do not always result in M2, which are defined by their activation by IL-4/IL-

13 (Gordan, 2010). Macrophages can share phenotype characteristics of M2 without 

being induced by IL-4/IL-13 but they can be difficult to define as macrophages may 

retain a plasticity of function and phenotype depending on the environment and local 

stimulants at a given time (Poli, 2011). They can be induced by stimulation with 

immune complexes in the presence of Toll-like receptor (TLR) ligands or by anti-

inflammatory stimuli such as IL-10, TGF-β and glucocorticoids, rendering them 

“deactivated” macrophages (Mantovani et al., 2004).   

 

The presence of macrophages that display alternative activation markers can be seen 

throughout all classes of helminth infection. For example the nematodes B. malayi and 

L. sigmodontis induce macrophages expressing Arg 1, RELM α and Ym 1/2 

(MacDonald et al., 1998; Loke et al., 2000; Loke et al., 2002; Nair et al., 2003; Nair et 

al., 2005). Similarly, these macrophages are seen in the lungs during N. brasiliensis 

infection (Reece et al., 2006). The cestode, T. crassiceps can elicit a Th1 or Th2 

response but only when the Th2 response is prevalent, during times of chronic infection, 

are the markers induced (Toenjes et al., 1998; Rodríguez-Sosa et al., 2002). 

Macrophages that have a suppressive function on T-cells are also found in the liver 
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granulomas during S. mansoni infection that anergize T-cells through PD-L1. (Smith et 

al., 2004). 

 

Macrophages like other immune cells have the ability to recognise specific motifs on 

pathogens which distinguish them from self-antigens. These motifs are called pathogen-

associated molecular patterns (PAMPs). PAMPs are recognised by pattern recognition 

receptors (PRRs) on immune cells. C-type lectin receptors (CLR) are a family of 

receptors that recognize specific pathogen-associated carbohydrate structures on 

glycoproteins present on pathogens, along with self-danger signals released from 

necrotic cells (Weck et al., 2008; Sancho et al., 2009; Shrimpton et al., 2009). In 

addition to other forms of pathogens, CLR have been associated with many different 

helminth infections (Meyer et al., 2005; Guasconi et al., 2011; van Vliet et al., 2005) 

and these are associated with M2 macrophages. Some of the most important CLR linked 

with helminth infections are mannose receptor (MR) and macrophage galactose-type 

lectin (MGL).  

 

The mannose receptor (MR) has long been used as a cell surface marker for M2 (Stein 

et al., 1992). MR recognises high-mannose-type-structures (Kuijk & Van Die, 2010) but 

lacks any classical signalling motifs with its signalling mechanism remaining undefined 

(Vautier et al., 2012). It has been shown to be up-regulated by IL-4 and down regulated 

by IFN-γ (Harris et al., 1992; Doyle et al., 1994). Evidence of MR binding to helminths 

is seen in studies involving larvae of T. spiralis¸ excretory/secretory products of T. 

muris and the soluble schistosomal egg antigen (SEA) from S. mansoni (Gruden-
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Movsesijan & Milosavljevic, 2006; deSchoolmeester et al., 2009; Linehan et al., 2003). 

Excretory/secretory products (E/S) from the larval stage of S. mansoni were shown to 

be internalised by MR. Using MR
-/-

 mice they showed that a Th1 response was 

mediated after E/S exposure (Paveley et al., 2011). These studies implicate an important 

role for MR in helminth immunity. 

 

The CLR MGL was also shown to internalise products from S. Mansoni (Van Liempt et 

al., 2007). MGL recognises terminal α- and β-linked GalNAc and also high-mannose-

type-structures (Kuijk & Van Die, 2010). These structures are present on many different 

helminths such as S. mansoni, F. hepatica, M. corti, T. sprilisand T. canis (Van Die & 

Cummings, 2010; Casaravilla et al., 2003), but data showing binding of MGL to natural 

ligands is lacking. Two different forms of β-GalNAc present in SEA from S. mansoni 

were shown to bind to MGL, displaying its potential role in helminth infections (Van 

Vliet et al., 2005). 

 

During F. hepatica infection, macrophages are also seen in liver tracts caused by fluke 

migration but they are not seen in the immediate area around the fluke (Dalton, 1999). 

This may suggest these macrophages are more responsible for host tissue repair than 

parasite killing/expulsion. When examined, macrophages isolated from the peritoneal 

cavity during F. hepatica infection, or following immunisation with FhES, have 

expressed Arg 1, RELM α and Ym 1/2 (Donnelly et al., 2005) and FhES stimulated 

macrophages express CLR (Guasconi et al., 2011). We know peroxiredoxin which is a 

constituent of the flukes FhES products can cause M2 formation both in vivo and in 
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vitro in an IL-4/IL-13 independent manner (Donnelly et al., 2008). Both a protein 

fraction of FhES containing peroxiredoxin and a recombinant F. hepatica 

peroxiredoxin, lacking antioxidant activity, induced M2. 

