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A B S T R A C T

NAME: FINITE ELEMENT ANALYSIS OF A CONTINUUM UNDERGOING
LARGE ELASTIC-PLASTIC DEFORMATION

H. M. SALEH

In today's society there is a need for engineers to design to the 
limit of materials, with which they are working, because of 
industrial demands for more competative designs.

This thesis describes the work carried out to investigate the 
concept of the finite element method, to gain insight into the 
theory behind it and to apply this knowledge in developing a 
computer program to simulate the load mechanisms and boundary 
conditions, particularly to the ring structure under large elastic- 
plastic deformation.

Finite element is a method of mathematically modelling a component 
for stress analysis. It requires large quantities of data which are 
manipulated by matrix techniques to obtain results. The use of the 
computer is therefore essential to save time on a complex component.

The finite element program developed in this work is based on a two-
dimensional plane elasticity analysis using constant strain 
triangular elements. Yield is based on Von-Mises' criterion, 
plastic flow on Prandtl-Reuss relationship and the formulation 
includes linear strain hardening. The formulation of the elastic- 
plastic matrix is based on the initial stress method.

The equipment for the experimental work was designed and this 
included the modification of the hydraulic system of the press 
machine, the base of testing and the measurement system.

Experimental work was carried out on the ring structure under three 
different types of loading conditions:

1 . between two knife-edges;
2 . between two rigid parallel surfaces;
3. between two rigid parallel surfaces and two lateral walls with

a gap.

A comparison was made between the output data from the E.P. Program, 
which was developed in the current work, and the commercial 
packages. The results of this comparison are in reasonable 
agreement with each other. A comparison was also carried out 
between the experimental results and the theoretically predicted 
results, and reasonable agreement was obtained.
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NOMENCLATURE

The following symbols have been chosen to be consistent with those 
used in the current work and will be used throughout this thesis:

[A] Coefficient matrix associated with displacement function

[B] Matrix relating element strains to element nodal
displacements

[D] Elasticity matrix

[D]*ep Elastic-plastic matrix

E Young's modulus of elasticity

F Yielding function

G Shear modulus

H Slope of equivalent stress/plastic strain curve

[K] Stiffness matrix

k Work hardening parameter

L ^ , L j , L m Area coordinates

P External applied load

Pp External plastic applied load

{P]- Vector of nodal forces

{P} Vector of equilibriating body forces

q Uniformaly distributed load

{R} Vector of residual forces

u,v Displacements along X and Y axes
/

{£>} Indicates displacement vector associated with
equilibriating body forces

W^jWg Internal, external work done

X,Y,Z Rectangular cartesian coordinate system

(x,y) Indicates quantities are functions of X and Y
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x^,y^ Indicates displacement associated with nod i

ai,a2 ,etc. Constants used in displacement function

6 Displacement

[5] Vector of nodal displacements

e Strain

e x , € y , e z  Direct strains

#xy*Kyz>Kzx Shear strains

a Stress

Oy Yield Stress

om Hydrostatic stress
y So,e Deviatoric stress, strain

Stress, strain tensors (shorthand method of referring 
to array of nine quantities ato-point)

ô ,6 Equivalent stress, strain

{¿oj.i&e] Vectors of stress, strain increments

Zxy> T y z > T z x Shear stresses

y Poisson's ratio

Area of triangular element

Suffix e,p Indicates elastic, plastic quantities

] Indicates a matrix

} Indicates a one-dimensional array, row or column
vector

e ],te } Matrix, vector relating to a single element

Inverse of matrix
T —] Transpose of matrix

M^j Bending moment

I Moment of inertia
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CHAPTER 1

INTRODUCTION

1.1 PREVIOUS WORK

The finite element method of structural analysis has emerged in the 
last twenty-five years as the method most widely used by engineers. 
The popularity of this technique is due to its wide applicability to 
both static and dynamic structural problems in elastic as well as 
plastic ranges. The structural analysis here is anything that is 
fabricated, manufactured or erected that must withstand an imposed 
load.

The concept of finite element has been in use for 150 years or more^.
2Certainly it is not a new feature in structural analysis. Southwell 

employed a similar method in his work in 1935. That work was carried 
out by using beam-type elements. Clough et al in 1956 first derived 
an element stiffness matrix for triangular element using a linear 
displacement function. Subsequently many investigators, e.g. 
Argyris^, Melosh^, Gallagher et al^ and Zienkiewicz^ have developed 
elements for different stress conditions with more refinement; 
covering bending and three-dimensional elements with triangles,

Qrectangles, quadrilateral and tetrahedra. Argyris et al have
extended the method to elastic-plastic stress problems by making use
of the so-called thermal strain approach, similar to that suggested

9 10by Mendelson and Manson . Pope suggested a tangent modulus
approach for the solution of elastic-plastic problems by finite
element.

Zienkiewcz et a l ^  have developed a general formulation of the
elastic- plastic matrix for evaluating stress increments. A new 
'initial stress' computational process was proposed.

1 2Hibbitt et al , have derived their finite element equilibrium
equations from the principle of virtual work for large deformation. 
They identified four stiffness terms, which are called small strain 
stiffness, initial load stiffness, initial strain stiffness and 
initial stress stiffness. In elastic-plastic analysis, all of these 
must be calculated for each increment of deformation.
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McMecking and Rice have derived an eulerian finite element 
formulation for problems of large elastic-plastic flow. The 
formulation was given in a manner which allows any conventional 
finite element program, for small strain elastic-plastic analysis, to 
be simply and rigourously adapted to problems involving arbitrary 
amounts of deflection and arbitrary levels of stress in comparison to 
large plastic deformation.

N a y l o r ^  has analysed a number of problems by finite element using 
the displacement method to assess the stress accuracy at very low 
compressibilities. He found that materials which are virtually 
incompressible can be analysed by the conventional displacement 
method and accurate stresses obtained.

Weisgerber and A n a n d ^  have made a comparison between two solution 
techniques, specifically as they were used with Tresca yield 
condition, one was a tangent modulus approach for perfectly plastic 
materials including the strain hardening effects and the other was a 
modification of the initial stress concept. It was observed that the 
iterative scheme was significantly more efficient with regard to the 
needed computer time, but was less accurate than the first one.

Gortemaker and de P a t e r ^  have shown what the effect was of the 
different options in computer program upon the computer results.
However, they have described numerical and experimental work which
has been carried out on elastic-plastic problems involving large
deformation. A finite element program has been developed for plane 
stress and plane strain problems. They have found that, in
particular, attention would be paid to the effect that the inclusion 
of geometric nonlinearity in computations has upon the distribution 
of displacements, strains and stresses.

Okamotoa et a l ^  have developed the theoretical method which gives a 
solution for non-linear contact problems by finite element method and 
load incremental theory. They have shown reasonable agreement with 
experimental data and other solutions.
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Deb et al^® have discussed a computer program of finite element for 
determining the collapse load under plastic deformation. They have 
also examined the elastic and plastic stress, strain, distribution 
and spreading of the plastic zones of a tension specimen with a semi­
circular notch of small thickness. They have shown that the accuracy 
of the solution depends on the mesh pattern and size of the elements 
for which high speed computer facilities will give a better solution.

Johannes, et al ^  have developed the elastic-plastic finite element
method to the so-called state determination which requires the
integration of the constitutive equations. This has been examined by
systematically applying and modifying algorithms for the solution of
ordinary differential equations. As a result it was shown, that
methods of higher order can be formulated for elastic-plastic
problems, which are much more efficient than the first order

20algorithms used up to the present. Contro has developed the 
formulations for elastic-plastic finite element analysis for bending 
plates. He has incorporated the variational approach into a
quadratic programming problem linearly constrained, which he has
found would be an efficient numerical tool.

21In 1988, Chandra solved the large inelastic deformation of the
superplastic sheet metal forming process by a finite element method. 
The finite element program has been developed to account for the
large deformation and strain through the use of a Lagrangian method.
Results showed good agreement with available experimental data.

Overall, the finite element method has become the most powerful tool 
of analysis and is applicable to a wide range of problems.

The following Chapters describe some theoretical analysis of the 
concept of finite element computer programming supporting the theory 
and the experiment work which was carried out on the ring structure 
in different cases.
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1.2 CURRENT WORK

Often the solution of engineering problems by conventional analytical 
methods can prove to be either too difficult or impossible, because 
the geometry or some other characteristic is irregular or arbitrary. 
Therefore, numerical techniques, which usually involve a number of 
repetitive operations making them ideal for solution by computer, are 
adapted to obtain the approximate solution. The intention of this 
work is to gain insight into the theory behind the finite element 
method and applying this knowledge in developing a computer program 
to solve two-dimensional stress problems in the field of mechanical 
engineering elastic-plastic design.

Several general purpose finite element packages are available, 
however, to solve a specialised problem it is often far more costly 
(in computer time) using these packages. Therefore, the best program 
for any particular problem usually is one written specifically for 
that application. Clearly, if a program is designed with a specific 
design problem in mind, which has most of the generalities of a 
general system, then this program would be suited to solve either the 
specific design problem in question or general stress problem.

In the current study the elastic-plastic finite element model is 
proposed employing constant strain triangular element in 
two-dimensional plane strain and plane stress formulation of the 
problem. The incremental displacement or load method can be used for 
non-linear analysis of the problem. The intention was to simulate 
the load mechanisms and boundary conditions particularly to the 
ring structure under large elastic-plastic deformation.

The use of the elastic-plastic finite element method permits one to 
trace the stress and strain history of each element as the structure 
is subjected to the load, both the elastic and plastic zones can be 
clearly identified. The program was tested to identify the accuracy 
and computer time for running, as well as to compare these with other 
packages.
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The experimental work was carried out in order to establish the 
load/deflection relationship and the strain at certain point/
deflection relationship and compare these with the results from the 
program.

An assessment is made as to whether any modification to the current 
basic model would be justified for future work.
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CHAPTER 2

THE FINITE ELEMENT METHOD

It is not intended to give a detailed account of the finite element
22 23 24method, as this is well documented in numerous text books ’ ’ ,

however, it is felt that a general overview will enhance the reader's 
understanding of subsequent work.

2.1 INTRODUCTION

It is not possible to obtain closed form mathematical solutions for 
many engineering problems because the geometry or some other
characteristic is irregular or arbitrary. An analytical solution is 
a mathematical expression that gives the values of the desired 
unknown quantity at any location in a body, and as a consequence it 
is valid for an infinite number of locations in the body.

Analytical solutions can be obtained for only certain simplified 
situations. For this reason it has become necessary to seek 
approximate, and acceptable, numerical solutions to many problems 
particularly for components where there are certain non-standard 
features associated with, for example, the geometry and boundary 
conditions. The most widely adapted numerical technique in the field 
of continuim mechanics is probably the finite element method, as it 
is admirably suited to problems with the non-standard features 
mentioned above.

Applications of the method fall into three major catagories:

(i) Equilibrium or steady state or time independent problems;
(ii) Eigen value problems;
(iii) Propogation or transient problems.

The most frequent application is the solution of solid mechanic 
problems of Category (i), in which the steady state displacement or 
stress distribution is required. Typically in such an anlysis the 
continuum or region of interest is subdivided into a mesh of elements 
which have nodal points at their vertices and possibly other
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positions. In practice, the problem is then solved using a finite 
element computer program and this requires careful preparation of 
input data in the form of mesh, boundary conditions, material
property and loading specification. The output consists of the 
unknown nodal quantities, e.g. displacements, stresses.

2.2 GENERAL PROCEDURE OF THE FINITE ELEMENT METHOD

The finite element method involves the division of the structure,
into a number of discrete elements interconnected only at specified 
positions. These positions are referred to as nodes.

Figure (1) shows a component subdivided into a finite number of 
elements over its complete domain. The original structure may be
assumed, therefore, to be replaced by an assembly of elements and
these elements are assumed to be interconnected at a finite number of 
points, known as nodal points. These nodes occur at the corners of
the elements (corner nodes) or along the element boundaries (edge
nodes).

The type of element into which a component or structure is subdivided 
depends upon its geometry and they can be either one, two, or 
three-dimensional. If it is required to analyse a component with 
curved sides or faces, elements with curved sides must be used. 
Isoparametric elements with one or more edge nodes are one family of
elements suitable for this purpose. Straight side elements do not
necessarily require edge nodes but many have them, they are essential 
to isopatametric elements to accommodate the curvatures (see Appendix
A). The location of the nodal lines on the component, and hence the 
form of the subdivision into elements depends on three main factors:

(i) Element boundary must coincide with structural
discontinuities;

(ii) Nodal points must coincide with the points of application of 
concentrated loads;

(iii) The nodes must coincide with points on the structure where 
the displacements are to be calculated.

7
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When the component, or structure under consideration, has been
subdivided into a finite number of elements, attention is focused,
initially, on a single element. The objective is to obtain, for the
element, an expression of the form:

{p®} - [Ke ] {Se } (2.1)

relating the forces {pe }, and the displacement, at its nodes, {5e },
by means of its stiffness matrix [Ke ].

From the above discussion, it is evident that the choice of suitable
displacement function is the most important part of the whole
procedure. A good displacement function will lead to an element of
high accuracy.

A displacement function is either given as:

(i) a simple polynomial with undetermined coefficients which
are subsequently transformed to become the relevant nodal 
displacement parameters, or

(ii) directly in terms of shape functions which are physically 
associated with nodal displacement parameters, thus the 
displacement function can either be given (from (i)) as:

6 = + a2X + c^y + ...............  (2.2)

in which a^, 0 2 , 0 3, etc. are undetermined polynomial
constants, or from (ii) as:

6 = Ni (x,y) + N 2 (x,y) S2 + ..... (2.3)

in which 6 ,̂ 6 2, etc. are the nodal displacement parameters 
and N^, N 2 , etc. the corresponding shape functions (see 
Appendix B).

In general, a good displacement function should satisfy the following 
criteria:

9



(a) The displacement function, if given in the form of a simple 
polynomial, must have the same number of polynomial constants 
as the total number of degrees of freedom at a node.

(b) In most cases, the displacement function should be balanced 
with respect to all coordinate axes, since most elements are 
classified as general purpose elements, applicable to all 
types of problems.

(c) The displacement function must allow the element to undergo 
rigid body movements.

(d) The displacement function must be able to represent a state of 
constant strain since this is the expected outcome if the 
elements are made smaller and smaller.

(e) The displacement function should satisfy the compatibility 
conditions along common boundaries between adjacent elements. 
For the current work, the displacement function in terms of the 
coordinate variables x ,  y  and the nodal displacement parameter 
(e.g. U a , V a ) is chosen to represent the displacement 
variations within each element and by using the principle of 
minimum total potential energy or the principle of virtual 
work.

2.2.1 Area Coordinates

All the previous discussions are concerned with cartesian (x,y)
coordinates. For general quadrilateral elements (in Appendix A) 
with straight or curved sides similar functions can be used, but 
they should be in curvilinear (^>*\) coordinates. The cartesian 
coordinates are also not very convenient for triangular elements, 
and a special type of coordinate system called area coordinate
should be used. Referring to Figure (2) it is seen that the
internal point L will divide the triangle (abc) into three small
triangles and depending on the position of the point L the area of 
each one of the triangles lac, lcb and lba can vary from zero to &  , 

which is the area of the triangle abe. In other words, the ratio
Aa/k , Ab/k and Ac/^will take up any value between zero and unity.
These ratios are called area coordinates, and they are defined by:

10
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La = Aa/^ = (aa + bax + cay)/2&
Lb = Ab/& = (ab + bbx + cby)/2A
Lc = Ac/^ = (ac + bcx + ccy)/2k

(2.4)

(See Appendix B) 
in which:

aa = x byc ~ xcyb
ba = yb - yc
ca = xc — xb

and:

(2.5)

1 xa y a
2 b. = det 1 xb yb * 2 (area of triangle abc) (2 .6)

1 xc y c

(see Appendix C)

xa , ya , etc. are the nodal coordinates and ab , bb , cb , etc. can 
be computed through a cyclic permutation of the subscripts.

From equation (2.4), which in matrix form is:

L a 1 aa ba ca 1
Lb • = ----- ab bb cb X

. Lc 2 L ac bc cc y

solving for 1 , x, y

l l i  i Ca

X • * a  x b xc Lb
y y a y b y c Lc .

or

x = Laxa

y = L ay a

Lb + Lc 
Lbxb + Lcyc 
Lbyb + Lcyc

( 2 . 6 . 1 )
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With the help of the area coordinates, it is now possible to 
establish a whole family of triangular elements, which is shown in 
Figure (3).
By using Lagrange polynomials it is a simple matter to construct the 
shape functions for the elements given in Figure (3) (see Appendix
B). Thus, the second and third equations in equation (2.6.1) give 
the relationship between the cartesian coordinates and the area 
coordinates.

To every set, La, Lb, Lc corresponds a unique set of cartesian 
coordinates. At point a, La = 1 and Lb = Lc = 0, etc. a linear
relation between the new and cartesian coordinates implies that 
contours of La are equally place straight lines parallel to side b-c 
on which La = 0, etc.

2.3 TRIANGULAR FINITE ELEMENT FOR PLANE ELASTICITY

2.3.1 Nodal displacements and forces

One of the simplest types of element used in plane elasticity 
problems is the 3 noded triangular element as shown in Figure (4): 
its nodal positions are defined by a cartesian coordinate system.

Each node has two degrees of freedom and therefore, the complete 
vector of displacement and force

ua Pxa

v a Pya

ub Pxb

v b {P®} = Pyb

uc Pxc

. v c > pyc

The nodal forces and displacements are related by equation (2.1)

13
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2.3.2 Element displacement functions

The first step in the solution of the problem is the choice of a 
suitable polynomial to represent the displacement of the element 
under the action of the applied loading system. The simplest 
representation is given by the two linear polynomials.

u = cq + a 2X + a3y
v = 04 + a5x + agy

( 2 . 8 )

or in matrix form:

{5(x,y )} = u = 1 x y 0 0 0

V 0 0 0 1 X y

i . e .
{5(x,y )} = [f(x,y)] {a}

a l
a2
a 3

a 4

a5
a6

(2.9)

The coefficients: {a} in the above equations are obtained by solving
the simultaneous equations which result from substituting in turn
the coordinates of the nodal points of the elements into the
equations, i. e •

u a - ° 1 + a 2x a + a3ya
v a = a4 + a5x a + a6ya
u b = a l + a 2x b + a3yb (2 .1 0 )

v b = a4 + a5x b + a6yb
uc = a l + a 2xc + a3yc
v c = a4 + a5x c + a6yc

(See the proof for obtaining the value of coefficient {a} in
Appendix B) The equation (2 .1 0 ) may be expressed in matrix form as:

{Se } = [A] {a} (2 .1 1 )

16



or
ia} = [A]"1 {5e } (2. 12)

in which:
1 xa y a 0 0 0
0 0 0 i xa ya
1 x b yb 0 0 0
0 0 0 1 x b y b
1 xc y c 0 0 0
0 0 0 1 xc y c

Substitute equation (2.12) into equation (2.9). The displacement at 
any point in an element can now be determined in terms of the nodal 
displacements.

{5 (x,y)J - [f(x,y)J [A ] “ 1 {Se } (2.14)

2.3.3 Relate the element strains to displacements

For plane elasticity problems the strain vector is:

{e (x,y)} =

xy

"d X

T>v

•*v ^u  

"by

(2.15)

and substituting for u and v from equation (2 .8 ) into the strain 
expressions i.e.

Jxy

a 2

a 6

a3 + a5

(2.16)
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or in matrix form

{e (x,y)} = [C] {a} (2.17)

where

[Cl =

0 1 0 0 0 0 

0 0 0 0 0 1 
0 0 1 0  1 0

(2.18)

Substituting for {a} from equation (2.12)

{e (x,y)} = [C] [A] ' 1 {5e } (2.19)

which may be written as:

{€ (x,y)J = [B] {5e } ( 2 . 2 0 )

where:

[B] = [C] [A ]- 1 ( 2 . 2 1 )

Equation (2.20) relates the strains fe(x,y)} within the element 
to the nodal displacements {6e }. It can be noted that the [B]
matrix for a three noded straight sided triangular element consists 
of fixed values only determined by the nodal coordinates. Thus the 
strain at any point within the element is constant. For this reason 
these elements are often referred to as constant strain element 
(CST) (see Appendix B) for determination of [B] matrix).

2.3.4 Relate the internal stresses to the d isplacements

The two cases of plane elasticity, (plane stress and plane strain)
will be discussed separately since the stress-strain relationships 
are different for the two cases only isoptropic material will be

18



considered here. Normally, plane stress is applied to members which 
are relatively thin in comparison to their other dimensions, whereas 
plane strain is applied to relatively thick members.

(a) plane stress:

In plane stress problems only three stress components (ov>av < C  ) 
within the x-y plane are present, the other three components (oz > 
fyz'Tzx) being equal to zero. The stress-strain equations for three- 
dimensional elasticity are thus reduced to:

E
ox = ---------------  [(1-y) ex + yey + yez ] ( 2 . 2 2 )

(l+y)(l-2y)

E
oy = ------------  [yex + (l-y)ey + yez ] (2.23)

( l + y ) ( l - 2 y )

E
a z = ------------  [yex + yey + (1-y) e z ] (2.24)

(1+y)(1 — 2y )

E
T x y  = ^ x y  (2.25)

2(1+y)

from equation (2.24):

y
ez  ------- (ex + ey ) (2.26)

d-y)

Substitute the value of equation (2.26) with the value of 
equation (2 2 ):

19



E

l-y'
U x + >'ey )

Substitute the value of equation (2.26) with the 
equation (2.23):

(yex + ey)
l-y'

from equations (2.27), (2.28) and (2.25)

l-y“
E

i-y5

(6x + Y ey )

(yey + ey )

Zxy

ax

° y ■ r

E yE

l-y2 l-y2

yE E

l-y2 l-y2

t xy
2 (l-y)

in matrix form is:

0 ex

0 ey

E
--------------------- r*y
2 (l+y) .

which may be written as: 

[o(x,y)] = [D] {e (x,y )}

20
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( b )  p l a n e  s t r a i n :

Unlike plane stress it is e2 and not o z which is equal to zero in 
plane strain. Because of this it is more convenient to express the 
strains in terms of stresses, i.e.:

e* -  -  Ox  -  y°y -  y°z)

xy

E
1

€y = *- ( - y°x —

E
1

0 = - (-yox _ V°y + °z)
E

2 (l+y)
r ,xy

(2.32)

(2.33)

(2.34)

(2.35)

From equation (2.34):

°z “ y ( ° z  + °y) (2.36)
The equations (2.32), (2.33) and (2.35) may be written in matrix 
form:

Ex
1

ey ■ = ------

E

. r xy

( l V )  -  y( i+y) 0

- y ( i + y )  ( i - y 2 ) o

0 0 2( l+y)

°x

ay

k
F*

= [D ] " 1 {o} (2.37)

Substitute the value of equation (2.36) with the value of equation
(2.32):

1

= x = “ K ° x  " y ° y  ~ V2 <°x + °y) )]
E

(2.38)
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Substitute the value of equation (2.36) with the value of equation
(2.33):

1
£y = - [(-yox + Oy - y 2ox -y20y)] (2.39)

Equation (2.38) may be written as:

[(crx (1-y2 ) - O y ( y  + y2 )] (2.40)

From equation (2.40):

E
ay +    ex (2.41)

1 -y 1 -y2

In the same way, from equation (2.39): 
y E

Oy =   Ox + --- £y (2.42)
1 -y 1 -y2

Substitute the value of equation (2.42) with the value of equation
(2.41) and the result is:

E(l-y) E y
ey (2.43)

(1 +y)(l-2y ) (1 +y)(l-2y )

Substitute the value of equation (2.41) with the value of equation
(2.42). The result is:

E y E (1-y)
-------------  EX + --------------

( 1+y) ( l - 2 y ) ( 1+y) ( l-2y)

Oy =   ex +   £y (2.44)
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From equation (2.35) is:

I :

: Ifxy

xy (2.45)
2 (1 +y)

The equations (2.43), (2.44) and (2.45) may be written as:

E(l-y) E y
o

a x
(l+y)(l-2y) ( 1 + y )(l-2y )

E y E(i-y)
oC y

(l+y)(l-2y) (l+y)(l-2y)
E

T t y 0 0

2 (1 +y)
xy

(2.46)

which can be expressed as:

{o (x,y )} = [D] {e (x,y)} (2.47)
and thus the elasticity matrix [D ] has been established for both
plane stress and plane strain.

Substituting the value of {e(x,y)) from equation (2.20) the 
following relationship between the element stresses and nodal 
displacements is obtained:

(x,y)} = [D] [B] [5e ] (2.48)

The equation (2.48) is valid for both plane stress and plane strain.

The two elasticity matrices (2.30) and (2.46) have the same form and 
it is more convenient to present them by common elasticity 
matrix:
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¿1 d 2 0
ID] = d2 d x 0

0 0 d3

Where for plane stress

E yE
-  —------  ; d2 =   ;d3

( l - y 2 ) (l-y2) 2(1 —y)

(2.48)

and for plane strain:

E(l-y) yE
di =   ;d2 = -------

(l-y)(l-2y)

E

' d 3 =
(l+y)(l-2y) 2(l-y)

(2.49)

2.3.5 Determination of element stiffness matrix

The internal stresses {o(x,y)} are now replaced by statically 
equivalent nodal loads {pe } and hence the nodal loads are related to 
the nodal displacements {5e } thereby defining the required element 
stiffness matrix [Ke ].

The principle of virtual work is used to determine the set of nodal 
loads that is statically equivalent to the internal stresses. The 
condition of equivalence may be expressed as follows: during any 
virtual displacement imposed on the element, the total external work 
done by the nodal load must equal the total internal work done by 
stresses, i.e.

EPS a e d(vol) (2.50)
(v)

where:
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o - the internal stress 
5 - virtual displacement
e - strain change due to 6

An arbitrary set of virtual nodal displacements is represented by 
the vector {S6 }. The external work done by the nodal loads Wg is 
given by:

WE = [dfi } {pe } (2.51)

If the arbitrarily imposed displacements cause strains {ds(x,y} at a 
point within the element where the actual stresses are {o(x,y)} then 
the total internal work done Wj is:

Wj = {de(x,y)] {o(x,y)} d(vol)
(v)

(2.52)

which is the change of strain energy of the element. Substituting 
equations (2.20) and (2.47) gives:

W Z = [B]T {d6e } [D] [B] {Se } d(vol)
(v)

(2.53)

Assuming that the unit values of nodal displacements are applied, 
then equating the internal and external work gives:

{P6 } = tj [B]T [D] [B] d(vol)] {58 }
(v)

(2.54)

Comparing this with equation (2.1), it follows that the element 
stiffness matrix [Ke ] is the expression inside the square bracket, 
i . e .
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[Ke ] = [B]T [D] [B] d(vol)
(v)

(2.55)

Since the matrices [B] and [D] contain only constant terms they can

be taken outside the integration leaving only d(vol) which, in
(v)

the case of an element of constant thickness which equals the area of 
the triangle^multiplied by its thickness t, thus:

[K6 ] = [B]T ID] [B]&. t (2.56)

equation (2 .6) gives:

1

^  = - t(xbyc-*cyb) " (xayc“xc?a> + (x ayb“xbya)^ (2.57)
2

Having performed this calculation for each element of the complete 
structure, the overall stiffness matrix [K] is assembled using the 
overall load [p] equation (2.58) below, which can solve the unknown 
displacements {6} at the structural nodes.

{&} = [K] ' 1 [p] (2.58)

Hence, using equation (2.20) and (2.47), strains and stresses 
respectively can be obtained.
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CHAPTER 3

ELASTIC-PLASTIC PROBLEMS

The complete solution of a general problem in plasticity involves a 
calculation of the stress and the deformation in both the elastic 
and plastic regions. It has been shown that in the former the 
stress is directly connected with total strain by means of the 
elastic equations. In the latter there is no such unique 
correspondence and the process of plastic deformation has to be 
considered mathematically as a succession of small increments of 
strain. In order to illustrate this it is necessary to introduce 
elements of plasticity theory.

3.1 BASIC CONCEPTS OF PLASTICITY

3.1.1 Yield criterion

A yield criterion is a hypothesis concerning the limit of elasticity 
under any possible combination of stresses.

Figure (5) is a geometrical representation of a three-dimensional
stress system. The stress state is represented by a vector in
three-dimensional space where the principal stresses are taken as
cartesian coordinates. OS is the vector a 2 , 0 3}, while OP is

/ / / _the vector representing the deviatoric stress [o].> 0 2 , 0 3 J• OP
always lies in the plane n whose equation is:

°1 + °2 + °3 = 0

PS represents the hydrostatic component {om , om , am ] of the stress. 
Since yielding is independent of the hydrostatic component stress it 
is evident that the yield surface in this spatial system is a right 
cylinder with generators perpendicular to n and cutting it in some 
curve C, the yield locus.
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Von Mises' criterion states that the locus is a circle in the ir (or 
deviatoric) plane defined by:

o'ij 0lj * constant (3.1)

remembering:

*
°ij = °ij " 6ij °m <3 -2 >

Where the hydrostatic component of stress, om = /3 and kroneker
delta symbol, S^j, is equal to unity when i = j and zero when i * j. 
Hence the yield criterion can be defined as:

F (oiJtk) = 0 (3.3)

The hypothesis that the radius of Von Mises 1 circle is a function
only of the plastic work, Wp, is written as:

3
5 = [(-) (o'ij Oij ) ] 0 , 5 = W(Wp ) (3.4)

Thus defining the equivalent stress 3, it is convenient to define a 
yielding function, F, whereby:

F = o - oy (3,5)

or more fully:

0.5 [ (ox-Oy ) 2 + (a„-oz )2+(oz-ox )2 ]+3( ) ]°’ 5-ay (3.6)

where the numerical factor has been chosen such that ay = Oy (k) is 
the uniaxial stress at yield dependent on the instantaneous value of 
a hardening parameter k.
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On a similar basis the equivalent plastic strain increment can be 
defined as:

2

d'eP = [(-) (de'ijP d ^ j P ) ] 0 - 5 (3.7)
3

where de^-P is the increment of plastic strain. It can be shown
that the increment of plastic work per unit value is given by:

dWp = a'ij d6ij-P (3.8)

The equivalent plastic strain and total plastic work are integrals 
over the history of deformation.

3.1.2 Flow rule

A plastic flow rule defines the direction of the plastic strain 
increment carrying through the assumption that no plastic work is 
done by the hydrostatic components of stress. It can be assumed
that there is no permanent change in the volume. Hence, since
dEjP + ds2P + de3P = 0 the plastic strain increment can be
represented by a vector in the n-plane, thus:

deijP a a ij

o r :
de^jP = \  Ojj (3.9)

w h e r e ^ i s  an undetermined constant of proportionality. The rule
is known as the normality principal because the relation can be 
interpreted as requiring the normality of the plastic strain 
increment to the yield locus. This is illustrated in Figure (6). 
This restriction of the rule makes it valid only for the particular 
case known as associated plasticity. However, it has proved to be a 
good approximation for most metals.
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3.1.3 Hardening law

The hardening law specifies how the yield locus changes with either 
plastic strain or plastic work. Work hardening has been stated 
previously in equation (3.4). Strain hardening can be stated as a 
function of plastic strain thus:

a = H (ep ) (3.10)

For the purpose of this work isotropic strain hardening is assumed. 
The implication here is that the material is represented by a
circular yield locus which expands with strain and stress history,
retaining the same shape throughout.

