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ABSTRACT

Uniaxial Stress-strain Properties of Metallic Materials 
at High Strain Rates and at Higher Temperatures 

Jian Sun B. Eng., M. Eng.

A combined experimental and numerical technique for the determination 
of uniaxial stress-strain properties of metallic materials at high strain rates 
and temperatures of up to 440 °C is presented.

Experiments were carried out using an existing ballistic test machine. 
Small cylindrical specimens of commercially pure copper and mild steel were 
placed upon a rigid anvil and were impacted by a hardened tool steel projectile 
at temperatures of up to 440 °C. The initial velocity of the projectile up to 120 
m/s was recorded by a laser velocity-measuring device, and the deformation 
of the impacted specimen was measured after each test. For the purpose of 
high temperature tests, a modification for the machine have been made and 
a movable anvil unit to reduce the loss of heat has been designed and used.

A mathematical model with a mixed boundary condition, to which the 
theory of propagation of longitudinal waves of plastic deformation is applied, 
has been established. Based on the model, a numerical method of the iterative 
procedure to determine dynamic properties of materials considering adiabatic 
shear effects at various temperatures has been utilized. The corresponding 
computer programs have also been written. The properties of wave- 
propagation in the impact process of the specimen have been analyzed. The 
factors affecting the deformation of the impacted specimen such as adiabatic 
shear phenomena, the effects of shock loading and the boundary conditions at 
the anvil end have been discussed, and the optimum parameters to determine 
the corresponding constitutive equations have been selected. Further, a 
method to examine and determine the validity of the constitutive equations of 
materials is recommended. The forms of constitutive equations at high strain 
rates up to 10s s'1 for metals (commercially pure copper and mild steel) at 
various temperatures up to 440 °C have been proposed and the parameters in 
these suggested equations have been determined by means of agreement of the 
experimental results and numerical calculations.
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NOMENCLATURE

E Younge’s moudulus.
T Temperature.
t Time.
V Velocity.
c0 The velocity of wave propagation.
X Rectangular coordinates.
a Stress.
T Shear stress.
e Strain.
è Strain rate.
èe Elastic strain rate.
ép Plastic strain rate.
X Strain rate sensitity.

P Density.
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Chapter 1 Overview

The mechanical metals and alloys deformed plastically at high strain rates has 
extensively been studied during the last four decades. The subject is of interest 
both because a wide range of practical problems require a knowledge of the 
properties of materials subjected to dynamic straining and because it is now 
clear that rate effects are a key factor in differentiating and elucidating the 
micro-mechanisms of plastic flow. Progress in studying high-speed deformation 
has been in three main areas: advances in experimental methods, which have 
permitted the measurement of dynamic material response at both the 
macroscopic and microscopic levels; the widening of macroscopic plasticity 
theory to include wave-propagation and rate effects; and the development of 
dislocation theory to provide models of the rate-controlling deformation 
processes.

A large amount of research work in these fields has been done, especially, in 
the recent four decades. This chapter will briefly make a review on concerning 
topics.

1.1 Experimental Methods

1.1.1 Low rates of strain (10 4 to 10 1 s 1)

In this range, conventional screw-driven or hydraulic test machines may be 
used, together with pen recorders. If the total deformation is controlled, the 
specimen behaviour is governed partially by the compliance of the machine 
and in order to maintain, for example, an approximately constant strain rate 
it is necessary for this compliance to be low (hard machine). By the use of feed 
back control, the imposed deformation may be automatically varied in 
response to the output of a transducer measuring directly the specimen load 
or deformation. Closed-loop control also makes it possible to impose arbitrary

1



1.1 Experimental Methods 2

stress or strain-time histories on the specimen during the test. The technique 
of sudden strain-rate changes during the test has been widely used to 
investigate rate effects in the "quasi-static" range (10'4 -10'2 s'1).

1.1.2 Medium rates o f strain (101 to l ( f  s 1)

At these rates, it becomes necessary to use an energy storage system to supply 
energy to the specimen during the test, since the instantaneous power 
required becomes inconveniently high. The first energy-storing machines 
employed the kinetic energy of a moving mass (pendulum, drop-weight or 
rotating flywheel) [1,2]. In general, with this method large transient 
oscillations are generated by the impact at the beginning of the test, so that 
yield-point and low-strain behaviour cannot be accurately recorded. To 
overcome this disadvantage machines have been developed by the use of a 
special cam to connect a rotating flywheel to the specimen [3-6] or driven by 
the potential energy in a compressed gas or liquid [7,8]. By controlling the 
fluid flow rate, relatively rigid machines were also developed [9-11].

For adequate measurement of loads and deformations at a strain rate of 102 
s'1, a frequency response of the order of 10 khz is needed, so that oscilloscope 
recording is almost invariably used.

1.1.3 High rates of strain (10 2-10 4 s 2)

At these rates, vibration or wave effects in the test machine or load-measuring 
device normally become too large to be neglected, so that it becomes necessary 
to design the test apparatus in such a way that these effects can be taken into 
account and allowed for. Hopkinson [12] used compression waves in a long 
elastic bar as a means of estimating the transient pressures caused by 
explosions, and Kolsky [13] adapted this technique as a means of both loading 
and measuring the load and deformation of a disc-shape specimen. This 
method, usually known as the split Hopkinson-bar method, uses an apparatus 
in which the specimen is sandwiched between two long elastic bars, along one 
of which a pulse or step wave is propagated towards the specimen; this wave
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is partially transmitted through the specimen into the second or recording bar, 
and the amplitude of the transmitted wave is used as a measure of the 
specimen load. By recording the incident and reflected waves in the first bar 
as well, and using the elementary theory of wave propagation in an elastic 
bar, it is possible to deduce the particle velocities at the two boundaries of the 
specimen, and hence to determine its means strain rate. Since its introduction, 
the method has been used in various forms for dynamic compression[ 10,14-23]; 
tension [24-27]; simple shear [28-31] and torsion [32]. By this technique, valid 
test results are obtainable at strain rates approaching and even exceeding 104 
s'1 if certain precautions are taken [33].

The use and limitations of the Hopkinson pressure bar have been examined 
by Davies [34] and the split Hopkinson-bar method has been discussed by 
several authors [13,18,19,23,27]. The use of longitudinal waves introduces a 
basic limitation, in that such waves show significant geometric dispersion for 
wavelengths which are not large compared with the bar diameter; thus very 
sharp-fronted pulses cannot be transmitted or measured by means of these 
waves. A further complication in the use of the split Hopkinson-bar method for 
compression tests arises from the radial expansion of the specimen during its 
deformation. This expansion affects the stress in the specimen in two ways: 
firstly by causing frictional shear stresses which act at the specimen-bar 
interfaces, and secondly by introducing inertial body forces within the 
specimen. The first of these effects can be minimized by lubrication of the 
specimen surfaces, but the second constitutes a limitation on the strain rates 
at which accurate results can be obtained. By an approximate analysis, it has 
been shown [23,35] that, because of radial inertia, in a test at constant strain 
rate the measured axial stress exceeds the true uniaxial flow stress by an 
amount which increases as the square of the strain rate. In two particular 
cases, it was found that the error amounted to 0.05% at a strain rate of 
2.2xl03 s'1 and 17.5% at a strain rate of 2.5xl04 s'1.

Similar problems arise in the use of the split Hopkinson-bar method for 
tension test, and in addition stress concentrations at the specimen-bar 
connections are inevitable. In both compression and tension tests, the strain



1.1 Experimental Methods 4

distribution within the specimen becomes increasingly non-uniform as the 
strain increases, because of barrelling or necking of the specimen.

The effect of inertia on the load in high-velocity metal working have been 
considered by Hillier [36] and Lippmann [37]. They studied the axially 
symmetric and plane strain forging by rigid overlapping dies for a variety of 
frictional conditions. Hillier evaluated the effects of inertia at the start of a 
forging operation thereby demonstrating the effect of impact velocity alone, 
and disregarding the effect of die deceleration; this predominates towards the 
end of the process. Lippmann concluded that although lateral inertial effects 
may be neglected when using slow presses, they can become significant in 
conventional speed forging processes, and will predominate at high working 
velocities. Explicit solutions for the estimation of inertial effects in high- 
velocity plane strain and axisymmetric compression for a variety of frictional 
conditions excluding the effect of strain rates have been derived by Sturgess 
and Jones [38], which predicts that increased impact velocity increases inertial 
effects, but increased interface friction tends to suppress these effects.

Most of the difficulties and limitations experienced in the compression and 
tension versions of the split Hopkinson bar are eliminated by the use of the 
torsional version. A variation of the split Hopkinson bar that has been 
developed at several laboratories to achieve high rates of strain in torsion was 
first described by Duffy et al [39]. The primary advantages of the torsional 
mode of wave propagation are that it is non-dispersive and that three- 
dimensional or radial inertia effects are not present. The major problems in 
the torsional version of the split Hopkinson bar are the attachment of the 
specimen to the incident and transmitter bars and the generation of a high- 
amplitude, short rise-time torsional pulse without any axial disturbances. The 
specimen is generally thin walled tubular type and has been successfully 
attached through bonding with epoxy adhesives. The generation of the 
torsional wave has been achieved either through simultaneous explosive 
loading on diagonally opposite sides of a bar or by pre-torquing a bar and then 
suddenly releasing a clamp. Increasingly higher strain rates can be achieved 
by higher input torques or by using shorter gage-length specimens. Specimens
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of the order of 1 mm gage length have been employed to achieve strain rates 
in excess of 104 s'1 by several investigators. Nicholas and Lawson [40] 
demonstrated that data from extremely short specimens could be reliably 
reproduced with longer gage-length specimens. The torsional version of the 
Hopkinson bar was first used by Baker and Yew [32], Alternate versions of the 
apparatus and its application are given by Campbell and Dowling [41] and 
Lewis and Campbell [42]. The apparatus has found extensive application in 
incremental strain-rate tests. Further development in this area has 
considerable potential because of the inherent advantages of torsional testing, 
including the absence of hydrostatic components of stress.

Two other completely different methods have also been used to investigate 
material behaviour at high rates of strain. Both of these avoid setting up 
significant stress waves in the specimen or straining apparatus. In the first 
method [43,44] the specimen is made in the form of a thin circular ring to 
which a radial motion is imparted by explosive or electro-magnetic means. If 
the impulse occurs in a very short time, after which the specimen moves 
freely, the circumferential stress is given directly by the radial deceleration of 
the ring. However, the accuracy obtainable in practice is severely limited 
because measurement of the deceleration involves double differentiation of an 
experimental displacement-time trace; in addition, the imposed radial force is 
likely to persist for at least an appreciable part of the test and its 
measurement presents great difficulties. One advantage of the test is the 
avoidance of stress concentrations in the specimen and this makes it 
potentially very suitable for investigating yield-point phenomena. Behaviour 
at high strains cannot be studied, since necking and fracture supervene as in 
a conventional tensile test. Maximum strain rates of about 2xl03 s'1 have been 
achieved [45], but the rate falls rapidly during the test.

The second method is based on measuring the forces required to deform a 
material which passes continuously through the deformation zone, so that the 
system is in a steady state. This type of deformation occurs in many practical 
metal forming processes, e.g. rolling, extrusion and machining, so that in 
principle any of these could be used to determine the effect of strain rate on
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material behaviour. The method was first used in experiments on strip rolling 
[46] in which strain rates of up to 200 s'1 were obtained. Using orthogonal 
machining [47-49], strain rates of up to 2.8xl04 s'1 were achieved. The 
advantage of using a steady-state process is that the applied forces are 
essentially constant and so can be easily measured. However, the strain and 
strain rate vary rapidly through the deformation zone so that it is necessary 
to measure accurately the flow of the material within this zone. The method 
suffers from the difficulty that the measured forces give average stress values 
only and hence a complete stress-strain curve cannot be derived from the 
measurements; in addition because of the large strains considerable 
temperature rises occur in the material, which must be estimated by 
independent means. In spite of these complications, it has proved possible to 
correlate the results obtained in machining tests with those obtained at lower 
rates using other methods.

1.1.4 Very high rates o f strain (above 104 s 1)

There has been increased emphasis, especially in recent years, to achieve ever- 
increasing strain rates using the Hopkinson bar apparatus. Within the 
constraints and limitations of the physical apparatus and the assumptions, one 
of the most direct methods for achieving higher strain rates is through the use 
of smaller test specimens. Edington [50] was one of the first to achieve strain 
rates up to 104 s'1 by using 2 mm long by 12.5 mm diameter specimens that 
were fabricated using extremely accurate machining. Lindholm [51] achieved 
rates up to 105 s'1 on specimens of 1100-0 aluminium and copper by reducing 
specimen lengths to 4 mm. He was careful, however, to preserve a constant 
effects of specimen geometry on the resultant data. There are, however, 
practical limitations to the size of specimen that can be used, and the 
problems of neglect of radial inertia and shear are always a factor. These 
difficulties have led investigators to explore other methods of subjecting 
materials the high rates of strain such as in torsion or in shear.

The concept of original Hopkinson bar, which involves measurements at one 
end or at some position along the bar to deduce what is occurring at other end,
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has been applied in an attempt to achieve extremely high strain rates and 
very large strains in compression. Samanta [23] utilized a direct impact 
version of a Hopkinson bar by firing a projectile directly against the specimen, 
thus eliminating the input bar as such. This procedure allowed him to obtain 
very large compressive strains in aluminum and copper. Load was determined 
in the conventional manner from strain gauges on the output bar, while an 
optical method was employed to observe strain directly. Wulf and Richardson
[52] reported measurements of strain rates up to 105 s'1 and true strains up 
to 2.0 using a hardened projectile impacting the specimen directly in place of 
the input bar. In their procedure, strain was measured directly using a coaxial 
capacitor. Their report describes this new circuit for measuring rapid changes 
of capacitance that is an improvement of a capacitance-type gauge for 
measuring strains in a Hopkinson bar set up described earlier by Wingrove
[53]. Gorham [54] describes a modified Hopkinson bar system also using the 
direct impact of a striker bar against the test specimen. He used a high-speed 
camera with a novel optical system to achieve very high radial displacement 
resolution from which to calculate strain. In tests of 8 pis duration which 
subjected 1 mm diameter by 0.5 mm  long tungsten-alloy specimens to strains 
of 30%, a strain rates of 4xl04 s 1 was achieved. These high strain rates could 
generally not be achieved in a conventional split Hopkinson bar experiment 
because of limitations on the strength of the bars and because of the large 
forces necessary to deform very high strength materials.

Strain rates are so high that experimental results involving the observation 
of the transient wave propagation phenomena are also often used indirectly 
to determine the dynamic mechanical properties of materials. In experiments 
involving the properties of uniaxial stress waves in rods, the procedure applied 
is to assume that the material submits to a certain constitutive law and then 
through calculations based on the law to predict the propagation 
characteristics. The predicted results are then compared with the experiment 
results. Agreement between the two usually leads to the logical conclusion that 
the assumed constitutive law is an accurate description of the phenomeno
logical behaviour of the material.
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Experimental observations of plastic wave propagation phenomena have been 
used for determining constitutive law for dynamic study and high strain rate 
for number of metallic materials. Taylor [55] put forward an analytical method 
in conjunction with ballistics test results obtained experimentally by Whiffin 
[56]. Hawkyard et al [57] extended the work of Whiffin to estimate the mean 
dynamic flow stress of copper and mild steel at elevated temperatures. The 
experimental technique used by Whiffin and Hawkyard involved firing 
cylindrical projectiles against a rigid anvil.

By the technique of firing projectile on to the anvil, Hashmi [58] measured the 
impact velocity using a wire-breaking contact system and recorded the 
corresponding load-time history using a piezo-electric load cell positioned just 
behind the anvil insert. A finite difference numerical technique was used to 
establish the constitutive law of a mild steel from ballistic experimental 
results which gave rise to strain rates of up to 106 s'1 [59].

The experimental technique in which a cylindrical specimen placed on a flat 
rigid anvil was struck by a high speed projectile caused by means of 
compressed air was used by Haque and Hashmi [60]. In their experiments, a 
ballistic test rig was used to fire a hardened tool steel projectile onto a small 
cylindrical specimen placed upon a rigid anvil. Compressed air was used to 
propel the projectile and a high speed image converter camera was used to 
continuously record the deformation-time history of the specimen. These 
records were then used to obtain force-time, strain-time, stress-time and strain 
rate-time histories during the entire deformation process. From these results 
the stress-strain properties of structural steel at strain rates between 103-105 
s'1 were then established. The friction, material inertia and temperature rise 
during the high speed deformation were considered.

There are two kinds of fundamental difficulties in applying an approach of this 
type. The first concerns the sensitivity of experimentally obtained propagation 
characteristics to variations in the constants of the form of the proposed 
constitutive relationship. The second is the lack of a unique solution even if 
the experimental results are predicted by the proposed constitutive law. There
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is nothing to say that some other constitutive law might not predict the same 
characteristics. These points have been illustrated through the calculated 
results by Ripperger and Watson [61] for the case of uniaxial stress waves in 
a bar subjected to a step input in stress at one end and by Percy [62] for 
waves of uniaxial strain.

1.2 Experimental Results

There is clear experimental evidence that most metals and alloys exhibit some 
increase in strength with increasing strain rate. The oldest experiments in 
dynamic plasticity seem to be those of J. Hopkinson [63] and B. Hopkinson 
[64], who studied the propagation of longitudinal waves in iron wires. They 
observed that the dynamic yield stress is approximately twice as high as the 
static yield stress. Brown and Vincent [65] reached a similar conclusion: for 
mild steel the yield point is considerably increased when the duration of the 
test is very short. Taylor and Quinney [66] used very rapid dynamic tests to 
show that the dynamic yield stress is much higher than the static one for mild 
steel; for copper it is only a little higher. Taylor [66] studied the dynamic 
properties of various materials, by means of experiments in which short 
cylindrical specimens were projected with great velocity against a rigid wall; 
he showed that for paraffin wax the ratio between the dynamic yield stress 
and the static one ranges from 1.3/1 to 2/1. For mild steel this ratio is higher 
than 2, but for duralumin it is lower. Davies [67] also determined the ratio of 
the dynamic yield stress to the static one for various types of steel. In this case 
the specimens were thick plates of the steel considered. A ball of very hard 
steel was either thrown or alternately only pressed against them. He reached 
he conclusion that for nickel-chrome steel the ratio is approximately 1, for 
armourplates 1.1, and for mild steel 2. Duwez and Clark [68] reached a similar 
conclusion by showing that under certain conditions the dynamic yield stress 
of annealed mild steel can be double or triple the static yield stress. The 
dynamic characteristics of some high polymers (nylon, neoprene, etc.) have 
been studied by Hillier and Kolsky [69]. These authors determined the velocity 
of propagation of sound and hence the dynamic value of Young’s modulus for 
the respective materials. Kolsky [13] determined the dynamic stress-strain
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diagram for materials such as rubber, polyethylene, perspex, copper and lead. 
A modified Hopkinson pressure bar apparatus was used, and the specimens 
were in the form of circular disks of uniform thickness. It was found that for 
polythene, rubber and perspex the effective elastic modulus for the dynamic 
tests is very much higher than that observed statically, and that the whole 
dynamic stress-strain curve differs from the static one. An important delayed 
recovery phenomenon was discovered in the case of these materials; the strain 
continued to increase rapidly after the stress had passed its maximum value. 
However, these materials showed no permanent strain after the experiments. 
Their results have been further discussed theoretically [70,71], pointing out 
similar conclusions for various steels, i.e. the displacement upwards of the 
plastic portion of the stress-strain curve and the existence of a certain delay 
in dynamic yield phenomena. Similar results for polythene were obtained by 
Taylor and Volterraec [66].

By measuring the velocity of longitudinal waves travelling along a rod, 
Campbell [72] showed that in dynamic experiments mild steel behaves 
elastically up to stresses much higher than the static yield stress. De Costello
[73] found that for rates of strain of about 104 to 105 s'1, the ratio of dynamic 
to static yield strength is 2.9 for mild steel and 1.5 for Vibrac. To obtain an 
indication of the strain-rate sensitivity of various metals, Davis and Hunter
[74] proposed a method for measuring dynamic hardness. They showed that 
for many metals the dynamic hardness is bigger than the static one. The use 
of dynamic indentation techniques for investigating the dynamic yield stress 
has been reported by many authors [75,76],

The same conclusions are valid for various photo-elastic materials used to 
study transient phenomena. Durelli and Riley [77] used an epoxy resin for this 
purpose, Feder et al [78] used plastics, Clark [79] as well as Goldsmith and 
Dabaghian [80] used Columbia Resin No. 39, Clark and Sanford [81] various 
photo-elastic materials, Perkins [82] photo-elastic rubber and gelatine, etc.

Many high-speed testing machines have been built in order to study the 
dynamic properties of various plastics [83-87]. These authors all showed that
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plastics are to a great extent rate dependent; the elastic constants are also 
rate dependent, and certainly the yield points. In addition, the relaxation 
phenomena are more important in high rate experiments than in low rate 
experiments. Thus for each rate of strain the plastics possess different 
mechanical properties [88]. Pilsworth and Hoge [89] have shown that nylon 
yams and rubber strip subjected to longitudinal impact at up to 100 m /s  are 
also rate dependent. By using high-speed photography Ivanov and Stepanov
[90] determined the strength of two reinforced plastics and of two pure resins 
at temperatures ranging between -196°C and +150°C for impact velocities up 
to 1500 m/s.  They concluded that the strength of plastics at elevated 
temperatures is more rate sensitive than at low temperatures; at -196°C the 
difference between static and dynamic properties was found to be insignificant.

The experiments made by Kolsky [13] with copper and lead showed that the 
dynamic elastic modulus does not differ sensibly from the static one, but that 
the whole dynamic stress-strain curve is higher than the static curve. Since 
the strain increases even after the stress has begun to fall, it follows that the 
dynamic constitutive equation for copper is time-dependent (dynamic 
relaxation). It should also be noted that the static stress-strain curve does not 
seem to be to a great extent rate dependent. The properties of lead were found 
to be similar to those of a viscous liquid: the stress was approximately 
proportional to the rate of straining. The dynamic yield stress in lead is found
[91] to be far in excess of the static yield stress and sometimes even to exceed 
the static ultimate strength. A technique similar to that used by Kolsky was 
used by Davies and Hunter [18] who tested annealed copper, aluminium, zinc, 
magnesium and a-brass specimens. In all case, a rate effect which raised the 
stress level for any given strain by a factor varying form 1.0 to 3.0 was 
confirmed. Davies and Hunter have also tested certain polymers and have 
revealed the large stress relaxation shown by these materials at constant 
strain. It is certain that polymers are highly rate dependent. The Hopkinson 
pressure bar was also used by Lindholm [19] in order establish the dynamic 
properties of lead, aluminium and copper; results similar to those mentioned 
above were obtained, i.e. an increase in the rate of strain (averaged out over 
the entire specimen) increased the dynamic yield stress for all three of these
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metals. The influence of the rate of strain is generally large, not only on the 
dynamic stress-strain curve, but also on the static curve. Since the density of 
slip bands increases with increasing strain rate, the structure of a metal 
deformed to a given strain differs according to whether deformation occurred 
statically of dynamically. A certain decrease of the static yield stress seems to 
result due to previous dynamic loadings. Experiments have also been 
performed with epoxy resin and moulding plaster; both were found to be 
highly rate sensitive, including the initial elastic modulus which increases 
with the rate of strain. The same experimental method was also used by 
Chiddester and Malvern [92] who have confirmed the existence of a large rate 
influence for aluminium at various temperatures. The rate sensitivity seems 
to increase with temperature.

The difference between the dynamic and static properties of various metals 
was also studied by Ainbinders [93,94]. He too showed that for various steels, 
copper and zinc the dynamic yield stresses are higher than the static ones and 
that of all the mechanical parameters of a metal, yield stress is the one most 
sensitive to an increase in the rate of loading.

Campbell [95] performed dynamic tests on aluminium alloy specimens. In the 
plastic range investigated, the stress-strain curve during loading is found to 
be 15-20% higher than the quasi-static one. Dynamic tests on aluminium 
under compression impact have also been performed by Johnson et al [96]. 
They found that the dynamic stress-strain relation lies above the static stress- 
strain curve, but that it was necessary to use a family of dynamic stress-strain 
relations rather than any single one. These authors also discussed the stress 
relaxation phenomena and showed that the dynamic stress-strain relation 
describes the momentary behaviour of the material but not its permanent 
behaviour. After experiments with steel specimens, Campbell [97] again 
showed that the stress necessary to cause yield is about twice as great under 
the conditions of an impact test, than the stress required under normal static 
conditions. A certain "delayed yield" phenomenon was revealed, i.e. it was 
found that in a certain section the strain increases rapidly, remains constant 
for a short time, and then increases again before being reduced by the
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unloading wave coming from the free end. The delayed yield phenomenon was 
also demonstrated by Taylor [98] for mild steel, pure iron and carbon 
manganese. He repeatedly loaded these materials at an initial straining 
velocity of V=4.5 f t / s  which fell to zero after the metal had plastically yielded 
for T msec. Repeated dynamic loadings of mild steel specimens have also been 
reported by Taylor [99]; once more the conclusion is that the dynamic yield 
stress increased with the rate of strain. Harris and White [100] showed that 
plastic straining under longitudinal impact causes a greater hardening in 
annealed mild steel than what an equal static strain does.

The influence of dynamic loading and temperature on the yield point for iron 
and steel was studied by Krafft et al [15]. They showed that the dynamic yield 
stresses are higher than the static ones, by an amount that varies with 
temperature. Lowering the temperature or increasing the strain rate affects 
the stress in a similar way: the yield stress increases. Maiden and Campbell 
[101], doing experiments with carbon steel, noticed that increasing the average 
strain rate to up to 600 s'1 or decreasing the temperature to -183°C had the 
same effect on the stress-strain curve. In the dynamic experiments the upper 
yield point was 2.5 times higher than the static one, while the lower yield 
strain was considerably increased. Similar results have been obtained by 
Koshelev and Uzhik [102] for specimens made of iron and by Uzhik and 
Voloshenko-Klimovitskii [103,104] for some types of steel and armco-iron. 
Their experiments generally showed an increase of the yield stress due to 
dynamic testing or to a decrease of the temperature; with some steels however, 
the yield stress seemed to decrease during dynamic testing. Voloshenko- 
Klimovitskii [105] continued these researches and showed that increasing the 
rate of loading and decreasing the temperature produce the same effect on the 
stress-strain curves, i.e. they are raised. If both phenomena intervene, the 
effects are assumed to be additive. The same phenomena were studied by 
Vitman et al [106-108]. The temperature and rate influences have also been 
studied by other authors [109-110].

The dynamic properties of mild steel have been studied by Campbell and Duby 
[16]. They showed that the dynamic yield stress can be 2.5 times bigger than



1.2 Experimental Results 14

the static one [109,111,112] and that after a previous dynamic straining the 
static stress-strain curve lies about 1 0 % below the one obtained by reloading 
a specimen strained an equal amount statically. Thus, the static stress-stain 
curve seems to fall due to the rate influence of a previous dynamic experiment, 
while in steel the density of slip bands is greater after rapid straining than 
after slow straining. A similar result is reported by Riparbelli [113] and Smith 
[114]. Hawkyard and Freeman [115] found an increase of the dynamic yield 
stress with respect to the static one for carbon steel, aluminium and an 
aluminium alloy. Similarly Campbell and Harding [25] found that the yield 
stressed of refined iron and carbon steel increased considerably due to an 
increase of the rate of strain.