 

The tegumental coat from F. hepatica is in continuous contact with the host, but it has 

not been previously shown if FhTeg is capable of inducing strong Th2 responses either 

during infection or following injection of FhTeg into mice. While FhES can produce 

Th2 responses and induce M2, it is unknown if FhTeg can drive M2 in vivo or in vitro 

making it a worthy topic for investigation. As of yet, no study has characterised 

macrophage phenotype due to FhTeg exposure. This study addresses this lack of 

knowledge and helps in the understanding of the role FhTeg plays during infection. We 

also sought in this study to determine if the expression of MR and MGL are altered by 

FhTeg in macrophages. 

 

3.2. Results 

3.2.1. FhTeg does not induce Th2 antigen specific immune responses during F. 

hepatica infection 

We have previously shown that F. hepatica infected mice induce strong FhES specific 

Th2 immune response as characterised by the presence of IL-4, IL-5 and IL-13 with no 

antigen specific IFN-  detected (Donnelly et al., 2008). Here mice were infected with 20 

F. hepatica metacercariae and after 2 weeks spleens were then removed and re-

stimulated with PBS, FhTeg (10 µg/ml), FhHom (10 µg)  and PMA (25 ng/ml)/anti-

CD3 (1 µg/ml). FhTeg stimulated spleen cells from infected mice failed to secrete IFN-
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γ, IL-4, IL-5 and IL-13 cytokines in response to FhTeg (Figure 3.1.). PBS stimulated 

spleen cells did not produce cytokines while cells stimulated with PMA/anti-CD3 

secreted all cytokines tested. Spleen cells from uninfected mice secreted no cytokines in 

response to FhTeg (Figure 3.1).  

 

 

Figure 3.1 FhTeg does not induce Th2 antigen specific immune responses during 

F. hepatica infection. Mice were infected for two weeks with 20 F. hepatica 

metacercariae orally. Spleen cells were removed after a two week infection for re-

stimulation in vitro with FhTeg (10 µg), FhHom (10 µg) or PMA (25 ng/ml)/anti-CD3 

(1 µg/ml). After 72hr, spleen cell supernatants were analysed by ELISA for IFN-γ, IL-4, 

IL-5 and IL-13. Data, analysed by anova, is the mean (± SEM) of three individual wells 
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for four individual mice, and are representative of three experiments, *, p ≤ 0.05; 

compared with controls.  

 

3.2.2. FhTeg does not induce Th2 antigen specific immune responses in BALB/c 

treated mice  

We have previously shown mice immunised with FhES induce strong FhES specific 

Th2 immune response as characterised by the presence of IL-4, IL-5 and IL-13 with no 

antigen specific IFN-  detected. Using FhES as a control, we injected BALB/c mice 

with PBS, FhES (20 µg) or FhTeg (10 µg) three times per week for three weeks. 

Spleens were then removed and re-stimulated with PBS, FhTeg (10 µg/ml), FhES (20 

µg/ml) and PMA (25 ng/ml)/anti-CD3 (1 µg/ml). FhES injected mice produced 

significant levels of IL-4 (p ≤ 0.001), IL-5 (p ≤ 0.01) and IL-13 (p ≤ 0.001) cytokines 

following stimulation with FhES (Fig. 3.2.), while spleen cells from FhTeg injected 

mice failed to produce IFN-γ, IL-4, IL-5 and IL-13 cytokines in response to FhTeg. PBS 

stimulated spleen cells did not produce cytokines while cells stimulated with PMA/anti-

CD3 secreted all cytokines tested.  
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Figure 3.2.FhTeg does not induce Th2 antigen specific immune responses in 

BALB/c treated mice: Mice were injected three times per week for three weeks with 

PBS, FhES (20 µg) or FhTeg (10 µg). Spleens cells were removed and plated at 2 X 

10
6
/ml for re-stimulation in vitro with PBS, FhES (20 µg), FhTeg (10 µg) or PMA (25 

ng/ml)/anti-CD3 (1 µg/ml). After 72 hr, spleen cell supernatants were analysed by 

ELISA for IFN-γ, IL-4, IL-5 and IL-13. Data, analysed by anova, is the mean (± SEM) 

of three individual wells for four individual mice, and are representative of three 

experiments, **, p ≤ 0.01; ***, p ≤ 0.001 compared with controls.  

