
The Design and Implementation of
the SEAU Procedure Management System

A Thesis Submitted For The Degree Of Master of Science

by

Gary Stephens BSc.

School of Computer Applications
Dublin City University

Dublin 9

October 1992.

Supervisor: Renaat Verbruggen

This thesis is based on the candidate's own work, and has
not previously been submitted for a degree at

any academic institution.

A C K N O W L E D G E M E N T S

I would like to thank my supervisor, Renaat Verbruggen, for his
guidance and assistance during my research.

I am also very grateful to IBM Ireland Information Services Ltd. for
their generous sponsorship of my work and for the facilities made
available to me, and I wish to thank Mark Sweetnam, Paraic Sweeney and
Aidan Clarke of IBM IISL for their advice and assistance.

Gary Stephens
October 1992.

Table of Contents

Chapter 1 : Procedure Management Systems 4
1.1 Introduction ... 4
1.2 Existing models & systems 9

1.2.1 O S I R I S .. 9
1.2.2 Electronic Circulation Folders 16
1.2.3 X C P ... 22
1.2.4 O T M ... 25
1.2.5 Augmented Petri N e t s 28
1.2.6 V P L ... 32

1.3 S u m m a r y ... 36

Chapter 2 : Procedure Management System Design Issues . . . 38
2.1 I n t r o d u c t i o n .. 38
2.2 Structured and unstructured procedures 38
2.3 The need for a low-level m o d e l 39
2.4 Objects and their r o u t i n g 40
2.5 Support and a u t o m a t i o n 40
2.6 Attributing status to objects 42
2.7 Making parts of procedures optional or mandatory . 43
2.8 Separate organisational database 46
2.9 PMS design guidelines............................... 46

2.9.1 Support for structured procedures 46
2.9.2 Low-level m o d e l 47
2.9.3 Separate organisational database 48
2.9.4 User discretion............................. 48
2.9.5 System should deal with generic objects . . 48
2.9.6 Robustness, efficiency 49
2.9.7 Support and a u t o m a t i o n 49
2.9.8 Multiple platforms 49

2.10 Summary ... 49

Chapter 3 : Procedure Representation 51
3.1 I n t r o d u c t i o n .. 51
3.2 Low-level m o d e l 52
3.3 Advantages/disadvantages of the low-level model . . 54
3.4 Post-conditions...................................... 55
3.5 Modifying executing procedures 55
3.6 Examples of high-level model features 56

3.6.1 Translating a high-level model into a low-
level m o d e l 57

3.6.2 Procedures within procedures 61
3.6.3 User discretion............................. 61
3.6.4 Concurrent access to objects 62
3.6.5 R o l e s .. 62

3.7 S u m m a r y............... 63

Chapter 4 : The SEAU S y s t e m 65
4.1 I n t r o d u c t i o n .. 65
4.2 System architecture 66

4.2.1 Effects of having to design for AIX and
V M / C M S 67

4.3 System components 69
4.3.1 Execution component (server) 69

1

4.3.2 Submit component 73
4.3.3 Allocate component 74
4.3.4 User Interface components............. 75
4.3.5 Organisational database 78

4.4 Limitations of the SEAU s y s t e m 79
4.4.1 High-level procedure specification

component............................... 79
4.4.2 High-level procedure translation component 79
4.4.3 High-level procedure monitoring component . 80
4.4.4 Procedure automation component 81

4.5 Application architecture 82
4.5.1 Precondition program architecture 83
4.5.2 Action program architecture 83
4.5.3 Procedure element architecture 83

4.6 Procedures within procedures 84
4. 7 S u m m a r y ... 85

Chapter 5 : The Application of the SEAU S y s t e m 86
5.1 I n t r o d u c t i o n .. 86
5.2 Implementing high-level procedures using the low-

level m o d e l .. 86
5.2.1 O S I R I S 86
5.2.2 X C P ... 87
5.2.3 Electronic Circulation Folders 88
5.2.4 Augmented Petri N e t s 94
5.2.5 V P L ... 98

5 . 3 S u m m a r y ... 100

Chapter 6 : Conclusions...................................... 102
6.1 I n t r o d u c t i o n .. 102
6.2 Conclusions... 102

6.2.1 Structured procedures 102
6.2.2 Procedure representation 103
6.2.3 Workflow management is only an application of

a P M S .. 104
6.2.4 Separate organisational database 104
6.2.5 PMS should ignore the contents of objects . 104
6.2.6 Degrees of procedure support / automation . 105
6.2.7 Procedure t y p e s 105
6.2.8 Allocation and submission components . . . 107

6.3 Future work .. 107
6.3.1 Robustness, efficiency 108
6.3.2 Additional components 108
6.3.3 Complete groupware system 108

6.4 Overall s u m m a r y 109

Appendix A : References .. 1

Appendix B : Rule Definition Language 1

2

A b s t r a c t

The Design and Implementation of
the SEAU Procedure Management System

by Gary Stephens

An emerging requirement across a range of industries is to be able to
quickly and efficiently automate an organisation's official, and also
more ad-hoc, policies and procedures. A Procedure Management System
is a system which assists users in carrying out these procedures.

The purpose of the research presented in this thesis has been to

• define a low-level model for the representation of procedures
• construct a platform-independent prototype Procedure Management

System (PMS) (the SEAU system) which supports this model
• experiment with the use of this PMS for representing and

enacting procedures defined using other high-level models
• assess the suitability of the model as a low-level model for the

representation of procedures.

We begin by explaining what a Procedure Management System is and by
examining some existing Procedure Management Systems and the models
used in them for procedure representation.

We then discuss some important issues in the design of a Procedure
Management System, particularly the models used for representing
procedures. A number of guidelines are outlined which should be
followed in the design of a model for representing procedure and for
the design of a prototype Procedure Management System.

A low-level rule-based model for the representation of procedures
which may be used as the basis for a PMS is then presented. Also given
are some important features of high-level procedure specification
models and it is shown how these might be implemented in a PMS.

The architecture of the SEAU (Submission, Execution, Allocation, User-
Interface) PMS, and the individual components which make up this
system, are described. The criteria that must be conformed to by
programs which are to be used with the SEAU system are also given, and
the way in which the system assists in the execution of sub-procedures
is described.

The use of the SEAU system for the implementation of example
procedures, defined using a number of different high-level models, is
then examined. It is explained how some of the features of these
models may be implemented using the low-level model used in the SEAU
system, and features of the example procedures which caused some
difficulty during implementation are highlighted.

Finally, we summarise the conclusions reached as a result of this
research and outline some possible future research directions,
including ways in which the SEAU system might be enhanced.

3

Chapter 1 : Procedure Management Systems

1.1 Introduction

Conventional software applications perform specific pre-defined tasks
in a stand-alone computing environment and are usually executed by a
single user, or where they involve more than one user, each user must
be specifically registered to the application. An emerging requirement
across a range of industries is to be able to quickly and efficiently
automate an organisation's official policies and procedures (and also
more ad-hoc procedures), a requirement which conventional software
applications are incapable of supporting.

Groupware [Ellis91] is a term applied to hardware/software which
facilitates groups of users in performing cooperative work. The
commonest example of a groupware system in use today is electronic
mail. Procedure Management Systems (PMS) are another example of
groupware.

Groupware may be categorised into two basic types :

• Information sharing, where the system manages information and
helps users share and update that information

• Workflow, where the system manages the flow of work and the
content of the objects being worked on is left up to users.

These two basic types can of course be mixed. The data relating to the
current status of a piece of work (in a workflow type system) could
be stored using the same information management system used for office

4

documents (information sharing type system), and in this way these two
basic types may be interrelated.

Procedure Management Systems fit into the workflow category. The terms
workflow, process, and task have also been used to describe what shall
be referred to here as a procedure. By procedure we mean a set of
steps designed to achieve a certain goal. One can view the work that
goes on in an organisation as consisting of a number of procedures
(whether formalised or ad-hoc), each of which can be decomposed into
a number of sub-procedures, and so on, resulting in a hierarchical
structure of procedures. At the lowest level of the hierarchy,
procedures are decomposed into elementary activities, or procedure
elements. These elementary tasks might be implemented through the use
of a computer program. Each elementary task would be allocated to a
particular user to be performed.

The distinction has been made between structured and unstructured
procedures [Mazer87]. Very "structured" procedures are those which can
be described using structured algorithms, e.g. any typical data
processing activity, such as producing payroll cheques. Very
"unstructured" procedures are those that are difficult to specify
algorithmically and involve a large degree of problem solving, e.g.
deciding whether to accept or reject a merger offer.

A PMS may be used to support / automate an organisation's standard
procedures (as defined for the whole organisation), or more ad-hoc
procedures created by individual users, which, in time, may become
adopted by the whole organisation. By the term support we mean that
the system should tell users what tasks they are supposed to perform
and facilitate them in performing them by having all the necessary
data ready to be worked upon. By the term automate we mean that the

5

system should actually carry out the task without the user's
involvement being required.

To illustrate the kind of requirements that a PMS should be able to
support, consider the following example. An insurance company's
procedure for issuing life assurance policies is :

• A clerk receives the original proposal, and verifies that all
required information and documentation has been provided by the
applicant.

• The clerk determines which company approved doctor is
geographically nearest the applicant and sends a letter to the
applicant asking him/her to arrange a medical with that doctor.
The doctor is sent a copy of that letter.

• If a response is not received from the doctor within a
predefined time a reminder is send to the applicant.

• If a response is not received from the doctor within another
predefined time the application is cancelled.

• If the response from the doctor is negative a refusal letter is
sent to the applicant and the procedure terminated.

• If the response from the doctor is positive an actuary
calculates the premium.

• A proposal is sent to the applicant.

A number of other requirements might apply :

6

• The company's target is that, excluding the time between the
letter requesting a medical being sent and the response from the
doctor being received, that the entire procedure be handled
within three working days. The manager of the clerk concerned
is to be notified if any such procedure is not completed within
that time.

• Although, with the manual procedure, an actuary calculates the
premium, the company wants to automate that step by obtaining
the premium from an actuarial database.

More general requirements of a PMS include the ability to :

• Support procedures where the people involved have full
discretion over the completion of the procedure as well as those
where they do not. A PMS it should be able to ensure that
specific steps in a procedure are performed exactly as
specified, while allowing other steps to be carried out only if
the user taking part in the procedure sees fit.

• Allocate work appropriately to individuals or groups of people.

• Balance the workload of individuals and groups of people.

• Enable the current status of a procedure to be queried.

• Generate reports containing statistics about procedures.

• Allow a single procedure to involve people in different
organisational or geographic areas and on different computing
platforms.

7

• A l l o w i n t e g r a t i o n w i t h e x i s t i n g a p p l i c a t i o n s .

• Allow the integration of data from and about completed and in­
progress procedures into existing company databases.

• Allow the easy creation of 'one-off' procedures by end-users in
addition to an organisation's standard procedures. An example
of such a one-off procedure is a user wanting to send a filled-
in form to another user, and when she/he has approved the form
to forward it to a particular department for processing.

• Allow procedure to be specified using different models.
Different models may be used for defining different types of
procedures (each office might want to use it's own model). One
would therefore require a different execution engine to execute
each different type of model. A preferable solution would be if
one were to have a single low-level model onto which one could
map different high-level models (as used in different types of
office) (both structured and un-structured), thereby only
requiring a single execution engine.

Based on these requirements to support procedures such as the example
procedure presented and the more general requirements of a PMS, the
goals of this research are :

• to define a low-level model for the representation of
procedures, onto which many different high-level models, for the
representation of different type of procedures, may be mapped.
These high-level models may be of a structured or un-structured
nature.

8

• to construct a prototype PMS which supports the use of this low-
level model for procedure representation. This prototype system
should not be tied down to any specific computing platform - to
this end it has been developed on two different operating
systems (AIX and VM/CMS).

• to experiment with the use of the prototype PMS and the low-
level model for representing and enacting procedures defined
using other high-level models and to examine problems which
occur,

• and to thus assess the suitability of the model as a low-level
model for the representation of procedures.

In the remainder of this first chapter some of the models and systems
which have influenced the design of the SEAU model and system will be
examined and analysed with a view towards the development of a low-
level model which will support these models.

1.2 Existing models & systems

1.2.1 OSIRIS

[Maiocchi87] describes the OSIRIS model, a model for the specification
of office systems, which may be used for the specification of office
procedures. The OSIRIS model incorporates elements of two earlier
models; the Semantic Office System (SOS) model [Bracchi84] and the
Information Control Nets (ICN) model [Ellis79],

9

The OSIRIS model seeks to model the flow of control and information
in an office by modelling such concepts as documents, workers and
tasks. [Maiocchi87] also presents a mechanism which allows the
'learning' and 'refinement' of procedures specified using the OSIRIS
model, but this is outside the scope of this thesis.

The basic elements of the OSIRIS model are :

• Documents (collections of elementary data)
• Dossiers (collections of documents)
• Agents (single employees and groups or categories of employees)
• Activities (descriptions of work that is to be done)

An activity is a description of a task that is to be performed. Each
activity may be decomposed into lower level activities. At each level
of refinement, each activity is connected to other activities through
control structures. At the lowest level an activity is decomposed into
elementary activities, which correspond to the invocation of one of
the tools actually available in the system, such as editors, database
programs, spreadsheet programs. At the top level an activity is
referred to as a procedure.

Control structures specify the relationships between the activities
that make up a procedure in terms of synchronisation rules, and
indicate the documents which are exchanged, which agents are
performing which activities, and what documents are used, created or
deleted by activities.

Agents are grouped into classes. A class is characterised by a set of
procedures that the agents belonging to that class can execute.
Classes are disjoint, i.e. a procedure cannot be in more than one
class and an agent must belong to at least one class.

1 0

The system notifies the user of each activity (complex or elementary)
which he/she must perform. When the user has performed a given
(complex or elementary) activity, she/he notifies the system and it
presents the next activity to be performed in that procedure. At any
time the user can modify the procedure by adding new items to the list
of activities to be performed.

When a step in a procedure which must be performed by a different user
is reached, the user currently in possession of the procedure must
pass the procedure to that user in order for execution to continue.
It would be more helpful if the system automatically passed each
procedure element to the user who was to perform it.

