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ABSTRACT

It is acknowledged that to significantly improve biochemical system performance 
control should be implemented in real-time. Control algorithms, particularly modem control 
algorithms, require knowledge of the process dynamics and continuous measurement or 
detection of the system states and outputs. In many processes state variables cannot be 
measured on-line due, for example, to the non-availability of on-line sensors. Estimation 

techniques can be applied to estimate nonmeasurable state variables. Such techniques in 
general require the use of accurate system models.

In this thesis simplified yet nonlinear models of fed-batch and batch fermentation 
processes are presented. Details of modelling and simulation studies carried out on a Baker’s 
Yeast fermentation process are included. Variations of the basic models are considered and 
tested using computer simulation with a view to evaluating the effect of different influences 
on the specific biomass growth rates.

Results presented using experimental data and computer simulation results indicate 
the validity of a number of estimation procedures including an observer, extended Kalman 
filter and an iterative extended Kalman filter. Adaptive recursive least squares is applied to 
identify the uncertain parameters which influence the growth phases of biomass (e.g. the 
yeast organism).
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NOMENCLATURE

A : system matrix o f  the l inear ized  model.
C : bu lk- l iqu id  C02 concentrai ton (g /1 ) .

: d isso lved  C02 concentration (g /1 ) .
CER : C02 evolution rate ,  (g /1 -h r ) .
CTR : C02 transfer rate ,  (g /1 -h r ) .
OUR : oxygen uptake rate ,  ( g / l - h r ) .
OTR : oxygen transfer rate ,  ( g / l - h r ) .
D : d i lu t io n  rate.  (hr-1 ) .
E : ethanol concentration in the broth, (g /1 ) .
EPR : ethanol production rate ,  ( g / l - h r ) .
ECR : ethanol concentration rate ,  ( g / l - h r ) .
F : volumetric flow rate .  ( h r ' l ) .
H : Henry’ s constant for gases .
K : absolute temperature in Kelvin.
K, : = l /Yx / s .
K2 : = l /Yx / 0 .
Kc : Contois’ constant.
KC2 : constant o f  proport ionally  for c e l l  mass production.
Kj : factor by which the volumetric absorption c o e f f i c i e n t  for C02

greater than that o f  oxygen.
Kq2 : saturation constant for d isso lved  oxygen concentration,  (g /1 )
Kja : mass transfer or absorption c o e f f i c i e n t ,  (hr- 1 ) .
Kp0 : ethanol consumption rate per unit volume. (g /1 -hr)
Ks : Blackman’ s constant ,  (g /1 )
Ket : rate l im it ing  constants  for e than ol . (g /1 )
M : output matrix o f  the l inear ized  model.
0,  : saturation concentration of d isso lved 0 2 in the l i q u i d . ( g / 1 ) .
0 : d isso lved  oxygen concentration in the l iq u id ,  ( g /1 ) .
P : f i l t e r  covariance matrix.
R : gas constant.
S : substrate concentration,  (g /1 ) .
Sfj : substrate concentration in the i n f l u e n t . (g /1 )
V : volume o f l iq u id  in the v e s s e l .  (1 ) .
¡¡max; maximum ethanol production rate per unit volume. (g /1 -hr)
X : biomass ( c e l l )  concentration,  (g /1 ) .
Y : output vector



Yx/ S: y ie ld  c o e f f i c i e n t  o f  biomass on substrate ,  ( g / g ) . 
Yx / 0 : y ie ld  c o e f f i c i e n t  of  0 2 on biomass, ( g /g ) .

|i : s p e c i f i c  growth rate ,  (g /g -h r ) .

|itnax: maximum o f |i
9 s ta te  vector.
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PART I INTRODUCTION

I- 1 Biotechnology
The science of biochemistry underlies all mathematical treatment of fermentation

processes, particularly kinetics which is at the core of all dynamic models of bioreactors. 
Biochemistry is concerned with the particular types of chemical reactions found in all living 
organisms, and which underly all biological processes. The challenge in learning biochemical 
engineering is to understand and analyze the processes of biotechnology so that we can 
design and operate them in a rational way. To reach this goal however, a basic working 
knowledge of cell growth and function is required. [1][2]

Microorganisms grow by converting substrates (e.g. glucose) present in a liquid 
medium into cell mass (e.g. yeast) and possibly products such as alcohol and 
carbon-dioxide. Growth, which is characterised by an increase in cell mass, occurs only
where certain chemical and physical conditions are satisfied, such as acceptable temperature 
and pH as well as the availability of required nutrients. For the development of 
mathematical models, however, the influence of temperature and pH are usually neglected 
because they are assumed constant and controlled during a fermentation run.[l]

Biotechnology is the application of microbiology, biochemistry and genetics. Most 
biotechnical processes consist of fermentation, oxidation and/or reduction of feedstuff by
microorganisms such as yeasts or bacteria. Fermentation engineering has been widely applied 
to daily requirements, e.g., to produce penicillium chrysogenum, alcohol, beer and baker’s 
yeast The principle of fermentation processes can be simply described as follows: the
micro-organisms (bacteria, fungi, yeast etc) grow with the consumption of certain nutrients 
(carbon derivatives etc.) assuming that the environmental conditions (temperature, pH, 
agitation, aeration, etc) are favourable.

The aim of microbial growth is biomass production (e.g., antibiotics, pesticides 
methane, hydrogen, etc), biological depollution, i.e., consumption of certain polluting matters 
by the micro-organism.

Fermentation processes may be conveniently classified according to the mode chosen 
for process operation: either batch, fed-batch or continuous. [2] [5]

* Batch : The liquid, microorganisms and substrate are all put into the vessel at the 
beginning of the batch run, and no further additions are made. Only environmental
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variables such as temperature and pH value are manipulated during the batch-run.

* Fed-batch: This is similar to the batch process, except that substrates are fed 

continuously into the fermentor during the batch run.

* Continuous : With this method liquid substrates, synthetic products and microorganisms 
are continuously fed in and drawn off. The aim is to keep these variables in a steady state, 
(e.g., total concentrations of products, substrates and microbes in fermentor are kept 
constant).

Of these techniques, fed-batch poses the greatest challenge to the control engineer. 
In the fed-batch fermentation process the substrate is usually fed straight into the batch with 
dilution. Batch fermentation processes allow only trivial set-point control of temperature, pH 
value etc., while continuous fermentation allows its variables only to be kept at a steady 
state. However, in fed-batch the control engineer must devise an algorithm to obtain an 
optimal substrate feed-rate for a given control objective. In fed batch fermentation the 
variables directly controlled are usually substrate feed rate, agitator feed rate and aeration 
rate. Measurements are made, of the composition of exit gas from the fermentor (partial 
fractions of carbon dioxide and oxygen ) and dissolved oxygen concentration. [2] [5] Note that 
none of the primary variables which concern the control engineer (cell growth rate and 
concentration of products in the liquid phase) are mentioned above. This highlights the 
non-availability of sensors which are capable of accurately measuring these variables. Thus 
estimation techniques must often be applied to obtain pseudo measurements of the main 
system states.

I— 2 Control Problems of Biotechnical Processes
In recent years it has been acknowledged that to significantly improve biotechnical 

process performance productivity and efficiency, or to reject noisy disturbances in process 
operation, control (including optimal control) should be implemented on-line. On-line control 
in a biotechnical process is usually based on the measurement of physical, chemical or 
biochemical properties and the manipulation of physical and chemical environmental 
parameters such as temperature, pH, dissolved oxygen and nutrient concentrations. It is very 

important to separate the control of biotechnical and environmental parameters because of 
the difference between them. [34]

The dynamics of a biotechnical process are usually multivariable, highly non-linear 

and more complicated than other chemical processes. It is difficult, for example, to
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develop reliable on-line models to describe every factor which influences the specific
bacterial growth rate and yield coefficients which characterize microorganism growth in the 
fermentation process. Furthermore the parameters of such models are often uncertain.

Because of nonmeasurability of many important state variables, such as biomass and 
substrate concentrations, control problems are made more complicated. To apply any modem 
control method state variables and parameters must be measured or at least estimated
on-line. The absence of suitable, accurate and reliable sensors for the measurement of these 
important process variables is the essence of the problem. As an aid to contributing
solutions to the twin difficulties of complex dynamics and measurement difficulty a
relatively simple mathematical model has been presented for the purposes of simulation and 
estimation algorithm evaluation.

/— 3 On-line State Estimation for Biotechnical Processes
The dynamics of biotechnical processes are usually difficult to describe so it is 

necessary to use relatively simple (non-linear) mathematical models instead of models 
embracing the complete dynamics of these processes. For the purposes of simulation 
simplifying assumptions are used in conjunction with real-time data collected from a pilot 
plant and the resulting models provide the basis for application of on-line estimation 
techniques. Simulation models are employed as a testing ground for all estimation 
algorithms.

Although the linear estimation problem with continuous time measurements has been 
solved many years ago, very few exact finite dimensional filters and observers have been 
discovered for non-linear problems. In this thesis, many estimation techniques, such as 
observers, extended Kalman filter and the iterative extended Kalman filter, have been 
successfully applied to fed-batch and batch fermentation processes. In most cases it is 
assumed that some of the nonmeasurable state variables are known and that then the others 
can be estimated on-line using the different techniques, based on prior knowledge of 
parameters, such as yield coefficients or growth rate |i. Many results have been derived 
using different models of the specific growth rate \i considering various influencing factors.

Estimation error can be significantly reduced through use of a high-order estimation 

technique if nonlinearities are sufficiently important. [29] The iterative extended Kalman 
filter can yield substantially better estimates of nonmeasurable state variables when a system 
is non-linear. In addition, the iterative filter can show a faster convergence because of 
improved approximation.



I- 4 Parametrization and Identification of Biological Processes

Parameter estimation techniques have had their greatest success with linear systems. 
Very few methods have been used successfully for identification of non-linear systems. In 

this thesis, an adaptive recursive least squares (ARLS) method has been applied to the 
identification of a biotechnical process. In practice, the procedure of system identification is 
iterative: when investigating a biotechnical process, which is non-linear and where a priori 
knowledge is poor, it is reasonable to start with transient or frequency-response analysis to 
get crude estimates of dynamics and the disturbances; the results can then be applied to 
plan further experiments. The data obtained are then used to estimate the unknown 

parameters in the model. Based on the results, the model structure can be improved and 

new experiments may be designed.

I— 5 Thesis Structure
Part II : The dynamics of fermentation processes are described. The specific 

growth rate |i. is presented by considering different factors.

Part III : Non-linear state estimation problems are presented. A series of methods, 
such as observers, non-linear filters, extended Kalman filter, iterative extended Kalman filter, 
are developed to estimate unobserved quantities, such as biomass and substrate concentrations 
in the fermentation processes. This part is organised as follows.

Chapter 2 : A non-adaptive state estimation algorithm is used to estimate one 
of the nonmeasurable variables, assuming other state variables and the yield 
coefficients are known.

Chapter 3 : In the absence of prior knowledge of the parameters like the 
yield coefficients or growth rate \i, an adaptive observer algorithm is applied to 
estimate one of the nonmeasurable variables assuming other state variables can be 

measured on-line.

Chapter 4 : Assuming that the system is observable, a non-linear observer 

may be used to estimate one of the nonmeasurable variables assuming other 
quantities are known.
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Chapter 5 : Assuming none of the state variables are known, the extended
Kalman filter can be applied to the fermentation processes based on some known
information in real-time, such as on-line measurements of oxygen and 

carbon-dioxide concentrations.

Chapter 6 : Assuming the nonlinearities of the processes are sufficiently 
important or if a long delay in the estimation cannot be permitted for a particular
process, then the iterative extended Kalman filter can be applied,
rate instead of supposing any further model for the specific growth rate |X.

Part IV : Adaptive recursive least squares is developed for non-linear identification 
of biotechnical process parameters, such as yield coefficient Y^g, the maximum of the
specifc growth rate |X and Blackman’s constant Kg.

Part V : Conclusions and discussion on modelling, simulation, state estimation, and
identification of the non-linear biotechnical processes.

Appendix A : A reported example of a non-linear filter is presented for estimation 

of parameters and states. It is usually easy to measure continuously the total oxygen
utilization rate instead of supposing any further model for the specific growth rate |X.
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PART n  MODELLING AND SIMULATION OF

THE FERMENTATION PROCESSES 

Chapter 1 Introduction

In a baker’s yeast process the basis of the reaction during fermentaion is 
metabolism. The metabolism is very similiar to metabolisms within other organisms. It is 
important to remember that every step in the metabolic conversion process is controlled by 
enzymes, and thus is described by the Monod equation. It is also important to realise that 
in a series chain of reactions, the slowest reaction determines the overall rate.[l]

The main substrates supplied by the organism to effect metabolic conversions are 
ATP (Adenosine diphosphate) and NADH (Nicotinamide adenine dinucleoide). These 
substrates supply much of the energy required to carry out the conversions. At the 
beginning of the metabolism, the substrate glucose (a type of sugar) is absorbed into the 
cell from the surrounding environment With the aid of ATP, the glucose is converted into 
glucose-E-phosphate. This substance can enter two pathways, one of which recycles the 
substance. The other pathway leads to it’s conversion into pyruvate. At this stage, two 
important branches in metabolism appear, both of which eventually lead to production of 
Acetyl-Coenzyme-A.

The intermediate and final pathways are important in the determination of the 
final product Pathways lead to the production of ethanol and C 0 2, which are released into 
the environment Generally, in the presence of plentiful glucose, a large amount of pyruvate 
is formed. This in turn leads to saturation of the pathway leading to acetyle-CoA production 
and drives the excess pyruvate into production of large amounts of ethanol. The net result 
is that in the presence of excess glucose, ethanol accumulates in the environment

If glucose levels are then brought down, the amount of pyruvate also decreases. This 
means that the cell looks to ethanol to produce the Acetyl-CoA needed by the metabolism. 
Thus in the absence of glucose, the available ethanol is consumed. However, since the first 
part of the metabolism is inactive in this mode, it is less efficient in promoting growth. In 
addtion, in the presence of excess glucose, the production of ethanol means that much of 
the glucose has been inefficiently converted to alcohol instead of cell mass.

The acetyl-CoA enters a cycle called TCA. the detailed of which are unimportant, 
save that C 02 and NADH are produced. The NADH then enters into the so-called
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Respiratory Chain (R.Ch). In this chain, 0 2 is taken up, and ATP and water (H20 ) are 
released. Thus in the presence of oxygen, the respiratory chain deactivates and since the 
R.Ch is in series with the other main metabolic reactions, the oxygen level becomes 
growth-rate limiting. This leads to an effect similiar.to the deficiency of glucose.

Overall, then the metabolism takes in glucose, oxygen and ethanol; to produce C 02, 
H20, ethanol and cell growth.[l][2]

The baker’s yeast fermentaion involved inputs : a yeast innoculum and the biomass 
growth medium. The innoculum was used to seed a production medium batch and incubated 
over 20 hrs. The actual production batch stage was the stirred aerated fermentation process 
under the condition of dilution rate D (for batch, D = 0) and was run in the 10-litre New 
Brunswick SF-116 pilot plant fermentor. The outputs of the process involved the oxygen 
and carbon-dioxide concentrations (on-line measurements) and substrate (glucose) and biomass 
concentrations (off-line measurements using the technique of dry weights for biomass and a 
sugar reducing test for levels of glucose). The experimental results provided the basis for 
validating the system model.

In this part, two mathematical models of the fed-batch and batch fermentation 
processes (baker’s yeast) are presented. These system models are based on different models 
of the specific growth rate (X which is influenced by many factors such as pH, temperature, 
biomass and substrate concentrations. Several mathematical models exist at different cell 
levels and their environments. Many approaches have been tried arising from the difficulty 
of developing models covering every factor which can influence the specific bacterial growth 
rate and the yield coefficients which characterize microorganism growth. [2] [3] The 
reproduction of experiments are often uncertain because of the twin difficulties of 
unobservability of the important process state variables and the complex dynamics of the 
process. The improvement of these mathematical models depends on gathering more and 
better experimental data.

In order to solve the model equations classical first order Euler and a fourth order 
Runge-Kutta computer algorithms were used for the integration of the non-linear differential 
equations. The state models include the various nonlinearities of the processes.

Chapter 2 Dynamics of Fermentation Processes

2.1 Modelling o f  Kinet ics
Kinetics, in chemistry, deals with the behaviour of chemical systems when reactants



come together and react to give rise to products. Since these reactions are the fundamental 
activities by which changes in biochemical systems (e.g. microorganisms) occur (such 
changes include growth in cell concentration and product concentration ), the laws governing 
the kinetics of biochemical reactions form the basis of all mathematical models of reactors, 
including fermentors.[2 ]

From knowledge of the metabolism a mathematical description of uptake of

substrates and their utilisation within the cell can be developed. [6] In addition to the 
substrate (glucose), aerobic bakers-yeast fermentation also utilizes oxygen dissolved in the 
liquid to enable growth. A model of usage of dissolved oxygen is presented. [6] In addition 
to extra cell mass/growth, the products of baker’s yeast [5] arc a type of ethanol and C 02. 
The modelling of formation and utilisation of these products is also considered.

2 .2  Basic  Dynamical Models o f  B ioreac tors

The dynamics of the process are described by a series of expanded models. In
fact, a fed-batch, batch or continuous culture of baker’s yeast, can be described in fully
aerobic conditions by the non-linear models described in the following section. [3] [4]

2 .2 .1  C e l l  Mass (Biomass X ):

The microorganisms or biomass concentration are the main feature of a fermentation 
affecting the growth rates, substrate consumption and product formation. The intereaction of 
the microorganism with its environment is a complex one. The following model will be
employed to characterise the biophase in order to model cell population kinetics. The nett 
rate of cell mass growth rx is often written as [6]

rx = n ( t ) X ( t ) .  ( 2 . 2 - 1 )
where |x(t) is the specific growth rate of cells (hr1). X(t) is the cell mass per unit culture 
volume (gA). For a fermentation process a useful definition of the dilution rate in which the 
culture is being diluted at a rate D^ir1) has been given, allowing a mass balance using the 

above model giving:
dX(t )/dt = [ |x ( t ) -  D(t) ]  *X(t); (2 .2 -2 )
D(t) = F ( t ) / V ( t ) ; (2 .2 -3 )

where F(t) is the volumetric feed flowrate of input substrate (hrl) and V(t) is the culture 
volume (litre). Section 2.3 will discuss |x(t) in detail.

2 . 2 . 2  Substra te  U t i l i s a t i o n  (S)

The substrate (e.g., glucose) concentration (S, (gA)), which is usually the growth-limiting
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factor, is used to synthesise new cellular and extracellular products and also to provide the 
energy necessary to drive the reactions for microorganisms. Thus growth and substrate 
utilisation are both closely related. For a fed-batch fermentation process the model of the 
substrate consumption can be presented as follows:

d S ( t ) /d t  = -  K , • n-X(t) + D ( t ) ■[Sf i— S( t ) ] ;  (2 .2 -4 )
where Sfj is the substrate concentration in input. K, is a yield coefficient of cell mass on 
substrate. If a yield factor is approximately constant for a particular cell cultivation system 
it provides useful knowledge of biomass and substrate concentrations. [5]

2 . 2 . 3  Fermentor Volume o f  the Growth Culture (V) :

The model of fermentor volume (V, (litre)) of the growth culture can be described 
as follows:

dV/dt = Fin -  Fo u t ; (2 .2 -5 )
where F^, Fout 316  volumetric flowrates of input and output flows respectively. The 
differentoperating conditions for a fermentor, e.g., batch, fed-batch and continuous 
operations are treated as follows: [3]

Batch :

The fermentor in a batch condition is a reactor without inflow and outflow:

Fin  = ^out = 0» ( 2 .2 —6)

A large amount of substrate and a small amount of biomass are initially filled into 
the fermentor. During fermentation no substrate is produced, only biomass (cell mass) is 
produced. The culture volume is constant with D = 0.

