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M.Sc. Thesis Abstract

The Effect of Shear Flow on the Resistive Tearing Mode of
Magnetohydrodynamics in a Cylindrical Geometry.

Neill Sweeney
7/Dec/1998

Resistive instabilities are unstable modes which disappear as resistivity
tends to zero. Their growth time is proportional to a positive fractional
power of resistivity. The equilibrium we consider has axial symmetry in a
cylinder. With small but finite resistivity these modes originate about a
surface, known as a resonant surface. Using the tearing ordering, we
develop a system of ordinary differential equations to model the modes,
including shear flow. We develop a numerical code to solve the system.
We plot the loci of the growth time for increasing flow for a sample of the
other parameters. We also plot marginal stability curves. Our results show
a strong interaction between flow and some of the other parameters. We
also include a couple of series solutions to the problem. One is valid as

viscosity tends to infinity and the other as flow tends to infinity.



Introduction

The behaviour of confined high-temperature plasmas is complex and
varied. An understanding of this behaviour is necessary for research into
the possibility of generating power from nuclear fusion. It has been
discovered that the magnetohydrodynamic (MHD) system describes a lot
of the macroscopic behaviour of plasmas. This system considers the
plasma as a conducting fluid in a magnetic field. It contains the Navier-
Stokes equations as a subset. Even with this simplified model there is a

wide range of possible behaviour.

In order to generate power the plasma must be heated while being
confined by externally generated magnetic fields. Therefore initial
theoretical research concentrated on finding stable equilibria. This
appeared to be a depressing search. After much work many different
categories of instability were identified but no stable equilibria.
Experimental work, though, showed that the presence of an instability is
not disastrous. More important is how the instability develops. In the early
development of an instability, it will be small enough to be considered as
a linear perturbation about the equilibrium being studied. Itwill grow
exponentially with a fixed growth rate. Eventually non-linear terms will
become significant. This occurs relatively early for MHD instabilities.
Tracking the non-linear development of an instability involves much more
work. Currently there is considerable work on numerically simulating this
non-linear development. This is computationally intensive and requires

powerful and sophisticated equipment.

Because of the quick transition to non-linear development, the value of the
growth rate does not provide vital information. Faster linear growth rates
do not always indicate faster non-linear development. Other information
from the linear phase can be useful. Of course if there are no growing

modes in the linear phase there will be no non-linear development.



As stated before, there are many categories of instabilities. We will
concentrate on just one, the resistive tearing mode. The original paper on
resistive instabilities is the 1963 paper of Furth, Killeen and Rosenbluth.
Since then, there has been considerable work with a steady increase in the
number of parameters included in the final system. We will consider six
parameters. We will follow the orderings, approximations and
transformations of previous work, checking that they are still appropriate
when we add shear flow. Considering the complexity of the original
system, these simplifications are amazingly successful in reducing to a
fourth order system of ordinary differential equations. Because of this, the

numerical work can be done on a standard PC.

In Chapter 1we outline how the system we study is derived from the
MHD system. We also compare this system with the equivalent system in
previous work. This system is set on an infinite domain. In Chapter 2 we
use asymptotics to estimate the behaviour at the ends of the domain. In
Chapter 3 we describe the numerical methods we use to study this system.
The approach we employ is quite specific to the peculiarities of the
problem. In Chapter 4 we give series solutions as viscosity or shear flow
tend to infinity. This chapter is independent of the flow of the work and is
offered as an alternative approach. In Chapter 5 we present the results of
our numerical work. In the Appendix we present in more detail the

reduction ofthe full MHD system to the tearing mode system.



1. Physical Model

Our starting point is the MHD equations for an incompressible conducting

fluid which are

The momentum equation

P~j~=“Vp+ (VXB)X Bt i:v 2\

The induction equation

® =Vx(VxB)+riv2B

Mass conservation (1.1
- +VmVv=0

at
The divergence condition

V-B=10
Incompressible flow
Vay =0

Here V and B are the velocity and magnetic fields,
p,p are the density and the pressure,
r, are the resistivity and the perpendicular viscocity.

We assume we have an equilibrium configuration (B0,V0,p0,p0) . We

are looking for a linear mode (B1?Yj, pj,p]J) about that equilibrium.

P.(™ +Vomw , +V,*VV0 +p, (VOevvO0)
=-VPI- V(B0-Bj)+ B0O*VBj + Bj *VB0+ plV2V1l

A1 =Vx (V,xB,)+ VX (V, xBO)+r,V 2B, 1 2)

N-+V O0.VPI+Vr VP0=0

at
V-Bj =0
V-Vj =0

We will confine ourselves to incompressible modes.



The equilibria we want to study have axial symmetry, i.e. in cylindrical

co-ordinates

B0 =B oo(r)e0 +B 0z(r)ez
VO =VQAXr)e0 + VOz(r)ez

Po =Po(r)
where ee,ez are the cylindrical basis vectors.

(1.3)

Since all equilibrium values are constant in the 0 and z directions, the

modes must vary like
f(r) exp(im0 + ikz + cot). (1.4)

So instead of a system of partial differential equations, each wave number
(combination of k and m) is studied separately by a system of ordinary
differential equations. Re(co)>0 corresponds to an exponentially growing
mode and Re(c0)<0 corresponds to an exponentially decaying mode. If
there are no growing modes the equilibrium is stable. The correct
dimensionless number to consider the importance of resistivity is the
inverse of the magnetic Reynolds number. Under fusion conditions this is
usually small (typically of the order 10 to 10‘7') indicating that resistivity
is a small parameter. Thus in a high temperature plasma we have the
classic boundary layer scenario of a small parameter multiplying the
highest derivative in an equation. Neglecting resistivity a second order
differential equation for Brcan be formed. The coefficients of this
equation depend on the equilibrium being studied. We will assume we
have a solution to this equation. This equation may have a regular singular
point at r=rs (defining what is known as the resonant or rational surface)

where

= _B09+kB0 =0 (1.5)
-

(NB the location of the boundary layer depends on the wave direction of

the mode being considered at that time).



At rsthere may be ajump in Brand/or in the derivative of Br. of the
particular mode under consideration. Close to rs, and only close to rs, will
resistivity have to be considered Inside the layer, we need an ordering to
eliminate insignificant terms. This is a good point to mention some of the
orderings commonly used to study this type of problem. Ignoring
resistivity a sufficiently strong driving force may induce an ideal
interchange mode. This driving force is caused by a combination of an
adverse pressure gradient and curvature in the equilibrium magnetic field.
The stability condition for this mode is known as Suydam’s criterion. If
the driving force is too weak to drive an ideal mode it may drive a
resistive interchange mode. The fast interchange mode corresponds to
short wavelengths and is completely localised to the resonant surface.
Because it has no effect on the main body of the plasma it is of little
physical interest. Alternatively a slow interchange mode can be formed

which has a slower growth time but is not localised.

Ifthe driving force is of a smaller order than that required to drive an
interchange mode, modes of a different character develop, known as
tearing modes. These are the modes we will study. They are not localised.
They exist in the absence of a driving force. There are two possible
orderings. One is the strong viscous ordering in which viscosity dominates
inertial terms and the other is the weak viscous ordering in which viscosity
is comparable to inertial terms. When viscosity is made dimensionless in
the strong viscous ordering it is typically of order 10" . This suggests the

weak ordering is a better model and this is the one we use.