The dynamic properties of some types of steels were also studied by 
Voloshenko-Klimovitskii [116]. He showed that the dynamic stress-strain 
curves in tension are approximately of the same shape as the static ones; it is 
only the yield point that increases. For steels which possess a horizontal 
portion in the stress-strain curve, the elastic limit increases by approximately 
42%, and for steels with no horizontal portion by 11% only. In another paper 
Voloshenko-Klimovitskii [117] studied for different types of steels the 
modification of the yield stresses of various steels resulting from an increase 
of the loading velocity. He showed that in dynamic experiments the yield limit, 
especially for armco-iron, is 2.5-3 times higher than the static yield point. It 
should however be noted that for other steels the yield point does not increase 
in dynamic test. Similar results were reported by Moldovan [118]. He showed 
that in dynamic experiments the strengths of copper, aluminium, lead and tin 
increase significantly.

Working with various steels and with lead, Chang and Chao [119] showed that 
the rate of strain has an important influence on the stress-strain curves at 
various temperatures, although the experiments were performed at fairly 
small rates of strain. These authors indicated various rate-dependent types of 
stress-strain relations, and confirm that aluminium is to a less extent rate 
dependent at the strain rates considered.
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The dynamic properties of a certain aluminium alloy were studied by 
Konstantinov and Timofeev [120]. Such kind of alloy is also rate dependent, 
i.e. the dynamic yield stress is much bigger than the static one. These authors 
studied the influence of ageing on the static and dynamic yield stresses, and 
showed that the yield limit increased with time of ageing. They also discuss 
the behaviour of the metastable phase, when the dynamic yield stress can be 
below the static one.

Campbell and Dowling [41] performed a series of experiments using mild steel, 
copper, and aluminium prestressed in torsion. They noted that the propagation 
speed of a stress wave set up by a shear stress increment is essentially that 
of elastic waves for a range of values of pre-strain. They concluded that a rate- 
dependent constitutive law that predicts instantaneous plastic strain 
increments must be used to describe those materials. Nicholas and Campbell 
[1 2 1 ] performed incremental wave experiments on a high-strength aluminium 
alloy in torsion. For this material, which was found to be effectively insensitive 
to strain rate in constant-strain-rate torsional Hopkinson bar tests, a wave 
front travelling at the elastic shear-wave velocity was found in all cases, 
although this over-stress was sustained for a very short time period and its 
peak magnitude was only some 4% of the static flow stress. Klepaczko [122] 
performed incremental wave experiments in annealed aluminium, annealed 
copper, and deep drawn steel in tension when the specimens were pre-loaded 
at a constant strain rate. The precursor was again found to propagate at c0 in 
apparent verification of a rate dependent theory. Klepaczko pointed out, 
however, that these types of experiments must be performed under constant- 
strain-rate pre-loading, since either constant-stress or constant-strain pre- 
loading will lead to creep or stress relaxation, respectively, for a material that 
is strain-rate dependent. He further emphasized both the improved accuracy 
in the use of incremental wave speed measurements over those in unstressed 
rods as well as the importance of strain-rate history in the material response.

The influence of pressure and temperature on the dynamic elastic moduli was 
studied by Hughes and Maurette [123], It was showed that for armco-iron, 
pure aluminium and fused quartz the elastic moduli can be represented by
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linear functions of pressure and temperature. Concerning the elastic constants 
of a material, Jukov [124,125] has shown that even in static experiments on 
metals the plastic strain decreases the elastic constants. The increase of the 
elastic modulus in dynamic experiments was also reported by Hrazdil and 
Krejci [126,127] for low carbon steel and tool steel.

Klepaczko [128,129] has investigated strain-rate history effects in commercially 
pure aluminium (99.80%) tested in shear at rates of 1.6xl0 ' 5  and 0.624 s'1. In 
these tests, specimens were strained at one rate, unloaded, and then strained 
at the other rate; the flow stresses were compared with those obtained at 
constant strain rate. These experiments showed that strain-rate history effects 
are significant when large changes in rate occur suddenly. During continued 
straining at the new rate, the flow stress tends towards that corresponding to 
a constant-rate test, though an appreciable difference is still evident even after 
the strain has doubled. For a reduction of rate the initial decrement of stress 
is about 30% less than that obtained from constant-rate tests. For an increase 
in rate the increment of stress is strongly strain-dependent, its initial value 
being very small. He discussed the interpretation of these results in terms of 
variations in dislocation density with strain-rate history.

Using the torsional version of the split Hopkinson’s pressure bar, Tsao and 
Campbell [130] compared typical stress-strain curves for commercial-purity 
aluminium at shear strain rates from 600 to 2800 s' 1 with the quasi-static 
response at ~2xl0 ' 3  s'1. Similar results for annealed titanium obtained by 
Eleiche and Campbell [131] on the same apparatus. In these tests only the 
specimens tested at the highest and the lowest rates were strained through 
failure. For both materials there is a significant increase in flow stress with 
strain rate. The greatest strain rate sensitivity, however, is usually found in 
materials of body-centred cubic structure.

A large amount of the available data has been reviewed by Lindholm and 
Bessey [132]; and Jiang and Chen [133]. The materials extensively tested 
include aluminium and several commercial aluminium alloys, lead, copper, 
iron and iron alloys, titanium alloys and beryllium. The data cover strain rates
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from 1 0 ' 5  to about 1 0 3  s'1, and for many fee metals and alloys the logarithmic 
rate sensitivity X= d a / d ( l o g e p)  is a constant over a considerable range of rates. 
However, the value of X is found to increase with increasing strain.

Results of many researchers shows that at very high strain rates, of the order 
of 1 0 3 s' 1 and above, the flow stress of many materials increases much more 
rapidly with strain rate. After studying the references listed in Table 1 , 
Follansbee [33] concluded that the strain-rate sensitivity, evaluated at 
constant strain, is found to increase when the strain rate is raised above 
roughly 103  s'1. When the maximum strain rate investigated is limited to 103  

s'1, such an increase is usually not observed.

1.3 Wave Propagation

As already noted, many metallic materials show only slight rate dependence 
of their mechanical behaviour at low and moderate strain rates. However, 
under impact conditions the behaviour is often, or perhaps always, essentially 
rate-dependent. Thus impact testing is a very important technique in the 
study of dynamic behaviour.

When a specimen is subjected to impact, inertial stresses must be taken into 
account, that is, wave propagation in the material must be allowed for in 
interpreting the results. The earliest theories of plastic-wave propagation in 
a rod [66,149-151] were based on a rate-independent quasi-static stress-strain relation 
a = f (e ) . Combining this with the equations of motion and continuity gives the 
wave speed as

c j l *  (1)
\  p dz

where p is the density of the material.

The wave speed thus decreases rapidly from the elastic value (E /p)112 as the
plastic strain increases. For a uni-directional wave it follows that
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Table 1 Previous investigations of high rate deformation ofFCC metals.

Reference
Maximum e

(103 s'1)
Material

Rate
Sensitivity

Hauser et al[17] 15 pxtl A l Increasing

Lindholm [19] 2 pxtl A l, Cu,Pb Constant

Karnes and Ripperger [134] 4 pxtl A l Increasing

H olt et al [135] 1 A l a lloys:7075,6061 Constant

Ferguson et al [136] 10 sxtl A l Increasing

Kumar et al [137] 26 sxtl A l Increasing

Lindholm and Y eakley [27] 2.6 1100 A l Increasing

Dharan and Hauser [138] 120 pxtl A l Increasing

Green et al [139] 1 1060 Al, Pb Increasing

Lindholm [51] 60 1100 Al Constant

Chiem and D uffy [140] 5 pxtl Cu Increasing

Ripperger [141] 5 OFHC Cu Increasing

Kumar and K um ble [142] 2 pxtl Cu Increasing

Edington [50] 10 sxtl Cu Increasing

D usek et al [ 143] 10 sxtl Cu Increasing

Stelly and Dormeval [144] 20 sxtl Cu Increasing

Shioiri et al [145] 2.5 OFHC Cu Increasing

Follansbee et al [146] 30 OFE Cu Increasing

M alatynski and K lepaczko [147] 2 pxtl Pb Increasing

M ullerl [148] 10 pxtl Ni Increasing
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o=p Jc2de =p j icdu (2)

where w is the particle velocity.

Eq. (2) can be used to determine the function f(e) from experiments in which 
the speed of propagation is measured as a function of strain or particle 
velocity. This method has been used by Bell [152], Rakhmatulin [153], Malvern 
[154] and others. It maybe noted that the method is applicable even when the 
dynamic behaviour of the material differs from the behaviour at low strain 
rates, provided that the former is effectively characterized by a single 
"dynamic" stress-strain relation. However, it has been shown in theoretical 
studies using different forms of constitutive relation [61] that the technique 
is unreliable as a method of determining the type of relation that governs the 
behaviour of the material.

The rate-independent theory has been applied to various problems including 
radial shear wave propagation in a cylinder or disc, spherical waves, and 
deformation of wires and membranes [153,155,156].

Eq. (1) predicts that if a small incremental stress is applied to a material 
while it is prestressed to a strain e0, the incremental wave will propagate at 
a speed [ f’(e(>) / p]112. Experiments of this type have been carried out by several 
workers [157-160]; the results have shown that in fact the speed of the wave 
front is essentially that of elastic waves (E/p)1'2. The use of the one
dimensional theory to treat the problem of incremental waves in rods has been 
criticized by Craggs [161], and an approximate analysis by De Vault [162] has 
shown that the neglect of radial inertia leads to an under-estimate of the wave 
speed. To avoid this complication, incremental shear-wave propagation in thin- 
walled cylinders has been investigated [41,163,164]. It was found that under 
this type of loading, in which the simple theory is exact, the wave front is 
propagated shear waves, for a variety of metals and alloys. It thus appears 
that the constitutive relation governing the dynamic behaviour is in principle
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rate-dependent, though as noted above it may be adequate in certain 
situations to use a rate-independent "dynamic" stress-strain relations as an 
approximation.

Another important technique in investigating rate effects in metals is the flat- 
plate impact test. In this test the material is subjected to a uniaxial strain and 
shock waves of very high intensity may be produced. Under these conditions 
it is found that an elastic precursor wave is generated, followed by as plastic 
shock wave whose speed depends on the impact velocity. At sufficiently high 
velocities this speed may reach or exceed the elastic wave speed, so that a 
single shock is propagated. It is found that the amplitude of the elastic 
precursor wave, if it exists, may be considerably greater than that 
corresponding to the "static" elastic limit. The amplitude decreases as the 
wave propagates and this attenuation has been related to the plastic strain 
rate [165,166].

It is clear from the results referred to above that in general plastic wave 
propagation requires the use of a rate-dependent constitutive relation for its 
proper description. In particular, a relation such as that proposed by Malvern 
[167], in which the plastic strain rate is a function of stress and strain, implies 
that an incremental wave propagates at the elastic wave speed, in accordance 
with experiment. A somewhat more general relation [156,168] is

^ = ® ( o , e ) — +Y (o,e) (3)
dt at

in which the function Ofa, e) governs the instantaneous plastic flow and the 
function x¥(o, e) the non-instantaneous flow. Although there seems to be no 
theoretical basis for assuming that the instantaneous response of metallic 
materials is other than elastic, it is possible that in certain cases part of the 
inelastic deformation may occur sufficiently rapidly to be considered as 
instantaneous. According to Eq. (3), an incremental wave propagates at a 
speed c0(l+EG>)'112, where c0 is the elastic wave speed. Experiments using thin- 
walled cylinders subjected to incremental torques have shown that for
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aluminium O is essentially zero while for copper it increases with plastic 
strain but is always small compared with the elastic compliance [41].

The subject of plastic waves has been treated extensively in the literature and 
reviewed from various points of view. Wave problems in the theory of 
plasticity are treated extensively in the book by Nowacki [169]. A general 
discussion of plastic waves is provided by Clifton [170]. The mathematical 
basis for plastic wave propagation is treated in detail by Cristescu [156]. 
Plastic waves are also reviewed by Craggs [171], while a survey of visco-elastic 
waves is provided by Hunter [172]. The earlier work in plastic waves is 
reviewed from a nonmathematical viewpoint by Hopkins [173]. A review of 
theoretical treatments and experimental methods in dynamic plasticity is 
presented by Campbell [174], and discussed in terms of the rated controlling 
mechanisms. Plastic wave theory, especially for uniaxial strain conditions, is 
reviewed by Herrmann, Chou and Hopkins [175] also treat high amplitude 
stress waves, primarily shock waves. A number of papers are to be found in 
the symposium proceedings of Kolsky and Prager [176].

1.4 Applications

1.4.1 Metal forming

Many metal-forming processes involve plastic deformation at medium or high 
rates of strain. In most such processes the material is subjected to a complex 
stress and strain history as it is deformed, and it is therefore difficult to 
determine precisely the strain rates involved. However, estimates of the orders 
of magnitude of these rates may be obtained by making reasonable 
assumptions concerning the kinematics of deformation. Atkins [177] has 
derived the following values for typical dimensions and speeds of working: 
sheet, rod or wire drawing, 1 -1 0 3  s'1; cold rolling, 1 0 2 -1 0 3  s'1; deep drawing, 1  

s'1. Theories of such processes, however, are usually based on a highly 
idealized constitutive relation, in which rate effects are ignored or taken into 
account simply by an empirical factor.
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In metal-forming processes, the plastic strains reached are often very large, 
so that data obtained in simple tension or compression tests are inadequate 
because of the limited strains that can be achieved. One method of 
circumventing this difficulty is to test, at medium or high rate, specimens 
which have previously been cold-worked to a given strain. This method has 
been used by Karnes and Ripperger [134] for aluminium, and by Atkins and 
Porter [178] for mild steel.

The strain rates involved in machining have been estimated by Stevenson and 
Oxley [179]. By the measurement of grids inscribed on the work-piece, they 
were able to deduce the velocity gradients, i,e, strain rates, in the deformation 
zone; it was found that the mean shear strain rate in the zone was given by

Vm-K ,W  <«>

where V8 is the shear velocity and d  is the depth of cut. For the typical values 
V=5 m /s  and d=0.55 mm, therefore, the value of 7 m is of the order of 104  s'1. 
By measurement of the tool force it is possible to estimate the flow stress at 
large strains as a function of strain rate [48,49]. Results obtained in this way 
for mild steel agree well with extrapolation from values obtained at lower 
strains and strain rates. In particular, there is a rapid increase in the 
logarithmic rate sensitivity at high rates, which corresponds to that observed 
in shear tests using the split Hopkinson-bar technique.

Punching or blanking may also give rise to very high strain rates [180-183]. 
By measurement of the punch force and displacement it is possible to 
determine approximate shear stress-strain curves at rates of from 1 0 4  to 1 0 4  

s' 1 [31]. It is found that although the flow stress increases as the strain rate 
is increased, the energy absorbed in punching remains approximately constant; 
this is because the displacement to rupture decreases with increasing speed 
of deformation.

Many metal-working processes have in recent years been performed at high
speed by use of stored energy rather than continuously supplied energy. The
types of energy source used have included chemical (explosives), electrical, and
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mechanical or pneumatic, In some cases it is possible to form in this way 
objects which cannot easily be formed by conventional means. For example, 
very large domes can be formed by explosive forming in which the explosive 
is used to produce high pressures in water (standoff operation); in other 
applications such as welding or cladding, the explosive is in direct contact with 
the workpiece. In standoff operations the strain rates produced are typically 
of the order of 1 0 2 s'1; in contact operations strain rates one or two orders of 
magnitude higher may be reached. The mechanical properties of materials 
formed by such operations may differ appreciably from those formed by 
conventional methods.

1.4.2 Structural mechanics

The advent of plastic design methods in structural engineering has led to the 
requirement that the post-yield behaviour of structural elements (beams, 
plates, etc.) should be known. In the case of structures which are subjected to 
impact loading, this means that the dynamic plastic behaviour must be 
determined. Cristescu [156] has considered the mechanics of wires and 
membranes under dynamic loading. The strength of steel beams in rapid 
plastic flexure has been measured [184,185] and the response of beams, frames 
and plates under impact loading has been studied [186-190]. These 
investigations have shown that in general it is necessary to allow for the 
strain rate in determining the dynamic plastic behaviour of structures. For 
mild-steel and aluminium-alloy beams in pure bending, an empirical relation 
due to Bodner and Symonds [187] has been found to be adequate at least as 
a first approximation:

k=C(MIMQ- \ Y  (5)

In this equation, k is the curvature, M  is the bending moment, M0 is the "full- 
plastic" or "limit" moment, and C, p  are constants for a given material; the 
equation therefore neglects work-hardening.
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1.4.3 Crack propagation

The problem of crack propagation is one of the most important topics in 
applied mechanics, and also one the most intractable. The original paper of 
Griffith [191] is still the basis of many of the theoretical approaches to the 
problem. The subject of Fracture Mechanics, stemming from the ideas of 
Orowan and Irwin [192], has developed as a generalization of Griffith’s energy 
method. Central to the subject is the concept of fracture toughness K,., which 
is related to the energy absorbed by plastic deformation in extending the 
crack. The critical applied stress at which a crack of length a may propagate 
is given by

(6)
fa

where P is a numerical constant.

The quantity Kc is, however, not a material constant, but depends on various 
factors including specimen thickness, temperature and crack velocity. The 
problems involved in applying the fracture-toughness concept to rate-sensitive 
materials have been discussed in a review by Kenny and Campbell [193], 
where it was pointed out that progress depended on the development of an 
adequate description of the stress and strain distribution within the plastic 
zone at the crack tip, such a description incorporating strain-rate sensitivity 
effects. Kanninen et al [194] have made measurements of the speed of crack 
propagation in steel-foil specimens, and showed that strain rates exceeding 1 0 4  

s' 1 existed in the plastic zone. The research work of Klahn et al indicated that 
the speed of unstable crack propagation depends critically on the rate 
dependence of the flow properties of the material in the plastic zone in front 
of the crack tip and that the development of more detailed models of the 
mechanism of propagation requires further experimental data on this rate 
dependence.
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1.5 Present work

Using an existing ballistic test machine, small cylindrical specimens of 
commercially pure copper and mild steel at various temperatures were 
impacted by a hardened tool steel projectile with very high speeds of up to 1 0 0  

m /s. The initial velocity of the projectile is recorded by a laser velocity- 
measuring device and the deformation of the impacted specimen is measured. 
For the propose of high temperature tests, the improvements for the machine 
have been made and a movable anvil unit to reduce the loss of heat was 
designed and used.

A mathematical model with a mixed boundary condition, to which the theory 
of propagation of longitudinal waves of plastic deformation is applied, has been 
established. A numerical method of the indirect or iterative procedure to 
determine dynamic properties of materials at various temperatures based on 
the model has been utilized. The corresponding computer programs have also 
been written and used. The properties of wave-propagation in the impact 
process of the specimen have been analyzed, the factors affecting the 
deformation of the impacted specimen such as adiabatic shear phenomena, and 
the effects of shock loading and the boundary conditions at the anvil end have 
been discussed, and the optimum parameters have been selected. Further, a 
method to examine and determine the validity of the constitutive equations of 
materials is recommended. The forms of constitutive equations at high strain 
rates up to 1 0 5  s' 1 for metals commercially pure copper and mild steel at 
various temperatures up to 400 °C have been proposed and the parameters in 
these suggested equations have been determined by means of agreement of the 
experimental results and numerical calculations. High strain rate properties 
established using the present technique have been compared with those found 
in the literature.



Chapter 2 
Model Configurations and Numerical Solutions

2.1 Introduction

Generally, the theoretical analysis of an experimental system requires 
idealization of the system into a form that can be analyzed, formulation of 
governing equilibrium equations, and interpretation of the results. Therefore, 
it is necessary to establish a mechanical model of the experimental 
configuration which may be used to formulate corresponding mathematical 
equations, and it is also indispensable to develop a method which can be used 
to solve these governing equations. The solution obtained can be used both to 
examine the detail of mechanical properties with regard to the experimental 
system under the conditions of the model and to provide a means to further 
determine the constitutive equation of the material of the tested specimen.

In this chapter the mechanical model is first simplified based on the 
experimental system in which a small cylindrical specimen placed upon a 
hardened anvil is struck by a projectile with a high speed as shown in Fig. 1. 
Compressed air is used to propel the projectile and the dimensions of the 
impacted specimen before and after the test are measured. Secondly, the 
system equilibrium equations are derived and the elastic solution is given in 
which some basic concepts of the propagation of longitudinal wave are 
exhibited. Thirdly, the theory of propagation of longitudinal waves of plastic 
deformation is applied to the model, the quasi-linear elastic-plastic system 
equilibrium equations are established, along their characteristic lines, the 
program of the numerical solutions of the forward integration procedure is 
given. Finally the solutions of the equations subjected to the constitutive 
equation reported elsewhere under the typical parameters in the form of 
graphics are given and discussed.

26
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Fig. 1 Arrangement of projectile, specimen and anvil.

2.2 The Idealization of the System

(1 ) Compared with the impacted specimen, both the yield point and the 
elastic modulus of the projectile are considerably higher, so that, it can 
be considered as a rigid body in the process of the impact.

(2) The anvil is also considered as a rigid body for the same reasons as 
above, i.e. no deformation occurs in it in the process of the impact. 
Furthermore, because it is fixed at the frame of the testing machine, its 
mass is so great that the inertial acceleration of the surface between the 
anvil and the specimen can be negligible, which also means that the 
velocity at this surface remains zero.

(3) The stresses parallel to the central axis of the specimen are distributed 
uniformly over the cross section that is vertical to the axis.

(4) The friction between the projectile and the specimen is ignored.
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2.3 The Elastic Theory of the Propagation o f Waves

2.3.1 Longitudinal waves in a uniform bar

Considering an arbitrary cross section x of the model shown in Fig. 2 which 
has a increment dx, the element dx is regarded as in simple (tension) 
compression corresponding to the axial strain du/dx, u being a function of x 
and t only. The other stress components are taken as negligible. Further 
considering the element originally between cross sections at x  and x+dx, the 
equation of motion is

(7)
a* a 2

where A  is the area of the cross section of the specimen. When the variation 
of the area is ignored, we can obtain:

(8)
dx dt2

X dx
tHP

x+u

■

Fig. 2 Diagram for governing equilibrium equation.
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Considering now the case when the stress applied to a specimen is below the 
dynamic elastic limit of the material (it is noted that both the stress and 
strain are conventional), the constitutive equation is

(9)
a*

then, from Eq. (8 )

dx2 ~c dt2
=c*——— (10)

where

c=s[Efp (11)

It can be shown by substitution that any function f(x-ct) is a solution of Eq.
(10), any function g(x+ct) is also a solution, and the general solution of Eq. (10) 
can be represented in the form

u =f(x-ct) +g (x+ct) (12)

The general solution (12) represents two waves travelling along the x  axis in 
two opposite directions with the velocity given by Eq. (11) dependent on the 
properties of the material. For stresses below the dynamic elastic limit of the 
material, this velocity of propagation depends on the density and the elastic 
constant.

When only the function /  is retained in Eq.(12) (forward wave propagation), 
combined Eqs. (9) with (12) gives,

o = -p c — =-pcv (13)
dt

whereas for g  alone (backward wave propagation) one has

o=pc— =pcv (14)
dt
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where v=du/dt is the velocity of particles in the compressed zone of the 
specimen by the compressive forces. From Eqs. (11) and (14) one can get

o=E^ (15)c

a - v / f y  <“ >

The stress in the wave is thus determined by the ratio of the two velocities 
and by the modulus E  of the material. If an absolutely rigid body, moving with 
a velocity strikes longitudinally the left-hand end of the specimen as shown 
Fig. 3, compressive stress on the surface of contact at the first instant is given 
by Eq. (16).

2.3.2 The elastic solution of the equations

Consider now the problem of a bar specimen with a fixed end struck by a 
moving mass at the other end (Fig. 3). Let M  be the mass of the moving body 
per unit area of the cross section of the bar and v0 the initial velocity of this 
body. Considering the body as absolutely rigid, the velocity of particles at the 
end of the bar at the instant of impact (t=0) is v0, and the initial compressive 
stress, from Eq. (16) is

a o = v o ^ P  ( 1 7 )

Owing to the resistance of the bar, the velocity of the moving body and hence 
the pressure on the bar will gradually decrease, and a compression wave is 
obtained with a decreasing compressive stress travelling along the length of 
the bar (Fig. 3b). The change in compression with the time can easily be found 
from the equation of motion of the body, it can be written as

M— +o=0 (18)
dt

or, substituting for v from Eq. (16),
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(a)

oo
ct (b)

2 a

(c)

Fig. 3 A bar with a fixed end struck by a moving mass at the other end.

+o =0 (19)
jE p  dt

from which

a=a0e~t̂ /M (20)

This equation can be used so long as t<2L/c. When t=2L / c, the compressive 
wave with the front pressure ct0  returns to the end of the bar that is in contact 
with the moving body. The velocity of the body cannot change suddenly, and 
hence the wave will be reflected from the fixed end and the compressive stress 
at the surface of contact suddenly increases by 2a0, as is shown in Fig. 3c. 
Such a sudden increase of pressure occurs during impact at the end of every 
interval of time T=2L/c, and a separate expression for ct must be obtained for 
each one of these intervals. For the first interval, 0<t<T, Eq. (20) is used. For 
the second interval, T<t<2T, the conditions represented by Fig. 3c applies, and 
the compressive stress ct is produced by two waves moving away from the 
struck end and one wave moving toward this end. Designating the total 
compressive stresses produced at the struck end by all waves moving away 
from this end s/t), s2(t), s3(t),..., after the intervals of time T, 2T, 3T.... The
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waves coming back towards the struck end are merely the waves sent out 
during the preceding interval, delayed a time T, due to their travel across the 
bar and back. Hence the compression produced by these waves at the struck 
end is obtained by substituting t-T, for t, in the expression for the compression 
produced by waves sent out during the preceding interval. The general 
expression for the total compressive stress during any interval nT  <t<(n+l)T 
is therefore

o=sn(t)+sn_1(t-1 )  (21)

The velocity of particles at the struck end is obtained as the difference 
between the velocity due to the pressure sn(t) of the waves going away, and the 
velocity due to the pressure s„_i(t) of the waves going toward the end. Then, 
from Eq. (16),

v=-L [j„(0-V ,«-7’)] a2>
s/Ip

The relation between sn(t) and sn./t-T) can be obtained by using the equation 
of motion (18) of the striking body. Denoting by a the ratio of the mass of the 
bar to the mass of the striking body, and by L the length of the bar, one gets

a = Lp. j E p _ c L p 2 a  @3)
m ' m  m l  t

Comparing Eqs. (21), (22) and (23), and substituting Eq. (18), one has

from which, s„ may be derived as

" 2 w r [ / <25>

in which C is a constant of integration. This equation will now be used for 
deriving expressions for the consecutive values s1} s2... During the first interval 
0<t<T, the compressive stress is given by Eq. (20). During the interval, the 
velocity, strain and strain rate are respectively
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(26)

where e=c/E  and e=(axsj I (EM).

At the moment when the wave-front reaches the end of the specimen, the 
corresponding expressions at the arbitrary position x of the bar, are equal to 
those at t=(T/2-x/c), which are formulated as

between themselves, but decrease exponentially with regard to time. The 
variation of strain rate in the process of impact is dependent on the 
dimensions of the specimen, the ratio between the masses of the specimen and 
the projectile, and the initial velocity of impact.

2.4 The Elastic-Plastic Solution of the Equations

2.4.1 The equations and initial conditions

The plastic strain rate ep is a function of dynamic stress cr and strain e

but elastic deformation is independent of strain rate and the elastic strain rate 
ee is related to the stress rate through Hooke’s law

v=v0e ~(1 ~xtL)a

(27)

It can be seen that all the variables at the struck end have linear relations

Eèp=g(o,e): (28)

Eèe=à. (29)

where E  is the Young’s modulus. Therefore, in order to study the problem of
the propagation of longitudinal waves in a cylindrical specimen, a solution can
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be obtained from the following first order quasi-linear system containing three 
unknown functions a, v and e

_ dt da , x
aT a*+*(o,e)’

9v=J.5o (30)
dt p ax’
dv _ de 
dx dt

The first equation is the expression of constitutive relation proposed by 
Malvern [167], where e denotes the total strain. The function g(z) possesses 
the following properties

g(z)>0 if  z>0,
g(z)=0 if  zzO.