3.1.4 Prandtl-Reuss equations

The Prandtl-Reuss equations are an extension of the earlier Levy- 
Mises equations which were strictly applicable only to a fictitious 
material in which the elastic strains are zero. In reality, 
during an infinitesimal increment of stress, changes of strain are 
divisible into elastic and plastic parts, thus:

de^j = dEjjP + de e (3.11)

Substituting the flow rule from equation (3.9) and incorporating the 
basic elastic constitutive equation gives:

de^j = \  Oj_j + doi j  / (2G)

deii 0 + [ (l-2y)/ E ] d c ^  (3.12)

Considering the simple case of uniaxial tension, using equations
(3.4), (3.8) and (3.to)it can easily be shown that:

^  = 3d?P / 2o

o r :
\  = 3do / H (3.13)
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where H / = do/ dtP is the slope of the equivalent stress/plastic 
strain curve. Thus, the complete incremental stress-strain
equations for an elastic-plastic material can be stated as:

(3.14)
d e n  = l-2y/E doj^

A typical strain load increment is illustrated graphically in 
Figure (7).

3.2 THE ELASTIC-PLASTIC MATRIX

It has been shown that there is no direct stress-strain relationship 
for a material undergoing plastic deformation, i.e.

On the basis of the Prandtl-Reuss and the Von Mises yield criterion 
it can be shown that:

ct # o(e) (3.15)

F (o,k) = 0 (3.16)

P (3.17)

6ee + SeP (3.18)

The elastic strain increments are related to stress increments by 
symetric matrix of constants D known as the 'elastic matrix'. Thus:



O',
y i e l d  locus at the 
s t a r t  of 
ine r e m e n

PQ = total strain i n c r e m e n t  
R Q = p l a s t i c  s t r a i n  i n c r e m e n t  
P R = e l a s t i c  s t r a i n  i n c r e m e n t  
n = u nit v e c t o r

F I G (7 )

t y p i c a l  s t r a i n  i n c r e m e n t  a s s u m i n g  
i s o t r o p i c  h a r d e n i n g
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S u b s t i t u t i n g  ( 3 . 1 8 ) ,  i . e .

6e = D 60- h o  *  — > (3.19)

When plastic yield is occuring the stresses are on the yield surface 
given by (3.16), differentiating thus:

■"&F 'DF
0 =    6 0 ^ +    S 0 2  +

' ' b o j

^ F  

, + —  dk 
"Sk

'~ d  F
0  =  [ ---------- ] T  5 a  -  a \

~d o

(3.20)

where:

^ ) F  1

A = -  dk
h K

(3.21)

writing (3.19) and (3.20) in single symmetric form as:

^>F
6e D_1 ---

• = ^ 0

"SF
0 (—  )T -A

^ 0

Multiply first equation (i.e. (3.19) by ( )T D
'’bo

i . e .

' "&F ^ F  / & F  ^ F

( )T L 5e = (— )T So + (— )T D ---  'X
'"be 'Tic ^ba

35



or:

'bF 0> F /7k F ^F
(.— )T 6o „ (— )T D5e _( )T D  y  (3.22)
''fco 'lio / c>a 'Tic

Substitute the value of equation (3.22) with the value of equation 
(3.20):

' T>F / * F  ' T j F

(— )T DSe - (— )T I)  V  - a\  = 0
'"ila ^  a ^ cj

-t >f  - ^ f

( )T DSe - [( )T D --- + A ]\= 0 (3.23)
~b a a

Using equations (3.22) and (3.23) to eliminate A(i.e. (3.23) into
(3.22) :

^ F  "&F "3F T>F ~ b ¥  -aF ~ * F

(— )T So = (— )T DSe - (— )T D —  . (— )T DSe [A + (— )T D   J“ 1

"̂ a 1 «  "da "bo "bo ~&a

~&F ^F !>F I F

So = ( D - D   ( )T D [ A + (— )T D ---]-1) 5e
"& a Ha T>o "bo

or:
So - tD]*ep 5e (3.24)

Where the elastic-plastic matrix is:
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T>F I F  ^ F  n > F

[D]*ep = [D] - [D] {— } {— ]T [D] [A + {— }T [D] {— } T 1 (3.25)
H o  " S o  H o

Equations (3.19) and (3.20) can be written in a single symmetric 
matrix form as:

*
¡ ' i F

S e i

l ^ l
[ D ] - 1  j ^ F

5 a i

C
M

UJto ' 11 4 6  a 2

• 1 ^ a 2 •

_ T F  H F —

0 ------  —  -  A
^ 0 ^  H a 2

3.2.1 Special forms of the elastic-plastic relationship

Most generally the yield criterion is established in the 'six- 
dimensional1 stress space as a function of all the six stress 
components. When dealing with more restrictive problems such as 
prescribed by cases of plane strain, plane stress or axial symmetry 
an appropriate specialization of the yield surface to the more 
limited freedom has to be made.

Consider the general relationship (3.26) written in terms of the six 
three-dimensional stress components listed as:

> 6 = Zzx
€ i = ex,  etc.
o  1 =  o x> o ^  = a . a4 ?xy> °5 - Tyyz
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(i) plane strain:

In plane strain the components CCyZ, Xtt and ez) 

1 y y '"?> F

6 — S o ^  S O y  5 o z  +

E E  E

y 1 y ■'"fc F
A

6 e y  =    Sax  + —  S o y  6 a z + — — A

E E  E Tiov

2( 1+y ) F
® 5 x y  =  ® f x y  + ^

E T>rxy

y y 1 ^ F
6 e z  =  0   5 o x - - - - - - - - - - S o y  + — S o z  +  - - - - - - - - - - ^

E E E ~0 rz

'l F '"i F ' Î F  ' bF

0 =   6 ov +   S a „  +  +   5 a ?  — a \x  y ^  z,
~ Ò V X ^ ° y  ~*Tx y ^ CTz

From equation (3.30)

^ F
5ctz = y5ox + ySoy - E ---

Substitute the value of equation (3.32) with the
(3.27), (3.28) and (3.31):

1 y y 2 y 2 -'JF

5ex =—  6ox  Say 6ox  Soy + y --  A -
E E E E ^ o z

38

become zero, thus:

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

value of equations

^ x



l-yz 1+y 'iF ^  F
= (---- ) Sox - y (--- ) 6av + (--  + y  ) \

^°x ^ az
1 + y 1-y ̂ 'i F ''S F

+ y ---- ) ^6 e „  -  - y  (  )  S a x  + (  )  6 ° y  + (■
E

T F  ^ F 1>F ^F ~h F
' Ô O y  Í O j

" i F

x y  1  a z

( 3 . 3 3 )

(3.34)

0 = (-- +y--- )Sox+(—  +y—  )SOy+— %{.- [E(--- )2+A] \  (3.35)

or in matrix form:

*1

8 e x

S S y =

0

i

l-y2/E -y(l+y)/E

-y(i+y)/E i-y*/E

"à F ÿÎF
(—  +  )

% 0 x  " * a z

'k F F
(— +y —  )
-*ox -io2 
■ » F ^ F

(—  +y —  )
-> Oy ^ az

-> F

> F  ~ a F  

( —  + — ) 

^ O y  ^ 0 Z

2(l+y)/E

- i F

x y

x y

' Î F

A+E ( ):
O o ~

'

6 o x

6 0y

s ? x y

\
 ̂ -

or :

f m

6 e x

6 e y

il

S & y

0

.

[D] - 1

T»F ^ F

“ > a x  ”"i o z

-&F ^ F > F
(— + ---) (—  +y---) ---

”^ 0 y  " ^ o z  " " ^ 7 x y

S

y
m
m

e
t
r
i

c

A+E (---):
^ o 2

S o x

SOy

x y

\

(3.36)
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where:

[D]  ̂ is the inverse of the reduced plane strain elastic matrix

(ii) plane stress:

If Z is chosen as the direction normal to the plane, therefore: 

°z = Tyz ” ?zx = ^

At the same time the mathematical solution in plane strain, equation 
(3.36), may be written for plane stress as:

■

6 e x

SEy

S ^ y II

0

I D ] - 1

^ F  '■fcF ' D F

s
y
m

m

e
t
r
i

- c 

-A

S c x

BOy

‘ 7 Zx y

\

(3.37)

where:

tD] “ 1 is the inverse of the reduced plane stress elastic matrix.
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( i i í )  A x ia l  symmetry

Here the solution is once again more simple as four stress and 
strain components have non zero values and only two shear stress and 
strain components vanish. The form of relationship can be written

6ex

S S y

ii

' i r x y
■

5ez

111 
o

 
i

—
j

[ D 0 r

F

H )  a ,  

"d F

■"3 Oj

^ F

xy

s y m m e t r i c

^  a,

- A

Sax

60y

• *7"
6 (xy

Sa2

( 3 . 3 8 )

where:

[Dq ]-  ̂ is the inverse of the reduced axial symmetry elastic matrix. 
(See Appendix A)

Clearly for ideal plasticity with no hardening'A' is simply zero. 
If hardening is considered, attention must be given to the nature of 
the parameter (or parameters) k on which the shifts of the yield 
surface depend.

With a 'work hardening' material k is taken to be represented by the 
amount of plastic work done during plastic deformation, thus:
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d k  =  a ^ d e ^  +  o j d ^ ^  =  { o } ^ d e p  ( 3 . 3 9 )

Substituting the flow rule equation (3.17):

^ F
dk = V  [o]T ---- (3.40)

' ' b o

thus, equation (3.21) can be written as:

' i F  I I

A  ------ {0}T ----- (3.41)
'"4 k '"i o

The quantity Oy = "ay (k) in equation (3.6), is the uniaxial stress 
at yield. If a plot of the uniaxial test giving Oy verus the 
plastic uniaxial strain eup is available then

dk - oy deup

and
<“ «• /

IF -bOy ^iOy 1 H
   --- = ---  .—  - --  (3.42)
^k ^k ^ eup °y °y

/  —g
in which H is the slope of the plot at the particular value of Oy
of substituting into equation (3.41):

A = H (3.43)
^ F

According to the above analysis, the quantities {--- } and 'A' in
"2> a

equation (3.25) take up the following substitutions:
(i) plane strain:

From equation (3.36), it can be shown that:
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T>F
{— 3

~ * F  I F

  + y--
^ O x  ' bOg.

' b F  ^ F

^ a y  ^ a g .

lxy

( 3 . 4 4 )

-3F
'

A = H + E( )■
1 ) 0 , .

(3.45)

(ii) plane stress

From equation (3.37), it is valid to write:

•KF

{ }

l > o

I F

(3.46)

xy

A = H (3.47)

On differentation equation (3.6) will be found that:

^ F

Oj

^ F

3ox 3 0 y  ^ F

n>T l x y

2 0 y  ' b O y 2 0 y  ^  0 Z

^ T x y  ^  F  3 ? y z  ^ F

yz zx

3o,

2 O y

3 £ z x

( 3 . 4 8 )
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(D]*ep is thus reduced to a three by three matrix and is used in 
equation (3.24) to calculate the increment of the three stress 
component in the x-y plane.

The calculation of the plastic increment for the stress in z 
direction, follows by this:

From equation (3.28), it can be shown:

U z = E(-y/E 6ox + 1/E Scy +^F/zay'\- £ey)/y (3.49)

Substitute the value of equation (3.49) with the value of equation
(3.27):

1 y y 1 '“4 F "dF
\  = [(— 6ox  Soy +—  6ox  Soy +5ey-8ex)/ (-- - ---)] (3.50)

E E E E 'TO cty -Tiox

Substitute (3.50) into (3.49):

1 E 1 7> F
£ a z= {(-Sox +-SOy- — 5ey )+-----  [(6ox (l+y)-6ay(l+y)+6ey-6ex )/

y y E'TiOy
n> F "SF
(------- )] } (3.51)
15 O y  i' l 0 X

It is necessary to keep a record of oz in the computation as 
plastic strains will occur in the normal direction.
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CHAPTER 4

THE FINITE ELEMENT SOLUTION OF ELASTIC PLASTIC PROBLEMS

It has been shown that incremental solutions are required for 
elastic-plastic problems due to the non-linear nature of the 
constitutive equations. These solutions must simultaneously satisfy 
throughout the body, the equilibrium of internal and external force 
and the specified criterion and hardening law. The common method is 
to repeatedly estimate a stress distribution which satisfies the 
yield criterion and the hardening law but will not necessarily be in 
equilibrium with the applied loads, i.e. from the principle of 
virtual work

(p] " {5} d(vol) = {R} (4.1)
(v)

where {R} is a non-zero vector of residual forces if equilibrium is 
not satisfied. Newton-Raphson iterative techniques were widely used 
to reduce {R} to zero. A different approach is suggested by 
Zienkiewicz et al^ and this 1initial-stress' approach is adopted 
for the current work.

4.1 THE INITIAL-STRESS METHOD

A full Newton-Raphson solution requires the formation and inversion 
(or decomposition) of the elastic-plastic stiffness matrix (tangent 
stiffness matrix) for the structure at each iteration of a 
particular load increment. Obviously this can be expensive in terms 
of computer time.

A modified Newton-Raphson solution, whilst generally requiring more 
iterations, requires a new tangent stiffness matrix to be formed 
only occasionally, perhaps at the beginning of an increment or after 
a few iterations. However, savings are not dramatic and the sizing 
of load increments becomes critical if accuracy is to be maintained.
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This is to say, if non-linearity becomes more severe or yielding is 
spreading rapidly, load increment size should be adapted in order 
that the tangent stiffness matrix is updated with sufficient 
frequency as to maintain an acceptable level of accuracy in results.

These problems are overcome to some extent in the 'initial stress' 
method of solution. By using the fact that even in ideal plasticity 
increments of strain prescribe uniquely the stress system, an 
adjustable process is derived in which 'initial stresses' are 
distributed elastically through the structure. This approach 
permits the advantage of initial processes (in which the basic 
elasticity matrix remains unchanged) to be retained and thus only 
one matrix inversion is required for each load increment. If, 
however, a single load increment is used it will be found that an 
approximate lower bound is achieved, the final solution satisfying 
equilibrium and yield criterion but not necessarily following the 
current strain development as the appropriate flow rules may be 
violated. Also the process appears to be the most rapidly 
convergent.

4.1.1 The initial-stress computational process

The initial-stress process approaches the solution of an 
elastic-plastic problem as a series of approximations. In the first 
place during a load increment a purely elastic problem is solved

t rdetermining an increment of strain {&e} and of stress [io] at every 
point of the continuum (or structure).

The non-linearity implies, however, that for the increment of strain 
found, the stress increment will, in general, not be correct. If 
the true increment of stress possible for the given strain is {& o} 
then the solution can only be maintained by a set of body forces 
equi1ibriating the 'initial' stress system {ko} - {ko}.

At the second stage of computation this body force system can be 
removed by allowing the structure (with unchanged elastic 
properties) to deform further. An additional set of strain and 
corresponding stress increments are caused. Once again these are
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likely to exceed those permissible by the non-linear relationship 
and the redistribution of equilibrating body forces has to be 
repeated. The cycling is terminated when these forces reach 
sufficiently small values. Convergence having been achieved, full
non-linear compatibility and equilibrium conditions will be 
satisfied.

It is convenient to start the increment process only when the first 
yield has occured and hence in the programme this allows the 
subsequent load increments to be related to the load at which first 
yield is noted.

4.1.2 Convergence criteria

The vector of nodal forces corresponding to the equilibrating body 
»

forces {p) can never be exactly zero and therefore some convergence
conditions must be imposed. This is achieved by testing the values

/

of the applied load vector {p} against the values of {p} with 
respect to some preset tolerance value, say 1%. This is done in the 
following manner such that convergence is achieved when:

s  m /
[P}T {P}

{P}T {P}
<  1 % (4.2)

When specifying a tolerance value an attempt should be made to 
balance the computer time available against accuracy. Usually 
parameters of the elastic field away from the region of yielding are 
unaffected by incomplete convergence.

4.1.3 Sample calculation

In order to illustrate the steps of the computational process the 
following sample is considered in Figure (8 ), where a square plate 
fixed along one edge is subjected to equal tensile forces applied at
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p = 

a  =

Thickness =

1 0 6n

1000 mm 

t

120 mm

0 .23E+06N/mm^ 

U . 3

lb.92 N/mm2 

0.1

FIG.(8)
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the corners of the opposite edge, plane stress is assumed. The 
plate can be discretised simply as shown in Figure (9). Hence the 
applied load vector can be started as:

{ ? }  =

0

0

0

0

p
0

p
0

Feed input data, material properties, coordinates, number of cycles, 
load increment, tolerance number of freedom.

For P = 0.1E+07 element 2 is on the point of yielding thus the
stiffness matrix of element 1 and 2 are illustrated in Table 1, 
whereas the overall stiffness matrix is illustrated in Table 2.

The [B] matrix for each element is:

(i) Element (1)

[B]
-1.0E-03 0.0
0.0 -1.0E-03 0.0

-1.0E-03 -1.0E-03 0.0

1.0E-03 0.0 0.0 0.0
0.0 0.0 +1.0E-03
1.0E-03 1.0E-03 0.0

(ii) Element (2)

[B]
-1.0E-03 0.0
0.0 0.0 
0.0 -1.0E-03

0.0 0.0 1.0E-03 0.0
0.0 -1.0E-03 0.0 1.0E-03
-1.0E-03 0.0 1.0E-03 1.0E-03
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TABLE

[ K ] e l  =

1 . 7 8 0 E + 0 7  

8 5 7 1 4 3 0 .

- 1 . 3 1 8 E + 0 7  

- 4 6 1 5 3 8 5 .  

- 4 6 1 5 3 8 5 .  

- 3 9 5 6 0 4 5 .

[ K ] e 2  =

1 . 3 1 8 E + 0 7  

0 . 0 0 0 E + 0 0  

0 . 0 0 0 E + 0 0  

3 9 5 6 0 4 5 .

- 1 . 3 1 8 E + 0 7  

- 3 9 5 6 0 4 5 .

8 5 7 1 4 3 0 .

1 . 7 8 0 E + 0 7  

- 3 9 5 6 0 4 5 .  

- 4 6 1 5 3 8 5 .  

- 4 6 1 5 3 8 5 .  

- 1 . 3 1 8 E + 0 7

0 . 0 0 0 E + 0 0

4 6 1 5 3 8 5 .

4 6 1 5 3 8 5 .

0 . 0 0 0 E + 0 0  

- 4 6 1 5 3 8 5 .  

- 4 6 1 5 3 8 5 .

- 1 . 3 1 8 E + 0 7  

- 3 9 5 0 4 5 .

1 . 3 1 8 E + 0 7  

0 . 0 0 0 E + 0 0  

0 . OOOE+OO 

3 9 5 6 0 4 5 .

0 . 0 0 0 E + 0 0

4 6 1 5 3 8 5 .

4 6 1 5 3 8 5 .

0 . 0 0 0 E + 0 0  

- 4 6 1 5 3 8 5 .  

- 4 6 1 5 3 8 5 .



- 4 6 1 5 3 8 5 .

- 4 6 1 5 3 8 5 .

O . O O O E + 0 0

4 6 1 5 3 8 5 .

4 6 1 5 3 8 5 .

O.OOOE+OO

- 4 6 1 5 3 8 5 .

- 4 6 1 5 3 8 5 .

O.OOOE+OO

4 6 1 5 3 8 5 .

4 6 1 5 3 8 5 .

O.OOOE+OO

- 3 9 5 6 0 4 5 .  

- 1 . 3 1 8 E + 0 7  

3 0 5 6 0 4 5 .  

O.OOOE+OO 

O.OOOE+OO 

1 . 3 1 8 E + 0 7

3 9 5 6 0 4 5  

O.OOOE+OO 

O.OOOE+OO 

1 . 3 1 8 E + 0 7  

- 3 9 5 6 0 4 5 .  

- 1 . 3 1 8 E + 0 7

- 1 . 3 1 8 E + 0 7  

- 4 6 1 5 3 8 5 .  

- 4 6 1 5 3 8 5 .  

- 3 9 5 6 0 4 5 .

1 . 7 8 9 E + 0 7  

8 5 7 1 4 3 0 .

- 3 9 5 6 0 4 5 .

- 4 6 1 5 3 8 5 .

- 4 6 1 5 3 8 5 .

- 1 . 3 1 E + 0 7

8 5 7 1 4 3 0 .

1 . 7 8 0 E + 0 7



[K] =

1 . 7 8 0 E + 0 7  8 5 7 1 4 3 0  - 4 6 1 5 3 8 5  - 3 9 5 6 0 4 5  - 1 . 3 1 8 E + 0 7  - 4 6 1 5 3 5 8  0 . 0  0 . 0

1 . 7 8 0 3 + 0 7  - 4 6 1 5 3 8 5  - 1 . 3 1 8 E + 0 7  - 3 9 5 6 0 4 5  - 4 6 1 5 3 8 5  0 . 0  0 . 0

1 . 7 8 0 3 + 0 7  0 . 0  0 . 0  8 5 7 1 4 3 0  - 1 . 3 1 8 E + 0 7  - 3 9 5 6 0 4 5

1 . 7 8 0 E + 0 7  8 5 7 1 4 3 0  0 . 0  - 4 6 1 5 3 8 5  - 4 6 1 5 3 8 5
Symmetric

1 . 7 8 0 E + 0 7  0 . 0  - 4 6 1 5 3 8 5  - 4 6 1 5 3 8 5

1 . 7 8 0 E + 0 7  - 3 9 5 6 0 4 5  - 1 . 3 1 8 E + 0 7  

1 . 7 8 0 E + 0 7  8 5 7 1 4 3 0  

1 . 7 8 0 E + 0 7

TABLE (2)



The e l a s t i c i t y  m a t r i x :

[D]
219780.2 
65934.07 

0.0

65934.07 
219780.2 

0.0
0.0

76923.07

0.0

The current state of stress and strain is as follows:

(i) Element (1)

U 0 3

0. 7371E-04 
-0.63 91E-27 
0.60559E-05

16. 20 

4.860
0.466

(ii) Element (2)

0.8494E-04 17.13

{s0l = ‘ -0.2337E-04 ; (o q } = 0.4667
-0.6059E-04 -0.4659

Apply a load increment of 0.1P, P being the load at the first yield. 
The solution from this point can be listed as a series of steps as 
follows:

1. Determine elastic increment of stress and strain.

Element (1)

7.37 IE-06 / 1.626
(Aeii = -6.891E-29 i = 0.486

6.058E-07 4.660E-02
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Element  (2 )

8.497E-06 1.713
- -2.336E-06 ; {A O } i  = 4.664E-02

-6.058E-06 -4.660E-02
U e ) l  "

2. Add {¿koJi to the stresses existing at the start of increment
/

{o0} to give {a}

Element (1) {a}

Element (2) {o}

17.820
5.346
0.5120

18.843
0.513
-0.512

Check whether F {o} < 0. If this is satisfied only elastic
strain changes occur and process is stopped. If not, proceed
to (4)

Element (1) F {a} = -1.0556

Element (2) F [a] = 1.6928

The process proceed with Element (2) only.

4. If F {a} 'i 0 and also F {cq} = 0 (i.e. element was in yield at 
start of increment) find { o}j by the following equation:

{ Ä o l i  = [ D ] e p * [ A e J x

Ä1Where [D] ep is the elastic-plastic matrix computed with 
stresses [a]

53



64227.19 
98505.78 
5620.432

98505.78 
212959.9 
-1011.497

5260.431 
-1101.497 
76745.17

{ & e } - |

0.3123
0.3400
0.0007

Evaluate stress which has to be supported by body forces.

& o }  j  & c }  j

1.401 
-0.293 •

_ -0.047

Store current stress and strain

{ o }  =  { a } -  { f c o J i

17.441
0.806
-0.465

e

i e } * [ e 0 ] + e ) jl

9.346 IE-05 
= ' -2.570E-05

-6.664E-06

5. If F [a] > 0 but F {o q } < 0 find the intermediate stress at 
which yield begins and compute increment (Ao as previously 
from that point then proceed as in (4).
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6 . Comput nodal forces corresponding to the equilibrating body 
forces. They are given for any element by

{P}( [B] { A a}-j d(vol)
<v)

(See Figure (10))

I P } ,

-24069.44
2843.028
17603.55
2843.028

81226.41
-20446.58

Resolve using original elastic properties and the load system 
{P} - Find {¿0 ) 2 and

[P]

0.0
0.0
0.0 
0.0

17603.55
2843.028

81226.41
-20446.58

7.027E-06 1. 281
-3.987E-06 ; = -0.413
9.393E-07 0.072
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8 . Repeat steps 2 to 7, etc.

The cycling is terminated when the nodal forces of (6 ) reach 
sufficiently small values. For a specified tolerance, 1% 
convergence was achieved after 5 cycles. The method is illustrated 
graphically in Figure (11). The final output data is listed in 
Table 3.

The output data in Table 3 is showing that the displacement in X 
direction of point 3 is less than the displacement in X direction of 
point 4. This difference is due to the fact that the problem is 
simple and consists of only two elements. It is obvious from to.bV.6 

3 that the output data is true because element (2) is fixed in one 
point in X and Y directions but element (1) is fixed in two points 
in X and Y direction. That is why there is a difference between the 
displacements which reflect the simplicity of the problem.

4.1.4 Load increment sizing

As mentioned previously, the load increment size is less critical 
for the initial stress method than other solution techniques. 
However, smaller increments will ensure greater accuracy, and at the 
same time faster convergence, as the flow rule is less likely to be 
violated. It is advisable to use increments less in magnitude that 
the load required to cause the first yielding and then start the 
incremental process from this load. Generally speaking, increments 
in the approximate range 20-50% of the first yield load will provide 
acceptable results.
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TABLE (3)

LOAD INCREMENT - 1.00
CURRENT INCREMENT = 1.00
NO.OF ITERATION WITHIN INCREMENT = 1

NODE DISPLACEMENT
1 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0
2 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0
3 0.073713 0.006059
4 0.084964 -0.017310

ELEMENT X-STRESS Y-STRESS XY-STRESS EQ-STRESS PLASTIC
1 0.1620E+02 0.4860E+01 0.4660E+00 0.1442E+02 0
2 0.1713E+02 0.4667E+00 -0.4659E+00 0.1692E+02 1

ELEMENT X-STRAIN Y-STRAIN XY-STRAIN EQ-STRAIN
1 0.7371E-04 -0.6391E-27 0.6059E-05 0.7211E-04
2 0.8496E-04 -0.2337E-04 -0.6059E-05 0.8462E-04

NODE REACTIONS
1 -0.1000E+07 -0.3196E+06
2 -0.1000E+07 0.3196E+06
3 0.0000E+00 0.0000E+00
4 0.0000E+00 0.0000E+00

LOAD INCREMENT = 1.10
CURRENT INCREMENT = 0.1
NO.OF ITERATION WITHIN INCREMENT = 5

NODE DISPLACEMENT
1 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0
2 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0
3 0.082796 0.001776
4 0.116710 -0.037159

ELEMENT X-STRESS Y-STRESS XY-STRESS EQ-STRESS PLASTIC
1 0.1820E+02 0.5459E+01 0.1366E+00 0.1618E+02 0
2 0.1765E+02 0.3240E+00 -0.1292E+00 0.1749E+02 1

ELEMENT X-STRAIN Y-STRAIN XY-STRAIN EQ-STRAIN
1 0.8280E-04 -0.6783E-27 0.1776E-05 0.8298E-04
2 0.1167E-03 -0.3894E-04 -0.3245E-05 0.1185E-03

NODE REACTIONS
1 -0.1100E+07 -0.3515E+06
2 -0.1100E+07 0.3515E+06
3 0.0000E+00 0.0000E+00
4 0.0000E+00 0.0000E+00

59



CHAPTER 5

DESIGN AND DEVELOPMENT OF THE E.P. PROGRAM AND COMPARISONS

5.1 OBJECTIVES

There are a number of general purpose programs available for the
application of finite element stress analysis in mechanical
engineering design. To use a versatile general purpose program for
solving specialized problems is often troublesome and far more
costly (in computer time) than to write a program expressly for

25solving the specialised problem

In this study, the objective of the E.P. Program is primarily to 
solve a specific ring structure design problem under different cases 
of loading and boundary conditions, and secondly for solving other 
two-dimensional engineering problems within the scope of the 
program. The E.P. Program is able to solve these problems in two 
phases (1. prescribe displacement; 2 . prescribe force), for plane 
elasticity (plane stress/plane strain).

5.2 SOFTWARE DESIGN

To make use of the computer's facilities and to maximise the size of 
the problem that can be defined, the E.P. Program was divided into a 
number of modules. These modules appear as subroutines and the main 
line program is a simple routine whose function is to automate 
selection and calling of these subroutines. Figure (12) shows the 
flow chart of these modules as it is in the E.P. Program.

It was necessary to decide how the core storage should be allocated.
The general tendency in finite element programs is to fix some

9maximum dimension on array sizes . The E.P. Program belongs to 
this catagory. Subsequently, accessed files were used in E.P. 
Program for back storing data. This was thought to be more 
favourable than random accessed files. Back storing was used for 
input data, mesh generation, [B] matrix and graphical output. The
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E.P. Program with its variable names and input data instructions is 
listed in Appendix (F).

5.3 MAIN PROGRAM

The main program is the principal component whose functions include: 
the input and storage of data describing the model; the modification 
of data; loading and saving data and calling the specialist 
subroutines when needed.

5.4 INPUT DATA

To specify the problem it is necessary to provide the computer with 
the data that describes the model. This consists of information 
specifying the title of the problem, selection of options, material 
properties, conditions for starting and stopping the process 
including tolerance, load increment and load size. Also the input 
data includes the boundary condition, the external loads and 
information about the mesh generation.

The E.P. Program reads the input data from the screen with free 
format, stores it in separate files and calls it back when needed. 
These separate files are stored temporarily on a separate disk 
called "SCRATCH". The idea behind this way is to save time when the 
program is fed by data. The E.P. Program has two options to create 
the mesh generation, either the mesh generation is created manually 
or created automatically by option. The two options are displayed 
in Appendix (F) .

5.5 AUTOMATIC MESH GENERATION

In the last few years, considerable effort has been devoted in
developing mesh generation routines in order to eliminate the
drudgery of working out the data and to minimize data errors. An

27early survey of a number of routines was given by Buell and Bush
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The input data for the subroutine of generating a triangular mesh, 
which is presented here, consists of information concerning the 
total number of generating lines, a weighting factor, and for each 
generating line the number of intervals required, together with the 
coordinates of the two end points. The output consists firstly of 
the x and y coordinates of each point with each corresponding 
number, and secondly the element number with each element
def init ion.

The number of divisions in the adjacent generating lines can be 
equal or can differ by one, so that the mesh can vary according to 
the specific requirement of the problem in Figure (13). There are 
two divisions in line A, but neighbouring line B is allowed to have 
one, two or three divisions.

Another requirement incorporated into the program is the weighting
factor. Depending on whether the weighting is < 1, = 1 or > 1, the
intervals along a generating line will become progressively shorter, 
stay equal, or become progressively longer.