Fed-batch :

The fermentor in a fed-batch condition is a reactor without outflow:

Fout = 0 •- (2 .2 -7 )
A small amount of substrate and biomass are firstly contained in the fermentor and 

augmented with the influent substrate.
F ( t )  = D ( t ) - V ( t ) ; (2 .2 -8 )

Continuous :

In a continuous cultivation of microorganisms, the reactor is continuously fed with
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the substrate influent The rate of outflow is equal to the rate of inflow, and the fermentor 
is filled in order to keep the volume of culture constant:

Fin = Fout = F = Constant ; (2 .2 -9 )
dV/dt = 0 ; (2 .2 -1 0 )
D(t) = F/V; (2 .2 -11)

2 .2 .4  Oxygen Uptake Rate (OUR)

The dissolved oxygen is similar to substrate utilization since the substrate reaction 
occurs by oxygen reaction. The oxygen level in the environment is also a growth-limiting 
factor. Only oxygen dissolved in the liquid and not in gaseous state can be utilized by the 

cells.
The rate at which oxygen is taken up by the cells from the liquid is assumed 

proportional to the cell mass growth rate and is called the oxygen uptake rate OUR (g/l-hr).

OUR = - l / Y x / o -dX/dt =- K2 -dX/dt; (2 .2 -1 2 )

where Yyjo’ K 2 *s yield coefficient of oxygen on biomass.

The rate of change of dissolved oxygen concentration is presented by 
dO/dt = OUR + OTR ; (2 .2 -13)

where OTR is the Oxygen Transfer Rate (g/l-hr), i.e. the rate at which oxygen is transfered 
from air bubbles within the fluid into the dissolved state. The OTR will be discussed in 
detail in Section 2.2.6.1.

2 . 2 . 5  Carbon-Dioxide Evolut ion  Rate (CER)

During the fermentation carbon-dioxide (C02) is produced or evolved by the cell 
as well as ethanol. This carbon-dioxide is secreted by the cell and becomes dissolved in the 
liquid. The CO 2 produced is assumed proportional to the cell-mass produced, i.e. the 
growth-rate. Thus the CER (g/l-hr) is presented by

CER= KC2-̂ i X ; (2 .2 -1 4 )
2 is the constant of proportionally for cell mass production.

Overall the level of dissolved-C02 is described by
dC/dt = CER + CTR ; (2 .2 -15)

where CTR is the rate at which C 0 2 is transferred from the air bubbles in the fluid into 

the dissolved state. CTR will be introduced in Section 22.62.
10



Although the growth rate is not directly affected by the dissolved C02, it is
important to model the amount of dissolved-C02 because measurements of the C 0 2 

concentration in the exit gas can be related to dissolved C 0 2 levels.

2 . 2 . 6  Modelling o f  Transport

Whether transport becomes important depends on the magnitude of the rate of
transport compared to the rate of reaction. [2] If the rate of transport (i.e. the rate at which 
some substance is transferred to the area of interaction) is of similiar or lesser magnitude 
than the rate of reaction (the rate at which that substance is taken up by the reaction) then, 
because the transport mechanism is in series with the reaction mechanism, the rate of 
transport becomes a rate-determining-step. If, on the other hand, the transport rate is faster
than the rate of reaction, then there will always be substance available for reaction and
transport effects can be neglected.

Substrate fed into the fluid becomes dissolved immediately, unlike gases which are 
held in air bubbles before dissolving. Since it is a reasonable assumption that the rate of 
transfer of substrate from the dissolved state into the inside of the cell is rapid compared 

to the rate at which the substrate is used, the transport of substrate (i.e. glucose) is ignored 
in the model.

In this section a comprehensive model of transport of 0 2 and C 0 2 from gas (air 
bubbles) to liquid (dissolved) state will be introduced.

2 . 2 . 6 . 1  Oxygen Transfer  Rate  (CfTR) and Kia

In an aerobic fermentation, the supply of oxygen into the broth must be sufficient to 
meet the demand of the organisms. The volumetric oxygen transfer rate (OTR, g/l-hr) is 
given by the equation

OTR = Kl a -(Xq j -O,- 0 ); (2 .2 -16)
where K^a = mass transfer c o e f f i c i e n t  ( h r ' l ) .

Xq j -O, = d is so lved  oxygen in the fermentor.
X02= the pa r t ia l  fract ion o f  0 2.
0 , = saturation concentration of d isso lved 0 2 in the l i q u i d . ( g / 1 )

*la :
Equation (2.2-16) contains the term K̂ a, or volumetric absorption coefficient for
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oxygen, the same as equation (2.2-19). This term is highly variable, depending principally 
on air flow rate (aeration) into the fermentor, and agitation rate (the rate at which the 
fermentor stirrer revolves).

Many methods can be used to estimate Kja. One of the techniques usually referred 
to as the dynamic technique, estimates Kja from dissolved oxygen measurements during 
transient conditions. The technique involves errors due to the dynamic response of the 
dissolved oxygen probe which itself is affected by the resistance to the liquid film which 
covers the membrane. The dissolved oxygen may not be consistent in the broth, unless it is 
well mixed.[7]

The transient conditions may be initiated by changing the air flow rate or the stirrer
speed.

The solubility of oxygen in aqueous media is small compared with the oxygen 
requirements of a culture. The solubility is affected by the partial pressure of oxygen, 
temperature and other solutes in the medium.[7]

The partial pressure is also called oxygen tension and is related to the equilibrium 
oxygen consumption (Xg^O,) by Henry’s law

Xo2 0, = H P g ; (2 .2 -17)
where H is Henry’s constant.

Pg is the oxygen pressure in the gas phase.
The value of (Xq 2- 0 :) in pure water at 1 atmosphere can be evaluated by the 

equation (Truesdale [8])
XO2 -0 1 = 14.16 -  0.3943T + 0.007714T2- 0 . 00006467T3; (2 .2 -18)

where T is the temperature in °C.

2 . 2 . 6 . 2  Carbon-Dioxide Transfer Rate (CTR)

Carbon-dioxide transfer rate CTR (g/l-hr) can be developed in exactly the same way 
as OTR given in section 2.2.6.1. The similiar equation for carbon-dioxide transfer rate CTR 
can be written: [9]

CTR = Kd -Kl a -(XC0 2 -C, -  C); (2 .2 -19)

where Xcoj-C, is the bulk-liquid concentration of C 0 2 that is in equilibrium with the bulk
12



gas, C is the bulk-liquid C 0 2 concentration, and is the factor by which the volumetric 

absorption coefficient for C 0 2 is greater than that for 0 2. 2 is the partial fraction of
C 0 2. C, is the dissolved C 0 2 concentration.

2 . 2 . 7  R espira tory  Quotient (RQ)

RQ is an excellent indicator of the cells’ physiological condition. For example for 

the baker’s yeast fermentation.[7]
(1) RQ > 1.05 indicates ethanol production
(2) 1.05 > RQ > 0.9 indicates oxidative growth
(3) 0.9 > RQ > 0.7 indicates endogenous metabolism
(4) RQ > 0 .6  indicates ethanol utilisation

Knowing the oxygen uptake rate and carbon-dioxide evolution rate, the respiratory 
quotient may be evaluated from

RQ = CPR/OUT; (2 .2 -20)

2 . 2 . 8  Ethanol Production and Consumption

A major cause for a decline in cellular yield in a yeast fermentation is the
formation of ethanol which may occur due to oxygen limitation (Pasteur effect) and/or high 
sugar concentration (Crabtree effect).[10] To examine the ethanol (E) production and
consumption effects, the metabolism should be included by both absoiption of glucose to the 
production of alcohol (the ethanol production rate EPR (gfl-hr)) and the consumption of 
alcohol to the production of H20  ( the ethanol consumption rate ECR (g/l-hr)).

The ethanol is produced when excess substrate causes one branch of the metabolism 
to be saturated, and the branch which produces ethanol to activate (Crabtree Effect). The 
rate at which ethanol is produced depends on the level of glucose as well as on the cell 
mass. However, the presence of ethanol in the medium inhibits the further production of 
ethanol. At low concentrations, this effect is negligible, but at higher concentrations 
inhibition becomes significant. This effect can be incorporated in an overall EPR equation 

by: [1][5]

EPR = Kmax/a+E/ Ke t ) ] ' [S / ( K s + S)];  (2.2-21)
where £max = the maximum ethanol production rate per unit volume.(g/l-hr)

Kgt = a rate limiting constant for ethanol, (g/1)
E = the ethanol concentration.

Ks = Blackman’s constant



Ethanol consumption occurs when ethanol acts as a substrate, cutting out the part of 
the metabolism that acts on glucose. Thus the consumption rate depends on ethanol 
concentration, and also on oxygen as a rate-limiting substrate since oxygen consumption 
occurs in series with ethanol consumption :[1][5]

ECR = [Kp0  0 / (0+KOz) ] • [E/(Ke t +E)]; (2 .2 -22)
where Kp0  = the maximum value of  ethanol consumption rate per unit volume. 
(g /l -Hr)

Kq2 = the saturation constant for d is so lved  oxygen.
The overa l l  ethanol concentration i s  described by
dE/dt = EPR - ECR;

= t Cm a x / ( 1+E/ Ke t ) ] - [ S / ( K s+S ) ]  -

[Kpo-0/(0+Kq 2)]•[E/(Ket+E)]; (2.2-23)

In the above model (in section II—3 ) there arc two nonmeasurable state variables: 
biomass (X), substrate (S) and four measurable variables: oxygen concentration (O), 
carbon-dioxide concentration (C), ethanol concentration (E).

2 .3  The S p e c i f i c  Growth Rate ( |i.)

The specific growth rate |i (g/g-hr) is the key parameter for the description of 
biomass growth, substrate consumption and products formation. |x is time-varying and is 
influenced by many physico-chemical and biological environmental factors. The general goal 
in making a good medium is to support good growth of biomass and/or high rates of 
product synthesis such as alcohol production depending on the type of fermentation in 
progress. This does not mean that all nutrients should be supplied in great excess. For one 
thing, excessive concentrations of a nutrient can inhibit or poison cell growth. Moreover, if 
the cell grows too extensively their accumulated metabolic end product will often disrupt the 
normal biochemical processes of the cell. Consequently it is common practice to limit total 
growth by limiting the amount of one nutrient in the medium. The control of the specific
growth rate by limiting substrate concentration in the broth is often critical to a process.

[1][3]

2 .3 .1  Monod's Model

Monod’s model of cell growth can be presented by [11]

K S )  = mnax-S/(Ks + S); (2 .3 -1 )
where p. = the specific growth rate.
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Monod’s model is found to be generally the most applicable. It forms the basis for
the modelling of all enzyme-based aspects of the fermentor model used in the simulation in
this thesis because it is simple and fits the experimental results very well in most cases.

In a high substrate concentration, the specific growth rate reaches a maximum level 
beyond which further increases have no effect. This is due to saturation of enzyme activity
i.e. all the enzyme is being fully utilized, and there is no spare capacity to cope with

further increases in substrate concentration.

In a relatively low substrate concentration, the specific growth rate increases linearly 
with substrate concentration. This is because there is plenty of spare enzyme for additions 
of substrate to react with.[ll]

2 . 3 . 2  011 son’ s Model

As consideration of the metabolism demonstrates, oxygen levels in the environment
can be a growth-limiting factor, in the same way as glucose. In such cases, the
dissolved-oxygen in the liquid can be used by the cell. Thus the dissolved oxygen in the
culture medium can be considered an additional substrate and it can be shown that when
two substrates are rate-limiting in a single enzyme-controlled reaction series, then the overall 
specific growth rate is refered as the Ollson’s model, which is the product of the individual 
rates.[ll]

M-(S.O) = m„ax- [ S / ( Ks + S ) ] - [ 0 / ( K O2-K))]; ( 2 . 3 - 2 )

2 . 3 . 3  Conto is ’ Model

The specific growth rate n. of biomass production and substrate inhibition kinetics is 

also presented by a combination of Contois’ kinetics [12]
H(S,X) = Mmx-S/CKc.X+S); (2.3-3)

where
Kc = the Contois’ constant

Both biomass and substrate concentration are considered in Contois’ model. The 

biomass growth is often presumed to slow down at high biomass concentration and this has 

been experimentally observed in particular instances.
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C h apter 3  C om puter S im u latio n  o f  Ferm entation  P ro c e sse s

3.1  In troduct ion

To study the dynamics of the process and to facilitate future controller design, the 
model of the biotechnical process was simulated on a digital computer using numerical 
integration techniques. The principle of all numerical integration methods is to compute the 
system states at time (t+At) given the state at time t where At is the sampling period [25]. 
For a general state equation of the form,

At each step computations are performed using some algorithm normally based upon 
a Taylor series expansion of (3.1-1);

If At is chosen to be sufficiently small and if sufficient higher order derivatives of
0 and powers of 0 are taken, then the value 0(t+At) can be accurately found, and thus the
equation (3.1-1) can be solved iteratively. In practice an algorithm based on an
approximation to (3.1—2) must be used.

The dynamic models of a fed-batch and batch fermentation processes have been
previously described in detail in this work [Chapter 2]. A classical first order Euler
approximation and a fourth order Runge-Kutta approximation are chosen for integrating the
non-linear differential equations. The state models include the various non-linearities.

The advantages of simulating the dynamics of a non-linear system are great : e.g., 
having a virtual non-linear system allows one to try experimental control algorithms. It is 
convenient optimising controllers and improve the real system performance. Also, It is the 
basis of applying the estimation techniques.

3 .2  Euler Approximation

The Euler method is the simplest. For equation (3.1-2), only a first power of At is
considered assuming the terms in Ai1 (n > 1) are very small compared to At. This is valid
only if At «  1. The Euler method has the form,

0  = f ( 0 , u, t) ; (3.1-1)

0(t+At) = 0 ( t ) + A t-0 ( t )  + ( A t ) - 2 / 2 ! -0( t ) (3 .1 - 2 )

0 ( t + At) = 0 ( t )  + A t - f (0 ,  u, t) ; (3 .2 - 1 )
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Applying a simple Euler approximation to the process model, the 

(2.2-4), (2.2-5), (22-12), (2.2-13), (2.2-14), (2.2-15), (22-16), (22-19), 
(2.2-23), (2.3-1), (2.3-2), (2.3-3) have the following forms:

3 .2 .1  System Model

Biomass:
X(k+1) = X(k) + At-^i-X(k) -  At -D(k) -X(k);

Substrate :
S(k+1) = S(k) -  K, - At -|i.-X(k) + [At-D(k) • (Sf i -  S ( k ) )] ;

Volume of Fermenter :
V(k+1) = V(k) + At• (Fin -  Fout);
Fin = D-V(k);

Fout = 0 ; ( in  Fed-batch )

Oxygen :
0(k+l)  = O(k) + At-(OUR + OTR);
OUR = -K2- ( h -  D)-X(k);
OTR = Kl a -[Xq j-O, -  O(k)];

Carbon-Dioxide :
C(k+1) = C(k) + At•(CER + CTR);

CER = Kc 2 -|x-X(k);

CTR = Kd-K^-tXco,^, - C(k)];

Ethanol:
E(k+1) = E(k) + At-X(k)• (EPR -ECR);

EPR = [Cmax/(1 + E(k)/Ke t ) ] - [ S ( k ) / ( K s + S ( k ) ) ] ;
ECR = [Kp o -0(k)/(O(k) + K0 2 ) ] ■[E(k)/(Ke t + E ( k ) ) ] ;

3 .2 .2  The S p e c i f i c  Growth Rate p. : 

Monod’s model :

^ 0 0  = Mmax- S( k) / [ Ks + S ( k ) ]  ;

equations (22-2), 
(22- 21), (2.2- 22),

(3 .2 - 2 )

(3 .2 -3 )

(3 .2 -4 )

(3 .2 -5 )
(3 .2 -6 )
(3 .2 -7 )

(3 .2 - 8 )

(3 .2 - 9 )
(3 .2 -10)

(3 .2 -11)
(3 .2 -12)
(3 .2 -13)

(3 .2 -1 4 )
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Ollson’s model :

M-OO = Hmax-[S(k)/(Ks + S(k))]■[0(k)/(KOa + 0(k)]; (3 .2 -15)

Contois’ model :

^(k) = Mmax-S(k)/[KC-X(k) + S (k ) ]; (3 .2 -16)

These discretized equations were successfully simulated by computer. The simulation 

programme structure will be described in section 3.4. This gives an overview of the 
simulation programme implemented. This routine (Fig 3.4.1) is called periodically at times 
determined by the integration interval. An integration interval of 0.05 hours is found to be
adequate. The value of each state is printed out to a data file at periods of 10 minutes.

3 .3  The Runge-Kutta Technique

The Runge-Kutta methods attempt to obtain a more accurate approximation to
Taylor’s expansion (3.1-2), while avoiding the need for higher derivatives, by evaluating the 
function f(9, u, t) in (3.1-1) at selected points within each integration interval. The simplest 
Runge-Kutta algorithm (fourth-order) is presented here.

where

Again for a general equation (3.1-1) the formula for advancing the solution step is: 

9n+l = 0n + 1 / 6 -(K, + 2K2 + 2K3 + K 4); (3 .3 - 1 )
Assuming : a  = f(0, u), a(0o) = o^;

K, = At• f ( 6 0i a0 ) (3 .3 -2 )
K2 = At■f ( 0 o+At/2, OQ+ K1 /2 ) ;  (3 .3 - 3 )
K3 = At■f ( 0 o+At/2, OQ+ K2 / 2 ) ; (3 .3 -4 )
K4 = At• f ( 0 o+At/2, a0 +K3); (3 .3 -5 )

The Runge-Kutta algorithm does not require calculation of the higher derivatives of 
0 as is indicated in the Taylor series method. For the fermentation process model f(0, u, t) 
at various points can be calculated based on this algorithm.

3 .4  S truc tu re  o f  the Simulation Programme

The simulation programme flow-chart is shown on Fig 3.4.1. The programme is 
written using C language on PC-proturbo 386 computer. The routine (Fig 3.4.2) is called 
periodically at times determined by integration interval. This routine calls a further routine 

(deriv) which returns the values of the derivatives of the state, as given by the differential 
equations of



the model. Based on the experimental data from the pilot plant an integration interval of 

0.05 hours for simulation is found to be adequate, and the value of each state is printed 

out to a data file at periods of 10 minutes. A total run-time can be chosen in terms of 
each simulation. The flow-charts (Fig. 3.4.2. and Fig 3.4.3) gives an overview of the 
simulation programme implemented. The data is then plotted as shown in Chapter 5.