OSIRIS provides a notation for specifying the synchronization of
activities using path expressions. The control structures used are as
follows :

1 sequence Activities are listed in the
order they are to be executed,
separated by the ; sign.

1 selection (XOR) A selection from a set of
activities permits only one to
occur. A selection condition c is
usually associated with a
selection.

+c iteration An iteration permits an activity
to be performed one or more
times, depending on the value of
condition c.

1 1

& parallelism (AND) Parallel execution permits the
activities specified to be
executed in conjunction.

() parentheses Parentheses are used to group
activities into more complex
blocks.

OSIRIS also provides a graphic representation of all the elements in
the model. Flow graphs show the precedence relationships between
activities (complex precedence relationships involving AND or XOR are
also catered for) , and show which documents are used by each activity.

1,2.1.1 Example OSIRIS procedure

The model is illustrated with both a path expression representation
and a graphical representation (see Figure 1.1) of a procedure which
forms part of a task for hiring a person for a job.

The procedure is as follows :

Three employees are involved : a secretary, an
interviewer, and a chief clerk. The chief clerk examines
applications (i.e. covering letter and the curriculum
vitae of the applicant) as they arrive to the office. The
chief clerk knows the needs of the company, and can then
decide to refuse the application, or to accept it
temporarily.

The secretary notifies the candidate either that his/her
application has been rejected or accepted. In the latter
case, the secretary must also notify the candidate of the

12

date fixed for the interview and must update the schedule
of the interviewer.

The path-expression representation of this procedure is :

Prepare-Reply = Reply-Analysis; (Negative-Reply-
Preparation; Reply-Sending) | (Fix-
Interview-Date; ((Positive-Reply-
Preparation; Reply-Sending) & Update
Scheduling))

...which may be structured as follows to make it more readable :

1 3

Reply-Analysis;

(

Negative-Reply-Preparation;
Reply-Sending

)

I

(

Fix-Interview-Date;

(

(

Positive-Reply-Preparation;
Reply-Sending

)

&

Update-Scheduling

)

)

P r e p a r e - R e p l y =

It is also possible to specify the procedure as a hierarchy of complex
activities :

14

Prepare-Reply = Reply-Analysis; Negative-Reply | Positive-
Reply

Negative-Reply = Negative-Reply-Preparation; Reply-Sending

Positive-Reply = Fix-Interview-Date; (Reply & Update-
Scheduling)

Reply = Positive-Reply-Preparation; Reply-Sending

The outcome of the Reply-Analysis step controls whether the positive
reply path or negative reply path is followed.

The negative reply path consists of two steps in sequence (Negative-
Reply-Preparation and Reply-Sending).

The positive reply path consists of Fix-Interview-Date followed by two
actions in parallel (the Positive-Reply-Preparation followed by Reply-
Sending, and the Update-Scheduling actions).

1.2.1.2 Comments

The OSIRIS model allows the modelling of office tasks in a high-level
form which might be used by non-programmers, and the resulting task
specifications may be verified and refined.

Such concepts as different categories of employees are not central to
the issue of controlling the flow of work and could be kept separate
in a lower level model which concentrated on the precedence of
activities.

1 5

The concept of the role played by a user is a useful one which allows
tasks to be allocated to anyone in a set of users who is capable of
performing that task.

1.2.2 Electronic Circulation Folders

The Electronic Circulation Folder (ECF) system [Karbe90a,Karbe90b] was
produced as a result of the ESPRIT project ProMInanD (Extended Office
Process Migration with Interactive Panel Displays). The authors claim
that there is a lack of understanding of what the characteristics and
underlying concept of office work are. They describe office work as
being carried out be office workers playing office roles. Human beings
are involved in this work, and due to judgements, faults, or
unexpected reactions may sometimes behave in an unpredictable or non-
deterministic way. The authors' analysis shows that both routine and
non-routine work is carried out in the same offices. Further results
show that office work is full of exceptions, and that, in the long
run, changes take place with respect to organisation structure,
assignments, office roles and tasks themselves. The ECF system is
designed to cope with these changes.

An ECF is the electronic equivalent of the "circulation folder", a
common conventional tool for supporting the processing of office
tasks. An ECF, like a real circulation folder, contains a number of
task-related documents. Each procedure has an ECF associated with it
which contains the documents related to that procedure. Each ECF has
a migration specification which describes the steps that make up the
procedure, what sequence they must be performed in, and the type of
user (i.e. a user playing a particular role) who must perform each
step.

1 6

The authors point out that both the exact steps and the role played
by the user who will perform those steps are not always known in
advance, and that therefore there is often a need for exception
handling (i.e. deviations from predefined migration routes). In fact,
there are some tasks which require completely unformalised migrations,
in other words the procedure must be made up by the participants as
it is carried out (with each participant indicating what the next step
should be) . They claim that all these problems are solved through the
use of ECFs.

An ECF consists of a description and some contents. The 'description'
contains :

• migration specification
• system-wide unique I.D.
• relationship to other ECF's
• state of progress
• history of all steps performed so far

The 'contents' contain :

• documents which are required in order to perform the steps of
the ECF

• optional folder slip which can be edited by a worker
• optional appendix where documents can be added at worker's

discretion

17

The migration specification defines the possible migration routes in
terms of steps to be carried out, where each step has associated with
it :

• the role played by the worker who is to perform the step (e.g.
secretary, senior manager)

• documents which are affected
• application programs which are used

The ECF system does not concern itself with the contents or types of
documents inside ECFs or with the details of the programs which
process them (other than simply the identity of the program and
documents).

Allowing parallel paths to use the same document is accomplished by
putting a copy of a document into a ECF of its own which then migrates
independently of the original.

The system allows for the late resolving of addresses, e.g. where a
step has to be performed by the manager of the worker who carried out
the previous step, the identity of the manager is not hard-coded into
the migration specification, or even resolved as soon as the identity
of the person who is to perform the previous step is resolved, but is
resolved at the last possible moment, just before that step in the
procedure is allocated to the manager.

The system allows for the designating of certain steps as optional or

1 8

mandatory. The system also handles exceptions, by providing commands
such as :

• Not Me

• Append

• Refer Back

• Delegate

A worker may claim that he/she is not the one who
has to work on the current step, so this command
allows her/him to send the ECF back to the
preceding worker.

Using this command a worker can add a step after
the current step. Using this facility it is
possible to have a "free-style" ECF, where the ECF
starts with only one step, and all the following
ones are appended, whereby many kinds of
unformalised tasks can be supported.

A worker may use this command if she/he needs some
further information from the worker who previously
handled the folder (the request for this
information should be described by the user in the
folder slip). By 'referring back' the ECF it is
sent back to the preceding office worker.

This operation appends two steps after the current
one. The first step has the delegate worker
carrying out the task and the second step allows
the worker doing the delegating to check the work
performed by the delegate. The delegating worker
thus gets the results back and takes over
responsibility for the folder.

1 9

The system uses an Electronic Organisational Handbook, to store a
description of the organisation which is kept separate from the
migration system, which makes it easy to respond to changes of the
organisation such as restructuring, changing temporary or permanent
assignments, etc. This handbook keeps information about, for example

• the office workers employed in the organisation
• the roles established in the organisation
• the organisational units and relationships between them (e.g.

superiority)
• assignments of workers to roles and posts
• assignment of posts/roles/workers to work places and

workstations

By using this organisational handbook, the description of the
organisation is kept apart from the migration system and changes in
the organisation will not adversely affect the migration of ECFs.

The similarity of the electronic circulation folder to a conventional
circulation folder means that office workers familiar with circulation
folders should have less difficulty coming to terms with their
electronic equivalent. Of course, any limitations and disadvantages
of circulation folders are inherited by ECFs.

1. 2.2.1 Example ECF procedure

The procedure, a diagram of which is shown in Figure 1.2, is taken
from [Karbe90a] and is as follows :

20

Figure 1.2 Example ECF Procedure

"An office worker applying for vacation starts this task
in step APPLICATION by filling in the vacation form. In
the step SIGNATURE the colleague entered as substitute
confirms his taking over. Then, the head of department
approves the application in step APPROVAL. The secretary
will then enter the dates of the office worker's leave of
absence into a vacation list during step UPDATE.
Eventually, the applicant is informed of the application's
success in the final step NOTIFICATION. There are some
cases which have to be differentiated: if for some reason
no substitute is entered the step SIGNATURE is to be
skipped, if the application is not approved the step
UPDATE is to be skipped too and if the vacation is of type
"special leave" a copy has to be sent to the personnel
department for some FILING purposes."

21

1.2.2.2 C o m m e n t s

[Karbe90a, Karbe90b] list a number of types of exceptions (deviations
from pre-specified procedures) which are supported by the ECF system.
It should be possible to implement each of these deviations using a
low-level model.

The concept of an electronic circulation folder, which is forwarded
from user to user as each completes his/her step in the process falls
down somewhat when one tries to implement parallel processing, i.e.
where, say, two office workers are to be working on different, or even
the same, documents simultaneously. Obviously, they can not both be
in 'possession' of the circulation folder at the same time. Indeed,
if they are both working with the same document (presumably, each
having only read access) they can both not be is possession of the
document at the same time either. This problem illustrates a
disadvantage of using the electronic circulation folder metaphor - the
circulation folder concept is a familiar one to users, but the
electronic circulation folder inherits the limitations of the real
circulation folder.

1.2.3 XCP

The XCP tool [Sluizer84] was developed by the Intelligent Systems
Technologies Group of Digital Equipment Corporation. XCP supports
cooperative activity by interpreting protocols which implement and
enforce office procedures. A protocol defines the tasks of which an
office procedure is comprised.

Earlier work by Zisman had claimed that when a procedure is driven by
personnel reacting to a request for service, problems often arise from

22

not recognising the need to perforin a particular task; the difficult
lies in knowing when a task should be done rather than in actually
doing it. An individual may be assigned to work on more than one task
at a time. Such an individual must keep track of the functions and
responsibilities of each task, and can be easily overwhelmed by
complexity as the relationship among tasks becomes more intricate.

The authors claim that communication, whether formal or informal, is
essential to the success of office procedures. They argue that people
find it difficult to absorb large amounts of information, and to
coordinate actions and resources to implement those decisions and that
these "transaction costs" of communicating, coordinating and deciding
have been enormously underestimated. As the number of employees who
need to interact to get tasks done increases, these costs suffer an
explosive rise.

Attempts have been made to build office tools that support procedures
requiring a high degree of human involvement. This requires a tool
which assists people in coordinating their actions to achieve a
desired result. The authors make the assumption that the information
flow and activity coordination aspects of such a procedure can be
formalised and then executed by a tool.

The goal of their research was to reduce these "transaction costs" of
communicating, coordinating and deciding. This is accomplished by
formalising and automating protocols using the XCP model and tool.

The XCP model consists of the following fundamental concepts :

• Roles are the parts played by users of the system (e.g
secretary, manager, project leader).

2 3

• An actor is a person who has assumed some role.

• A document is the symbolic representation of some paper form.

• A protocol is a plan of cooperative activity (i.e. it defines
the tasks of which an office procedure is comprised). It
coordinates the actions of the office staff, and supports them
in carrying out the office procedure.

Protocols can be represented using graphical constructs in a similar
way to the OSIRIS and ECF models.

1.2.3.1 Example XCP procedure

This procedure is taken from [Sluizer84] and a graphical
representation of it is shown in Figure 1.3.

The procedure involves three roles: CLERK, ADMIN and SHIPPER. One or
more users perform each role.

A CLERK creates an order (ORD in Figure 1.3), which is sent to someone
in the ADMIN role (but cannot be sent to any specific person in that
role). The ADMIN sends an acknowledgement (ACK) to the originating
CLERK. The ADMIN then sends the order either to a specific SHIPPER
(based upon criteria such as work load or specific thing ordered) or
to the SHIPPER role where any person in the role can take charge of
it. The SHIPPER fills the order, ships it C.O.D., and then sends the
ADMIN a shipped-notice (SHP). The ADMIN then sends the originating
CLERK a done-notice (DONE).

24

1.2.3.2 Comments

As with the OSIRIS and
ECF models, XCP allows
the modelling of roles
played by different
workers in the office,
which gives the system
flexibility in assigning
tasks to workers (e.g. a
particular task can be
assigned to anyone
playing the SHIPPER
role).

The authors make the
assumption that it is
possible to completely
formalise a procedure in
advance. Work done by Karbe et al [Karbe90a, Karbe90b] has shown
organisational work to involve many exceptions to predefined
procedures so this is an unreasonable assumption and some provision
for exception handling should be provided.

1.2.4 OTM

The OTM (Office Task Manager) system [Lochovsky87,Lochovsky88] was
developed at the Computer Systems Research Institute at the University
of Toronto. The OTM project attempted to provide office workers with
a programming language which may be used to specify tasks. To this
end, a programming-by-example method was used. An underlying system

2 5

support for this task specification facility was also developed. The
objective of the OTM project was to address the problem of supporting
structured office tasks.

OTM task specification is based on the concept of the folder model,
where an office task in constructed by assembling a folder of relevant
documents and specifying the actions that are to be performed on those
documents. A graphical environment, called OfficeAid, is provided, and
a Programming-By-Example (PBE) method is provided for the
specification of tasks by office workers. PBE specifications are
translated into a lower-level model for execution. This low-level
model is a concurrent, object-oriented programming language called
OTM. Underlying this OTM language is an object-oriented database
system called 0Z+, which provides support for the storage of office
data and office tasks. OTM bears some similarity to Smalltalk. The
task concept corresponds to the method concept in other object-
oriented languages, and each task is composed of a set of parameters,
a set of temporary variables, and a (compound) statement, all of which
are similar to other object-oriented languages.

A block of statements may be executed sequentially, or in parallel.
Standard programming languages constructs such as if, while, foreach
and parforeach (parallel form of foreach) are provided, which may be
used to implement the graphical constructs of the PBE graph-based
language.

As in the models described above, the role concept is used. A role
object represents an entity that executes an office task, and can be
either an office worker or an 'electronic substitute'. One office
worker can play many roles, and one role can be played by many
workers. Knowledge which is specific to a particular office worker is

2 6

encoded in a special role object called an agent, which is an
electronic representative of that worker.

