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M.Sc. Thesis Abstract

The Effect of Shear Flow on the Resistive Tearing Mode of 
Magnetohydrodynamics in a Cylindrical Geometry.

Neill Sweeney 
7/Dec/1998

Resistive instabilities are unstable modes which disappear as resistivity 

tends to zero. Their growth time is proportional to a positive fractional 

power of resistivity. The equilibrium we consider has axial symmetry in a 

cylinder. With small but finite resistivity these modes originate about a 

surface, known as a resonant surface. Using the tearing ordering, we 

develop a system of ordinary differential equations to model the modes, 

including shear flow. We develop a numerical code to solve the system. 

We plot the loci of the growth time for increasing flow for a sample o f the 

other parameters. We also plot marginal stability curves. Our results show 

a strong interaction between flow and some of the other parameters. We 

also include a couple o f series solutions to the problem. One is valid as 

viscosity tends to infinity and the other as flow tends to infinity.



The behaviour of confined high-temperature plasmas is complex and 

varied. An understanding of this behaviour is necessary for research into 

the possibility of generating power from nuclear fusion. It has been 

discovered that the magnetohydrodynamic (MHD) system describes a lot 

of the macroscopic behaviour of plasmas. This system considers the 

plasma as a conducting fluid in a magnetic field. It contains the Navier- 

Stokes equations as a subset. Even with this simplified model there is a 

wide range o f possible behaviour.

In order to generate power the plasma must be heated while being 

confined by externally generated magnetic fields. Therefore initial 

theoretical research concentrated on finding stable equilibria. This 

appeared to be a depressing search. After much work many different 

categories of instability were identified but no stable equilibria. 

Experimental work, though, showed that the presence of an instability is 

not disastrous. More important is how the instability develops. In the early 

development of an instability, it will be small enough to be considered as 

a linear perturbation about the equilibrium being studied. It will grow 

exponentially with a fixed growth rate. Eventually non-linear terms will 

become significant. This occurs relatively early for MHD instabilities. 

Tracking the non-linear development o f an instability involves much more 

work. Currently there is considerable work on numerically simulating this 

non-linear development. This is computationally intensive and requires 

powerful and sophisticated equipment.

Because of the quick transition to non-linear development, the value o f the 

growth rate does not provide vital information. Faster linear growth rates 

do not always indicate faster non-linear development. Other information 

from the linear phase can be useful. Of course if there are no growing 

modes in the linear phase there will be no non-linear development.

Introduction
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As stated before, there are many categories o f instabilities. We will 

concentrate on just one, the resistive tearing mode. The original paper on 

resistive instabilities is the 1963 paper of Furth, Killeen and Rosenbluth. 

Since then, there has been considerable work with a steady increase in the 

number of parameters included in the final system. We will consider six 

parameters. We will follow the orderings, approximations and 

transformations o f previous work, checking that they are still appropriate 

when we add shear flow. Considering the complexity of the original 

system, these simplifications are amazingly successful in reducing to a 

fourth order system of ordinary differential equations. Because o f this, the 

numerical work can be done on a standard PC.

In Chapter 1 we outline how the system we study is derived from the 

MHD system. We also compare this system with the equivalent system in 

previous work. This system is set on an infinite domain. In Chapter 2 we 

use asymptotics to estimate the behaviour at the ends of the domain. In 

Chapter 3 we describe the numerical methods we use to study this system. 

The approach we employ is quite specific to the peculiarities o f the 

problem. In Chapter 4 we give series solutions as viscosity or shear flow  

tend to infinity. This chapter is independent o f the flow o f the work and is 

offered as an alternative approach. In Chapter 5 we present the results of 

our numerical work. In the Appendix we present in more detail the 

reduction of the full MHD system to the tearing mode system.
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1. Physical Model

Our starting point is the MHD equations for an incompressible conducting 

fluid which are

The momentum equation

P ~ j ~  = “ Vp +  ( V  x B )x B +  \ i ± V 2 \

The induction equation

®  = V x (V x B )+ r iV 2B

Mass conservation 

—  +  V  ■ pV =  0
at
The divergence condition 

V-B =  0
Incompressible flow 
V  ■ V  =  0

(1.1)

Here V and B are the velocity and magnetic fields, 
p, p are the density and the pressure, 
r|, are the resistivity and the perpendicular viscocity.

We assume we have an equilibrium configuration (B0, V0,p 0,p 0) . We 

are looking for a linear mode (B1? Yj, pj ,p j) about that equilibrium.

P . ( ^  + Vo ■ w ,  + V, • VV0)  + p, (V0 • v v 0)

= -V Pl -  V(B0 -Bj)+ B0 • VBj + Bj • VB0 + p.1V2V1 

^ 1  = V x (V, x B ,)+  V x (V, x B0)+ r,V 2B, (1 2)

^ - + V 0 .VP l+ V r VP0= 0
at

V - B j  = 0

V - V j  = 0

We will confine ourselves to incompressible modes.
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The equilibria we want to study have axial symmetry, i.e. in cylindrical 

co-ordinates

B0 = B oo(r)e0 + B 0z(r)ez 

V0 = VO0(r)e0 + V0z (r)ez 

Po =Po(r)
where ee ,e z are the cylindrical basis vectors.

(1.3)

Since all equilibrium values are constant in the 0 and z directions, the 

modes must vary like

So instead of a system of partial differential equations, each wave number 

(combination of k and m) is studied separately by a system of ordinary 

differential equations. Re(co)>0 corresponds to an exponentially growing 

mode and Re(co)<0 corresponds to an exponentially decaying mode. If 

there are no growing modes the equilibrium is stable. The correct 

dimensionless number to consider the importance of resistivity is the 

inverse o f the magnetic Reynolds number. Under fusion conditions this is
3 -7usually small (typically o f the order 10" to 10") indicating that resistivity 

is a small parameter. Thus in a high temperature plasma we have the 

classic boundary layer scenario o f a small parameter multiplying the 

highest derivative in an equation. Neglecting resistivity a second order 

differential equation for Br can be formed. The coefficients o f this 

equation depend on the equilibrium being studied. We will assume we 

have a solution to this equation. This equation may have a regular singular 

point at r=rs (defining what is known as the resonant or rational surface) 

where

(NB the location of the boundary layer depends on the wave direction of 

the mode being considered at that time).

f(r) exp(im0 + ikz + cot). (1.4)

F = — B09+kB 0 = 0  
r

(1.5)
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At rs there may be a jump in Br and/or in the derivative o f Br. o f the 

particular mode under consideration. Close to rs, and only close to rs, will 

resistivity have to be considered Inside the layer, we need an ordering to 

eliminate insignificant terms. This is a good point to mention some o f the 

orderings commonly used to study this type o f problem. Ignoring 

resistivity a sufficiently strong driving force may induce an ideal 

interchange mode. This driving force is caused by a combination o f an 

adverse pressure gradient and curvature in the equilibrium magnetic field. 

The stability condition for this mode is known as Suydam’s criterion. If 

the driving force is too weak to drive an ideal mode it may drive a 

resistive interchange mode. The fast interchange mode corresponds to 

short wavelengths and is completely localised to the resonant surface. 

Because it has no effect on the main body of the plasma it is o f little 

physical interest. Alternatively a slow interchange mode can be formed 

which has a slower growth time but is not localised.

If the driving force is of a smaller order than that required to drive an 

interchange mode, modes of a different character develop, known as 

tearing modes. These are the modes we will study. They are not localised. 

They exist in the absence of a driving force. There are two possible 

orderings. One is the strong viscous ordering in which viscosity dominates 

inertial terms and the other is the weak viscous ordering in which viscosity 

is comparable to inertial terms. When viscosity is made dimensionless in 

the strong viscous ordering it is typically o f order 10' . This suggests the 

weak ordering is a better model and this is the one we use.
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Modes ideal
inter­
change

resistive 
fast inter­
change

resistive
slow
inter­
change

weak
viscous
resistive
tearing

strong
viscous
resistive
tearing

time scale 0 0 1/3 3/5 2/3
width of 
resistive 
layer

N/A 1/2 1/3 2/5 1/3

driving
force

0 0 0 2/5 1/3

Table 0-1: The order of key quantities in different orderings in terms

of powers of resistivity.

To do this the system (1.2) will be rescaled. To connect the solution in the 

surface with that outside for the tearing ordering we match the jump in the 

derivatives.

f t

A' =  L i m  — 1— L i m - r —  . (1-6)
r->rs+ B r r-»rs-  B r

The reasons for this choice of matching parameter are given in previous 

work particularly Coppi et al. (1966) page 108.

Figure 0-1: Typical Br Profile for the tearing mode.;Biskamp (1993) 

p.67
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Using this tearing ordering we eliminate insignificant terms inside the 

layer. The details here are quite involved and we leave them to the 

Appendix. (We are very grateful for a set o f notes from Richard Paris on 

which that appendix is heavily dependent.). We then rescale variables and 

parameters relative to the length scale o f the resistive layer and time scale 

of the mode. We employ the constant-^ approximation. For its range of  

validity see Furth et al. (1963) p464. We proceed to give the results of this 

scaling.

Scaled parameters for the weak viscous tearing ordering:

length scale: 8 =

2

—  • time scale: t = —
v F ' V rs J 6rs

5  '  x  t  p 0r i8  r s2 ( F ' ) 2

(1.7)

d  = _ M ^  j Af1  7 , - 5 2 »  J
F'S p 5 F'B0 11

(where G  =  f Y 0 e + k V 0z)

The scaled versions o f the variables are:

—  Blr Wj = - ^ - B 1°r) S  = - V lr Y = 2tk ^  
F'8 lr 1 8 F' T 8(F')

( 1.8)

W  =  - ^ 2g o j l v | ,

and having eliminated insignificant terms we are left with the system:
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%  =X H  + (Q + iRX)xF0

TE™ + X 2H -(Q  + iRX)H" -  Y = JpŸ 0 -  (Q + iRX)X%  

Y" + X W -S H  = 0

r w "  -  (Q + iRX)W  -  XY = (D  -  J X ) ^

■C IV  . v ^ O

(1.9)

(where the equations are respectively the induction equation in the radial 

direction to lowest order, the induction equation in the radial direction to 

next order, the momentum equation in the radial direction after the 

application of a differential operator, the induction equation parallel to the 

equilibrium magnetic field, the momentum equation parallel to 

equilibrium magnetic field.).