From Figure (13(d)) it can be seen that the coordinates of the point 
i  along a generating line <lb can be computed by:
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S k J - 1  

j= l

x i  = ( x b -  x a )

n
Z kJ - 1

j=l

and ( 5 . 1 )

i

j=l
Yi = (yb - ya) + y a

n
2  K ^ - 1

j=l

The element definitions are worked out by taking the mth and the 
(m+l)th generating lines, and forming n quadrilaterals along the jth 
line. Referring to Figure (13(a)); in which the (m+l)th line has one 
less division than the mth lines, the last (nth) quadrilateral 
becomes a triangle, while for Figure (13(b)) mth and (m+l)th lines 
have the same number of intervals and each of the (nth) 
quadrilaterals is simply split into two triangles. For Figure 
(13(c), however, the (m+l)th line has now one more division than the 
jth lines, and one extra triangle must be added to n quadrilaterals 
which have been established. The flow chart of this subroutine is 
in Figure (14).

5.6 LOAD MATRIX

Two types of loading are applied for the E.P. Program

(1) concentrated loads applied at nodes
(2 ) uniformally distributed loads over an element.

Each one of these were put in a separate subroutine and called 
by option.
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5 . 6 . 1  C o n c e n t r a t e d  l o a d s

The load that can be externally applied to a node in the E.P. 
Program, can be either a static load or a physical restraint. These 
factors are stored in one dimension array, in which the position of 
the load, or fastening, follows the equation, where n is the number 
of the node

xr = 2n - 1

yn = 2n
(5.2)

To ensure the structure is adequately supported, there must be a 
minimum of three restraints, with at least one in x and y direction.

5.6.2 Uniformly distributed load

The magnitude of this load per unit length, and edge over which it 
is acting is defined, then, the E.P. Program calculates the 
equivalent nodal force. From Figure (15) the forces in the orient 
axes x-j^ and the global axes x-y are related to each other by:

cos 8 -sin 8

sin 0 cos 0
y 0

(5.3)

or

{P} = [Q] {P}

where:

[Q] is the transformation matrix between the two systems and 0 is 
positive as indicated in Figure (15). The direction cosines are 
easily computed from geometrical considerations.

cos 0  *  ( X j  -  X i ) / 1

( 5 . 4 )

¡in 0 = (yj - yi)/l
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Thus the equivalent global components of forces at a node:

Px cos 9 -sin 8 0

py sin 9 cos 8 . 91 / 2

= ql/ 2

-sin 9

cos 9
(5.5)

5.7 THE SOLVE PROCEDURES

The function of the solve procedures is basically to derive the 
complete stiffness structure matrix (overall stiffness structure 
matrix), from individual element stiffness matrices; and solve the 
unknown nodal displacement, strain, stress increment and current 
stress and strain. The mathematical formulas which relate to these 
are outlined in Chapter (3).

Having calculated the element stiffness matrix, its individual terms 
are then inserted into the corresponding positions in the complete 
stiffness matrix. Appendix (E) shows a simple example for assembly 
of overall stiffness matrix.

The structure is in general restrained at a number of nodes such 
that various displacements are prevented. In this case the diagonal 
terms of the stiffness structure corresponding to the fixed
displacement is multiplied by a large number. So the value of these
prevented displacements are very close to zero.

The current E.P. Program solves the elastic-plastic problem in two 
phases :

(1) prescribed force
(2) prescribed displacement

Each one of them can be chosen by option described in Appendix (F).
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5 . 7 . 1  P r e s c r i b e d  f o r c e

In prescribed force procedure, the external force would be given to
28the structure as physical increment loads. Gaussian elimination 

was chosen to calculate the unknown displacement as it provides a 
means of solving a set of equations. The stiffness structure matrix 
is augmented with the force vector and passed to the solution 
procedure.

The method consists of eliminating the equations one at a time so 
that there is a corresponding reduction in the size of the modified 
matrix until finally the matrix is reduced to one equation 
containing only one variable. The set of eliminated equations forms 
a triangular matrix and is used for backsubstitution process. By 
starting at the last equation and working backwards to the first 
equation, one variable will be determined at each step by using the 
variables which are already known.

5.7.2 Prescribed displacement

The displacement here is given to the structure in the x and y 
directions in incremental way as well. It can be noted that for 
each node the governing equations can be expressed as:

[ « 1 1 1 [ k 1 2 ] 5 1
f

P i

[ K2 i ] [ k 2 2 ] . S2 .  p 2

Thus once the overall stiffness matrix has been formed it is 
partitioned accordingly along with the force and displacement 
vectors. This leaves the following equations to be solved:

[ P i )  = [ K n ] { Sjl } + [ K 12 ] { S2 } ( 5 . 7 )

{ P 2}  = [ K2 l 3  + C k 2 2  ̂ ( 5 . 8 )
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If {5^} is the vector of known displacement then {P2} a zero 
vector corresponding to the unrestrained freedoms. This means the 
unknown displacement vector {6 2 } can be solved from equation (5.8) 
with only the sub-vector [K2 2 ] required to be inverted (see Appendix 
D for inversion matrix). The unknown vector {E } can then be 
calculated by substitution into equation (5.7). In subsequent 
interations within the same load increment the solution equation 
becomes:

{ S 2 3 -  [ K 2 2 ] _ 1  C P 2 J  ( 5 - 9 )

✓

where £P2} is the appropriately partitioned vector consisting of
equilibrating body forces. Thus the same inverted stiffness matrix
is used throughout the increment. The displacements calculated for 

/each interation {6 2} are added to the initial displacement vector 
{6 } at each stage.

Equilibrium of forces is maintained throughout by the following 
modification at each iteration to the initial vector of unknown 
forces;

{ E l l  = { P i } -  ( E l ) + [K12] ( 62} (5 -10)

*{Pi} consisting of the equilibrating body forces acting for static 
freedoms. The complete computational iteration procedure is 
illustrated in the flow chart of Figure (16).

5 . 8  E.P. PROGRAM OUTPUT

The output data consists of all current input data, nodal 
displacements, current coordinates, current stresses, strains and 
reaction forces and also graphical output which consists of the 
geometry of the structure before and after loading and the elastic 
and plastic regions of the structure. These are obtained by linking 
the E.P. Program with a graphical package called CALCOMP. Figure 
(17) shows a photograph of a terminal with the CALCOMP plotter
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F igure (17)The p lott e r " calcomp" with the terminal



during the execution of the E.P. Program. Before submitting a 
large problem to be computed it is advisable to obtain the output 
for the first increment in order that an assessment of the 
suitability of increment size can be made, thus avoiding wasteful 
computer time.

5.9 COMPARISON OF THE OUTPUT OF THE E.P. PROGRAM WITH PAFEC FINITE 
ELEMENT PACKAGE

In order to evaluate the results of the E.P. Program a cantilever 
beam model was analysed. The results from the analytical formulae 
were then compared with the results from the developed E.P. Program 
and PAFEC Finite Element Package for plane stress analysis.

5.10 CALCULATIONS

5.10.1 Elastic Analysis

Figure (18) shows the cantilever beam model with the free end which 
was subjected to a downward concentrated force. Considering the
displacements the following are obtained:
(i) Deflection due to the bending moment:

PL3
Deflection due to the bending Vj = --- —

3EI

(ii) Deflection due to the shear forces:

6 PL
Vs ----------

5 bdG

Thus, the total deflection at the free end due to bending
and shear force is

V = VB + v 3
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1 PL3 6 PL
( 5 . 1 1 )

3 El 5 bdG

The shear or rigidity modulus of elasticity G

G =   (5.12)
2 (1+v)

(iii) Material Properties:

E = 209000 N/rom2

0.3

cjy = 227.53 N/mm2

H ’ = 0.00004
This meant the material was as near as possible to elastic 
perfectly plastic

5.10.2 Calculation for yield load

My Oy
(5.13)

Where:

d
Y = ---  .therefore,

2

2IOy Oy . bd 2
My = •----  =   (5.14)
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My = L.P ( 5 . 1 5 )

From (5.14):

227.53 x 20 x (30)2 
My =   = 682590 N.mm

From (5.15):

My 682590 
E = ---  =    - 6825.9 N

L  100

This load creates the plastic hinges at the outer of the top and the 
bottom fibres at the fixed end of the cantilever. The maximum 
deflection at the free end can be obtained from equation (5.11). The 
rigidity modulus can be calculated from equation (5.12), i.e.

0.209 x 106

2 (1 + 0.30)
80384.615 N/mm2

So, from (4):

1x6825.9 x (100)3 x 12 6 6825.9 x 100
V = ( ----------------------  ) + ( -    )

3x0.209xl06x20x(3Q)3 5 20x30x80384.615

= 0.258 mm
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The plastic load is the load which causes a plastic hinge to be 
formed at the fixed end. After that the cantilever becomes a 
mechanism, thus, the bending moment for a fully plastic condition is 
Mp and:

5 . 1 0 . 3  C a l c u l a t i o n  f o r  t h e  p l a s t i c  l o a d

Mp - (5.16)
4

Also at support bending moment is:

M.'P P

thus,

MP
PP (5.17)

L

From (5.16):

227.53 x 20 x (30)2
MP 1023885 N.mm

4

From (5.17):

1023885
P.P 10238.85 N

100
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5 . 1 0 . 4  R e s u l t s  of  t h e  com pa r i son

The finite element results were obtained for a set of various mesh 
configurations for the cantilever beam. The output data consists of 
all current element stress, strain, nodal displacement, final 
co-ordinate, reaction forces and graphic output. These were done to 
evaluate the performance in full capacity of the program.

The following Figures and Tables are presented to illustrate the 
results obtained.

Figure (19) shows the various mesh configurations and the total 
number of elements and the number of rows as well.

Table (4) shows the results obtained from the PAFEC Finite Element 
Package and E.P. Finite Element Program which has been developed 
for this work. These results were obtained for each number of 
elements in Figure (19), using the same data input. Also the Table 
shows the yield loads and collapse loads which were obtained from 
the finite element solution and those which were obtained from the 
analytical solution. Furthermore, the Table shows the percentage 
errors in the maximum deflection at the top and bottom of the free 
end of the cantilever in comparison with the exact solution from the 
formula. The Table also gives the computing time of the computer 
which is required to obtain the solution.

Table (5) shows the sequences of the applied loads on the cantilever 
and the maximum deflection corresponding to the applied load, which 
was obtained from the PAFEC and E.P. Finite Element Program as
well. The results shown in this Table are based on mesh
configuration number three which has seven rows as shown in Figure
(19). This was chosen from Table (4) in order it to satisfy the 
accuracy with reasonable time for solution (C.P.U.) time.

Figure (20) and Figure (21) shows the number of rows against the 
error in maximun deflection for the E.P. Finite Element Program and 
the PAFEC Package v̂ espe,cti
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3 rows (48 elements)

7 rows (112 elements)

9 rows (162 elements)
FIG.(19)



11 rows (220 elements)



TABLE (4)

No. of 
rovi

Ylald
Load

<N)

Collapaa

Load

<N)

PATEC E.P. PROGRAMME

Tima for 
Solution 
C.P.U. 
(aac. )

Max.
daflactlon 
at tha top 

(>»)

Irror
X

Max.
daflactlon 
at tha 
bottom 
(mm)

Error
X

Tima for
Solution 
C.P.U. 
(aec.)

Max.
daflactlon 
at tha top 

(mm)

Error
X

Max. 
daflactlon 
at tha 
bottom 
(mm)

Error
X

3 10203.4 14204.76 112.43 0.271 5.00 0.265 2.7 117.06 0.271 5 .00 0.265 2.7

5 902S.97 14446.35 109.57 0.267 3.4 0.262 1 .5 231.10 0.267 3.4 0.262 1 .5

7 0604.35 13094.96 256.26 0.265 2.7 0.261 1 .2 309.73 0.266 3.1 0.261 1 .2

9 0243.04 13190.14 343.29 0.265 2.7 0.260 0.8 797.92 0.264 2.3 0.260 0.8

11 7927.07 13477.37 516.65 0.263 1 .9 0.259 0.4 1932.19 0.263 1 .9 0.259 0.4

Exact
Solution

6025.9 10230.05 ------ 0.250 ------ ------ ------ ------ 0.250 ------ ------ ------



N o .  o f  
Lo a d

Lo a d
( N )

Lo a d
I

1 8 6 8 4 . 3 5 1 0 0

2 9 5 5 2 . 7 8 10

3 1 0 4 2 1 . 2 2 10

4 1 1 2 8 9 . 6 5 10

5 1 2 1 5 8 . 0 9 10

6 1 3 0 2 6 . 5 2 10

7 1 3 8 9 4 . 9 6 10



TABLE(5)

PAFEC E . P .  PROGRAMME

D e f l e c t i o n  (m s ) D e f l e c t i o n  (mm)

0 . 2 6 1 0 . 2 6 1

0 . 2 9 1 0 . 2 9 1

0 . 3 2 3 0 . 3 2 3

0 . 3 6 1 0 . 3 6 2

0 . 4 1 4 0 . 4 0 9

0 . 4 9 3 0 . 4 9 1

0 . 6 7 8 0 . 6 6 1
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Figure (22) and Figure (23) show the number of rows against the time 
for solution for the E.P. Program and the PAFEC Finite 
Element, respectively.

Figure (24) shows the deflection against the load which was obtained 
from the E.P. Finite Element Program and the PAFEC Package for the 
mesh configuration in Table (5).

Figure (25) is the graphical output of the cantilever beam before 
and after loading.

5.10.5 Discussion

The yield load, collapse load and maximum deflection depending on 
the yield load were calculated previously by the conventional 
analytical formulas. However, the yield load, in terms of finite 
element, is the load causing the first yield. It is convenient to 
start the incremental process only from that point to relate the 
subsequent load increment to the load at which the first yield 
appears.

The material properties and the plane elasticity condition were 
chosen in order that a direct comparison could be made between the 
results given by the formula, the PAFEC Finite Element Package and 
E.P. Finite Element Program. The formula considers the shear 
forces which need to be considered because the cantilever here is 
short in comparison to its depth.

From the previous calculation and the results from both the E.P.
Finite Element Program and the PAFEC Finite Element Package for
different meshes, Table (4) shows that the best results were given
by the finer mesh. However, the finer mesh needs more time to 
complete the solution. So a more realistic mesh, after considering 
the time for solution and the error as illustrated in Figures (20) 
and (22), is the mesh which has 7 rows. From the calculation the 
maximum deflection for that mesh at the free end of the cantilever
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V = 0 . 2 5 8  mm.

The maximum deflection from the results, at the top node of the 
free end of the cantilever is:

= 0.266 mm

This gives a large error of 3.1%, whereas a more realistic figure of 
the deflection is given when the node at the bottom of the extreme 
end is considered. This gives a 1.2% error which is obtained from 
either the E . P .  Finite Element Program or the PAFEC Finite Element 
Package. The results of maximum deflection from both have very 
slight differences which perhaps refer to the different format 
accuracy in both of them. In general the accuracy of the maximum 
deflection increases by increasing the number of elements. However, 
increasing the number of elements resulted in an increase of the 
solution time, which is financially costly. Therefore, a more 
realistic figure of the meshes is the mesh which takes less computer 
time, with acceptable accuracy. This can be done by inducting 
Figure (20) and Figure (22) together.

Figure (24) shows the relationship between the load deflection for 
the chosen mesh from E.P. Finite Element Program and the PAFEC 
Finite Element Package. The same data was applied so that the same 
collapse load was obtained from both. Also the deflections, 
according to the load increment, gave slight differences which were 
created by the different format accuracy between both of the 
programs, as previously mentioned.

However, the major difference in the results between the E.P.Finite 
Element Program and the PAFEC Finite Element Package was in the 
solution time. This can be easily seen by the comparison of Figure 
(22) with Figure (23). The E.P. Finite Element Program requires 
more time for solution than the PAFEC Finite Element Package , this 
is because the E.P. Finite Element Program uses the entire overall 
stiffness structure matrix. Using the banded matrix with the
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sophisticated subroutine could reduce the solution time 
significantly. However, this is felt to be research for further 
study.

Figure (25) shows the graphical output of the cantilever beam of 7 
rows before and after loading; the plastic hinges at the two outers 
fibres of the cantilever at the top and the bottom; and the plastic 
hinges between the previous ones. This intermediate hinge appears 
when the loading reachs the collapse. In this case the cantilever 
becomes a mechanism.
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CHAPTER 6

EXPERIMENTAL WORK, EQUIPMENT AND MATERIAL

6.1 INTRODUCTION

In order to establish the effectiveness of the E.P. Program, 
comparison was made between experimental results and those 
predicted theoretically. To facilitate such comparison experiments 
were carried out on ring structures under different loading 
conditions. These rings were subjected to static loads causing a 
large elastic-plastic deformation.

A 150 tonne hydraulic press was modified and instrumented to carry 
out these tests. These modifications are as follows:

design and manufacture of the compression platen and loading 
tools of the machine
modifying the hydraulic system to control the movement of the 
piston of the press
incorporate displacement monitoring system by means of a 
potentiometer
instrument the press for measuring load and displacement 
electronically 

Figure (26) shows the press after these modifications.

6.1.1 Modification of the hydraulic system

The purpose of modifying the hydraulic system is to control the 
downward motion of the hydraulic piston of the press (fast-slow) 
according to the User's need. Figure (27) shows the schematic 
diagram of the hydraulic system with its modification. This 
modification consists of incorporating a relief valve for 
controlling the pressure, and a glycerin filled gauge for measuring 
the pressure in the feed line. These components were added to the 
feed line to control the downward motion of the piston.
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6 . 1 . 2  M o n i t o r  and c o n t r o l  t h e  m ov e m en t  o f  t h e  h y d r a u l i c  p i s t o n

with the potentiometer

A potentiometer (10 KV) with a stroke length of 200 mm was mounted 
on the press to measure the piston's displacement. Physically, the 
stroke of the piston was longer than the stroke of the 
potentiometer, and as a result a microswitch system was designed 
and connected to the electrical circuit of the motor of the 
hydraulic pump to protect the potentiometer. Figure (27) shows the 
design of the hydraulic system with control of the stroke which is 
linked together by an electric circuit shown in Figure (28) which 
shows the principle of the microswitch system. Firstly, the 
hydraulic piston at the top point is opened, K3 is then moved to 
point (2 ) by moving the handle of the "three position for way 
manual valve1' as shown in Figure (27). The direction of the piston 
movement will then change and the motor will run by closing K.
Secondly, when the piston is at the lower point K 2 is opened.
However, to close the electrical circuit and to change the
direction of the piston, the handle of the manual valve should be 
moved to the other initial position, so that k 3 comes back to the
point (1) and K is closed. Thirdly, the electrical circuit will be
closed by closing K if the piston is at a point between K 1 and K 2 . 
Figure (29) shows a photograph of the position of the microswitch 
*3 on the machine with the hydraulic system and Figure (30) shows a 
photograph of the assembly design of the potentiometer with 
microswitches Ki,K2 and Figure (31) shows the design of the
individual components to the microswitch system of this assembly 
design.

6.1.3 Design of the platen and tools for the press

Platen of the press and loading tools shown in Figure (32), consist 
of two knives (upper and lower with clamp); two top platforms (1  

large and 1 small); two lateral walls; a bottom plate, a base
plate, four guides, and a load cell. Figures (33) to (40) shows
the detailed drawing of these components.
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Figure(30) The potentiometer with the microswitches k,,k2
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Figures (41) and (42) show the calibration curve of the load cell 
in its "as tested" and "refined" forms respectively.

6.1.4 Instrumentation

Figure (43) shows a photograph of how the instruments are 
connected to each other.
The potentiometer was connected to the power supply of 10-15 DCV, 
through the displacement compensator. The output of the
potentiometer was plotted on to the x-direction of the
chart-plotter through the compensator as well. The function of the
compensator is to modify the position of the pen of the chart 
plotter because when the measurement start from a large output of 
the potentiometer the pen goes outside the scale. The correct 
measurement starts from the zero x-y position of the pen. The
circuit of this compensator is shown in Figure (44). The purpose of 
the condensor is to reduce the noise of the input whereas C 2 and 
C3 are to reduce the noise of the potentiometer. The Ref. is to 
maintain 10.4 volts as an output if the input from the power supply
varies between 10-40 volts, whereas is to make the ouput of Ref
10 volts exactly.

The load cell was connected to the chart-plotter so that its output 
is plotted in the y-direction through the mini-balance. Also the 
resistors were used to complete quarter of the bridge, when the 
strain on the surface of the ring was measured.

6.2 THE EXPERIMENTAL WORK

The E.P. Program has been developed for plane stress and plane 
strain deformation. The results from this program were compared 
with the results from the PAFEC Finite Element package.

To check the mathematical and physical model the results were
compared with the data obtained from the experimental work. This 
experiment was carried out on the ring structure subjected to 
static loads in three different modes:
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1 . between two knife-edges
2 . between two rigid parallel surfaces
3 . between two rigid parallel surfaces and two lateral walls with

an initial gap between the ring and the walls.
Rings were machined from tubes of mild steel. The dimensions of
these rings are given in Table (6). The experiment was carried out
by using the equipment in Figure (26). The load-deflection and 
strain-deflection are the results which were compared.

6.2.1 Modes of deformation

6.2.1.1 Between two-knife edges:

The mode of deformation of the ring between two-knife edges is
shown in Figure (45). It is obvious from this Figure that the

29section of greatest bending moments are at Section A, B,C and D . 
These moments will continue to increase by increasing the diameter. 
When the material across the whole of the section at each point has 
become plastic, yielding occurs and the ring becomes as a 
mechanism. A photograph of a ring between two-knife edges is shown 
in Figure (46).

6.2.1.2 Ring between two-rigid parallel surfaces:

A photograph of a compressed ring between two rigid parallel
30surfaces is shown in Figure (47). DeRuntz et al proceeded to

analyse the load deflection relationship on the base of
rigid-perfectly plastic theory assuming that the collapse mode 
consisted of four plastic line hinges as shown in Figure (48(a)). 
These hinges were assumed to remain stationary relative to the 
rigid portion of the ring, separation occurring from the outset 
between the ring and the rigid surfaces in the centre of the
contact zone. Others proposed the alternative mode shown in Figure 
(48(b)) in which the long ring is flattened in the contact zones 
and conforms to the shape of the plates throughout the loading. The 
contact zones terminate in hinges V, which travel outwards as the 
deformation proceeds. The horizontal hinges H remain stationary.
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TABLE ( 6 )

CASE
NO.

TEST
NO.

RING SIZE (mm)

t D L

1 8 140 60

2 6 140 60

1 3 4 140 60

4 8 218 60

5 8 100 60

6 8 140 60

7 6 140 60

2 8 4 140 60

9 8 218 60

10 8 100 60

3 11 4 140 60
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Figure(4 7 )A ring between two rigid parallel surfaces
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Figure 49 shows that increasing the deformation will result in 
decreasing the arm of the bending moment for two modes of 
deformat ion.

6. 2. 1.3 Ring between two rigid parallel surfaces and two lateral 
walls with an initial gap between the ring and the walls:

A ring between two lateral walls and two rigid parallel surfaces
with an initial gap is shown in Figure (50(a)) and in Figure(50.1).
It is obvious that the mode is the same as in the second case
(between two rigid parallel surfaces) before the ring came in touch

31with the walls. After this the mode will change. Reddy et al 
examined this mode of deformation, starting from the point in which 
the ring comes in touch with the wall for rigid perfect material.

Figure (50(b)) shows the position of five hinges at the top half of 
the ring at the point of collapse. The line of action of the
resultant force for the left-hand quadrant of the ring is 45
degrees to the horizontal and equidistant from A,E and C.

When the load is increased, rotation takes place about the hinges 
A, E and F, while the hinges at C and D travel through the ring 
wall which flattens it against the wall, as shown in Figure
(50(c)). This mode of deformation persists until the hinges,
originally at A and E, reach the same horizontal level at which 
point the hinge at E begins to travel down through the ring wall, 
as shown in Figure (50(d)). As can be seen from these diagrams the 
contact point with the rigid surface moves outwards as the 
deformation proceeds.

6.3 MATERIAL PROPERTIES

The material properties of the ring structure are approximated as 
bi-linearly elastic-plastic. These approximated properties were 
derived from the experimental curve after testing a number of 
specimens shown in Figure (51). The material properties curve 
shows the yield point, elasticity modulus and plasticity modulus. A 
number of assumptions are used in the model:
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Figure(50.D A ring between two rigid parallel surfaces and 
two lateral walls with an initial gap



( i ) Th e  m e t a l  i s  an  i s o p t r o p i c  m e t a l ;

(ii) The metal has the same properties in tension and 
compression;

(iii) It is assumed that the friction force between the contact 
surfaces is zero.

(iv) It is assumed that the model of deformation is two- 
dimensional (x-y) and so the ring length enters the problem 
as unit length.

(v) Plane strain conditions are justified when the ratio of the 
ring length to the wall thickness of the ring exceed 5, i.e. 
there is no deformation in Z direction.

6.4 STRAIN MEASUREMENTS

Strain was measured experimentally during the deformation of a ring 
using electrical resistance strain gauge technique and the measured 
results were compared with those predicted theoretically. Test 
number 6 was chosen for measuring the strain on the inner surface 
of the ring. For the plane strain condition ez = 0 a n d ^ y  on the 
surface is also equal to zero. From the components ex and Ey the 
normal strain was obtained. Figure (52) shows a photograph 
illustrating the mounting of the strain gauge on the inner surface 
of the ring. This strain gauge was linked into a quarter bridge as 
shown in Figure (53). After converting the output signal from the 
bridge the strain can be calculated from:

^ • vout
e = ------------------------- (6.1)

V . k '

where
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Figure(52) The mounting of stain gauge on the ring
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resistance as G,

FIG.(53)
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Vout ~ t l̂e outPut signal from the bridge (Volt)
V - the bridge voltage (usually 6V)
K - the gauge factor (2 . 1  in this case)

6.5 RESULTS

Results were obtained for different dimensions of a ring structure 
and different loading cases as shown in Table (6). The material 
properties which were used in the theory were taken from the 
stress/strain properties in Figure (51). In each case of loading 
the ring is symmetrical about x and y axes and hence, half of the 
ring was analysed to study the general deformation and to reduce 
the computer time. The starting mesh of 240 elements and 160 nodes 
was used for each case.

Prescribed displacements were used here to estimate the load/ 
deflection or the strain/deflection relationship. The size of the 
increment was 0.7 of the yield load and in total about 350 
increments were applied to reach 50-75 mm of deflection at the 
point which the load is applied. The following graphs are 
presented to illustrate the results obtained from the theory and 
experimental work:

Figure (54): Graph of applied load on the ring against deflection
of loaded point. This was obtained from the 
experiment for three different wall thicknesses of 
the ring with constant lengths and outer diameters 
for knife-edge loads.

Figure (55): Illustrates the load/deflection data of the loaded
point. This was obtained from the experiment for 
different outer diameters with constant wall 
thickness and length of the ring for knife-edge 
loads.
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Figure (56): Shows the load/deflection relationship which was
obtained from the experiment and the theory for a 
loaded ring between two-knife edges.

Figure (57): Shows a photograph of a ring after being squashed
between two knife-edges during the experiment.

Figure (58): Graphical output from the E.P. Program after loading
the ring between two knife-edges.

Figure (59): Illustrates the relationships between load and
deflection of the loaded point. The data in this 
figure was obtained from the experiment for the 
loaded ring between two rigid parallel surfaces for 
constant outer diameters and lengths with different 
wall thicknesses of the ring.

Figure (60): Presents also the experimental load/deflection
relationship data for the loaded point of the ring 
between two rigid parallel surfaces for different 
outer diameters with constant lengths and wall 
thicknesses of the ring.

Figure (61): Shows the load against deflection of the loaded point
of a ring between two rigid parallel surfaces. The 
data was obtained from experimental work and the 
theory.

Figure (62): Shows a photograph of a ring from the experiment
after being squashed between two rigid parallel
surfaces.

Figure (63): Graphical output from the E.P. Program after loading
the ring between two rigid parallel surfaces.
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F i g u r e  ( 6 4 ) : Shows the strain on the inner surface of the ring (at 
90° upwards of the axes which passes the centre of 
the ring) against the deflection of loaded points. 
Date was obtained from the experimental work and 
theory.

Figure (65): Shows the experimental load/deflection relationship 
for the loaded point of a ring between two rigid 
parallel surfaces and two lateral walls for a 
given dimension of the ring.

Figure (66): Shows also the load against deflection of the loaded 
point of a ring between two rigid parallel surfaces 
and two lateral walls. Data was obtained from 
experimental work and the theory.

Figure (67): Shows a photograph of a ring from the experimental 
work after being squashed between two rigid
parallel surfaces and two lateral walls.

Figure (68) Graphical output from the E.P. Program after loading 
the ring between two rigid parallel surface and two 
lateral walls.

6.6 RESULTS AND DISCUSSIONS

The results presented in the previous Section were obtained from 
different loading cases of the ring as given in Table (6).

6.6.1 Ring between two knife-edges:

According to other researchers the results of squashing the ring 
between two knife-edges suggests that the load increased over a 
certain deflection range and then fell by increasing the 
deflection. This was for the rigid perfectly plastic material, 
whereas the strain hardening material predicted that the load 
increased with increasing deflection. In both theories the moment 
arm of applied load about the hinge on the horizontal diameter of
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the ring increased with deflection, therefore the material strain
hardening properties play a significant role in defining the shape

3 2of the load/deflection curve . The experimental results from the 
present study suggest that the load increases for up to a certain 
deflection and then remained fairly constant for loading of ring 
between two knife-edges as shown in Figure (54). This Figure shows 
load-deflection curves for rings of three different wall
thicknesses.

Figure (55) shows the effect of changing the outer diameter of the 
ring on the shape of the load/deflection curve. In this Figure the 
experimental observation was made on test number 5 which shows that 
the load increased for a certain deflection and then remainded 
constant to certain level of deflection and after that increased 
again sharply.

Figure (56) shows a comparison between the load/deflection curve 
obtained from the experiment and the theory. The discrepancy 
between the two curves refers perhaps to:

(i) the load cells: When the load is less than about 16 KN, it
is obvious that from the load cell calibration curve in
Figure (42) the reading of the load is not sufficiently 
accurate because of the non-linearity of the load cell in 
this region.

(ii) the experimental model: This means theoretically it was
assumed that the material was annealed, whereas in the 
experiment the rings were machined and hence became work
hardened. These rings were tested without having been 
annealed. Thus some error will result.

(iii) inaccurate simulation of the theory: The ring was mounted
between the knives as shown in Figure (46) and also a line
marking was made on the surface of the ring where it 
touched the knives. There was very slight friction during 
the process of deformation, whereas the theory ignored it.
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(iv) the lack of accuracy in the vertical alignment of the 
loading piston of the press: This means the centre line of
the hydraulic piston is not exactly perpendicular to the bed 
of the press. Therefore, during the deformtion process the 
centre line of the upper knife may travel in a different 
plane to the centre line of the lower knife. This may have 
caused an non-uniform distribution of load on the load cell 
and hence may have given inaccurate reading.