(31)

The second is the equation of motion Eq. (8 ), in which u is the particle velocity 
in the specimen, and p is the density of the material.

The third is the compatibility equation which is a consequence of the fact the 
e=du/dx and v=du/dt, where u(x,t) is the displacement at time t of the cross 
section which is initially at distance x from the impact end of the specimen 
(see Fig. 1).

The initial height of the cylindrical specimen is h, so that the initial and 
boundary conditions can be formulated as follows:

(a) the initial condition is:

f=0, 0zxih: o=0, b =0, v=0.

(b) the boundary condition at the fixed end x=h is given by

x=h, '
T^tzO: v=0, 

t*Ty: o=0.

(32)

(33)
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where T1 is the contact time of the specimen with the anvil, which can be 
determined during the calculation.

o

Shock wave
Stress

^ N wavefront

\

t

Fig. 4 Idealized schematic view of a shock pulse travelling through a solid material.

(c) At the impacted end, although the load is suddenly applied to the specimen, 
in reality this stress wave-front may not be abrupt, and is therefore not planar 
in the form of a planar interface. It might therefore be illustrated in the con
text of time and stress as shown in the schematic of Fig. 4. In the figure, the 
shock front is shown as a region where the material is subjected to increasing 
stress up to the peak shock pressure.

For materials with an upper yield point, high strain rate tests show a 
relatively greater strain rate sensitivity at yield stress than at other flow 
stress. This has been suggested to take place due to dislocation inertia or 
"Cottrel Rotation". However, in the present study, it has been shown that due 
to shock wave a large over-stress develops during the initial stages of 
deformation. The question arises that the so called dislocation inertia effect is 
due to shock wave or a combination of shock wave and "Cottrel Rotation". In 
the absence of any experimental stress-time results it was not possible to fully 
investigate this aspect.
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Considering the effect of shock waves, the conditions on the moving end that 
is acted on by the projectile is a mixed boundary condition. The final forms of 
which are expressed by following equation

x=0,

v=^t Oz Cz Tq,

“ (34)

m*1 .o-o or..
dt °

where v0 is the velocity of the projectile at t=0, M  is the mass of the projectile 
per unit area of the cross-section of the specimen and a is the compressive 
pressure between the projectile and the specimen. In order to simplify the 
calculation, in the first condition of Eq. (34) the sudden impact has been 
handled by a fast, but smooth variation of the impact within T0  which is the 
time during which the shock wave-front increases up to the peak stress. The 
second condition in Eq. (34) is a so-called mixed boundary condition used in 
the following calculation.

2.4.2 Method o f characteristics

A powerful mathematical tool for the solution to many problems in wave 
propagation is the method of characteristics. The method can be applied to 
systems of equations in the space and time variables x and t to determine the 
values of the dependent variables such as o, v and e numerically. The method 
is applicable to equations of the form

Bu, dut
^ —— +biJ—- -Ri (35>

# cbc dt ^

where repeated subscripts indicate summation. These are a set of quasi-linear 
equations, that is linear in the first derivatives, in the variables uj} where the 
coefficients aip by and may be functions of up x, and t.

Eqs. (30), which describe a problem of waves propagating in a long rod
governed by the rate dependent theory of plastic wave propagation, may be
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written as the following linear combination multiplied by ai} a2  and a3, 
respectively, in terms of the stress a, strain e and particle velocity v, as

dv dv da a 2 da , -  v de , vo,— +a,— -a ,— — +(a,£-a-)— =o ,g(o,e)  
2 dt 3dx 1 dt p dx 1 *  dt 1

Note that the differential of a function f(x,t) in the x-t plane is

df=¥dx+¥dt 
dx dt

(36)

(37)

Therefore, Eq. (36) may also be rewritten as

^ ( — d t+ ^ — dt) -(— d t+ - ^ — dt) +(E-— )— dt=g(a,e)dt (38)
ctj dt & 2  dx dt pa1 dx ccj dt

In order to find such a direction along which Eq. (36) can be written as a form 
of an entire differential, the following three relations are required,

— dt=dx,

from which one can obtain

a 9 a ,
—dt=dx and E -— =0, 

a ,Pa i
(39)

dx 
d t \

E— ~c 
P

(40)

and

dx 
dt \

E~ =-c. 
P

(41)

Along the Eqs.(40) and (41) the differential relations from (38) are respectively

da-pcdv=-g(a,e)dt (42)

and

da+pcdv=-g(a,z)dt. (43)

where
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c=\ -=Const. (44)

It can be found that when 0 3 =0 1 3=0 , or dx=0, Eq. (38) can also be written as a 
form of entire differential, i.e. along

dx=0, (45)

Ede =da +g(a,e)dt. (46)

The fact that the characteristic directions are fixed straight lines in the x-t or 
characteristic plane (Fig. 6 ), can greatly simplify the numerical integration. 
The solution is obtained by a numerical forward integration procedure using 
the initial conditions Eq. (32) along ac-axis and the boundary conditions 
Eqs.(33) and (34) that are prescribed along the ¿-axis. The region as shown in 
Fig. 6 , ahead of the leading elastic wave front x=ct, is at rest for assumed zero 
initial conditions.

Fig. 5 Characteristic field for floating boundaries.
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2.4.3 Numerical integration

Considering the case as shown in Fig. 5, the region under and including line 
OA is at rest for assumed zero initial conditions. This line is divided into a 
number (NELEM) of small segments OMu MtM2, etc., whose lengths are 
chosen to be equal. The length and the time interval corresponding to a 
segment are DLETH = h I NELEM  and DTIME=DLETH / c respectively where 
c is the velocity of the propagating wave and is given by Eq. (11). In the 
condition of the interval of the initial shock stress wave TLIMIT>0, the stress, 
strain and velocity along the line OA are set as zero, else, they are set as the 
peak value, i.e. the effect of the shock stress wave is ignored. The 
corresponding program is shown as Subroutine INITIAL.

Fig. 6  Characteristic line showing leading wave front and interior mesh points.

SUBROUTINE INITIAL(DVECO,DTIME)

C *** THE INITIAL CONDITIONS ***

COMMON NELEM,NCONT(0 : 500),PLETH,PMODL,PPEXP,PCOFB,PYILD,PBROK, 
. TLIMIT,SWITCH,PDESY,PVELO,XLETH(0:50000),TIME(0 : 50000),
. STRAN(0:50000),STRES(0 : 50000),VELOY(0 : 50000),DEFOM(0 : 50000)
IF (TLIMIT .NE. 0.) THEN
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DO 100 J=0,NELEM 
STRES(J)=0.
STRAN(J)=0.
VELOY(J)=0.
TIME(J )=J*DTIME 
XLETH(J)=DVEC0*TIME(J)
DEFOM(J)=0.

100 CONTINUE 
ELSE
DO 200 J=0,NELEM 
VELOY(J)=PVELO
STRES(J )=-PVELO * SQRT(PMODL* PDESY)
STRAN(J )=STRES(J)/PMODL
TIME(J)=J*DTIME
XLETH(J)=DVEC0*TIME(J)

200 CONTINUE 
END IF 
RETURN 
END

From the point M1 (Fig. 5) the characteristic line of negative slope (41) is

(47)

From Eq. (47) the position of point Nj on Ot axis is obtained as

(48)

The boundary condition Eq. (34), written in the forms

o
(49)

Wj *o

is integrated along O N Therefore, the velocity at N , can be obtained as 
follows
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Then, the differential relation (43), written in the form

a ~au=-9c(y-vM)-g(.altx,zM)( t- tl4)  (51)

is integrated along M1N1. From Eq. (51) o N 1  is determined. Then Eq. (46) is 
transformed into a finite difference equation

£ ( e - e 0) = ( o - o 0) + g ( o 0,E 0 ) ( f - f 0)  (52)

and is integrated. This yields eN1. Thus, at the point Nx the values of all the 
functions required are now known.

In order to obtain a closer approximation of these functions, the calculation 
can be repeated again. For this purpose velocity vm in Eq. (50) and the 
function g(c,e) in Eq. (51) are calculated using the values (g0 +ctn1)/2 and 
(e0 +eNi)/2 for a and e, while that in Eq. (52) using (aM1+GN1)/2 and (eM1+N1)/2 
for g and e. Here oN 1  and eN 1  represent the first approximations of the respect
ive functions. In this way, vN1, c N 1  and eN 1  are obtained more exactly.

The subroutine to evaluate the unknown variables a, e and v on the boundary 
of the moving end is as follows:

SUBROUTINE B0UND1(DPMAS,DLOC0,I)

C *** CALCULATING THE BOUNDARY VALUES AT THE MOVING END ***

COMMON NELEM,NCONT(0:500), PLETH, PMODL,PPEXP,PCOFB,PYILD,PBROK, 
. TLIMIT,SWITCH,PDESY,PVELO, XLETH(0 :50000),TIME(0 : 50000),
. STRAN(0:50000),STRES(0:50000),VELOY(0:50000),DEFOM(0:50000) 
TIME(NCONT(I))=TIME(NCONT(I-1)+1)-(XLETH(NCONT(I-1))
. -XLETH (NCONT (I-D+l) ) /DLOCO*PDESY 
IF (((TIME(NCONT(I))+TIME(NCONT(1-1)))/2) .LE. TLIMIT) THEN 
VELOY(NCONT(I))=PVELO*TIME(NCONT(I))/TLIMIT 
ELSE
VELOY(NCONT(I))=VELOY(NCONT(I-1))+(TIME(NCONT(I))
. -TIME(NCONT(I-1)))/DPMAS*STRES(NCONT(I-1))
END IF
STRES(NCONT(I))=STRES(NCONT(1-1)+1)-DLOCO*(VELOY(NCONT(I))
. -VELOY(NCONT(I-1)+1))-(TIME(NCONT(I))-TIME(NCONT(1-1)+1))
. *FUNSTA( STRES (NCONT (I-D+l) , STRAN (NCONT (1-1)+1) )
STRAN(NCONT(I))=STRAN(NCONT(I-l))+(STRES(NCONT(I))
. -STRES(NCONT(1-1))+(TIME(NCONT(I))-TIME(NCONT(1-1)))
. *FUNSTA(STRES(NCONT(I-1)),STRAN(NCONT(1-1))))/PMODL 
ATRES1=(STRES(NCONT(1-1)+1)+STRES(NCONT(I)))/2.
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ATRAN1=(STRAN(NCONT(1-1)+1)+STRAN(NCONT(I)))/2.
ATRES2=(STRES(NCONT(1-1))+STRES(NCONT(I)))/2.
ATRAN2=(STRAN(NCONT(1-1))+STRAN(NCONT(I)))/2.
IF (((TIME(NCONT(I))+TIME(NCONT(1-1)))/2) .GT. TLIMIT) THEN 
VELOY(NCONT(I))=VELOY(NCONT(I-1))+(TIME(NCONT(I))
. -TIME(NCONT(1-1)))/DPMAS*ATRES2 
END IF
STRES(NCONT(I))=STRES(NCONT(I-1)+1)-DLOC 0 *(VELOY(NCONT(I))
. -VELOY(NCONT(I-l)+l))-(TIME(NCONT(I))
. -TIME(NCONT(1-1)+1))*FUNSTA(ATRES1,ATRAN1)
STRAN(NCONT(I))=STRAN(NCONT(1-1))+(STRES(NCONT(I))
. -STRES(NCONT(I-1))+(TIME(NCONT(I))-TIME(NCONT(I-1)))
. *FUNSTA(ATRES2,ATRAN2))/PMODL 

100 RETURN 
END

To obtain the values of the unknown functions at an interior point, the pro
cedure used is as follows. Considering the point N2 (Fig. 5), its position will be 
found at the intersection of two characteristic lines Eqs. (40) and (41)

aN 2  and uN 2  can be obtained. The algorithm necessary to obtain eN 2  is more 
complicated. The segment N,M2 can be drawn whose intersection with the 
straight line x= const., passing through N2 gives the coordinates of Pv  Then, 
by interpolating linearly between N1 and M2, the values of GP 1  and eP 1  are 
obtained at this point

X XN~C(t ~tN)' (53)

Then from the relation in Eqs. (42) and (43) written in the form

a - aN=pc(y-vlfiy g i a Ni, t lfiX t- tNi)
(54)

(55)

and

(*m2 x n) r p1 (fpj x n) b m2+(x m2 x p) z n{ (56)

Now, from Eq. (46) written in the form
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E (e-zp)=a-api+g(api,tp )(t-tp ) (57)

one may proceed for obtaining eN 2  since c N 2  and t^  are already known. For a 
second approximation the procedure is similar to that given above.

The mathematical model is a mixed boundary value problem, that is to say, 
the curve OB shown in Fig. 5 is a floating boundary, which can be obtained 
step by step at the same time as the solution is procured. This curve 
represents the motion of the projectile which strikes the specimen.

After the solution at each interior point has be completed, the coordinate of its 
adjoining point will be treated considering the floating boundary. In order to 
determine the position of N t within the time tN1, a horizontal line of t=tm. is 
drawn from point N 1 to intersect the segment of the line OA. This gives the 
point Qj (which may not coincide with M2), and then by interpolation between 
M1 and M2, eQ 1  is also obtained. Hence, the deformation between N 1 and Q1} 
i.e. the displacement at the point N ly is approximately given by

Ah - C"'"eV  -x  ) Wa n Nl 2 N\

Thus, the coordinate of the floating boundary at the point N  [ is obtained.

The subroutine to determine the unknown functions in the inner points of 
integration framework and the coordinate of the floating boundary is as 
follows:

SUBROUTINE INNER(DVECO,DLOCO,I ,J)

C *** THE SOLUTION OF THE INNER FIELD ***
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

COMMON NELEM,NCONT(0:500) , PLETH, PMODL,PPEXP, PCOFB, PYILD,PBROK,
. TLIMIT,SWITCH,PDESY,PVELO,XLETH(0:50000),TIME(0:50000),
. STRAN(0:50000),STRES(0:50000),VELOY(0:50000),DEFOM(0:50000)
XLETH(NCONT(I)+J )=((TIME(NCONT(I-1)+J+1)-TIME(NCONT(I)+
. J-l))*DVECO+XLETH(NCONT(I-1)+J+1)+XLETH(NCONT(I)+J-1)) 12.
TIME(NCONT(I)+J)= (TIME(NCONT(1-1)+J+1)+TIME(NCONT(I)+J-l)+
. (XLETH (NCONT (I-D+J+l) -XLETH (NCONT (I)+J-1) ) /DVECO) /2.
STRES(NCONT(I)+J)=((VELOY(NCONT(1-1)+J+l)-VELOY(NCONT(I)
. +J-1))*DLOCO+STRES(NCONT(1-1)+J+l)+STRES(NCONT(I)+J-1)
. - (TIME(NCONT(I)+J)-TIME(NCONT(1-1)+J+l))*FUNSTA(STRES(
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. NCONT(I-l)+J+1),STRAN(NCONT(1-1)+J+1))-(TIME(NCONT(I)+J)

. -TIME(NCONT(I)+J-l))*FUNSTA(STRES(NCONT(I)+J-l),

. STRAN(NCONT(I)+J-1)))/2.
STRESP=((XLETH(NCONT(I)+J)-XLETH(NCONT(I)+J-l))
. *STRES(NCONT(1-1)+J+1)+ (XLETH(NCONT(1-1)+J+l)
. -XLETH(NCONT(I)+J))*STRES(NCONT(I)+J-l))
. / (XLETH(NCONT(1-1)+J+l)-XLETH(NCONT(I)+J-l))
STRANP=((XLETH(NCONT(I)+J )-XLETH(NCONT(I)+J-l))
. * STRAN(NCONT(1-1)+J+1) + (XLETH(NCONT(I — 1)+J+1)
. -XLETH(NCONT(I)+J))*STRAN(NCONT(I)+J-1)
. )/(XLETH(NCONT(I-1)+J+1)-XLETH(NCONT(I)+J-l))
TIMEP=((XLETH(NCONT(I)+J)-XLETH(NCONT(I)+J-1))
. *TIME(NCONT(1-1)+J+1)+(XLETH(NCONT(1-1)+J+l)-XLETH(NCONT(I)
. +J))*TIME(NCONT(I)+J-l))
. / (XLETH (NCONT (I-D+J+l) -XLETH (NCONT ( I)+J-l ) )
STRAN(NCONT(I)+J)=STRANP+(STRES(NCONT(I)+J)-STRESP+(TIME(
. NCONT(I)+J )-TIMEP)*FUNSTA(STRESP,STRANP))/PMODL 
ATRES1=(STRES(NCONT(1-1)+J+l)+STRES(NCONT(I)+J))/2.
ATRAN1=(STRAN(NCONT(1-1)+J+l)+STRAN(NCONT(I)+J ))/2.
ATRES2=(STRESP+STRES(NCONT(I)+J))/2.
ATRAN2=(STRANP+STRAN(NCONT(I)+J))/2.
ATRES3=(STRES(NCONT(I)+J-l)+STRES(NCONT(I)+J))/2.
ATRAN3=(STRAN(NCONT(I)+J-1)+STRAN(NCONT(I)+J ))/2.
STRES(NCONT(I)+J )=((VELOY(NCONT(I—1)+J+1)-VELOY(NCONT(I)+J-1))
. *DLOCO+STRES(NCONT(1-1)+J+l)+STRES(NCONT(I)+J-l)- (TIME(NCONT(I) 
. +J) -TIME (NCONT (I-D+J+l) ) *FUNSTA ( ATRES1, ATRAN1 ) - (TIME (NCONT ( I )
. +J)-TIME(NCONT(I)+J-l))*FUNSTA(ATRES3 , ATRAN3))/2.
VELOY(NCONT(I)+J)= (VELOY(NCONT(1-1)+J+l)+VELOY(NCONT(I)
. +J-1) ) 12 .+ (STRES (NCONT (I-D+J+l) -STRES (NCONT ( I ) + J-l )
. + (TIME(NCONT(I)+J)-TIME(NCONT(1-1)+J+l))*
. FUNSTA(ATRES1,ATRAN1)-(TIME(NCONT(I)+J)
. -TIME(NCONT(I)+J-1))*FUNSTA(ATRES3,ATRAN3))/2./DLOCO 
STRAN(NCONT(I)+J)=STRANP+(STRES(NCONT(I)+J)-STRESP+
. (TIME(NCONT(I)+J)-TIMEP)*FUNSTA(ATRES2,ATRAN2))/PMODL 
DXLETH=(STRAN(NCONT(I)+J-1)+ STRAN(NCONT(I-1)+J+1))/2.
. * (XLETH (NCONT (I-D+J+l)-XLETH (NCONT (I)+J-1) )
DEFOM(NCONT(I)+J-1)=DEFOM(NCONT(1-1)+J+1)+DXLETH
RETURN
END

Since the velocity is a constant (v=0) at the fixed end, the procedure is similar 
to that at the moving end, and is also simpler. As shown in Fig. 7, since the 
unknown variables at points Mk and Nk have been obtained, for the point Nk+1, 
its position will be found at intersection of two characteristic lines (40) and 
(45), approximated by the straight lines

x - x N =c(t-tNk),
x-h.

(59)
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h

Fig. 7 Characteristic field for fixed boundary.

Then the differential relation from Eq. (42) written in the form

°  - % =Pc(v-v„t) (6°)

is integrated along NkN k+1 and ck+1 is obtained.

Finally, the relation (46) is transformed into a finite difference equation

E(e -e „ t)=o -oM+g(aMt,eM̂ (t-tMk) (61)

and is integrated to obtain ek+1.

In the same manner as before, a second approximation is also made. The 
subroutine to determine the unknown functions on the fixed boundary is as 
follows:

SUBROUTINE BOUND2(NUMBR,DVECO,DLOCO,I)

C *** CALCULATING THE BOUNDARY VALUES AT THE MOVING END ***

COMMON NELEM,NCONT(0:500),PLETH,PMODL,PPEXP,PCOFB,PYILD,PBROK,
. TLIMIT,SWITCH,PDESY,PVELO,XLETH(0:50000),TIME(0:50000),
. STRAN(0 .*50000) , STRES (0 : 50000 ) , VELOY ( 0 : 50000) , DEFOM( 0 : 50000)
XLETH(NCONT(I)+NELEM)=PLETH
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VELOY(NCONT(I)+NELEM)=0.
TIME(NCONT(I)+NELEM)=TIME(NCONT(I)+NELEM-1)
. +(XLETH(NCONT(I-1)+NELEM)-XLETH(NCONT(I)+NELEM-1))/DVECO 
STRES(NCONT(I)+NELEM)=STRES(NCONT(I)+NELEM-1)+DLOC 0 *
. (VELOY(NCONT(I)+NELEM)-VELOY(NCONT(I)+NELEM-1))
. -(TIME(NCONT(I)+NELEM)-TIME(NCONT(I)+NELEM-1))
. *FUNSTA(STRES(NCONT(I)+NELEM-1),STRAN(NCONT(I)+NELEM-1)) 
STRAN(NCONT(I)+NELEM)=STRAN(NCONT(1-1)+NELEM)+ (STRES(NCONT(I) 
. +NELEM)-STRES(NCONT(1-1)+NELEM)+ (TIME(NCONT(I)+NELEM)
. -TIME(NCONT(I-1)+NELEM))*FUNSTA(STRES(NCONT(1-1)+NELEM),
. STRAN (NCONT ( I-D+NELEM) ) ) / PMODL
ATRES1=(STRES(NCONT(I)+NELEM-1)+ STRES(NCONT(I)+NELEM))/2. 
ATRAN1=(STRAN(NCONT(I)+NELEM-1)+STRAN(NCONT(I)+NELEM))/2. 
ATRES2=(STRES(NCONT(1-1)+NELEM)+STRES(NCONT(I)+NELEM))/2. 
ATRAN2=(STRAN(NCONT(I-1)+NELEM)+STRAN(NCONT(I)+NELEM))/2. 
STRES(NCONT(I)+NELEM)=STRES(NCONT(I)+NELEM-1)+DLOCO 
. *(VELOY(NCONT(I)+NELEM)-VELOY(NCONT(I)+NELEM-1))
. - (TIME (NCONT (D+NELEM)-TIME (NCONT (I)+NELEM-1) )
. *FUNSTA(ATRES1,ATRAN1)
STRAN(NCONT(I)+NELEM)=STRAN(NCONT(1-1)+NELEM)+ (STRES(NCONT(I) 
. +NELEM)-STRES(NCONT(1-1)+NELEM)+ (TIME(NCONT(I)+NELEM)
. -TIME(NCONT(I-1)+NELEM))*FUNSTA(ATRES2,ATRAN2))/PMODL 
DXLETH=(STRAN(NCONT(I)+NELEM-1)+STRAN(NCONT(I)-2))/2.
. * (XLETH(NCONT(I)-2)-XLETH(NCONT(I)+NELEM-1))
DEFOM(NCONT(I)+NELEM-1)=DEFOM(NCONT(I)-2)+DXLETH 
DEFOM(NCONT(I)+NELEM)=0.

100 RETURN 
END

2.5 Simulations of the Program

2.5.1 The constitutive equation

In order to check this method and easily compare with experimental results, 
in the numerical example the experimental data obtained by [33] for pure 
copper is used. Based on these experimental results, the quasi-static stress- 
strain curve is obtained as follows

/ 0(e)=255.1xlog(34.1315e +1) (MPa) (62)

and the dynamic constitutive equation as shown in Fig. 8  is

o =/0 (e) +(0.64+43.1eXlogè, +4) (MPa) 
o =/0 (e) +(4.48 +301.7e)+2.9331 x(l0 3tp-l)  (MPa)

V 1 0 V ' (63)
i f l O f s '

from which the function g(a, e) in Eqs. (30) can be obtained.
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Fig. 8  The regressed stress, strain and plastic strain-rate surface for copper at the room 
temperature based on data in [33].

It has been noted that although the impact test can be considered as an 
adiabatic process, in the current analysis of the chosen commercially pure 
copper specimen and the velocity of the projectile, the effect of temperature 
can be neglected according to ref. [33] which estimated that the temperature 
rise and flow stress decrease for adiabatic deformation of this material 
deformed to a strain of 0.2 at the strain rate of 6xl0 3  s'1 are 12 K  and 2 MPa 
respectively (Details will be discussed later).

2.5.2 Initial data and input

The initial velocity of the projectile v0=40 (m/s), and the mass of the projectile 
M=0.1 (kg). In the ballistic tests, the typical dimensions of the specimen are 
diameter d=5 (mm) and height h=5 (mm). In order to demonstrate more 
clearly the mechanical properties in the process of the impact in graphical 
form, the dimensions of the specimen is chosen as h=10 (mm) and d=5 (mm).
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The loading time of shock stress T0 is very short. Therefore, in the current 
calculation T0=5 (pis). Under the condition of room temperature, the para
meters and the symbols in the program are as follows:

The number of elements NELEM=160,
The length of the specimen PLETH=10 (mm),
The diameter of the specimen PDAMT=5 (mm),
The density of the specimen material PDESY=8.96xl03 (kg/m 3),
The elastic modulus of the specimen material PMODL=HO (GPa),
The yield stress PYILD=55 (MPa),
The mass of the projectile PPMAS= 10 (g),
The initial velocity of the projectile VELOY=40 (mls),
The acting time of shock stress TLIMIT=5 (pis).

NMUBR, JSTEP, NTP  in Subroutine DINPUT are the controlling parameters 
in the process of the calculation of the output of results. SWITCH  is a switch 
variable which controls the choice of constitutive equations.

SUBROUTINE DINPUT (PDAMT,PPMAS,NUMX,NUMT,NTP)

C *** INITIAL INPUT AND CALCULATION OF PARAMETERS ***

COMMON NELEM,PLETH,PMODL,PHEAT,PCOFB,PYILD,PBROK,TLIMIT,SWITCH,
. PDESY,PVELO,TEMPO,XLETH(0:20000),TIME(0:20000),STRAN(0:20000),
. STRES(0:20000),VELOY(0:20000),DEFOM(0:20000),ERATE(0:20000),
. TEMPR(0 :2 0 0 0 0)
OPEN (5,FILE='TOND.DAT',STATUS='OLD')
OPEN (10,FILE='TOND.RES',STATUS='NEW')
READ (5,*) NELEM,NUMX,NUMT,NTP 
WRITE(10,301) NELEM,NUMX,NUMT,NTP 

301 FORMAT (/'NELEM =',14/
. 'THE PARAMETER OF STEP LENGTH OF X  AXIS=',I4/
. 'THE PARAMETER OF STEP LENGTH OF t AXIS =',14/
. 'THE NUMBER OF TIME PERIOD =',I4)
READ (5,*) SWITCH,PDAMT,PLETH,PMODL,PYILD,PBROK,TLIMIT,PHEAT,
. PCOFB,PDESY,TEMPO 
READ(5,*) PVELO,PPMAS 
TLIMIT=-PVELO/TLIMIT 
WRITE (10,3 03)
WRITE (10,305) PDAMT,PLETH,PMODL,PYILD,PBROK,TLIMIT,PHEAT,
.PCOFB,PDESY,TEMPO 

3 04 format(3f12.2)
303 FORMAT(/5X,'INITIAL AND PROPERTY PARAMETERS'/)
3 05 FORMAT('THE INITIAL DIAMETER= ',F12.4,'(m)'/
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.'THE INITIAL LENGTH L= ',F14.4,'(m)'/

.'THE YOUNG'S MODULUS E= ',E14.4,'(N/m2)'/

.'STATIC YIELD STRESS a0= ',E14.4,'(N/m2)'/

.'STATIC BREAKING STRESS a1= ' , E14.4 , ' (N/m2) '/

.'TIME CONSTANT OF SHOCK T=',E14.4,'(Sec)'/

.'SPECIFIC HEAT p =',E14.4/

.'CONVERT COEFFICIENT b=',E14.4/

.'DENSITY OF SPECIMEN =',E14.4, ' (Kg/m3) ' /

.'INITIAL TEMPERATURE =' , E14.4, '°C'/)
WRITE(10,311)PVELO,PPMAS 

311 FORMAT('INITIAL VELOCITY OF PROJECTILE=',F12.4,'(m/s)'/ 
.'THE MASS OF PROJECTILE =',F12.4,'(Kg)')
CLOSE(5)
RETURN
END

2.5.3 Results and discussions

The computations have been performed on Dec Vax mainframe, the specimen 
is divided into 200 elements along x axial direction, i.e. Ax=0.05 (mm), At= 
0.014 (pis). The results in graphical forms are shown in Figs. 9 to 17.

