
A Generic Comparison Process for Documentation Files

A Dissertation Presented in Fulfilment o f

the Requirement o f the M.Sc. Degree

Michelle Timmons, B.Sc.

School o f Computer Applications

Dublin City University

Academ ic Supervisor: M r. A ndrew W ay

Declaration

I hereby certify that this m aterial, which I now subm it fo r assessm ent on the

program m e o f study leading to the aw ard o f M asters o f Science in C om puter

Applications, is entirely m y ow n w ork and has n o t been taken from the w ork o f others

save to the extent that such w ork has been cited and acknow ledged w ithin the tex t o f

my work.

M ichelle Tim m ons, B.Sc.

D ate: * - IQ - ¿7 ~7_________

i

Acknowledgements

Thanks to Andy W ay and M ark R oan tree fo r their support and direction over the
past tw o years. Thanks also to Forbairt, w hose funding m ade this research
possible.

I w ould like to acknow ledge Leona, Ann, Anna and M ike in L o tus and to Tom ,
R obert and Sharon in IT P for their guidance in m y research.

Thanks to all m y friends, especially Seam us, for their help d irectly and indirectly
in preparing this thesis, and m ore im portantly, fo r being there. Thanks to D onal
for his advice, and especially to G ary for his help a t tim es w hen it w as m uch
needed.

Finally, m y parents deserve m any thanks and recognition fo r the support and
encouragem ent they have given m e throughout the years.

Abstract
One o f the m ost im portant stages in the localisation process is the provision o f high

quality help and docum entation in the target languages. T ranslation o f com puter

m anuals and Help files consists o f :

(i) translating the text

(ii) maintaining the form atting o f the source.

A lthough m any tools are available to translators, the greatest need for standardised

tools exists in the area o f form atting and layout o f docum entation. A t present a

significant p roportion o f tim e allocated to this stage is spent checking that the

form atting has not changed as a consequence o f translation. F o r example, properties

such as font type, font size and style (e.g. bold, italic) m ay accidentally be changed

during translation. It is also possible that tw o paragraphs are com bined into one, or

even deleted altogether from the text

The aim o f this research is to assess the viability o f developing a generic com parison

process for docum entation files. This process should be able to take tw o text-based

docum ent files (e.g. TeX , M IF, RTF) and com pare the underlying codes (called

markup) that describe the form at and structure o f the docum ents, w here form at is its

physical appearance (e.g. underlined text, m argins) and the structure is its

com position (e.g. paragraphs, chapters, headings). A lthough the localised docum ents

will usually use the same m arkup schem e as the original, the possibility o f

incorporating the com parison o f different file types into the p rocess is investigated, in

keeping with the concept o f generality. H ow ever, each m arkup schem e has its ow n set

o f codes. In addition to this, the form at is described by specific m arkup and the

structure by generalised m arkup. T he vast differences betw een these schem es means it

is no t always possible to m ake a direct com parison, com plicating the process.

Table of Contents

1. In t r o d u c t io n 1

1.1 Overview of Chapters 2

2. L o c a l is a t io n 5

2.1 Introduction to the Localisation Industry 5

2.2 Software Localisation in Ireland 6

2.3 The Localisation Process 7

2.3.1 Original D evelopm ent o f the P roduct 7

2.3.2 Technical Review 8
2.3.3 Localisation Analysis 8
2.3.4 Translation and Verification 9

2.3.5 A cceptance T est 10

2.3.6 Evaluation 10

2.4 Issues in Localising Documentation 11

2.4.1 C ontent-R elated Problem s 11

2.4.1.1 Considerations for the Technical W riter o f the Original D ocum ent 12

2.4 .1.2 Issues for the T ranslator 12
2.4.2 Issues R elated to the Translation P rocess 14

2.5 Quality Assurance Testing in Localisation 16

2.6 Automation in Localisation 17

2.6.1 A utom ating Q A Testing for D ocum entation Files 17

2.6.1.1 Generic P rocesses 18

2.7 Summary 19

3. O v e r v ie w o f E l e c t r o n ic D o c u m e n t a t io n 20

3.1 Introduction 20

3.2 Desktop Publishing 20

3.2.1 D TP Softw are 21

3.2.1.1 Com m and-D riven 21

3.2.1.2 S tandard G eneralised M arkup Language (SG M L) 21

3.2.1.3 W hat Y ou See Is W hat Y ou G et 22

3.2.1.4 D ocum ent D escription Language 22

3.2.2 Style sheets 22

3.2.3 D esktop Publishing versus W ord Processing 23

3.3 Automating Electronic Document Processing 24

3.3.1 A utom ating the Com parison o f Tw o Localised D ocum ents 26

3.4 Markup 28

3.4.1 Types o f M arkup 29

3.4.1.1 Specific M arkup 30

3.4.1.2 Generalised M arkup 31

3.4.1.3 O ther Form s o f M arkup 32

3.4 .2 M arkup Handling 33

3.4.3 Com paring Form s o f M arkup 35

3.5 MIF (Maker Interchange Format) 36

3.5.1 Objects in M IF 37

3.5.2 Statem ents in M IF 38

3.5.3 M IF Files 38

3.5.3.1 Parsing M IF files 39

3.5.4 W hy choose M IF? 39

3.6 SGML 40

3.6.1 In troduction to SG M L 40

3.6.1.1 W hy is SG M L so Different from Specific M arkup? 41

3.6.2 C om ponents 41

3.6.2.1 The D ocum ent Type Definition 42

3 .6.2.2 Exam ple D T D and Conform ing D ocum ent 43

3.6.3 Sum m ary o f the A dvantages o f an SG M L-based A pproach 44

3.7 LaTeX 44

3.8 Comparison of Specific and Descriptive Markup 45

3.8.1 C ontent 46

3.8.2 S tructure 46

v

3.9 Summary 49

4. G e n e r a l is in g M a r k u p C o m p a r is o n in D o c u m e n t s 50

4.1 Introduction 50

4.2 Comparing Documents With Identical Formats 50

4.2.1 S ty leshee ts 51

4.2.1.1 Com paring Style Properties 51

4.2.1.2 Com paring U sage o f Styles 52

4.2.2 M atching Tags 53

4.3 Comparing Documents of the Same Markup Category 53

4.3.1 Com paring Tw o Specifically M arked-up D ocum ents 54

4.3.1.1 Generic Tag Set 56

4.3.2 Com paring Tw o D ocum ents w ith G eneralised M arkup 58

4.3.2.1 Generic D ocum ent S tructure 60

4.3 .2 .2 Converting D ocum ents with G eneralised M arkup to a Generic

S tructure 61

4.4 Comparing Documents with Different Types of Markup 63

4.4.1 The P rocess for Converting Specific M arkup T o G eneralised M arkup 65

4.5 Conversion Process for Marked-up Documents 68

4.6 Tag-for-Tag Comparison of Two Documents 70

4.6.1 Issues in the Tag-for-T ag Com parison 72

4.7 Summary 73

5. A P r o t o t y p e I m p l e m e n t a t io n 74

5.1 Introduction 74

5.2 Data Preparation 74

5.2.1 Generic Parser 74

5.2.2 The D ata Preparation T ool 77

5.2.2.1 D ata P reparation T ool for G eneralised M arkup 80

5.3 Main Implementation 81

3.8.3 Format 48

5.3.1 Storing the M appings betw een Tags 81

5.3.2 In ternal R epresentation o f the D ocum ents as L ists 82

5.3.2.1 File_tag: L ist o f Tags from Input File 82

5.3.2.2 T ag jm ap : L ist o f M appings from M arkup Tags to G eneric Tags 83

5.3.3 System Overview 84

5.3.4 C onversion 85

5.3.4.1 Filling the Tag M apping L ist 85

5.3.4.2 Conversion o f Specific M arkup to the In ternal Tag Set 85

5.3.5 C om parison 87

5.3.5.1 U N IX diff U tility 87

5.3.5.2 Analysis o f diff O utput 8 8
5.3.5.3 Checking for Changed T ex t 89

5.3 .5 .4 L ocating E rrors 90

5.3.5.5 Checking for E xtra Tags 90

5 .3 .5.6 Checking for M issing Tags 91

5.3.5.7 Checking fo r Changed Param eters 92

5.3 .5.8 Checking for Changed T ags 93

5.3.5.9 ReAlign 96

5.3.5.10 Com pN ext 98

5.3.6 E rro r Analysis 100

5.3.6.1 P rin tE rror 102

5.3.6.2 Locating D ocum ent T ext Surrounding an E rro r 103

5.4 Summary 104

6. R e s u l t s 105

6.1 Introduction 105

6.2 Data Preparation Tool 105

6.2.1 M IF 106

6.2.1.1 Issues Encountered & Possible Solutions 107

6.2.2 R T F 108

6.2.2.1 Issues Encountered & Possible Solutions 108

6.2.3 H T M L 110

6.2.3.1 Issues Encountered & Possible Solutions 110

6.2.4 L aT eX 112

6.2.4.1 Issues Encountered & Possible Solutions 113

6.2.5 Overall Evaluation o f Generic D ata P reparation T o o l 114

6.3 The Comparison of Documents 116

6.3.1 Recognising Changed Tags 117

6.3.2 Recognising Changed Param eters 118

6.3.2.1 Issues in Recognising Changed Param eters 119

6.3.3 Recognising M issing Tags 119

6.3.4 Recognising E x tra Tags 120

6.3.5 Recognising Changed T ext 120

6.3.6 Issues Encountered During the C om parison o f D ocum ents o f the Same

M arkup Schem e 121

6.3.6.1 G roups o f Similar Tags 121

6.3 .6.2 O ptional Tags 122

6.3 .6.3 D ifferent End Tags for the Sam e Form at 123

6.3 .6.4 The O rder in W hich Tags O ccur 124

6.3 .6.5 A ccented Characters 127

6.3 .6.6 M oved Tags 127

6.4 Comparing Two Documents with Different Markup 129

6.4.1 C onversion 129

6.4.2 Com paring the Equivalence o f Tw o D ocum ents 129

6.4.3 Issues in the Com parison o f Tw o C onverted D ocum ents 131

6.4.3.1 Paragraph R epresentations 131

6.4.3.2 Differing M ethods o f Ending T ags 133

6.4.3.3 The Storage o f M easurem ents 135

6.5 Error Reporting 136

6.5.1 Issues In the E rror R eporting o f the System 137

6.5.1.1 Displaying the E rroneous Tag 137

6.5.1.2 Displaying the A ssociated T ext 138

6.5.1.3 M essages for D ifferences that w ere no t E rro rs 139

6.6 Summary 139

7. C o n c l u s io n 141

7 .1 Future Work 145

B ib l io g r a p h y 148

A p p e n d ix A A - l

A p p e n d ix B B -l

The localisation industry is one o f the fastest grow ing areas in the w orld o f softw are

developm ent. This w orld-w ide drive to globalise softw are is partly due to the

changing profile o f com puter users, but the m ain incentive is to sell m ore copies.

Every com pany has its ow n approach to the adaptation o f the softw are's functionality

and the translation o f text, but all strive to achieve a com m on aim - to m ake their

p roduct appear as if it was developed in their ow n country and no t by a third party

company. H ow ever, num erous problem s exist in the industry. A m ajor problem is

that, given that no tw o products are the same, the localisation process can differ for

each.