The jump in the derivative is

Justification of the constant 'P approximation

We outline heuristically the argument used to justify the constant-'F 

approximation. Full details and the range of validity are given in Furth et 

al. (1963) pp. 464. Because lFo(x) = 0 , vP0(x) is a linear function. In the

different length scales inside and outside the layer). Therefore to leading 

order *F is a constant. To normalise the modes, we take as 1 from here 

on. This makes the system inhomogeneous.

modes we consider ¥ '( ± 0 °)   is small (because o f the
¥ ( ± 0 0 )

The matching condition then becomes.



The system then becomes

rs™  + X 2H-  (Q + iRX)H" -  Y = Jp -  (Q + iRX)X 

Y" + X W -S E  = 0

TW" -  (Q + iRX)W -  XY = (D -  JX)
+00

A' = J(XH + (Q + iRX))dX
—00

(1.10)

The Effect of Shear Flow

What do we mean by the effect o f shear flow? When we have motion 

parallel to a mode, we expect the frequency to be shifted (i.e. the Doppler- 

Shift). In our notation instead of © , you get (co + ik • V0)  appearing in the 

equations. If we expand about the singular surface, rs, we get

® +  i(k  ’ v oX r) =  ® +  i(k ‘ Vo)(rs) +  i(k • V o )  (rs ) x (r -  rs )  • • • ( I - 11)

The constant term shifts the frequency o f the mode but not the stability of 

the mode. It only shifts the imaginary part of the growth time. That is why 

we concentrate on the second term which when rewritten in terms of 

scaled parameters inside the layer becomes iRX. So Q (our scaled growth 

time) will be replaced by (Q+iRX). This destroys the symmetry of the 

equations about zero. We take flow small enough to allow us to neglect 

any other effect it may have. In particular, with the ordering we use here 

we can neglect the effects o f Alfven waves, centrifugal forces and the 

Kelvin-Helmholtz instability.
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We now use a Fourier transform on the system which reduces the order 

from eight to four.

Using the transforms

4(k) = jS (X )e“ikXdX y(k) = J Y(X)e~ikXdX
— 0 0  —CO

w (k)=  |W (X )e~ikXdX (1.12)
—CO

we transform each equation term by term.

Transforming (1.10a) we get

Tk4  ̂ -  + Qk2  ̂-  R(k2^) -  y + 27iQi8' -27iRi5" = 2nJp5 . (1.13a)

Transforming (1 .1 Ob) we get

- k 2y + iw '-S ^  = 0 . (1.13b)

Transforming (1.10c) we get

- r k 2w - Qw + Rw' = iy' + 2tiD5 -2fl:Ji8'. (1.13c)

We remove the higher derivatives o f the delta function by defining new 

variables.

Fourier Transform

h = £ + 27iRi8Z (1.14)
y = y -  27rJ8.

So we get the system

h" + R(k2h ) '- (Q k 2 +T k4)h + y = -27i(J + Jp)S + 27tiQS' 

i w ' - k 2y -S h = -2 7 tiS R 8  (1.15)

iy' + (Q + f k 2 )w -  Rw' = - 2 tiD8
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The boundary conditions on this system are that all solutions have finite 

norm. The matching condition (1.1 Od), when transformed, becomes

A '= i( h '( 0 - )  + h'(0+)) (1.15d)

We need to impose some sensible boundary conditions on this system.

The boundary conditions we will impose are that h, y and w  have finite L2

norm. This would be implied by (S -  iR), (V + J^and W having finite L2

norm. As it can be derived from the ordering that these quantities are 

localised to the boundary layer these are reasonable boundary conditions.

If we replace the w' in the third equation, using the second equation, we 

get

iy' + (Q + r k 2)w + R^ik2y + iSh)= -27i(D + SR2)E). (1-16)

Thus we see that, the effective driving term is increased in the presence of 

flow. (S is by definition positive.) We will define the effective driving 

term as

D r = D  + SR2. (1.17)
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Comparison with previous work

This work is heavily dependent on work that went before. The aim is to 

study the effect o f shear flow in a cylindrical geometry. We have two 

starting points. The first is recent work on the effect o f shear flow on 

instabilities in slab geometry. In particular we are referring to papers by 

Paris and Sy (1983), Bondesson and Persson (1986), Paris et al. (1993)and 

Hou et al. (1996).The second is work on resistive instabilities in 

cylindrical geometry. In particular we refer to papers by Coppi et al.

(1966) and Dagazian and Paris (1986). In order to compare this work with 

previous work, we write down the equivalent systems in those papers to 

the system we work with here (1.15). We changed notation and rearranged 

the equations where necessary to make the comparison.

Slah Geometry with Flow:

In the slab geometry the first equation o f (1.15) decouples from the others. 

Because there is no natural driving term in the slab model, a gravitational 

field is included. The driving term, G, is then proportional to the 

equilibrium density gradient and the gravitational field. When S, D and G 

vanish the systems are identical.

h "  + R (k 2 h ) ' -  (Q k 2  + T k 4  ) i  + Gu = Q 5 ' -  iJ5 

R u ' =  Q u - h  + iRS
(1.18)

where u is an artificial variable defined to facilitate the comparison. 

Cylindrical Geometry without Flow:

Coppi, Greene and Johnson (1966):

Coppi, Greene and Johnson worked in cylindrical geometry. They did not 

include viscosity or flow, which we do. They did however include 

compressibility terms, which we do not.
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h" -  Qk2h + y = Q8'

iw' -  k2y -  (S -  cD)h -  cQy = 0

iy' + Qw - D8 the adiabatic constant)

(1.19)

where c represents the compressibility term, c = —  x — .
YP rs

Dagazian and Paris (1986):

Dagazian and Paris also work in a cylindrical geometry. They do include 

viscosity, parallel viscosity and compressibility terms, but not flow. 

Because they were looking for stationary modes, they set Q=0.

Only the odd part o f the solution contributes to the matching parameter. 

Without the flow term, the systems o f equations are symmetric. The 

current term, J, is even and therefore cannot affect the odd part o f the 

solution. Therefore when R=0, the current does not affect the growth time 

and in papers without flow it is ignored.

Bondesson, Iacono and Bhatarjee (1987):

This paper is concerned with the effect o f shear flow on ideal interchange 

modes in a cylindrical geometry. On page 2169 o f their paper they give a 

complicated formula (8b) for the effective driving term in the presence of 

flow. Because the flows we consider are on a smaller scale than those 

considered in their paper, that formula can be considerably simplified. In

h" - ( j A ( ( S - c D )  + r k 4)h + y +Aw' = 0

iw' -  k2y -  (S -  cD)h = 0

iy' -  f k 2w + 2A(w" -  £(S -  cD)h') = D8

A is the parallel 

viscosity

(1.20)
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<y
the ordering and notation of this work, that formula becomes (D+SR ), 

which provides confirmation for our result.

Discussion: Compressibility

We completely neglect compressibility. As explained in Coppi et al.

(1966) this is not correct even though the velocity field is to leading order 

divergence free. Quoting directly

.... The divergence o f  the fluid velocity must nearly vanish. ...This does not 

mean that the divergence o f  the fluid velocity must play no role in the final 

results, but only that the dominant part o f  the velocity field must be divergence- 

free.

There are two reasons for our neglect o f compressibility. Firstly we need 

to limit the number of parameters in the problem. Secondly, according to 

Coppi et al. (1966), the differences between the D-mode in the cylinder 

and G-mode in the slab are most pronounced in the limit in which the 

fluid is incompressible. Again quoting directly

In most cases the effect o f  gravity and line curvature are interchangeable but in 

this case there are interesting differences. When gravity is the destabilising 

agent the driving force in the annihilated momentum equation, corresponding to 

eq. 50 (our eq. 1), is proportional to the perturbed density and directly related to 

the fluid displacement. This is because gravity acts directly on the fluid. On the 

other hand, line curvature acts through the tension in the magnetic field lines 

and the corresponding driving terms are proportional to the component o f  the 

perturbed magnetic field parallel to the equilibrium field or, through

eq32[ j  B 2 + p j ~  0 ], to the perturbed pressure.

Frequently the perturbed pressure and perturbed density are simply proportional 

and the two destabilising forces are similar, but they lead to quite different 

results in the limit in which the fluid is incompressible.........

This can also be seen by comparing the terms in Coppi et al. (1966) 

proportional to c in (1.19) and the second equation in the slab (1.18).
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2. Asym ptotics

Behaviour at Infinity

+

\

h' +

The system has an irregular singular point as k tends to infinity. To 

estimate the behaviour at infinity, we use a dominant balance argument.

Firstly we combine all three equations into one fourth order differential 

equation in h.

