Load Balancing in Parallel and Distributed Systems

A thesis by: David Sinclair B.E., M.Sc.

Supervisors: Mr. Micheal 6 hEigeartaigh

Prof. Michael Ryan

Submitted to
Dublin City University
Computer Applications

for the degree of
Doctor of Philosophy

September 1993

Declaration: No portion of this work has been submitted in
support of an application for another degree or
qualification in the Dublin City University or any

other University or Institute of Learning.

I hereby certify that this material, which | now submit for

assessment on the programme of study leading to the award of Doctor

of Philosophy is entirely my own work and has not been taken from the

work of others save and to the extent that such work has been cited

and acknowledged within the text of my work.

Signed: pate: 30/9/N

Candidate

Date :

Acknowledgements

There are two reasons why 1 have been looking forward to
writing this part of the thesis. The Tfirst reason is that typically
this is one of the last sections an author has to write. That means
that 1 can see a light at the end of the tunnel which I know is not

an onrushing train!

The second reason, and to me the most important reason, is that
| can publicly acknowledge those people, whose support and
encouragement, have made this thesis possible. 1 would like to thank
my supervisors, Mr. Michell 6 hEigeartaigh and Prof. Michael Ryan,
for all their help. Michedl"s willingness to accept me as a student,
his open door, his careful criticism and his guiding hand has made
the journey down this tunnel very pleasurable. When you are immersed
in a subject it is very easy to get absorbed by intricacies, to see
the leaf and not the tree, let alone the forest. My conversations
with Prof. Michael Ryan always reminded me of the forest and taught
me a simple, but invaluable lesson. Namely, that there is an elegance

to simplicity, and a simplicity to elegance.

To all the staff and postgrads in the School of Computer
Applications here in D.C.U., thank you for your support, assistance,

coffee break discussions and most of all your friendship.

Life does not end at the gates of D.C.U., and 1 am fortunate to
have many friends. Among those | am especially grateful to the hard

core gang: Brian, Colin, Colm, Derek, Kevin, Niall, Paul, Stephen,

Tony, Trevor, their alter-egos and better halves. 1 have known them
for more years than they care to remember, and they have helped me in
more ways than they know. A special vote of thanks to Kevin who

proof-read this thesis and showed me which obvious points were not

obvious.

The seeds of investigation were planted and nurtured by my
parents, Noreen and George, who have always allowed my imagination to
fly, even when they did not understand it. On those occasions when my
flight failed, they were always there to soften the landing. For all
you have done, thank you Mom and Dad. To Jennifer, Joanne, George and

Scott, my sisters and brothers, and Oscar, the dog, thank you for all

your love and support.

And Ffinally 1 would like to dedicate this thesis to my ever
loving wife, Edel. |1 had often thought of returning to university to
pursue the ideas in my head, but never had the courage. The Tfirst
time Edel heard me muse on the idea, she sat me down, and told me to
write an application letter. Without her love, support and
encouragement, this thesis would never have been possible. So this

thesis is from me to you, Edel, with all my love.

Table of Contents

1.0 L o o o U o o o 1
1.1 The Load Balancing Problem.. o 1
1.2 The Motivation Tfor Solving the Load Balancing
Problem. . e e e e 4
1.3 Overview OF ThesTS e e e eeeeeaaaan 7
2.0 Review of Research into Load Balancing...... oo . .o..-. 9
A s T U1 1111 11F= 1 Y/ 13
3.0 Static Communications Load Balancing oaaaaaaaaaann 14
3.1 The Elastic Force Algorithm._ .. __ 14
3.2 De I NI EIONS . i e e e e 15
32,0 A TasSK oo e aiaaaas 15
3.2.2 A Processing Node.......... - 1S
3.2.3 The Communications Matrix JCJ]---o-oooooo_ o . ._..... IS
3.2.4 The Allocation Matrix, [A]----ooooo it 16
3.2.5 The Modified CommunicationsMatrix, [Ca]---------_._... 17
3.2.6 The Force MatrixX, [Fl--cecooioo i a e 17
3.2.7 Total Stored Energy, Es_..... 18
3.2.8 Inertia of a Task, | 18
3.2.9 Task Move Galn, M ... e e e e e e e e e cemecmaaaanan 19
3.2.10 Task Swap Galn, S ...t et 19
3.3 The Algorithm. .o e e e e ce e aaaaaaaas 20
3.4 Max i imum <k-1) Sum Algorithm for Equal
Computational Loadst e a e eaaaa e 23
3.4.1 Example 24
3.5 The General Maximum Ck-1) Sum Algorithm..__._ _..._._..... 27
3.5.1 Maximum (k-1) Sum Algorithm with
Computational Loads.. i 33

4.0

5.0

3.5.2 Example. .. e e eeeaaaaaas
3.5.3 Experimental Evaluation of Maximum (k-1)

Sum Algorithm. e
Non-Symmetric Formulation of TaskAllocation Problem..__.._._._._.__.._..
4.1 De I NI T ONS . e e e

4. 1.1 A TasSK. e
4.1.2 A Program.......__...
4.1.3 A Processing Node et
4.1.4 Precedence Level i
4.2 Formulation of Non-Symmetric Mathematical
Programming Mode l .. e
4.2.1 Relaxing Quadratic Constraints..._.._..._.._.._....
4.2.2 Calculation of Bounding Constant C.._.._.._._._._........
4.3 Sciconic Implementation i e a e e e
4.3.1 Problem formulation in SciconicC....
4.3.2 Report Writer . .ot aae e aeaaaaaa
Pseudo-Dynamic Load Balancing i aaa e
5.1 De T INTEIONS . e e e e
511 A TaSK .o e e aaan
5. 1.2 A ProOgram. .. i e e e e e e e e e e
5.1.3 A Processing Node .. aaaaan
5.1.4 A Program Graph..
5.1.5 Precedence Level i
5.1.6 A Network Graph
5.2 The Pseudo-Dynamic AllocationHeuristic...___._._._._.._.....
5.2.1 The Computational Load Component,C”™
5.2.2 The Communications Load Component, Cc....._.._........
5.2.3 The Precedence Component, CpP ..o omaeaaaaanan--

50

50

51

52

58

62

64

66

67

68

70

70

70

70

71

72

74

5.2.4The Global Scheduling Table (GST) ... i aaaas 81

5.3 Local Schedulers. i e ed e meeeeaaa 83
5.4 The Pseudo-Dynamic Load Balancing Algorithm.__._.__._._._._._..... 84
6.0 Experimental Evaluation of Pseudo-Dynamic Load Balancing....._.... 89
6.1 Experimental Test Results._o aaaaas 92

6.1.1 Pseudo-Dynamic Load Balancing vs. Relaxed
Non-Symmetric Mathematical Formulation...__._._____._. 92

6.1.2 Pseudo-Dynamic Load Balancing vs. Simulated

Annealing and Tabu Search.... 97
7.0 WorstCase Analysis of Pseudo-Dynamic Load Balancing...._...._...._. 101
7.1 Worst Case Program Graph Structure.. oo ooaon- 102
7.2 Optimal Allocation for Worst Case Structure....._.._._...._.... 106
7.3 Worst Case Ratio, R, for Pseudo-Dynamic Load
2= B 1= o o o 110

7.4 Estimating the Worst Case Ration, RPDr for a Given

7.5 Worst Case Ratio, RPD, as a Function of the

Communications to Computations Ratio, a --.... 113
7.6 Asymptotic Bounds on Worst Case Ratio, RPD...._._._._.._....... 114
8.0 CONCIUSTONS L L it i e e e e e e e e e e e 116
S C o - T 116
8.2 Results and Achievements iiea e e e eeaaaaan 117
8.3 Topics for further Research...._ ... i ... 120
8.3.1 Enhancements to the Pseudo-Dynamic Load
Balancing Algorithm. ... iy 120

8.3.2 Distributing the Pseudo-Dynamic Load
Balancing Algorithm. iy 121

8.4 Concluding Remarks e e e ea e e aaaaa 123

REFERENCES

APPENDIX A

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E :

127

Maximum (k-1) Sum Algorithm Source Code _....... Al
Sciconics Implementationof the Relaxed

Non-Symmetric Formulation of the Task
Allocation Problem ... i B1
INtroducCtioN .. e a e B1
SUT T I CeS e e e e e e e e e B1
External Values i i e e e aaaa B1
Internal Values i a e e aaans B2
DeclarationNsS .o et B2
Variables .. e e e e B3
Prob lem . e e e B3
Elements oo e e e B6
L O o o = BS
MGG Problem Formulation. i iiae e e aaaan- B8
User Supplied Report Routime i aaaaaaaaan- B13
Problem Data File e e e e eeeaaaaas B21
ScicOoNiIC RUN SEreamS & it i i e e e e e e e ean B25

Pseudo-Dynamic Load Balancing algorithm Source

{030 1o = Cl
Simulated Annealing SourceCode D1
Tabu Search Source Codet a e e e e as El

Abstract

Title: Load Balancing in Parallel and Distributed Systems

Author: David Sinclair

Two major barriers prevent the widespread, common usage of

parallel and distributed computing systems:

(€)) A language which expresses parallelism without reference to the

underlying hardware configuration.

(@) A user invisible method for effectively distributing the tasks
that form the parallel/distributed program among the available

processing nodes. This is known as the load balancing problem.

This thesis examines the load balancing problem. This problem
of allocating n inter-communicating tasks among m processing nodes is
formulated as a non-symmetric mathematical programming problem, which
minimises the makespan, and is shown to be quadratic and discrete. A
novel relaxation is developed which exploits the discrete nature of

the problem, and this relaxed formulation is used to generate strong

upper bounds.

Two novel heuristic algorithms are proposed. A static load
balancing algorithm, the Maximum (k-1) Sum algorithm, 1is developed
for maximising the throughput of tasks in a parallel or distributed
system. This algorithm is compared with recently published results.
An on-line load balancing algorithm, the Pseudo-Dynamic Load
Balancing algorithm, 1is developed from the mathematical analysis of
the problem. This algorithm seeks to minimise the makespan of a
program, and 1is compared with standard combinatorial optimisation
techniques, such as Simulated Annealing and Tabu Search, as well as
the upper bounds set by the relaxed non-symmetric mathematical
formulation. Both of these new algorithms are shown to provide

efficient allocations of n tasks among m processing nodes.

Finally the Pseudo-Dynamic Load Balancing algorithm is analysed
to determine its worst case scheduling ratio, RPD, and the conditions

under which this worst case occurs.

1.0 Introduction

1.1 The Load Balancing Problem

In the concurrent programming model of parallel and distributed
processing a parallel or distributed program consists of a set of n
inter-communicating tasks. Each one of the n tasks may communicate
with any of the other (n-2) tasks. The amount of communications
between task i and task j is characterised by ci,j> the
communications load between task i1 and task j. In addition, task i is
also characterised by a computational length 1j_ that represents the
time taken to process its data. Tasks may also be bound by precedence
constraints so that task i may not execute until task k is completed.
Therefore the program can be represented as a program graph in which
a node represents a task and the weight of the node represents the
computational length of the task. The communications between tasks i
and J is represented by an edge between the nodes representing tasks
i and j, with the weight of the edge representing the amount of
communications between the two tasks. Precedence constraints may be
represented an edge of zero weight. If task 1 must be completed
before task j, this may be represented by a zero weight from node i

to node j.

The parallel or distributed computing system, on which this
program will run, can be characterised as a set of processing nodes
connected together by communications links in a given topology. Each
processing node can be characterised by a relative processing speed

and the communications distance from the processing nodes to which it

is connected. The communications distance between processing nodes 1
and J measures the time it takes a unit message to be transferred
from processing node i to processing node j. It represents the speed
of the communications medium between processing nodes i and j, as
well as the physical distance between processing nodes i and j. A
graph can be used to represent the parallel or distributed computing
system. Each node in the network graph represents a processing node,
where the weight of the node represents the relative speed of the
node and the weight of the edge between nodes i and j represents the

communications distance between processing nodes i and j.

Typically data transferred between two tasks on the same
processing node occurs through memory, while data transferred between
two tasks on different nodes 1is through one or more communications
links. Since the access time of memory is negligible in comparison to
the access time of an inter-node communications medium, e.g. LAN,
high speed serial links, etc., data transfer between two tasks on the
same node is considered to be instantaneous. The communications

distance from a node to itself is zero.

The load balancing problem is that of allocating a set of
n inter-communicating tasks among m processing nodes, arranged iIn a
given topology, 1in order to minimise or maximise some criteria. The

most common criteria are:

@ The minimisation of the maximum task completion time,

makespan, CmELX.

() The minimisation of the sum of the task completion times.

© The minimisation of the sum of the inter-task

communications.

Let di(equal 1 if task i is allocated to processing node j,
and 0 otherwise. If the completion time for task i is the time
at which task 1 starts 1is Yy and we assume, without Jloss of
generality, that task 1 is the root task and task n is the terminal

task, then the most common criteria are defined as:

@ The minimisation of the maximum completion time, makespan.

() The minimisation of the sum of the completion times.

© The minimisation of the sum of the inter-task communications.

min u*\(d,,k- dj. %)et.y)

In addition to these common criteria, this thesis will

use another criterion:

@ The minimisation of the total run time of the program as
defined by the difference between the start times of the first

and last task.

Criteria (@ and () are equivalent, since they only differ by

the computational length of the last task, task n.

1.2 Tha Motivation for Solving the Load Balancing Prnhlam

Since the late 1970°s, it became apparent to some researchers
that current, and envisaged technology, could not solve the 'grand
challenges”™ of computing, nor meet the users®™ growing demands for
increased performance at an affordable price. These researchers
proposed models of computing in which many processors co-operatively
solved a problem. Since that time a lot has happened, and a lot has
not. Parallel and distributed computers still remain behind the doors
of research labs, and outside the price range of most users. These
machines struggle with the "grand challenges'. At the same time basic
technology has advanced at an unbelievable rate, causing researchers
to revise the predicted growth 1in performance approximately every
five years. Standard sequential models of computing have increased in
computing power and reduced in size and cost, providing most users
with the performance they desire at a price they can afford. However,

clouds are appearing on the horizon. As users®" expectations continue

to grow many researchers are predicting an abrupt halt in the
advancement of technology that underlies modem computers. This
technology will meet fundamental physical limits imposed by quantum
mechanical effects, such as quantum tunnelling, as the geometry of
the integrated circuits continues to shrink. Unless new technologies
are discovered, parallel and distributed computers will have to leave
their labs and enter the mainstream of computing. Given the obvious
performance/price advantages and users®™ growing use of computer
networks, why has parallel and distributed computing not yet become

widespread among the general computing community?

Originally many problems were associated with parallel and
distributed computing, such as synchronisation, exclusion etc., but
most of these have been solved. What parallel and distributed
computing needs now is a revolution, similar to that which occurred
for personnel computers, which will make parallel and distributed
computers accessible to the general user and developer. One of the
popular models of parallel and distributed computing among
researchers is concurrent programming, where the program consists of
a set of communicating sequential tasks. Two central issues still
prevent this model of parallel and distributed computing from

entering into the mainstream of computing. These are:

(€)) A language which expresses the fundamental parallelism of a

problem without reference to the underlying computing system.

@ An effective method for automatically partitioning the tasks
which form the parallel or distributed program among the

available processors.

The solution to the first problem, the expression of
parallelism, requires the software developer to change his/her
thought processes, during the design of a program, from the
artificial sequential environment of existing sequential programming
languages to an environment similar to the world in which we live,
where actions can occur simultaneously. Object oriented programming
is providing a useful intermediate stage in enabling this change in
the thought processes of the designer. Object oriented program
designers no longer think of a program as a series of sequential
actions, but as a set of iInter-related objects. The next step for
the software designers 1is to think of the program as a set of
cooperative concurrent processes. For a parallel or distributed
programming language to be commercially successful 1its structure
should help reveal the fundamental parallelism in a problem without
requiring developers to make a radical change in their thought

processes during design.

The second problem, the load balancing problem, 1is the subject
of this thesis. Load balancing is the means by which the expressed
parallelism is exploited to improve the performance of the program,
and/or computing environment, usually in terms of reduced response
time or increased throughput. As well as being a fundamental problem
in parallel and distributed processing, the load balancing problem

belongs to a class of problem which 1is currently believed to be

intractable. The problem of determining if there exists an allocation
of n arbitrarily inter-communicating tasks, constrained by precedence
relationships, to an arbitrarily interconnected network of m
processing nodes, which meets a given deadline 1is an NP-complete
problem [1] . The problem of minimising the makespan, of a set of
tasks, where any task can execute on any processing node and Iis
allowed to preempt another task, is NP-complete even when the number

of processing nodes is limited to two [2].

This thesis examines the load balancing problem and presents
new algorithms for effective partitioning a set of n

inter-communicating tasks among m processing nodes.

1.3 Overview of Thesis

Section 2 reviews the research into load balancing in parallel
and distributed computing. Section 3 presents two new algorithms, the
Elastic Force algorithm and Maximum (k-1) Sum algorithm, for static
load balancing. The Maximum (k-1) Sum algorithm 1is compared with
recent results. Section 4 presents a non-symmetric mathematical
formulation of the task allocation problem. This formulation shows
that the task allocation problem is quadratic as well as discrete. A
new relaxation method is developed to relax the problem into a mixed
integer linear programming (MILP) problem. The relaxed formulation is
then implemented in the Sciconics mathematical programming package.

Section 5 examines the non-symmetric Fformulation to develop an

on-line heuristic technique called Pseudo-Dynamic Load Balancing.
Section 6 evaluates the quality of the allocations produced by
Pseudo-Dynamic Load Balancing against the relaxed mathematical
formulation and standard combinatorial optimisation techniques, such
as Simulated Annealing and Tabu Search. Section 7 examines the
Pseudo-Dynamic Load Balancing algorithm to determine under which
conditions the Pseudo-Dynamic Load Balancing algorithm produces Ilow
quality allocations. Then an upper bound on the worst case scheduling
ratio for Pseudo-Dynamic Load Balancing 1is derived. Section 8

presents the conclusions of the thesis and recommends areas for

future research.

2.0 Review of Research Into Load Balancing

There have been many different methods used to find a solution
to the Iload balancing problem. These can be generally classified
using the taxonomy presented by Casavant and Kuhl [3] (figure 1) .
This 1i1s a hierarchical classification, but the two most IiImportant
distinctions are those between static and dynamic techniques and

between optimal and sub-optimal techniques.

optimal sub-optimal physically physically

theory pgmg. theory

Figure 1; Casavant and Kuhlla Taxonomy of Load Balancing

Characteristics

Static load balancing methods commit the allocation of tasks to

processing nodes when the program is compiled. The 1information

regarding the tasks which comprise the program, determined by an

analysis of the program, and information regarding the hardware

configuration are combined to determine the allocation of tasks to
processing nodes. All the information about the program and the
parallel or distributed computing system on which the program will be
executed is known, ab initio. Any changes to the hardware
configuration require the program to be recompiled 1iIn order to
determine the best task to processing node allocation. Static load
balancing is also referred to as deterministic SChedU”ng [4] or taSk
SChedU”ng [51 - Dynamic load balancing methods are on-line methods
which use very little a priori knowledge of the program, and leave
the decision of where to allocate a task to the run-time system when
the task becomes available. This decision can be reachedby the
processing nodes agreeing on a task allocation, COOperative dynamic
SChedUIing', or by 1independent decisions by individual processing

nodes, NONCOOPerative dynamic scheduling.