 

3.2.3. FhTeg induces a phenotype of macrophages that express M2 markers 

The lack of FhTeg antigen specific Th2 response in vivo suggested that FhTeg would 

not induce M2 since this phenotype is dependent upon the presence of the IL-4 and IL-
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13 cytokines. Mice were injected three times per week for three weeks with PBS, FhES 

(20 µg) or FhTeg (10 µg). PEC macrophages were isolated, RNA extracted and RT-

PCR performed for the most common M2 markers (Arg 1, RELM α and Ym1/2). All 

markers were expressed by macrophages ex vivo from FhES and FhTeg injected mice 

while neither antigen induced iNOS expression, a marker of classical activation (Fig. 

3.3.).  

 

Figure 3.3.FhTeg induces a phenotype of macrophages that express alternative M2 

markers: Mice were injected three times per week for three weeks with PBS, FhES (20 

µg) or FhTeg (10 µg). PEC macrophages were isolated for measurement of Arg 1, Ym 

1/2, RELM α, iNOS and β-actin gene expression by RT-PCR.  

 

3.2.4 FhTeg induced macrophages functionally suppress cytokine secretion from 

CD4
+
 T-cells 

The ability of FhTeg stimulated macrophages to modulate T-cells has not been 

previously shown. PEC macrophages were isolated from PBS, FhES and FhTeg injected 

mice and co-cultured with naïve CD4
+
 T-cells in the presence of anti-CD3. CD4

+
 T-

cells co-cultured with macrophages in the presence of anti-CD3 produced significant 

levels of IL-4 (p ≤ 0.001), IFN-γ (p ≤ 0.001), IL-13 (p ≤ 0.001) but not IL-5 when 
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compared to un-stimulated T-cells. FhES and FhTeg caused significant decrease in the 

cytokines produced when compared to PBS IFN-γ (Fig 3.4A FhES p ≤ 0.01, FhTeg p≤ 

0.0001) and (Fig. 3.4B: IL-4 (FhES p ≤ 0.001, FhTeg p ≤ 0.0001) while no significant 

change in IL-13 was observed. Interestingly FhES (p≤ 0.01) but not FhTeg induced a 

significant increase in IL-5 although there is a trend not supported by statistics that IL-5 

is induced by FhTeg. Macrophages stimulated with FhTeg can now be said to display an 

M2-like phenotype and possess a suppressive function in vitro. 
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Figure 3.4.FhTeg induced M2-like macrophages functionally suppress cytokine 

secretion from CD4
+
 T-cells: Mice were injected three times per week for three weeks 

with PBS, FhES (20 µg) or FhTeg (10 µg). PEC macrophages were co-cultured with 

naïve CD4
+
 T-cells at a ratio of 1:4 on plates pre-coated with anti-CD3 (0.5 µg/well). 

After 72hr, supernatants were taken and analysed by ELISA for IFN-γ, IL-4, IL-5 and 

IL-13. Data, analysed by anova, is representative of four mice per group and the 
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experiment was repeated two times; **, p ≤ 0.01; ***, p ≤ 0.001, p ≤ 0.0001compared 

with controls. 

 

3.2.5. STAT6
-/-

 mice infected with F. hepatica or injected with Fasciola antigens 

produce less arginase and fail to display a strong M2 phenotype 

Since FhTeg does not produce antigen specific immune responses we sought to 

determine if FhTeg can induce M2 in the absence of IL-4/IL-13. Firstly we infected 

C57BL/6 and STAT6
-/-

 mice with 20 F. hepatica metacecariae or administered PBS as a 

control. A peritoneal lavage was performed after 2 weeks and macrophages were 

isolated for RNA extraction to measure Arg 1, Ym 1/2, RELM α, iNOS and β-actin 

gene expression. Levels of arginase activity were also measured. Here we demonstrated 

that STAT6
-/-

 mice infected with F. hepatica fail to display a strong M2 phenotype (Fig 

3.5.A) with weak Arg 1, Ym 1/2, RELM α gene expression. This observation was 

supported by the arginase activity levels from infected STAT6
-/-

 (p ≤ 0.05) mice 

producing significantly lower levels of arginase activity than infected C57BL/6 mice 

(Fig. 3.5.B.). 

 

We then repeated the experiment by injecting mice with PBS, FhES (20 µg) or FhTeg 

(10 µg) three times per week for three weeks, after which PEC macrophages were 

isolated for measurement of Arg 1, Ym 1/2, RELM α and β-actin gene expression by 

RT-PCR. Levels of arginase activity were also measured. STAT6
-/-

 mice failed to 

induce Arg 1and Ym 1/2 for both FhES and FhTeg injected mice (Fig 3.5.C) indicating 

that IL-4/IL-13 is essential for FhTeg induced alternative activation. RELM α was 
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present however in FhTeg injected mice. There was a reduced level of arginase activity 

in the STAT6
-/-

-FhES (p ≤ 0.05) and FhTeg (p ≤ 0.001) samples when compared to 

control mice (Fig. 3.5.D). Taken together, these show that FhTeg causes an M2 like 

phenotype in a STAT6 dependent manner. 