EULER START

I
Define s ta te  var iables  and parameters

I
Set Sampling Period At, Run-time, 

Integration in terva l ,  s ta te  variables

1
Set i n i t i a l  condit ions  of  s ta te  variables

i
Set simulation parameters:

D, Ks , K1, Kja , Kd , KC2, Kc , ®i*
C i . Xq2, XC02, Cmax> Kp0 , Kq 2, Ke t , Ke , 
[Xq , 1^, Kj, S f j , Currt time

i
Call i n i t i a l  conditions

i
Set d i f feren t  growth rate types

I
Simulation equations«--------------

I
END---------------—

IYes 

FINISH

Fig 3.4.1. Euler Program Flow-chart
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SIMULATION START 

1
Input Integration Interval ,  Print Period,

And Run Time

i
Set Current Time And Last Print=0, and I n i t i a l i s e  States  X

1
-------------Is Current Time >= Run Time ? - Yes

jNo
Call RUNGE-KUTTA END SIMULATION

Increment Last Print and Current Time by Integrat ion  Interval

Is Last Print and Current Time by Integrat ion  Interval

YesIs Last Print >=Print Period ? 
No

Print  S ta te s ,  
Set Last Print=0

Fig 3.4.2. Runge-Kutta Simulation Flow-chart
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RUNGE-KUTTA START

i
Set T = Current Time, X = Values of States, H = Integration Interval

I
Call DERIV (X, DX, T) to obtain derivatives DX of X at time T

I
Set vector K, = H * DX

Call DERIV (X+K,/2, DX, T+H/2) 
Set vector K2 = H * DX

Can DERIV (X+K2/2, DX, T+H/2) 
Set vector K3 = H * DX

Can DERIV (X+K3/2 , DX, T+H) 
Set vector K4 = H * DX

I
Set vector X = X + (1/6)*(K1 +2*K2+2*K3+K4) 

Return new values X of States

I
RUNGE-KUTTA END

DERIV (F, DF, TF) START 

1
Set DF(1) = F.,(F(1), TF) where F 1 is the differential 

equation describing the 1st process state F(l)

I
Set DF(2) = F 2(F(2), TF) where F 2 is the differential 

equation describing the 2nd process state F(2)

1
Set DF(N) = Fjsj(F(N), TF) where Fjvj is the differential 

equation describing the N1*1 process state F(N)

i
Return vector DF

1
DERIV (F, DF, TF)

Fig 3.4.3. A 4th-order Runge-Kutta Subroutine Flow-chart
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Chapter 4 Summary and Comments

Basically, the fermentation processes considered are multi-input multi-output, batch 
or fed-batch processes. The inner dynamics of these processes are always time-varying. It’s 
difficult to develop models taking into account the numerous factors which can influence the 
specific bacterial growth rate and the yield coefficients which characterise micro-organism 
growth.

The simulation results have demonstrated here that computer simulation can be 
successfully applied to a biological process, which is a complex non-linear system, in order 
to assess the bioreactor model’s accuracy and to facilitate controller appraisal. Although
many important system variables cannot be measured on-line directly estimation methods
based on simulation technique can be applied to solve this problem, and the basis of such 
method is to run computer models of the system in real-time.

The Euler method is of limited practical use due to its large truncation error per
step of order At2. This is exaggerated when a large step length At is used. The Euler
method would satisfy most requirements only if using small step At. But it always remains 
strongly dependent on the sample period. The selection of At is based on the simulation 
results and the experimental data from a pilot plant.

The Runge-Kutta method attempts to obtain greater accuracy then the Euler method 
but without requiring the calculation of the higher derivatives of 0 in the Taylor series. 
From the simulation results in this part of work, both of the Euler and Runge-Kutta can be 
applied to a biotechnical process while Euler method is much more simpler.

Arising from the results obtained in this part of the work a paper on computer 
simulation techniques was presented by the auther at the IECON’91 International Conference 
on Industrial Electronics, Control and Instrumentation, which was held in Kobe, Japan from 
October 28 to November 1, 1991.[52]
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Chapter 5 Simulation Results (i)

Experimental data from previous work by Comferford [54] was used for model 
parameter "tunning". This data was obtained from a baker’s yeast fermentation as follows. 
The baker’s yeast fermentation involved inputs: a yeast innoculum and the biomass growth 
medium. The innoculum was used to seed a production medium batch and incubated over 
20 hrs. The actual production batch stage was the stirred aerated fermentation process under 
the condition of dilution rate D ( for batch, D=0) and was run in the 10-litre New
Brunswick SF-116 pilot plant fermentor. The outputs of the process involved the oxygen 
and carbon-dioxide concentrations (on-line measurements) and substrate (glucose) and biomass 
concentrations (off-line measurements using the technique of dry weights for biomass and a 
sugar reducing test for levels of glucose). The experimental results provided the basis for 
validating the system model.

The dissolved 0 2 probe (New Brunswich SS 900 and D0-50 transmitter) when 
connected to its measuring instrument has a 0—  1 0 0  % output range, with 1 0 0 %
corresponding to a saturation level of 0.5 g/1. This saturation level is based on the
saturation level of dissolved 0 2 in distilled water at 30°C.[1][2]

An analyser SS206 (Manufacturer’s name) was used to monitor C 0 2 levels in the 
exhaust gas stream between 0 —  100%. For comparison with simulation values, 100% C 0 2

was taken as 0.4 g/1. The exhaust gas for C 0 2 measurement was first passed through a
drying column containing calcium chloride to remove excess moisture before entering the 
infra-red analyser.

The results of modelling and simulation of a batch fermentation process will be 
shown in this chapter.

The same initial conditions and parameter values was used for both of the Euler 
and Runge-Kutta methods. These initial conditions and parameter values were chosen to tune 
the simulation model (in each case) to the experimental data.

5.1 Euler’s method:

Fig 1 to Fig 6 show the simulation experimental results of specific growth rate 
(10.), biomass (X), substrate (S), the volume of growth culture (V), dissolved oxygen 
concentration (O) and exhaust CO2  concentration (C) under the following conditions:
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(i) Common Initial Conditions

X(0)=0.35 gA; S(0)=12.2 gA; V(0)=3.0 1; 0(0)=0.18 gA ; C(0)=0.07 gA; |i(0)=0.06 g/g-hr.

(ii) Parameters:

D=0.0; Ks=0.8; K 1 =2.0; K2=10; Kla=2.0; ^=0.4; Kc2=1.15; ^=0.5; At=0.05;
Hma^O.03; 0,=0.3; C^O.IO; Xo2=2.50; XCO2=0.0033; £max=0.15; Kpo=0.05; Kq2=0.006; 
1 ^ 71 .5 ; K^O.5; Mo=°-4; ^ = 0 .4 ;  iq=2.5; Sfi=12; Cunt= 0.0.

5.2 Runge-Kutta method:

Fig 7 to Fig 12 show the simulation results of (I, X(t), S(t), V(t), 0(t), C(t) under 
the following conditions :

(i) Common Initial Conditions :

X(0)=0.35 gA; S(0)=12.2 gA; V(0)=3.0 1; 0(0)=0.18 gA; C(0)=0.07 gA; |x(0)=0.06 g/g-hr.

(ii) Parameters:

D=0.0; Ks=2.0; K,=2.0; Kla=3.5; K^O.8 ; ^=3.0; At=0.05; Mmax=0-4; O,=0.4; C^O.l; 
XO2=0.50; Xco 2=0.0033; Cmax=0-15: ^ = 0 .0 5 ;  Ko2=0.009; ^ = 71 .5; K^O.5; Ho=0.4; 
Km=0.4; Kp2.5, Sfl=12; Currt=0.0.

It has been demonstrated here that computer simulation techniques can be applied to 
a batch fermentation process.

A model for ethanol concentration is also presented because it may be involved in 
some fed-batch and batch fermentation process.

In our pilot plant, the experimental data for a fed-batch fermentation process is not 
available at this time. The simulation model for a batch fermentation process should be 

extended to a fed-batch using the same parameters (only modifying some values of the 

parameters if the experimental data is available). Also, a dilution rate for a fed-batch 
should be given.
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(8/3) 
it

Fig 1 : The specific growth rate (p) for simulation using E u le r  method based on 
different options of p

.............. The experimental result p (g/g4ir)

________  The Monod’s model p (g/g4ir)

  The Ollson’s model p (g/g*hr)

__________ The Contois’ model p (g/g^hr)
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Fig 2 : The biomass concentration X for simulation using Euler method based on 
different options of p

  The experimental data X from pilot plant (g/1)
The simulation result X using Monod’s model (g/1)

----------- The simulation result X using Ollson’s model (g/1)

  The simulation result X using Contois’ model (g/1)
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Fig 3 : The substrate concentration S for simulation using Euler method based on 
different options of p

  The experimental data S from pilot plant (g/1)

_______  The simulation result S using Monod’s model (g/1)

----------- The simulation result S using Ollson’s model (g/1)

______ The simulation result S using Contois’ model (g/1)
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Fig 4 : Dissolved oxygen concentration O for simulation using Euler method based 
on different options of p

___________ The experimental data O from pilot plant (% )

 ,   The simulation result O using Model’s model (% )
\

...................  The simulation result O using Ollson’s model (% )

---------------  The simulation result O using Contois’ model (% )
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Fig 5 : Exhaust C02 concentration C for simulation using Euler method based on 
different options of p

The experimental data C from pilot plant (% age)

------------  The simulation result C using Monod’s model (% age)

............. The simulation result C using Ollson’s model (%age)

___________ The simulation result C using Contois’ model (%age)
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Fig 6 : The fermenter volume of the growth culture V using Euler method based
on different options of p
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Fig 7 : The specific growth rate (p) for simulation using Runge-Kutta method based 
on different options of p

................. The experimental result p (g/g.hr)

_________  The Monod’s model p (g/g.hr)

-------------  The Ollson’s model p (g/g.hr)

  The Contois’ model p (g/g.hr)
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Fig 8 : The biomass concentration X for simulation using Runge-Kutta 
method based on different options of p

  The experimental data X from pilot plant (g/1)

_________ The simulation result X using Contois’ model (g/1)

----------- The simulation result X using Monod’s model (g/1)

.■ __ The simulation result X using Ollson’s model (g/1)
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Fig 9 : The substrate concentration S for simulation using Runge-Kutta method 
based on different options of p

.............. The experimental data S from pilot plant (g/1)

________  The simulation result S using Monod’s model (g/1)

------------- The simulation result S using Ollson’s model (g/1)

 __ ____  The simulation result S using Contois’ model (g/1)
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Fig 10 : Dissolved oxygen concentration 0  for simulation using Runge-Kutta method 
based on different options of p

________  The experimental data 0  from pilot plant (% )

 __   The simulation result O using Contois’ model (% )

.............  The simulation result 0  using Ollson’s model (% )

------------- The simulation result 0  using Monod’s model (% )
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Fig 11 : Exhaust C02 concentration C for simulation using Runge-Kutta 
method based on different options of }i

 __ _____ The experimental data C from pilot plant (% >

- The simulation result C using Monod’s model (% )

. The simulation result C using Ollson’s model (% )

____________The simulation result C using Contois’ model (% )
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Fig 12 : The fermenter volume of the growth culture V using 
Runge-Kutta method based on different options of p
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P A R T  m S T A T E  E S T IM A T IO N  T E C H N IQ U E S  F O R  
T H E  F E R M E N T A T IO N  P R O C E S S E S

C h apter 1 In troduction

The success of a fermentation process depends on the control of specific 
environmental conditions for cell mass or biomass, substrate and product formation. It is 
necessary to obtain reliable on-line data for all the variables involved for the purpose of 
control. The biomass and substrate concentrations cannot be measured on-line because 
suitable biochemical sensors are not available for on-line measurements. It is always much 
more difficult to control these variables without relevant measurements. In this part of the 
thesis the application of estimation techniques to the solution of the above problem is 
described.

Although the linear estimation problem with continuous time measurements has been 

solved many years ago, very few exact finite dimensional filters and observers have been 
developed for non-linear problems. It is necessary to develop new estimation methods 
because the classical estimation methods do not prove very efficient in overcoming these 
basic difficulties in non-linear systems such as the fermentation processes.

In this work, several different algorithms are applied to fed-batch and batch 
fermentation processes using on-line real-time information and off-line data, for the purposes 
of estimating (non-linear) system states, such as biomass and substrate, and uncertain model 
parameters. After slight modification of the piirameter estimation the algorithm worked with 
experimental data. The results of several experiments are presented. These results 
demonstrate that estimation techniques can be successfully applied to a complex biological 
process.

The basis of many estimation methods is to run the simulation models of the 
processes. The basic dynamical model of a bioreactor has been presented in PART II- 
Chapter 2.
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C h apter 2  N o n -A d ap tiv e S tate  E stim atio n

2 .1  In troduct ion

Assuming one of state variables (e.g., biomass and substrate in a fermentation 

process) and the yield coefficients are known, a simple algorithm such as non-adaptive state 
estimation can be used to estimate another state variable. These algorithms have the 
advantage of converging asymptotically in the noise-free case, but their speed of 
convergence completely depends on the experimental conditions and cannot be assigned 
through appropriate design parameter choices. (Based on the woik of Dochain [3])

Based on this algorithm and the non-linear structure of the system, some estimation 

results of state variables are presented.

2 .2  Non-Adaptive Algorithm

This algorithm was applied assuming one of state variables, biomass or substrate, is 
measured on-line and the yield coefficient K1 (= 1/Yx;s) is known, and was used to 

estimate another state variable.

2 .2 .1  Estimate  S u bs tra te  S ( t )

Assuming:

(1) Biomass (X) can be measured on-line,
(2) The yield coefficient K, is known,
Estimate substrate S(t).
Define :

K =K,-X =l/Yx : s X ;
Combine (2.2.1-1) with H-(2.2-2), U-(22-A), H-(2.3-l), that is, 

dX(t )/dt = [\i -  D ( t )]  • X(t); 
d S ( t ) /d t  = D(t) • [Sf i  ( t ) -  S ( t ) ] -  Kr n-X(t) ;

M' = l%ax'S/ (Kg + S);
(Note: the equations in part II used in this part contained ’II- * )
Using them we can get:

d[K(t) + S ( t ) ] / d t  = D ( t ) •[ Sf i ( t )  -  (K(t) + S ( t ) ) ] ;

( 2 . 2 . 1 - 1 )

II—(2 .2 - 2 )  
II—(2 .2—4) 
II—(2 .3 -1 )

(2 . 2 . 1 - 2 )
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Assuming

Z(t) is an auxiliary state variable and is defined by the following equation 

dZ(t) /d t  = D ( t ) • [Sf i ( t )  -  Z ( t ) ] ;  ( 2 .2 .1 - 3 )
with 0^ Z(t) < °° , arbitrary-function,
Comparing equations (2.2.1-2) with (2.2.1-3), Obviously we have 

Z(t)  = K(t) + S ( t )
= K,-X + S ( t ) ; ( 2 .2 .1 —4)

From (22.1-4) we get:
S ( t )  = Z(t)  -  K,-X(t) ;  ( 2 .2 .1 - 5 )

A simple discrete time version of this algorithm has been derived by using a first order 

Euler approximation for dZ/dL
Z(k) = Z (k- l )  + A t -D ( k - l )■[ S f j ( k - l )  -  Z ( k - l ) ]; ( 2 .2 .1 - 6 )
S(k) = Z(k) -  K,-X(k) ; ( 2 .2 .1 - 7 )

Where k is the time index and T is the sampling period.

In these equations, the initial values of all the parameters were determined by the 
simulation We can get the solution for Z(t) from equation (2.2.1-3). The estimated value of 
S(t) can be calculated from (2.2.1-5) in conjunction with initial assumptions (1) and (2). 
The result was presented in Chapter 8 (Fig 3, 8 , 12)

Using Monod’s model (in part II) (equation H-(2.3-l)), Ollson’s model (equation 
H-{2.3-2)), Contois’ model ( equation n-(2.3-3)) respectively, different results of estimation 

of substrate S(t) were obtained.

2 .2 .2  Est imate  Biomass X (t) [3]

Assuming:

(1) Substrate S can be measured on-line,
(2) The yield coefficient K, is known,

The following equation is obtained using the same technique as above:
Z(t)  = K,-X(t) + S ( t )  ; ( 2 .2 .1 —4)

From (22.1—4), on-line estimation of biomass (X) can also be computed as follows:
X(t) = l / K , - [  Z(t )  -  S ( t )  ] ; (2 .2 .2 - 1 )

Using a first order Euler approximation and (22.1-6), we get
X(t) = l /K r [Z(k) -  S(k) ] ; (2 .2 .2 - 2 )
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The results of on-line estimated biomass based on Monod’s model, Ollson’s model and 
Contois’s model are presented in Chapter 8 (Fig 2, 6 , 10) respectively.

2 . 2 . 3  Est imate  D is so lved  Oxygen Concentration  O(t)

Assuming:

(1) Biomass X(t) can be measured on-line.
(2) Yield coefficient K2 (=l/Yx;o) and Kja are known.
Considering the following equations :

dÔ/dt = OTR + OUR ;
= Kia-CXoj-O, -  Ô) -  K2 -dX/dt; (2 .2 .3 - 1 )

dX/dt = [\l -  D ( t ) ] -X(t) ; II—(2 .2—4)

M- = M m a x - S ( t ) / [ K s+ S ( t ) ] ;  I I - ( 2 . 3 - l )
K(t) = K2 -X(t);  ( 2 .2 .1 - 1 )

Using the same non-adaptive algorithm as above:
d[K(t)+Ô(t )] /d t = Kl a -[XO2 -0, -  (K(t)+Ô(t))]  + Kl a -K2 -X(t); (2.2.3-1)
Let the auxiliary state variable Z(t) be defined by the following equations:

dZ(t) /d t  = Kl a -[XO2 - 0 , -  Z ( t ) ]  + K l a -K2 -X(t) ; (2.2.3-2)
Comparing (2.2.3-1) with (2.2.3-2), gives:

Z(t) = K2 -X(t) + 0 ( t ) ; (2.2.3-3)
From (22.3-3): the on-line estimated dissolved oxygen concentration 0(t) can be computed
as follows:

0 ( t )  = Z(t)  -  K2 -X(t); (2.2.3—4)
Using a first Euler approximation and (22.1-6), we get

0(k) = Z(k) -  K2 -X(k); (2.2.3-5)
The estimated 0(t) based on Monod’s model, Ollson’s model and Contois’ model are
presented in Chapter 8 (Fig 13, 14, 15) respectively.

2 .2 .4  Error Dynamics

The validity of the estimation algorithms is demonstrated by the extensive set of 
results comparing the outcome of the estimation algorithms with the output of the 
simulation.

Furthermore, in the case of oxygen estimation, the actual error would in practice be 
available since on-line oxygen measurements are common This error signal could then be 
employed in an adaptive manner to improve the estimation of either biomass or substrate 
concentrations.
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2 . 2 . 5  Comments

Similar algorithms can also be developed to estimate different state variables, such as 
synthesis product concentration, exhaust carbon-dioxide concentration, ethanol concentration. 

These algorithms have some drawbacks:

(1) Its speed of convergence is completely determined by the experimental conditions 
(through the dilution rate D(t)).

From equations (1.1-1), (1.1—3), (1.1—21), (22.1—1) and (22.1—3) and (22.1-4), the 
following error equation can be obtained:

dE/dt = -  D ( t ) - E ( t ) ; ( 2 .2 .5 - 1 )
Clearly (2.2.1-3), (2.2.1—4) is stable (since D(t) > 0). (Anderson 1977).

(2) Its lack of robustness: for example in section 2.2.2, if the available measurements of 
S(t) are noisy (Sm(t) = S(t) + e(t)), the estimate X(t) is directly corrupted by the noise

e(t):
X(t) =1/K1•[ Z( t ) -  S ( t )  -  e ( t )  ]; ( 2 .2 .5 - 1 )

The noise influence could of course be attenuated by filtering the data of S(t) but this 
would further slow down the estimation algorithm’s dynamics.[3]
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Chapter 3 Adaptive Observer

3.1 In troduct ion

If a priori knowledge of the parameters is not available, such as the yield 
coefficients or growth rate |x, some estimation algorithm, like adaptive observers, can be 
used. This algorithm was obtained from the work of Dochain (1986)[13] and Goodwin et 
al[14].