Our aim is to help generalise part o f this process: the testing and verification o f

translated docum entation files. A t present, the task o f ensuring that only the required

changes (i.e. the text, screenshots, callouts, etc.) have been m ade during translation is

often executed manually. Personal experience has show n that this results in a process

that is slow, tedious and, because o f the hum an factor, error-prone. Furtherm ore, it is

very likely that translators will w ork w ith docum ents created in m ore than one

application. For example, som e o f their clients m ay p roduce their docum ents in

Fram eM aker, w hereas o thers m ay use M icrosoft W ord. The developm ent o f a system

that w ould allow the autom ation o f the verification o f localised docum ents o f any file

type could provide a significant m arket advantage to softw are vendors in terested in

localising their products. In addition to being faster than m anually checking the files, it

w ould provide a m ore com prehensive and accurate analysis, reducing cost and tim e to

m arket as w ell as increasing custom er satisfaction. Furtherm ore, it eliminates the need

for different tools to perform the same processing on specific docum entation files.

The focus o f this research is to generalise the com parison o f the underlying codes

specifying the format and structure o f tw o docum ents w here the form at is the physical

appearance o f a docum ent (e.g. bold text, underlines) and the structure is how the

docum ent is com posed (e.g. chapters, paragraphs). This inform ation is stored in the

form o f markup codes throughout the text. H ow ever, each m arkup language has its

ow n set o f codes. In addition to this, there are tw o types o f m arkup: specific markup

1. Introduction

1

(e.g. RTF) describes the form at o f the docum ent, w hereas generic markup (e.g. an

SG M L docum ent) describes the structure.

A lthough the localised docum ents will norm ally use the sam e m arkup schem e as the

original, the com parison process will be extended to include the com parison o f

different m arkup schemes, in keeping w ith the concept o f generality. This can be used

to com pare a docum ent to a previous version in the case o f the desktop publishing

(DTP) system having been updated in betw een their creation. It could also be used to

com pare the equivalence o f the same docum ent published in different form ats (e.g.

printed docum entation, on-line docum entation, or pages on the internet). D espite the

fact that such docum ents will obviously differ in appearance, the structu re o f the

docum ents should rem ain similar. H ow ever, this can in troduce different issues, e.g.

links in H T M L pages are not relevant fo r docum ents.

The vast differences betw een these m arkup schem es m eans tha t it is no t always

possible to m ake a direct com parison o f tags from tw o docum ents. W e have devised a

generic p rocess that will allow such a com parison by identifying the four different

procedures:

1. Com paring docum ents with identical form ats (e.g. tw o R T F docum ents)

2. Com paring tw o specifically m arked-up docum ents (e.g. an R T F and a TeX

docum ent)

3. Com paring tw o docum ents w ith generalised m arkup (e.g. tw o SG M L docum ents

w ith different docum ent type definitions (DTD s))

4. Com paring docum ents w ith different types o f m arkup. (i.e. specific & generalised)

1.1 Overview of Chapters

Chapter two discusses the m otivation behind this research. A n in troduction to the

localisation industry in Ireland is provided as a background to the area. The

localisation p rocess for a p roduct is outlined and som e o f the issues associated w ith

this process are described, concentrating on those related to the localisation o f

docum entation. Quality A ssurance (QA) and the autom ation o f QA testing are

described, culm inating in a discussion on the autom ation o f testing docum entation

files.

2

Chapter three provides an overview o f electronic docum entation, focusing on the

issues relevant to the localisation industry. It also in troduces the concept o f electronic

m arkup, which is used to store extra inform ation about a docum ent. The tw o main

types o f m arkup are studied using SGML and MIF as exam ples. These tw o schem es

are com pared and contrasted, thereby providing a basis fo r creating a p rocess for

com paring the tw o schem es autom atically.

Chapter fo u r discusses our m ethods for designing a generic p rocess for the

com parison o f tw o docum ents, based on the m arkup in those docum ents. B ecause o f

the differences in the features described by different m arkup, there are four different

cases: com paring tw o docum ents w ith the sam e m arkup schem e, com paring tw o

docum ents w ith specific m arkup, com paring tw o docum ents w ith generalised m arkup

and the com parison o f a specifically m arked-up docum ent w ith a docum ent with

generalised m arkup. The conversion o f docum ents w ith differing schem es to a generic

form at, this being necessary in order to perform the com parison, is described.

Chapter five brings together the concepts o f docum ent m arkup discussed in chapter 3

and com parison algorithm s discussed in chapter 4 w ith our research into the

developm ent o f a generic process to com pare tw o docum ents. This chapter discusses

the im plem entation o f a pro to type that can take tw o docum entation files and perform

a com parison o f the form at and structure, based on the m arkup o f the docum ents.

Chapter six analyses the results o f the com parison m ade by the p ro to type in order to

ra te its overall perform ance. These results are analysed under the different areas o f the

process: the generic data preparation tool, the conversion o f m arkup schem es to the

internal generic tag set, the com parison o f tw o docum ents w ith identical m arkup

schemes and the com parison o f docum ents having differing m arkup schem es but the

same m arkup category. A n explanation o f any problem s encountered is given and

possible solutions are suggested.

3

Chapter seven summarises the ideas behind this research, and applies the conclusions

derived from the implementation (as discussed in chapter sue) to the localisation

industry. Suggestions are offered for further work to extend and improve the work

done here.

4

2. Localisation

2.1 Introduction to the Localisation Industry

M ost softw are program s and docum entation are first w ritten in English, even by

E uropean com panies such as Siemens, Ericsson, N okia and Olivetti. T hey m ust then

be translated and adapted into the local languages and culture for the non-English

speaking m arket. Until recently, this involved little m ore than translating tex t in

softw are, docum entation and help from English into the m ajor E uropean languages.

H ow ever, the end users have since becom e m uch m ore sophisticated and are quick to

reject inferior quality. Consequently, “translation” has effectively been replaced by

“localisation” [POLY 96].

Every culture has its ow n national characteristics, legal requirem ents and accepted

standards. The acceptance o f a potentially successful p roduct could be affected by not

reflecting these in the softw are or its docum entation. Therefore, to be successful in

overseas m arkets, it is essential that o n e ’s com pany and its p roducts should appear

native to the target custom ers. The sign o f successful localisation is w hen the p roduct

is perceived by the user as having been developed and produced in their ow n country

rather than having been developed abroad, converted and then im ported.

The profile o f com puter users is rapidly changing. N o longer is it ju st highly educated

people using sophisticated software; to d ay ’s com puter users extend across all layers

o f society and throughout a broad range o f professions [HA RS96]. G iven the growing

im portance o f the international m arket, com panies are showing an increasing interest

in adapting their p roducts to m ultiple languages for use in foreign countries. The

reason for this grow th o f the localisation industry is the desire to reach as broad a

m arket as possible, the world.

There are various activities in the adaptation o f products to local m arkets. These are

described below:

Translation refers to the pure adaptation o f w ords from the source language to the

target language.

5

Localisation is the process o f integrating the w hole o f the p roduct cohesively into the

language and culture o f the target m arkets to m eet their specific needs. It involves all

com ponents o f a softw are p roduct including the adaptation o f the so ftw are’s

functionality, and the translation o f m anuals and on-screen text, as well as affecting

technical specification and m arketing literature. I t also includes ensuring graphics,

colours and sound effects are culturally appropriate.

Internationalisation is the behind-the-scenes w ork by softw are engineers to create a

system or application softw are independent o f natural language. It includes generic

coding and design issues, such as keeping user interface (UI) tex t strings separate

from the rest o f the code so that translation will not in troduce bugs into previously

tested program s.

Globalisation is the term covering the entire process o f creating a p ro d u ct w ith

versions for users in m ultiple countries.

2.2 Software Localisation in Ireland

It is now widely accepted w ithin the com puter industry that Ireland is a w orld centre

o f excellence in softw are localisation w ith m ost m ajor softw are firms having a

significant presence in the field in this country. I t is estim ated that Ireland exports up

to 60% o f PC -based softw are sold in E urope, and is the w orld ’s second-largest

exporter o f softw are after the U SA [LO CA 97]. Those com panies that have chosen

Ireland for their p roduct localisation centres include softw are publishers such as

M icrosoft W orld P roduct G roup Ireland, L otus D evelopm ent Ireland, C orel

C orporation, Sym antec, Visio International, Novell, O racle C orporation and Claris;

hardw are m anufacturers such as G atew ay 2000 and Sun M icrosystem s; Service

Providers such as Berlitz International; and too ls developers such as Trados.

There are also various localisation agencies operating in Ireland. Such agencies

provide a range o f services from softw are, docum entation and help translation and

localisation to technical services, p ro jec t m anagem ent and quality assurance. M any

also offer advice on the best approach to internationalisation and on techniques which

m ake inform ation easier to translate.

6

As well as the Irish-ow ned com panies, such as In ternational T ranslation & Publishing

Ltd, Translation Craft and D L G Softw are Services, m any international agencies

providing localisation services have established offices in various locations around the

country, including Berlitz International, B ow ne, K udos and R and M cNally M edia

Services.

2.3 The Localisation Process

A lthough m ost o f the larger com panies have constructed their ow n fram ew ork

manuals providing a m odel for internationalisation and testing, there is no form alised

process because localisation will differ from product to product. F o r example,

localising a m ultim edia p roduct will require a different approach to traditional

softw are because o f different m edia, such as video, audio, 2D and 3D graphics and

animation. W orld W ide W eb applications m ay also need special treatm ent because o f

com plex graphics, ShockW ave and Java applets or CG I scripts. H ow ever, the

localisation o f different office applications is generally not that different.

H ow ever, w e have outlined a general process below that can provide helpful

guidelines to ease the task o f the localisation team [TIM M 96]. This will in tu rn reduce

tim e and effort involved in the localisation o f the product.

2.3.1 Original Development of the Product

The prim ary phase for any localisation pro ject is the design o f the product. The

developm ent team s strongly influence w hether localisation will p roceed w ith ease or

difficulty. W ithin the team s, there needs to be a strong aw areness o f international

issues to help internationalise, and subsequently localise, p roducts m ore efficiently.

“Softw are initially designed with features and code that support international

conventions, foreign data and form at processing will greatly facilitate the localisation

process” [M ILL94]. A num ber o f guidelines for internationalisation can be considered

during softw are developm ent, for example:

• The use o f non-US PCs, hardw are and com m unications p ro toco ls should be

supported.

• K eyboard layouts change according to locale, and not all characters exist in all

keyboard layouts. Therefore, the use o f non-US keyboards m ust be supported (e.g.

7

m ake sure shortcut key com binations can be reproduced using international

keyboards).

• In many cases, localisation can be carried out on executable files. This p roperty

should be exploited by designing the softw are to eliminate the need to be

recom piled to allow translation.

• All user-visible text should be separated from the p roduct code and placed in

resource files. These files can then be localised w ithout affecting the softw are.

• W hen com paring strings w ith accented characters, the decision m ust be m ade as to

w hether the com parison should be accent-sensitive (w here accented characters

m atch only the same accented character, e.g. e = e, e ^ e) or accent-insensitive

(where accented characters m atch unaccented or other accented equivalents, e.g. e

= 6 = e). Com paring user-typed strings w hen searching help text, for example,

should be accent-insensitive in order to be “user-friendly” .

• C ode should not byte- steps through strings as this assum es that all characters are

single byte, but languages such as Japanese use double byte characters.

2.3.2 Technical Review

A technical review can be conducted to gather inform ation about the p roduct (both

softw are and docum entation) early in the developm ent cycle. This can be used to

influence the developm ent team to provide a product that is m ore suitable to

internationalisation by highlighting issues that m ay affect localisation, such as those

m entioned above.