Modes ideal resistive resistive weak strong

inter- fastinter-  slow viscous viscous
change change inter- resistive resistive
change tearing tearing
time scale 0 0 13 3/5 213
width of N/A 172 1/3 2/5 1/3
resistive
layer
driving 0 0 0 2/5 1/3
force

Table 0-1: The order of key quantities in different orderings in terms

of powers of resistivity.

To do this the system (1.2) will be rescaled. To connect the solution in the
surface with that outside for the tearing ordering we match the jump in the

derivatives.

f t

A" = Lim-% Lim-r- . (1-6)
r>rst Br s Br

The reasons for this choice of matching parameter are given in previous

work particularly Coppi et al. (1966) page 108.

Figure 0-1: Typical BrProfile for the tearing mode.;Biskamp (1993)
p.67



Using this tearing ordering we eliminate insignificant terms inside the
layer. The details here are quite involved and we leave them to the
Appendix. (We are very grateful for a set of notes from Richard Paris on
which that appendix is heavily dependent.). We then rescale variables and
parameters relative to the length scale of the resistive layer and time scale
of the mode. We employ the constant-~ approximation. For its range of
validity see Furth et al. (1963) p464. We proceed to give the results of this

scaling.

Scaled parameters for the weak viscous tearing ordering:

2
length scale: 8 = — « time scale: t= —
VF' Vrs J 6rs
5 X t pOrig r¢(F"2
a.7)
d=_M 7~ j Afl 7,-52»
F'S p 5 F'BO 1

(where G = fY 0etkV0z)

The scaled versions of the variables are:

— BIr Wj=-~-B S=-ViIr Y= 2tk A
F'8 Ir 1 8F T 8(F")

(1.8)

W=-2 2g0ijlv]|,

and having eliminated insignificant terms we are left with the system:



% =XH +(Q+iRX)FO0

TE™ + X2H-(Q +iRX)H" - Y = JpY0- (Q +iRX)X%
Y" +XW-SH =0

rw" - (Q+iRX)W- XY = (D - IJX )"

(1.9)

(where the equations are respectively the induction equation in the radial
direction to lowest order, the induction equation in the radial direction to
next order, the momentum equation in the radial direction after the
application of a differential operator, the induction equation parallel to the
equilibrium magnetic field, the momentum equation parallel to

equilibrium magnetic field.).

The jump in the derivative is

Justification of the constant 'P approximation

We outline heuristically the argument used to justify the constant-'F
approximation. Full details and the range of validity are given in Furth et

al. (1963) pp. 464. Because IFo(x) = 0,W0(x) is a linear function. In the

YU
modes we consider i((‘ %) is small (because of the
+

T o0

different length scales inside and outside the layer). Therefore to leading
order *F is a constant. To normalise the modes, we take as 1 from here

on. This makes the system inhomogeneous.

The matching condition then becomes.



The system then becomes

rs™ +X2H- (Q +iRX)H" - Y = Jp- (Q + iRX)X
Y" +XW-SE =0

TW" - (Q + iRX)W - XY = (D - JX)
+0

A" = J(XH+ (Q + iRX))dX
()

(1.10)

The Effect of Shear Flow

What do we mean by the effect of shear flow? When we have motion

parallel to a mode, we expect the frequency to be shifted (i.e. the Doppler-
Shift). In our notation instead of ©, you get (co + ik *VV0) appearing in the

equations. Ifwe expand about the singular surface, rs, we get

® +i(k 'voXr)= ® +i(k “VO)(Is) + i(k eV 0) (rs)x (r- rs) ses (1-11)

The constant term shifts the frequency of the mode but not the stability of
the mode. It only shifts the imaginary part of the growth time. That is why
we concentrate on the second term which when rewritten in terms of
scaled parameters inside the layer becomes iRX. So Q (our scaled growth
time) will be replaced by (Q+iRX). This destroys the symmetry of the
equations about zero. We take flow small enough to allow us to neglect
any other effect it may have. In particular, with the ordering we use here
we can neglect the effects of Alfven waves, centrifugal forces and the

Kelvin-Helmholtz instability.



Fourier Transform

We now use a Fourier transform on the system which reduces the order

from eight to four.

Using the transforms

4(k) = jS(X)e“ikxdX y(k) = JY (X)e~ikxdX

—00 —Co

w(k)= W (X)e~ikxdX (1.12)
)

we transform each equation term by term.

Transforming (1.10a) we get

Tk4™ -+ Qk2~- R(k27M) - y + 27iQi8' -27iRi5™ = 2nJps. (1.13a)
Transforming (1.10b) we get

-k 2y +iw'-S~ = 0. (1.13b)
Transforming (1.10c) we get

-rk 2w - Qw + Rw' = iy' + 24D5 -2f1:Ji8". (1.13c)

We remove the higher derivatives of the delta function by defining new

variables.

h= §+ 27iRi8

1.14
y=y- 27rJ8. ( )

So we get the system

h" + R(k2h)'-(Q k2+Tk4)h +y = -27i(J + Jp)S + 27tiQS’
iw'-k2y-Sh=-27tiSR8 (1.15)
iy'+(Q+fk2)w - Rw' = -24D8



The boundary conditions on this system are that all solutions have finite

norm. The matching condition (1.1 0d), when transformed, becomes
A'=i(h'(0-) +h'(0+)) (1.15d)

We need to impose some sensible boundary conditions on this system.

The boundary conditions we will impose are that h, y and w have finite L2
norm. This would be implied by (S - iR), (V + J®and W having finite L2

norm. As it can be derived from the ordering that these quantities are

localised to the boundary layer these are reasonable boundary conditions.

If we replace the w' in the third equation, using the second equation, we

get

iy* + (Q + rk 2w + RAIK2y +iSh)= -27i(D + SR2)E). (1-16)

Thus we see that, the effective driving term is increased in the presence of
flow. (S is by definition positive.) We will define the effective driving

term as

Dr =D + SR2. (1.17)



Comparison with previous work

This work is heavily dependent on work that went before. The aim is to
study the effect of shear flow in a cylindrical geometry. We have two
starting points. The first is recent work on the effect of shear flow on
instabilities in slab geometry. In particular we are referring to papers by
Paris and Sy (1983), Bondesson and Persson (1986), Paris et al. (1993)and
Hou et al. (1996).The second is work on resistive instabilities in
cylindrical geometry. In particular we refer to papers by Coppi et al.
(1966) and Dagazian and Paris (1986). In order to compare this work with
previous work, we write down the equivalent systems in those papers to
the system we work with here (1.15). We changed notation and rearranged

the equations where necessary to make the comparison.
Slah Geometry with Flow:

In the slab geometry the first equation of (1.15) decouples from the others.
Because there is no natural driving term in the slab model, a gravitational
field is included. The driving term, G, is then proportional to the
equilibrium density gradient and the gravitational field. When S, D and G

vanish the systems are identical.

h" + R (k:h)" - ke +Tks)i +Gu=Q5"- iJ5
(k2h)"- (Q ) Q (1.18)
Ru'=Qu-h +iRS

where u is an artificial variable defined to facilitate the comparison.

Cylindrical Geometry without Flow:

Coppi, Greene and Johnson (1966):

Coppi, Greene and Johnson worked in cylindrical geometry. They did not
include viscosity or flow, which we do. They did however include

compressibility terms, which we do not.



h" - Qk2h +y = Q8'
iw'- k2y - (S- cD)h- cQy =0

iy’ + Qw -D8 the adiabatic constant)
(1.19)
where ¢ represents the compressibility term, ¢ = — x —.
YP 13

Dagazian and Paris (1986):

Dagazian and Paris also work in a cylindrical geometry. They do include
viscosity, parallel viscosity and compressibility terms, but not flow.
Because they were looking for stationary modes, they set Q=0.
"-GA((S-cD) +rkDh+y+Aw" =0 A is the parallel

iw' - k2y - (S- cD)h=0

iy' - fk 2w + 2A(w" - £(S - cD)h’) = D8

viscosity

(1.20)

Only the odd part of the solution contributes to the matching parameter.
Without the flow term, the systems of equations are symmetric. The
current term, J, is even and therefore cannot affect the odd part of the
solution. Therefore when R=0, the current does not affect the growth time

and in papers without flow it is ignored.