Given that the load balancing problem is NP-complete in the
general sense, approaches to solving the problem are either based on
(@ restricting the problem definition and finding an optimal
solution for the restricted problem in polynomial time, or ()

finding a near-optimal solution to the general problem.

Optimal methods allocate tasks to processing nodes based on
some condition of optimality, as determined by an objective function
such as minimising the maximum completion time of any task, the
makaspan, or maximising resource utilisation etc. These optimal
methods either perform an enumerated search of the solution space, or
use graph theoretic, mathematical programming or queuing theoretic

approaches. Many optimal methods apply restrictions to the problem

formulation so that the problem is no longer NP-complete and can be
solved in polynomial time. Hu"s algorithm [6], Tfor example, 1iIs a
graph theoretic method which finds the optimal solution to the load
balancing problem if all tasks have equal computational length and
the program graph is a tree structure. Coffman and Graham devised an
algorithm similar to Hu"s algorithm which finds the optimal
allocation for an arbitrary program graph of equal computational
length tasks on a 2 processor system [7] . Bokhari has extended this
to graph theoretic methods for Ffinding the optimal allocation of
arbitrary program graphs with tasks of different computational length

on a 2 processor system [8].

In essence, the load balancing problem is a discrete
optimisation problem. Therefore any mathematical based solution must
either transform the problem into a linear, or restricted quadratic,
optimisation problem after applying some simplifying restrictions to

the initial problem, or restrict the size of the feasible solution

space.

When the tasks have equal computational loads and do not
communicate with each other, Epstein, Wilamowsky and Dickman [9]
showed that minimising the makespan, which 1is an integer [linear
problem (ILP), can be transformed into a classical assignment problem
which 1is Ulinear. Gaudioso and Legato [10] also showed how such
""open-shop" models can be formulated as linear programming problems.
Lawler and Labetoulle [11] showed that even when tasks where allowed
to have different computational loads, and preemption is permitted,

the minimisation of the makespan can be formulated as a linear

program, and an upper bound on the number of preemptions 1in the
optimal schedule can be determined. Billionnet, Costa and Sutter [12]
proposed a relaxed solution for the <case of no precedence or
sequencing constraints and when the objective function 1is the
minimisation of the sum of the inter-node communications plus the sum
of the task execution times. Their approach was based on solving the
Legrangean dual of the task allocation problem and then proving that

no duality gap existed.

Guiding the search of the solution space or reducing the size
of the solution space 1is another approach to the problem. Barnes,
Vannelli and Walker [13] developed a heuristic to guide their search
for an optimally balanced communications load by estimating a linear
cost matrix from a quadratic cost matrix. This linear cost matrix was
used to determine which set of tasks need to be moved from one node
to another. Holm and Sorensen [14] used techniques such as cutting
planes, and branch and bound to reduce the symmetry and size of the

solution space.

Heuristic methods involve limiting, or guiding, the search of
the solution space using some function that quickly evaluates the
"value™ of the current candidate solution and guides the selection of
the next candidate solution. These heuristics have their motivation
in both graph theory and mathematical programming. Kemighan and Lin
[15] proposed a heuristic based on the max flow-min cut algorithm of
Ford and Fulkerson [16] which allocates tasks by first partitioning
them iInto two sets, and then successively 2-way partitioning each

subset until the allocation is completed. Another common approach is

to treat the load balancing problem as a graph isomorphism problem,
which is also NP-complete, and to use heuristics to guide the mapping
of the program graph on the network graph. These heuristic methods
are based on identifying chains in the program graph [17] or

identifying clusters in the program graph [18].

2.1 Summary

The approaches to the load balancing problem can be classified
using Casavant®s and Kuhl®s taxonomy. There are two iImportant
distinctions in this taxonomy, the distinctions between static and
dynamic techniques, and the distinction between optimal and
sub-optimal techniques. Static load balancing techniques commit the
allocation of tasks to processing nodes when the program is complied.
Dynamic Uload balancing methods are on-line methods that use very
little a priori knowledge of the program, and leave the decision of
where to allocate a task to the run-time system when the task becomes

available.

Since the load balancing problem is NP-complete in the general
sense, the approaches to solving this problem are either based on
restricting the problem such that an optimal solution can be found in
polynomial time, or finding a near-optimal solution to the general
problem. Both approaches are generally based on graph theory,

mathematical programming theory or queuing theory.

13

3.0 Static ComnnnHrations Load Balancing

The algorithms presented in this section are designed to find
allocations of tasks to processing nodes that reduce the time a node
spends receiving data, processing data and transmitting data. This
increases the throughput of tasks through the parallel or distributed
computing system. This optimality condition does not necessarily

produce allocations with the lowest makespan.

3.1 The Elastic Force Algorithm

Consider a system of n tasks allocated among m processing
nodes. The m processing nodes are equidistant as regards
communications and the time taken for a wunit message to be
transferred from node i to node j 1is independent of i1 and j, Vi*j.
Let each task exerts a distance dependent force on every other task.
This force is equal to a measure of the communications between the
tasks multiplied by the distance between the tasks. The distance
between tasks allocated to the same processing node is zero. The
distance between tasks allocated to different processing nodes is
one. The total energy stored in the system is proportional to the sum
of the forces in the syBtem. If the n tasks are equally distributed
among the m processing nodes initially, then the basis of the
algorithm is to keep swapping pairs of tasks until the total energy
in the system reaches a minimum. The selection of which pair of tasks

to swap is made by calculating the total force exerted on each task

14

by each processing node, i.e. the sum of the forces exerted by the
tasks currently allocated to that node on the task in question. The
task which experiences the greatest force and one of the tasks
allocated to the processing node which exerts that force are the
candidates for swapping. Prior to swapping the reduction in system
energy, 1i.e. the gain from the swap, 1is calculated. If this gain Iis
greater than zero the swap is made, otherwise the swap is eliminated
and the algorithm searches for another candidate pair for swapping.
When there is no swap which will reduce the system energy, then the

algorithm terminates with the current task allocation.

Prior to applying the algorithm, the communications between
tasks are examined to find the tasks that experience a Tforce from
only one other task. Each of the tasks that experience a force from
only one other task is then swapped with another task on the node

from which the force was exerted.

3.2 Definitions

3.2.1 A Task

A task 1is a computational entity that 1is created, receives
data, performs a computation in a time Ilj, transmits data to other
tasks and then ceases to exist. A task can communicate with any other
task. The amount of data transmitted from task i to task j is Cirj- A

computational entity that receives and transmits data before all

15

computations are completed can be decomposed into tasks which obey

this definition.

3.2.2 A Processing Node

A processing node is a computational engine capable of running
one task at a time. Tasks assigned to a node may be run either to
completion or in a round robin manner. Communications between tasks
assigned to the same node are considered to occur instantaneously,
while communications between tasks on different nodes occur in a time

which is a function of the amount of data transferred between the two

tasks.

3.2.3 The Communications Matrix _TCI
The communications matrix [C] is an n x a matrix where n is the

number of tasks to be balanced. Each element of |[C], ci,j> is a

measure of the communications from task i to task j.

3.2.4 The Allocation Matrix. TAI

The allocation matrix [A] is an n x m matrix where n is the

number of tasks to be allocated among m processing nhodes. Each

16

element of [A], af j, is 1 if task 1 is allocated to node j, and is O

if task 1 is not allocated to node j.

3.2.5 The Modified Communications Matrix. [Cal

The modified communications matrix [Ca] is an n X n matrix
where n is the number of tasks to be balanced. The modified
communications matrix [Ca] is equal to the communications matrix [C]
modified by allocation matrix [A] . Each column of [A] is examined and
the rows which are set to 1 are noted. The communications between the
tasks that correspond to these rows are set to 0. For example, if
column 1 of [A] contains elements set to 1 in rows 1,4 and 5, which
corresponding to tasks 1,4 and 5, then clt4, c41i c4,5" c5,4> cl,5

and ¢S)2 are set to 0.

3.2.6 The Force Matrix. TFT

The force matrix [F] is an n x m matrix where n is the number
of tasks to allocate among m processing nodes. Each element of [F],
fitji is a measure of the total force processing node J exerts on

task 1.

[F1 ={Cal[Al

17

Therefore, f+rj, is the total communications task 1 receives

from all the tasks allocated to node j .

3.2.7 Total Stored Energy. En

The total energy stored in the system is Eg = KFC where Fc 1is

the total of the forces exerted on each task, and K is a constant of

proportionality.

Therefore, Fc, is the total of all the communications between

tasks on different nodes.

P(i,j) 1is the force task jJ exerts on task 1.

P(I,) = ce>j

3.2.8 Inertia of a Task. 1

The inertia of task i, Hi) , is equal to the sum of the forces

experienced by task 1i.

/N=£ Ay

18

3.2.9 Task Move Gain. M

The gain from moving task i1 from node X to node y is (the
force exerted on task 1 by node y) + (the force exerted by task i on
the tasks allocated to node y) - (the force exerted on task i by the
tasks allocated to node X) - (the force exerted by task i on the task

allocated to node X).

3

M (i X y)= (J {cikaky) + 't”“gi{ck,i.ak,y) J \’,;(a,k.a U g;(ck,i.ak,*)jN

3.2.10 Task Swap Gain. S

The gain from swapping task i on node x with task j onnodey

S(j,X,j,y): M(|, X,Y) +M(j1y1 X) - 2(3.] ta. I)

i.e., It is the gain from moving task ifrom node X to node y
plus the gain from moving task j from node Yy to node X minustwice

the sum of the communications between tasks i and j.

19

3.3 The Algorithm

The Elastic Force load balancing algorithm for tasks of equal

computational load is as follows.

Step 1: Allocate the n tasks among the m processing nodes equally
(creating as many null processes as required) without
reference to the inter-task communications. This gives

the initial allocation matrix [A]-

Step 2: Examine the communications matrix [C] for rows which
contain only one non-zero element. For such elements,
CEfj, swap task i1 with a task, other than task j on the
processing node to which task j is allocated, which
experiences the greatest force from a task, other than
task 1, on the processing node to which task 1 is

allocated.

Step 3: Derive the modified communications matrix [Ca] from [C]
using [A]l-
Step 4 : Calculate the force matrix [F] and the measure of the

total force stored in the system, Fc.

Step 5: Examine [F] to find the rows and columns of [F] which
contains the largestelement in [F] . Note these (task,

node) pairs.

Step 6:

Step 7:

Step 8:

Step 9:

For each (task i1, node j) pair, find the tasks currently
allocated to node j, e.g. tasks k and 1. Then calculate

the force exerted on task i1 by these tasks.

PCi,K)

1
(e}
-

(=
~

If there is more than one minimum P value P(i,k) proceed
to step 8. Otherwise, the candidate swap is task 1 with
task k. The gain from swapping task i on node x with task
k on node j is calculated, S(i,x,k,) - If S{i,x,k,j) is
not greater than =zero examine [F] to find the next
highest elements in [F]. Note these (task, node) pairs,
and return to step 6. If S[i,X, j,y) is greater than zero,

swap tasks i and Jj, and proceed to step 10.

If there 1is more than one minimum P value P(ic,kc),

calculate the inertia of each task kc,

Find the minimum inertia value 1(kc). The task swap
associated with this minimum inertia value 1is swapping
tasks ic and kc. Where there is more than one minimum
I[kc), choose the swap which has the lowest X(ic) value.
Calculate the gain from swapping task ic on node X with

task kc on node j. If S(ic,x,kc,j) is not greater than

21

zZero, find the next Ilowest inertia value 7 Ck®) and
calculate the gain S(id,x,kd,)) - If S (7%, k™ J) is not
greater than zero continue selecting the next lowest
inertia values until an inertia value Hke) is found such
that S (ie,x,ke,j) 1is greater than zero. If no such I1(ke)
is found, examine [F] to find the next highest elements
in [F]. Note these (task, node) pairs and return to step
6. When a pair of tasks, ie and ke, are found such that

S(ie,x,ke,j) is greater than zero, swap tasks ie and ke.

Step 10: Derive the new allocation matrix [A].

Step 11: Repeat steps 3 to 10 until no task swap is found which

decreases the measure of the system energy Fc.

This algorithm seeks to minimise the energy of the system and
hence maximise the throughput of tasks through the parallel or
distributed system. The speed at which the algorithm finds a solution

depends on the probability that the swap indicated by n1ax(Ly) has a

gain S{i,x,k,j) greater than zero. Even if this probability is high
the algorithm 1is very complicated. It involves many steps and
calculations, and is not a realistic algorithm, due to its
complexity, for large numbers of tasks. However, the algorithm does

lead to a much more efficient algorithm, the Maximum (k-1) Sum

algorithm.

22

where Ca(b a Cl1<2, CC(d = Cg3 4_ etc.

[C]«

O N N R O
o O O O R
R =R, O O DN
O O b O N
© O R O O

The maximum j element sum of task i1 will be denoted as jS(i).

First, create a null task, @ so that the number of tasks can
be evenly divided among the 3 nodes. This modifies the [C] matrix as

follows:

¢« 00 0 O0 OO 0
a 0012 20 5
b 0100 OO 1
c 02 00 11 4
d 0201 00 3
e 00 01 0O 1

where task (j»is the null task.

25

Therefore,

4 - 0 0 0 0O 0
a - 24 40 4
b - 00O 4
Cc - 2 2 4
d -0 4
e 2

The largest IS(i) corresponds to task a. Tasks ¢ and d
contribute equally to 1S(a), but since 1(d) < 1(c), allocate tasks a
and d to node 1. Eliminating the rows and columns corresponding to

tasks a and d gives

a b c de 1?(1)

e -000O0O 0
a - 00 OO 0
b -0 0O 0
c - 02 2
d -0 0
e - 2

The Ulargest IS(i) corresponds to task c. Task e contributes to
IS(c) , so therefore allocate tasks c and e to node 2. Allocate the

remaining tasks to node 3.

The allocation produced by the algorithm is:

Node Tasks
1 a, d
2 c, e
3 b, <&

3.5 The General Maximum (k-H Sum Algorithm

The Maximum (k-1) Sum algorithm developed so far assumes that
all the tasks have equal computational [length. 1[It 1is possible to
extend the Maximum (k-1) Sum algorithm to include tasks with
different computational Iloads. Consider a system of n tasks of
different computational loads I1If 12, mmm, [In where the measure of
the communications from task i to task j 1is given by c”~j. Assume
that the n tasks have been evenly allocated among m processing nodes
without considering the inter-task communications. Then the ideal
execution time due to the computational Jloads of the n tasks

allocated among m nodes is

n

2>

27

In this ideal computationally balanced system, consider the

following portions of 2 nodes.

bi-directional
communications load

2 <mmmem computational load

task ID

The total execution time on node | ,Rt, is P + Rc, where Rc =

execution time due to communications.

Rt() =P + 3 and Rt{l) =P + 3

If tasks b and d are swapped, we then have

Since Mr = It we have R{-(1) =P + 1 and RAKI) =p T |

IT tasks a and f are swapped now, we have

28

Since 2a = Ift we have Rt (I) =P + 0 and RtI(l) =P + O.

If instead of swapping tasks a and f we swapped tasks d and T,

we would have the following arrangement.

Now since 1§ * 1f the execution time due to computational
loading has changed on both nodes by |Ild - If] = 1. Hence Rt () =

P+ 1) +0 and Rt (1) = (P - 1) + O.

The saving in Rt due to the reduction in communications between
nodes I and 11 has been penalised by the difference 1in the

computational loads of the two tasks swapped, namely tasks d and f.

29

Consider another ideal computationally balanced system.

Examining portions of 2 nodes we have Rt (I) = P+5 and Rgl(l) = P+5.

|t we swapped tasks b and d, we would have:

Since the change in execution timedue to task
computational load on both nodes is |ljj - 1" =3, then

Rt (1) (P+3 +3 =P+ 6

RE(I) = (P-3) +3

11
U

30

Swapping task b and d has not reduced Rt (I) and Rt (II) evenly,
but has caused an imbalance between Rt (I) and Rt (Il). While an
imbalance is not necessarily something which does not reduce the
overall execution time of a program on a set of processing nodes, it
should be avoided as it may increase the execution of some processing
node in the system. In this example the execution time of node I,

Rt (), has increased by 1.

Any swap between two tasks on different processing nodes which
reduces the inter-node communications will cause a computational

imbalance of:
2ui -]
since both nodes are imbalanced by |l - 1j].

Therefore the saving in total execution time by swapping task i

on node x with task | on node y is

S{i.x,j,y)-2\L-1i\

The previous Maximum (k-1) Sum algorithm selected the k tasks
whose sum of inter-task communications was maximised. When tasks with
different computational loads are considered, the Maximum (k-1) Sum
algorithm is modified to select the k tasks which maximise the

expression

{©un+... +CU(K- —IP—i+...)}

31

where P is the ideal computational load per node,

n
Z*
p——m—-

To maximise the expression

{(ctti+... 4CU(k-)) - P~ (Ji+...+Z0)}

we need to maximise

(cUl+... +CU(k- 1)

while minimising

The expression

can be partitioned out among the k tasks as

Where the sum of the k computational loads is not equal to the

ideal computational load per node P, this expression partitions the

32

cost of allocating k tasks to the same node among the k tasks. Using
it we can formulate a variation of the Maximum (k-1) Sum algorithm

which examines gain and cost of each task in turn.

3.5.1 Maximum (k-1) Hum Algorithm with Computational Loads

The following is the Maximum (k-1) Sum algorithm for allocating
n inter-communicating tasks, with different computational loads,

among m processing nodes.

Step 1: Initialise the variable Deviation Sum as zero.
Step 2. Calculate ideal computational load per node, P.
Step 3. Calculate [Cul].

the load deviation, for each task.

Step 5 FOR each row (task) j DO
Step 6: FOR each element i which resides on the row and

column that intersects the diagonal element of the

row j DO

33

Step 7:

Step 8:

Calculate GS as follows,

|f (Deviation Sum)™j-- hj >0 or
DeviationSum=0, then
Gi—G—k

else if "--li"<2\DeviationSum\, then

Gi~a+ Deviation Sum\- Deviation Sum+ 119(----h;
else
Gt- a- - /ij42Deviation

where CE = total communications load between

task i and task j.

Record (k-X) largest & values, G'tt and the

tasks which they correspond to. Note Gj = min

(G) .

34

Step 9: Calculate

DeviationSum=~ - 1

where 1 corresponds to the tasks which

generate the (k-1) largest Gf values.

End of Step 6 FOR loop

Step 10: Calculate

ST 2>-p-2z1

where task i is one of the (k-1) tasks which

correspond to the (k-1) largest values of task

End of Step 5 FOR loop

Step 11: Find maximum Sj and allocate all tasks which contribute

to Sj to the same node.

Step 12: Remove the rows and columns which correspond to the

allocated tasks from [Cul.

35

Step 13: Repeat steps 5 to 12 until only k tasks remain. Allocate

these tasks to the final node.