 

Figure 3.5. STAT6
-/-

 mice infected with F. hepatica or injected with Fasciola 

antigens produce less arginase and fail to display M2 phenotype: C57BL/6 

(background strain) and STAT6
-/-

 mice were either infected with 20 F. hepatica 

metacecariae or given PBS as a control. After 2 weeks peritoneal macrophages were 

isolated for measurement of Arg 1, Ym 1/2, RELM α and β-actin gene expression by 

RT-PCR (A) or for measurement of arginase activity (B). Mice were injected three 

times per week for three weeks with PBS, FhES (20 µg) or FhTeg (10 µg) and PEC 

macrophages isolated for measurement of Arg 1, Ym 1/2, RELM α, iNOS and β-actin 

gene expression (C) or arginase activity (D). Data, analysed by anova, is representative 

of four mice per group and the experiment was repeated three times, *, p ≤ 0.05; **, p ≤ 

0.01; ***, p ≤ 0.001 compared with controls. 
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3.2.6. FhTeg induces IL-13 but not IL-4 at 6 hours post injection 

To investigate whether the presence of M2-like macrophages was due to innately 

expressed IL-4 or IL-13 we used an in vivo model where BALB/c mice were i.p. 

injected with either PBS, FhES (20 µg) or FhTeg (10 µg) and culled after 1, 6 and 24 hr 

time points.  PEC were then analysed for M2 markers along with the presence of IL-4 

and IL-13 (Figure 3.6. A). There was no detection of IL-4 from any of the samples by 

24 hr. IL-13 was detected at the 6 hr and 24 hr time points which correlate to the 

increased expression of Arg 1 and RELM α at the same time points. This seems to 

suggest that IL-13 but not IL-4 is involved in the maintenance of M2-like macrophages. 

The initiation of M2-like macrophages is seen before IL-13 production. The source of 

this IL-13 was also investigated by analysing PEC from mice that had undergone three 

i.p. injections for three weeks. The PEC were then analysed by flow cytometry for 

intracellular IL-13 in both macrophages and eosinophils. FhTeg injected mice increased 

the numbers of macrophages and eosinophils, while only macrophages displayed a 

significantly higher fluorescent reading compared to the PBS injected mice. This 

indicates that FhTeg induces macrophages to express both IL-13 and M2-like 

macrophages markers. IL-13 may work in an autocrine manner to keep the macrophages 

in the same state. 
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Figure 3.6. FhTeg–treated mice induce IL-13 producing peritoneal macrophages 

and eosinophils: BALB/c mice were i.p. injected with either PBS, FhES (20 µg) or 

FhTeg (10 µg) and culled after 1, 6 and 24hr time points. PEC were removed for RNA 

extraction and RT-PCR was performed for IL-4 and IL-13; along with Arg 1, Ym 1/2, 

and RELM α with β-actin as a reference gene (A). Data is representative of three mice 

per group. PEC isolated after three i.p. injections for three weeks were also analysed by 

flow cytometry for intracellular IL-13 in macrophages and eosinophils (B). The log of 

the total cell number of macrophages and eosinophils along with the log of the 

percentage of IL-13
+
 macrophages and eosinophils are shown. Data, analysed by anova, 

is representative of four mice per group and the experiment was repeated three times; *, 

p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 compared with controls. 

 

3.2.7. FhTeg does not directly induce M2-like macrophages in vitro 

Since FhTeg induced alternative activation of macrophages in vitro we sought to 

determine if similar to FhES it could directly induce an M2 like phenotype in the RAW 

264.7 macrophage cell line. RAW 264.7 macrophages were stimulated with Med, FhES 
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(20 µg/ml) or FhTeg (10 µg/ml) and after 18hr, RNA extraction and RT-PCR were 

performed for the M2 marker Arg 1. Cells were also lysed and arginase activity was 

measured. Unlike FhES, FhTeg did not induce Arg 1 expression directly in 

macrophages (Fig. 3.7.A), neither did it cause an up-regulation in arginase production 

(Fig. 3.7.B), As FhTeg in vivo had induced M2 it was expected that this could be 

repeated in vitro, however this was not observed. 