Bondesson, lacono and Bhatarjee (1987):

This paper is concerned with the effect of shear flow on ideal interchange
modes in a cylindrical geometry. On page 2169 of their paper they give a
complicated formula (8b) for the effective driving term in the presence of
flow. Because the flows we consider are on a smaller scale than those

considered in their paper, that formula can be considerably simplified. In

13



. ) ) g
the ordering and notation of this work, that formula becomes (D+SR ),

which provides confirmation for our result.
Discussion: Compressibility

We completely neglect compressibility. As explained in Coppi et al.
(1966) this is not correct even though the velocity field is to leading order

divergence free. Quoting directly

.... The divergence of the fluid velocity must nearly vanish. ...This does not
mean that the divergence of the fluid velocity must play no role in the final

results, but only that the dominant part of the velocity field must be divergence-

free.

There are two reasons for our neglect of compressibility. Firstly we need
to limit the number of parameters in the problem. Secondly, according to
Coppi et al. (1966), the differences between the D-mode in the cylinder
and G-mode in the slab are most pronounced in the limit in which the

fluid is incompressible. Again quoting directly

In most cases the effect of gravity and line curvature are interchangeable but in
this case there are interesting differences. When gravity is the destabilising
agent the driving force in the annihilated momentum equation, corresponding to
eg. 50 (our eq. 1), is proportional to the perturbed density and directly related to
the fluid displacement. This is because gravity acts directly on the fluid. On the
other hand, line curvature acts through the tension in the magnetic field lines
and the corresponding driving terms are proportional to the component of the

perturbed magnetic field parallel to the equilibrium field or, through

eq32[j B2 + pj ~ 0], to the perturbed pressure.

Frequently the perturbed pressure and perturbed density are simply proportional
and the two destabilising forces are similar, but they lead to quite different

results in the limit in which the fluid is incompressible

This can also be seen by comparing the terms in Coppi et al. (1966)

proportional to ¢ in (1.19) and the second equation in the slab (1.18).

14



2. Asymptotics

Behaviour at Infinity

The system has an irregular singular point as k tends to infinity. To
estimate the behaviour at infinity, we use a dominant balance argument.
Firstly we combine all three equations into one fourth order differential

equation in h.

(rk2+Q)iNV+ (2TRk4 + 2QRKk2 - 2Tk)i"' +

((rR2-2T2)6+(QR2-4TQ)cA+4TRk3-2Q 2k2 + 8QRK)i" +

-2T2Rk8-TQRk6+(4TR2-6T2)05-2Q2Rk4+(6QR2-10rQ)C3+\h' )

(-TRS - 2TR)k2- 4Q2k + (6QR- QRS)

Y 3k10+3TQ2k8- 6T2k7+3TQ2k6-12TQRK5+(gq3+Sr2+2TR2- 4T2)k4"

V6Q2RK3+(6QR2+2STQ-10rQ)k2+(2SrR-4rR)k +(SQ2-2Q 2) n=o
(2.1

(We neglect the inhomogeneous terms as these are concentrated about
zero.) We then assume the behaviour of h at infinity is of the

I(II
a_
formh(k) ~ e n . Substituting this form into the fourth order differential

equation, we form a dominant balance equation consisting of terms

proportional to kmntc, where mis 0,1,2,3,4. For every m, we pick out the

term with maximum c as these are the only terms that could dominate at

infinity.

radkdnt2. +2RTa3k3m5. +(r2- 2r)V k 2m8...-2r2Rakn+u..,+r3k14..=0
(2.2)

The only possible balance is at n=3. This yields a fourth order polynomial

equation for a. This equation can be factorised to yield:

(a2+Ra-r)2=0. (2.3)

15



We then get two double roots.

_ -R%V4r +R2
2

a (2.4)

Therefore two of the solutions grow exponentially and two decay at either
endpoint. As all solutions must have finite norm this provides two
boundary conditions at each end (i.e. the correct number of boundary

conditions).

A similar procedure can be used to extend the approximation to the next

k3 K1
ay + ai~
order. This time we take h to be ofthe formh(k) ~ e Y 1. We found

n]=l and a, = n . We could continue to generate a full
VAT + R2

asymptotic series but we decide to stop here, as the accuracy is sufficient

for the numerics.
We do not consider the case when both T and R tend to zero.

We can now set natural boundary conditions for the numerical work.. The

equations are set on an infinite domain but numerically we work on a

finite domain [-L,L]. The boundary conditions we impose are then
(2.5a)
and
(2.5b)

and similarly for y . This means the numerical solutions connect onto the

correct asymptotic solutions at the endpoints.

16



Typically there is only a small improvement in accuracy using this
approach from the standard approach of setting the solutions to zero at
each end point. The exception is when Re(Q)<0 and T is small. Here we
will have a « a t at the left end of the range and the k3 term will not
dominate until relatively large k. With Re(Q)<0, a! is negative and the
solution will grow until this happens. Using these boundary conditions the
numerical solution will patch onto the correct behaviour at a reasonable
choice of finite endpoint even though the solution is still growing at that

point.

17



3. Numerical Methods

The problem we want to solve is

Given the parameters A',D,r,S,J,R e IR

Find all growth rates Q e € and modes

(h(k) y(k) w(k))  Vke(-00,00

such that

h'* + R(k2h)' - (QKk2 + Tk4)h +y = -2 6J5 + 27iiQ8"
iw'-k2y-Sh =-27uSR8
iy'+ (Q + Tk2)w - Rw' = -27tD8

and h, y and w have finite L2norm

and

i(h'(0-) +h'(0+))=A"

(3.1)

(3.1d)

Specifically we are interested in the mode with the growth rate, Q, which

has the largest real part. This is the fastest growing mode which will

eventually dominate the others.

18



Instead of approaching the problem directly we form a complex function.
Definition: A(Q,D,T,S,J,R)=}(h'(0-) + h'(0+))
where (h 'y w isthe mode such that

h" + R(k2h)'- (QK2+ Tkd)h +y = -27tJS + 2tuQS'
iw' - K2y - Sh = -27riSR8 (3.2)
iy'+ (Q + Tk2)w - Rw' = -24D8

and h, y and w have finite L2 norm.
Solving the original problem is now a question of finding the Q-roots of
A(Q,-)-A'=0. (3.3)

This is a good point at which to state some symmetrical properties of the

problem given in Hou (1994) pp. 38 and still valid for this system.