Notes: (i) When selecting (k-1) largest values, G'and Gj

= Gfr = min(G'), choose Gj over G"if Cj >¢

(i) Inertia of task i is /(/)=y a,j+
J

(iii) The computational order of the algorithm is

0. m)=(n- L)t - -t J

W K-H-S

kY ¥i2 Qi i
o\ mj “®F " 2m +ofRr

since M= WD 4pg A2 nr ety

[=3)] 2 (=) 6

O(«, M) « /M2

3.5.2 ETaiimla

Allocate tasks a,b,c,d,e,f,g,h and i among 3 processor nodes

given that the communications matrix [C] for these tasks is:

36

abcdefghi

a 0102000005
b 100002000
¢c 000010021
d 200002000
e 001000000
f 020200300
g 000003000
h 002000000
I 501000000

and that the computational load for each task is:

Task Computational
Load
a 1
b 3
C 2
d 2
e 3
f 2
g 1
h 4

(]

37

Firstly, calculate the ideal load per node, P, and k.

2
P-— = 23/3 = 17.6666
m
_ #tasks _ _
k_#nodes_ =3
The [Cu] matrix is:
abcdefghi
Cuy a -204000010
b -0004000
C 020042
d - 04000
e -0000
f - 600
g - 00
h -0

The load deviation, s It\, for each task is:

38

To find which tasks are allocated to node 1 we calculate the
maximum (k-1) element sum for each task, which in this example is the

maximum 2 element sum for each task.

Line 1 - Task a Line 2 - Task b
Task Gi Deviation Task Deviation
Sum Sum
b 2-0.4444 ¢ 0-0.5555
¢ 0+0.3333 -0 .4444 d 0-0.5555 +0.5555
*d 4+0.3333 +0.5555 e 0+0.4444 -0.4444
e 0+0.4444 *f 4+40.3333 +0.5555
f0-0.5555 g 0-1.5555
g 0-15555 h 0-0.3333
h 0-0.3333 | 0-1.3333
* | 10-1.3333 «a 2-1.5555

39

St = (4+10)-]7.6666-(1+2+5)] S2 = (4+2)-]7.6666-(3+2+1)]

= 13.6666 = 43333
Line 3 - Task ¢ Line 4 - Task df
Task Gi Deviation Task Gi Deviation
Sum Sum
d 0-0.5555 e 0-0.4444
* e 2+0.4444 -0.4444 =~ £ 4+0.3333 +0.5555
f0+0.3333 g 0-1.5555
g 0-0.6666 h 0-0.3333
*h 4-1.4444 -1.4444 I 0-1.3333
i 2-2 4444 * a 4-1.5555
a 0+1.3333 b 0+0.4444
h 0-0.4444 ¢ 0-0.5555
S3 = (2+4)-|7.6666-(2+3+4) | S4 = (4+4)-|7.6666-(2+2+1)]
= 4.6666 = 53333

40

Line 5 - Task e Line 6 - Task f

Task Gi Deviation Task Gi Deviation
Sum Sum
f0-0.5555 * g 6-1.5555
g 0-1.5555 +0.5555 h 0+1.4444 +15555
h 0-0.3333 -1.4444 i 0-0.6666
| 0-2 .4444 a 0-1.5555
*a 0+1.3333 +1.5555 * b 4+0.4444
b 0+0.4444 ¢ 0-0.5555
* ¢ 2-0.5555 d 4-0.5555
d 0-0.5555 e 0+0.4444
& — (0+2)-|7.6666-(3+1+2) | s = (6+4)-17.6666-(2+1+
= 0.3333 = 8.3333
Line 7 - Task g Line 8 - Task h
Task Gi Devggr%ion Task Gi Devsiuangion
h 0-1.4444 | 0-2.4444
I 0-2.4444 -1 .4444 *a 0+41.5555 +1.5555
*a 0+1.3333 +1.5555 h 0+0.4444
b 0+0.4444 * ¢ 4-05555 +0.5555
¢ 0-0.5555 d 0-0.5555
d 0-0.5555 e 0+0.4444
e 0+0.4444 f 0-0.5555

*f 6-0.5555 0-1.5555

41

ST = (0+6)-]7.6666-(1+1+2)l S8 = (0+4)-7.6666-(4+1+2)|

= 2.6666 = 3.3333

Line 9 - Task i

Task Gi Deviation
Sum

* a 10-1.5555
b 0-0 4444 +15555
* ¢ 2-0.5555
d 0-0.5555
e 0+0.4444
f 0-0.5555
g 0-15555
0+1.4444

Sg = (10+2)-|7.6666-(5+1+2)]
= 11.6666

The largest maximum 2 element sum, max(S"), s which
corresponds to task a. The tasks which contribute to are tasks d

and i. Therefore allocate tasks a, d and i to node 1.

42

Removing tasks a, d and i from [Cu]l yields:

beef gh
Cul =b -0 0 4 00
c -2 0 04
e - 0 00
f . 60
g -0

To find the tasks to allocate to node 2 we calculate the

maximum 2 element sum for each task.

Line 1 - Task b Line 2 - Task ¢
Task Gi Deviation Task Gi Deviation
Sum Sum
¢ 0-0.5555 * e 2-0.4444
* o 040.4444 -0.4444 f 0+0.3333 -0.4444
* f 4+0.3333 +0.5555 g 0-0.6666
0 0-1.5555 *h 4-2.4444
h 0-0.3333 b 0-0.4444
St = (0+4)-]7.6666-(3+3+2)] S2 = (2+4)-|7.6666-(2+3+4)]
3.6666 = 46666

43

Line 3 - Task e

Task Si Deviation
Sum
f0-0.5555
g 0-1.5555 -0.5555
*h 0-0.3333 -1.4444
b 0-0.4444
* ¢ 2+0.5555
S3 = (0+2)-|7.6666-(3+4+2)|
= 0.3333
Line 5 - Task g
Task <X Deviation
Sum
h 0-1.4444
b 0-0.4444 -0 .4444

¢ 0+0.3333 +0.5555
* e 0+0.4444 -0.4444
*f 6+0.3333

S5 = (0+6)-|7.6666-(1+3+2)]

= 4.3333

Line 4 - Task f

Task Gi Deviation
Sum
*g 6-1.5555
h 0+1.4444 +1.5555
* b 4+0.4444
¢ 0-0.5555
e 0+0.4444

S| = (6+4)-]7.6666-(2+1+

= a.3333

Line 6 - Task h

Deviation

Task Gi
Sum

b 0-0.4444
* ¢ 4+0.3333 +0.5555
e 0+0.4444

f0-0.5555
g 0-1.5555

Sy = (4+0)-|7.6666-(4+2+3)]

= 2.6666

44

Max(Si) is S4, and task £ corresponds to S4. The tasks which
contribute to S4 are tasks g and h. Therefore allocate tasks f, g and

b to node 2. Allocate the remaining tasks, c, e and h, to node 3.

Hence the "optimum" allocation produced by the Maximum (k-1) Sum

algorithm is:

Node Tasks
1 a, d, i
2 b, f, ¢
3 c, e h

3.5.3 Experimental Evaluation of MaTHmmn (k-1) Sum atrmrHt-hm

To verify the quality of the allocations produced by the
Maximum (k-1) Sum algorithm, the algorithm was applied to an existing
computer vision problem. The directed acyclic graph for this computer
vision problem (figure 2) was initially presented by Kunii, Nishimura
and Noma [19] . The Maximum (k-1) Sum algorithm was applied to this
problem for varying number of processing nodes. Table 1 compares
these results with the results produced by Sarkar's algorithm [20] on
the unbounded case, followed by modulo allocation, and Darte's two
heuristics [17]. The values in Table 1 are the maximum time spent by

any node processing the tasks allocated to it and

45

receiving/transmitting data from/to tasks allocated to other

processing nodes.

Figure 2: Directed Acvcllc Graph for Computer Vision Prnnram

This problem was chosen to test the quality of the Maximum (k-1)
Sum algorithm because it was a real world problem, and because it is
not particularly suited to the algorithm. The algorithm seeks to
allocate a task to the same node as the tasks with which it directly
communicates. The algorithm does not seek to allocate chains of
communicating task to the same processing node. The direct acyclic

graph for the computer vision problem contains many communicating

46

task chains, e.g. tasks 1, 7, 16, 19, 22, 23, 25, 27, 29, and 31 form
a chain. The computer vision problem presented here has mixture of
both types of graph structures. The Maximum (k-1) Sum algorithm w il
perform poorly on program graphs which have replicated sub-structures

containing many chains.

PNr%rE E%rs |(r)1g Srﬁ (r)lé% Hp ' H eDuarEéet ilcS 1 H eDuarEge; ilcS 2 (Il\</l_a1x)im %Tm
Nodes allocation + modulo + modulo algorithm
allocation allocation

1 620 620 620 620

2 480 430 370 530

3 350 360 320 440

4 320 360 270 330

5 290 280 260 290

6 310 280 260 240

7 280 270 260 180

8 280 260 260 170

9 270 260 260 180

10 270 260 260 150

Table 1: Execution Times

From Table 1, we see that for small numbers of processing nodes
Dartels second heuristic produced the best results. But as the number

of processing nodes was increased the Maximum (k-1) Sum algorithm

47

produced superior results, producing allocations which executed in
73.33% faster when allocated to 10 processing nodes. Dartes'
heuristics produces better results with low numbers of processing
nodes because it is not restricted in the number of tasks it
allocates to a given node. For example, when the computer vision
problem is allocated to four processing nodes wusing Dartesl
heuristics, it will allocate 11 tasks to one node and only 4 tasks to
another. The Maximum (k-1) Sum algorithm always allocates an equal
number of tasks to each node. However, as the number of processing
nodes increases, Dartesl heuristics become restricted by the search
for linear clusters in the program graph and fails to reduce the
execution time further. The Maximum (k-1) Sum algorithm continues to
reduce the execution time as the number of processing nodes increases
and produces superior results when the computer vision problem is
allocated to 6 or more processing nodes. However, the Maximum (k-1)
Sum algorithm can be modified to allocated a different number of
tasks to different processors by adding null tasks to the system. The
algorithm will now allocate k*‘ tasks to each processor, but some of
these tasks will be null tasks that do not exist. This modification
generated better allocations at the cost of extra processing time
since n, the number of tasks in the system, has increased. For
example, allocating the computer vision problem to four processing
nodes, but allowing up to 12 tasks per node, generated 17 null tasks
and produced an allocation with an execution time of 310. This is a

6% improvement on the result obtained in Table 1.

48

4.0 Non-Symmetric Formulation of Task Allocation Problem

This section presents a non-symmetric mathematical formulation
for the problem of allocating n inter-communicating tasks among m
homogeneous processing nodes when the optimisation criterion is to
minimise response time, which is the elapsed-time for the execution
of the whole set of tasks that constitute the program. This
formulation shows that the problem is not only an integer
optimisation problem, it is also quadratic in nature. A relaxation
technique is presented which reduces the problem to a mixed integer
linear problem (MILP). This relaxed MILP formulation is implemented
in the Sciconic mathematical programming package and is applied to an

example problem.

A difficulty with previous formulations is that they are
symmetric. I[f an allocation produces s non-empty subsets of the n

tasks, with each subset assigned to a different node, then there

: m : :
exists \5| identical allocations of the s subsets of tasks among

the m processing nodes since the processing nodes can be numbered
arbitrarily. This implies that the gap between the relaxed linear
solution and the mixed integer solution is large [14]. The aim of the
non-symmetric formulation is to reduce the size of the mixed integer

solution space by removing the symmetries.

49

4.1 Definitions

4.1.1 A Task

A task is a computational entity that is created, receives
data, performs a computation in a time 1% transmits data to other
tasks and then ceases to exist. A task can communicate with any other
task. The time taken to transmit data from task i to task i is c,-

A computational entity that receives and transmits data before all
computations are completed can be decomposed into tasks which obey

this definition.

4.1.2 A Program

A program consists of a set of inter-communicating tasks

bounded by precedence constraints.

4.1.3 A Processing Node

A processing node is a computational engine capable of
executing one task at a time. The processing nodes are assumed to be
homogeneous and to be connected in a bus topology in which no queuing

problems arise. This implies that"

50

(i) All processing nodes are similar as regards computational
performance, i.e. task i will take alt seconds to execute
its computational load regardless of which processing

node it is allocated to.

(ii) Al processing nodes are equidistant as regards
communications and the time it takes for task i to
transmit data to task j is independent of the nodes to
which tasks i and j are assigned, if tasks i and j are

allocated to different nodes.

4.1.4 Precedence Level

The precedence level of task i, prec (i), is defined as the

computational load of task 1 plus the maximum, over all task i's
successors, of the successor's precedence level plus the
communications load between the tasks. Task I'S successor tasks are
those tasks that can not be executed until task i is completed.
Assume, without loss of generality, that task n is the terminal task.

Then,

prec(i) =it w{prec(]) tal, s={ n},jedi->|}

prec(n) =0

51

4.2 Formulation of Won-Symmetric Mathematical Programming Model

Let 1t = the computational load of task i, the time task

| spends processing data.
ct'j = the communications load from task i to task j,
the time taken to transmit data from task i to

task j.

at'j = 1,if task i and task | are allocated to the

same node,

0,if task i and task j are not allocated to the

same node.
yl = the start time for task i.
m =0, if task i is the task with the lowest cardinal

number on the processing node to which it is

allocated,
1,if task i is not the task with the Jlowest
cardinal number on the processing node to which

it is allocated.

prec(i) = precedence value of task i.

52

We wish to find the allocation of n tasks among the m
processing nodes which minimises the elapsed-time for the execution

of the whole set of tasks,
min (y»-yi) [4.1]

subject to the following constraints.

(i) The earliest start time of two communicating tasks

The earliest time a task j can start depends upon whether the
task it 1is receiving data from, task | (predecessor task) is

allocated to the same node as task | (successor task).

Case (@): Both predecessor and successor tasks allocated to the same

node.

The successor task, |, can start to execute once the
predecessor task, i, has terminated. Task i terminates when it has
finished its computation and all its inter-task communications.

Therefore,

Vi-j [4.2]

53

Case (b): Predecessor and successor tasks allocated to different

processing nodes.

The successor task, j, can start executing once it has received
its data from the predecessor task, i, subject to the processing node
being available for execution. The predecessor task is assumed to

transmit data to tasks in the order of decreasing precedence level.

Therefore,

[4.3]
where p'ifk = 1 , if prec(Jc) " prec(])
0, if prec (k) <prec())
Combining case (a) and case (b) gives:
[4.4]

where = 1, if atfj =1 or prec(Jc) £ prec())

0 and prec(k) < prec(j)

o
—
i

The above notation can be simplified by ranking the precedence

level of each task and renumbering the tasks such that i < j if

rank (prec(i)) > rank(prec(j)). However, since the concept of
precedence level will be used in chapter 5 the current notation will
be retained.

(i) Associativity

If task i is allocated to the same node as tasks j and k, then

task j is allocated to the same node as task k.

a. itai.k~a.t<)\ Vij, k [4.5]

(111) Symmetric nature of the adjacency matrix [A]

It task i is allocated to the same node as task j, then task |
is allocated to the same node as task i.

ati = aji Vil [4.6]

(iv) The diagonal of the adjacency matrix [A]

ai.t-1 Vi [4.7]

55

(v) The binary nature of the adjacency matrix [A]

a.>6{0,1} [4.8]

(vi) The number of processing nodes m

Since mt, 1 < i < n, equals zero if task i is the lowest

cardinal number task allocated to its processing node, then the
maximum number of mf entries that are equal to zero is the number of

processing nodes available, m. Therefore the sum of sf must be

greater than or equal to {n-m).

m€{0,1] v/ [4.9]
/MI =0 [4.10]
il
V I <i<n [4.11]
mi > alj VI<jer/-1,1> 1 [4.12]
k
[4.13]

56

(vii) The number of tasks that can be executing on the same node at
the same time.

Only one task can execute on a processing node at any given
time. If task i1 has a higher precedence level than task j, and both

tasks are allocated to the same processing node, then

yj=yi = (1 —ai,kici, k> 0 if prec(i) > prec(j) and auj = 1

auj yJ-yi-h-"Eil-auk)a.* >0 ifprec(i)>prec(j)

al,Jyj- atjyt- atjh- ~ aj(1-a.k)a k> o ifprec(i) >prec(j)

[4.14]

Two constraints in this non-symmetric formulation are quadratic
and discrete. In equation [4.4] PZIC = ahjp'l,]l and therefore this
constraint 1is quadratic, as well as discrete. Equation [4.14]

contains 3 terms that are quadratic and discrete.

The approach taken in this thesis to relax the formulation is
to "linearise” the quadratic constraints, solve the discrete
optimisation problem using branch and bound techniques, and then to

use the adjacency matrix produced to calculate the actual run time,

57

including quadratic effects, of the solution of the discrete

optimisation problem.

4.2.1 Relaxing Quadratic Constraints

The constraint on the earliest start time of two communieating
tasks allocated to the same processing node can be relaxed by
ignoring the effects of the other(n-2) tasks and recognising that

PE£ j =1 because prec(i) Sprec(j). Therefore equation [4.4],
yj- oL +y]pii(l- akat Vi~
ik

where pzr? = 1, if a”j =1orprec(k) " prec(j)

0 and prec(k) < prec(j)

o
—
fab)

T

can be rewritten as,

yi-yili+(-aj)dj vij
[4.15]
> Yj~y+&jdj>litaj Vi

The constraint on the numberof tasksallocated to the same
processing node that execute at the same time is relaxed as follows.
Firstly, ignore the last term in equation [4.14] since this only

influences the result when the task with the greater precedence level
communicates with its successor tasks that are allocated to different

nodes than the node to which it is allocated.

ujyj- ajyi- at./me0 ifprec(i) >prec(j) [4.16]

4j- Z,1- aujit>0 ifprec(i)>prec(j)
[4.17]
where zi,j=a<iyj e {0,yj} v auje(0,1}

Relax] so that it is continuous, over the interval 10)yj],

0<Zij<yj.

and force Z£ | towards either 0 ox yj, which ever is nearest,

by modifying the objective function [4.1] as follows.

minjcCv»- y\)- J] (min{zuj,yj- 2u,})] [4.18]

where Cis a constant called the bounding constant.

Substitute wi,j for min{zi,j,yj—Ztj} and then the objective

function is:

subject to
0<W,,j<Zij Vij [4.20]

Wij<y)-Zi] Vij [a.21]

The first term in equation [4.19] can bereplaced by Cj'yi
|

since ¢ 2> [« minimised when C(y»—_yl) is minimised. This reason for
|

this substitution is to simplify the calculation of thebounding

constant, C.

Lemma 1: C{y»—y1) is minimised when C~Tyi reaches it minimum value.
|

Proof: The value of y* can be assumed to be zero without loss of

generality. To prove that C(yn—yi) is minimised when C"yi reaches
|

it minimum value it is necessary and sufficient to show that given a

set of valid 1s which yield a minimum to , It is impossible

to reduce yn.