2.3.3 Localisation Analysis

Each file in the product is exam ined to see if it contains tex t needing translation or

other inform ation which m ust be changed due to localisation [LO TU 95], Files tha t do

not need to be changed do not require rebuilding and can be im ported straight into the

localised p roduct build. Rebuilding them will introduce the possibility o f error. I f the

need arises for special tools to help translation, updating and verification, it will be

identified here. The idea o f using tools is to m ake localisation an exercise in language

processing and preventing the localisation team being bothered by technicalities. M any

com panies will develop too ls to overcom e specific difficulties encountered in

localising a product. A m ajor disadvantage o f this is that it will overcom e only that

problem for which it was designed. I t is unlikely that it will be used again w ithout

considerable modification.

2.3.4 Translation and Verification

A t this stage, all necessary inform ation and softw are is provided to the

translators, who m ay be either in-house or external vendors. As translation involves

text which is external to the product, it is the activity m ost likely to be outsourced.

This decision is usually based on the cost - if the resources are available in-house, it is

less costly than outsourcing translation. H ow ever, if resources need to be specially

hired for this purpose, it is often cheaper and m ore convenient to use an external

vendor. It should already have been established w hether the translators need to be

provided with the tools, supporting docum entation and m aterials necessary to

im plem ent the localisation process. The translators m ust also be m ade aw are o f any

translation restrictions, e.g. line-length, deadlines.

In the evaluation and preparation stage o f translation, text often needs to be

m anipulated out o f and back into desk top publishing (D TP) environm ents, while at

the same tim e m aintaining form atting inform ation. Filters and layout form ats that

accom m odate such pre-processing o f tex t can be developed w here needed. Softw are

engineering too ls can be used to verify that all o f the original tex t in a U ser Interface

(UI) is resourced and that it can be translated using relevant too ls and editors

[ITP96]. U nresourced text is therefore quickly identified. Similarly, tex t expansion

and support for accented characters are tested at the early evaluation and preparation

stage. D etecting potential difficulties such as these early on can help ensure that the

critical path p rocess o f translating and building/testing softw are is not held up through

the unexpected discovery o f such issues.

Files are checked to see w hether it is possible to re-use translations from

previous versions o f the product. This maximises the return on investm ent in

translation and helps ensure consistency o f translation. Computer Aided Translation

(CAT) techniques are often em ployed to do this by building translation memories

from previously translated versions o f the product. These m em ories are used to batch

translate (or pre-translate) the new source files, thus perform ing translation and

9

ensuring quality and consistency in a fraction o f the tim e it w ould take to carry out

this task if the traditional “cut and paste” m ethods w ere used. [ITP96]

During the translation phase, the same translation m em ories can be used by

translators w orking in a CA T environm ent w here further productiv ity gains can be

achieved using repetition processing1 and “fuzzy” m atching2 capabilities o f the CAT

tools.

In the verification phase, a. functional test is conducted to verify the quality o f

the translation, adaptation, layout and graphics design. Quality A ssurance (QA) tools

exist to help w ith this. QA tools can also be used in the softw are building and testing

stage to autom atically detect problem s such as duplicate ho t keys, truncated text, and

a variety o f other com m on U I localisation issues.

Often, only a section o f the w ork will be com pleted and this is review ed

during a functional test. Generally, if files are being translated by an external vendor,

this is carried out in-house if resources are available. O nce approved, this section

serves as the quality m odel for the rem aining parts o f the project.

2.3.5 Acceptance Test

O nce the w hole product has been translated, an acceptance test is conducted

to help ensure a bug-free product. The w hole p roduct m ust be re-built w ith the

translated files, using the localised build environm ent. A num ber o f previously run

checks on translation, layout and functionality are re-run as a precaution.

2.3.6 Evaluation

O nce the localisation o f the p roduct is finished, the whole process should be

reviewed to identify successes and failures o f m ethods used, so that they can be

evaluated and either maintained or corrected . It can also provide inform ation to the

1 Repetition Processing in the application of the same process many times.

2 Fuzzy matching is used to find “almost matching” results, rather than exact matches.

1 0

developm ent team on the p roduct in term s o f how easy the p roduct was to localise,

and suggestions should be provided on addressing any problem s encountered.

2.4 Issues in Localising Documentation

A lthough the localisation process concentrates on the adaptation o f the softw are to

other cultures, there are many issues that may occur in the localisation o f

docum entation. This can mean that com prom ises are m ade to m eet deadlines; for

example docum entation text m ay be simplified to cu t dow n on the translation needed,

or the docum entation is published w ith errors. There are tw o main areas in which

these issues are encountered: the content o f the docum entation and the p rocess o f

translation itself. In this section, these issues are exam ined as m any o f them have a

direct effect on this research.

2.4.1 Content-Related Problems

The content o f docum entation can cause confusion or com plications in the translation.

Som e o f these can be in troduced in the original docum entation by the thoughtlessness

o f the technical w riter, and can be reduced by careful forethought. O ther issues

regarding the content are usually language and locale specific and com m only occur in

the localisation o f both docum entation and applications.

11

2.4.1.1 Considerations for the Technical W riter of the Original Document

The cause of many other complications in translation is lack of thought in writing the

text in the original documentation. “Making the information as clear and simple as

possible promotes easier translation” [MILL94, plO l]. There are a number of points

the technical writer needs to consider:

• Clarity and Simplicity: The original text should be written concisely and using

terminology that is easy to translate. English tends to be very metaphorical at times

and this can cause the translator difficulty. Furthermore, the use of English words

with multiple meanings can cause confusion to the translator. For example

‘because’ should be used instead of ‘since’, as it has a single meaning; ‘since’ can

be confusing for a translator [MILL94]. Images should also be clear and

uncomplicated as complex images are difficult to understand.

• Use of Existing Terms: Existing terminology should be used wherever possible.

However, sometimes terms that are common in the original language have no

equivalent in other languages (e.g. “pop-up window”). The translator is then faced

with the decision between creating a new term in the language, or introducing the

original “foreign” term. If a new term is created, there is the risk that no-one will

understand it, but the reader will be unfamiliar with “foreign” terms and may not

accept them.

• Applicability of Content: The applicability of content to other countries must be

considered. Some terms or images may be irrelevant, or even offensive, in another

country. For instance, examples can appear with zip codes, or refer to U.S. place

names that are not as relevant to non-US users. Animals, religious and

mythological symbols, colours, hand gestures and people (especially racial, cultural

or gender stereotypes) may be misinterpreted or may offend users in another

country [KAN095]. For example, some cultures associate the pointing-finger

image (as used in a cursor) with thieves.

2.4.1.2 Issues for the Translator

• Prior Knowledge of the Subject: A common problem in the translation of

software documentation can be that the translator does not know exactly what the

product is about. Therefore, the translator should be thoroughly familiar with the

12

software before attempting to understand the terminology used in the

documentation.

• Alphabetical Sorting: Lists that were sorted alphabetically in the English version

must be re-sorted after translation to re-order the list items alphabetically in the

new language.

• Local Data Conventions: The conventions for displaying dates, times, currency,

measurements and numeric formats can differ from place to place [DIGI91]. For

example, the custom in the United Kingdom for numeric dates is to display the day

first, followed by the month and then the year, e.g. 22/11/96. However, the U.S.

standard is the month first, then the day and year. e.g. 11/22/96. When dealing with

times, not only do different time zones and Daylight Saving Time affect times, but

different locales also use different conventions [DIGI91]. For example, Ireland, the

U.K. and the U.S. still use the 12-hour clock system, whereas many European

countries such as France, Italy and Spain use the 24-hour clock system. Therefore

during translation, issues such as these must be examined and localised (i.e.

adapted for the target culture) rather than simply translated. The different

conventions for currency, measurements and numeric formats require similar

adaptation of the text.

• Locale-Specific Information: Text that is applicable only to a specific locale

cannot be directly translated into the intended language. Although such text should

be avoided in the original documentation where possible, it is sometimes necessary

to include sections for specific locales. For example, the customer support section

of a manual will differ depending on the intended destination. Not only will contact

names, postal addresses, e-mail addresses and telephone numbers change, but in

addition to this, certain information may be omitted. For example, some services

such as a 24-hour help desk may not be available to customers outside the U.S.

Furthermore, any references in the text to things changed by the translator, such as

language, countries or formatting must be updated. For example, references to

reading from left to right must be changed in Arabic documents (e.g.

documentation for word processing packages may refer to the characters being

typed from left to right across the screen).

13

• Proper Names: The names of people, companies and products will not usually be

translated in the localised documentation. Exceptions to this include localised

versions of products which may be renamed, (e.g., the Japanese version of

Microsoft Word is called Word J), in addition to companies and products that are

known under a different name in other countries.

2.4.2 Issues Related to the Translation Process

A number of issues are encountered during the translation process that are not related

to the content of the document, but to the planning and performing of the translation.

Sufficient planning and forethought can reduce these problems. Some of these issues

include:

• Document Formats: Documentation files may be in different formats. They will

need to be converted to the same format for use with tools.

• Modifications to Software: The software many change a lot during development,

which will have an effect on the documentation. If translation is started too soon,

much of the text may change and have to be re-translated, and the product re­

tested. Leaving it too late will delay the release date of the translated product.

• Resources: The lack of resources for translating into less popular languages may

be an obstacle in the translation of documentation. For instance, a current EC

project to design a CBT course on EC Structural Funds had great difficulty in

finding skilled resources with lesser-used languages. To translate it from French to

Irish, for example, it was necessary to translate from French into English first, and

then from English to Irish by another set of translators. [MCD95]

• Formatting Conventions: Different cultures expect different layout and

formatting conventions in documents. For example, not all cultures read text from

left to right. The text of Arabic documents goes from right to left, whereas Korean

text is in vertical lines from top to bottom, read from left to right. Mongolian
i '

documents are in vertical lines with characters from top to bottom, but are read

from right to left [ZHEN92], Therefore the document will require conversion to

the appropriate layout.

14

• Accidental Alterations to Document Markup: The format and structure of the

original document can be accidentally altered during translation, especially if the

translator is operating in a WYSIWYG3 environment, as it is easy to change the

underlying markup without realising. For example, the translator may change text

properties such as font type, font size and style (e.g. bold, italic). It is also possible

that two paragraphs are combined into one, or even deleted altogether from the

text.

• Unreachable Text: Text that is part of an image (such as a bitmap) cannot be

translated and a new image must be included with the translated text. Therefore it

is recommended that text is not included in the images.

• Text Expansion: Translation of text can result in an increase of up to 30% in its

length. This can cause a number of problems. For example, text in diagrams may

expand, requiring the components of the diagram to be rearranged. Text aligned

using tabs may be displaced and need realignment (see Figure 2.2).

In (a), the text at the top o f the page is neatly aligned into columns using tabs.
However, after translation the text may expand to push the columns out of
alignment as in (b).

Figure 2.2 Issues with Tabbed Text Due to Text Expansion

Another problem may arise if page breaks were enforced in the original document

to move a diagram to a new page, for example (see Figure 2.3 (a)). The expansion

(or reduction) of text can cause these page breaks to move, which may result in a

page with very little text (see Figure 2.3 (b)).

3 WYSIWYG (What You See Is What You Get) applications “display on screen a close

representation of what will appear on the finished output” [NCC87, p!9]

15

(a) (b)

In (a), a page break was enforced after the text in the left-hand page to “push”
the diagram onto the next page, as it did not fit. However, after translation, the
text may have expanded onto the top o f the next page. The diagram would now
fit on the bottom o f this page, as in (b). However, the enforced page break still
forces the diagram onto the next page.