A(Q, D, r, S,-J,R)= A(Q,D,T,S,JR) a is the
A(Q,D,r,S,J,-R)= A(Q,D,T,S, J,R). complex
conjugate of a
(3.4)

Because of these properties, we only consider R>0 and J>0. In papers that

do not include flow it is shown that J can have no effect on stability i.e.
A(Q,D,r,S,J,0)= A(Q,D,r,S,0,0). (3.5)

Whether a set of parameters (A',D,r,J,S,R) allows an unstable mode (i.e.
one for which Re(Q)>0) is of more interest than the value of the growth
rate, Q. Holding the other parameters fixed, there is a critical value of A
which we call AO. For values of A' greater than AOthere is at least one
unstable mode. To identify this critical value, we will again work with the
function we have just defined. At this critical value a mode will be moving
from the stable (left) half of complex Q-plane to the unstable (right) half

ofthe complex Q-plane via Re(Q)=0. A" is real so we look along the

19



imaginary Q-axis for points at which Im(A(Q,....))=0. Ofthese points the

one with the least Re(A(Q,...)) is A0. Writing concisely
Definition:

A0(D,r,S,J,R) = min{A(Q,D,r,S,J,R) |A,iQe<R (3.6)

Approximation of A(Q,....)

The system consists of a second order and two first order equations. For
convenience we put the two first order equations together. The mechanics

were performed using Mathematica®. The equations then become:

h"+R(k2h) -(Qk2+Tk4)i +y = 271J0+27riQ0'
(Q+rk2~" +(-2Tk + QRk2 +TRKk4N '+
(2QRK-Q2k2-2TQk4-T 2k6" +
(QR + TRkz)i' + )
= -2 1iQ2RSO + 2 ttig(d + SR2)5"
(-Q2- 2TRK - 2TQk2- T2k4)i

(3.7)

(Notice that the second equation appears to have a regular singular point at
k=0 when Q=0. Also notice that the right hand side disappears when Q=0.

So this approach will have difficulties at the point Q=0)

This gives a system of two second order equations in two variables with 4
boundary conditions. These boundary conditions will be specified later.
This system was solved by a standard finite element method on a finite

range.

20



A weak form ofthis system is:

Find h,yeL 2 such that

-(h",v')+R~(k2h),vj - Q(k2h,v)- r(k4h,v)+ (y,v) = 276(8,v) + 27iiQ(5",v)

-Q(y',v')-r(k2y',v')-4T(ky' V)+QR(k2y',v)+ rR(kdy',v)+2QR(ky,v)
-Q 2(k2y,v)- 2TQ(k4y,v)- T2(kéy,v)+
S(QR(h',v) + TR(k2h",v)- Q2(h,v)- 2rR(kh,v)- 2rQ(k2h,v)- T2(k4h,v))=

-27iiQ2RS(S, v)+ 2tQ(d + SR2)(5',v)
VveL 2

where (h,v) =  hvdk
(3.8)

We use hat functions as basis functions, defined by

0 k < (- 1>

T+0-j j-1 k < . .
PO U= K=IG (where s is the spacing of the nodes.)

Teed) ds<k< (i
0 g+1><k

bj =

(3.10)

We then write

h= Z hjbj y= £ hjbj which have finite support [-L,L] whereL = (n+

j:-n+{ j:-n+’\

Now that we are working on a finite support we need boundary conditions
which correspond to h and y having finite L2 nhorm. The conditions we
will impose are that the finite element approximations patch onto the

asymptotic approximations from the previous chapter.



Defining

_f R+V4T+R2'L

a 2+

Vir+R2

-R-V4T + R2' Q
L2 +

41'+ R2

a+=

The boundary conditions are

(L) _, YL, L, yo
h(-L) —  y(-L) h(L) y(L)

(3.11a)

The finite element approach then consists of

Find h,y such that
A bi'yRA(k2h),bij-Q (k2h,bi)-r(kdh;bir (y,bi)=

27i3(5,bi)+2mQ(5*,bi)

-QA™>bi") -1~ 2y" bi*)-4r (ky",bi)+QR(k2y")bi)+rR (kdy pj)+
2QR(Ky,bi)-Q 2(k2y,bi)-2rQ (k4y,bi) - r 2(kéy,bi)+
s(QR(h",b;  rR(k2h",b;)- Q2(h, bf) - 2rR(kh, bi)- 2rQ(k2fi,bj)- r 2(k4h, bj

-2mQ2RS(8, bj) + 20.Q(d + SR2) (8b,)
Vbj lie{-n+f,-n+|v,n-j,n-f}

and h, y satisfy the boundary conditions described above (3.12)

All the coefficients are polynomials so the necessary integration can be

done symbolically. The delta functions are dealt with in a natural way i.e.



We arrange the resulting system of equations into a matrix with bandwidth

of 7. Having solved this linear system by Gaussian elimination, the

matching parameter can then be estimated

A=yifh ,-h 3+h3-hjl.

From now on we now drop the tildes from the approximations.

Verification of the Numerics

(3.14)

To check the numerics and to estimate the errors involved we ran some

numerical experiments. The first was to increase, n, the number of

elements keeping L, the end point, fixed. We give four examples fixing L

at 2.5.
0=1 Q=i Q=-0.5+0.5i Q=-.75
D=.5 D=1 D=1 D=-1
r=.25 r=i r=.025 r=i
S=.1 S=5 S=1 S=0
J=2 J=0 J=5 J=0
R=1 R=0 R=.1 R=3
n A A A A
16 1.3183+1.1219i -1.7297+2.8434i -1.6663+0.4921i 3.8403
32 1.2053+1.2480i -1.9076+2.8730i -1.7003+0.4874i  5.1753
64 1.1534+1.2826i -1.9979+2.8807i -1.7178+0.4857i 6.1267
128 1.1289+1.2916i -2.0434+2.8827i -1.7267+0.4850i 6.3939
256 1.1170+1.2939i -2.0663+2.8832i -1.7311+0.4847i 6.4670
512 1.1111+1,2945i -2.0778+2.8833i -1.7333+.04845i  6.4857

Table 3-1: Four examples of A calculated with an increasing number

of elements, a fixed endpoint of L=2.5 and the asymptotic boundary

conditions.
We can see that the results appear to be converging as n increases.

We also check the error due to curtailing the range. To do this we hold the

spacing, s, fixed at .01 and vary the endpoint. For the same four examples
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L
15
2
25
3
35

N
ol

.82204+1.5455i
1.1049+1.3507i
1.1172+1.2938i
1.1174+1.2937i
1.1174+1.2937i

U< w00
T S L LT
oL —r =

A

-2.1038+2.8456i
-2.0670+2.8831i
-2.0658+2.8832i
-2.0657+2.8832i
-2.0657+2.8832i

-1.0426+0.1459i
-1.8000+0.2103i
-1.7310+0.4847i
-1.6326+0.3954i
-1.6730+0.3960i

6.7670
6.7909
6.7904
6.7904
6.7904

Table 3-2: Four examples of A calculated with an increasing endpoint,

a fixed spacing of s=0.1 and the asymptotic boundary conditions.

We can see good convergence with little change beyond 2.5 except for the

third example.

For comparison we do the same with the more usual (Dirichlet) boundary

conditions when trying to approximate a function with finite norm on an

infinite range by a function on a finite range i.e.

h(-L)=0 y(-L)=0 h(L)=0 y(L)=0

endpoints
15

2

2.5

3

35

1]
I
- H

N
(6] ]

(-
I
N F

pY)
I
[y

A

1.5251+1.0306i
1.1155+1.2698i
1.1181+1.2937i
1.1174+1.2938i
1.1174+1.2938i

U< n = 00
TP S T TOT
Lo ;= AL

A

-1.8670+2.8058i
-2.0610+2.8727i
-2.0658+2.883 li
-2.0657+2.8832i
-2.0657+2.8832i

-1.2220+0.7367i
-1.4612+0.11O1i
-1.8283+0.4064i
-1.6388+0.4356i
-1.6642+0.3 803i

OO
TR
-9
o

.‘
1

S
J

TR
b oo

R
A
6.2326
6.6073
6.7904
6.7904
6.7904

Table 3-3: Four examples of A calculated with an increasing endpoint,

a fixed spacing ofs=0.1 and Dirichlet boundary conditions.
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The convergence here is slightly slower. This shows the asymptotic

boundary conditions are a slight improvement on the usual ones.