3 .2  S truc ture  o f  Algorithm

The adaptive observer algorithm can be described as follows:

3 .2 .1  Est imate  Substra te  S ( t )

Assuming:

(1) Biomass X(t) can be measured on-line,
(2) The system parameters (|x, K, ,etc) are unknown.
Define the auxiliary time-varying parameters:

<p,(t) = S ( t )  -  |x(t);
<p2 ( t )  = K, -n ( t ) ;

Then the following state-space representation is equivalent to (1.1—1), (1.1—3):

dX(t )/dt = -  <p1 ( t ) -X ( t )  + X(t) S ( t )  -  D( t )  X(t) ; ( 3 .2 .1 - 3 )
dS ( t ) /d t  = -  <p2 ( t )  X(t)  + D(t) *Sf i ( t ) -  D (t ) *S ( t ) ; ( 3 .2 .1 —4)

From these equations, the following adaptive observer can be derived to estimate on-line 
the substrate concentration S(t):

dX(t)/dt = -  9 , ( t ) -X ( t )  + X ( t ) - S ( t )  -  D(t)*X(t)
+ C ,- [X (t )  -  X ( t ) ]; ( 3 .2 .1 - 5 )

d S (t ) /d t  = -  9 2 ( t ) - X ( t )  -  D ( t ) -S ( t )  + D ( t ) *Sf i ( t )

+ [C2 + C3 - X ( t ) - \ 2 ( t )  ] [X ( t )  -  X ( t ) ] ( 3 .2 .1 - 6 )

(3 .2 .1 - 1 )  
(3 .2 .1 - 2 )
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d X ( t ) / d t  = -  D ( t ) - X ( t )  + X ( t ) ; 

d<p1( t ) / d t  = -  C3 - X ( t ) - [ X ( t )  -  X ( t )  ];  

d<p2( t ) / d t  = -  C g - X ( t )  -X-(t) • [ X ( t ) -  X ( t ) ]

(3.2.1-7) 
(3.2.1-8) 
(3.2.1-9)

where C1? C2, C3 are the design parameters and X(t) is an auxiliary filtered value of X(t).
9 , ( 0  and cp2(t) are the auxiliary time-varying parameters. X(t), (p, (t) and <p2 (t) are the
solutions from (3.2.1-5, 6,7,8,9). Simulation results of estimation of substrate S(t) have been 
carried out by using the models II-(2.2-3), II-(2.2-4) under the following initial conditions: 
Sfi = 10.0; D = 0.2; X(0) = 0.35; X(0) = 2.63; S(0) = 0.35.

3 .2 .2  Est imate  Biomass X(t)

Assuming:

(1) Substrate S(t) can be measured on-line,
(2) The system parameters (|i, K,, etc.) are unknown.
Using the above adaptive algorithm (equations (3.2.1— 3-9) the biomass X(t) can be
estimated.

In [13] Dochain claimed that C ,, C2 and C3 could be tuned by simulation.
Unsuccessful attempts were made to tune these designed parameters. Further investigation 
would be necessary to ascertain the validity of the algorithm.
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Chapter 4 Non-linear Observer

4 .1  In troduct ion

For a non-linear system, like a fermentation process, a non-linear observer can be 
applied to state estimation if only one of the states must be estimated and others can be 
measured on-line. In this chapter, the theorem in section 4.2 will be used to estimate the 
state vectors of the models H-(2.2-3), II-<2.2—4), of the fermentation process.

4 .2  Observation Of A Non-Linear System

If a system is observable, for each pair of initial states 9,(0), 02 (O), we can find 
an input variable'P(t) such that 0 , ,  0 2, are distinguishable by observations of the
corresponding output variables 7, (t) and Y2 (t). There are some works dealing with 
theoretical aspects of observers for non-linear systems and a theorem about the observability 
of non-linear systems is firstly presented. The theorem presented by Gallegos [15]is an 
extension of a lemma given by Williamson [16] and deals with the observability of a 
non-linear system.

Theozem

A necessary and sufficient condition for the system

m
d0/dt = f (0) + I  gi (0) ; Y = ( ¥ , , . .  .'Fm)T e Rm (4 .2 -1 )

i=l

Y = h(0) ; 0e Rn ; Y e R; (4 .2 -2 )
to be completely, uniformly, locally, observable is that there exists a system of local 
coordinates on Rn such that (4.2-1) is of the form

d0 /d t =

0 2 g i , (©,)
» m g i 2 ( 0 i- 0 2)
» + I 9

®n i=l »
F(0) § in (® i * ® 2 ’ ■•• , 0n)

■*i (4 .2 -3 )

Y = 0, (4 .2 -4 )
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From (4.2-3) and (4.2—4), it is possible to estimate the state vector through
successive derivatives of the output and input variables. [15][16],

4 .3  Summary Of Non-Linear Observer

Based on above theorem, equations U-(22—3), II—(2.2—4), have the form given 

by (4.2—3) and (4.2-4) with,

Ji-X - X 0

f ( 9 )  = g ^ e )  = g 2( 0 )  =

- K , n X t , - s i . 1 .

(4 .3 -1 )

and ¥ , = 0 ,  *P2 =D-Sj. The system is completely, uniformly, locally observable because 
it is of the form given by equations (4.2-3), (4.2—4),. The fermentation model may 

therefore be written as:

V
—

Z 2 '
+

Si i (z i )

•▼l +

g 2 1 ( Z 1 )

z 2 ■ F(z) gl 2 ( Z 1 1Z 2 ̂ .g2 2 ( z l t z 2).

■W ■1 9 >

Y = z,
wi th

z,  = X ; 
z 2 = )jX ;

§ 1  i ( z !) = ~ 2 1 ,

(4 .3 -2 )

(4 .3 -3 )

Si  2 i i Z 2) — z  2 ' (- - 2) ;
Mui-Zi

„ ( z , )  = 0  ;

g 22(Z l , z 2) =
(mn-z, -  z 2 ) 2

Mm'^s'z i

z 2 (Mm’z i -  z 2 ) 2 -K,
F(z)  = ------  - [ z 2 -------------------------------------];
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From equation (4.3-2), (4.3-3), it is possible to estimate the state vector since it follows:
z 2 = z , -  g , , ( z , )  • D = y  + D- Y  ; (4 .3 -4 )

Assuming:

Biomass X can be measured on-line.

Using the above way, it will only be necessary to estimate the substrate concentration S(t). 
The following estimate of substrate S(t) can be obtained:

K s z 2
S= ------------------------- ; (4 .3 - 5 )

Mmz , -  z 2

From equation (4.3-4), it can be observed that the derivative of the process output is 
required. It is possible to approximate the output derivative if we use:

Y( t )  -  y (t -T)

Y -  --------------------------  ; (4 .3 - 6 )
T

with T small, compared with the process dynamics. From equations (4.3-4), (4.3-5), 
(4.3-6), we have

Ks / T - [ 7 ( t )  -  Y( t-T) + T -D ( t ) -y ( t ) ]
S ( t )  = -----------------------------------------------------------------------  ; ( 4 .3 - 7 )

Mm-rct) -  i / T - | T ( t ) -  y(t -T) + T - D ( t ) - y ( t ) ]

Equation (4.3-7) in discrete form becomes:

Ks-a ' (yk -  yk- 1 + T-D-yk)
S(k) = ----------------------------------------------------------------  ; (4 .3 -8 )

Mm-̂ k -  « - ( y k -  yk_i + T-Dk -yk )

where a  = 1 /T.

The estimation result of substrate concentration has been shown on Fig 21 (Chapter

8 ).
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Chapter 5 Extended Kalman Filter

5 .1  In troduction

Kalman and Bucy solved the linear estimation problem with continuous time 
measurements in 1961. Despite a quarter-century of intensive research, very few exact finite 
dimensional filters have been discovered for non-linear problems. Such filters will exist only
in certain special cases. In this chapter, the extended Kalman filter was applied.

In designing an Extended Kalman Filter (EKF), simulation techniques can be used to 
select suitable process model and to test the performance of the EKF. Compared to
experimental tests the time effort is remarkably reduced. In addition the influence of
sampling interval, of measurement noise and of model errors can be examined by 
simulation.

In what follows, an iterative solution to the non-linear model of a fed-batch 
fermentation process is reported using a developed Extended Kalman Filter based on some 
information available in real-time, such as the measurements of oxygen concentration, carbon 
dioxide concentration. For simulations of the EKF behaviour, the real process was replaced 
by a dynamic nonlinear model. Simulation results for EKF with and without experimental 
data are presented.

5 .2  D escr ip t ion  Of Extended Kalman F i l t e r  [27][29]

Let us consider continuous nonlinear systems of the form
0 ( t )  = f (0,  u, t)  + G(t )-w(t )  ; 

with measurements at discrete times k given by
Z(k) = h [ 0 ( k ) , k] + u(k)

Jacobians :

F ( 0 , t )  = 3 f (0,  u, t ) /50 ;
H(0) = 3h(0,  k) /90;

In the model (5.2-1) and (5.2-2), 
mean white noise with covariance

E[co(t)co(t)T] = Q ; (5 .2 -5 )

(5 .2 -3 )
(5-2—4)

the co(t) and v(t) represent uncorrelated zero

(5 .2 -1 )

( 5 .2 - 2 )
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and

where

Eh)( t )v( t )T]  = R ; (5 .2 -6 )

Q = the 2 x 2 positive definite state noise covariance.
R = the 1 x 1 positive definite state observation noise covariance,

where <o(t) ~ (0, Q), u(k) ~ (0, R) are white noise processes uncorrelated with each other
and with 0(0) ~ (0O, P0). For simplicity the process noise matrix G(t) is assumed to be
independent of 0(t). 0(t) is a state vector, f and G are non-linear functions.

Since the state vector 0(t) is unmeasurable on-line and in the presence of state and 
observation noise (or model inacuracies ) the question is how to find an on-line estimation 
algorithm based on on-line available measurements of oxygen and carbon dioxide. The 
extended Kalman filter application will be presented as a technique for optimal on-line 
estimation of state variables based on a model of the process.

Initialization:
P(0) = P0 , 0.(0)= 0O ; (5 .2 - 7 )

where 0 (0 ) is initial estimation. 0O is initial value.

Time update:

estimate: e = f ( 0 ,  u,  t)  ; ( 5 .2 -8 )
where

0  i s  updated est imat ion,  
error covariance :

P = F ( 0 , t ) -P  + P •FT( 0, t)  + GQGT * (5 .2 -9 )

This equation represents an approximate, computationally feasible time update for the 
estimate and error covariance. The estimate simply propagates according to the non-linear 
dynamics, and the error covariance propagates like that of a linear system with plant matrix 
F(0, t). Note that Jacobian F is evaluated for each t at the current estimate, which is 
provided by (5.2-8), so that there is coupling between (5.2-8) and (52—9). To eliminate 
this coupling it is possible to introduce a further approximation and solve not (5.2-9) but 

instead

P(t) = F(0(tk), t)-P(tk) + P(t)FT[0(tk), t] + G(t)QGT(t); (5.2-10)

t]c< t
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In this equation, the Jacobian F is evaluated once using the estimate 0 ^ ) after updating at 
^ to include Z(k). This is used as the plant matrix for the time propagation over the entire 

interval until the next measurement time t^,

Measurement update;

Kalman gain:
Kk = E ( t k )-HT(0k ) . [ H ( 0 k ) - E ( t k )-HT(0£)  + R ] - l  ; ( 5 . 2 - 1 1 )

P ( t k ) = [I -  Kk -H(0k ) ] - P ( t k ) ; ( 5 . 2 - 1 2 )

estimate:

0k = 0k + Kk -[Zk-  h(0¿, k) ]; (5 .2 -13 )
These equations represent an approximate, computationally feasible linear measurement update 
for the estimate and the error covariance. The residual is computed using the nonlinear 
measurement function h evaluated at the previous estimate 0¿. The error covariance is found 
using the Jacobian matrix HCÔ ).

5 .3  A pp l ica t ion  Of The Extended Kalman F i l t e r

For on-line estimation of the generally nonmeasurable biomass X(t) and substrate 
S(t) in fed-batch fermentation processes, an extended Kalman filter was chosen. A number 
of alternative approaches have been developed and described below. The results of estimated
biomass and substrate concentrations have been obtained with simulation or experimental
data.

Problem Formulation

Assume the biomass and substrate concentrations and the specific growth rate for a 
fed-batch fermentation process have been modelled by the following stochastic non-linear 
differential equations :

d X ( t ) / d t  = (n—D ) - X ( t )  + (0,(1)  ; ( 5 . 3 - 1 )

d S ( t ) / d t  =-K, - |i . -X(t) + D - ( S f i - S ( t ) )  + co2( t ) ; ( 5 . 3 - 2 )

H = h n a x - S ( t ) / [ K s + S ( t ) ] ; ( 5 . 3 - 3 )

where co(t) = (co n (t), co2(t))T is the state noise.
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5 .3 .1  System Equations
Based on equation (5 2 -1 ), the system equations (5.3-1), (5.3-2), (5.3—3) arc written 

as follows:

6 ( t )  = f ( 9 , | i , t )  + to(t)  ; ( 5 . 3 . 1 - 1 )
where

9(t) is the 2 x 1 state vector, where 0 , (t) is biomass X(t), 9 2(t) is substrate S(t). 

f(9,|X,t) is the 2 x 1 function, where 

F , ( 9 ( t ) )  = Hfflax- X ( t ) S ( t ) / [ K s+ S ( t ) ] -  D- X( t )  ; ( 5 . 3 . 1 - 2 )

F 2( 9 ( t ) )  =-Mmax-K1- X ( t ) - S ( t ) / [ K s+ S ( t ) ] +  D - [ S f i - S ( t ) ]  ; ( 5 . 3 . 1 - 3 )

5 . 3 . 2  Measurement Equations

In the fed-batch fermentation process, a linear function of biomass and substrate 

concentrations in conjunction with the on-line oxygen and carbon-dioxide measurements can 

be developed with the aid of simulation techniques :

Z( 9 )  = H - 0 ( t ) +  u ( t ) ; ( 5 . 3 . 2 - 1 )

H is 2 x 2 observation matrix, which can be obtained heuristically by simulation 

from the relationships between experimental data o f biomass and substrate concentrations, 

and on-line measurements of oxygen and carbon-dioxide concentrations.

H =
* x i KS, 0 .5 0 . 2 2

kX2 kS2- . 0 . 4 0 . 1 2

( 5 . 3 . 2 - 2 )

Z(9) is 2 x 1 output; evolved oxygen and carbon dioxide concentrations.

KX1, Kg, are the observation yield coefficients o f carbon dioxide measurement.

KX2, KS 2  are the observations yield coefficients o f oxygen measurement.

In these equations, other nomenclature o f alphabet are the same as PART n.

The initial state of the model is assumed to be a normally distributed stochastic 

variable with mean

E [ ê ( 0 ) ]  = 9 ( 0 )  ; ( 5 . 3 . 2 - 5 )

and covariance

E[ ( 9 ( 0 )  -  9 ( 0 ) ) • ( 9 ( 0 )  -  9 ( 0 ) ) T ]= Eo ; ( 5 . 3 . 2 - 6 )
u(t) is assumed to have zero mean and to satisfy

E [ u ( t ) u ( t ) T] = R( t )  » ( 5 . 3 . 2 - 7 )

5 .4  Siumary o f  S truc ture  o f  Algorithm

Before going to the details of the derivation of the extended Kalman filter algorithm, 

it’s worthwhile to understand the structure of the algorithm. The fed-batch fermentation 

process model is non-linear and in continuous time form. It needs to be in linearised



discrete-time form for use with EKF. The flow chart of the EKF algorithm will be shown 

in section 5.4.5.

5 .4 .1  L in e a r i sa t io n  And D i s c r e t i s a t i o n

Applying simple Euler approximation to the continuous models (5.3.1—1), (5.32-1), 
we can derive the following discrete non-linear stochasic model of biomass and substrate 

consumption for the fed-batch fermentation process:
0(k+l) = g (0 (k ) ,  T) + < D ( k )  ; ( 5 .4 .1 - 1 )

Z(k) = H-0(k) + v(k) ; ( 5 .4 .1 - 2 )
where

E[0 ( 0 )]  = 0 ( 0 ) ;
E [ (0(0) -  0 (0 ) (0 (0 )  -  0(O)T ] = Po ;
<rr9M), T) = 0(0) + T-F(0(O)); ( 5 .4 .1 - 3 )

..npling time, g is the function of the system model in discrete form, 0  and 0

are updated and previous estimation repectively, 0 (k/k) is the prediction estimate at time k,
and other values are in models (5.3.1—1), (5.3.2—2). The extended Kalman filter equations
for discrete non-linear stochastic model (5.4.1-1) can be written as follows 
0 (k+1/k+1) = 0(k+l/k) + K(k+1)• [Z(k+1) -  H-0(k+l/k)] ( 5 .4 .1 - 4 )

0(k+l/k ) = g ( 0 ( k / k ) , T ) ;
For system models (5.3.1-1)

0 ( t ) = F ( 0 ( t ) )  ;
then, in discrete time with sample interval T,

A0(k+1) = <D(T)-A0(k) ;
where O is the transition matrix for state vector 0 .
Note that if 0(T) is approximated by the truncated series 0(T)= I + J-T, where I is 2 x 2 
identity matrix, this is equivalent to the Euler solution of the original equations. The 
Kalman gain and error covariance are decribed as follows:

K(k+1) = E*(k+1)-H-[H-P*(k+1)-HT + R ] _ 1  ; ( 5 .4 .1 - 6 )
E*(k+1)= <&(k)-E(k)-<DT(k) + Q ; (5 .4 .1 - 7 )
E(k) = (1 -  K(k)-H)•E*(k) ;

where
0 (k+l/k+l)  = the 2 x 2  optimal s ta te  est imation at time k+1 .
0 (k+l/k) = the 2 x 1  s ta te  estimate at time k+ 1  based on est imate  0 (k/k)

at time k only (p red ic t ion ) .
Z(k+1) = the 2 x 2  output ( observation)  vector at time k+1.

H = the 2 x 2  observation matrix .
K(k+1) = the 2 x 1  optimal Kalman matrix gain at time k+1.
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K(k+l)[Z(k+l) -  H0(k+l/k)]
= the s o -ca l led  innovation sequence(correct ion) .

P(k) = the 2 x 2  p o s i t iv e  d e f in i t e  symmetric error f i l t e r i n g  
covariance matrix.

= E [( (0 (k )  -  0 (k /k ) ) • ( (0(k) -  0 ( k /k ) ) T] ; ( 5 .4 .1 - 8 )
P*(k+1) = the 2 x 2  p o s i t iv e  d e f i n i t e  symmetric error pred ic t ion  

covariance matrix:

= E[(0(k+1) -  0 (k + l /k ) ) (0 (k + l )  -  0 ( k + l /k ) ) T ]; ( 5 .4 .1 - 9 )
<D(k) = the 2 x 2  t rans i t ion  matrix o f  l in ea r is ed  perturbat ion model

evaluated at time k for est imate  0 (k /k) .  
g(0(k /k) ,T)=  the function from equations ( 5 . 4 . 1 - 1 ) ,  ( 5 . 4 . 1 - 2 ) ,  ( 5 .4 .1 - 3 )  
The f " on matrix 0(k) can be obtained by l in e a r i s in g  of  non-l inear

madels equations ( 5 . 4 . 1 - 1 ) ,  ( 5 .4 .1 —2))  around est imate  0(k) .