Figure 2.3 Issues Due to Enforced Page Breaks

2.5 Quality Assurance Testing in Localisation

The localisation of a product is a complex task. As we have observed, it does not

simply consist of the translation of the software, documentation and help files of the

product. It must be ensured that issues such as those highlighted above have been

dealt with adequately. Therefore localisation also addresses questions such as whether

the quality of the translation is acceptable, whether the product still retains the same

functionality as the original product, and whether the text has maintained an attractive

layout on the screen or in the printed documentation.

Section 2.3.4 introduced the issues encountered in the Translation and Verification

phase. The quality assurance (QA) of the localised product is an important part of the

localisation process to ensure acceptance in the world-wide market. There are three

elements to quality in software:

• T he tech n ica l fu n c tio n a lity .

The product should retain the same functionality after localisation. Many bugs can

be introduced in re-building localised projects.

• T he lin g u is tic q u a lity o f transla tion .

It must be ensured that the translated text still retains the same meaning as the

original text.

16

• T he layou t.

This entails checking to see whether the translations fit correctly on the screen, or

in the case of documentation, ensuring that it maintains the same formatting and

layout.

2.6 Automation in Localisation

Many of the processes described above use tools to automate them. However, many

tasks in the localisation process are still carried out manually and are very labour

intensive and costly as a result [LRC97]. There are many advantages in automating

certain processes, including:

• R ed u c tio n in tim e a n d co s t o f Q A cycle.

Automated QA is much quicker, and therefore cheaper, than manually testing files.

• C o m p reh en siven ess a n d p rec is io n .

It can assure a certain degree of quality. For example, errors such as differences in

fonts/font sizes may be very difficult for the human eye to spot, whereas an

automated process can easily identify them, giving more accurate results.

Automation also performs the exact same set of tests every time, ensuring

consistency. There are no restrictions on the number of checks that can be

conducted, so everything can be included, resulting in a more comprehensive test.

Manually, this would be an unrealistic aim, mainly due to time.

• R ep e titio n f o r m a n y languages.

The more languages into which the product will be translated, the greater the

number of times the same tests need to be executed. Automation ensures that the

same procedure is performed on each language version. It also executes these

much more quickly than is humanly possible.

2.6.1 Automating QA Testing for Documentation Files

Some of the differences introduced during localisation are necessary, as described in

section 2.4. However, this research concentrates on the problem of the accidental

modification of the format and layout of a document during translation. For example,

formatting information such as font, font size and style (e.g. bold, italic) may be

accidentally altered by the translator. It is also possible that the structure of the

document may be changed, e.g. two paragraphs could easily be combined into one, or

17

sections deleted altogether from the text. At present a significant proportion of time

allocated to this stage is spent manually checking that the formatting has not changed

as a consequence of translation. Even if this process has been automated, current

tools apply only to a particular markup scheme and a new one is required for different

formats.

The aim of this research is to develop a generic process to facilitate the automation of

the comparison of the original English files with the translated files. This process

would work by comparing the markup in the document files that describes the format

and structure of the documentation, and report all differences between the files. It is

assumed that the two files to be compared are similar in format and structure.

Although such a system still relies on the user to manually examine the differences

reported to determine which are required and which are errors, its development would

dramatically reduce the time spent in the QA phase and would give a more

comprehensive and accurate analysis than a manual comparison. This system would

benefit the translator, as the responsibility of verifying the effects of their translation

currently lies with them. As they are likely to work on a wide range of documents

from different applications, a generic tool is would facilitate this task.

2.6.1.1 Generic Processes

We also seek to contribute towards the standardisation of the localisation process

throughout the industry, leading to reusability of software and translation materials.

As mentioned in section 2.3, many companies develop tools in-house to support

localisation. These are usually designed with the sole purpose of quickly solving a

specific problem with a particular product. In order to re-use these tools later on for

other products, they normally require modification and re-engineering.

The advantage of the external development of localisation systems (as opposed to

development in-house) is that the developer is not restricted to having to overcome an

immediate need. Therefore they have the time to investigate the problem area and

develop a process applicable to a more general domain. This project will examine the

possibility of creating a QA system of such generality that it could accept files of any

format for analysis.

18

In this chapter, the localisation industry in Ireland was outlined. We described a

general process that can be applied to the localisation of a software product, and

discussed some of the issues that can be encountered during this process,

concentrating on those regarding the localisation of documentation. The different

areas in which quality assurance of the localised products is necessary were mentioned

and the advantages of automating QA testing were described. This served as a

background to the area of this research: the development of a generic comparison

process to facilitate the automation of the verification of localised documentation

files. We intend to do this by locating the markup codes in the documents and

comparing these, as they encapsulate the layout and structure of the documents. The

next chapter examines the markup in documents that are created by Desktop

Publishing (DTP) applications, with a view to comparing the different markup

schemes.

2.7 Summary

19

3. Overview of Electronic Documentation

3.1 Introduction

The term electronic documentation can be applied to any document created using

software and stored in a computer file. In this chapter, we provide an introduction to

Desktop Publishing (DTP) and Word Processing as ways of creating electronic

documentation. The problems currently encountered when processing documents

created in DTP packages are discussed, concentrating on the issues relevant to the

localisation industry. We then examine the markup that all electronic documentation

uses to store the appearance and composition of a document. The two main types of

markup are studied using SGML and MIF as examples and the differences between

these two schemes are highlighted, indicating difficulties in comparing them.

3.2 Desktop Publishing

Desktop Publishing (DTP) is the use of personal computers and page-layout software

to perform all or most of the steps of publishing [GURG90]. A DTP package is an

application program which allows the user to manipulate pieces of textual and

graphical data to produce a publication, e.g. course brochures, newsletters,

pamphlets. In general, DTP software is not used until the pieces of text have been

created by a word processing package, and the graphical data has been created by

scanning a picture or by using draw or paint packages. These pieces are then

assembled into a final publication with the use of the DTP package.

DTP software offers great flexibility and fine control over text formatting. A

comprehensive, but by no means exhaustive list of DTP features is given below. Most

DTP applications contain a subset of these features.

Multiple Columns
Page insertion/removal
Automatic Page Numbering
Rulers
Style Sheets
Tabs & Tab Leaders
Reverse Type

Character and Paragraph Formatting
Multiple Fonts
Font Sizing
Automatic Text Flow and Wrap
Horizontal/Vertical Text
Hyphenation
Text Rotation

20

Import Raw & Formatted Text
Import Graphics
Search/Replace
Headers & Footers
Automatic Index Generation
Automatic Table of Contents
Generation
Automatic Foot Noting
Automatic Figure Numbering
Grouping and Ungrouping of Objects
Undo Capability
Master Pages

Tracking
Kerning
Letterspacing
Condensing
Expanding
Baseline shifting

Set text in special shapes
Super/Subscripts
Graphics Manipulation
Rotation of Graphics
up to 0.0001" accuracy in placing
objects
Drawing CapabilityThumbnail view of document

3.2.1 DTP Software

There are basically 4 types of publishing software, Command-Driven, SGML,

WYSIWYG and Document Description Languages.

3.2.1.1 Command-Driven

This software requires the user to insert the appropriate formatting codes into the text

of the document. It is suited to uncomplicated work where changes to the type style

or size are likely to be minimal, such as a book [NCC87]. The main disadvantage of

command-driven software was that the finished appearance could not be viewed until

the document was printed. However, readers to view the document before printing

are now available. Popular examples of command-driven software are TeX and

3.2.1.2 Standard Generalised Markup Language (SGML)

SGML is the International Standards Organisation’s (ISO) standard for document

description allowing users to create a set of markup tags with rules defining when

they are applicable and how they relate to each other. As with command-driven

software, the applicable tag is inserted around the text. In this case however, SGML

allows the structure rather than the appearance of a document to be defined. By

remaining neutral with respect to formatting, SGML allows the same information to

be presented in many formats across many different hardware and software systems.

The most popular application of SGML is Hyper Text Markup Language (HTML) the

standard for documents on the World Wide Web.

LaTeX.

21

3.2.1.3 What You See Is What You Get

WYSIWYG software is probably the best known type of DTP application [NCC87].

It overcomes many layout problems by displaying on the screen a close representation

of what will appear on the finished output. The elements of a page can be changed as

often as necessary until the desired effect is achieved. It is less probable that mistakes

will occur because it is more likely that the mistake will be noticed on the screen

before the page is printed [BOVE87].

However WYSIWYG is a time-consuming process, as each page must be designed

individually. The text is usually prepared using standard word processing software

(often provided as part of the DTP software) and stored. The page layout is then

designed and the pre-prepared text and graphics ‘poured’ into the available space. If

the text does not fit, the point size and line spacing can be adjusted until it fits in an

acceptable manner. Similarly, graphics can be enlarged, reduced or cropped. Using

this kind of system the elements of a page can be changed as often as necessary until

the desired effect is achieved. WYSIWYG applications include Adobe FrameMaker,

Adobe PageMaker and Corel Ventura.

3.2.1.4 Document Description Language

DDL is a piece of software used to smooth the transfer of material from the input and

storage device to the output device [NCC87]. Using a DDL improves the speed and

efficiency with which material is passed from the input stage to the output stage.

PostScript is one of the best known examples.

3.2.2 Style sheets

Many systems provide the ability to use style sheets in documents. Style sheets are a

collection of pre-defined styles. A style is a set of text formatting information applied

to characters or paragraphs that cause the text to be reformatted according to the

specifications of that style [ADOB90]. For example, the default font for a document

in Microsoft Word is of the style Normal, defined to be font Times New Roman, size

10. The user can create styles or use those supplied with the software. Not only do

style sheets make document formatting quicker and easier, but they also help maintain

a consistent look throughout a document.

22

3.2.3 Desktop Publishing versus Word Processing

Until recently, Desktop Publishing was the only way to perform elaborate formatting

on text (e.g. flowing text around graphics, using different fonts or rotating text) and

then view on-screen exactly what that document would look like when printed. Word

processors were simply a means of creating, editing and printing documents, without

any complex formatting facilities.

Publishers of many word-processing packages suggested that people bought DTP

software because they wanted WYSIWYG output that they could not get from word-

processors [WHEE94]. Now that Windows has made WYSIWYG available to

everyone using a PC, the marketplace is changing dramatically. Today, most

Windows word processing (WP) packages can provide the day-to-day document

production requirements of the occasional users, leaving the professional users

needing the precise and delicate control offered by DTP applications.
‘ t ’

DTP producers did not anticipate the convergence of the DTP package and word-

processor because DTP mimics professional typesetting, where the user had to learn

basic publishing skills (e.g. the layout of columns mixed with pictures) [WHEE94].

However, this view did not take into account the increasing range of features of

today’s word-processors that overcome the need for many traditional layout and

publishing skills. For example, most Windows word processors facilitate the creation

of multiple columns and automatic text wraparound graphics. Many WP packages

also provide document templates to guide the user through working with standard

layouts, giving adequate DTP results without the complications of using features like

multiple column layout and frames.

Tanaka [TANA94] compared DTP and WP applications as follows:

• Text Placement: Although a DTP package is better at precisely placing text

blocks so as text appears in different sizes and locations on a page, using frames in

a word processor can accomplish a similar layout.

• Graphics: Word processors can also adequately handle graphics in documents.

Using frames, drawings, charts, tables, equations or scanned images can be

23

inserted, resized and positioned anywhere on the page. Some even include freehand

drawing tools.