Next we give plots of the four examples when n=250 and L=2.5, which are

the typical values we use for the rest of the numerical work.

Example 1

3

33
LS e o

Figure 3-1: Plot of h and y against k for Example 1; Q=I, D=.5, F=.25,
S=.1.J=2, R=Il.

Example 2

Figure 3-2: Plot of h and y against k for Example 2; Q=i, D=1, T=lI,
J=0, R=0.
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Example 3

]
Ry

Figure 3-3: Plot of h and y against k for Example 3; Q=-0.5+0.5i, D=1,
r=0.25, S=I, J=0.5, R=0.1.

Figure 3-4: Plot of h and y against k for Example 4; Q=-0.75, D=-I,
1=1, S=0, J=0, R=3.

Solution of A(Q,...)=A"

The growth rates for a set of equilibrium parameters are the roots of (3.3).
Before using any root-finding schemes it is advised to have a rough idea of
the shape of the function you are trying to solve for. This is easiest when
J=0. (When J=0 and Q is real, the inhomegeneous parts of the system are

all imaginary. Therefore the solutions are imaginary and A’ is real.)
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Muller’s method

1 Pick three starting guesses in the complex plain and evaluate at

those points.

2. Fit a quadratic through the last three points.

3. Find the roots of the quadratic.

4. The root nearest the last guess becomes the new guess.

5. Evaluate at the new guess

6. Repeat until tolerance is reached

Once we have one root the symmetry properties we discussed earlier

enable us to make a good estimate of the second one.

For the second problem we designed a patch which is not fool-proof but
works in all but the most extreme cases. From studying the graph above
and similar ones we have a rough idea where the right-most singularity is.
If the routine takes a relatively large jump past that, we stop the routine.
We restart it with a target A" that is halfway between the last value and
our original target. We then restart the routine with our finishing guesses

from this detour. In this way we follow a root close to the singularity.

The Critical Matching Parameter A0

For this, we must solve for Im(A)=0 along the imaginary Q axis. Again we
draw some graphs to assess any problems we may have in finding a root.

We give three examples of A plotted along the imaginary Q axis.
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1=1/4,D=1,5=1,R=0,J=0

Figure 3-6: Plot of A along the line Re(Q)=0 when
r=1/4,D=1,S=1,R=0,J=0.

Figure 3-7: Plot of A along the line Re(Q)=0 when
r=1,0=0,5=0,R=1,J=I.
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Figure 3-8: Plot of A along the line Re(Q)=0 when r=1/4,D=-
1,5=0,R=1,J=1.

In general there is only one root of Im(A)=0. Im(A) is almost linear for a
large range of the parameters we consider. The second example is not

atypical. The main exception is when D<0 where for some values of the
equilibrium parameters Im(A) develops two turning points and there are

potentially three roots. The third example shows such a case.

To cope with this possibility we first sample A(Q) at a range of values of
Q along the real axis using a small number of elements (64) for each
solution of the system. If Im(A) changes sign between two of these points
we use the secant method and a larger number of elements to locate the
root. The actual stability condition is then based on the lowest Re(A)

corresponding to a root.
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4. Series Solutions

In this chapter we consider an alternative approach to the problem. We
seek a couple of series solutions to the system, firstly as viscosity tends to
infinity and then as flow tends to infinity. We will calculate the
coefficients of these series by an adaptation of the code described in the
previous chapter. Where possible, we compare our results with those in

previous work.

Large F

We can scale everything else with respect to viscosity by dividing by the

following factors.

Kk Ple , . h pli2
Q p2/3 D r y p5/6
R pl/2 - ~5/6 W pl/3
S 1 A p5/6

Table 4-1: Scaling factors for the large T series.

These factors were given by Bondeson and Persson (1986) pp. 2999 in a
different context. Because S does not scale with viscosity, we will repeat
the expansion for different values of S rather than try to include it in the

expansion. In terms of the new variables, the system becomes

‘h'+kd+y A W ' (k)™

w -k&-sh .o 0 = 0

Ny +kav o, 0w, W
'27ri5'N "2nd" ; foao "0 N
Q 0 +J 0 +R S2i6 +D o0
, 0, VO, ., 0 > v27ii6;

(4.1)

As viscosity tends to infinity Q,R,J, and D become small parameters. We

note that there is no zero order solution.

We can now build up a regular perturbation for the solution ofthe form
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h=QhQ+Q2hg2 + QRhQR...
+Jhj +JQhjg + JRhJR...
+DhD+DQhDy +DRhDR...

+RhR+RQhRy + R2hR2...

(4.2)

This will be avalid approximation when T is large.

Because of the symmetry of these equations it is useful to consider the
parity of the perturbations (h’s). By even parity we mean even h, even y
and odd w and vice versa for odd parity. Of the initial (inhomogeneous)
perturbations hQ and hDwill be odd and hj and hRwill be even. From there
a Q-perturbation maintains the parity and R-perturbation switches it. This
is important because only the odd part of h contributes to the matching
parameter. Also notice that only the J perturbations are real and therefore

the corresponding matching parameters will be imaginary. Therefore

A'= AgQ+ Ag2Q2...
+AdD +AdqgDQ. ..

(4.3)
+AjrJR...

or in terms of the unsealed variables

(4.4)

Next we give numerical results in correct T order.
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Term Orderin T* S=0 S=.1 S=.25 S=5 S=1

Q -1/6 2.1035 2.1088 2.1165 2.1294  2.1545
D 1/6 -2.1824 -2.17926 -2.1746 -2.1670 -2.1520
R2 0 .0759 0.1383 1513 -0.0084
JR 1/2 9497i .7501i .5076i .2046i -0.1957i
Q2 4166 4564 0.5156 .6127 .8015
DQ 5/6 1.1715 1.1854 1.2059 1.2394 1.3037
QR2 2248 1631 0.1593 0.2565 0.6036
DR2 7/6 -0.5163  -0.4169 -0.2918 -0.1307 .0959
R4 0 .0100 -0.0194 -0.0235 -.0047
JRQ -,8375i .5725i -.28731  ,0160i 0.3387i
Q3 -0.0851  -.1256 -.18628 -.3112 -.5047

remaining terms  3/2

Table 4-2: Numerical values of the coefficients of the large T series for

In Coppi et al. (1966) the equivalent values given when S=0 are for the Q
term 2.104 and for the D term -2.198.

By writing Q as a Taylor Series in r 16 and matching terms of the same
order we can form a series for Q. (The manipulations were done using

Mathematica.)

The series starts like

Q="Lr-y.+hLr-y + - 2 AdAQiDA T -r._~ D1 -%
A q A q A q Aq A q Aq
vV rvy .
Ay
(4.5).