Figures (57) and (58) show the results of deforming a ring between 
two knife-edges. These results were obtained from the 
experiemental work and the computer. Subsequently, Figure (58) 
shows a very slight difference between the deformation of the upper 
half of the ring and the lower half. This is perhaps because the 
mesh generation in both halves are not perfectly symmetrical.
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6 . 6 . 2  R i n g  b e t w e e n  tw o  r i g i d  p a r a l l e l  s u r f a c e s ;

The experimental results predicted in Figure (59) shows the shape 
of the load/deflection curve of rings under loading between two 
rigid parallel surfaces, with different wall thickness dimension. 
It is obvious that the load will increase sharply with increasing 
deflection of between 5-10 mm and then slowly for deflection for 
higher than these. This means, physically, during the deformation 
process the contact lines with the rigid surfaces split and move 
outwards as the deformation continues. Therefore, the moment arm 
of the applied load about the hinge on the horizontal diameter of a
ring will decrease. This requires an increase in the applied load
to maintain the deformation. The influence of the wall thickness 
on the load/deflection curve is clearly illustrated in this Figure. 
In Figure (60) the effect of the outer diameter of the rings on the 
load/deflection curve is illustrated.

Figure (61) shows the theoretical load/deflection curve and the 
experimental one. It is obvious that the theoretical curve is in 
reasonable agreement with the trend of the experimental one and the
theoretical model is perhaps more acceptable than the one between
the two knife-edges. The discrepancy between the theoretical and 
experimental results, as shown in Figure (61), may be attributed to 
the friction between the material surfaces in the experiment, 
which has not been taken into account in the theory, and to the 
inaccuracy of the theoretical models. The discrepancy could also 
be from the reasons, previously mentioned in Section (6.6.2).

Figure (62) shows a photograph of a ring which has been deformed 
between two rigid parallel surfaces, whereas Figure (63) shows the 
one predicted from the theory. The latter shows reasonable 
agreement of simulation of the experiment. Also, it shows a very 
slight difference between the deformation of the upper half of the 
ring and the lower half. Once again, this slight difference is 
attributed to non-symmetrical mesh configuration.
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Figure (64) shows typical results from the experimental strain
measurements on the inner surface of the ring loaded between two
rigid parallel surfaces and the strain predicted from the theory at 
point S. It can be seen from both curves in Figure (64) that the
discrepancy in strain between the experimental and theoretical
results is poor for increasing deformation. According to the 
experimental observation, the strain gauge became detached from the 
surface during the process. The agreement between the measured and 
predicted strains are good in the elastic range, although, as seen 
in Figure (64), the measurement strains are lower than the 
predicted ones. The disagreement increasing with deflection. This 
can perhaps be attributed to the fact that the measured strains are 
averaged over the length of the gauge. Theoretically, strains are 
constant over the element.

6.6.3 Ring between rigid parallel surfaces and two lateral 
walls with an initial gap between the surfaces:

Figure (65) shows the experimental load/deflection curve of a ring 
being deformed between two rigid parallel surfaces and two lateral 
walls with an initial gap. The results from the theory and 
experiment for this case are shown in Figure (66). The load levels 
when the ring touches the walls, according to the experimental 
observation and theoretical prediction, are denoted by L e and 
respectively. In the theory the lower half of the ring is a mirror 
image of the upper half during and after the loading, as shown in 
Figure (68), because the friction forces were ignored. Whereas the 
friction forces at the contact lines with the walls causes the 
upper half to deform more than the lower half, as shown in Figure 
(67), the load level at which the lower half begins to deform, 
according to the experimental observation, is denoted by Lep. It 
is obvious from Figure (67) that the experiment gives the collapse 
of the ring before the theory and also that the theoretical model 
is more acceptable. The results from the theory are in good 
agreement with the experimental results.
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Figure(62)The deformation of a ring between two rigid parallel surfaces
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Figure(67)The deformation of a ring between two rigid parallel surfaces and
two lateral walls with an initial gap





CHAPTER 7

CONCLUSION

An elastic-plastic finite element software has been developed and 
applied to general mechanical engineering problems. This software 
covers two types of solutions: (a. prescribed displacement; b. 
prescribed force) for plane elastic-plastic deformation (plane 
stress and plane strain) with two kinds of loading: concentrated
loading and uniformly distributed load. The outcome of the
computer program has been compared theoretically and experimentally
and from the foregoing it may be concluded that:

1. The method provides details of the stress and strain
distribution in the structure.

2. The method shows the extent and development of the plastic zone
with the increase in deformation of the structure.

3. The finer mesh gives the better results in terms of the 
accuracy.

4. Computer time is extensive by using the finer mesh.

5. The material strain hardening properties play a significant
role on the shape of the load-deflection curve.

7.1 FURTHER WORK

It is suggested that the following additional work could be 
undertaken in a future study to enhance the applicability of the 
program:

1, Reduce the computer time for solutions by using a banded matrix 
and more sophisticated solution routines.

2. Incorporate the unloading process in the program.
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3. Refine the program with several load conditions such as gravity 
loads, centrifugal loads, temperature loads, non-uniformly 
distributed loads, etc.

4. Incorporate the friction force in the solution of the program.

5. Improve the mesh generating subroutine by incorporating several 
kinds of meshes with more flexibility in use.

6 . Improve the graphical output of the program by using 
sophisticated graphical packages and colour monitor to display 
the contours of stress and other variables.

7. Improve the design of experimental work to make it more up-to 
date for use in the future.

8 . Develop three-dimensional solution capabilities.

9. Apply the program for analysing three-dimensional engineering 
components for extending its application to die-design and to 
complex geometry components and complex metal flow problems.
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APPENDIX A

EXAMPLES OF FINITE ELEMENTS

This Appendix includes the formulation of some examples of finite 
elements into which a component or structure is subdividied.

1.0 BAR ELEMENT

A bar element is primarily used in Trusses, and by definition, it is 
assumed to be acted upon only by axial forces. Consider the bar 
element of Figure (A.l) which has two nodes and one degree of 
freedom equal to two, in accordance with criterion (a) in Section
2.2 there should only be two polynomial constants. Therefore, the 
following polynomial is assumed:

U = ai + c^x (A.l)

Or in matrix form:

{6(x)} = {U} = [1 x ]
°1

l°2

{6 (x)} = [f(x)] {a}

(A.2) 

(A.3)

The nodal displacement parameter-polynomial constant relationship 
substituting the nodal coordinates x = 0 f x = 1 into the equation 
(A.3) one after the other, i.e.

U1 = ai + c<2(o) 

u2 = ai + a2 (l) (A.4)

The equations (A.4) may be expressed in matrix form as:

or:
{S6} = [A] {a}

{a} = [A] " 1 {Se}

(A.5) 

(A.6 )

in which:

A-l





1 0 1 L 0
[A] = , [A] - 1 = -

1 1. 1 - 1 1

(A.7)

Substitute the value of equation (A.6 ) into the value of equation 
(A.3), i.e.

{6 (x)} = {U} = [f(x>] [A] " 1 {68}
or

[Ul =

or

{U}

x x
(1- - )  -

I I

X  X

(1- - )  -
L L

(A.8 )

(A.9)

(A.10)

1.1 RELATE THE ELEMENT STRAINS TO DISPLACEMENT 

Only axial strain is present in this case, i.e.

C e} « e.
du

dx

1 1 ’U1

L 1 ,u2

Therefore
{6 } - [B] {6e}

[ B ]
1 1

L 1

1.2 THE STRESS STRAIN RELATIONSHIP

(A.11)

(A.12)

The relationship is simply given by Hook's law and 

{o} = o,'x *" Eex (A.13)

A-3



therefore

[D] = E

1.3 ELEMENT STIFFNESS MATRIX

From equation (2.55), Section (2.3.5) the stiffness matrix is

[Ke] = [B]T [D] [B] d(vol) 
(v)

d(area) , [B]T [D] [B] dx
Ar

= Ar . [E]
-1 1

1 1

dx

EAr 1 -1

•1 1
(A.14)

According to equation (2.1), Section (2.2) the load matrix is:

ip8} = [Ke] {6®} (A.15)
or

Pxl EAr
5= —  ~ - '

1 - 1 U1

Px2 1 - 1 i ,u2,
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2 .0  BEAM ELEMENT

A beam element i s  concerned with bending action as shown in Figure 
(A.2). The element has two nodes each having two degrees of freedom 
(vertical displacement and rotation).

Since the element has four degrees of freedom (Vj,©21»Vj,©2 2)> 
there must be four unknown coefficients in the polynomial 
representing displacement. Therefore, the following polynomial is 
assumed :

2 3\[ = cq + C12X + CÏ3X + CJ4X (A. 16)

Hence
dv

©2 = --- ■ 02 + 2CI3X + 3c<4X̂  (A. 17)
dx

The displacement at any point within the element is defined by v and 
0 2 > thus the displacement function in matrix form:

V
9 3 1 X  X  X a l

{5(x )} = * ■ = a 2 (A.18)
0 2 0 1 2x 3x2 a3

«4
or

{S(x)} = [f(x)J {cr} (A.19)

If the nodal coordinates are now substituted with equations (A.16) 
and (A.17) (at nodal 1: x = 0; at nodal 2: x = 1), it is possible 
to established the following equations:

V1
e 21 . =

v 2
e 22

0
0

0
0

21 31'

a l

a 2

a 3

.a4.

( A . 20)
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or:

Therefore,

in which:

{Se} = [A] {a} (A.21)

la) = [A] " 1 {Se} (A.22)

1 0 0 0

0 1 0 0

[A] - 1 1 l2 l3 (A.23)
0 1 21 312

1 0 0 0

0 1 0 0

[A] ' 1 - -3/1 2 -2 / 1 3 /12 -1 / 1

2 / 1 3 l/l2 - 2 /13 l/l2

Substitute the value of equation (A.22) with the value of equation 
(A.19), i.e.

{8 (x)} = [f(x)] [A] " 1 {6e} (A 24)

3x2 2x3 2x2 x3 3x2 2x3 -x2 x3 V1

V ( 1---- + -- ) (x- — - + — ) (------- ) (--- + — ) 0 2i
= I2 I2 1 l2 l2 l2 1 l2

6x 6x2 4x 3x2 6x 6x2 3x 3x2 v 2

92 (-- + ---) (1 - — + -- ) (----- —  ) (- -  + ---) e 22

I2 I2 1 I2 l2 l2 1 l2

(A.25)

2.1 STRAIN-PISPLACEMENT RELATIONSHIP

The only strain for a beam element is the curvature about the Z axis

A - 7



d 2v

Uî = -y
dx

l 2 l 3 1 l 2 l 2 l 3

6x V1
-- ) e21
I2 v2

®22

or
{e} = [B] (6e} (A.26)

2.2. THE STRESS STRAIN RELATIONSHIP

For a beam element the stress corresponds to o and the strain
d2v

corresponds to -y ---- , therefore
dx2

d2v
{o} = E (-y ---- )

dx2

(A.27)

or:

{a} = [E] {e} 
= [B] {€} 

[B] = [E] (A.28)

2.3 ELEMENT STIFFNESS MATRIX

[Ke] = [B]T [D] [B] d(vol) 
» v »

For the beam element d(vol) is replaced by (bdydx) b- is the third 
dimension of the beam, therefore
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[Ke]

6 12x

CMPC I2 I3
.* 4 6x 6 12x 4 6x 12x 2 6x

y - - -- [E] y —  — --  — - + - — , — “ --
1 l2 l2 l3 l l 2 l3 1 l2

y i 6 1 2x

I2 I3

2 6x

1 l2

dbydx

but:

Therefore

V2

y d b y

VI

12 61 - 1 2 61
El 61 412 -61 2 1 2

= --- - 1 2 -61 12 -61 (A.29)
I3 61 2 1 2 -61 412

The nodal loads of form;

{p6} » [Ke] {6e3 (A.30)

Fyi V1

«21 0 21
ip®} - Fy2 , i se } - v 2

,m22 . ®22 .

M 2 - is the moment about the z axis 
02 - the rotation
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3.0 THREE NODE TRIANGULAR AXI-SYMMETRIC ELEMENT

The three node triangular axi-symmetric element is used in the 
problem of stress distribution in bodies of revolution 
(axi-symmetric solids) under axi-symmetric loading. Figure (A.3) 
shows that OZ is the axis of symmetry, OR is the radial axis and the 
three node tirangular axi-symmetric element. Each one of the nodes 
has two degrees of freedom.

This gives a total of six degrees of freedom (u^,v^,U2 ,V2 ,U3 ,V3 ), 
The forces are (Frl. Fzl, Fr2, Fz2. F f3 ̂ 7 3  )

3. 1 DISPLACEMENT FUNCTION

The displacement function is given by two linear polynomials as:

u = cri + a2r + C33Z (A.31)
v = 04 + a5r + agZ

or in matrix form:

a l
a 2

u 1 r z 0 0 0

V 0 0 0 1 r z

la6j
i . e .

{5(r,Z)} = [f(r,Z)] {a} (A.32)

At node 1: r “ r l< Z = Zi, U = u l» V " V 1
At node 2 : r = r2 > Z = Z 2 , u II c ro V CM>II

At node 3 : r = r3 > Z = z3 , u cnII V = v 3

Therefore
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U 1 1 r l Z l 0 0 0 a l

V1 0 0 0 1 r l Z l a2

u 2 1 r 2 Z 2 0 0 0 a 3

v 2 = 0 0 0 1 r 2 Z2 a4

u3 1 r 3 z3 0 0 0 a 5

.v3 0 0 0 1 r3 Z 3 a 6 ,

or:

thus;

{6e] - [A] {a} (A.33)

fa} = [A] - 1 {6®} (A.34)

Substitute the value of equation (A.34) with the value of equation 
(A.32). The displacement function in terms of nodal displacement is:

{6 (r,Z} = [F(r,Z)] [A] " 1 [5®} (A.35)

in which:

[A] “ 1  
2A

r2z3~r3z2 0 -riZ3+r3Zi 0 riZ2~r2Zl
Z£ - Z3 0 Z3 - Zj 0 Zi — Z2

r 3 -  r 2 0 rj_ -  r j  0 r 2 ~ r l

0 r2Z3-r3 Z2 0 -r1Z3+r3Z1 0 r1Z2-r2Z1

0 Z2 - Z3 0 Z3 - Zi 0 Zi - Z2

0 r3 -  r^ 0 rj -  r3 0 r2 - rj[

( A . 36)

where:

I\ = a r e a  o f  t r i a n g l e
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3 .2  STRAIN DISPLACEMENT RELATIONSHIP

There are four components of strain have now to be considered.

{e(r, Z)} =
eZ
69
[YrZ

T>u

I r

■*bz
u

^az -ar

(A.37)

and substituting for u and v from equation (A.31) into the strain 
expressions, i.e.

er = a2

eZ = a 6

al a3
eg = ----  + cr2 + - Z

r r
TrZ = a3 + a5

or in matrix form:

ie(r.Z)} - [C] {a} (A.38)
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S u b s t i t u t e  t h e  v a l u e  o f  {a} from e q u a t i o n  ( A .3 4 ) :

{ê(r,Z)} = [C] [A] " 1 {Se} ( A .39)

which may be written as:

[e(r,Z)} = [B] {6e} (A.40)

where:

[B] = [C] [A] -1 (A.41)

Substitute the value of [A]-* from equation (A.3&):

[B] « ---
2&

Z2 ~ Z3 0
0 r 3 _ r 2

r2z3 ~r3 z 2
  0

+(Z2-Z3) 0
z

+-(r3-r2) 0
r

Z , - * i

-r1Z3+r3Z1

0

rl-r3

+(Z3 - ZX) 0
z

+-(r1-r2) 0
r

Z l  - z 2 0

o r i r r i

rlz2~r2zl 
  0

r
+ ( Z i - Z 2 )  0

Z

+ - ( r2- r i ) 0
r

r 3 " r2 z2-z3 rl “ r3 z3~zl r2 “ rl zl~z2

3 . 3  STRESS-STRAIN RELATIONSHIP

(A.42)

There are four components of stress that have to be considered here 
as well. Figure (A.4 ) illustrates and defines these strains and the 
associated stresses. The stress-strain equations for three- 
dimensional elasticity are presented to:
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ar az  ctq
er = --- - y ------y ----

E E E

°Z aZ a0
ez = --- - y ---  - y ---  (A.43)

E E E
09 oz crz

6 q  .  -------  -  y ---------  -  y  ---------

E E E

TrZ 2 (1+V>
#rZ = ----- “ ------------

G E

By solving for ar, o^y a 8 anc* rZ> therefore

' y y
°r 1 —  ---  0 er

l-y l-y

°Z
E(l-y) y y

- t ___ n eZ1 u
, (l+v)(l-2y) l-y l-y <

y y
°0 -— • — • 1 0 e 9

l-y l-y
(l-2y)

TrZ 0 0 0 ------ ’ftrZ
2(l-y)

{a} - [0o] {e} (A.45)

[D0 ] - the elasticity matrix.

3.4 ELEMENT STIFFNESS MATRIX

By relating to equation (2.55), Section (2.3.5) the stiffness matrix
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[Ke ] = [B]T [D] [B] d(vol)
(v)

but for a body of revolution

d(vol) = 2-rtrdr dZ

thus :
[Ke ] = [B]T [D] [B] 2n r dr dZ (A.4 6 )

As [B] depends on r and Z, the equation (A.4 5 ) has to be integrated 
with respect to r and Z. To avoid this [Ke ] can be obtained 
approximately by evaluating [B] for a centreoidal point defined by 
the coordinates.

1 1
r  = -  ( r j  + r 2 + r 3 ) and Z (Z^ + Z2 + Z3 )

3 3
The stiffness matrix

[Ke ] = 2tt[S]T [D] [B] ? A (A. 47)

where:

àk is again the area of the triangle.

4 . 0  FOUR NODE RECTANGULAR ELEMENT

Figure (A.5) shows a four node rectangular element. Each one of the 
nodes has two degrees of freedom. This gives a total of eight 
degrees of freedom (uj, v¿ , u2, v2, U3 , V3 , u^, v̂ .). The nodal forces are 
( Fx l ’Fy 1> Fx2 >Fy 2 >^x3 >^y 3 1 Fx4 >Fy4^ •

A - 1 7
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4 .1  DISPLACEMENT FUNCTION

Since there are eight degrees of freedom, eight coefficients are 
required in the polynomial describing displacement.

u = cri + cr2x + cf3y + e^xy (A. 4 8 )
v = 015 + agx + ayy + agxy

or in matrix form:
al 
a 2

u 1 x y xy 0 0 0 0
i6 (x,y)i = -

V 0 0 0 0  l x y x y
a 6 

a7 
. a8

i . e .

{5(x y) = I*U.y ] {a}

At node 1 : X = 0, y = 0 , U - UJ, V = v 1
At node 2 : X = 0 , y = b, U « u2, V * v 2

At node 3: X = a, y = o, U = u 3 , V “ v3
At node 4: X = a, y - b, u II c -p- V = v4

(A.4 9 )

Therefore,

[fie ]

U1 1 0 0 0 0 0 0 0

V1 0 0 0 0 1 0 0 0

u 2 1 0 b 0 0 0 0 0

v 2 0 0 0 0 1 0 0 0

u3 = 1 a 0 0 0 0 0 0

v3 0 0 0 0 1 a 0 0

u 4 1 a b ab 0 0 0 0

v 4 0 0 0 0 1 a b ab

° 1

a 2

a3
a4
a5
a 6

a7

.  ° 8
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or;
{Se } = [A] {a} ( A .50)

Thus:
{a] = [A]“1 [6e } (A.5 1 )

Therefore, the displacement function in terms of nodal displacement 
is:

in which:

[A] -1

{6(x,y)} = [f(x,y)] [A]'1 {5e }

1 0 0 0 0 0 0 0
1/a 0 0 0 1/a 0 0 0
1/b 0 1/b 0 0 0 0 0
1/ab 0 1/ab 0 -1/ab 0 1/ab 0
0 1 0 0 0 0 0 0
0 -i/a 0 0 0 1/a 0 0
0 -1/b 0 1/b 0 0 0 0
0 1/ab 0 -1/ab 0 -1/ab 0 1 /ab

(A.5 2)

(A.5 3 )

4 . 2  STRAIN-DISPLACEMENT RELATIONSHIP

For the plane elasticity the strain vector is:

{e(x,y)J =

Tiu

ex
? x

^ v

%
7>y

-au -3, V

IJxy
~dy x

(A.5 4)

By substituting the value of u and v from equation (A.4 8 ) with the 
value of equation (A.5 4 ) i.e.
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ey = a7 + agx
xy - a3 + a4x + afi + agy

ex = 0 2  + a 4y

( A .55)

It can be seen that the strain varies lineraly along the edge of an 
element. It can be deducted that the stresses will vary in a 
similar way.

The equation (A.5 5 ) above can be written in matrix form as:

{e(x,y) = [C] [a] (A.56)

Where:

0 1 0 y 0 0 0 0
[C] = 0 0 0 0 0 0 1 X

0 0 1 X 0 1 0 y

Substitute the value of equation (A.55) with the value of equation 
(A.56), i.e.

{e(x,y)} = [C] [A] - 1 (ee] (A.58)

{e(x,y)} « [B] {6e} (A.59)

where:
[B] = [C] [A] - 1 (A.60)

By substituting the value of [A]~* and [C] with the value of
equation (A.60) i.e.
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l y  -y l y  y
0

1 X

0 - - + ----
b ab

X
1 __--

1 y
x  -

ab a ab

a ab ab a ab ab
1 X -x X

[B]= 0 - - +   0 - + --- 0 ---- 0 --
b ab ab ab

1. x y x 1 y x y

3 ab ab ab a ab ab ab

(A.61)

4.3 STRESS-STRAIN RELATIONSHIP

The stress-strain relationship for four node rectangular elements is 
the same for constant strain triangular elements, therefore, the 
stress-strain can be expressed as:

(o(x,y)} - [D] {e(x,y)} (A.62)

where:

[D] - the elasticity matrix which has the same elements in Section 
(2.3.4)

4.4 ELEMENT STIFFNESS MATRIX

In the same way in Section (2.3.5), the stiffness matrix is:

[B]T [D] [B] d(vol) (A.63)[Ke ] =
(v)

but for element of constant thickness t :

[Ke] - t JJ [B]T [D] [B] dxdy

or
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[Ke ] = i JJ [B]T [D] [B] cfxdj (A.64)

where:

t : the thickness of element

5.0 TETRAHEDRAL ELEMENT

The simplest two-dimensional continuum element was a triangle. In 
three-dimensional problems of stress analysis its equivalent is a 
tetrahedron, an element with four nodal corners.

5.1 DISPLACEMENT FUNCTION

Figure (A.6 ) illustrates a tetrahedral element a,b,c,p in space 
defined by the x,y and z co-ordinates. The state of displacement of 
a point is defined by three displacement components u,v, and w in 
the direction of three co-ordinates and z. Thus:

{5(x,y,z)} * (A.65)

Just as in a plane triangle, where a linear variation of a quantity 
was defined by its three nodal values, here a linear variation will 
be defined by the four nodal values, therefore,

u = + a2x + a3y -V a4z (A. 6 6 )

Equating the values of displacement at the nodes we have four 
equations of the type:

ua = + a2xa + a3ya + a4za etc. (A.67)

from which aj to a4 can be evaluated.
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Again, it is possible to write this solution in a form similar to 
that in the constant strain triangular element (see Section 2.2.1 
and Appendix B). By using a determinant form, i.e.

u = (aa + bax + cay + daz) ua + (ab + bbx + cby + dbz) ub
6V

with:

bcx + ccy + dcz) uc + (aP +

1 xa ya za
1 xb 7b zb

6V = det 1 xc yc zc
1 Xp yp ZP

p  T  u p A  T  ' - p y  T  u p w u p (A.6 8 )

in which, incidentially, the value V represents the volume of the 
tetrahedron. By expanding the other relevant determinants into 
their co-factors, i.e.

xb yb Zb 1 yb zb
aa = det xc yc zc ; ba = det 1 yc zc

Xp yp Zp 1 y? zp

(A.69)
xb 1 zb xb yb i

ca = det xc 1 zc ; da = det xc yc i

XP 1 ZP Xp ^p i

With the other constants defined by cyclic interchange of the 
subscripts in the order of p,a,b,c.
The element displacement is defined by the twelve displacement 
components of the nodes as:
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{se }

wa
6b
6„

( A . 70)

with:

(6a J = '
Wn

etc.

The displacements of an arbitrary point of the form:

(A.71)

{5(x,y,z)} = [f(x,y,z) ] [A]"1 [5e ] (A.72)

5.2 STRAIN-DISPLACEMENT RELATIONSHIP

Six strain components are relevant in full three-dimensional 
analysis. The strain matrix can now be defined as:

{E(x ,y ,z )}

u
6X

“b x 
'H  v

ey
n > y

w
ez

■"& z 
<au ' i  v

fcy
15 y "ix 
"2> v -jw

^  z "dy 
'ix ^u

$zx ----  + -----

* ~d x  "3z

(A.73)
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T h e r e f o r e ,  t h e  s t r a i n - d i s p l a c e m e n t  r e l a t i o n s h i p  can  be w r i t t e n  a s :

(e(x,y,z)} = [B] {6e} (A.74)

5.3 STRESS-STRAIN RELATIONSHIP

Six stress components are presented in the stress matrix, which is 
of the form:

{o(x,y,z}

Zxy
T"yz
f z x

x[D] {e(x,y,z)} (A.75)

in which, the elasticity matrix [D] for isotropic material can be 
written as:

E(l-y)
[D] =

(1+y) ( l - 2 y )

i y / d - y )  y / d - y )  o 
1 y / ( 1 - y ) o

i o
(l-2y)

Symmetric

2 ( l - y )

0
0
0

(l-2y)

2 ( 1-y)

(l-2y)

2(1- y )

(A.76)

5.4 ELEMENT STIFFNESS MATRIX

The stiffness matrix defined by the general relationship can now be 
explicity integrated since the strain and stress components are 
constant within the element. Thus, the stiffness matrix can be 
defined as:
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[b ]t [d ] [b ] V (A.77)

6.0 ISOPARAMETRIC ELEMENTS

To ensure that a small number of elements can represent a relatively 
complex shape of type which is liable to occur in real engineering 
components, simple rectangles and triangles no longer suffice. It

is necessary to distort these simple shapes into others of more 
complex shape. For example, two-dimensional elements can be mapped 
into distorted forms as shown in Figure (A.7).

It can be seen that it is possible to use a set of curvilinear 
coordinates'^,^, which will take up unit values along the element 
edges.

It has been shown previously that for a two-dimensional element, the 
displacement function in terms of shape functions (see Appendix B) 
is given by:

U - Nju^ + N2u2 + N3U3 + Nrur
= E N ^  (A. 78)

V = Njv^ + N2v2 + N3V3 + Nrvr
=

where V r e p r e s e n t s  t h e  volume o f  t h e  e l e m e n t a r y  t e t r a h e d r o n .

in which N^ is a shape function of the curvilinear coordinates^,,^ 
and r is the number of nodes. The coordinates x and y inside the 
element domain can be described in a similar way by:

x = M^xi + M2x2 + —  Mrxr
= E M ^  (A.79)

y « Miyi + M2y2 + Mryr
* SMi y i

in which M^ is also a function of>p,
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(a) quadratic rectangular element

(c) linear rectangular 
element

(b) linear quadrilateral element

FIG.(A.7)

CARTESIAN AND CURVILINEAR COORDINATES
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For the particular case in which and are identical, i.e. the 
shape functions defining the displacement fields and geometry are 
the same, the element is termed isoparametric. Equation (A.79) 
provides the relationship between the cartesian and the curvilinear 
coordinate systems, so that appropriate transformations can be 
carried out in the stiffness formulation.

6 .1 QUADRILATERAL ELEMENTS

6.1.1 Linear element

This element in Figure (A.7(b)) is a more general form of the 
rectangular element. The displacement functions in simple 
polynomial form are of the form:

u = cri + a2^  + 0 3 *"̂  + (A.80)
v = a5 + 0 5 ^ +  a7 ag ry

The shape functions can be constructed directly as products of the 
linear Lagrange polynomials (see Appendix B).

At Node 1 : ̂  = -1, "\ = -1 and = K(l-^) (l-«\)
Since N^ = 1 where the cordinates of node 1 are 
substituted into the expressions.

Similarly for Node 2: = 1, = 1  and N2 * %(1
Node 3: 1, V  1 and N3 = &( 1+^) (1 + ̂
Node 4: = -1, 1 and N4 = %(1 — ) (1+

The four functions (Nj,N2 ,N3 ,N4) can be written as a single 
equation:

Ni = ^ 1+*fTi) (i+W ) (A. 81)

where^ ̂  and are the coordinates of Node 1.
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6 . 1 . 2  Q u a d r a t i c  e lem en t  ( F i gu r e  A . 7 ( a ) )

There are altogether eight nodes for this element with only three 
nodes along one edge. The displacement functions in polynomial form 
are:

9 9 9 9
u = gi + a2 % + a31V-+ a$\ + a5^n + + a7 ^ n + a 8 \n (A. 82)
v = ag + aLQ^+ cfU i\+ a12ŝ + ai^Vi alitI\̂ + a1 5^n+ a16^I\̂

As far as shape functions are concerned for corner nodes they should 
vary as parabolas and indirections and by definition, they
should always have zero values at the midside nodes. For midside 
nodes the construction is fairly straightforward and using Node 2:

N2 = %(1-^2) (l-i\) (A.83)

In general for midside nodes with2^£ = 0,

N i  =  ? £ ( 1 - ^ 2 ) ( l - i \ i \ l )  ( A . 8 4 )

and for midside nodes with = 0

Ni = ^(1-^i) (l-i\̂ ) (A.85)

The shape function for node 1 is:

N: = tta-^Hl-nH-t-l-i^) (A.8 6 )

In general, the shape function for corner node is given by:
Ni = <A>87)

6 . 2 STIFFNESS MATRIX FORMULATION

It has already been shown in Section (2.3.5) that the stiffness 
matrix of an element can be derived through a virtual work approach. 
Therefore, the general form of the stiffness matrix is:
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[K] = J [B]T [D] [B] d(vol)
(v)

( A . 88)

f o r  t w o - d i m e n s i o n a l  p r o b le m s :

K] = tj[B]T [D] [B] d(area) (A.89)

The [B] matrix in equation (A.89) expresses strain Ex , £ y ,  Xy .  i.e.

6 X
0

u

^x

ey ' 3 0  —

^ y

Txy V

D y  D x

or

{e(x,y)} - [L] (S(x,y) (A.90)

Substitute the value of equation (2.14) in Chapter 2 with the value 
of equation (A.90), i.e.

{£(x,y)} = [L] [f(x,y)} (A] “ 1 {6e} (A.91)

{e(x,y)} = [B] {6e} (A.92)

Therefore:

[B] = [L] [f(x,y)] [A] - 1 (A.93)
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The equation (A.93) can be written in terras of shape function as:

[B] = [L] [N]

i . e .

[B] =

^  0 Ni 0 N 2 0 ---
T>x

0 ------

^ y

-o 'a 0 Ni 0 N2 . . . .
"5y l x

(A.94)

n 2

O x  ''"3 X

nx

0   0

'b Ng
0   0

Oix
&̂N2 ^Ng

3̂ y y ''S y
N]_ rb <fcN2 6̂N 2 /"&Ng ■'TjNq

z'&y ''S x  <Sy ''ix  -'Sy ''fcx

(A.95)

However, at this point a problem arises as the shape functions for 
an isoparametric element are defined in terms of the curvilinear 
coordinates and i\__ and, therefore, cannot be differentiated
directly with respect to x and y.