When C 7> is minimised this implies that there is no idle
[

time before the execution of any task. Without loss of generality
task n can be assumed to be the terminal task, since a dummy task

with zero computational and communications loading can be created and

60

assigned to the highest cardinal 1identification number. Therefore
task 1 is a direct descendant of every other taBk in the task graph
of the program. If yn decreases then the start time for some other
task in the program must also decrease. But since there is no task

with idle time before it starts execution, this is impossible.

Q.E.D.

Therefore the task allocation problem can be relaxed and stated

as follows.

£4.22]

subject to
yj~yita, @ j>lita.] Vi~ | [4.23]
ai,j+ai,k-aj,k< 1 vijk [4.24]
[4.25]
a.i= | Vi [4.26]
a~/<={0,1} [4.27]

61

mi e{0,1} v/ [4.28]

m\ = 0 [4.29]
-
mi<™ | Vi</'<« [4.30]
y=!

Vicy<z—L/>1 [a.31]
‘Etmt>n-m [4.32]
a,)- 7,1- & jli>0 ifprec(i) > prec(d) [4.33]
0 Vij [4.34]
0" Wij< Zij Vij [4.35]

4.2.2 Calculation of Bounding Conatant C

For Cto bound equation [4.22] from below

Chryi-"wtj2a as yt—<e [4.37]

62

where a is some arbitrary value.
Each Is subject to the following constraints.

O<Wij<auul; wij<yl-z, 0<zBi<yj

Therefore,

min'| C(y» =yi) - » wuj
|

A\

will tend to maximise . Since is a free variable
over [0,y£] and 0<Wij<Zi,j', Wij<yj—zi,j each w ill be maximised

when Zi] —121 wi,/—>)g

since zi.j- Z.i>atjlt ifprec(i) >prec(J).

Substituting into equation [4.37] yields:

Therefore C should be greater than a/2. As C continues to
increase the effects of each wy | decreases until the constraint on
the number of simultaneous executing task on a node hecomes
insignificant and all tasks allocated to a node try to execute

simultaneously.

Hence C should be set marginally greater then a/2.

4.3 Sclconlc Implementation

Sciconic is a mathematical programming package for solving

linear, integer and non-linear problems. It consists of four major

sections.

(i) MGG, an ultra-high level language for problem

formulation.

(il) MG, an MPS matrix generator.

64

(i11) Sciconic, a mathematical programming engine.
(iv) RW a report writer,

MGG is a specialised ultra-high level language for the
formulation of mathematical programming problems. Using MGG the user
can specify a model without reference to any instance of the problem.
As well as the MGG language, MGG allows the user to supply, as part
of the problem specification, their own FORTRAN routines for
calculating coefficients and the conditions under which a constraint
exists. In addition to these routines the user can supply FORTRAN
routines for initialising internal variables. The MGG program
compiles the MGG problem formulation and produces matrix generator
(MG) source code, report writer (RW) source code and MG data file
specification file, MGGOP.LIS. The MG source code is linked together
with user supplied initialisation routines by the MGCL program to

produce a matrix generator program, MG.

Once the problem has been specified, the user writes an MG data
file which contains the data for a given instance of the problem. The
format of the MG data file is strictly defined by the MG data file
specification file MGGOP.LIS. When the wuser runs the matrix

generator, MG, with a specified data file, an output file in standard

MPS format is produced.
The Sciconic program is the mathematical programming engine

which takes a file, which contains a matrix in standard MPS format,

finds the optimal solution and writes it to a solution file. The

65

action of Sciconic in solving the problem is defined by a set of run

stream commands. These commands break down into classes:

(i) ~ Agenda which invoke built-in Sciconic procedures to load
a problem, initialise a problem, find the linear primal
and dual optimal solutions, perform a branch and bound

search for the integer optimal solution, etc.

(i) System state variables (SSVs) which control the action of
Agenda, such asspecifying the problem, solution and
temporary files, setting options and determining the

state of processes and end conditions.

In order to interpret the solution file, the report writer
program, RW, is run on the solution file. The report writer source
code is produced by the MGG compiler, based on the problem
specification file. A user supplied FORTRAN routine REPORT is linked
with the source code using the RWCL program. It is the responsibility
of the REPORT routine to extract the data from the solution file,
process it, and display the results to the user and/or store the

results in a file. Figure 3 illustrates the procedure.

4.3.1 Problem formulation in Sciconic

Appendix B contains the MGG formulation of the non-symmetric

task allocation model encapsulated in equations [4.22] to [4.36] .

66

4.3.2 Report Writer

The report writer is used to extract the relevant data from the
solution file produced by Sciconic and produce the results. The
non-symmetric formulation of the task allocation problem in equations
[4.22] to [4.36] produces a solution file in which the earliest task
start times are relaxed. In order to generate a real allocation with
valid start times, the report writer was used to reconstruct the
actual start times for each task based on the generated adjacency

matrix. The source code for the report routine is in appendix B.3.

Initialisation Problem
Routines Data File
MG
MPS format
matrix file
RW Solution
Source Code File SCICONIC
Sciconic
run stream
User Report
Routine RWCL RW "
Re_port *-» User Supplied
File

Figure 3: Sciconic Development Environment

5.0 Paeudo-Dvnamlc Load Balancing

This chapter proposes an extension to Casavant and Kuhl's
taxonomy by further defining the distinction between static and
dynamic load balancing to include a new classification Pseudo-Dynamic
Load Balancing. Pseudo-Dynamic Load Balancing takeB the best from
both the static and dynamic approaches and merges them. Static load
balancing analyses the program and hardware configuration of the
parallel or distributed computing system, and commits itself to an
allocation of tasks to processing nodes at compilation time. Dynamic
load balancing makes the allocation of a task to a processing node at
run time, based primarily on the state of the parallel or distributed
computing system at that point in time. Both methods have advantages
and disadvantages. Pseudo-Dynamic Load Balancing takes the data from
the analysis of the program graph at compilation time and the state
of the parallel or distributed computing system at run time, and
makes an allocation of tasks to processing nodes, at run time, based
on the current state of the parallel or distributed computing system

and the program graph data from analysis at compilation time.

Pseudo-Dynamic Load Balancing is an on-line technique that
produces high quality near-optimum task to node allocations where the
optimality condition is to minimise the run time of the program. This
heuristic technique uses information about the program extracted at
compilation time, together with run-time information to determine the
"hest" allocation of tasks to processing nodes. The compilation time
information is a program graph which can be generated by the compiler

or pre-processor. The run-time information is a graph of the parallel

or distributed computing system and information on the current

loading of the processing nodes.

The advantages of the pseudo-dynamic approach over the purely

static and dynamic approaches are:

(1) Static load balancing algorithms cannot react to changes in the
parallel or distributed computing system prior to, or during,
run-time. Any change in the environment requires a

recompilation of the program.

(2) Static load balancing algorithms are dependent on the accuracy
of the estimation of the computational load of each task and
the amount of communications between each task. [f the
estimations are incorrect the static load balancing algorithm

cannot make any corrections during run-time.

(3) Pure dynamic load balancing algorithms tend to react mainly to
the current state of the parallel or distributed computing
system, since very little a priori information is included
about the program. These algorithms tend to chase the optimum
allocation as the state of the system changes. They do not use
any available a priori knowledge to improve the task to

processing node allocation.

5.1 Definitions
5.1.1 A Task

A task is a computational entity that is created, receives
data, performs a computation in a time 1* transmits data to other
tasks and then ceases to exist. A task can communicate with any other
task. The amount of data transmitted from task i to task | is j. A
computational entity that receives and transmits data bhefore all
computations are completed can be decomposed into tasks which obey

this definition.

5.1.2 A Program

A program consists of a set of inter-communicating tasks

bounded by precedence constraints.

5.1.3 A Processing Node

A processing node is a computational engine capable of
executing one task at a time. Multiple tasks can be assigned to the
same node at any given time. The order in which a node executes the
tasks allocated to it is given by a predefined rule. This rule state

that the task currently executing is the task with the highest

70

precedence that is not waiting for any data from other tasks. The
node may preempt a task with another task if the other task has a
higher precedence and is not waiting for data. Processing nodes are

not required to multi-task by time slicing tasks ready to execute.

The processing nodes in the parallel or distributed computing
system are heterogeneous Q-class processing nodes [21], .i.e. the
processing nodes are similar but the processing speed of different

nodes in the system are related by a linear speed-up function.

5.1.4 A Program Graph

A program graph is a graph where the vertices represent tasks
and the edges between vertices represent the communications between
the corresponding tasks. The weight of each vertex represents the
computational load, processing time, of the task associated with that
vertex. The weight of an edge between two vertices is the
communications load between the tasks represented by the vertices.
The communications load represents the amount of data transferred
between tasks. Edges are directional and represent the transfer of
data from one task to another. Precedence constraints between non-

communicating tasks can be represented by an edge of zero, or

minimal, weight.

71

5.1.5 Precedence Level

The precedence level of task i, prec(i), is defined as the

computational load of task i plus the maximum, over all task i's

successors, of the successor's precedence level plus the
communications load between the tasks. Assume, without a loss of

generality, that task n is the terminal task. Then,

precii) =/.+r%{prec(j) +a .} S={ie{l,...n}.j eS\i->j)
prec(n) =0

For the program graph in figure 4, the precedence levels are:

prec(7) = 0, prec(S) = 3, prec(5) =9, prec(4) = 6, prec(3) = 19,
prec(2) = 16, prec(l) =25

communications load

4 task 10

computational length

Figure 4 ; Program Graph

72

A compiler, or pre-processor, can estimate the computational
load of each task and the communications load between tasks. Using
this information the compiler, or pre-processor, can calculate the
precedence level of each task, and produce a program graph for the

program.

19 communications load

precedence
level

computational length

Figure 5 ; Program Graph with Precedence Levels

The precedence level of a task assigns a ranking to the task in
terms of the worst case path from the task, through the program
graph, to the last task in the program. It is similar to the concept
of positional weight used in the Ranked Positional Weight Heuristic
[22] , but does force the Pseudo-Dynamic Load Balancing algorithm to

process the tasks in order of their precedence levels.

73

5.1.6 A Network Graph

A network graphie a graph where the vertices represent
processing nodes and an edge between two vertices represents a
communication link between the nodes represented by the two vertices.
The weight of a vertex represents the relativeprocessingspeed of
the associated processing node to some reference value. The weight of
an edge between two vertices represents the distance or speed of the

communications medium between the associated processing nodes.

The communications distance matrix [D] is an n x a matrix whose
elements, dttj, are the communications distances from node i to node
j. Since tasks assigned to the same processing node communicate with
each other through on-node memory, d* £ is taken to be zero. Figure 6
shows a network graphand it associated communications distance

m atrix.

5.2 The Pseudo-Dynamic Allocation Heuristic

By examining the equations ([4.1] to [4.14]) which define the
non-symmetric formulation of the task allocation problem, the key
factors that affect the allocation can be identified. From these
factors a heuristic value function can be generated which seeks to

minimise the makespan of the allocated program graph.

74

—_ N O
— = N O
— — O N
— O = -
O - -

Flcrure 6 : Network Graph and Communications M atrix

The objective function 'yt is equivalent to min(yn—yi), by
/

lemma 1. reaches its minimum when each of the individual
reached its minimum value. Ignoring the -effects of inter-task
communications, and assuming that the earliest time a task on node |

can execute is aj then:

min = min Al k=\k\task k isassigned to node | |

75

Since a processing node can only execute one task at a time,
this is effectively an uncapacitated bin-packing problem of n objects
into mbins such that the largest value held by any bin is minimised.
Therefore, the heuristic should seek to average the computational

loads over all the mprocessing nodes.

But inter-task communications have an opposite effect on the
makespan. Consider constraint [4.23], the relaxed form of constraint

[4.4] :
yj-yi>li+@-auja,j Vi~j

Seeking to minimise each yj implies that &tfj = 1, i.e. that
tasks 1 and j are allocated to the same node. Therefore the heuristic
should seek to allocate communicating tasks to the same node while
averaging the computational loads over all the processing nodes. For
an on-line heuristic this can be restated as seeking to allocate the
currently "visible" tasks onto the same nodes as their predecessors
while averaging the computational loads of the tasks capable of

executing at that given instant over all the processing nodes.
When these conditions conflict the allocation decision should
be made by comparing the reduction in "“£yi that each condition
<

contributes.

Allocating inter-communicating tasks | and j to the same node,
node x, will reduce yj by c”~j. However, allocating task i and task

j to the same processing node x will increase

76

Alk k - \k\task k is assigned to node|j]
k

by 1j, and increase the makespan, Qvax, by

5>-p| if 2 ik>p

where
and k={k | task k is allocated to processing node x}.

So allocating task] to the same processing node as task i

/

contributes P — to the reduction in yj if * Ik>P .
< k

k J

From constraint [4.14]

in order to reduce yj tasks with higher precedence levels
should start before other tasks. Therefore the heuristic should
incorporate the difference between different tasks' precedence
levels. In an on-line heuristic this can be recorded as the
difference between the task's precedence level and the minimum

precedence level of any currently "visible" task.

5.2.1 The Computational Load Component.

The computational load component, of task i allocated

to node | is defined as:

‘otherwise

where Sj = relative processing speed of node j,

and:

The average computational load per node, P, is the
sum of the computational load of all active tasks

divided by the number of processing nodes.

An active task is a task that is either currently
running on a processing node or ready to execute,
l.e. has received all the messages from its

predecessor tasks.

The load level of node |, L(j), is the sum of the
computational loads of all the tasks currently
assigned to processing node |, divided by the

relative processing speed of node j.

79

@ The precedence load of task i on node j, LP(i, |),
is the sum of the computational loads of the
decedents of task i that are currently assigned to
processing node j, divided by the relative

processing speed of node j.

The reason for calculating Lp(i,j) is that there is no
possibility of task i 1s decedents executing on processing node j when
task 1 isready to execute. Therefore, we need to remove their
computationalloads from the calculation of the effects of allocating

task | to node j.

5.2.2 The Conrmundrations Load Component. Cc
If task i, allocated to node j, communicates with task Kk,

{k\k e(l..«),CLir* 0}, allocated to node 1 then the communications load

component, Cc(i,j), of task i allocated to node j is:
Cc(ij) = kdj,ia,k

where djti is the communications distance from node j to node

80

5.2.3 The Precedence Component. Cg

The minimum active precedence, tp, is the minimum precedence

value of any task in the global scheduling table.
The precedence component, Cp{i), of task i is given by:

Cp(i) = prec(i) - p

5.2.4 The Global Scheduling Table (GST)

At each point in a parallel or distributed computing system
from which an application can be initiated a global scheduling table
IS maintained. This table contains a list of all the tasks currently
waiting to be assigned, and their allocation heuristic values,
h(i,j), for each task i and processing node j in the system. Because
it contains information relating to the whole parallel or distributed
computing system, it is termed a global table. However in section
8.3.2, a method of distributing the table is described, in which each
table only contains information about a restricted set of processing
nodes called a neighbourhood. These neighbourhoods are connected via

gateway nodes which exist in both neighbourhoods.

81

P=14ppp=61 L[1]=9 L[2]=4 L(3]=10 L(4=14 M5J=3

rec . .
Task holdscomp faye] h(U] h@*2) h(i3) hpa) h(i.5)

k 1 4 79 4+18-5 4+18-10 4+18-5 -4+18-8 4+18-9

e 0 6 76 -1+15-4 6+15-4 -2+15-4 -6+15-8 G+15-4
h 0 A 78 4+154 4+15-4 4+15-2 -4+15-12 4+15-8
i 23 72 3+11:1 3+11-3 3+11-3 -3+11-4 3+11-6
J i 15 70 10493 5495 11406 15403 4492
n 1 8 69 -3+8-8 8+8-8 -4+8-10 -8+8-6 8+8-8

0 3 5 64 5+3-4 5+3-4 -1+3-2 -5+3-4 5+3-4
q 0 6 61 -1+0-3 6+0-3 -2+0-3 6+0-3 6+0-3

comp = computational load o
— communications load factor

level = Prece - -precedence load factor
evel =Frecetence evce -computational load factor

Figure 7 ; Sample Global Scheduling Tabla

Figure 7 represents a sample GST. The table contains the

following information:
(1) The minimum active precedence, Cp*
(2) The average computational load per node, P.

(3) The load level, i, for each node j in the parallel or

distributed computing system or the neighbourhood.

(4) Alist of tasks currently waiting to be scheduled.

82

For each task i, the following information is recorded:
(1)~ The number of holds remaining on task i.

(2) The allocation heuristic, h(i,j), for each node | in the

parallel or distributed computing system or the neighbourhood.

The number of holds on a task in the GST is initially equal to
the number of predecessor tasks the task has. The first time a task
receives data from any its predecessors, it decrements the number of
holds on all of its successor tasks. Subsequent data transmissions

received by a task have no effect on its successors in the GST.

5.3 Local Schedulers

Each processing node has a local scheduler that determines
which of the tasks currently allocated to it will be executed at any

given time. The local schedulers are simple schedulers that obey the

following rules.

(1) Local schedulers execute the task with the highest precedence
level which is not waiting for messages from any of its

predecessor tasks.

83

(2) A task with a higher precedence level can preempt an executing

task when it has received all its messages from its predecessor

tasks.

(3) Tasks that wish to transmit data to a task that has not yet
been allocated, enter a waiting state until the receiving task
is allocated. Once the receiving task has been allocated, the
waiting task leaves the waiting state and is available for
scheduling. When the task resumes execution, the message is

transmitted and the task will terminate.

(4) Local schedulers do not multi-task by time slicing tasks that

are ready to execute.

If a task is transmitting messages to more than one task, then
it will sequence the messages in order of decreasing precedence

levels. This can be enforced by the compiler.

5.4 The Pseudo-Dynamic Load Balancing Algorithm

The Pseudo-Dynamic Load Balancing algorithm has three phases,
initialisation, allocation and update. The state of the GST is also
modified by two events external to the table, massage transmission

completed and task termination.

Phase 1 :

(a)

Initialise

Initialise the global scheduling table , GST, with the

root tasks and their immediate successor tasks.

Initialise the number of holds on each root task in the

table to zero.

Initialise the load level, L(j), for each processing node

to zero.

Calculate the average computational load per node, P.

Calculate the heuristic value function, for each

task i in the GST and each node j.

Phase 2 : Allocation

(a)

<()

Find the task in the GST with largest heuristic value,
, and zero holds. If h(i,j) is equal to h(i k),
choose the node with the smallest load level.

Allocate task i to node j. If task i is a root task, send

a release message to its successor tasks.

Remove task | from the GST.

85

Phase 3

(@)

: Update

Add each of task i's successor taskB to the GST if the

successor task is not already in the table.

Set the number of holds on each task added to the GST

equal to the number of predecessor tasks the task has.

If any task k added to the GST has a precedence level,

prec(k) , less than the minimum active precedence tp, let

tp = prec(k) .

Update the load level for processing node j.

If tp has changed, recalculate the precedence component
Cp for each (task, node) pair in the GST. If tp has not
been changed, only update the precedence component for
the tasks added to the GST.

If the average computational load per node, P, has been
changed, recalculate the computational load component,
CA for each (task, node) pair in the GST. If P has not
been changed, only recalculate the computational load

component for each task in the GST at node | .