( rk 2 + Q )iIV + (2TRk4 + 2QRk2 -  2Tk)i"' +

((rR2 - 2 T 2) c6 +(QR2 -4 T Q )c4 +4TRk3 -2 Q 2k2 + 8QRk)i"

-2T 2Rk8 -TQ R k6 + (4TR2 - 6 T 2)c5 -2 Q 2Rk4 +(6QR2 -1 0 rQ )c3 +

(-TRS -  2TR)k2 -  4Q2k + (6QR-  QRS)

Y 3k10 + 3TQ2k 8 -  6T2k 7 +3TQ2k6 -12TQRk5 + (q 3 + S r 2 +2TR2 -  4T2)k4"

v-6Q 2Rk3 +(6QR2 +2STQ -10rQ )k2 + (2 S rR -4 rR )k  + (SQ2 -2 Q 2)
(2.1)

(We neglect the inhomogeneous terms as these are concentrated about 

zero.) We then assume the behaviour of h at infinity is o f the

k"a—
form h(k) ~  e n . Substituting this form into the fourth order differential 

equation, we form a dominant balance equation consisting o f terms 

proportional to kmn+c, where m is 0,1,2,3,4. For every m, we pick out the 

term with maximum c as these are the only terms that could dominate at 

infinity.

r a 4k4n+2.. ,+2RTa3k3n+5.. .+(r 2 -  2 r ) V k 2n+8.. . - 2 r 2Rakn+u.. ,+ r3k 14... = 0
(2.2)

The only possible balance is at n=3. This yields a fourth order polynomial 

equation for a. This equation can be factorised to yield:

(a2 + R a - r ) 2 = 0 .  (2.3)

h = 0

15



We then get two double roots.

a =
-R ± V 4 r  + R2 

2
(2.4)

Therefore two of the solutions grow exponentially and two decay at either 

endpoint. As all solutions must have finite norm this provides two 

boundary conditions at each end (i.e. the correct number of boundary 

conditions).

A similar procedure can be used to extend the approximation to the next

k3 k"1
ay + ai~

order. This time we take h to be of the form h(k) ~ e 1 . We found

n]=l and a, = ^  . We could continue to generate a full
V4T + R2

asymptotic series but we decide to stop here, as the accuracy is sufficient 

for the numerics.

We do not consider the case when both T and R tend to zero.

We can now set natural boundary conditions for the numerical work.. The 

equations are set on an infinite domain but numerically we work on a 

finite domain [-L ,L ]. The boundary conditions we impose are then

and similarly for y . This means the numerical solutions connect onto the 

correct asymptotic solutions at the endpoints.

(2.5a)

and

(2.5b)
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Typically there is only a small improvement in accuracy using this 

approach from the standard approach o f setting the solutions to zero at 

each end point. The exception is when Re(Q)<0 and T is small. Here we 

will have a « a t at the left end of the range and the k3 term will not 

dominate until relatively large k. With Re(Q)<0, a! is negative and the 

solution will grow until this happens. Using these boundary conditions the 

numerical solution will patch onto the correct behaviour at a reasonable 

choice o f finite endpoint even though the solution is still growing at that 

point.
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The problem we want to solve is

3. Numerical Methods

Given the parameters A',D,r,S,J,R e IR

Find all growth rates Q e €  and modes

(h(k) y(k) w (k)) Vk e ( - 00, 00)

such that

h" + R(k2h)' -  (Qk2 + Tk4 )h + y = - 2 tiJ5 + 27iiQ8'

i w ' - k 2y - S h  = -27uSR8

iy' + (Q + Tk2 )w  -  Rw' = -27tD8

(3.1)

and h, y and w  have finite L2 norm

and

i(h '(0 - )  + h '(0+))=A ' (3 .Id)

Specifically we are interested in the mode with the growth rate, Q, which 

has the largest real part. This is the fastest growing mode which will 

eventually dominate the others.

18



Instead o f approaching the problem directly we form a complex function.

Definition: A(Q,D,T,S,J,R) = } (h '(0 -)  + h'(0+))

where (h y w is the mode such that

h" + R(k2h)' -  (Qk2 + Tk4 )h + y = -27tJS + 2tuQS '

iw' -  k2y -  Sh = -27riSR8 (3.2)

iy '+ (Q + Tk2)w  -  Rw' = - 2 tiD8

and h, y and w  have finite L2 norm.

Solving the original problem is now a question of finding the Q-roots of 

A (Q ,- ) -A '  = 0 . (3.3)

This is a good point at which to state some symmetrical properties o f the 

problem given in Hou (1994) pp. 38 and still valid for this system.

A(Q, D, r, S,-J, R) = A(Q, D, T, S, J, R) a is the

A(Q ,D,r,S, J ,-R )=  A(Q,D,T,S, J,R). complex
conjugate o f a

(3.4)

Because o f these properties, we only consider R>0 and J>0. In papers that 

do not include flow it is shown that J can have no effect on stability i.e.

A(Q ,D,r,S, J,0)= A(Q,D,r,S,0,0). (3.5)

Whether a set of parameters (A ',D ,r,J,S ,R ) allows an unstable mode (i.e. 

one for which Re(Q)>0) is o f more interest than the value o f the growth 

rate, Q. Holding the other parameters fixed, there is a critical value o f A' 

which we call A0. For values o f A' greater than A0 there is at least one 

unstable mode. To identify this critical value, we will again work with the 

function we have just defined. At this critical value a mode will be moving 

from the stable (left) half of complex Q-plane to the unstable (right) half 

of the complex Q-plane via Re(Q)=0. A' is real so we look along the

19



imaginary Q-axis for points at which Im(A(Q,....))=0. Of these points the 

one with the least Re(A(Q,...)) is A0. Writing concisely

Definition:

A0(D,r,S,J,R) = min{A(Q,D,r,S,J,R) |A,iQe<R (3.6)

Approximation of A(Q,....)

The system consists of a second order and two first order equations. For 

convenience we put the two first order equations together. The mechanics 

were performed using Mathematica®. The equations then become:

h "+ R (k 2h ) -(Q k 2 + Tk4) i  + y = 27ïJÔ+27riQÔ' 

(Q + r k 2^ "  + (-2Tk + QRk2 +TRk4^ ' + 

(2Q R k-Q 2k2 -2T Q k4 - T 2k6^  +

(Q R  + T R k 2 ) i '  +

( -Q 2 -  2TRk -  2TQk2 -  T2k 4) i
= - 2 ttìQ2RSÒ + 2 ttìq(d  + SR2 )5 '

(3.7)

(Notice that the second equation appears to have a regular singular point at 

k=0 when Q=0. Also notice that the right hand side disappears when Q=0. 

So this approach will have difficulties at the point Q=0)

This gives a system of two second order equations in two variables with 4 

boundary conditions. These boundary conditions will be specified later. 

This system was solved by a standard finite element method on a finite 

range.
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A weak form of this system is:

Find h ,y e L 2 such that

-(h ',v ')+ R ^ (k 2h ) , vj -  Q(k2h ,v ) -  r (k 4h ,v )+  (y ,v) = 27tJ(8,v)+  27iiQ(5',v)

- Q ( y ' ,v ' ) - r ( k 2y ' ,v ' ) -  4T (ky',v)+Q R (k2y ',v )+  rR (k 4y',v)+ 2Q R (ky,v) 

-Q 2 (k2y, v ) -  2TQ(k4y, v ) -  T2 (k6y, v )+

s(QR(h', v) + TR(k2h', v ) -  Q2 (h, v) -  2rR(kh, v) -  2rQ (k2h, v ) -  T 2 (k4h, v ))=  

-27iiQ2RS(S, v )+  2tuQ(d  + SR2)(5',v)

Vv e L 2

where (h, v) = hvdk
(3.8)

We use hat functions as basis functions, defined by

0  k  <  ( j  - 1 >

7 +  0 - j )  ( j - l > < k < j s

b j =
. . .  , v (where s is the spacing o f the nodes.)

- T  +  ( 1 +  j )  j s  <  k  <  ( j  + 1 >

0 (j + 1> < k

(3.10)

We then write

h =  Z hjbj y = £  hjbj which have finite support [-L , L] where L = (n +
j= -n + {  j= -n + ^

Now that we are working on a finite support we need boundary conditions 

which correspond to h and y having finite L2 norm. The conditions we 

will impose are that the finite element approximations patch onto the 

asymptotic approximations from the previous chapter.
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Defining

f  R + V4T + R2 '
a  = L2 +

a + =
-R-V4T + R2"

L2 +

V 4 r  + R 2 

Q

41'+ R2

The boundary conditions are

h '(-L )
h(-L )

= a_
y'(-L)
y(-L)

= a . h'(L)
h(L)

= a ,
y '(L )

y(L)
= a .

The finite element approach then consists of 

Find h, y such that

- ^ i ' , b i' y R ^ ( k 2h ) , b ij - Q ( k 2h ,b i) - r ( k 4h;b i^ ( y , b i)=

27iJ(5,bi)+2mQ(5',bi)

-Q ^'>bi' ) - r ^ 2y',bi') -4 r (k y ',b i)+QR(k2y')bi)+ rR (k 4y 

2QR(ky,bi) - Q 2(k2y ,b i)-2 r Q (k 4y,b i) - r 2(k6y ,b i)+  

s(QR(h', b; rR(k2h', b;) -  Q2 (h, bf) -  2rR(kh, b i) -  2rQ(k2f

-2m Q2RS(8, b j) + 2tuQ(d  + SR2 ) ( 8 b ,)

Vbj |i e { -n  + f ,- n  + | v , n - j , n - f }

and h, y satisfy the boundary conditions described above

(3.11a)

' ’b j ) +

i, b j ) -  r 2 (k4h, bj

(3.12)

All the coefficients are polynomials so the necessary integration can be 

done symbolically. The delta functions are dealt with in a natural way i.e.



We arrange the resulting system of equations into a matrix with bandwidth 

of 7. Having solved this linear system by Gaussian elimination, the 

matching parameter can then be estimated

A = y ifh  , - h  3 + h 3 - h j l . (3.14)
^ 2  2 2 2 '

From now on we now drop the tildes from the approximations. 

Verification of the Numerics

To check the numerics and to estimate the errors involved we ran some 

numerical experiments. The first was to increase, n, the number of 

elements keeping L, the end point, fixed. We give four examples fixing L 

at 2.5.