 

 

Figure 3.7. FhTeg does not directly induce alternative activation of macrophages in 

vitro: RAW 264.7 macrophages were stimulated with Med, FhES (20 µg/ml) or FhTeg 

(10 µg/ml) and after 18hr RNA was extracted and RT-PCR was performed for Arg 1 

and β-actin gene expression (A). Arginase activity was also measured (B). Data, 

analysed by anova, is representative of three experiments, ***, p ≤ 0.001 compared with 

controls. 
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3.2.8. FhTeg stimulated dendritic cells can induce M2 like phenotype in vitro and 

in vivo 

Since we demonstrated that FhTeg does not induce M2 directly, we investigated 

whether FhTeg exposed DC could indirectly induce M2 features in PEC macrophages. 

Med, FhES (20 µg/ml) or FhTeg (10 µg/ml) stimulated, washed BMDC were injected 

intraperitoneally into BALB/c mice. After 7 days PEC macrophages were isolated for 

measurement of Arg 1, Ym 1/2, RELM α, iNOS and β-actin gene expression by RT-

PCR. FhES and FhTeg stimulated PEC macrophages both induced M2 expressing Arg 

1, Ym 1/2, RELM α but not iNOS, implying that DC can cause M2 to be produced by 

either direct or indirect means in vivo (Fig. 3.8.A).  

 

This experiment was replicated in vitro; Med, FhES (20 µg/ml) or FhTeg (10 µg/ml) 

stimulated BMDC were either washed (W) or supernatant removed (SN) and cells or 

supernatant co-cultured with RAW 264.7 macrophages. After 24hr, cells were examined 

for Arg 1 gene expression by RT-PCR and for arginase activity. FhES-W (p ≤ 0.001), 

FhTeg-W (p ≤ 0.001) and FhES-SN (p ≤ 0.001) samples produced significant amounts 

of arginase enzyme when compared to Med-W (Fig. 3.8.B). FhTeg-SN failed to 

produce a significant increase in arginase activity when compared to Med-SN indicating 

that cell contact after FhTeg stimulation was necessary to increase arginase activity in 

macrophages (Fig. 3.8.B). RT-PCR confirmed the finding that FhES-W and FhES-SN 

can induce M2 by inducing Arg 1 expression. FhTeg-W cells but not FhTeg-SN 

expressed Arg 1 (Fig. 3.8.C). These results suggest that FhTeg-SN alone is not 

sufficient for M2 induction but that the continual presence of dendritic cells that have 

been exposed to FhTeg can induce M2. 
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Figure 3.8.FhTeg stimulated dendritic cells can induce M2-like macrophages in 

vitro and in vivo: BMDC were stimulated with Med, FhES (20 µg/ml) or FhTeg (10 

µg/ml) for 18hr and then washed followed by injection intraperitoneally into BALB/c 

mice (5X10
5
 cells per mouse). After 7 days PEC macrophages were isolated for 

measurement of Arg 1, Ym 1/2, RELM α, iNOS and β-actin gene expression by RT-

PCR (A). Data is representative of four mice per group and the experiment was repeated 

three times. BMDC were stimulated with Med, FhES (20 µg/ml) or FhTeg (10 µg/ml) 

for 18hr. Washed BMDC were co-cultured 1:1 with macrophages (W) or supernatant 

added 1:1 (v/v) to macrophages (SN) for culturing. After 24hr, cells were examined for 

Arg 1 gene expression by RT-PCR (B) and for arginase activity (C). Data, analysed by 

anova, is representative of four mice per group and the experiment was repeated three 

times, ***, p ≤ 0.001 compared with controls. 

 

3.2.9. F. hepatica infection induces the expression of C-type-lectin receptors on the 

cell surface of macrophages 

We investigated whether CLR expression, which is normally associated with M2 was 

up-regulated on isolated peritoneal macrophages following F. hepatica infection. 

Peritoneal macrophages were isolated two weeks post-infection and MGL and MR 
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expression was measured by flow cytometry. F. hepatica infection enhanced MGL and 

MR expression on peritoneal macrophages (Fig. 3.9.A).  
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Figure 3.9. F. hepatica infection induces the expression of C-type-lectin receptors 

on the cell surface of peritoneal macrophages: Mice were infected with 20 F. 

hepatica metacecariae. After 2 weeks peritoneal exudate cells were removed and 

analysed using flow cytometry for markers previously associated with Th2 response 

MR (a) and MGL (b) on F4/80 positive macrophages. Graph displays the relative mean 

florescence (MFI) of unstained, control and infected cells. Data, analysed by anova, is 

representative of four mice per group and the experiment was repeated twice; **, p ≤ 

0.01; ****, p ≤ 0.0001 compared with controls. 