86

(9)

(h)

Update the communications load component, Cc, for each
task k, a child of task i, in the GST for each node 1 in

the system.

Ce(k, 1) = Cc(k,1)-dj.ia,k

If there are any tasks in the GST with zero holds, return
to Phase 2(a).

Event 1 : Message transmission completed

(a)

When a task receives a data message, it checks the state
of its blocking flag. If the flag is not set, a release
is sent to each of its successors in the GST. The task
then sets its Dblocking flag. A release message decrements

the number of holds on the receiving task.

If any task in the GST receives a release that causes the
number of holds on the task to be reduced to zero, the
Pseudo-Dynamic Load Balancing algorithm enters the

allocation phase, Phase 2(a).

07

Event 2 : Terminating task i1 on node]

(a) Update the load level, L(j), for node j.

(b) Update the average computational load per node, P.

(c) If the average computational load per node, P, has been
changed, recalculate the computational load component,
Cj, for each (task, node) pair in the GST. If P has not
been changed, only recalculate the computational load

component for each task in the GST at node j.

88

6.0 Experimental Evaluation of Paeudo-DvnanHll Load Balan”™Hnfj

In order to -evaluate the Pseudo-Dynamic Load Balancing
algorithm a program was developed to simulate the action of the
algorithm allocating a setof programs onto a parallel or
distributed computing system (Appendix C). Each program can be
submitted to the parallel or distributed computing system at
different points in time. A program is characterised by an
application descriptor file which contains a directed acyclic program
graph. This program graph describes the program in terms of a set of
inter-communicating tasks, and specifies the computational load of
each task and the communications load between tasks. The application

descriptor file has the following format.
1 1 0 10 240 (2,1.0) (3,1.0) (4,1.0) (5,1.0)

Each task is specified by a line of data, and each field in a
line is separated by white space characters. The first entry in the
line is the task ID number. This is followed by the type of the task
(1 = root task, 2 = normal task, 3 = terminal task). Nextis the
number of predecessors of the current task. The fourth item is the
computational load of the task, which is followed by its precedence
level. Finally, the line contains a successor list. Each entry in the
successor list contains the ID of the task to which the current task

will transmit data, and the communications load between these two

tasks.

89

The parallel or distributed computing system is characterised
by a network topology file which contains a network graph in the
following format. The first line specifies the number of processing
nodes m in the network. The next m lines contain the relative speed
of each processing node. Finally, the last m lines of the network
topology file contains the communications distance matrix D. The ith
row (line) of the communications matrix specifies the communications
distance from ith node to the other processing nodes. Each field in
the final mlines is separated by white space characters. Processing
nodes which are not connected by a path in the network graph have an
infinite (or an arbitrarily large) communications distance. The
numbering of the processing nodes is important, because if the
allocation heuristic for a task is the same for k processing nodes,
and each of these processing nodes has the same load level L, then
the task is assigned to the processing node with the lowest cardinal
node ID. If this scenario was true for two tasks which have a common
successor task, to which both tasks communicate, then the successor
will not be allocated to the same processing node as one of its
parents. In order to minimise the resulting communications time the
two parents should be allocated to two processing nodes which are
close to each other in terms of communications distance. This can be
accomplished by numbering processing nodes such that processing node
| is closer, in terms of communications distance, to processing nodes
(i-k), , (itk), for some arbitrary value of k.

The simulation software uses the Pseudo-Dynamic Load Balancing

algorithm to allocate tasks to processing nodes, and then simulates

the execution of these tasks on the parallel or distributed computing

90

network. The simulation software, using the allocation as it is
generated, calculates when each task begins execution, receives and
transmits its data, preempts other tasks, enters and leaves a waiting
state and when the task terminates. From these calculations a profile
of the processing node activity is generated and the program

completion time is calculated.

If two program graphs start at the same, then the root tasks,
and the successors of the root tasks, from each program graph are
included into the GST and the algorithm would run as normal. If

program graph P2 starts at time t2 and program graph Pl starts at
time where t2 > tlr then in order to assign the appropriate

precedence to the tasks in P2, the precedence load factors for the

tasks in Pl are modified by:
(t2+mpp2-r)
and r is updated to

=12 +mpp7

where mppx is the maximum precedence level in program graph Px

and r is initialised to zero.

This equalises the precedence load factors of the tasks of PI
in the GST at time t2 with the root tasks of P2. If there are more
than two programs, this technique of equalising the precedence levels
is applied to all the programs which s till have tasks in the GST.

91

6.1 Experimental Teat Resulta

6.1.1 Pseudo-Dynamic Load Balancing vs. Relaxed Non-Svnm»etrie

Mathematical Formulation

The relaxed non-symmetric mathematical formulation of the task
allocation problem developed in chapter 4 generates an upper bound on
the execution time of a program on a homogeneous parallel or
distributed computing system arranged in a bus topology. These upper
bounds generated by the relaxed non-symmetric mathematical
formulation will be compared with the allocations produced by
Simulated Annealing [25], a standard combinatorial optimisation
technique, in order to verify the strength of the upper bounds. Then
the allocations produced by the Pseudo-Dynamic Load Balancing
algorithm w ill be compared with the upper bounds to test the

allocations produced by the Pseudo-Dynamic Load Balancing algorithm.

Since the non-symmetric formulation is s till an integer linear
program, the solution time for the optimal task allocation can s till
suffer the effectsof a combinatorial expansion of the solution
space. To trade excessive solutiontime against allocation
optimality, two Sciconic run streams were written. Run stream 1
terminates the hbranch and bound search when then reduction in the
objective function between two successive valid integer solutions,
found by the branch and bound procedure, was less than 1%. Run stream
2 terminates the branch and bound search if the improvement in the
objective function between two successive valid integer solutions,
found by the branch and bound procedure, is less than 1% on two

92

occasions. Appendix B.5 contains the source for both run stream 1 and

run stream 2.

In order to compare the results of the Pseudo-Dynamic Load
Balancing algorithm with the upper bound determined by the relaxed
non-symmetric mathematical formulation, a module from the Spatial
Coherence Method (18 tasks), used in atmospheric analysis [24], was
chosen as a problem instance. Figure 8 shows the program graph for

this module.

Figure 8 : Program Graph for Atmospheric Analysis Module
Appendix B.4 contains the problem data file for this instance
which the matrix generator, MG, used to generate the standard MPS

file for the Sciconic program.

93

Table 2 and Table 3 contains the results produced, in addition
to the solution time (hours:minutes:seconds) on a VAXSTATION 3100 |,

for run stream 1 and run stream 2 respectively.

2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes 7 Nodes 8 Nodes

program 110 64 51 42 42 41 42

run time

solution 0:35:21 1:35:13 0:47:51 1:19:46 0:25:42 0:24:12 0:38:41

time
Table 2: Run stream 1 results
2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes 7 Nodes 8 Nodes
program 73 67 42 41 43 38 40
run time

solution 1:16:00 4:01:32 (a) 2:00:51 3:07:25 1:43:49 1:43:49

time

Table 3: Run stream 2 results

94

Note (a): Sciconic program terminated after a limit of 12

hours of CPU time was reached.

Run stream 2 generally produces better allocations at the
expense of solution time. The Pseudo-Dynamic Load Balancing algorithm
was applied to the same problem instance. Its results, and those
generated by applying Simulated Annealing to the same problem

instance, are combined with the results of Tables 2 and 3 in order

(@) Compare the performance of the Pseudo-Dynamic Load
Balancing algorithm against the upper bounds set by the

relaxed non-symmetric mathematical formulation.

(b) Measure the quality of the upper bounds set by the

relaxed non-symmetric mathematical formulation.

The values contained in Table 4 and 5 are program run times.

The results in Tables 4 and 5 show that the relaxed
non-symmetric mathematical formulation produces strong upper bounds
on the execution time of a program graph allocated to a homogeneous
processing network. Tables 4 and 5 also shows that the Pseudo-Dynamic
Load Balancing algorithm, which is an on-line algorithm, produces
allocations which are superior to those generated by the relaxed

non-symmetric mathematical formulation.

95

2 3 4 5 6 7 8
Nodes Nodes Nodes Nodes Nodes Nodes Nodes

relaxed 73 64 42 41 42 30 40
non-symmetric

formulation

pseudo-dynamic 63 57 33 40 40 40 37

load balancing

simulated 59 50 30 37 37 37 37

annealing

Tabla 4: Comparison of relaxed non-symmetric mathematical

formulation. Pseudo-Dynamic Load Balancing and simulated annealing.

2 3 4 5 6 7 8
Nodes Nodes Nodes Nodes Nodes Nodes Nodes

relaxed 24% 28% 11% 11% 14% K0 8%

non-symmetric

formulation

pseudo-dynamic ™ 14% % &% &% &% %

load balancing

Tabla 5; Relaxed Non-Symmetric Formulation and Pseudo-Dynamic Load
Baianr-Inp Allocations aa a percentage of Simulated Annealing

Allocations

96

6.1.2 Pseudo-Dynamic Load Balancing vs. Simulated Annealing and Tabu

Search

The Pseudo-Dynamic Load Balancing algorithm was evaluated
against two common methods for combinatorial optimisation, Simulated
Annealing [25] and Tabu Search [26], using the simulation software.
Two test cases were used, whose program graphs have different
structures. The program graphs are shown in figures 9 and 10. Figure
9 1is the program graph of a computer vision program (31 tasks)
initially presented by Kunii, Nishimura and Noma [19] which was used
to evaluate the Maximum (k-1) Sum algorithm in section 3.5.3. Figure
10 is a program graph for Gaussian elimination (65 tasks) presented
by Darte [13]- The Gaussian elimination program graph exhibits

regular repetitive sub-structures.

Figure 9; Program Graph for Computer Vision Problem

97

Figure 10; Program Graph for Gaussian Elimination

The tests using Simulated Annealing had a starting temperature
of 0.9 and a cooling schedule of 0.8. These values were chosen to
produce allocations with lower execution times at the expense of the
time taken for the experiment to complete. At each temperature, up to
(25 * number of nodes * number of tasks) allocations were generated,
with each allocation being a single task move perturbation of the
previous allocation. The annealing process at the current temperature
was terminated when (25 * number of nodes * number of tasks)
allocations were tested, or when (10 * number of tasks) allocations
were found which reduced the execution time of the test program at

the current temperature.
The size of the tabu list in experiments using the Tabu Search

technique was set to (number of tasks / 3). Other experiments with
the size of the tabu list depending on the number of processing

98

nodes, as well as the number of tasks, did notproduce any
significantly better results. The Tabu Search used an aspiration
condition that allowed an allocation with a lower execution time
despite the fact that the perturbation that produced the allocation
was in the tabu list. The Tabu Search chose the best of 20 randomly
generated single task moves as theperturbation, and performedup to

(20 * number of tasks * number of nodes) perturbations.

These program graphs were allocated onto a homogeneous bus
network with 2 to 8 processing nodes. Tables 6 and 7 summarises the
results produced by Simulated Annealing, Tabu Search and
Pseudo-Dynamic Load Balancing. Each entry in tables 6 and 7 is the
run-time for the program allocated to the specified number of

processing nodes.

2 3 4 5 6 7 8
Nodes Nodes Nodes Nodes Nodes Nodes Nodes

Pseudo-Dynamic 490 380 370 320 320 320 320

Simulated 430 380 350 330 320 320 320
Annealing
Tabu Search 510 410 370 370 370 360 360

Tabla 6 : Experimental ReBulta for Computer Vialon Problem

99

2 3 4 5 6 7 8
Nodes Nodes Nodes Nodes Nodes Nodes Nodes

Pseudo-Dynamic 6010 4960 4210 4069 4089 3669 3360

Simulated 6540 5010 4090 3690 3550 3550 3480
Annealing
Tabu Search 6360 5100 4530 4130 3880 3520 3550

Table 7 : Experimental Results for Gausaian Elimination Problem

From the data in Tables 6 and 7, we can see the Pseudo-Dynamic
Load Balancing algorithm produces allocations that are comparable to
those generated by Simulated Annealing and Tabu Search. Both of these
techniqgues have received considerable academic scrutiny and are
considered excellent methods for combinatorial optimisation.
Simulated Annealing and Tabu Search are static approaches to load
balancing which require several hours processing to generate a near-
optimal allocation. The Pseudo-Dynamic Load Balancing algorithm is an

on-line algorithm that produces similar quality allocations in real

time.

100

7.0 Worst Case Analysis of Pgeudo-Dynamic Load Balancing

Algorithms can be analysed in terms of their average
performance, based on mathematical analysis or empirical studies, or
in terms of their worst case performance. The worst case ratio, R, of

load balancing technique His defined as:

where cP(P) denotes the makespan of the allocation of program P

produced by technique H, and C*(P) denotes the corresponding makespan

in some optimal schedule.

This chapter presents an analysis of the Pseudo-Dynamic Load
Balancing technique to determine its worst case ratio, RPD. The
structure of the program graph with the worst case allocation under
Pseudo-Dynamic Load Balancing is derived, in addition to its optimal
allocation. The optimal allocation of the worst case structure will
be shown to have a lower makespan than any other structure with
similar computational and communication loads, and therefore no other

program graph structure can give rise to a higher worst case ratio.

101

7.1 Worst Case Program Graph Structura

The Pseudo-Dynamic Load Balancing algorithm chooses task to
processing node allocations based on the value of the heuristic
function of the tasks available for allocation. This function has
three components, a computational load component, a communications
load component and a precedence component. When the heuristic
function value is the same for all the tasks available for
allocation, then the first available task is assigned to the
processing node with the lowest load level. [f more than one
processing node have the same load level, then the task is allocated
to one of these processing nodes, usually the processing node with

the lowest cardinal number.

The worst case program graph structure occurs in Pseudo-Dynamic
Load Balancing when at each stage in allocating a program graph of n
tasks to a set of m processing nodes, the three components of the
heuristic function value are equal for all the tasks available for
allocation, when this occurs task n is allocated to processing node
(n mod m. If, in addition, each one of the tasks allocated to a
different processing node communicates with the same task, then the
inter-node communications are maximised. It is under these conditions

that the makespan is maximised, since:

(i) If predecessor tasks of the tasks available for allocation,
except root tasks, had equal heuristic components and the
available tasks do not have equal heuristic components, then

some of the successor tasks will have different heuristic

102

function values and the tasks will be allocated in such a way
as to reduce the inter-node communications or computational
load level, or both. This will result in some tasks having a

lower completion time and hence reduce the makespan.

(i) If the tasks available for allocation are all root tasks, then
for successor tasks to have the same heuristic function values,
it is only necessary for the heuristic function values and the
precedence components to be equal to ensure that the successor
tasks have the same precedence component. However, in a
non-homogeneous communications environment, where the time to
transmit a unit message between all processing nodes is not the
same, the root tasks with larger communications load components
will be allocated to the same processing node as their
successor task. This will reduce the completion time of these
root tasks and may reduce the completion time of the successor

task, leading to a reduced makespan.

Therefore the worst case program graph structure for
Pseudo-Dynamic Load Balancing is the graph structure shown in figure

The worst case program graph structure consists of n tasks

allocated among mprocessing nodes, and has k levels were:

103

level HE B

Figure 11 : Worat Case Program Graph Structure

Level i has m*tasks of computational load [j_. The
communications load between a task on level (i+1) and a task on level
| is c£ In each level i, there are mtl’'2) groupings of m tasks that

communicate with the same task on level (i-1).

In this worst case structure task j will be allocated to node

(j mod m) since each task on level |

@ Has the same computational load, communications load and

precedence level.

104

(ii) Communicates with the same task on level (i-1) as (m-1) other

tasks on level 1.

(iii) Each level i, except level 1, has a multiple of m tasks, and
therefore an equal number of off-node and on-node task to task
data transfers. Hence no processing node will be available to
process any task on level (i-1) before the other (m-1)

processing nodes.

The time taken to execute and transmit data for all the tasks
on level k 1is the time taken until the last task on level k is
completed. Since all the tasks are similar, this is the time for any
one processing node to complete all the tasks allocated to it. A
processing node will have m(™-2) tasks allocated to it and every m-th
one of these tasks will communicate with a task assigned to the same
node. The remaining tasks will communicate with tasks allocated to

different processing nodes.

The time taken to complete level k is:

m ik-3lk+ (m- {h+ck—l)

S m OOK\-{n-\){Ik + Ck-\)]

The time taken to complete the tasks on level (k-1) is the time
taken for a processing node to complete all the m (k-3) tasks from
level (k-1) allocated it. The time taken to receive data from the
tasks on level k, execute the tasks on level (k-1) and transmit data

to the tasks on level (-2) is:

105

MK A{(M-\)ck-\+1k-\) + (m-\)m A {m-\)ck-\+h-\ + Ck-)
me{(m-1)ck-i +1k-i}+(m-Dmedk-»

In general the time taken to complete the tasks on level i is:

m°~2{(m-Da+]+ {m- Hiw(-3)c, -1

Therefore, the total time taken to execute a program graph

exhibiting the worst case structure is:

CPD=mik-3{h+ (m- \){lk+ Ck- 1)}+2_ {(m-Da+/}+(m-m(~Ja - 1}
+{(m - I)caal2}+{(m- l)ci+/1}

7.2 Optimal Allocation for Worat Case Structure

To reduce the makespan, a multiple of m collections must be
found which reduce the inter-node communications time by more than

the corresponding maximum increase in computation time for any of the

m processing nodes.

Consider allocating tasks {(£-)m +1, ... , £m} to processing

node (£ mod m).

106

Flcrura 12: One Stage in the Tranaformation to an Optimal Allocation

This effectively removes level k and transforms level &1
into a level with tasks of computational load + O jt-id e

The makespan for the transformed graph, with k-1 levels, is:

¢ {mOB{(m-1)ci#li]+{m- Ym"Fa - {(m- ezl {(u-)ci+ 1

and the reduction in the makespan over Ck is:

CED~C™ =m(i3){lk+(m-I(/*+Ck-D}+m(*'3{(m-1)a -1+ h- B+ (m- \)mik-ACk-2
-m kD{(MIk+ k- 1)+ -1yt K- 1)+Ck'2)}

Sh{m9+mEd- - mEI- m A+ mKkd)
+ A (WED- 1 @D W ED+/WC4)
+Ck-(mik2)+

tk-2/69-M{ed -mea+mK')

107

2 -1t - P2
=(m- Om{k4)(2mcet-1 +c*-)

Therefore the reduction in makespan is due to a reduction in
inter-node communications time alone. There 1is no counteracting
increase in computation time. Therefore repeated applications of this
transform will continually reduce the makespan until the maximum
level in the transformed program graph is 2. The transform can not be

applied again because level 1 does not have a multiple of m tasks (it

has only one task).

