
Integrating ECMA/ISO PCTE and
OMG’s CORBA

A Thesis Submitted for the Degree of Master of Science

by

Patricia Tangney B.Sc.

School of Computer Applications,
Dublin City University,

Ireland.

August 1995

Supervisor: Dr. John Murphy

DECLARATION

I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Master of Science in Computer
Applications is entirely my own work and has not been taken from the work of others
save and to the extent that such work has been cited and acknowledged within the text
of my work.

Signed:_______________
Patricia Tangney

Date:

ACKNOWLEDGEMENTS

None of this would have been possible with the support and encouragement of my
parents, Kathleen and Noel Tangney, I am forever in their debt

I would like to express my sincere thanks to my supervisors John Murphy and Robert
Cochran for their guidance and advice throughout this work, and to the Centre for
Software Engineering, Dublin City University for sponsoring this research.

Many people have gracious with their time and help to me during the course of this
research, I would like to acknowledge them all, but especially Johnathan Jowett and
Ariela Stem for their patience and help.

Finally I would like to thank Patricia Magee and Denise Tangney for their help, and
especially for providing the entertainment,

Buiochas le Dia,

Go raibh maith agaibh go léir.

Patricia Tangney

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION___ I

1.1 RESEARCH PURPOSE 2
1.2 PCTE a n d OMA C o n v e r g e n c e 4
1.3 Ba c k g r o u n d 5

1.3.1 OMG& CORBA 7
1.3.2 PCTE 7

1.4 T e c h n ic a l Issu e s 8
1.5 O v er v iew 10

CHAPTER 2 PCTE___ 12

2.1 PCTE - The S ta n d a r d 12
2.2 A r c h it e c t u r e o f PCTE-ba se d SEE s 14
23 PC T E 's O b j e c t M a n a g e m e n t S y s te m 18

2.3.1 PCTE O b j e c t s 19
2.3.2 L i n k s 20
2.3.3 PCTE Operations 20
2.3.4 PCTE TYPES 21

2.4 PCTE's D a t a D e f in i t io n L a n g u a g e 23
2.4.1 TYPE IMPORTATION DECLARATION 25
2.4.2 Object type declaration 26
2.4.3 LINK TYPE DECLARATION 26
2.4.4 LINK TYPE EXTENSION 27
2.4.5 OBJECT TYPE EXTENSION 27
2.4.6 ATTRIBUTE TYPE DECLARATION 28

2.5 PCTE p r o c e s s e s 29
2.5.1 INTERPROCESS COMMUNICATION 32

2.6 PCTE A c t i v i t i e s 33
2.7 IMPLEMENTATIONS 35
2.8 E v a l u a t io n 36

C H A P T E R 3 O M G C O R B A __ 38

3.1 D ist r ib u t e d Co m pu t in g 38
3.2 O bje c t M a n a g e m e n t G r o u p 39
3.3 O b je c t M a n a g e m e n t Ar c h it e c t u r e 41

3.3.1 O b j e c t S e r v i c e s 44
3.4 CORBA 46

3.4.1 S t r u c t u r e o f a n O b j e c t r e q u e s t b r o k e r 47
3.4.2 C l i e n t 49
3.4.3 O b j e c t i m p l e m e n t a t i o n s 49
3.4.4 O b j e c t A d a p t e r 50

3.5 INTERFACE DEFINITION LANGUAGE 51
3.5.1 INTERFACE DEFINITION 52
3.5.2 OPERATION DEFINITION 54
3.5.3 ATTRIBUTE DEFINITION 55

3.5.4 ENUM & TYPE DECLARATION 56
3.5.5 CONSTANT DEFINITION 56
3.5.6 EXCEPTION DECLARATION 57

3.6 IMPLEMENTATIONS & INDUSTRIAL RELEVANCE 57
3.7 C o n c lu s io n 60

CHAPTER 4 INTEGRATING PCTE A N D C O R B A _________________________61

4.1 RELATIONSHIP OF PCTE AND OMA 62
4.1.1 PRIMARY FEATURES AND STRENGTHS OF PCTE 63
4.1.2 PRIMARY FEATURES AND STRENGTHS OF OMA 64
4.1.3 COMPLEMENTARY STANDARDS 65

4.2 INTEGRATION STRATEGIES 67
4.3 MAPPING DDL TO IDL 71
4.4 MAPPING IDL TO DDL 73
4.5 IDL INTERFACES FOR PCTE TOOLS 74
4.6 R e la t e d W o r k s 76

4.6.1 PCIS 76
4.6.2 COHESIONWORX/PCTE 78
4.6.3 OOTIS TOOL INTEGRATION M odel 80

4.7 EVALUATION 81

CHAPTER 5 LIMITATIONS OF THE MAPPING OF DDL TO IDL___________ 83

5.1 GENERAL MAPPING CONCEPTS 84
5.2 MAPPING DDL CONSTRUCTS TO IDL CONSTRUCTS 86

5.2.1 MAPPING TYPE IMPORTATION DECLARATIONS 87
5.2.2 MAPPING ATTRIBUTE TYPE DECLARATIONS 87
5.2.3 MAPPING OBJECT TYPE DECLARATIONS 89
5.2.4 MAPPING OBJECT TYPE EXTENSION DECLARATIONS 90
5.2.5 MAPPING LINK TYPE DECLARATIONS 91
5.2.6 MAPPING LINK TYPE EXTENSION DECLARATIONS 93

53 LIMITATIONS OF THE MAPPING 95
5.4 EXTENDING DDL FOR COMPATIBILITY WITH IDL 98
5.5 EVALUATION 100

CHAPTER 6 IDL INTERFACES FOR PCTE TOOLS_________________________102

6.1 Gen e r a l Co n c e p t s 103
6.2 A PCTE TOOL’S IDL INTERFACE 104
6.3 IMPLEMENTING A PCTE TOOL’S IDL INTERFACE 106

6.3.1 ESH SCRIPTS 109
6.4 T o o l Co m p o sit io n 111
6.5 E v a l u a t io n 112

CHAPTER 7 CONCLUSIONS__ 115

7.1 PCTE
12 CORBA

116
117

7.3 INTEGRATION STRATEGIES
7.3.1 DDL TO IDL
7.3.2 IDL TO DDL
7.3.3 IDL INTERFACES FOR PCTE TOOLS

7.4 F u tu r e W o r k
7.5 OVERALL CONCLUSIONS

BIBLIOGRAPHY

118
119
120
120
121
123

125

APPENDIX A INTERFACE DEFINITION LANGUAGE (IDL) 131

APPENDIX B DATA DEFINITION LANGUAGE (DDL) 140

APPENDIX C C PROGSDS 148

APPENDIX D EXAMPLE IDL INTERFACE FOR PCTE TOOLS 167

Integrating ECMA/ISO PCTE and OMA
By

Patricia Tangney

Abstract

The relationship between the Portable Common Tool Environment (PCTE) and the
Object Management Group’s Object Management Architecture (OMA) including the
Common Object Request Broker Architecture (CORBA) specification can be viewed
as a complementary one. The PCTE specification addresses the area of large to
medium grain data integration for distributed Computer Aided Software Engineering
environments. OMA is a set of specifications designed to promote interoperability
between independently developed applications across distributed possibly
heterogeneous environments based on the object oriented paradigm. CORBA is the
communications heart of OMA. implicitly defining "distributed and secure execution
and interprocess communication services".

The current PCTE standard is largely object oriented. However it is not fully object
oriented because it does not define behaviour for PCTE objects. By using OMA to
provide object behaviour for PCTE objects as well as making them fully object
oriented greater control integration between PCTE objects could also be achieved.
PCTE’s Object Management System has a rich data modelling mechanism because it
was designed to integrate complex data and relationships, therefore being suitable for
use as a persistent store for OMA objects. Thu.s the convergence of PCTE and OMA
into a single standard is attractive; work is currently underway on this by the OMG
PCTE Special Interest Group.

However it will be sometime before a specification converging PCTE and CORBA is
available. The purpose of this thesis is to find an interim integration strategy which can
be used while waiting for their eventual convergence, since both specifications have
much to offer each other. This thesis discusses the language mapping of DDL to DDL
(and vice versa) and the definition of IDL interfaces for PCTE tools as strategies for
the interim integration of PCTE and CORBA.

I

CHAPTER 1 INTRODUCTION

Recent trends in the computer industry have motivated the research which is the

subject of this thesis. These trends include the shift away from mainframe systems to

distributed computing, the popularity of the object oriented approach to software

construction, strides towards the automation of software construction (Computer-

Aided Software Engineering) or at least particular aspects of the software

development process (e.g. coding or design tools), and the demand for greater

software interoperability. The focus of this thesis is on the integration of two

standards, Object Management Group’s Object Management Architecture (OMA) and

the Portable Common Tool Environment (PCTE), both of which have emerged

because of these trends.

OMA is a set of specifications (including the Common Object Request Broker

Architecture, CORBA) that are designed to “enable distributed integrated applications

using an object oriented approach” [5]. The PCTE specification is primarily designed

to address the integration of distributed CASE environments. Because

OMA/CORBA and PCTE take different approaches to achieving integration, instead

of overlapping, we discover they complement each other. Much work is being done

by the OMG PCTE SIG (Special Interest Group) on the long term merging of both of

these specification; currently specifications for a PCTE specification incorporating

CORBA are being drafted. However the convergence of PCTE and OMA into a

single standard is sometime in future. We believe the benefits of their integration are

such that they warrant the development of a strategy which would allow the

complementary integration of the current PCTE and OMA specifications, to be used

while waiting for their eventual convergence into a single standard. Therefore the

objective of this thesis is to achieve a short term integration of the current

specifications of PCTE and OMA so that they may be used together now in a

mutually beneficial manner.

1

1.1 Research Purpose

A wide range of Computer-Aided Software Engineering (CASE) tools are now

available on the market, the purpose of which is to automate the aspects of the

software development process. Until recently software has been developed

predominantly on large centralised computer systems using a collection of tools

bearing little or no relationship to one another. Although such isolated CASE tools

did have the potential to reduce the production cost of software systems, “the true

power of CASE tools only becomes apparent when they are all able to work together

as a tool set” [6, 12]. The development of Software Engineering Environments

(SEEs) has been the focal point of much research in the area of Software Engineering.

A SEE can be defined as a collection of computer-based facilities to support the

activities of programmers, software engineers, system designers, project managers etc.

to achieve higher productivity and higher product quality [12]. A SEE is more than

just a collection of tools in that it supports information passing between tools [13], and

so offers to enlarge the choice for software developers of which tool sets (supporting

methods and languages) to use in a given organisation or for a given development.

It is recognised that the availability of such integrated environments is crucial for

improving the productivity of the software industry. Integration is usually considered

under three categories, presentation, control and data integration. Presentation

integration is the “provision of a common user interface for the tools in an

environment” [6]. Control integration is “the capacity to request operations from

other tools in the system” while data integration is “the sharing and manipulation of

information on which the various tools perform operations to satisfy requests” [43].

Most of the existing SEEs are based on at least two fundamental concepts of

integration: control and data integration. It is these aspects of integration that

concerns this thesis.

2

PCTE, Portable Common Tool Environment, provides standard services to support

integration and portability of a SEE. PCTE is to a large extent object oriented, but the

objects which it defines are data objects and do not have behaviour. These data

objects however do provide data integration, information sharing for the tools,

particularly suited to CASE tools. However due to this lack of behaviour, the amount

of control integration or tool co-ordination within a SEE based on PCTE is limited. It

is to address this limited control integration that we wish to integrate PCTE with

Object Management Architecture (OMA), in particular the Common Object Broker

Architecture, CORBA (the name given to the architecture of the Object Request

Broker, ORB, component of OMA) the communications heart of the OMA

specifications. Because the OMA specifications are specifically designed to promote

development of integrated distributed systems using the object oriented paradigm, it

makes sense to introduce OMA as an integration technology for PCTE, allowing

PCTE to reap the benefits of being truly object oriented and increasing control

integration between PCTE tools.

The integration could be beneficial from the OMA point of view, since the PCTE

repository or object base could also be used as a persistent store for OMA objects.

The Object Services component of the OMA which provides basic operations for the

logical modelling and physical storage of objects, has not yet been fully specified and

no implementations for it are available. Because the emphasis was on data integration

within the PCTE specification, it, of necessity, developed a semantically rich data

modelling mechanism, the Object Management System. Thus the Object Services

component of the OMA would benefit from an integration of PCTE into OMA. These

benefits all suggest that their convergence into a single standard is inevitable [5] and

very attractive.

A considerable effort is being made by Object Management Group’s PCTE SIG

(Special Interest Group) to converge the PCTE and OMA specifications, see Section

1.2. However the purpose of this thesis is to provide an integration strategy for the

3

current PCTE and OMA’s CORBA specifications, to their mutual advantage, while

waiting for their convergence into a single specification.

The initial integration approach taken during this research was that of a direct language

mapping between PCTE’s Data Definition Language and CORBA’s Interface

Definition Language- such a mapping was sought because it would be a direct

integration without altering the specification of either standard. However this

approach proved unfeasible, for reasons discussed later in Chapter 5, and another

integration strategy was sought, the same criterion being applied (no alteration to

either the PCTE or CORBA specifications).

1.2 PCTE and OMA Convergence

In 1994 the Object Management Group formed the Portable Common Tool

Environment Special Interest Group (PCTE SIG). The mission of the PCTE SIG is to

provide support and requirements to OMG task forces for the convergence and

interoperability of OMG’s OMA and PCTE, specifically fostering PCTE compliance

with OMA; to identify requirements for, and foster convergence of, interoperable

CASE environments and fine grain repository tools for the evolution of PCTE [42].

The PCTE SIG now works with users, vendors, academia, government and provide

technical liaison staff to work with relevant consortia and accredited standards

organisations, to assure consistent requirements for the evolution of PCTE to OMA

compliance, object orientation and fine granularity [42]. Substantial work towards the

merging of PCTE and OMA has already been achieved. Work is currently in progress

by OMG PCTE SIG on proposals for the object oriented extensions to the PCTE

Standard (ISO/IEC -13719) which incorporate CORBA [49].

4

1.3 Background

Before we go any further, let us examine the importance of computer industry

standards such as OMA and PCTE. Standards can have a profound impact on the way

companies conduct their business. Consider the benefits already gained from the

standardisation of such common languages as COBOL, C and SQL which enable the

development of applications that are portable across heterogeneous platforms. When

a standard is adopted and accepted, the direction of the industries that fostered the

standard can be shaped for the better [40]. Take for example the popularity of

Relational Data Base Management Systems (RDBMS) as opposed to Object Oriented

Data Base Management Systems (OODBMS). Much of the success of RDBMSs

comes from the standardisation that they offer, along with the simplicity and usability

of the model. The acceptance of SQL standard allows a high degree of portability and

interoperability between systems, simplifies learning new RDBMSs and represents a

wide endorsement of the relational approach [41].

The software development industry is standing at a critical juncture where standards

for the use of separate control and data integration strategies are beginning to emerge

just as the benefits of the powerful new technological wave of software composition

technology are becoming clear. Software composition is an approach to the creation

of software by composing existing and new elements to form larger structures, writing

a minimum amount of algorithmic code to do so. Composition technologies

significantly reduce the effort required to build large software systems. For example,

the developer of a chip-design package that integrates logical design, physical

packaging and timing simulation does so by separately constructing the logical design

component, the physical packaging component and the timing simulation component

and then composing these into a complete tool [44]. Object technology greatly lends

itself to the production of integrated software systems and software composition. This

is why the members of OMG believed that the object-oriented approach to software

construction best supported their goals of “developing and using integrated software

5

systems”[29]. While not necessarily promoting faster programming, object technology

allows you to construct more with less code, partly due to the naturalness of the

approach and also to its rigorous requirement for interface specification.

Tool composition refers to the software composition of tools, and in this thesis, CASE

tools in particular. In order to enable such compositions, a tool integration model

must permit the composer to chose a binding that is either high performance with tight

coupling or lower performance with looser coupling. The difference is called the

granularity of the composition. In general, small elements (fine-grained) require more

frequent interaction and a consequent tighter coupling [44]. Platforms like PCTE are

generally called coarse-grained because the intrinsic modelling and interpretative

overheads and the implications of security and locking on an object-by-object basis

limits its potential performance to coarse-grained interaction i.e. less frequent

interaction and looser coupling.

The way in which standards relate to and are compatible with each other is also of

importance to their success and acceptance. This thesis concentrates on the drawing

together, in terms of an interim integration strategy, of two complementary standards

within the computer industry namely OMG’s OMA and ECMA/ISO PCTE in order

provide a mutually beneficial integration. They are complementary in the fact that

PCTE relies heavily on the data integration provided by its data modelling mechanism

as a means of allowing tools to share common data, but an even tighter integration of

tools- tool co-ordination is desirable, which can be provided by OMA’s CORBA.

6

1.3.1 OM G&CORBA

In 1989 the Object Management Group (OMG) was established to simplify and

reduce costs of software design and development and encourage the use of the object-

oriented paradigm. To achieve this end OMG set down guidelines and object

management specifications for a common framework, Object Management

Architecture, of which CORBA (Common Object Request Broker Architecture) is

the specification for the communications component of OMA. OMA is a set of

specifications designed to support applications that are collections of interoperating,

co-operating distributed objects. Following industry’s adoption of these specifications,

they will be instrumental in the standardisation of the object technology and make it

“possible to develop heterogeneous applications environment across all major

hardware and operating systems”[42]. Since OMG is an open consortium, with over

500 members world wide, the specifications are set by industry itself, thus ensuring

their relevance and the dedication of the computer industry to their acceptance.

Chapter 3 contains a description of OMG’s CORBA and its place within the broader

Object Management Architecture.

1.3.2 PCTE

Of the considerable variety of CASE tools now available on the market, very few of

them can be easily integrated for example, coding, design and testing tools which

support only isolated aspects of the software process. Tools which can only work in

isolation are useful to a point, but do not fulfil the potential of a SEE. A SEE can be

described as in [6] as consisting of four layers : Platform, Public Tool Interface,

Framework and Environment (See Section 2.2). One approach to the efficient

integration of software engineering tool sets is to factor out those common features

required by most tools for information management and interaction with the tool users.

It is therefore an efficient way forward to define a domain in which these common

7

needs are satisfied, whilst leaving the tools themselves to carry out the specific tasks

and offer their specific facilities. Out of this realisation has come the concept of the

Public Tool Interface. The Public Tool Interface (PTI) is the layer which provides

standard services to support integration and portability [12].

Portable Common Tool Environment (PCTE) is an example of one such PTI for an

open repository. It defines a set of public and standard services designed to support

portable and well-integrated CASE tools. A repository is a place for storing all the

information that is required in a software engineering environment, for example tools,

software products and documents. The Object Management System (OMS) within

PCTE provides the functions used to access the repository. PCTE provides a public

schema mechanism that allows independently sourced tools to access and manipulate

information in the repository [6]. The repository approach to data integration has been

the main focus of the IRDS (Information Resource Dictionary Systems) and PCTE

efforts. The IRDS advocates have strived for nearly a decade towards the illusive

goal of acceptance within the standards community [40], compared with PCTE which

could be viewed as the leading repository standard, having gained ISO standardisation

in 1994. Control Integration for CASE tools has been pursued via a standardised

message (structure and semantics) as promoted by the CASE Interoperability Alliance

(CIA) and CASE Communiqué industry groups and recently X3H6 [5]. Chapter 2

describes the PCTE standard in detail.

1.4 Technical issues

This thesis explores the very real alternative of using the distributed object approach

(i.e. CORBA) to provide control and data integration for the general problem of

integrating CASE tools in a SEE, using a single paradigm (Since CORBA objects have

both state and behaviour as opposed to PCTE objects which have only state).

PCTE and OMA specifications are both concerned with the integration of distributed

applications. OMA applications are collections of interoperating co-operating

distributed objects (data and methods) ranging from large to fme-grain objects. OMA

is suitable for a wide range of domains including CASE [5], which encompasses the

focus of PCTE, the area of data integration for distributed CASE environments.

The major technical issue that is solved by layering CORBA on top of PCTE is

concerned with the fact that CORBA implicitly defines “distributed and secure

execution and interprocess communication services” [5]. Thus the introduction of

CORBA as one of the integration technologies of a PCTE SEE is beneficial from the

perspective of the tool integrator and the framework builder, in that CORBA supports

tool composition, and therefore will provide greater control integration between PCTE

tools. It will also allow the definition of tool interfaces so that they can make their

services available to the rest of the environment, while hiding the implementation

details [43].

The support of tool composition, as discussed in Section 1.3, is an important part of

tool integration for CASE. The ambitious goal of tool composition is to allow

construction by assembly of separate pieces of systems that have the usability, and

almost the performance, of hand-crafted monolithic systems. The advantages of

composition are ease of construction, reuse of components and ease of extensions and

maintenance. The challenge is to maintain usability and performance. Fine grained

composition in which components can interact tightly and frequently and can share

small granules of data is essential to meeting this challenge. PCTE and CORBA both

contribute in largely complementary ways to supporting composition, and so their

integration into a single platform is attractive [44].

9

From the OMA/CORBA point of view the PCTE repository could be used as a

persistent store for OMA objects, thus permitting the state as well as the methods of

OMA objects to be stored. The persistent storage of objects is a part of the Object

Services component of the OMA which has not been fully specified yet (see Section

3.3.1).

The implementation of PCTE used during this research was GIE Emeraude PCTE

Environment V12 and the implementation of CORBA used was IONA Technology’s

ORBIX Version 1.1.

1.5 Overview

The remainder of this thesis is structured as follows. Chapter 2 contains details of the

PCTE standard, including its Object Management System and Data Definition

language. It also contains a description of the typical structure of SEEs based on

PCTE and a discussion on the industrial relevance of the PCTE standard and its

currently available implementations. Chapter 3 contains a description of OMG’s

CORBA, its place within the broader Object Management Architecture, its Interface

Definition Language (IDL), the role of OMA within the computer industry and the

availability of CORBA implementations and CORBA-compliant products. Chapter 4

examines the complementary relationship that exists between PCTE and OMA. It

discusses the approaches to integration researched in this thesis while looking for an

interim solution to the integration of PCTE and OMG CORBA, and the benefits that

would hope to be achieved by such an interim integration. Chapter 4 also contains

details of related work in the area of the integration of PCTE and OMA/CORBA and

discusses where the research contained in this thesis fits in relation to this work.

10

As will be discussed in Chapter 4 the most obvious choice for an interim integration

strategy is that of a direct language mapping between DDL and IDL (and vice versa).

Much of the work of this research was to prove that such a mapping will not be

possible until the specification for DDL (in particular) has been extended. The fact

that this thesis proves that a mapping between DDL and IDL is not currently possible

is a valuable contribution in itself. Chapter 5 outlines the nature of a DDL to IDL

mapping given the current specifications and discusses why such a mapping is proven

to be not viable as an interim strategy for PCTE and CORBA. Chapter 5 also contains

a description of the extension DDL would require for compatibility with IDL, in order

to make such a strategy viable for future integration.

Chapter 6 describes the definition of IDL interfaces for PCTE tools as an alternate

approach to the interim integration of the two standards, and discusses the benefits of

this strategy. Chapter 6 contains a demonstration of how the definition of IDL

interfaces for PCTE tools may be used to increase control integration between tools in

a PCTE repository (in the demonstration Emeraude PCTE V12), to support tool

composition for PCTE tools, and to enhance PCTE objects to full object orientation.

Chapter 7 concludes by providing a summary, evaluating the usefulness of the

integration strategies researched in this thesis, and how future work can build upon this

research.

11

CHAPTER 2 PCTE

This chapter introduces the history and concepts behind PCTE, particular attention is
being given to areas of the standard which are deemed important in context of this
thesis. Section 2.2 contains an introduction to the architecture of PCTE-based
Software Engineering Environments (SEEs). The PCTE repository or object base and
OMS (Object Management System) are described in Section 2.3. Section 2.4
describes the Data Definition Language (DDL) which is PCTE’s data modelling and
integration mechanism. PCTE processes are introduced in Section 2.5, and a
description is given of the way in which they are used as mechanisms by which the
PCTE repository is interrogated and modified. Section 2.6 describes PCTE activities
and how they are used to ensure the consistency of the PCTE repository. Section 2.7
describes the implementations of PCTE available on the market and discusses the
industrial relevance of the PCTE standard.

2.1 PCTE - The Standard

As already mentioned in the introduction, a variety of CASE (Computer-Aided
Software Engineering) tools now exist, the function of which is to automate aspects of
the construction of software itself. Until the advent of integration standards such as
PCTE, software was developed predominantly on large centralised computer systems
using a collection of tools, with minimal data integration at file level. These tools
supported isolated aspects of the software process, and bore little or no relationship to
one another- e.g. coding, design, testing tools respectively supporting only the coding,
design and testing stages of process development. Although such isolated CASE tools
did have the potential to reduce the production cost of software systems, the full
potential of CASE tools is only apparent when they are able to co-operate together as
part of a tool set. Therefore the basis of any CASE environment must be a flexible
framework which offers a "cost-effective tool integration mechanism, encourages
portable tools, and facilitates the exchange of development information"[25].

12

Tool integration is defined as a property of a tool’s relationship with other elements of
the environment, chiefly other tools, the platform and a process [26]. The complexity
and interrelation of CASE components require an environment supported by
comprehensive standards that allow a range of tools and techniques to work properly
together[27]. The highest degree of CASE integration is achieved through the use of a
standard model for tools. Such a standard defines what mechanism a Software
Engineering Environment (SEE) or tool developer has to use for tool communication,
the representation of the user interface, and the data model within the Repository.
PCTE, the Portable Common Tool Environment, is such a standard for "a public tool
interface for an open repository"[6]. A Public Tool Interface (PTI) is defined as a set
of program libraries that grants access to facilities and services needed by tool writers
and environment builders[28]. In order to support a high degree of integration as well
as portability of CASE tools, PCTE defines a set of public and standard services and
uses the PCTE repository to store the necessary information associated with a
Software Engineering Environment The information stored in the repository may
include documents, source and compiled code for the products under development, as
well as the CASE tools themselves.

Before we examine the role of PCTE within a Software Engineering Environment let
us turn briefly to the origins of the PCTE standard. PCTE was initiated in 1983 by the
European Strategic Programme for Research and Development in Information
Technology (ESPRIT) as a project called "A Basis for a Portable Common Tool
Environment". That project partially funded by the Commission of the European
Communities, produced a specification for a tool interface, an initial implementation,
and some tools on that implementation. The objective of this interface was to allow
the building of SEEs and promote their implementation on different hardware and
operating systems. Following the acceptance of the first edition as an ECMA standard
in December 1991, review by international experts has led to the production of a
second edition taking into account review comments relating to this standard. This
edition was accepted as an ECMA Standard by the General Assembly of June 1993
[1], In 1994 PCTE became an international standard, as ISO/IEC 13719.

13

2.2 Architecture o f PCTE-based SEEs

The architecture of PCTE-based Software Engineering Environments are described in
this section according to the following four layers : platform, the public tool interface,
framework and environment Such a description of a SEE is based on concepts
originally described in the PCIS Technical Study paper [24].