 

3.2.10. Mice injected with FhTeg can mimic MR and MGL C-type-lectin receptor 

up-regulation seen in F. hepatica infection 

With the aim of understanding what the specific effect FhTeg has on CLR in vivo we 

injected mice intraperitoneally three times per week for three weeks with FhTeg (10 µg) 
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and PBS as a control. PEC were isolated and analysed using flow cytometry for MGL 

and MR on F4/80
+ 

macrophages (Fig. 3.10.A). Macrophages showed an increase in the 

expression of MGL (p ≤ 0.0001) and MR (p ≤ 0.0001) when compared to macrophages 

in PBS injected mice. This indicates that FhTeg has the ability to mimic CLR 

expression as seen during F. hepatica infection.  
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Figure 3.10. Mice injected with FhTeg can mimic C-type-lectin receptor up-

regulation seen in infection: Mice were injected intraperitoneally three times per week 

for three weeks with 10µg of FhTeg. PEC were removed and analysed using flow 

cytometry for MR and MGL on F4/80 positive macrophages. Data, analysed by anova, 

is representative of four mice per group and the experiment was repeated twice; ****, p 

≤ 0.0001 compared with controls. 

 

3.2.11. In vitro macrophages express MGL and MR in response to FhTeg 

In vivo studies indicated that CLR expression is up-regulated by F. hepatica antigens 

during infection and that FhTeg antigen injection can partially mimic this CLR up-

regulation. We sought to determine if FhTeg had a similar effect on CLR expression in 

vitro. RAW 264.7 macrophages were stimulated with Med and FhTeg (10 µg/ml). 
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Macrophages were then analysed by flow cytometry for the expression of MR and 

MGL. FhTeg stimulated macrophages showed an up-regulation of MR and MGL when 

compared with media stimulated cells (Fig. 3.11. A+B). This suggests that FhTeg up-

regulates CLR through direct interaction with macrophages. 
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Figure 3.11: FhTeg induces expression of MGL and MR on macrophages in vitro: 

The macrophage cell line RAW 264.7 was cultured with Med and FhTeg (10ug/ml) at 

37
o
C and 5% CO2 for 18hr. The macrophages were then analysed by flow cytometry 

for the expression of the CLR MR (A) and MGL (B). Data, analysed by anova, is 

representative of four mice per group and the experiment was repeated twice; ***, p ≤ 

0.001 compared with controls. 

 

3.3. Discussion 

The tegumental coat of F. hepatica (FhTeg) is in constant contact with the host immune 

cells and it was shown to be a good source of fluke immune modulators. This study was 

the first to demonstrate that FhTeg can modulate macrophages indirectly, inducing a 
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M2-like phenotype and conferring them with a T-cell suppressive functional ability. 

This M2-like phenotype was demonstrated to be largely STAT6 dependent and while 

FhTeg cannot induce Th2 specific adaptive immune responses it can induce IL-13 

producing macrophages in vivo.  

 

This study’s findings show that FhTeg does not produce antigen-specific cytokines for 

either Th1 (IFN-γ) or Th2 (IL-4/IL-5/IL-13) subsets using a F. hepatica infection 

model. Furthermore, FhTeg does not produce any antigen specific response when CD4
+
 

T-cells are re-stimulated after mice are treated with FhTeg intra-peritoneally. This data 

is in contrast to FhES which is able to produce a strong Th2 response characterized by 

the presence of IL-4, IL-13 and IL-5. The lack of a T-cell response due to FhTeg is 

significant as it may point to a mechanism of immune suppression that F. hepatica uses 

to avoid or suppress its host’s immune system. It is possible however that FhTeg could 

induce Th9 or Treg cell populations, as these cell types have been previously associated 

with helminth infection (Veldhoen et al., 2008; Wilson & Maizels, 2004) and further 

studies are required to address this. 

 

Given that FhTeg lacks Th2 specific adaptive immune response it was surprising that 

the macrophage phenotype is STAT6 dependent. STATs (signal transducers and 

activators of transcription) are a family of transcription factors that respond to cytokines 

by activating gene transcription. They are cytoplasmic proteins that are activated via 

tyrosine phosphorylation by JAK kinases. IL-4 and IL-13 both specifically activate 

STAT6 through the IL-4R. Not only is STAT6 specific for IL-4R but also for a STAT 
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DNA binding site that no other STAT is able to bind (Mikita et al., 1996). STAT6
-/-

T-

cells are unable to differentiate into IL-4 and IL-13 producing Th2 cells in vitro or in 

vivo and their proliferating ability is also hampered (Kaplan et al., 1996; Shimoda et al., 

1996; Takeda et al., 1996). With regard to helminths, STAT6
-/-

mice were unable to 

mount an immune response to soluble egg antigen (SEA) from S. mansoni (Kaplan et al. 