The initial shock stress makes the stress at x=0 raised rapidly as shown in 
Fig. 9. After reaching its peak value, it begins to fall rapidly. Meanwhile, the 
stress wave-front moves towards the fixed end at the velocity c. When it 
reaches the fixed end, the reflected stress wave is produced, the stress at the 
end is doubled. Then it moves backwards to the opposite direction. At an 
arbitrary point the local resultant compressive stress is obtained by addition, 
but the resultant velocity of particles is obtained by subtraction.

From Figs. 9 to 11, it is evident that the over-stresses tend to fall, but the 
reflected stress waves coming from the fixed end keep on resisting their 
decrease and weakening the velocities of the particles (see Fig. 12). The rate 
of unloading | da/dt | continuously slows down as the over-stress is reduced 
and approaches to zero at t~13 (pis). In this period, the over-stress plays a 
decisive part. Subsequently, the effect of the reflected stress becomes 
significant and withstands large scale decline of the stress. A loading 
phenomenon occurs because of the strong work-hardening of the material. This 
dynamic stalemate situation lasts until the velocity of the particle is reduced 
to zero. Afterwards, the dynamic over-stress dominates the variation of stress
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Fig. 9 The initial variations of stress with respect to the time and positions.

and makes it decrease rapidly. Finally, when it touches the static stress curve, 
the unloading occurs according to Hooke’s law.

From Fig. 10, it can also be seen that the effect of shock stress wave at a 
distant position from the impact end is weakened explicitly. At x-4  (mm), after 
a small shock, the stress begins to increase and at t~10 (jis) it exceeds the 
stress at x=0. This status is kept until it is finally unloaded. The effect of 
shock stress wave on the section at x=8 (mm) has virtually disappeared but 
the reflective stress can be clearly seen.

The variation of velocity of the particles in the specimen is shown in Fig. 12. 
The velocity at x=0 varies submitting to Eq. (34) and that at x=h keeps zero. 
At t~73 (jis) the velocities of particles within the specimen falls to zero. 
Afterwards, because there exist compressive stresses in it, the specimen still 
keeps contacting with the anvil and the particles begin to move towards the 
opposite direction. At t=T0 ~86 (jis), the stresses within the specimen fall to 
zero. Then, the specimen is disengaged from the anvil.
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Fig. 10 The process of the variation of stress at fixed cross sections of the specimen.

Fig. 11 Dynamic stress-strain at fixed cross sections o f the specimen.
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12 Variations of velocity with respect to the time and positions within the specimen.

Fig. 13 Variation o f particle velocity at the fixed cross-sections.
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Time (us)

Fig. 14 Variation of true strain rate at fixed, cross sections of the specimen.

Fig. 15 Variation o f strain with respect to the time and positions within the specimen.
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Time (^is)

Fig. 16 Variation of strain at the fixed cross-sections.

Fig. 17 Variation o f displacement at fixed cross sections o f the specimen.
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It may be seen from Fig. 14 that except for the effect of shock stress at the 
beginning, the strain rate is kept at a steady level of l ( f  s'1 during most of the 
time. On this level, it has been declining slowly until a large scale unloading 
begins at t~73 (jis) when the velocities of particles tend to zero. When the 
over-stresses disappear at £=75 (jis), i.e. the functionary in Eq. (31) tends to 
zero, the strain rate falls to zero.

The results in Fig. 15 show that in the initial stage the increment of strain at 
the moving end is faster than that at the fixed end. However, after about 5 
(¡us) the rate of increment of strain near the fixed end becomes greater than 
that near the moving end due to the effect of reflective stresses. In the final 
stage, the elastic strain recovery occurs due to the unloading.

The variation of displacement at different locations of the specimen is shown 
in Fig. 17, which can be used for the examination of the deformation of the 
specimen and also for the comparison with experimental observations to 
determine the new constitutive equations.

Cristescu [195] gave his numerical solutions for aluminium under different 
constitutive equations. In his solutions, the boundary conditions at the impact 
end is a constant velocity. Under the same constant velocity boundary 
condition Nicholas [196] also made calculations for other materials. In 
their results, the maximum stress and strain appear near the impact end 
during the entire process of impact, the duration of impact is longer than that 
in the present model. In ref. [156], due to constant-velocity applied at the 
impact end, the unloading seemed not to appear. Therefore, a so called 
relaxation boundary was recommended. The dynamic stress-relaxation does 
not coincide with what is generally called the quasi-static stress-strain curve. 
The suggested concept of relaxation boundary made the calculations more 
complicated.

In the present model, due to the gradual decrease of the velocity at the impact
end, the stress, strain and strain rate at this end decline from the maximum
values at the beginning to the final minimum value. The expected unloading
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begins at t~73 (pis) when the particle velocities fall to zero. Then, the strain 
rates rapidly decrease. At t~75 (pis), the dynamic stresses falls on static stress- 
strain curve and the strain rates are equal to zero. Finally, the elastic unload
ing lasts until the stresses within the specimen are removed at t~86 (pis).

The current method provides a means of analyzing the process of deformation 
of the impacted specimen and the effect of the transient wave propagation on 
it in the ballistic test. It can also be used for the comparison of theoretical 
results under a proposed constitutive equation with the corresponding 
experimental observations to examine the validity of the suggested equation 
or to determine a new equation.

2.6 The Effect of Various Initial Parameters

In order to examine the effects of the various factors on the impact process, 
calculations have been made varying the initial parameters such as the shock 
duration, T0, the striking velocity of the projectile, v0, the length of the 
specimen, L, and the dimension of the specimen, DxL.

2.6.1 Shock stress wavefront

For the variation of the shock duration T0, the numerical solutions have been 
obtained graphically as shown in Figs. 18 to 23. The temperature rise in the 
impact process has also been estimated. The parameters in the calculation are 
as follows:

The mass of projectile PPMAS=0.01 (kg),
The number of elements in the calculation NELEM=160,
The length of the specimen PLETH=5 (mm),
The diameter of the specimen PDAMT=5 (mm),
The density of the specimen material PDESY=8.96xl03 (kg I m3),
The elastic modulus of the specimen material PMODL=HO (GPa),
The yield stress of the specimen PYILD=55 (MPa),
The initial velocity of the projectile VELC)Y=40 (m/s),
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The ambient temperature TEMPER=20 °C.
The specific heat Cp=383 J / kg-K,
The convert coefficient a=0.92;

The initial shock stress causes the stress at x=0 to rise rapidly as shown in 
Figs. 18 and 19. It can be seen that the acceleration of the particles of the 
specimen at x=0 increases with the reduction of the shock duration T0 
(Fig. 20), which results in the swift rise of the peak stress (Fig. 21). After 
reaching its peak value, the dynamic stress with a shorter T0 falls more 
rapidly, but the dynamic stress with a longer T0 keeps on a higher level until 
the end of the impact process. As well as the strain (Fig. 22), the final 
deformation of the specimen (Fig. 24), i.e. the displacement of the specimen at 
x=0, increases with the reduction of the shock duration T0. Its effect on strain 
rates is most apparent, at T0=2.5 jis, the strain rate can reach up to 1.35xl04  

s'1, but at T0=8 pis, the strain rate can only attain up to 9xl0 3  s'1.

Fig. 18 Variation of the stress with the time at x =0 at various T0.
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Fig. 19 Variation of the stress with the strain at x=0 at various T0.

Time (jis)

Fig. 20 Variation of the velocity with the time at x=0 at various T0.
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Fig. 21 Variation of the peak stress with T0 at x=0.

Fig. 22 Variation o f the strain with the time at x=0 at various T0.
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0 10 2 0  30 40 50 60 70
Time ([is)

Fig. 23 Variation of the temperature with the time at x=0 at various T0.

Fig. 24 Variation of the deformation with the time at x=0 at various T0.
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W

Time (us)

Fig. 25 Variation of the plastic strain rate with times at x=0 at various T0.

0  10 20 30 40 50 60
Time (p.s)

Fig. 26 Variation o f the plastic strain rate with times at x=0 around the peak at various
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Fig. 27 Variation of the plastic strain rate with the strain at x=0 around the peak at 
various T0.

2.6.2 The length of the specimen

In the condition of the variation of the length of the specimen, the numerical 
solutions have been obtained as Figs. 28 to 36 graphically. The parameters in 
the calculation are as follows:

The mass of projectile PPMAS=0.01 (kg),
The acting time of shock stress TLIMIT=5 (pis),
The number of elements in the calculation NELEM=160,
The diameter of the specimen PDAMT=5 (mm),
The density of the specimen material PDESY=8.96xl03 (kglm 3),
The elastic modulus of the specimen material PMODL=HO (GPa),
The yield stress of the specimen PYILD=55 (MPa),
The initial velocity of the projectile VELC>Y=40 (mls),
The ambient temperature TEMPER-20 °C.
The specific heat Cp=383 J / kg-K,
The convert coefficient a=0.92;
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The shorter initial length for a specimen allows the struck bar to reach the 
higher stress and strain rate levels and it also cuts down the impact time. 
From the point of view of energy, a shorter specimen makes the energy release 
of the projectile more concentrated, which can be verified by the results from 
Figs. 28 to 33. In this case, both the dynamic stress and the strain are 
apparently higher for the shorter specimen (Fig. 30). Further, due to the 
reduction of the time taken by the impact process (Fig. 31), the average strain 
rates with regard to both time and strain for the shorter specimen are higher 
than these for the longer one (Fig. 31 to 33). The deformation for a longer 
specimen is greater(Fig. 34). Naturally, owing to the larger strain and the 
higher strain rate, the rise of temperature in a shorter specimen is obviously 
higher than that in the longer ones(Fig. 36). Therefore, to achieve high strain 
rates for a struck specimen, a short specimen is recommended to be used, but 
this usually causes a larger error for the uniaxial stress assumption because 
of the large deformation of the specimen impacted by a high speed projectile.

Fig. 28 Variation of stresses with times at x=0 at various initial lengths o f specimens.
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Time (ps)

Fig. 29 Variation of strains with times at x=0 at various initial lengths of specimens.

Fig. 30 Variation o f stresses with strains at x=0 at various initial lengths o f specimens.
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0 10 20 30 40 50 60 70 80
Time (us)

Fig. 31 Variation of plastic strain rates with times at x=0 at various initial lengths of 
specimens.

-5.
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p

Time (jxs)

Fig. 32 Variation of plastic strain rates with times at x=0 around the peak at various

initial lengths o f specimens.
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True strain e

Fig. 33 Variation of plastic strain rates with strains at x=0 at various initial lengths of 
specimens.

Fig. 34 Variation o f deformation with times at x=0 at various initial lengths of

specimens.
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~ 0  10 20 30 40 50 60 70 80 90

Time (us)

Fig. 35 Variation of velocities with times at x=0 at various initial lengths of specimens.

I

Time (us)

Fig. 36 Variation of the temperature with the strain at x=0 at various initial lengths of
specimens.
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2.6.3 The initial velocity of the projectile

In the condition of the variation of the initial velocity of the projectile, the 
numerical solutions have been obtained graphically as shown in Figs. 37 to 45. 
The parameters applied in the calculation are as follows:

The mass of projectile PPMAS=0.01 (kg),
The acting time of shock stress TLIMIT=5 (fis),
The number of elements in the calculation NELEM=160,
The diameter of the specimen PDAMT=5 (mm),
The length of the specimen PLETH=5 (mm),
The density of the specimen material PDESY=8.96xl03 (kg/m 3),
The elastic modulus of the specimen material PMODL=HO (GPa),
The yield stress of the specimen PYILD=55 (MPa),
The initial velocity of the projectile VELC)Y=40 (mls),
The ambient temperature TEMPER=20 °C.
The specific heat Cp=383 J / kg-K,
The convert coefficient a =0.92;

Calculations have been made for the variation of the initial velocity of the 
projectile. The results show that the strain rates of impacted materials almost 
increase proportionally with the increase of the initial velocity of the projectile.

As are shown in Figs. 37 to 39, the stress and strain obviously increase with 
the striking speed of the projectile. The difference of the period taken by the 
impact process is not very apparent, which may be because the fact that the 
velocities of the particles decrease more rapidly (Fig. 40). The final 
deformation of the specimen rises proportionally (Fig. 41). The increase of the 
strain rate is significant (Figs. 42 to 44), and the softening effect of 
temperature must be considered (Fig. 45). To increase the initial striking 
speed of the projectile will become a main step to obtain high strain rates of 
tested materials. However, this method may be restricted by test conditions, 
and the effect of multi-directional stresses may also become distinct.
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Fig. 39 Variation of stresses with strains at x=0 at various initial velocities of the 
projectile.

Fig. 40 Variation of velocities with times at x -0  at various initial velocities o f the
projectile.
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Fig. 41 Variation of deformation with times at x-0  at various initial velocities of the 
projectile.

f t'w'
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O

Time (us)

Fig. 42 Variation of plastic strain rates with times at x - 0  at various initial velocities of

the projectile.
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Fig. 43 Variation of plastic strain rates with times at x=0 around the peak at various 
initial velocities of the projectile.

o
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True strain e

Fig. 44 Variation of plastic strain rates with strains at x=0 at various initial velocities

of the projectile.
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Fig. 45 Variation of temperatures with strains at x-0  at various initial velocities of the 
projectile.

2.6.4 The dimensions of the specimen

In the condition of the variation of the dimensions of the specimen 
(DxL), the numerical solutions have been obtained graphically and are shown 
in Figs. 46 to 54. The parameters in the calculation are as follows:

The mass of projectile PPMAS=0.01 (kg),
The acting time of shock stress TLIMIT=5 (fis),
The number of elements in the calculation NELEM=160,
The density of the specimen material PDESY=8.96xl03 (kg/m 3),
The elastic modulus of the specimen material PMODL=HO (GPa),
The yield stress of the specimen PYILD=55 (MPa),
The initial velocity of the projectile VELOY=40 (m/s),
The ambient temperature TEMPER=20 °C.
The specific heat Cp=383 J/kg-K,
The convert coefficient a=0.92;
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Another acceptable approach to attain high strain rates of tested materials is 
to employ a small dimensional specimen. In the condition of the identical 
initial striking velocity, a small size specimen can propagate higher strain 
rates.

As are shown in Figs. 46 to 48, the stress and strain obviously increase with 
the decrease of the specimen size, which makes possible to accomplish high 
strain rates of tested specimens. Unlike applying the increase of the initial 
velocity of the projectile as in Section 2.6.3, in the current case the difference 
of the period taken by the impact process is apparent. For a small size of the 
specimen, the impact process takes a longer time, but the decrease of the 
velocity of the particles is slower (Fig. 49). The final deformation of the 
specimen rises distinctly (Fig. 50). The increase of the strain rate is also 
meaningful (Figs. 51 to 53), and the effect of temperature rise should be 
considered (Fig. 54).

Fig. 46 Variation o f stresses with times at x=0 at various dimensions [D (mm) x L

(mm)] o f specimens.
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Fig. 47 Variation of strains with times atx=0 at various dimensions [D (mm) x L (mm)] 
of specimens.

%

I

True strain e

Fig. 48 Variation o f stresses with strains at x=0 at various dimensions [D (mm) x L
(mm)] o f specimens.
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0 10 20 30 40 50 60 70
Time (us)

Fig. 49 Variation of velocities with times at x=0 at various dimensions [D (mm) x L 
(mm)] of specimens.

Time (us)

Fig. 50 Variation o f deformation with times at x=0 at various dimensions [D (mm) x L

(mm)] of specimens.
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70
Time (us)

Fig. 51 Variation of plastic strain rates with times atx=0 at various dimensions [D (mm) 
x L (mm)]of specimens.

0 10 20 30 40 50 60 70

Time (jxs)

Fig. 52 Variation o f plastic strain rates with times a tx= 0  at various dimensions [D (mm)

x L (mm)]of specimens.
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Fig. 53 Variation of plastic strain rates with strains at x-0  at various dimensions [D 
(mm) x L (mm)] of specimens.

Time (p,s)

Fig. 54 Variation o f the temperature with the strain at x=0 at various dimensions [D

(mm) x L (mm)] o f specimens.
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2.7 The Elastic-plastic Boundary Conditions at the Fixed End

Generally, a different kind of boundary condition occurs when the specimen 
in which a wave is travelling terminates at an interface with the anvil in 
which the wave will also travel. This type of boundary condition is essentially 
different because whilst it produces a reflected wave in the specimen it also 
gives rise to a transmitted wave in the anvil.

There are two boundary conditions at the junction x=h. The first is the 
geometrical condition that the velocity must be continuous:

v( -h,t) =v(+h,t)

where

v(-A,f)=lim v(x,t) (x<h) (65)
X̂ k

and

\i+hyt)=Umv(x,t) (x >h). (66)
x -»A

The second is the dynamical condition that the transverse force must be 
continuous:

a(-h,t)=a(+hj) (67)

This condition is necessary because a non-zero resultant force acting on the 
infinitesimally small mass at x=h would produce an infinite acceleration. It 
can be seen that on the interface of the specimen with the anvil the stresses 
and velocities are continuous, but the strains are discontinuous.

In the present experimental system, the length of the anvil is so long that no 
reflective wave is transmitted back into the specimen from it and the yield 
stress of the anvil is considerably higher than that of the specimen, the 
deformation of which is controlled under the range of elasticity.



2.7 The Elastic-plastic Boundary Conditions at the Fixed End 80

The equations of propagation of longitudinal waves in the anvil (x>h) are 
comprised by the following:

(68)

-  d e  d a

d v _  1 d a

d t  p2 3tc’

d v d c  

d x  d t

where E2 and p2  are the Young’s modulus and density of the anvil respectively. 
Along the characteristic lines of equations (6 8 )

dx
—  = ±
dt \ =±Co

P2

(69)

the differential relations are written as

Along the characteristic line

da*p2c2dv=0

dx=0,

(70)

(71)

the entire differential form is

E2dz -da (x -A+)

Ede=do+g(o,e)dt (x -A")
(72)

As shown in Fig. 55, having known the solution at nodes M N k and Lv  the 
values at the interface Nk+1 between the specimen and the anvil can be solved 
using following steps. The differential relation from Eq. (42) written in the 
form

°  -% = P  c(v -% ) - g ( o Nk,BN) ( t - t Nk)  (73)

is integrated along iV*N*+2, and the relation from the characteristic line of 
negative slope in Eq. (69) written in the form
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h

Fig. 55 The characteristic field, at the interface between the specimen and the anvil.

° - ° £ 1 = “ P2C2(V-VI 1) (74)

is integrated along L,Nk+1. Thus, c k + 1  and vk+1 can be obtained.

At the specimen, the relation (72) is transformed into a finite difference 
equation

E i ( e - * * * ) = < * - a u + S f a u f u y t - t M )  ( 7 5 )

and is integrated. Thus, ek + 1  at the specimen is obtained. In the same way, ek + 1  

at the anvil may be attained by the first relation in Eq. (72).

The problem discussed in this Section will be carried out in the subject of 
further research work [197].



Chapter 3 Experiments and Results

3.1 The Quasi-static Compression Tests

Commercially pure copper (99.99%) and mild steel (C:0.2%) were chosen as the 
materials of the test specimens, which are machined into cylinders with 
several dimensions for the requirements of both the static and dynamic tests. 
The ratio of the diameter to the height (aspect ratio) of a specimen is 
approximately equal to 1. Both static and dynamic compressive experiments 
were performed in the conditions of room and high temperatures.

3.1.1 Tests under the ambient temperature

(1) Preparation of the test

Before the test starts, the end surfaces of the specimen are finely ground using 
sandpaper, the identification number is given to the specimen to be tested, its 
diameter and height are measured by a micrometer, and the results are noted 
on a test work sheet.

A 50 kN  Instron Universal Material Testing Machine shown in Fig. 56 is used 
for the static test. To assure load cell stability, about 15 minutes after the 
machine is turned on, the pre-adjustment of the system is performed:

(a) The load cell is calibrated by means of Electrical Calibration of Self 
Identifying Load Cells. In this case, the balance operation is performed 
automatically.

(b) Set the crosshead travel stops and the crosshead speed. In the case of 
static tests at room-temperature, the crosshead speed is set at 3 mm Is, 
while in the high temperature static case, it is set at 2 0  mm!s.

82
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Fig. 56 The view of 50 kN Instron Universal Material Testing Machine.
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(c) Install test specimen.

(d) Set pen scaling on the X-Y Recorder for load signal, and set jc-axis 
position drive mode. Determine the jc-axis at a zero position by moving 
the crosshead and adjusting x position of the recorder. Set the gage 
length.

In order to eliminate the gaps between the surfaces of the specimen and of the 
crossheads, pre-compression tests are performed in the range of elasticity of 
the specimen which are repeated twice for each specimen.

(2) Performing a test

The nominal heights and diameters of specimens are equal to 8.00 mm  for 
copper or 5.0 mm  for steel, the maximum compressive loads are determined 
as 50 kN  for copper specimen or 25 kN  for steel specimen and the compressive 
velocity is set as 3 m m /m in  for both materials. In order to reduce the friction 
between the pressure head and the specimen, polythene sheet 0.5 mm thick 
has been used as lubricant which is put on the top and bottom ends of the 
specimen before a test is made. The tests are performed for 4 to 5 times for 
each material.

(3) The stress-strain curves

According to the calibration of the X-Y recorder, the deformations of the 
specimen and the loads are obtained, from which the true stress-strain curve 
for a tested material can be estimated. The conversions of the stress a from 
the load and the strain e from the deformation are made by

PP P PxHa=—
A Vq/H V0 

"oe=ln—
H

(76)
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where P  is the compressive load, A  and H  are variables, the current area of 
the cross section and height of the specimen corresponding to load P, and V0 
is the volume of the specimen which is considered as constant in the process 
of the deformation of the specimen.

A simple computer program has been written to calculate the true stresses 
and strains which are used to draw the stress-strain curve (see Appendix II). 
Then a mathematical process is applied by means of the graphic software to 
make the drawn curve smoother.

3.1.2 Tests at high temperatures

In order to reduce the heat loss of the specimen in the process of the 
compression to largest extent, a large anvil unit with respect to the mass of 
the specimen has been designed and used. Considering that it is also used for 
the dynamic tests, the unit is designed as shown in Fig. 57 that it can be 
easily moved out from the hot furnace using a clamp, and a changeable high 
hardening alloy anvil is fixed inside the unit by means of a flange and three 
sunk screws.

Before being heated, the ends of the specimen and the inside of the chamber 
of the unit are carefully cleaned, the specimen is placed upon the central 
position of the chamber, and a hardened cylindrical pressure head, whose 
design diameter approaches but is smaller than the inner diameter of the 
chamber, is located upon the specimen. Then, they are together put into the 
furnace to be heated. Generally, after the temperature indicator of the furnace 
reaches the preselected scale, all the heated components still need to be kept 
inside the furnace for at least half an hour depending on the level of the 
preselected temperature to ensure that they attain a stable temperature. The 
preselected temperature of the furnace is always set at a temperature higher 
than the test temperature. To save the test time, two sets of chamber units 
are heated in the same time and they are used alteratively.
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1  .
2  .

3 .
4  .

Chamber 
Heel block 
Bench
Shield ring

5. Anvi1
6. Specimen
7. Pressure block
8. Pressure head

Fig. 57 The diagram of chamber used for quasi-static compressive test at high 
temperature.
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A K-type thermocouple with a welded tip insulated by glass fibre and a panel 
mounting digital temperature indicator are used to monitor the variation of 
temperature of the specimen in the process of the compression. The measuring 
range of temperature for this type of thermocouple is from -200°C to +1100°C 
and the range of error is assured to be within ±3°C for the range 0 °C to 
+400°C and within ±0.75% for the range 400°C to 1100°C. The measuring 
range of the temperature indicator is -50°C to +1000°C, its resolution is 1°C 
and the accuracy at 25°C is given as ±0.3%.

The heated anvil unit including the specimen and the pressure head is 
removed to the static test machine (a heated cylindrical heel block has been 
placed on the bottom pressure head or the bench of the test machine). Then, 
the tip of the thermocouple is inserted into the cavity of the chamber from the 
gap between the heated pressure head and the inner wall of the unit, and the 
temperature inside the cavity is displayed on the panel mounted digital 
temperature indicator. When the temperature drops to the required test value, 
the compression test is started. The time taken by the process of compression 
and final temperature are recorded to be used later for the calculation of the 
error of temperature of the test. The test at a definite nominal temperature 
is preformed 2 or 3 times. Hence, by choosing the various temperatures, a 
group of stress-strain curves at corresponding temperatures can be obtained.

The quasi-static stress-strain curves for commercially pure copper and mild 
steel at various temperatures that have been processed mathematically are 
shown in Figs. 58 and 59 respectively.

3.2 The Static Stress-Strain Equations

The application of computer software makes it possible to attempt various 
forms of mathematic models to deal with the experimental data. In the current 
research, the quasi-static stress-strain curves at various temperatures 
obtained by experiments have been smoothed and regressed in several forms 
for commercial purity copper and mild steel.
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True e
Fig. 58 Quasi-static stress-strain curves of commercially pure copper at various 
temperatures.

T ru e e

Fig. 59 Quasi-static stress-strain curves of mild steel at various temperatures.
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3.2.1 Commercially pure copper

As shown in Fig. 60, the quasi-static stress at various temperatures from 20°C 
to 470°C for commercially pure copper is regressed as a 5x2 order polynomial 
explicit function of strain and temperature, which is expressed as

o =3.98236-0.0370176r+6.07912x10 s7*+4734.68e -20.082e r+0.027065e t 1 
-26197.3e2+146.847e2r-0.213977e27*+70237.6e3-443.625e3r+0.660459c37* <77) 
-89109.4e4+598.519e47,-0.897697e47i +42785. le5-298.171e57T+0.448959e5T2

The comparison of the regressed curves with the experimental data is shown 
in Fig. 61. This type of regression expression can reasonably describe the 
experimental results, and also be applied in the computation.

With reference to the form proposed by Vinh et al. [198], the type of 
constitutive relation for working-hardening materials is suggested as

Fig. 60 The regression surface of the quasi-static stress-strain relation at various 
temperatures for commercially pure copper based on Eq. (77).
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a=aeb/Tf0(e) (78)

where f 0(ej is the quasi-static stress-strain curve at room temperature, T  is 
the temperature(°C), and a and b are constants independent of temperature. 
Based on the quasi-static stress-strain curve at room temperature, the 
constitutive relation for commercially pure copper shown in Fig. 62 is 
regressed as

o=0.4152e019<5e123'526/r/ 0(E) (MPa) 09)

where

_/J)(e)=-41329e6+139301e5-139301e4+81550e3-25801 e2+4367e +9.72 (MPa) (80)

Comparing with Eq. (77), this type of constitutive relation has further been 
simplified, but it needs the corresponding experimental stress-strain curve at 
the room temperature. The accuracy of the curve affects directly those at 
higher temperatures.

Fig. 61 Comparison of quasi-static stress-strain curves between the experimental results 
and the regressed expression based on Eq. (77) at various temperatures.
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Fig. 62 The regression of the quasi-static stress-strain curves at various temperatures for 
commercially pure copper based on Eq. (79).