The platform consists of the hardware of a machine and the operating system needed
to use it. Essential to Software Engineering Environments is portability, the capability
of using the same software on different platforms. Portability is important because the
users of an environment want to make use of their favourite tools regardless of the
platform on which the environment is based, this being part of the overall current trend
towards "plug 'n' play" tools (i.e. tools which can be slotted into an environment with
ease regardless of their vendor). In the classic "Non-Open" model, interfaces between
tools have to be modified each time a new tool is introduced. This prevents the plug
and unplug replacement of tools and means the user is restricted to a particular tool
vendor. The portability of software can be reduced due to a number of factors
including differences between machines (software developed for a given machine
architecture utilises specific features of that architecture making it unportable for
other architecture types) and differences between operating systems (programs which
contain operating system calls may not be portable). The PCTE Public Tool Interface
is designed to increase the portability of tools.

The Public Tool Interface (PTI) hides the platform and provides a uniform base on
which software can be developed [6]. PCTE is an example of such an interface for an
open repository, as it is designed to shield applications from the variances among
differing platforms. The PTI defines a set of interfaces, these usually being
implemented as a set of operations on a given platform. In the case of a PCTE-based
SEE these operations are obviously PCTE operations (See Tables 2.1 and 2.2 for
example). The Public Tool Interface is a non proprietary, public and widely available
standard to which all tools in an environment should conform. Tools which are in
exact conformance with the PTI are portable to all platforms on which the PTI is
implemented.

14

The framework incorporates the Public Tool Interface along with general purpose
horizontal services and tools whose functionality is generic to all stages of software
development and maintenance e.g. repository browser and querying tools,
configuration management tools, communication and documentation support tools.
One such PCTE framework, Émeraude V12 is described in diagram 2.2. Émeraude
V I2 includes PCTE libraries implementing the PCTE interface and builds on these
common services for the management of metadata, data query, version and
configuration management It provides a number of horizontal tools, including some
basic PCTE tools (e.g. to create objects and links, set attributes) and encapsulation of
UNIX tools[6].

15

It is the framework layer which provides support for data, control and presentation
integration within the complete environment, and it is this integration which sets apart
the SEE from a set of independent tools executing on an operating system.

A joint development by ECMA and NIST addressing the area of SEEs, particularly the
services that are expected to be useful in an environment framework, has provided a
reference model [21]. The reference model puts the framework services into a
number of groups, which are commonly represented by a diagram often referred to as
the "toaster model" see [6, 20]. Figure 2.3 shows how a PCTE-based SEE would be
represented using the this model.

16

The Environment includes specialised vertical tools to support the life cycle, along
with the other layers outlined previously. These tools extend the basic capabilities of
the framework to application-specific domains (e.g. CASE, CAD (Computer Aided
Design)). PCTE addresses the CASE domain in particular. Each of the vertical tools
are designed for use in a particular phase of the software development process. These
phases may occur sequentially, as described in [3], or as a cascade, the so-called
waterfall processes, as described in [4]. In an extendible SEE, its set of horizontal and
vertical tools may evolve due to the altered requirements of an organisation or the
availability of newer and better tools. To enforce a higher level of integration, the
environment may enforce the use of common services for all tools, this however
being at the cost of restricted usability of imported and foreign tools.

Repository

Emeraude Components
Object Base/Repository
Object Management Services (OMS)
Emeraude VCM
Emeraude PCTE Tools & Services

(inc. OMS browser.
Text Editor,
Schema Editor,
OMS Utilities)

Communication Services

Partially provided by Emeraude PCTE

User Interface Sen/ice
CASE Tools

Figure 2.3 PCTE-based SEE using the toaster model

Having seen in this section the role of PCTE within a SEE, sections 2.3 and 2.4
examine how this role is fulfilled by PCTE OMS (Object Management System) and
Data Definition Language.

2.3 PCTE's Object Management System

Central to the process of constructing and integrating portable tools by PCTE is the
provision of the object base and a set of functions to manipulate the various objects in
it. “The object base is the repository of data used by the tools of a PCTE installation,
and the Object Management System or OMS of PCTE provides the functions used to
access the object base" [1]. The OMS can be seen as an evolution from a traditional
File Management System (e.g. the hierarchic structure of UNIX) to a structure that
can be adapted to the needs of different environments [13, 14]. The OMS is designed
to enable the transparent distribution of the object base over a local area network.

PCTE makes use of database system technology and a complex object model as well as
semantic data model theories (see [18, 23]) to overcome the shortfalls of applying
traditional database systems to a SEE repository [12, 16]. The object base, a relational
database, is the repository of persistent information that is employed by software tools
[17]. The object base or repository is required to store and manage very complex data
and relationships across the whole software life cycle- not only finished products of the
software process (e.g. designs, functional specifications, alpha, beta and fully tested
versions of code, fault reports, change requests) but also the intermediary and
supporting data that accumulates along the way (e.g. project history, test results,
memos and reports) [6]. The basic OMS model is derived from the Entity Relationship
data model and defines objects and links as being the basic items of a PCTE object
base [1, 12, 15]. The object base can be viewed as a directed graph, in which the
objects are nodes, and the links are arcs of the graph. This network of objects,
connected by links, allows a large number of complex relationships to be modelled in
an intuitive way, see figure 2.4 for example.

18

2.3.1 PCTE Objects

PCTE objects are entities which can be designated, and can optionally have :
• contents a storage of data representing the traditional file

concept.
• attributes primitive values representing the specific properties of

an object which can be named individually.
• links representations of association between objects. Links

may have attributes, which may be used to describe
properties of the associations or as keys to
distinguish between links of the same type of object

Designation of links is the basis for the designation of objects: the principal means for
accessing objects in most OMS operations is to navigate the object base by traversing
a sequence of links [1].

19

2.3.2 Links

Links represent the relationship between PCTE objects, which (the relationships) can
be uni- or bi-directional. However each link has only a single direction. Bi-directional
relationships are described using reverse links, whereby two links with opposite
direction join the objects, each of which is called the reverse of the other. As stated
above, links (similar to objects) may have attributes. Object attributes record a
specific piece of information about an object, whereas link attributes record something
about the relationship between two objects.

2.3.3 PCTE Operations

The OMS supplies link and object operations for the basic manipulations such as
creation, deletion and the setting of a value for an attribute. In addition it has a set of
operations that give access to contents (files, pipes, devices) of an object. However,
the OMS cannot decipher these contents, its meaning being left to the software tool[2,

12].

Layered on top of the OMS are various services covering execution (process
management), interprocess communication, activities (transaction management),
distribution, discretionary and mandatory security, notification, accounting and object
contents operations. Many of these services are modelled as objects in the OMS. For
example, processes are modelled as objects and the properties of a process are
expressed in terms of object attributes and links. This approach allows uniform
information access [5].

In the PCTE specifications [1], the abstract operations and their bindings are

categorised by function in a number of separate but often related clauses [6]. The main

functional areas are summarised below to indicate the scope of the PCTE interface:

20

Object management & schema management

operations to define and manage, in a general way, all the instances and typing

information in an object base (objects, links and attributes).

Object contents

operations to manipulate the data stored in the contents of objects.

Process execution, message queues & notification

operations to manage the execution of programs and their communication

Concurrency and integrity control

operations to prevent loss of data integrity by locking and transactions.

Discretionary security, mandatory security & auditing

operations to enforce security policy and to audit object base accesses.

Volumes, devices, archives and replication

operations to manage the distribution of data, to represent physical devices and

to make archive copies of objects.

Network connection
operations to manage the configuration of workstations.

Accounting
operations to monitor resource use.

2.3.4 PCTE Types

An essential principle of the OMS is that of schema. The schema is a means of
integrating tools around commonly accessed data structures [13]. Rarely is it
convenient or useful to model an entire environment as a single system. It is important
that the SEE framework supports the break down of the object base into sets of data
that model different aspects of the environment and development process. In PCTE,
this functionality is provided using the working schema mechanism. Each working

21

schema represents a specific view (e.g. tool's, user's or project's view) of the object
base. Central to the understanding of schema is the PCTE notion of types.

A type "captures the essential characteristics of like entities from the same domain,
abstracting their common properties "[6]. For example all sources contain text, all
programs contain executable binary code. We can identify many classes of objects that
share common characteristics, for example, the relationships that a class of objects may
have with other classes of objects, or the kind of attributes that are relevant. PCTE
represents these characteristics with types, each of which is a data definition for a
particular class of object. A type may be defined for each class of similar objects
within the repository- take for example a type defined for specification documents,
design documents or source code objects. ADA source, C source and FORTRAN
source are each a specialisation of the general source type with their own particular
characteristics in addition to the general ones.

When any object base entity is created, it assumes the characteristics defined by the
type; these characteristics can govern, for instance, the number of links of a type that
can leave an object or the reverse link of a link. The type definitions making up the
overall OMS schemas are organised into a collection of small sets of definitions called
Schema Definition Sets (SDSs) [13]. When part of the OMS schema must be visible
for a particular purpose, a SDS is used to represent this partial view of the OMS. An
SDS defines both the visible characteristics of the basic entities (objects, links,
attributes) and how they can be related to each other; a link of this type can have this
object type as its origin, and that type as its destination; this attribute type is applied to
this object or link type. For example a project scheduling tool might use a set of
related types representing projects, milestones, start dates and estimated duration of
project tasks. Each PCTE process (see Section 2.5) has a working schema, a
mechanism by which sub-schemas represented by SDSs can be used by processes, and
therefore the means by which running tools are presented with the schema representing
their data models. A working schema is a linear collection of SDSs and all
environment referencing is done through the working schema [12]. A tool’s view of
the repository is through its working schema. Thus only the types belonging to the
SDSs contained in its working schema’s list of SDSs will be visible to any tool.

22

This typing mechanism is fundamental to the data integration of tools within PCTE, by
allowing tools from different vendors to have their own names for common classes of
objects. The data model of a tool can be compared with those of other tools and, by
identifying the common data entities, the models can be integrated with each other and
implemented as common types. In the PCTE typing model, when new types are
defined they must be integrated with the existing types of the environment (every
PCTE based environment pre-defines the same four SDSs system, metasds, security
and accounting, these being necessary to support the operation of the interface). The
separation of a tool’s data model from its code, as provided by SDSs, greatly facilitates
data integration.

2.4 PCTE's Data Definition Language

The PCTE Data Definition Language (DDL) is a formal notation for defining types
[6], and a schema definition formalism [141 for SDSs. It is a convenient textual (as
opposed to graphical or functional) notation. The syntax of DDL can be found in
Appendix B of this thesis. This section gives a brief introduction to the semantics of
the language. To illustrate these semantics the c_prog SDS will be used, see Appendix
C for its complete DDL listing. DDL is normally divided into SDS sections. SDS
sections group together type definitions, each DDL type being declared within a SDS
section.

The DDL declaration of a type includes both the type and the type-in-SDS properties
for the current SDS. As stated in the previous section each newly defined type must
be integrated with the existing types of the environment (the pre-defined types within
the system, metasds, security and accounting SDSs). The type-in-SDS properties
exist to represent the properties of object, link, attribute and enumeration item types
as they are used within a particular SDS. Remember that each SDS is a view of part of
the whole OMS schema; a part must be visible for a particular purpose. For example
the c_prog SDS is used to model an environment for the C programming language,
that is an environment which can describe, for example, the relationship between C
source code files, object code, libraries and header files. Therefore the c_prog SDS
defines only the type objects which would be of interest while programming in C, and
leaves the remainder of the object base hidden (for example any FORTRAN source
files would be hidden). The SDS definition for c_prog first imports types which are

23

intrinsic, and then applies specific properties to them which are necessary to describe
the C programming environment

Some properties of PCTE types are intrinsic, for example, the kind of contents an
object of a particular type can have, or the value type and initial value that the attribute
type can have. They are intrinsic in the sense that they are assigned when the type is
created, are unchangeable, and are therefore the same in all SDSs in which the type
subsequently appears. Even if an SDS applies other properties to the type (these
applied types are the type-in-SDSs), the intrinsic properties cannot be changed.
Applied properties include the attributes of an object or link type and set of link types
leaving the an object type. We will take as an example the definition of the program
type from the c_prog SDS:

import pact_joftware as program;

defines the pre-defined type pact_software (defined in the pact_sds) for use within the
c_prog SDS; within this SDS the type will be renamed as program.

extend program
with
attribute version',

edition;
system;
systemjrelease;
target;
variant;

link deliverable;
sub;
inc;
build;
tests;
exec;
subprog;

a;
out;

end program;

24

Program is then extended to define properties which will apply to this type (program's
type-in-SDS) within the c_prog SDS. As the DDL listing above illustrates, these
applied properties are to include new attributes, namely: version, edition, system,
systemjrelease, target and variant which will apply to program within the c_prog
SDS. Furthermore, program is restricted so that only links of the following type are
allowed to leave a program object: deliverable, sub, inc, build, tests, exec, subprog, a
and out.

Data schemas are explicitly represented in PCTE by data instances referred to as the
metabase. The metabase deliberately distinguishes the intrinsic properties of a type
from those applied to it within the context of a specific SDS. It contains a set of
objects (so called types-in-SDS) which represents the specific properties that a type
holds within a given SDS. The distinction between intrinsic and applied properties is
important to the understanding of schema installation and evolution strategies. SDSs
are primarily sets of types with applied properties and can be managed as such [23].

Within an SDS section, the types are defined in a relatively free order and flexible way.
Because of this flexibility there are often two or more equivalent constructions to
declare the same types [6]. Types can be defined in either single or compound
declarations with related types. All DDL types (Object, link, attribute and enumeration
item types) can be imported from other SDSs or declared within a SDS; object types
can be declared within a SDS as descendants of existing or previously imported types,
the method by which they are imported is the DDL Type Importation declaration. In
the following Sections 2.4.1 -2.4.6 the SDS section in which a clause occurs, and the
SDS to which it contributes, are called the current SDS section and SDS respectively.
The examples used in these sections illustrate the language constructs provided by
DDL for defining types.

2.4.1 Type Importation Declaration

A type importation declaration defines a type in SDS in the current SDS. This type in
SDS is a copy of the type in the SDS from which it is being imported. For example the
following DDL type importation declaration, taken from the c_prog SDS:

25

import object type pact-env as env (usage navigate; export protected);

im ports the object type env from the pact SDS; this im ported object type will also be

know n as env w ithin the current SDS. N avigate and pro tec ted are the usage and

export type m odes which govern how the type may be used w ithin the SDS

(PR O TEC T ED , R EA D , W RITE, D ELETE, C R E A T E , N A V IG A TE) o r if it may in

turn be exported from the current SDS.

2.4.2 Object Type Declaration

An object type declaration always specifies the parent type(s), and m ay also name or

declare the applied attribute types and out-going link types. Only the basic pre-defined

child types o f object can include a contents type specification. The follow ing example

is taken from the pre-defined system SDS, and is the D D L definition o f the file type

object:

fileichild type of object with

contents file;
attribute

contents_size: (read) natural;
positioning;

end file;

This D D L object type declaration specifies the type object to be the paren t o f the file
type, to have contents (file) and attributes called contents_size and positioning. In

turn the file ob ject type m ay be the parent type o f another object.

2.4.3 Link Type Declaration

There are several ways to specify a link type and its application in D D L. A link type

can be named o r declared, and applied to its origin and destination types, w ithin an

object type declaration; this is the case in the program object declaration given earlier

26

in this section. A lternatively a link type and its destination type can be declared

together. The definition o f the link tests in the c_prog SDS illustrates this type o f link

declaration:

tests: composition link to testset;
This DD L definition states the object type testset to be the destination o f links o f the

type tests.

2.4.4 Link Type Extension

An existing o r im ported link type can be applied to new destination types in a link type

extension. Take fo r exam ple the follow ing D D L link type extension declaration:

extend link type tool to sctx
with
attribute

user : string ;

end tool ;

Here the link type tool is given a further outgoing destination type and attribute type,

sctx and user, respectively.

Also an existing o r im ported link type can be applied to new origin types in an object

type extension, as shown in the next section.

2.4.5 Object Type Extension

An object type extension extends the object type-in-SD S in the curren t SD S, by adding

further outgoing link types, attribute types, com ponent object types. F o r instance in

the object type extension o f testset w ithin the c_prog SDS (show n below), tst and

theme are declared to be further outgoing links fo r the object type testset.

extend testset

27

with
attribute
link

nature;
tst;
theme;

end testset

2.4.6 Attribute Type Declaration

There are also several ways to specify an attribute type and its application in DDL.

An attribute type can be declared independently, w ithout any applications. Take for

exam ple the D D L attribute declaration o f version w ithin the c„p rog SDS:

version : integer := 1;

An attribute type can be declared (if it has n o t already been declared elsew here) and

applied to an object o r link type within an object o r link type declaration o r extension,

as the version a ttribute was applied to the object type program show n earlier. An

existing o r attribute type can be applied to new object o r link types w ithin an object or

link type declaration o r extension [6]. E num eration Item can e ither be defined

independently o r w ithin an enum eration attribute type declaration.

As can be seen from the above sections, PC TE has an inheritance m echanism for

object types. A child type inherits the properties o f its paren t type(s). In addition it

may have properties o f its own such as link types, attribute types, contents and

com ponents [1]. It is im portant to note how ever that, although PC T E supplies the

concept o f inheritance, it is not a truly object-oriented env ironm en t The reason for

this observation is that PC TE's D D L does n o t have a m echanism to a ttach m ethods to

object types. Such a mechanism is expected from a truly object-oriented environm ent

A t this point, we have seen how portability and integration are supported by PCTE.

The portability o f PC TE tools to o ther p latform s, where PC T E is im plem ented, is

guaranteed by the conform ance to the interface provided by the O bject M anagem ent

System. In tegration fo r tools is provided through a data in tegration mechanism

[121.

28

available in the form o f DDL definitions fo r a to o l’s w orking schem a. W e will now

exam ine the nature o f PC TE tools, w hich are the m echanism by which the repository is

interrogated and m odified.

2.5 PCTE processes

A PCTE process is the execution o f a program , w hether this is a softw are engineering

tool o r general tool, a target application, or one o f the com ponents o f the PCTE

im plem entation [6] (PC TE tool, o r tool, may be used to m ean PC TE process).

Program code fo r these PCTE tools is stored in static contex t objects in the object

base. A static con tex t (short for static con tex t o f a program) is an executable or

interpretable program in a static form th a t can be run by a process. A n executable

static contex t can be loaded directly and then executed. A n interpretable static

context is a program that can be run by a process but it first requires the running of

another static con tex t as an interpreter. A static contex t may be run either by a PCTE

im plem entation o r by a foreign system [1]. A foreign system can be a foreign

developm ent system , a target system running a real-tim e operating system , o r even a

PCTE w orkstation in another PCTE installation.

29

A PC TE process is a dynamic entity which has a tem porary object base representation;

an active process has a dynamic contex t which is the collection o f all its properties;

including its da ta and code images in m em ory, w orking schem a, reference objects,

named variables [6]. A PCTE process can be looked upon as a m eans o f running a

static context i.e. a dynamic context is a running static context. One property o f the

dynam ic contex t o f a process is its paren t process, i.e. each process m ust have a parent

process. The first process created to realise a PC TE environm ent on a given

w orkstation is the PC TE initialisation process, and from this initial process a tree

descends. A child process can be executed on a different site from its parent; therefore

a process tree starting on one w orkstation often becom es distributed over several

w orkstations o f a PCTE-based environm ent.

Processes are created and started in tw o separate s te p s :

• W hen a process is created, so is the process object and m any o f its links. A t this

stage, the instances in the object base represen t how the dynamic con tex t will be

initialised. It is possible for the new process, o r another one, to change m any of

the properties to suit the static con tex t tha t is to be run (e.g. defining the w orking

schem a w ith which the program is to w ork and setting referenced objects to

designate the objects to be processed). F o r exam ple a brow sing too l may change

the w orking schem a and set new reference objects at the u ser’s request. The

processing o f m ost o f the PC TE operations depends on the dynam ic con tex t o f the

calling PC T E process (for exam ple, security checks perform ed by an operation

depend on the discretionary and m andatory con tex t o f the calling process; visibility

checks are done on the basis o f the curren t w orking schem a o f the calling process

etc.) [22].

• W hen the process is started, additional links are created and attributes initialised.

A t this second stage, the instances in the object base represen t the dynamic context

itself.

The success o r failure o f a process is determ ined by the static con tex t that it is running.

Upon process term ination, a program defined result and term ination status becomes

available from the object base to o ther related processes. The resu lt indicates

30

successful exit o r abnorm al term ination. The term ination status indicates w hether the

object base instances will be deleted w hen the process term inates and tha t term ination

is acknow ledged by its parent. Figure 2.5 show s the process execution schema.

Schem a diagram s are a frequently used graphical m ethod o f illustrating actual or

example types and their relationships. The conventions used fo r schem a diagram s are

outlined in A ppendix B o f [6]. Table 2.1 lists some of the operations provided by

PCTE for m anaging processes.

The tools in a SEE may be com posed o f several m ore rudim entary tools, each running

its ow n process. The rudim entary com m unication o f results from a child process to its

parent is no t sufficient for the co-operation and synchronisation th a t is needed between

the com ponents o f a tool, which m ay quite possible be running in unrelated processes.

PC TE also provides basic facilities fo r in terprocess com m unication in such an event,

such facilities am ounting to the only control integration facilities provided by PCTE.

PC TE Process O perations

PR O C E SS_C R EA T E Creates a process ready to run a static

context, as the child o f the parent

process.

PR O C E SS_STA R T Starts the execu tion o f a created process.

PR O C E SS_SE T _R E FE R E N C E D _O B JE C T

PRO CE S S_U N SET _R EFER EN C ED _O B JE C T

Sets a referenced ob ject o f a process to a

specified object, and unsets a referenced

object respectively.

PRO CES S_SE T_W O R K IN G _SC H E M A Sets the w orking schem a o f a process to

a set o f SDSs.

PR O C ESS_W A IT_FO R _C H ILD M akes the calling process w ait for a

child process.

PR O C E SS_SU SPEN D suspends a running o r waiting process.

PRO CESS R ESU M E R esum es a suspended process

31

PRO CE S S_IN TE R R U PT_O PE R A TIO N Interrupts a process executing a PCTE

operation.

PR O C E SS_TER M IN A TE Term inates, and in som e cases deletes, a

process.

Table 2.1 Some o f the PCTE Process Operations

2.5.1 Interprocess Communication

PCTE provides m essage queues and pipes as low level m eans fo r processes to

com m unicate w ith each other. M essage queues are objects w hich provide an

independent place in an object base to store m essages from a process, which can be

accessed by o ther processes. The conten ts o f m essage queue objects are a sequence

o f individual m essages; the meaning o f the m essage text is understood by the posting

and receiving tools, which therefore m ust be designed to co-operate. N otification does

allow lim ited co-ordinated use o f tools which have been independently developed. A

notifier is an association between a process and another object that allow s the process

to w atch fo r access events on the object. V arious kinds o f access can be m onitored-

for exam ple the m odification o f an object in any way, its rem oval to ano ther volume or

its deletion [6].

M essage queues provide for a structured com m unication betw een processes.

Som etim es a simple transfer o f inform ation, perhaps in large volum es, is w hat is

required. A pipe is an object whose purpose is to have sequential data w ritten to it and

then read from it by processes [6]. H ow ever data can be read from a pipe only once,

after w hich it is no longer accessible.

All accesses to , and modifications of, an object base are actually perform ed by PCTE

processes. H ow ever for concurrency and integrity control purposes, access is managed

in the context o f activities.

32

2.6 PCTE Activities

PCTE is designed to ensure that the object base is never in an inconsistent state due to

the failure o r partial failure o f an operation. An activity is a w ay to m anage a set of

processes that are perform ing actions related in som e way. C oncurrency and integrity

control o f the object base is m anaged using activities. O perations (one o r m ore) are

carried out w ithin an activity using one o r m ore PC TE processes. A n activity can hold

locks on the entities that it is using to p ro tec t them from access attem pts by other

activities. T ransactions are the m echanism by which PC TE m aintains consistency.

Because PC TE supports the nesting o f transactions, it is possible to build tools from

existing tools o r re-usable com ponents w ithout concern fo r individual e rro r recovery

actions [6]. T ransactions are a special class o f activity, which have the property of

atom icity (either all their constituent operations are com m itted to the object base or

none are). M ore inform ation on PCTE processes and activities can be found in [6] and

[1]. Table 2.2 on the following page lists som e o f the operations provided by PCTE

for m anaging activities.

33

PCTE A ctivity Operations

A C TIV ITY _ST A R T Starts a new activity in the current

process

A C TIV ITY _EN D Ends the activity o f the calling process,

com m itting any outstanding

m odifications in the context o f the

enclosing activities

A C TIV ITY _A B O R T Ends the cu rren t activity o f the calling

process, discarding o r com m itting any

outstanding m odifications, in the context

o f the enclosing activities.

L O C K _R E SE T _IN T E R N A L _\10D E Resets the internal m ode o f a lock to its

default value

LO C K _SET_IN TER N A L_M O D E Prom otes the internal m ode o f a lock.

LO C K _SET_O B JEC T Establishes, o r prom otes, a lock with a

specified o r default m ode.

Table 2.2 Some o f the PCTE Activity Operations

34

2.7 Implementations

The relevance or success o f any standard depends to a large ex ten t on the degree to

which it is accepted and conform ed to by industry. In recen t years it has becom e

evident that an open standard fo r integrating tools into SEEs is vital to the realisation

o f the full potential o f C A SE. PC T E has em erged as the fo rem ost specification in this

area.

The early use o f PC TE has included the experim ental dem onstration and application of

the PC TE approach to environm ent building in m ajor national and international

program s like the European C om m unity 's ESPR IT and, in the U SA , the D epartm ent of

D efence's D A R PA (D efence A dvanced Research Projects Agency) STA RS (Softw are

Technology for A daptable R eliable System s). The STA RS program m e was established

to dem onstrate three in tegrated SEEs on three real applications, to evaluate the

benefits and using this evaluation, to increase softw are productivity , reliability and

quality by integrating process m anagem ent and re-use technology in leading-edge

SEEs. STA RS is based on industry standards (including PO SIX , X W indow s

System /M otif and A D A) and an open environm ent architecture. T hat tw o of the three

prim e contractors (Boeing, IB M and Param ax) chose PC T E as their basis fo r their

SE E s dem onstrates the strength o f PC T E as a technology standard.

N A TO 's N ations Special W orking G roup on A D A program m ing Support

Environm ents used PC T E as the basis fo r their Portab le Com m on Interface Set

(PCIS). See Section 4 .6 .1 . PC T E is a core com ponent o f the D oD I-C A SE

(Integrated C om puter-A ided Softw are Engineering). Such w as the interest in PC TE

that in 1992 a US governm ent/industry forum , the N orth A m erican PC TE Initiative

(N A PI), was established. N A PI was responsible fo r recom m endations on extending

the standard, producing a publicly available im plem entation o f PC TE, establishing a

PC TE validation capability fo r users by vendors and support fo r the acquisition of

PC TE im plem entations and PC TE-based products in the USA. Early in 1994, the

responsibilities o f N A PI w ere taken over by the O bject M anagem ent G roup's PC TE

S1G (Special In terest G roup) [8J. I t is already incorporated into the standards used by

m any organisations.