A document object is the "basic information carrying entity". Each
document object consists of contents and behaviour. The contents
contain static information, stored in fields. The behaviour of a
document specifies what actions may be performed on it (like methods
in an object-oriented programming language). These actions can affect
only the contents of the document object for which they are invoked.

1.2.4.1 Comments

The OTM system has both a high-level (OfficeAid) and low-level (OTM)
model, with consequent advantages as describe earlier in section 1.1.

But the low-level model is of a procedural nature (it is a procedural
programming language) and is therefore orientated towards supporting
structured procedures. It would be of limited use in supporting less
structured, perhaps rule-based, procedure specifications.

The concept of roles played within an organisation are modelled in the
OTM language. While the 'role' concept is a useful one to have in a
high-level model, such a concept should not be included in a low-level
model as it is desirable to keep a low-level PMS and an organisational
database separate.

2 7

1.2.5 Augmented Petri Nets

In [Zisman78] the author claims that office procedures may be
represented as systems of asynchronous, concurrent processes (each
process being a task, perhaps complex or elementary) which may be
modeled using a combination of production systems (i.e. a set of
rules) and Petri nets [Reisig85]. The combination of a Petri net and
a production system is called an augmented Petri net.

Previous work [Davis76] suggests that production systems (PS) are most
useful in problem domains that are generally modeled by a large number
of independent states, with independent actions, and where the
knowledge base is best encoded declaratively as opposed to
procedurally. They also suggest that a fundamental characteristic of
PSs is their restriction on the interaction between rules. To produce
a degree of interaction between rules requires the introduction of
indirect communication through the short-term memory (STM). This
results in the STM being used for both data and for complex control
mechanisms.

Zisman investigates the possibility of introducing a separate explicit
control structure for PSs where there is a need for substantial
interaction between rules. He develops a formalism for modelling a
system that is composed of a collection of asynchronous concurrent
events, the particular problem domain of interest being office
procedures. He is interested in modelling procedures that exist in
office environments and chooses to view instances of these procedures
as asynchronous concurrent processes. This is because an office can
be viewed as an environment in which a large number of independent
tasks are in progress and these tasks tend to be primarily event
driven. Such a combination of a PS and an explicit control structure
is called an augmented Petri net.

2 8

A Petri net is a directed graph which has two different types of
nodes; places (represented by circles) and transitions (represented
by bars). Places can hold tokens. Places that have arcs directed into
a transition are called input places. Similarly, places that have arcs
directed out of the transition are called output places. If all the
input places for a transition contain a token, then the transition is
said to be active, and may therefore fire. Firing involves the removal
of a token from each input place and the placing of a token in each
output place.

In an augmented Petri nets, each process in a system of asynchronous,
concurrent processes is modeled as a set of rules. A Petri net can
then be used to structure these processes by having each transition
in the net represent a process. Therefore each transition in the Petri
net will have a rule associated with it. The transition may fire when
its input place contains a token, and the rule associated with it
evaluates to true.

1.2.5.1 Example augmented Petri net procedure

[Zisman78] describes a journal editing procedure as a pair of
augmented Petri nets, as shown in Figure 1.4.

Note that the rule for T2 of the editor net, instantiates the referee
net for each referee selected by the editor.

The set of rules, one for each transition, are as follows :

Tl: If a paper is received => send acknowledgement letter to
author and request names of referees (any number) from
editor.

2 9

T 2 : If the editor supplies names of referees => instantiate
the referee process for each referee

T3: If all of the referee activities terminate (i.e. fire T10)
—> request that the editor make a decision.

T4: If the editor supplies a decision on the paper => generate
final documentation to author and editor-in-chief.

T5: If the author withdraws the paper => instantiate
termination procedure.

T6: If the editor does not respond within two weeks of T6
enabling => send reminder letter to editor.

T 7 : If the editor does not make a decision within two weeks
from T7 enabling => send reminder letter to editor.

3 0

T8: If (null condition, fires upon instantiation) => send
letter to referee requesting services.

T9: If the referee returns postcard and can review the paper,
=> allow one month for report.

T10: If report is received => send thank-you letter to referee.

Til: If referee does not send report within one month from
enabling of Til => send reminder to referee.

T12: If referee does not return postcard within two weeks from
enabling of T12 => send reminder letter to referee.

T13: If referee returns postcard and cannot review paper =>
request that editor supply another referee.

T14: If editor does not respond within two weeks from enabling
of T14 => send reminder letter to editor.

T15: If editor does supply referee name => send letter to
referee requesting services.

1.2. 5.2 Comments

Production systems have many advantages, as outlined above, for
modelling office procedures. The addition of Petri nets as a control
structure help to separate some of the complexity from production
systems.

3 1

Augmented Petri Nets might therefore form the basis of a good low-
level model. Nevertheless, it would still be possible to simplify this
model further, e.g. by representing the Petri net structure itself as
a set of rules. Such simplification might be desirable so that the
low-level model could support as many high-level models as possible.

1.2.6 VPL

The VPL (Visual Process Language) model [Shepard92] was developed at
the Royal Military College, Ontario, Canada. VPL is a formal
programming language designed to visually represent and permit
enaction of software development processes.

The author envisages a Process Programming Language (PPL) as being an
essential element of the next-generation Integrated Project Support
Environments (IPSE) . Such a PPL would be used to create a model of the
software development process being used, and must be flexible enough
to model all potential processes, yet detailed enough to be of real
use to the IPSE. There are a number of software process models, in
fact every software developer uses a unique process (which would
normally be based on, and bear much similarity to, a standard
process). Therefore IPSE developers should base their environments
around a general model - called a metamodel - which is capable of
emulating any of these processes. A process programming language is
a formal enactable metamodel of the software process. Programs written
in such languages implement particular processes.

A software process model will necessarily represent activities
performed completely by the computer (e.g. compiling), activities
performed completely by people (e.g. creation of a modular

3 2

decomposition), and activities that are a combination of human expert
decisions aided by computerised tools (e.g. text editing).

A software process model is enacted by using a mechanism to use a
supplied process program to monitor the progress of the many
concurrent streams of a development effort. It proposes the invocation
of tools at various times, enforces the process model, gives guidance
to the users, keeps management informed of the status of the various
streams, and executes the completely automated activities in the
process model.

A process specified using the VPL software process model is defined
to be a rooted connected directed acyclic graph of nodes and edges
which satisfies certain constraints, such as :

• the graph must be fully connected

• each node must be one of the 9 VPL node types listed below

• each input of a node is connected to one and only one output of
another node

• there is no path from the output of any node to its input except
through a branch node

• the graph must contain exactly one start node and one finish
node.

Procedures may be defined in a hierarchical top-down fashion. At the
top level, a procedure is called a process program. This process-
program may consist of tasks (elementary actions) and procedures (each
of which may contains further tasks and sub-procedures).

3 3

The VPL model is very similar to other graph-based models as described
above, with the notable exception of the Decompose/Recompose and
Split/Merge constructs.
The 9 VPL node types are :

• A Start node is the entry point for objects from outside a
process program or a procedure. This is the node at which
execution of the process program starts.

• When the Finish node is reached the process program or procedure
has finished.

• A Procedure node is a way of representing a graph (with the same
rules as a process program) that forms part of the overall
program (i.e. it is a sub-procedure).

• A Task node represents an action performed by an automated tool
or by a user using a tool (i.e. a task is an elementary
activity).

• A Branch node causes only one of the leaving arcs to be
followed.

• A Decompose node causes an object passing through it to emerge
as a family of objects, each of which possesses some subset of
the parent objects information.

• A Recompose node causes an family of objects passing through to
emerge as a single object, which is some combination of the
family of objects. (The path between a Decompose / Recompose
pair is followed by each of the objects in the family, in

3 4

parallel, and only when they all complete their respective paths
are combined at the Recompose node).

• A Split node creates duplicates of an input object and emits one
along each output arc, so a different process is followed by
each copy.

• A Merge node acts as a rendezvous point for the concurrent
streams from the Split node. When a complete family of objects
reaches a Merge node, some of them may be combined into a
composite object, or perhaps one may be selected as the best and
the others rejected.

Associated with each graph are two tables, which store information
regarding objects and roles :

• An object represents all the artifacts associated with a
currently active individual work assignment.

• A role is a label that is attached to every system user to
indicate the functions that user will perform.

It is interesting to note that the paper describing the VPL software
process model [Shepard92] does not seem to be based on any of the work
underlying the other systems described above, despite the similarity
between the models.

3 5

1 . 2 . 6 . 1 C o m m e n t s

VPL is a good example of a process model which, though not part of
office procedure modelling research, bears much similarity to the kind
of models used for representing office procedures.

The Split/Merge and Decompose/Recompose operations are good example
of operations which a low-level model should be able to support. In
other words, it should be possible to convert these constructs into
an equivalent form in the chosen low-level model.

1.3 Summary

In this Chapter the concept of a Procedure Management System (PMS) has
been explained and a number of existing models / systems which allow
the support and automation of procedures have been described and
analysed.

The models described above contain many similarities, but some also
have unique features. For example, the support for exception handling
in the ECF system and the use of a high-level and low-level model in
the OTM system are features that are desirable in a PMS. Augmented
Petri nets are more general than the low-level model used in the OTM
system and would be able to support less structured procedures than
those supported by the OTM system. The similarity of the VPL software
development process model to the office procedure models presented
illustrates how the support and automation of procedures is not
limited to office procedures.

In Chapter 2, we will examine in more detail the lessons can be learnt
from these models / systems. Also, the important issues involved in

3 6

the design of the models used for representing procedures and in the
design of a prototype Procedure Management System will be discussed.

3 7

Chapter 2 : Procedure Management System Design Issues

2.1 Introduction

In this chapter some important issues in the design of the PMS and
particularly the models used for representing procedures, are
described.

A number of guidelines are outlined which should be followed in the
design of a model for representing procedures and the design of the
prototype PMS.

2.2 Structured and unstructured procedures

In Chapter 1, the distinction between so-called structured and
unstructured procedures was described. These are not two distinct
types, but rather just two ends of a scale. They both have rules to
decide what must be done next, the only difference being that
"structured" procedures have quite simple rules, whereas
"unstructured" procedures have more complicated rules. Unstructured
procedures require a problem-solving approach, and have to be
specified in terms of the goals of the procedure so that the system
may determine what is the best course of action.

Implementing a system to support structured procedures would, due to
their simpler nature, be less difficult than implementing a system to
support more unstructured procedures.

3 8

2 . 3 T h e n e e d f o r a l o w - l e v e l m o d e l

Just as many different high-level languages such as C and Pascal can
be translated into a low-level representation (machine language) for
execution, it should be possible to have one underlying representation
onto which many different high-level procedure models (which would be
used for the specification of procedures) may be mapped. One could
have one high-level model which is orientated towards representing
office procedures, another which is oriented towards supporting
software development processes, and so on.

If one was not able to translate many high-level procedure
specifications into one underlying model it would be necessary, for
each high-level procedure specification model, to have a separate
component for executing that model. By having one underlying model
which all high-level models map onto, it is only necessary to
implement one procedure execution component.

Of course it is then necessary to write a separate translation
component (which will translate a procedure specification from the
high-level model into the low-level model) for each high-level model.
But the complexity of the part of a system which executes procedures
would typically be greater than that of the part which translates a
high-level specification into a low-level specification, so it is
preferable to implement one procedure execution component and a number
of translation components.

3 9

2.4 Objects and their routing

Some existing office systems, such as Lambda [Oyanagi85], are form-
based, i.e. they use the concept of a form as their basic unit of
data. Other systems, such as ECF [Karbe90a] and OTM [Lochovsky[87],
make the important distinction between the routing of data from user
to user for processing and the contents of the data.

While it is possible to implement many typical office procedures using
forms, reliance on the form concept is limiting and it is desirable
to develop systems which deal in the routing of generic objects. There
is no added functionality to be gained by making the procedure
execution system aware of the different types of data it is dealing
with. It is therefore sufficient, and indeed desirable, to have a PMS
deal simply with generic objects (e.g. forms, documents, graphical
images) without concern for the types of those objects.

2.5 Support and automation

A distinction can be made between the support of procedures and the
automation of procedures. Support involves assisting the user by
showing him/her what is to be done and by having available all the
objects necessary in order for the user to perform the task.
Automation involves executing the task without requiring the
involvement of the user.

Therefore the fundamental differences between support and automation

4 0

are that a task may only be supported if the program that carries out
the task :

• requires user interaction

OR

• may not be run without the user's explicit approval.

For example, if a task involves the filling in an electronic form,
then this operation must be performed by the user. Or, for example,
if a task involved the deletion of a number of files it may be
necessary to obtain the user's approval before this action is carried
out. In both of these situations it is not possible to totally
automate the task.

In the case of automation, the program that carries out the task may
be automated (i.e. invoked automatically) if :

• it does not require user interaction

AND

• the user's explicit approval is not required to run it.

For example, if a task involves the conversion of a file from one word
processor format to another, and a program which performs this
conversion is available, then this action may be carried out without
the user being required to oversee, or even be aware of, the
operation. Or, for example, if a task only involves the creation of
some new file, and not the modification or deletion of existing files,

4 1

then it may be deemed safe to allow the execution of that operation
without the user's explicit approval being required.

2.6 Attributing status to objects

The facility to attribute a particular status to an object is often
required in a PMS e.g. approval, where a form is approved by a
particular user, which in a paper-based system might be implemented
through a signature on the form.

One way to implement approval would be, when an object is to be
approved, mark it as such in the PMS and do not allow its contents to
be altered from then on, or if the contents are altered, remove the
approved status. This would require the PMS to be aware of the status
of all such objects and to keep track of their status.

A different solution is to let procedure elements attribute a status
to an object by altering that object in some way. For example, one
could use a digital signature method (e.g. using public key
cryptography) to allow a user to put an electronic "signature" on an
object in order to indicate approval.

Of these two methods for implementing the approval of objects, the
second is preferable because it is independent of the PMS and allows
the functionality of the PMS to be limited to only those features that
are necessary.