0=1 Q=i Q=-0.5+0.5i Q=-.75
D=.5 D=1 D=1 D=-l
r=.25 r = i r=.025 r = i
S=.l S=.5 S=1 s=o
J=2 J=0 J=.5 J=0
R=1 R=0 R=.l R=3

n A A A A
16 1.3183+1.1219i -1.7297+2.8434i -1.6663+0.4921i 3.8403
32 1.2053+1.2480i -1.9076+2.8730i -1.7003+0.4874i 5.1753
64 1.1534+1.2826i -1.9979+2.8807i -1.7178+0.4857i 6.1267
128 1.1289+1.2916i -2.0434+2.8827i -1.7267+0.4850i 6.3939
256 1.1170+1.2939i -2.0663+2.8832i -1.731 l+0.4847i 6.4670
512 1.1111+1,2945i -2.0778+2.8833i -1.7333+.04845i 6.4857

Table 3-1: Four examples of A calculated with an increasing number

of elements, a fixed endpoint of L=2.5 and the asymptotic boundary 

conditions.

We can see that the results appear to be converging as n increases.

We also check the error due to curtailing the range. To do this we hold the 

spacing, s, fixed at .01 and vary the endpoint. For the same four examples

23



Q=l Q=i Q=-0.5+0.5i O II J <1

D=.5 D=1 D=1 D=-l
T=.25 r=i r=.025 r=i
S=.l S=.5 S=1 S=0
J=2 J=0 J=.5 J=0
R=1 R=0 R=.l R=3

L A A A A
1.5 .82204+1.5455i -2.1038+2.8456i -1.0426+0.1459i 6.7670
2 1.1049+1.3507i -2.0670+2.8831i -1.8000+0.2103i 6.7909
2.5 1.1172+1.2938i -2.0658+2.8832i -1.7310+0.4847i 6.7904
3 1.1174+1.2937i -2.0657+2.8832i -1.6326+0.3954i 6.7904
3.5 1.1174+1.2937i -2.0657+2.8832i -1.6730+0.3960i 6.7904

Table 3-2: Four examples of A calculated with an increasing endpoint,

a fixed spacing of s=0.1 and the asymptotic boundary conditions.

We can see good convergence with little change beyond 2.5 except for the 

third example.

For comparison we do the same with the more usual (Dirichlet) boundary 

conditions when trying to approximate a function with finite norm on an 

infinite range by a function on a finite range i.e.

h (-L ) = 0 y (-L ) = 0 h(L) = 0 y(L) = 0

0=1 Q=i Q=-0.5+0.5i Q=-.75
D=.5 D=1 D=1 D=-l
T=.25 r=i T=.025 r=i
S=.l S=.5 S=1 s=o
J=2 J=0 J=.5 J=0
R=1 R=0 R=.l R=3

endpoints A A A A
1.5 1.5251+1.0306i -1.8670+2.8058i -1.2220+0.7367i 6.2326
2 1.1155+1.2698i -2.0610+2.8727i -1.4612+0.llO li 6.6073
2.5 1.1181+1.2937i -2.0658+2.883 li -1.8283+0.4064i 6.7904
3 1.1174+1.293 8i -2.0657+2.8832i -1.6388+0.4356i 6.7904
3.5 1.1174+1.2938i -2.0657+2.8832i -1.6642+0.3 803i 6.7904

Table 3-3: Four examples of A calculated with an increasing endpoint,

a fixed spacing of s=0.1 and Dirichlet boundary conditions.

24



The convergence here is slightly slower. This shows the asymptotic 

boundary conditions are a slight improvement on the usual ones.

Next we give plots of the four examples when n=250 and L=2.5, which are 

the typical values we use for the rest of the numerical work.

E xam ple 1

Re [h
Im (h
Re (y
Im iv

Figure 3-1: Plot of h and y against k for Example 1; Q =l, D=.5, F=.25, 

S=.l. J=2, R =l.

E xam ple 2

Re b
Im h

— Re y
Im V

Figure 3-2: Plot of h and y against k for Example 2; Q=i, D = l, T=l, 

J=0, R=0.
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E xam ple 3

— Re (h
— Im h

Re y
iTtuy

Figure 3-3: Plot of h and y against k for Example 3; Q=-0.5+0.5i, D =l, 

r=0.25, S=l, J=0.5, R = 0.1 .

ke h
Im h

— Re 
Im *

Figure 3-4: Plot of h and y against k for Example 4; Q=-0.75, D =-l, 

1=1, S=0, J=0, R=3.

Solution of A(Q,...)=A'

The growth rates for a set of equilibrium parameters are the roots of (3.3). 

Before using any root-finding schemes it is advised to have a rough idea of 

the shape of the function you are trying to solve for. This is easiest when 

J=0. (When J=0 and Q is real, the inhomegeneous parts of the system are 

all imaginary. Therefore the solutions are imaginary and A' is real.)
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Muller’s method

1 Pick three starting guesses in the complex plain and evaluate at 

those points.

2. Fit a quadratic through the last three points.

3. Find the roots o f the quadratic.

4. The root nearest the last guess becomes the new guess.

5. Evaluate at the new guess

6. Repeat until tolerance is reached

Once we have one root the symmetry properties we discussed earlier 

enable us to make a good estimate of the second one.

For the second problem we designed a patch which is not fool-proof but 

works in all but the most extreme cases. From studying the graph above 

and similar ones we have a rough idea where the right-most singularity is. 

If the routine takes a relatively large jump past that, we stop the routine. 

We restart it with a target A' that is half way between the last value and 

our original target. We then restart the routine with our finishing guesses 

from this detour. In this way we follow a root close to the singularity.

The Critical Matching Parameter A0

For this, we must solve for Im(A)=0 along the imaginary Q axis. Again we 

draw some graphs to assess any problems we may have in finding a root. 

We give three examples of A plotted along the imaginary Q axis.
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I = 1 / 4 , D = 1 , S = 1 , R = 0 , J=0

Figure 3-6: Plot of A along the line Re(Q)=0 when 

r=l/4,D=l,S=l,R=0,J=0.

Figure 3-7: Plot of A along the line Re(Q)=0 when 

r=l,D=0,S=0,R=l,J=l.
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Figure 3-8: Plot of A along the line Re(Q)=0 when r=l/4,D=- 

1,S=0,R=1,J=1.

In general there is only one root of Im(A)=0. Im(A) is almost linear for a 

large range o f the parameters we consider. The second example is not 

atypical. The main exception is when D<0 where for some values o f the 

equilibrium parameters Im(A) develops two turning points and there are 

potentially three roots. The third example shows such a case.

To cope with this possibility we first sample A(Q) at a range o f values of 

Q along the real axis using a small number o f elements (64) for each 

solution of the system. If Im(A) changes sign between two of these points 

we use the secant method and a larger number o f elements to locate the 

root. The actual stability condition is then based on the lowest Re(A) 

corresponding to a root.
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4. Series Solutions

In this chapter we consider an alternative approach to the problem. We 

seek a couple o f series solutions to the system, firstly as viscosity tends to 

infinity and then as flow tends to infinity. We will calculate the 

coefficients o f these series by an adaptation o f the code described in the 

previous chapter. Where possible, we compare our results with those in 

previous work.

Large F

We can scale everything else with respect to viscosity by dividing by the 

following factors.

k p-l/6 r r h p l/2

Q p2/3 D r y
p5/6

R p l/2 j ^5/6 w p l/3

S 1 A' p5/6

Table 4-1 : Scaling factors for the large T series.

These factors were given by Bondeson and Persson (1986) pp. 2999 in a 

different context. Because S does not scale with viscosity, we will repeat 

the expansion for different values o f S rather than try to include it in the 

expansion. In terms of the new variables, the system becomes

' h" + k4h + y ^ W '-(k2h)'̂
iw' -k2y-Sh -Q 0 - R 0
 ̂ iy' + k2w , ,  w , , w' ;

'27ri5'N "2nd" ;
f ° '

' 0 N

Q 0 + J 0 + R S2:iiô + D 0

, 0 , v 0 , ,  0 > v27iiô;

(4.1)

As viscosity tends to infinity Q,R,J, and D become small parameters. We 

note that there is no zero order solution.

We can now build up a regular perturbation for the solution o f the form
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h = Q hQ + Q 2h g2 + QRhQR...

+Jhj + JQhjg + JRhJR... 

+DhD +DQhDg +DRhDR...

+RhR + RQhRg + R2hR2...

(4.2)

This will be a valid approximation when T is large.

Because of the symmetry of these equations it is useful to consider the 

parity o f the perturbations (h’s). By even parity we mean even h, even y 

and odd w and vice versa for odd parity. Of the initial (inhomogeneous) 

perturbations hQ and hD will be odd and hj and hR will be even. From there 

a Q-perturbation maintains the parity and R-perturbation switches it. This 

is important because only the odd part of h contributes to the matching 

parameter. Also notice that only the J perturbations are real and therefore 

the corresponding matching parameters will be imaginary. Therefore

A' = AqQ + Aq2Q2...

+AdD + A dqDQ. ..
(4.3)

+A jrJR...

or in terms o f the unsealed variables

(4.4)

Next we give numerical results in correct T order.
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Term Order in T" S=0 S=.l S=.25 S=.5 S=1
Q -1/6 2.1035 2.1088 2.1165 2.1294 2.1545
D 1/6 -2.1824 -2.17926 -2.1746 -2.1670 -2.1520
R2 0 .0759 0.1383 .1513 -0.0084
JR 1/2 .9497i .7501i .5076i .2046i -0.1957i
Q2 .4166 .4564 0.5156 .6127 .8015
DQ 5/6 1.1715 1.1854 1.2059 1.2394 1.3037
QR2 .2248 .1631 0.1593 0.2565 0.6036
DR2 7/6 -0.5163 -0.4169 -0.2918 -0.1307 .0959
R4 0 .0100 -0.0194 -0.0235 -.0047
JRQ -,8375i .5725i -.2873i ,0160i 0.3387i
Q3
remaining terms 3/2

-0.0851 -.1256 -.18628 -.3112 -.5047

Table 4-2: Numerical values of the coefficients of the large T series for

In Coppi et al. (1966) the equivalent values given when S=0 are for the Q 

term 2.104 and for the D term -2.198.

By writing Q as a Taylor Series in r 1 6 and matching terms o f the same 

order we can form a series for Q. (The manipulations were done using 

Mathematica.)