35

The in terest in PC TE is n o t limited to the military. It has also been used as the

foundation o f com m ercially available SEEs from different vendors e.g. Ém eraude

(TRA N STA R (previously G IE Ém eraude), France) Portos (ED S Scicon), PC TE/6000

(IBM), H PC TE (University o f Siegen in Germ any), H euristix PC TE (Heuristix India),

Verilog PCTE (V erilog France). Verilog PC TE, fo r instance, is a U N IX

im plem entation built on the Oracle distributed RD BM S. É m eraude provides a U N IX

and a W IN D O W S im plem entation o f PC TE. E A ST (SFGL, France) and Enterprise II

(Syseca, France) are integrated CA SE environm ents w hich use the Ém eraude

im plem entation o f PC TE as their foundation. In June 1994 G roupe Bull and Syseca

(Thom son-C SFs ISV affiliate) announced a m ajor consolidation o f their application

developm ent fram ew ork business w ith the launching o f a softw are (CA SE) jo in t

venture called TR A N STA R . TR A N STA R rely heavily upon the technology developed

by GIE Ém eraude in France[7].

The m ajor m ultinational platform vendors have announced their com m itm ent to PC TE

in one way or another e.g. there has been w ork done at D igital to integrate PC TE into

Digital's existing C O H ESIO N w orX fram ew ork [10] fo r C A SE and to achieve a high

level o f interoperability w ith existing non-PC T E tools already in tegrated into the

fram ew ork [11]. In April 1994 IC L agreed to distribute the Ém eraude PC TE

products; fo r exam ple to vendors o f com m ercial softw are tools, in order to assist

porting to PC TE and to academ ic users fo r teaching the principles o f open softw are

engineering [8]. In January 1994 V ISTA technologies announced support for

ToolTalk in its product, PCTE W orkbench; with T oolT alk extension, PCTE

W orkbench com bines the potential o f the tw o open standards: T oolT alk and PC TE

[8].

2.8 Evaluation

PC TE has been very successful as a standard fo r a Public T ool Interface fo r integrated

SEEs, this being evident from the diversity o f platform s fo r which PCTE

im plem entations are available, and the international support show n by its acceptance as

an ISO standard in July 1994. This chapter has explored the concepts behind PC TE,

dem onstrating its strength as a data integration technology (w ith very limited control

integration) suitable fo r portable CA SE tools, while noting that, although it has a

36

strong object orien ted flavour, it is no t object oriented in the truest since i t lacks a vital

object oriented m echanism which w ould allow operations o r m ethods to be associated

w ith objects. It is w ith a view to enhancing its ob ject orientation and the control

integration o f a PC T E environm ent that we wish to in tegrate it w ith O M G ’s Object

M anagem ent A rchitecture (OM A).

In C hapter 3 w e tum our attention to the O M A and the ro le o f the C om m on Object

R equest B roker A rchitecture (CORBA) within this architecture, to explore the ideas

behind O M A before further discussion on an integration betw een the tw o

specifications.

37

CHAPTER 3 OMG CORBA

This chapter in troduces the concepts behind the O bject M anagem ent G roup’s

specifications fo r the O bject M anagem ent A rchitecture (OM A), and discusses why these

specifications will have an im portant role to play in the evolution o f d istributed softw are

technology. Section 3.2 outlines the goals which O M G hope to achieve. Section 3.3

gives an overall view o f O M A and describes in detail the role o f the C om m on Object

Request B roker A rchitecture within OM A. The C O R B A specification is the part o f OM A

in which we are m ost interested for the purpose o f integration w ith PC TE. As a result it

will be the main focus o f the following sections. The structure o f C O R B A is outlined in

Section 3.4, while the role o f C O R B A ’s Interface Definition Language is described in

Section 3.5. The success o f any standard depends on its industrial relevance and the

support it receives from industry, that is the ex ten t to which it is adopted. In view o f this

Section 3.6 analyses the support for O M A within the industry by outlining the available

im plem entations o f C O R B A and discussing how it relates to o ther standards.

3.1 D istributed Computing

Strides in the advancem ent o f technology, especially in telecom m unications and

w orkstation designs, and the advent o f low priced personal com puters are rapidly altering

the traditional face o f the com puter industry. The advances involve new technologies,

both in the way data is transm itted and in the w ay th a t com m unications are in tegrated with

data processing capability. D istribution can be view ed as the com puting paradigm o f the

future. This cu rren t drive tow ards distributed com puting is prom pted by the very real

corporate dem and that, if information is distributed th roughout the organisation, then

access to that inform ation should also be distributed. The challenge for many

38

organisation today lies in the evolution from a centralised data processing architecture

(reliance on m ainfram es) to a distributed architecture.

As well as providing an information processing environm ent better m atched to the

information needs o f business, distributed system s are able to offer o ther advantages,

mainly the potential for “openness” [39], i.e. reducing the restrictiveness o f being tied to

products o f a particular m anufacturer. H ow ever the price o f this openness, and the

dispersing o f processing away from the mainframe and into the personal com puter and

w orkstation, is increased complexity. Also, since distributed system s typically evolve

through the federation o f heterogeneous independent system s, this determ ines a need for

integration. Thus the prim ary evolution costs from centralised to distributed system s, as

already stated, are no t those o f hardw are, but are related to the quality, co st and lack of

interoperability o f software.

3.2 Object Management Group

The members o f the O bject M anagem ent G roup (O M G), a consortium setting vendor-

independent specifications for the software industry, have a shared goal o f developing and

using integrated softw are systems. The agreed criterion fo r a m ethodology fo r building

such systems include the support o f m odular softw are production; it m ust encourage

reuse o f code; allow useful integration across lines o f developers, operating system s and

hardw are; and enhance the long-range m aintenance o f that code. M em bers o f OM G

believe that the object-oriented approach to softw are construction best m atches this

criteria.

39

A m ore indirect end-user benefit o f object-oriented applications, provided that they co

operate according to som e standard, is that independently developed general purpose

applications can be com bined in a user-specific way.

OM G was founded in 1989 to "realise interoperability betw een independently developed

applications across heterogeneous netw orks o f com puters, to help reduce complexity,

low er costs, and hasten the introduction o f new softw are applications. O M G plans to

accomplish this through the introduction o f an architectural fram ew ork with supporting

detailed interface specifications. These specifications will drive the industry towards

interoperable, reusable, portable softw are com ponents based on standard object-oriented

interfaces" [29].

OM G has defined an infrastructure fo r distributed com puting called the Object

M anagem ent A rchitecture (OM A). W hile industry has w orked hard to provide a

distributed m odel tha t allows users to be able to select their applications, netw orks,

systems and services, no such m odel has yet m atured [34], The diversity o f applications

and platform s are m aking such systems increasingly difficult and com plex.

The m ost popular approach to distributed com puting has been tha t o f the client-server.

C lient-server com puting is a concept, about "breaking dow n large-scale system complexity

into small, m anageable parts; the problem is m aking the parts com m unicate w ith a single

system view or interface" [34]. D istribution enabling technologies are often referred to as

m iddleware, since they reside between the operating system and applications. Rem ote

Procedure Calls, R PC s, are one such class o f m iddlew are. They function sim ilar to normal

program m ing calls, com pleting a single processing chore in a series o f steps undertaken by

a software program . R PCs separate the calling program and the called procedure into two

processes. The calling program is the client; the called process is the server. To

40

accomplish this, you need to make the call in one process, com m unicate the input

param eters to ano ther process and get the procedure to execute in the rem ote process.

RPCs have been around fo r quite a while, but the desire to build d istributed, client/server

applications in a netw orking environm ent has renew ed the in terest in them (RPCs).

How ever the mass appeal o f RPCs has been lim ited som ew hat, due to the fact that they

address only the com m unications aspect o f distributed applications [58]. To address this

limitation the D C E R em ote Procedure Call service, which is the com m unications layer of

the Open Softw are Foundation (OSF) D istributed Com puting Environm ent (D CE), is

designed to provide an integrated solution to distributed applications [58]. The O M A also

addresses the whole area o f distributed applications; how ever O M A /C O R B A (the

com m unications com ponent o f the O bject M anagem ent A rchitecture) goes well beyond

the RPC technique because it directly supports object oriented softw are [33].

3.3 Object Management Architecture

OM G has defined com m on terms, interfaces and a fram ew ork fo r distributed com puting in

the Object M anagem ent Architecture (O M A). In this fram ew ork, objects interact

through an O bject R equest B roker (O RB). The O M A specifies the basic m echanism s that

com pliant applications m ust support to use an O R B , including how objects m ake requests

and get responses, basic services provided to all objects, and facilities that are useful in

m any applications.

The O bject M anagem ent Architecture has a broad notion o f w hat constitu tes an o b jec t

Objects are literally any elem ent in the d istributed system. A n object can be an

application, process, class o r instance o f a class. The only requirem ent is that the object

supports an O M A -com pliant interface. A n object is referred to as an object

41

im plem entation in the OM A. The O M A specifies how these objects in teract via an

ORB [32],

In OM A, client objects m ake a request o f an object im plem entation. A request is the

invocation o f an operation. The ORB then handles the request and any response to the

client object. This can include dispatch and delivery o f the request, synchronisation and

delivery o f any response o r exception. Thus, the O M A is sim ilar to the client/server

model. The key difference is that the “Client” and “object im plem entation” (server)

describe the roles that each object can ex h ib it H ow ever a given object can take on either

role for a particu lar interaction. The O M A is therefore m ore o f a peer-to peer m odel [32].

Figure 3.1 OMA Reference Model (See page 55 o f [29])

42

Figure 3.1 show s the structure of the O bject M anagem ent A rchitecture. The solid boxes

represent softw are w ith application program m ing interfaces, while the dashed boxes

represent categories o f objects with object interfaces.

The Object Request Broker (ORB) enables objects to transparently m ake and receive

requests and responses in a distributed environm ent, i.e. it is the com m unications heart of

the O M A standard.

Object Services (O S) is a collection o f services and object interfaces tha t provide basic

functions for realising and m aintaining objects (see Section 3.3.1).

Common Facilities (CF) is a collection o f classes and objects that provide general

purpose capabilities that are useful in m any applications.

Application Objects (AO) are objects specific to particular end-user applications.

In general term s, the Application O bjects and Com m on Facilities have an application

orientation, while the O bject R equest B roker and Object Services are concerned m ore

with the "system" o r infrastructure aspects o f distributed object m anagem ent. Com m on

facilities may, how ever, provide higher-level services- such as transactions and versioning-

that m ake use o f prim itives provided w ithin O bject Services.

The three categories (OS, CF and A O) reflect a partitioning in term s o f functionality,

from those basic to m ost applications (or com m on enough to broad classes o f applications

to standardise) to those too application-specific o r too standardised a t this time. Com m on

Facilities exemplifies a key concept that the O M A prom otes: class reusability. Thus, the

43

Object R equest B roker, O bject Services and C om m on Facilities will be the focus o f O M G

standardisation efforts [29].

In general, O bject Services. C om m on Facilities and A pplication Objects all

intercom m unicate using the Object R equest Broker. An ORB provides "the basic

mechanism for transparently m aking requests to - and receiving responses from - objects

located locally o r rem otely w ithout the client needing to be aw are o f the m echanism s used

to com m unicate with, activate or store the objects" [5]. As such it form s the basis for

building applications com posed o f d istributed objects, and supporting interoperability

between applications in hom ogeneous and heterogeneous environm ents. The interfaces to

objects that com m unicate via the ORB are defined using the Interface Definition Language

(IDL) included in the C O R B A specification (See Section 3.5). A dherence to the Object

M anagem ent A rchitecture will speed the design and delivery o f robust applications that fit

into an object-oriented environm ent. A pplications can be view ed as collections o f building

blocks linked together at run tim e to com plete various tasks [37].

3.3.1 Object Services

This section outlines the O bject Services (O S) com ponent o f O M A . O S provide basic

operations fo r the logical modelling and physical storage o f objects [29], and as such it is

o f interest in this thesis, because it is to provide a t least part o f such functionality that we

w ould wish to use the P C T E ’s OM S, in an integration betw een PC TE and the OMA.

Object Services defines a set o f intrinsic o r ro o t operations tha t all classes should

im plem ent o r in h erit Objects do no t have to use the im plem entation o f basic operations

provided by OS nor do objects have to provide all basic operations. F o r example, an

object m ay provide its own data storage o r an object that m odels a process may not

44

provide transactions. The operations provided by O bject Services are m ade available

through the ORB; how ever, they may also be m ade available through o ther interfaces.

For example there may be additional interfaces that com ply w ith non-O M G standards o r

that are optim ised fo r higher perform ance. The operations tha t O bject Services can

provide include:

• Class Management. The ability to create, modify, delete, copy, distribute,

describe and control the definitions o f classes, the interfaces to classes, and the

relationships betw een class definitions.

• Instance Management. The ability to create, modify, delete, copy, m ove, invoke

and control objects and the relationships betw een objects.

• Storage. The provision o f perm anent o r transient storage fo r large and small objects,

including their state and methods.

• Integrity. The ability to ensure the consistency and integrity o f object state both

within single objects (e.g. through locks) and am ong objects (e.g. through

transactions).

• Security. The ability to provide (define and enforce) access constraints a t an

appropriate level o f granularity on objects and their com ponents.

• Query. The ability to select objects o r classes from implicitly o r explicitly defined

collections based on a specified predicate.

• Versions. The ability to store, correlate and m anage variants o f objects

The types o f sub-com ponents that could be used to im plem ent O bject Services include

object oriented database m anagem ent system s, o r perhaps P C T E ’s OM S.

It is im portant to note that applications need only provide o r use O M A -com pliant

interfaces (An O M A -com pliant application consists o f a set o f in ter-w orking classes and

instances that interact via the O R B) to participate in the O bject M anagem ent

45

A rchitecture. They need not them selves be constructed using the object-oriented

paradigm. This is very useful when trying to integrate O M A with PC TE o r when

migrating from traditional systems to O bject Orientation. Basically it m eans that part of

your system m ay be im plem ented in a p rocedural language, bu t by “encapsulating” it in an

IDL interface, it may be accessed by o ther OM A objects. This also applies to the

provision o f O bject Services. For exam ple, existing relational o r object-oriented database

m anagem ent system s could be used to provide som e or all o f the O bject Services.

The O M A assum es that underlying services provided by a platform 's operating system and

lower-level basic services, such as netw orking com puting facilities, are available and

usable by O M A im plem entations. Specifically, the Object M anagem ent A rchitecture does

not address user interface support. The interfaces betw een applications and windowing

system s or o ther display support are the subjects o f standardisation efforts outside the

OM G . Eventually, Com m on Facilities m ay provide standard u ser interface classes. In

addition, the Reference M odel does no t deal explicitly with the choice o f possible binding

m echanism s [29],

3.4 CORBA

The Com m on O bject R equest B roker A rchitecture (CO R BA) is the nam e given to the

specification o f the ORB com ponent, it is designed "to allow in tegration o f a wide variety

o f object system s" [30]. CO RB A is a general solution to application integration, moving

aw ay from the conventional po in t-to-poin t solution. G enerality o f the architecture is

provided by a high-level declarative language to describe objects, ID L (see Section 3.5).

46

The com ponents o f C O R B A are clients, object im plem entations, the O RB and object

adapters. A client is an entity that wishes to perform an operation on the object; the

interface that the client can see is independent o f where the object is located and w hat

program m ing language it is im plem ented in. An object im plem entation is the code and

data that actually im plem ents the object, i.e. an object in itself. The O RB is responsible

fo r all o f the m echanism s required to find the object im plem entation fo r the request, to

prepare the object im plem entation to receive the request, and to com m unicate the data

m aking up the request. An object adapter is the prim ary means fo r an object

im plem entation to access ORB services. Sections 3.4.1 - 3.4.4 describes these com ponents

briefly, see [30] for greater detail.

3.4.1 Structure of an Object Request Broker

ORB-dependent interface

There may be multiple object adapters

Interface identical for all ORB implementations

There are stubs and skeletons tor each object type

Up-call
interface

Normal
call interface

figure 3.2 The Structure o f ORB Interfaces [30]

47

Figure 3.2 show s the structure of an individual O bject R equest B roker (O RB). The client

perform s a request by having access to an O bject Reference fo r an object and know ing the

type o f the object and the desired operation to be perform ed. O perations that an object

can provide are advertised to clients through the interface definition o f an object.

Definitions o f the interfaces to objects can be defined in tw o w ays, statically using the

Interface Definition Language, ID L (see Section 3 .5), o r dynam ically accessed by adding

interfaces to the Interface R epository. To m ake a request, the client can use the Dynamic

Invocation Interface o r an ID L stub. W hen using the D ynam ic Invocation Interface to

m ake a request the sam e interface is used regardless o f the interface o f the target object.

If an ID L stub is being used to m ake a request then a specific stub depending on the

interface o f the target object m ust be used. The receiver o f the m essage is indifferent to

which o f these tw o m ethods is used.

The ORB locates the appropriate im plem entation code, transm its param eters and transfers

control to the O bject Im plem entation code via an ID L skeleton. The ORB may provide

som e services to the object im plem entation (through the object adapter during

perform ance o f the request) and directly to the client [30]. T he object im plem entation

receives a request as an up-call through the ID L generated skeleton. The O R B ’s

functionality frees program m ers from the details required by o th er application distribution

m ethods.

48

3.4.2 Client

A client o f an object has an object reference that refers to the object, and invokes

operations on the object. A client is restricted to know ledge o f the logical structure o f the

object provided by its interface and experiences the behaviour o f the object through

invocations. A client is a program or process initiating requests on an object. H ow ever it

is im portant to rem em ber that som ething is a client relative to a particu lar object, i.e. the

im plem entation o f one object may be the client o f o ther objects. C lients have no

know ledge o f the im plem entation o f the object, which object adapter is used by the

im plem entation, or w hich ORB is used to access it.

Clients access object-type-specific stubs as library routines in th e ir program . The client

thus sees routines callable in the norm al w ay in its program m ing language. All

implem entations will provide a language specific da ta type to use to refe r to objects, often

an opaque pointer. The client then passes the object reference to the stub routines to

initiate an invocation. The stubs have access to the object reference representation and

interact w ith the O R B to perform the invocation [30].

3.4.3 Object Implementations

An Object Im plem entation provides the actual state and behaviour o f an object; figure 3.3

shows the structure o f an object im plem entation.

49

An object im plem entation defines the follow ing :

• m ethods fo r operations defined in the DDL interface; it also im plem ents these

m ethods.

• procedures fo r object activation and deactivation (usually).

• controls access to the object

• deals w ith object state persistence by using object or non-object facilities.

3.4.4 Object Adapter

O bject A dapters are "the primary w ay that object im plem entations access services

provided by the ORB" [30] and are built on a private O R B -dependent interface. Object

A dapters provide the follow ing functionality ;

50

• generation and interpretation o f object references

• m ethod invocation

• security o f interactions

• object and im plem entation activation and deactivation

• m apping object references to the corresponding object im plem entations.

• registration o f im plem entations

It is difficult for the ORB to provide a single interface suitable fo r all objects due to the

large range o f object properties (e.g. granularity, lifetimes, policies, im plem entation styles

etc.). Through O bject A dapters the ORB targets groups o f object im plem entations that

have sim ilar requirem ents w ith interfaces tailored to them.

There are a variety o f possible object adapters. H ow ever m ost object adapters are

designed to cover a wide range o f object im plem entations. For exam ple the Basic Object

A dapter (BOA), can be used for m ost ORB objects w ith conventional im plem entations.,

or the O bject-O riented D atabase A dapter(O O D B) uses a connection to an object-oriented

database to provided access to the objects stored in it. Since the O O D B provides m ethods

and persistent storage, objects may be registered implicitly and no state is required by the

O bject A dapter [30].

3.5 Interface Definition Language

ID L (the Interface Definition Language) is the language "used to describe the interfaces

that client objects call and object im plem entations provide" [30]. The ID L, Interface

Definition Language, defines the types o f objects by specifying their interfaces. An

51

interface consists o f nam ed operations and the param eters to those operations. ID L is the

means by which a particular object im plem entation tells its potential clients what

operations are available and how they should be invoked. Clients are no t w ritten in ID L,

which is a purely descriptive language, but in languages fo r which m appings from IDL

concepts have been defined. The m apping o f an ID L concep t to a client language will

depend on the facilities available in the client language [30]. From the ID L definitions, it

is possible to m ap C O R B A objects into particular program m ing languages o r object

systems.

ID L obeys the sam e lexical rules as C ++, its gram m ar being a subset o f A N SI C ++ with

additional constructs to support the operation invocation m echanism . ID L is a declarative

language; it does n o t include any algorithm ic structures o r variables. The syntax fo r IDL

is described in A ppendix A o f this thesis [30]. ID L Bindings already ex ist fo r C, C ++ and

ADA. An ID L specification consists o f one o r m ore type, constant, exception, interface

(see Sections 3.5.1 - 3.5.5) o r module definitions; exam ples in the Sections 3.5.1 - 3.5.5

illustrate particular aspects o f DDL that will be referred to later in this thesis (C hapter 4).

The m odule construct is used to scope ID L identifiers. I t consists o f the m odule keyw ord

and one or m ore type, constant, exception, in terface or o ther m odule declarations.

3.5.1 Interface Definition

An interface can contain one or more o f the follow ing elem ents: constan t, type, exception,

attribute o r operation declarations (see follow ing sections). A n interface definition

provides the basic fram ew ork for describing the objects m anipulated by the ORB; it is the

means by which a particu lar object im plem entation tells potential clients w hat operations

are available and how they can be invoked. Therefore the constan t, type, exception, and

52

attribute declarations contained with an interface specify the constan ts, types, exception

structures and attributes exported by the interface. F o r example in the definition o f the env

interface, (see below), the interface specifies a constan t integer called export which has the

value o f PR O T E C T E D , a previously defined constan t (defined using the pre-processor

#D EFIN E).

O peration declarations specify the operations that the interface exports (o r offers).

O perations declarations only take place w ithin the contex t o f an interface definition, and

are explained in g reater detail in Section 3.5.2. ID L interfaces have an optional

inheritance m echanism whereby interfaces can be derived from other previously defined

interfaces. In the following example the interface env inherits from a previously defined

interface pact__env:

interface env : pactjenv {

const short int export = PROTECTED ;

const short int usage = NAVIGATE ;

}

An interface which is derived from ano ther interface m ay refer to elem ents o f the base

interface as if they w ere its own elem ents, as long as references to base interfaces are not

am biguous. A derived interface m ay also redefine any o f the type, constan t, operation,

attribute and exception nam es which have been inherited from its base interfaces [30].

53

3.5.2 Operation Definition

O peration declarations in ID L are similar to C function declarations. They describe the

services which an object im plem entation can provide through its interface to potential

clients. The follow ing section explains the sem antics behind the syntax o f an IDL

operation definition, see A ppendix A fo r the syntax o f IDL.

A n operation declaration consists of:

• An optional operation attribute tha t specifies which invocation semantics the

com m unication system should provide w hen the operation is invoked.

• The type o f the operation's return result; the type may be any type which can be

defined in ID L; operations which don 't return a type m ust specify the void type.

• An identifier which names the operation in the scope o f the interface in which it is

defined.

• A param eter list which specifies zero o r m ore param eter declarations fo r an operation.

A param eter declaration m ust have a directional attribu te tha t informs the

com m unication service in both the client and the server o f the d irection in which the

param eter is to be passed, these being in, out, inout which m ean the param eter is

passed from client to server, from the server to the client, and in both directions

respectively.

• A n optional raises expression which indicates which exceptions m ay be realised as a

result o f an invocation o f this operation [30].

Take fo r exam ple the interface compiler show n below: it includes the operation

declaration fo r compile, which advertises a compile operation available from the compiler

object to its potential clients: the object im plem entation fo r the compiler object will

provide an im plem entation for this operation. T he operation declared w ithin this interface

54

is to have tw o param eters objecmame and params; both are strings to be passed from the

client to the server (notice the "in string”), objectname, specifying the object to be

com piled and params specifying the com piler param eters.

interface compiler {
readonly attribute COMPILER ̂RESULT errors ;
void compile(\n string objectname, in string params); };

3.5.3 Attribute Definition

An attribute declaration within an interface is logically equivalent to declaring a pair of

accessor functions, one to retrieve the value o f the attribute and one to set the value o f the

attribute. The optional readonly keyw ord indicates there is only one accessor function, i.e.

the retrieve value function. Take for exam ple the attribute errors which is declared in the

compiler interface in section 3.5.2; errors is declared here as a readonly attribute o f the

enum erated type COMPILER_RESULT, this implying that the im plem entation o f this

interface will require a function o f the sam e nam e as the a ttribute(i.e. errors), which will

return the value o f this attribute errors, see A ppendix D for the im plem entation code o f

the com piler interface.

55

3.5.4 Enum & Type Declaration

ID L provides constructs fo r naming da ta types, i.e. C-like typedef declarations that

associate an identifier with a type. The basic types supported by ID L are float, double,

long, short, unsigned long, unsigned short, char, boolean, octet and any.

Enum erated types consist o f ordered lists o f identifiers, the identifier following the enum

keyw ord defining a new legal type, COMPILER_RESULT in the exam ple show n below.

Enum erated types m ay also be nam ed using a typedef declaration,

enum COMPILER _RESULT { COMPILER JA IL E D ,

COMPILEDjOK,

COMPILED__WITH_ERRORS,

COMPILER_NOT_TRIED };

Refer to the exam ple of the compiler interface in Section 3 .5 .2 to see how such an

enum erated type m ay be used.

3.5.5 Constant Definition

ID L provides a C onstant Definition fo r associating a constan t w ith an identifier. The

constant can be any o f the following types: in teger, char, floating point, boolean, string o r

scoped name [30]. An example o f this is show n in the interface env exam ple in Section

3.5.1.

56

3.5.6 Exception Declaration

Exception declarations perm it the declaration o f struct-like da ta structures which may be

returned to indicate that an exceptional condition has occurred during the perform ance of

a request, basically a m ethod o f enror handling. Each exception is characterised by its IDL

identifier, an exception type identifier and the type o f the associated return value [30]. If

an exception is returned as the outcom e to a request then the value o f the exception

identifier is accessible to the program m er fo r determ ining which particular exception was

raised. If no m em bers are specified, no additional inform ation is accessible when an

exception is raised [30]. In addition to a standard set o f exceptions that m ay be signalled

by the ORB, operation specific exceptions can be specified using the raises expression.

3.6 Implementations & Industria l Relevance

The O M G does not unilaterally develop standards; its m em bers agree to adopt

specifications and provide com pliant products. The reliance on com m ercial technology

and the fact it is com pletely "open" (any com pany can jo in the O M G o r subm it technology

in the specification process) ensures the relevance o f the standard and the capability to

quickly m ove the industry to a com m on architecture for d istribu ted com puting [32].