In order to overcome this problem it is necessary to obtain a 
relationship between the derivatives of the two sets of coordinates. 
This is obtained by using the chain rule of partial differentiation, 
i . e .
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N -fcN -»x "&N "fcy

^  ~  + ^
■&x ' T>y '

( A . 96)

S  N "i N "ÎX I N  *^y

'~d "&x "iy

which in matrix form gives:

N ' 'b  x "dy n ’̂ N

*
"ax

-  [ J ]  '

"d x

T>N T>x -ay ~d N - $ N

* * y y

(A.97)

The matrix [J] relating the derivatives of the two systems is called 
the Jacobian matrix and its coefficients can be obtained by 
differentiating equation (A.79), which is written:

Therefore,

x = + N 2x 2 + —  Ngxg
y = N^yi + N 2y2 + —  Ngyg

[J]

^ N 2 xi yi
-»•*; -b*, -®iç x2 y2

-^Ni ^ N2 /-fcNg

\
xg ys

(A.98)

or :
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[J]

'-fcENiXi •''&

'"3 EN̂ X£ ^ EN̂ y^

(A.99)

-T) N
With [J] determined it is possible to express --

'7} N 'DN 'ix
of ——  and — . i.e.

* ^  i\̂

"3 N
and  in terms

^ y

T)N

'bx

-  [J ]" 1
'"d N *&N

'?> y

(A.100)

To complete the transformation between the two coordinate systems it 
is necessary to express d(area) in terras of dt^and dr̂ . It can be 
shown that:

dv

-&x ■a*

dX^ and di\̂  =
-ay ■ay

■ dr^ (A.101)

The cross-product of the two vectors is equal to the area of the 
elemental parallelogram concerned and thus:



or:

d(area) = d r  x dr^

d(area) = det

'fcx 'ax  

'O'st "3 »V

"&y "&y

( d ^  dr̂ )

= det [J] d^di^ (A.102)

It follows that the integration limits should be changed to ± 1 and 
the equation (A.89) can now be written as:

+ 1 +1

[K] . 1 1 [B]T [D] [B] det [J1 d1

- i  - i

(A.103)

where [B] [D] [B] is a function of jr^and r^only
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APPENDIX B

This Appendix involves some basic mathematical formulations of 
finite elements, such as a way of choosing the displacement 
functions and a way of obtaining the polynomial constants.

1.0 THE PASCAL TRIANGLE

For displacement functions of two-dimensional elements given in 
terms of simple polynomials, the Pascal Triangle Figure (B.l) is a 
useful aid for determining the combination of terms which should be 
used. The terminology used here is somewhat different from the one 
used in mathematics which deals with the coefficients of the 
binomial theorem.

Consider a series of triangles generated on a pattern indicated in 
Figure (B.2). The number of nodes in each member of the family is 
now such that a complete polynomial expansion, of the order needed 
for inter-element compatibility, is ensured. This particular 
feature puts the triangle family in a special privileged position, 
in which the inversion of the matrix [C] will always exist.

2.0 LAGRANGE POLYNOMIAL

Lagrange polynomials are often used for the construction of shape 
functions of elements in which only function values but not 
derivatives are specified at the nodes. The basic form of the 
Lagrange polynomial in a single coordinate system with n nodes is:

n n
S(x) = Z L (x) 6i (B.l)

i=0 i
n

where L (x) is called the Lagrange multiplier function and is given 
i

SOME FORMPLATIONS OF FINITE ELEMENT
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n (x-x0) (x-Xi)  (x-xi.i) (x-xi+1)  (x-xn )
L (x) = ---— ------------------------- ------------------ (B.2)
i (X ^ - X Q  ) ( X i - X l  ) ( X i - X i . ^ C X i - X i + i ) ------- ( X £ - X n )

Example (B—1):

Figure (B.3) shows the single coordinate from equation (B.2), i.e.

1 X - X^ X
L (x) =   = 1 - -

0 0 -  x i  1.

1 X X
L (x) = - = -

1 xi 1

It is also possible to apply the Lagrange polynomials to shape 
functions involving two or even three coordinates. Thus the shape 
function for a two-dimensional problem would be:

n m n m
6 (x,y) - Z E L (x) L (y)6iy (B.3)

i-0 J-0 i J

where n and m stand for the number of subdivisions or argeements in 
the n and y directions respectively. Obviously the Lagrange 
polynomials in example (B-l) can be utilized in the construction of 
shape functions for isoparametric elements although it is necessry 
to shift the coordinate origin from the left end to the centre and 
change the variables from x/L to (l+'3̂ )/2 in the expressions.

3.0 NODAL DISPLACEMENT PARAMETER POLYNOMIAL CONSTANT RELATIONSHIPS

Since both u and v have the same shape function it is only necessary 
to find the relationship. From equation (2.10), i.e.
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ua = Q! + ct2x a + a3ya

ub - a! + a2xb + a3yb

uc = ai + a2xc + a3yc

(B.4) 
(B. 5 ) 
(B. 6 )

The polynomial constants can be expressed in terms of the nodal 
displacements by carrying out Gaussian elimination as follows:

(i) Eliminate by performing equation (B.5 ) - equation
(B.4 ) and equation (B.6) - equation (B.4 ),

ub ~ ua * (xb - xa) a2 + (yb - ya ) a3 (B.7)
uc - ua = (xc - Xa) ct2 + (yc - ya ) a3 (B.8)

(ii) Eliminate a2 by performing the calculations of equation 
(B.8) x (xb - xa) - equation (B.7 ) x (xc - xa).

(xc - xb) ua + (xa - xc) ub + (xb - xa) uc 
= {(Xb - xa) (yc - ya) - (xc - xa) (yb - ya)} a3

or:

1

a3 -  ------ (*cbua + xacub + xbauc) ( B- 9 )
2 ^

Where xcb - (xc - xb) and yba = (yb - yc), etc, and &  is 
in fact, the area of triangle abc and can be computed (see 
Appendix C) and equation (2 .6 ) in Chapter 2 .

(iii) Compute a2 by substituting equation (B.9) with equation 
(B.7 ),

1
a2 = --- (ybc ua + yca ub + yab uc) (B.10)

2&
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( i v ) Compute cq by substituting equation (B.9) and equation 
(B.10) with equation (B.4),

1
cq —  [ (xbyc-xcyb)ua+(xcya-xayc)ub+(xayb-xay-xbya)uc] (B. 11) 

2 k
Writing equations (B. 11),(B.10) and (B.9) in matrix form:

°1 1

a2 , = —

,a3 . 2 £k

xbyc-xcya
7bc
xcb

xcya“x ayc xayb_xbya 

yca yab
'ac xba

ua
ub
.uc

(B.12)

The expressions in equation (B.12) can be considered by 
introducing the notations given in equation (2.5), Section 
(2.2.1) and equation (B.12) now becomes:

V 1 aa ab ac ua
a 2 • - ■ r i ba bb bc -ub (B.13)

a3. 2 ii, ca cb cc uc

and a similar equation can be written for v displacements

a4 1 aa ab ac ua
1 a5 • — ba bb be ■ ub (B.14)
,a 6 , 2 L ca cb cc . uc

The [A]-* matrix unlike in Section (2.3.2) in Chapter 2,
must now be constructed from equation (B.13) and (B.14)

[A]-1

aa 0 ab 0 ac 0

ba 0 bb 0 bc 0

1 ca 0 cb 0 ce 0

--- 0 aa 0 ac 0 a
2 A 0 ba 0 bc 0 b

0 ca 0 cc 0 c

(B.15)
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4.0 DISPLACEMENT FUNCTIONS IN SHAPE FUNCTION FORM

From the previous cases it was shown that

{6(x,y)} - [f(x,y)] 

= [N] {6 3 }

[A] ' 1 {5e}

(B.15)

where:

tN] is the shape function

[N] = [f(x,y)] [A] - 1 (B.16)

For the constant strain triangle:

1 aa+bax+cay ] 0 ! abHbbx+cby j
[ N]---- 1

1
1
1

0 j aa+bax+cay 1
1 0 j

o 1
l
ac+bcX+Ccy l 0

1

*a+bbx+cby ! 0 j ac+bcx+ccy

La 0 Lb O•JO

0

[N] =
0 La 0 Lb 0 Lc

C B.17)

Where:

La, Lb, Lc are the area coordinates and the shape functions are 
simply the area coordinates, thus:

N„ La» Nb m Lb, Nc "* (B. 18)
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and t h e  d i s p l a c e m e n t  e q u a t i o n s  can be w r i t t e n  i n  t h i s  fo rm :

u = Naua + Nbub + Ncuc (B.19)
v - Nava + Nbvb + Ncvc

This is obvious as each individually gives unity at one node, zero 
at others and varies linearly everywhere.
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APPENDIX C

AN INTEGRATION FORMULAE FOR A TRIANGLE (FIGURE 2 )

Let a triangle be defined in the x-y plane by three points (xa,ya), 
(xb,yb), (xc,yc) with the origin at the coordinates taken at the 
centreoid, i.e.

xa + xb + xc ya + yb + yc
---------------------------------         =  o

3 3

Then integrating over the triangle area:

1 xa ya
d x d y  = Hi 1 xb yb = A  = area of triangle

1 xc yc
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APPENDIX (D)

A matrix is an array of terms as shown in equation (D.l) below. 
The terms may be pure numbers, constants or variables

1 .0  MATRICES

a l i a l  2 a 1 3 a l n

a21 a22 a 23 a 2n

a 3 1 a 3 2 a 32 a 3 n

a m l a m2 a m3 a mn

The matrix has m rows and n columns and is said to be a mxn 
matrix. If m = n ,  the matrix is called a square matrix. If n = l  

the matrix consists of single column and is usually called a 
column vector. If m »l the matrix has a single row and is called a 
row vector. The element a ^  lies on the leading diagonal.

A set of linear equations can be represented in matrix form as 
follows:

a l l x l + a 1 2 x 2 + a  1 3 X 3 = b x

a 2 1 x l + a 2 2 x 2 + a 2 3 x 3 b2
a 3 1 x l + a 3 2 x 2 + a 3 3 x 3 b 3

or:

a l l  a 1 2  a 1 3 X1 b l

a 2 1  a 2 2  a 23 x2 . -  . b2
a 3 1 a 3 2  a 3 3 kx 3 . , b 3 .
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5 . 2 MATRIX OPERATIONS

5.2.1 Transpose matrix

TThe transposition of matrix [A] is denoted by [A] and is obtained 
by interchanging rows and columns. Using equation (D.l) as an 
example:

all a 21 a31 --- aml
al 2 a 22 a32 --- am 2

a13 a23 a33 --- am3

ain a2n a3n amn

5.2.2 Addition and subtraction

Matrices can only be added or subtracted if they are of the same 
order. The process consists of adding or subtracting
corresponding terms, e.g.

all a 12

±
bll b 12

m
(aH ± bu ) (a12 ± b1 2)

a 21 a 22 b 21 b 22 (a 2 1 ± b2i) (a22 ± b2 2)

5.2.3 Multiplication

Two matrices may be multiplied by each other only if the number of 
columns in the first is equal to the number of rows in the second. 
The terms in the product matrix are obtained by taking the solar 
product of each row of matrix [A] with each column in matrix [B], 
e.g.
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all a 12 bll b 12 (ai lbn+ai2b 21 > (aU b1 2+ai2b2 2)

a 21 a 22 b 21 b 22 (a2 1bll+a2 2b2 l) (a2 1b1 2+a2 2b2 2 )

5.2.4 Transposition of product

The transposition of a matrix product of matrix [A] and [B] is
m m

equal to the product of [B] and [A] , i.e.

([A] [B])T = [B]T [A]X

5.2.5 Determinant

The determinant of matrix [A] is denoted det [A]. For n=l and n=2 
we have these definitions:

a b
det [a] = a ; det “ ad - be

c d

5.2.6 The cofactors and minors

The minor of the element in the ith row and jth column is the
determinant of the (n-1) by (n-1) matrix when row i and column j
are deleted. The cofactor of a^j is denoted by Ajj and it is 
(-1)^+J times the minor of a^j.

5.2.7 Matrix inversion of a square matrix

The inversion of a matrix [A] is denoted by [A ]— ̂ and satisfies
the relation

[A] " 1 [A] = [I]

where [I] is an identify matrix. An identify matrix consists of 
unity values down the leading diagonal with zeros elsewhere, e.g. 
for 3 x 3  matrix
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[ I ]

1 0 0

0 1 0
0 0 1

Matrix inversion is analogous process to the division of a scalar 
quantity. To invert a matrix the adjoint of the matrix adj[A] has 
to be defined.

adj[A] = transposed matrix of cofactors

The inverse matrix is given by

adj[A]

det[A]

If det[A] = 0 the matrix is said to be singular.

The inverse does not exist.

To find the det[A] for a matrix [A] of order 3, each element of 
the first row should be multiplied by its cofactor and added 
together.

5.3 Symmetric matrix

A square matrix in which a^j = aji is called a symmetric 
matrix.
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APPENDIX (E)
ASSEMBLY OF OVERALL STIFFNESS MATRIX

Consider the following structure shown in Figure (E.l(a)) in which 
the definitions of the triangle are:

Element No. Node i Node J Node m

1 1 2 3
2 2 4 3
3 2 5 4

If the structure is split up into its component elements and the
external forces are divided between the appropriate elements in
Figure (E.l(b)), then it is obvious that from joint equilibrium:

PLx l = * x l
Node 1

= 0

’pXx2
' 2 '3  

+ P x2 + P x2 0

Node 2

,P1y2
* 2 ' 3 

+ P y2 + P y2 - py2

' 2 
+ P x3 = px3

Node 3 (E.l)
Pl y3 ' 2 

+ P y3 = py3

P2x4
'  3 

+ P x4 = px4
Node 4 1

' 2
,P y4

/• 3 
+ P y4 = 0

r;3P x5 = px5
Node 5

' 3,P y5 = 0
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From e le m en t  e q u i l i b r i u m  and d i s p l a c e m e n t  i t  can be w r i t t e n :

klii klij k  ̂im ' 61 ’ P*1

klji kljj kljm • 6 2 , = . P1 2 1 for element 1

k1 • *• mi klmj k1mm 63
. PX3

k2ii k2ij k2im s 2 P2 2
k2ji k2jj k2jm 64 * =s 1 P24 for element 2
k 2 • k2 • k 2 K mi *■ mj *■ mm 63 . p23

k3ii k3ij k3im s 2 P3 2

k3Ji k3jj k3jm 65 ' = ■ P35 for element 3

k3 • k3 k3 ^ mi *■ mm *• mm 5 4 . P34

( E . 2 )

In which the superscripts refer to the element numbers, and K 
6j, P̂ ]., etc. are submatrices involving x and y components. By 
substituting the value of equation (E.2) with the value of equation 
(E.1) gives

klii5l + klijs 2 + klims3 = P1!
*xl

klji6l + (klJJ + k2ii + k3 i i)6 2 + (kljm + k2im)63 + (k2ij + k3im)64

+ k3¿j 65 -  PL2 + P22 + P32

?y2

k mi^l + (k mj + k mi)®2 + (k m̂ra + k2mm ) 53 + k2mj®4 = + P^3 -

'  px3 ‘

j|

. py3 .
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( k 2j i  + k  m i )  ̂2 +  k  jm 6 a 4 3  + k j j  + k  1 ^ ) 2 4  + k mj B 5 » B 4 + P 4

px4

k3j i s 2 + k3jm64 + k3j j 55 “ p35

or

px5

k  ̂ii k  ̂ij k ira ' «1 ‘ ' P 1 '

klji kljj klJm fc2ij k3ij

+ k2u  + k2im +k3im fi2 p 2

+ k3u

k^mi k^mj k ram k raj 63 ■= « p3

+ k^mi + k mm

k2ji k2jm k2jj k3mj 64 p4

+ k3 < + k3 + K mi + K mm

b-3 i,3 v3 k ji k jm k jj . G5 . p5k >

( E . 3 )

Where:

{p} the overall load matrix 
/ / / / /

- Pxi> px2 - px3 * pxy> px- ~ are tbe equilibriating forces.

The above process describes the theoretical basis of combining the 
individual element equations to form the overall structure 
equations.
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APPENDIX (F)

LISTING OF E.P. PROGRAM WITH THE USER'S MANUAL

1.0 PROGRAM VARIABLE NAMES

The following are some computer program variable names used in 
connection with E.P. Program:

1.1 MAIN PROGRAM 

Command block

TITLE ( 1 2 Title of the problem
IIF Number of restricted points
FTx, FTy The spans of X and Y axes which refer to the graph
FX1, of FY1 structure before and after loading
NIH Temporary store for IPR and IPI
NP Number of points
NE Number of elements
NSZF Number of degrees of freedom in structure
TOL Solution convergence tolerance
DY Current increment
YTOT Load increment
IUZ Temporary store of the lowest point of the outer 

ring
NROWS Number of rows in the total structure-displacement 

vector which do not contain prescribed 
displacement

FN The total force exerted at the anvil/workpiece 
interface resulting from the displacement value 
prescribed

G Shear modulus
CE The first load increment size
BE The final load increment size
IH The number of the highest point in "Y" direction 

(reference coordinate)
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LF

IPR,IPI

NX(50)
JJF
JIO

NIO

MIO

E l ( 3 , 3 )

ISC

DISPL(600)
BOD(600)
REC(600)
IOPT

DSY

IZO

Number of the highest point in "Y" direction 
(reference coordinate)
Number of the longest point in "X" direction 
(reference coordinate)
Number of intervals 
Number of the loaded points 
Print control variable:
JIO = 0 print input data
JIO = 1 does not print input data
Option control variable for plane elasticity:
NIO = 1 plane strain
NIO = 2 plane stress
Option control variable for load condition 
MIO * 1 concentrating load 
MIO * 2 ring case (2)
MIO = 3 ring case (3)
MIO = 4 uniform distributed load 
Elasticity matrix for plane stress 
Option control variable for drawing 
ISC - 1 draw the case studied before and after 

loading beside each other 
ISC = 2 draw the case studied before and after 

loading at each other 
Vector of nodal displacement 
Vector of temporary store of displacement 
Vector of temporary store of reaction 
Option control variable for solution:
IOPT = 1 "prescribed force"
IOPT - 2 prescribed displacement
Option control variable for drawing:
DSY = 1. draw structure before loading 
DSY > 1. draw structure after loading 
(This can be done automatically inside the 
program)

Option control variable for automatic mest 
variable:
IZO = 1 automatic mesh generating for nodal 

points and element definition
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IOT

NV

TG(12)
KF

NIN(IO)

XIN(IO)

LPIN
INLP
CORD(600, 2) 
NOP(600,3) 
PROP (5)

D (3,3) 
SK(600,600)

IZO = 2 read number of points, number of
elements, nodal coordinates and element 
definition from input command 

Option control variable for output 
IOT = 1 print output of the displacement, the 

final coordinate, stress, strain, and 
reaction force 

IOT = 2 print output of displacement and 
reaction force 

IOT = 3 print output of stress and strain 
IOT = 4 print output of the normal strain on the 

inner surface of the ring and the 
displacement

Number of pairs of values giving information of 
the number and size of load increment.
The title of graph 
Stop variable:
KF = 0 program is continuing
KF = 1 program is stopping
Vector containing the number of increments
associated with a particular increment size
Vector of different increment size to be
applied. This vector is used in association with
NIN(IO).
Temporary store of the number of increments
Counter of LPIN
Stores of x and y coordinates
Stores of the elements definition
Material propoeties: vector:
PR0P(1): Young's modulus
PR0P(2): Poison's modulus
PR0P(3): material yield stress
PR0P(4): slope of equivalent stress/strain curve
PR0P(5): thickness of the material
Elasticity matrix for plane strain 
Stiffness matrix of the structure
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BOUN(öOO)

TAREA(600)

JROW (600)

FORC (600)
ETA (600,4) 
SIG (600,4) 
JCOL (600)

SEQI (600)

SEQF (600)

ELETA (600,4) 
ELSIG (600,4) 
DIS (600,2) 
LYD (400)

TION (600,2)

EEQ (600)
EEQ (600)

ESTIFM (6 ,6 ) 
Unit - 3, 
Unit - 7, 
Unit = 8

Vector of boundary condition:
BOUN ( ) = 1.0 for freedom
BOUN ( ) = 0 . 0  for restrained
Vector of value of element area multiplied by
element thickness
Vector containing the number of the rows of the
total displacement vector
Overall load vector
Total strain vector
Total stress vector
Vector containing the number of the rows of the 
total displacement vector
Total equivalent stress vector at the start of a 
load increment
Total equivalent stress vector at the end of a 
load increment
Vector of elastic strain increment 
Vector of elastic stress increment 
Stores of x and y displacements
Vector has expressed the situation of the elements 
in terms of elastic or plastic:
LYD ( ) - 1 the element has yielded
LYD ( ) - 0 the element still elastic
Vector containing the x and y reaction for at each
node
Equivalent strain vector when IOT = 1,3 
Normal strain on the inner surface of the ring 
when IPT = 4
Individual element stiffness matrix 

Logical channel numbers

1.2 SUBROUTINE GDAT

YL (50) Vector containing the y coordinates of starting 
points of generating lines
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XL (50) Vector containing the x coordinates of starting
points of generating lines 

XF (50) Vector containing the x coordinates of the ending
points of generating lines 

YF (50) Vector containing the y coordinates of the ending
points of generating lines 

NOD (4) Vector containing a temporary store of element
def inition

SUM1 (40) Vector containing a temporary store of coordinate
factors

1.3 SUBROUTINE STIFT(N)

B (3,6) Matrix relating element strains to element nodal
displacement

H (3,6) Matrix resulting from multiplication of
D (3,3) x B (3,6)

1.4 SUBROUTINE SOLV 3

SUBK (600,600) Transition matrix enabling the overall stiffness 
matrix to be re-formed in partitions 

UERES (600) Vector containing the values of prescribed 
displacements
UPRES ( ) = 00 at restrained 
UPRES ( ) - 1 at non-restrained

1.5 SUBROUTINE GAUSS

Lp (600)
Lq (600,2)
R (600) are: Transition matrices enabling the inversion of

appropriate partition of the overall stiffness 
matrix



1.6 SUBROUTINE SOLV 4

U (600) 
R (6 )

Vector of unknown displacement 
Vector of element displacement value

1.7 SUBROUTINE SOLV 1

SS (600) Vector containing a temporary store of the applied
load

SL (600,600) Temporary store of stiffness of structure

1 . 8 SUBROUTINE TOTAL

Xi (2500) 
Yj (2500) 
X 2 (2500) 
Y 2 (2500) 
X 3 (2500) 
Y 3 (2500)

The temporary store of the nodal coordinate before 
loading

DSEQ

Unit = 12 
Unit = 14

Incremental value of equivalent stress for each 
interation

The logical channel numbers

1.9 SUBROUTINE PLAST

FMAT (4) Corresponds to vector { —  }
'io

GFMT (4) 
DEVX, 
DEVY, 
DEVZ

Vector of differentation

Deviatoric stress values
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FTM (3),
STM (3,3), ' Sub-matrices used in calculation of
TTM (3,3) . elastic-plastic matrix

DELPL (3,3) The elastic-plastic matrix
SINC (4) Vector of plastic stress increment
SBF (4) Corresponds to vector of stress to be supported by

body forces
BF (6 ) Vector of equilibrating body forces for an

element
REAC (600) Load in which all body forces are assembled

X n  (2500) 
Y n  (2500) 
X 2 2 (2500) 
Y 2 2 (2500) 
X 3 3  (2500) 
Y 3 3  (2500)

The temporary store of nodal coordinates after 
loading

1.10 SUBROUTINE GRAPH

X (2500)
Y (2500)

Xc (2500) 
Yc (2500) 
Xce (2500) 
Yce (2500) 
Xcl (2500) 
Ycl (2500)

Temporary store of x y coordinate of the nodal 
points

Temporary store of the x-y coordinates of the 
centre of the elements before and after 
loading
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2.0 INSTRUCTIONS FOR PREPARING DATA

The instructions are provided here for the E.P. Computer program,
which is developed in the current work. The input data for running
the program is put in input command with free format. This was done
to save the time for preparing data. The input command consists
o f :

CARD SET 1 one card (18A4)

Titlei Title of the problem

CARD SET 2 one card (15, 2F10.4, 415, 813)

IIF Number of restrcited points
FTX The span of the x-axix for drawing the case studied
FTY The span of the y-axix for drawing the case studied
IH The number of the highest point in y direction
LF The number of the highest point in y direction
IPR The number of the longest point in x direction
IPI The number of the longest point in x direction
JJF Number of the loaded poind
JIO Print control variable:

0  - print input data
1 - does not print input data

NIO Option control variable for plane elasticity:
1 - plane strain
2 - plane stress

MIO Option control variable for load condition:
1 - concentrating load
2 - ring case (2 )
3 - ring case (3)
4 - uniform distributed load

ISC Option control variable for drawing:
1 - draw the case studied before and after loading,

beside each other
2 - draw the case studied before and after loading,

at each other
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IOPT

IZO

IOT

1 - prescribed force
2 - prescribed displacement
Option control variable for mesh variable:
1 - automatic mesh generating
2 - read number of points, number of elements, nodal

coordinates and element definition from the input 
command

Option control variable for output
IOT = 1 print output of the displacement, the final

coordinate, stress, strain and reaction 
force

IOT = 2 print output of displacement and reaction
force

IOT •= 3 print output of stress and strain
IOT = 4 print output of the normal strain on the

inner surface of the ring and the 
displacement

Option control variable for solution:

CARD SET 3 one card (E10.4, F10.2, E10.4, 2F10.4)

PROP (1) Young 1s modulus
PROP (2) Poison's modulus
PROP (3) Material yield stress
PROP (4) Slope of equivalent stress/strain curve
PROP (5) Thickness of the material

CARD SET 4 one card (2F10.4)

CE The first load increment size
BE The final load increment size

CARD SET 5 one card (15, F10.4)

NV Number of pairs of value giving in formation of the
number and size of load increment 

TOL Solution convergence tolerance
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CARD SET 6 one card for each NV in Card Set 5 (15, FIO.4)

NIN

XIN

Vector containing the number of increments associated 
with a particular increment size
Vector of different increment sizes to be applied, this 
vector is used in association with NIN (10)

CARD SET 7 one card for each IIF in Card Set 1 (15, 2F10.2)

K

U
V

Number of restricted node 
Boundary condition in x direction 
Boundary condition in y direction

NOTE:

U = 0.0 The point is restricted in x direction
U = 1.0 The point is free in x direction
V = 0.0 The point is restricted in y direction
V = 1.0 The point is free in y direction

CARD SET 8 one card for each JJF in Card Set 1 (I5,2E16.8)

K The number of loaded points
Fx The external applied load in x direction
Fy The external applied load in y direction

NOTE: If the signal of Fx or Fy positive,that means tension
force
If the signal of Fx or Fy negative, that means 
compression force
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CARD SET 9 one card (15, F10.5)

NY The number of generating lines
CONI A weighting factor

CARD SET 10 one card for each NY in Card Set 9 (15, 4F10.5)

NX Number of intervals
XF The x coordinates of the starting point of the

generating line
YF The y coordinates of the starting point of the

generating line
XL The x coordinates of the final point of the generating

1 ine
YL The y coordinates of the final point of the generating

line

CARD SET 11 one card (18A4)

TG Title of the graph

NOTES:

1. If MIO, in Card Set 1 equals four, then Card Set 9 becomes one
card for each JJF in Card Set 1 (215, E16.8)

K Number of first loaded point by uniform distributed
load

NY Number of the following loaded points by uniform
distributed load 

ZY The uniform distributed load between the previous two
points, K and NY

2. When MIO = 4 in last note, JJR in Card Set 1 becomes the number 
of the loaded edges by external uniform distributed load.



3. If IOPT = 2, in Card Set 1, then Card Set 3 becomes one card 
for each number of loaded point JJF in Card Set 1 (15, 2E16.8)
with:
Fx The prescribed displacement in x direction
Fy The prescribed displacement in y direction

4. If IZO = 2 in Card Set 1, then Card Set 9 becomes one card 
(215)
NP Number of the total points in the structure
NE Number of the elements in the structure

CARD SET 10 one card for each NP in the previous card, Card Set 
9 (110, 2F16.8)

N Number of points
CORD The x and y coordinates for each point in the structure

CARD SET 11 one card for each NE in Card Set 9 (15, 3110)

L Number of elements
NOP The element definition for each element in the

structure

CARD SET 11 one card (18A4)

TG Title of the graph

5. For the graph representation of the structure, the first nodal 
coordinate should be taken greater than zero. In others words, 
the graph should be started from a point in x - y plane not 
from the original coordinates.

6 . When IOPT = 3 the variable NIN(3) should have different 
values during the execution, i.e. NIN(l) * NIN(2) 4  NI(3).