Therefore, the program graph can be transformed to:

level 2

level 1

Figure 13: Level 2 Prom-am flyayh

k

where It=" {AN2A/}

i=2

The processing node to which the level 1 task is allocated can
start to receive data immediately after it has finished executing its

level 2 tasks. Because of tnis, another transform can be performed,

assigning all the taBks to the same processing node, if:

108

It+ (m- 1)ci+ 2> mitt h
=> (w-l)ci >(ot-1)/1
=> C\>h

The minimum makespan for the worst case structure is:

(€)) IT ci”™h, then
C*=£{mQawW/.}
R
()] If c\<It, then
C*=£ +(m- I)ci+h

Program graphs, with similar computational and communication
loads, can not have a lower minimum makespan. This is because the
optimal allocation of Pseudo-Dynamic Load Balancing®s worst case
structure initially divided (n-1) tasks equally among the m
processing nodes minimising the largest computational load of any
processing node, while, at the same time, minimising communications
to m messages of length cl. Testing if ¢ < 2t determines whether or

not the makespan can be reduced if all tasks are allocated to the

same node.

109

7.3 Worst Case Ratio. R for Pseudo-Dynamic Load Balancing

Given a worst case program graph structure, shown in figure 11,

with n tasks, to be allocated among m processing nodes, with the n

ivided i BN 2 el i
tasks divided into k levels, *=< — ———Bx>, in which the
\ 1-M
1
computational load of a task on level i is and the communications

load between a task on level (i+l) and a task on level 1 is c¢?, then

the worst case scheduling ratio, RPD, is:

Case (@ : If Gi> me then

(Dot} +m £ 34 - Dl i —Dmuda- 3+ {m- i+ i+ {(m- ci+f)
c* é*!i»w‘*}

k

Case (@ ; If Ci< then
1=2

Rp_ B 3{/*4(m|)(*+«-)}+Z|mlz eI+ (m)i+ L) +{(m - i +1i)

110

7.4 Estimating the Worst Case Ration, 1> . for a Given Graph

Given a program graph with n tasks to be allocated among the m

processing nodes of a parallel or distributed computing system, let:

(@
1

payUi) = maximum computational load

G = Iriﬁ'j%(cj'k) = maximum communications load

1tedv —]-—_m—— \

Then the worst case makespan can he written as:
CFD=med{/ + (/»-1)(/+ o+)1(;3 {(m- Ne+/}+ ([« Dw(dc}+{(M- Hc+/}+{(m-)c+/}

= m-L) (e WM -D)e+ 3+ (Ir-1) MY +2{(m -)e+l)

;=0

=t J{/+ (w- L)(/+c)}+{w-L)c+/}A mut)+(m- 1)cE mJ+2{(w- l)c+/)
9 70

=mik2l+{m- Dew(t' J+{(fw- Nc+/}* mI+(m-1)cn +2{(w- l)c+/}
A yo

_ +{(/w-|)c+/}J":l/n;+(m-l)c"__/oM;+2{(/w-|)c+/}

W+ {(w T)eH A w +(in - H(w-e+1)

=Q i=o

mik2+ _ogEmi+ Smls ne+ 4
ey 0
*.3

= et) + [2(m - I)c+/}£omJ+ (- 1)c+1}

-a@Dd

But since > d’ = -—--—---2% then,
g 1-«

C™=w("2+2@m-1) c Hw_ e+ly

(L-m)m (k2 +{2(/IM-1)c+ [}{l-w*2}+ (I-I»){(/»-1)c+/}
1-m

J(-m () - m+2) + (-2 (W) + 20W(-2) - W2+ 4w - 3)
1-/w

[(-m (k) - m+2)+c(-2(w- D)m(r2d- w2+4m- 3)

1-m

Therefore the worst case ratio, RPD, is given by:

e @21 f1md)
Case (@): If C~r> V» then
=2 I 1“>» J

= Y0 11 m]J

nPD C@ I[m(k~)9+m-2)+c(2}m- \)mk2 +m2-4/m+ 3)
C » T

112

I
'
1
1
1
'
1
1
1
—
—
=
D
=

Case <b): If C<Y {mfi2) -
w l~m g

C* = AN {/WCD+ (w-1Dc+/
1=2
kl
- YSptiiv+{m-\)c +l
j=0

- /< >+(m-c+7
I 1-» J

1~ w(i D)+ (- M)(w- 1)c+{1-)

1-m

[(-m |k‘0' m + 2)+C('/W2+2/W‘].)

1-/«

Therefore,

cPo 7wro+ M- 2) +c(2(tw- DA tm2-4m +3)
- C* I(m) + M- 2) + ¢(M2-2m +1)

7.5 worst Case Ratio. R—. as a Function of the Communications to

Computations Ratio, a
If the maximum communications load is ¢ and the maximum

computational load is 1, then let c=al. The worst case ratio, in

terms of a is then:

113

Case (@ : If a'Z.———]: ————— , then

D mik (1+2a)- 2am(k?+am2+m(L- 4a)+(3a- 2)
mi* —1

Case Z I Q< et , then
® 1

nPD B(1+2a)-2amik’) +am2 +w(1-4a) + (3a-2)
tam2+m{\- 2a)+(a- 2)

7.6 Asymptotic Bounds on Worst Case Ratio. R—

(@) Let m—°0. Since the worst case program graph structure is a
balanced tree with branching factor m, then as m—o00, k—2, since

k is the depth of the tree.

If a> M (A 2 =1, then:
1-m 1-m

D am2+m{2- 2a)+(a- 2)
R = th —

Therefore as m — 00, FQPD»%TT—H.

114

"D om '{I+2a)-2a+taml+m{\-4a)+(3a-2)
mTx+am2+m(l-2a)+(a-2)

Therefore as W—>co, i’?pd—"-g-rrﬂ- =1,

(®)] As 7N— , K—"rmo since more tasks must be accommodated in the

worst case program graph, which 1is a balanced tree with branching

factor M. Therefore < —————— and

P mx)(1+2a) - 2amfd +am2+m(l- 4a)+(3a- 2)
mikd)+am2+m(l-2a)+(a-2)

"R PD*(I+22)-~

R PD*I+2@ M-
m

Therefore as «-»<», (n -M)» | ,RPD->1+2a.

115

8.0 Conclusions

8.1 Goals

Parallel and distributed processing form one of the comer
stones of the future of computing. A popular paradigm of parallel and
distributed processing is concurrent processing, in which a set of
inter-communicating sequential tasks cooperatively solve a problem.
Two fundamental problems prevent parallel and distributed processing,

particularly concurrent processing, from entering the mainstream of

computing:

(@) A language that expresses the parallelism inherent in the
problem without reference to the computing environment in

which the program w ill be executed.

(b) A method, which is independent of the wuser, of
effectively exploiting the expressed parallelism by
distributing the components of the program among the

available processing nodes.

This thesis examined the second problem, the load balancing

problem. In order to solve the load balancing problem the aims of

this thesis were to:

(@) Analysis the fundamental structure of the load balancing

problem.

116

(b) Design algorithms which effectively allocate the n
inter-communicating tasks, that form the program, among

the available mprocessing nodes.

8.2 Results and Achievements

The Elastic Force algorithm, presented in chapter 3, is a
static load balancing algorithm for - a program of n
inter-communicating tasks with equal computational loads. It draws an
analogy with a physical system of object connected by elastic forces.
Such a physical system reaches equilibrium when the energy stored in
the system is minimised. In the Elastic Force algorithm the
inter-task communications were represented as distant-dependent
elastic forces. The Elastic Force algorithm performs a direct search
of the solution space seeking a solution with minimum inter-task
communications. Since this minimises the time the processing nodes
spend processing tasks and communicating between tasks, this

maximises the throughput of tasks through the parallel or distributed

computing system,

The Maximum (k-1) Sum algorithm is a heuristic static load
balancing technique that was derived from the Elastic Force
algorithm. It also seeks to maximise the throughput of the parallel
or distributed computing system. The Maximum (k-1) Sam algorithm is
computationally efficient, 0(mn2), and produces high quality

allocations when the program graph does not contain repetitive

117

sub-structures with chains of communicating tasks. When applied to a
real world computer vision program, and the number of processing
nodes was greater than 5 (Table 1), the Maximum (k-1) Sum algorithm
produced better allocations than those producedby Darte's or

Sarkarls algorithms.

The load balancing problem was analysed mathematically in order
to understand the fundamental structure of the problem, with a view
to developing an on-line algorithm for load balancing. The
mathematical formulation presented in this thesis is a non-symmetric
formulation of the load balancing problem that minimises the
makespan. For every s non-empty subsets of the n tasks to be

allocated to m processing nodes,thisformulation reduces the
. . m . .
solution space by removing the - — identical allocations since
“w-s)!

the processing nodes can be numbered arbitrarily. Removing such
symmetries can significantly reduce the size of the solution space.
The non-symmetric mathematical formulation of the load balancing
problem shows that the structure of the problem is not only discrete,
but also quadratic. A new technique for relaxing the formulation into
a mixed integer-linear programming problem was developed. This
relaxed non-symmetric formulation of the problem can be used to
generate upper bounds on the load balancing problem. When applied to
the program graph of an atmospheric analysis module, and compared
against the allocations produced by a standard combinatorial
optimisation technique, Simulated Annealing, the upper bounds

generated by the relaxed non-symmetric formulation were shown to be

strong (table 5).

118

Based on the non-symmetric formulation of the load balancing
problem, the Pseudo--Dynamic Load Balancing algorithm was developed.
This algorithm is an on-line heuristic algorithm that seeks to
allocate the tasks of a program among the available processing nodes
in order to minimise the makespan of the allocated program. Key
elements of the mathematical formulation were analysed and used to
generate a heuristic function that determines the on-line allocation
of tasks to processing nodes. This algorithm was tested by developing
a simulation package that uses the Pseudo-Dynamic Load Balancing
algorithm to allocate tasks to processing nodes. The behaviour of the
allocated tasks was recorded and compared with the relaxed
non-symmetric mathematical formulation and two standard static
combinatorial optimisation techniques, Simulated Annealing and Tabu
Search, which were optimised for producing near-optimal allocations
at the expense of solution time. When tested against the upper
bounds set by the non-symmetric mathematical formulation for the
atmospheric analysis module, the allocations generated by
Pseudo-Dynamic Load Balancing were lower than the upper bounds, with
one exception. On two other test cases the allocations generatedby
Pseudo-Dynamic Load Balancing were better than those generated by
Tabu Search, and very close to those generated by Simulated
Annealing. The allocations generated by the Pseudo-Dynamic Load
Balancing algorithm were less than 115% of the Simulated Annealing
allocation and generally less than 103%. The major advantages of
Pseudo-Dynamic Load Balancing is thatit is an on-line technique,
generating allocations in real-time, and capable of reacting to

changes in the parallel or distributed computing system.

119

The Pseudo-Dynamic Load Balancing algorithm was then analysed
to determine its worst case performance. The structure of the program
graph which gives rise to this worst case performance was derived and
its optimal allocation was shown to he the optimal for any similar
set tasks. From this the worst case scheduling ratio, RPD, was
derived. If the ratio of the maximum communications load to maximum
computational load is given as a, then the upper bound on RPD is
(I+2a). Unlike previous worst case scheduling ratio analysis [21] in
which the effects of inter-task communications were ignored, when
inter-task communications are included in the model, the ratio of the
maximum communications load to maximum computational load is the
significant factor that influences on the worst case performance. The
worst case program graph structure is very symmetrical in structure
and can be easily detected by the compiler module/preprocessor which
generates the program graph. If small irregularities are introduced
to the program graph Dby this module or preprocessor then the

scheduling ratio can be significantly reduced.

8.3 Topics for further Research
8.3.1 Enhancements to tha Pseudo-Dynamic Load Balancing Algorithm

The Pseudo-Dynamic Load Balancing algorithm generates
near-optimum task allocation in a real time. However, the speed of
the algorithm can be increased by only allowing phases 2 and 3 to
occur at fixed intervals in time. This way multiple events which

affect the state of the GST are amalgamated into one update phase.
This will increase the speed of the algorithm at the expense of the
run-time of the program being balanced across the parallel or

distributed computing system.

Another enhancement to the algorithm deals with tasks that
require resources which are not available at every processing node in
the system. The description of each task can be extended to include a
list of specific resources required by the task. Phase 2(a) can be
modified to exclude processing nodes that do not have the specified

resources from the allocation phase.

8.3.2 Distributing the PBeudo-Pvnamic Load Balancing Algorithm

The term global scheduling table (GST) was used to
differentiate it from any data structure required at each processing
node by the local schedulers. However, the algorithm can be
distributed across the parallel or distributed computing system by
partitioning the system into a set of inter-connected regions [27].
In the Pseudo-Dynamic Load Balancing algorithm this is accomplished
by confining the global scheduling table to a neighbourhood of
processing nodes. In each neighbourhood there would be some nodes
from which programs can be launched, and some nodes specifically for
computational and/or resource usage. Each node, in the neighbourhood,
from which a program could be launched would have its own global
scheduling table for that neighbourhood. These GSTb would contain the

121

neighbourhood values of the minimum active precedence, the average
computational load per node and the actual load levels of each

processing node. All other information in each GST would be local to

each launch node.

Adjacent neighbourhood can transfer tasks between them by the
use of a gateway node. A gateway node is a processing node that
presents a summary of the state of the adjacent neighbourhood through
its load level. The load level of a gateway node is the average load
level of the processing nodes in the adjacent neighbourhood, modified
upwards to account for the extra communications distances in the
adjacent neighbourhood. This load level could also be modified
downwards to account for any particularly lightly loaded processing
nodes in the adjacent neighbourhood. Tasks allocated to a gateway
node are entered into the gateway node's GST for the adjacent
neighbourhood, and are allocated accordingly in that neighbourhood. A
neighbourhood may have several gateway nodes to other neighbourhoods,
while gateway nodes do not fully distribute the task allocation
problem across the parallel or distributed computing system, recent
research has shown that a program will tend to limit itself to a set
of processors called the processor working set [28]. The processor
working set is a direct result of the effects of inter-task
communications and inter-node communication distances. A program with
a processor working set that is greater than the neighbourhood may
have tasks exported to adjacent neighbourhoods for execution,

depending on the current state of adjacent neighbourhoods.

8.4 Concluding Remarks

The load balancing problem is one of the fundamental problems
which has prevented concurrent computing from entering the mainstream
of computing. While the load balancing problem, in the general sense,
belongs to the class of NP-complete problems, and is therefore
believed to be intractable, many approaches, static and dynamic, have
been tried to either generate an optimal solution to a restricted set
of program graphs and computing environments, or generate
near-optimal solutions to the general problem by using graph theory,

mathematical programming, queuing theory or heuristics.

This thesis proposes two efficient heuristic algorithms for
generating near-optimal load balancing allocations. The Maximum (k-1)
Sum algorithm is a static algorithm that seeks to maximise the
throughput of programs through the parallel or distributed confuting
system. This algorithm is derived from a directed search algorithm
that uses an analogy with a minimum energy physical system to direct

a search of the solution space.

The Pseudo-Dynamic Load Balancing algorithm is on-line
heuristic algorithm that represents an important extension to the
existing approaches to load balancing. It is unique in that it
combines the advantages of both static and dynamic load balancing
methodologies in order to minimise the makespan of an allocated
program. The algorithm is developed from a mathematical analysis of
the load balancing problem. It takes two inputs, a program graph

describing the program, generated when the program is compiled, and a

123

network graph that describes the current configuration of the
parallel or distributed computing system. These two inputs are
combined at run time, allowing the algorithm to exploit knowledge
about the structure of the program and the current state of the
computing environment, to produce a near-optimal allocation of tasks

to processing nodes as the program is being executed.

Since Pseudo-Dynamic Load Balancing algorithm is an on-line
algorithm, the information relating to the state of the computing
environment is only required when the task is being allocated.
Therefore the network graph, which represents the computing
environment, can be re-configured ‘'on the fly'. This may be necessary
due to a failure, or addition, of a processing node or communications

channel.

A major issue with any load balancing algorithm is the load
that it places on the computing system. In the Pseudo-Dynamic Load
Balancing algorithm this is kept to a minimum, since the Global
Scheduling Tables (GST) are only kept on processing nodes that are
capable of launching applications. In addition, events which require
that the GST be updated are generally infrequent compared to the
computational and communications loads of the tasks. The GST was
designed so that only a few entries need to be updated when an event

occurs.,
One of the inputs into the Pseudo-Dynamic Load Balancing

algorithm is the program graph, which contains the computational and

communications loads of each task in the program. How does the

124

algorithm cope when these are non-deterministic? The values of the
computational and communications loads of each task are used to
compare tasks with one another. They need not be absolutely accurate,
only relatively accurate. Even if there are relative errors in these
values, the Pseudo-Dynamic Load Balancing algorithm compensates for
these errors since the tasks with the ‘incorrect' computational and
communications loads will remain in the GST as active tasks, and
maintain the associated processing node load levels at their current

value until the tasks actually terminated.

The Pseudo-Dynamic Load Balancing algorithm is a significant
stepping stone to the day when the average computer user will have a
parallel computer or distributed computer terminal on his or her
desk, and will be wusing commercially developed parallel or

distributed software packages. It does this because:

(a) Pseudo-dynamic load balancing provides a very efficient
on-line method for exploiting the parallelism expressed

in a program.

(b) It can be embedded in the operating system of a parallel
or distributed computing system and not be visible to the

user (User Independence).
(c) It only requires the software developer to produce a

description of the parallel or distributed program. This

description of the program is independent of the parallel

125

or distributed computing system on which the program w ill

be eventually executed (Developer Independence).

126

REFERENCES

[1] M.R. Garey and D.S. Johnson. "Computers and Intractability : a
guide to the theory of NP-completeness, W.H. Freeman, New
York, 1979.

[2] J. Du and J.Y.-T. Leung, "Complexity of scheduling parallel
task systems", SIAM J. Discrete Math., no. 2, pp. 473-487,
1989.

[3] T.L. Casavant and J.G. Kuhl, "A Taxonomy of Scheduling in
General-Purpose Distributed Computing Systems", IEEE Trans.
Software Eng., vol. 14, pp. 141-154, Feb. 1988.

[4] M.J. Gonzalez, "Deterministic Processor Scheduling", ACM
Comput. Surveys, vol. 9, pp. 173-204, Sept. 1977,

[5] J.A. Stankovic et al., "A Review of Current Research and
Critical Issues id Distributed System Software", IEEE Comput.
Soc. Distributed Processing Tech. Committee Newslett., vol. 7,
pp. 14-47, Mar. 1982.

6] T. Hu, "Parallel Sequencing and Assembly Line Problems",
Operations Research, vol. 9, pp. 841-848, 1961.

[7] E. Coffman, "Computer and Job-Shop Scheduling Theory", Wiley,
New York, 1976.

127

8]

[9]

[10]

[11]

[12]

[13]

S.H. Bokhari, "Assignment Problems in Parallel and Distributed

Computing", Kluwer Academic Press, 1987,

S. Epstein, Y. Wilamowsky and B. Dickman, "Deterministic
Microprocessor Scheduling with Multiple Objectives”, Computers
Ops. Res., vol. 19, no. 8, pp. 743-749, 1992.

M. Gaudioso and P. Legato, "Linear Programming Models for Load
Balancing", Computers Ops. Res., vol. 18, no. 1, pp. 59-64,
1991,

E. Lawler and J. Labetoulle, "On Preemptive Scheduling of
Unrelated Parallel Processors by Linear Programming”, Journal
of the Association for Computing Machinery, vol. 25, no. 4, pp.
612-619, October 1978.