0(k+l) = 0(k) + T-F(0(k) )
= [I + T -J i 0 (k )]-A0(k) + co(k) ; (5 .4 .1 -1 0 )

J ! ©(k) = the Jacobian of f ( equations (5.3.1-1), (5.3.1-2), (5.3.1-3), (5.32-1)) 
evaluated for estimate 0 (k).

A0(k) = [0(k) -  0 ( k ) ] i s  the 2 x 1  s ta te  perturbat ion vector.
The matrix <D(k) can be described as follows

<D(k) = I + T* J 1 0 (k) ; (5 .4 .1 -1 1 )

5 .4 .2  T Ufan Matrix

Considering a fed-batch fermentation process model ((5.3.1-1), (5.3.1—2), (5.3.1—3), 
(5.32—1)). The Jacobian J 10(k) matrix can be evaluated as follows:

S F J O it ) ]

9 0 , ( 1 )  0 ( k / k )

Mmax'S(k/ k)

a F J X d ) ,  S ( t ) ] 

a x ( t ) 0 ( k / k )

Ks + S(k/k)
-  D ( 5 .4 .2 - 1 )

9 F , [ 0 ( t ) ]  

a o 2 ( t )  0 ( t )

Mmax'Ks -X(k/k)

(Ks+ S(k/k))

9F, [ X ( t ) , S ( t ) ]

as(t) 0 (k/k)

( 5 . 4 . 2 - 2 )
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SF2[ 0 ( t ) ] 3F2 [X(t ) ,  S ( t ) ]
*21 = 90, |0(k/k)

K,-hnax-S(k/k)
(5 .4 .2 -3 )

Ks + S(k/k)

3F 2 [ 0 ( t )] dF2 [X(t ) ,  S ( t )]

30 2(t) 0(k/k)
KrMmax-Ks-Xik/k)

3S(t) 10(k/k)

-  D ; ( 5 . 4 . 2 - 4 )
Ks + S(k/k)

5 . 4 . 3  I n i t i a l  Conditions

The initial conditions 0,(0), 0 2 (O) of the process are assumed to be normally 
distributed with co-variance Eo. which was presented in (5.32-6 ).

where
0 (0 ) = mean of initial process state vector.
P(0) = initial value of estimate error covariance matrix.

determined by simulation. The developed filter worked satisfactory on the fed-batch process 
after slight modification of the parameter estimation procedure. The simulation data and 
experimental data are separately used in the EKF algorithm for obtaining the estimation 
results.

5 . 4 . 4  Error Dynamics

The comparison of predicted values and measurements leads to an estimated error

The error is minimised by an internal feedback loop with Kalman gain K(k+1). 
(equation (5.4.1-6))

5 . 4 . 5  EKF Algorithm Flowchart

Favourable initial values of the EKF variables for the on-line estimation were

e(k+l)  = 0 (k+l) -  0 (k+l) ; ( 5 .4 .4 - 1 )

The on-line optimal state estiamtion based on the EKF technique can be represented 
as follows:



A s s u m e :
0 (0 / 0 ) = 0 (0 ) 
P.i.0) f  Q___

Compute Jacobi 
J 1 1 . J 1 2 . J 2

an matrix: 
, J 2 2 .

Compute matri 
‘i’(k 1 - l - i - -

x 0 ( k ) :
r -J io n o

Compute the value of  matrix P*(k+1): 
P*(k+1) = 0(k)-E(k) 0T(k) + Q

Compute value o f  matrix K(k+1):
K(k+1)=P*(k+l) -H-[H-E*(k+1)-H'+ R] " 1

Evaluate 0(k+l/k) (predict ion):  
0(k+l/k) = g ( 0 ( k / k ) , T)

f o r  g i v e n  e s t i m a t e O f k )

Compute optimal est imate 0(k+l /k+l) :  
0(k+l/k+l)=0(k+l/k)+K(k+l) • [Z(k+1)- H-0(k+l/k)]  

for given 0 (k+l/k)  and output
cu r r e n t ly m e.asured .Z ik±l )

Evaluate value o f  matrix E(k+1) 
E(k+1) = [ I -  K(k+1)-H]-E*(k+1)

k = c +  1
Ye a , 9

If ^ I T  9
No

t

Stop

Rg 5.4J EKF Algorithm Flowchart

5 .5  Experimental R esu l t s
With the algorithm of the described extended Kalman filter parameter and state 

estimations were carried out for a fed-batch and a batch fermentation processes.

The following identified model parameters which refer to a laboratory scale
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fermentor in a pilot plant have been used.

Common i n i t i a l  Conditions  :
X(0) = 0.35 g/1 ; S(0) = 1.0 g/1 ;(for a fed-batch); S(0)=12.2 g/1 (for a batch)

The initial condition of filter covariance matrix 

P(0) = 0 . 0 1  0  
0 0.01

R and Q are supposed to be uncorrelated zero mean white noise covariances. The 
choise of the different covariance matrices (i.e. P, Q, R ) is one of the most difficult task 
of the implementation of EKF. They can be approximately set from examination of
previous runs data but they have to be considered as important tuning parameters affecting 
the filter covariance. After tests on simulated processes it appeared that precautions have to 
be taken to deal with numerical information losses. It is especially important to verify that 
the P matrix is keeping its symmetry. These initial values of covariances can be determined 
empirically by simulations and experiments, which are based on the experimental samples of 
biomass and substrate concentrations.

Parameters  ;

Ks = 2.0; At = 0.05; i^ax = 0.4; Sfi = 12; Currt = 0.0; D = 0.2;
The on-line estimation results of biomass and substrate have been shown in Chapter 8 

(Fig 16, 17) using the data from simulation results.
The on-line estimation results of biomass and substrate using experimental data are 

also presented in Chapter 8 (Fig 18, 19, 20).

5 . 6  Conclusion

It has been successfully demonstrated that the states of a complex biotechnical
process can be estimated on-line by extended Kalman filter methods. The observability of 
the process must be carefully taken into consideration to avoid estimation problems. For this 
process it is necessary to measure the oxygen and carbon-dioxide concentrations.

All algorithms are observed to be sensitive to errors in initial estimation of biomass 
and substrate and on-line measurements, such as oxygen and carbon-dioxide concentrations. 
There is a serious problem of finding an initial estimate of the error covariance. The 

application of computer simulation techniques for the development of a Kalman filter has 
been demonstrated here for a fed-batch and a batch fermentation process. The inherent delay
for running an estimation algorithm can be permitted in the control of a fermentation

process.
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C h apter 6  Iterative E xten d ed  K alm an  F ilter

6.1  In troduct ion

The extended Kalman filter is a popular method for treating non-linear estimation 

problems.( e.g., Chapter 5). However, if nonlinearities are sufficiently important, the 
estimation error can be significantly reduced through use of a high-order estimation 
technique. [29] The iterative extended Kalman filter can yield substantially better estimates of 
nonmeasurable state variables.

6 .2  Summary o f  Algorithm

This algorithm is based on the extended Kalman filter algorithm. The estimated state 
variables 0(k+l/k+l) given in equation (5.4.1-4) can be improved by repeatedly calculating 
0(k+l/k+l), K(k+1) and P(k), each time linearizing about the most recent estimate. To 
develop this algorithm, denote the ith estimate of 0 (k+l/k+l) by 0 (k+l/k+l)i, i=0 , 1 , 2 , ..., 
and expand the estimated state at time k at the ith iteration of the output equation in the 
form:

0 ( k + l /k + l ) i+1= ê(k+l /k)  + K [ ê ( k + l /k + l ) i , k+1]• {Z(k+l)i

-  h [ 0 ( k + l / k + l ) i - uk] -  M[0 ( k + l / k ) i ] ■[ê (k+l /k)  -  0 (k + l /k + l ) i ] }  ; ( 6 . 2 - 1 )

The iteration with starting value 0(k+l/k+l)l = 0(k+l/k) proceeds until 

I 0 ( k + l / k + l ) i -  § ( k + l / k + l ) i _ 1 i A e f . 

is reached. The bound e f  must be chosen. The actual Kalman gain is given by

K [0 ( k + l / k + l ) i , k+1] = P*(k+l/k)-MT[0(k+l/k+l)i ]
-{M[0(k+l/k+l)i ]-P*(k+l/k)-MT[0(k+l/k+l) i ] + R(k+1) } " 1  ; (6 .2 -2 )

and the filter covariance by

P(k+l/k) = {I -  K [0(k+l /k+l) ,k+ l] -M [0(k+l /k+l) ] } -P*(k+l /k) ;  (6 .2 -3 )
The predictions of state and filter covariances are

0(k+l/k) = <D[0(k/k),T] ; (6 .2—4)

P*(k+l/k) = A(0(k/k)] -P(k/k)-AT[0(k/k)]  + Q(k) ; (6 .2 -5 )

where
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M[0(k),T] = 

and

A[0(k),  T] =

3H[0(k),  T]

90(k) I ( 0 ( k ) , T) 

a<H[0(k), T]

90(k) (0 ( k ) , T)

( 6 . 2 - 6 )

(6 .2 - 7 )

are the matrices of the linearised system. The noniterative filter can be seen as a special 

case of these last equations.

6 .3  Algorithm Flowchart
The on-line optimal estimation of state variables based on the iterative EKF can be 

written as follows:

Compute the value of  Jacobi an 
m a t r i c e s Ji , J i z,,. J 2 1 , J 22■_

Computethe matrixO(k)
Q(k) = I ,+  T-J0(k).

Compute value o f  matrix P*(k+l/k)  
from equation (6 .2 -5 )___________

Compute value o f  matrix K [0 (k+ l /k+ l)1 , k+1] 
 f roro-e.quation ( 6 .2-2,)_ _ _ _ _ _ _ _ _ _ _ _ _

Evaluate 0(k+l /k) (predict ion)  from 
 equation (6 .2 -4 )_________________

Compute optimal estimate 0 (k + l /k + l ) i + 1  
from equation ( 6 . 2 - 1 ) for given 0 (k+l/k)  
and output Z(k+U(currentlv  measured)__

Evaluate P(k+l/k) from equation (6 .2 —3) 
for given K [0 ( k + l /k + l ) i , k+1]

and P * ( k + l / k )

ke. k+i

Yes K £ ^T ?
No 

[op
Fig 6.3 Iterative EKF Algorithm flowchart
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6 .4  Comments

The performance of the filter algorithm for on-line estimation of state variables of a 
fed-batch fermentation process was investigated by simulation. Due to the adaption of the 

system parameters, the estimation of biomass and substrate is very insensitive to an incorrect 
model. To improve the transient behaviour of the estimation error, which is dominated by 
the parameter estimation, further investigations will be necessary. It could be advantageous 
to include other parameters in the on-line estimation, to reduce the accuracy requirements of 
off-line identification. The errors of measurements of on-line oxygen and carbon-dioxide 
concentrations have also a slight effect on the estimation. For other non-linear fermentation 
processes, higher-order models could be used to estimate nonmeasurable states. The 
estimation results based on second order IEKF algorithm using same initial conditions of the 
state variables .parameters and the covariance matrices with EKF are shown on Fig 22, 23 
(Chapter 8). In this part of work, both of the results based on EKF and IEKF algorithms 
are satisfied.
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Chapter 7 Conclusions

When one of state variables can be measured on-line, then a non-linear adaptive 
observer,an adaptive observer, or a non-linear observer,(introduced in chapter 2, 3, 4) can be 

applied to estimate another state variables.

When the specific growth rate is the only unknown parameter, the non-adaptive 
observer can be applied to on-line estimation of state variables. However, at present an
important drawback is that the rate of convergence is completely determined by the 
experimental conditions (via the dilution rate D(t)). In particular the choice of the initial 
conditions may be very critical.

When all the paramaters are unknown, an adaptive observer can be applied to
on-line estimation of state variables. It is also worth noting that all the proposed algorithms 
do not imply any analytical expression for the parameters, such as the specific growth rate 

|i(t) and the yield coefficients.

It can be observed that the application of a non-linear observer for the estimation of 
substrate and biomass concentration has led to realizability problems. It’s necessary to build 
differentiators. However, the use of approximate differentiators has given good results.

It has been demonstrated that states and parameters of a complex biotechnical
process can be estimated on-line by extended Kalman filter (EKF) methods. The estimation 
of substrate and biomass in fermentation processes is based on some known information
(e.g., oxygen and carbon-dioxide concentration can be measured on-line). The experimental 
and computer simulation results show that the extended Kalman filter gives satisfactory
results during computer simulation.

When state noise covariance and observation noise covariance are not known a 
priori, the adaptive EKF algorithm can be used on-line to identify the unknown covariances.

If nonlinearities are sufficiently important and the estimation error cannot satisfy the
industrial demands, then the iterative extended Kalman filter can be applied to on-line
estimation. Because of the better approximation for non-linear system, the iterative filter 

shows a faster convergence when estimating the state variables or parameters.
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There is a serious problem in finding an initial estimate of the error covariances. It 
can be observed that all algorithms are sensitive to errors in initial estimate of substrate 
and biomass in conjunction with on-line measurements, such as oxygen and carbon-dioxide 
concentrations. This is possible even with very simple mathematical models which are based 
on extensive simplifications. The observability of the process must be carefully taken into 
consideration to avoid estimation problems.

In appendix A, a non-linear filtering algorithm will be introduced to estimate state 
variables. This algorithm should have some better computation and robustness properties 
which are clear improvements than other standard algorithms, such as extended Kalman 

filter, adaptive observer.

Arising from the results obtained in this part of the work a paper on state 
estimation techniques was presented by the auther at IECON’ 91 International Conference on 

Industrial Electronics, Control and Instrumentation, which was held at Kobe in Japan from 
October 28 to November 1, 1991. [53]
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Chapter 8 Simulation and Experimental Results (II)

The on-line state estimation results for fed-batch and batch fermentation processes 
will be shown in this chapter.

The following common initial conditions which refer to the laboratory scale 
fermentor in a pilot plant have been used :
The state variables:

X(0)=0.35 g/1; S(0)= 12.2 g/L; 0(0)= 0.18 g/1;
KXl= 0.5; Ks,= 0.22; KX2= 0.4; Kg2 = 0.12.

The parameters values:

Ks=0.8; At=0.05; Mmax=0-4 5; Sfi=10; Currt=0.01; D(0)=0.2; 1^=0.006; ^=0.5;
K, = 2.0; K 2 =1.0.

Some of estimation results of substrate concentration for a fed-batch, which are 
based on an assumption that the simulation data can be available, are also presented.

Fig 1 to Fig 4 show the on-line estimation results of biomass and substrate
concentrations using Monod’s model, which are based on the Observer algorithms assuming
one of state variable can be measured on-line.

Fig 5 to Fig 8 show the on-line estimation results of biomass and substrate
concentrations using Ollson’s model, which are based on the Observer algorithms assuming
one of state variable can be measured on-line.

Fig 8 to Fig 12 show the on-line estimation results of biomass and substrate
concentrations using Contois’ model, which are based on the Observer algorithms assuming

one of state variable can be measured on-line.

Fig 13 to Fig 15 show the on-line estimation results of dissolved oxygen
concentration using Monod’s model, which are based on the Observer algorithms assuming
biomass concentration can be measured on-line. These results can be used to minimise the
estimation errors of biomass and substrate concentrations indirectly.

Fig 16 to Fig 17 show the on-line estimation results of biomass and substrate
concentrations for a fed-batch using the data from simulation results, which are based on 

the extended Kalman filter algorithm in conjunction with the measurements of dissolved 
oxygen and exhaust carbon-dioxide concentrations.
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Fig 18 to Fig 20 show the on-line estimation results of biomass and substrate 

concentrations for a fed-batch and batch using the data from pilot experimental results, 
which are based on the extended Kalman filter algorithm in conjunction with the 
measurements of dissolved oxygen and exhaust carbon-dioxide concentrations.

Fig 21 shows the on-line estimation result of substrate concentration only for a 
batch fermentation process using the data from a pilot plant, which are based on the 
non-linear observer assuming biomass concentration can be measured on-line.

Fig 22 and Fig 23 show the on-line estimation results of biomass and substrate 
concentrations for a batch using the data from pilot plant, which are based on the second 
order IEKF algorithm in conjunction with the measurements of dissolved oxygen and 

exhaust carbon-dioxide concentrations.

These results demonstrated that the estimation technique can be successfully applied 
to a complex biotechnical process and I.E.K.F. has a faster convergence rate.
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Fig 3 Estimation results of sustrate concentrations using Monod’s model and Euler 
method based on non-adaptive algorithm assuming biomass concentration can be 
measured on-line.

  Simulation result of substrate concentration using Monod’s model (g/1)

_________ Estimation result of substrate concentration using Monod’s model based
on non-adaptive algorithm (g/1)
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Fig 8 Estimation results of substrate concentration using Ollson’s model and Euler 
method based on non-adaptive algorithm assuming biomass concentration can be 
measured on-line.

  Simulation result of substrate concentration using Ollson’s model (g/1)

Estimation results of substrate concentration using Ollson’s model based 
on non-adaptive algorithm (g/1)
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Fig 12 Estimation results of substrate concentration using Contois’ model and Euler 
method based on non-adaptive algorithm assuming biomass concentration can be 
measured on-line.

  Simulation result of substrate concentration using Contois’ model (g/1)

________  Estimation result of substrate concentration using Contois’ model based
on non-adaptive algorithm (g/1)
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Fig 21 The estimation result of substrate concentration (S) based on a non-linear 
observer using Monod’s model

------------ The experimental result of substrate (g/1)

________  The estimation result of substrate concentration (g/1)
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Fig 22 The estimation result of biomass concentration (X) based on an IEKF 
algorithm using a Monod’s model

------------  The experimental data of biomass concentration from a pilot plant (g/1)

------------- The estimation result of biomass concentration (X) based on an IEKF
algorithm (g/1)
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Fig 23 The estimation result of substrate concentration (S) based on an IEKF 
algorithm using a Monod’s model (g/1)

-------------  The experimental data of substrate concentration (S) from a pilot
plant (g/1)

________  The estimation result of biomass concentration (X) based on an IEKF
algorithm using a Monod’s model (g/1)
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PART IV  PARAMETERIZATION AND IDENTIFICATION FOR 
FERMENTATION PROCESSES

Chapter 1 Introduction

The goal in process identification is to infer a model (estimates of the model
parameters) given a process input or output data record. When there is parameter uncertainty 
in a dynamic system (e.g., in a fermentation process), one way to reduce it is to use
parameter estimation. This activity can be carried out in an "off-line" or by using "on-line" 
techniques where the addition of a new data point is employed to update the model
parameters. Off-line estimation may be preferable if the parameters are constant (e.g., the 

yield coefficient of a fermentation process) and there is sufficient time for estimation before 
control. However, for parameters which vary (even though slowly, e.g., the biomass specific 
growth rate of a fermentation process) during operation, on-line parameter estimation is
necessary to keep track of the parameter values. In this section, a method of on-line
estimation will be shown. Different models for the identification of the specific growth rate
(i and yield coefficient K, are also presented.