(Table (F.l) shows two different types of input data)
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3.0 LISTING OF THE E.P. EROGRAM

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c *  *
c * *
C * COMPILER :FOR FILENAME * LINK FILENAME,CALCOME/LIB *
C * *

C *  *
C * *** THE MASTER EROGRAM *** *
C * *
C * *

C * DATE: 10-5-1989 WRITTEN BY: MOHAMAD M. SALEH *
C *  *

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c  ----==========------- =======----- =======----============
c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C CONTROL MAIN EROGRAM
COMMON /BL0CK01/ TITLE(12),IIF,FTX,NE,NE,NSZF,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS,FN,G,CE,BE,IH,LF,IER,NX(50),JJF,JIO.NIO,
3 MIO,D1(3,3),
4 FTY,IEI,ISC,DISEL(600),BOD(600),REC(600),IOET,
5 DSY,IZO,IOT

COMMON /BLOCK02/ NV,TG(12),KF,NIN(10),XIN(10),
1 LEIN,INLE

COMMON /BLOCK03/ CORD(600,2),NOE(600,3),EROE(5),
1 F X 1 ,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

KF=0

READ INEUT DATA

CALL GDAT
OEEN(UNIT=3,FILE=1 SCRATCH:FINITE.DAT 1,STATUS=1 OLD 1) 

CALL GDATA 
CLOSE(UNIT=3,STATUS='KEEE')

CREATE MESH

IF(IZO.N E .1) GO TO 20
OEEN(UNIT=7,FILE= 1 SCRATCH:COOR.DAT',STATUS= 1 OLD 1) 
CALL COORGEN
CLOSE(UNIT=7,STATUS='KEEE1)
OEEN(UNIT=8 ,FILE='SCRATCH:ELGEN.DAT 1 ,STATUS='OLD') 
CALL ELGEN
CLOSE(UNIT=8 ,STATUS='K E E E ')

20 CONTINUE
NSZF=NP*2

C
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C LOOP THROUGH INCREMENTS
DO 600 N=1,NV 
LPIN-NIN(N)
DY=XIN(N)
DO 500 INLP=1,LPIN

C
C DISPLACE WORKPIECE UNDER PRESSURE
C

OPEN(UNIT=3,FILE='SCRATCH : FINITE.D A T ',STATUS- 1 OLD 1 ) 
CALL LOAD
CLOSE(UNIT=3,STATUS='KEEP')

C
C FORM AND SOLVE EQUATIONS
C

CALL FORMK
IF(IOPT.NE.1) GO TO 60
OPEN(UNIT=4,FILE=1 SCRATCH :MATFIN.DAT',STATUS= ' OLD ' ) 
CALL SOLV1
CLOSE(UNIT-4,STATUS='KEEP 1)
CALL TOTAL
OPEN(UNIT=4,FILE-'SCRATCH:MATFIN.DAT',STATUS='OLD 1) 
CALL PLAST
CLOSE(UNIT-4,STATUS='KEEP')
GO TO 65

C
C CALCULATE STRESSES
C
60 CONTINUE

CALL SOLV3 
CALL GAUSS
OPEN(UNIT=4,FILE-'SCRATCH :MATFIN.D A T ',STATUS- ' O L D ') 
CALL SOLV4
CLOSE(UNIT-4,STATUS-'KEEP')
CALL TOTAL

C
C
C ELASTIC-PLASTIC ANALYSIS
C
C

OPEN(UNIT-4,FILE-'SCRATCH :MATFIN.D A T ',STATUS-'O L D ') 
CALL PLAST
CLOSE(UNIT-4, STATUS-'KEEP')

65 CONTINUE
C
C
C STORE OUTPUT
C

CALL OUTPUT
IF(ABS(YTOT).LT.BE) GO TO 300 
CALL GRAPH 

300 CONTINUE
IF(KF.EQ.1) GO TO 700 

500 CONTINUE
600 CONTINUE
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700 STOP 
END

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C * SUBROUTINE GDAT
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE GDAT
COMMON /BLOCKO1/ TITLE(12) , IIF,FTX,NP,N E ,NSZF,

1 TOL,D Y ,YTOT, IUZ,
2 NROWS,FN,G,CE,BE,IH,LF,IPR,NX(50),JJF,JIO.NIO,
3 MI0,D1(3,3),
4 FTY,IPI,ISC,DISPL(600), BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCK02/ NV,TG(12),KF,NIN(10),XIN(10),
1 LPIN,INLP

COMMON /BLOCK03/ C0RD(600,2),N O P (600,3),PROP(5),
1 FX1.FY1.NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600, 4),ELSIG(600,4),DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

DIMENSION YL(50),XF(50), YF(50),N0D(4),SUM1(40),
1 XL(5 0 )

C
READ AND ERINT TITLE

WRITE(6 ,4)
READ(5,3)TITLE 
FORMAT(18A4)
READ(5,*) IIF,FTX,FTY,IH,LF,IPR,IPI,JJF,JIO,NIO,MIO,

1 ISC,IOPT,IZO,IOT

READ AND PRINT MATERIAL DATA 

READ(5,*) (PROP(J),J=1,5)

READ AND PRINT INCREMENT DATA

READ(5,*) CE,BE 
READ(5,*) NV,TOL 
READ(5,*) (NIN(J),XIN(J),J = 1 ,NV)

READ AND PRINT OUTPUT CONTROL DATA

OPEN(UNIT=3,FILE»1 SCRATCH:FINITE.DAT',STATUS»'NEW') 
WRITE(3,5) TITLE
WRITE(3,8 ) IIF,FTX,FTY, IH, LF,IPR,IPI,J J F ,JI O ,NIO,MIO, 

1 ISC,IOPT,IZO,IOT
WRITE(3,7) (PROP(J),J=1,5)
WRITE(3,13) CE,BE 
WRITE(3,6) N V ,TOL 
WRITE(3,11) (NIN(J),XIN(J),J=1 ,NV)
IF(MIO.E Q .4) GO TO 18 
DO 16 NC=1,IIF 
READ(5,*) K,U,V 

16 WRITE(3,21) K,U,V
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DO 17 NB=1, JJF 
READ(5,*) K ,F X ,FY 
WRITE(3,14) K ,F X ,FY

17 CONTINUE 
GO TO 19

18 DO 30 1=1,IIF 
READ( 5 , * ) K,U,V

30 WRITE(3,21) K,U,V
DO 3 2 JJ=1,JJF 
READ(5,*) K ,N Y ,ZY 

32 WRITE(3,22) K ,N Y ,ZY
19 CONTINUE 

IF(IZO.EQ.1) GO TO 28 
DSY=1.
READ(5,*) NP,NE 
WRITE(3,1006) NP.NE 
DO 105 J =1,NP
READ(5,*) N,(CORD(J,M),M=1,2)
WRITE(3,1002) N,(CORD(J,M),M=1, 2)

105 CONTINUE
DO 110 K=1,NE
READ(5,*) L,(NOP(K,MM),MM=1,3)
WRITE(3,1003) L,(NOP(K,MM),MM=1,3)

110 CONTINUE
READ(5,119) TG 

28 CONTINUE
CLOSE(UNIT=3,STATUS='KEEP')
IF(IZO.NE.1) GO TO 450

C
C READ AND PRINT COORDINATE DATA
C

READ(5,*) NY,CONI 
DO 100 1=1,NY
READ(5,*) N X (I ),XF(I),YF(I),XL(I),YL(I)

100 CONTINUE
READ(5,119) TG
OPEN(UNIT=7,FILE='SCRATCH:COOR.DAT1 ,STATUS='NEW' ) 
WRITE(7,1001) NY,CONI 
DO 101 1=1,NY

101 WRITE(7,1000) N X (I ),X F (I),Y F (I),XL(I ),Y L (I )
C
C GENERATE POINTS COORDINATE
C

N=0
DO 350 1=1,NY 
NXI=NX(I)+1 
SUMI(1)=0.0 
SUMI(2)=1.0 
SUM=1.0
IF(NXI-2) 190,291,190 

190 DO 250 K=3,NXI
SUMI(K)=SUM1(K-l)*C0N1 
SUM=SUM+SUM1(K)

250 CONTINUE
291 CONTINUE
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X=XF(I)
Y=YF(I)
DO 300 J=1,NXI 
N=N+1
X=(XL(I)-XF(I))*SUM1(J )/SUM+X 
Y=(YL(I)-YF( I ))*SUM1(J )/SUM+Y 
WRITE(7,1002) N,X,Y 

300 CONTINUE
350 CONTINUE

NP=N
CLOSE(UNIT=7,STATUS='KEEP')

C
C GENERATE AND PRINT ELEMENTS
C

OFEN(UNIT=8 ,FILE='SCRATCH:ELGEN.D A T ',STATUS»'N E W ') 
M=0
NSUM=0 
NYI=NY-1 
DO 600 1=1,NYI 
NXI=NX(I)
DO 500 J=1,NXI 
IF(J-NXI) 379,371,379 

371 IF (N X (I+1)-NX(I )) 380,379,401
3 79 NOD(1)=J +NSUM

NOD(2)=NOD(1)+1 
NOD(3)=NOD(2)+NXI+1 
NOD(4)=NOD(3)-1 
GO TO 412 

380 NOD(1)=NOD(2)
NOD(2)=NOD(l)+l 
NOD(4)=0 
GO TO 412 

401 NOD(1)=J +NSUM
NOD(2)=NOD(1)+1 
NOD(3)=NOD(2)+NXI+l 
NOD(4)=NOD(3)-l 
M=M+1
WRITE(8,1003) M ,NOD(1),N0D(4),NOD(2)
M=M+1
WRITE(8,1003) M,NOD(2),N0D(4),NOD(3)
NOD(1)=NOD(2)
NO D (2)=NOD(3)+1 
NOD(4)=0 

412 M=M+1
WRITE(8,1003) M ,N O D (1),NOD(4),NOD(2)
IF(N0D(4)) 433,434,433

433 M=M+1
WRITE(8,1003) M ,N O D (2),NO D (4),NOD(3)

434 CONTINUE
500 CONTINUE

NSUM=NSUM+NXI+1 
600 CONTINUE

NE=M
WRITE(8,1004) NP 
WRITE(8,1005) NE
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CLOSE(UNIT=8,STATUS='KEEP')
450 CONTINUE
4 FORMAT(/,23H *** INPUT NEW DATA ***,/)
5 FORMAT(IH ,18A4)
6 FORMAT(15,FIO.4)
7 FORMAT(IH ,E10.4,FIO.2,2X,E10.4,2F10.4)
8 FORMAT(15,2F10.4,415,813)
11 FORMAT(15,FIO.4)
13 FORMAT(2F10.4)
14 FORMAT(I5,2E16.8)
21 FORMAT(I5,2F10.2)
22 FORMAT(2I5,E16.8)
119 FORMAT(18A4)
1000 FORMAT(15,4F10.5)
1001 FORMAT(15,5X,FIO.5)
1002 FORMAT(110,2F16.8)
1003 FORMAT(I5,3110)
1004 FORMAT(15)
1005 FORMAT(15)
1006 FORMAT(215)

RETURN
END

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C * SUBROUTINE GDATA
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE GDATA
COMMON /BLOCKO1/ TITLE(12),IIF,FTX,NP,N E ,NSZF,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS, F N , G , C E , B E , IH, L F ,IPR,NX(50),JJF,JIO,NIO,
3 MIO,Dl(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600),RE C (600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCKO2/ NV,TG(12),KF,NIN(10),XIN(10),
1 LPIN,INLP

COMMON /BLOCK03/ CORD(600,2),NO P (600,3),PROP(5),
1 FX1,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(ôOO),TAREA(600),JROW(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

REWIND(3)
C
C READ AND PRINT TITLE
C
C

READ(3,5) TITLE 
WRITE(6 ,5) TITLE
READ(3,8 ) IIF,FTX,FTY,IH,LF,IPR,IPI,JJF,JIO,N I O ,M I O ,

1 ISC,IOPT,IZO,IOT 
WRITE( 6 ,54)
WRITE(6,64) IIF,FTX,FTY,IH,LF,IPR,IPI,JJF,JIO,NIO,MIO, 

1 ISC,IOPT,IZO,IOT 
NIH=IPI 
IUZ-1
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READ AND PRINT MATERIAL DATA

READ(3,7) (PROP(J ),J= 1 ,5)
IF(NIO.EQ.2) GO TO 95

FORM STRESS-STRAIN MATRIX "plane strain

G=PROP(1)/(2.*(1.+PROP(2)))
Cl=PROP(1)*PROP(2)/((1.+PROP(2))*(1.-PROP(2)*2.)) 
D(1,1)=(C1*(1.-PROP(2)))/PROP(2)
D(1,2)=C1 
D(1,3)=0.0 
D(2,1)=D(1,2)
D(2,2)=D(1,1)
D(2,3)=0.0 
D(3,1)=0.0 
D(3,2)=0.0 
D(3,3)=G 
WRITE(6,52)
WRITE(6 ,7) (PROP(J ),J = 1 ,5)
GO TO 97

FORM STRESS-STRAIN MATRIX "plane stress

CONTINUE
Gl=PROP(1)/(2.*(1.+PROP(2)))
C2=PROP(1)/(1.-(PROP(2)*PROP(2)))
D 1 (1,1)=C2
D 1 (1,2)=C2*PROP(2)
D 1 (1,3)=0.0 
D 1(2,1)=D1(1,2)
D 1 (2,2)=D1(1,1)
D1(2,3 )=0.0 
D1(3,1)=0.0 
D1(3,2)=0.0 
D 1 (3,3)=G1 
WRITE(6,52)
WRITE(6 ,7) (PROP(J),J= 1 ,5)
CONTINUE

READ AND PRINT INCREMENT DATA

READ(3,63) CE,BE
WRITE(6,63) CE,BE
READ(3,6) N V ,TOL
WRITE( 6 ,6 ) NV,TOL
READ(3,11) (NIN(J),XIN(J),J=1,NV)
WRITE(6 ,59)
WRITE( 6 ,11) (NIN(J),XIN(J),J=1,NV)
IF(MIO.E Q .4) GO TO 82 
WRITE(6,65)
DO 77 1=1,IIF 
READ(3,6 8 ) K,U,V 
WRITE(6,69) K,U,V 
CONTINUE



WRITE(6,70)
DO 78 NB=1,JJF 
READ(3,74) K ,F X ,FY 

78 WRITE(6 ,73) K ,F X ,FY
GO TO 90

82 WRITE(6,65)
DO 83 J-l.IIF 
READ(3,6 8 ) K,U,V

83 WRITE ( 6 , 69) K,U,V
WRITE(6,70)
DO 75 1=1,JJF 
READ(3,71) K,NY,ZY 

75 WRITE(6,72) K,NY,ZY
90 CONTINUE

IF(IZO.E Q .1) GO TO 94 
READ(3,150) NP,NE 
WRITE(6 , 160)
DO 300 J=1,NP
READ(3,165) K,(CORD(J,M),M=1,2)
WRITE(6,165) K,(CORD(J,M),M=1,2)

300 CONTINUE
WRITE(6,175)
DO 310 1=1,NE
READ(3,180) L,(NOP(I,MM),MM=1,3)
WRITE(6,180) L ,(NOP(I ,M M ),MM=1,3)

310 CONTINUE
WRITE(6,155) NP,NE 
WRITE(6,185)
WRITE(6,190)

94 CONTINUE
5 FORMAT(18A4)
6 FORMAT(I5,F10.4)
7 FORMAT(1H ,E1 0 .4,F10.2,2X,E10.4,2F10.4)
8 FORMAT(15,2F10.4,415,813)
11 FORMAT(I5,F10.4)
12 FORMAT(15)
51 FORMAT(1H ,20H NUMBER OF ELEMENTS=,15 )
5 2 FORMAT(/,1H ,22H MATERIAL PROPERTIES :,/)
54 F0RMAT(/,1H ,18H PRESSURING DATA :,/)
59 FORMAT(/,1H ,17H INCREMENT DATA :,/ )
62 FORMAT(E10.4)
63 FORMAT(2F10.4)
64 FORMAT(/,5H IIF-,15,3X,5H FTX=,F10.4,3X,

1 5H FTY=,F10.4,3X,4H IH=,I5,//,
2 4H LF=,15,4X,5H IPR=,15,8 X ,5H IPI=,I5,8X,
2 5H JJF=,13,//,
4 5H JIO=,13,5X,5H NIO=,13,10X,5H M10=,13,10x,
5 5H ISC-,13,//,
6 6H IOPT=,13,4X,5H IZO=,12,11X,5H IOT=,I3)

65 FORMAT(/,21H BOUNDARY CONDITION :,/)
6 8 FORMAT(I5,2F10.2)
69 FORMAT(I5,2X,F10.2,2X,F10. 2)
70 FORMAT(/,15H NODAL FORCES :,/)
71 FORMAT(2I5,E16.8)
72 FORMAT(15,2X,I5,2X,E16.8)
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73 FORMAT(15,2X,E16.8,2X,E16.8)
74 FORMAT(15,2E16.8)
150 FORMAT(215)
155 FORMAT(/,18H NUMBER OF POINTS*,15,/,

1 20H NUMBER OF ELEMENTS*,15)
160 FORMAT(/,14H NODAL POINT :,/)
165 FORMAT(110,2F16.8)
175 FORMAT(/,11H ELEMENTS :,/)
180 FORMAT(15,3110)
185 FORMAT(/,24H ** FINISH INPUT DATA **,/)
190 FORMAT(/,17H ** NEW OUTPUT **,//)
420 FORMAT(I3,3F8.3,I3,2F8.3,7I3)

RETURN
ENDc ********************************************************* 

C * SUBROUTINE COORGEN
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE COORGEN
COMMON /BLOCKO1/ TITLE(12),IIF,FTX,NP,NE,NSZF,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS,F N ,G ,C E ,B E ,IH,LF,IPR,NX(50),J J F ,JIO ,N I O ,
3 MIO,Dl(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600) , REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCK02/ NV,TG(12),KF,NIN(10),XIN(10),
1 LPIN,INLP

COMMON /BLOCK03/ C0RD(600,2),NOP(600,3),PROP(5),
1 FX1,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600),
3 F0RC(600),ETA(600,4),SIG(600, 4), JC0L(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

DIMENSION Y L (50),X F (50),YF(5 0),N O D (4),SUM1(40),
1 X L (50)

REWIND(7)
C
C GENERATE COORDINATES
C

WRITE(6,1006)
READ(7,1005) NY.CON1 
WRITE(6,1005) N Y ,CON1 
DO 15 1=1,NY
READ(7, 1007) NX( I ), XF( I),YF(I),XL(I),YL(I)
WRITE(6,1007) N X (I),XF(I),Y F (I),X L (I),Y L (I )

15 CONTINUE 
WRITE(6,1008)
DO 16 J = 1,NP
READ(7,1009) N , (CORD(N ,M ),M = 1,2)
WRITE(6,1009) N,(CORD(N,M),M=1,2)

16 CONTINUE
1005 FORMAT(15,5X,F10.5)
1006 FORMAT(/,20H CONTROL MESH DATA :,/)
1007 FORMAT(15,6F10.5)
1008 FORMAT(/,14H NODAL POINT :,/)
1009 FORMAT(UO, 2F16. 8 )
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RETURN
END

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C * SUBROUTINE ELGEN
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE ELGEN
COMMON /BLOCKO1/ TITLE(12),IIF,FTX,NP,NE,NSZF,

1 TOL,D Y ,YTOT, IUZ,
2 NROWS,FN,G,CE,BE,IH,LF,IPR,NX(50),JJF,JIO,NIO,
3 MI O ,01(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCK02/ NV,TG(12),KF,NIN(10),XIN(10),
1 LPIN,INLP

COMMON /BLOCKO3/ C0RD(600,2),NOP(600,3),PR0P(5),
1 FX1,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

DIMENSION Y L (50),X F (50),YF(50),NOD(4),SUM1(50),
1 X L (50)

REWIND(8 )

GENERATE ELEMENT TOPOLOGY 

READ(8 ,100) (N, (NOP(N,M),M=1,3),N=1,NE) 

INITIALIZE VALUES

DO 310 J =1,NP 
DO 310 M = 1 ,2 
TION(J,M)=0.0 

10 CONTINUE
DO 340 1=1,NE 
EEQ(I)=0.0 
SEQI(I)=0.0 
DO 320 J= 1 ,3 
ETA(I,J )=0.0 

20 SIG(I,J)=0.0
SIG(I,4)=0.0 
CONTINUE 
DSY=1.

IF(JIO.NE.O) GO TO 400

PRINT ELEMENT TOPOLOGY 

WRITE(6,58)
WRITE(6 , 100) (N,(NOP(N,M),M=1,3),N=1,NE) 
WRITE(6 ,59)NP 
WRITE(6,60)NE
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WRITE(6 ,102)
WRITE(6,103)

400 CONTINUE
8 FORMAT(I10,2F10.4)
58 FORMAT(/,11H ELEMENTS :,/)
59 FORMAT(/,2OH NUMBER OF POINTS =,15)
60 FORMAT(20H NUMBER OF ELEMENTS»,15)
100 FORMAT(15,3110)
102 FORMAT(/,24H ** FINISH INPUT DATA **,/)
103 FORMAT(//,17H ** NEW OUTPUT **,//)

RETURN
END

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C * SUBROUTINE LOAD
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE LOAD
COMMON /BLOCKO1/ TITLE(12),IIF,FTX,NP,NE,NSZF,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS,FN,G,CE,BE,IH,LF,IPR,NX(50),JJF,JIO.NIO,
3 MIO,D1(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCK02/ NV,TG(12),KF,NIN(10),XIN(10),
1 LPIN,INLP

COMMON /BLOCK03/ CORD(600,2),NOP(600, 3),PROP(5),
1 FX1,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600),
3 FORC(600),ET A (600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4) ,DIS(600, 2) ,
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

C
C
C CHOOSE THE CASE LOAD
C

IF(MIO.E Q .4) GO TO 16
IF(MIO.EQ.3) GO TO 17
IF(MIO.EQ.2) GO TO 18
GO TO 19

16 CALL L0AD4 
GO TO 420

17 CALL LOAD3 
GO TO 420

18 CALL LOAD2 
GO TO 420

19 REWIND(3) 
FN=0.0
DO 22 1=1,NE

2 2 LYD(I)=0
DO 15 JJ=1,NSZF

15 FORC(JJ)=0.0
C
C ENTER VALUE OF FORCE
C
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AD=CE*DY
YTOT=YTOT+AD
IF(ABS(YTOT).LT.BE) GO TO 25 
AD=AD-(YTOT-BE)
YTOT=BE
KF=1
WRITE(6,40)

C
C INITIALIZE BOUNDARY VECTOR
C
25 DO 50 J=1,NSZF
50 BOUN(J)=1.
C
C LOOP FOR EACH NODE UPDATING COORDINATES
C APPLYING BOUNDARY CONDITIONS
C

READ(3,5) TITLE
READ(3,8) IIF
READ(3,7) (PROP(J),J= 1 ,5)
READ(3,63) CE,BE 
READ(3,6) NV,TOL
READ(3,11)(NIN(J),XIN(J),J=1,NV)
DO 380 NC=1,IIF 
READ(3,12) K,U,V 
M=K*2 
BOUN(M)=V 
M=M-1 
BOUN(M)=U 

380 CONTINUE
DO 410 NB=1,JJF 
READ(3,100) K,FX,FY 
LL=K*2
FORC(LL)=FY*AD 
LL=LL-1
FORC(L L )=FX*AD 

410 CONTINUE
JIM=NX(1)+1
IG=IH-1
IGT=LF-IG
FORC(IGT*2)=-FORC(LF*2)
JU=IPI-JIM
DO 190 IJ=JU,IUZ.-JIM
IF(CORD(IJ,2).L E .CORD(IUZ,2)) GO TO 192 

190 CONTINUE
GO TO 170 

192 CONTINUE
IUZ=IJ 

170 CONTINUE
IF(IOPT.NE.1) GO TO 500 
DO 499 1=1,NSZF 
FN=FN+FORC(I)

499 CONTINUE
500 CONTINUE

IF(CORD(NP,2).LE.0 . 0) GO TO 1000 
5 FORMAT(18A4)
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6 FORMAT(I5,F10.4)
7 FORMAT(1H ,E10.4,F10.2,2X,E10.4,2F10.4)
8 FORMAT(15)
11 FORMAT(I5,F10.4)
12 FORMAT(15,2F10.2)
40 FORMAT( / /,48H THE PROCESS WILL COMPLETE AFTER

1 NEXT INCREMENT )
63 FORMAT(2F10.4)
100 FORMAT(I5,2E16.8)
110 FORMAT( //,3 4H CRITICAL SIZE OF DEFLECTION .,//)
420 CONTINUE

RETURN 
1000 WRITE(6 ,110)

STOP
END

C * SUBROUTINE LOAD2
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE LOAD2
COMMON /BLOCKOl/ TITLE(12) , IIF,FTX,NP,NE,NSZF,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS,FN,G,CE,BE,IH,LF,IPR, NX(50),JJF,JIO,NIO,
3 MIO,D1(3,3),
4 FTY,IPI,ISC,DISPL(600) ,BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCK02/ NV,TG(12),KF,NIN(10),XIN( 10) ,
1 LPIN,INLP

COMMON /BLOCK03/ CORD(600 , 2) ,NOP(600,3),PROP(5),
1 FX1,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600), ESTIFM( 6 ,6 )

REWIND(3)
FN=0.0
DO 22 1=1,NE 

22 LYD(I)=0
DO 15 JJ=1,NSZF 

15 FORC(JJ)=0.0
C
C ENTER VALUE OF FORCE
C
C

AD=CE*DY
YTOT=YTOT+AD
IF(ABS(YTOT).LT.BE) GO TO 25 
AD=AD-(YTOT-BE)
YTOT=BE
KF=1
WRITE(6,40)

C
C INITIALIZE BOUNDARY VECTOR
C
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25 DO 50 J=1,NSZF
50 BOUN(J)=l.
C
C LOOP FOR EACH NODE UPDATING COORDINATES
C APPLYING BOUNDARY CONDITIONS
C

READ(3,5) TITLE
READ(3,8) IIF
READ(3,7) (PROP(J),J=1,5)
READ(3,63) C E ,BE 
READ(3,6) NV,TOL
READ(3,11)(NIN(J),XIN(J),J=1,NV)
DO 410 NC=1,IIF 
READ(3,12) K,U,V 
M=K*2 
BOUN(M)=V 
I=M-1 
BOUN(I)=U 

410 CONTINUE
DO 420 LC=1,JJF 
READ(3,100) K ,F X ,FY 
MM=K*2
FORC(M M )=FY*AD 
MM=MM-1
FORC(MM)=FX*AD 

420 CONTINUE
JIM=NX(1)+l 
MH=NP-NX(1)
IL=MH-JIM
DO 10 II=IPI,IL,JIM
IF(CORD(II,2).LT.CORD(IH,2)) GO TO 10 
GO TO 30 

10 CONTINUE
GO TO 41

30 CONTINUE
DO 31 JJ=II,MH,JIM 
NN=JJ*2
FORC(NN)=FORC(LF* 2)
NN=NN-1
FORC(N N )=FORC(LF* 2-1)

31 CONTINUE 
IM=II+JIM
DO 90 IJ=IM,MH,JIM
IF(CORD(IJ,2).L E .CORD(IH,2)) GO TO 92 

90 CONTINUE
GO TO 101 

92 CONTINUE
DO 35 JJ=IM,MH,JIM 
MM=JJ*2 
FORC(MM)=0.0 
MM=MM-1 
FORC(MM)=0.0 

35 CONTINUE
101 CONTINUE

IH=II
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41 CONTINUE
IG=IH-1 
IGT=LF-IG
FORC(IGT*2)=-FORC(IH*2)
IUZ=IGT
IF(CORD(NP,2).LE.0.0) GO TO 1000 

110 CONTINUE
IF(I0PT.NE.1) GO TO 500 
DO 499 1=1,NSZF 
FN=FN+FORC(I)

499 CONTINUE
500 CONTINUE
5 FORMAT(18A4)
6 FORMAT(15,F10.4)
7 FORMAT(1H ,E10.4,F10.2,2X.E10.4,2F10 . 4)
8 FORMAT(15)
11 FORMAT(I5,F10.4)
12 FORMAT(I5,2F10. 2)
40 FORMAT(//,48H THE PROCESS WILL COMPLETE AFTER

1 NEXT INCREMENT )
63 FORMAT(2F10.4)
100 FORMAT(15,2E16.8)
900 FORMAT(//,34H CRITICAL SIZE OF DEFLECTION .,//)

RETURN 
1000 CONTINUE

CORD(NP,2)=0.0 
WRITE(6,900)
STOP
END

C **********************************************************
C * SUBROUTINE LOAD3
C ********************************************************** 

SUBROUTINE LOAD3
COMMON /BLOCKO1/ TITLE(12),IIF,FTX,NP,N E ,NSZF,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS,F N ,G ,C E ,B E ,IH,LF,IPR,NX(50),JJ F ,J I O ,NIO,
3 M I O ,D1(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCKO2/ NV,TG(12),KF,NIN(10) ,XIN(10),
1 LPIN,INLP

COMMON /BLOCK03/ CORD(600,2),NOP(600,3),PROP(5),
1 FX1,FY 1 ,NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4) ,DIS(600, 2) ,
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

REWIND(3)
FN=0.0
DO 22 1=1,NE 

22 LYD(I)=0
DO 15 JJ=1,NSZF 

15 FORC(JJ)=0.0
C
C ENTER VALUE OF FORCE
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c
AD=CE*DY
YTOT=YTOT+AD
IF(ABS(YTOT).LT.BE) GO TO 25 
AD=AD-(YTOT-BE)
YTOT=BE
KF=1
WRITE(6,40)

C
C INITIALIZE BOUNDARY VECTOR
C
25 DO 50 J=1,NSZF
50 BOUN(J)=1.
C
C LOOP FOR EACH NODE UPDATING COORDINATES
C APPLYING BOUNDARY CONDITIONS
C

READ(3,5) TITLE
READ(3,8) IIF
READ(3,7) (PROP(J),J = 1 ,5)
READ(3,63) C E ,BE 
READ(3,6) NV.TOL
READ(3,11)(NIN(J),XIN(J),J = 1 , NV)
DO 410 NC=1,IIF 
READ(3,12) K,U,V 
M=K*2 
BOUN(M)=V 
I=M-1 
BOUN(I) =U 

410 CONTINUE
DO 420 LC=1,JJF 
READ(3,100) K ,F X ,FY 
MM=K*2
FORC(MM)=FY*AD 
MM=MM-1
FORC(M M )=FX*AD 

420 CONTINUE
JIM=NX(1)+l 
MH=NP-NX(1)
IL=MH-JIM
IF(LPIN.EQ.NIN(3)) GO TO 43 
IF(LPIN.NE.NIN(2)) GO TO 46 
IF(INLP.LT.2) GO TO 46 
IF(INLP.GT.2) GO TO 43 
XTC=CORD(NIH,1)
WRITE( 6 ,110) XTC 

43 CONTINUE
BOUN(IPR*2-1)=0.0 
DIS(IPR,1)=0 . 0 
JAK=JIM+IPI 
DO 51 KK=MH,JAK,-JIM
IF(CORD(KK,1).LT.CORD(IPR,1)) GO TO 51 
GO TO 44

51 CONTINUE
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44

45

150

155

160

46

10

30

31

90

92

35
1 0 1
41

800
170

GO TO 46 
CONTINUE
DO 45 LL=KK,IPI,-JIM
BOUN(LL*2-l)=0.0
DIS(LL,1)=0.0
CONTINUE
IPR=KK
JOK=IPI-JIM
DO 150 JZ=1,JOK,JIM
IF(CORD(JZ,1).LT.CORD(NIH,1)) GO TO 150
GO TO 155
CONTINUE
GO TO 46
CONTINUE
DO 160 LV=JZ,IPI,JIM
BOUN(LV*2-1)=0.0
DIS(LV,1)=0.0
CONTINUE
NIH=JZ
CONTINUE
DO 10 II=IPI,IL,JIM
IF(CORD(II,2).LT.CORD(IH,2)) GO TO 10
GO TO 30
CONTINUE
GO TO 41
CONTINUE
DO 31 IK=II,MH,JIM 
NN=II*2
FORC(NN)=FORC(LF* 2)
NN=NN-1
FORC(NN)=FORC(LF*2-l)
CONTINUE
IH=II
IM=II+JIM
DO 90 IJ=IM,MH,JIM
IF(CORD(IJ,2).LE.CORD(IH,2)) GO TO 92
CONTINUE
GO TO 101
CONTINUE
DO 35 JJ=IM,NP,JIM
MM=JJ*2
FORC(MM)=0.0
MM=MM-1
FORC(MM)=0.0
CONTINUE
CONTINUE
CONTINUE
IG=IH-1
IGT=LF-IG
FORC(IGT*2)=-FORC(IH*2)
IUZ=IGT
CONTINUE
CONTINUE
IF(IOPT.N E .1) GO TO 500 
DO 499 1=1,NSZF
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FN=FN+FORC(I )
499 CONTINUE
500 CONTINUE

IF(CORD(NP,2).L E .CORD(JIM,2)) GO TO 1000
5 FORMAT(18A4)
6 FORMAT(I5,F10.4)
7 FORMAT(1H ,E10.4,F10.2,2X,E10.4,2F10.4)
8 FORMAT(15)
11 FORMAT(15,F10. 4)
12 FORMAT(I5.2F10.2)
40 FORMAT(//,48H THE PROCESS WILL COMPLETE AFTER