Note that as viscosity tends to infinity the growth time tends to zero as

would be expected.
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Term Orderin T'1 S=0 S=. S=.25 S=5

A 1/6 0.4754 0.4748 0.4725 0.4696
D 1/3 1.0375 1.0354 1.0274 1.0176
R2 0 -0.0360 -0.0654 -0.0711
JR 2/3 -0.4515i  -0.3557i  -0.2398i -0.096H
A2 1 -.00942 -0.1026 -0.1151 -0.1351
AD 716 -0.4602 -0.4787 -0.5057 -0.5484
AR2 -0.0508 -0.0293 -0.0205 -0.0373
D2 4/3 -0.1294 -0.0935 -0.0411 0.0422
DR2 0.0237 0.1321 0.1547 0.0026
R4 0 0.0129 0.0255 0.0337

other terms  3/2

Table 4-3: Numerical values of the coefficients of the large T series for

We can see that the first two terms do not vary greatly with S. In fact S
slightly stabilises these terms. The JR term is suppressed by S. Also notice
that this term only affects the complex part of the growth time. In fact the
effect of J on the real part of the growth time will not appear until the
series reaches terms of order VV* . This effect dominates the results for the
viscous slab. Not all of the other terms are particularly significant as they
are of roughly the same order as some of the numerical errors of the
previous chapter. Those that are significant display a curious dependence

on S.

Large R

A similar process can be followed if we scale everything with respect to
R. This expansion will be valid when R is large (but not so large as to

break the ordering). The appropriate factors are

k R"13 r R2 h R

o 3
R R J r 53 W RZ3
S 1 A r 5/3

Table 4-4: Scaling factors for the large R series.

In terms ofthe new variables the system becomes:
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S=1
0.4641
0.9989
0.0038
0.0889i
-0.1727
-0.6258
-0.1314
0.1953
-0.6143
0.0033



Vo +(k2h)+y W 'kV

iw' - kzy-Sh .9 0 -r 0

y'-w' vw >  Jc2w,
r2nid 7N .. o

Q 0 +J 0 + 8215 +D 0
<0, <0j v 0; K2nigy

(4.6)

As R tends to infinity Q,r, Jand D become small parameters. The
symmetry properties we discussed earlier are not applicable here but the
discussion about the comments about the J-perturbations being imaginary

still holds true.

There will be two cases S=0 and S>0. We will see that we get different

behaviours in the two cases.
Case I: S>0

Here we must split the two parts of the effective driving term D+SR as
they scale differently with R. As R tends to infinity so does the effective
driving term. This means we are tending towards the slow interchange

ordering.

Unlike the other expansion there is a zero order solution in this case
because of the underlined term which does not tend to zero as R tends to
infinity. There is also a zero order growth time, QO0, when A=0. To find

this growth time we use the code as described in the last chapter.

About these growth times we can take perturbations in the corresponding
manner to the previous section. We can then generate a series for Q, in an

equivalent manner to the previous section, which starts

A'-AJ_-i ADD+Arr, i
Q = QoRT + R R (4.7).
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Next we give the numerical values ofthese terms.

Term OrderinR'1 $=0.001 S=001 $=0.1 S=0.25 S=05 &1

Qo -4/3 0036 o110 0327 0491 0651 0.836
A 13 2358 0847 0385 0312 0.2/8 0.258
J -6.7681 -2.0091 -0.4961 -0.2231 00811 o.019i
D 213 16676 4676 1257 0.776 0.566 0.437
ro -1.198 -5.836 -3.688 -2.771 -2.162 -1.673
remaining 2

terms

Table 4-5: Numerical values of the coefficients of the large R series for

Q when S>0.

As we can see the Jterm is suppressed by S as was the case in the large
viscosity expansion. The D term is also stabilised by S. The zero order

growth time, QQ, rises quite sharply with low S.

Case Il: S=0

In this case we do not have a zero order solution or a zero order growth
time so we may proceed in an identical fashion to how we approached
large T. We are aided by the fact that we can compare results with those
for work in the slab in Hou (1994). This work was done analytically and

the results given in closed form. The numerical results we get are

Aterms OrderinR'1 Slab
Sg -1/3 -0.005 0
0 3.144 3.142

D 13 -8.083 NA
2 1 6.285 6.284
413 -8.067 ’

D 5/3 20.113 N/A
or 11.643 ¢
JT 2 -14.933 ¢
Q3 713 -16.087 ’
6.788 NIA

Dr
remaining terms 813
Table 4-6: Numerical values of the coefficients of the large R series for

Awhen S=0 (and comparisons with Hou (1994)).
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(N /A indicates no comparison with slab. e indicates comparison was

possible butnot carried out.)

We would like to continue in the same manner as before butwe would be
dividing by AQ,which vanishes. The lowestterm involving Q is now the
Q2term. To start the series we balance thatterm with the lowestterms not

involving Q.

(A A Jjj)R _i = A(i20 2R"S

A' AAR = Q2 (4.8).

Again we try to match terms but in this case we write Q as a series in
00 i
powers of R‘l/6,i.e.Q = EDb jR -*1.We can then substitute that series in

i=-3

and match the corresponding powers of R. We then get

\é r»Z
Q=+ A'~AJR*T , A"_J R+ nge, rr
R'3  r2f xRN
<AQj 2(A0")
(4.9).

2
Because we are working with the Q term we getthe two roots closest to

zero.
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Next we give the numerical values

Terms Orderin R'1 Orderin Q Slab
YA+A]

1 -1/2 1 0.399 0.399
D -1/6 -1 -1.612 N/A
D2 1/6 -3 3.258 N/A
J 1/3 0 0.002 O
A 0 0.204 0.205
D3 1/2 -5 -13.167 N/A
D 2/3 0 0.236 N/A
r 0 -0.926 -0.939

Table 4-7: Numerical values of the coefficients of the large R series for

Qwhens-=o.

(A + AjJ s vital for the growth rate of the mode in this case. Unless J=0

and A'<0 one ofthe square roots in the first term w ill have a positive real
part. As R tends to infinity this w ill dominate and the mode w ill definitely
be unstable. The interaction between D and A'+AjJ is quite complicated. If
D/(A'+AjJ) is large the convergence ofthe series will be quite slow. We

w ill see from the results section that this interaction can give rise to the
curious result that decreasing the driving term can destabilise modes for
large fixed R. The dominant factor in the stability ofthe tearing mode is

still the matching parameter, A', and decreasing A'is always stabilising.

In the lim it as R tends to infinity the two cases are distinct. For moderate
R there will be ablurring ofthe boundary between the cases. For small S

the behaviour will correspond more to the second case than the first.
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5. Numerical Results

General Comments

W e can say some things about the results in general.

When S=0:

W hen D=0, the results confirm the results from the slab as expected.
When J=0, R has a small destabilising effect. The interaction ofJ and R is
destabilising. The effects of D and G though seem to be quite different.
This is notunexpected and was pointed outin the conclusion in Coppi et

al. (1966).
When S>0:

When R=0, S has little effect, confirming the results in Coppi et al.

(1966).

S suppresses the destabilising effect ofJ. The key effect is that the driving

term becomes (D+SR ). After that the situation becomes more confused.
Plots of Re(Q) against R

Firstly we will give some examples ofRe(Q) against R for various values

ofthe parameters.
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Re(Q)

Figure 5-1: Plot of Re(Q) against R for r=1/2,S=1/4,D=-1,A'=-1 and
J=0,0.5,1,1.5,2

At R=2 the effective driving term changes sign and there is a change in
behaviour. The current, J, becomes less important after this change in

behaviour.
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Re(Q)

Figure 5-2: Graph of Re(Q) against R for r=1/2,D=1/4,3=I,A’=l and
S$=0,0.1,0.25,0.5,1

The change in effective driving term is clearly visible here.

Re(Q)

Figure 5-3: Graph of Re(Q) against R for S=1/2,D=-1,A'=1,J=2 and
T=1/16,1/8,1/4,1/2,1.
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As the effective driving term rises, the effect of viscosity becomes less

significant.