M ost o f the m ajor vendors now support C O R B A o r are CO RBA -com pliant,

dem onstrating CO RBA 's grow ing strength in the m arket place- e.g. SunSoft provide a

C O R B A im plem entation called D istributed O bjects Everyw here (D O E) w hich is available

fully integrated fo r U N IX and Solaris 2.0. H ew lett Packard have developed their own

native C O R B A im plem entation called ORB PLU S; their D istributed Sm alltalk is also

57

C O RB A com pliant; both are available on U N IX platform s. A T & T ’s C o-operative

Fram ew orks is a C O R B A com pliant ORB with som e object services. D E C have

developed a C O R B A im plem entation called O bjectB roker (form erly called ACAS);

O bjectB roker is available on M acO S, W indow s, N T , U N IX and V M S platform s. An Irish

com pany called IO N A Technology provided the first im plem entation o f the CO RB A

standard called O R B IX which is available fo r m ost m ajor p latform s, including Sun, H P

and W indow s N T. This variety o f im plem entations endorses the C O R B A specification’s

place within the industry. The relationship betw een the O M A and o ther standards is an

im portant consideration fo r end users. The O bject M anagem ent G roup w orks with o ther

standard groups through com m on m em bers and a liaison com m ittee [31], including the

PC TE SIG (see section 1.2).

A nother im portant consideration, w hen evaluating the place o f a technology within the

industry, is to look a t the strength o f vying technologies. Until recently M icrosoft had

been pushing O LE as the m ajor com petito r to CO RBA . O L E (O bject Linking and

Em bedding) is an application integration fram ew ork that supports com pound docum ents

and sharing o f objects betw een applications. D istributed O LE provides these capabilities

across a netw ork. H ow ever both OLE and D istributed OLE are still only available fo r PCs

(running M icrosoft W indow s) and W indow ’s W orkgroups[36]. O LE and D istributed

OLE are based on the C om ponent O bject M odel (CO M) w hich has both significant

similarities and differences to the O M G O bject M odel. The m ost significant difference is

that CO M provides fo r application in tegration through the defin ition o f a binary form at fo r

an object interface. Applications can in teroperate as long as the objects adhere to this

form at. In contrast, the O M A uses ID L as an interm ediate language to describe the

interfaces that objects support; applications are in tegrated through the use o f standard

interfaces and the ORB, and no restrictions are p laced on im plem entation as is the case

with CO M . O ther differences include the fact that CO M does n o t support inheritance

betw een object interfaces, and CO M supports the notion o f a guaranteed unique object

58

identifier (G uaranteed U nique Identification (G U ID)). This assum ption differs from the

O M G m odel w here objects can have m ultiple object identifiers (O ID s) [32].

An O bjectW orld conference opinion poll in 1994 [31] found C O R B A to be the m ore

favoured m odel. These factors, and an industry dem and fo r CO RBA -com pliant

applications, have precipitated a m ove tow ards jo in t interoperability o f CO M and

CO RBA. This will be addressed in the next version o f the C O R B A specification (CORBA

2.0). O LE Interoperability will take the form of an O L E/C O R B A object adapter which

will allow for O bject references that are intrinsic to CO M to be resolved and allow for

activation and execution o f a CO RB A object [35].

59

3.7 Conclusion

In this chapter we have seen the ro le o f C O RB A in O M A , which was designed to ease the

developm ent o f in tegrated softw are system s, and in particular the im portance o f ID L

w ithin the C O R B A structure in order to achieve this integration. Independently developed

applications which adhere to the O M A specification can be com bined in user specific

ways. This is the beauty o f O M A , it reduces the com plexity o f d istributed system s.

The fact that OM G does no t unilaterally develop standards (rather its m em bers agree to

adopt specifications and provide com pliant products), as w ell as its reliance on com m ercial

technology and the fact tha t any com pany can jo in the group o r subm it technology to the

specification process ensures, in m y opinion, the relevance o f the O M A specifications.

The num ber o f C O R B A im plem entations and com pliant products readily available on the

m arket dem onstrates the endorsem ent o f the C O R B A specification by the com puter

industry.

N ow that we have looked in detail at both the PC T E and Object M anagem ent

A rchitecture/C O R B A specifications, we will exam ine the relationship betw een them in the

following chapter, as well as how they may be in tegrated and w hat the benefits o f their

short term in tegration w ould be.

60

CHAPTER 4 INTEGRATING PCTE AND CORBA

This chapter outlines the different approaches to the short term in tegration o f PC T E and

O M G C O R B A taken during the research, and discusses w hy such an integration was

deem ed attractive. As previously stated in C hap ter 1 w ork on the integration o f PC TE

and O M G C O R B A into a single standard is already in progress. This convergence o f

PC TE and C O R B A may take a considerable am ount o f time. M eanw hile both

specifications could be used together to their m utual benefit. Substantial benefits can be

gained by integrating the curren t specifications so that they can be used together

imm ediately. The purpose o f the integration strategies d iscussed in this chapter is to

provide a viable short term approach to the integration o f PC T E and C O R B A , w ithout

altering either o f the existing standards, p rior to their convergence.

W e begin by looking a t the issues which m ake such an integration desirable. The

relationship betw een PC T E and OM G 's C O R B A is a potentially com plem entary o n e[l] .

Section 4.1 examines the relationship betw een PC TE and O M A (o f which C O R B A is a

com ponent), emphasising the areas in which they are potentially com plem entary, and

examines how these m ay be best harnessed to the advantage o f each, w ithout altering

either standard.

Given the com plem entary nature o f the relationship betw een the tw o specifications, the

objectives fo r their integration are discussed in Section 4.2. The rem ainder o f this chapter

contains an outline o f the tw o different approaches taken during this research to finding a

short term solution to the convergence o f PC T E and C O RB A . Sections 4.3 and 4.4

introduce the language m apping o f D D L to ID L (and vice versa) as an integration

strategy, which w as the favoured initial approach to integration, bu t w as deem ed

61

unfeasible by research. This language m apping w as the favoured approach because its

success w ould have ensured a d irect translation from C O R B A objects to PC T E objects.

Even though this thesis proves this approach unfeasible, we include it fo r the valuable

lesson o f why such a m apping is unfeasible and its im plications fo r the fu ture convergence

o f PC TE and O M A /C O RB A . The alternate integration strategy , the definition o f ID L

interfaces fo r PC TE tools, which dem onstrates the considerable benefits o f an interim

integration betw een C O R B A and PC TE, is in troduced in Section 4.5 and discussed in

greater detail in C hapter 6.

4.1 Relationship o f PCTE and OMA

This section review s the inform ation provided in C hapters 2 and 3, which is o f particular

relevance to the com patibility o f PC TE and O M A , in particular C O RB A . It contains a

description o f the features o f each specification w hich m ay be used to com plem ent each

other. The relationship betw een PC TE and O M A is discussed here as opposed to the

relationship betw een PC TE and C O RB A , partly to give the m ore global picture, and partly

because the benefits o f integrating PC TE and C O R B A com e from the fact that C O R B A is

a com ponent o f O M A (See Section 3.3). Therefore w hat is said here o f O M A applies

equally to CORBA.

In [1] the O M G PC TE SIG describe a num ber o f possible relationships which m ay exist

betw een O M A and PC T E . The tw o specifications could be used together in a coexisting,

layered, o r com plem entary m anner. Since the in terest o f this thesis rests in their short

term integration, the em phasis in the rem ainder o f this section will be placed on the

com plem entary nature o f their relationship. Sections 4.1.1 and 4 .1 .2 outline the prim ary

62

features o f both specifications, Section 4.1.3 goes on to d iscuss how these features may be

used for their com plem entary integration.

4.1.1 Primary Features and Strengths of PCTE

The following points sum m arise the prim ary features and particular strengths o f the

Portable C om m on Tool Environm ent (PCTE) specification.

• D ata in tegration fo r C A SE environm ents in w hich tools (i.e. program s) create and

access shared data objects (repository).

• A n O bject M anagem ent System (OM S) providing transparent access to data

objects in a d istribu ted standardised repository running over heterogeneous

platform s.

• Facilities fo r transparent process distribution (process m odelled as objects).

• APIs fo r object and repository m anagem ent functions.

• Supporting APIs fo r tool portability across operating system s [1].

Thus PCTE has a strong sense o f data integration provided by its data m odelling

mechanisms (data objects, links and attributes) and its D ata Definition Language (DDL)

fo r schemas, see Section 2.4. PC TE provides m ultiple views o f the object base using

dynamic w orking sets and decentralised distributed Schem a Definition Sets (SD Ss), see

Section 2.3. Its security m odel prevents unauthorised data access. PC TE provides a

nested transaction m odel, a m echanism fo r ensuring consistent data, as well as enforcing

integrity constraints. PC T E also provides a concurrency control m odel (locks) and

versioning facilities.

63

4.1.2 Primary Features and Strengths of OMA

The follow ing points sum m arise the prim ary features and particular strengths o f the O bject

M anagem ent A rchitecture (O M A) specifications, o f which the C O R B A specification is a

com ponent:

• H orizontal enabling technology w ith an extensible architecture supporting applications

that are collections o f interoperating, co-operating distributed objects (data and

m ethods) [1].

• An O bject R equest B roker (ORB) "provides interoperability betw een applications on

different m achines in heterogeneous distributed environm ents and seamlessly

interconnects m ultiple object system s” [2].

• A set o f O bject Services - basic services fo r creating and m aintaining objects, this

being the fram ew ork on w hich application interoperability is based.

• A set o f C om m on Facilities - this is a set o f general purpose objects and classes that

m ay be useful in m any applications

Thus the O M A specification supports full object orientation, operations on objects, i.e.

m ethods as well as a data interface to object "contents". It provides support fo r fine grain

objects, i.e. high-speed access plus low storage overhead. The overall perform ance of

O M A is high because o f the following features: persistent object references, no built in

integrity constraints, fine grain execution m anagem ent and local object optim isation.

O M A provides m ultiple object adapters which are specialised "drivers" fo r different

flavours o f object im plem entations and object system s.

64

OM A also provides object services fo r distributed application portability and

interoperability. C om m on functionality in different applications (such as storage and

retrieval o f objects, mailing o f objects, printing o f objects) [2] is realised by OM A's

Com m on Facilities which provide general purpose capabilities which are useful in many

applications.

4.1.3 Complementary Standards

Having review ed their individual strengths, le t us now discuss the in tegration o f PC TE

and OM A , in a global sense, and how this in tegration can be o f benefit to both

specifications. As we have seen in the previous sections there is overlap betw een PC TE

and OM A; the potential exists fo r their com bined differing approaches to be

com plem entary in the follow ing areas:

W hile PC TE, through its strong notion o f da ta integration, does support the notion of

objects, it is no t ob ject oriented in the true sense, in that PC TE objects are da ta objects,

i.e. they have state bu t do no t have behaviour. This lack o f true object orientation and the

lack o f support fo r low storage overhead/high speed access to fine-grain objects could be

addressed by integrating PC TE technology w ith O M A -based products o r in the long term

evolving PC TE to becom e O M A conform ant (i.e. the ro le o f the O M G PC TE SIG).

As stated earlier, PC T E com ponents are in tegrated using m ainly data integration. OM A

could be also be used to provide tigh ter integration o f the environm ent, by providing

im proved control integration.

65

PCTE was especially designed to m eet the needs o f C A SE environm ents by providing rich

data m odelling facilities. To address the specific needs o f C A SE environm ents, O M A

specifications could be extended or added so as to incorporate PC T E functionality such as

data m odelling, enforced integrity constrain ts and support fo r configuration m anagem ent.

Part o f the O M A ’s O bject Services specification is tha t o f the provision o f a persistent

store fo r O M A objects. The PC TE object base could be used to provide such a persistent

store as required by, bu t n o t yet available for, O M A object im plem entations [1]. A t the

m om ent the only O M A com ponent which is fully specified and im plem ented is the

CO RB A com ponent; yet PC TE and the concepts behind it could be very useful in the

developm ent o f the O bject Services com ponent o f the OM A. The nature o f the data and

the (inter-data) relationships in a C A SE environm ent is very com plex. The PC TE OM S

incorporates a com plex object m odel, sem antic data m odel theories (see [18],[23]), as well

as m aking use o f database system technology, in order to allow these complex

relationships to be m odelled in an intuitive way. Therefore using the sem antically rich data

modelling provided by PC T E ’s O M S to im plem ent a t least part o f the O bject Services

com ponent o f O M A could be very valuable.

PC TE and O M A have a com plem entary relationship and so their convergence is an

attractive proposition already undertaken by the O M G PC TE SIG . This thesis is

concerned w ith the provision o f an in tegration strategy fo r PC T E and O M A (in particular

CO RBA) which can be used in the interim until their eventual convergence, and it proves

that such short term in tegration has m any benefits to offer particularly to PCTE.

66

4.2 INTEGRATION STRATEGIES

The integration strategies discussed in this chap ter indicate ways in which PC TE and

C O R B A m ight be used together in a m utually beneficial way w ithout any specification

changes, based on the inform ation contained in section 4.1. W hat we hope to achieve by

this research is a viable short term integration o f PC TE and C O R B A which w ould from a

PCTE developer’s po in t o f view :

• Use C O R B A (ID L and object requests) to enhance control in tegration betw een PC TE

tool com ponents. PC TE normally relies on data integration; therefore C O R B A could

be used fo r stronger integration betw een PC T E too l com ponents, also facilitating the

com position o f PC T E tools.

• Tool com ponents w ould be encased in ID L interfaces. The tools them selves w ould

continue to store and share data in the PC TE repository but, by having an ID L

interface, w ould be able to in teract w ith the ORB and avail o f all O M A services and

other O M A com pliant system s.

• Use C O R B A to associate behaviour w ith PC TE purely data objects in o rder to m ake

PC TE objects ob ject oriented in the fu llest sense.

From a C O R B A object im plem entor’s po in t o f view , the integration w ould hope t h a t :

• PC TE could be used as a persistent service to store the state o f objects. The PC TE

A PI w ould be used directly in the object im plem entation’s code and w ould no t be

visible outside o f the object itse lf [1].

As stated earlier, one o f the prerequisites o f these in tegration strategies was that they were

to require no changes to the existing specifications. W e acknow ledge the effectiveness of

the data integration facilities provided by SD Ss (using D D L) fo r C om puter-A ided

67

Softw are Engineering tools in a PC TE repository , and w ish to com bine this w ith control

integration w hich can be provided by CO RB A, in order to arrive a t a m ore fully integrated

Software E ngineering Environm ent.

In brief, w e w ish an integration strategy to arrive a t an ID L interface definition fo r a

PC TE tool, allowing the too l to becom e in effect an object w hich can avail o f the ORB

and other O M A O bject Services. A strategy should allow the PC T E too l to behave as if it

w ere a C O R B A application which is able to in teroperate w ith o ther C O R B A applications

on different m achines and seam lessly in terconnect with m ultiple object system s. In turn,

we wish to avail o f the rich data m odelling underlying the PC T E O M S in o rder to allow

the PC TE repository to be used as a persisten t store for C O R B A objects.

Tw o approaches to developing an interim integration strategy w ere explored during the

course o f this research. The first approach taken was that o f a d irect language mapping

o f PC TE's D ata Definition L anguage, D D L, to O M G CO RB A 's Interface Definition

Language, ID L (and vice versa). This language m apping approach to in tegration was the

m ost attractive proposition because if it had been successful a simple translation tool

w ould have autom atically generated ID L definitions from PC TE definitions, and allowed a

d irect translation from C O R B A objects to PC T E objects. The m apping o f D D L to ID L

was envisaged as an approach to allow P C T E tools to be "encased" in an ID L interface, so

that they could be view ed as O M A /C O R B A objects w ith access to the ORB and o ther

O M A facilities, m aking them truly object oriented, while also increasing the control

integration betw een them and facilitating the developm ent o f com posite PC T E tools, see

figure 4.1. Section 4.3 describes briefly the m apping o f D D L to ID L , while C hapter 5

describes in greater detail how D D L language constructs may be m apped to ID L language

constructs. C hapter 5 also contains a discussion o f how this thesis proved such a direct

language m apping, given the curren t specifications o f D D L and ID L, w as no t feasible for

68

the short term integration o f PC T E and C O R B A , and w hat fu ture extensions are required

to D D L in order to m ake such a m apping a feasible in tegration strategy.

IDL and object requests for ccontrol integration by PCTE tools

Figure 4.1 Mapping DDL to IDL

The reverse language m apping, tha t o f m apping the ID L to D D L w as initially seen as an

approach to allow O M A objects to be defined and exist in the PC T E repository, in this

way using the PC TE repository as a persisten t store fo r O M A objects, see figure 4.2.

H ow ever prelim inary research found the m apping o f ID L to D D L to be unfeasible fo r a

num ber o f reasons including incom patible scoping rules and the fac t tha t D D L contains no

notion o f the concep t o f operations a ttached to objects(i.e. PC T E objects are no t

com patible w ith the definition o f the O M G O bject M odel outlined in [2], see Section 4.4).

69

H aving dem onstrated that a d irect language m apping was n o t possible given the current

specifications o f D D L and ID L, ano ther rou te to in tegration w as sought. The second

approach to integration explored was the definition o f ID L interfaces fo r PC TE tools.

PC TE tools are stored as static contex ts objects w ithin the reposito ry , a static contex t

being an object w hich contains the program code o f a PC T E tool. A language m apping o f

D D L to ID L , if successful, w ould have provided an autom atic in tegration o f PC TE and

CO RBA , allow ing a direct translation from D D L to IDL.

Figure 2 Mapping IDL to DDL

The definition o f ID L interfaces fo r PC T E tools does no t provide such an “autom atic”

integration, being m ore o f a m ethodology fo r integration. This approach provides a

70

beneficial integration fo r PC TE. By em ploying this approach PC T E objects becom e fully

object oriented; they can be view ed as C O R B A objects by w rapping them in an ID L

interface, thus allowing them access to the ORB and o ther O M A facilities. The definition

o f ID L interfaces fo r PC TE tools facilitates greater contro l in tegration betw een PC TE

tools and the developm ent o f com posite PC TE tools. This second approach is outlined in

Section 4.5 and is described in g reater detail in C hap ter 6. The syntax o f the D D L and

ID L language constructs described in these sections are given in A ppendix A ([5]) and

A ppendix B ([3]) respectively.

N ow that we have discussed w hat we w ish an interim in tegration strategy to achieve, we

now turn our attention to how these aim s are to be achieved.

4.3 Mapping DDL to IDL

This section describes the concepts involved in m apping PC TE 's D D L to CO RBA's IDL.

The m otivation fo r such a m apping has already been discussed in Section 4.1. As stated

earlier in C hapter 2, D D L is a form al notation fo r defining types, and is used to define the

types in the four standard PC TE SD Ss (Schem a Definition Sets). Typing is a prom inent

characteristic o f the PC TE data m odel, such that every instance in the PC TE repository

belongs to a defined type. It places restrictions on the properties o f P C TE entities which

are created and m anaged in term s o f their specific type. Typing is the fundam ental

elem ent which allows the da ta in tegration o f tools. The PC T E d a ta definition language,

D D L, is a form al notation fo r defining these types [4].

This m apping aim ed to provide an equivalent ID L definition fo r a D D L definition o f a

too l’s w orking schem a (i.e. the too l’s view o f the repository). D D L definitions are

71

com posed o f sequences o f SD Ss. In the m apping D D L to DDL developed, each tool was

to have its ow n ID L interface. Each SDS in the tool's D D L definition w ould be m apped

onto a separate interface which m ay then be inherited by the to o l’s ID L interface and

therefore accessed by it. Thus the m apping places a great deal o f im portance on the

inheritance mechanism fo r interfaces in ID L. D D L objects, links and attributes w ould be

m apped to ID L interfaces. There is a num ber o f reasons fo r this, one o f which is to

facilitate the im portation o f types from one SDS to another, allow ed by D D L. Since D D L

objects, links and attributes can all be im ported into o ther SD Ss and used within the SDS

possibly to be extended w ith o ther properties, i.e. type-in-SD S, therefore, by defining ID L

interfaces fo r D D L objects, links and attributes, these ID L interfaces can be inherited by

the ID L interface m apping o f any other SDS w hich im ports them .

A nother reason fo r the definition o f ID L interfaces fo r attribute declarations is to facilitate

the fact tha t D D L attributes can be declared and then applied to an object o r a link.

Interfaces which w ere m apped from D D L attribute type declarations will be inherited by

the interfaces representing objects o r links to which the attributes apply. Each SDS

m apped onto an ID L interface will inherit from the follow ing interfaces: any interface

which is a m apping o f a type im portation required by the SDS o r a m apping o f an object,

link o r attribute declaration (or extension, in the case o f object and link) contained in the

SDS.

C hapter 5 describes the language m apping in g reater detail, describing how the D D L

language constructs- fo r exam ple, type im portation declarations, object declaration, link

declarations- are m apped into ID L . It also explains w hy the m apping o f D D L to DDL is

fundam entally flawed by the fact that, since ID L interface definitions define operations

which an object’s im plem entation will provide to its clients, and D D L m odels only data

with no concept o f behaviour o r operation, the ID L interface m apped from D D L are

72

meaningless. H ow ever, by extending D D L, a meaningful m apping w ould be possible,

C hapter 5 also contains a descrip tion o f the necessary extensions to DDL.

4.4 MAPPING IDL TO DDL

As stated earlier, the language m apping o f ID L to D D L was initially seen as an approach

to allow O M A objects to be defined and exist in the PC T E repository , thus using the

PC TE object base as a persistent store fo r O M A objects. This p roved unfeasible fo r tw o

very im portant reasons. PC TE objects are n o t com patible w ith the O M G O bject M odel,

outlined in [2], m ainly because there is no m echanism fo r associating PC TE objects with

tools. A nother reason fo r the unfeasibility o f this approach is tha t ID L scoping rules are

incom patible with D D L scoping rules. ID L syntax allows fo r nested declarations o f

interfaces. This characteristic is accom plished through the follow ing rules taken from the

syntax given in [3]:

<definition>

I

I

I

<type_dcl>

<const_dcl>

<except_dcl>

<interface>

<m odule>

<m odule> "module" <identifier> "{"

<defm ition>+ "}"

73

The rules show n above allow ID L m odules and its interfaces to be nested w ithin o ther

m odules. In contrast, PC T E 's SD Ss are linear in natu re[3], and therefore unable to m odel

the possibly nested ID L interfaces and m odules.

This conflict in scoping rules m akes a reverse m apping, the m apping o f ID L to D D L,

im possible. H ow ever in a m apping o f D D L to ID L, this does n o t affect the m apping o ther

than the fact tha t the ID L nested scoping feature w ould n o t be utilised; linear PC TE SDSs

w ould be m apped onto ID L definitions, w hich are not nested.

Having briefly discussed the reasons why a language m apping approach to the integration

o f PC TE and O M A cannot be successful until alterations have been m ade to the both

specifications (m uch o f the w ork being done by the O M G PC TE SIG involves these very

alterations [12]), w e see that an alternative approach to in tegration is necessary, since it

was a pre-requisite a t the ou tse t o f this research to provide an interim integration which

will no t necessitate changes to either specification, and so now we turn to the second

approach explored in this research, the definition o f ID L interfaces fo r PC TE tools.

4.5 IDL Interfaces fo r PCTE Tools

This section outlines briefly the definition o f ID L interfaces fo r PC TE tools as an

integration strategy. This strategy was explored after research had found that a m apping

o f D D L to ID L w ould necessitate the altering o f the PC T E standard, in particular D D L, in

order to m ake it feasible as an integration strategy.

74

To allow C O R B A access to PC TE tools, they m ust have an ID L interface. This DDL

interface advertises the services its object im plem entation provides to potential clients (i.e.

C O RB A objects which w ish to avail o f the services advertised). Therefore the object

im plem entation o f an ID L interface advertising operations o f PC TE tools m ust contain in

their object im plem entation som e m ethod o f executing the PC TE tools w ithin the object

base, see Figure 4.3. The m ethod used in this research was to em bed a PC TE shell script

(as opposed to a U N IX shell script) w ithin the C O R B A object im plem entation. The shell

script acts as a w rapper o r buffer betw een the C O R B A object im plem entation and the

PC TE tool. It also allows us to use the PC TE activity operations (See Section 2.6) as

provided by the PC T E A P I (Application P rogram Interface) to ensure that the object base

remains in a consisten t state. C hapter 6 describes the definition o f ID L interfaces for

PCTE tools as an integration strategy in greater detail.

Figure 4.3 Defining IDL interfaces fo r PCTE tools

75

This approach to the integration o f PC TE and O M A is n o t a m utually beneficial

integration since it offers nothing to C O R B A . The benefits o f the integration are to PC TE

alone, since it does n o t allow the persisten t storage o f O M A objects in the PC TE

repository. H ow ever the benefits which this approach provides to PC T E m akes such a

com prom ise acceptable, these benefits including increased control integration betw een the

tools in the PC TE repository, support fo r the full object orientation o f PC TE objects (by

defining an ID L interface fo r a PC TE, the to o l’s behaviour as well as its d a ta can be

m odelled), support fo r the com position o f PC T E tools, and access to o ther O M A service

and o ther O M A com pliant system s. N ow that the approaches to integration taken during

research have been in troduced, before we exam ine them in greater detail w e will take a

look at som e related w orks, and see w here they f it in w ith this thesis.

4.6 Related Works

In order to evaluate w here the research presented in this thesis fits in relation to o ther

research in the field, it is necessary to look at how it differs from other related w orks:

PCIS (Portable C om m on Interface Set), C O H E S IO N w orX /PC T E (Digital) and O O TIS

(IBM A IX -CA SE). These are described in the fo llow ing sections.

4.6.1 PCIS

PCIS was founded by the N A TO Special W orking G roup on A D A Program m ing Support

Environm ents in 1991. The p ro ject’s goal w as to identify a SEE fram ew ork based on

PCTE (see [1], [2]), Syseca’s E nterprise-II environm ent [21] and o ther available

76

standards. The PC IS pro ject is in troduced and specified in [45] and [46] respectively. As

stated previously PC IS is based on the PC TE m odel, its architecture being the sam e as a

PC TE one. B ased on analysis and evaluation o f IR A C ’s O bject M anagem ent System

requirem ents [48] and the N IST /E C M A Reference M odel object m anagem ent services

[21], PC IS is designed to enhance PC TE. A m ong the fram ew ork services areas that

would supplem ent PC TE, as identified by [16] and [47], are ob ject orien ted services, fine

grained m anagem ent o f data, user-m anaged data, trigger services, life cycle process

services and tool in tegration and co-ordination [12].

In contrast to PC TE which supports m edium and large grain data, PC IS also supports fine

grained data. PC IS provides a new definition language, PC IS Interface Definition

Language, (PID L) in o rder to support fine granularity and fu rther object orientation,

openness, in tegration and co-operation am ong tools [12]. These requirem ents o f fine

granularity, openness, im proved integration etc. dem anded a fram ew ork tha t supports no t

only the data sharing provided by PC T E but also behaviour sharing am ong tools [16].