A low-level model, therefore, does not need to contain any concept of
approval, or any other status, which may be applied to a document.

42

2 . 7 M a k i n g p a r t s o f p r o c e d u r e s o p t i o n a l o r m a n d a t o r y

There is often a need for particular steps in a procedure to be
specified as, for example, optional (the step may be skipped), or
mandatory (the step must always be performed). One could include in
the low-level model a facility for the person defining a procedure to
specify a step as optional or mandatory, and/or allow that person to
include in the procedure specification a definition of the ways in
which particular users may modify that procedure during execution.

The alternative approach is to allow a user who is allocated a step
in a procedure to do whatever he/she wants with that step (e.g. ignore
it, replace it with some other action). Of course, if the user were
to replace the step with another action, that other action could only
be performed on a sub-set of objects which the initial task was to be
performed on (i.e. it would not be possible for the user to, say, edit
a file using editor B instead of editor A unless that file had been
allocated for editing in the first place).

In [Fikes80] the authors argue that the domain with which office
systems must deal is open-ended and therefore a procedure which
implements a task is an inadequate description of all the actions
which must be done to achieve that task's goals. So, at the time the
procedure is being defined, one cannot predict the range of situations
that will be encountered during execution of the task. Hence, for any
given procedure, situations may occur in which the procedure does not
indicate what is to be done, or that which is indicated in the
procedure cannot be done.

The procedure specification designed to carry out a particular task
should serve only as a guide in that it indicates one way of doing the
task under a particular set of assumptions. The office worker should

4 3

have the responsibility of deciding in each particular situation
whether the procedure's assumptions are satisfied and whether he/she
wants to carry out the task in the way specified by the procedure.

The authors therefore argue that users should be able to exercise
options in carrying out their scheduled tasks. For example, users
should be able to choose to :

• ignore some of the requirements of a task
• renegotiate the requirements of a task
• get someone else to do a task
• create and follow a new procedure for doing a task

FILL IN form

Joan

FILLEDJN
(form)

N O T
FILLEDJN (form)

(a) (b)

Figure 2.1 Example of a mandatory procedure element

It is possible to simulate a model where a step may be marked as
mandatory using a model in which it is not possible to explicitly mark
a step as mandatory. Figure 2.1 shows a procedure segment (a), which
contains an element which is marked as mandatory (the procedure would
be defined in terms of a high-level model which supported the concept

4 4

of a mandatory procedure element). The element consists of the task
of filling out a form to be allocated to Joan (we assume that the
mandatory tag indicates that Joan must fill in all the fields in the
form).

This procedure segment may be translated into the procedure segment
(b) . In (b) the element is not marked as mandatory (so the model used
to define (b) does not need to support the concept of a mandatory
procedure element). The element is allocated as before, but when Joan
has finished filling in the form, a check is made to ensure that all
the fields in the form have been filled in. If any of the fields are
empty, the task of filling in the form is re-allocated to Joan so that
she may fill in those fields. Once all the fields have been filled in,
the high-level mandatory element is complete.

This approach mirrors real life, where if you ask someone to do
something, you normally do not stand over them watching them do it,
but rather wait until they say they are finished and then perhaps
check that they have actually carried out the requested task.

It should be noted that it is not always possible for the system to
check that a task has been carried out by the user. For example, the
system can determine that all the fields of a form have been filled
in, but not necessarily that they have been filled in correctly. It
can check, for example, that the value in a particular field is within
a certain range, but not that it is the correct value. It the system
could determine if the value in the field was the correct value then
there would be no need for the user to have to enter that value, since
the system would already know what value the field ought to contain.

4 5

2 . 8 S e p a r a t e o r g a n i s a t i o n a l d a t a b a s e

The Electronic Circulation Folder system incorporates an Electronic
Organizational Handbook which is a description of the relationships
and roles within an organisation.

Such an organisational database fits into the information sharing

category of groupware as outlined in section 1.1 and should be kept
separate from a PMS. But the concept of the role played by a user is
central to many PMSs, and the data relating to user roles should be
stored in an organisational database. It would therefore be necessary
to construct at least a simple organisational database alongside a
prototype PMS.

By having a separate organisational database, the description of the
organisation is kept apart from the PMS and changes in the
organisation will not adversely affect the execution of procedures.

2.9 PMS design guidelines

Based on the above considerations, the design of the SEAU system and
the model it uses for procedure representation should adhere to the
following guidelines.

2.9.1 Support for structured procedures

Since structured procedures are easier to deal with, the first step
should be to implement a system which supports their execution.

[Fikes80] asserts that systems which provide no information to the

4 6

user regarding the result expected from a step, or the use of the
result, limit the ability of the user to make a wise deviation from
the predefined procedure. It is therefore important that information
such as the function of the element and the expected result of the
element be provided to the user who is allocated an element.

Such information can be used by the user to decide whether or not to
deviate from the pre-defined procedure specification. A system which
supports unstructured procedures would perform this kind of deviation
from the pre-defined specification automatically.

Therefore by designing a PMS which supports structured procedures and
allows user discretion in the execution of those procedures, one
relies on the system to blindly follow a procedure specification
(something computers are good at) and the user to decide when any
deviations from that specification are necessary.

2.9.2 Low-level model

The model used for the representation and execution of procedures
should be simple enough to allow the mapping of many different high-
level models (such as those described in Chapter 1) for representing
structured procedures.

The OTM system uses a procedural programming language as a low-level
model. Such a model would have limitations supporting unstructured
procedures (e.g. those specified as a rule-base). The low-level model
used in the SEAU system should be able to support both structured and
unstructured high-level models.

4 7

The low-level model should also be able to support the exceptions to
predefined procedures that the ECF model provides.

2.9.3 Separate organisational database

The prototype PMS should include an organisational database, or rather
an organisational database should be developed alongside the PMS,
since an organisational database ought to be a separate entity in
itself. The organisational database need not be a full organisational
database - the only function it has to supply, in order to support the
PMS, is to allow the storage of information regarding the roles played
by the users of the system.

2.9.4 User discretion

As explained in section 2.7, there is no need to include in the low-
level model a concept of how much discretion a user has in the
execution of a procedure element (i.e. whether the element is
mandatory or optional).

2.9.5 System should deal with generic objects

As explained in section 2.4, the prototype system should simply
concentrate on the 'routing' of objects, i.e. allocating objects to
users so that they may perform work on those objects, and should not
concern itself with what type of data those objects contain.

4 8

2.9.6 Robustness, efficiency

Since the system to be developed is only a prototype PMS, it is
possible to ignore issues such as robustness and efficiency, the
absence or presence of which will not affect the evaluation of the
prototype system.

2.9.7 Support and automation

The distinction between the support and automation of procedures has
been highlighted. The prototype PMS should certainly be able to
support procedures, and at least have the potential to automate them
through the addition of extra system components.

2.9.8 Multiple platforms

It should be possible to use a PMS to support/automate the
procedures/policies of a complete organisation. Such organisations
typically make use of many different computing platforms. It is
therefore important that a PMS should not be tied down to a single
operating system.

2.10 Summary

In this chapter important issues in the design of a PMS and the design
of the model(s) used for representing procedures have been discussed,
and a set of guidelines for the design of the SEAU system and the
model used for procedure representation have been given.

4 9

Based on these guidelines, a low-level model for the representation
of procedures has been developed. This model is general enough to
support many different high-levels models (such as those presented in
Chapter 1) for representing structured procedures, but should also be
capable of supporting unstructured procedures, and allows for the
modelling of generic objects. This low-level model is presented in
Chapter 3.

5 0

Chapter 3 : Procedure Representation

3.1 Introduction

The model used in a PMS for the representation of procedures should
be a low-level model onto which one may map different users conceptual
models, which are used for the specification of procedures. Through
a process of simplification, it is possible to reduce many of the
features of the models described in Chapter 1 to their basic
components. Thus we arrive at a low-level model which is general
enough to allow most of the features of those models to be easily
mapped onto it.
Described below is a rule-based low-level model which is orientated
towards supporting high-level models of a structured nature, but
which, due to its rule-based nature should also have the ability to
support less structured high-level models. The model deals in terms
of generic objects and does not concern itself with the types of those
obj ects.

Since this low-level model is quite elementary, a program which
implements it (a rule interpreter) is of little use on its own.
Consequently, some of the important features of high-level models are
described. These features can indicate the types of components that
are needed, in addition to a rule interpreter, in order to support the
execution of procedures defined using the model described below.

51

3 . 2 L o w - l e v e l m o d e l

The low-level model is a rule-based model, where a procedure is
specified as a set of rules whose order is unimportant except from the
point of view of efficiency of execution. Or rather the order of the
rules ought not to be important, but it is possible to construct a set
of rules which, if listed in two different orders, will be invoked in
two different orders, leading possibly to two different end results.
One can recommend that this ought never to be the case, but one can
not stop a person from designing a rule-set which does not obey this
rule.

In addition to the set of rules, there exists a working memory (as in
a rule-based expert system) which consists of a set of objects. (I use
the term object not in the sense of an abstract data-type, but rather
an item of data with no associated methods). The decision whether or
not to invoke a rule is based on the contents of these objects, and
the invocation of a rule may cause the contents of some objects to
change.

Each rule has two parts :

Pre-condition

This consists of a predicate (some function of the value
of the objects in working memory) which must evaluate to
True in order for the rule to be invoked.

When a stage is reached where the pre-condition predicate
of a rule evaluates to True, it does not necessarily
follow that it will immediately be invoked. Since only one
rule may be invoked at a time, another rule that is also

5 2

eligible for invocation may be invoked before it, and the
invocation of that rule may cause the pre-condition
predicate of the first rule to no longer evaluate to True
(or if you prefer, the first rule missed its chance for
invocation, and is no longer eligible).

Action

This consists of an action (or list of actions) to be
carried out when the rule is invoked. The action STOP
would signify that execution of the rule-set is to end.

A procedure defined as a rule-set would be executed by invoking each
rule as it is eligible for invocation, until the STOP instruction is
reached.

The alternative to terminating execution when the STOP instruction is
reached would be not to have any STOP instruction and to terminate
execution when a stage is reached when none of the rules are eligible
to be invoked. The reason the former is chosen is so that it is
possible to have a predicate in the pre-condition part of a rule which
accesses an object other than one of the objects specified as one of
its parameters (e.g. a program which queries an external database).
Because of this requirement, it would not be possible to have the
procedure finish executing when no more rules are eligible to be
invoked, since the fact the no rules are eligible at one point in time
does not imply that one or more of the rules will not be eligible at
some later stage (e.g. when a value in an external database changes).

If predicate programs only accessed objects passed to them as
parameters, then once the state was reached where no rules were

5 3

eligible to fire, it can be guaranteed that this state will not
change, since a rule will only become eligible to be invoked if an
object is changed in some way, and that can be only be done if a rule
is invoked. If predicate programs can access external databases or
files then it is necessary to have a STOP instruction.

3.3 Advantages/disadvantages of the low-level model

The following are advantages and disadvantages associated with the use
of a rule-based model as a low-level model for the representation of
procedures.

Advantages :

• The rule-based model supports the execution of many different
high-level structured models, so that only one execution
component is needed, rather than one for each high-level model.

• The rule-based model may potentially be suited to supporting the
execution of less structured procedures (e.g. of a rule-based
nature).

Disadvantages :

• It has been noted [Georgeff83] that procedural knowledge can be
represented declaratively, but that in some domains it cannot
be easily or naturally represented, e.g. in the case of a system
which uses both procedural and less - structured knowledge (a
procedural expert system) the construction of such a system can
be complicated by this fact, and the explanatory capability of
the system reduced.

5 4

• [Gallanti85] states that dispersing procedural knowledge into
a declarative (e.g. rule-based) representation can create a
heavy burden on the inference mechanism (i.e. deducing the next
rule to be invoked would involve a large search process).

3.4 Post-conditions

In the low-level rule-based model described above each rule consists
of a precondition and an action. It would be possible to include a
post-condition in each rule, which would define what effect the
invocation of that rule would have on the state of the objects
associated with that procedure. The advantage of having a post­
condition in each rule would be :

• It would be possible to prove certain characteristics of a rule-
set (e.g. that it will always terminate).

The disadvantage would be :

• Having to include in each rule both a pre-condition and a post­
condition would result in added difficulty in defining a rule-
set.

3.5 Modifying executing procedures

The user who initiates a procedure should have the ability to monitor
and modify that procedure during execution (in much the same way as
a person debugging a program may examine and alter the values of the
programs variables during execution).

5 5

The monitoring of a procedure effectively allows the user to read the
status (i.e. the objects) of that procedure. Similarly, the
modification of a procedure is effectively allows the user to update
(or write to) the status of that procedure, and also allows the user
to modify the procedure specification (i.e. add, delete, modify some
of the rules).

A high-level model modification facility should be provided which
would be used to modify executing procedures in terms of the high-
level model that the user deals with. It would be the responsibility
of this part of a PMS to ensure that any modifications that are made
will leave both the modified procedure and the modified procedure
status in a valid state (the rules for a valid state being part of the
high-level model).

In a similar way, it should be possible for a set of designated users
to monitor the execution of a procedure (e.g. the members of a
committee should be able to monitor the execution of a procedure which
was initiated by one of the members of that committee on behalf of the
committee), which effectively means they should be granted read-only
access to the status of the procedure.

3.6 Examples of high-level model features

Described below are some of the features of a high-level model. This
is done in order to indicate the types of components (in addition to
a rule-interpreter) that are needed to produce a practical PMS.

5 6

3.6.1 Translating a high-level model into a low-level model

Consider a model where procedures are represented as directed graphs
where the nodes represent procedure elements (programs which must be
executed by a user who plays a specific role) and the arcs represent
the precedence relationship between elements. An arc may have a
predicate associated with it (e.g. that a particular object contains
a certain value) which must evaluate to True before that arc may be
followed.

If an arc connects node A to node B, this means that node B has two
preconditions that must be true before it may execute, i.e. that node
A must have finished executing and that the predicate on the arc must
be true.

In the low-level representation, each node in the high-level procedure
graph is represented by a rule where the pre-condition is a predicate
which may consist of one or more predicate programs ANDed, ORed, or
XORed together. The action part consists of a list of programs (with
parameters) to be executed.