The series starts like

Q =  ^ L r -y. + h L r -y, +  -  2 A d A qiD A  r -r. _  ^ D^ r -%
A q  A q  A q  A q  A q  A q

v r2v .
A2q

T

(4.5).

Note that as viscosity tends to infinity the growth time tends to zero as 

would be expected.
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Term Order in T'1 S=0 S=.l S=.25 S=.5 S=1
A' 1/6 0.4754 0.4748 0.4725 0.4696 0.4641
D 1/3 1.0375 1.0354 1.0274 1.0176 0.9989
R2 0 -0.0360 -0.0654 -0.0711 0.0038
JR 2/3 -0.4515i -0.3557i -0.2398i -0.096H 0.0889i
A2 1 -.00942 -0.1026 -0.1151 -0.1351 -0.1727
AD 7/6 -0.4602 -0.4787 -0.5057 -0.5484 -0.6258
AR2 -0.0508 -0.0293 -0.0205 -0.0373 -0.1314
D2 4/3 -0.1294 -0.0935 -0.0411 0.0422 0.1953
DR2 0.0237 0.1321 0.1547 0.0026 -0.6143
R4
other terms 3/2

0 0.0129 0.0255 0.0337 0.0033

Table 4-3: Numerical values of the coefficients of the large T series for

We can see that the first two terms do not vary greatly with S. In fact S 

slightly stabilises these terms. The JR. term is suppressed by S. Also notice 

that this term only affects the complex part o f the growth time. In fact the

effect o f J on the real part of the growth time will not appear until the
2  •series reaches terms of order V  . This effect dominates the results for the

viscous slab. Not all of the other terms are particularly significant as they 

are o f roughly the same order as some of the numerical errors o f the 

previous chapter. Those that are significant display a curious dependence 

on S.

Large R

A similar process can be followed if we scale everything with respect to 

R. This expansion will be valid when R is large (but not so large as to 

break the ordering). The appropriate factors are

k R"1/3 r R2 h R

Q r 4/3 D R2 y

m
 

10 
j

pi

R R J r 5/3 w R273

S 1 A' r 5/3

Table 4-4: Scaling factors for the large R series.

In terms o f the new variables the system becomes:
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V  + (k2h)' + y W 'k V
iw' -  k2y -Sh -Q 0 - r 0

. i y ' - w '  , v. w > Jc2w,

r2nid '27^
f ° '

' 0 "

Q 0 + J 0 + S27ti5 + D 0
< 0 , < 0 j v 0 ; k27li8y

(4.6)

As R tends to infinity Q,r, J and D become small parameters. The 

symmetry properties we discussed earlier are not applicable here but the 

discussion about the comments about the J-perturbations being imaginary 

still holds true.

There will be two cases S=0 and S>0. We will see that we get different 

behaviours in the two cases.

Case I: S>0

2

Here we must split the two parts of the effective driving term D+SR as 

they scale differently with R. As R tends to infinity so does the effective 

driving term. This means we are tending towards the slow interchange 

ordering.

Unlike the other expansion there is a zero order solution in this case 

because o f the underlined term which does not tend to zero as R tends to 

infinity. There is also a zero order growth time, Q0, when A=0. To find 

this growth time we use the code as described in the last chapter.

About these growth times we can take perturbations in the corresponding 

manner to the previous section. We can then generate a series for Q, in an 

equivalent manner to the previous section, which starts

Q =  Q oRT +
A' -  A , J _ - i  ADD + Arr „ _ i

-R R (4.7).
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Next we give the numerical values o f these terms.

Term Order in R'1 S=0.001 S=0.01 S=0.1 S=0.25 S=0.5 S=1
Qo -4/3 0.036 0.110 0.327 0.491 0.651 0.836
A 1/3 2.358 0.847 0.385 0.312 0.278 0.258
J -6.768i -2.009i -0.496i -0.223i -0.081 i 0.019i
D 2/3 16.676 4.676 1.257 0.776 0.566 0.437
r
remaining
terms

2
-7.198 -5.836 -3.688 -2.771 -2.162 -1.673

Table 4-5: Numerical values of the coefficients of the large R series for

Q when S>0.

As we can see the J term is suppressed by S as was the case in the large 

viscosity expansion. The D term is also stabilised by S. The zero order 

growth time, Q0, rises quite sharply with low S.

Case II: S=0

In this case we do not have a zero order solution or a zero order growth 

time so we may proceed in an identical fashion to how we approached 

large T. We are aided by the fact that we can compare results with those 

for work in the slab in Hou (1994). This work was done analytically and 

the results given in closed form. The numerical results we get are

A terms Order in R'1 Slab
Q -1/3 -0.005 0
J 0 3.144 3.142
D 1/3 -8.083 N/A
Q2 1 6.285 6.284
JQ 4/3 -8.067 •
DQ 5/3 20.113 N/A
o r 11.643 •
JT 2 -14.933 •
Q3 7/3 -16.087 •
Dr
remaining terms 8/3

6.788 N/A

Table 4-6: Numerical values of the coefficients of the large R series for 

A when S=0 (and comparisons with Hou (1994)).
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( N / A  i n d i c a t e s  n o  c o m p a r i s o n  w i t h  s la b .  • in d i c a t e s  c o m p a r i s o n  w a s  

p o s s i b l e  b u t  n o t  c a r r ie d  o u t . )

W e  w o u l d  l i k e  t o  c o n t in u e  i n  t h e  s a m e  m a n n e r  a s  b e f o r e  b u t  w e  w o u l d  b e  

d i v i d i n g  b y  A Q , w h i c h  v a n i s h e s .  T h e  l o w e s t  t e r m  i n v o l v i n g  Q  i s  n o w  t h e  

Q 2  t e r m .  T o  s t a r t  t h e  s e r ie s  w e  b a l a n c e  t h a t  t e r m  w i t h  t h e  l o w e s t  t e r m s  n o t  

i n v o l v i n g  Q .

2n-§
( A ' - A j j ) R _ i  =  A ( i2 Q 2 R

A ' _ A ^ R  =  Q 2  ( 4 . 8 ) .
A ,

± p = * d R i . QV v
A g a i n  w e  t r y  to  m a t c h  t e r m s  b u t  i n  t h i s  c a s e  w e  w r i t e  Q  a s  a  s e r ie s  i n

00 j .

p o w e r s  o f  R ‘ l/6 , i .e .  Q  =  E b j R - * 1 . W e  c a n  t h e n  s u b s t it u t e  t h a t  s e r ie s  i n
¡= -3

a n d  m a t c h  t h e  c o r r e s p o n d in g  p o w e r s  o f  R .  W e  t h e n  g e t

Q = ±
v2  r» 2

A' ~ A'J R* T , Ap̂ _ J R^ +  ^ 5 ° .  r R

-  V A '  - A  
-R 3  r2— *-R ’ •••

<AQ’ j  2(A0 ' )

( 4 . 9 ) .

2
B e c a u s e  w e  a r e  w o r k i n g  w i t h  t h e  Q  t e r m  w e  g e t  t h e  t w o  r o o t s  c l o s e s t  t o

z e r o .
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Next we give the numerical values

Terms Order in R'1 Order in
/̂A + AjJ

Q Slab

1 -1/2 1 0.399 0.399
D -1/6 -1 -1.612 N/A
D2 1/6 -3 3.258 N/A
J 1/3 0 0.002 0
A' 0 0.204 0.205
D3 1/2 -5 -13.167 N/A
D 2/3 0 0.236 N/A
r 0 -0.926 -0.939

Table 4-7: Numerical values of the coefficients of the large R series for 
Q when S = 0 .

( A  +  A j  J  i s  v i t a l  f o r  t h e  g r o w t h  r a t e  o f  t h e  m o d e  i n  t h i s  c a s e .  U n l e s s  J = 0  

a n d  A ' < 0  o n e  o f  t h e  s q u a r e  r o o t s  i n  t h e  f i r s t  t e r m  w i l l  h a v e  a  p o s i t i v e  r e a l  

p a r t .  A s  R  t e n d s  t o  i n f i n i t y  t h i s  w i l l  d o m in a t e  a n d  t h e  m o d e  w i l l  d e f i n i t e l y  

b e  u n s t a b l e .  T h e  i n t e r a c t io n  b e t w e e n  D  a n d  A ' + A j J  i s  q u it e  c o m p l i c a t e d .  I f  

D / ( A ' + A j J )  i s  l a r g e  t h e  c o n v e r g e n c e  o f  t h e  s e r ie s  w i l l  b e  q u it e  s l o w .  W e  

w i l l  s e e  f r o m  t h e  r e s u l t s  s e c t io n  t h a t  t h i s  in t e r a c t i o n  c a n  g i v e  r i s e  t o  t h e  

c u r i o u s  r e s u l t  t h a t  d e c r e a s in g  t h e  d r i v i n g  t e r m  c a n  d e s t a b i l i s e  m o d e s  f o r  

l a r g e  f i x e d  R .  T h e  d o m in a n t  f a c t o r  i n  t h e  s t a b i l i t y  o f  t h e  t e a r in g  m o d e  i s  

s t i l l  t h e  m a t c h i n g  p a r a m e t e r ,  A ' ,  a n d  d e c r e a s i n g  A ' i s  a l w a y s  s t a b i l i s i n g .

I n  t h e  l i m i t  a s  R  t e n d s  t o  i n f i n i t y  t h e  t w o  c a s e s  a r e  d is t i n c t .  F o r  m o d e r a t e  

R  t h e r e  w i l l  b e  a  b l u r r i n g  o f  t h e  b o u n d a r y  b e t w e e n  t h e  c a s e s .  F o r  s m a l l  S  

t h e  b e h a v i o u r  w i l l  c o r r e s p o n d  m o r e  t o  t h e  s e c o n d  c a s e  t h a n  t h e  f i r s t .
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5. Numerical Results

W e  c a n  s a y  s o m e  t h in g s  a b o u t  t h e  r e s u l t s  i n  g e n e r a l .