• Text Streams: One area in which DTP has an advantage is when the document is

comprised of multiple text streams. The master document function allows separate

files to be associated with one document. Although WordPerfect 5.0 (and above)

and AmiPro 3.1 provide this facility, most WP applications require all the

documents to be collected into a single file for indexing, page numbering and

creating the contents pages.

• Publication Format: Word Processors are designed for printing office documents

(e.g. letter or legal-size paper, envelopes, labels), so the maximum paper size is

usually much smaller than that allowed by a DTP package. However, most offices

do not need such capabilities as they do not have the facilities to print large

documents.

• Colour: One of the key features distinguishing high end DTP programs from word

processors is the ability to deal with colour. The latest versions of DTP software,

such as QuarkXpress or PageMaker, are far more capable of dealing with colour

than a word processor.

To summarise, most Windows word processing packages are adequate for the

document production requirements of the majority of users. However, since WP

software can be used to create satisfactory documentation, we must also consider the

output from these in our research. Nevertheless, as the work gets more complex,

word-processors become less and less suitable. Documents that need precise, delicate

control with many small frames of text, lots of graphics and complex layouts are

better handled in packages such as PageMaker and Quark Xpress.

3.3 Automating Electronic Document Processing

The formatting produced by most word processing and DTP software is proprietary,

thus making it restrictive. Also, each of these packages has its own storage structure

for this information. As a result, tools used to analyse documents from these

applications generally concentrate on a limited number of these formats. Although

most handle formats for leading word processing and DTP products, the fall-back

24

position will always be ASCII text [OVUM95]. For example, the Logos Intelligent

Machine Translation System claims to provide support for Microsoft Word for

Windows, Word Perfect, Lotus AmiPro, Windows Help Source, FrameMaker and

InterLeaf [SOFT96]. However, on examining the requirements of the system,

documents from Word, AmiPro and Windows Help must be saved as RTF4 files,

FrameMaker files must be in MIF5 format and Interleaf files must be saved as plain

ASCII. Even more limited in its performance is the S-Tagger, which works solely on

one document markup scheme. ITP released two separate versions, one for

FrameMaker and another for InterLeaf documents [ITP96],

Documents often need to be converted to the format used by the particular tool

[OVUM95]. Conversion utilities use filters to conserve the formatting characteristics

of the source text. For example, AmiPro has a filter to save it as an RTF file. Once

finished, the text must then be converted back to the original format, restoring all

tagging and formatting information. Without filters, the task of re-formatting the

documentation after processing can be very time-consuming and prone to corruption.

Even with filters, a lot of work is involved, and the possibility of introducing errors

still exists.

Much effort has been put into devising a solution to eliminate the complications and

cost of translating text between different editing platforms. Most of this has been

focused on devising a standard format to which all documentation would conform.

The OVUM Report [OVUM95] states that this concept has been promoted (by ISO

and others) for roughly ten years. There are currently two standards in existence: the

Open Document Architecture standard and the ISO standard (SGML). These are in

competition with certain proprietary standards that have gained wide acceptance

(such as Microsoft’s rich text format, RTF), but it is unlikely that a purely proprietary

4 The Rich Text Format (RTF) Specification is Microsoft’s text-based format for “encoding formatted

text and graphics for easy transfer between applications” [MICR95, p3].

5 MIF (Maker Interchange Format) is a group of ASCII statements that can represent all the text,

graphics, formatting, and layout constructs in a Frame document [ADOB95].

25

standard could ever serve as a truly open international formatting standard

[OVUM95] due to the number of vastly different formats in existence.

As a single formatting standard has not yet emerged, the solution we propose is to

develop generic systems that can take documents of any format as input and perform

identical processing steps on them. This will involve trying to devise a generic format

onto which different forms of markup can be mapped. This will be the basis for a tool

that can be used during localisation for comparing the format of translated documents

to that of the originals.

3.3.1 Automating the Comparison of Two Localised Documents

The localisation process involves as a sub-process the translation of all text to another

language. The post-translation process checks the quality and accuracy of the

translation. This can be performed using applications developed for this purpose, or

by manual checking.

Figure 3.1 The Post-Translation Process [OVUM95]

One of the problems encountered after translation is that the formatting of the

document has often been accidentally changed during editing. Much time and effort is

invested in verifying that the layout of the translated document does not wrongly

differ from the original. Our aim is to develop a process that will reduce the quality

assurance (QA) process by automating several structure and consistency checks on

26

the translated files. It should not only be faster than manually checking the files, but

will give a more comprehensive and accurate analysis.

At present, the format checking when translation tools are used is usually executed

after translation while the document is still in the intermediate format. This is the

“layout checking” stage in the post-translation process. A generic tool for verifying

the structure of the translated document against the original could be used on

whatever format is output from the software in the DTP stage. Using the final result is

more beneficial because the possibility of errors occurring during the conversion back

to the original format is eliminated. The post-translation process for documentation

would then take the form of Figure 3.2.

Figure 3.2 Revised Post-Translation Process

Because the formatting information is stored as markup in the document file, the

markup must be extracted for comparison. However, the output files from the

majority of DTP packages (e.g. Adobe PageMaker, Quark Xpress, Microsoft Word,

Microsoft Publisher) are stored in a proprietary binary format that can only be parsed

if the format of these files is known in advance. We have found that most vendors do

not wish to publish their format so we are limited to text-based formats (such as MIF,

RTF and SGML), as designing binary parsers for each vendor format is beyond the

scope of this research.

27

Therefore the tool can only be used after the DTP stage if the application used

outputs ASCII files, or if the user wished to convert the output file to a textual

format. Otherwise it can still be used at the layout checking stage before DTP, as is

currently the case.

3.4 Markup

Electronic markup is the additional information interspersed among the natural text of

the document, which is not part of the text or content, but describes it. A markup

language is a set of markup conventions used together for encoding texts. It must

specify the markup allowed, the markup required, how it is to be distinguished from

text and what its role in the structure if the document. Markup serves two purposes

[GOLD90]:

1. to separate the logical elements of the document; and

2. to specify the processing functions to be performed on those elements.

Markup originally referred to the annotation added to a text instructing the typesetter

how the manuscript should be laid out. With the introduction of automation in

publishing, the term was extended to cover markup codes that indicated processing

(such as formatting) used in electronic texts, and consequently text formatting

languages were written. A typesetter would convert the annotated markup into the

equivalent markup for the text formatting language being used and insert this into the

electronic text LWATS92].

As computers became more widely available, authors began using word processing

software to write and edit their documents. Systems that store text for output

generally use some form of markup, even though it is not always apparent to the user.

For example, HTML and TeX are text-based markup schemes. Markup usually takes

the form of start and end tags delimiting the text. These tags may be visible, hidden,

entered by the user, or automatically generated. They can be stored as binary data or

alphanumeric text characters. Although these systems are powerful and effective in

formatting documents, the fact that each usually has its own method of markup can

cause compatibility issues. When exchanging documents or changing hardware or

28

software, it may be necessary to convert data to the new format. This can often mean

re-entering at least the formatting information, if not the whole document.

3.4.1 Types of Markup

The following figure is used by Coombs et al. to illustrate text that has no markup at

all:

miltonexpressesthis ideamostclearlylaterin the tracticannotpraise
afugitiveandcloisteredvirtueunexercisedandunbreathedthatneversa
lliesoutandseesheradversarybutslinksoutoftheracewherethatimmortalgarlandistober
un fornotwithoutdustand heatsimilarlywordsworth

(T h is exa m p le m a y lo o k artific ia l, b u t “a n c ie n t w ritin g w as o ften in su ch scrip tio
con tinua , w ith v ir tu a lly no in terw o rd sp a ces a n d little p u n c tu a tio n ” [C R D 8 7] .)

F ig u r e 3 .3 T e x t W ith o u t A n y M a r k u p [C R D 8 7]

Authors instinctively mark up a document as it is written, for instance, by putting

spaces between words, and using fullstops to indicate sentence boundaries [CRD87].

Although spaces and punctuation are not tags, they are still valid markup as they

identify the “logical elements” of the text, e.g. humans as well as computers require

spaces to identify each word, and punctuation is required to denote sentences,

clauses, paragraphs, etc. The use of punctuation is called punctuational markup

[CRD87]. Because such punctuation is common, it is naturally assumed that authors

will punctuate their document files as they type them. Therefore, some form of

markup will always occur in documents because our writing systems require it.

The introduction of text-processing systems brought with it new types of markup and

processing. Documents stored in electronic files often have special electronic types of

markup designed for processing by computers. There are two main categories of

electronic document markup (see Figure 3.4):

• specific m arku p , encompassing p re se n ta tio n a l m a rku p and p ro c e d u ra l m a rku p

(describing the procedures that a particular application should follow); and

• generalised m arku p which identifies the entity type of the current string.

Coombs et al. [CRD87] illustrate the differences in the principal types of markup

using the same text as in Figure 3.3 as follows:

29

Presentational Markup

Milton expresses this idea most clearly later in the tract:

I cannot praise a fugitive and cloistered virtue, unexercised and unbreathed,
that never sallies out and sees her adversary, but slinks out of the race where that
immortal garland is to be run for, not without dust and heat.

Similarly, Wordsworth ___

Procedural Markup

.sk 3 a;.in -10 +10;.cp 2,-.Is 1 Milton expresses this idea most clearly later in the
tract: .sk 3 a;.in +10 -10;.Is 0;.cp 2 I cannot praise a fugitive and cloistered
virtue, unexercised and unbreathed, that never sallies out and sees her adversary,
but slinks out of the race where that immortal garland is to be run for, not without
dust and heat, .sk 3 a;.in -10 +10,-.cp 2;.Is 1 Similarly, Wordsworth _________

Generalised Markup

<p>Milton expresses this idea most clearly later in the tract: <lq>l cannot praise a
fugitive and cloistered virtue, unexercised and unbreathed, that never sallies out
and sees her adversary, but slinks out of the race where that immortal garland is to
be run for, not without dust and heat.</lq> <p>Similarly, Wordsworth

Figure 3.4 Different Forms o f Markup

There are other forms of markup that can be used in conjunction with these, i.e.

punctuational, referential (referring to entities external to the document) and

metamarkup (which defines or controls the processing of other forms of markup).

3.4.1.1 Specific Markup

Most WP and DTP software uses specific markup, each with its own set of markup

codes that only it can understand [ARB095]. This markup is usually in the form of

formatting codes that are mixed in with the text of the document. These codes

represent a single way of presenting the information, such as a printed page, and do

not allow the user to define the appearance of the text for any other media, such as

hypertext.

30

It should be noted that specific markup can use style sheets to emulate generalised

markup, but this is at the discretion of the user. Therefore documents with such

schemes can be regarded as generalised if the style sheets are used consistently

throughout the whole document. However, because this is not enforced, the schemes

are generally considered as specific markup.

Presentational Markup: This requires the user to specify the proper layout or

appearance of a text. The components in a document can be marked up in many ways

to clarify the presentation, including horizontal and vertical spacing, page breaks and

enumeration of lists [CRD87]. For example, an author generally marks the beginning

of a paragraph by leaving some vertical space and often horizontal space as well.

Procedural Markup: In many text-processing systems, presentational markup is

replaced by procedural markup, which defines what processing is to be carried out at

particular points in a document [CRD87]. The user inserts commands into the text

stream, which the output device interprets as formatting instructions, rather than text.

This markup is obviously specific to a particular text formatter and style sheet. It is

also device-dependent. For example, the instruction to skip three lines could be

changed to a value such as eighteen points for a high-resolution printer [CRD87].