1 NEXT INCREMENT)
63 FORMAT(2F10.4)
100 FORMAT(15,2E16.8)
110 FORMAT(/,' THE COORDINATES OF THE WALL ARE:',//,

1 6 H Y= 0 .0,6 X,3H X=,F16.8,/)
900 FORMAT(//,34H CRITICAL SIZE OF DEFLECTION .,//)

RETURN
1000 CONTINUE

CORD(N P ,2)=CORD(JIM,2)
WRITE(6,900)
STOP
END

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C * SUBROUTINE L0AD4
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE L0AD4
COMMON /BLOCKOl/ TITLE(12),IIF,F T X ,N P ,N E ,NSZF,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS,FN,G,CE,BE,IH,LF,IPR,NX(50),JJF,JIO.NIO,
3 MIO,D1(3,3),
4 FT Y ,IPI,ISC,DISPL(600),BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCK02/ NV,TG(12),K F ,NIN(10),XIN(10),
1 LPIN,INLP

COMMON /BLOCK03/ CORD(600,2),N O P (600,3),PROP(5),
1 FX1,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

REWIND(3)
FN=0.0
DO 10 1=1,NE 

10 LYD(I )=0
DO 22 JJ=1,NSZF 

22 FORC(JJ)=0.0
C
C ENTER VALUE OF FORCE
C
C

AD=CE*DY
YTOT=YTOT+AD
IF(ABS(iTOT).LT.BE) GO TO 25 
AD=AD-(YTOT-BE)
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YTOT=BE
KF=1
WRITE(6,40)

C
C INITIALIZE BOUNDARY VECTOR
C
25 DO 50 J=1,NSZF
50 BOUN(J)=l.
C
C LOOP FOR EACH NODE UPDATING COORDINATES
C APPLYING BOUNDARY CONDITIONS
C

READ(3,5) TITLE
READ(3,8) IIF.FTX
READ(3,7) (PROP(J ),J=1,5)
READ(3,63) CE,BE 
READ(3,6) N V ,TOL 
READ(3,11)(NIN(J),XIN(J),J=1,NV)
DO 390 11=1,IIF 
READ(3,15) K,U,V 
NN=K*2 
BOUN(NN)=V 
NN=NN-1 
BOUN(NN)=U 

3 90 CONTINUE 
JAN=JJF-1 
DO 410 NC=1,JAN 
READ(3,12) K,NY,ZY 
AMI=CORD(K,l)-CORD(NY,1)
BMI=CORD(NY,2)-CORD(K, 2)
EQL=(AMI**2.+BMI**2.)**0.5
COS=AMI/EQL
SIN=BMI/EQL
NN=K*2
FORC(NN)=(((ZY*EQL*PROP(5))/2.)*COS)*AD 
NN=NN-1
FORC(NN)=-(((ZY*EQL*PROP(5))/2.)*SIN)*AD 
MM=NY*2
FORC(MM)=(((ZY*EQL*PROP(5))/2.)*COS)*AD 
MM=MM-1
FORC(NN)=-(((ZY*EQL*PROP(5))/2.)*SIN)*AD

410 CONTINUE
IF(IOPT.NE.1) GO TO 500 
DO 499 1=1,NSZF 
FN=FN+FORC(I)

499 CONTINUE
500 CONTINUE
5 FORMAT(18A4)
6 FORMAT(I5.F10.4)
7 FORMAT(1H ,E10.4,F10.2,2X,E10.4,2F10.4)
8 FORMAT(15,F10.4)
11 FORMAT(15,F10.4)
12 FORMAT(2I5.E16.8)
15 FORMAT(15,2F10.2)
40 FORMAT(//48H THE PROCESS WILL
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n
o

n

1 COMPLETE AFTER NEXT INCREMENT )
63 FORMAT(2F10.4)

RETURN
END

C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C * SUBROUTINE STIFT(N)
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE STIFT(N)
COMMON /BLOCKO1/ TITLE(12),IIF,FTX,NP,NE,NSZF,

1 TOL,DY,YTOT,IUZ,
2 NROWS,FN,G,CE,B E ,IH,LF,IPR,NX(50), J J F , J I O ,N I O ,
3 MIO,Dl(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCK02/ NV,TG(12),KF,NIN(10),XIN(10),
1 LPIN,INLP

COMMON /BLOCK03/ CORD(600,2),NOP(600,3),PROP(5 ) ,
1 FX1,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600) ,
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

DIMENSION B(3,6 ),H(3,6 )
C
C
C DETERMINE ELEMENT CONNECTIONS
C
C

I=NOP(N,1) 
J=NOP(N,2) 
K=NOP(N,3)

SET UP LOCAL COORDINATE SYSTEM

AJ=CORD(J,1)-CORD(1,1)
AK=CORD(K,1)-CORD(I,1)
BJ=CORD(J,2)-CORD(1,2)
BK=CORD(K,2)-CORD(I,2)
DET=(AJ *BK-AK*BJ)/2.0 
IF(DET.LE.O.O) GO TO 200 
IF(NIO.EQ.l) PROP(5)=1.
TAREA(N)=DET*PROP(5)

C
C
C FORM STRAIN-DISPLACEMENT MATRIX
C AND WRITE TO FILE NUMBER
C 
C

B(1,1)=BJ-BK 
B(1,2)=0.0 
B(1,3)=BK 
B(1,4)=0.0 
B(1,5)=-BJ 
B(1,6)=0.0 
B(2,1)=0.0
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B(2,2)=AK-AJ 
B(2,3)=0.0 
B(2,4)=-AK 
B (2 ,5)= 0 . 0  
B (2,6 )=AJ 
B(3,1)=AK-AJ 
B(3 ,2)=BJ-BK 
B (3,3)=-AK 
B(3,4)=BK 
B (3,5)=AJ 
B(3,6 )=-BJ 
DO 20 1=1,3 
DO 20 J=1 ,6 

20 B(I,J)=B(I,J)/(DET*2.)
DO 25 1=1,3
WRITE(4,5) N,(B(I,J),J=1,6)

5 FORMAT(13,2X,6F12.4)
25 CONTINUE
C
C H IS STRESS BACK-SUBSTITUTION MATRIX
C

IF(NIO.EQ.2) GO TO 65 
DO 60 1=1,3 
DO 60 J= 1 ,6 
H(I,J)=0.0 
DO 60 K= 1 ,3 

60 H(I,J)=H(I,J)+D(I,K)*B(K,J)
GO TO 67 

65 CONTINUE
DO 63 1=1,3 
DO 63 J = 1 ,6 
H(I,J)=0.0 
DO 63 K= 1 ,3 

63 H(I,J)=H(I,J)+D1(I,K)*B(K,J)
67 CONTINUE
C
C ESTIFM IS STIFFNESS MATRIX
C

DO 80 1=1,6 
DO 80 J = 1 ,6 
ESTIFM(I ,J)=0.0 
DO 80 K= 1 ,3

80 ESTIFM(I,J)=ESTIFM(I,J)+(H(K,I)*B(K,J)*TAREA(N))
RETURN

C
C ERROR EXIT FOR BAD CONNECTIONS
C
200 WRITE(6,300) N
300 FORMAT(33H ZERO OR NEGATIVE AREA ELEMENT NO,14 

1 /26H *** EXECUTION TERMINATED )
STOP
END
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c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C * SUBROUTINE FORMK
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE FORMK
COMMON /BLOCKOl/ TITLE(12),IIF,FTX,NP,N E ,NSZF,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS,FN,G,CE,BE,IH,LF,IPR,NX(50),JJF.JIO.NIO,
3 MIO,D1(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCK02/ NV,TG(12),KF,NIN(10),XIN(10),
1 LPIN,INLP

COMMON /BLOCK03/ CORD(600,2),NO P (600,3),PROP(5),
1 FX1,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600).ESTIFM(6, 6 )

C
C
C ZERO STIFFNESS MATRIX
C

DO 100 N=1,NSZF 
DO 100 M=1,NSZF 

100 SK(N,M)=0.0
C
C SCAN ELEMENTS
C

OPEN(UNIT=4,FILE= 1 SCRATCH:MATFIN.D A T ',STATUS= 1N E W ') 
DO 500 N=1,NE 
CALL STIFT(N)

C
C ASSEMBLE ELEMENT STIFFNESS MATRICES
C IN GLOBAL STIFFNESS MATRIX
C
C FIRST ROWS
C

DO 400 JJ-1,3 
NROWB=(NOP(N,J J )-1)*2 
DO 400 J=1,2 
NROWB =NROWB +1 
I=(JJ-1)*2+J

C
C THEN COLUMNS
C

DO 200 KK=1,3 
NCOLB=(NOP(N,KK)-1)*2 
DO 200 K=1,2 
L=(KK-1)*2+K 
NCOLB=NCOLB+l
SK(NROWB,NCOLB)=SK(NROWB,NCOLB)+ESTIFM(I ,L)

200 CONTINUE
400 CONTINUE
500 CONTINUE

CLOSE(UNIT=4,STATUS='KEEP')
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RETURN
END

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C * SUBROUTINE SOLV3
C ******************************************************* 

SUBROUTINE SOLV3
COMMON /BLOCKO1/ TITLE(12),IIF,F T X ,N P ,N E ,NSZF,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS,FN,G,CE,BE,IH,LF,IER,NX(50),JJF,JIO,NIO,
3 MI0,D1(3,3),
4 FTY,IFI,ISC,DISPL(600),BOD(600),REC(600),IOFT,
5 DSY,IZO,IOT

COMMON /BLOCK02/ NV,TG(12),KF,NIN(10),XIN(10),
1 lpin.inlp

COMMON /BLOCK03/ CORD(600,2),NOP(600,3),PROP(5) ,
1 FX1,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

DIMENSION SUBK(600,600),UERES(600)
NFRES=0
L=1
M=1

C
C ESTABLISH ERESCRIBED FREEDOMS
C

DO 6 1=1,NSZF
IF(FORC(I).N E .0.0) BOUN(I )=FORC(I )

6 CONTINUE
DO 100 J=1,NSZF 
IF(BOUN(J).E Q .1.) GO TO 200 
NERES=NERES+1 
UERES(NPRES)=BOUN(J)
JCOL(M)=J 
M=M+1 
GO TO 100 

200 JROW(L)=J
L=L+1 

100 CONTINUE
NROWS=NSZF-NPRES
NST=NROWS+l

C
C RE-FORM STIFFNESS MATRIX IN PARTITIONS
C

DO 300 J=1,NROWS 
LC=JROW(J)
DO 150 M=l,NROWS 
MC=JROW(M)

150 SUBK(J,M)=SK(LC,MC)
DO 250 N = 1 ,NPRES 
NC=JCOL(N)
SUBK(J,M)=SK(LC,NC)
M=M+1 

250 CONTINUE
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300 CONTINUE
DO 500 J=NST,NSZF
K=J-NROWS
KC=JCOL(K)
DO 350 L=1,NROWS 
LC=JROW(L)

350 SUBK(J,L)=SK(KC,LC)
DO 400 N = 1 ,NPRES 
MC=JCOL(N)
SUBK(J,L)=SK(KC,MC)
L=L+1 

400 CONTINUE
500 CONTINUE
C
C FORM FORCE VECTOR
C

DO 550 K=1,NSZF 
550 FORC(K)=0.0

DO 600 1=1,NROWS 
L=1
DO 600 J=NST,NSZF
FORC(I)=FORC(I)-SUBK(I ,J)*UPRES(L)
L=L+1 

600 CONTINUE
DO 700 I=NST,NSZF 
L-l
DO 700 J=NST,NSZF
FORC(I )=FORC(I)+SUBK(I ,J)*UPRES(L)
L=L+1 

700 CONTINUE
DO 900 1=1,NSZF 
DO 900 J=1,NSZF 

900 SK(I,J)=SUBK(I,J )
RETURN
END

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C * SUBROUTINE GAUSS
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE GAUSS
COMMON /BLOCKO1/ TITLE(12),IIF,FTX,NP,N E ,N S Z F ,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS.FN.G.CE.BE,IH.LF,IPR,NX(50),JJF,JIO.NIO,
3 MIO,D1(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCKO2/ NV,TG(12),KF,NIN(10),XIN( 10) ,
1 lpin.inlp

COMMON /BLOCK03/ CORD(600,2),N O P (600,3),PROP(5),
1 FXl,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600),
3 FORC(600),E T A (600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

DIMENSION LP(600),LQ(600,2),R(600 )
C
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c
c

1 2

30

40
50

60
90

100

130
150

160
170

200
999

INVERT STIFFNESS MATRIX

DO 12 1=1,NROWS 
LP(I)=0
DO 150 K = 1,NROWS 
CON=0.0
DO 50 1=1,NROWS
IF(LP(I).EQ.1) GO TO 50
DO 40 J = l,NROWS
IF(LP(J)-1) 30,40,200
IF(ABS(CON).G E .ABS(SK(I,J ))) GO TO 40
IR=I
IC=J
CON=SK(I,J)
CONTINUE
CONTINUE
LP(IC)=LP(IC)+1
IF(IR.EQ.IC) GO TO 90
DO 60 1=1,NROWS
CON=SK(IR,I)
SK(IR,I)=SK(IC,I)
SK(IC,I)=CON 
LQ(K,1)=IR 
LQ(K,2)=IC 
R(K)=SK(IC,IC)
SK(IC,IC)=1.0
DO 100 1=1,NROWS
SK(IC,I)=SK(IC,I)/(R(K))
DO 150 1=1,NROWS 
IF(I.EQ.IC) GO TO 150 
CON=SK(I,IC)
SK(I,IC)=0.0 
DO 130 J=l,NROWS 
SK(I,J)=SK(I,J)-SK(IC,J)*CON 
CONTINUE
DO 170 1=1,NROWS 
J=NROWS-I+l
IF(LQ(J,1).EQ.LQ(J,2)) GO TO 170 
IR=LQ(J,1)
IC=LQ(J,2)
DO 160 K=l,NROWS 
CON=SK(K,IR)
SK(K,IR)=SK(K,IC)
SK(K,IC)=CON 
CONTINUE 
CONTINUE 
RETURN 
WRITE(2,999)
FORMAT(//33H SINGULAR MATRIX CANNOT BE SOLVED, 
/26H *** EXECUTION TERMINATED )
STOP
END
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c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C * SUBROUTINE SOLV4
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE S0LV4
COMMON /BLOCKO1/ TITLE(12),IIF,FTX.NP,NE,NSZF,

1 TOL,DY,YTOT,IUZ,
2 NROWS,FN,G,CE,B E ,IH,LF,IPR,NX(50),J J F ,JIO,NIO,
3 MIO.Dl(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCK02/ NV,TG(12),KF,NIN(10),XIN(10) ,
1 LPIN,INLP

COMMON /BLOCK03/ CORD(600,2),NOP(600,3),PROP(5),
1 FX1.FY1.NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JR0W(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2) ,
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

DIMENSION U(600),B(3,6),R(6)
REWIND(4)

C
C CALCULATE UNKNOWN DISPLACEMENTS
C

DO 10 1=1,NROWS 
U(I)=0.0 
DO 10 J=l,NROWS 
U(I)=U(I)+SK(I,J)*FORC(J)

10 CONTINUE
C
C CALCULATE REACTIONS
C

NST=NROWS+l
DO 50 I=NST,NSZF
DO 50 J=l,NROWS
FORC(I)=FORC(I)+SK(I,J)*U( J )

50 CONTINUE
C
C
C DETERMINE FORCE APPLIED BY PRESSURING
C
C IF(FN.NE.O.O) GO TO 80

N=NROWS
DO 70 J=1,NSZF
IF(BOUN(J).E Q .1.) GO TO 70
N=N+1
IF(BOUN(J).EQ.0.) GO TO 70 
FN=FN+FORC(N)

70 CONTINUE
80 CONTINUE
C
C FORM DISPLACEMENT VECTOR
C

DO 90 J=l,NROWS 
NC=JROW(J)
BOUN(NC)=U(J)
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90 CONTINUE 
C
C CALCULATE ELASTIC INCREMENT OF
C STRAIN AND STRESS
C

IF(NIO.EQ.2) GO TO 101 
DO 500 NC=1,NE 
DO 7 1=1,3 

7 READ(4,9) N,(B(I,J),J=1,6)
9 FORMAT(13,2X,6F12.3)

DO 100 1=1,3 
II=2*NOP(N,I)-1 
JJ=2*NOP(N,I)
R(2*1-1)=BOUN(II)
R(2*I)=BOUN(JJ)

100 CONTINUE
DO 300 1=1,3 
ELETA(N,I)=0.0 
DO 300 J= 1 ,6

300 ELETA(N,I)=ELETA(N,I)+B(I,J)*R(J)
DO 400 1=1,3
ELSIG(N,I)=0.0 
DO 400 J=1,3

400 ELSIG(N,I)=ELSIG(N,I)+D(I,J)*ELETA(N,J) 
ELSIG(N,4)=(ELSIG(N,1)+ELSIG(N,2))*PROP(2)

500 CONTINUE 
GO TO 499

101 CONTINUE
DO 501 NC=1,NE 
DO 71 1=1,3 

71 READ(4,91) N,(B(I,J),J=1,6)
91 FORMAT(13,2X,6F12.3 )

DO 103 1=1,3 
II=2*NOP(N,I)-l 
JJ=2*NOP(N,I)
R(2*I-1)=BOUN(II)
R(2*1)=BOUN(JJ)

103 CONTINUE
DO 301 1=1,3 
ELETA(N,I)=0.0 
DO 301 J= 1 ,6

301 ELETA(N,I)=ELETA(N,I)+B(I,J)*R(J)
ELETA(N,4)=-(ELSIG(N,1)+ELSIG(N,2))*

1 (PROP(2)/(PROP(1)))
DO 401 1=1,3 
ELSIG(N,I)=0.0 
DO 401 J = 1 ,3
ELSIG(N,I)=ELSIG(N,I)+Dl(I ,J)*ELETA(N,J)

401 CONTINUE
501 CONTINUE
499 CONTINUE

RETURN
END
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c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
c * SUBROUTINE SOLV 1
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE SOLV1
COMMON /BLOCKOl/ TITLE(12),IIF,FTX,NP,NE,NSZF,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS,F N ,G ,C E ,B E ,IH,LF,IPR,NX(50),JJF,JIO.NIO,
3 M I O fD1(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCK02/ NV,TG(12),KF,NIN(10),XIN(10),
1 LPIN,INLP

COMMON /BLOCK03/ CORD(600,2),NOP(600,3),PROP(5),
1 FX1.FY1.NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4 ) ,DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6 ,6 )

DIMENSION SS(600),SBF(4),BF(6),
1 SL(600,600),B(3,6),R(6)

REWIND(4)
NPRES=0
L-l
M=1

C
C CARRY OUT GAUSSIAN ELIMINATION
C

DO 901 1=1,NSZF
SS(I)«0.0
SS(I)=FORC(I)
DISPL(I)=0.0 
REC(I)=0.0 
DO 901 J=1,NSZF 
SL(I,J)=0.0 

901 SL(I,J )=SK(I,J )
1=0
DO 151 J-l.NSZF 
1=1 + 1
IF(BOUN(J).EQ.1.) GO TO 151 
SL(I,I)=SL(I,I)+l.OE+30 

151 CONTINUE
M1=NSZF 
M2=M1-1 
DO 301 1=1,M2 
1 1 = 1 + 1
DO 290 K=II,M1 
FACT=SL(K,I)/SL(I,I)
DO 280 J=II,M1
SL(K,J)=SL(K,J)-FACT*SL(I,J)

280 CONTINUE
SL(K,I)=0.0
SS(K)=SS(K)-FACT*SS(I )

290 CONTINUE
301 CONTINUE
C
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c BACK SUBSTITUTE
C

DO 402 1=1,Ml 
II=Ml-I+l 
PIVOT=SL(II,II)
SL(II,II)=0.0 
DO 351 J=II,M1
SS(II)=SS(II)-SL(II,J)*DISPL(J)

351 CONTINUE
DISPL(II)=(SS(II)/PIVOT)

402 CONTINUE
C
C ESTABLISH PRESCRIBED FREEDOMS
C

DO 100 J=1,NSZF 
IF(BOUN(J).EQ.1.) GO TO 200 
NPRES=NPRES+1 
JCOL(M)=J 
M=M+1 
GO TO 100 

200 JROW(L)=J
L=L+1 

100 CONTINUE
NROWS=NSZF-NPRES
NST=NROWS+l

C
C FORM DISPLACEMENT VECTOR
C

DO 90 J = 1 ,NSZF 
BOD(J)=0.0
IF(BOUN(J).E Q .0.0) GO TO 90 
BOD(J)=DISPL(J)

90 CONTINUE
C
C CALCULATE ELASTIC INCREMENT OF
C STRAIN AND STRESS
C

IF(NIO.EQ.2) GO TO 101 
DO 500 NC=1,NE 
DO 7 1=1,3 

7 READ(4,9) N,(B(I,J ),J=1,6 )
9 FORMAT(13,2X,6F12.3 )

DO 107 1=1,3 
II=2*NOP(N,I)-l 
JJ=2*NOP(N,I)
R(2*1-1)=BOD(II)
R(2*1)=BOD(JJ)

107 CONTINUE
DO 300 1=1,3 
ELETA(N,I)=0.0 
DO 300 J = 1 , 6  

300 ELETA(N,I)=ELETA(N,I)+B(I,J)*R(J)
DO 400 1=1,3 
ELSIG(N,I)=0.0 
DO 400 J= 1 ,3
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400 ELSIG(N,I)=ELSIG(N,I)+D(I,J)*ELETA(N,J) 
ELSIG(N)4)=(ELSIG(N,1)+ELSIG(N,2))*PROP(2)

C
C CALCULATE REACTION
C

DO 558 1=1,3
558 SBF(I)=ELSIG(N,I)

DO 650 1=1,6 
BF(I)=0.0
DO 600 J = 1, 3 

600 B F(I)=BF(I)+B(J ,I)*SBF(J)
650 BF(I)=BF(I)*TAREA(N)

LP=0
DO 700 1=1,3 
DO 700 K = 1 ,2 
J=(NOP(N,I)-l)*2+K 
LP=LP+1
REC(J)=BF(LP)+REC(J)

700 CONTINUE
500 CONTINUE

GO TO 499 
101 CONTINUE

DO 501 NC=1,NE 
DO 71 1=1,3 

71 READ(4,91) N,(B(I,J),J=1,6)
91 FORMAT(13,2X,6F12.3)

DO 103 1=1,3 
II=2*NOP(N,I)-l 
JJ=2*NOP(N,I)
R( 2*1-1)=BOD(II)
R(2*1)=BOD(JJ )

103 CONTINUE
DO 304 1=1,3 
ELETA(N,I)=0.0 
DO 304 J = 1 ,6 

304 ELETA(N,I)=ELETA(N,I)+B(I ,J)*R(J)
ELETA(N,4)=-(ELSIG(N,1)+ELSIG(N,2))*

1 (PROP(2)/(PROP(1)))
DO 401 1=1,3 
ELSIG(N,I)=0.0 
DO 401 J = 1 ,3
ELSIG(N,I)=ELSIG(N,I)+Dl(I ,J)*ELETA(N,J)

401 CONTINUE 
C
C CALCULATE REACTION
C

DO 559 1=1,3
559 SBF(I)=ELSIG(N,I)

DO 653 1=1,6
BF(I)=0.0 
DO 607 J = 1 ,3 

607 BF(I)=BF(I)+B(J ,I)*SBF(J)
653 BF(I)=BF(I)*TAREA(N)

LP=0
DO 707 1=1,3
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DO 707 K = 1 ,2
J=(NOP(N,I)-l)*2+K
LP=LP+1
REC(J )=BF(L P )+REC(J )

707 CONTINUE
501 CONTINUE
499 CONTINUE

RETURN 
END

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C * SUBROUTINE SOLV2
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE SOLV2
COMMON /BLOCKOl/ TITLE(12),IIF,F T X ,N P ,N E ,NSZF,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS,F N ,G ,C E ,B E ,IH,L F ,IPR,N X (5 0),J J F ,J 10, N I O ,
3 MIO,D1(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600),R E C (600),IOPT,
5 DSY,IZO,IOT

COMMON /BL0CK02/ NV,TG(12),K F ,NIN(10),XIN( 10),
1 LPIN,INLP

COMMON /BL0CK03/ CORD(600, 2),N O P (600,3),PROP(5 ) ,
1 FX1,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600) ,
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

DIMENSION SS(600) ,
1 SL(600,600),B(3,6),R(6)

REWIND(4)
NPRES=0
L=1
M=1

C
C CARRY OUT GAUSSIAN ELIMINATION
C

DO 901 1=1,NSZF
SS(I)=0.0
SS(I)=FORC(I)
DISPL(I)=0.0 
DO 901 J=1,NSZF 
SL(I,J)=0.0 

901 SL(I,J)=SK(I,J )
1=0
DO 151 J-l.NSZF 
1 = 1  + 1
IF(BOUN(J).E Q .1.) GO TO 151 
SL(I,I)=SL(I,I)+1.0E+30 

151 CONTINUE
Ml=NSZF 
M 2 =M1-1 
DO 301 1=1,M2 
11=1+1
DO 290 K=II,M1 
FACT=SL(K,I)/SL(I,I)
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DO 280 J=II,M1
SL(K,J)=SL(K,J)-FACT*SL(I,J )

280 CONTINUE
SL(K,I)=0.0
SS(K)=SS(K)-FACT*SS(I)

290 CONTINUE
301 CONTINUE
C
C BACK SUBSTITUTE
C

DO 402 1=1,Ml 
II=M1-I+1 
PIVOT=SL(II,II )
SL(II,II)=0.0 
DO 351 J=II,M1
SS(II)=SS(II)-SL(II,J)*DISPL(J)

351 CONTINUE
DISPL(II)=(SS(II)/PIVOT)

402 CONTINUE
C
C FORM DISPLACEMENT VECTOR
C

DO 90 J=1,NSZF 
BOD(J)=0.0
IF(BOUN(J).EQ.0.0) GO TO 90 
BOD(J)=DISPL(J)

90 CONTINUE
C
C CALCULATE ELASTIC INCREMENT OF
C STRAIN AND STRESS
C

IF(NIO.EQ.2) GO TO 101 
DO 500 NC=1,NE 
DO 7 1=1,3 

7 READ(4,9) N,(B(I,J),J=1,6)
9 FORMAT(13,2X,6F12.3)

DO 107 1=1,3 
II=2*NOP(N,I)-l 
JJ=2*NOP(N,I)
R(2*1-1)=BOD(II)
R(2*I)=BOD(JJ)

107 CONTINUE
DO 300 1=1,3 
ELETA(N,I)=0.0 
DO 300 J= 1 ,6  

300 ELETA(N,I)=ELETA(N,I)+B(I ,J)*R(J)
DO 400 1=1,3 
ELSIG(N,I)=0.0 
DO 400 J = 1 ,3
ELSIG(N,I )=ELSIG(N,I)+D(I,J)*ELETA(N,J)

400 CONTINUE
ELSIG(N,4)=(ELSIG(N,1)+ELSIG(N,2))*PROP(2)

500 CONTINUE
GO TO 499 

101 CONTINUE
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71
91

103

304

DO 501 NC=1,NE 
DO 71 1=1,3
READ(4,91) N,(B(I,J ) ,J=1,6 )
FORMAT(I3,2X,6F12.3)
DO 103 1=1,3 
II=2*NOP(N,I)-l 
JJ=2*NOP(N,I)
R(2*1-1)=BOD(II)
R(2*I)=BOD(JJ)
CONTINUE 
DO 304 1=1,3 
ELETA(N,I)=0.0 
DO 304 J = 1 ,6
ELETA(N,I)=ELETA(N,I)+B(I,J)*R(J) 
ELETA(N,4)=-(ELSIG(N,1)+ELSIG(N,2))*

1 (PROP(2)/(PROP(1)))
DO 401 1=1,3 
ELSIG(N,I)=0.0 
DO 401 J = 1 ,3
ELSIG(N,I)=ELSIG(N,I)+Dl(I ,J)*ELETA(N,J)
CONTINUE 
CONTINUE 
CONTINUE 
RETURN 
END

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C * SUBROUTINE TOTAL
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE TOTAL
COMMON /BLOCKO1/ TITLE(12),IIF,FTX,NP,NE,N S Z F ,

1 TOL,DY,YTOT,IUZ,
NROWS,F N ,G ,C E ,BE,IH,LF,IPR,NX(50),JJF,JIO,NIO,
MI0,D1(3,3),
FTY,IPI,ISC,DISPL(600),BOD(600),REC(600),IOPT,
DSY,IZO,IOT
COMMON /BLOCK02/ NV,TG(12),KF,NIN(10),XIN(10),
LPIN,INLP
COMMON /BLOCK03/ CORD(600,2),NOP(600,3),PROP(5),
FX1,FY1,NIH,
D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW(600), 
FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600), 
SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2), 
LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)
DIMENSION X I (2500),Y1(2500),X2(2500),Y2( 2500),

1 X 3 (2500),Y 3 (2500)

401
501
499

C
C
C
C

2
3
4
5

1
2
3
4
5

DETERMINE AND PRINT ELEMENT COORDINATES
BEFORE LOADING

IF(DSY.NE.1.) GO TO 30
FX1=FTX
FY1=FTY
DO 10 N = 1 ,NE
I=NOP(N,1)
J=NOP(N,2)
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K=NOP(N,3)
XI(N)=CORD(1,1)
Y1(N)=CORD(1,2)
X2(N)=C0RD(J,1)
Y2(N)=C0RD(J,2)
X3(N)=C0RD(K,1)
Y3(N)=CORD(K,2)
CONTINUE
OPEN(UNIT=12,FILE='MESH.DAT1 ,STATUS»'NEW') 
DO 15 N=1,NE
WRITE(12,210) XI(N),Y1(N),X2(N),Y2(N),X3(N), 
Y3(N),X1(N),Y1(N),X2(N),Y2(N)
CONTINUE
CLOSE(UNIT=12,STATUS='KEEP ' )
DSY=DSY+1.
ZO=CORD(IH,2)/CORD(IPR,1)
IF(ZO.LT.1.) GO TO 32 
IF(ZO.EQ.1.) GO TO 30 
IF(ZO.GT.1.) GO TO 33 
GO TO 30 
CONTINUE
IF(ZO.EQ.O.O) GO TO 999
FTX=FTX/ZO
GO TO 30
FTY=FTY*ZO
CONTINUE

UPDATE COORDINATES

IF(IOPT.NE.1) GO TO 220 
K=0
DO 40 J=1,NP 
DO 40 M = 1 ,2 
K=K+1
DIS(J,M)=DIS(J,M)+BOD(K)
CORD(J,M)=CORD(J,M)+BOD(K)
CONTINUE 
GO TO 225 
CONTINUE 
K=0
DO 42 J=1,NP 
DO 42 M = 1 ,2 
K=K+1
DIS(J,M)=DIS(J,M)+BOUN(K)
CORD(J ,M )=CORD(J ,M )+BOUN(K )
CONTINUE 
NST=NROWS+l 
DO 45 J=NST,NSZF 
L=J-NROWS 
KC=JCOL(L)
BOUN(KC)=0.0
CONTINUE
CONTINUE