PCIS fulfils these requirem ents.

PC T E ’s inheritance and object identity facilities encouraged the PC IS pro ject m em bers to

use object oriented database answ ers to accom plish the behaviour sharing facilities which

are m issing in PC TE. P ID L language is based on both P C T E ’s D a ta Definition Language(

See Section 2.4) and the interface definition language defined by C O R B A (see Section

3.5) [12]. It is this fact tha t PC IS is basically a hybrid o f PC TE and C O R B A as well as

o ther technologies that differentiates it from the research contained in this thesis, where

both specifications are used unaltered.

77

4.6.2 COHESIONworX/PCTE

T his section describes w ork done a t D igital in o rder to provide an im plem entation o f

C O R B A based on the PC TE standard, the objective o f w hich w as to enhance the usability

o f PC TE through the addition o f a high level object oriented interface [49]. This w ork

has provided a partial im plem entation o f C O R B A (only the dynam ic interfaces), which is

based on the EC M A PC T E standard. The p ro ject relied purely on EC M A PC TE

facilities fo r O M S access, process start-up and interprocess com m unication; so this

im plem entation respects EC M A PC TE sem antics o f the dynam ic con tex t fo r child

processes, guaranteeing that C O R B A servers conform to PC TE security and activity

semantics. This was m ade possible by using D ig ita l’s im plem entation o f C O RB A , ACAS

[50] and exploiting the tw o tier architecture o f ACAS: there is an upper layer that

implem ents the C O R B A sem antics and a low er layer that interacts w ith the OS and the

netw ork. The low er layer was re-im plem ented using PC TE facilities and supporting the

upper layer fo r process execution, da ta access security, distribution and interprocess

com m unication. The C O R B A specification does n o t place any restrictions on how it is to

be im plem ented and so, because the C O H E S IO N w orX /PC T E approach to integrating

PC TE and C O R B A exploits a particular aspect o f the ACAS im plem entation o f CO RBA,

we cannot assum e that this approach w ould w ork fo r all C O R B A im plem entations.

The C O R B A im plem entation delegates the process activation and deactivation to PC TE

and all C O R B A server objects are activated by m eans o f PC TE prim itives, thus respecting

the semantics o f the dynamic con tex t fo r child processes (e.g. activities and security) see

Section 2.5. The use o f PC TE fo r process distribution supports application start-up

anywhere in a PC TE distributed environm ent. Com m unication betw een C O R B A objects

relies exclusively on PC TE m essages queues, as this ensures a transparent and secure

78

exchange o f da ta betw een C O R B A applications running in a distributed PC TE

environm ent.

Digital have also w orked on a p ro ject to integrate PC TE into D igital’s existing

C O H E SIO N w orX Fram ew ork fo r C A SE and to achieve a high level o f interoperability

with existing non-PC T E tools already in tegrated into the fram ew ork [11].

C O H E SIO N w orX is an open fram ew ork tha t offers a d istributed softw are developm ent

environm ent based on: d istributed control services, a graphical desk top environm ent, and

a set o f integrated developm ent tools [11]. The control in tegration aspect o f this pro ject

is based on the C O R B A im plem entation using PC TE services. The introduction o f

C O RB A as one o f the integration technologies o f an SEE, such as C O H ESIO N w orX ,

achieves tw o im portan t results from the perspective o f the tool in tegrato r and fram ew ork

builder. It ensures sem antic integrity am ong PC TE SD Ss, and it allows the definition o f

tool interfaces, so that they can m ake their services available to the res t o f the

environm ent, w hile hiding the im plem entation details.

W ork is currently in progress to engineer a full-com pliant C O R B A /PC T E im plem entation

based on the new D igital’s p roduct O bjectB roker 2.5 that im plem ents O M G ’s ORB. This

version will also allow integration w ith M icrosoft O LE 2 via the C O M protocol [52], The

success o f these projects have proved that the EC M A PC TE is indeed the right base on

which to build 0 - 0 extensions. F urther research at D igital[51] confirm s that PC TE and

C O R B A set the stage fo r the addition o f o ther services needed by the C A SE fram ew ork

provider and tool in tegrator-for exam ple A TIS (A Tool In tegration Standard) version and

configuration m anagem ent services- in o rder to achieve a robust and flexible fram ew ork

for C A SE tool integration.

79

4.6.3 OOTIS Tool Integration Model

O bject O riented T ool In tegration Services (O O TIS) T ool In tegration M odel is an

architecture fo r a C A SE T ool In tegration platform addressing both data and control

integration and covering the perform ance spectrum from coarse to fine grained

integration. I t in tegrates an O bject O riented control sharing m odel w ith an extended

PC TE data sharing m odel [53]. O O TIS extends PC TE in tw o w ays. I t provides, first o f

all, support fo r object oriented control integration and, secondly, support fo r fine-grained

objects.

O O TIS perm its the definition o f operations applicable to object types. These definitions

specify interfaces (signatures) only [54]. O O TIS also perm its the definition o f tools that

provide im plem entations o f operations, and m appings tha t specify w hich im plem entations

are to be used in which circum stances. Program s can invoke operations on specific

objects in either o f the tw o convenient ways specified by the O M G CO RBA . A

dispatcher generated by O O TIS from the too l definitions will rou te each invocation to the

appropriate im plem entation(s).

The details o f the tool definitions are such that they can be com bined using com position

operators, allowing separately-w ritten tools to be com posed easily. The O O TIS control

integration support thus in troduces C O R B A -com pliant object oriented m ethod resolution

and tool com position into PC TE. O O TIS contro l integration is m odelled by three SDSs.

One extends the pre-defined PC T E SD S, metasds, w ith interface definitions, consisting

o f operation type definitions and associations o f interfaces w ith object types. The other

tw o SD Ss m odel tools, consisting o f im plem entations and m appings. Therefore the

OO TIS approach to control in tegration also involves changes to the PC TE specification.

8 0

4.7 Evaluation

All o f the related w orks described in the previous section had been undertaken before the

form ation o f the O M G PC TE SIG and the com m itm ent to the convergence o f PC TE and

OMA. The PC IS and O O TIS projects both require alterations to the PC TE specification,

while the success o f the C O H E S lO N w orX /PC T E pro ject highlights the benefits o f

utilising the com plem entary nature o f the relationship betw een C O R B A and PC TE.

H ow ever, as pointed out earlier, it relies heavily on a particu lar im plem entation o f

CO RBA. W e are interested in an integration strategy fo r C O R B A w hich is independent of

implem entation.

The O M G PC TE SIG is com m itted to the convergence o f PC T E into the O M A /C O RB A

specifications. The purpose o f this thesis was to find an integration strategy which can be

used in the interim to support this convergence, since both specifications have m uch to

offer each other. For instance, part o f O M A , the O bject Services specification, which is

n o t yet com plete, is the specification o f a persistent store fo r O M A objects; the PC TE

repository could be used as such a store. The PC TE OM S is suitable fo r such a purpose

because the focus o f the PC T E specification is on data in tegration and as such it provides

an elegant and pow erful d a ta m odelling system. Even though specifically designed for

CA SE environm ents, the com plexity o f the relationships in such environm ents means that

the PC TE OM S has evolved to a position where it can m odel com plex data and

relationships fo r o ther environm ents. Likewise, C O R B A could be used, as described

earlier, to enhance PC TE to full object orientation, increasing the control integration

betw een PC TE tools, and to facilitate too l com position. For these reasons a language

m apping betw een P C T E ’s D D L and C O R B A ’s ID L appeared very attractive, as it w ould

have allow ed the direct m apping o f PC TE objects to O M A /C O R B A objects. H ow ever,

81

the research in this thesis show s tha t such a language m apping is n o t possible w ithout

altering the specification o f DD L. The extensions w hich D D L w ould require in o rder to be

com patible w ith ID L are described in Section 5.4.

H aving dem onstrated that such a m apping is unfeasible, the defin ition o f ID L interfaces for

PC TE tools was explored as an integration strategy which aim ed to im prove control

integration betw een PC TE tools and enhance PC TE objects to full object orientation.

H ow ever this strategy does no t ca te r fo r the m apping o f C O R B A objects to the PC TE

repository. Thus the definition o f ID L interfaces fo r PC TE tools is a m uch w eaker

integration strategy than w ould have been provided by the m apping o f D D L to ID L (and

vice versa), had such a language m apping been successful.

H ow ever, apart fo r com prom ising the benefits o f a m utual in tegration, it does achieve the

o ther objectives fo r an interim in tegration strategy. This approach increases the control

integration betw een PC TE tools. I f the ID L interface is used to access the tool then, to all

clients, the tool seem truly object oriented because the object im plem entation o f the

interface encom passes both the to o l’s da ta and the static con tex t (executing tool), its

behaviour. A lso this approach facilitates the developm ent o f com posite PC TE tools.

Therefore it has m uch to offer PC T E as an integration strategy while waiting fo r the

convergence o f the tw o specifications.

In C hapter 6 w e will exam ine the strategy fo r defining ID L interfaces fo r PC TE tools in

greater detail. F irst, in C hap ter 5, w e discuss the language m apping o f D D L to ID L and

w hy it was proven by this thesis to be unfeasible as an integration strategy.

82

CHAPTER 5 LIMITATIONS OF THE MAPPING OF
DDL TO IDL

T his thesis proves th a t the m apping o f P C T E ’s D ata D efinition Language (D D L) to

C O R B A ’s Interface D efinition Language is unsuccessful as an integration strategy fo r the

curren t specifications o f D D L and ID L as they stand, and therefore it is unsuitable as an

interim integration strategy w hich requires the unaltered specifications fo r both PC TE and

C O R B A to be used. In o rder to understand the lim itations o f the m apping, let us first

look at the m otivation and general concepts behind the developm ent o f such a m apping,

and in tu rn the form that this m apping w ould take. Section 5.1 outlines the basic ideas

involved in the m apping o f D D L to ID L , while the details o f how D D L language

constructs are m apped to ID L language constructs are described in Section 5.2.

Initially this m apping o f D D L to ID L appeared to be the m ost attractive integration

strategy, because it w ould allow the autom atic generation o f an ID L interface from a D D L

definition via a simple language translation. By generating such ID L interfaces from the

D D L definitions, it w as hoped th a t these ID L interfaces w ould “encase” PC TE tools, and

integrate them w ith the O M A structure, allowing them to avail o f the ORB in o rder to

increase the control in tegration betw een the tools in the PC T E repository . H ow ever the

m apping proved to be unfeasible fo r this purpose. Section 5.3 discusses w hy this thesis

proved this approach n o t viable as an interim integration strategy. D D L m ust be extended

fo r com patibility w ith ID L , in o rder to facilitate m eaningful m appings betw een these tw o

languages, a description o f the necessary extension to D D L being contained in Section

83

Before looking at the precise details o f how D D L language constructs can be m apped to

DDL, we w ill begin by looking at the general concepts behind the m apping.

5.1 GENERAL MAPPING CONCEPTS

As stated earlier in C hapter 2, DDL is a form al notation for defining types, and is used to

define the types in the fou r standard PC TE SD Ss (Schem a D efinition Sets). Typing is a

prom inent characteristic o f the PCTE data m odel, such that every instance in the PCTE

repository belongs to a defined type. It places restrictions on the properties o f PC TE

entities, which are created and m anaged in term s o f their specific type. Typing is the

fundam ental elem ent which allows the data integration o f tools. The PC TE data definition

language, DDL, is a form al notation for defining these types[4].

This m apping aim ed to provide an ID L definition fo r D D L definition o f a tool. DDL

definitions are com posed o f sequences o f SD Ss. In m apping D D L to ID L , each tool has

its ow n ID L interface, and each SDS in the tool's D D L definition is m apped onto a

separate interface which m ay then be inherited and therefore accessed by the tool's IDL

interface. Take fo r exam ple a PC TE tool, a C com piler we will call ccomp, whose

working schem a consists o f the sys, env, c_prog and pact SD Ss. Then the inheritance

specification fo r the ID L interface o f this tool will contain at least sys, env, c_ p ro g and

pact as its base interface as shown below.

interface ccomp : sys, env, c_prog, pact {

 } ;

This mapping places great im portance on the inheritance o f interfaces. D D L objects,

links and attributes are m apped to ID L interfaces w ithin the m apping, since it m ust be

84

possible to im port all three into o ther SD Ss, i.e. allow their ID L interfaces to be inherited

by o ther interfaces. Interfaces which are m apped from D D L attribu te type declarations

are inherited by the interfaces representing objects o r links to which the attributes apply.

Take for exam ple the ID L interface name as given in Section 5 .2.2, and the following link

type declaration taken from the c_prog SD Ss, see A ppendix C.

h : composition link (name, subname)

to in c lu d e ji le ;

The inheritance specification fo r the ID L interface o f the link type, h, w ould be as

follows:

interface h : name {

 } ;

Each SDS m apped onto an ID L interface, inherits from the follow ing interfaces: any

interface which is a m apping o f a type im portation required by the SDS or a m apping o f an

object, link or attribute declaration (or extension in the case o f ob ject and link) contained

in the SDS.

Because we treat links as objects (since we allow the definition o f ID L interfaces for links)

fo r the m apping, we need to address the existence o f links w ith cardinality greater than

one. This m eans tha t references need to be m aterialised either to the link in its com plete

plurality, enabling access to all o f the instances o f the link, o r a single instance o f the link.

The concept o f the link as a plurality, o r set o f link references, is inherent in the notion of

links that anchor relationships tha t are no t one to one relationships. A lthough link is a

simple name it potentially refers to m any instances o f the sam e type, a set o f link

instances[6]. The D D L to ID L m apping handles the notion o f sets o f link instances by

85

allowing multiple associations to be stored by link and object type interfaces as arrays of

pointers to objects which satisfy the associated interface types. In the case o f object type

interfaces, this m eans an array o f pointers to object types which will satisfy each o f the

interface types, an array fo r each link type. In the case o f link type interfaces, it means

arrays o f pointers to objects which will satisfy the appropriate object interface types, an

array for each PC TE object type.

Each D D L data type (boolean, natural, in teger, floa t etc .) is m apped onto an ID L data

type. C onstants such as W R IT E , R EA D , PR O T E C T E D , N A V IG A T E etc. will be defined

as symbolic constants in ID L. Sections 5.2.1 - 5 .2 .6 describe the language m apping in

greater detail, describing how the D D L language constructs such as type im portation

declarations etc. are m apped into ID L. The exam ples a ttached to each section are taken in

part from [13] but they have been altered to show how additional features o f each

construct are m apped. The syntax o f the D D L and ID L language constructs described in

these sections are given in A ppendix A ([5]) and A ppendix B ([3]) respectively.

5.2 MAPPING DDL CONSTRUCTS TO IDL
CONSTRUCTS

This section describes how the D D L language constructs- i.e. type im portation, attribute

type, link type, object type, link type extension and object type extension declarations- are

m apped onto ID L language constructs.

86

5.2.1 Mapping Type Importation Declarations

A type im portation declaration in D D L (see Section 2.4.1) is m apped onto an ID L

interface declaration w here the interface's inheritance specification contains the nam e o f

the type to be im ported , and the interfaces identifier is the type’s local nam e within the

SDS to w hich it is being im ported. The type m ode declaration (w hich show s how the type

may be used, e.g. navigated o r read, and if it can be exported from the cu rren t SD S) is

represented as a constan t declaration o f identifiers called export and usage set to the

appropriate value (PR O T E C T E D , R EA D , W R IT E , D E L E T E , C R E A T E , N A V IG A TE)

within the interface definition. This interface is then included in the inheritance

specification o f the ID L interface o f SDS for which the type is being im ported. Take fo r

exam ple the D D L type im portation declaration show n below (explained in Section 2.4.1).

import object type pact-env as env (usage navigate ; export protected);

This can be m apped to the follow ing ID L interface :

interface env : pact_env {

const short int export= PROTECTED ;

const short int usage = NAVIGATE;}

5.2.2 Mapping Attribute Type Declarations

A D D L attribute type declaration (see Section 2 .4.6) is m apped to an ID L interface, since

it m ust be possible to im port attributes into o ther SDS, i.e. in term s o f the m apping, to

allow SDS interfaces to inherit them . The type m ode declaration w ould be m apped in the

same fashion as described in Section 5.2.1. The interface contains a constan t declaration

87

of type boolean identified by 'non_duplicated' which is se t to T R U E or FA L SE depending

on w hether the D D L keyw ord non_duplicated is p resent in the a ttribu te type declaration

or not.

The DD L value type indication clause is represented as attribute type declaration o f an

identifier nam ed 'value' within the interface. The D D L initial value clause (indicating the

initial value o f the a ttribute), if present, is m apped onto a constan t declaration, identified

by initial__value. Take fo r exam ple the follow ing D D L attribute type declaration:

name : (usage create ; export protected) non_duplicated string := "John Smith"-,

This can be m apped to the follow ing ID L interface.

interface name {

const short int export = PROTECTED ;

const short int usage = CREATE ;

const boolean non_duplicated = TRUE;

const string initial_value = "John Smith";

attribute string value;

}

N ote : A n attribute definition in ID L is logically equivalent to declaring a pa ir o f accessor

functions, one to retrieve the value o f an attribute and one to set the value o f the attribute.

5.2.3 Mapping Object Type Declarations

A D D L object type declaration (see Section 2 .4.2) is m apped to an ID L interface

declaration. The ID L interface inheritance specification o f an object declaration which

contains a child type of clause (i.e. a declaration o f a PCTE object which is derived from

the objects specified after the child type clause) will specify the parent interfaces from

which the object is to inherit. The IDL interface definitions o f any attributes that the DDL

object type contains will also be included in the inheritance specification.

The type m ode declaration (see Section 5.2.1) o f the object type is represented as a

constant declaration o f export and usage m odes set to the appropriate values

(PR O TEC T ED o r C R EA T E) within the ID L interface definition. The conten ts clause of

the object type declaration is m apped as a type definition fo r a void pointer called

"contents" within the interface declaration; this po in ter can later, in the im plem entation of

the interface, be set to an object o f an appropriate type depending on the contents type,

e.g. file, pipe, device, audit_file or an accounting_log.

The D D L com ponent clause o f the object type declaration (groups together objects which

are related to each other) is represented as an array o f pointers to objects, objects which

satisfy the ID L link interface types m apped from D D L link types specified in the clause.

An array exists fo r each link type in the clause, the M A X _SIZE o f the arrays defined to be

the maximum num ber o f links allowable. I f the com ponent indication list o f the

com ponent clause contains a link type declaration, the link type declaration is m apped to

another interface (handled similar to the attribu te type declaration w ithin the link type

extension in Section 5.2.6), and an array o f ob ject pointers is se t up to hold references to

all links o f this type. Take for exam ple the fo llow ing D D L object type declaration:

89

c_source : child type of source J ile with

contents file ;

attribute name ;

link tool ;

end c_source ;

T his can be m apped to the fo llow ing ID L interface :

interface cjsource : source J ile , name {

void * contents ;

tool links_1[MAX_SIZE\ ;

5.2.4 Mapping Object Type Extension Declarations

A D D L object type extension (see Section 2 .4 .5) is m apped to an ID L interface definition

where the ID L interface inheritance specification o f the object type extension will specify

the interface o f the object being extended, as an interface from which to inherit. The

interface declarations o f any attributes that the object extension contains will also be

included in the inheritance specification. The link and com ponent clauses will be m apped

in the sam e way as those w ithin an object type declaration m apping (See Section 5.2.3).

Take fo r exam ple the follow ing D D L object type extension declaration:

extend object type project with

attribute nam e ;

90

link product ;

component current_projects ;

end project ;

This can be m apped to the fo llow ing ID L interface :

interface X p ro jec t : project, name {

product lìnk_l [MAXSIZE] ;

current_projects component_l[MAX_SIZE\;

}

5.2.5 Mapping Link Type Declarations

A D D L Link type declaration (see Section 2.4.3) is m apped to an ID L interface

declaration, w here the in terface’s inheritance specification w ill contain the interface

m apping o f any attributes w hich apply to the link.

The type m ode declaration (see Section 5 .2.1) o f a link is represen ted as a constant

declaration o f export and usage m odes set to the appropriate value (PR O TEC TED ,

N A V IG A TE, D E L E T E , C R E A T E) w ithin the ID L interface definition. The interface

contains a constan t declaration o f type boolean identified by 'exclusive' which is se t to

TR U E or False depending on w hether the D D L keyw ord exclusive is present in the

definition or not.

91

The interface contains a constan t declaration o f type boolean identified by 'non_duplicated'

which is set to TR U E o r FA L SE , depending on w hether the D D L keyw ord

non_ duplicated is present in the D D L definition o r not. The interface contains a constan t

declaration o f type short int identified by stability which is set to an appropriate value

(A TO M IC, C O M PO SITE or N O N E) depending on w hether the link is defined as being of

atomic o r com posite stability o r unstable. A link is stable if its designation object cannot

be m odified o r deleted as long as this link exists. The interface contains a constan t

declaration o f type short in t identified by category_name which is se t to an appropriate

value (C O M PO SITIO N , E X IST E N C E , R E FER E N C E , IM P L IC IT o r D E SIG N A TIO N)

depending on w hether the link is defined as being o f link type composition (defining the

destination object o f the link as a com ponent o f the origin object), existence (keeps the

destination object in existence as long as the link exists), referential (guarantees the

existence o f an object th a t can be referred to by a path nam e), implicit (used to reverse

links o f the o ther link categories w hen the reverse part o f a relationship does no t need to

express any particular properties) o r designation (relevant only to the origin object, they

represent dynam ic relationships) link.

I f the D D L link type declaration contains a cardinality clause then tw o constan t

declarations o f type short int, identified by upperJbound and lowerjbound and set to take

on the upper_bound and low er_bound cardinality o f the link, are m ade w ithin the ID L

interface. The D D L key list clause is m apped to the ID L interface as an array o f object

pointers to objects which satisfy the ID L interfaces, m apped from the attributes which

make up the key. A reverse link clause within a link declaration is m apped onto a link

type nam e pointer declared w ithin the ID L interface.

The “to” clause o f the link declaration is m apped as an array o f pointers to objects which

satisfy the ID L interfaces o f objects to which the link m ay poin t (an array exists fo r each

92

object type in the clause). The M A X _SIZ E o f the arrays is defined to be the maximum

num ber o f links allowable. Take fo r exam ple the fo llow ing D D L link type declaration :

subprog : (usage navigate ; export protected) exclusive

non_dup!icated

composition link (name, subname) to program

with

attribute name ;

end subprog ;

This can be m apped to the fo llow ing ID L interface :

interface subprog : name {

const short int usage = NAVIGATE ;

const short int export = PROTECTED ;

const boolean exclusive = TRUE ;

const boolean non_duplicated = TRUE ;

const short int category_name = COMPOSITION;

program to_l[MAX_SIZE]\

}

5.2.6 Mapping Link Type Extension Declarations

A D D L link type extension (see Section 2 .4.4) is m apped to an ID L interface definition

w here the ID L interface inheritance specification will specify the ID L interface o f the link

being extended, as an interface from which to inherit. The interface declarations o f any

93

attributes that the D D L link type extension contains w ill also be included in the inheritance

specification.

The “to” clause is m apped in the sam e way as the “to” clause in a link type declaration is

m apped (See Section 5 .2 .5). T ake fo r exam ple the following D D L link type extension

declaration :

extend link type tool to sctx

with

attribute

user : string ;

end tool ;

This can be m apped to the follow ing ID L interfaces: an interface fo r the link type

extension and an interface fo r the attribute type declaration sub-com ponent. The attribute

type declaration is m apped to the fo llow ing ID L interface :

interface user {

const boolean non_duplicated = FALSE ;

attribute string value ;

}

The D D L link type extension is then m apped to the fo llow ing ID L interface :

interface Xjtool : tool, user {

sctx to_ J [MAX_SIZE] ;

}

94

5.3 LIMITATIONS OF THE MAPPING

H aving examined the form th a t a m apping o f D D L to ID L takes, le t us now discuss why

the usefulness o f the m apping described in the previous sections is lim ited and unfeasible

as an interim integration strategy.

As stated earlier, the purpose o f generating an ID L interface from D D L definitions is to

encase o r wrap PC TE tools in an ID L interface, w hich w ould integrate them into the

O M A structure allowing them to avail o f the ORB in o rder to increase the control

integration betw een the tools in the PC TE repository , to becom e full object oriented

having both behaviour and state, and to allow PC T E tools to be activated using CO RBA.

In C O R B A an ID L definition o f an object defines the operations which the object can

provide, the purpose o f ID L being to provide a definition o f objects based on the services

o r functions these objects can provide to their clients. In ID L operation declarations (see

Section 3.5.2) are used to advertise to clients the services w hich the object can provide,

and so the presence o f operation declarations in an ID L interface definition is necessary to

define the behaviour o f the object.

From the description o f the m apping in Section 5.2, we see that none o f the D D L

language constructs can be m apped to an ID L operation declaration. A lso, looking

closely at the exam ples o f ID L interfaces generated from D D L SD Ss in Sections 5.2.1 -

5 .2.6, we notice a d istinct absence o f operation declarations in these interfaces. Even

though the interfaces in these exam ples are all legal ID L syntax, their usefulness or

m eaning is lim ited, som ew hat like a function definition which contains only variable

95

declarations. This is illustrated further below, where we dem onstrate that, when each of

the D D L language constructs (one o f each type is taken as an exam ple) used in the

c_prog SDS are m apped to ID L. the resulting interface fo r the c_prog SDS contains no

operation declaration. For a com plete listing o f the c_prog SDS, see A ppendix C.

sds c__prog:

import sys-name as name;

release: integer := 1 ;

c_source : subtype of file ;

tests : composition link

to tes tests ;

end c__prog ;

Using the m apping described in Section 5.2 we w ould get the fo llow ing ID L definitions:

interface release {

int initial_value := 1 ; };

interface c_source ’.file {};

interfaces/e : sys-file {};

interface tests {

const short int category_name = COMPOSITION ;

testsets to_] [MAX_SIZE\ ;

} ;

96

W e saw in C hapter 2 tha t the entire PC TE repository , including the static con tex t object

which contain the PC TE tools (in either source code o r executable form) is defined using

D D L SDSs. Therefore from the above exam ple we can see that the m apping o f an SDS

which defines a PC TE tool w ill a lso result in an ID L interface which contains no operation

declarations, and therefore, while such an interface m ay be a valid ID L interface, it cannot

advertise the functions or operations provided by this tool.

Therefore the ID L interfaces generated by the m apping o f D D L to ID L described in earlier

sections o f this chap ter cannot be used to increase contro l integration am ong PC TE tools

o r to activate PC TE tools using C O R B A because these ID L interface do not advertise any

operations o r service fo r potential clients o f these objects to avail of. Rem em ber control

in tegration is “the capacity to request operations from other tools in the system ” [43].