For the purpose of the analysis and discussion, it is necessary to propose a 
simpler form to characterise the mechanical properties of the tested material. 
Therefore, the following geometrical form of the quasi-static constitutive 
relation for work-hardening type materials such as copper is suggested

o=A(T)z’*r>

For pure copper, A(T) and n(T) have been determined as shown in Table 2, 
and the corresponding curves is demonstrated in Fig. 63.

Table 2 A(T) and n(T) determined in Eq. (81) for commercially pure copper.

Temperature (°C) A(T) n(T)
2 0 398 0.150

150±5 305 0.142
250±10 244 0.130
470±15 160 0 . 1 2 0
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Fig. 63 The regressive curves of the quasi-static stress-strain relation at various 
temperatures for commercially pure copper based on Eq. (81) and Table 2.

Further, both A(T) and n(T) are respectively expressed in the linear regressive 
forms

A(T)=393.5-0.524 7 (MPa), 

*(7>0.151-6.83xl0-5r.
(82)

where T  is the ambient temperature of the tested specimen (°C). The curves 
based on Eq. (82) in the form of Eq. (81) are shown in Fig. 64.

3.2.2 Mild steel

For elastic/perfectly plastic type materials such as the mild steel used in this 
study, the corresponding form of stress-strain curve is suggested as

o=<p(r)(l -«'*') (83)

where cp(T) is a function of temperature, which is the yield stress at 
temperature T; k is a material constant. The static compression experiments
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Fig. 64 The regressive curves of the quasi-static stress-strain relation at various 
temperatures for commercially pure copper based on Eqs. (81) and (82).

from the room temperature up to the high temperature of 520°C for mild steel 
have been made, and for the corresponding static stress-strain curves, (p(T) 
and k have also been determined as shown in Table 3.

Table 3 cp(T) and k determined in Eq. (83) for mild steel.

Temperature (°C) cp(T) (MPa) k

2 0 767 28

2 0 0 ± 1 0 730 28

360±15 689 27

520±20 620 28

Actually, cp(T) can be considered as the yield stress at the temperature T, 
while k is a constant related to the Young’s modulus. The comparisons of the 
experimental curves with the analytical expressions based on Eq. (83) and 
Table 3 are exhibited in Figs. 65 to 6 8 .
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True e
Fig. 65 Comparison of the quasi-static stress-strain relations obtained by the experiment 
with based on Eq. (83) and Table 3 at 20 °C for mild steel.

True e

Fig. 6 6  Comparison of the quasi-static stress-strain relations obtained by the experiment 
with based on Eq. (83) and Table 3 at 200 °C for mild steel.
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True e
Fig. 67 Comparison of the quasi-static stress-strain relations obtained by the experiment 
with based on Eq. (83) and Table 3 at 360 °C for mild steel.

True e
Fig. 6 8  Comparison of the quasi-static stress-strain relations obtained by the experiment 
with based on Eq. (83) and Table 3 at 520 °C for mild steel.
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3.3 Dynamic Impact Tests

3.3.1 Apparatus and principle

The impact experiments were performed with an existing apparatus shown in 
Fig. 69. This set of experimental system mainly consists of a movable rig, the 
high pressure power system, the barrel parts, the anvil unit and the projectile 
velocity measuring system (see Fig. 70).

The main part of frame of the ballistic test machine is composed of a welded 
construction with steel angle bar. The remaining auxiliary parts are fixed by 
screws for the purpose of the assembly and disassembly.

In the gas propelled system, a high pressure nitrogen gas cylinder controlled 
by a 40 bar adjusting pressure value supplies the compressive gas to a 
reservoir unit which is fixed on the rig. At the outlet of the reservoir, a two- 
way solenoid-controlled valve is attached, which makes the outlet on or off. 
As shown in Fig. 71, a primary barrel is connected to the solenoid-controlled 
valve at one end and to extension barrel at the other end. A cut-out segment 
is machined on the primary barrel through which the projectile can be loaded 
and pushed upwards inside the projectile gripper mechanism. A close fitting 
split cover is used to close the cut-out segment, and a sliding collar and a nut 
are used to hold the assembly firmly to prevent the high pressure gas from 
escaping. The projectile gripper mechanism consists of three grab screws and 
spring operated smooth pins incorporated at the upper end of the loading 
throat. A extension barrel is connected to the primary barrel by means of a 
threaded and knurled coupling sleeve at one end and is attached a surge 
suppressor cap at the other end [199].

In order to meet the testing requirement at high temperatures, a new set of 
anvil units to avoid the loss of the heat was designed and used instead of the 
original one. This set of units is movable and fitted with the former cylindrical 
steel bar(see Fig. 72). The relationship of the loss of heat with time for the 
unit has been measured as is shown Fig. 73.
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Fig. 69 The view of the ballistic test machine.
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II

1. Rig frame 2. Gas cylinder 3, Pressure valve
4. Reservoir unit 5. Solenoid valve 6. Projectile
7. Loading th roa t 8. Primary barrel 9, Specimen
10. Laser receiver 11. Tinner 12, Pressure bar
13. Anvil unit 14. Shi led box 15, Laser em itter

Fig. 70 Schematic diagram of the ballistic test machine.
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Fig. 71 Schematic diagram of the loading unit of the ballistic test machine.
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1 . Pressure bar 5 . Anvil
2 . Fixed fiange 6 . Chamber
3 . Shield box 7 . Lip
4 . Shiel ring 8 . Specimen

Fig. 72 The chamber unit used for impact compressive test at high temperatures.
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Time (min.)

Fig. 73 The relationship of heat loss with time for the impact chamber.

The velocity measuring system consists of a laser beam emitter, a laser beam 
receiver and a universal counter-timer. The velocity of the projectile is 
obtained by means of measuring the time interval for the two ends of the 
projectile to pass through some reference point. Then, the velocity is calculated 
by means of the known length of the projectile and the measured time 
interval. Before measuring, the laser beam receiver is triggered by the 
emissive device and the function of counter-timer is keyed at the Single Time 
Interval. The steps to perform this are as follows:

(a) Check the connections of the emitter, receiver and counter-timer, and 
assure them at the proper positions.

(b) Switch them on and adjust the positions of the emitter and receiver to 
assure the beam emitted by the emitter both to pass through the centre 
extending line of the anvil and to trigger the receiver.
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(c) On the panel of the counter-timer, select Time INT function, depress 
single measure and select 1 cycle measure with Gate push-button. Set 
Coupling at 500. Ensure the signal edge of the slope as J at input A 
and L at input B. Set Attenuation to xlO position and adjust Trigger 
Level at the near middle position.

(d) Press Start/Stop button of the counter timer. The gate LED (Light 
Emitting Diode) will illuminate to indicate that the counter is primed 
and ready to make a measurement.

As the front end of the projectile reaches and begins to pass the laser beam, 
the upper gate LED of the receiver gets off. The signal edge of the selected 
slope appears at input A and the timing cycle begins. When the rear end of the 
projectile begins to pass the laser beam, the upper gate LED of the receiver 
comes on. The signal of the selected edge appears at input B, the timing cycle 
ceases and the result is displayed. The displayed result is held until a Reset 
occurs.

3.3.2 Modification o f the test machine

(1 ) Chamber unit

The impact tests are performed on the original equipment, while some of its 
parts can not meet the requirement of the current tests. Therefore, in order 
to accommodate the requirement of high temperature tests, the improvement 
and renovation for the machine have been made.

In order to reduce the number of renewed parts and utilise as many original 
parts as possible in the condition that the test requirement is assured, two 
sets of chamber units shown in Fig. 72 for the dynamic test were designed and 
machined. This unit can also be used for the static test with an extra pressure 
head and a heel block (Fig. 57). In order to reduce the heat loss of specimen 
in the process of the test to restrict the variation of the temperature of the 
specimen as shown Fig. 74, the chamber with respect to the specimen was
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designed with a large mass. During the tests, two sets of the chamber units 
are used alternatively. They can be easily moved in and out from the hot 
furnace by a clamp. Considering the life of the working surface of the anvil, 
a changeable alloy anvil (Fig. 75) is fixed on the chamber by means of a shield 
ring (Fig. 76) and three sunk screws. Various sizes of lips with respects to the 
dimensions of specimen shown in Fig. 77 have been employed to prevent the 
heat in the cavity from escaping and to keep the specimen at the central line 
position of the unit. The thin hole on the lip is used for the measurement of 
temperature using a thermocouple.

(2) Projectile

In order to avoid the projectile from being blocked, especially after it has been 
used for several times, the originally designed projectile has been modified 
according to the configuration as shown in Fig. 79. A 3° angle guide cone is 
made in the front of the projectile. Further, to guarantee the high pressure air 
pushing on the rear end of the projectile, a very small clearance fitting 
between its lateral surface and the inside face of the primary barrel of the 
machine is chosen. After the thermal treatment, the hardness of its front end 
is controlled in the range of 62-65 HRC.

(3) Shield box

For the purpose of safety and the convenient collection of the specimens after 
each test, a close shield box was designed and manufactured as shown in Fig. 
80. It consists of a welded square steel frame on which aluminium plates are 
fixed by screws. To allow the laser beam for the measurement of the velocity 
of the projectile to pass through the box, the corresponding holes on its two 
sides are made. The angle steel sections and a flange attached on the box are 
linked to the rig and the pressure bar of the test machine by screws 
respectively.
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Fig. 74 The chamber used for static and dynamic tests at high temperatures.
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Fig. 75 The anvil used for impact and static tests at high temperatures.
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Fig. 76 77ze shield ring used to fix the anvil.
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Fig. 77 The lip used for the impact test o f <¡>6x6 specimen.
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Fig. 78 The flange used to fix the shield box with the rig.
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Fig. 80 The view of shield box.
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(4) Solenoid valve

In order to obtain the experimental results of the specimen at high strain 
rates, a high pressure solenoid valve was purchased and used. The maximum 
working pressure of the chosen solenoid valve with 2 ports-2 position is 25 bar, 
the basic technical parameters are as follows:

(a) Fluid: nitrogen gas;
(b) Maximum allowable pressure: 40 bar;
(c) Maximum differential pressure: 25 bar;
(d) Temperature range of fluid: : -10 - 180 0|
(e) Ambient: - 1 0  to 60 °C;
(f) Ports BSP: Gl.

The maximum working pressure 25 bar (363 psi) means that at the present 
experimental condition, the velocity of a projectile weighing 1 0  g  can reach 2 0 0  

m /s. The practical measured relation of the pressure in the solenoid valve 
with the velocity of the projectile is shown in Fig. 81.

In order to meet the requirement of high pressure test, a 40 bar pressure gage 
and a pressure regulator were also chosen and used.

3.3.3 Performance o f impact tests under the ambient temperature

(1) Preparation of the test

The test specimens are chosen as mild steel and pure copper. The specimens 
in the present experimental work are made as the identical length and 
diameter, which is 5 mm  for both pure copper and mild steel. The performing 
steps are as follows,

(a) Before the test starts, as the same as performing a static test, the end 
surfaces of a specimen are finely ground using sandpaper, the 
identification number is given to the specimen to be tested, its diameter
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Fig. 81 The calibrating curve of the velocity of the projectile with the pressure in the
solenoid valve.

and height are measured by a micrometer, and the results are noted on 
a testing work sheet. The end surfaces of a specimen are daubed with 
a layer of pure petroleum jelly about 0.5 mm thick to reduce the 
friction, then it is carefully put on the central position of the anvil.

(b) The projectile is installed inside the loading throat through the entrance 
slot, then pushed up into the gripper mechanism, and kept in 
suspension. The slot opening is then closed with the split cover and the 
sliding collar is slid over and clamped using the collar-nut.

(c) As mentioned in Section 3.3.1, the measuring system of the velocity of 
the projectile is adjusted and ready for measurement.

(d) The valve of the compressed air cylinder is opened slowly and kept open 
until the reservoir air pressure reaches the predetermined level as 
indicated by the pressure gage attached to it.
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(e) Turn on the solenoid valve to perform the impact test.

(f) The reading on the display of the universal counter-timer is taken, the 
deformed specimen is collected and its average diameter and height are 
measured and written down.

3.3.4 Experimental results

The dynamic impact tests have been made at various temperatures for pure 
copper and mild steel, and the typical specimens before and after the tests are 
shown in Figs. 82 and 83. The height reductions and the diameter increments 
with respect to the initial velocity of the projectile and their corresponding 
regressed relations have been obtained as shown in Figs. 84 to 87. These 
results will be used to determine the constitutive relations of these materials 
at the corresponding conditions in the following chapter.
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Fig. 82 Typical pure copper specimen, before and after dynamic test.
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Fig. 83 Typical mild steel specimen, before and after dynamic test.
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Velocity (m/s)
Fig. 84 The height reduction of the specimen impacted by a projectile at various 
velocities for commercially pure copper.

Velocity (m/s)
Fig. 85 The diameter increment of the specimen impacted by a projectile at various 
velocities for commercially pure copper.
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Velocity (m/s)
Fig. 8 6  The height reduction of the specimen impacted by a projectile at various 
velocities for mild steel.

.9

Velocity (m/s)
Fig. 87 The diameter increment of the specimen impacted by a projectile at various 
velocities for mild steel.



Chapter 4 Constitutive Equations

4.1 Introduction

A lot of experiments have shown that for nearly all technological materials 
and under a wide range of conditions, an increase of the rate of strain 
produces an increase of the dynamic yield stress and of the work-hardening 
modulus [200]. The dynamic yield stress is certainly not a characteristic 
constant of the material. For a given material with various loading histories, 
one obtains various dynamic yield stresses. Thus, the dynamic yield stress is 
a consequence of the constitutive equation used for the considered material 
and of the loading rate. The mechanism of wave propagation produces a non- 
homogeneous distribution of the rate of strain in the body. As a result, during 
a single experiment, a different stress-strain relation - and consequently a 
different dynamic yield stress - will be obtained in each particle of the body.

Experiments involving the observation of the transient wave propagation 
phenomena provide indirect methods to determine the dynamic mechanical 
properties of materials. In experiments involving the properties of uniaxial 
stress waves in rods, the procedure applied is to assume that the material 
submits to a certain constitutive law and then through calculations based on 
the law to predict the propagation characteristics. The predicted results are 
then compared with the experiment results. Agreement between the two 
usually leads to the conclusion that the equation assumed is the constitutive 
law for the material.

The primary view to determine a new constitutive equation is that a material 
with its intrinsic mechanical property behaves in a singular process of 
deformation corresponding to a certain external loading condition. The unique
ness of relationship between the external condition and the process of 
deformation makes possible to determine the strain rate dependent

118
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constitutive equation of the material by means of the record of the 
deformation.

In this chapter, various constitutive equations proposed by many earlier 
researchers are first reviewed. Secondly, the micro explanation for the 
behaviour of those materials under high strain-rates is given and adiabatic 
shear phenomena and the effect of shock wave front in the process of the 
impact are also discussed. Following this review, the constitutive relations for 
FCC metal copper and BCC metal steel at various temperatures are suggested, 
and the parameters in the proposed equations are determined according to the 
current experiments for commercially pure copper and mild steel. Finally, 
these results are discussed and compared with those reported earlier.

4.2 The Constitutive Equation Review

Many authors have proposed various constitutive equations in order to 
describe the mechanical properties of materials that exhibit the rate effect. All 
have started from the assumption, suggested by experimental evidence, that, 
even while the stress is being continuously increased, there is no longer a one- 
to-one correspondence between stress and strain as prescribed by a finite 
stress-strain relation. It is meaningless to speak of a single finite stress-strain 
relation able to describe various dynamic mechanical properties of different 
materials. It is better to speak of classes of constitutive equations, each class 
being characterized by certain predominant mechanical properties of the 
materials considered.

Ludwik [201] and then Prandtl [202] observed that for a fixed plastic 
strain the corresponding stress is the higher, the greater the rate of strain at 
which the experiment is performed. The rate of strain referred to is the 
average rate of strain, such as has been used in nearly all the experiments. 
Ludwik postulated the following logarithmic equation

a= a1+a^n.(ip/E ^ , (84)
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where o1} a0  and e0p are material constants. Here is the yield stress 
corresponding to a strain rate e0p. If the strain rate is greater than e0p, the 
stress corresponding to a certain plastic strain is greater; a0  is the measure of 
this increment.

Many of the authors who have proposed various constitutive equations to 
describe the rate effect have started from Eq. (84). This relation or variants 
of it have been verified experimentally or discussed by many authors [156].

If the material is work-harkening and if the conventional quasi-static stress- 
strain relation is a=f(e), then Malvern [167,203] proposed the use of the 
expression:

instead of Eq. (84). In Eq. (85), a and b are characteristic constants for the 
material considered. Solving Eq. (85) with respect to the rate of strain, the 
following form of this relation can be obtained:

Eq. (8 6 ) suggests a generalization in the sense that the plastic rate of strain 
must be a function of the over-stress o-f(e), that is, of the difference between

Since in most cases the elastic part of the strain is connected with the stress 
by Hooke’s law

a =/(e) +flln(l +bbp) (85)

(86)

the dynamic and the actual static yield stress (corresponding to a certain 
plastic strain). Thus,

(87)

Eze=a (88)

the full constitutive equation can be written in the form
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Ei  =a +F(a -/(c )) (89)

The function F(z) from Eqs. (87) and (89), must possess the following 
properties

F(z)>0 i/z X )  (90)

F(z)= 0 if  z*0

More generally, instead of Eq. (87) the plastic rate of strain can be considered 
a function of stress and strain

Eep=g(o,e). (^1)

In place of Eq. (89), this yields the constitutive equation

Ei=a+g(a, e) (92)

This form of the constitutive equation has been used by Malvern [167,203] 
who, in connection with a numerical application, used the following linear 
expression for the function g

g(o,B )=fc[o-/( e)] (93)

A constitutive equation of the form (92) was previously used by Sokolovskii 
[204,205] for perfectly plastic materials with the function g  written in 
the form

g(o,E)=£F(|o|-op (94)

where ay is the static yield stress. A similar constitutive equation

jiei,=CT-oysigna (95)

was used by Richter [206] in order to study the propagation of longitudinal 
waves in bars. A different linear equation

g(a,z)=2kia-Exz) (96)

was used by Rubin [207].
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Many other expressions for the function g(c,e) have been considered in the 
literature. Ting and Symonds [208] used the expression

g(a,e)=Z)
t \
-2 .-1

\°>  /

9
(97)

where D and q are constants, specific for the material considered. On the basis 
of observations on the motion of dislocations Johnston and Gilman [209] 
suggested

£(a)=e0 exp(-ytyo) (98)

where e0  and A  are material constants.

Fan [210] proposed a function of the form

S(o,e)=>4{l -ex p [-fc (l-e)(0 -/(e ))]}  ( " )

while Lindholm [211], considering the average rate of strain as a 
parameter, has verified experimentally a relation of the form

CT=CT0 ( E ) + o 1( e ) l n e ,  (100)

for strain rates in the range 1 0 ' 4  to 1 0 3, where G0 (e) is the stress-strain 
relation for unit strain rate.

Plass and Wang [212] extended the work of Malvern, studying both a 
linear and an exponential law for dynamic over-stress based on results 
obtained experimentally for copper and perlitic steel. They found that the 
exponential law gave better prediction for larger plastic strain, while for small 
strains the two laws were not discernible.

Kotliarevskii [213,214] starting from the concept of delayed yield, 
proposed a constitutive equation of the type

o= o y+v(e)e, (101)
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where v(e) is a variable coefficient of plastic viscosity; this coefficient is 
considered constant within certain ranges of variation of the rate of strain, but 
changes its value when passing from one range to another. To describe delayed 
yield phenomena, Lenskii and Fomina [215] used a constitutive equation 
of the form a=c(e,t); in the plastic domain this relation is particularized to

o =£jE +(E-EJty(t-x/Cf) , (102)

where ey is a function of the argument t-x/c0.

Table 4 Constants in equations (103) and (104)

Temp

(°C)

k
(MPa)

Logarithmic 

ct (MPa)
k/a n

Power law 

a  (kg/mm)

30 2.85 86.87 0.034 0.017 216.79

150 3.43 68.33 0.05 0.022 178.93

250 5.48 57.18 0.096 0.028 152.68

350 7.65 41.30 0.185 0.04 116.43

450 9.03 28.06 0.322 0.073 86.07

550 14.45 0.90 . . . . 0.141 44.82

For aluminium at various temperatures Chiddester and Malvern [92] used a 
stress-strain relation of the form

— =l+(— )lne (103)
°o °o

where a0 is the stress at unit strain rate. Such formulas have been discussed 
by various authors. The rate sensitivity parameters k /a 0 and n are found to
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depend to a small extent on strain within the range of strains considered from
0.05 to 0.10. They are however, highly temperature dependent (see Table 4).

A constitutive equation of the form

ln(o/o0 )=Mn(e/e0) (105)

was discussed by Sokolov [216] for moderate rates of strain. Here o0  is a 
conventional constant stress corresponding to a strain rate e0, which is 
considered to represent the limit of the quasi-static domain (e0 =6xl0 ' 4  s'1); N  
is a constant which depends on the temperature and certainly on the material 
tested, and which may be determined experimentally. Various numerical 
values for these coefficients are given for steel, copper and lead.

The form

a=as[l+ (ilD )llp] (106)

was used by Hashmi [58] for mild steel up to strain rate of 10B s'1, where o 8 is 
the static flow stress, respectively, and D and p  are the constants dependent 
on the material considered.

In torsional tests on copper at strain rates of 0.001 and 900/s, Campbell et al. 
[217] found that the equation

t =4(y)n[l +mln(l +y/B)] (107)

can describe very closely the room-temperature stress-strain response, using 
the same values for the experimentally determined constants, a, m, n and B, 
at both rates of strain.

The constitutive form

(108)
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was used by Haque and Hashmi [60] for structural steel at strain rates of up 
to 1 0 5  s' 1 at various temperatures and gave closer results with those obtained 
experimentally,

where a=exp(-f2B),
f=ln(e/ e j ,
¿=prevailing strain, 
e=natural strain,
e0, B, A  and n are constants of material.

The same form applying to an aluminium alloy and high purity copper at room 
temperatures has been also given by Hashmi and Haque [218]. All the 
acquired constants are shown in Table 5.

Table 5 Values of the constants for equation (108) for aluminium, copper and steel

Material
Constants

A (MPa) n B

Aluminium 500 0 . 2 0 6.5x10"*

Copper 450 0 . 2 2 7.0x10"

Steel (En 8 ) 1 0 0 0 0.18 5.85xl0"4

Various other ways of expressing the function a, e), which depend only on the 
over-stress but contain a larger number of material constants, were proposed 
by Perzyna [219] in order to describe more accurately the mechanical 
properties of the materials considered. These take the forms:
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All the functions and constants which occur in various expressions of the 
function g  are, more or less, time and temperature dependent. There is 
certainly no longer any question of averaging out the rate of strain, which 
must on the contrary be computed locally since, during wave propagation 
phenomena and generally, in dynamic problems, the rate of strain, as well as 
the stress and strain themselves, are to a great extent non-uniformly 
distributed along the body.

The basic idea of constitutive equations such as those mentioned above and 
typified by Eq. (89) which have been widely used, is that the elastic constants 
are independent of the rate of strain and the plastic strains, and that the 
plastic rate of strain is a function only of the dynamic over-stresses which 
leads to the conclusion that in the plastic range the stress-strain curves for 
various constant rates of plastic straining are parallel curves.

The experimental results in refs. [17] and [220] indicated that the stress- 
strain curves for various constant rates of plastic straining are not parallel. 
Thus, instead of constitutive equations of the form (89), Cristescu suggested 
the general quasi-linear constitutive equations of the form [2 2 1 ]

^ =<j,(o , e ) ^ +T(o,e) (HO)
of ot

where the function O and *P govern the instantaneous and non-instantaneous 
response, respectively.

Variants of this quasi-linear constitutive relation were also used by B6 da 
[222], Lubliner [223] and Larina [224]. The latter author wrote this 
relation in form

(p fc - is -D e y l-^ ^ + A to -q K e)]  (H I)
at at

where a=\|/(c) is the static stress-strain curve, ey is the strain at the static 
yield point, k is a material constant and s a parameter characterizing the 
dynamical properties of the material: in static tests s<l, while in dynamic



4.2 The Constitutive Equation Review 127

tests s=sO. Thus, this parameter may be discontinuous due to a shock wave 
front.

Considering the effects of strain, strain rate and temperature, the stress of a 
material can be expressed by a relationship G=o(e,e,T) (e=strain, ¿=strain 
rate, T=absolute temperature), the distribution of the stress is given by

where (da/de), (do/de) and (do/dT ) represent the strain hardening, strain-rate 
hardening and temperature softening.

Early attempts at developing such an equation concentrated on the 
equivalence between temperature and strain rate, leading to such formulations 
as that of Zener and Holloman [225]

Z=epexp(U/kT) (113)

where e is the plastic strain rate, T  the absolute temperature, U is an 
activation energy and Z  is constant at a given stress and strain.

A relation was proposed by Vinh et al. [198] using results obtained in high
speed torsion tests. They found reasonable agreement between the predictions 
of the expression

x =F(Yr(Y/Y0)meXp(W77) (114>
and their experimental results for duralumin, copper and mild steel, F, n, m 
and W being parameters which had to be determined experimentally for each 
material. However, for mild steel F, n, and W  were also required to be 
functions of strain rate, so the process essentially became a curve fitting 
exercise.

a modified expression of Eq. (114) was also applied to polyethylene oxide 
(semicrystalline), highly crystalline polyamide and amorphous polycarbonate. 
The proposed equation [226] is of the form
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t  = F ( Y ) " ( y r e x p [  W T - F o) “ ]  (1 1 5 )

where T0 and T  are the ambient and specimen temperature, t is the shear 
stress and y and y are the shear strain and strain rate respectively.

A simple expression with an allowance for thermal softening was proposed by 
Johnson and Cook [227], which has the form

a =(A +Ben)(l +C1iie)(1 -T1") (116)

in which there are five material constants, A, B, C, n and m, and T  is the 
thermal softening term

T=(T-Tr)/(Tm- T )  (117)

where T  is the absolute temperature and suffixes r and m  indicate room 
temperature and the melting temperature respectively. Assuming adiabatic 
deformation at high strain rates, this term allows for the reduction in strength 
corresponding to the increase in temperature due to plastic work. At a given 
strain and temperature equation (116) shows the semi-logarithmic dependence 
of stress on strain rate often observed experimentally. At a given temperature 
and strain rate it follows an empirical power-law work-hardening curve where 
the exponent n is assumed to be a constant so that the shape of the stress-
strain curve will be independent of temperature and strain rate. There is 
considerable experimental evidence, however, that this is not the case for BCC 
materials.

Starting more explicitly from an understanding of the dislocation processes 
controlling plastic flow, Zerilli and Armstrong [228] derived two forms of 
constitutive relation, one for FCC materials

o=Ao^+C2V/Eexp[-C3r+C4rinE]+A/v// (118)

and one for BCC materials
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o=Aog+C1 exp[-C3T+CJ\ni]+C5en+klfl (119)

where C2 to CB, k and n are material constants, I is the average grain diameter 
and Act’g is a non-thermal stress component related to the original 
microstructure of the material. These differ from the Johnson and Cook 
relation in that they divide the non-thermal stress into two components and 
relate each to a specific process resisting deformation. They differ from each 
other in that for FCC materials a parabolic work-hardening law coupled with 
the temperature and rate-dependent term is assumed while for materials of 
BCC structure work-hardening is assumed to be temperature and strain rate 
independent, as in the Johnson and Cook relation but in conflict with much 
experimental data.