UPDATE CURRENT VALUES OF STRESS AND STRAIN



c
IF(NIO.EQ.2) GO TO 101 
DO 100 N-l.NE 
DO 50 1=1,3

50 ETA(N,I)=ETA(N,I)+ELETA(N,I)
DO 70 1=1,4

70 SIG(N,I)=SIG(N,I)+ELSIG(N,I)
C
C CALCULATE EQUIVALENT STRESS AND STRAIN
C

DSEQ=((((ELSIG(N, 1)-ELSIG(N,2))**2)*0.5)+
1 (((ELSIG(N,2)-ELSIG(N,4))**2)*0.5)+(((ELSIG(N,4)-
2 ELSIG(N,1))**2)*0 . 5)+ (((ELSIG(N,3))**2)*3.0))**0.5 

SEQF(N) = ((((SIG(N, 1)-SIG(N,2))**2)*0.5) +
1 (((SIG(N,2)-SIG(N,4))**2)
2 *0.5)+(((SIG(N,4)-SIG(N,1))**2)*0.5)+
3 (((SIG(N,3))**2)*3.0))**0.5 

IF(SEQF(N).LT.SEQI(N)) GO TO 80 
EEQ(N)=EEQ(N)+DSEQ/PROP(l)
GO TO 100

80 EEQ(N)=EEQ(N)-DSEQ/PROP(1)
100 CONTINUE 

GO TO 201
101 CONTINUE

DO 110 N=1,NE 
DO 51 1=1,4
ETA(N,I)=ETA(N,I)+ELETA(N,I)

51 CONTINUE 
DO 71 1=1,3
SIG(N,I)=SIG(N,I)+ELSIG(N, I)

71 CONTINUE 
C
C CALCULATE EQUIVALENT STRESS AND STRAIN
C

DSEQ=((((ELSIG(N,1)-ELSIG(N,2))**2)*0.5)+
1 (((ELSIG(N,2)-ELSIG(N,4))**2)*0.5)+(((ELSIG(N,4)-
2 ELSIG(N,1))**2)*0. 5)+ (((ELSIG(N,3))**2)*3.0))**0.5 

SEQF(N)=((((SIG(N,1)-SIG(N,2))**2)*0.5)+
1 (((SIG(N,2)-SIG(N>4))**2)
2 *0.5)+(((SIG(N,4)-SIG(N,1))**2)*0.5)+
3 (((SIG(N,3))**2)*3.0))**0.5 

IF(SEQF(N).LT.SEQI(N)) GO TO 81 
EEQ(N)=EEQ(N)+DSEQ/PROP(1)
GO TO 110

81 EEQ(N)=EEQ(N)-DSEQ/PROP(1 )
110 CONTINUE
201 CONTINUE
210 F0RMAT(2E16.8,/, 2E16. 8,/,2E16.8,/,2E16.8,/,2E16.8)

RETURN
999 WRITE( 6 ,1000)
1000 FORMAT(/,' CHECK THE COORDINATE OF THE TOP POINT ',/)

STOP
END
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c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C * SUBROUTINE PLAST
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE PLAST
COMMON /BLOCKO1/ TITLE(12),IIF,FTX,NP,N E ,N S Z F ,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS,FN,G,CE,BE,IH,LF,IPR,NX(50),JJF,JIO,NIO,
3 MIO,D1(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCKO2/ NV,TG(12),KF,NIN(10),XIN(10),
1 LPIN.INLP

COMMON /BLOCKO3/ CORD(600,2),NO P (600,3),PROP(5),
1 FX1,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(600),TAREA(600),JROW( 600 ),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600) ,
4 SEQF(600),ELETA(600,4),ELSIG(600, 4) ,DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

DIMENSION B (3,6 ),FMAT(4),GFMT(4),FTM(3),STM(3,3),
1 DELPL(3,3),SINC(4),SBF(4),BF(6),REAC(600),TTM(3,3 ) ,
2 X I 1(2500),Y U (2500),X22(2500),Y22(2500),X33(2500),
1 Y33(2500)

C
C SET ITERATION COUNTER
C

ITER=1
10 REWIND(4)
C
C ZERO FORCE VECTOR
C

IF(IOPT.N E .1) GO TO 12 
DO 50 1=1,NSZF 
FORC(I)=0.0

50 REAC(I)=0.0 
GO TO 14

12 CONTINUE
DO 51 1=1,NSZF

51 REAC(I)=0.0
14 CONTINUE
C
C SET UP ELEMENT LOOP
C

DO 800 NC=1,NE 
DO 11 1=1,3

11 READ(4,19) N,(B(I ,J ),J = 1 ,6 )
19 FORMAT(I3,2X,6F12.3)
C
C BRANCH FOR YIELDED ELEMENTS
C

IF(NIO.E Q .2) GO TO 107 
BR1=SEQF(N)-PR0P(3)
IF(BRl) 750,750,70 

70 BR2=SEQI(N)-PROP(3)
IF(BR2) 90,100,100 

90 RAT=(SEQF(N)-PROP(3))/(SEQF(N)-SEQI(N))
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DO 120 1=1,3
120 ELETA(N,I)=ELETA(N,I)*RAT 

DO 130 1=1,4
130 ELSIG(N,I)=ELSIG(N,I)*RAT 

GO TO 108
107 CONTINUE 

BRl=SEQF(N)-PROP(3)
IF(BRl) 750,750,71

71 BR2=SEQI(N)-PROP(3)
IF(BR2) 91,100,100 

91 RAT=(SEQF(N)-PROP(3))/(SEQF(N)-SEQI(N))
DO 121 1=1,4

121 ELETA(N,I)=ELETA(N,I)*RAT 
DO 131 1=1,3

131 ELSIG(N,I)=ELSIG(N,I)*RAT
108 CONTINUE 
C
C EVALUATE ELASTO-PLASTIC MATRIX
C
100 LYD(N)=1

TOTS=(SIG(N,l)+SIG(N,2)+SIG(N,4))/3.0
DEVX=SIG(N,1)-TOTS
DEVY=SIG(N,2)-TOTS
DEVZ=SIG(N,4)-T0TS
FMAT(4)=(DEVZ*3.)/(SEQF(N)*2.)
FMAT(1)=(DEVX*3.)/(SEQF(N)*2.)+PROP(2)*FMAT(4) 
FMAT(2)=(DEVY*3.)/(SEQF(N)*2.)+PR0P(2)*FMAT(4) 
FMAT(3)=(SIG(N,3)*3.)/SEQF(N)
GFMT(1)=(DEVX*3.)/(SEQF(N)*2.)
GFMT(2)=(DEVY*3.)/(SEQF(N)*2.)
GFMT(3)=(SIG(N,3)*3.)/SEQF(N)
IF(NIO.EQ.2) GO TO 201 
DO 150 1=1,3 
FTM(I)=0.0 
DO 150 J= 1 ,3 

150 FTM(I)=FTM(I)+D(I,J)*FMAT(J)
DO 200 1=1,3 
DO 200 J= 1 ,3

200 STM(I,J)=FTM(I)*FMAT(J)
DO 250 1=1,3
DO 250 J = 1 ,3 
TTM(I,J)=0.0 
DO 250 L=1,3 

250 TTM(I ,J )=TTM(I ,J ) + STM(I ,L )*D(L ,J )
BRKT=0.0 
DO 300 1=1,3 

300 BRKT=BRKT+FMAT(I)*FTM(I)
TIMES=1./(BRKT+((PROP(4)*PROP(1))+

1 ((FMAT(4)** 2)*PROP(1))))
DO 400 1=1,3 
DO 400 J= 1 ,3 

400 DELPL(I,J)=D(I,J)-TTM(I,J)*TIMES
GO TO 402

201 CONTINUE
DO 151 1=1,3
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FTM(I)=0.0 
DO 151 J=1,3 

151 FTM(I)=FTM(I)+D1(I ,J )*GFMT(J )
DO 202 1=1,3 
DO 202 J-1,3 

202 STM(I,J )=FTM(I)*GFMT(J )
DO 251 1=1,3 
DO 251 J=1,3 
TTM(I,J)=0.0 
DO 251 L=1,3 

251 TTM(I,J)=TTM(I,J)+STM(I,L)*D1(L,J)
BRKT-0.0 
DO 301 1=1,3 

301 BRKT=BRKT+GFMT(I)*FTM(I)
TIMES-1./(BRKT+(PROP(4)*PROP(1)))
DO 401 1=1,3 
DO 401 J-1,3
DELPL(I,J)=D1(I,J)-TTM(I,J)*TIMES

401 CONTINUE
402 CONTINUE 
C
C USE MATRIX TO CALCULATE STRESS INCREMENT
C

DO 450 1=1,3 
SINC(I)=0.0 
DO 450 J-1,3
SINC (I)=SINC(I)+DELPL(I,J)*ELETA(N,J)

450 CONTINUE
IF(NIO.N E .2) GO TO 501 
GO TO 552 

501 CONTINUE
C
C CALCULATE Z-STRESS INCREMENT
C

SINC(4)=(PR0P(2)*(SINC(1)+SINC(2)))-
1 (PROP(1)*FMAT(4)*
2 (((PROP(1)*(ELETA(N,2)-ELETA(N,1)))+SINC(1)-
3 (PROP(2)*(SINC(2)-
2 SINC(1)))-SINC(2))/PROP(1))/(GFMT(2)-GFMT(1)))

C
C CALCULATE STRESS DUE TO THE BODY FORCES
C

DO 500 1=1,4 
500 SBF(I)=ELSIG(N,I)-SINC(I)

DO 550 1=1,4 
550 SIG(N,I)=SIG(N,I)-SBF(I)

GO TO 559 
55 2 CONTINUE

DO 503 1=1,3
SBF(I)=ELSIG(N,I)-SINC(I)

503 CONTINUE
C
C UPDATE CURRENT STRESS VALUE
C

DO 551 1=1,3
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SIG(N,I)=SIG(N,I)-SBF(I)
551 CONTINUE
559 CONTINUE

SEQF(N)=((((SIG(N,1)-SIG(N,2))**2)*0.5)+
1 (((SIG(N,2)-SIG(N,4))**2)
2 *0.5)+(((SIG(N,4)-SIG(N,1))**2)*0.5)+
3 (((SIG(N,3))**2)*3.0))**0.5

C
C CALCULATE BODY FORCES
C

DO 650 1=1,6 
BF(I)=0.0 
DO 600 J=1,3 

600 BF(I)=BF(I)+B(J,I)*SBF(J)
650 BF(I)=BF(I)*TAREA(N)
C
C ASSEMBLE BODY FORCES IN LOAD VECTOR
C

LP=0
DO 700 1=1,3 
DO 700 K=1,2 
J=(NOP(N,I)-l)*2+K 
LP=LP+1
REAC(J)=BF(LP)+REAC(J )
IF(IOPT.NE.1) GO TO 700 
IF(BOUN(J).E Q .0.0) REAC(J)=0.0 
FORC(J)=REAC(J)

700 CONTINUE
750 SEQI(N)=SEQF(N)
800 CONTINUE

IF(IOPT.NE.1) GO TO 801 
DO 820 NN=1,NE 
IF(LYD(NN).EQ.1) GO TO 840 

8 20 CONTINUE
GO TO 950

C
C TEST FOR CONVERGENCE
C
840 CONTINUE

RN=0.0
DO 875 J=1,NSZF 

875 RN=RN+FORC(J )
CONV=(ABS(RN)/ABS(FN))**0.5

C
C UPDATE REACTION FORCES
C

DO 890 J = 1 ,NPRES 
KC=JCOL(J)
REC(KC)=REC(KC)-REAC(KC)

890 CONTINUE
IF(CONV.LT.TOL) GO TO 950

C
C ITERATION COUNTER
C

ITER=ITER+1
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c
c
c

900

950
C
C
C
C
C

C
c
c
c

1 2 1 1
1 2 0 1

140

160
1

32

33 
30 
142 
C
c
c

IF(ITER.GT.80) GO TO 900

LOOP THROUGH SOLUTION ROUTINES

CALL SOLV2 
CALL TOTAL 
GO TO 10 
WRITE(6,996)
GO TO 1000 
CONTINUE

DETERMINE AND PRINT ELEMENT COORDINATES
AFTER LOADING

IF(ABS(YTOT).LT.BE) GO TO 142

CORRECT COORDINATE

IF(MIO.NE.3) GO TO 1201 
DO 1211 J=1,NP
CORD(J,2)=CORD(J,2)-CORD(IUZ,2)
CONTINUE 
CONTINUE 
DO 140 N=1,NE 
I=NOP(N,1)
J =NOP(N,2)
K=NOP(N,3)
X I 1(N)=CORD(I,1)
Y 1 1(N)=CORD(I,2)
X22(N)=CORD(J,1)
Y22(N)=CORD(J,2)
X33(N)=CORD(K,1)
Y33(N)=CORD(K,2)
CONTINUE
0PEN(UNIT=14,FILE=1MESHP.DAT 1 ,STATUS='NEW') 
DO 160 N=1,NE
WRITE(14,210) X11(N),Y11(N),X22(N),Y22(N), 
X33(N),Y33(N) ,XU(N) ,Y11(N) ,X22(N),Y22(N) 
CL0SE(UNIT=14,STATUS='KEEP 1) 
ZO=CORD(IH,2)/CORD(IPR,1)
IF(ZO.LT.1.) GO TO 3 2
IF(ZO.EQ.1.) GO TO 30
IF(ZO.GT.1.) GO TO 33
GO TO 30
FX1=FX1/Z0
GO TO 30
FY1=FY1*Z0
CONTINUE
CONTINUE

SUMMATION OF REACTION FORCES 

DO 990 I=NST,NSZF
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N=I-NROWS
NC=JCOL(N)
JJ=NC 
M=1 
LP=0 

960 LP=LP+1
NC=NC-2
IF(NC) 980,970,960 

970 M=M+1
980 J=LP
990 TION(J,M)=TION(J,M)+REC(JJ)

GO TO 809 
801 CONTINUE

NST=NROWS+l 
NPRES=NSZF-NROWS 
DO 821 NN=1,NE 
IF(LYD(NN).EQ.1) GO TO 841 

821 CONTINUE
GO TO 951

C
C TEST FOR CONVERGENCE
C
841 CONTINUE

DO 851 J=1,NROWS 
NC=JROW(J)
FORC(J)=REAC(NC)

851 CONTINUE
RN=0.0
DO 876 J= 1 ,NROWS 

876 RN=RN+FORC(J )
CONV=(ABS(RN)/ABS(FN))**0.5

C
C UPDATE REACTION FORCES
C

I=NST
DO 891 J=1,NPRES 
KC-JCOL(J)
FORC(I)=FORC(I)-REAC(K C )
1= 1+1 

891 CONTINUE
IF(CONV.L T .TOL) GO TO 951

C
C ITERATION COUNTER
C

ITER=ITER+1
IF(ITER.GT.80) GO TO 901

C
C LOOP THROUGH SOLUTION ROUTINES
C

CALL S0LV4 
CALL TOTAL 
GO TO 10 

901 WRITE(6,996)
GO TO 1000 

951 CONTINUE
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c
c
c
c
c

DETERMINE AND PRINT ELEMENT COORDINATES
AFTER LOADING

IF(ABS(YTOT).LT.BE) GO TO 144
C
C
C
C

CORRECT COORDINATE

IF(MIO.NE.3) GO TO 1200 
DO 1210 J=1,NP
CORD(J,2)=CORD(J,2)-CORD(IUZ,2)

1210 CONTINUE
1200 CONTINUE

DO 146 N-l.NE 
I=NOP(N,1)
J=NOP(N,2)
K=NOP(N,3 )
XI1(N)=CORD(1,1)
Y11(N)=CORD(I,2)
X22(N)»CORD(J,l)
Y22(N)=CORD(J,2)
X33(N)=CORD(K,1)
Y33(N)=CORD(K,2)

146 CONTINUE
0PEN(UNIT=14,FILE='MESHP.D A T ',STATUS='NEW1 ) 
DO 148 N = 1 ,NE 

148 WRITE(14,210) Xll(N),Y11(N),X22(N),Y22(N)
1 ,X33(N),Y33(N),X11(N),Y11(N),X22(N),Y22(N)

CLOSE(UNIT=14,STATUS='KEEP')
ZO=CORD(IH,2)/CORD(IPR,1)
IF(ZO.LT.1.) GO TO 34 
IF(ZO.EQ.1.) GO TO 35 
IF(ZO.GT.1.) GO TO 36 
GO TO 30

34 FX1-FX1/ZO 
GO TO 35

36 FY1=FY1*Z0
35 CONTINUE
144 CONTINUE

DO 991 I=NST,NSZF 
N=I-NROWS 
NC=JCOL(N)
M=1
LP=0

C
c
c

SUMMATION OF REACTION FORCES

961 LP=LP+1 
NC=NC-2
IF(NC) 981,971,961

971 M=M+1
981 J=LP
991 TION(J,M)=TION(J ,M)+FORC(I)

F- 54



809 CONTINUE
WRITE(6 ,997) YTOT 
WRITE(6,998) DY 
WRITE(6 ,999) ITER 

210 FORMAT(2E16.8,/,2E16.8,/,2E16.8,/.2E16.8,/,2E16.8)
996 FORMAT(//45H CONVERGENCE NOT ACHIEVED 

1 WITHIN INCREMENT )
997 FORMAT(//18H LOAD INCREMENT = ,F10.4)
998 FORMAT(/20H CURRENT INCREMENT = ,F10.4)
999 FORMAT(/36H NO.OF ITERATION WITHIN INCREMENT =

1 ,15)
RETURN

1000 STOP 
END

C * SUBROUTINE OUTPUT
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE OUTPUT
COMMON /BLOCKO1/ TITLE(12),IIF,FTX,N P ,N E ,N S Z F ,

1 TO L ,D Y ,YTOT,IUZ,
2 NROWS,FN,G,CE,BE,IH,LF,IPR,NX(50),JJF,JIO,NIO,
3 MIO,D1(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCK02/ NV,TG(12),KF,NIN(10),XIN(10),
1 LPIN,INLP

COMMON /BLOCK03/ CORD(600,2),NO P (600,3),PROP(5),
1 FX1,FY1,NIH,
2 D(3,3),SK(600,600),BOUN(ôOO),TAREA(600),JROW(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600) ,
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600,2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

C
C OPTIONAL OUTPUT
C

IF(IOT.EQ.1) GO TO 500
IF(IOT.EQ.2) GO TO 500
IF(IOT.E Q .3) GO TO 520
IF(IOT.EQ.4) GO TO 500
GO TO 590 

500 CONTINUE
C
C PRINT DISPLACEMENTS
C

WRITE(6 ,99)
DO 2 J=1,NP
WRITE(6 ,100) J,(DIS(J,M),M=1,2)

2 CONTINUE
IF(IOT.EQ.2) GO TO 510
IF(IOT.EQ.4) GO TO 530

C
C PRINT COORDINATES

WRITE(6 ,101)
DO 3 KK=1,NP
WRITE(6 ,100) KK,(CORD(K K ,M),M=1,2)
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3 CONTINUE
C
C
C PRINT STRESSES
C
5 20 CONTINUE

WRITE(6,199)
DO 250 N=1,NE
WRITE(6 ,200) N,(SIG(N,I),I=1,4),SEQF(N),LYD(N) 

250 CONTINUE
C
C PRINT STRAINS
C

WRITE(6,299)
DO 300 N=1,NE
WRITE( 6 ,399) N,(ETA(N,I),1=1,4),EEQ(N)

300 CONTINUE
IF(IOT.E Q .3) GO TO 590
IF(IOT.EQ.1) GO TO 510

530 CONTINUE
C
C PRINT NORMAL STRAIN ON THE SURFACE
C

JTM=NX(1)+l
LT=JTM+JTM
IT=0
JZ=JTM+4
DO 540 NI=LT,NP, JTM 
IB=NI-JTM
YT=CORD(NI,2)-CORD(IB,2)
XT=CORD(IB,1)-CORD(NI,1)
TAT=YT/XT 
THI=ATAND(TAT)
BOl= (ETA(JZ,1)+ETA(JZ,2))/2.
B02=(ETA(JZ,1)-ETA(JZ,2))/2.
THI1=2.*THI 
B03=C0SD(THI1)
B04=SIND(THI1)
B05=0.5*(B04)*(ETA(JZ,3))
B06=B02*B03
IT=IT+1
EEQ(IT)=B01+B05+B06 
JZ=JZ+10 

540 CONTINUE
WRITE( 6 ,555)
DO 550 L=1,IT 
WRITE(6,560) L,EEQ(L)

550 CONTINUE
IF(IOT.EQ.4) GO TO 590 

510 CONTINUE
C
C PRINT REACTIONS
C

WRITE(6,350)
DO 21 J = 1,NP
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WRITE(6,400) J,(TI0N(J,M),M=1,2)
21 CONTINUE
590 CONTINUE
99 FORMAT(///7H NODE,8X,13H DISPLACEMENTS )
100 FORMATAI10,2F15.6)
101 FORMAT(///7H NODE,8X,13H COORDINATES )
299 FORMAT(/' ELEMENT X-STRAIN Y-STRAIN

1 XY-STRAIN Z-STRAIN EQ-STRAIN')
399 FORMAT(110,5E12.4)
199 FORMAT(/' ELEMENT X-STRESS Y-STRESS

1 XY-STRESS Z-STRESS EQ-STRESS PLASTIC')
200 FORMAT(110,5E12.4,15)
350 FORMAT(/7H NODE,8 X,10H REACTIONS )
400 FORMAT(110,2E12.4)
555 FORMAT(/, ' ELEMENT NORMAL STRAIN 1)
560 FORMATAI10,1IX,El 2.4)

RETURN
END

C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C * SUBROUTINE GRAPH
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE GRAPH
COMMON /BLOCKO1/ TITLE(12),IIF,FTX,NP,NE,NSZF,

1 TOL,D Y ,YTOT,IUZ,
2 NROWS,FN,G,CE,BE,IH,LF,IPR,NX(50),JJF,J I O ,NIO,
3 M I O ,D1(3,3),
4 FTY,IPI,ISC,DISPL(600),BOD(600),REC(600),IOPT,
5 DSY,IZO,IOT

COMMON /BLOCKO2/ NV,TG(12),KF,NIN(10),XIN(10),
1 LPIN,INLP

COMMON /BLOCK03/ CORD(600,2),NOP(600,3),PROP(5),
1 FX1,FY1,NIH,
2 D(3,3),SK(600,600),BQUN(600),TAREA(600),JROW(600),
3 FORC(600),ETA(600,4),SIG(600,4),JCOL(600),SEQI(600),
4 SEQF(600),ELETA(600,4),ELSIG(600,4),DIS(600, 2),
5 LYD(600),TION(600,2),EEQ(600),ESTIFM(6,6)

DIMENSION X(2500),Y(2500),XCE(2500),YCE(2500),
1 XC(2500),YC(2500),XC1(2500),YC1(2500),XX(2500),
2 Y Y (2500)

C
C DRAW ELEMENTS MESH BEFORE
C APPLYING LOAD
C

M=NE*5 
FD-FTY+5.
FD1=FD-1.
FD2-FD1-1.
FD3=FD2-1.
FD4=FD3-1.
OPEN(UNIT=12,FILE = 'MESH.DAT',STATUS='O L D ')
READ(12,24) (X(N),Y(N),N=1,M)
CLOSE(UNIT=12,STATUS='K E E P ')
CALL PLOTS(0.0,0.0,6 )
CALL SCALE(X ,FT X ,M ,1)
CALL SCALE(Y,FTY,M,1)
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CALL AXIS(0.0,0.0,'X-AXIS',-6 ,FTX,0.0,X(M+1),X(M+2))
CALL AXIS(0.0,0.0,'Y-AXIS',6,F T Y ,90.0,Y(M+1),Y(M+2))
IF(ISC.EQ.2) GO TO 167 
CALL LINE(X,Y,M,1,0,0)
GO TO 45

167 CONTINUE
CALL DASHL(X,Y,M,1)
CALL NEWPEN(4)
CALL SYMBOL(2.0,FD1,0.20, 'x _  plastic ',,0.0,11)
CALL NEWPEN (3)
CALL SYMBOL(2.0,FD2,0.20,'0 _ elastic',,0.0,11)
CALL SYMBOL(2.0,FD3,0.20,'-----  before l o a d i n g 0.0,20)
CALL SYMBOL(2.0,FD4,0. 20, ' after loading',,0.0,19)
GO TO 46

45 CONTINUE
CALL NEWPEN (3)
CALL SYMBOL(2.0,F D ,0 . 3,%DESCR(TG),,0.0,18)
CALL SYMBOL(2.0,FD1,0. 21, 'before l o a d i n g 0.0,14)
CALL NEWPEN (4)
CALL SYMBOL(2.0,FD2,0. 20 , 'x _ plastic ' ,,0.0,11)
CALL NEWPEN (3)
CALL SYMBOL(2.0,FD3,0.20, '0 _ elastic',,0.0,11)
CALL PLOT(0,0,0.0,3)
DO 166 N=1,M,5
XCE(N)=(X(N)+X(N+l)+X(N+2))/3.
YCE(N)=(Y(N)+Y(N+l)+Y(N+2))/3. 
XCE(N)=(XCE(N)-X(M+l))/X(M+2)
YCE(N)=(YCE(N)-Y(M+1))/Y(M+2)
CALL NEWPEN (3)
CALL SYMBOL(XCE(N),YCE(N),0.20,'0',,0.0,1)

166 CONTINUE
46 CONTINUE 
C
C DRAW ELEMENTS MESH AFTER
C APPLYING LOAD
C 
C

SD=FYl+5.
SD1=SD-1.
CALL NEWPEN (1)
CALL PLOT(0.0,0.0,3)
OPEN(UNIT=14,FILE = 'MESHP.D A T ',STATUS»'O L D ')
READ(14,24) (X(N),Y(N),N=1,M)
CLOSE(UNIT*14,STATUS*'KEEP')
IF(ISC.EQ.2) GO TO 168 
FE=FTX+2.
GO TO 169

168 CONTINUE
CALL PLOT(0.0,0.0,-3)
GO TO 43

169 CONTINUE
CALL PLOT(FE,0.0,-3)

43 CONTINUE
CALL SCALE(X,FX1,M,1)
CALL SCALE(Y,FY1,M,1)
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IF(ISC.EQ.2) GO TO 42
CALL AXIS(0.0,0.0,'X-AXIS',-6,FX l ,0.0,X(M+1),X(M+2)) 
CALL AXIS(0.0,0.0,'Y-AXIS', 6, FY1,90.0,Y(M+1), Y(M+2)) 

42 CONTINUE
CALL PLOT(0.0,0.0,3)
JJ=1
X(JJ)=(X(JJ)-X(M+l))/X(M+2)
Y(JJ)=(Y(JJ)-Y(M+1))/Y(M+2)
CALL PLOT(X(JJ),Y(JJ),2)

140 JJ=JJ+1
X(JJ)=(X(JJ)-X(M+1))/X(M+2) 
Y(JJ)=(Y(JJ)-Y(M+l))/Y(M+2)
CALL PLOT(X(JJ),Y(JJ),2)
JJ=JJ+1
X(JJ)=(X(JJ)-X(M+l))/X(M+2)
Y(JJ)=(Y(JJ)-Y(M+1))/Y(M+2)
CALL PLOT(X(JJ),Y(JJ),2)
JJ=JJ+1
X(JJ)=(X(JJ)-X(M+l))/X(M+2)
Y(JJ)=(Y(JJ)-Y(M+l))/Y(M+2)
CALL PLOT(X(JJ),Y(JJ),2)
JJ=JJ+1
X(JJ)=(X(JJ)-X(M+l))/X(M+2)
Y(JJ)=(Y(JJ)-Y(M+l))/Y(M+2)
CALL PLOT(X(JJ),Y(JJ),2)
IF(JJ.EQ.M) GO TO 155 
JJ=JJ+1
X(JJ)»(X(JJ)-X(M+l))/X(M+2)
Y(JJ)=(Y(JJ)-Y(M+l))/Y(M+2)
CALL PLOT(X(JJ),Y(JJ),3)
GO TO 140 

155 CONTINUE
CALL NEWPEN (3)
CALL SYMBOL(2.0,SD,0.3,%DESCR(TG),,0.0,18)
IF(ISC.E Q .2) GO TO 47
CALL SYMBOL(2.0,SD1,0.2 1 , 'after loading',,0.0,13)

47 CONTINUE
CALL PLOTCO.0,0.0,3)

C
C DRAW CENTRE OF THE ELEMENTS
C

N=1
J-l

40 IF(LYD(J).NE.1) GO TO 50
XC(N)=(X(N)+X(N+l)+X(N+2))/3. 
YC(N)=(Y(N)+Y(N+l)+Y(N+2))/3.
CALL NEWPEN (4)
CALL SYMBOL(XC(N),YC(N) , 0 . 20, 'x1,,0.0,1)

50 J=J+1
N=N+5
IF(J.EQ.(NE+1)) GO TO 60 
GO TO 40 

60 CONTINUE
CALL PLOT(0.0,0.0,3)
CALL NEWPEN (3)
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L = 1
KK=1

70 IF(LYD(KK).EQ.1) GO TO 80
XCl(L)=(X(L)+X(L+l)+X(L+2))/3. 
YCl(L)=(Y(L)+Y(L+l)+Y(L+2))/3.
CALL SYMB0L(XC1(L),YC1(L),0.20, ' O ' ,,0.0,1)

80 KK=KK+1
L=L+5
IF(KK.EQ.(NE+1)) GO TO 90 
GO TO 70 

90 CONTINUE
24 FORMAT(2F16.8)

CALL NEWPEN(l)
CALL PLOT(0.0,0.0,999)
RETURN
END

C _____________________________________________________
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C * END OF THE PROGRAM *
C _____________________________________________________
C *****************************************************
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TABLE (F.l)

INPUT DATA FOR AUTOMATIC MESH GENERATING

$ RUN TTER
CASE(1) UNIFORM LOADING 
2.3..3..4.2.3.1.2.0.2.1.2.1.1
0.2E+06,0.30,0.1692E+02,0.10,120.0
1 . . 1 . 1
3.0.1 
1 , 1 -
130.0.1
2 . 0. 8  
1 , 0 . 0 , 0 . 1  
2 , 0 . 0 , 0. 0
3.0.1E+07,0.0
4.0.1E+07,0.0
2 . 1 .
1 , 0 . 0 , 0 . 0 , 0 .0 , 1000.0
1 ,1 0 0 0.0 ,0 .0,1 0 0 0.0,1 0 0 0 . 0  
TEST 

$ EXIT

INPUT DATA FOR MANUAL MESH GENERATING

$ RUN TTER
CASE(l) UNIFORM LOADING

2.5..5..4.4.1.1.2.0.2.1.2.1.2.2
0.2E+06,0.30,0.1692E+02,0.10,120.0
1 . ,  1 . 1
3.0.1
1 . 1 .
130.0.1
2 . 0. 8
1 , 0 . 0 , 0. 0 
2 , 0 . 0 , 0. 0
4.0.1001E+07,0.0
5.0.1001E+07,0.0 
5,4
1 . 10 . 0 . 10.0  
2 , 10 . 0 , 1010.0
3.510.0.510.0
4.1010.0.10.0
5.1010.0.1010.0
1 . 1 .3.2
2.1.4.3 
3,3,5,2
4,3,4,5 
TEST

$ EXIT
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