A. Billionnet, M.C. Costa and A. Sutter, "An Efficient

Algorithm for a Task Allocation Problem", Journal of the
Association for Computing Machinery, vol. 39, no. 3, pp. 502-
518, July 1992.

E.R. Barnes, A. Vannelli and J.Q. Walker, "A New Heuristic for

Partitioning the Nodes of a Graph", SIAM Journal of Discrete
Mathematics, vol. 1, no. 3, pp. 299-305, Aug.. 1988.

128

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. Holm and MM. Sarensen, "The Optimal Graph Partitioning
Problem: Solution Method Based on Reducing Symmetric Nature and
Combinatorial Cuts", Research Report from Department of
Management Science, The Aarhus School of Business, Denmark,
Sept. 1992

BW. Kemighan and S. Lin, "An Efficient Heuristic Procedure
for Partitioning Graphs", Bell Systems Technical Journal, vol.
49, no. 2, pp. 291-307, Feb. 1970.

L.R. Ford and D.R. Fulkerson, "Flows in Networks", Princeton

University Press, 1962.

A. Darte, "Two Heuristics for Task Scheduling”, Ecole Normale

Supérieure de Lyon, May 1991,

N.S. Bowen, C.N. Nikolaou, and A. Ghafoor, "On the Assignment
Problem of Arbitrary Process Systems to Heterogeneous
Distributed Computing Systems", IEEE Trans. Computers, vol. 41,
no. 3, pp. 257-273, Mar. 1992.

T.L. Kunii, S. Nishimura and T. Noma. The Design of a Parallel
Processing System for Computer Graphics. P.M. Dew et al.,
editor, Parallel Processing for Computer Vision and Display,
chap. 26, pp. 353-377, Addison-Wesley, 1989.

V Sarkar. "Partitioning and Scheduling Parallel Programs for

Execution on Multiprocessors". The MIT Press, 1989.

129

[21] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan,
"Optimization and Approximation in Deterministic Sequencing and
Scheduling: A Survey", Annals of Discrete Mathematics, vol. 5,
pp. 287-326, 1979.

[22] W.P. Helgeson and D.P. Birnie, "Assembly Line Balancing Using
the Ranked Positional Weight Technique", Journal of Industrial

Engineering, no. 6, 1961.

[23] S. Gotto and T. Matsuda, "Partitioning, Assignment and
Placement", Advances in CAD for VLSI, vol. 4, pp. 68-82, 1986.

[24] D. Judge and W. Rudd, "A Test Case for the Parallel Programming
Support Environment: Parallelizing the Analysis of Satellite
Imagery Data", Tech. Report 89-90-2, Department of Computer
Science, Oregon State University, 1989.

[25] S. Kirkpatrick, C.D. Gelatt and M.P. Vechi, "Optimization by
Simulated Annealing", Science 220 (May 13, 1983), No. 4598.

[26] F. Glover, "Tabu Search", Centre for Applied Artificial
Intelligence, Graduate School of Business, University of
Colorado, Boulder, 1988.

[27] |. Ahmad and A. Ghafoor, "Semi-distributed Load Balancing For

Massively Parallel Multicomputer Systems", IEEE Trans. Software
Eng., vol. 17, pp. 987-1004, Oct. 1991.

130

81 D. Ghosal, G. Serazzi and S.K. Tripathi, "The Processor Working
Set and Its Use in Scheduling Multiprocessor Systems", IEEE
Trans. Software Eng., vol. 17, pp. 443-453, May 1991.

131

APPENDIX A; Maximum (k-1) Sim algorithm Source Coda

The 1C' source code for the Maximum (k-1) Sum algorithm is on

the enclosed PC-formatted disk in the “"\static\slc" subdirectory.

This directory contains the following files:

which

slc.exe Executable Maximum (k-1) Sum program,

slc.c Source code for Maximum (k-1) Sum
algorithm.

task.h Definition file for Maximum (k-1) Sum
algorithm.

Also in this directory is a subdirectory n\static\slc\cvis"

contains the following files:

The input file "cvin.dat" for the computer vision program.

The files “"cvisJT.dat" that contain the results of using the
Maximum (k-1) Sum algorithm to allocate the computer vision

program to a bus network of X processors.

The file "cvis4rl2.dat" thatcontains the results of using the
Maximum (k-1) Sum algorithmto allocate the computer vision
program to a bus network of 4 processors, but relaxing the
algorithm to allow up to 12 tasks to be allocated to a

processor.

Al

APPENDIX B: Sciconlcs Implementation of the Relaxed Non-Symmetric

Formulation of the Task Allocation Problem

B.l Introduction

When specifying the problem the user is restricted to MGG's syntax.
The MGG syntax requires the user to specify the problem in a series

of sections.

B.1.1 Suffices

This section defines the suffices to be used in the problem
formulation. For the non-symmetric model four suffices are required.
A dummy index D is needed to allow the user supplied problem data to
be formatted with one data item on each line of the problem data
file. The need for the suffices I, J, and K are obvious from

equations [4.22] to [4.36].

B .l.2 External Values

This section defines the data to be supplied by the user for a

given instance of the problem. The non-symmetric model requires

Bl

external values to hold the computational load of each task (CLQAD),
the precedence level of each task (PREC), whether two tasks
communicate (COMMW), the communications load between each task
(CLOAD), the bounding coefficient (BCOEFF) and the number of
processing nodes (NODES).

B.1.3 Internal Values

This section defines any additional data storage area required
by the matrix generator (MG and the report writer (RW), as well as a

subroutine to initialise these internal values. This section is

optional.

This section could have used to calculate the precedence level
for each task, but it was decided to simplify the formulation and

read the precedence levels directly from the problem data file.

B.1.4 Declarations

This section is used to modify the definition of external and

internal values. This section is optional.

B2

B.1.5 Varlablea

This section defines the variables in the mathematical

formulation of the problem, and specifies upper and lower lim its on

their values. From equations [4.22] to [4.36] the non-symmetric model

requires the following variables.

Y(i): An n element array containing the relaxed

earliest start time for task 1.

Z(i,j), W(i,j): Two n x n element arrays of relaxation

variables.
N (i) : An n element array specifying if a task is

the lowest cardinal numbered task allocated

to its processing node.

A(x,]): An n x n element adjacency array.

B.1.6 Problem

This section defines the problem in terms of an objective

function subject to constraints. The definition of the problem in the

syntax of MGG requires that:

B3

(a) Constants and coefficients must have names with 3 characters

Constants and coefficients must have exactly 3 character names;

no more and no less.

(b) Only constants are allowed on the right hand side.

Remember that a constant in a given instance of a problem is a

variable in the formulation of the problem.

(c) The objective function and left hand sides of the constraints

have a specific format,

The objective function and the left hand side of the

constraints must be the sum of terms, in which each term has the

following format.
SUM (Suffices) (Coefficient) * (Generic Variable Name)

The suffices are required in the summation if the suffices
differ from those in the generic constraint. However, it is always a

good idea to include the suffices.

B4

The coefficient must have a 3 character name. Therefore, using
BCOEFF as a coefficient is illegal. The solution is to define a 3

character name, say OBI, as equal to BCOEFF in the elements section

of the formulation.

The generic variable name must have its suffices in the correct

order,

(d) The first character of a coefficient determines its type.

Because MGG generates FORTRAN source code coefficient names
that start with I, J, K, L, M orN are implicitly integers. A
coefficient called JLS is an integer and will cause an error when
MGCL is used to compile and link the matrix generator MG, if JLS is

used as a floating pointvalue.

(e) Specific elements of generic variable arrays can not be

referenced.

If Y(i) is an n element array and you wish to reference the
first element in a constraint, i.e. Y(I) > 0.0, you must sum Y(r)
times a coefficient over all r. The coefficient is defined in the
elements section to be 1.0 for r = 1, and 0.0 otherwise. Similarly,

to reference Y (j), you must sum Y(r) times a coefficient over all r

B5

and define the coefficient to be 1.0 if r =j, and 0.0 otherwise. But

r is not a valid suffix for Y, so you must define it as being square,

e.q.

SUM (11) CIO * Y(II) - Y(I) +CI3*A(1,J) .GE. T™P
FOR ALL |, J

FOR Il = SQUARE

B.1.7 Elements

This section defines any 3 character elements that have been
used as coefficients in the objective function and constraints in the
problem section, or in the upper and lower bounds when variables are
declare in the variables section. The values of the coefficients can
be conditional on the suffices and external data using FORTRAN
constructs. The inclusion of this section is optional in the MGG

syntax, but essential in practice.

B.1.8 Functions

This section contains any FORTRAN functions used in the problem
and elements section. Typically, these functions are used to specify
when a constraint exists, and to calculate complex coefficients in
the objective function and the constraints. Symbol names defined in

B6

the suffices section will be global in the matrix generator and the
report writer, and therefore should be avoided in user supplied

functions.

B7

B.2 MGG Problem Formulation

C

g Parallel Critical Path Problem

C DATE: 5-3-93

C

C

OPTIONS EIGHT

C

gOTATION

SUFFICES ,

C Dummy index from 1 to 1
CD MAXA 1

C| MAXI 60

CJ MAXJ 60

K MAXK 60

C

C

C

EXTERNAL VALUES

LOAD(,D) F5 Computational load of task |
COMMW(, J) (IX, 1) Set to 1 if task | communicates with
tCask J

CCLQAD(X,J) (IX, F5.0) Communications from task | to task J
CPREC(I,D) F5.0 Precedence Level of task |
CBCOEFF F10.0 Bounding Coefficient
NODES 13

C

C

C

\éARIABLES

Y (I AR

gOLwD LO 0.0

Z(1,J) *)

EO ND 10 0.0

W (l,J) * g

BOUND 123 0.0

C
who sy

B8

C

AJI,J) O J)

BOUND BV

G

EROBLEM

MINIMISE

C

* 0BJ k]

¢

CSUM () OBI*Y () - SUM (1,J) W(l,J)

C

SUBJECT TO

C

C

* FlRST Tk k%% %!

C

gY(l) EQ. 0.0

CSUM (I) C50*Y(l) .EQ. 0.0

C Early Start Constraint
C

E ES SRR NENVAA NOT IF (COMMW(I,J) EQ.0)
gY(J) - Y(I) + CIJ*A(I,J) .GE. IMP

SUM (1) C10*Y(ll) - Y(I) + CIJ*A(l,J) .GE. T™MP
FOR ALL 1, J

(F:OR Il = SQUARE

8 One Task at a Time Constraint
E oT *x] JJ)1 NOT IF (EXISTS() .EQ. 0.0)
gA(I,J) () - A(LJ)*Y () - LOAD (1,1)*A(l,J) .GE. 0.0
Z(1,J) - Z2(J,1) - CPI*A(1,J) .GE. 0.0

FOFSAL)L | J() (9]

C

C

E ZB *x 1] JJ1

Z(1,J) - SUM (17) C60*Y(I7) .LE. 0.0

FOR ALL I, J

FOR 17 = SQUARE

C

C

* WA)]

C

B9

W(J) - 2(,3) LE. 0.0

FOR ALL I, J
C

C

E W8 LSRN

W{lJ) - SUM (15) C40*Y(15) + Z(1,J) .LE. 0.0
FOR ALL |, J

FOR 15 = SQUARE

C

8 Associativity Constraint
*CASS *1JIJKK'

8A(I,J) +A(LK) - A(JK) LE. 1

A(1,J) + SUM (JI) C20*A(I,J) - SUM (12,J2) C21*A(12,J2) .LE. 1
FOR(AL?_ [, J, lg) .70 () ()
FOR J| = SQUARE

FOR 12 = SQUARE

(F:OR J2 = SQUARE

c Symmetry Constraint
ESYM AR N

A(l,)) - AQJ,) .EQ. 0

EOR(AL)LI, J() £

c Unit Diagonal Constraint
*CDIAG FERE NOT IF (I .NE. J)

A(l,]) EQ. 1

EOR(AL)L I,QJ

8 Number of Nodes Constraint
* Nl Tk %!

C

CSUM () C50*N(l) .EQ. 0

* L '**11'

C

) - SM (1) CTOA(LI) LE. 0.0
| GT. 1 AND. | .LE." MAXI

“+ [J NOTIF (I EQ. 1 OR. I .LE.J)
C71*A(1,J) GE. 0.0
OR ALl |

(‘)*O'n
o=

= - =

(e

0

SUMN
SUM (1) N(I) .GE. SWN

O O *O

B10

c
ELEMENTS

C
CPI = LOAD (1,1
ClJ = CLOAD(IJ
- TMP = LOAD(1,1)” + CLOAD(,J)
- OBl = 3COEFF
CI0 =0.0
5 OIF (I \EQ. J) Cl0 = 1.0
€20 =0.0
5 OF (31 EQ. K) C20 =1.0
C21 =0.0
- OF (12 EQ. J AND. J2 .EQ. K) C21 = 1.0
C40 =0.0
- OIF (15 .EQ. J) C40 = 1.0
€50 =0.0
5 OFF (I .EQ. 1) C50 = 1.0
C60 = 0.0
- OIF (17 'EQ. J) C60 = 1.0
€70 =0.0
5 OIF (3 LT. 1) C70 = 1.0
C71 = 0.0
OF (3 LT. 1) €71 = 1.0
) SMN = MAXI - NODES
C
(F:UNCTIONS
5 FUNCTION EXISTS ()
INTEGER M
5 REAL CLOAD |, CLOADJ
CLOAD | =0.0
DO 10 H = 1, MAXI
CLQAD | "= CLOAD | + CLOAD (M)
5 10 CONTINUE
CLOAD J =0.0
DO 20 M = 1, MAXI
CLOAD J = CLOAD J + CLOAD (M,J)
o 20 CONTINUE
C

EXISTS =0.0

Bll

IF (PREC(1,1) .GT. PREC@,1)) EXISTS =1.0

IF ((PREC(L,1) £Q PRECJ 1)) AND.
1 LOADI hr LOAD]
2) EXISTS 1.0

C

IF ((PREC(1,1) E% PREC(J , 1 AND.

1 LOADI EQ LOADJ

2 (I LT,

3) EXISTS i 0
C
C

RETURN

END
(@]
(@)
c

ENDATA

B12

B.3: User Supplied Report Routine

C
C
C REPORT.FOR
C
c DATE: 21 JAN 1993
c AUTHOR: DAVID SINCLAIR
C
=
C
C
SUBROUTINE REPORT
¢
8 Report Writer for Parallel Critical Path Problem
C

INCLUDE IMGCOMS1
INCLUDE 'RWCOMSL

Declare Local Data

INTEGER ASSIGNED (502(, NODE, TASK, NEMPTY

REAL RUNTIME (508, EXTIME (50), TIME, PROG_TIME
REAL NDAVTIME éZ g
LOGICAL SUCC (50,50)

LOGICAL ROOT

REAL STACK (50,2)
INTEGER TOP

ono

on

non

IF (MAXI .GT. 50) THEN
RITE (6,5)

5 FORMAT (IX, 'Too many tasksi! Need to recompile REPORT.FORI)
GO TO 999
END IF
S Setup Successor array
DO 10 IL = 1, MAXI
DO 20 JL = 1, MAXI
IF S('OOIVIVMV (IL,JL) .NE. 0) THEN
UcC (IL, JL) = .TRUE.
ELSE
SUCC (IL, JL) = .FALSE.
END IF
20 CONTINUE

10 CONTINUE

8 Assign Tasks to Nodes
DO 30 IL = 1, MAXI
ASSIGNED (IL) =0
c 30 CONTINUE
NODE = 1
c =1
50 IF ;ASSIGNED (1) .NE. 0) GO TO 60
DO 70 J1 = 1, MAXI
IF (BA (I, JI) .EQ. 1.0) ASSIGNED (JI) = NODE
70 CONTINUE
NODE = NODE+ 1
60 IF (I .EQ.MAXI) GO TO 80
m=1u+1
GO TO 50
80 CONTINUE
C
C Calculate run timefor each task
C (computational load +receiving time +
g transmission time)
DO 220 11 = 1, MAXI
RUNTIME (II) = LOAD (II, 1)
DO 230 JI = 1, MAXI
IF S:BA (11, NE. 1.0) THEN
Fgccm JI, 1) EQ. 1) THEN
UNTIME (11) = RUNTIME (I1) + CLOAD (J1,I1)
END |F
FSCOVl (1, JI) EQ. 1) THEN
UNTIME (I1) = RUNTIME (I1) + CLOAD (I1,J1)
END IF
END IF
230 CONTINUE
220 CONTINUE
8
C Find root tasks and sort them by increasing
C precedence
C
JI =1
c CALL INITSTK (TOP)
110 ROOT = .TRUE.
DO 100 [l = 1 M X|
L}SUCC , JI) .EQ. .TRUE.) ROQT = .FALSE.
100 CONTIN

IF (ROOT .EQ. .TRUE.) THEN
ALL PUSH (STACK, TOP, J I, 0.0)

IJFl (JI EQ MAXI) GOTO 120
& T0°110

120 CONTINUE

B14

WRITE (6, 152
WRITE (KPRINT, 152) N

152 FORMAT (IX, [/, ' Parallel Critical Path Reportl,/,
1 * ::::::',//)

Initialise Earliest Node Available Times

DO 180 || = 1, NODES
NDAVTIME (1) =0.0
180 CONTINUE

OO0

Initialise Task Execution Times

DO 190 I = 1, MAXI
EXTIME (11) = -1.0
190 CONTINUE

OO0

Update Task Execution Times

OO0

160 CONTINUE
NEMPTY = IPOP (STACK TOP, TASK, TIME)
IF (NEMPTY EO. THEN
ALL UPDAT TASK TIME, STACK, TOP, NDAVTIME, ASSIGNED,
EXTIME suc, RUNTIME)
ELSE
GO TO 170
END_IF
GO TO 160
170 CONTINUE

C
C Print out Execution Times

DO 200 IL =1, MAXI
WRITE (6,201) IL, ASSIGNED (IL), EXTIME TUL
WRITE (KPRINT,201) IL, ASSIGNED (IL), EXTIME (IL)
201 FORMAT (IX,'Task 12," executes on Node ', 12," at T=

1 F10.5)
200 CONTINUE

PROG TIME =0.0

DO 240 IL = 1,

NODES
IF (NDAVTIVE (IL) .GT. PROGJTIME) PROG_TIME = NDAVTIME (IL)

240 CONTINUE
WRITE (KPR INT, 11 PROGJTIME
WRITE (6,211) PROGJTIME

c 211 FORMAT (IX,//, " Runtime of Program = F10.5,/])

C
999 RETURN
END
SUBROUTINE INITSORT (TAIL)

B15

INTEGER TAIL
TAIL =1
RETURN

END

SUBROUTINE ADDSORT (S, TAIL, TASKNUM)

OO O O

INCLUDE IMGCOMS
INCLUDE 'RWCOMS

INTEGER S (50), TAIL, TASKNUM

IF éTAIL EQ. 1) THEN
TAIL)[- TASKNUM
TAIL = TAIL + 1
ELSE IF (PREC %TASKNUM 1) .GE. PREC (S (TAIL - 1), 1)) THEN
S (TAIL)T ASKNUM
TAIL = TAIL + 1
ELSE
DO 130 IL -1 (TAIL - 8
IF (PREC f)T T, PRECTASKNUM 1)) THEN
DO 140 12 = AlL
S TAIL 172 4 1) -5 (TAIL 12)
140 CONTINUE
S (1L) = TSk
TAIL = TAIL + 1
END IF
130 CONTINUE
END IF

()

OO

RETURN
END

SUBROUTINE INITSTK (TOP)

OO O O

INTEGER TOP
TOP =1
RETURN

END

o O

SUBROUTINE PUSH (S, TOP, TASK, TIME)

3I3I3IIIIIIIIIIIIIIIIIIIIIIIIII3I3I3333333

INCLUDE 'MGCOMS'
INCLUDE 'RWCOMSL

C Add to Prioritised Stack

a0

B16

OO0

Stack prioritised b¥|Precedence Duplicate Tasks

are prioritised by

REAL S (50,2), TIME
INTEGER TOP, TASK

TOP E 502) THEN
RITE_ (6, 340)
340 FORMAT (IX, "STACK OVERFLOWL//)
GOTO 399
END IF

DO 310 IP =1, (TOP - 1)
IF ((PREC gASK 1) LT PREC (S é'
OR. ((PREC’ (TASK, 1 PREC | 1))
AND. (TIME ' .GE. P2)

) G0 1 315
310 CONTINUE

NS ILY NCTEN

C
315 IF éIP EQ. TOP) THEN

000

000

on

TOP, 1)='REAL (TASK)
S (TOP, 2)= TIME

TOP - IP)

oy ZEloe i
320 CONTIN
S éw, 1{ = REAL (TASK)

J

TOP = TOP + 1

399 RETURN
END

INTEGER FUNCTION [POP (S, TOP, TASK, TIME)

REAL S (50, 2%, TIME
INTEGER TOP, TASK

IF OP -EQ. 1) THEN

ELSE
TASK
TIME
TOP = TOP
IPOP =1

END IF

T 1£OP » -2)1), 1))

B17

OO

(¢

on

oonnn

n

RETURN
END

SUBROUTINE UPDATE (TASK, TIME, S, TOP, AVAILT, ASGN,

L XTIME, CHILDS, RTIME)

540

I ITY NCTHN

N

INCLUDE IMGCOMS'
INCLUDE IRWCOMSL

INTEGER TASK, TOP, ASGN 6 NODE

REAL S (50,2), AVAILT ’\32 XTIME RTIME (50)
REAL TIME PSTIME CSU

LOGICAL CHILDS (50 50), MOVED

INTEGER WAIT

INTEGER SUCCS (50), STAIL

Set Task Execution Time
NODE = ASGN (TASK)
IF (XTIME (TASK) .GE. TIME) THEN

TO 599
END IF

Adjust time so that it does not overlap W|m

higher precedence task already allocated t
node.