In part III, it was assumed that most of process parameters were known. Actually it
is often difficult and costly to experiment with industrial processes. Therefore, it is desirable
to have identification methods that do not require special input signals. Many " classic " 
methods depend strongly on having the input be of a precise form, e.g., sinusoid or
impulses. It is sometimes possible to base system identification on data obtained under 
closed-loop control of the process. Adaptive controllers are based mostly on closed-loop 
identification. The main difficulty with data obtained from a process under feedback is that
it may be impossible to determine all the parameters in the desired model, i.e., the system
is not identifiable, even if the parameters can be determined from an open-loop experiment. 
Identifiability can be recovered if the feedback is sufficiently complex. It helps to make the 
feedback nonlinear and time-varying and to change the set-points. [20]
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Chapter 2 Adaptive Recursive Least Squares

2 .1 . In trodu ction

The least-squares method can be used to identify parameters in dynamic systems. A 
major reason for the interest in the methods of recursive identification is, of course, that 
they are a key instrument in adaptive control, adaptive filtering, adaptive prediction, and 
adaptive signal-processing problems. In addition to on-line demands, we also have the 
following two reasons for using recursive identification. [23]

(1) Data compression. With the processing of data deing made on-line, old data can be 
discarded. The final result is then a model of the system rather than a big batch of data. 
Since many recursive identification algorithms provide an estimate of the accuracy of the 
current model, a rational decision of when to stop data acquisition can be made on-line.

(2) Application to off-line identification. Methods for off-line identification may process the 
measured data in different ways. Often, several passes are made through the data to 
iteratively improve the estimated models. Depending on the complexity of the model, the 
number of necessary iterations may range from less than ten to a couple of hundred. An 
alternative to this iterative batch processing is to let the data be processed by a recursive 
identification algorithm. Then, one would normally go through the data a couple of times to 
improve the accuracy of the recursive estimates. This has proved to be an efficient 
alternative to conventional off-line procedures (Young, 1976). [23]

2 .2 .  The R ecursive L east Squares

According to Gauss the principle of least squares is that the unknown parameters of 
a model should be chosen. Let a linear system be described by : [22]

A(q)Y(k) = B(q)u(k) + C(q)e(k) ; (2 .2 - 1 )
where u(k) is the input, Y(k) is the output, and e(k) is a white-noise disturbance. The 
parameters, as well as the order of the models, are considered as the unknown parameters. 
Assume that

C(q) = 1. The parameters A and B are of order n and n-1, respectively.
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The app lied  inputs:

u(k) = [ u ( l )  u(2) u ( 3 ) ......... u(N)]; (2 .2 -2 )

Th£_Qj2££H£.(j_QiilpUlSL

Y(k) = [ Y(1) Y(2) Y (3 ) ...........Y(N) ] ; (2 .2 -3 )

The mkrKw rkpgrgmeters
9 = [ a, -----  an : b, ----- bn ]T ; (2 .2 -4 )

Further
<p(k+l) = [ -Y(k)------- — Y(k- n+1) : u (k -  n + 1)] (2 .2 - 5 )

0 = [ <p(n+l)..........<p(N) ]T ; (2 .2 -6 )
The least squares estimate is then given by the following equation if 0 ^ 0  is nonsingular. 
This is the case, for instance, if the input signal is, loosely speaking, sufficiently rich.

9 = (*T®)-1 oT Y ; (2 .2 -7 )
The matrix (3>Ti&)-l <j>T js cailed the pseudoinverse of O if the matrix <£>^0  js

nonsingular.

If the parameters are time-varying, it is necessary to eliminate the influence of old data. 
This can be done by using a loss function with exponential weighting, i.e.,

N

J(9) = I  X,N-K [Y(k) -  0-<p(k)]2 ; (23.-8)
k=l

The "forgetting factor", X, is less than one and is a measure of how fast old data are
forgetten. For X < 1, more weight is placed on recent measurements than on old
measurements. The least-square estimate when using the loss function of (2.2—8) is given by

9(k+l)  = 9(k) + K(k)[Yk+1 -  <p(k+l)§(k)] ; (2 .2 -9 )
K(k) = P(k)<pT(k+1)[A. + <p(k+l)P(k)<pT(k+i)]-l ; (2 .2 -10)

P(k+1) = [I -  K(k)«p(k+l)]P(k)/X ; (2 .2 -11)

2 .3 .  U-D Covariance F a c to r iza tio n

Equation (2.2- 9-11) is one way to mechanize the recursive update of the estimates 
and the covariance matrix. These equations are not well-conditioned from a numerical point 
of view, however. A better way of doing the calculation is to update the square root of P 
instead of updating P. Another way to do the calculations to use the U-D algorithm by 
Bierman and Thornton. This method is based on a factorization of P as [23] [20]
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P  = U D UT ; (2 .2 -1 2 )

where D is diagonal and U is an upper-triangular matrix. This method is a square-root type 
as U lW 2 is the square root of P. The U-D factorization method does not include 
square-root calculations and is therefore well suited for small computers and real-time 
applications. In this part, the U-D method is applied.

The exponential forgetting factor X=A.N-i where N is the total number of data points 
and i the current data or iteration point is commonly used. In the simulation results that 
follow a variable forgetting factor approach is sometimes taken based on the nature of the 
expected parameter variation [24]. Also in the simulation, a suitable choice of the initial 
covariance matrix P(0) must be made. For P(0), a diagonal matrix with large elements 
(e.g. 105 or larger) implies that the users confidence in the initial set of parameter 
estimates is poor, while small values for the diagonal elements implies good initial 
estimates.
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Chapter 3 Identification Models

3.1 Introduction

In this chapter, the model of the fermentation process (presented in PART II 
-Chapter 2) is selected, and the topics of parametrization of this model is also covered. It 
is assumed that the measurements of biomass (X), substrate (S), dissolved oxygen (O) and 
carbon-dioxide (C) concentrations are available.

The expressions for the system (2.2-1) which are linear in the parameters must be 
first obtained in order to use recursive least squares type identification algorithms. The 
system equations can be rewritten as,

Y(t) = 0T-O(t) ( 3 .1 - 1 ) )
where

Y(t) = known measurement vectors.
<t>(t) = known regressor.
0(t) = unknown parameter vector.

It is the function of the ARLS routine to identify the elements of parameter vector given a 
set of process input and output measurements, a known regressor 0(t) and an unknown
parameter vector 0(t).

3 2  The Unstructured Model Of The Process

The unstructured model of the fermentation process was described in part II— chapter 
2. A discrete-time model of the biomass and substrate concentrations can be written as,

X(k+1) -  X(k) + At-D(k)-X(k) = n-At-X(k) ; ( 3 .2 -1 )
S(k+1)-S(k)-At -D(k) • [S f i~S(k)]=  -K, - At -|a,-X(k) ; ( 3 .2 - 2 )

Substituting equation (3.1-1) into (3.2-1) gives:
Y(k+1) = 0T(k+l)-<t(k+l) ; 

where
Y(k+1) = (X(k+1) -  X(k) +At-D(k)-X(k)} ;
®(k+l) = (At-X(k)} ;
0(k+l) = { jx }
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The biomass specific growth rate |i can be identified based on above ARLS algorithm. (See 

results III, Fig 1)

Substituting equation (3.1—1) into (3.2-2) gives :
Y(k+1) = 0T(k+l) $(k+l)  ; 

where
Y(k+1) = {S(k+1) -  S(k) -  A t -D (k ) - [S f i -S (k ) ]}  ;

U>(k+1) = (-At-n-X(k)} ;
0(k+l)= { K,} ;

The yield coefficient K, can also be identified. (See results III: Fig 2)

3 .3  Monod’ s Model

Monod’s model is found to be generally the most applicable. Monod’s model of cell 
growth is repeated here for convenience: (See details in part II-chapter 2)

H(S) = mnax'S/(Ks + S) ; ( 3 .3 -1 )
where Ks = the "Michaelis-Manter’s" constant

Substituting equation (3.3-1) into (3.2-1) and (3.2-2), we get

X(k+1)-X(k)+At-D(k)-X(k) = At-pinax-S(k)-X(k)/[Ks+S(k)] ; ( 3 .3 - 2 )
S(k+1)-S(k)-At D(k)• [ S i ( t ) - S ( k ) ]

^ A t  *M-max-S(k) -X(k) ’K,/ [ks+S(k)] ; (3 .3 -3 )

The equations (3.3-2) can be rewritten as,

[X(k+1)-X(k)+At-D(k) X(k)]-S(k)
=At‘l%ax'S(k)-X(k)+[X(k)-X(k+l)-At-D-X(k)]-Ks . (3.3^1)

Subst i tu t ing  equation (3 .1 - 1 )  into (3 .3—4) gives:

Y(k+1) = 0T(k+l)-<J>(k+l) :
where

Y(k+1) = { [X(k+1)-X(k)+At-D(k)-X(k)] -S(K)} ;
0(k+l)  ={ At-S(k) -X(k) , X(k)-X(k+l)-At-D(k)-X(k)}T;

0^(k+l)={Mmax , Ks ) ;

|imax and Kg can be identified. (See results III: Fig 3) part III)
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3 . 4  01 I son’ s Model

This model for |i was introduced in part II- chapter 2 - section 2.3.2. This model is 
repeated here:

M’(S.O) = Umax’ [S/(Ks+S)] ■ [0/(KO2+ 0 ) ] ; ( 3 .4 - 1 )
where K02 = the saturat ion constant.

Subst i tu t ing  (3 .4—1) into equs (3 .2 - 1 )  and (3 .2 - 2 )  g iv e ,

X(k+l)=X(k)-At-D(k)-X(k)
+At-nmaX-S(k)-0(k)-X(k) / [Ks+S(k)]-[KO2-K)(k)] ; (3 .4 - 2 )

S(k+1)=S(K)+At-D(k)■[Sfj -S (k) ]
-A t-H m ax-S i^-X W -O W -K ^tK s+SW l-tK o.+O iK )]  ; (3 .4 - 3 )

An RLS structure l inear  in the parameters gives  
Y(k+1) = 0T(K+1)-O(k+1) ;

where
Y(k+1) = { [X(k+1)-X(k)+At-D(k)-X(k)]-0(k)-S(k) } ;
<D(k+l) = { At-X(k)-S(k)-0(K), -0 (K )-a ,  S (k )-a ,  - a  }T 
0T(k+l)= Ks , Kq , ,  Ks -K02 }

a = { X(k+1)-X(k)+At-D(k)-X(k)} ;

Mmax> Ks. Kq2, Ks K02 can be identified.

3 .5  C o n to is’ Model

This model for |i was introduced in part II- chapter 2 -  section 2.3.3. The model is 
also repeated here:

H(S, X) = ^ax-S/iKc-X+S) ; (3 .5 - 1 )
where Kc = the Contois’ constant.
Subst i tu t ing  equation (3 .5 - 1 )  into (3 .2 - 1 )  and ( 3 . 2 - 2 ) ,  we ge t ,

X(k+1)-X(k)+At-D(k)•X(k)=|imax-S(k)-X(k)/[KC-X(k)+S(k)]; (3 .5 - 2 )

S(k+1)-S(k)-At-D(k)■[Sf i -S (k ) ]
-At'Mmax'Sik)-X(k)/[Kc+S(k)] ; (3 .5 - 3 )

86



S u b stitu tin g  equation (3 .1 -1 )  in to  (3 .5 -2 )  g iv es:

Y(k+1) = { p-S(k)} ;
<t(k+l) = (S(k)-X(k),  p - X ( k ) } T ;

0 T ( k + l )  = {m„a x , Kc } .

p = {[X(k+1)-X(k)+At-D(k)-X(k)]-S(k)} ;

Mmax> ^  can 3180 ^  identified using ARLS algorithm.
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Chapter 3 Discussion

This part has outlined various model structures that may be used in the 
identification of fermentation systems. The unstructured model, Monod’s model, Ollson’s 
model and Contois’ model have been presented and their respective simulation results show 
good parameter identification The type of model structure chosen for the parameter 
estimation algorithm will ultimately depend on the type of fermentation run in operation.

Most parameter identification techniques have had their greatest success with linear 
systems. Biotechnical processes are inherently non-linear and time-varying. Therefore the 

model to describe these processes (sometimes with extensive simplifying assumption in 
real-time ) must be structured in a linearised form for use in a parameter identification 
procedure. In this part, the adaptive recursive Least Squares (ARLS) have been successfully 
applied to fed-batch and batch fermentation processes.
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Chapter 5 Simulation Results (HI)

used :

A^0.99; Mmax=0.4; K,=2.0; ^=2.0; Yx/^0.5; D=0.1;

jx is the time-varying parameter. In these identification studies a constant forgetting 
factor refers to simulation in which X is kept constant The data of biomass and substrate 
concentrations have been used from simulation results. Fig 1 to Fig 4 show the results of
the specific growth rate |x, the yield coefficient K ,, the maximum of the |t  The following
results of the identification procedure have been obtained,

l%iax= ^  * K, = 2.0; Y ^  =0.5;

These results demonstrated that the popular estimation technique of recursive least
squares will exhibit good convergence when properly applied.

The following common initial conditions which refer to the pilot plant have been
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Identification

Identification: the specific growth rate |i
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Identification

Tf̂ ntìfiratiftnr the maximum of the specific growth rate p.

F ig  3  'nmfi (hr)
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PARTY CONCLUSIONS

The control of a biotechnical process is based on the measurements of physical, 

chemical or biochemical properties and environmental parameters of the process. Classical 

control strategies are ineffective when applied to the task of controlling multivariable 

non-linear, time-varying systems, particularly, as in biotechnical processes, where some of the 

important state variables are not measurable, due to the non-availability of accurate and 

reliable sensors. The simulation technique can be applied to these kinds of systems in 

conjunction with some real-time data for optimal control. Often many important variables 

and parameters have to be calculated or estimated because of their immeasurability, such as 

cell mass and substrate concentrations in a fermentation process.

It is difficult to develop models taking into account the numerous factors which 

can influence the specific bacterial growth rate and the yield coefficients which characterise 

micro-organism growth. In this thesis a model for a biotechnical process has been presented

for simulation purposes with (sometimes extensive ) simplifying assumptions. This model is

used in conjunction with some real-time data as the basis for on-line estimation techniques. 

The simulation model is employed as a testing ground for estimation algorithms.

A number of state estimation algorithms based on the assumption that some of, or 

none, of their system quantities can be measured on-line are successfully applied to a

fed-batch and a batch fermentation processes. The results have demonstrated that states and

parameters of a complex biotechnical process can be estimated on-line by extended Kalman

filter, iterative Kalman filter, and many observers. Many estimation algorithms must be

based on some known information, such as the on-line measurements of dissolved oxygen

and exhaust carbon-dioxide concentrations. In this work the experiments and computer results 

show especially that the extended Kalman filter gives satisfactory results during computer

simulation The iterative Kalman filter can be used to reduce estimation errors and also to 

produce a faster convergence rate.
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In addition, it has been observed that all algorithms are sensitive to error in initial 

estimation of biomass and substrate. There is also the serious problem of finding an initial 

estimate of the error covariance. The observability of a system must be carefully considered 

to avoid estimation problems.

In practice, the procedure of system identification is iterative. Based on the results, 

the model structure can be improved and new experiments may be necessary. In this thesis 

an Adaptive Recursive Least Squares algorithm for the identification on time-varying system 

parameters based on on-line measurements of states has been presented. The results have 

especially shown good tracking of time-varying parameters with a variable forgetting factor.

In further estimation schemes consideration should also be given to more complex 
algorithms. The relatively large sampling time associated with the control of fermentation 
processes ensures adequate processing time is available for any increase in complexity of 
algorithms. These algorithms may consist of using a combined state and parameter 
estimators rather than the presently separate ARLS and EKF techniques. Consideration 
should also be given to cases where the state noise covariance Q and observation noise 
covariance R are not known a priori. Algorithms are available that can be used on-line to 
identify the unknown covariances.

The use of modelling and optimization for on-line computer control, coupled with 
the increasing use of available sensors for monitoring fermentation processes will continue to 
be of interest to industry. The progress in control techniques must be influenced in a 
positive manner by academic efforts and hopefully the research undertake for this thesis will 
contribute to the increasingly important field of the control of biological processes.

Also, two papers, arising from the work described in this thesis, were presented at 
IECON’ 91 International Conference on Industrial Electronics, Control and Instrumentation, 
which was held at Kobe in Japan from October 28 to November 1, 1991. in Japan.
[52] [53]
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APPENDIX A:

A Reported Example of A Non-Linear Filtering

A . l  I n t r o d u c t i o n

In this appendix, a non-linear filtering has been applied to a fed-batch 
fermentation process. In loose terms, any non-linear operation on observed data is referred 
to as "non-linear filtering". The basic models for observed data are of a well-defined 
stochastic process ("signal" or "system response") with an additive "noise" process to 
account for the unavoidable error due to measurement

Non-linear state estimation and filtering problems with Gaussian statistics are often 
treated with the aid of Bayesian maximum likelihood or maximum a posteriori (MAP) 
technique.

Non-linear filters are not commonly used for estimation of parameters and states. 
The reason seems to be the stochastic properties of the nonlinearity. In the following a 
nonlinear filter will be discussed which has many desirable properties. It gives, for a quite 
general class of non-linear filtering problems, a finite dimensional solution, which is exact 
in the discrete-time case. The filter was originally introduced by Halme(1980)[18] in the 
continuous-time form and later on in the discrete-time form by Selkainaho ( Selkainaho, 
Halme and Behbehani, 1983, Selkainaho 1984).[19]

A . 2 T h e  S u m m a r y  Of S t r u c t u r e  Of A l g o r i t h m  

A . 2 . 1  P r o b l e m  S t a t e m e n t

The non-linear system is supposed to be the form:

where 0 is an n-dimensional state vector, a a L-dimensional parameter vector, u an 
m-dimensional control vector and Y an r-dimensional observation vector. The functions f  and 

h are supposed to be properly well-behaved non-linear functions. Equation (A.2.1-1) in
discrete-time form is:

d 9 ( t ) /d t  = f ( 0 ( t ) ,  u ( t ) ,  a ( t ) )  + ®(t);  
Y (t)  = h ( 0 ( t ) , t ,  a ( t ) )  + u ( t )  ;

(A .2 .1-1)  
(A.2 .1 -2 )
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0(k+l)  = f ( 0 ( k ) , u ( k ) , a(k))  + o ( k ) ; ( A . 2 . 1 - 3 )

where (0 is a disturbance modelled by an independent zero mean Gaussian stochastic process 
having covariance:

E[ <o(k)(D(k)T ] = Q, ; (A.2 .1 -4 )

Information about 0 is obtained through the observation equation:

7(k) = h ( 0 ( k ) , k, a(k)) + u(k) ; (A.2 .1 -5 )

where U is an independent zero mean Gaussian stochastic process having the covariance

E[u(k)u(k)T ] = R ; (A.2 .1 -6 )

The parameter vector includes the biochemical (or other) parameters, like the specific growth
rate |i, yield coefficients etc., which are defined as the estimated parameters. Here we
suppose the dynamics of the parameters can be modelled as follows:

a(k+l) = a(k) + (0a(k); (A. 2 .1 -7 )

which means that slow variations are permitted in practice. The disturbance oô  is supposed 
to have a white gaussian character:

E[ ffla(k)toa(k)T ] = Q ; (A.2 .1 -8 )

A .2 .2  Estimation Algorithm

It is further assumed that both the dynamics and observation equations are supposed 
to have linear parts as follows:

0 ( k + l )  = A(k)  - 0 ( k )  + ^ ( © ( k ) ,  k)  ; (A .2 . 2 - 1 )

7 ( k )  = C(k)  + ^ ( © ( k )  ; (A .2 . 2 - 2 )

where the pair (A(k), C(k)) is supposed to be completely observable in real-time, f, and h, 
are linearized f  and h. It can be shown that under these circumstances the state estimate 
can be given in the form [19]
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0(k+l/k) = 0(k+l/k-l )+Ke [ 0 ( k / k - l ) ] - { r ( k )  -  h [ 0 ( k / k - l ) ,  k]} (A.2 .2 -3 )

0 ( k + l /k - l )  = f ( 0 ( k / k - l ) , u ( k ) , k) ; (A.2 .2 -4 )

where the gain Kq is calculated from the equation

K0 [ 0 ( k /k - l ) ]  = [A(k)P(k)CT(k)+R]-1 + A(k)[P(k)- !  + C ^ R - 1 C(k)]“ 1
■ [ a h ^ o . ^ / a o i e ^ k / t . ! )  -  c (k ) ]R - i  ; (A.2 . 2 - 5 )

where in turn the covariance matrix P is calculated off-line from the Riccati equation:

P(k) = A (k ) [P ( k - l ) - !  + C(k)-R- l-CT( k ) ] • A^(k) + Q0 ;
(A.2 .2 -6 )

P(0) = P0 ; 

where Qq is positive the state noise covariance.
Equation (A.2.2-6) can be solved independently from the prediction-correction equations 
(A.2.2-3), (A2.2—4).
In the case where A and C are time invariant the limit gain becomes:

K0(k) = Ki+ A-P2-[3h1(0) /30  -  CjT-R-1 ; (A.2 .2 -7 )
where

K, = A-P3-C -[C P 3-Ct  + R ]“ ! ; (A.2 .2 -8 )

The covariance before measurement:

P 3 = A-P2 AT + Q0 ; (A.2 .2 -9 )

The covariance after measurement:

P 2 = (P3_1 + C R-i-C1 ) - l  ; (A.2 .2 -10)
can be used.