H aving ascertained that, while it is possible to m ap D D L language constructs to ID L , the

resulting ID L interfaces are m eaningless because none o f these interfaces contain any ID L

operation declarations. In o rder to understand w hy this incom patibility exists betw een

D D L and ID L, we m ust rem em ber that ID L m odels the behaviour o f objects. This is its

prim ary purpose, it does n o t m odel the data on which the object “behave” . In direct

con trast to this, P C T E ’s D D L is a data definition language used to define d a ta types,

which does n o t include any concep t o f function/operation o r the behaviour o f these

strictly data objects. The lack o f a m echanism fo r defining behaviour fo r D D L objects is

the reason that D D L and ID L are incom patible, and therefore the reason why a m apping

o f D D L to ID L as an interim in tegration strategy is fundam entally flawed.

interface cjprog : file , c_source, tests, release {}

97

To overcom e this incom patibility D D L m ust be ex tended to incorporate behaviour for

PC TE objects. B ecause this w ould require changes to the PC T E specification it is

unsuitable fo r the purpose o f this thesis; how ever a fu ture a m apping betw een the tw o

languages is still attractive fo r integration purposes. It w ould how ever be incorrect to

assum e that the extensions to D D L, to be described in Section 5.4, w ould m ake D D L and

ID L equivalent. The ID L interfaces m apped from an extended D D L w ould n o t be able to

capture all the sem antic richness o f the data m odelling provided by D D L. This is because

D D L ’s data m odelling relies heavily on the notion o f types (object, link and attribute

types), while C O R B A has no notion o f type, and so som e o f the sem antic richness w ould

be lost in the translation. The follow ing section discusses the additional constructs that

D D L w ould require in o rder to facilitate a com plete m apping o f D D L to ID L , and outlines

som e o f the w ork already being carried out in this area.

5.4 EXTENDING DDL FOR COM PA TIBILITY WITH IDL

This section describes the extensions tha t D D L w ould require before a useful m apping to

ID L w ould be possible. In o rder to accom plish such a m apping D D L m ust be augm ented

w ith additional features which allow it to describe behaviour fo r data objects. This could

be achieved by adding a m echanism for defining interfaces and operation signatures within

DDL, as well as a m echanism for attaching o r associating these interfaces w ith PC TE

objects. As this w ould require changes to the PC T E specification, it is beyond the scope

o f this project. H ow ever le t us look briefly a t som e o f the progress being m ade in this

area.

As already m entioned the PC IS pro ject (described in Section 4 .6.1) is based on the PC TE

m odel. Therefore its architecture is the sam e as the PC T E one. H ow ever, the m em bers of

98

the PCIS group analysed and evaluated IRAC's O bject M anagem ent System requirem ents

(see [8]), as well as the Object M anagem ent System services in the N IST/EC M A

Reference M odel (see [9]). This resulted in fram ew ork services supplem ents to the

existing PC TE ones. One o f these was the provision o f a new definition language, PIDL.

PIDL, PCIS Interface Definition Language, was needed fo r m ore in tegration and co

operation am ong tools than was provided by PC TE. These needs, as [10] states,

dem anded a fram ew ork tha t supports no t only data sharing but also behaviour sharing

among tools. PID L is a language m utually based on PCTE's D D L and CO RBA's IDL,

incorporating features from each: as such, it is o f significant in terest w hen deciding w hat

additional features D D L require in order to m ake it com patible w ith IDL.

The PID L designers had to augm ent fou r D D L rules to provide fo r the connection o f

interfaces w ith object types in the Schem a Definition Set, (SDS). For instance, the clause

category, which provides the fundam ental com ponents within a SD S, w as enhanced to

allow a param eter type declarations[7]. In addition, the DDL's object type declaration and

object type extension categories were augm ented with an interface indication list to

"associate a set o f operation signatures w ith the object type in SD S"[10]. Lasdy, the

im portation o f param eter types from one SDS to another was accom plished through the

expansion o f D D L's category im port type w ith param eter types and constan ts. A n example

can be found in [10].

The current w ork described in (Section 1.2) by the O M G PC TE SIG [12] involves the

definition o f these extensions to D D L and the w ider effect o f this on the PC T E standard.

The OM G PC TE SIG regard the following areas as those necessary fo r consideration

when extending D D L fo r compatibility w ith ID L , as included in their w ork to extend

PCTE for com plete object orientation.

99

• Interface R epresentation, where the description o f how the interface hierarchy is

represented in the m etabase, i.e. which p a rt is described in SDS and which a t the

intrinsic level. I t is im portan t to observe tha t this part o f the m odel is described as an

extension o f the m etasds, while the rem aining tw o parts below are extensions o f the

system SDS [49].

• M ethod Im plem entation R epresentation, w here the description o f how tools and the

m ethods they im plem ent (static contexts, loadable m odules o r scripts) are represented

at the m etalevel and how they can be represented at the application level.

• M ethod m apping to interfaces, which describes the general w ay in which interface

operations are m apped to im plem entations

Thus we see that extending D D L fo r com patibility w ith ID L is a viable proposition , and

that an extended D D L will be included in tha t future specifications o f 0 0 PC TE [49].

H ow ever the purpose o f this thesis is to find an in tegration strategy suitable fo r the current

specifications of CO RB A and PC TE, and so w e m ust abandon the idea o f using a m apping

o f D D L to ID L for the m om ent.

5.5 EVALUATION

In this chapter we have exam ined the concepts behind a m apping o f PC TE D ata Definition

Language (D D L) to C O R B A ’s Interface D efinition Language (ID L). W e have seen why

such an in tegration strategy was initially seen to be so attractive, because it w ould allow

the autom atic generation o f an ID L interface from a D D L definition via a simple language

translation. B y generating such ID L interface from the D D L definitions, the aim was that

these ID L interface w ould “w rap” PC TE tools, and in tegrate them w ith the OM A

100

structure, allowing them to avail o f the ORB in o rder to increase the contro l integration

betw een the tools in the PC TE repository.

This chapter also explained tha t the m apping proved to be unfeasible fo r this purpose,

given the currently specified D D L, even though it was possible to m ap from D D L

language constructs into ID L language constructs. The problem arose because none of

the D D L language constructs m apped to an operation declaration, arising from a basic

incom patibility betw een the PC T E object m odel and the O M A object m odel. Objects

m odelled by D D L (i.e. PC TE objects) have no behaviour; therefore w hen these objects are

m apped onto ID L interfaces, the corresponding interface has no operations defined, this

defeating the purpose o f defining and ID L interface. M uch o f the curren t w ork o f the

OM G PC TE SIG is concerned w ith extending D D L so that it is com patible w ith IDL.

H ow ever until such extensions are m ade to D D L, the m apping o f D D L to ID L cannot be

used as an in tegration strategy.

This research was com m itted to finding an in tegration approach w hich could be used with

the current specifications. Therefore having p roven that the m apping o f D D L to ID L is not

possible w ith the cu rren t specifications (a valuable lesson in itself), the language mapping

strategy to in tegration o f PC TE and C O R B A had to be abandoned in favour o f an

alternate rou te , defining ID L interfaces fo r PC T E tools, which will be the focus o f the

follow ing chapter.

101

CHAPTER 6 IDL INTERFACES FOR PCTE TOOLS

As discussed in C hapters 4 and 5 the initial approach to integration fo r this research, that

o f a language m apping fo r D D L to ID L , proved unfeasible as an interim integration

strategy because, in order to be successful, it w ould require alterations to the specification

of PC TE, to D D L in particular. Therefore in this chapter we turn ou r a tten tion to another

approach to providing a strategy fo r the short term integration o f PC T E and O M A ’S

CO RBA. This chapter describes such a strategy, the definition o f ID L interfaces for

PCTE tools, illustrated by examples using the Em eraude PC TE V 12 im plem entation and

IO N A T echnology’s O RBIX version 1.1 as the C O R B A im plem entation. Som e aspects of

this chapter are specific to these im plem entations, fo r instance the E m eraude shell script,

but there does ex ist an equivalent facility in o ther im plem entations (e.g. .bat files in

W indows o r D O S environm ents); so this m ethod is portable w ith m inor adjustm ents to

other im plem entations and environm ents.

Section 6.1 outlines the general concepts behind the definition o f ID L interfaces for PCTE

tools as an integration strategy. Section 6.2 dem onstrates w ith an exam ple how to define

an IDL interface fo r a PC TE tool. Section 6.3 describes how to im plem ent such an IDL

using a PC T E tool and shell script, while Section 6.4 discusses how this strategy

facilitates the developm ent o f com posite PC T E tools, and increases the am ount o f control

integration in a PC T E env ironm ent

102

6.1 General Concepts

An IDL interface m ust be defined for a PC TE tool to allow C O R B A to access it, since it

is through defining an ID L interface fo r objects that they can advertise the services they

provide (see Section 3.5), thus m aking their services available to the w hole environm ent,

see figure 6.1. ID L interfaces are com pletely independent o f im plem entation, this being

the purpose o f object implem entations (W herever object im plem entation is m entioned in

the rem ainder o f this chap ter it can be taken to m ean a C O R B A object im plem entation as

described in Section 3.4.3). In other w ords the ID L interface defines w hat services are

available and how they m ay be invoked, while the object im plem entation defines how

these are provided(i.e. the im plem entation details).

103

figure 6.1 IDL interface fo r PCTE tools

Therefore the object im plem entation o f an ID L interface advertising the operations o f

PC TE tools m ust contain som e m ethod o f executing the PC TE tools which are stored

w ithin the repository. The m ethod used in this research w as to em bed a PC TE shell script

(as opposed to a U N IX shell script) w ithin the C O R B A object im plem entation, see

Section 6.3.1. The shell scrip t acts as a w rapper o r buffer betw een the C O R B A object

im plem entation and the PC TE tool. The PC T E shell scrip t also allow s us to use the PC TE

activity operations (See Section 2.6) as provided by the PC TE A P I (Application Program

Interface) to ensure that the object base rem ains in a consisten t state.

104

In this way PC TE tools are w rapped in C O R B A ID L interfaces, so that they can advertise

their services which can be invoked by any o ther CO RB A objects, while hiding the

im plem entation details. This facilitates the com position o f tools as described in Section

6.2 A PCTE Tool's IDL interface

The ID L interface defined for a PCTE tool m ust contain an operation declaration for each

service provided by the too l and the param eters tha t are required in o rder to invoke each

operation. Sections 6.2 and 6.3 take a PC TE tool fo r editing C source code files as an

example to illustrate how an IDL interface w ould be defined and im plem ented fo r such a

PCTE tool; the full code fo r these exam ples can be found in A ppendix D. The obj_edit

PCTE tool can be used fo r such a purpose as long as the c_prog SDS is included in its

w orking schem a. The follow ing is the ID L interface fo r this PC TE tool.

105

interface editor {

readonly attribute EDITOR JRESULT changes ;

void edit_object(in string objectname, in string ejdisp);

};

Here the attribute changes is used to indicate if the file has been changed during the edit.

The edit_object operation declaration requires tw o param eters to be sen t to the object

server (notice the in string), objectname and ejiisplay. The objectname param eter

specifies the nam e o f the PC TE object to be edited, while e_disp specifies on w hat

terminal it is to be displayed (rem em ber PC TE is a distributed environm ent). Once an

object im plem entation has been defined fo r this interface, by invoking editor's edit_object,

the obj_edit tool can be executed via C O R B A to edit the C source file nam ed as its

objectname param eter. W e will now discuss how PC TE tools can be em bedded in

CO RB A object im plem entations.

6.3 Implementing a PCTE too l's IDL interface

As outlined in Section 6.1, it is the object im plem entation which will specify that it is a

PC TE tool which will provide the services advertised in the DDL interface. This section

discusses the im plem entation o f PC TE to o ls’ ID L interfaces and the em bedding o f PC TE

tools in an object im plem entation using PC TE shell scripts. The object im plem entation of

the ID L interface o f a PC TE tool is constructed as follows. A n im plem entation class is

declared for the interface, which has a corresponding m ethod fo r every operation defined

in the ID L interface, and a set and get function fo r each attribute o f the ID L interface,

unless it is a readonly attribute, in which case only a get function is required (e.g. the

106

changes m ethod defined below is the im plem entation o f the editor interfaces changes

attribute).

Take fo r exam ple the ex trac t below taken from the declaration o f the im plem entation

class, Editor_i, fo r the editor IDL interface, see A ppendix D. The fact that the class

Editor_ j inherits from the class editorBOAImpl indicates tha t it is the im plem entation class

for the editor IDL interface, notice also that the Environment & param eter indicates that

this m ethod is an im plem entation o f an operation defined in the IDL interface.

#include "editor.idl.h"

II class Editor_i, im plem entation class for the editor IDL interface

class Editor_i: public virtual editorBOAImpl {

protected:

EDITOR_RESULTchanges_i;

public:

/ / calls the ed it esh w rapper to edit the PC TE C source file object

virtual void edit_object(char *objectname, char *e_disp, Environment &);

/ / returns value o f changes_i, value depending on the file being edited has

// changed.

virtual EDITOR_RESULT c/iange.s(Environment &);

Note: EDITOR_RESULT is an enum erated IDL type defined in A ppendix D.

107

N ow that we have declared the object im plem entation class o f the ID L interface fo r a

PCTE tool, we m ust em bed the PC TE tool in the m ethods declared by this class to be

im plem entations o f the operations in the ID L interface. This is done using PC TE shell

scripts in a U N IX environm ent, similar facilities ex ist in o ther environm ents- fo r example

in DOS, .bat files could be used. Thus a PC TE shell scrip t is used to invoke the tool from

the m ethod. In the exam ple given below, a fu rther ex tract from A ppendix D , the Editor_i
m ethod edit_object is the im plem entation o f the operation edit_object defined in the editor
ID L interface. I t has em bedded in it an execution o f the esh shell scrip t edit, which

handles the editing o f the PC TE C source file objects.

void Editor_i::edit_object(char *objectname,char *e_disp, Environment &)

{

if (pid = fork()) { / / fo rk a process to execute the script

wait(&status); II P aren t process w aits for com pletion

}

else{

execlp("Vhome/cse/emerpcte/bin/tools/environ.tools/esh"esh"edit”,1(char *)0);

}

A shell is a com m and interpreter that provides a u ser interface to a particu lar software

environm ent; several shells are available to run on U N IX system s. These U N IX shells all

provide com m and processing facilities [56] but these will no t necessarily be able to access

the PC TE object base. The Em eraude shell esh is specifically designed fo r exploring and

modifying the object base. The shell’s com m and in terp reter has a num ber o f facilities for

generating o r constructing complex com m ands and to w rite scripts', Section 6.3.1

describes esh shell scripts in greater detail.

108

6.3.1 Esh Scripts

An esh shell scrip t is an object (in the PC TE repository) containing a set o f comm ands

that can be executed by entering the ob jec t’s path name. Each shell scrip t is an

interpretable static context, where the in terp reter is the shell (see Section 2.5). Scripts are

a convenient w ay o f storing a set o f com m ands to be run m ore than once. The comm ands

are put in an object o f type sctx (static context), and can subsequently be executed in a

child shell process by typing the path nam e o f the object[55].

Em eraude esh scripts are sim ilar to U N IX shell scripts as described in [56]. The following

is the contents o f the static context (called ed itor.too l) containing a script which activates

the obj_edit tool:

act_start TR

obj_edüt $ 1

act_end

The $1 follow ing the obj_edit indicates that the param eter telling obj_edit which PC TE

object to ed it will be received as a param eter to the script. The fact tha t the PCTE

process o r tool (in this example obj_edit) is m anaged by a transaction activity means that

the PCTE facilitates fo r concurrency and in tegrity control are utilised, and ensures the

repository is never le ft in an inconsistent state (see Section 2.6).

In the above exam ple o f the editor IDL interface, the m ethod defined fo r edit_object in the

object im plem entation calls an esh scrip t which subsequently executes the editor.tool

109

script given above. A n extract from the ed it esh scrip t dem onstrating this is shown below,

the script is given fu lly in A ppendix D. The edit script first adds c_prog and the pact SDS,

because the ed ito r interface which we are im plem enting is fo r c source files. The

edit_object m ethod im plem entation sets up the environm ent variables needed fo r the

script, i.e. O B JE C T N A M E (the name o f the PC TE c_source object to be edited) and

BA CK U PN A M E (the nam e o f a PCTE object w here we can backup the source file before

changes are m ade). O nce it has checked to ensure the object nam e exists (no t shown in

the extract), it backs up the object before editing it using the ed ito r.too l script shown

above. W hen the editing o f the file has been com pleted it checks to see if the file was

changed and returns a value to the calling function accordingly.

Shell w rapper fo r editing c source files

#

required en v iro n m en t:

OBJECTN AM E {file nam e = 'path/filenam e'}

BA CK U PN A M E { backup nam e = ’path/backup.c’}

Add the c_prog and pact w orking schem a to the current w orking schem a

ws_add_sds c_prog

ws_add_sds pact

make a backup o f file before edit begins

_/sun4.toolsets/user.tools/obj_copy %OBJECTNAME $BACKUPNAME

edit the object

_/.users/ptangney.usr/patricia.tooIs/editor.tool %OBJECTNAME

110

ch ec k i f e d ite d o b je c t w as u p da ted

_/sun4.toolsets/imported.tools/cmp -s %OBJECTNAME %BACKUPNAME

OBJECT_CHANGED=$?

0 no change, 1 i f change, 2 if error

delete the backup

_/sun4.toolsets/user.tools/link_delete $BA CKUPNAME

exit %OBJECT_CHANGED

6.4 Tool Composition

This approach to the integration o f PC TE and C O R B A allows tool com position. As

stated earlier in C hap ter 1, tool com position is an approach to the creation o f software by

composing existing and new elements to form larger structures, w riting a minimum

am ount o f algorithm ic code to do so, thus significantly reducing the effort required to

build large softw are system s. For exam ple, a com plete PC T E tool fo r building C

program s m ay be com posed from the ed ito r ID L interface described previously in this

chapter and a com piler ID L interface developed in a similar m anner. Such a “building”

tool w ould de tec t changes m ade to a C source file during an editing session, and would

then autom atically re-com pile the edited file, displaying any errors which occurred during

com pilation. The ID L interface for such a com posite tool is show n below , the com plete

source code being included in A ppendix D.

I l l

#include "editor.idi”
#include ”compiler.idl”

interface builder : editor, compiler {
void buildi in string objectname,

in string execname,
in string cparameters,
in string disp);

};

A lthough the com piler ID L interface described in Appendix D is im plem ented using

PCTE C com piler tools in the same fashion as w as described earlier in the chap ter fo r the

editor ID L interface, this need not necessarily be the case; PC TE tools m ay also be

integrated with non-PC TE tools using this approach, a very useful facility, see figure 5.1.

6.5 Evaluation

The previous section outlines how this in tegration strategy supports too l com position,

allowing new softw are tools to be com posed from existing PC T E tools and non-PCTE

tools, w riting a minimum am ount o f algorithm ic code to do so. The advantage o f this is a

significant reduction in the effort required to build large softw are system s. H ow ever the

tool integration m odel o f the tool com position, provided by this strategy , does not perm it

the com poser to chose the granularity o f the com position, i.e. no choice betw een bindings

that are either high perform ance w ith tigh t coupling o r low er perform ance w ith low er

coupling are provided by this approach. B y using such a m ethod the binding will always

be medium to large grain. This is because there is still a dependency on PC TE to provide

112

the security and locking on an object-by-object basis, and thus all intrinsic m odelling and

interpretative overheads o f PC TE are still incurred. This is a d raw back to the

effectiveness o f tool com position using this approach, because it places limits on the

potential perform ance o f such com posite tools. Ideally tool com position should support

fine and coarse granularity. This lim itation on perform ance and lack o f suppo rt for fine

grained access to the repository is com pensated by the fact that the rich semantic

m odelling and security provided by PCTE rem ains intact.

While the integration strategy described in this chapter is illustrated in term s o f a U N IX

environm ent im plem entation o f PC TE, it is n o t restricted to such an environm ent, minor

adjustm ents m aking it portable to o ther environm ents, for exam ple to D O S. This strategy

is beneficial to the existing PCTE specification because it increases the am ount o f control

integration w ithin a PC TE environm ent, by allowing the co-ordination o f PC T E tools via

their ID L interfaces and CO RBA , so enabling a closer integration betw een tools in a

PCTE based SEE. In effect the definition o f ID L interfaces fo r PC T E tools allows these

tools to becom e truly object oriented because they encapsulate both the too l (behaviour)

and the d a ta objects (w orking schem a) that the tool requires, w hereas PC T E objects on

their own do no t m odel behaviour. PC T E tools which have ID L interfaces defined for

them are O M A com pliant; they can avail o f the services o f the O RB and o ther OM A

com pliant system s. A nd so this strategy also allows PC TE tools to be integrated with

tools outside the PC T E repository.

A lthough the integration o f this strategy is no t a t a fundam ental level and offers no

benefits to the C O R B A specification, im portantly, it requires no alterations to be m ade to

either o f the existing PC TE and C O R B A specifications and so it can be used with the

existing specifications immediately. The in tegration strategy described in this chapter can

not be considered a m utually beneficial in tegration to both PC T E and C O R B A . W hile it

113

offers increased control in tegration to PC TE, supports the com position o f PC TE tools and

m akes PC T E fu lly object oriented, it does not offer the persistent storage o f O M A objects

originally envisaged as the benefit to C O R B A o f an integration betw een i t and PC TE.

H ow ever, because it offers so much to the curren t specification, i t is a w orthw hile interim

integration strategy.

114

CHAPTER 7 CONCLUSIONS

This chap ter begins by restating the objectives o f the research contained in this thesis

before concluding by evaluating how and with w hat success these objectives w ere

achieved. Essentially, the objective fo r this research w as tha t it w ould provide a short

term m utually beneficial integration fo r the PC TE and C O R B A specifications, w ithout

changing either o f the curren t specifications (as described in C hapters 2 and 3

respectively), to be used while waiting fo r their eventual convergence. The benefits

sought by such an in tegration w ere that:

• PC TE tools w ould be “w rapped” in an ID L interface which w ould allow C O R B A to

provide increased control in tegration betw een PC TE tools, and to m ake

PCTE objects fully object oriented.

• The PC TE object base could be used in turn by C O R B A as a persistent store fo r O M A

objects, by availing o f the rich data m odelling provided by P C T E ’s DDL.

The reason that such em phasis w as placed on the objective o f using the unaltered current

specifications o f PC TE and C O R B A w as to avoid overlapping w ith the w ork o f the O M G

PC TE SIG , the m ain concern o f which is to converge the tw o standards. So the

usefulness o f the research contained in this thesis is sho rt term , fo r the benefits it can

provide to the curren t specifications. Sections 7.1- 7 .2 describe m ore fully the objectives

o f the in tegration from the PC TE and C O R B A view points respectively. In Section 7.3

we discuss how and w ith w hat success these objectives w ere achieved.

115

7.1 PCTE

PC TE has becom e very successful as a standard for a Public T oo l Interface (for an open

repository) fo r integrated SEEs. In m y opinion, this is evident from the diversity of

platform s for which PC TE im plem entations are available, and the international support

shown for the PC TE specification by its acceptance as an IS O standard in July 1994.

P C T E ’s main strength lies in its support fo r data integration (w ith very limited control

integration) and the portability of C A SE tools. The im portance o f PC TE lies in its use as

a leading specification for an open standard for integrating tools into SEEs, because it has

becom e evident tha t such an open standard for integrating tools is vital to the realisation

o f the full potential o f CASE.

PC TE has a strong object oriented flavour, the PCTE repository (which can be

distributed) being com posed o f data objects with links showing the relationships between

objects. H ow ever it is no t object oriented in the truest, since it lacks a vital object

oriented m echanism which w ould allow operations o r m ethods to be associated with

PC T E ’s purely d a ta objects. Thus it w as w ith a view to enhancing PC T E to object

orientation in its pu rest form , and to extending the integration betw een PC T E tools(which

is primarily based on d a ta integration) to include a tighter con tro l integration o f a PC TE

environm ent, that this thesis set out to integrate it (PCTE) w ith the O M A specifications, in

particular the C O R B A specification.

116

7.2 CORBA

The O M A specifications are defined by O M G as an infrastructure fo r distributed

com puting. They are designed to ease the developm ent o f in tegrated softw are systems

across possibly heterogeneous platform s. The criterion agreed by O M G for the

specification o f the O bject M anagem ent A rchitecture included the support o f m odular

softw are production; that the specifications m ust encourage reuse o f code; allow useful

integration across lines o f developers, operating system s and hardw are; and enhance the

long-range m aintenance o f tha t code. The object oriented approach to softw are

construction w as seen as the best m atch to this criteria, and so all the O M A specifications

are to be based on this approach.

Independently developed applications which adhere to the O M A specification can be

com bined seamlessly in user specific ways. This is the beauty o f OM A; it reduces the

com plexity o f distributed system s. The C O R B A specification form s the com m unication

heart o f the O M A specifications, and is central to the integration o f distributed softw are

system s by providing a “softw are bus” by which distributed O M A objects can

com m unicate. The Interface D efinition Language (ID L) has a central role to play w ithin

C O R B A in o rder to facilitate integration. C O R B A is evidently an ideal integration

technology to introduce into a PC T E environm ent in o rder to increase the w eak control

integration o r co-ordination betw een PC TE tools. By incorporating C O R B A into the

PC TE environm ent, C O R B A (in particular ID L) can be used to associate behaviour with

PC TE data objects, thus m aking them object oriented in the fu ll sense.

The purpose o f the O M A specifications is to “drive the industry tow ards interoperable,

reusable, portable softw are com ponents based on standard object-oriented interfaces"

117

[29]. H ow ever, o f the O M A specifications described in Section 3.2, only C O R B A is fully

specified and has im plem entations available at the m om ent. The full specifications fo r the

Object Services and Com m on Facilities will becom e available in due course, in my

opinion, because o f the grow ing popularity o f d istributed system s, and the im portance of

compliance with standards such as OM A in order to integrate such distributed systems.

PCTE could be used to im plem ent a t least part o f the O bject Services specification, in that

the PCTE repository w ith its rich semantic m odelling could be used to provide persistent

storage fo r O M A objects. For this reason it w ould be advantageous to O M A /C O R B A to

integrate it w ith the PC TE specification.

7.3 INTEGRATION STRATEGIES

Having review ed why an integration o f C O R B A and PC TE is desirable, this section

evaluates how successful the integration strategies explored w ere. In the initial stages of

the search fo r an integration strategy, the m apping o f P C T E ’s D ata Definition Language

(DDL) to C O R B A ’s Interface Definition Language (ID L), seem ed like an obvious

approach, since a direct language mapping betw een them w ould allow an autom atic

translation o f PC TE objects into C O R B A objects and vice versa. This w ould have been

ideal, as a translation tool could have been built to translate betw een the tw o languages.

By m apping from ID L to D D L, C O R B A /O M A objects could have been given a D D L

representation and the PC T E repository utilised as a persistent store fo r them. The

m apping o f D D L to ID L w ould have facilitated the definition o f PC T E objects as CO RB A

objects, able to avail o f the ORB for com m unication and control integration as well as the

o ther facilities provided by the OM A, including the benefits o f object orientation (e.g.

code reuse, ease o f m aintenance).