Procedural markup is typically associated with batch text formatters.

3.4.1.2 Generalised Markup

Generic coding involves identifying each element in a document and marking it with

tags that specify the document’s structure instead of its appearance. Generalised

markup extends generic coding. The assumption behind generalised markup is that

documents have a structure consisting of logical components which should remain

separate from the style of the document.

Generalised markup is based on two concepts [GOLD90]:

• markup should describe a document's structure and other attributes, rather than

specify processing to be performed on it, as generalised markup needs to be done

only once and will suffice for all future processing.

31

• markup should be formally defined, so that techniques available for processing

formally defined objects, such as programs and databases, can be used for

processing documents as well.

By separating presentational information from the structure, elements within that

structure (such as chapters or paragraphs) can be identified, which tell the computer

what the fundamentals of the text are. They can then be programmed to make

intelligent choices about formatting and organisation. For example, generalised

markup can create multiple presentations of the same information [ARB095]. A

single set of source files can be processed by different pieces of software, with each

applying different processing instructions to the relevant parts. This is because the

software first reads a set of rules that establish the procedure for each occurrence of

each element type [CRD87]. By updating this set of rules, different processing

instructions can be associated with any one part of the file. For instance, one program

might extract names from a document to create an index or database, while another

operating on the same text might print names in a distinctive typeface.

Generalised markup languages often allow the user to define tags that describe a

format (e.g. bold). However, this is against the principles of generalised markup and is

therefore discouraged.

3.4.1.3 Other Forms of Markup

Referential Markup refers to entities external to the document and is replaced by

those entities during processing [CRD87]. For example, it can refer to entities stored

in a separate file (such as graphics), as well as being used for device-dependent

punctuation or abbreviations, (e.g., &dcu can be replaced with “Dublin City

University” during processing).

Metamarkup provides a facility for controlling the interpretation of markup and for

extending the vocabulary of descriptive markup languages [CRD87]. For example,

procedural and descriptive systems allow markup delimiter characters to be defined.

Procedural systems also enable the user to define macros, which can be used to create

descriptive markup representing a series of processing instructions.

32

3.4.2 Markup Handling

Goldfarb [GOLD90] identifies three distinct stages in marking up a document:

1. Element recognition

2. Markup selection

3. Markup performance

1. Element Recognition: The author analyses the document, identifying each

separate element and characterising it appropriately (e.g. as a paragraph, heading,

ordered list, footnote). This step is the same for all forms of markup. [GOLD90]

2. Markup Selection: A processing function is associated with the element

recognised in the first step and the corresponding markup is applied to all

occurrences of it. [GOLD90]

3. Markup Performance: Markup can be performed, including typing the markup

almost as if it were text, using function keys or selecting items from menus. Any of

these methods can be applied to each form of markup. [GOLD90]

Once the text has been manually marked up, there are three more steps taken by the

software:

4. Representing markup

5. Storing markup

6 . Processing markup

4. Representing Markup: Once the markup has been performed it is depicted in the

text editor interface. Coombs et al. [CRD87] define 4 categories:

• Exposed: Formatting codes are shown as they occur in the source file, without

performing any special formatting. This is typical in systems with separate

editors and formatters, such as TeX.

• Concealed: A formatted representation of the markup is displayed, but the

underlying formatting codes are concealed entirely. This is typical of

WYSIWYG software, such as Microsoft Word.

33

• Disguised: Markup is processed and then disguised behind a special character

that is shown to the user. An example of this is the sh o w /h id e n o n -p rin tin g

ch a ra c ters option in Word which allows the user see special representations of

the scribal markup such as tab characters, spaces and paragraph marks, e.g. “fl”

represents a paragraph mark. (However this option does not display electronic

markup such as fonts, bold, etc.).

• Displayed: Codes in the source file are displayed on-screen along with the

formatted text. For example, WordPerfect 5.x formats text for editing but

displays markup along the bottom of the editing window.

5. Storing Markup: Markup can be stored in many ways. Moreover, systems can

elicit one type of markup but store another. For instance, a system can elicit

presentational markup but store procedural markup [CRD87], e.g. if text is marked

as centred, the line is centred in the editing interface but the markup recorded

around the text could be procedural markup. In other words, text displayed as:

CENTRED TEXT

many be stored as:

.cm center

.bd .ce “CENTRED TEXT”__

(where the commands used are from the text formatting language Waterloo Script

[HERW, p5]).

The text also could simply be surrounded with blank spaces which are not

differentiated from the text, either on screen or in the file, as follows (where the

represents a space):

CENTRED TEXT

6 . Processing Markup: There are currently three main types of markup processing

[CRD87]:

1. Reading (by humans).

2. Formatting.

3. Open-ended (including formatting).

Presentational markup is designed for reading as it focuses on the final

appearance of a document. Procedural markup is designed for formatting, but

34

usually only by a single program. Descriptive markup can be read but is primarily

designed to support an open class of applications (for example, information

retrieval).

3.4.3 Comparing Forms of Markup

Of the six6 types of markup, only the specific markup (procedural and presentational)

and generalised markup offer a choice. The rest are used along with another form of

markup.

The superiority of descriptive markup can be shown by the following comparisons

between specific and generalised markup:

• Information Stored: In marking up a document, information about appearance

(e.g. page layout, font sizes) is kept separate from its structure (e.g. the number of

chapters, the order of paragraphs), despite the fact that formatting is generally

determined by the structure. A major difference between the two types of markup

is that specific markup records the format or appearance, whereas generalised

markup stores structural details of the document. However, formatting can be

applied to this structural information, whereas the structure cannot be inferred

from format recorded by specific markup.

• Maintenance: Markup may have to be modified during the development of a

document. Specific markup requires the author to repeat the markup process

throughout the whole document to reflect the changes. Generalised markup just

needs a single change to the text formatter’s rule base, reducing the time, costs and

possibility of error normally incurred by editing the document itself.

• Portability: Due to their widespread distribution, document portability is of major

concern. Exchanging documents electronically between different systems can cause

huge difficulties. Documentation with specific markup will mean an agreement

must be reached on the format, or else the recipient will need to translate the data

into the new format. Generalised markup is not tied to any particular system as the

6 Procedural, presentational, generalised, punctuational, referential and metamarkup.

35

structure of the document will not change. It also protects the text from

misinterpretation by identifying each element’s purpose.

• Machine Readability : Documents must have a defined structure, for computer

analysis. Without structure, text is simply a "character string that has no form other

than that which can be deduced from the analysis of the document's meaning"

[GOLD90, pl7] and computers cannot do this themselves. Using generalised

markup transforms text into a collection of highly structured text elements,

enabling selective and systematic processing (e.g. the ability to generate table of

contents and indexes) and full text retrieval.

Recognising its superiority, many publishers and organisations have joined in an effort

to establish an industry-wide standard based on generalised markup [CRD87]. In its

Electronic Manuscript Project, the Association of American Publishers (AAP) found

that generalised markup to be the most effective means of establishing a consistent

method for preparing electronic manuscripts which can feed the publishing process

[CRD87]. The AAP has endorsed the ANSI-ISO SGML (a language for defining

generalised descriptive markup) and developed its first application.

In the following sections, we look at MIF as an example of a specific markup scheme,

and SGML as generalised markup. We then compare the two schemes, using these as

the basis for our discussion. This comparison is used to emphasise the difference

between the schemes that must be overcome to create a generic process to handle

both.

3.5 M IF (M aker Interchange Form at)

Maker Interchange Format is a format that can represent all the text, graphics,

formatting, and layout constructs in a Frame7 document as a group of ASCII

statements. Because MIF is a textual representation of a document, it can be read by

7 Frame Technology Corporation (recently taken over by Adobe Systems Inc.) produced a number of

Frame Products, including FrameMaker, FrameBuilder and DL Composer. The Frame documents

referred to here are those created from these products.

36

most systems and is easily parsed [ADOB95]. Therefore it can be used to allow

Frame products and other applications to exchange information while preserving

graphics, document content, and format. It is usually generated by a Frame product

but can be created using a text editor.

3.5.1 Objects in MIF

Frame products treat each document as an object and store document preferences as

properties of the document, e.g. a document’s page size, pagination style, view

options and current user preferences [ADOB95]. A Frame product also represents

document components as objects. Different types of objects represent different

components in a Frame document. For example, a paragraph is considered an object,

as is a paragraph format, called a formatting object. Each object has properties that

represent its characteristics. For example, a paragraph has properties that represent its

left indent, the space above it, and its default font. A rectangle has properties that

represent its width, height, and position on the page.

When a Frame product creates a MIF file, it writes an ASCII statement for each

object in the document. The statement includes substatements for the object’s

properties. For example, consider a document (with no text frame) containing a

rectangle that is 2 inches wide and 1 inch high. The rectangle is located 3 inches from

the left side of the page and 1.5 inches from the top. MIF represents this rectangle

with the following statement [ADOB95]:

<Rectangle # Type of graphic object
<ShapeRect 3.0" 1.5" 2.0" 1.0"> # Position and size: left offset,

top offset, width, and height
>___

Therefore, even though MIF is essentially a specific markup system (i.e. its properties

describe the appearance of the final document), it also has some object-oriented

features which means it has a greater capability to describe a document’s structure.

37

3.5.2 Statements in MIF

When a Frame product creates a MIF file, it writes an ASCII statement for each

object in the document. MIF also enables macros to be designed and used with the

define statement.

The following conventions are used in MIF files to describe syntax [ADOB95]:

< to k en da ta >
where token is an indivisible group of characters that identify one of the MIF

statement names (such as Pgf, representing paragraph) and data represents one or

more numbers, a string, a token, or nested statements.

Some MIF statements can contain other statements, called substatements. A MIF

main statement appears at the top level of a file. A main statement cannot be nested

within other statements. Some substatements can only appear within certain main

statements.

3.5.3 MIF Files

The only statement that is compulsory is the <MIFFile> statement, which must

appear on the first line of the file. Without it, a Frame product simply reads the file as

a text file. Frame products provide all of the other objects, even if the object is empty.

Because of this, MIF files generated by a Frame product can be very lengthy. This is

true of most specifically marked-up documents that are generated by a package (e.g.

MIF from Frame products, RTF from Microsoft). However, files generated manually

usually only have the minimum number of statements necessary, although such files

are rare.

Below is an example of a MIF file that uses only four statements to describe a

document containing one line of text [ADOB95].

<MIFFile 5.00> # The only required statement
<Para # Begin a paragraph

<ParaLine # Begin a line within the paragraph
<String 'Hello World’> # The actual text of this document

> # End of <ParaLine> statement
> # End of <Para> statement

38

Using this 6 -line file, the MIF interpreter will generate over 1,000 lines of MIF

statements that describe all the default objects and their properties [ADOB95].

Although this may be overkill, it makes parsing the file easier as the interpreter knows

exactly what to expect and where to expect it.

3.5.3.1 Parsing MIF files

Most8 Frame products have a MIF interpreter that reads and parses MIF files

[ADOB95]. When a MIF file is opened or imported, the interpreter reads the MIF

statements and creates a Frame document that contains the objects described in the

MIF file. The algorithm used by the interpreter as outlined in the MIF On-Line

Reference [ADOB95] is as follows:

• Markup statements are always delimited by angle brackets (“<” and macro

statements are not, but when using a macro in a MIF file, macro names must be

enclosed in such brackets to comply with the MIF syntax.