When applying the filter to the simultaneous parameter and state estimation the 

standard state extension method is not used because it may lead to extensive calculations 
due to increased dimensions, but instead the state and parameter estimation tasks are 
separated for different filters. The state filter is in the form given above in the equations 
(AJ22-3-6). The parameter filter uses the dynamic equation (A2.1—7), but the observation 

equation is written in the form:
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y(k) = h { f [ 0 ( k / k - l ) ,  u ( k - l ) , a ( k - l ) ] } ; (A .2 .2 - 1 1 )

where the parameter vector a is in an explicit positioa The gain Ka for the parameter 

estimator

can be calculated now following the general equations(A.2.2- 5-10).

In the biological processes, like in many other chemical processes, the original 
continuous state dynamics are non-linear. It is difficult or even impossible to obtain the 
corresponding exact discrete-time version analytically. One can then choose either to use the 
original continuous time model and a small integration step or to use discretising form of 
the model. In practice the most convenient way to work out a discrete-time version is to 

use a linearized model of the form

where the matrix A, B, and C have been formed via derivation so that an explicit 
dependence on the parameter vector is known. This is important because it is better to 
estimate directly the biotechnical parameters such as yields, the specific growth rate etc., 
and not the parameters of a linear black-box model.

a(k/k) = a (k /k - l )  + Ka [ y ( k ) -h ( 0 ( k / k - l ) ) ]  ;
a (k /k - l )  = a ( k - l / k - l )  ;

(A.2 .2 -12)  

(A.2 .2 -13)

0(k+l) = A (a ) -0 (k ) .+  B(a)-u(k)  ; 
7(k) = C(a)0(k)

(A.2 .2 -13)  
(A.2 .2 -14)
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APPENDIX B

Fig III-Cha 2 Non-Adaptive Observer Scheme

D<k) 
Sfi fir-!i — * Process X(k)

11UEJ --------»

1t

--------------------->
-------------------------------- >

--------------------------------- >
Adaptive ^ Y ( ) 
Observer 1v ' 2V

Fig III-Cha 3 Adaptive Observer Scheme

Fig III-Cha 4 Non-linear Observer Scheme

D(k)

Process

0 2 output

------ »
Extended Kalman 

F i l t e rSfi (k) CO 2 output
+ >

Measurement Noise

Fig III-Cha 5 Extended Kalman F i l t e r  Scheme
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S f i (k)
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0 2 output +

CO, output +
I te ra t iv e  Extended 

Kalman F i l t e r
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Fig III-Cha 6 I t e ra t iv e  Extended Kalman F i l t e r  Scheme
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Fig III-Cha 7 Non-Linear F i l t e r i n g  Scheme
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Fig IV-Cha 3 Parameter Estimation Scheme
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APPENDIX C

APPLICATION OF A COMPUTER SIMULATION TECHNIQUE 
FOR OPTIMAL CONTROL OF A NON-LINEAR SYSTEM

L ia n g  Tan , J im  D o w lin g , C h a r le s  U c C o r k e l l ,  Hugh UcCabe.

S c h o o l O f E le c t r o n ic  E n g in e e r in g ,

D u b lin  C i t y  U n i v e r s i t y ,

D u b lin  9 .  I r e la n d .

T e l :  (0 1 )  7045358

A BSTR ACT- In recent years it has been acknowledged that 

to significantly improve biological system performance and 

productivity, control, including optimal control, should be 

implemented on-line.

The dynamics o f biological processes are highly non-linear 

and key variables are difficult to measure. As an aid to 

contributing solutions to the twin difficulties o f  complex dynamics 

and measurement difficulty a relatively simple mathematical model 

has been developed fo r  the purposes o f evaluating optimal 

controllers.

A simulation o f a fed-batch fermentation process is 

developed which includes the non-linear dynamics o f the process.

KEYWORDS: Modelling, Simulation, Bioreactors, Control.

2. SUM M ARY QF STRU CTU RE OF A N O N -LIN EA R SYSTEM

2 .1 .  D e s c r ip t io n  o f  D ynamics

A fcrmeniation process is a complicated, non-linear, 

Lime-varying system, its dynamics are not completely known, in 

this process some state variables are nonmeasurable. such as 

biomass and substrate concentrations. The following (non-linear) 

model [7] can be used to represent (in fully aerobic conditions ) 

the dynamics of a fed-batch, batch or continuous fermentation 

process.(e.g. a baker's yeast fermentation).

( i )  B io m a ss:

d X ( t ) / d t  = [u -  D ( l ) 1 ■ X ( t ) ;  ( 1 )

( i l )  S u b s t r a t e  :

d S ( t ) / d t  = -  K , - n - X ( t ) +  D ( t )•[ Sf j  -  S ( t ) | ; ( 2)

1 INTRO DUCTIO N

The control of a biological process is based on the

measurements of physical, chcmical or biochcmical properties and 

environmental parameters of the process. Often many important 

variables and parameters have to be calculated or estimated

because of their unmeasurability, such as cell mass and substrate

concentrations in a fermentation process. Basically the estimation

technique adopted involves running, in real time, a (simulation) 

model of the process in parallel with, and receiving the same

inputs as, the real process. Instead of the actual dynamics of a 

system, the simulated dynamics are often used for optimal control 

because many non-linear systems are generally very complex and 

not completely known, like a fermentation process.

This paper describes in detail the dynamic models of two

non-linear systems, fed-batch and batch fermentation processes and

discusses results of the analysis. In order to solve the state 

equations for the non-linear systems a classical first order Euler 

and a founh order Rungc-Kutta computer algorithm for the

integration of the nonlinear differential equations were developed. 

The state models have been expanded to include the various 

nonlinearitics.

IECON’ 91

( i l i )  F e rm e n to r  volum e o f  th e  g ro w th  c u l t u r e :  

dV/dt =  F ; n — FquI > (3 )

F i n = D- V ;

Fout = 0 '•

( i v )  O xygen c o n c e n tr a t io n :

dO/dt = OTR + OUR ; (4)

OUR = -  d X ( t ) / d t •( l / Y x : o ) ;

OTR = K l a - (X0 j O ,  -  0)  ;

( v )  C arbon d io x id e  c o n c e n tr a t io n :

dC/dt =  CEP + CTR ; ( 5 )

CEP = KC 2 H ' X ( t ) ;

CTR = K j •ka ■(XCo 2 'Ci  — C) ;

( v i )  E th a n o l c o n c e n tr a t io n :

dE/dt  =  EPR -  ECR ; ( 6 )

EPR = I ^ m a x / 0 + E / K c t) ] - [ S / ( K s+ S ) ) ;

ECR = [Kpo 0/(0+K0j)1•[E/(Ke+E)| ;

Where: X, S, O, C  and E are the concentrations of biomass, 

substrate, oxygen, carbon-dioxide and ehanol respectively. X and S
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are nonmeasurable; O, C  and E  can be measured on-line; Oiher 

variables and parameters are: OUR —  the oxygen uptake rate.

OTR —  the oxygen transfer rate. CEP —  the C O , evolution 

rate. C T R  —  the CO 2 transfer rate. EPR —  the ethanol 

production rate. E C R  —  the ethanol concentration rate. D  —  the 

dilution rale. S r —  the substrate in the influent. |i —  the 

specific growth rate with maximum value \ifnax- K , —  the yield 

coefficient. O , —  the saturation concentration of dissolved oxygen 

in the liquid. C , —  the saturation concentration of C 0 3. Kg, K a_ 

K C)t K c , K ct K ia Kj-.Kpo, £max will be presented in section 4.

2 .2  M odels O f The S p e c i f i c  G rowth R a te  ( il l

The specific growth rate n is a key time-varying parameter 

for description of biomass growth, substrate consumption and 

products formation. For a fermentation process, the most 

commonly used models for n are presented as follows:[6] [7]

(7) M n n n t f s  m odel :

A functional relationship between the specific growth H 

and an essential compound's concentration was proposed by 

Monod.

H(S) = Umax' S ( t ) / [ K s + S ( t ) ] ;  ( 7)

This model is widely used to describe cell growth limited 

by a single substrate in a fermentation process. [7]

till OIkon's model:
Aerobic fermentation are processes where the 

microorganism need oxygen to develop properly. In such case, 

dissolved oxygen (O) in the culture medium can be considered an 

additional substrate. This law which has Monod similarities is 

often referred to as the OUson model for specific growth rate n.

^ ( S ,  0) =  Umax' [S/ (Ks+ S ) ] [ 0 / ( K 0 ,+ 0 )1  ; ( 8 )

This model considers the influence of substrate S and 

dissolved oxygen concentration 0.[7]

j j ii) Contois' model :
The biomass growth is often presumed to slow down at 

high biomass concentrations. A possible model in this case is the 

following form :

M-(S, X) = S / ( K C X + S) ; (9)

This model considers the influence of substrate concentration 

S and biomass concentration X. [7)

3. COM PUTER SIM ULATION

In order to assess the system dynamics and to optimise 

controller design, the system models were simulated in computer 

software. The principle of all numerical integration methods is to 

estimate the system states at time (i+At) given the state at time t

where At is the sampling period [2). For a general equation of

the form ,

8 = f ( 0 , u , t ) ;  ( 10)

At each step compulations are done by some formula 

normally based upon the Taylor series,

0( t +h)  = 0 ( t )  + A t - 0 ( 1 )  + ( A t ) = / 2 ! - 0 ( 1 ) .........  ( 1 1 )

If At is chosen to be sufficiently small and if sufficient 

higher order derivatives of 0 and powers of 0 are taken, then ihc 

value 0(i+At) can be accurately found.

A classical first order Euler method and a fourth order 

Runge-Kutta technique have been applied to Ihe model for 

integration. These techniques are widely used in engineering for a 

non-linear system.

3 .1  E u le r  A p p ro x im a tio n  M ethods

The Euler method is ihe simplest. For equation (11), only 

a first power of At is considered assuming the terms in Aln (n > 

1) arc very small compared to At. This is valid only if Al «  1. 

The Euler method has the form,

0 ( t + A t ) = 0 ( t )  + A t - r ( 0 ,  u, t) ; ( 1 2 )

Applying a simple Euler approximation lo the system 

model , the equations (1), (2), (3), (4), (5), (6), (7), (8), (9) have 

the followling forms,

3 . 1 . 1 .  S y s te m  M odel:

Biomass:

X ( k + l ) = X(k) + At ■ |x• X ( k ) — At D X (k ) ;  ( 1 3 )

Subs i r a t e :

S ( k + 1 )  = S ( k ) - K t A t - p X ( k ) + A t  D - [ S f j -  S(k) ];  ( 1 4 )

Volume of fermentor:

V ( k + 1 )  = V(k) + At ( F i n-  F0 l l l) ;  ( 1 5 )

F in = D - V ( k ) ;

ôut = o ;

Oxygen:

0 ( k + l ) = 0(k)  + At (OUR + OTR) ; ( 1 6)

OUR = — K , - (H -  D ) -X( k )  ;

OTR = K | a {XO j 0,  -  0 ( k ) ]  ;

Carbon- di oxi de:

C ( k + 1 ) = C(k) + A t •( CEP + CTR) ; ( 1 7 )

E t h a n o l :

E ( k + 1 )  = E(k) + At X ( k ) ■( EPR -  ECR) ; ( 1 8)

EpR = [^max/d + E ( k ) / K e l ) ] ■ [ S ( k ) /  (Ks + S ( k ) ) ]  ; 

ECR = [Kp0 •0 ( k ) / (0(k)  + K0 J ) ] •[ E ( k ) / ( K e+ E ( k ) ) ]  ;
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Monod's model : [7]

H = nm a x S ( k ) / [ K s + S ( k ) ] ; ( 1 9 )

O l l s o n ’ s model : [7]

(i = [ Mna*' S( k ) /( Ks+ S ( k ) ) ] - [ 0 ( k ) / ( K Oj + 0 ( k ) ) ]  ; (20 )

C o n i o i s ’ model : [7]

H(S,  X) = Umax S ( k ) / [ K C 'X(k) + S( k ) ]  : ( 2 1 )

These equations discritized using Euler method were 

successfully simulated by computer. The simulation programme 

flow-chart is shown on Fig 3.1. Tliis gives an overview of ihe 

simulation program implemented. This routine is called periodically 

at times determined by the integration interval. An integration 

interval of 0.05 hours is found to be adequate. The value of each 

state is transferred to a data file at periods of 10 minutes.

3 .2  The R u n e e -K u tta  T e c h n iq u e

The Runge-Kutta methods attempt to obtain higher accuracy 

based on Taylor’s algorithm (eqn (11)), and at the same time 

avoiding the need for higher derivatives, by evaluating the 

function f(0,u,t) (cqn(10)) a  selected points on each subinterval. 

The simplest Runge-Kutta method is used here. Again for a 

general equation (10) of the form,

0 = r(0, u, t) ;

The formula for advancing the solution step is 

0n + l = 0n + 1 / 6 - (K, + 2K3 + 2K3 + K4 ) ; ( 22 )

Assuming : a = f (0 ,  u) ; a ( 0 o) = a0 ; 

where

K, = A t •f ( ©o, “o> 1 (2 3)

K j = A t ■f (0 O + A t / 2 ,  Oq + K , / 2 )  ; (24)

K,  = At ■ f (0o + A t / 2 ,  oto + K , / 2 )  ; (25)

K« = A t •f (0o + At , Oq + K 3 ) ; (26)

The Runge-Kutta algorithm does not require calculation of

the higher derivatives of 0 as is indicated in the Taylor series

method. For the above system models (1), (2), (3), (4), (5), (6), 

f(0 , u, t) at various points can be calculated based on this 

algorithm. The discretized system model using a fourth-order 

Runge-Kutta method results in a more accurate computer 

simulation.

The simulation programme flow-chart is shown on Fig

3.2.1. The programme is written in PC C language. This routine 

is called periodically at times determined by the integration 

interval. This routine called a further routine (deriv) which 

returned the values of the derivatives of the states, as given by 

the differential equations of the model. An integration interval of

0.05 hours is found to be adequate, and the value of each state 

is printed out to a data file at periods of 10 minutes. A  total

3 . 1 . 2 .  The S p e c i f i c  Gravth Rate.HL
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run-time can be chosen in terms of each simulation. The 

flow-chart (Fig 32 2 . )  gives an overview of the simulation 

programme implemented. The data is then ploted as shown.

EULE« START

D e fin e  i t i l e  v a r ia b le s  and p a ra m e te rs

S c i c u r r i  = C u r r i  T im e , R u n - iim e .  
In te g r a i  I on i n t e r v a l . S la te  v a r ia b le s

Sci i n i t i a l  c o n d it io n s  o l s t a le  v a r ia b le ! ;

S c i s im u la i in n  p a ra m e te rs

Ca 1 1 i n i t i a l  conti 1 1 1  tins

Set d i f f e r e n t  g r o * ih  r a le  typ es

1
Si mu I a n  on e q u a l iw tt« '------------------

liNI)

F IN IS H

Fig 3.1 EuUr Program Flow-chart

SIM ULATIO N START

In p u t I n t e g r a t io n  I n l l r v a l ,  P r i n t  P e r io d .
And Run T im e

I
S e t C u r r e n t  Tim e And L a s t  P r i n l = 0 ,  and I n i t i a l i s e  S t a t e s  X

Is  C u r re n t  T im e  > =  Run T im e  ? ------------------------- j

Jno 1
Call RUNGE-KUTTA END SIMULATION

In c re m e n t L a s t P r in t  a n |  C u r r e n t  T im e  by I n t e g r a t i o n  I n t e r v a l  

Is  L a s t P r i m  and C u r r e n i T im e  by I n t e g r a t i o n  I n t e r v a l

Is  L u s t P r i n t  > = P r in t  P e r io d  ? ---------------------------- 1

No 1
P r in t  S l a t e s .  

S et L a s t P r i m  =()

____________________________________________ i

Fig 3.2.1 Runge-Kutta Simulation Flow-chart

R U N G E-K U TTA  STA R T

I
Set T  = Current T im e . X  *  Values o f Stales, H  =  Integration Interval

I
Call D E R IV  {X , D X . T )  to obtain derivatives D X  o f  X  at lim e T  

Set vector K , =  H •  D X

I
Cull D E R IV  (X + K  ,/2 .  D X . T + H /2 )

Set vector K ,  =  I I  •  D X

1
Call D E R IV  (X + K  ,/2 ,  D X . T + H /2 )

Set vector K ,  =  I I  •  D X

I
Coll D E R IV  ( X + K , /2 .  D X . T + l l )

Set vector K ,  =  H •  D X

Sci vector X  *  X  + ( l / f i ) * i K , + 2 * K 7+ 2 * K 3+ K .,)  
Return new  values X  o f  States

i
R U N G E -K U T T A  E N D
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5. DISCUSSION AND CONCLUSION
D E R IV  (F , D F . T F )  S T A R T

I
Scl D F ( I )  =  F , ( F ( I ) .  T F I  wlicrc F ,  is Itlc dilTcrcnnal 

tqualiun ik s trih in g  l ie  I si proccsi sialc F ( l )

1
Scl D R 2 )  =  F ?(F (2 ). T D  where F ,  is ihc diffencniial 

equation desenbing ihc 2tul process Male F (2 )

1
Scl U R N i = FN (F {N ). T F )  where F N is ihc diifcrcnuai 

equation describing ihc n M1 proccss stale F (N )

I
Return vector D F

I
D E R IV  IF . D F . T F )

Fig 3.2.2. A 4th-order Runge-Kutta Subroutine Flow-chart

4. SIM U LATION RESU LTS  

* E u l e r ' s  method :

—:---------  Fig I to Fig 6 show the simulation experiment results

of biomass (SI-X ), substrate (SI-S), the volume of growth culture 

(SI-V), dissolved oxygen concentration (SI-O), C O , concentration 

(SI-C) and ethanol concentration (SI-E) under the following 

conditions:

(a) Common initial conditions:

X(0) =  l.O; S(0) = 0.4; V(0) = l.ft 0(0) =  0.0040; C(0) =  0.0; 

E(0) = 0.0; n(0) = 0.0;

(b) Parameters :

D = 0.2; ks = 0.8; K , = 2.0; Kla = 2.0; K<j =  0.4; ^ , = 1 . 1 5 ;  

Kc = 0.5; At=0.05; 0.03; 0 , =  0.3; C ,=  0.10; Xo2= 2.50;

XC02=0.0033; ^max= 0.15; Kpo= 0.05; K0 l  = 0.006; Kct = 71.5;  

K e = 0.5; |io = 0.4; K m = 0.4; Kj = 2.5; Sf-, = 10; cum = 0.0;

The experimental data (E X - ) has been got from the pilot 

plant. The simulation technique can be successfully used to 

describe the dynamics of the system by comparing the simulation 

results and experimental results.