118

Therefore, initially, it seem ed that this language m apping w ould satisfy all the criteria set

fo r a m utually beneficial integration o f the tw o specifications, including no alteration to

either specification. H ow ever further research found that this w as no t the case fo r reasons

that will be reiterated in Sections 7.3.1 and 7 .3 .2 , and so a different approach was sought.

In this second approach, described in C hapter 6, the definition o f ID L interfaces fo r PC TE

tools, it was obvious from the ou tse t that the objective o f using the PC T E object base as a

persistent store fo r C O R B A objects w ould be sacrificed, and so this approach was no t

going to provide a m utually beneficial in tegration o f the tw o specifications. Such a

sacrifice was accepted in the hope o f still attaining the goal o f increased object orientation

and control in tegration betw een PC TE objects, Section 7 .3 .4 evaluates the ex ten t to which

these goals w ere attained.

7.3.1 DDL TO IDL

In chapter 5 w e saw that, even though D D L language constructs can be m apped into ID L

language constructs, the resulting interfaces are m eaningless. This is because the objects

defined by D D L (i.e. PC T E objects) have no behaviour. Therefore, w hen these objects

are m apped onto ID L interfaces, the corresponding interface has no operations. The

purpose o f defining an ID L interface fo r an object is to advertise the operations or

m ethods offered by th a t object to the rest o f the environm ent. Therefore if none o f the

ID L interfaces which resu lt from a m apping from D D L have any operations defined for

them , the purpose o f defining an ID L interface is defeated. In o rder to m ake D D L

com patible w ith ID L , it w ould be necessary to extend D D L to facilitate the association of

behaviour w ith PC TE objects. M uch o f the cu rren t w ork o f the PC TE SIG is concerned

with extending D D L fo r this purpose. Until such extensions are m ade to D D L, this thesis

concludes the m apping o f D D L to ID L is pointless as an integration strategy.

119

7.3.2 IDL TO DDL

As stated previously, initially, the language m apping o f ID L to D D L w as seen as an

approach which allow O M A objects to be defined and ex ist in the PC T E repository , thus

using the PC TE object base as a persistent store fo r O M A objects by using the P C T E ’s

OM S to provide the persistent service w hich will form a part o f fu ture O M A O bject

Services specifications. From very early on, the m apping o f ID L to D D L proved

unfeasible fo r tw o very im portant reasons, PC T E objects are no t com patible w ith the

O M G O bject M odel, m ainly because there is no m echanism for associating PC TE objects

with tools, i.e. no behaviour is associated w ith PC T E objects. The second reason found

for this incom patibility is that ID L scoping rules are incom patible with D D L scoping rules,

because ID L syntax allows fo r the nested declaration o f interfaces. In contrast, the PC TE

SDSs defined using D D L are Unear in nature, and therefore unable to m odel the possibly

nested ID L interfaces and m odules. Therefore, sim ilar to the reverse language m apping,

the m apping o f ID L to D D L can not be achieved w ithout extending DDL.

7.3.3 IDL interfaces for PCTE Tools

Once research proved tha t the language m apping o f D D L to ID L (and vice versa) w as no t

going to be successful, i t w as obvious th a t som e o f the objectives o f the integration w ould

no t be m et. C learly the definition o f ID L interfaces fo r PC TE tools, as described in

C hapter 6, was no t going to facilitate the use o f the PC T E repository by C O R B A as a

persistent store. H ow ever it was decided that, if successful, the benefits that it w ould

provide to PC TE environm ents m eant tha t it w as w orth pursuing, and so the goal o f a

mutually beneficial integration (o f PC T E and C O R B A) was com prom ised. Instead of

120

w orking on extensions to D D L which w ould have paralleled the w ork being done by the

OM G PC TE SIG, an alternative rou te w as taken.

The definition o f ID L interfaces fo r PC TE tools did have som e success. It increased the

am ount o f control in tegration w ithin a PC TE environm ent, by allowing the co-ordination

o f PC TE tools v ia their ID L interfaces and C O R B A , which in turn facilitated tool

com position. In effect the DDL interfaces fo r PC T E tools allow these tools to becom e

truly object oriented because they encapsulate both the tool (behaviour) and the data

objects (w orking schem a) that the tool requires. PC TE objects on their ow n do no t m odel

behaviour. This strategy im portantiy required no alterations to be m ade to either o f the

existing PC TE and C O R B A specifications, and i t also allow ed PC TE tools to be

integrated w ith tools outside the PC TE repository.

Because this integration strategy is on a superficial level, it does n o t provide support for

fine-grained access to the repository , thus placing limits on the overall potential

perform ance. H ow ever the rich sem antic m odelling and security provided by PC TE

rem ains intact. Im proved perform ance and support fo r fine-grained access to the PC TE

repository is a prim ary consideration o f the w ork described in [57] currently being carried

out by the O M G PC T E SIG.

7.4 Future Work

The OM G PC TE SIG is currently w orking on a proposal fo r PC T E O O extensions which

will integrate C O R B A into the PC TE specification. The purpose o f this proposal is to

provide support fo r fine-grained access to the PC T E repository, m ake PC TE fully object

oriented (m ethods w ill then be associated w ith PC TE objects), increase control integration

121

or co-ordination betw een PCTE tools, and m ake PC TE objects O M A compliant,

therefore allowing them access to o ther O M A services. T he areas o f the PC TE

specification extended (see [49]) and described below include: PC T E data m odelling, the

execution m odel and m ethod activation, contex t objects, scoping o f operation requests,

im plem entation registration and server selection.

• PCTE data modelling The PCTE m etabase and object base

is extended to accom m odate Object O riented services by extending the D D L syntax

(see Section 5.4), the m etasds. the system SDS and providing additional SDSs.

• Execution Model and Methods Activation The PCTE process m odel is extended

to support the use o f the 0 0 execution m odel w ithin PCTE.

• Context Objects In order to stay close to the CO RBA

m odel fo r invocation, the extended PC TE m ust support con tex t inform ation fo r the

dispatching o f operations. This contex t is intended in a broad sense to include both

PCTE dynam ic contex t and CO RB A invocation context [49].

• Scoping o f operation requests The m ethod m apping m odel will be

exploited to scope an operation request in o rder to obtain d ifferent results according

to the specific user/invocation context or w orking schem a.

• Implementation registration and server selection An object implem entation,

once started, registers with the underlying run-tim e system , w hich in turn m ight exploit

this inform ation to select an already available im plem entation and/or share servers

betw een several users.

The w ork in this area is ongoing: the extension outlined above will be fully specified in the

future. W e can see that the OM G PC T E SIG are com m itted to developing a more

pow erful PC TE specification which will be in tegrated with O M A /C O R B A . Once these

extensions have been m ade, particularly to the d a ta modelling com ponent o f the PC TE

specification, PC T E can then in turn be o f benefit to the OM A. PC TE O M S, as pointed

out earlier, provides semantically rich d a ta m odelling, because the object base or

122

repository is required to store and m anage very com plex data and relationships across the

whole softw are life cycle- no t only finished products o f the softw are process (e.g.

designs, functional specifications, alpha, beta and full tested versions o f code, fault

reports, change requests) but also the interm ediary and supporting d a ta tha t accum ulates

along the w ay (e.g. project history, test results, m em os and reports) [6]. D espite the fact

that PC TE was originally designed for C A SE environm ents, m any o f the concepts that it

has developed can be utilised for different environm ents. PC T E O M S ’s netw ork of

objects and links allow s com plex relationships to be m odelled in an intuitive way. Future

w ork on the O bject Services com ponent o f the O M A could utilise the extended OO

PC TE’s O M S to provide basic operations fo r the logical m odelling and physical storage of

objects, since the extended PCTE specification w ould not be lim ited by perform ance as it

will provide support fo r small grain/high speed access to the repository.

7.5 OVERALL CONCLUSIONS

The OM G PC TE SIG will provide a m utually beneficial m erging o f both PCTE and

CO RBA standards som etim e in the near future. Even when such a m erging has been

specified, it will take even m ore time before an im plem entation is available. In the

meantime the integration strategy described fo r the definition o f ID L interfaces fo r PC TE

tools can be used to increase the control in tegration betw een PC TE tools in a PCTE-based

SEE. By using such ID L interfaces to access PC T E tools, to all clients, the tool seems

truly object oriented because the object im plem entation o f the interface encom passes both

the too l’s da ta and the static context (executing tool), its behaviour, while support for

com posite too ls is also provided (com binations o f PCTE tools and non-PC T E tools are

possible). PC TE tools which are w rapped in an ID L interface can avail o f the ORB and

o ther O M A services, including o ther O M A com pliant system s. Therefore this thesis has

123

illustrated tha t there is m uch is to be gained by integrating the cu rren t P C T E specification

with C O R B A prior to their convergence.

The m apping o f D D L to ID L (and vice versa) w ould have provided a m ore beneficial and

fundam ental integration o f both PCTE and CO RBA . H ow ever this thesis has proven that

such a m apping is no t possible without altering the current specifications.

124

BIBLIOGRAPHY

[1] "Standard ECMA-149 Portable Common Tool Environment Abstract
Specification", European C om puter M anufacturers A ssociation, 2nd Edition,

June 1993.

[2] "Standard ECMA-149 Portable Common Tool Environment Abstract
Specification", European C om puter M anufacturers A ssociation, D ecem ber

1990.

[3] "Software Engineering Economics", Boehm B W ., P rentice Hall, Englew ood

Cliffs, 1981.

[4] "A Spiral Model o f Software Development and Enhancement", Boehm B W .,

A C M SIG SO FT Softw are Engineering N otes, V olum e 11, 1986.

[5] "Relationship o f PCTE to OMA", O M G TC D ocum ent 93.4.7, April

1993.

[6] "PCTE The Standard for Open Repositories", Lois W akem an & Jonathan

Jow ett, PIM B A ssociation, 1993.

[7] "News", PC TE N ew sletter, No. 17, PIM B , M ay 1994.

[8] "News", PC TE N ew sletter, No. 16, PIM B , A pril 1994.

[9] "SCM Vs CASE Frameworks and repositories", G ene Forte , C A SE O utlook,

Vol. 7 No. 2, 1993.

[10] "Introduction to COHESIONworX 2.0 Linking Development Teams", Digital,

Byte M agazine, Ju ly 1994.

[11] "COHESIONworXZPCTE: a Framework fo r PCTE Environments", Augusto

A rgento , Chiara Bonferini, Fabrizio D em atte, P roceedings o f the PC TE'94

C onference in San Francisco, U SA , PIM B , 1994.

[12] "Analyzing A Persistent Object Definition Language", A riela S tem , Arizona

State U niversity, M ay 1994.

125

[13] "Developing & Integrating Tools In Eclipse/PCTE", Sean P. M acRoibeaird,

D ublin C ity University, M ay 1990.

[14] "PCTE Functional Specifications 1.4", Bull, G EC, IC L , N ixdorf, Olivetti,

Siem ens, Septem ber 1986.

[15] "The Entity-Relationship Model: Towards a Unified View o f Data", Chen P.

P., A C M Trans, on D atabase System s, Vol. 1, No. 1, 1976.

[16] "PCIS Object Oriented Services", T im othy E. Lindquist, Proceedings o f PCTE

'93 Conference in Paris, published by Syntagm a System s L iterature on behalf

o f the PIM B A ssociation 1993.

[17] "The Object Management System o f PCTE as a Software Engineering
Database Management System", Gallo, Ferdinando, Regis M inot and Ian

T hom as, SIG PL A N N onces, V ol. 22, No. 1, 1987.

[18] "Semantic Database Modelling : Survey, Application and Research Issues",
Richard H ull & R oger King, A C M C om puting Survey, Vol. 19, No. 3, 1987.

[19] "Managing the evolution o f the data schemas o f a PCTE-based Software
Engineering Environment", John Cheesm an, Ian Sim m onds (SFGL),

Proceedings o f the PC TE'93 Conference in Paris, published by Syntagma

System s on behalf o f the PIM B A ssociation 1993.

[20] "The Toaster Model", Tatge G „ 1989 cited in [6].

[21] "Reference Model fo r Frameworks o f Software Engineering Environments",
European C om puter M anufacturers A ssociation, Technical R eport ECM A

TR /55, 2nd Edition, D ecem ber 1991.

[22] "A fully conformant ECMA PCTE Implementation", Jean-C laude Grosselin,

G erard Boudier, Proceedings o f the PC TE'93 Conference in Paris

published by Syntagm a System s L iterature on behalf o f the PIM B

A ssociation l993 .

[23] "Semantic Data Models", Joan Peckham and Fred M aryanski, ACM

C om puting Surveys, Vol. 20, No. 3, 1988.

126

[24] "PCIS Technical Study 4 -Architectural Diagrams'', M ino t R , Brem eau C.,

PC IS/TS/S4, O ctober 1991.

[25] "Working Together To Integrate CASE”, Ronald J. N orm an, M inden Chen,

IEEE Softw are, M arch 1992.

[26] "Definitions o f Tool Integration for Environments", Ian T hom as, Brian A.

N ejm eh, IEEE Softw are, M arch 1992.

[271 "The Future for Open Standards in CASE", R ichard B aker, C A SE O utlook,

Vol. 6 No. 2, M arch-A pril 1992.

[28] "PCTE Interfaces : Supporting Tools in Software-Engineering
Environments", Ian Thom as , IEEE Softw are, N ovem ber 1989.

[29] “Object Management Architecture Guide” , Second E dition, O M G TC

D ocum ent 92.11.1, R ichard M ark Soley (ed.), OM G, Sep tem ber 1992.

[30] “The Common Object Request Broker: Architecture and Specification",
Revision 1.1, O M G D ocum ent N um ber 91.12.1, O M G and X /O pen, 1991.

[31] “CORBA QUANDRY: Finding the Elusive Common Distributed Object” ,

David S. Linthicum, Application D evelopm ent Trends V ol. 1 No. 11, O ctober

1994.

[32] “Distributed Architecture is Mission o f O M G \ B rad Kain, Application

D evelopm ent Trends Vol. 1 No. 8, A ugust 1994.

[33] “Make Way for Data". Paul K oreniow ski, B Y TE Vol. 18 N o. 7, June 1993.

[34] ‘‘‘‘Looking to Object Standards", Chris Stone, Inform ation W eek N ew Y ork,

February 1994.

[35] “Common Object Request Broker 2.0 And Component Object Model
Interoperability Request For Proposals” , O M G TC D raft D ocum ent 94.8.31,

1994.

127

[36] “OLE to Gain Object Role", PC W EEK M edford M ass., M arch 1994.

[37] “Programming in the OMG Environment', Jon Siegel, R S /M agazine, M arch

1994.

[38] "Microsoft's View : How OLE Fits", G regory L eake, Applications

developm ent T rends, Vol. 1 No. 11, O ctober 1994.

[39] “Distributed Systems Management", Alwyn Langsford, Jonathan D. M offett,

D ata C om m unications and Networks Series, A ddison-W esley, July 1992.

[40] “Unravelling the Standards” , Dana M . M arks, T. M oriarty , D atabase

Program m ing and Design, D ecem ber 1993, M iller Freem an Publications.

[41] “The Object Database Standard : ODMG - 93", R. G. G. C attell, Tom

A tw ood, Joshua Duhl. Guy Ferran, M ary Loom is, D rew W ade, M organ

Kaufm ann Publishers 1994.

[42] “Object Management Group : OMG forms common facilities task force &
fast track adoption process. Forms Portable Common Tool Environment

SIG', ED G E : W ork-G roup C om puting Report, January 1994.

[43] “An ECMA PCTE Compliant Implementation O f CORBA Adding Control

Facilities To ECMA PCTE Environments", A ugusto A rgento , Chiara

Bonferini, Fabrizio D em atte, Serena M anca (Digital E quipm ent C orporation,

V arese, Italy), Proceedings o f the P C T E ’ 93 Conference in Paris, published by

Syntagm a System s on behalf o f the PIM B A ssociation1993.

[44] “0 0 7 7 5 Extending PCTE With Fine-Grained Tool Composition", William

H arrison, H arold Ossher, M ansour K avianpour, PC T E N ew sletter No. 11,

D ecem ber 1992.

[45] “Portable Common Interface Set (PCIS) Architecture: Framework Abstract

Specification", V ersion 1.0, Tri-Service G roup on Com m unications and

E lectronics, Special W orking G roup on A da Program m ing Support

Environm ents, D ecem ber 1993.

128

[46] “Portable Common Interface Set (PCIS) Architecture: Framework Definition

and Rational', V ersion 1.0, Tri-Service G roup on Com m unications and

Electronics, Special W orking G roup on Ada Program m ing Support

Environm ents, D ecem ber 1993.

[47] “PCIS and the Evolution o f PCTE', M . F. Boyer, A da Y earbook C. Loftus

(Ed.) A m sterdam 1994.

[48] “1RAC: International Requirements and Design Criteria for the Portable

Common Interface Set (PCIS)" , V ersion 1.0, T ri-Service G roup on

Com m unication and Electronics, Special W orking G roup on A da Program m ing

Support Environm ents, M ay 1992.

[49] “0 0 (Object Oriented) Extensions to the PCTE Standard (ISO/IEC 13719)”,

D raft V ersion 3.0, In tended future publication o f E C M A and O M G PC TE SIG,

M arch 1995.

[50] “DEC ACA Services Reference Manual”, D igital Equipm ent Corporation,

April 1992.

[51] “ECMA PCTE, CORBA and A IS”, A. A rgento , C. Bonferini, F. D em atte, S.

M anca, PC TE N ew sletter No. 10.

[52] “DEC ObjectBroker 2.5 User Guide ”, D igital

[53] “Object Oriented Tool Integration Services (OOTIS) OOTIS Integration
Model -IBM AIX-CASE proposal”, W iliam H arrison, H arold O ssher, M ansour

K avianpour, W orking D raft V ersion, June 1992.

[54] “PCTE SDSs for Modelling OOTIS Control Integration”, W iliam Harrison,

Harold O ssher, M ansour K avianpour, Eric W ong, Proceeding o f the PC T E ’93

Conference in Paris, published by Syntagm a System s L iterature, on behalf of

the PIM B A ssociation 1993.

129

[55] Emeraude V12.3.1 Documentation, GIE Emeraude.

[56] “The UNIX Programming Environment”, Brian W. K em ighan, Rob Pike,

Prentice-H all Softw are Series, 1984.

[57] "FG (Fine Grain Data) Extensions to the PCTE Standard (ECMA-149
ISO/1EC -13719)”, D raft Version 2.0, intended jo in t publication o f ECM A and

OM G PC TE SIG , M arch 1995.

[58] "Not Your Fathers RPC”, Jonathan Chinitz, SunExpert, Vol. 5, N o.6, June

1994.

130

APPENDIX A Interface Definition Language

The follow ing clauses define the EB N F fo r C O R B A ’s Intexface D efin ition Language:

(1) <specification> ::=

<definition>+

(2) <definition> ::=

(3) <m odule> ::=

"module" <identifier> <definition>+ "}"

(4) <inheritance> ::=

<nterface_dcl> I

<forw ard_dcl>

(5) <dnterface_dcl> ::=

<interface_header> "{" < interface_body> "}"

(6) < forw ard_dcl> ::=

"interface" <ddentifier>

(7) < interface_header> ::=

<type_dcl>

<const_dcl>

<except_dcl>

<interface>

<m odule>

"in te rface" [< inheritance_spec>]

(8) < interface_body>

<export>*

(9) <export>

<type_dcl>

<const_dcl>

<except_dcl>

<attr_dcl>

<op_dcl>

9

(10) <inheritance_spec> ::=

<scoped_nam e> { <scoped_nam e> }*

t i l) <scoped_nam e>

<identifier>

<ddentifier>

<scoped_nam e> <identifier>

(12) <const_dcl>

"const" <const_type> <identifier> "=" <const_exp>

(13) <const_type>

<integer_tye>

<char_type>

<boolean_type>

<floating_pt_type>

<string_type>

<scoped_nam e>

(14) <const_expr>

<or_expr>

132

(15) <or_expr>

<xor_expr> I

<or_expr> I

<xor_expr>

(16) <xor_expr>

<and_expr> I

<xor_expr> "A" <and_expr>

(17) <and_expr> ::=

<shift_expr> I

<and_expr> <shift_expr>

(18) <shift_expr> ::=

<add_expr>

<shift„expr> " » " <add_expr>

<shift_expr> " « " <add_expr>

(19) <add_expr> ::=

<m ult_expr> I

<add_expr> "+" <m ult_expr> I

<add_expr> <m ult_expr>

(20) <m ult_expr> ::=

<unary_expr> 1
<m ult_expr> <unary_expr> I

<m ult_expi> 7 " <unary_expr> I

<m ult_expr> <unary_expr>

(21) <unary_expr> ::=

<unary_operator> <prim ary_expr>

<prim ary_expr>

133

<unary_operator>

<prim ary_expr> : :=

<scoped_nam e> I

<literal> I

"(" <const_expr> ")"

<diteral> :=

<integer_literal> I

<string_literal> I

<character_literal> I

<floating_pt_literal> I

<boolean_literal>

<boolean_literal>

"TRUE" I "FALSE"

<positive_int_const> ::=

<const_exp>

<type_dcl> ::=

"typedef ' < type_declarator> I

<struct_type> I

<union_type> I

< enum j;ype>

< type_declarator> : :=

<type_spec> <declarators>

(29) <type_spec> " =

<sim ple_type_spec> I

<constr_type_spec>

(30) <sim ple_type_spec> ::=

<base_type_spec> I

<tem plate_type_spec> I

<scoped_nam e>

(31) <base_type_spec> ::=

<floating_pt_type> I

<integer__type> I

<char_type> I

<boolean_type> I

<octet_type> I

<any_type>

(32) < tem plate„type_spec> ::=

<sequence_type>

I <string_type>

(33) <constr_type_spec> ::=

<struct_type> I

<union_type> I

<enum _type>

(34) <declarators> ::=

<declarator> { <declarator> }*

(35) <declarator> ” =

<sim pie_declarator> I

<com plex_declarator>

135

(36) <sim ple_declarator>

<identifier>

(37) <com plex_declarator>

<array_declarator>

(38) <floating_pt_type>

"float" I

"double"

(39) c in te ger_type>

<signed_int>

I <unsigned_int>

(40) <signed_int>

<signed_long_int>

<signed_short_int>

(41) <signed_long_int>

(42) <signed_short_int>

(43) <unsigned_int>

<unsigned_long_int>

<unsigned_short_int>

(44) <unsigned_long_int

(45) <unsigned_short_int>

(46) <char__type>

"long""

"short"

"unsigned" "long"

"unsigned" "short"

"char"

136

(47) <boolean_type> "boolean"

(48) <octet_ type> ::= "octet"

(49) <any_type> ::= "any"

(50) <struct_type> ::=

"struct'* <identifier> ” {" < m em b er_ lis t> "}"

(51) <m em ber_list> ::= <m em ber>+

(52) <m em ber> :: =

< ty p e _ sp e c x d ec la ra to rs>

(53) <union__type> ::=

"union" <identifiei> "switch""(" <sw itch_type_spec> ")"

(54) <sw itch_type_spee>

<integer_type>

<char_type>

<boolean_type>

<enum _type>

<scoped_nam e>

(55) <sw itch_body> <case>+

(56) <case>

<case_label> + <elem ent_spec>

(57) <case_label> v ::

"case" < eonst_exp> '":" I

d e fau lt"

137

(58) <elem ent_spec> ::=

<type_spec> <declarator>

(59) <enum _type> ::=

"enum " <identifier> "{" <enum erator> <enum erator> } *}

(60) <enum erator> ::= <identifier>

(61) <sequence_type> ::=

"sequence" "<" <sim ple_jype_spec> <positive_int_const> ">“ I

"sequence" "<" <sim ple_type_spec> ">"

(62) <string_type> ::=

"string" "<" <postive_int_cosnt> ">"

(63) <array_declarator> ::=

<identifier> <fixed_array_size>+

(64) <fixed_array_size> ::=

"[" <positive_m t_const> "]"

(65) <attr_dcl> ::=

["readonly"] "attribute" <sim ple_type_spec> <declarators>

(66) <except_dcl> ::=

"exception" <ddentifier> "{" < m em b er> * "}"

(67) <op_dcl> ::=

[<op_attribute>] co p _type_spec> <identifier> <param eter_dcls>

[<raises_expi>] [<context_expr>]

(68) <op_attribute> ::= "oneway"

138

(69) <op_type_spec>

<sim ple_type_spec> I

"void"

(70) <param eter_dcls> ::=

"(" <param _dd> <param _dcl> }* ")"

(71) <param _dcl>

<param _attribute> <sim plenty pe_spec> <declarator>

i i / i i r i y t

(72) <param _attribute> ::=

"in’' I

"out" I

"inout"

(73) <raises_expr ::=

"raises""(" <scoped_nam e> { <scoped_nam e> }* ")"

(74) <context_expr> ::=

"context""(" <string_literal> { <string_literal>}* ")"

139

Appendix B Data Definition Language (DDL)

This appendix contains the E B N F o f PC T E ’s D ata D efinition Language.