• The MIF interpreter scans the file for a left angle bracket marking the beginning of

a MIF statement. When the MIF interpreter finds white space characters that are

not part of the text of the document (e.g. in < Units Uin >), it interprets the white

space as token delimiters. When parsing the example statement, the MIF

interpreter ignores any white space characters between the left bracket (<) and the

first character of the token, Units.

• After reading the token, the MIF interpreter checks its validity. If the token is

valid, the interpreter reads and parses the data portion of the statement. If the

token is not valid, the interpreter ignores all text up to the corresponding right

angle bracket (>), including any nested substatements. The interpreter then parses

the file for the next left angle bracket starting the next MIF statement.

3.5.4 Why choose MIF?

The decision to use MIF to represent specific markup in our project was taken for a

number of reasons:

8 All Frame products with the exception of FrameReader understand MIF.

39

• It is a textual representation of output from a DTP package rather than a WP

package. Despite the growing popularity of the use of WP software to create

documentation, DTP is still the most commonly used.

• FrameMaker is one of the most widely used DTP packages for product

documentation. Many translation companies, such as ITP, design their tools to

work with FrameMaker output.

• The specification for MIF is readily available.

3.6 SGM L

SGML has become the leading international standard for data and document

interchange in open systems environments. In fact, it is the ISO’s most widely

accepted standard [INTE94]. SGML has the support of many well known members of

the SGML Open Consortium (including Adobe Systems, Corel Corporation, Oracle

Corporation) who have used it in a wide variety of applications such as books,

articles, technical reports and hypermedia, published both on paper or electronically.

SGML is not limited to textual applications; it is perfectly suitable for use in

Electronic Data Interchange (EDI) and can also be used successfully as an

intermediate language for data conversion. The use of generalised markup languages

is becoming increasingly popular. Many organisations use SGML in text processing,

including the US Department of Defence, the Association of American Publishers

(AAP), Hewlett-Packard and Kodak [USER95]. The most popular application of

SGML is HTML, the formatting standard at the heart of World Wide Web

documents.

3.6.1 Introduction to SGML

Standard Generalised Markup Language (SGML) is the International Standards

Organisation’s standard for document description (ISO 8879). SGML is a

metalanguage for formally defining markup languages. In other words, SGML does

not impose its own tag set but defines a language for authors to describe the structure

of their documents and mark them accordingly. It is therefore flexible and open to

new applications.

40

SGML provides a vendor-neutral, formal international standard for information

interchange which frees that information from the constraints of particular formats,

applications, and computing platforms so that it can be used by any system. All of the

information about the text is coded in ASCII characters allowing the interchange of

text across platforms.

3.6.1.1 Why is SGML so Different from Specific Markup?

Burnard and Sperberg-McQueen [BSM] identify three characteristics of SGML which

distinguish it from other markup languages: it is generalised descriptive markup, all

documents are of a document type and it exploits the notion of data independence:

• Generalised Descriptive Markup: SGML has the benefits of a generalised

markup system (as described in the previous section) and does not restrict

documents to a single application, formatting style, or processing system.

• Document Type: Every document can be categorised as being of a particular

document type, and must conform to the corresponding document type definition

(DTD). By specifying what parts documents will and will not contain, it is possible

to create documents that computers can work with predictably [ENL96]. Humans

intuitively know that different documents have different components, and can

determine if they are of a certain type by checking to see whether they have certain

components. With a little help, computers can do the same using well-known

parsing techniques.

• Data Independence: Most formatting information (e.g. typesetting codes, specific

font names, page breaks) is proprietary, which makes it restrictive [INTE94],

SGML ignores these formats, and focuses on the content and structure (the

relationships among the data) of the information, allowing it to be used and reused

by a wide range of applications. Because it is independent of any one system, it

enables the interchange of text across platforms.

3.6.2 Components

SGML represents documents by modelling them as tree structures (with additional

connections between the nodes). This technique works well in practice because most

conventional documents are in fact tree structures, and because tree structures can

easily be flattened out for representation as character sequences [GQLD90, p 127].

41

The document as a whole is called the “document element”. In the tree structure, it is

represented by the top node. Each node represents an “element”, an identifiable part

or object within the document. Each element is classified as being of a particular

“element type”, which is a class of elements with similar characteristics, e.g.

paragraph, chapter, footnote. The descendants of a node are considered the “content”

of that element. An element can contain simple text elements, elements of other types

or nothing at all. The terminal nodes comprise of the actual characters or other data

(e.g. images).

SGML documents have three required elements:

• The Document Type Definition: A DTD defines the structure of a document by

telling the computer what to expect in that document.

• The SGML declaration: This defines “which characters are used in the DTD and

the document text” [HERW90, pl3]. It defines any special SGML features used in

the document, such as the base character set used, the maximum length of tag

names, symbols used for tag descriptions. It can be stored independently of the

document that uses it.

• The Document Instance: This is the actual marked-up text that has been encoded

by SGML. It contains the text, a reference to the DTD, and is marked-up based on

the rules of the DTD.

3.6.2.1 The Document Type Definition

The tree structure for any particular document is represented by its Document Type

Definition (DTD). The DTD is a set of declarations which define the elements that

can occur in a document, what they can contain, their relationships and the tag set to

mark the document. These rules help ensure that documents have a consistent, logical

structure.

The three most important kinds of declaration that can occur in a DTD are [GOLD90,

p26]:

• “An element declaration, which defines the general identifiers (GIs) that can occur

in each element and in what order”. An element is a component of the hierarchical

structure defined by a document type definition. Elements are classified as being of

42

a particular element type, a class of elements with similar characteristics, e.g.

paragraph, chapter, footnote.

• “An attribute definition list declaration, which defines the attributes that can be

specified for an element, and their possible values”. The attribute of an element in

SGML is “a characteristic quality, other than type or content” [GOLD90, p252].

An important use of attributes is for creating cross-references in a document. The

attribute definition list declaration establishes the attributes for elements in the

DTD.

• “An entity declaration, which defines the entities that can be referred to in

documents of this type”. An entity is a “symbolic name for any type of data”

[HERW90, p36] where the parser substitutes the symbolic name with the data each

time it occurs in a document, for example they can be used as a short-hand

notation for text strings that are lengthy or cannot be entered conveniently with the

available keyboard or to imbed documents stored in separate files into the main

document.

3.6.2.2 Example DTD and Conforming Document

The following DTD describes a simple memo. The document type is “Memo”. The

elements allowed in a Memo are To, From, Body, Para and Close. The description of

these elements and the relationships between them are described in the ELEMENT

declarations. The To, From, Para and Close elements contain only text. A Body element

contains any number of Para elements. The order in which these can occur in the

document is defined in the Memo element declaration: The To and From must both

occur, in any order, but before the other elements. They are followed by a Body

element, and a Close element can follow this, but is not necessary.

A Memo can also be considered public or confidential, the default setting being public.

The ParaRef element is used for creating cross-references to paragraphs in the

document.

43

<!ENTITY % doctype “Memo” ~ document type generic identifier - >
<!-- ELEMENTS MIN CONTENT (EXCEPTIONS) - >
<!ELEMENT %doctype; ((To & From), Body, Close?) >
< !ELEMENT To -0 (#PCDATA) >
<!ELEMENT From - 0 (#PCDATA) >
<!ELEMENT Body -0 (Para*) >
<!ELEMENT Para -0 (#PCDATA) >
dELEM ENT ParaRef -0 EMPTY >
<!ELEMENT Close -0 (#PCDATA) >
< ! - ELEMENTS NAME VALUE DEFAULT >
<!ATTLIST Memo status (confiden|public) public >
<!ATTLIST Para id ID #IMPLIED >
<!ATTLIST ParaRef refid IDREF #REQUIRED >

A Memo document conforming to this DTD could look like the following example,

where the first line references the DTD:

<!DOCTYPE Memo SYSTEM “C:\DTDS\MEMO.DTD”>
<Memo>
<To>John</To>
<From>Joe</From>
<Body>
<Para>l cannot make our meeting scheduled for tomorrow afternoon. Can we re­
schedule it for Friday?</Para>
</Body>
<Close>Regards, Joe</Close>
</Memo>

3.6.3 Summary of the Advantages of an SGML-based Approach

The decision to include SGML in the markup schemes dealt with in this project was

based on the following reasons:

• its many advantages over specific markup, as already outlined.

• its growth in popularity in industry. Numerous influential companies named above

have given their support to it, and many of the popular DTP packages, such as

FrameMaker, have versions that work with SGML.

• its differences from specific markup, especially its descriptive qualities. By

incorporating the ability to handle SGML into the process increases its scope and

therefore improves its generality.

3.7 LaTeX

Although LaTeX includes tags describing formats (e.g. italic), it can also be

considered as generalised markup because of its macro commands with logical names,

44

such as “title”, “section” and “quotation”. “LaTeX can thus be said to be a generic

markup language, though it can be used in an old, physical way or in the newer logical

way” [DILL97].

The following example (with LaTeX commands highlighted in bold text) shows how

LaTeX can be used descriptively as generalised markup:

\documentclass [12pt]{article>
\begin{document}
\title{LaTeX Overview}
\maketitle
\section{Overview}
LaTeX is considered to be generic markup because of its macro commands with
logical names, such as:
\begin{itemize}
\item “title”
\item “section” or
\item “quotation”
\end{itemize}
\section{Logical Or Physical}
“These logical tags coexist with the physical ones, so the user can define the
physical appearance if they wish, but otherwise this can be done using style sheets
for the type of document they declare their work to be. LaTeX can thus be said to
be a generic markup language, though it can be used in an old, physical way or in
the newer logical way” [DILL],
\end{document)__

Figure 3.5 Example LaTeX file

The decision to include LaTeX in our project was taken because it is one of the most

popular text-based markup languages, and its specification is readily available. It also

is an example of a language that can be used both as a specific or generalised scheme.

3.8 Com parison o f Specific and D escriptive M arkup

Documents comprise three types of information: content, structure, and formatting.

Whereas specific markup only records the format of a document, descriptive markup

recognises that these are separable elements. It preserves the content and structure,

but does not specify the format of the document, maintaining that format should be

optimised to user requirements at the time of delivery [OPEN96].

We now give a comparison of specific markup (using MIF as an example) and

generalised markup (represented by a sample scheme defined using SGML) under

45

these three factors. This highlights the differences between the markup schemes that

must be overcome to allow a process for their comparison to be formulated.

3.8.1 Content

The content in a document is the information itself. Even though this is usually in the

form of text, images, graphics, charts and even multimedia objects such as video and

sound can be included in electronic documents.

When a document is tagged with specific markup there is no extra information

recorded about the content. It is given no regard, except to deduce its place in the

structure of the document in order to apply a formatting style during the document’s

creation.

In documents that conform to SGML, each element in the content (as signified by a

DTD) is recognised and its purpose identified by tags marking the beginning and end

of the element. A content model defines which sub-elements and character strings are

allowed in the content, and where they can occur.

The following example shows a single topic containing a paragraph element. The

paragraph contains another element, a note. The text in (a) is tagged using specific

markup which does not record the meaning of the content it marks:

a) <Para>This is the content of this document. <Font <FAngle ‘Italic’» Note:
content is the information itself. <Font <FAngle ‘Regular’> This is the next
sentence in the paragraph.___

In (b), the use of generalised markup clearly indicates the start and end of each

element, and what it is:

b) <TopicxPai>This is the content of this document. <Note> Note: content is
the information itself. </Note> This is the next sentence in the paragraph.
</Par></Toplc>___

3.8.2 Structure

The structure of a document is informally defined as the set of elements in that

document and the relationship between those elements [MARC96]. The appearance

46

of a document is deduced from its structure - as Marchal [MARC96] states, “ideally a

text is formatted to expose its structure to the reader because good formatting when

constantly applied is a real help to a reader”. People rely on typographic conventions

(such as titles in bold) to help build a mental image of the document structure.