* R u n g e -K u tta  method:

  Fig 7 to Fig 12 show the simulation results using the

same above initial conditions and parameters.

From above results, the Runge-Kutta method does not 

require calculation of the higher derivatives of 0 as is indicated 

in the Taylor series and attempt to obtain greater accuracy. This 

algorithm utilizes the computation of f(0, u) at various points.

The Euler method is of limited practical use due to its 

large truncation error per step of order At2. This is exaggerated 

when a large step length At is used. The Euler method would 

satisfy most requirements only if using small step At and if round 

off error did not occur in the calculations. But it always remains 

strongly dependant on the sample period.

It has been demonstrated here that the computer simulation 

technique can be successfully applied to a biological process, 

which is a classical complex non-linear system, in order to assess 

ihc biorcactor model's accuracy and to facilitate controller 

appraisal. Although many important system variables cannot be 

measured on-line directly, the estimation methods based on 

simulation technique can be applied to solve this problem and the 

basis of this method is to run a computer model of the system 

in real-time.
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APPENDIX D

STATE ESTIMATION FOR OPTIMAL CONTROL 

OF A NON-LINEAR SYSTEM
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A BSTR ACT: Two estimation techniques, namely the extended

Kalman filler (E.K.F) and the iterative extended Kalman filter  

(I E.K.F), have been applied to a non-linear lime-varying system 

that has nonmeasurable state variables. An iterative solution to 

a fed-batch fermentation process is reported using the E.K.F. 

based on measurements o f  the oxygen and carbon-dioxide 

concentrations. The results demonstrate that this estimation 

technique can be successfully applied to complex biological 

processes. I f  the nonlinearities o f these systems are 

sufficiently important or i f  a long delay in the estimation cannot 

be permitted fo r  a particular process, then the ¡.E.K.F. can be 

selcctcd.

KEYWORDS: Non-linear state estimation, Biotechnical process.

Extended Kalman filter. Iterative extended Kalman filter.

1. INTRODUCTION

Classical control strategics are ineffective when applied to 

the task of controlling multivariable non-linear, time-varying 

systems, particularly, as in biotechnical processes, where some of 

the important slate variables are not measurable, due to the 

non-availability of accurate and reliable sensors. In this paper, 

state estimation techniques are used lo estimate such unobserved 

quantities in the context of developing optimal control strategies.

The dynamics of a non-linear system, such as a 

biotechnical process, arc usually complex and not completely 

known. It is often useful or necessary to develop relatively simple 

(non-linear) mathematical models to describe these systems. With 

(sometimes extensive) simplifying assumptions, such models might 

be developed for simulation purposes or for use in conjunction 

with some real-time input-output data as the basis for on-line 

estimation of states and parameters. Simulation models are 

employed as a testing ground for estimation algorithms.

In this paper, the extended Kalman filter (E.K.F.) method

is applied to the task of state and parameter estimation for 

fcd-batch and batch fermentation processes. These processes are 

well-known to be non-linear with time-varying parameters, 

and the slate variables that must be controlled (biomass and 

substrate concentrations) arc generally not measurable.

Using oxygen and carbon-dioxide concentrations, both ol 

which can be measured on-line, the estimation equations arc 

solved iteratively and compared lo simulation and pilot plani 

experimental results.

If non]inearilies are sufficiently important, the estimation 

error can be significantly reduced through use of a high-order

estimation technique. The iterative extended Kalman filter can 

yield substantially bctier estimates of nonmeasurable state variables 

when a system is non-linear. In addition, the iterative filter can 

show a faster convergence because of improved approximation.

2. SUM M ARY OF NO N-I .INEAR SYSTEM  S TR U C TU R E

2 .1  Model O f N o n -L in e a r  S y s t e m

Fermentation processes are non-linear time-varying systems. 

In these processes some state variables, such as biomass and 

substrate concentrations, are nonmeasurable. The following

(non-linear) model [71[ 10] can be used to represent (in fully 

aerobic conditions) the dynamics of a fed-batch, batch or 

continuous fermentation process (e.g. a baker’s yeast fermentation).

( i )  Biomass:

dX/dt = (n -  D) X; ( 1 )

( i i ) Subst ra t e :

dS/dt = -  K , n - X  + D- (S f j -  S ) ;  ( 2)

( i i i ) Oxygen:

dO/dt = OTR + OUR; (3 )

OUR = -  d X / d t - ( l / Y x ; 0 )1  

OTR = K | a - (XO J - 0 -  0) ;
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( i v )  Carbon di ox i de:

dC/dt = CEP + CTR: (4)
CEP

C T R

NC ! H-X;

= K(j ■ Ka • (XC02 C,  - C) ;

Where X, S, O and C  are the concentrations of biomass, 

substrate, oxygen and carbon-dioxide respectively. X and S are 

nonmeasurablc. O and C  can be measured. Other variables and 

parameters arc : n —  the specific growth rate with maximum 

value Hmax. Sp,—  the substrate in the influent. K , —  the yield 

coefficient. OUR —  the oxygen uptake rate. OTR —  the oxygen 

transfer rate. Y x;o —  the yield coefficient of biomass on oxygen. 

CER —  the C 0 2 evolution rate. CTR —  the CO  2 transfer rate. 

O ,, C ,  are the saturation concentrations of dissolved oxygen and 

CO , .  X 0 j , X C02 are partial fraction of 0 2 and C 0 2. D, K s, K<j_ 

K C l , KC2, K |a arc known.

2 . 2 .  M odels O f The. S p e c i f i c Growth R a te  (til

The specific growth rate n is a key time-varying parameter 

for description of biomass growth, substrate consumption and 

products formation. For a fermentation process, the most 

commonly used models for n are Monod’s model, Ollson’s 

model, Contois’ model. The Monod’s model is used in this 

paper. (41, [7],

(i) Monod’s model : [7]

H(S) = Umax'S/CKs + S ) ;  (5)

This model formulas are widely used to describe cell

growth limited by a single substrate in a fermentation process.[7]

(ii) Ollson's model: [7]

l i (S.  0) = ^ a x  S O / [ ( K s + S) ( K02 + 0 ) ] ;  ( 6 )

This model considers the influence of substrate S and

dissolved oxygen concentration O .

(iii) Contois’ model: [7]

H(S,  X) = Hmax'S/(Kc'X + S ) ;  (7)
This model considers the influence of substrate 

concentration S and biomass concentration X.

In this paper, Monod’s model has been used to estimation

technique.

3. APPLICATION O F EXTEN D ED  KALM AN  F ILT E R

3 .1  P ro b lem  F o rm u la tio n

The dynamics of fcd-batch and batch fermentation 

processes can be replaced by the following stochastic non-linear

differential equations based on equations (1) and (2): 

0 ( t )  = F ( 0 ,  (i, t) + o>( t ) ;

where

(8)

F  =

F,
0 ( l )  =

Xf I )

S ( t )

w, (u

(02l t )

The system models can be described as follows:|71 

F , ( 0 ( t ) ,  n,  t) = nmax ' X ( i ) - S ( t ) / [ K s+ S ( t ) l

-  D ' X ( i ) - h o , ( i ) ; ( 9 )

F 2( 0 ( t ) ,  \i , t ) =  jimax K, X ( t ) - S ( t W ( K s+ S ( l ) |

+ D•( Sf i  -  S ( t ) l +  0 , ( 1) ;  ( 1 0)

3 .2  M easurem ent E q u a tio n s

In a fed-batch fermentation process, when oxygen O and 

carbon-dioxide C  concentrations appear as linear functions of X  

and S, the following equation is presented:[7)

Z( 0(  l ))  = H • 0( i )+ v>( t );  ( 1 1 )

8(0 is a 2 x I slate vector, H is a 2 x 2 observation matrix:

( 12)

Z(l) is a 2 x 1 ouiput evolved on-line measurements of oxygen

and carbon dioxide concentrations. KXlt Kj ,  are the observation

yield coefficients of carbon dioxide measurement. KX2> K j 2 are

the observation yield coefficients of oxygen measurement.

toit) and u(t) represent uncorrelated zero mean white noise with

covanancc:

E [u( t ) ca ( t) T | = Q - ô j j ;  E[u( t )u( t ) T  ]= R ■ 5,  j ; ( 1 3 )

1 for i = j

=( );
0 for i *  j

« X , K s  t 0 , ( 0

H = ; 0 ( t ) =

K X J K S 2 0 2 ( t )

1J

The initial state of the system model is assumed to be a 

Normally distributed stochastic random variable with mean:

E [ 0( 0) ]  = 0 ( 0 ) ;  ( 1 4 )

and covari ance:

E [ (0(0)  -  0( O) )( 0( O)  -  0( O) )T 1 = Po; ( 1 5 )

u ( t )  i s  assumed to have zero mean and co va r i ance:

E[ u ( t ) J ] = R ( t ) ;  ( 1 6 )

0(1) is unmeasurable on-line. 0(t) is updated estimate. 0(t) is 

previous estimate. In the presence of state and observation noise 

(or model inacuracies) the question is how to find an on-line 

estimation algorithm based on on-line available measurements of 

oxygen and carbon-dioxide in order to estimate 0(t). The extended 

Kalman filter is employed for optimal on-line estimation of stale 

variables based on system models.

3 .3  S t r u c t u r e  o f  A l g o r i t h m

IECON’91
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Applying simple Euler approximation 10 Lhe continuous 

models (8) and (11), the following discrete-time non-linear 

stochastic model of biomass, substrate and consumption for a 

fermentation process has been got:

3.3.1 Linearisation and Discretisation

0( k + l ) = g ( 0 ( k / k ) ,  T)  + co(k); 

z (k )  = H-0(k) + -u(k) ;

( 1 7)

(18)

where H is defined in sect ion ( 3 . 2 ) .  

g ( 0 ( k / k ) , T) = 0 ( k / k )  + T - F ( 0 ( k / k ) );

E [ 0 ( O ) 1 =8(0) ;  E [ ( 0 ( 0 ) -  0 ( 0 ) ) ( 0 ( 0 ) -  0( O) )T ]=Po ; 

g(0(O) , T) = 0( 0) +  T F (0 ( O) ) ;  ( 1 9)

T  is the sample lime, and other values are in models (8), (11).

3 . 3 . 2  J a c o b ia n  Ma t r i x

In terms of E.K.F. algorithm, the Jacobian matrix must be 

precalculated. Considering a fed-batch fermentation proccss models

(8), (9), (10), the Jacobian J10(k) matrix can be derived as

follows:

i , ,=-
ar,[0(i)] d r . I X d ) ,  S ( t ) |

3 0 , ( 1 )  I 9 ( k / k )
^ax'Sik/k)

axd) x ( k / k )

-  D ; (20)
Ks + S (k / k )  

3 f , [ 0 ( t ) l 3 f , [ X ( t ) ,  S ( t )]

3 0 2( O  I 0 ( k/ k)

Umax ' Ks X(k / k)

3 S ( t )  I s ( k / k )

[Ks + S ( k / k ) ] 2 

d f j [ 0 ( l )  1 3 f j [ X ( t ) , S ( l ) l

( 21)

3 0 , ( 0  10( k / k )  3x( 0
K, ' mnax ' S(k/k)

' x( k /k )

Ks + S ( k / k)

3 f , [ 0 ( t ) l 9 f 3[ X ( l ) ,  S ( t ) ]

3 0 , ( 0  10( k / k)

K , 1 Umax ' Ks ■ X(k/k  )

Ks + S ( k / k )

as(D

-  D

(22)

1s ( k / k )

(23)

3 . 3 . 3  E K F .A lg o rith m  F lo w ch a rt

The on-line optimal state estimation based on the extended 

Kalman filter technique can be written as follows:

IECON’91
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Fig 3.3.3 E K F  Algorithm Flowchart

For system models (8) :

0(0 = F(0(t)). 

then, in discrete lime wiih sample interval T,

A0(k+1)= 0(T)A0(k). 

where: <t> is the transition matrix. If <J>CO is approximated by the 

truncated scries: <t>(T)= I + JT , this is equivalent to the Euler 

solution of the original equations. The transition matrix <t>(k) can 

be obtained by linearising of non-linear discrete models (17), (18) 

around estimate 0(k).

<Hk) = I + T J i 0 ( k ) ; (24)

' 0 ( k + l )  = 0(k)  + T - F [ 0 ( k ) l

= [ I  + T J I x ( k )1 A0(k) + <a(k); (2 5)

where : I is the 2 x 2 identity matrix, J 10(k) is ^  Jacobian of 

system models,

A0fk)= (0(k) -  0(k)] is the 2 x 2 state perturbation vector. 

0(k +l/k+ l) is the 2 x 1 optimal state estimation at time k+l.

9(k+l/k) is lhe 2 x 1 state estimate at time k+l based on

estimate 0(k/k) at time k only (prediction).

Z(k+1) is the 2 x 1 output (observation) vector at lime k+l.

H is the 2 x 2 observation matrix.

K(k+1) is the 2 x 1 optimal Kalman gain at time k+l.  

K (k + l) |Z (k + l)- H0(k+ l/k)l is the so-called innovation sequence 

(correction).

P(k) is the 2 x 2 positive definite symmetric error filtering

covariance matrix.

P*(k+l) is the 2 x 2 positive definite symmetric error prediction 

covariance matrix.

‘t’OO is the 2 x 2 transition matrix of linearised perturbation

model evaluated at time k for estimate 0(kA).

113



9,(0> 0,(0) 0, (0) 0, ro>
P0 = E[(

02(0)
—

9 , (0 )

)(

9 , ( 0 )

—

9 , ( 0 )

g(0(k/k), T) is ihe funciion from equations (17), (18) and (19).
Q is the 2 x 2 positive definite state noise covariance.

R is the 1 x 1 positive definite observation noise covariance.

i . - f .  I n i t i a l  Cnntii t i nns

The initial conditions 0,(0), 9,(0) of the process are 

assumed to be Normally distributed with covariance P0 :

) r  1 : (26)

0(0): mean of initial proccss state vector.

P(0): initial value of estimate error covariance matrix.

Initial values of the EK F  variables for the on-line 

estimation were determined by the simulations. (See discussion of 

resullt for specific values)

2 .5 : __ E rro r  d ynam ics

Estimated e rro r :  £ ( k + l )  = 0 ( k +l )  -  9 ( k + l ) ;  (27)

The error is minimised by an internal feedback loop with Kalman 

gain K(k+1).

4. APPLICATION OF IT E R A T IV E  K A LM A N  F IL T E R

The extended Kalman filter is a popular method Tor 

treating non-linear estimation problems. However, if nonlinearitics 

are sufficiently severe, the iterative extended Kalman filter can 

yield substantially better estimates of nonmeasurable state variables.

4 .1  Summary o f  I . E . K . F .  A l g o r i t h m

This algorithm is based on extended Kalman filter 

algorithm. The cslimalcd state variables 9(k+l/k+l) can be 

improved by repeatedly calculating 0(k+l/k+l), K(k+1) and PflO, 

each time linearizing about the most recent estimate to develop 

this algorithm, denote the ith estimate of 0(k+l/k+l) by

9'(k+l/k+l), i=0. I, 2....  and expand the estimated state at time k

at the ith iteration of the output equation in the form:

ê i + l ( k + l / k + n  = 0 ( k + l / k ) +  K [ ê ' ( k + l / k + 1 )  , k+l  )

■ | Z ' ( k + 1 )—C [0■( k + l / k ) 1•[ 9 ( k + l / k ) -  9 ‘ ( k + 1 / K + 1 ) ] (28)

The iteration with starting value 01 (V + l/k +D ^fk + l/k ) proceeds 

until i9'(k+l/k+l) -  ^ - ‘ (k+l/k+Di  <. £f

is reached. The bound Ef must be preselected. The actual Kalman 

gain is given by

K | 0 ' ( k + l / k + 1 ) . k +1 |  = P* (k +1 / k)  CT [ 9 ' ( k + 1 / k + l ) |

•( C [ 0 * ( k + 1 / k + 1 )] P* (k +1 / k )  CT [9 ' ( k + 1 / k + 1 ) ]

+ R ( k+ 1 > ) ) - ' ;  (29)

and the filter covariance by:

P ( k + l / k )  = ( I -  K [ ê ( k + l / k + l ) ,  k+1J

■ C [ ê ( k + l / k + l ) | ) P * ( k + 1 / k ) ;

The predicted stale and filter covariances are:

Ô ( k +l / k )  = < M ( k / k ) , T] ;

P* ( k + 1 / k ) = A | 0 ( k / k ) ] • P ( k / k ) A T [ 9 ( k / k ) ] +  Q(k)  

whe re

C [ 0 ( k ) ,  T] = 

and

A[0 ( k ) ,  T] =

9 H ( 0 (k ) ,  T |

I | 0 ( k ) , T ]

M | 0 ( k ) .  T]

(3 0 )

( 3 1 )
(32)

(33)

(34)
¿ 0 (k)  I [0 ( k ) _ T ]

arc the matrices of the linearised system. The noniterative filter 

can be seen as a special case of these last equations.

4 . 2  A l g o r i t h m F lo w c h a r t

The on-line optimal estimation of slate variables based on 

the iterative E K F  arc shown in Fig 4 2 .

S L o p

Fig 4.2 Iterative E K F  Algorithm Flowchart

s n is m s s T O N  O F R ESU LTS  

The following common initial conditions which refer to the
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1 1 4



laboratory scalc fermenter have been used:

The slate variables: X(0)=0.35 and S(0)=l.0.

The parameters: Ks=2.0; At=0.05; |^max=^-''; Sp,=10; 

Currt=0.01; D=0.2.

Fig 1 and Fig 2 shows the on-line estimation results of 

biomass and substrate using the data from simulation results. The 

on-line estimation results of biomass and substrate using 

experimental data are presented in Fig 3 and Fig 4.

These experimental results demonstrate that the estimation 

technique can be successfully applied to a complex biological 

process and I.E.K.F. has a faster convergence rate, (the results of 

I E.K.F. were not included in this paper)

6. CONCLUSIONS

It has been demonstrated that states and parameters of a 

complex biolcchnical process can be estimated on-line by the 

extended Kalman filter (EKF). The estimation of substrate and 

biomass concentrations in fermentation processes is based on 

oxygen and carbon-dioxide concentrations which can be measured 

on-line. The experiments and computer results show that the 

extended Kalman filter gives satisfactory results during computer 

simulation.

The iterative extended Kalman filter can be used lo reduce 

estimation errors and also lo produce a faster convergence rate.

In addition, it has been observed thai all algorithms are

sensitive to error in initial estimation of biomass and substrate.

There is a serious problem of finding an initial estimate of the

error covariance. The observability of a system must be carefully 

considered lo avoid estimation problems.
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