(1) DDL definition =

sds section, {sds section};

(2) sds section =

'sds', sds nam e,

{clause,

'end ', sds nam e,

(3) clause

type im portation I

ob ject type extension I

link type declaration I

enum eration type declaration;

object type declaration

attribute type declaration

link type extension I

(4) type im portation =

'im p o rt', im port type, global nam e,['as', lo ca l nam e],[type m ode

declaration], {',', global nam e, ['as', local nam e],[type m ode

declaration]};

(5) im port type =

object', type' I 'attribute’, type'

link', type';

140

(6) object type declaration =

local nam e, ';',[type m ode declaration], ['child','type','of, object type

list], ['with', ['contents', contents type indication, ":"],

['attribute’, attribute indication list, ";"],

[‘component’, com ponent indication list,";"]

'end', local nam e];

(7) object type extension =

extend', object', type', local nam e, with1,

['attribute' indication list,";"],

['link', link indication list, ';']

[‘component’, com ponent indication list, ';']

'end', local nam e;

(8) contents type indicatio =

'file' I pipe' I 'device' I 4audit_file' I

accountingjog';

(9) attribute indication lis t=

attribute indication list item {';', attribute indication list item};

(10) attribute indication list item =

attribute type nam e I attribute type declaration;

(11) link indication list =

link indication list item {';', link indication list item }

(12) link indication list item =

link type nam e I link type declaration ;

141

(13) com ponent indication list =

com ponent indication list item , { com ponent indication lis t item}

(14) com ponent indication list =

link type name I link type declaration;

(15) attribute type declaration =

local name. {',' local nam e}, V, [type m ode

d e c la ra tio n] ,[n o n _ d u p lic a te d] , value type indication, [*:= ', initial

value];

(16) value type indication =

'integer' I 'natural' I 'boolean' I

'time' I float' I string' I

‘enumeration’, enum eration type nam e I

enum eration type indication;

(17) enum eration type indication =

'enumeration'. ’(', basic enum eration, {V, basic e n u m era tio n } ,')';

(18) basic enum eration =

enum eration image I enum eration subrange ;

(19) enum eration im age =

identifier I ""» { ch a rac te r} ,"" ;

(20) enum eration subrange =

attribute type name, 'range', enum eration imange, enum eration

image;

142

(21) initial value =

['+' I digit, {digit} (* Integer *)

I digit, {digit} (* N atural *)

I 'tru e ' I 'false' (* Boolean *)

I year, month, day, ['T hour, m inute, second], 'Z'

(* Tim e *)

! [> ' I '-"] , digit, {digit}, digit, {digit}], ['E \

[V I ’-'], digit, {digit}] (* F loat *)

I {character} ,” ”

I enum eration image;

(22) day

digit, digit;

(23) month =

digit, digit;

(24) year =

[d ig it digit] digit, digit;

(25) hour =

digit, d igit ;

(26) minute =

digit, digit;

(27) second =

digit, digit;

143

(28) link type declaration =

local nam e, [type m ode declaration], [‘exclusive’],

['non_duplicated'], [stability nam e], category nam e, link', [cardinality

range], [key list], ['to', object type list], ['reverse', link type name],

['with',

attribute',

attribute indication list,

'end', local name];

(29) link type extension =

'extend', 'link', 'type', local name, ['to', object type list],

[with,

'attribute'

attribute indication list,

'end', local name];

(30) category nam e =

[composition] I existence' I 'reference

implicit' I designation';

(31) cardinality range =

'[', [low er bound],'..'.[upper bound], ']';

(32) low er bound =

digit, {digit];

(33) upper bound =

digit, {digit};

(34) stability nam e =

atomic', stable' I composite', stable';

144

(35) key list =

'(' attribute indication list,

(36) enum eration type declaration =

local n a m e , e n u m e r a t i o n im age, { enumerat ion im age };

(37) type m ode declaration =

'(' ’usage’, type m o d e , ' e x p o r t ' , type m o d e , ')’ I

'(', ['usage', V, export'], type m ode, ’)':

(38) type m ode =

'protected' I allowed access, { V, allow ed access };

(39) allow ed access =

read' I write' I 'navigate' I 'create'

'delete';

(40) object type nam e =

global name I local name;

(41) object type list =

object type name, { V, object type nam e};

(42) attribute type nam e =

global nam e I local name;

(43) attribute type lis t =

attribute type nam e, { attribute type nam e};

(44) link type nam e =

global nam e I local nam e ;

145

(45) link type list =

link type name. { V , link type nam e }

(46) enum eration type name

global name I local name ;

(47) sds nam e =

identifier;

(48) local nam e =

identifier;

(49) global nam e =

sds name , local name;

(50) identifier =

letter, { letter I digit I

(5 1) capital letter =

'A' 1 B 1 G’ 1 ’D’ 1 ’E' 1

-F’ I ‘G’ 1 'H' 1 'I' 1 J' 1

K’ 1 X.' 1 *M' 1 'N* 1 ’O' 1

P’ 1 Q' 1 R' 1 'S' 1 v r p |

XJ' 1 -V- | 'W' 1 'X' 1 %Y f 1

■Z';

146

(52) small letter =

’a ' 1 'b' 1 c ’ 1 d ' 1 'e1 1

’f 1 g' 1 ■h 1 T 1 j ’ 1

k' 1 T 1 m 1 'n' i ’o' 1

P ' 1 q I Y 1 's' 1 't' 1

'u' 1 'v' 1 'w' 1 ’x ’ 1 y i

z;

(53) letter =

capital letter small letter ;

(54) digit =

O'

'5'
T

'6 '

'2 -

7'

'3'

'8 '

'4'

9;

(55) com m ent =

[character], newline;

147

Appendix C c_prog SDS

This section describes the c_prog SDS which is used by program m ing tools w ithin a

PCTE environm ent. It contains the follow ing type definitions:

O bject types archive_file

asm_source

c_source

dir

evolution

file

group

indude_file

includejibrary

lint_library

object

object_code

program

project

sctx

subset

subset_interface

test

testset

toolset

user

Attribute types cause

edition

148

Link and

relationship types

name

nature

number

passed

release

subname

system

system_release

target

variant

version

a

acts

build

c

debug

deliverable

derived_from <-> derived in

e

err

exec

h

i

ine

include <-> includedJn

interface

In

modif

monitor

o
out

output

product

prog

s

sub

subprog

testform

testin

testout

testref

tests

theme

tmp

tool

tst

v

y

The follow ing gives a brief description o f the purpose o f each o f these object, attribute,

relationship and link types.

Object Types

archive_file This object type represents an archive file.

asm_source This object type represents an assem bler source file.

150

c^source This object type represents a file contain ing C language

com pilable source code.

dir This object type represents a directory.

evolution This object type represents a deliverable th a t has evolved from a

stable deliverable.

file This object type represents a tem porary file, an e rro r file, a test

file, an output file, a debug file, an activities file or a yacc text file.

group This object type represents a group o f users.

include_file This object type represents a C include file.

includejibrary This object type represents a library o f include files.

lint_library This object type represents a lint library

object This object type is the com m on ancestor type o f all o ther object

types.

object_code This object type represents a file contain ing object code.

program This object type represents a piece o f softw are, and has been

im ported from the pact SDS.

project This object type represents a softw are developm ent project,

sctx This object type represents a static context,

subset This object type represents a subset o f a program .

subset_interface This object type represents a description o f a m odule’s interface

and w ill norm ally be used for docum entation purposes.

test This object type represents a softw are test.

testset This object type represents a set o f tests.

toolset This object type represents a collection o f static contexts.

user This object type represents a user o f the E m eraude env ironm ent

Attribute Types

cause This attribute type indicates the reason fo r an evolutionary

derivation o f software.

edition This attribute type indicates the edition num ber o f a piece of

software.

name This attribute type indicates the nam e o f an object. I t is

typically used as the key on a link to the objecL

nature This attribute type represents a short description o f the so rt of

change involved in an evolution, w hat is being tested and a sum m ary o f a test s e t

number This attribute type is used to distinguish betw een instances of

the sam e link type originating from the sam e o b jec t

152

passed This attribute type indicates w hether o r n o t a piece o f software

has passed a quality test.

release This attribute type indicates the release num ber o f a piece o f software.

subname This attribute type indicates a secondary nam e o f an object. It is

typically used w ith nam e as a key on a link to the o b jec t

system This attribute type indicates the nam e o f the system under which

the softw are developm ent is taking place.

system_release This attribute type indicates the release num ber o f the system

under which the software developm ent is taking place.

target This attribute type indicates the hardw are on which the

developed softw are is designed to execute.

variant This attribute type indicates the varian t nam e o f a piece

o f software.

version This attribute type indicates the version num ber o f a

piece o f software.

Link and Relationship Types

a This is a link to an archive file.

acts This is a link from a subset to a tem porary file created and used

by the Unix yacc tool.

153

build This is a link from a piece o f softw are to a collection o f tools.

c This is a link from a subset to a C com pilable source file.

debug This is a link from a subset to a debug file, created and used by

the Unix yacc tool.

deliverable This is a link from a piece o f softw are to a stable object

representing a deliverable program .

derived_from <-> derived__in This is a relationship betw een tw o objects, one

being a derivation o f the other.

e This link type is provided to allow com patibility w ith U nix file systems.

err This is a link from a subset to an object representing an e rro r file.

exec This is a link from a piece o f softw are to a static con tex t tha t it requires

to execute.

h This is a link from an include library o r a subset to an include file.

i This is link from a subset to a C source file, to hold o u tp u t from the C

pre-processor.

inc This is a link from a piece o f softw are to an include library.

include <-> included_in This is a relationship betw een a stable include file and a

C com pilable source file o r another include file.

interface This is a link from a subset to its interface file (that holds a description

of the m odule subset).

154

1 This is a link from a subset to a tem porary file, crea ted and used by the

Unix tool lex.

In This is a link from a directory to a link library.

modif This is a link from any object to an evolution, representing a

m odification to the softw are developm ent

monitor This is a link from a test input file to the static con tex t representing a

test m onitor.

o This is a link from a d irectory o r a subset to a file containing object

code. It enables binaries to be collected fo r any purpose.

out This is a link from a piece o f softw are to a static con tex t. It is the C

com piler de fau lt

output This is a link from a subset to an ou tpu t file, created and used by the

Unix tool yacc.

product This is a link from a softw are developm ent p ro jec t to a piece of

software.

prog This is a link from a user or group to a piece o f softw are.

s This is a link from a subset to an assem bler source file.

sub This is a link from a piece o f softw are to a subset o r from one subset to

another.

155

subprog This is a link from one piece o f softw are to another, and represents the

association betw een the two.

testform This is a link from a tes t to a file which holds a com plete description of

a te s t The attribute type nature represents a brief description only.

testin This is a link from a test to a file containing com m ands to initialise a

debugging session.

testout This is a link from a test to a file containing the output o f a test session.

testref This is a link from a test to a file containing reference o u tp u t

tests This is a link from a program or subset to the se t o f tests to be applied

to that program or subset.

theme This is a link between tw o sets o f tests and represents the association

betw een the tw o sets o f tests.

tmp This is a link from a subset to a tem porary file.

tool This is a link from a collection o f tools to a static context.

tst This is a link from a set o f tests to a test belonging to the set.

v This is a link from a user o r a group to a piece o f softw are.

y This is a link from a subset to an input tex t file fro the Unix com piler

yacc.

156

DDL listing fo r the cjprog SDS

The following is the DDL listing for the c_prog SDS taken from the public types of

[58]:

n ew sd s cjprog is

import sys-name as nam e;

release : integer := 1;

version : integer := 1;

edition : integer := I;

system : string;

systemjrelease : s tr in g ;

target : string ;

variant : string ;

number : integer := 1;

passed : boolean ;

subname : string ;

nanire : string ;

157

import sys-object as object ;

import sys-file as file ;

import sys-dir as dir ;

import sys-sctx as sctx ;

import env-group as group ;

import env-project as pro ject;

import env-user as user ;

import env-toolset as to o lse t;

import pact-software as program ;

include Jibrary : subtype of object

include J ile : subtype o f file

c_source : subtype of file

asm_source : subtype of file

object_code : subtype of file

archive J ile : subtype of file

cause : s tr in g := “bug” ;

rest

testset

subset

subsetjnterface

evolution

prog

lin tjibrary

subtype of object ;

subtype of object ;

subtype of object ;

subtype of file ;

subtype of file ;

composition link (name)

to program ;

subtype of file ;

159

import

extend

import

extend

rst

h

product

deliverable

sub

inc

build

modif

env-tool as tool ;

tool to setc ;

env-e as e ;

e to include Jibrary

composition link (name, number)

to test ;

composition link (name, subnam e)

to include J ïle ;

composition link (name, release)

to stable program ;

reference link (number)

to stable object ;

composition link (name)

to subset ;

composition link (name)

to include Jibrary ;

composition link to toolset ;

composition link (number)

to evolution ;

relationship (

derivedJrom : reference link

to object ;

derived jn : implicit link

to object) ;

c : composition link (name, subname)

to c_source ;

tests : composition link to test set ;

monitor : composition link to sctx ;

testin : composition link to file ;

testref : composition link to file ;

testout : composition link to file ;

exec : composition link to sctx ;

interface : composition link to subsetjnteface

i : composition link (nam e, subnam e)

to c_source ;

a : composition link (name, subname)

to asmjsource ;

err : composition link (name, subname)

to file ;

161

relationship (

include

includedjn

v

output

debug

acts

tmp

I

In

subprog

reference link (name)

to stable include J ile ;

implicit link ()

to c_source, include J ile)

composition link (name, subname)

to file ;

composition link (name, subname)

to file ;

composition link (name, subname)

to file ;

composition link (name, subname)

to file ;

composition link (name, subname)

to file ;

composition link (name, subname)

to file ;

composition link (name, subname)

to lintjibrary ;

composition link (name, subname)

to program ;

testform composition link to file

theme

to testset ;

composition link (name)

o : composition link

to object_code

v : composition link

to program

out : composition link

to sctx ;

extend object

with

link modif ;

end object ;

extend dir

with

link In ;

a ;

e ;
o ;

end dir ;

extend group

with

link prog ;

v ;
end group ;

(name, subname,)

9

(name,version)

9

(name, subname)

e x te n d project

w ith

lin k product

en d project;

ex tend program

w ith

a tt r ib u te

lin k

version:

edition :

system :

system_release

target ;

variant;

deliverable ;

sub

inc

build

tests

exec

subprog

a ;

out :

e n d program ;

ex ten d user

w ith

lin k prog ;

end user

e x ten d toolset

w ith

lin k tool ;

e n d toolset;

ex ten d include Jibrary

w ith

lin k h ;

e ;

end includeJibrary

ex tend test

w ith

a tt r ib u te

link

passed ;

nature ;

monitor

testin ;

testref ;

testout ;

testform

en d test

ex tend tests et

w ith

a tt r ib u te nature

link tst

theme

end testset ;

ex tend subset

w ith

link h ;

sub ;

interface

c

i

a

s

err

y
output

debug

acts

tmp

I

o

tests

en d subset ;

ex ten d evolution

w ith

a t t r ib u te cause

nature

en d evolution

end c _prog

Appendix D Example IDL interface for PCTE
tools

In this exam ple, an ID L interface is defined fo r tw o PC TE tools, an E d ito r (o b j_ e d it)

and a C com piler (ecc). This exam ple also dem onstrates tool com position: via

CO RB A and their ID L interfaces, these tools w ere com bined to form a builder tool,

which edits a C source code file, and if any changes are m ade to the file during the

editing session the file is recom piled autom atically. This appendix contains the

com plete souce code for this example. O R B IX V ersion 1.1 from IO N A Technology is

the C O RB A im plem entation and Em eraude PC T E V 12 is the PC TE im plem entation

used in this exam ple.

The following is the ID L definition fo r the interface to the PC TE com piler, ecc,

com piler.id l:

en u m COMPILER_RESULT {

COMPILER JA IL E D , //com piler could no t be executed

COMPILED JDK, //com piled w ith no erors

COMPILED JWITH_ERRORS, //com piled w ith errors

COMPILERJ<!OTJTNED }; //com piler no t invoked

in te rface compiler {

re a d o n ly a tt r ib u te COMPILER_RESULT errors;

v o id compile(in s tr in g objectname,

in s tr in g execname,

in s tr in g parameters,

in s tr in g disp);

167

The follow ing is the ID L interface definition fo r the PC TE too l ed ito r, o b j_ ed it,

editor, idi :

e n u m E D IT O R _R E SU L T {

EDIT_FAILED,

FILEJCHANGED,

FILEJJNCHANGED};

in te rface editor {

re a d o n ly a t t r ib u te ÈDITOR JRESULT changes ;

void edit_object(in s tr in g objecmame,

in s tr in g e_disp);

};

The follow ing is the IDL interface definition for the com posite tool, builder.idi:

in c lu d e “editor.idl”

i n c l u d e “compiler. idF

in te rfa c e builder: editor, compiler {

vo id build(in s tr in g objectname,

in s tr in g execname,

in s tr in g cparameters,

in s tr in g disp);

};

168

The class EditorJ is the im plem entation class fo r the editor ID L interface. The class

declaration and definition fo r Editor_i is given below.

/ / file nam e : editor_i.h

#include “editor.idl.h”

II class Editor_i

II EditorJ interfaces to the Edit w rapper

dass EditorJ : public virtual editorB O A Im pl {

protected:

char e_display[150]; II holds the screen display

char pathname[l 50];

EDJTOR_RESULT changes J ;

void set_changes(EDITOR_RESULT number);

private:

char * object_path{char *);

public:

Editor JO ',

virtual void edit_object(char *objectname,

char *e_disp,

Environment &);

virtual EDITOR_RESULT changes(Environment &);

};

169

/ / f ile nam e : ed ito r_ i.cc

in c lu d e <iostream.h>

in c lu d e <unistd.h>

in c lu d e <sys/wait. h>

include <stdio.h>

in c lu d e <stdlib.h>

in d u d e <string.h>

in d u d e “ editorJ.h”

in d u d e “demo.h”

II function definitions for the Editor_i class

e x te rn c h a r **environ; II holds the environment variables used be execlp

EditorJ:: EditorjiQ

{

changes_i=0 ; / / initialise changes

s t r c p y ip a th n a m e //intialise pathnam e

c h a r * Editor_i::object_path(char *objectname)

{

/ / truncate the file nam e from the end o f the object nam e to

/ / reveal the path nam e

in t i = 0 ;

in t slen = 0 ;

c h a r obj_name[\5Qi]',

c h a r path[150];

strcpy(obj_name,objectname);

170

strcpyipath

slen = strlen(objectname)\

for (i=slen; obj_name[i]l='/';

stmcpy(path,objectname,i);

strcat{path,”/backup, c”) ;

return(pai/i);

void Editor_im.:edit_object(char *objectname,

char *e_disp,

Environment &)

int status ;

int pid ;

char ertv_im>2g[150] ;

char * dummy ;

/ / se t up the e/m 'ronm ent in w hich the child process is to execute

strcpy(e_display,e_disp);

e/m'ro«[0] = new char[150];

strcpy(env_string,”FILENAMES); II se t up FIL E N A M E environment var

strcat(env_string, objectname);

strcpyi environ [G],en v_string) ;

environ[1] = new char[150];

strcpy(env_string,”DlSPLAY=“); II se t up D ISPL A Y environment variable

strcat(env_string,e_display);

strcpy(environ[l],env_string);

dummy=object_path{objectname);

environ[2] = new char[150];

171

strcpy (env_string,”BACKUPNAME=“); / / set up D ISPL A Y variable

strcat(env_string, dummy)',

strcpy(environ[2],env_string);

i f (pid = fork()) { / / Parent has non zero [True] pid

wait(&status); / / Parent process waits for com pletion

switch(status) {

case CLEAN_VAL_1_RETURN:

set_changes(FILE_CHANGED);

b re a k ;

case CLEAN_VAL_0_RETURN:

set_changes(FILE_UNCHANGED);

b re a k ;

d e fau lt: set_changes(EDIT__FAILED);

b reak ;}

}

else / / Child has zero [FALSE] pid

{

execlpi “/hom e/cse/em erpcte/bin/tools/ew viron.tools/esh” ,

“ esh’Y ’edit” ,

(c h a r *)0); // child

}

vo id Editor_i::set_changes(EDITOR_RESULTnumber)

{
II set changes to reflect i f the file has been changed

changesj = number ;

172

EDITOR_RESULTEditor_i::changes(Environment &)

{

// returns value o f changes_i, value depends on the file being ed ited has changed.

retum(changes_i);

}

The follow ing is the E S H scrip t w rapper w hich interfaces betw een the PC TE tool

obj_edit, and the im plem entation o f the e d ito r interface.

Shell w rapper fo r PC T E ed it tool

required environm ent :

F IL E N A M E {file nam e = 'path/filename'}

B A C K U PN A M E { backup nam e = 'path/backup.c'}

Shell type : ESH

A dd the c_prog and pact w orking schem a to the curren t w orking schem a

w s_ad d _ sd s c jprog

w s .a d d s d s pact

set the hom e object

co ~ _ / users/p tangn ey. usr

check to see i f object exists

els %OBJECTNAME I g re p -s “ 1 . ”

case $? in

0) ;;

173

2) STATUS = 3; ex it $STATUS;; # system error

1) _/.users/ptangney.usr/patricia.tools/pcteOC.tool $OBJECTNAME

pete tool to create an object o f type c_source

case $? in

0);; # ob ject created ok, zero bytes long

*) echo “not created error3’;

ex it 2;; # ob ject no t created due to error

esac

esac

m ake a backup o f file before edit begins

_/sun4.toolsets/user.tools/obj_copy $O B JEC TN A M E $B A C K U PN A M E

edit the object

_/.users/p tangney.usr/patricia .tools/editor.tool $O B JEC TN A M E

check if edited object w as updated

_/sun4.toolsets/im ported .tools/cm p -s $O B JEC TN A M E $BA CK U PN A M E

0 no change, 1 i f change, 2 i f error

O B JEC T_C H A N G ED =$?

delete the backup

_/sun4.toolsets/user.tools/link„delete $BA CK U PN A M E

ex it $O B JEC T_C H A N G ED

174

The class compiler_i is the im plem entation class fo r the compiler ID L interface. The

class declaration and definition for compiler_i is given below.

// com piler_i.h

#include “ com piler.idl.h”

class compilerj. : public virtual compilerBOA Impl

{

protected:

C O M PIL ER _RESULT e r r o r //e rro r status o f last invocation

//se t error to resu lt o f last com pile

void ly£f_g77w (C O M P IL E R _R E S U L T result) {error_J = result;}

char c_display[150]; / / holds screen display

public:

//constructo r creates object and inits com piler e rro r status

compiler_i() {error_i = C O M PIL E R _N O T _T R IE D ;}

//ge t last com pile result

virtual C O M PIL ER _RESULT errors(Environmem &)

{return(e/ror_0;}

virtual void compile(char *objectname,

char *execname,

char *parameters,

char *disp,

Environment &);

175

/ / file nam e : com p iler_ i.cc

^ in c lu d e <iostream.h>

in c lu d e <unistd.h>

in c lu d e <sys/w ait.h>

in c lu d e <stdio.h>

in c lu d e <stdlib.h>

in c lu d e <string.h>

include “compiler J .h ”

in c lu d e “ demo.h”

ex te rn c h a r **environ ; //environment info in this data struc t used by “ execlp”

void compilerJ.::compile^ c h a r * filename,

c h a r *execname,

c h a r * parameters,

c h a r *disp,

Environment &)

{

in t status ; / / Status o f child at term ination

in t pid ; / / pid = 0 for child , non-zero fo r paren t

c h a r env_string[150]; / / Unix environment values for child.

/ / set up unix environment fo r child processes

environ[0] = new ch a r[1 5 0];

strcpy(environ[0],” O B JEC TN A M E=“);

strcat(environ [0] filename) ;

environ[1] = new c h a r[1 5 0];

5/rc/7>(e/2Vi'ra/2[l],”PARAMS=“);

strcat{environ[1], parameters)',

environ[2] = new c h a r[1 5 0];

176

strcpy(env_string,”D ISPLA Y =“); / / se t up D ISPL A Y env var

strcat(env_string,disp);

strcpy(environ[2],env_sTring);

environ[3] = new ch a r[1 5 0];

strcpy(env_string,”EXECNAME=“);

strcat(env_string,execname);

strcpy(environ[3],env_string);

i f (pid = fo rk ()) II Parent has non zero [True] pid

{

wait(ciistatus); II Parent process waits fo r com pletion

sw itchO taiw s)

{

case CLE A N _V A L _0_R E T U R N :

,se;_error(C O M PILED _O K);

b re a k ;

case CLE A N _ V A L _ 1 _R E T U R N :

^U ?rro r(C O M P IL E D _ W IT H _ E R R O R S);

b re a k ;

d e fa u lt: ie i_grro r(C O M P IL E R _F A IL E D);

b re a k ;

/ / Child has zero [FALSE] pid

“/hom e/cse/em erpcte/bin/tools/environ.tools/esh” ,

” esh” ,

’’compile”,(char *)0); I* child *1

}

}

}

else

{

execlp(

177

The following is the ESH script w rapper which interfaces betw een the PC TE tool ecc,

and the im plem entation o f the compiler interface.

Required environm ent : O B JECTN A M E, D ISPL A Y , E X E C N A M E

Shell type : E SH

C heck i f object exists i f not then exit w ith error

set up PC TE w orking schem a

ws_add_sds c_prog

ws_add_sds pact

els $ OBJECTNAME I grep -s “ 1..”

case $? in

0) ;; # object exists

*) STA TU S=3; exit $STA TU S ;; # system error

esac

C heck if the execution object has been created

els SEXECNAME1 grep -s “ 1..”

case $? in

0) ;; #ob jec t exists

*) _/.users/p tangney.usr/patricia.tools/execO C .tool $EXECNAME

case $? in

0) ;; # created ok

*) echo “ ERROR: U nable to create execution object !” ;

STA TU S=3; exit $S T A T U S ;;

esac ;;

esac

Com pile object w ith PCTE tools

178

C heck w hat parameters have been passed to the w rapper

p = “ “ ;

echo $PARAMS I grep -s “NOLINK”

case$? in

1) P=“-c”;;

*) ;;

esac

echo $PARAMS I grep -s “OPTIMISE”

case $? in

1) P=“-0 ” ;;

*) ;;

esac

echo $PARAMS I grep -s “DEBUG”

case $? in

DP=“-g”;;
. .j

esac

_/sun4. toolsets/im ported .tools/ecc $P -o $EXECNAME %OBJECTNAME

errorlist;

case $? in

0) STATUS=0; echo “ com pled ok.” ;;

1) ST A T U S =1; echo “ errors during com pilation” ;;

esac

c a t errorlist

ex it $STA TU S;

The class builderJ is the im plem entation class fo r the builder ID L interface. The

class declaration and definition for builder_i is given below.

#include “builder.idl.h”

#include “ editor_i.h”

#include “compilerJ.h”

// class builder J

class builder_i : public virtual builderBOA Impl, public virtual E ditor_i, public

virtual compile r_i {

pu blic:

builder J(); II constructor

virtual void build(char *objectname,

char *execname,

char *parameters,

char *display,

Environment &);

// builder_i.cc

#include <iostreanuh>

#include <unistd.h>

#include <sys/wait.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include “builderJ.h”

180

#include “demo.h”

Il function definitions for the builder_i class

builderJ::builder_i{) { }

void builder_i::build{c h a r *objectname*

char *execname,

char * parameters,

char *display,

Environment &)

compiler * CompilerPtr',

editor * EditorPtr;

in t number_changes;

In t number_errors;

TRY {

CompilerPtr = com pi7er::_b ind(“ “ ,” sonia” ,IT _X);

} CATCHANY{

cout « “\n Error in b inding to a com piler interface “ « IT _X

exit(l);

} ENDTRY

TRY {

EditorPtr - editor: :_bind(““,’’sonia”,IT_X) ;

} CATCHANY{

cout « <4\n Error in binding to an editor interface “ « IT _ X ;

exit(l);

} E N D T R Y

T R Y {

EditorPtr->edit_object(objectname, display,IT_X);

} C A T C H A N Y {

c o u t « “ \n Error invoking the E d ito r “ « IT_X ;

e x it(l) ;

} E N D T R Y

T R Y {

number_changes = Edito rPtr->changes (IT _X);

} C A T C H A N Y {

c o u t « ‘An Error detecting C hanges \n” « IT_X ;

e x it(l) ;

} E N D T R Y

if (number_changes = FELE_CHANGED) {

T R Y {

CompilerPtr->compile(objectname,execname,parameters,display,TT_X);

} C A T C H A N Y {

c o u t « “ \n E rror invoking C om piler \n « IT_X” ;

e x it(l) ;

} E N D T R Y

T R Y {

numberjerrors = CompilerPtr->errors(lT_X);

} C A T C H A N Y {

c o u t « “ \n E rror detecting com pile errors \n “ « IT _X ;

e x it(l) ;

} E N D T R Y

182