W h e n  S = 0 :

W h e n  D = 0 ,  t h e  r e s u l t s  c o n f i r m  t h e  r e s u l t s  f r o m  t h e  s l a b  a s  e x p e c t e d .  

W h e n  J = 0 ,  R  h a s  a  s m a l l  d e s t a b i l i s in g  e f f e c t .  T h e  i n t e r a c t i o n  o f  J  a n d  R  i s  

d e s t a b i l i s i n g .  T h e  e f f e c t s  o f  D  a n d  G  t h o u g h  s e e m  t o  b e  q u it e  d if f e r e n t .  

T h i s  i s  n o t  u n e x p e c t e d  a n d  w a s  p o i n t e d  o u t  i n  t h e  c o n c l u s i o n  i n  C o p p i  e t  

a l .  ( 1 9 6 6 ) .

W h e n  S > 0 :

W h e n  R = 0 ,  S  h a s  l i t t l e  e f f e c t ,  c o n f i r m i n g  t h e  r e s u l t s  i n  C o p p i  e t  a l .

( 1 9 6 6 ) .

S  s u p p r e s s e s  t h e  d e s t a b i l i s i n g  e f f e c t  o f  J .  T h e  k e y  e f f e c t  i s  t h a t  t h e  d r i v i n g  

t e r m  b e c o m e s  ( D + S R  ) .  A f t e r  t h a t  t h e  s i t u a t i o n  b e c o m e s  m o r e  c o n f u s e d .

Plots of Re(Q) against R

F i r s t l y  w e  w i l l  g i v e  s o m e  e x a m p l e s  o f  R e ( Q )  a g a i n s t  R  f o r  v a r i o u s  v a l u e s  

o f  t h e  p a r a m e t e r s .

G eneral Comments

39



Re(Q)

Figure 5-1: Plot of Re(Q) against R for r=l/2,S=l/4,D=-l,A'=-l and 
J=0,0.5,1,1.5,2

A t  R = 2  t h e  e f f e c t iv e  d r i v i n g  t e r m  c h a n g e s  s i g n  a n d  t h e r e  i s  a  c h a n g e  i n  

b e h a v i o u r .  T h e  c u r r e n t ,  J ,  b e c o m e s  l e s s  im p o r t a n t  a f t e r  t h i s  c h a n g e  i n  

b e h a v i o u r .
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Re(Q)

Figure 5-2: Graph of Re(Q) against R for r=l/2,D=l/4,J=l,A'=l and 
S=0,0.1,0.25,0.5,1

T h e  c h a n g e  i n  e f f e c t iv e  d r i v i n g  t e r m  i s  c l e a r l y  v i s i b l e  h e r e .

Re(Q)

Figure 5-3: Graph of Re(Q) against R for S=1/2,D=-1,A'=1,J=2 and 
T=l/16,1/8,1/4,1/2,1.
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A s  t h e  e f f e c t i v e  d r i v i n g  t e r m  r i s e s ,  t h e  e f f e c t  o f  v i s c o s i t y  b e c o m e s  le s s  

s i g n i f i c a n t .

Re(Q)

Figure 5-4: Graph of Re(Q) against R for r=l/2, S-l, D=0, J=0 and 
A —2 ,-1 ,0 ,1 ,2 .

T h e  f la t t e n in g  o f f  o f  t h e  c u r v e s  a t  R = 0  f o r  A ' < 0  i s  d u e  to  t h e  c h a n g e  f r o m  

a  c o m p l e x  r o o t  to  a  r e a l  r o o t .
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Re(Q)

Figure 5-5: Graph of Re(Q) against R for r=l/8,S=l/4,J=0,A'=0 and 
D=-l,-1/4,0,1/4,1.

T h e  c h a n g e s  i n  b e h a v i o u r  h e r e  o c c u r  a s  t h e  e f f e c t i v e  d r i v i n g  t e r m  c h a n g e s  

s i g n .  T h e  f l a t t e n in g  o f  t h e  c u r v e s  f o r  D O  o c c u r s  a s  t h e  r o o t s  c h a n g e  f r o m  

c o m p l e x  t o  r e a l .

A s  w e  c a n  s e e ,  f l o w  i s  i n  g e n e r a l  d e s t a b i l i s i n g .  W e  c a n  a l s o  s e e  t h a t  t h e  

e f f e c t i v e  d r i v i n g  t e r m  d o m in a t e s  t h e  o t h e r  p a r a m e t e r s .
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C ritica l V alue, A0, P lots

T h i s  i s  o u r  m a i n  b o d y  o f  r e s u l t s .  T h e s e  c o n t o u r  p l o t s  s h o w  t h e  c r i t i c a l  

v a l u e  o f  t h e  m a t c h i n g  p a r a m e t e r ,  A 0, f o r  v a r y i n g  v a l u e s  o f  S  a n d  R .  F o r  

e a c h  g r a p h  1 2 1  v a l u e s  o f  A 0  w e r e  c a l c u l a t e d  f o r  1 1  p o i n t s  b e t w e e n  S = 0  

a n d  S = 1  i n c l u s i v e  a n d  1 1  p o in t s  b e t w e e n  R = 0  a n d  R = 3  i n c l u s i v e .  T h e  g a p  

b e t w e e n  c o n t o u r s  i s  0 . 5 .  T h e r e  a r e  t w e l v e  o f  t h e m  f o r  a  c o m b in a t i o n  o f  

v a l u e s  o f  T ,  D R , a n d  J .  I f  w e  w e r e  t o  h o l d  D  c o n s t a n t  f o r  t h e s e  g r a p h s  t h e  

c h a n g e  i n  t h e  e f f e c t i v e  d r i v i n g  t e r m  w o u l d  d o m i n a t e ,  s o  in s t e a d  w e  h o l d  

D r  = D + S R 2  c o n s t a n t .  B y  p e e l i n g  o f f  t h e  d o m i n a n t  e f f e c t ,  w e  a r e  a b l e  t o  

s e e  o t h e r  e f f e c t s  m o r e  c l e a r l y .
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r = i , D R= i , j = o

R

Figure 5-6: Contour Plot of A 0  for R[0,3] S[0,1] T=l, DR=1, J=0.
I n c r e a s i n g  f l o w ,  R ,  w i t h  l o w  S  d e s t a b i l i s e s  t h e  m o d e s .  I n c r e a s i n g  f l o w ,  

R ,  w i t h  h i g h  S  s t a b i l i s e s  t h e  m o d e s  s o  t h e  c h a n g e  i n  d r i v i n g  t e r m  w i t h  

h i g h  S  a n d  R  i s  s l i g h t l y  s e l f - s u p p r e s s e d .

r = l / 4 , D R= l , J =0

R
Figure 5-7: Contour Plot of Ao for R[0,3] S[0,1] r=l/4, DR=1, J=0.
T h e  c o m m e n t s  f r o m  t h e  la s t  g r a p h  s t i l l  a p p l y  h e r e .  A s  e x p e c t e d  

r e d u c in g  v i s c o s i t y  f u r t h e r  d e s t a b i l i s e s  t h e  m o d e s  e x c e p t  i n  t h e  t o p  

r i g h t - h a n d  c o m e r  o f  t h e  g r a p h .
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r=i,DR=i, j =i r = i / 4 , D R= i , j = i

R R
Figure 5-8: Contour Plot of A q for R[0,3] S[0,1] r = l ,  D R = 1 ,  J=l. Figure 5-9: Contour Plot of A (, for R[0,3] S[0,1] r = l / 4 ,  D R = 1 ,  J=l.
T h e  e f f e c t  o f  t h e  in t e r a c t i o n  b e t w e e n  R  a n d  J  s e e m s  t o  b e  d o m in a t e d  b y  T h e  c o m m e n t s  f r o m  t h e  p r e v i o u s  g r a p h  a p p l y  h e r e ,  

t h e  d r i v i n g  t e r m  a n d  i s  h a r d l y  n o t ic e a b l e .
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r = i , D R= o , j = o

R

Figure 5-10: Contour Plot of A fl for R[0,3] S[0,1] F = l ,  DR=0, J=0.
W i t h o u t  D r  o r  J ,  f l o w  h a s  v e r y  l i t t l e  e f f e c t .  T h e  v a r i a t i o n  i s  s o  s m a l l  i t  

d o e s  n o t  s h o w  u p  o n  t h e  s c a l e  w e  a r e  u s i n g .  T h e  m i n i m u m  o f  A 0  o n  

t h i s  g r a p h  i s  - 0 . 3 5  a n d  o c c u r s  w h e n  S = 0 . 3  a n d  R = 3 .

r=l/4,DR=0,J=0

R

Figure 5-11: Contour Plot of Aq for R[0,3] S[0,1] r=l/4, DR=0, J=0.
T h e  m i n i m u m  o f  A q o n  t h i s  g r a p h  i s  - 0 . 2 7  a n d  o c c u r s  w h e n  S = 0 . 3  a n d  

R = 2 . 7
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r=i,DR=o,j =i

R
Figure 5-12: Contour Plot o f A 0  for R[0,3] S[0,1] T = l, DR=0, J = l.
H e r e  w e  c a n  s e e  t h e  d e s t a b i l i s i n g  e f f e c t  o f  t h e  i n t e r a c t i o n  b e t w e e n  R  

a n d  J w h e n  S  i s  lo w .



r = l / 4 ,D R= 0 ,J =1

R
Figure 5-13: Contour Plot o f Ao for R[0,3] S[0,1] T - l/4 ,  DR=0, J = l.
W i t h  l o w  v i s c o s i t y  t h i s  i n t e r a c t i o n  i s  e v e n  m o r e  d e s t a b i l i s i n g .
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r = i , D R= - i , j = o

R
Figure 5-14: Contour Plot o f A0 for R[0,3] S[0,1] r=l, DR=-1, J=0.
F o r  l o w  S ,  R  i s  i n i t i a l l y  s t a b i l i s i n g  a n d  t h e n  i s  d e s t a b i l i s i n g .  T h i s  

c h a n g e  o c c u r s  a s  a  d if f e r e n t  m o d e  b e c o m e s  c r i t i c a l .  F o r  h i g h  S ,  R i s  

d e s t a b i l i s in g .



r=l/4,DR=-l,J=0

R
Figure 5-15: Contour Plot o f A 0  for R[0,3] S[0,1] r=l/4, DR=-1, 
J=0.
I n  t h e  b o t t o m  r i g h t - h a n d  c o m e r  o f  t h i s  g r a p h  w e  s e e  a  c u r i o u s  e f f e c t .  