1998). STAT6
-/- 

mice have also been shown to fail to develop airway hyper-

responsiveness after allergen provocation (Kuperman et al., 1998). Thus, mice deficient 

in STAT6 present a great tool to study the effects of IL-4/IL-13 and therefore Th2 

immunity. The use of STAT6
-/-

 mice demonstrated that while FhTeg could readily 

induce an M2-like phenotype in vivo, FhTeg significantly reduced arginase production 

which is a marker for M2 and also failed to display M2 gene markers except for RELM 

α. RELM α is a family member of cysteine-rich molecules related to a resistin which is 

involved in glucose metabolism (Steppan et al., 2001). While the function of RELM α 

remains elusive, a study using IL-13 receptor 1 deficient mice concluded that IL-13 is 

dispensable for expression of  RELM α in the liver during S. mansoni infection (Jenkins 

& Allen, 2010; Ramalingam et al., 2008). This apparent contradiction that FhTeg works 

through both STAT6 dependent and independent pathways should not come as a 

surprise as a previously described parasite immunomodulator that only demonstrated 

arginase activity to be STAT6 dependent and not other M2 associated genes (Marshall 

et al., 2011). It is plausible that RELM α expression is induced by different antigens 

within the FhTeg preparation, antigens that may drive IL-4/IL-13 production and 

therefore bypass the need for STAT6 involvement.  
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FhTeg could induce Arg1 and RELM one hour following injection into the peritoneal 

cavity, while IL-13 was not detected at this time point. This demonstrates that IL-13 is 

not required for the initial activation of RELM α expression post FhTeg exposure and 

this was confirmed in the studies with STAT6
-/- 

mice. While Arg-1 is observed at one 

hour in the absence of IL-13 it is clear that IL-13 is required to maintain this expression 

as it is not observed in STAT6
-/- 

mice treated with FhTeg.  IL-13 was observed in the 

PEC at 6 hr and 24 hr time points and this correlated with increased expression of the 

M2 markers Arg 1 and RELM α at the same time points. No IL-4 was detected at these 

time-points indicating that IL-13 is the early source of Th2 cytokines. While Th2 

required for the activation of an M2 phenotype during helminth infection the required to 

maintain it (Jenkins et al., 2011).  

 

The secretion/presence of two structurally and functionally similar molecules IL-4/IL-

13 is central to the Th2 response in helminth infections (Zhang et al., 1997). They exert 

various biological effects by regulating proliferation and differentiation of a wide 

variety of lymphoid and myeloid cells (Paul, 1991). Some studies have identified non-

redundant role for both IL4 and IL-13. These have shown IL-4 to mediate most events 

involved in the generation of high-affinity IgE antibodies while IL-13 mediates 

localized tissue effects such as chemokine secretion, goblet cell hyperplasia, mucus 

production, and smooth muscle alterations (Finkelman et al., 2010; Liang et al., 2012).  

Macrophages were identified as the innate source of IL-13 by intracellular staining in 

the antigen injection model. It is possible that the innate macrophage source of IL-13 

may work in an autocrine manner keeping the macrophages in a M2-like state without 

leading to a Th2 immune response.  
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While M2-like IL-13 producing macrophages are seen at an early time-point after 

FhTeg exposure they failed to be induced by FhTeg directly in vitro. In fact, the 

induction of an M2 phenotype by FhTeg can only be induced indirectly in vitro by co-

culturing macrophages with FhTeg exposed DC. This phenomenon of FhTeg exposed 

DC inducing M2-like macrophages can also be observed in vivo after adoptive transfer. 

Cell cross-talk can be mediated either through secreted products, binding or being 

internalized by other cells, or through direct binding between cells. The data here is the 

first to demonstrate that an M2-like macrophage phenotype can be induced by another 

cell type. FhTeg exposed DC have also been shown to induce mast cell migration via 

the secretion of MIP1α and MIP2 chemokines (Vukman et al., 2013). This serves as 

evidence that FhTeg exposed DC can influence other cells types. The question of direct 

or indirect induction of M2-like macrophage by FhTeg-DC was answered as FhTeg-SN 

from DC failed to induce M2-like macrophages. The continual presence of FhTeg-DC 

in culture with macrophages induced and sustained the M2-like macrophages. The 

mechanism of how FhTeg stimulated DC can induce M2-like macrophages needs to be 

investigated further. Preliminary studies could not observe an enhancement of cell 

surface markers important for DC-macrophage communication (CD14, OX40L, CD40 

and ICAM-1) and it is yet to demonstrate that FhTeg can bind to macrophages. This 

could be determined through analysis with confocal microscopy following the 

biotinylation and fluorescent labeling of FhTeg. It may prove difficult as FhTeg is a 

complex mix of molecules which may require the isolation and characterization of 

individual molecules to identify the bioactive component. 
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FhTeg exposed cells not only have an effect on surrounding innate cells, macrophages 

exposed to FhTeg functionally suppress cytokine secretion from CD4
+
 T-cells. This 

functional altering ability of FhTeg was also seen in dendritic cells, where their 

phagocytic capacity and their ability to prime T-cells was impaired (Hamilton et al. 