Once the separate effects of temperature and strain rate on the stress-strain 
response for a given material are known, the usual approach to developing a 
constitutive relationship or mechanical equation of state is to determine a 
unique function relating the four parameters stress, strain, strain rate and 
temperature which describes these effects with a reasonable degree of 
accuracy. This implies that the four parameters are all state functions, i.e. 
that at a given applied strain rate and external temperature the material will 
support a uniquely defined stress at any given value of strain. In practice, it 
is untrue for a much wider range of materials as may be seen from the many 
tests which have been performed in which the applied strain rate has been 
varied in a controlled manner [229],

The strain-rate sensitivity, evaluated at constant strain, which is defined as 
X= do/d(logep), is found to increase when the strain rate is raised above 
roughly 103  s'1. When the maximum strain rate investigated is limited to 103  

s'1, such an increase is virtually not seen [19,135,139]. The experiments also 
show that for small rates of strain (1 0 ' 4  - 1 0 ' 2 s'1), the stress-strain curve does 
not change significantly; this stress-strain curve will be considered as the 
"quasi-static" curve [33].
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4.3 General Physical Description of M echanical Response

When the flow stress corresponding to a given plastic strain is determined at 
different applied strain rates and external temperatures three distinct types 
of response are frequently found. The results presented in Fig. 8 8  were 
obtained over a wide range of both temperature and strain rate [30]. They 
allow, therefore, a general description of the types of response shown by many 
metals and alloys at different strain rates and temperatures.

Fig. 8 8  Strain-rate dependence of flow stress at very high strain rates for annealed mild 
steel [30].

Region I corresponds to low strain rates and high temperatures, where the 
flow stress is essentially constant and independent of temperature and strain 
rate. The controlling mechanism of flow is the long-range friction stress due, 
for example, to the presence of large precipitates. Thermal vibrations in the 
lattice are unable to assist in overcoming these barriers. This ’athermal’ 
friction stress increases with increasing alloy content and predominates in 
highly-alloyed materials which, in consequence, appear less sensitive to strain 
rate.
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At lower temperatures and higher strain rates the short range barriers to flow, 
such as dislocation interaction, become relatively more important. Here 
thermal vibrations can assist in overcoming the barriers, and flow becomes 
sensitive to temperature and strain rate. The rates of straining will be related 
to the absolute temperature according to an Arrhenius type of exponential low, 
of the form

<12«>

where AG, the free energy of activation, is a function of the local (thermal) 
stress a and the absolute temperature T, and e0  is a frequency factor (or 
nominal limiting strain rate) which depends on the mobile dislocation density,
i.e. on the structural state of the material. A dependence on stress is implicit, 
both through the AG(a*,T) and also, possibly, through a stress dependence of 
e0. It is usual, however, to assume that e0  is independent of strain rate and 
temperature (and hence of stress) and to take AG to be a unique function of 
stress. Assuming that a single thermally activated mechanism controls flow 
and that the corresponding force-displacement relationship is rectangular, AG 
may be expressed as a linear function of stress, of the form

AG=AG0 -K (o-oil) (121)

where AG0 is the free energy of activation in the absence of stress, V  is the 
activation volume, a the total applied stress and aa the athermal component 
of stress, i.e. that associated with region I. At high rates of strain Eqs. (120) 
and ( 1 2 1 ) may be combined to give

o= oa+AG0/K+(A:77i01n(ei/ e 0) (122)

In practice, Eq. (122) gives a reasonably good description of the behaviour of 
FCC metals and alloys, for those of BCC structure the semi-logarithmic 
dependence of the flow stress on strain rate is generally non-linear and the 
stress dependence of the activation energy is more complex.

Despite the variety of mechanical response described above, there is general 
agreement that in region II, i.e. for strain rates up to ~5000 s'1, thermal
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activation is the rate-controlling mechanism. At strain rates above this, 
however, a change in the rate-controlling mechanism is generally thought to 
occur. In region IV of Fig. 8 8 , an approximately linear dependence of flow 
stress directly on strain rate, rather than on the logarithm of strain rate, is 
observed, implying that flow at these strain rates is viscous in nature. It is 
usual, therefore, to associate the change in mechanical response at strain rates 
above ~5000 s' 1 with a change from thermal activation to phonon drag as the 
rate-controlling mechanism [136]. However, not all investigators agree. 
Lindholm [230], for example, has suggested that in aluminium there is a 
transition to a second thermally activated mechanism while for copper his 
results could be represented, despite some experimental scatter, by a constant 
value of X without any dramatic increase in strain-rate sensitivity up to a 
strain rate approaching 105  s'1. In contrast, Follansbee et al. [146], also 
working on copper and using miniaturised versions of the Split Hopkinson 
Pressure Bar (SHPB) at the highest strain rates, found clear evidence for a 
dramatic increase in strain-rate sensitivity of the flow stress at 15% strain, 
over the strain rate range from 103  to 3xl0 4  s'1. From an analysis of their 
results in terms of dislocation dynamics they conclude that only at the upper 
end of this strain rate range does the dislocation velocity approach the drag- 
controlled limit. Below this the results correspond to a transition zone between 
the regions where thermal activation and dislocation drag are rate controlling. 
At even higher strain rates, approaching 107 s'1, Huang and Clifton [231], 
using an inclined-plate pressure-shear test, have found almost an order of 
magnitude increase in the shear flow stress over that at 1 0 3 s'1, from which 
they also concluded that above ~1 0 4  s' 1 dislocation motion is governed by the 
intrinsic resistance of the clear lattice.

4.4 Adiabatic Shear Phenom ena

4.4.1 Phenomenon mechanism

In metals and alloys, it has been determined that at room temperature about 
90% of the work of deformation energy goes into heat. Adiabatic shearing is
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a particular situation in which the heat generated in localized bands cannot 
be dissipated because of the strain rate and the thermal properties of the 
material. In fact, a truly adiabatic deformation does not exist, some part of the 
heat being always lost to the surrounding metal, but the term adiabatic is 
taken here to show that a large part of the heat is retained in the band.

Shear bands form as a result of a thermo-mechanical instability due to the 
presence of a local inhomogeneity, inducing local deformation and heating. If 
the thermal properties of the material are not sufficient to conduct the 
generated heat away, the deformation becomes unstable.

When metals and alloys are deformed at very large strains and at very high 
strain rates such as in ballistic impact and penetration, forging and 
machining, localized shearing can occur, leading to localized deformation and 
a localization of heat generation. Generally, the flow stress increases with 
strain and strain-rate increase. However, in localized shearing, the increased 
temperature reduces the flow stress.

4.4.2 The temperature rise in a struck specimen

As mentioned above, the temperature of the metal rises during plastic 
deformation because of the heat generated by plastic work. The deformation 
energy per volume, w, is equal to the area under the stress-strain curve

e
w=fo(e,e,T)de. (123)

o

Only a small fraction of this energy is stored (principally as dislocations and 
vacancies). The rest is released as heat. If the deformation is adiabatic, i.e., no 
heat transfers to the surroundings, and the stress is considered as a function 
of strain, strain rate and temperature, when the strain increases from e to 
e+Ae, the temperature rise is given by
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e+Ae _
A r = -? -  f  o ( e ,e , i > /e = - ^  <124)

Pc ,  i  PC,

where a is the average value of a over the strain interval e to e+Ae, p is the 
density, Cp is the mass heat capacity, and a is the fraction of work converted 
into heat. For copper, Cp=383 J¡kg-K  and a=0.92; for steel, Cp=465 J / kg-K and 
a=0.865.

Any temperature increase causes the flow stress to drop, but there are two 
cases in which the effect of temperature can be ignored, i.e. deformation can 
be considered isothermal. One effect is the case at low strain rates, where heat 
can be transferred to surroundings, and the other is that at small strain, 
where very little heat is generated. Therefore, when testing over the wide 
range of strain rates or strains, there is a transition from isothermal to 
adiabatic test conditions.

Combining Eq. (63) with Eq. (79), which have been proposed in this study, the 
following temperature dependent constitutive relation has been used to 
compare with temperature independent ones

o =0.4e° 2e l7AITf0(e) +(0.64+43.1 eXloge  ̂+4) (MPa) e ^ lO V 1 (12g)
a=0.4e°,2e124/̂ )(e)+(4.5+302e)+2.9x(10'3ep- l )  (MPa) e^ lO V 1

where

/ 0(e)=255.1xlog(34.1315e+l) (MPa) (126)

A comparison of results for a <|)5x5 (mm) pure copper specimen at room 
temperature based on Eq. (63) and Eq. (125) has been done. The former is 
independent upon temperature, while the latter is dependent upon 
temperature. The calculated results at various initial velocities of the projectile 
are shown in Figs. 89 to 95.

The temperature rise at the impact end with respect to time and initial 
velocity of the projectile at room temperature is shown in Figs. 89 and 90. It



4.4 Adiabatic Shear Phenomena 135

can be seen that the temperature in the specimen rapidly increases with the 
initial impact velocity of the projectile. When this velocity reaches 100 m/s,  
the temperature rise may arrive at 150 °C.

From these results, it can also be seen that with the increase of impact 
velocity, the differences between the corresponding curves are all raised. As 
is shown in Fig. 95. the deformation considering the effect of temperature is 
smaller than that when this effect is disregarded. Under a high initial impact 
velocity of the projectile, the effect of temperature on the final deformation of 
the impacted specimen becomes quite important. Therefore, in the process of 
analysis of high speed impact tests, adiabatic shear phenomena can not be 
disregarded.

Fig. 89 The temperature rise with respect to time at the impact end of the for pure 
copper specimen at room temperature at various initial velocities of the projectile.
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Fig. 90 The temperature rise with respect to the initial velocity of the projectile at the 
impact end of a <|>5x5 (mm) pure copper specimen at room temperature.

Fig. 91 Comparison of the stresses to time at the impact end of the specimen based on 
temperature dependent and independent constitutive relations at the initial speeds of the 
projectile of 40 m/s and 80 m/s.
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Fig. 92 Comparison of the stresses at the impact end of the specimen with time based on 
temperature dependent and independent constitutive relations at the initial speeds of the 
projectile of 60 m/s and 100 m/s.

Temperature dependent 
Temperature independent V0 -100 m/s

V0 =80 m/s

V0 "60 m/s

V. =40 m/s

   .

60 7030 40
Time ([is)

Fig. 93 Comparison of the dynamic strain at the impact end of the specimen with regard 
to time based on temperature dependent and independent constitutive relations at various 
initial speeds of the projectile.
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Fig. 94 Comparison of deformation of the specimen at the impact end with regard to time 
based on temperature dependent and independent constitutive relations at various initial 
impact velocities of the projectile.

Velocity (m/s)

Fig. 95 Comparison of the deformation of the specimen at the impact end with regard 
to initial impact velocities of the projectile based on temperature dependent and 
independent constitutive relations.
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4.5 The Effect o f Shock Loading

In the process of the impact, the specimen is subjected to shock waves. It is 
expected that both the velocity of the projectile and the shock pulse duration 
within which the stress is increased to its peak value can have some effect on 
the shock dynamic behaviour and the residual properties simply because the 
disturbance created within the shock front and the dynamic response of the 
material will be altered by these two parameters.

In the prevailing experiment the initial velocity of the projectile is dependent 
upon the firing pressure which can be controlled by adjusting the solenoid 
valve on the impact test machine and be measured by the laser velocity- 
measuring system. A shock loading is a complicated process. The time involved 
is indeed very short, usually never exceeding 10 jis [232]. In order to sim
plify the calculation, the sudden impact is handled by a fast, but smooth vari
ation of the impact within T0 which is the time during which the shock wave- 
front increases up to the peak stress.

At first, it is assumed that the velocity at the impact end of the specimen 
increases from the static state to the initial velocity of the projectile, v0, with 
a certain acceleration, av, which can be expressed as

At various accelerations, the relationship of the final deformation of the 
specimen with respect to the initial velocity of the projectile is shown in 
Fig. 96. It can be seen that the calculated final deformations of the specimen 
increase with the reduction of the acceleration. At the lower initial velocity of 
the projectile, the difference of deformations is not obvious. With the increase 
of the acceleration, its effect on the calculated deformations of the impacted 
specimen is decreased. As has been mentioned above, the time taken by shock 
waves is smaller than 1 0  [is, i.e. the acceleration of shock waves is not less 
than 8x10s m /s2.
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Fig. 96 Variation of the deformation of the impacted copper specimen with respect to the 
initial velocity of the projectile at various shock accelerations at room temperature.

•I

4)
Q

Velocity (m/s)

Fig. 97 Variation of the final deformation o f the impacted copper specimen with respect

to the initial velocity o f the projectile at various shock durations at room temperature.
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On the other hand, the stronger shock waves will occur in the process of 
higher striking velocity. The acceleration of the shock wave cannot remain 
constant, which will become greater with the increase of the impact velocity. 
Considering these reasons and a smooth variation of the shock load, the 
duration of shock wave is assumed as constant, i.e. it is independent of the 
initial velocity of the projectile. The variation of the final deformation with 
respect to the initial velocity of the projectile at various shock durations for a 
5x5 mm  pure copper specimen at room temperature is shown in Fig. 97, from 
which it can be found that although the shock duration may cause the 
variation of the final deformation of the impacted specimen, it is not apparent. 
Therefore, in the present study, the shock duration is chosen to be 5 ]is.

4.6 The Dynamic Constitutive Equations

4.6.1 Commercially pure copper

Due to different controlling mechanisms [233], for many FCC metals and 
alloys the logarithmic strain rate sensitivity X=da/d(log^)} evaluated at 
constant strain and temperature, is basically constant over the range of rates 
from 1 0 ' 6  to 1 0 3  s'1, but is found to increase when the strain rate is raised 
above 1 0 3  s'1. At the strain rates exceeding 1 0 3  s'1, there exists a linear 
relationship between the stress o and plastic strain rate ep, i.e. the linear 
strain rate sensitivity X=do/dep keeps constant [33]. Following these evidences, 
the constitutive equations for pure copper can be suggested as

o(e,e,7’)=/0(e,r)+>.1(e,7)(logeJ’-loge^) 1̂28^
o(e,e,r)=/1(e,7>A2(e,7)(0'-e') e'>e?

where k0p, taken as 1 0 ' 4  s'1, is the strain rate corresponding to the quasi-static 
stress-strain curve f 0(e,T) at temperature T; fj(e ,T ) is the stress-strain curve 
at constant strain rate ¿ /  at temperature T, which is equal to 103 s' 1 for pure 
copper, and and ^  are the logarithmic and linear strain rate sensitivities 
respectively. The effect of adiabatic shear has been considered by means of the 
quasi-static stress strain curve f 0(e,T) and the stress-strain curve at constant
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strain rate e/’, f/e ,T ), which is expected to allow for the temperature softening 
of stress to some extent. On the other hand, strain rate sensitivities and 
are considered the function of both strain and temperature.

This suggested form can not only effectively reflect the practical properties of 
the material in a wide range of strain rates and but also represents continuous 
properties at the connection of two different analytical expressions. It should 
be noted that having an exact expression to reflect the constitutive relation in 
the range of low and moderate strain rates is absolutely necessary, since due 
to the impact, the specimen experiences such a process that at the first the 
strain rate increases from static state to its highest point within the shock 
duration, then through moderate region to the low region (see Fig. 14). The 
deformation of the specimen itself is an accumulating process, which is related 
with its deformation track. Therefore, the final deformation of the specimen 
obtained by a calculation relies on the constitutive relation both in the range 
of high strain rate and in the low and moderate ranges.

The determination of Eq. (128) requires similar procedures as the other 
proposed forms. Having known the quasi-static strain curve of a material, the 
unknown function in the constitutive equation may be first determined from 
the experimental results in the range of strain rate less than 1 0 3  s'1, then, f  \(e) 
may be estimated from the expression thus obtained. Finally, based on the 
known f/e ) , the unknown function X2 can be determined.

The simplest consideration is that the parameters and Â  are assumed as 
constants for pure copper. It was found that the agreement of the finial 
deformation of the specimen between the program calculations and 
experimental results are acceptable for ^«8-10 (MPa) and A.2 =2.0~2.5 (kPa) 
at room temperature. It is noticed that sensitivities Â  and Â  are inversely 
depend on each other, i.e. a higher Â  is with regard to a lower X2. It can also 
be observed that the sensitivity in the range of lower strain rates will directly 
affect the determination of that in the range of higher strain rates. However, 
the conclusion from this assumed values of and Â  is that the theoretical
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sensitivities are far higher than the experimental results obtained by others, 
especially in the range of lower strain rates.

Although and X2 can be considered as constants at a certain strain, a 
number of experimental results reported have shown that at various strains, 
the strain rate sensitivity does not remain as constant. Therefore, the 
assumption of the linear forms of and is made

---------------- =o1+P1e epi l ( P s
log ip-log e£

(129) 

e » 1 0 V
i ' - e '

The calculations based on this form of constitutive equations have been carried 
out, and the predicted final deformation of the specimen are then compared 
with the experimental results as shown in Fig. 98. The optimised parameters 
determined in Eq. (129) are listed in Table 6 .

The stress-strain curves at various temperatures for pure copper based on the 
form (129) and the values in Table 6  are shown in Figs. 99 to 101, and the 
stress at a constant strain versus strain rate at various temperatures are 
shown in Figs. 102 to 104.

Table 6  The strain rate sensitivities of pure copper determined based on Eq. (129).

Temperature
(°C)

Xt (MPa) X2 (kPa sec)

tti Pi « 2 P2

2 0 1 2 2 0 9 5

2 0 0 8 2 0 7 5

360 5 18 4 5
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Fig. 98 Comparison of deformation of the specimen based on the form (129) and the 
values in Table 6 with the experiment at various temperatures.

Fig. 99 Stress-strain curves for pure copper based on the form (129) and the values in

Table 6 at 20 °C.
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Fig. 100 Stress-strain curves for pure copper based on the form (129) and the values 
in Table 6 at 200 °C.

td

*
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Fig. 101 Stress-strain curves for pure copper based on the form (129) and the values

in Table 6 at 360 °C.
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Strain rate log (s ')

Fig. 102 Stress at a constant strain versus strain rate for pure copper based on the form 
(129) and the values in Table 6 at 20 °C.

Strain rate log (s'1)

Fig. 103 Stress at a constant strain versus strain rate for pure copper based on the form

(129) and the values in Table 6 at 200 °C.
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Strain rate log (s'1)

Fig. 104 Stress at a constant strain versus strain rate for pure copper based on the form 
(129) and the values in Table 6 at 360 °C.

It was found that the form (129) can validly describe the dynamic properties 
of this material at the strain rate e<1 0 4  s'1, but beyond this range, its use 
becomes inappropriate. In order to obtain a better expression used for wider 
strain rates, an index constant is appended. Therefore, the following modified 
form was suggested,

o(e)-o 0 (e)
---------------- =o1 +P1e epi l (r s
log e*-log ¿o

(130)
<,(e ) ~ <’ i ( e )  _  p  ^ , 0 3 , .

(e'T-(ii)"

where 0<n<l is an unknown constant, and the others have the same meanings 
as above. It may be seen that the constant n is a strain rate hardening index. 
The calculations based on Eq. (130) were made, and the predicted final 
deformation for the pure copper specimen were then compared with the 
experimental results as shown in Fig. 105. The optimised parameters based
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on the form (130) at various temperatures have been determined, and the 
corresponding coefficients are listed in Table 7.

Table 7 The strain rate sensitivities of pure copper determined based on Eq. (130).

Temperature
(°C)

Xx (MPa) K  (kPa)
n

«1 P, «2 P2
20 12 20 30 20 0.88

200 8 20 26 18 0.86

360 5 18 21 17 0.80

Based on the form (130) and the values in Table 7, the stress-strain curves at 
various temperatures for pure copper are shown in Figs. 106 to 108, the stress 
at a constant strain versus strain rate at various temperatures for pure copper 
are shown in Figs. 109 to 111, and the temperature and strain-rate 
dependence of the stress at various strain of pure copper are shown in 
Figs. 112 to 114.

Velocity (m/s)

Fig. 105 Comparison of deformation o f the specimen based on the form (130) and the

values in Table 7 with the experiment at various temperatures.
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True strain 0

Fig. 106 Stress-strain curves for pure copper based on the form (130) and the values 
in Table 7 at 20 °C.

«

I

True strain e

Fig. 107 Stress-strain curves for pure copper based on the form (130) and the values

in Table 7 at 200 °C.
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True strain e

Fig. 108 Stress-strain curves for pure copper based on the form (130) and the values 
in Table 7 at 360 °C.

Fig. 109 Stress at a constant strain versus strain rate fo r  pure copper based on the form

(130) and the values in Table 7 at 20 °C.
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Strain rate log (s'1)

Fig. 110 Stress at a constant strain versus strain rate for pure copper based on the form 
(130) and the values in Table 7 at 200 °C.

Fig. I l l  Stress at a constant strain versus strain rate for pure copper based on the form

(130) and the values in Table 7 at 360 °C.
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Strain rate log (s ' )

Fig. 112 Temperature and strain-rate dependence of the stress at e=0.05 of pure copper 
based on the form (130) and the values in Table 7.

Strain rate log (s'1)

Fig. 113 Temperature and strain-rate dependence of the stress at e=0.10 of pure copper

based on the form (130) and the values in Table 7.
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Strain rate log (s’1)
Fig. 114 Temperature and strain-rate dependence of the stress at e=0.20 of pure copper 
based on the form (130) and the values in Table 7.

In practice, it was found that the Eq. (130) is an ideal form of constitutive 
relations, in which the interpretation of the corresponding constants are clear. 
aj+PjE and a 2+p2e represent strain-rate hardening in the corresponding strain 
rate ranges; and p2 reflect the effect of strain on the strain rates. For Pj= 
p2 =0 , the stress-strain relations are a group of parallel curves in the individual 
coordinate systems (semi-logarithmic and rectangular). The contribution of the 
constant n to the constitutive equations is that it can flexibly and validly relax 
the strain-rate hardening in the range of high strain rates, because the 
assumption of linear strain rate sensitivity in this region often causes very 
strong strain-rate hardening, particularly at very high strain rates.

4.6.2 Mild steel

BCC metals and alloys, especially steels, show even greater rate sensitivity, 
which varies in a complex manner with stress, strain and temperature. The 
strain rate sensitivity increases with increasing strain rate and decreases with 
increasing strain. Generally, it is concluded that for BCC metals such as mild
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steel at low strain rates and high temperatures, the flow stress shows only 
small temperature and strain-rate sensitivity, the latter decreasing with 
increasing temperature; at lower temperatures and higher strain rates the 
flow becomes sensitive to temperature and strain rate; at much higher strain 
rates a rapid increase in the logarithmic rate sensitivity 0a/31oge) with 
increasing strain rate is obtained, this parameter being approximately 
independent of temperature [30]. Hence, the form of the constitutive equation 
proposed for mild steel is as follows

O(e) -Oo(e) , i  -Pi*\ *p i/\3 -1   =Oj(l+c 1 ) ep i l ( r s  1
log ¿p log ¿o

(131)
o(e)-gi<c) iP>10i s-l

The static stress-strain relation considering the effect of temperature for mild 
steel is expressed as

o=(781.0-0.2897)(l-tf_28e) (132>

The calculations based on Eq. (131) have been made, and the corresponding 
optimised parameters at various temperatures have been determined, which 
are listed in Table 8 . The predicted final deformation are compared with the 
experimental results as shown in Fig. 115. At various temperatures, the 
stress-strain curves are shown in Figs. 116 to 118 and the stress at a constant 
strain versus strain rate are shown in Figs. 119 to 121. The temperature and 
strain-rate dependence of the stress at various strain are shown in Figs. 122 
to 124.

Table 8  The strain rate sensitivities of mild steel determined based on Eq. (131).

Temperature
(°C) n

ax(MPa) c (̂kPa) P2
2 0 45 1 2 40 1 0.87

2 2 0 35 1 2 32 1 0.85

440 2 0 1 2 30 1 0.84
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Velocity (m/s)

Fig. 115 The comparison of deformation of mild steel specimens based on the Eq. (131) 
and Table 8 with the experiment at various temperatures.

True strain e
Fig. 116 Stress-strain curves for mild steel based on Eq. (131) and the values in 
Table 8 at 20 °C.
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True strain e

Fig. 117 Stress-strain curves for mild steel based on Eq. (131) and the values in 
Table 8 at 220 °C.

True strain e

Fig. 118 Stress-strain curves for mild steel based on Eq. (131) and the values in

Table 8 at 440 °C.
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Strain rate log (s'1)

Fig. 119 Stress at a constant strain versus strain rate for mild steel based on Eq. (131) 
and the values in Table 8 at 20 °C.

Strain rate log (s'1)

Fig. 120 Stress at a constant strain versus strain rate fo r  mild steel based on Eq. (131)

and the values in Table 8 at 220 °C.
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Strain rate log (s'1)

Fig. 121 Stress at a constant strain versus strain rate for mild steel based on Eq. (131) 
and the values in Table 8 at 440 °C.

Strain rate log (s'1)

Fig. 122 Temperature and strain-rate dependence of the stress at e=0.02 of mild steel

based on Eq. (131) and the values in Table 8.
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Strain rate log (s'1)

Fig. 123 Temperature and strain-rate dependence of the stress at e=0.05 of mild steel 
based on Eq. (131) and the values in Table 8.

Strain rate log (s'1)

Fig. 124 Temperature and strain-rate dependence o f the stress at e=0.10 of mild steel

based on Eq. (131) and the values in Table 8.
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4.7 The Effect of Radial Expansion

One of the limitations of compression tests in high speed impact is radial 
expansion of the specimen during its deformation. This expansion affects the 
stress in the specimen in two ways: firstly by causing frictional shear stresses 
which act at the interfaces of the specimen with the anvil and the projectile, 
and secondly by introducing inertial body forces within the specimen.

The first of these effects can be minimized by lubrication of the projectile- 
specimen and anvil-specimen interfaces. In the current research, polythene 
sheet was used in the static tests and pure petroleum jelly in the dynamic 
tests to reduce the friction on the interfaces. In the experiments, the barrelling 
of the impacted specimen at room temperature is not distinct, but it can be 
observed at the high temperatures.

The second constitutes a limitation in obtaining accurate constitutive 
relations. Because of radial inertia, in a test at constant strain rate the 
measured axial stress exceeds the true uniaxial flow stress by an amount 
which increases as the increase of the strain rate.

The explicit solutions for the estimation of inertial effects in high-velocity 
plane strain and axisymmetric compression of rigid-perfectly plastic materials 
for a variety of frictional conditions have been derived by Sturgess and Jones 
[38], which predicts that increased impact velocity increases inertial effects, 
but increased interface friction tends to suppress these effects. However, the 
effects of strain rates and plastic wave propagation were not taken into 
account.

An approximate expression calculating the effect of inertia from energy 
considerations is derived by Samanta [23], which can be written as
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where c d is a spatial stress value, om is the mean measured contact pressure 
at the impact end, p is the density of the specimen, h and d  are the initial 
height and diameter of the specimen respectively, e is the mean strain rate, 
c is the derivative of strain rate with respect to time.

In the experiments performed, strain rate was nearly time-independent for a 
large part of the deformation. Therefore, Eq. (133) can be simplified as

o .=o  +p(— ) b2 (134)
d w P 12 16

In the current research, typically, for pure copper specimen of initial 
dimensions d=5 mm  and h=5 mm the inertia correction is 0.13% of the flow 
stress 360 MPa at 0.05 strain and 0.09% of the flow stress 440 MPa at 0.2 
strain, at a strain rate of 1 0 4  s' 1 at room temperature.

It can be seen that because of the choice of small dimensions of test specimens, 
the effect of radial inertia in the current experimental condition may be 
ignored.

4.8 Discussion of the Constitutive Relations

As is predicted, it can be seen that the strain rate sensitivity A, evaluated at 
constant strain and temperature, for commercially pure copper increases 
appreciably when the strain rate is raised above roughly 103  s'1. When the 
maximum strain rate investigated is limited to 1 0 3  s'1, such an increase is not 
found. As are shown in Figs. 109 to 111, although stresses increases with 
increasing strain rates, the strain-rate sensitivity does not vary until strain 
rate exceeds 1 0 3  s'1.