MOVED = .FALSE.
DO 550 IU = 1, MAXI
P (fPREC UUJQ GE, PREC (TASK,1)) .AND.
U NE. TASK) .AND.

%XHME (IU) .NE. -1.0) .AND. (NODE .EQ. ASGN (IU))

TIME .GE.” XTIME (1U))
) THEN
INISH = XTIME w@ + RTIME
IF (TIME .LT. FI THEN
IME_= FINISH
MOVED = .TRUE.

ENDTIME = TIME + RTIME (TASK)
DO 560 JU = 1, MAXI

IF ((PREC '(JU,1) .GT. PREC (TASK,1)) .AND.

(ENDTIME 'GT. XTIME (JU))
) THEN
INISH = XTIME_(JU) + RTIME QJU)
IF (ENDTIME .LT. FINISH) THE
IME = FINISH
ENDTIME = TIME + RTIME (TASK)

B18

h|s

AND.

nn

END IF
END IF
560 CONTINUE
END IF
END IF
550 CONTINUE

IF (MOVED .EQ. .TRUE.) GO TO 540

nonn

IF (XTIME (TASK 9\ 1% THEN
| TIME GT. AVAILT (NODE
TIME (TASK) = TIME

ELSE
XTIME (TASK) = AVAILT (NODE)
END IF
ELSE
XTIME (TASK) = TIME
END IF

) THEN

Update the time at WhICh his node w ill become
available for another t

AVAILT (NODE) = XTIME (TASK) + RTIME (TASK)
Push Sucessors on to Stack
CALL INITSORT (STAIL)

DO 510 JU = 1, MAXI
IF (CHILDS (TASK, JU) Eg JTRUE.) THEN
ALL ADDSORT SUCCS TAIL, JU
END IF
510 CONTINUE

CSUM =0.0
DO 520 JU = 1, STAIL 1?3
CSUM = CSUM+1(A A TASK SUCCS (Ju))) *
1 CLOAD (TASK, SUCCS Cé\]!t\?
PSTIME = AVAILT FgNODE
CALL PUSH (S, TO SUCCS), PSTIME)
520 CONTINUE

nononnn

(@)

Push tasks with lower precedence on the same node,
WhICh now overlaﬁ in time with the current task, on
the task stac

OOOOO

DO 570 IU = 1, MAXI
IF (SPREC (IU 1% LE. PREC TASKl)) AND.
U NE. TA K& AND. (NODE EQ.” ASGN (IU)) .AND.
XTIME E. XTIME TASK)% AND.
XTIME LLE. AVAILT (NODE)) .AND.
RTIME IU NE. 0.0)
) THEN

[Sa =N J%) N) T

B19

CALL PUSH (S, TOP, 11U, AVAILT (NODE))

000

END IF
570 CONTINUE

o

~ 599 CONTINUE

non

RETURN
END

B20

B .4: Problem Data Fila

TEST FILE 3: ATMOSPHERIC ANALYSIS

DATE: 4-1-93
EXTERNAL VALUES
KDNAME1 DUMMY
KINAME1 TASK1
KINAME2 TASK.2
KINAME3 TASK.3
KINAME4 TASK 4
KINAMES TASK5
KINAME6 TASK.6
KINAMET TASK.7
KINAME8 TASK.8
KINAME9 TASK.9
KINAME 10 TASK.10
KINAME 11 TASK.11
KINAME 12 TASK.12
KINAME 13 TASK.13
KINAME 14 TASK.14
KINAME 15 TASK.15
KINAME 16 TASK.16
KINAME 17 TASK.17
KINAME 18 TASK.18
KINAME 1 JTASK1
KINAME2 JTASK2
KINAME 3 JTASK3
KINAME 4 JTASK4
KINAMES JTASKS
KINAME6 JTASKG6
KINAME 7 JTASKY
KINAME8 JTASKS
KINAME 9~ JTASK9
KINAME 10 JTASK10
KINAME 11 JTASK11
KINAME 12 JTASK12
KINAME 13 JTASK13
KINAME 14 JTASK14
KINAME 15 JTASK15
KINAME 16 JTASL16
KINAME 17 JTASK17
KINAME 18 JTASK18
KKNAME 1 KTASK1
KKNAME 2 KTASK2
KKNAME 3 KTASK3
KKNAME 4 KTASK4

B21

KKNAMES KTASK5
KKNAME 6 KTASK6
KKNAME7 KTASK7
KKNAME 8 KTASK8
KKNAME 9 KTASK9
KKNAME 10 KTASK10
KKNAME 11 KTASK11
KKNAME 12 KTASK12
KKNAME 13 KTASK13
KKNAME 14 KTASK14
KKNAME 15 KTASK15
KKNAME 16 KTASK16
KKNAME 17 KTASK17
KKNAME 18 KTASK18

Computational Load Data

LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD

TASK.1
TASK.2
TASK.3
TASK4
TASK.S
TASK.6
TASK.7
TASK.8
TASK.9
TASK.10
TASK. 11
TASK. 12
TASK. 13
TASK. 14
TASK. 15
TASK. 16
TASK. 17
TASK.18

cooo

Communicates With Data

COMMW TASK1 1 0111111110000 oooo0
COMMW TASK.2 1 000000000 100000000
COMMW TASK.3 1 000000000 1000 ooooo
COMMW TASK4 1 0000000000 100 ooooo
COMMW TASK5 1 0000000000 10000000
COMMW TASK6 1 00000000000 1000000
COMMW TASK.7 1 00000000000 1000000
COMMW TASK.8 1 000000000000 100000
COMMW TASK.9 1 000000000000 100000
COMMW TASK.101 0000000000000 11110
COMMW TASK.11 1 0000000000000 11110
COMMW TASK.12 1 0000000000000 11110
COMMW TASK.13 1 0000000000000 11110
COMMW TASK. 141 0000000000000 00001
COMMW TASK.151 0000000000000 0000 1

B22

A O
Do O

61 0000000000000000
A171:0000000000000000
61 0000000000000000

COMMW TASK.1
COMMW TASK.1
¢OMMW TASK 1

Communications Load Data

CLOAD TASK.|

*
*

1

CLOAD TASK.L 2

1

CLOAD TASK.2
CLOAD TASK2 2

CLOAD TASK.3 2

CLOAD TASK.3 1
CLOAD TASK 4

1

CLOAD TASK4 2

1

CLOAD TASK.5
CLOAD TASKS 2

1

CLOAD TASK.6
CLOAD TASK§ 2

CLOAD TASK.7 1
CLOAD TASK.T 2

1

CLOAD TASK S
CLOAD TASKS 2

CLOAD TASK.9 1
CLOAD TASK9 2

—cu
oo

CLOAD TASK.1

CLOAD TASK.1

CLOAD TASK.
CLOAD TASK.

Iy
oo

CLOAD TASK.1
¢LOAD TASK.1

iy

3

CLOAD TASK.1
CLOAD TASK.13

—

CLOAD TASK. 14
CLOAD TASK. 14

CLOAD TASK,
CLOAD TASK

CLOAD TASK.
CLOAD TASK.

CLOAD TASK.17°1 0.0 0.0 0.0 00 00 00 0.0 0.0 0.0 0.0

B23

gLOAD TASK.17 2 0.0 0.0

CLOAD TASK.18 10.
CLOAD TASK.18 2 0.

: Precedence Levels

PREC
PREC
PREC
PREC
PREC
PREC
PREC
PREC
PREC
PREC
PREC
PREC
PREC
PREC
PREC
PREC
PREC
PREC

Bounding Coefficient

TASK I
TASK.2
TASK.3
TASK 4
TASK.5
TASK.6
TASK.7
TASK.8
TASK.9
TASK.10
TASK. 11
TASK.12
TASK.13
TASK. 14
TASK.15
TASK. 16
TASK.17
TASK. 18

BCOEFF 9.5

Maximum Number of Nodes

NODES 8

ENDATA

24.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0

= >
oo

OOOOO'C)b' P

0.0

B24

B.5: Sciconic Run Streama
Run Stream 1

$SET DEF SCRATCH
$CREATEDIR $.LBAL]

$SET DEF SYSSLOGIN

SASSIGN "SATOSDKB100: SCICONIC{HELPFILE.DAT" HELPLINP
$ASSIGN "SAT2$DKB300: [SCRATCH.LBAL]" TEMPPCP
{$|F\QHNJSATO$DKBlOO:[SCICONIC|SCICONIC EXE

DP DIFF, LIMIT

INFILE = 1[.LOAD LP]]MATRIX.DAT'

OUTFILE = TEMPPCP:TEST.OUT

SOLNFILE = '[LOAD LP]SOLN.DAT'
GLOBSCRATCH="TEMPPCP :GLOBSCRATCH.TMP1
GLOBFILE="TEMPPCP GLOBFILE.TMP1

CONVERT
SETUP
PRIMAL
J=0
0J=J+1
GLOBAL (USER)

DIFF = CUTOFF - OBJVAL
LIMIT = 0.01 * OBJVAL

IF ((DIFF .LT. LIMIT& AND. (J NE. 1)) GOTO 20
IF "[FINISHED ~ EQ.5) GOTO 20

IF (FINISHED .EQ,3) CUTOFF =OBJVAL

IF (FINSHED .EQ'3) OBJTAR =OBIVAL

IF (FINISHED .EQ.3) GOTO 10

20 PUNCHSOLN

STOP

Run Stream 2

$SET DEF SCRATCH

$CREATE/DIR iLLBAL]

$SET DEF SYSSLOGIN

$ASSIGN "SATO$DKB100: ECICONIClHELPFILE.DAT" HELPLINP
$ASSIGN "SAT2$DKBSOO:J: CRATCH.LBAL|" TEMPPCP
RUN_SATO0DKB100:[SCICONICISCICONICX.EXE

INT J, EXIT

DP DIFF, LIMIT

INFILE = '[.LOAD LP_JMATRIX.DAT'
OUTFILE = 'TEMPPCP:TEST.OUT'

SOLNFILE = '[.LOAD LP]SOLN.DAT!
GLOBSCRATCH= ITEMPPCP: GLOBSCRATCH.TMP1

B25

GLOBFILE="TEMPPCP:GLOBFILE.TMP1

CONVERT
SETUP

PRIMAL

10 J =J + 1
GLOBAL (USER)

DIFF = CUTOFF - OBJVAL
LIMIT = 0.01 * OBJVAL

IF ((DIFF .LT. LIMIT) .AND. (J .NE. 1) .AND. (EXIT .EQ. 1)) GOTO
IF ((DIFF .LT. LIMIT) .AND. (J NE. 1)) EXIT =1

IF (FINISHED .EQ. 5) GOTO 20

IF (FINISHED .EQ. 3) CUTOFF = OBJVAL
IF(FINISHED .EQ. 3) OBJTAR = OBJVAL
IF (FINISHED .EQ. 3) GOTO 10

20 PUNCHSOLN
STOP

APPENDIX C; Pseudo-Dynamic Load Balancing algorithm Source Coda

The source code for the parallel and distributed computing
system simulator, which contains the Pseudo-dynamic Load Balancing
algorithm, is contained on the enclosed PC-formatted disk in the

subdirectory "\dynamic".

The subdirectory "\dynamic\source" contains the executable file,

source code files and header files.

dib_sim.exe Executable parallel and distributed

computing system simulation program.

'C1 Source Files:

dlb sim.c Source code for main simulation driver
module.

data i0.c Source code for data input/output
routines.

gs_table.c Source code for Global Scheduling Table
(GST) routines.

events.c Source code for event handling
routines.

utils.c Source code for general utility
routines.

Cl

Header Files:

compiler,h
dlb_sim.h

data_io.h

events.h
gs_table.h
node.h
project.h

task.h

files for the test data.

atmos .adg

cvis.adg

gelim.adg

The subdirectory

files.

bus2 .ntp

bus3.ntp

Compiler specific definitions.
Definitions for main simulation driver
module.

Definitions for data input/output
routines.

Definitions of event specific data.
pefinitions for OST routines.
Definitions of node specific data.
Definitions of project specific data.

Definitions of task specific data.

The subdirectory '"\dynamic\adg'" contains the application descriptor

Application descriptor fFfile for the
module used in the Spatial Coherence
Method of atmospheric analysis.
Application descriptor file for a
computer vision program.

Application descriptor Tfile for a

Gaussian elimination program.

"\dynamic\ntp" contains a set of network topology

Network topology file for a 2 processor
bus network.
Network topology file for a 3 processor

bus network.

c2

bus4 .ntp Network topology file for a 4 processor
bus network.

bus5.ntp Network topology file for a 5 processor
bus network.

bus6 .ntp Network topology file for a 6 processor
bus network.

bus7 .ntp Network topology file for a 7 processor
bus network.

bus8 .ntp Network topology file for a 8 processor
bus network.

bring4 .ntp Network topology file for a 4 processor
ring network..

bring6.ntp Network topology file for a 6 processor
ring network. .

brings.ntp Network topology file for a 8 processor
ring network. .

h3cube.ntp Network topology file for a
3-dimensional hyper-cube.

h4cube._ntp Network topology file for a

4-dimensional hyper-cube.

The subdirectory "\dynamic\atmos™ contains the test data generated by
allocating the atmospheric analysis module to a bus topology of 2 to
8 processors. The file "atmosbX.log" contains the simulation log Ffile
generated when the atmospheric analysis module was allocated to X
processors. The TFfile "atmosbx. rpt" contains the simulation report

file generated when the atmospheric analysis module was allocated to

X processors.

Cc3

The subdirectory '\dynamic\cvis'" contains the test data generated by
allocating the computer vision program to a bus topology of 2 to 8
processors. The TFfile '"cvisbT.log" contains the simulation log file
generated when the computer vision program was allocated to X
processors. The file "cvisbX.rpt" contains the simulation report file
generated when the computer vision program was allocated to X

processors.

The subdirectory '\dynamic\gelim" contains the test data generated by
allocating the Gaussian elimination program to a bus topology of 2 to
8 processors. The file "gelimbX.log" contains the simulation log file
generated when the Gaussian elimination program was allocated to X
processors. The Ffile 'gelimbi. rpt” contains the simulation report
file generated when the Gaussian elimination program was allocated to

X processors.

C4

APPENDIX D: Simulated Annaallng Source Coda

The source code for the Simulated Annealing program is

contained on the enclosed PC-formatted disk in the subdirectory

"\static\anneal". This directory contains:
sanneal .exe Executable Simulated Annealing program,
sanneal .c Source code for Simulated Annealing
program.
task.h Definition file for Simulated Annealing
program.

This directory also contains a subdirectory "XstaticVannealXatmos™
which contains the data generated when applied to the module used in
the Spatial Coherence Method of atmospheric analysis. The file
"atmos.dat" is the input Tfile and the files "atmosbX.dat"™ are the

results when "atmos.dat™ was allocated to a bus topology of X

processors.

This directory also contains a subdirectory '\static\anneal\cvis"
which contains the data generated when applied to the computer vision
program. The file "cvin.dat” 1is the input file and the files

"cvisbX.dat" are the results when "cvin.dat" was allocated to a bus

topology of X processors.

This directory also contains a subdirectory '"\static\anneal\gelim”

which contains the data generated when applied to the Gaussian

D1

elimination program. The Tfile "gelim.dat" is the input file and the
files Igelimbi.dat" are the results when "gelim.dat" was allocated to

a bus topology of X processors.

D2

APPENDIX E; Tahn Search Source Coda

The source code for the Tabu Search program is contained on the
enclosed PC-formatted disk in the subdirectory '\static\tabu'. This

directory contains:

tabu.exe Executable Tabu Search program,

tabu.c Source code for Tabu Search program,

task.h Definition file for Tabu Search
program.

This directory also contains a subdirectory ‘'\static\tabulatmos”
which contains the data generated when applied to the module used in
the Spatial Coherence Method of atmospheric analysis. The file
"atmos.dat"™ is the input file and the files natmoshX.datN are the
results when "atmos.dat™ was allocated to a bus topology of X

processors.

This directory also contains a subdirectory '"\static\tabu\cvis" which
contains the data generated when applied to the computer vision
program. The file ™cvin.dat” 1is the input Tfile and the Tiles
"cvisbX.dat” are the results when "cvin.dat”™ was allocated to a bus

topology of X processors.

This directory also contains a subdirectory n\static\tabu\gelim"
which contains the data generated when applied to the Gaussian

elimination program. The file "gelim.dat" is the input file and the

El

files "gelimbJ.dat" are the results when "gelim.dat” was allocated to

a bus topology of X processors.

E2