For example, consider the graph shown in Figure
3.1.

The object Start is created before execution of
the procedure starts in order that execution
will start at A. B and C may execute (possibly
simultaneously) once A has completed. Similarly,
D may execute when both B and C have finished
executing.

l*J/ \
11 m\ and^

PI
Figure 3.1

5 7

A

Precondition EXISTS {Start)

Action DELETE (Start)
ALLOCATE (elementA,roleX)
CREATE (AtoB)
CREATE (AtoC)

B

Precondition EXISTS (AtoB) and
(objects affected by elementA exist) and
(predicate on A->B arc evaluates to TRUE)

Action DELETE (AtoB)
ALLOCATE (elementB,roleY)

CREATE (BtoD)

C

Precondition EXISTS (AtoC) and
(objects affected by elementA exist) and
(predicate on A->C arc evaluates to TRUE)

Action DELETE (AtoC)
ALLOCATE (elementC,roleZ)

CREATE (CtoD)

5 8

D

Precondition EXISTS (BtoD) and
EXISTS (CtoD) and
(objects affected by elementB exist) and
(objects affected by elementC exist) and
(predicate on B->D arc evaluates to TRUE) and
(predicate on C->D arc evaluates to TRUE)

Action DELETE (BtoD)

DELETE (CtoD)
ALLOCATE (elementD,roleX)
CREATE (DtoE)

E

Precondition EXISTS (DtoE) and
(objects affected by elementD exist)

Action STOP

The programs used in the rules perform the following functions :

• EXISTS (filename) : Returns True if the specified
file exists, otherwise False.

• CREATE (filename) : Creates an (empty) file with the
specified name.

• DELETE (filename) : Deletes the specified file.

5 9

• ALLOCATE (element,role) : Passes the specified element
(which consists of a program with
parameters) to a user playing the
specified role for execution.

Note that rule B is eligible to be invoked when both AtoB exists and
the objects affected by element A exist (we will ignore that third
part of the precondition, since it is not relevant to this
explanation).

For example, lets say that element A involves the user editing a
letter. When the ALLOCATE program passes the letter to that user for
editing, it deletes the LETTER object from the object base. The LETTER
object will be restored to the object base when the (edited) letter
is returned by the user.

The fact that AtoB exists (i.e. EXISTS (AtoB) evaluates to TRUE)
implies that procedure element A has been allocated to a user for
execution, since AtoB is created when A has been allocated. However,
the fact that AtoB exists does not imply that the results of the
execution of that element have been returned to that user. If both
AtoB and the object(s) affected by the execution of the element exist,
then element A must have been allocated and returned.

It should be noted that for some rule-sets when the STOP instruction
is reached there may still be procedure elements which have been
allocated to users for execution, but that have not been executed. If
a rule-set was being generated by translating a high-level procedure
specification, then, provided this translation was done correctly,
such premature termination would not occur, since the high-level model

6 0

should not allow it. If the rule-set is being manually designed, this
consideration must be borne in mind.

The above example shows how a graphical procedure involving
parallelism can be implemented using a set of rules. It is also
possible to implement other programming constructs such as sequence,
selection and iteration in a similar manner.

3.6.2 Procedures within procedures

It is of course possible to implement a procedure within a procedure,
through making the element that is allocated to a user actually the
execution of a sub-procedure. Therefore everything that applies to
procedure elements can also be applied to sub-procedures, since they
are elements that just happen to be procedures, and are treated like
any other element.

3.6.3 User discretion

When an element is allocated to a user for execution, it does not
imply that the user must execute that element. The user may decide not
to execute the element, or replace it with an alternative element or
sub-procedure.

Allocating a single element to a user gives that user discretion over
the execution of only that element. But one could allocate to a user
a sub-procedure which consists of all of the elements that make up the
rest of the overall procedure. This gives that user discretion over
the execution of the remainder of the procedure, (e.g. the user can

6 1

add extra objects to the procedure definition, can add or remove
procedure elements, etc.)

3.6.4 Concurrent access to objects

In the example shown in Figure 3.1, elements B and C execute
concurrently. A number of elements that are executing simultaneously
might require access (read or read/write) to the same document. The
following rules might typically be imposed, in a high-level model, to
cater for that situation :

• If an element is executing that has an object as a read/write
parameter, then no element that has that object as a read or
read/write parameter may start executing (since only one program
should be able to write to an object at a time).

• If one or more elements that have a specific object as a read
parameter are executing, then no element that has that object
as a read/write parameter may start executing. Any element that
has that object as a read parameter may start executing (since
any number of programs can read the same object at the same
time).

3.6.5 Roles

In the example shown in Figure 3.1, rather than directly associate a
particular user with a given procedure element, we use the concept of
roles, which are similar to the concept of agents in the OSIRIS model
[Maiocchi87], and roles in the ECF [Karbe90a,Karbe90b], XCP
[Sluizer84] and OTM [Lochovsky87,Lochovsky88] models.

6 2

Each user can play any number of roles, e.g. John can play the roles
of both Clerk and Secretary. The same role may be associated with any
number of users, e.g. Joan, David and Helen could all play the role
of Manager.

In order to remove the distinction between users and roles, each user
would normally be allocated the role of themselves, i.e. Mary would
be allocated the role of Mary. Thus the system does not have to make
a distinction between, for example, a procedure allocated to a
specific user and a procedure allocated to any user out of those
playing a particular role.

It is also possible to store the name of the role which is to execute
an element in an object (rather than hard-code the rolename into the
rule-set). This would allow one step of a procedure to involve writing
to an object the name of the role who is to perform the next step in
the procedure (e.g. the manager of the user who performed the previous
step).

3. 7 Summary

A low-level rule-based model for the representation of procedures
which may be used as the basis for a procedure management system has
been presented. Also described were some important features of high-
level procedure specification models (roles, procedure elements, etc.)
and we have shown how these might be implemented in a PMS.

Procedures specified using this model may be enacted using a rule-
interpreter, but this alone is not enough to make a useful PMS. It is
necessary to implement a number of other components in order to
produce a practical PMS.

6 3

These components together make up the SEAU Procedure Management
System. The SEAU system will be described in Chapter 4.

6 4

Chapter 4 : The SEAU System

4.1 Introduction

Described below is the SEAU Procedure Management System, which uses
the rule-based model described in Chapter 3 as the model for the
representation of procedures. The system is implemented in C on AIX
1.2 (IBM's version of the Unix operating system) using C 1.1 and also
on VM/CMS 5 (an IBM mainframe operating system) using IBM C/370 and
consists of approximately 3500 lines of code.

The system is named SEAU1 (pronounced so) after the four basic
components of the system, the :

• Submission
• Execution
• Allocation and
• User-interface components.

The SEAU system has been developed on both the AIX and VM/CMS
operating system for the following reasons :

• Since it should be possible to use a PMS to support/automate the
procedures/policies of an organisation (e.g. an insurance
company, etc) and such organisations typically make use of many
different computing platforms and it is therefore important that
the design of the prototype PMS should not be tied down to a
single operating system.

1 No significance should be attributed to the fact the seau means bucket
in the French language.

6 5

• The computers used in such organisations range from large
mainframes to desktop computers. The two operating systems
chosen reflect the diversity in the operating systems used in
such organisations. VM/CMS is a mainframe operating system and
AIX is a version of the Unix operating system, an operating
system which is used on computers of various sizes, from desktop
computers to super-computers.

4.2 System architecture

USER
(WHO INITIATES

PROCEDURE)

SERVER
Procedure Procedure
Statuses Specifications

USER
(WHO IS ALLOCATED

PROCEDURE ELEMENT)

Figure 4.1 System Architecture

Figure 4.1 shows the architecture of the system, with its 4 main
components. The system has been fully implemented on both AIX and
VM/CMS, and operates in a similar fashion on both operating systems.
The Submission component is used by a user to submit (via electronic
mail) a rule-set (representing a procedure) to the execution component
for execution. The Execution server receives rule-sets and executes
them. At any one time, the Execution server may be executing a number

66

of procedures, each of which has a procedure definition (rule-set) and
a procedure status (objects) associated with it. The execution server
reads the procedure definitions and the objects, and based on the
contents of each updates the objects in some way.

Rule-sets may use the Allocation component to send procedure elements
to a user (who plays a specified role) for execution. The Allocation
component accesses the Organisational Database in order to convert a
role name into a user name.

The User-Interface components are used to receive procedure elements
for execution. When a user has executed an element, he/she uses the
User-Interface components to send the results back to the execution
server. When a rule-set finishes executing, the results of the
execution of the rule-set are returned to the user who originally
submitted the rule-set for execution.

By splitting t%w system up into a number of separate components with
well defined interfaces, the straight-forward addition of additional
/ alternative components is catered for.

4.2.1 Effects of having to design for AIX and VM/CMS

If the system was designed for AIX alone, one could develop an
execution component which would execute a single procedure, and the
user could run it as a background process. VM/CMS does not support
multi-processing, therefore the execution component has to run on a
separate virtual machine (or a separate user in AIX) . It is not
possible to arbitrarily create a new virtual machine every time a user
wants a procedure executed, therefore it is necessary to have a fixed

6 7

number of virtual machines (in this case, 1) which will simultaneously
execute any number of different procedures.

Since this is a prototype PMS, the simplest method of communication,
which is common to both AIX and VM/CMS has been chosen, i.e.
electronic mail. Procedures to be executed are submitted to the
execution server using the mail system on AIX and using spool files
on VM/CMS. If an organisation, though using many different types of
computers and operating systems, already had an electronic mail system
in place allowing communication between users on all of those systems,
then such an electronic mail system could be used as the
communications mechanism for a PMS.

The communication between the VM/CMS and AIX versions of the SEAU
system allows for any number of AIX users to communicate with a single
VM server, and therefore allows for the following scenarios :

• AIX clients communicating with an AIX server

• VM/CMS clients communicating with a VM/CMS server

• AIX clients communicating with a VM/CMS server

• AIX clients communicating with both an AIX server and also a
VM/CMS server

It is unlikely that communication between a VM/CMS client and an AIX
server would be of much practical use.

The development on two different operating systems resulted in a
number of effects on the C code design :

68

• There are some very minor differences in the C compilers used
and in the ^include file structures.

• Differences in the operating systems meant that some C libraries
could not be used because they are AIX dependent.

• The main coding problem was the fact that a Unix filename is
simply a sequence of characters, whereas a CMS filename consists
of 3 separate parts :

• file name (e.g. 'PROGRAM')

• file type (e.g. 'C')

• file 'mode' (i.e. the disk the file is on) (e.g. 'A')

But overall, the effects on the C code design were merely
inconveniencing, whereas the effect on the overall architecture of the
system caused by the development on both the AIX and VM/CMS operating
systems, as described above, was quite significant.

4.3 System components

4.3.1 Execution component (server)

The execution component uses the rule-based model described in Chapter
3, with some modifications. It runs continuously and accepts
procedures for execution via electronic mail. It is capable of
simultaneously executing any number of procedures - this is achieved
by the server performing a primitive form of multi-tasking.

6 9

The definition of the grammar of the language used for the description
of procedures is given in Appendix B.

4.3.1.1 Changes to the model

The following changes were made to the low-level model defined in
Chapter 3 for implementation in the Execution component :

• Each of the parameters of the programs in the Action part of a
rule must be specified as being either read-only or read-write.
This means that the precondition for a rule need only be re­
evaluated when one of the objects referenced by the precondition
program(s) is changed, i.e. when a rule which has a read-write
access to that object in its Action part has been invoked. (The
alternative would be to re-evaluate every pre-condition of every
rule after any rule has been invoked.)

• Each rule has associated with it a time-out period. If a period
of time equal to this time-out period expires without the
precondition of the rule being evaluated, then the precondition
is evaluated, and if it evaluates to True, the rule becomes
eligible for invocation. (This feature is included in order to
support preconditions which use files other than the files
specified as parameters when they are invoked.)

• The programs which make up the pre-condition part of a rule are
ANDed together. ORing and XORing are not supported.

7 0

4 . 3 . 1 . 2 E x e c u t i o n s t r a t e g y

For each procedure, the execution server performs the following
actions :

• when the invocation of a rule is complete (and therefore the
contents of some objects may have just changed), it re-evaluates
the predicates of any rules which make reference to objects
which the rule that had just been invoked had read/write access
to, and it invokes any rule which is now eligible to be invoked.

• every time the time-out period for a rule expires, it re­
evaluates the predicate of that rule, and if it is eligible for
invocation, it is invoked.

• when the STOP instruction is reached, it returns the results of
the execution of the procedure (i.e. all the objects passed as
read/write parameters) through electronic mail to the user who
originally submitted the procedure.

4.3.1.3 Additional function of execution component

The execution component is simply a rule-interpreter, with an
additional feature. This feature is necessary so that the execution
component can be used to execute procedures, which involve the
allocation of tasks to users via electronic mail.

When a user finishes executing a procedure element and returns the
results of the execution of the element to the server, the server must
recognise the objects being returned, what procedure they relate to,
and it must mark those objects as dirty (i.e. their contents may have

7 1

been changed) so that any preconditions which are based on those
objects will be re-evaluated.

This is the only function carried out by the execution component other
than simply executing rule-sets.

4.3.1.4 Re-evaluation of predicates

As soon as a rule becomes eligible for invocation, (i.e. as soon as
its precondition evaluates to True) the execution component should
recognise this and invoke the rule. The execution component could
continually re-evaluate all the preconditions and whenever it finds
one that evaluates to True, cause the action part to be followed, but
this would be very inefficient. It is sufficient to only re-evaluate
a precondition when an action which has one or more of the documents
in that precondition as a read/write parameter finishes executing.
Whenever an action finishes, it might have altered the contents of one
of those documents it had read/write access to, and so all
preconditions which access those objects should be re-evaluated.

It is possible for predicate programs to access files other than those
passed to them as parameters (e.g. external databases). Since a value
in, say, an external database, can change at any time, a facility has
to be provided to allow the preconditions of rules to be re-evaluated
periodically (to check for changes in such external data).