A number of constitutive relations for pure copper specimens have been 
suggested by means of different tests and calculating methods. Although the 
materials used in these results are all commercially pure copper, it is 
impossible to require that such primary mechanical properties as the static 
stress-strain relations in the individual research are identical because of
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testing conditions, the type of the chosen material, and especially, the extent 
of work-harkening of tested materials. In order to ensure that the present 
results are comparable with those used by other researchers, a concept of so- 
called stress sensitivity is used, which is defined as the ratio of dynamic 
stress, ax, to quasi-static stress, g0.

Comparing with earlier results at room temperatures attained by various 
methods, the relations of stress sensitivities versus strain rates at constant 
strains and room temperatures are shown in Fig. 125 for pure copper 
materials. Using the split Hopkinson pressure bar (SHPB) technology, 
Lindholm [19] determined the rate sensitivity for annealed pure copper in the 
range of strain rate from 3.3xl0 ' 4  to 1.75xl03  s' 1 (curve 1 in Fig. 125). 
Follansbee [33] determined the stress strain behaviour of oxygen-free 
electronic copper in the range of strain rate up to 1.5xl04  s' 1 applying a 
developed SHPB experimental technology (curve 2 in Fig. 125). Hashmi 
obtained the stress-strain performance in a higher range of strain rate up to 
106 s' 1 by applying a bullet fired at a target (curve 3 in Fig. 125). Curves 4 and 
5 in Fig. 125 is respectively the stress-strain relations based on Eq. (129) and 
Table 6 , and Eq. (130) and Table 7 in the current research. Dowling et al [31] 
investigated the shear strain rate sensitivity of the yield and flow stresses of 
copper over a range of strain rates from 10"3  to 4xl0 4  s' 1 by means of high 
velocity punching technology (curve 6  in Fig. 125). Using a ballistic test and 
a high speed photography method, Hashmi and Haque [218] obtained the 
stress-strain characteristics of high pure copper at strain rates between 1 0 3  to 
4xl0 4  s' 1 (curve 7 in Fig. 125).

It can be seen from Fig. 125 that in the present research (curves 4 and 5), the 
stresses increase linearly with logarithmic strain rates at low and moderate 
strain rates (<3xl03  s'1). Stress sensitivities, i. e. X/a0  (the tangent of the 
curves), keep unchanged in this range. This is consistent with previous results 
(curves 1 , 2  and 6 ), in which no distinct change for X occurs, however, stress 
sensitivities according to the present research are higher than previous 
results.
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Strain rate log (s'1)

Fig. 125 Comparison of the dynamic stress sensitivities at e=0.1 for pure copper 
material at room temperatures, 1. ref. [19]; 2. ref. [33]; 3. ref. [234]; 4. Based on 
Eq. (129) and Table 6; 5. Based on Eq. (130) and Table 7; 6. ref. [31]; 7. ref. [218].

At high strain rates (>103  s'1), the increase of strain rate sensitivity becomes 
rapid and complicated. The increase of X for curves 6  and 7 occurs earlier, 
while that for curve 5 is fastest. On the other hand, the stress sensitivity of 
curve 7 is the greatest.

As is shown in Fig. 126, the stress sensitivity for mild steel at the lower yield 
stress point at room temperatures in the prevailing research is also compared 
with those earlier results. Curve 1  is derived from the shear tests of Campbell 
and Ferguson [30], which ranges from 10' 3  to 4xl0 4  s'1; curve 2 is from the 
tension tests of Campbell and Cooper [235]; curve 3 is from punching tests of 
Dowling and Harding [183]; curve 4 is obtained from the ballistic tests of 
Haque and Hashmi; curve 5 is based on Eq. (134) and Table 8 ; curve 6  is 
acquired from the punching shear tests of Dowling, Harding and Campbell 
[31]; and curve 7 comes from the result of Symonds [236].
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Strain rate log (s'1)

Fig. 126 Comparison of the dynamic stress sensitivities for mild steel at lower yield 
stress point, 1. ref [30]; 2. ref. [235]; 3. ref. [183]; 4. ref [60] (e=0.01); 5. Based 
on Eq. (134) and Table 8 (e=0.02); 6. ref. [31]; 7. ref. [236],

Unlike copper, the stress sensitivity for mild steel keeps a distinct trend of 
increase at lower strain rates. The curves from experiments show that even 
at low and moderate rates the strain rate sensitivity exhibits an increasing 
trend, while at high strain rate it become more apparent. Comparably, the 
assumption of linear dependence of the flow stress on the logarithm of the 
strain rate in the range of low strain rates is more suitable for copper.

The comparison at higher temperatures between the present research and the 
results obtained by Campbell and Ferguson [31] is shown in Fig. 127. 
Comparing with Fig. 126, it can be found that strain rate sensitivity for mild 
steel decreases with increasing temperature (see Figs. 122 to 124), while it is 
not so obvious for copper as shown in Figs. 112 to 114.
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Strain rate log (s'1)

Fig. 127 Comparison of dynamic stress sensitivities for mild steel at 220 °C and 440 °C, 
1. Based on Eq. (134) and Table 8 at e=0.05; 2. ref [31] at lower yield stress point.

The effect of the strain on strain rate sensitivity for the two materials are 
different. For mild steel, the strain rate sensitivity decreases with increasing 
strain as shown in Figs. 119 to 121, while for pure copper the increase of A is 
not so evident as shown in Figs. 109 to 111.

It should be pointed out that the principal difficulty in the determination of 
constitutive equations by predicting the agreement of the final deformation of 
the impacted specimen with theoretical calculations is the lack of a unique 
solution even if the experimental results are predicted by the proposed 
constitutive law. For instant, for the same experimental data, it can be 
assumed that there is a higher strain rate sensitivity in the range of high 
strain rates, while a lower strain rate sensitivity in the low one. To overcome 
this problem, the previously reported experimental results in the range of low 
strain rates have been referred to.
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It should be also noted that due to the effect of friction, the assumption of the 
uniaxial stress in the specimen can give rise to error in the calculated 
deformation. The existence of friction may make the sensitivities of strain 
rates determined by the prevailing method higher than the practical ones.

The validity of the determined constitutive relations is also noteworthy. The 
strain rate can really reach a quite high level of up to 1 0 6  s' 1 under a high 
impact velocity of the projectile, however, this usually takes place in the region 
of small strain. With the increase of strain, the strain rate decreases rapidly. 
Therefore, at high strain rates the region involved by these constitutive 
equations is under a condition of small strain. With the reduction of strain 
rates, this region will gradually extend to larger strains. Nevertheless, this 
does not obstruct the application of these constitutive relations. In fact, the 
hardening of materials will be increased with increasing strain rates, i. e. the 
failure of materials will occur at a smaller strain.



Chapter 5 Conclusions and Suggestions

5.1 Concluding Remarks

(1) The investigations of the rate effects of metals deformed plastically have 
been extensively carried out during the last four decades and significant 
progress in studying high-speed deformation has been achieved. Therefore, a 
review of earlier work on aspects of experimental methods, experimental 
results, the development of wave propagation theory and their applications has 
been made, in which over 2 0 0  scientific sources are included.

(2) Impact testing is a very important technique in the study of dynamic 
behaviour of materials. When a specimen is subjected to impact, inertial 
stresses must be taken into account, that is, wave propagation in the material 
must be allowed for in interpreting the results. In general, plastic wave 
propagation requires the use of a rate-dependent constitutive relation for its 
proper description. The constitutive relation proposed by Malvern has been 
widely used, in which the plastic strain rate is a function of stress and strain. 
This relation implies that an incremental wave propagates at the elastic wave 
speed.

Experiments involving the observation of the transient wave propagation 
phenomena provide indirect methods to determine the dynamic mechanical 
properties of materials. In experiments involving the properties of uniaxial 
stress waves in rods, the procedure applied is to assume that the material 
submits to a certain constitutive law and then through calculations based on 
the law to predict the propagation characteristics. The predicted results Eire 
then compared with the experiment results. Agreement between the two 
usually leads to the conclusion that the equation assumed is the constitutive 
law for the material.

167
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The broad uses of computers have brought about the rapid development of 
various numerical solutions. Computer codes have been developed to treat 
problems where loading and response times are in the submillisecond regime.

The experimental results in the present study have been obtained using a 
ballistic test rig to fire a hardened tool steel projectile onto a small cylindrical 
specimen placed upon a hardened anvil. Compressed nitrogen gas is used to 
propel the projectile and the final deformation of the struck specimen is 
recorded.

For the purpose of studying the dynamic respond of the struck specimen and 
the determination of its constitutive equation, a mechanical model of the above 
experimental configurations which may be used to determine such laws has 
been set up. The elastic solution is given in which some basic concepts of the 
propagation of longitudinal wave are exhibited. Further, the theory of 
propagation of longitudinal waves of plastic deformation is applied to the 
model, the quasi-linear elastic-plastic system equilibrium equations with a 
mixed boundary condition are established, along with their characteristic lines, 
the program of the numerical solutions of the forward integration procedure 
is given. The solutions of the equations conforming to the constitutive equation 
reported elsewhere under the typical parameters in the form of graphics are 
given and discussed. Some geometrical and physical parameters affecting the 
dynamic procedure of the specimen are also examined.

(3) Commercially pure copper and mild steel are chosen as the test 
materials of the specimens. Both the static and dynamic compressive 
experiments are performed in the conditions of room and high temperatures 
of up to 500 °C and 440 °C respectively.

Using an existing ballistic test machine, small cylindrical specimens of 
commercially pure copper and mild steel were placed upon a rigid anvil and 
were impacted by a hardened tool steel projectile. The initial velocity of the 
projectile up to 1 2 0  m/s was recorded by a laser velocity-measuring device, and 
the deformation of the impacted specimen was measured after each test. For
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the propose of high temperature tests, modification of the machine was 
necessary and a movable anvil unit to reduce the loss of heat has been 
designed and used.

(4) Various constitutive equations both considering and ignoring the effect 
of temperature proposed by many earlier researchers have been reviewed. The 
form of all these constitutive equations suggested, started from experimental 
evidence. It is pointed out that the general relation proposed by Malvern that 
plastic rate of strain is a function of the over-stress a-f(e) is widely applied.

The micro explanation for the behaviour of those materials under high strain- 
rates is given. At low strain rates and high temperatures, where the flow 
stress is essentially constant and independent of temperature and strain rate, 
the controlling mechanism of flow is the long-range friction stress. At lower 
temperatures and higher strain rates, where greater rate and temperature 
sensitivities of the flow stress has been noted, the short range barriers to flow 
become relatively more important. At very high strain rates, for which the 
temperature dependence is unaffected, a rapid increase in the sensitivity with 
increasing strain rate is observed, which is believed to be due to viscous 
resistance to dislocation motion which becomes rate-controlling under these 
conditions.

Although the flow stress generally increases with strain and strain-rate, 
adiabatic deformation causes the increase of temperature so that flow stress 
is reduced. Adiabatic shear phenomena should be considered when the struck 
specimen is deformed to very large strains and at very high strain rates. There 
are two cases that the effect of temperature may be ignored, i.e. deformation 
can be considered isothermal. One is the case at low strain rates, where heat 
can be transferred to the surroundings, and the other is at small strain, where 
little heat is generated.

Shock loading is a complex process. In the current research, the sudden impact
is handled by a fast, but smooth variation of the impact within a very short
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time of period, during which the shock wave-front linearly increases up to the 
peak stress.

It is generally accepted that for many FCC metals and alloys the logarithmic 
strain rate sensitivity h= da/d(logeP), evaluated at constant strain and 
temperature, is basically constant over the range of rates from 1 0 ' 5  to 1 0 3  s'1, 
but is found to increase when the strain rate is raised above 103  s'1. At the 
strain rates exceeding 1 0 3  s'1, there exists a linear relationship between the 
stress a and plastic strain rate ep, i.e. the linear strain rate sensitivity 
A,=3a/dep keeps constant.

Following various experimental evidence, a constitutive form considering the 
effect of temperature shown in Eq. (131) for pure copper is suggested. This 
form can not only effectively and flexibly reflect the practical properties of the 
material in a wide range of strain rates and also behaves a continuous 
properties at the connection of two different analytical expressions. The 
determination of this form is also as simple as other proposed forms. Further, 
the constitutive form suggested is extended to apply to mild steel.

The experimental results obtained on the impact test machine are compared 
with those from the program calculation based on the assumed constitutive 
equations. The agreement in terms of the final deformations of the struck 
specimen between the experimental and theoretical results confirms that the 
assumed constitutive law for the material is acceptable.

Finally, the constitutive relations obtained is compared with those reported 
elsewhere.
5.2 The Existing Problems and Further Suggestions

(1) In the experiments, since a new chamber unit was designed and used, 
the loss of temperature in the tests has been controlled. However, due to the 
current temperature measuring devices, there are still difficulties when the 
specimen is tested at higher temperatures. On the other hand, because the 
projectile passes through a long path before it impacts the specimen, it is not
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so easy to assure a good contact of the surfaces between the projectile and the 
struck specimen, which can affect the uniformity of the deformation of the 
specimen.

Theoretically, main difficulty is in the determination of constitutive equations 
by predicting the agreement of the final deformation of the impacted specimen 
with theoretical calculations. There is a lack of a unique solution even if the 
experimental results are accurately predicted by the proposed constitutive law.

(2) It is expected that tests can be performed in a wider range of 
temperatures, so that the effect of temperature on the dynamic properties of 
the tested material can be used for this wider range. In order to compare with 
the previous results, the specimens should have an annealing treatment so 
that the residual stress existing in the specimens can be relieved. If the entire 
deformation process of the struck specimen could be recorded by a more 
modern measuring device, this would make it easier to determine the 
parameters in the proposed constitutive equations by the comparison of the 
deformation process of the specimen struck instead of its final deformation.
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Appendix II. Program of Conversion of Data

By Jian Sun, 10 October 1990

: D0,H0,X(I),(mm); Y(I),(kN); STRESS(I),(MPa).
DIMENSION X (40),Y (40),STRESS(40),STRAIN(40) 
CHARACTER FILE_N*8,FILE_D*20,FILE_R*20 
WRITE(6,10)
READ(*,'(A8)') FILE_N 

10 FORMAT(' The Name of File =')
FILE_D(1:8)=FILE_N 
FILE_D(9:12)='.DAT'
FILE_R=FILE_N 
FILE_R(9:12)='.RES'
OPEN (5,FILE=FILE_D,STATUS='OLD')
OPEN (6,FILE=FILE_R,STATUS='NEW')
READ (5,*) N, DO, HO 
V0=3.1415926*D0*D0/4*H0 
DO 50 1=1, N 
READ (5, *) X (I) , Y (I)

35 FORMAT (2F8.3)
50 CONTINUE

STRESS(1)=0.
STRAIN(1)=0 .
DO 60 1=2,N
STRESS(I)= (H0-X(I))*Y(I)/V0*1000 

60 STRAIN(I)=LOG(HO/ (HO-X(I)))
45 FORMAT (14)

DO 70 1=1,N
WRITE (6,55) STRAIN(I),STRESS(I)

55 FORMAT (2E10.3)
7 0 CONTINUE 

CLOSE (5)
CLOSE (6)
END



Appendix III.
Program for the Drawing of Curves

By Jian Sun, 7 May 1990

#include <graphic.h>
# i f TCQ
extern unsigned _stklen=6144;
#endif
float x[150], y[150], xn[600], yn[600], xl[2], yl[2], sfact, xw0( 

xwl, ywO, ywl;
float lheight, cheight, wleft, dO, hO, inginl, ingin2, inheightl, 

inheight2; 
float xleg, yleg, wspeed;
char title[90], xaxisn[30], yaxisn[30], tkf[20], datf[10][20], diti[50]; 
char typ, tkfsert[20], strl[20];
int i, j, k, nxdiv, nydiv, isgrid, nl, n2, n[20], m[20], iscross, 

frameon, ftick, load; 
int fisgrid, fnxdiv, fnydiv, wkind;
static char *symbstyle[]={"", "6", “0", "1", "5“, "7", "2", "3", "4"}; 
static char *linstyle[]={"", "solid", "ldot", "finedot", "dash", "dot", 

"chndsh", “solid", "ldot”, "finedot", “dash", "dot"}; 
static int colour[]={0,1,4,3,2,6,5,7,8,9,10,11,12,13,14,15}; 
main()
{

style();
input();
curtyp();
txyname();
bgnplot(1,'g ',tkf);
startplot(8);
font(4,"complex.fnt“,'\310',"triplex.fnt",'\311',"blockl.fnt",
'\312',"compgrma.fnt”,'\313') ; 
page(9.0,6.855); 
area2d(6.2,4.0); 
cross(iscross) ; 

if(k==l)
window(xwO,ywO,xwl,ywl); 
else
linestyle(); 

frame(frameon,ftick); 
fgrid(fisgrid,fnxdiv,fnydiv); 
grid(isgrid); 
upright(1); 
color(2); 
xymax(xl,yl);
scales(nxdiv,nydiv,xl,yl,2);
color(5);
xname(xaxisn);
yname(yaxisn);
if(typ=='P'||typ=='E')

{
for(i=0;i<k;i++)
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{
curve(&x[n[i]],&y[n[i]],(n[i+l]-n[i]),-1); 
}

}
for (i=0;i<k;i++)
{
color(colour[i]);
curve(&xn[m[i]],&yn[m[i]],(m[i+1]-m[i]),0);
}
intest(); 
endplot(); 
if(k==l) windows(); 
stopplot();

style()
{
FILE *style;
style=fopen("stylem.typ","r");
fscanf (style, "%d %d %f11,&load, &wkind, &wspeed) ; 
fscanf(style,"%d %d %f\n",&nl,&n2,ksfact); 
fscanf(style,"%d %d\n",&nxdiv,knydiv); 
fscanf(style,"%d\n", &isgrid);
fscanf(style,"%d %d %d",&fisgrid,&fnxdiv,&fnydiv);
fscanf(style,"%d\n", &iscross);
fscanf(style,"%d %d\n",&frameon,&ftick);
fscanf(style,"%f %f %f %f\n",&xwO,&ywO,&xwl,&ywl);
fscanf(style,"%f %f %f\n",&cheight,&lheight,&wleft);
fscanf (style, "%f %f11, &xleg, &yleg) ;
fscanf(style,"%f %f %f %f\n",kinginl,&inheightl,&ingin2,&inheight2); 
fclose(style);

}

input()
{
char ext[20],ch,noo[1];
FILE *in,*out; 
float v0,x0,xl,a0; 
float pi=3.1415926; 
n [0]=0 ; k=0;
out=fopen("exam.chk","w”); 
do {

k+=l;
puts("\nThe name of data file ? “); 
scanf("%s",datf[k]); 
if (datf[k]1=NULL)
{

strcpy(ext,datf[k]); 
strcat(ext,".dat"); 
in=fopen(ext,"r"); 
fscanf(in,"%d\n",&n[k]); 
if (n[k]==NULL)

{
k-=l;
printf ("No this file in default directory,type again.\n");



Appendix III Program for the Drawing of Curves A-15

}
else

{
strcpy(tkf,datf[k]);
fscanf(in,"%f %f %f\n“,&d0,&h0,&x0);
v0=pi*d0*d0/4*h0;
a0=pi*d0*d0/4;
n[k]+=n[k-1 ] ;
fprintf(out,"n[%d]=%d n[%d]=%d\n",k-1,n[k-1],k,n[k]); 
for (i=n[k-l];i<n[k];i++)
{ fscanf(in,“%f %f\n",&x[i],&y[i]); 
if (load==0) /*deformation*/
x[i]=x[i]-xO; 
if (load<0) /*engineering stress*/
{
x[i]=(x[i]-xO)/hO; 
y[i]=y[i]/aO;
}
if(load>0) /*true stress*/
{

xl=hO-x[i]+x0; 
y[i]=y[i]*xi/vo*iooo; 
x[i]=log(hO/xl);

}
fprintf(out,“%d %f %f\n",i,x[i],y [i]); }

}
fclose(in);

}
printf("Press 'Q' to END data input,any other key to continue:"); 

} while ((ch=getch())i='Q');
fclose(out); 

if(k>l)
{
gets(noo);
puts("\nThe number of figure?"); 
gets(tkf);
}

)

xymax(float xl[],float y l []) 
{
float xm,ym; 
int ix,iy; 
xm=0.; 
ym=0.; 
for (i=0;i<(k*nl);i++)

{
if (xm<xn[i]) 

xm=xn[i]; 
if (ym<yn[i]) 

ym=yn[i];
}

x l [0]=0;yl[0]=0 ; 
y l [1]=ym;xl[1]=xm;
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curtyp()
{
FILE *chk;
printf(“\n\nChoose the type of your curves:");
printf("\n\n'S' Using cubic spline to smooth the curve(s);"); 
printf("\n'E' Using cubic spline and their specimen points;"); 
printf("\n'R' Using the weighted linear regression;"); 
printf("\n'P' Drawing the regressive curves and their specimen

points;");
printf("\n Any other key for normal curves:"); 

typ=getch(); 
switch(typ)
{

case'R': 
case'P':

chk=fopen("chk.chk","w"); 
m [ 0 ] = 0 ;
for (i=0;i<k;i++)

{
rfit(&x[n[i]], &y [n [i]],(n[i+1]-n[i]),n2,
sfact, nl,&xn[i*nl],&yn[i*nl]);
m[i+l]= (i+1)*nl;
fprintf(chk,“%d\n",(i+1)*nl);
for (j=i*nl;j<(i+l)*nl;j++)
fprintf(chk,"%f %f\n",xn[j],yn[j]);

}
fclose(chk); 
break; 

case'S': 
case'E':

chk=fopen("chk.chk","w"); 
m[ 0]=0;
for(i=0;i<k;i++)
{
spline (&x[n [i]], &y[n[i]], (n[i+l]-n[i]), nl,
1.0e30, 1.0e30, &xn[i*nl], &yn[i*nl]);
m[i+l]=(i+l)*nl;
fprintf(chk,“%d\n",(i+1)*nl);
for (j=i*nl;j<(i+1)*nl;j++)
fprintf(chk,"%f %f\n",x n [j],yn[j]);

}
fclose(chk); 
break; 

default:
m [ 0 ] = 0 ;
for (i=0;i<k;i++)
{

m[i+l]=n[i+1];
for (j=n[i];j<n[i+l];j++)

{
x n [j]=x[j]; 
y n [j]= y[j];
}

}
break;
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)
}

txyname()
(
char tfnt[25],xfnt[25],yfnt[25],ch; 
if(load==0)

{

strcpy(diti,"\311Fig."); 
strcat(diti,tkf);
strcat(diti, " Quasi-static compression test“); 
strcpy(xaxisn,“\311Deformation \313D\312h (mm)"); 
strcpy(yaxisn,"\311Load P (KN) " ) ; 
if(k==l)
strcpy(title,"\312 115 I Load I 3 |— 112 I Deformation |4|Curve");
else
strcpy(title,”\312115|Load 112 | - |9 |Deformation |4 |Curves");
}

if(load>0)
{

strcpy(diti,“\311Fig.“); 
strcat(diti,tkf);
strcat(diti," Quasi-static compression test"); 
strcpy(xaxisn,"\313e\311 Ln(Ho/H)"); 
strcpy(yaxisn,"\313s\311 (MN/M[2])"); 
if(k==l)
strcpy(title,"\312I 4 |True 112|Stress|9 |- |3 |Strain 115|Curve");
else
strcpy(title,"\312|4 |True 112|Stress|9 I — 13 |Strain 115 I Curves■);
}

if(loadcO)
{

strcpy (diti,"\311Fig."); 
strcat (diti,tkf);
strcat (diti," Quasi-static compression test"); 
strcpy (xaxisn,“\313e") ; 
strcpy (yaxisn,"\313s\311 (MN/M[2])U); 
if(k==l)
strcpy (title,"\311112I Engineering |9 |Stress I 3 |- |4 |Strain 115|
Curve" );
else
strcpy (title, "\311112|Engineering I 9 |Stress|4 |- I 3 |Strain 
115 I Curves 11 ) ;
}

}
windows()
{

char specimen[30], diameter[30], height[30], bufd[10], bufh[10],
bufv[10], speed[30];
strcpy(specimen,"\311Test No: ");
strcat(specimen,tkf);
strcpy(diameter,"\311Diameter: \311"); 
gcvt(dO,5,bufd);
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strcat(diameter,bufd); 
strcat(diameter," \311(mm)");

strcpy(height,“\310Height: \310") ;
gcvt(hO,5,bufh);
strcat(height,bufh);
strcat(height,“ \310(mm)");
strcpy(speed,"\310Test speed:”);
gcvt(wspeed,3,bufv);
strcat(speed,bufv);
strcat(speed,"(mm/min)”);
startplot(1);
color(0);
box();
tfont(1);
color(1);
setscale(1);
tmargin(0.5);
if (wkind==0) ctline("\311 MILD STEEL u,cheight); 
else 
{
if (wkind>0) ctline ( " \311 P U R E  C O P P E R  ",cheight); 
else
ctline("\311 STAINLESS STEEL",cheight);
}
linesp(2 . 5) ;
lmargin(wleft) ;
ltline(specimen,lheight);
linesp(2.2) ;
ltline(speed,lheight);
linesp(2.2) ;
ltline(diameter,lheight); 
linesp(2.2); 
ltline(height,lheight); 
setscale(0) ; 

endplot();
}

intest()
{

tfont(1.5); 
color(2); 
tmargin(inginl) ; 
color(15);
ctline(title, inheightl); 
tmargin(ingin2); 
color(14);
ctline(diti, inheight2);

}

linestyle()
{

legpos(k,xleg,yleg); 
for(i=l;i<=k;i++)
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if(typ=='E' I Ityp=='P ')
legend(0,datf[i],symbstyle[i], .2,colour[i — 1]); 
else
legend(1,datf[i],1instyle[i], .2,colour[i — 1]);



Appendix IV.
Program for Numerical Solution of Plastic Wave

By Jian Sun, 29 March 1992

£******************************************************************** 
C PROGRAM OF FINITE DIFFERENCE OF EXPLICIT IMPACT
q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  *

COMMON NELEM,NCONT(0 : 500) , PLETH,PMODL,PPEXP,PCOFB,PYILD,PBROK,
. TLIMIT,SWITCH,PDESY,PVELO,XLETH(0:20000),TIME(0 : 20000),
. STRAN(0:20000),STRES(0 : 20000),VELOY(0 : 20000),DEFOM( 0 : 20000)

C** INPUT THE INITIAL DATE
CALL DINPUT (PDAMT,PPMAS,NUMBR,JSTEP,NTP)

C** SOLVE THE EQUATION OF STRAIN
CALL EQUATN(NUMBR,NTP,NOI,PDAMT,PPMAS)

C** OUTPUT THE RESULTS
CALL OUTPUT(NOI,NUMBR,JSTEP)
STOP
END

SUBROUTINE DINPUT (PDAMT,PPMAS,NUMBR,JSTEP,NTP) 
£******************************************************************** 
C INIATIAL INPUT AND CALCULATION OF PARAMETERS
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

COMMON NELEM,NCONT(0:500),PLETH,PMODL,PPEXP,PCOFB,PYILD,PBROK,
. TLIMIT,SWITCH,PDESY,PVELO,XLETH(0:20000),TIME(0:20000),
. STRAN(0:20000),STRES(0:20000),VELOY(0:20000),DEFOM(0:20000) 
CHARACTER TITLE*20
OPEN (5,FILE='BOND.DAT',STATUS='OLD')
OPEN (10,FILE='BOND.RES',STATUS='NEW')
READ(5,330) TITLE 

33 0 FORMAT(A40)
WRITE(10,340) TITLE 

340 FORMAT(//,5X,10A4)
READ (5,*) NELEM,NUMBR,JSTEP,NTP 
WRITE(10,3 01) NELEM,NUMBR, JSTEP, NTP 

3 01 FORMAT (/'NELEM =',14/
. 'THE PARAMETER OF OUTPUT STEP LENGTH NUMBR=',14/
. 'THE PARAMETER OF OUTPUT STEP LENGTH JSTEP =',14/
. 'THE NUMBER OF TIME PERIOD =',I4)

C *** READ THE SPECIMEN DIMENSIONS AND THE PROPERTY PARAMETERS.
READ (5,*) SWITCH,PDAMT,PLETH,PMODL,PYILD,PBROK,TLIMIT,PPEXP,
. PCOFB,PDESY 
WRITE (10,303)
WRITE (10,305) PDAMT,PLETH,PMODL,PYILD,PBROK,TLIMIT,PPEXP, 
.PCOFB,PDESY 

304 FORMAT(3F12.2)
3 03 FORMAT(/5X,'INITIAL AND PROPERTY PARAMETERS'/)
3 05 FORMAT('THE INITIAL DIAMETER= ',F12.4,'(m)'/

.'THE INITIAL LENGTH L= ',F14.4,'(m)'/

.'THE YOUNG'S MODULUS E= ',E14.4,'(N/m2)'/

.'STATIC YIELD STRESS O0= ',E14.4,'(N/m2)'/
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.'STATIC BREAKING STRESS a1= ',E14.4, ' (N/m2) '/

.'TIME CONSTANAT OF SHOCK T = ',E14.4,'(Sec)'/

.'CONST. EXPONENT P =',E14.4/

.'CONST. COEFFICIENT B=',E14.4/

.'DENCITY OF SPECIMEN =',E14.4, ' (Kg/m3) ' / )
C *** READ THE PROJECTILE PARAMETERS.