Re(Q)

Figure 5-4: Graph of Re(Q) againstR for r=172, S-1, D=0, J=0 and

A— 37140 41 42

The flattening offofthe curves at R=0 for A'<0 is due to the change from

acomplex rootto areal root.
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Re(Q)

Figure 5-5: Graph of Re(Q) against R for r=1/8,5=1/4,3-0,A"=0 and
D=-1,-1/4,0,1/4,1.

The changes in behaviour here occur as the effective driving term changes
sign. The flattening ofthe curves for D O occurs as the roots change from

complex to real.

As we can see, flow is in general destabilising. We can also see that the

effective driving term dominates the other parameters.
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Critical Value, A0, Plots

This is our main body ofresults. These contour plots show the critical
value ofthe matching parameter, AO, forvarying values of S and R. For
each graph 121 values of Aowere calculated for 11 points between S=0
and S=1 inclusive and 11 points between R=0 and R=3 inclusive. The gap
between contours is 0.5. There are twelve ofthem foracombination of
values of T, DR, and J. If we were to hold D constant for these graphs the
change in the effective driving term would dominate, so instead we hold
Dr =D +SR2constant. By peeling offthe dominant effect, we are able to

see other effects more clearly.
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r=i,DR=i,j=o0 r=1/4, DR=1,J=0

R R
Figure 5-6: Contour Plot of a0 for R[0,3] S[0,1] T=I, DR=1, J=0. Figure 5-7: Contour Plot of Ao for R[0,3] S[0,1] r=1/4, DR-1, J=0.
Increasing flow, R, with low S destabilises the modes. Increasing flow, The comments from the last graph still apply here. As expected

R, with high S stabilises the modes so the change in driving term with reducing viscosity further destabilises the modes except in the top

high S and R is slightly self-suppressed. right-hand comer ofthe graph.
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r=i1,DR1, j =i r=i/4 ,DR=i,j= i

R R
Figure 5-8: Contour Plot of aq for R[0,3] S[0,1] r=1, pr=1, J=I. Figure 5-9: Contour Plot of a( for R[0,3] S[0,1] r=1/4, b r=1, J=I.
The effect ofthe interaction between R and J seems to be dominated by The comments from the previous graph apply here,

the driving term and is hardly noticeable.
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r=i,DR=0,j =0 r=1/4,DR=0,J=0

R R
Figure 5-10: Contour Plot of an for R[0,3] S[0,1] =1, DR=0,J=0.  Figure 5-11: Contour Plot of Aq for R[0,3] S[0,1] r=1/4, DR=0, J=0.
W ithout Dr orJ, flow has very little effect. The variation is so small it The minimum ofAqon this graphis -0.27 and occurs when $S=0.3 and
does not show up on the scale we are using. The minimum ofAoon R=2.7

this graph is -0.35 and occurs when S=0.3 and R=3.
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r=i,DR=0,j =i

R
Figure 5-12: Contour Plot of Ao for R[0,3] S[0,1] T=I, DR=0, J=1I.
Here we can see the destabilising effect of the interaction between R

and Jwhen S is low.
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r=1/14,DR=0,J=1

R
Figure 5-13: Contour Plot of Ao for R[0,3] S[0,1] T-1/4, DR=0, J=I.

W ith low viscosity this interaction is even more destabilising.



r=i,DR=-i,j=o

R
Figure 5-14: Contour Plot of AOfor R[0,3] S[0,1] r=I, DR=-1, J=0.
Forlow S, R is initially stabilising and then is destabilising. This

change occurs as a different mode becomes critical. For high S, Ris

destabilising.
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r=1/4,DR=-1,3=0

R

Figure 5-15: Contour Plot of a0 for R[0,3] §0,1] r=1/4, DR=1,
J0.

In the bottom right-hand comer ofthis graph we see a curious effect.
Decreasing the driving term has destabilised the mode when we

compare it with the equivalent graph for D R=0.



R
Figure s-16: Contour Plot of AOfor r[0,3] s[o.1] r=1,DR—1, JL.

Again we see the interaction between R and J.



50

r=i/4 DR -i,j= i

R

Figure 5-17: Contour Plot of Ao for R[0,3] S[0,1] r=1/4, DR=1,
J=1.

And again thatinteraction has more effect when viscosity is small.



Conclusion

W e have shown that the resistive tearing mode in a cylindrical geometry
can be studied by unsophisticated numerical methods, using modest
computing resources. This is achieved by series of approximations and
transformations. The linear stability ofthe tearing mode then depends on

six parameters.

W e can summarise our results in two main points. Firstly we can confirm
that the destabilising change in the effective pressure gradient as flow
increases, as described by Bondesson, lacono and Bhattacharjee (1987), is
valid in the tearing ordering. We also show that the destabilising
interaction between flow and current, as first described by Paris and Sy
(1983) in slab geometry, is also presentin cylindrical geometry. The size
ofboth these effects depends on the magnetic shear parameter, S, (as
defined in (1.7)). This is interesting because in the absence of flow this

parameter has little effect on stability.
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Appendix
In this appendix is a more complete description ofhow the tearing mode equations are

derived from the full M HD system. It is essentially a transcription ofa setofnotes |

received from Dr. R.B. Paris.
Equilibrium:
W orking in cylindrical co-ordinates, we consider an equilibrium o fthe form

Bo={0,Boe(r),Boz(r)}

Y 0={0,V 0e(r),V0z(r)}

(A.1)
Po = Po(r)
Po =P o (r)
V-B0=0
w hich satisfy the divergence and incom pressibility conditions
v-v0=20
(A.2)
and hydrostatic balance.
Po=-("xlo)x80 = —{BoeD*BM + B 0zDBO0z) (A.3)
d d 1
D, - — . (A.4)
dr’ dr r
3
® bz=Bol. (A.5)
Bo
W e construct an orthonormal basis by defining unit vectors:
er = {1,0,0} e(= {o,be,bz} et = erxb= {0, bz,bo (A.6)
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The equilibrium currentis given by:

Jo —V x Bq

er-J0=0 (A.T)

6o = - B'eBoz + FIKr®oe)- ' Z5*Bee - BobSBe.

w hile the velocity field in the new basis is given by:

vV, =b ovo +bzv2 fvz=bov]||-b 2vz’
(A.8)

vX =bovz - bzvo \V0 = bzv, + b0OVj_y

Because ofthe form ofthe equilibrium studied, perturbed quantities mustvary like

f(r)exp(imO + ikz + cot). (A.9)

For convenience we define some new parameters.

Let F = 7-Boo + kBK G ~fVoo+kV, H = kBoo-fB , (A.10)
andK2 =k 2+ 4

Then er Vf=inf ei -VFf=1inf, (A . 11)

where fis any smooth function ofr.