Therefore, each rule has a time period (of N seconds) associated with
it (a value of -1 indicating that the precondition need not be
periodically re-evaluated). Once a period of time equal to the
specified time period has passed since the last evaluation of the
precondition, the precondition will be automatically re-evaluated.

7 2

4 . 3 . 1 . 5 P r e c o n d i t i o n p r o g r a m s

Precondition programs are executed by the execution component. The
execution component has access to some standard precondition programs
(such as EXISTS (filename) in the example in Chapter 3) but other
precondition programs may be, for example, written by the user and
reside in the users directory, and the execution server may not be
able to execute them. Therefore when the user is submitting a
procedure for execution, she/he has two options :

The user may submit the program as a read-only parameter of the
procedure. The execution component will store the program as an
object and can execute it when required. When the procedure
finishes, the program will be deleted (because it is a read-only
parameter).

The user may specify in the procedure definition file the full
path of the precondition program, so that the execution
component knows where to find it. The precondition program's
access privileges would of course have to be set so that the
execution component could execute it. (Note that this second
option is only possible if the execution server can access the
AIX filesystem where the precondition program is stored)

4.3.2 Submit component

Usage : submit serverfHe procdeffile paramfilel paramfile2 . . .

paramfileN

The Submit component takes as its parameters :

7 3

• a file containing the address of the execution server (i.e.
where the procedure definition and parameter file are to be
sent)

• the name of the file containing the procedure definition which
is to be executed

• the name of the files which are parameters of the procedure
(there should be one filename for each parameter in the
procedure definition)

It performs the simple task of combining the procedure definition file
and the parameter files into a single large file, and sends that large
file to the execution server at the specified address.

4,3.3 Allocate component

Usage : Allocate rolename programname parameterl parameter2 . . .
parameterN | Comment

The allocation component simply passes the name of a program to be
executed, and the contents of the files to be used as parameters to
that program, to a user who plays the specified role.

A comment, which describes the function of the procedure element, may
be placed after the "|" character, and may consist of any number of
words. Through this facility, information may be provided to the user
regarding which function the element is to perform, the result that
is expected from that element, the use of the result, etc.

If more than one user plays the specified role it is simply sent to
the first user in the list of users who play that role. A more

7 4

sophisticated system could be used, e.g. to send it to the user, out
of those who play the role, who has the smallest current workload.

If a parameter is preceded by the percentage character (2) , then that
parameter is a read/write parameter, otherwise it is a read parameter.
Only those files that have a % preceding them (i.e. only those files
whose contents might have changed) will be returned to the execution
server when the program has been executed.

The allocation component actually consists of a number of small
programs. A translation program has been written which takes a rule-
set file and replaces any invocations of the Allocate program with the
appropriate invocations of these small programs which carry out the
allocation. The reason that the allocation component is composed of
a number of smaller programs is so that, if one wants to write an
alternative allocation component, one may re-use any of these smaller
programs. For example, An alternative version of the Allocate program
has been written which instead of requiring a rolename as its first
parameter, requires the name of a file which contains the name of the
role who is to execute the program. This means that roles do not have
to hard-coded into procedure definitions.

4.3.4 User Interface components

The following components provide the interface between users (who
execute elements of procedures) and the server (which controls the
allocation to users of the elements that make up procedures).

The List, Do and Finish components have the following architecture.

7 5

Each is separated into a front-end and one or more back-ends. Each
different role played by the user may have a different set of 3 back­
ends (one for each of List, Do and Finish) associated with it
(although one back-end set may be used for any number of different
roles) . Each different back-end set could implement a different method
of queuing procedure elements for execution.

Only one set of back-ends has been written for these components, but
it would be easy to develop other sets of back-ends which would
implement alternative queuing methods (e.g. in order of priority,
etc.).

When a user is allocated a procedure element, he/she should be free
to do whatever he/she wants with that element (i.e. do nothing and
simply return the files unchanged, use a different program on the
files, etc.). The Do component, as it currently stands, does not
provide a facility for the user to use, say, an alternative program
to the one indicated.

The user-interface components as a whole, while not facilitating a
user who wishes to perform a different action to that specified, do
not prevent the user from doing this (i.e. the ability to alter the
specified action could be incorporated in the Do component, or in an
alternative Do component).

4.3.4.1 Receive component

Usage : Receive

This program is run to receive a file sent by the execution component
from mail (in A1X) / reader (in VM/CMS).

7 6

If the file contains a procedure element which is to be executed then
the Receive program will add that procedure element to the list of
elements to be performed. If the file contains the results of a
finished procedure, then it is extracted from the mail into a file
which may later be unpacked into its constituent object files.

4.3.4.2 List component

Usage : List rolename

List, when provided with the name of a role played by the user, will
provide a list of procedure elements to be executed by that user in
that role. Listed with each element will be a number which may be used
with the Do component to specify which element is to be executed. Also
listed with each element is a comment on the function of the program
(as specified in the Allocate program).

This program invokes the List 'back-end' component which is
appropriate for the role specified.

4.3.4.3 Do component

Usage : Do rolename element_number

Do, when provided with the name of a role played by the user and the
number of a element to be executed in that role, will invoke the
appropriate Do 'back-end' for that role which will cause the specified
element to be executed.

7 7

4 . 3 . 4 . 4 Finish c o m p o n e n t

Usage : Finish rolename element_number [file]

Finish, when provided with the name of a role played by the user and
the number of a element to be executed in that role, will invoke the
appropriate Finish 'back-end' for that role which will cause the
results of the execution (i.e. all the object files marked as
read/write) of the specified element to be returned to the execution
component.

The optional file parameter is the name of a file which contains the
results of the execution of a sub-procedure. Its use is explained
below in section 4 . 6 .

4.3.5 Organisational database

As described in Chapter 2, an organisational database ought to be a
separate entity in itself, rather than part of a PMS. For a PMS which
deals with the roles played by users, which ought to be stored in an
organisational database, it is necessary to construct a simple
organisational database in order to store data relating to users and
the roles they play.

The organisational database simply consists of a list of records, each
containing the following fields :

• role name
• user name
• node name

7 8

Each record gives the name of role and the user name and node name of
a person who plays that role. The organisational database could of
course be expanded to include such data as relationships between roles
(e.g. rolel 'is the manager of' role2).

4.4 Limitations of the SEAU system

The SEAU system lacks the following components, which would be
desirable in a comprehensive Procedure Management System.

4.4.1 High-level procedure specification component

A high-level procedure specification component might perhaps be :

• simply an editor, if a traditional programming language is used
to specify procedures in the high-level model.

• a graphical procedure editor, if a graphical language is used
to specify procedures.

4.4.2 High-level procedure translation component

A high-level procedure translation component would convert the
procedure specification in the high-level form into a rule-set which
could be submitted to the execution component for execution.

7 9

4 . 4 . 3 H i g h - l e v e l p r o c e d u r e m o n i t o r i n g c o m p o n e n t

As described in Chapter 3, a monitoring component would allow the user
(or a set of users) to monitor the execution of a procedure -
typically in terms of a particular high-level model, though it could
allow the monitoring of the procedure in terms of the low-level model.
It would also allow the user to modify the status of the procedure
(i.e. modify the contents of objects related to the procedure) and/or
modify the procedure definition itself.

To describe how a monitoring component would work, one may use an
analogy with debugging a program written in a conventional high-level
programming language. If one wants to monitor the execution of a
program written in a language such as C or Pascal, one uses a
debugger.

The debugger makes use of :

• source code
• status of executing assembly language program (in assembly

language terms)
• symbol table

The symbol table allows the debugger to relate what it sees happening
at the assembly language (low) level with the program written in the
high-level programming language, and to show the programmer what is
happening, not in terms of the low-level model (assembly language),
but in terms of the high-level model (high-level programming
language).

Similarly, if one was to implement a procedure monitoring component
in a PMS, that component would make use of :

8 0

• the high-level procedure description
• ability to query status of executing procedure (in terms of the

low-level model)
• an equivalent to a symbol table

Since the ability to query the status of an executing procedure is
required, the execution component would have to be extended to provide
this facility.

For each different high-level procedure specification language, one
would need a separate monitoring component (in addition to separate
specification and translation components) which would allow the
monitoring and modification of the procedure in terms of that high-
level model.

4.4.4 Procedure automation component

The system as it currently stands, supports the execution of
procedures, as opposed to automating their execution. In order to
achieve automation, it would be necessary for each user to have a
program which would continuously monitor incoming mail for elements
being assigned to that user and which would execute some or all of
these procedure elements and return the results.

Only procedure elements which do not require user interaction may be
executed in this way or to be more precise, a program which requires
user interaction cannot be successfully completed in this way. Such
a program could be started by the server, but once user interaction
was required the user must take over, at least temporarily.

8 1

There might only be a particular type of procedure element which the
user wants to be executed automatically on her/his behalf. For
example, a user would not want a procedure element to be executed
automatically if the function of that procedure element was to delete
all the files belonging to the user executing it ! So there would have
to be some way for users to maintain, for example, a list of programs
which may be executed automatically, without their explicit approval
(or perhaps a set of predicates defining what programs may be run with
what parameters).

A server program which automatically executed particular procedure
elements would be straight-forward to implement on AIX, but on VM/CMS
where a user may have only one process running at a time, it would
only be possible to have the server running when the user is not using
her/his virtual machine.

Such a server program would operate completely independently of the
rest of the system (execution server, allocation programs, etc.) so
there would be no need for the rest of the system to know of the
existence of such a server.

4.5 Application architecture

Programs may be used with the SEAU PMS as either precondition
programs, action programs, or procedure elements.

8 2

4 . 5 . 1 P r e c o n d i t i o n p r o g r a m a r c h i t e c t u r e

A program which is to be used in the Precondition part of a rule must
satisfy the following conditions :

• It must return either 1 (True) or 0 (False) depending on the
values of the parameters passed to it.

• It must not attempt to alter the contents of any objects.

4.5.2 Action program architecture

A program which is to be used in the Action part of a rule must
satisfy the following conditions :

• It must return 0 upon successful completion, 1 otherwise (in
order that an unsuccessful execution can be detected by the
execution component).

• It must not attempt to alter the contents of any objects that
it is supposed to read but not write.

4.5.3 Procedure element architecture

A program which is to be used as a procedure element must satisfy the
following conditions :

• It must return 0 upon successful completion, 1 otherwise (so
that if execution is un-successful, the Do component will
recognise this and may take appropriate action).

8 3

• It should not attempt to alter the contents of any objects that
it is supposed to read but not write.

4.6 Procedures within procedures

In order to implement a procedure within a procedure, an element must
be allocated to a user, the element consisting of an invocation of the
procedure submission component to initiate that sub-procedure. The
user must then wait until that sub-procedure terminates, before
returning the results of that sub-procedure (which is an element of
the larger procedure).

The sub-procedure may take many days/weeks to execute and that user
might be executing many different procedures (which are sub-procedures
of larger procedures) at the one time. So when a sub-procedure does
terminate and the results of its execution are returned to the user,
the user has to know which procedure element in that users list of
'elements to be executed' corresponds to the terminated sub-procedure,
so that she/he may return the results of that sub-procedure as the
results of the appropriate procedure element.

It is possible for the user to match a field in the sub-procedures
results file with a field in the corresponding procedure element (i.e.
the element that consisted of the submission of the sub-procedure).
The user may then issue the Finish command, with the name of the file
containing the results of the sub-procedure as an extra parameter. The
results of the sub-procedure will automatically be unpacked and
returned to the execution server which is executing the outer
procedure.

8 4

4 . 7 S u m m a r y

The architecture of the SEAU Procedure Management System, and the
individual components which make up this system, have been described.
The components that are missing from the SEAU system (high-level
specification, translation and monitoring components and a procedure
automation component) have been listed. Since the focus of my research
is to investigate the low-level representation of procedures, these
facilities have not been provided in the prototype system. The
criteria that must be conformed to by programs which are to be used
with the SEAU system have been given, and the way in which the system
assists in the execution of sub-procedures has been described.

The SEAU system uses a low-level model, which is designed for the
representation and not the specification of procedures. A high-level
model such as one of those presented in Chapter 1 should be used for
procedure specification, and the procedure then translated into the
low-level model for execution. In Chapter 5 the use of the SEAU system
to implement example high-level procedures given for some of the
systems described in Chapter 1 will be examined.

8 5

Chapter 5 : The Application of the SEAU System

5.1 Introduction

In this chapter, the application of the SEAU system, and its rule-
based model to the implementation of some high-level procedures will
be examined. These procedures are example procedures given for some
of the systems described in Chapter 1, and are defined in terms of the
procedure specification models defined for these systems. By examining
the implementation of these example procedures, it is hoped to show
that procedures defined using a number of different high-level models
may be implemented using the SEAU system and its rule-based model, and
to describe any difficulties involved in their implementation.

5.2 Implementing high-level procedures using the low-level model

For each of the following high-level models, the implementation of the
example procedure as described in the paper which describes the model
is examined.

5.2.1 OSIRIS

The OSIRIS model contains a set of the features which may be easily
mapped onto the rule-based low-level model used in the SEAU system.
It was therefore possible to implement the example procedure
[Maiocchi87] described in Section 1.2.1.1 with little difficulty.

In order to implement the OSIRIS procedure in terms of the low-level
model, it was necessary to write a program which implemented the

8 6

precondition which checked whether the reply-analysis outcome was
positive or negative, and also to write programs to implement each of
the procedure elements.

The translation of the procedure graph into a set of rules was
straight-forward, with each node in the graph being represented by a
single rule. The precondition of such a rule would simply check that
all the rules relating to the nodes directly preceding it in the graph
had been invoked, and also that any other preconditions (other than
precedence conditions) for the node (e.g. that a file contained a
particular string) were true.

5.2.2 XCP

The example given for the XCP system [Sluizer84], and shown in Section
1.2.3.1, is quite a simple one, as are the high-level model features
it requires. For example, none of the arcs in the example procedure
graph have predicates associated with them, therefore the
preconditions of the rules only have to implement the precedence
relationships. The process of translating the XCP protocol into a
rule-set that could be executed using the SEAU system was therefore
even more straight-forward than with the OSIRIS model.