2009). When DC are exposed to FhTeg their maturation is restricted and their normal 

function to TLR ligands is altered. It was shown to inhibit pro-inflammatory cytokines 

in vivo in a model of septic shock and in vitro in response to Toll-like receptor (TLR) 

and non-TLR ligands (Hamilton et al., 2009). It has also been established that FhTeg 

impairs masts cells ability to drive Th1 immune responses. This is accomplished by 

inducing suppressor of cytokine secretion-3 (SOCS3) a negative regulator of the TLR4 

pathway which would explain the suppression of NF-κB and MAPKs in these cell 

populations (Vukman et al., 2013).  

 

The suppressive cytokines IL-10 and TGF-β are produced by macrophages in response 

to FhES. A study blocking the CLR MR caused partial inhibition in the increase of 

arginase activity, Arg 1 expression along with IL-10 and TGF-β secretion in 

macrophages both in vitro and in vivo (Guasconi et al., 2011). This prompted an 

investigation to see if any CLR were up-regulated on FhTeg exposed macrophages as 

we saw FhTeg conferred them with a suppressive function. FhTeg was found to induce 

an increased expression of both MR and MGL CLR. Furthermore FhTeg possesses the 

ability to mimic CLR up-regulation in macrophages as observed during F. hepatica 

infection. CLR have been reported to be up-regulated in many different helminth 

infections and they are associated with a M2 phenotype (Meyer et al., 2005; Guasconi et 

al., 2011; van Liempt et al., 2007; Stein et al., 1992). CLR have also been recognized as 
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being important receptors on antigen presenting cells as they can bind and internalise 

glycosylated antigens which leads to their processing and presentation on MHC 

molecules which elicits a T-cell response (Zelensky & Gready, 2005). While our data 

demonstrated that FhTeg does not elicit a T-cell response, it has been demonstrated that 

antigen uptake by CLR may not always cause the induction of T-cell responses but can 

enhance antigen processing ability (Van Kooyk, 2008). It has been suggested that CLR 

antigen uptake without TLR ligation may lead to antigen-specific tolerance which may 

help to suppress inflammatory responses (Van Kooyk, 2008). 

 

The suppressive nature of FhTeg along with its lack of T-cell response has been 

demonstrated by our data and correlates to what is currently known about CLR. These 

results represent a first step in confirming FhTegs involvement in the up-regulation of 

CLR on innate immune cells during F. hepatica infection. Further work should be 

completed to determine if FhTeg is binding to CLR. CHO cells could be used to express 

individual CLR and determine if FhTeg binds them. CLR expression in STAT6
-/-

 mice 

was not explored; this would have been interesting as they may be linked to M2-like 

macrophages being induced. While this study has demonstrated some novel findings 

and expanded on the sparse knowledge of the role of FhTeg in F. hepatica infection, 

especially in a macrophage context, further work is needed to determine what FhTeg 

fully contributes to the overall effect of F. hepatica infection.  
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3.4. Conclusion 

This study makes it evident that FhTeg places an important role in F. hepatica infection. 

The interaction it has with macrophages is now better known. As innate cells are critical 

in host defense and in the development of adaptive immune responses, the findings in 

this study give us an insight into how F. hepatica modulates host immunity. FhTeg was 

found to induce M2-like macrophages which have a functional suppressive ability. 

These M2-like features are largely STAT6 dependent, meaning they are evoked by IL-

4/IL-13 means. While we found no evidence for a role of IL-4 we did see that an early 

source of IL-13 in a macrophage population in vivo may be critical in the maintenance 

of M2-like macrophages. Further studies are required to determine what role this 

innately produced IL-13 is having on the immune environment. The discovery that the 

CLR MR and MGL were significantly expressed by macrophages exposed to FhTeg 

and that this pattern mimics infection CLR expression is an exciting prospect for further 

work on the function of these receptors. While direct exposure with FhTeg antigen fails 

to induce the M2 phenotype; an interesting finding demonstrated that DC exposed to 

FhTeg were capable of inducing M2-like macrophages both in vitro and in vivo. This 

novel finding of cell cross-talk adds to the complexity of how FhTeg interacts with 

immune cells during F. hepatica infection. The use of DC knockout and DC/STAT6 

knockout mice would further enhance our knowledge how DC and STAT6 fit into the 

induction of the M2 phenotype. Further work is needed to fully understand FhTeg role 

in F. hepatica infection.  
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