D e c r e a s in g  t h e  d r i v i n g  t e r m  h a s  d e s t a b i l i s e d  t h e  m o d e  w h e n  w e  

c o m p a r e  i t  w i t h  t h e  e q u iv a l e n t  g r a p h  f o r  D R = 0 .
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r=i,DR=-i,j=i

R
Figure 5 - 1 6 :  Contour Plot o f A0 for R [ 0 , 3 ]  S [ 0 , 1 ]  r=l, DR—  1 ,  J=l.
A g a i n  w e  s e e  t h e  in t e r a c t i o n  b e t w e e n  R  a n d  J .



r = i / 4 ,D R= - i , j = i

R

Figure 5-17: Contour Plot o f A 0  for R[0,3] S[0,1] r=l/4, DR=-1, 
J = l.
A n d  a g a i n  t h a t  i n t e r a c t io n  h a s  m o r e  e f f e c t  w h e n  v i s c o s i t y  i s  s m a l l .
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Conclusion

W e  h a v e  s h o w n  t h a t  t h e  r e s i s t i v e  t e a r in g  m o d e  i n  a  c y l i n d r i c a l  g e o m e t r y  

c a n  b e  s t u d ie d  b y  u n s o p h is t i c a t e d  n u m e r i c a l  m e t h o d s ,  u s i n g  m o d e s t  

c o m p u t i n g  r e s o u r c e s .  T h i s  i s  a c h ie v e d  b y  s e r i e s  o f  a p p r o x i m a t i o n s  a n d  

t r a n s f o r m a t io n s .  T h e  l i n e a r  s t a b i l i t y  o f  t h e  t e a r in g  m o d e  t h e n  d e p e n d s  o n  

s i x  p a r a m e t e r s .

W e  c a n  s u m m a r is e  o u r  r e s u l t s  i n  t w o  m a i n  p o in t s .  F i r s t l y  w e  c a n  c o n f i r m  

t h a t  t h e  d e s t a b i l i s i n g  c h a n g e  i n  t h e  e f f e c t i v e  p r e s s u r e  g r a d i e n t  a s  f l o w  

i n c r e a s e s ,  a s  d e s c r i b e d  b y  B o n d e s s o n ,  I a c o n o  a n d  B h a t t a c h a r je e  ( 1 9 8 7 ) ,  i s  

v a l i d  i n  t h e  t e a r in g  o r d e r in g .  W e  a l s o  s h o w  t h a t  t h e  d e s t a b i l i s i n g  

i n t e r a c t i o n  b e t w e e n  f l o w  a n d  c u r r e n t ,  a s  f i r s t  d e s c r ib e d  b y  P a r i s  a n d  S y  

( 1 9 8 3 )  i n  s l a b  g e o m e t r y ,  i s  a l s o  p r e s e n t  i n  c y l i n d r i c a l  g e o m e t r y .  T h e  s i z e  

o f  b o t h  t h e s e  e f f e c t s  d e p e n d s  o n  t h e  m a g n e t i c  s h e a r  p a r a m e t e r ,  S ,  ( a s  

d e f in e d  i n  ( 1 . 7 ) ) .  T h i s  i s  i n t e r e s t in g  b e c a u s e  i n  t h e  a b s e n c e  o f  f l o w  t h i s  

p a r a m e t e r  h a s  l i t t l e  e f f e c t  o n  s t a b i l i t y .
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Appendix

I n  t h i s  a p p e n d i x  i s  a  m o r e  c o m p le t e  d e s c r i p t i o n  o f  h o w  t h e  t e a r in g  m o d e  e q u a t i o n s  a r e  

d e r iv e d  f r o m  t h e  f u l l  M H D  s y s t e m .  I t  i s  e s s e n t i a l l y  a  t r a n s c r i p t i o n  o f  a  s e t  o f  n o t e s  I  

r e c e i v e d  f r o m  D r .  R . B .  P a r is .

Equilibrium:

W o r k i n g  i n  c y l i n d r i c a l  c o - o r d i n a t e s ,  w e  c o n s i d e r  a n  e q u i l i b r i u m  o f  t h e  f o r m

B 0 = { 0 , B 0 e ( r ) , B 0 z ( r ) }

Y o = { 0 , V 0e(r ) ,V 0z(r)}

P o  =  P o ( r )

P o  = P o ( r )

w h i c h  s a t i s f y  t h e  d iv e r g e n c e  a n d  i n c o m p r e s s i b i l i t y  c o n d i t io n s

(A.2)

a n d  h y d r o s t a t ic  b a la n c e .

Po = - ( ^ x I o ) x § o  =  —(BoeD*BO0 + B 0zD B 0z)

d d  1D, =  —-  +  -
d r  ’ d r  r

S3 o ©

b z =  B o /  .
B o

W e  c o n s t r u c t  a n  o r t h o n o r m a l  b a s is  b y  d e f i n i n g  u n i t  v e c t o r s :  

e r =  { 1 , 0 , 0 }  e (| =  { 0 , b e , b z }  e ±  =  e r x  b  =  { O , - b z , b 0

(A.1)

V - B 0 = 0

v - v 0 =  0

(A.3)

(A.4)

(A.5)

(A.6)
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The equilibrium current is given by:

J 0  — V  x  B q

e r - J 0 = 0  ( A . 7 )

_  u d ' , bz d \ _  u r» n  u n c ,
Oz6||*io - - b eBoz + ~r"JKr®oe)- b zD*B0e - b0DBc

w h i l e  t h e  v e l o c i t y  f i e l d  i n  t h e  n e w  b a s i s  i s  g i v e n  b y :

( A . 8 )
v ,| = b 0 v 0  + b z v 2  f v z = b 0 v | | - b 2 v ± '

v x = b o v z - b zv o \ V 0 =  b zv , +  b 0Vj_y

B e c a u s e  o f  t h e  f o r m  o f  t h e  e q u i l i b r i u m  s t u d ie d ,  p e r t u r b e d  q u a n t i t i e s  m u s t  v a r y  l i k e  

f ( r )  e x p ( i m 0  +  i k z  +  c o t ) . ( A . 9 )

F o r  c o n v e n i e n c e  w e  d e f in e  s o m e  n e w  p a r a m e t e r s .

L e t  F  =  -7 - B o o  +  k B K G ^ f V o o + k V ,  H  =  k B 0 0 - f B ,  ( A . 1 0 )

a n d K 2 = k 2 + 4 -

T h e n  e r V f  =  i ^ f  e i - V f  =  i ^ f ,  ( A . l l )

w h e r e  f  i s  a n y  s m o o t h  f u n c t i o n  o f  r .

N o w  w e  w o r k  o n  e a c h  e q u a t io n  s e p a r a t e l y

D ivergence condition

V - B , = 0  = >  D . B l t + i £ B | | + i 1t t - B 1 = 0  ( A .  1 2 )

Continuity Equation

J  + V -pv = 0 => ra p !+ v lrp 0 + iG p! = 0  (A.13)
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Induction Equation

—  =  V  x  ( v  x  B ) +  t ] V 2 B  
f it

= > c o B  =  V x ( V 0  x B ^ + V x ^ v ,  x B 0 ) + r i V 2 B 1 .

N o w  V  x  ( V 0 x  B j ) =  B t • V V 0  -  V 0  • V B t V x  ( V j  x  B 0 )  =  B 0 • V v t

T h u s  e r • V  x  ( v j  x  B 0 )  =  i F v l r

2 B2  > 
00

' V  x  ( v x x  B 0 ) =  i F v ,  - ^  ^  

e r • V  x  ( V 0  x  B j ) =  - i G B lr

' l r

e,| • V  x  ( V 0  x  B j ) =  B l r D _ V „  - l b-  V | |  -  U g  V O 0

v  v  r  sj
- i G B u  w h e r e  D _

T h e  r  -  c o m p o n e n t  o f  t h e  i n d u c t i o n  e q u a t io n  i s  t h e n

(0 B „  =  i F v „  - i G B „  + i , ( ( D D .  - k 2 ) t lr  - 2 i ^ ( b e B ,  - b z B j . ) )

a n d  t h e  11 c o m p o n e n t  i s

coB,, =  i F v , ,  -
2 B 2  A 

00

v  1  r B

+ 1 1

v l r  + B l r  D - V || ~  b 0  V 0 9  +

/  n \  _ I  I I  I I b2  ̂ t  I I \9
( D D * - k  jB n  + ^ b e b e + b z b z + - | J b , - 2 ^ 0 b z - b z b e J -  

+ ( b , D . D b e - b e D D * b z ) B ±  + 2 i - b e B lr

b . V ,z  v  Oz
- i G B

B ,
f ir

M omentum equation

p f ^  + v - V v l  + V P  = B - V B  + (.iV 2v
v  f it  /

w h e r e  P =  p  +  j B 2 s  k i n e t i c  a n d  p r e s s u r e  t e r m s

Po(®Yi + Y o  >vYi +Yi , v Y o ) + P i ( Y o  -V V o )+ V pi = B 0 -VBj + B X
/  /i x

V nwhere V 0 • VV0 = ' 0 0  

V r
,0,0 the centrifugal acceleration

( A .  1 4 )

- Y i  • V B 0

( A .  1 5 )

_  d 1 -■3F_ 7-

( A .  1 6 )