One potential problem with the implementation of the example procedure
is as follows. The procedure definition states that when Admin is
sending an acknowledgement (ACK) to the Clerk who sent the order
(ORD), Admin should send it to the clerk who sent the order, rather
than just any clerk.

The Allocate component always allocates a procedure element to the
first user in the list of those performing the role, but only for the

8 7

sake of simplicity. In a typical non-prototype PMS the Allocate

component might not act so predictably. It might allocate the element
to the user with, say, the smallest current workload. The workloads
of users would change over time, and therefore the identity of the
user with the smallest workload would also change over time.

So as the system currently stands, the acknowledgement would be
returned to the same Clerk (provided the list of users playing the
Clerk role was not changed during execution of the procedure) , but
this might not always be true.

It would be possible to force the system to send the ACK to the same
clerk who sent the order by writing an alternative Allocate component
which stored, in an object, the identity of the user who sent the
order, so that the name of this user could be later retrieved and the
ACK could be sent directly to him/her.

5.2.3 Electronic Circulation Folders

As with the OSIRIS model, the Electronic Circulation Folder [Karbe90a,
Karbe90b] contains a set of the features which may easily be mapped
onto the low-level model, and the example procedure taken from
[Karbe90a] and described in Section 1.2.2.1 was straight-forward to
implement as a set of rules. As with the OSIRIS example, it was
necessary to write a number of predicate programs and element
programs.

8 8

Examples of exceptions to the given procedure, which the ECF system
can handle, are given in [Karbe90b] and the difficulty involved in
supporting each of these exceptions using the SEAU system is analysed
below.

As long as the folder is not forwarded an office worker may wish
to revise work on a step.

In the SEAU system a user who is allocated an element (in the
form of a program with parameters) may re-execute that program
any number of times before returning the results to the server.

After work on a step is finished an office worker may wish to
get the folder back for some updates.

In theory it is possible, though the SEAU system does not
provide that facility, to modify a procedure specification as
it is executing (by adding, changing, deleting rules). If this
feature was available a user could contact the user who
initiated, and is therefore in overall control of, the
procedure, and can re-organise the procedure as it is running
so as to insert an extra procedure element further along in the
procedure which consisted of the user being allocated whatever
objects he/she was interested in order to update them.

Or this may also be done by contacting a user further along in
the chain of those performing the procedure who would be able
to allow the first user to do some work on some objects before
passing them on to the next user in the chain, (but in that

8 9

case, it is possible that the second user might not have been
allocated the objects which the first user is interested in).

An office worker may wish to interrupt work and put the folder
on the pile.

This is possible through the feature of the AIX C-Shell which
allows the suspension of a process (i.e. an executing procedure
element) and it's later resumption.

In order to get his manager involved, the applicant may forward
the form and a note to him and ask him to continue normal
processing.

The SEAU system allows the user to replace a procedure element
allocated to her/him with any other program, or indeed, a sub­
procedure . To add an extra element after the current one, a user
may replace the current element with a sub-procedure which
consist of the following two elements :

The first element would be a copy of the element as
originally allocated to the user.

The second element, which will be executed after the first
element, is an element which allocates the appropriate
documents to the manager for viewing, approval or
whatever.

Once this sub-procedure has finished executing, the procedure
will continue as normal.

9 0

The applicant may wish to add appendices to the folder's content
in order to give more evidence in support of the application.

If the applicant has only been allocated a single element for
execution, then it is not possible for him/her to add extra
objects to the set of objects worked on by the procedure.

But if the applicant is allocated a sub-procedure for execution,
it is possible for her/him to change that procedure
specification before submitting it for execution. The applicant
can therefore add any object he/she wants to the set of objects
worked on by the procedure.

The applicant may decide to cancel the vacation at any time
after having finished the step "Application".

Though the SEAU system does not allow it, it would be possible
to included a facility whereby the user who initiated a
procedure may terminate that procedure at any time.

Therefore, if the applicant submitted the procedure for
execution, he/she could terminate its execution at any time. If
the applicant did not initiate the procedure, then he/she may
have it terminated, by contacting the user who did initiate the
procedure and asking her/him to do so.

9 1

The substitute selected by the applicant mav refuse to take
over. Thus, he sends the folder back possibly with a slip on it
giving some information.

This may be accomplished, as with one of the exceptions above,
by the substitute replacing the procedure element allocated to
her/him with a sub-procedure which consists of an element which
allocates an element to the applicant, which requires her/him
to read the slip. The applicant can then examine the slip and
decide what to do (e.g. he/she can replace the element allocated
to him/her with any other element or sub-procedure).

The head of the department mav be on a business trip. Thus, the
step 'Approval' should be performed by his substitute.

The procedure would be constructed so that when it comes to the
step where the form has to be approved by the head of the
department, the organisational database is checked to see who
is the head of the department in which the applicant works. The
approval step would then be allocated to this person.

The head of the department, before going on the trip, would
indicate in the organisational database that another user was
to be her/his substitute until her/his return. Thus when the
organisational database is checked to see who the head of the
department is, it should return the name of the substitute, who
will then be allocated the 'Approval' element.

9 2

The head of the department mav want to make his decision
dependent on the opinion of the manager of the prolect team of
which the applicant is a member. To that end, he mav forward
this question to the project manager with a request for an
answer.

The head may do this by replacing the element allocated to
him/her with a sub-procedure, the first element of which
allocates the appropriate objects to the project team manager
in order to get his/her opinion. The second element would then
allocate the appropriate objects and the project team managers
answer to the department head for her/him to make the final
decision.

The head of the department mav want to defer the decision.
Therefore, he postpones the work for a later resubmission.

In the SEAU system, the department head would simply leave the
element in her/his list of elements waiting to be performed
until he was ready to execute it.

The List component could be enhanced, for example, so that, if
a user issued a 'defer' command in relation to an element, it
would hide that element from view from a user for a certain
length of time.

9 3

In order to inform on the success of the application the office
worker making the application may forward a copy of the finished
form to the substitute.

This could, of course, be done by simply using electronic mail
to mail the file to the substitute. It could also be done
through the SEAU system by replacing the element allocated to
the applicant with a sub-procedure which would consist of an
element which would allocate a copy of the finished form to the
substitute for viewing, filing, etc.

It has been shown that it is possible to implement the above
exceptions using the low-level rule-based model, and using the SEAU
system (or, in a few cases, a slightly enhanced version of the SEAU
system).

5.2.4 Augmented Petri Nets

Since each Petri net transition has a rule associated with it, the
process of converting the procedure specified as an augmented Petri
net, and shown in Section 1.2.5.1, into a set of rules is very simple
indeed.

A number of the transition rules involve re-sending a letter if a
reply is not received within certain period of time. The SEAU system
does not inherently support this kind of time-out feature, but it is
quite straight-forward to implement it. All that is required is to
record (in an object) the time at which a rule (e.g. send letter to
referee) was invoked. Then create another rule whose precondition is
that a certain amount of time has passed since the time specified in

9 4

that object (this rule would be periodically re-evaluated). As soon
as the difference between the current time and the time specified in
the rule is greater than a certain amount, that rule will be invoked
to send a reminder to the referee.

The example procedure contains some rules that are troublesome to
implement in the SEAU system. An example of this is the rule which
says "if, at any time, an author withdraws a paper then end the

procedure", or in general, any rule that waits for an event which may
happen at any time, but might never happen at all.

In order to cater for this, it is necessary to allocate a procedure
element to a user which states "if at any time the following event

occurs, 'Finish' this element" (which will result in the output of the
element being returned to the server). The server would then be able
to respond to the occurrence of the event. Note that the periodic
predicate re-evaluation feature of the SEAU system would be required
in order to allow such a rule to be invoked, as soon as (or rather,
relatively soon after) the result of the execution of the element is
returned to the server.

Although this approach would work, it is an awkward way of supporting
this requirement, since if the event never occurs, the user is left
with a procedure element that never needs to be executed.

If one ignores this sort of situation (i.e. one where the user may or
may not have to execute a procedure element allocated to her/him), it
is possible for the user to think of the elements allocated to him/her
as a 'to-do' list (i.e. a list of tasks for the user to perform). But
in this type of situation, this 'to-do' list would contain a task
which might never need to be performed and would just sit there
(either forever, or until the user, or the system, explicitly removes

9 5

it), which means that it is no longer strictly a 'to-do' list (i.e.
all the items in the list do not have to be performed).

In order to implement this "if, at any time, an author withdraws the

paper then end the procedure" rule, it is necessary to create a rule
which says "if return received from 'wait for event' element, then end

procedure". The ending of the procedure would then involve sending a
notification to users who have been allocated elements that they no
longer need to perform those elements. It would be preferable if the
elements allocated to those users could be withdrawn automatically.

Some of the rules in the example procedure have predicates that
require user-interaction (i.e. the predicate program would not be able
to work out for itself whether something is true or false, but would
have to ask a user). Since the SEAU execution component requires
predicate programs to be devoid of user interaction, any arcs in a
high-level model, for example, which have predicates which require
user interaction have to be implemented by converting the single arc
into two rules, the first of which would allocate the task of deciding
on the value of the predicate to a user and the second of which would
proceed based on the answer given by that user.

While it is possible to have a lower-level model than this model
(consisting of rules only), it would appear that there is no advantage
to be gained from this, since a model consisting of Petri nets and
rules ought to be able to do everything a model consisting simply of
rules can do (since if one were to decide not to use the Petri net
aspect of the model, they are equivalent). Indeed, it should therefore
be possible to model the example procedures given above using the
Petri net / rule-based model.

9 6

The question then arises of whether one should draw the line at a
combination of Petri nets and rules, or whether one should include
another formalism in the model to make it yet more versatile. Of
course, the more complicated the model gets, the more complicated the
system which must execute that model becomes.

The Petri net can be used to indicate which rules (out of a
potentially large set of rules) in a rule-set may be currently
eligible to be invoked. In a very similar, but less explicit way, the
SEAU system only checks a small sub-set of rules after each rule
invocation, since (ignoring the periodic rule evaluation feature) it
only re-evaluates the precondition of a rule when the contents of one
(or more) of the objects accessed by the precondition of that rule are
potentially altered.

Consider a typical rule-based representation of a graph-based
procedure, such as that given in Chapter 3. In it objects are used to
represent the precedence relationships between procedure elements.
When a rule is invoked, both the values of the objects involved in the
execution of the element and objects representing precedence rules
change. Any rule precondition which makes reference to any of those

objects will then be re-evaluated.

Imagine that the procedure consists of three elements; A followed by
B followed by C. The B rule may be invoked when the object AtoB exists
and some other condition (based on the contents of some other object
called X) is true. Similarly, the C rule may be invoked when the
object BtoC exists and another condition (based on the object X) is
true. When the A element executes the value of X changes and AtoB is
created. Since the preconditions of both B and C depend on the
contents of object X they will both be re-evaluated, although C cannot
proceed since BtoC does not yet exist.

9 7

If a Petri net was used to model the precedence relationships between
elements, the evaluation of the C precondition would not be performed,
since the Petri net would clearly indicate that C was not yet ready
to be executed. Time would therefore not be spent evaluating the part
of the precondition of C involving the object X.

Therefore the use of a Petri net to represent the precedence rules,
though adding complexity to the procedure execution component, might
lead to increased efficiency of execution.

As the procedures one is trying to represent become less structured,
the importance of the Petri net diminishes and the importance of the
rules increases, since the rules involved in less structured
procedures deal with rather more complicated relationships than simple
precedence. However, for a system which is to support quite structured
procedures, a combined Petri net / rule-based model might be the most
suitable.

5.2.5 VPL

The VPL model is a graph-based model and contains similar constructs
to those found in models such as OSIRIS, ECF, and XCP.

However, it does contain two special constructs which are of
particular use in software process modelling - Decompose/Recompose and
Split/Merge. Describe below are methods which allow these constructs
to be dealt with in the SEAU system.

9 8

5 . 2 . 5 . 1 D e c o m p o s e / R e c o m p o s e

An object entering a Decompose node is split up, in some way, into a
family of objects and these 'children' proceed in parallel along the
same process. These 'children' later enter a Recompose node and are
combined in some way to produce a single object.

A procedure which is bounded by a Decompose/Recompose pair may be
implemented by having the decomposition and recomposition carried out
by a specialised program. A procedure element would consist of this
program, which would :

• split the object up into a number of separate objects
• initiate the sub-procedure for each of these objects
• when all the sub-procedures finish, combine the objects in some

way to form a new obj ect
• return the new object

The above technique only applies to procedures bounded by a
Decompose/Recompose pair. If it is a set of tasks (or even one task)
which is bounded by the Decompose/Recompose pair, then a sub-procedure
may be created which consists of that set of tasks and the above
technique applied.

5. 2. 5. 2 Split / Merge

A Split node creates duplicates of an object, each of which follows
a different process. At the corresponding Merge node, these objects
are combined in some way to produce a single object.

9 9

A procedure (or set of tasks, as above) bounded by a Split/Merge pair
may be implemented in a similar way to a Decompose/Recompose pair,
i.e. a procedure element would consist of a specialised program which
would :

• make a number of copies of the object
• initiate a sub-procedure for each of these copies
• when all the sub-procedures finish, combine the objects in some

way to form a new object
• return the new object

So there should be little difficulty implementing a VPL process using
the SEAU model. Of course, just because there is no difficulty
implementing a VPL model using the rule-based model used by the SEAU
system does not necessarily mean that the architecture of the SEAU
system is suitable for supporting the software development process.
Typical software processes are liable to be of a different nature to,
say, office processes and it might be possible that the nature of the
SEAU system's architecture would not suit the support of software
development processes.

5.3 Summary

In this chapter the implementation of example procedures, defined
using a number of different high-level models, on the SEAU system has
been examined. It has been shown that many of the features of a number
of high-level models may be implemented using the SEAU system and it's
associated low-level model. In addition, difficulties involved in the
representation of high-level concepts using the low-level have been
described.

100

It has been explained how some of the features of these models may be
implemented using the low-level model described in Chapter 3, and
features of the example procedures which caused some difficulty during
implementation have been highlighted.