READ(5,*) PVELO,PPMAS 
WRITE(10,311)PVELO,PPMAS 

311 FORMAT('INITIAL VELOCITY OF PROJECTILE=',F12.4,'(m/s)'/
.'THE MASS OF PROJECTILE =',F12.4,'(Kg)')
CLOSE(5)
RETURN
END

SUBROUTINE INITIAL(DVECO,DTIME)
£ ★ ★* * ** * * * * * * + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * 
C THE INITIAL CONDITIONS
Q * * * + ★ * * * ★ * * ★ * * * ★ * ★ ★ * ★ * * * * * ★ * * * * ★ ★ * * ★ ★ ★ ★ * * ★ * * ★ * * ★ * * ★ * ★ * * ★ * * * * ★ ★ ★ * ★

COMMON NELEM,NCONT(0:500) , PLETH, PMODL,PPEXP,PCOFB,PYILD,PBROK,
. TLIMIT,SWITCH,PDESY,PVELO,XLETH(0:20000),TIME(0:20000),
. STRAN(0:2 0 0 0 0),STRES(0 :2 0 0 0 0),VELOY(0:20000),DEFOM(0:20000)
IF (TLIMIT .NE. 0.) THEN 
DO 100 J=0,NELEM 
STRES(J)=0.
STRAN(J)=0.
VELOY(J)=0.
TIME(J)=J*DTIME 
XLETH(J)=DVEC0*TIME(J)
DEFOM(J )=0.

100 CONTINUE 
ELSE
DO 200 J=0,NELEM 
VELOY(J)=PVELO
STRES(J )=-PVELO * SQRT(PMODL * PDESY)
STRAN(J )=STRES(J)/PMODL 
TIME(J)=J*DTIME 
XLETH(J)=DVEC0*TIME(J)

200 CONTINUE 
END IF 
RETURN 
END

SUBROUTINE EQUATN(NUMBR,NTP,NOI,PDAMT,PPMAS)

C THE SOLUTION OF THE EQUATION
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

COMMON NELEM,NCONT(0:500),PLETH,PMODL,PPEXP,PCOFB,PYILD,PBROK,
. TLIMIT,SWITCH,PDESY,PVELO,XLETH(0:20000),TIME(0:20000),
. STRAN(0:20000),STRES(0:20000),VELOY(0:20000),DEFOM(0:20000) 
DVEC0 =SQRT(PMODL/PDESY)
DLOCO=PDESY*DVECO 
DLETH=PLETH/NELEM 
DTIME=DLETH/DVEC 0
DPMAS=P PMAS * 4./3.1415926/PDAMT/PDAMT 
NPEAK=0
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OPEN (10,FILE='BOBO.RES',STATUS='NEW')
CALL INITIAL(DVECO,DTIME)
1=0
NCONT(0)=0 
WRITE(10,205)

205 FORMAT (/ / ' I J TIME(|As) XLETH (mm) VELOY(m/s)',
+ ' CT B DEFORM (mm) ' )
DO 210 J=0,NELEM,NUMBR
WRITE(10,215) I, J , TIME(J )*1E6,XLETH(J)*1E3,VELOY(J) ,
. STRES(J)/PYILD,STRAN(J),DEFOM(J)*1E3 

210 CONTINUE
215 FORMAT(214,2F10.4, 2F12.3 , 2F10.4)

WRITE(10,225)
225 FORMAT ( / )
200 NCONT(I+1)=NCONT(I)+NELEM+1 

1= 1+1
IF (INT(I/NUMBR)*NUMBR .E Q . I) WRITE(10,255)

255 FORMAT(//' I J TIME(Hs) XLETH(mm) VELOY(m/s)',
+' O* E *  DEFORM(mm)')
IF (I. GT. NTP*NELEM/2) GOTO 40 0 

C IF (VELOY(NCONT(I)) .GT. 0.) GOTO 400
CALL BOUND1 (DPMAS,DLOC 0,1)
DO 3 00 J=l,NELEM-1
CALL INNER(DVEC 0,DLOC 0,I,J )
IF (INT(I/NUMBR)*NUMBR .EQ. I) THEN
IF (INT((J-l)/NUMBR)*NUMBR .EQ.(J-l)) THEN
WRITE(10,215) I,J-l,TIME(NCONT(I)+J-1)*1E6,XLETH(NCONT(I)
. +J-1)*1E3,VELOY(NCONT(I)+J-1),STRES(NCONT(I)+J-l)/PYILD,
. STRAN(NCONT(I)+J-1),DEFOM(NCONT(I)+J-l)*1E3 
END IF 
END IF 

3 00 CONTINUE
CALL BOUND2(NUMBR,DVEC 0,DLOC 0,I)
IF (INT(I/NUMBR)*NUMBR .EQ. I) THEN
WRITE(10,215) I,NELEM,TIME(NCONT(I)+NELEM)*1E6,XLETH(NCONT(I)
.+NELEM)*1E3,VELOY(NCONT(I)+NELEM),STRES(NCONT(I)+NELEM)/PYILD, 
. STRAN(NCONT(I)+NELEM),DEFOM(NCONT(I)+NELEM)*1E3 
END IF 
GOTO 200 

400 N0I=I
WRITE(10,235) NCONT(I)

235 FORMAT(16)
CLOSE (10)
RETURN
END

SUBROUTINE BOUND1(DPMAS,DLOCO,I)

C CALCULATING THE BOUNDARY VALUES AT THE STRUCK END

COMMON NELEM,NCONT(0:500),PLETH,PMODL,PPEXP,PCOFB,PYILD,PBROK, 
. TLIMIT,SWITCH,PDESY,PVELO,XLETH(0:20000),TIME(0:20000),
. STRAN(0 :20000) , STRES(0:20000),VELOY(0:20000),DEFOM(0:20000) 
TIME(NCONT(I))=TIME(NCONT(I-1)+1)-(XLETH(NCONT(I-1))
. -XLETH (NCONT (I-D+l) ) /DLOCO *PDESY
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IF (((TIME(NCONT(I))+TIME(NCONT(1-1)))/2) .LE. TLIMIT) THEN
VELOY(NCONT(I))=PVELO*TIME(NCONT(I))/TLIMIT
ELSE
VELOY(NCONT(I))=VELOY(NCONT(1-1))+(TIME(NCONT(I))
. -TIME(NCONT(1-1)))/DPMAS*STRES(NCONT(1-1))
END IF
STRES(NCONT(I))=STRES(NCONT(1-1)+1)-DLOCO * (VELOY(NCONT(I))
. -VELOY(NCONT(I-1)+1))-(TIME(NCONT(I))-TIME(NCONT(1-1)+1))
* *FUNSTA( STRES (NCONT (I-D+l) , STRAN (NCONT (1-1)+1) )
STRAN(NCONT(I))=STRAN(NCONT(1-1))+(STRES(NCONT(I))
. -STRES(NCONT(I-1))+(TIME(NCONT(I))-TIME(NCONT(1-1)))
. *FUNSTA(STRES(NCONT(1-1)),STRAN(NCONT(1-1))))/PMODL 
ATRES1=(STRES(NCONT(1-1)+1)+STRES(NCONT(I)))/2.
ATRAN1=(STRAN(NCONT(1-1)+1)+STRAN(NCONT(I)))/2.
ATRES2=(STRES(NCONT(1-1))+STRES(NCONT(I)))/2.
ATRAN2=(STRAN(NCONT(1-1))+STRAN(NCONT(I)))/2.
IF (((TIME(NCONT(I))+TIME(NCONT(1-1)))/2) .GT. TLIMIT) THEN 
VELOY(NCONT(I))=VELOY(NCONT(I-1))+(TIME(NCONT(I))
. -TIME(NCONT(1-1)))/DPMAS*ATRES2 
END IF
STRES(NCONT(I))=STRES(NCONT(I-1)+1)-DLOCO *(VELOY(NCONT(I))
. -VELOY(NCONT(I-l)+l))-(TIME(NCONT(I))
. -TIME (NCONT (I-D+l) ) *FUNSTA (ATRES1, ATRAN1)
STRAN(NCONT(I))=STRAN(NCONT(I-l))+(STRES(NCONT(I))
. -STRES(NCONT(I-1))+(TIME(NCONT(I))-TIME(NCONT(1-1)))
. *FUNSTA(ATRES2,ATRAN2))/PMODL 

100 RETURN 
END

SUBROUTINE BOUND2(NUMBR,DVECO,DLOCO,I)
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C CALCULATING THE BOUNDARY VALUES AT THE ANVIL END
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

COMMON NELEM,NCONT(0:500),PLETH,PMODL,PPEXP,PCOFB,PYILD,PBROK,
. TLIMIT,SWITCH,PDESY,PVELO,XLETH(0:20000),TIME(0:20000),
. STRAN(0:20000),STRES(0:20000),VELOY(0:20000),DEFOM(0:20000) 
XLETH(NCONT(I)+NELEM)=PLETH 
VELOY(NCONT(I)+NELEM)=0.
TIME(NCONT(I)+NELEM)=TIME(NCONT(I)+NELEM-1)
. + (XLETH(NCONT(1-1)+NELEM)-XLETH(NCONT(I)+NELEM-1))/DVECO 
STRES(NCONT(I)+NELEM)=STRES(NCONT(I)+NELEM-1)+DLOCO *
. (VELOY(NCONT(I)+NELEM)-VELOY(NCONT(I)+NELEM-1))
. - (TIME(NCONT(I)+NELEM)-TIME(NCONT(I)+NELEM-1))
. *FUNSTA(STRES(NCONT(I)+NELEM-1),STRAN(NCONT(I)+NELEM-1))
STRAN(NCONT(I)+NELEM)=STRAN(NCONT(1-1)+NELEM)+(STRES(NCONT(I)
. +NELEM)-STRES(NCONT(1-1)+NELEM)+ (TIME(NCONT(I)+NELEM)
. -TIME(NCONT(I-1)+NELEM))*FUNSTA(STRES(NCONT(1-1)+NELEM),
. STRAN(NCONT(1-1)+NELEM)))/PMODL
ATRES1=(STRES(NCONT(I)+NELEM-1)+ STRES(NCONT(I)+NELEM))/2. 
ATRAN1=(STRAN(NCONT(I)+NELEM-1)+STRAN(NCONT(I)+NELEM))12.
ATRES2=(STRES(NCONT(I-1)+NELEM)+ STRES(NCONT(I)+NELEM))/2. 
ATRAN2=(STRAN(NCONT(I-1)+NELEM)+STRAN(NCONT(I)+NELEM))/2.
STRES(NCONT(I)+NELEM)=STRES(NCONT(I)+NELEM-1)+DLOCO 
. * (VELOY(NCONT(I)+NELEM)-VELOY(NCONT(I)+NELEM-1))
. -(TIME(NCONT(I)+NELEM)-TIME(NCONT(I)+NELEM-1))
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. *FUNSTA(ATRES1,ATRANI)
STRAN(NCONT(I)+NELEM)=STRAN(NCONT(1-1)+NELEM)+(STRES(NCONT(I)
. +NELEM)-STRES(NCONT(1-1)+NELEM)+ (TIME(NCONT(I)+NELEM)
. -TIME(NCONT(I-1)+NELEM))*FUNSTA(ATRES2,ATRAN2))/PMODL 
DXLETH=(STRAN(NCONT(I)+NELEM-1)+ STRAN(NCONT(I)-2))/2.
. * (XLETH(NCONT(I)-2)-XLETH(NCONT(I)+NELEM-1))
DEFOM(NCONT(I)+NELEM-1)=DEFOM(NCONT(I)-2)+DXLETH 
DEFOM(NCONT(I)+NELEM)= 0.
IF (INT(I/NUMBR)*NUMBR .EQ. I) THEN
IF (INT((NELEM-1)/NUMBR)*NUMBR .EQ.(NELEM-1)) THEN
WRITE(10,215) I,NELEM-1,TIME(NCONT(I)+NELEM-1)*1E 6,
. XLETH(NCONT(I)+NELEM-1)*1E3,VELOY(NCONT(I)+NELEM-1),
. STRES(NCONT(I)+NELEM-1)/PYILD,STRAN(NCONT(I)
. +NELEM-1)*PMODL/PYILD,DEFOM(NCONT(I)+NELEM-1)*1E3 
END IF 
END IF

215 FORMAT(214, 2F10.4, 2F12.3 , 2F10.4)
100 RETURN 

END

SUBROUTINE INNER(DVECO,DLOCO,I,J)

C THE SOLUTION OF THE INNER FIELD

COMMON NELEM,NCONT(0 :500),PLETH,PMODL, PPEXP,PCOFB,PYILD,PBROK, 
. TLIMIT,SWITCH,PDESY,PVELO,XLETH(0:20000),TIME(0:20000),
. STRAN(0:20000),STRES(0:20000),VELOY(0:20000),DEFOM(0:20000) 
XLETH(NCONT(I)+J)=((TIME(NCONT(1-1)+J+1)-TIME(NCONT(I)+
. J-l))*DVECO+XLETH(NCONT(I-1)+J+1)+XLETH(NCONT(I)+J-1))/2. 
TIME(NCONT(I)+J)= (TIME(NCONT(1-1)+J+l)+TIME(NCONT(I)+J-l)+
. (XLETH(NCONT(I-l)+J+l)-XLETH(NCONT(I)+J-1))/DVECO)/2.
STRES(NCONT(I)+J)=((VELOY(NCONT(1-1)+J+1)-VELOY(NCONT(I)
. +J-1))*DLOC0+STRES(NCONT(1-1)+J+l)+STRES(NCONT(I)+J-l)
. - (TIME(NCONT(I)+J)-TIME(NCONT(1-1)+J+l))*FUNSTA(STRES(
. NCONT (1-1) +J+1) , STRAN (NCONT (I-D+J+l) )-(TIME (NCONT (I)+J)
. -TIME(NCONT(I)+J-1))*FUNSTA(STRES(NCONT(I)+J-1),
. STRAN(NCONT(I)+J-1)))/2.
STRESP=((XLETH(NCONT(I)+J)-XLETH(NCONT(I)+J-1))
. *STRES(NCONT(1-1)+J+1)+ (XLETH(NCONT(1-1)+J+l)
. -XLETH(NCONT(I)+J))*STRES(NCONT(I)+J-1))
. / (XLETH(NCONT(I-l)+J+1)-XLETH(NCONT(I)+J-l))
STRANP=((XLETH(NCONT(I)+J)-XLETH(NCONT(I)+J-l))
. * STRAN(NCONT(I-1)+J+1) + (XLETH(NCONT(1-1)+J+l)
. -XLETH(NCONT(I)+J))*STRAN(NCONT(I)+J-l)
. )/(XLETH(NCONT(1-1)+J+1)-XLETH(NCONT(I)+J-1))
TIMEP=((XLETH(NCONT(I)+J)-XLETH(NCONT(I)+J-1))
. *TIME(NCONT(I-1)+J+1)+(XLETH(NCONT(I—1)+J+1)-XLETH(NCONT(I)
. +J))*TIME(NCONT(I)+J-l))
. / (XLETH (NCONT (I-D+J+l) -XLETH (NCONT (I)+J-l) )
STRAN(NCONT(I)+J )=STRANP+(STRES(NCONT(I)+J )-STRESP+(TIME(
. NCONT(I)+J)-TIMEP)*FUNSTA(STRESP,STRANP))/PMODL 
ATRES1=(STRES(NCONT(1-1)+J+1)+STRES(NCONT(I)+J))/2.
ATRAN1=(STRAN(NCONT(I-1)+J+1)+ STRAN(NCONT(I)+J ))/2.
ATRES2=(STRESP+STRES(NCONT(I)+J))/2.
ATRAN2=(STRANP+STRAN(NCONT(I)+J))/2.
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ATRES3 =(STRES(NCONT(I)+J-l)+STRES(NCONT(I)+J) )/2.
ATRAN3 = (STRAN(NCONT(I)+J-l)+STRAN(NCONT(I)+J))/2.
STRES(NCONT(I)+J )=((VELOY(NCONT(I-1)+J+1)-VELOY(NCONT(I) +
. J-l))*DLOC0+STRES(NCONT(1-1)+J+1)+STRES(NCONT(I)+J-l)
- - (TIME(NCONT(I)+J)-TIME(NCONT(I—1)+J+1))
. *FUNSTA(ATRES1,ATRAN1)-(TIME(NCONT(I)+J)
, -TIME(NCONT(I)+J-l))*FUNSTA(ATRES3,ATRAN3))/2.
VELOY(NCONT(I)+J)= (VELOY(NCONT(I-1)+J+1)+VELOY(NCONT(I)
. +J-1))/2.+(STRES(NCONT(I-1)+J+1)-STRES(NCONT(I)+J-1)
. + (TIME(NCONT(I)+J)-TIME(NCONT(1-1)+J+1))
. *FUNSTA(ATRES1,ATRAN1) - (TIME(NCONT(I)+J)
. -TIME(NCONT(I)+J-1))*FUNSTA(ATRES3,ATRAN3))/2./DLOCO 
STRAN(NCONT(I)+J)=STRANP+(STRES(NCONT(I)+J)-STRESP+
. (TIME(NCONT(I)+J)-TIMEP)*FUNSTA(ATRES2,ATRAN2))/PMODL 
DXLETH=(STRAN(NCONT(I)+J-1)+STRAN(NCONT(1-1)+J+1))/2.
. * (XLETH (NCONT (I-D+J+l) -XLETH (NCONT (I) + J-l) )
DEFOM(NCONT(I)+J-1)=DEFOM(NCONT(1-1)+J+1)+DXLETH
RETURN
END

FUNCTION FUNSTA(STRESF,STRANF)
e * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C THE FUNCTION OF STATIC CONSTITUTIVE EQUATION
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' * ‘ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

COMMON NELEM,NCONT(0 :500),PLETH, PMODL, PPEXP,PCOFB,PYILD,PBROK, 
. TLIMIT,SWITCH,PDESY,PVELO,XLETH(0:20000),TIME(0:20000),
. STRAN(0 :2 0 0 0 0),STRES(0 :20000),VELOY(0:20000),DEFOM(0:2 0 0 0 0) 
AX0=(0.694+43.1*STRANF)*1.E6 
AX1=2.9331E+3
AXS=(0.694+43.l*PYILD/PMODL)*1.E6 
PYILD3=PYILD+AXS 
IF (STRESF .LE. PYILD) THEN 
STRES0=PMODL*STRANF 
ELSE
STRES0=(200.*LOG10(34.1315*(-LOG(1-STRANF)
. -PYILD/PMODL)+1)+55.)/(1-STRANF)*1.E6 
END IF
IF (STRESF .LE. PYILD3) THEN
STRES1=PMODL*STRANF
ELSE
STRES1=STRES 0 +AX0 * 7.
END IF
IF (STRESF .LE. STRES0) THEN 
FUNSTA=0.
ELSE
IF (STRESF .LE. STRES1) THEN
FUNSTA=PMODL*EXP(LOG(10.)*((STRESF-STRESO)/AX0-4.))
ELSE
FUNSTA= PMODL *((STRESF-STRES1)/AX1+3.E3)/10.
END IF 
END IF 
RETURN 
END

SUBROUTINE OUTPUT(NOI,NUMBR,JSTEP)
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C THE OUTPUT OF RESULTS
q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

COMMON NELEM,NCONT(0:500),PLETH,PMODL,PPEXP,PCOFB,PYILD,PBROK,
. TLIMIT,SWITCH,PDESY,PVELO,XLETH(0:20000),TIME(0:20000),
. STRAN(0:20000) , STRES(0:20000),VELOY(0:20000),DEFOM(0 :20000) 
OPEN (6,FILE='XBOND.RES',STATUS='NEW')
OPEN (7,FILE='TBOND.RES',STATUS='NEW')
OPEN (1,FILE='VBOND.RES',STATUS='NEW')
OPEN (2,FILE='SBOND.RES',STATUS='NEW')
OPEN (3,FILE='EBOND.RES',STATUS='NEW')
OPEN (4,FILE='VBONDC.RES',STATUS='NEW')
OPEN (8,FILE='SBONDC.RES',STATUS='NEW')
OPEN (9,FILE='EBONDC.RES',STATUS='NEW')
JHALF=INT(JSTEP/2)
NHALF=INT(NELEM/2)
NQUAT=INT(NELEM/4)
IF (NQUAT .NE. JHALF*INT(NQUAT/JHALF)) THEN 
NQUAT=NQUAT+1 
NHALF=2*NQUAT 
END IF
IHALF=INT(NUMBR/2)
DO 100 J=0, NELEM,JSTEP 
WRITE(6,110)

110 FORMAT(//' I J TIME(Hs) XLETH(mm) VELOY(m/s)',
+' CT(MPa) c DEFORM(mm)')
DO 100 1=0,N0I-1,IHALF
WRITE(6,220) I,J,TIME(NCONT(I)+J)*1E6,XLETH(NCONT(I)+J)*1E3,
. VELOY(NCONT(I)+J),STRES(NCONT(I)+J)/1.E6*(1-STRAN(NCONT(I)
. +J)),-LOG(1-STRAN(NCONT(I)+J)),DEFOM(NCONT(I)+J)*1000 

100 CONTINUE
WRITE(7,210)

210 FORMAT(//' I J TIME(Hs) XLETH(mm) VELOY(m/s)',
+ ' <7 (MPa) c DEFORM (mm) ' )

215 DO 240 I=NUMBR,NOI,NUMBR 
DO 200 J=0,I,JSTEP 
IF ((2*J) .GT. NELEM) GOTO 240
WRITE(7,220) I,J ,TIME(NCONT(I-J)+2*J)*1E6,XLETH(NCONT(I-J )+2 *J ) 
+ *1000,VELOY(NCONT(I-J)+2*J),STRES(NCONT(I-J)+2*J)/l.E6*(l 
. -STRAN(NCONT(I-J)+2*J)), -LOG(1-STRAN(NCONT(I-J)+2*J)),
. DEFOM(NCONT(I-J)+2*J)*1000 

200 CONTINUE 
240 CONTINUE
220 FORMAT(214,2F10.4, 2F12.3 , 2F10.4)

WRITE(1,310) (XLETH(J)*1000,J=0,NHALF,2*JHALF)
WRITE(2,310) (XLETH(J)*1000,J=0,NHALF,2 *JHALF)
WRITE(3,310) (XLETH(J )*1000,J=0,NHALF,2*JHALF)
WRITE(4,310) (XLETH(J)*1000,J=2*(NQUAT+JHALF) ,NELEM,2 *JHALF) 
WRITE(8,310) (XLETH(J)*1000,J=2*(NQUAT+JHALF),NELEM,2*JHALF) 
WRITE(9,310) (XLETH(J )*1000,J=2*(NQUAT+JHALF) ,NELEM,2 *JHALF)
DO 300 1=0,NOI-1,IHALF 
IF (2*1 .LE. NELEM) THEN 
IF (2*1 .LE. NHALF) THEN
WRITE(1,330) TIME(NCONT(I))*1.E6,(-VELOY(NCONT(I-J)+2*J),
. J=0,I,JHALF)
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WRITE(2,320) TIME(NCONT(I))*1.E6,(STRES(NCONT(I-J)+2*J)/1.E6 
. * (l-STRAN(NCONT(I-J)+2*J)),J=0,I,JHALF)
WRITE(3,340) TIME(NCONT(I))*1.E6,
. (-LOG(1-STRAN(NCONT(I-J)+2*J)) , J=0,I,JHALF)
ELSE
WRITE(1,330) TIME(NCONT(I))*1.E6, (-VELOY(NCONT(I-J)+2 *J),
. J=0,NQUAT,JHALF)
WRITE(2,320) TIME(NCONT(I))*1.E6,(STRES(NCONT(I-J)+2*J)/I.E6 
. * (l-STRAN(NCONT(I-J)+2*J)),J=0 , NQUAT,JHALF)
WRITE(3,340) TIME(NCONT(I))*1.E6,
. (-LOG(1-STRAN(NCONT(I-J)+2*J)),J=0,NQUAT,JHALF)
WRITE(4,330) TIME(NCONT(I))*1.E6,(-VELOY(NCONT(I-J)+2*J),
. J=NQUAT+JHALF,I,JHALF)
WRITE(8,320) TIME(NCONT(I))*1.E6, (STRES(NCONT(I-J)+2*J)/1.E6 
. *(1-STRAN(NCONT(I-J)+2 *J )) ,J=NQUAT+JHALF,I,JHALF)
WRITE(9,340) TIME(NCONT(I))*1.E6,
. (-LOG(1-STRAN(NCONT(I-J)+2*J)),J=NQUAT+JHALF,I,JHALF)
END IF 

ELSE
WRITE(1,33 0) TIME(NCONT(I))*1.E6,(-VELOY(NCONT(I-J)+2*J),
. J=0,NQUAT,JHALF)
WRITE(2,320) TIME(NCONT(I))*1.E6,(STRES(NCONT(I-J)+2*J)/1.E6 
. *(1-STRAN(NCONT(I-J)+2*J)),J=0,NQUAT,JHALF)
WRITE(3,340) TIME(NCONT(I))*1.E6,
. (-LOG(1-STRAN(NCONT(I-J)+2*J)),J=0,NQUAT,JHALF)
WRITE(4,330) TIME(NCONT(I))*1.E6,(-VELOY(NCONT(I-J)+2*J),
. J=NQUAT+JHALF,NHALF,JHALF)
WRITE(8,320) TIME(NCONT(I))*1.E6,(STRES(NCONT(I-J)+2*J)/I.E6 
. * (1-STRAN(NCONT(I-J)+2*J)),J=NQUAT+JHALF,NHALF,JHALF)
WRITE(9,340) TIME(NCONT(I))*1.E6,
. (-LOG(1-STRAN(NCONT(I-J)+2*J)),J=NQUAT+JHALF,NHALF,JHALF)
END IF 

3 00 CONTINUE 
310 FORMAT(6X,15F6.1)
320 FORMAT(F6.3 , 15F6.1)
330 FORMAT(F6.3 , 15F6.2)
340 FORMAT(F6.3 , 15F6.3)

CLOSE (1,STATUS='KEEP')
CLOSE (2,STATUS='KEEP')
CLOSE (3,STATUS='KEEP')
CLOSE (6,STATUS='KEEP')
CLOSE (7,STATUS='KEEP')
CLOSE (4,STATUS='KEEP')
CLOSE (8,STATUS='KEEP')
CLOSE (9,STATUS='KEEP')
RETURN
END