Now we work on each equation separately

Divergence condition

V-B,=0 => D .BIt+ if B ||+ iltt-Bl =0 (A.12)
Continuity Equation

J +V-pv=0 => rapl+virp0 +iGp! =0 (A.13)
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Induction Equation

— =V x(vxB)+ t]v2B

fit
=>coB = Vx(V0oxXxB~"+Vx”"~v, xBo)+rivVa2Bl. (A.14)
Now V x (VO XxBj)= BteyVo0o-Vo0eBt Vx (Vi xB0)= BoeVvt-Y i e Bo

Thus er v x (vj x BO) = iFv

>
. By
'V x (vxx BO0)= iFv, - n Ny
ere x (Vo xBj)= -iG B Ir (A.15)
el =V x (VoxBij)= B, D_Vw -lbug voo _-iGBu where D_ -mdF 7-
v v r S) -

The r-component ofthe induction equation is then
(oB, = iFv, -iG B, +i,((DD. -k 2)tlr-2i~ (b eB,-b zBj.)) (A.16)

and the . component is

2B 2 A b,V
. 00 z°v'0z .
coB,, = iFv,, - vir + BlIr D-V]| ~ b0 V 09 + iG B
v 1 rB
n_ I o b2N t [ 1\9B
(DD *-k jBn +"bebe +bzbz + -|Jb ,-2 "~ o0bz -b zbe J -
fir
e11 (A.17)

+(b,D.Dbe-b eDD*bz)B+ + 2 i-b eBlr

Momentum equation

pf~ +v-Vvl +VP =B-VB + (iV2v
v fit /

where P= p+ jB 2S kinetic and pressure terms

PO(®Yi +Yo >VYi +Yi ,vYo0)+Pi(Yo -VV0)+Vpi = BO-VBj +BX=VBo

/ /i x

where VOsvvo= o ,0,0 the centrifugal acceleration (A.18)
r
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Magnetic terms

. B,0B0o
ercomponent = iFBIr - 2
el|]Component = iFBj + Jj_B ir (A. 19)
excomponent = iFB+ - J|[BIr

Inertial and pressure terms:

ercomponent = p0~(<ca + iG)v,r- 2Vtor°°j _pl_ Pj
elcomponent= p0~(ce + iG)vu+ vir(v, - (bo Vo00o+ bz VO0z*b bo + i —P]
Bn 1
etcomponent= p0~(© + iG)vt + v,r*V+ - (bo VOz+bzVoori-bz +
(A.20)
Viscous terms:
ercomponent = i-ix~DD. - K 27 Ir ~2i-jj(boV|]]- bzvx)"
(DD*-K: )|+ bobe” +bzbz" - v, +. (bzbO - bebz
ehncomponent = |.it
+(bzD D ,b0o-b 0DD*bz)vt +2 bO/‘\/lr
r2 56
(DD, -K 2y £ +(bo0ob0" +bzbz" "~ % - 2(bzb0'- bobz'
excomponent =
-(bzDD*bo-b eDD*bz)v]|- + — (bzv(+ bovl)

r dr r
(A.21)
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Now we eliminate the pressure term from ther-componentofthe momentum equation

using the operator

er «K2V K _2V* A + K 2A r where V*A = VA -erD*A = i~ -A | +i-~-A %
B o B f

A
= K2DK-2 ii Al+i[-A 1 +K2AT

V iso >0 >

(A.22)

After application ofthis operator the equation becomes

Po(d ((© +iG)D*Vir)-D AvIr*p-D*Voe +ikV0zZ" -k 2(a+ iG)vIr) +

2K2VVoe,_K2piVoe.= _iF(DD, _ R 2\g +2M Bo0o6D ,BIT -
r r \ / r
2K2g peBji-+ iABir + _K2)vr2vir
r
where A = F"-— +2m —y — ~ "B 00
r r r
(A.23)

Using (A.16) we rewrite the equation as

PO(d((® +jop.v,,)-D(virr D .v os +ikVOl') - K2(co+ic)v

2K2 VijeVot_ K2p Vm =IF~ _ff + .GB 2™ fhe+b F~™b,
r r r| r Vv H/

2i—D»Blr-iABIlr+nx~"DD*-K2~72vlr

(A.24)
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The Tearing Ordering.

To make further progress, we have to order the various terms in the equations to

simplify them. This implies making estimates for the relative sizes ofthe quantities

involved and using this information to eliminate insignificant terms in each equation.

We are interested in the case r|—»0. The ordering ofthe variables will be based on the

small parameter s which will be proportional to a positive power ofr|. We use what is

known as the weak viscous tearing ordering. In this ordering flow is chosen to scale

like VO ~ r)1/5. This allows us to neglect the effect of Alfven waves,centrifugal forces

and the Kelvin-Helmholtz instability.

r~sb5 jo,, ~e2 r-rs~s2 py ~ s~2(perturbed quatities only)
r

m,k~8° V,,vt ~e3=>viIr ~ eb

B|,Bt ~e4=>BIr ~s4B " + 86Bjhwith B~ =0
®~ £3 PV ~s Jt ~s A~1 p0
rs(F')

F~F'(r-rs)~ s2 G ~ G '"(r-rs)~ e3

(A.25)
We adopt the convention of displaying below each term the s order ofthat term.

The induction equation in the r-direction (A. 16) is

coBlIr = iFvir -iGBIr +r|i DD» -K2~Bir -2i-"-(beB, -b zBj_)N
s3.ed e2.e5 e3ed s5As., . s4 s4

Collecting terms of order eSwe get

ft
B[* =0 so we consider the next order of Blr. (A.26)

Collecting terms of order s

TIBU.)F = (0 +iG)B~ +iFvlr. (A.27)

Next we consider the parallel-component of the induction equation (A.17).
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“ B, >"_VI I — vir~ Blr D'VI bo Voo + b‘ilv te? |GB7
B o s g o

e \
dBx'
‘DD . K2>Bn r . B
o 1+ bobo +b/bz + - 2(bobz'-b zbO'
VE e 8 v r2y
. Bt 2i— boBIr
+(bzD*Dbe-b 0DD»bz) 4 + r
8
W e take terms of order e
B
o= iFV]|I+ ’%_oo.vlr+TlBII , (A.28)
Next we have the parallel part ofthe momentum equation
Vnn\l . :
(co+ iG)v, + vIrAVj' - (b0'Voo + b > 0z)f bo~? +in P, iFB, .l B>
Po °o
es e3 es 86 82 Sa
8 6
‘DD ,-K2>VvV f - b~
+ - = + 27bzbo -b obz'
_-4 6 ”3Il+ M o + bzbz
. S 3 e v r-y
Hi
v, 2 b° 9V]r
+(bzDD*bo0o -b oD D ,bz) r2 50
W e take terms oforder 81
(co+iG )V||+ i-~-P, = iFB, + JLBi;)+~1v]|" (A.29)

Next we consider (A .24).



D«co + iG)D .v,r)-D iv ,rif D .Voe+ jkV,;1 -K 2(® + iG> ||

Po ej " e 6 I SSR y
K2V Ay K2 22 FeBit iFvir iGBIr  _KIl ., . .
o ro- CHI1 7 7+ 7t
8 S10 S-sV 8 8 8 7 -,+ A
2i-D *B{p iAB, Hj. DD* _K2"Vva2vlr
S I R

take terms of order e

(<D+i0O >1Ir” = ~((OB* -iFv, +iGBi:>)+2ili~ B |-iAB™
(A.30)

Next we have the perpendicularcomponent ofthe momentum equation

@ +iG K +vir(V - (be'viz+bz'v09)- bz~ N 1iL PIIPG

83 83 85 €s

Fh

DD* -K 2> / 1 v, / r iv 1
+ (bobe + bzbz Js3 + 2|bzbe -b ebz JaT

p

+(bzDD*bo-b eDD ,bz)V; +2 r2 ft + r2 A +boVvIn

8"’ 83

We collectterms of order 8

1 N\

58 P, = Jirir (A31)
Combining with the parallel componentofthe momentum equation (A.29).

(to +iG)v| - iFB|| + [Ix + — a8 +nj_vy (A.32)

, Be

€4

Collecting the equations(A.26 ,A-27,A-30A-28,A.32) together we get the system
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Renaming variables and parameters gives us the system (1.9) in the text.
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