In Chapter 6, overall conclusions reached as a result of this
research, and in particular the analysis of the SEAU low-level model
described in this chapter, will be presented.

101

Chapter 6 : Conclusions

6.1 Introduction

In this final chapter, the conclusions reached as a result of this
research and some possible future research directions following on
from this research are outlined.

6.2 Conclusions

Listed below are some general conclusions reached as a result of this
research.

6.2.1 Structured procedures

The SEAU system supports the execution of structured procedures. It
also allows users discretion over the execution of the procedures they
are allocated.

This means that it is possible for the PMS to follow a structured
procedure specification, and the user may introduce deviations from
that procedure specification. Clearly, it would be desirable for the
PMS to deduce for itself when deviations from pre-defined procedures
are required, but for procedures which are in the most part structured
it is adequate to rely on the user to introduce such deviations when
they are needed.

102

6 . 2 . 2 P r o c e d u r e r e p r e s e n t a t i o n

The rule-based model presented in Chapter 3, and used in the SEAU
system is general enough to allow the implementation of the features
of a number of different high-level models, such as those described
in Chapter 1. Through the use of the SEAU system to implement various
example high-level procedures it has been shown that the low-level
rule-based model used is simple enough to allow the features of a
number of high-level models to be straight-forwardly implemented.

The low-level model used by the OTM system is a procedural programming
language. It is doubtful whether such a language would be able to
facilitate the implementation of "unstructured" procedures. The SEAU
low-level model, or the Augmented Petri Nets model, provides a more
suitable base for representing both structured and unstructured
procedures.

The use of augmented Petri nets (Petri nets in conjunction with rules)
[Zisman78] adds extra complexity to a system for managing the
execution of procedure, but does have the advantage of providing some
structure to the rules, with a consequent increase in the efficiency
of procedure execution. As the procedures one is trying to represent
become less structured the importance of the Petri net diminishes and
the importance of the rules increases. However, for a system which is
to support quite structured procedures, a combined Petri net / rule-
based model might be the most suitable.

As noted in Chapter 1, the paper describing the VPL software process
model and the system which implements it [Shepard92] does not appear
to be based on any of the work that the other systems described are
based on. This could possibly be taken as an indication of a lack of
overlap between research into the representation of office procedures

1 0 3

and software development processes, where one would expect some
overlap, especially considering the similarity between the VPL model
and some of the office procedure models described.

6.2.3 Workflow management is only an application of a PMS

Some existing systems are known as workflow management systems. The
term procedure management system was chosen to describe the SEAU

system. The term workflow management system seems to imply the use of
the system for controlling the flow of work of users. But workflow
management (or office procedure management or business process
management) is only an application of a procedure management system,
the term procedure being used in this case to describe a set of steps
designed to achieve some goal.

6.2.4 Separate organisational database

While the presence of an organisational database is required for a
PMS, it should not be part of the PMS, but rather a separate system
in itself, which would have many other uses than simply those required
by a PMS.

6.2.5 PMS should ignore the contents of objects

A PMS does not need to, and should not, concern itself with what types
of objects it is routing from user to user.

1 0 4

6 . 2 . 6 D e g r e e s o f p r o c e d u r e s u p p o r t / a u t o m a t i o n

The components that make up a procedure management system can be
classified into A layers which provide different degrees of
support/automation.

• Use of electronic objects (e.g. files) rather than real
objects (e.g. pieces of paper), and tools which work with
those electronic objects, with manual routing of objects
via electronic mail (i.e. no procedure management system) .

• Use of Allocate and User-Interface components to allow
users to allocate tasks involving electronic objects to
other users.

• Use of Execution/Submission components, in addition to all
of the above, to support the execution of procedures.

• Use of Procedure Automation component, in addition to all
of the above, to automate the execution of procedures.

6.2.7 Procedure types

A Procedure Management System is required to support a wide range of
procedure types.

At one end of the scale is a procedure, fully specified in advance,
each step of which must be carried out precisely as specified (i.e.
no deviations or exceptions are allowed).

1 0 5

At the other end of the scale is a kind of 'make it up as you go
along' procedure. Such a procedure might contain only one element when
it is started. When the user who executes that element finishes doing
so, she/he may add another element to the procedure and specify who
is to perform it. And so it may continue, in this fashion, each user
involved in the procedure adding an extra element to the procedure
after his/her element. Eventually, some user will choose not to add
an extra step to the procedure and it will finish.

The use of a Procedure Management System to aid the execution of the
first type of procedure is quite similar the use of a conventional
multiple-user information system as used in, say, an office
environment, which indicates to users what processing they must
perform.

And the use of a Procedure Management System to aid the execution of
the second type of procedure is quite similar to the approach that
would be taken if a Procedure Management System did not exist (i.e.
each user simply forwarding all the relevant objects through
electronic mail to the next user in the chain, with a request to carry
out a particular action on those documents and forward them to a
another user).

A Procedure Management System should allow the support of both of
these types of work, rather than being orientated towards supporting
one at the expense of the other.

1 0 6

6 . 2 . 8 A l l o c a t i o n a n d s u b m i s s i o n c o m p o n e n t s

The Submit component is used to submit a procedure to the server for
execution. The Allocate program is used to allocate a procedure
element to a user for execution.

It would be possible to implement a program which would run
continuously on behalf of a user and which would automatically execute
some of the procedure elements allocated to that user (without the
user's interaction required) and return the result to the execution
server. Such a program would be very similar to the procedure
execution server, which accepts a procedure for execution, executes
it, and then returns the result of the execution of the procedure to
the user who submitted that procedure for execution.

Since these programs perform very similar functions, it would seem
suitable to combine them into a single program (perhaps called
allocate) which would allocate a task (whether a whole procedure or
just a procedure element - procedures and procedure elements are
treated in the same way using the SEAU system) to a "user" (whether
a human user, or a server acting on behalf of a human user) for
execution. This would eliminate the unnecessary distinction between
procedure and procedure elements, and between procedures/procedure
elements carried out by users and those carried out automatically by
a program.

6.3 Future work

Outlined below are some possible future work which could follow on
from the work presented in this thesis, including some ways in which
the SEAU Procedure Management System could be enhanced.

1 0 7

6 . 3 . 1 R o b u s t n e s s , e f f i c i e n c y

Attributes such as robustness, efficiency, etc. were not addressed
during the design of the prototype system, so these are clearly areas
in which the SEAU system could be improved.

6.3.2 Additional components

Component could be added to the SEAU system to perform the following
functions :

• high-level specification of procedures
• translation of high-level procedures into low-level

representation
• monitoring of executing procedures (high-level and/or low-level)
• element automation

In addition, the use of objects which encapsulate both data and
methods (as in the OTM system [Lochovsky87, Lochovsky88]) would be
another way of enhancing the SEAU system.

6.3.3 Complete groupware system

As explained in Chapter 1, a procedure management system fits into the
workflow category of groupware. The work presented in this thesis is
concerned with the support the flow of work. As described in Chapter
1, a complimentary type of groupware is the information sharing type.

1 0 8

One could implement an information sharing system, which along side
the SEAU PMS would make a comprehensive groupware system.

6.4 Overall summary

A low-level model for procedure representation has been developed,
which has been shown to support structured high-level models. Due to
its rule-based, non-procedural nature, the low-level model should also
be able to support less structured procedures.

A prototype Procedure Management System, the SEAU system, has been
implemented on two different platforms and has been used to experiment
with the low-level representation of procedures defined using a number
of existing high-level models. Issues which arise from the
implementation of these procedures have been examined and resulting
conclusions presented. The model used in the SEAU system has been
shown to be a suitable model for the low-level representation of
procedures.

1 0 9

Appendix A : References

[Beslmuller88]

[Bracchi84]

[Cortese84]

[Croft84]

[Davis76]

[Ellis79]

E. Beslmuller, "Office Modelling Based on Petri
Nets", Esprit '88 - Putting the Technology to Use,

Part 2 (Proceedings of the 5 th Annual ESPRIT

Conference), pp. 977-987, 1988.

G. Bracchi and B. Pernici, "SOS: A conceptual model
of office information systems", Data Base, vol. 15,
no. 2, pp. 149-168, 1984.

G. Cortese and F. Sirovich, "A Daemon Based
Programming System for Office Procedures",
Proceedings of the ACM SIGOA Conference, 1984.

W. B. Croft and L. S. Lefkowitz, "Task Support in
an Office System", Proceedings of the ACM SIGOA

Conference, 1984.

R. Davis and J. King, "An overview of production
systems", Machine Intelligence, vol. 8, 1976.

C. A. Ellis, "Information Control Nets - A
Mathematical model of office information flow",
Proceedings of the ACM Conference on Simulation,

Measurement, and Modelling of Computer Systems, pp.
225-239, Bondler, Colorado, 1979.

1

[E l l i s 8 5]

[Ellis91]

[Fikes80]

[Fisher87]

[Gallanti85]

[Georgeff83]

C. A. Ellis, "Office Information Systems Overview",
Languages for Automation, ed. S. K. Chang, pp.
3-26, 1985.

C. A. Ellis, S. J. Gibbs and G. L. Rein,
"Groupware: Some Issues and Experiences",
Communications of the ACM, vol. 34, no. 1, January
1991.

R. E. Fikes and D. A. Henderson, Jr., "On
Supporting the Use of Procedures in Office Work",
Proceedings of the First International Conference

on Artificial Intelligence, pp. 202-207, 1980.

W. Fisher and J. Gilbert, "FileNet: A Distributed
System Supporting Workflo; A Flexible Office
Procedures Control Language", Proceedings IEEE

Computer Society Office Automation Symposium, pp.
226-233, 1987.

M. Gallanti, G. Guida, L. Spampinato, and A.
Stefanini, "Representing Procedural Knowledge in
Expert Systems: An Application to Process Control",
Proceedings of the Ninth International Joint

Conference on Artificial Intelligence, vol. 1, pp.
345-352, 1985.

M. Georgeff and U. Bonollo, "Procedural Expert
Systems", Proceedings of the Eighth International

Joint Conference on Artificial Intelligence, vol.
1, pp. 151-157, 1983.

2

[G u n t h e r 8 5]

[Kishimoto85]

[Oyanagi85]

[Karbe90a]

[Karbe90b]

[Lochovsky87]

K. D. Gunther, "Logic Programming Tailored For
Office Procedure Automation", Languages for

Automation, ed. S. K. Chang, pp. 27-66, 1985.

K. Kishimoto, K. Onaga, and H. Utsunomiya, "OPAL:
An OPA Language for LAN Environments via Active
Mailing and Program Dispatching", Languages for

Automation, ed. S. K. Chang, pp. 67-94, 1985.

S. Oyanagi, H. Sakai, T. Tanaka, S. Fujita, and A.
Tanaka, "A Form-Based Language for Office
Automation", Languages for Automation, ed. S. K.
Chang, pp. 107-122, 1985.

B. H. Karbe and N. G. Ramsperger, "Influence of
Exception Handling on the Support of Cooperative
Office Work", Proceedings of the ACM SIGOIS

Conference on Office Information Systems 1990, pp.
2-15, 1990.

B. Karbe, N. Ramsperger and P. Weiss, "Support of
Cooperative Work by Electronic Circulation
Folders", Proceedings of the ACM Conference on

Office Information Systems '90, pp. 109-117, 1990.

F. H. Lochovsky, "Managing Office Tasks",
Proceedings IEEE Computer Society Office Automation

Symposium, pp. 247-249, 1987.

3

[L o c h o v s k y 8 8]

[Maiocchi87]

[Mazer87]

[Oyanagi85]

[Reisig85]

[Shepard92]

[Sluizer84]

F. H. Lochovsky, J. S. Hogg, S. P. Weiser, and A.
0. Meldelzon, "OTM: Specifying Office Tasks",
Proceedings of the ACM Conference on Office

Information Systems '88, ed. R. B. Allen, pp. 46-
54, 1988.

R. Maiocchi and B. Pernici, "Verification and
Refinement of Office Procedures", Proceedings IEEE
Computer Society Office Automation Symposium, pp.
206-216, 1987.

M. S. Mazer, "Exploring the Use of Distributed
Problem Solving in Office Support Systems",
Proceedings IEEE Computer Society Office Automation

Symposium, pp. 217-225, 1987.

S. Oyanagi, H. Sakai, T. Tanaka, S. Fujita, and A.
Tanaka, "A Form-Based Language for Office
Automation", Languages for Automation, ed. S. K.
Chang, pp. 107-122, 1985.

W. Reisig, Petri Nets : an Introduction, 1985.

T. Shepard, C. Wortley, and S. Sibbald, "A Visual
Software Process Language", Communications of the

ACM, vol. 35, no. 4, pp. 37-44, April 1992.

S. Sluizer and P. M. Cashman, "XCP: An Experimental
Tool for Supporting Office Procedures", Proceedings
IEEE First International Conference on Office

Automation, pp. 73-80, 1984.

4

[Z i s m a n 7 8] M. D. Zisman, "Use of Production Systems for
Modelling Asynchronous, Concurrent Processes",
Pattern-Directed Inference Systems, ed. D. A.
Waterman and F. Hayes-Roth, pp. 53-68, 1978.

5

Appendix B : Rule Definition Language

There follows a grammar, in extended Backus-Naur form, which defines
the rule language used in the SEAU system to define procedures.

Note :
[] = optional (0 or 1 occurrence)
{ } = 0 or more occurrences
() indicates precedence
| means OR

procdef //PROCEDURE

procedure name
■//READ

{ variable)
//WRITE

{ variable }
//LOCAL

{ variable)
//END

rule { rule }
//ENDRULES

procedure_name alphanumeric {alphanumeric}

variable : - filename <NewLine>

1

rule :- ftRULE rule_period [rule_name]
precondition { precondition }
j/ACTION

action { action }
#END

rule_period] digit {digit}

rule_name alphanumeric {alphanumeric}

precondition :- program_name { read_parameter }
<NewLine>

action :- program_name { (read_parameter
readwrite_parameter) } <NewLine>

program_name :- filename

read_parameter : - 7. filename

readwrite_parameter :- & filename

alphanumeric : - .A | B | ... | Y | Z | 0 | 1 | ... | 9

filename is operating system dependent.

2