( A .  1 7 )

• V B 0 

( A .  1 8 )
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Magnetic terms

e r c o m p o n e n t  =  i F B lr  -  2
B ,o B 0o

e | |C o m p o n e n t  =  i F B j  +  J j_ B i r 

e x  c o m p o n e n t  =  i F B ±  -  J | | B lr

(A. 19)

I n e r t i a l  a n d  p r e s s u r e  t e r m s :

e r c o m p o n e n t  =  p 0 ^(<a +  i G ) v , r -  2  V t 9 ^ ° °  j  _ p ] _ P j 

e  I c o m p o n e n t  =  p 0 ^ (œ  +  i G ) v u +  v l r ( v ,  -  ( b 0  V 00  +  b z V 0 z ^ b  b 0 

e ± c o m p o n e n t  =  p 0 ^ ( ©  +  i G ) v ±  +  v , r ^ V ±  -  ( b 0  V 0z + b z V 0 0 ^ i -  b z +

+  i  — P]
Bn 1

( A . 2 0 )

V i s c o u s  t e r m s :

e  h c o m p o n e n t  =  | . i±

e r c o m p o n e n t  =  i - i x ^ D D .  - K 2 ^ lr ~ 2 i - j j ( b 0 V|| - b z v x ) ^

(DD*-K 2 )^|+^b0 be" + bzbz" -  v ,  + 2 (bzb0' -  b0 bz' ^

+ ( b z D D , b 0  - b 0 D D * b z ) v ±  + 2  

( D D ,  - K 2 y ±  + ( b 0 b 0 " + b z b z " ^ ±  - 2 ( b z b 0 ' - b 0 b z ' 

- ( b z D D * b 0  - b e D D * b z ) v || -  +  —  ( b z v ( +  b 0 v 1 )

bo V̂|r 
r 2  5 6

e x  c o m p o n e n t  =

r dr r
( A . 2 1 )
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N o w  w e  e l i m in a t e  t h e  p r e s s u r e  t e r m  f r o m  t h e  r - c o m p o n e n t  o f  t h e  m o m e n t u m  e q u a t io n  

u s i n g  t h e  o p e r a t o r

e r • K 2 V K _2 V *  A  +  K 2 A r w h e r e  V * A  =  V A - e r D * A  =  i ^ - A |  + i - ^ - A ±
B 0  B f

A
=  K 2 D K - 2  i i A | + i | - A 1

V i >0  i>0 >
+  K 2 A r

( A . 2 2 )

A f t e r  a p p l i c a t i o n  o f  t h i s  o p e r a t o r  t h e  e q u a t i o n  b e c o m e s

Po( d ((© +iG)D*Vir) - D ^ v lr^p-D*Voe + ikV 0z' ^  - K 2 (ra  +  iG )v lr)  +

2 K 2  V V o e ,  _ K 2 p i  V o e .  =  _ i F ( D D ,  _  R 2 \ g  +  2 M B 0 6 D , B lT -  
r  r  \  /  r

2 K 2 g peBji. + iABir + ̂ _ K 2)v72vlr
r

w h e r e  A  =  F " -  — +  2 m — y — ^ ^ B O0 .
r  r  r

( A . 2 3 )

U s i n g  ( A .  1 6 )  w e  r e w r it e  t h e  e q u a t i o n  a s

P0(d ((®  +  ¡ o p . v , , ) -  D ( v l r ^ D . V 0 8  + ikV0l' )  -  K 2(co + i G ) v

2 K 2 V je V o t  _  K 2p  Vm = IF  ^  _  f f  +  .G B  2  ™  f b e  +  b  F ^ b ,
r  r  r |  r  V  H /

2 i — D » B l r - i A B l r + n x ^ D D * - K 2 ^ 7 2 v lr

( A .  2 4 )
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The Tearing Ordering.

To make further progress, we have to order the various terms in the equations to 

simplify them. This implies making estimates for the relative sizes o f  the quantities 

involved and using this information to eliminate insignificant term s in each equation. 

W e are interested in the case r |—»0. The ordering o f the variables will be based on the 

small param eter s which will be proportional to a positive pow er o f  r|. W e use w hat is 

known as the weak viscous tearing ordering. In this ordering flow  is chosen to scale

like V0 ~  r)1/5. This allows us to neglect the effect o f  Alfven waves,centrifugal forces 

and the Kelvin-Helmholtz instability.

r| ~  s 5 jo,, ~  e 2 r - r s ~ s 2 —  ~  s ~2 (perturbed quatities only)
dr

m , k ~ 8° v,,,v± ~  e 3 => v lr ~ e 5

B ||,B ± ~ e 4 => B lr ~  s 4B ^  + 86Bj1r)w ith B ^  = 0

CO ~ £3 PV ~ s  J ± ~ s  A  ~ 1 p 0
rs(F ')

F  ~  F ' ( r - r s ) ~  s 2  G  ~  G ' ( r - r s ) ~  e 3

(A.25)

W e adopt the convention o f displaying below each term the s order o f  that term. 

The induction equation in the r-direction (A. 16) is

coBlr = iFvlr - iG B lr +r|

s 3.e 4 e 2. e 5 e 3.e 4 s 5
ï  DD» - K 2  ̂

A s“ 4  1

B ir -2 i-^ -(b eB, - b zBj_)N 

s 4 s 4

Collecting terms o f order e5 we get

ft
B [^ = 0  so we consider the next order o f B l r . (A.26)

Collecting terms o f order s

T|B|J.),r = (co + iG )B ^  + iFvl r . (A.27)

Next we consider the parallel-component o f the induction equation (A. 17).
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“B, _ >Fvl T L  °  00 J x  -------------

-  r B o
v l r  ^  B l r

5 4
8  S

D- Vl b0 V0 0  + “ iIb , V t e J ¡GB,
_ 7

e J V

' D D . K 2 >
B n r  „

o 11 + b o b 0  + b / b z +
V E e 8 V r2y

B
dBx '

- 2 ( b 0 b z ' - b z b 0 '

.  B ±  2 i — b 0 B lr  
+ ( b z D * D b e - b 0 D D » b z )  4 +  r

8

W e  t a k e  t e r m s  o f  o r d e r  e

2 B
o  =  i F V | l + ^ _ o o . v l r + T 1 B ll , ( A . 2 8 )

N e x t  w e  h a v e  t h e  p a r a l l e l  p a r t  o f  t h e  m o m e n t u m  e q u a t io n

VnnVl
P o

(co +  i G ) v „  +  v lr  ^ V j '  -  ( b 0 ' V 0 0  +  b > 0 z ) f  b 0  ^

e 3  e 3 e 5

+ i ^ - P ,  i F B ,  J . L B i ? >  

° 0  

8 6

1  , J 1  ° l r

8 6 8 2  s 4

Hi

' D D , - K 2> v  f
11 +„ 3  +_ - 4  A

cn CO
<

e  V

- b^  
M o  +  b z b z -  —  

r  y
+  2 ^ b z b 0  - b 0 b z '

v ,  2  b °  9 V |r  
+ ( b z D D * b 0 - b 0 D D , b z )  r 2  5 0

W e  t a k e  t e r m s  o f  o r d e r  8 1

(co + i G ) V|| +  i - ^ - P ,  =  i F B ,  + J L B i ; ) + ^ 1 v ||" ( A . 2 9 )

N e x t  w e  c o n s id e r  ( A . 2 4 ) .
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P o
D « c o  +  i G ) D . v , r ) - D i v , r i f  D . V oe +  ¡ k V „ ;  1  - K 2 ( ®  +  i G >

4 ^  '  Re4 e 6  s 8

V™ iF

l r

y

2 K2 V ^ » _ K2 Z22. - f ® B lt iFvlr iGBlr
, r  r  -  'H I 7 7 +  7 .

8 S10 S-sV 8 8 8 7
+ 2

kll w  b , l >

-,+ A

Bn
W e

2 i - D * B { ,r) i A B ,  H j .  
r  - 4 + 7_ 6  8  S

D D *  _  K 2 "

0 - 4 “  Po 
v  b s  J

V 2  v lr

t a k e  t e r m s  o f  o r d e r  e

(<D + i O > l r ”  =  ^ ( ( O B *  - i F v „  + i G B i : > ) + 2 i I i ^ B l| - i A B ™

( A .  3 0 )

N e x t  w e  h a v e  t h e  p e r p e n d ic u l a r  c o m p o n e n t  o f  t h e  m o m e n t u m  e q u a t io n

P o
(ffl + iG K  +vir ( V  -  (be'v0z +bz'v09) -  bz ^

8 3 8 3 8 5

D D *  - K 2> 

V  E ' 4  s °  y

\ i i L P| JPG ;, B«>
”  e6  V  e4/

+
Ph

/  11 11 \ V ,  /  r i \  1
( b 0 b e +  b z b z J s 3 + 2 | b z b e - b e b z J a T

b ,  d v , r b f

+ ( b z D D * b 0  - b e D D , b z ) V ;  + 2  r 2 f t  +  r 2  ^  + b 0 V l ^

8 '  8 3

W e  c o l l e c t  t e r m s  o f  o r d e r  8

i ^ P  — T XB 1 -  Jirir ( A . 3 1 )

C o m b i n i n g  w i t h  t h e  p a r a l l e l  c o m p o n e n t  o f  t h e  m o m e n t u m  e q u a t io n  ( A . 2 9 ) .

(to  + i G ) v |  -  i F B | |  +  [ J x  +  —  J|| j B lr  + H j _ V | |
l(0) ( A . 3 2 )

C o l l e c t i n g  t h e  e q u a t i o n s ( A . 2 6 , A - 2 7 , A - 3 0 A - 2 8 , A . 3 2 )  t o g e t h e r  w e  g e t  t h e  s y s t e m
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R e n a m i n g  v a r i a b l e s  a n d  p a r a m e t e r s  g i v e s  u s  t h e  s y s t e m  ( 1 . 9 )  i n  t h e  t e x t .
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