When authors use specific markup, they must first determine the role of the text in the

document (e.g. a paragraph, a footnote) before choosing an appropriate format.

Because the markup only specifies the appearance of the text, information about the

document structure is lost. For example, if italics are used to mark both quotations

and emphasised words, then no difference in the meaning is recorded by the tags.

Many specific markup schemes do identify certain elements in the text, such as

paragraphs, but these are very limited.

SGML uses generic coding to determine the structure of a document. Each element in

the document is identified and marked with tags that specify its purpose instead of its

appearance. The structure of the elements within the document is enforced by the

particular DTD being used.

The following example shows a single section containing two elements: a title and a

paragraph. The paragraph contains a note element. The text tagged with specific

markup in (a) only denotes how it is to appear. The reader must determine what the

structure of the text is, and it is very difficult for humans, let alone computers, to do

this.

a) <Para> <Font <FWeight ‘Bold’>Content <Font <FWeight ‘Regular’>
<Para> This is the content of this document. <Font <FAngle ‘ltalic’> Note:
content is the information itself. <Font <FAngle ‘Regular’> This is the next
sentence in the paragraph.___

The structure and hierarchy of a document is exposed to both humans and computers

by the nesting of descriptive tags in an SGML markup scheme (b):

b) <Section><Title>Content </Title><Par>This is the content of this document.
<Note> Note: content is the information itself. </Note> This is the next
sentence in the paragraph. </Par></Section>__________________________

47

SGML recognises that documents are processed according to their structure and

formalises this practice to replace the implicit manual treatment with an explicit

automatic one. Recognising the structure enables many processes to be automated

[MARC96], including:

• formatting: Mapping the structure to formatting attributes is a simple task. For

example, an element marked as a “title” will be in a larger bolder font,

“paragraph” elements will be in normal font, etc.

• indexing: This is simply a matter of extracting relevant elements.

• conversion: Structure provides semantically-rich information and therefore

conversion into any other format is almost always possible.

3.8.3 Format

Even with the introduction of graphical tools like FrameMaker and Microsoft Word,

the underlying text is still marked with commands specifying the format, which imply

only the document's structure [APPL94]. SGML is a neutral encoding language,

where the underlying markup commands store the structures in the document, with

the appearance determined from the structure by the specific software application.

Formatting can be updated simply by changing the program that composes the source

file.

There are many different ways to convey the meaning of text depending on the

medium and audience in question, e.g. the same text can be used to create help,

printed documentation, on-line documentation and WWW pages, but each o f these

formats has its own conventions and requirements. With specific markup, one must

try to specify how the text should appear on every conceivable output (an almost

impossible task), as the tags instruct a formatter as to how the document should look.

Using generalised markup, the meaning is tagged and the formatting software is able

to map that meaning to the desired target output.

For example, the text in (a) below is marked up using MIF to make the sentence “This

is an important note.” appear in bold text.

48

a) <Font <FWeight ‘Bold’» This is an important note. <Font <FWeight
‘Regular'»__

In an SGML document (b), the meaning of the text is marked up, as opposed to

specifying the appearance.

b) <NOTE> This is an important note. </NOTE>___________________________

The formatting software determines how the NOTEs appear. In HTML, they might be

bolded. In the Netscape extensions to HTML they might be blinking. In a colour

printout they might blue. In black and white printout they could be underlined. If any

particular formatting language had been used, it would not have been possible to

output so many different formats.

Since SGML is neutral, formatting is determined by the software application itself

[INTE94]. However, some formatting information is useful in SGML - that which

transcends any particular display system, like specifying the number of columns in a

table. SGML permits tags to have specific formatting significance, but does not

encourage this as it detracts from its generality.

3.9 Sum m ary

In this chapter we discussed Word Processing and DTP software, and identified why

our research must deal with both. The current methods of processing documents were

described, and our idea of a generic process introduced. We then identified how the

formatting and structure of documents are represented by markup codes within the

document file. Using MIF and SGML as examples, the two main types of markup

(specific and generalised) were examined, showing the differences in the schemes

which indicates difficulties in trying to create a process for comparing them.

This discussion provides a basis for our research into the formulation of a process that

can manipulate documents with either type of markup scheme, and allow the markup

in any document to be compared to the markup in any other document, regardless of

its type. In the next chapter, we outline our design for such a process.

49

4. Generalising Markup Comparison in Documents

4.1 Introduction

The main aim of this research is to devise a generic process to compare the format

and structure of two documents. Because the format and structure are recorded by

markup codes, it is the set of tags from each document that must be compared.

However, due to the vast differences in the markup schemes outlined in the previous

chapter, this is not always a direct comparison of tags. A tag-for-tag comparison can

only be applied when the documents to be compared both use identical markup

schemes, for example two MIF documents or two SGML documents with the same

DTD. This process is discussed in section 4.2. We have identified three other cases in

which some conversion process is necessary to allow this type of comparison to be

implemented:

1. Comparing two specifically marked-up documents.

2. Comparing two documents with generalised markup.

3. Comparing documents with different types of markup (i.e. specific &

generalised).

To compare two specifically marked-up documents, they must first be converted to

the same tag set to allow a direct comparison of tags, as discussed in section 4.3.1.

Two documents with generalised markup must both describe the same elements

before a comparison can be made, as described in section 4.3.2. For documents of

different markup categories, they must first be converted to an intermediary format, as

discussed in section 4.4. All of these processes are then brought together to give an

overview of the conversion process. Finally, we outline the tag-for-tag comparison

that can be applied to the documents after any necessary conversion.

4.2 Com paring Docum ents W ith Identical Form ats

Because the same tag set is used for both documents, this is a tag-for-tag comparison.

However there are a number of possible complications to this process, concerning

style sheets and matching tags.

50

4.2.1 Style sheets

Style sheets are a collection of pre-defined styles, with each style having a name and a

set of formats that can be applied to text. When style sheets are used in documents,

this raises the issue of whether style names or formatting information should be

compared. For example, <heading1> may be defined as being bold, with size 24 font

Arial in one document, but underlined with font size 20 in the other. By examining

how style sheets are used in documents it can be seen that this will not cause the

difficulties first supposed. It is often possible to compare both separately.

4.2.1.1 Comparing Style Properties

Many file formats, such as RTF, store the properties of the style sheet in the header of

the document. The example below is extracted from the start of an RTF document.

(Note: the layout has been changed marginally for clearer presentation).

{\stylesheet
{\widctlpar \f4\fs20\lang2057 \snext0 Normal;}
j\s16\widctlpar \b\f4\ul\lang2057 \sbasedonO\snextO Heading;}

I__

where [MICR95]:

• \widctlpar indicates that widow/orphan control9 is used.

• \fN is the font number, where N refers to an entry in the font table.

• \fsN is the font size in half points.

• \langN applies a language to a character10, where N is the number of the

corresponding language from the language table in the RTF header.

• \snextN defines the style for the paragraph that follows the current style

e.g. \snext0 Heading: the paragraph after a Heading is 0, which is Normal.

• \sN identifies the paragraph style in the style sheet.

• \b is bold.

• \ul is underline.

9 Widow/Orphan Conuol “prevents the last line of a paragraph by itself being printed at the top of a

page (widow), or the first line of a paragraph being printed by itself at the bottom of a page

(orphan)” [MSWord help]

10 The spell checker and other proofing tools use the dictionaries of the specified language.

51

• \sbasedonN defines the id number of the style on which the current one is

based, e.g. \sbasedonO\snextO Heading: The Heading style is based on 0,

which is Normal.

In cases such as this, each style is defined in the document, so when the documents

are compared any differences in the style sheets will be noticed. Other file formats

refer to an external style sheet. Lotus AmiPro records the name of the style sheet used

in the header information in the document, rather than the details of each style, as in:

[sty]
ut2suite.sty___

Because each style is defined in the external style sheet, comparing the properties

would require a comparison of the style sheets independently of the documents.

However, we can recognise when different style sheets are being used.

4.2.1.2 Comparing Usage of Styles

When a style is applied to text, some applications write the style name to the output

file. The following example is an extract from an AmiPro SAM file, where the text

“The Document Title” is in the style of “Title”:

@Title@The Document Title.___

When the style name is used in the body of the document, we can detect if the two

styles differ and report an error.

However, formats such as RTF store the properties of the style with the text, along

with the style identifier. In the following example of text, the “Style Sheets”

paragraph was formatted to “Heading” style and the paragraph of text was “Normal”:

\par \pard\plain \s16\widctlpar \b\f4\ul\lang2057 Style Sheets
\par \pard\plain \widctlpar \f4\fs20\lang2057 Style sheets are a collection of pre-

defined styles.__

where [MICR95]:

• \par represents a new paragraph,

• \pard resets to default paragraph properties

• \plain resets the language property to the default.

52

Although \sN identifies the paragraph style in the style sheet, in such cases we must

also compare the formatting information as well.

To summarise, the choice of comparing the style name or its properties cannot be

decided by our process, but by the way in which the markup scheme stores styles and

style sheets.

4.2.2 Matching Tags

An algorithm must be formulated for those instances in the tag-for-tag comparison

where two tags do not match. It must determine if this is a case of a wrong tag used

or whether tags are missing. If the latter is true, it must identify from which document

the tags are missing and at what point they start to match up again. It is also possible

that part of the document text was moved rather than deleted. The process devised to

deal with this is described in section 4.6.

4.3 Com paring Docum ents of the Sam e M arkup Category

To compare two documents of the same markup category (i.e. specific or

generalised), one or both must first be changed to allow a direct comparison. For

example, an RTF and a MIF document cannot be directly compared because of their

differing markup. To formulate an algorithm for such a conversion, it was necessary

to perform a review of existing work in this area.

Many applications such as word processors employ document conversion. For

example, Microsoft Word can open documents created in Word Perfect or Lotus 1-2-

3, and can save Word documents in Word Perfect format. However, this requires a

filter for each pairing of formats used, defining the equivalence between them. There

are also numerous tools to convert documents from one format to another, such as

LaTeX2HTML, a LaTeX to HTML converter [DRAK94], fm2html, a FrameMaker to

HTML converter [STEP94] and Tex2RTF, a LaTeX to RTF and HTML converter

[SMAR95]. However all of these utilities were designed and written specifically to

work with the specific pairs of file types. If one wished to convert to any other

format, a new tool would have to be created. Some utilities even rely on the user to

prepare the document first, making conversion little more than replacement. For

53

example, the plug-in for converting Microsoft Word documents to HTML (before the

widespread availability of WYSIWYG HTML tools) simply mapped certain formats

to HTML tags. For example, text in the style of “Heading 1” in the Word document

was surrounded by <H1> and </Hl>, representing a heading in HTML.

Rather than providing a filter for each combination of markup schemes required,

which is impractical for a large number of file types, or insisting on certain formatting

in the document, which is cumbersome for the user, we propose to convert both

documents to a generic internal format. This will require a single mapping for each tag

in a markup scheme to its equivalent in the internal generic tag set. We have created

our own file format, even though many existing ones are considered standard. This

way, we can ensure that all tags from existing formats can be mapped to an

equivalent, as we cannot guarantee this with any existing format. If one does not

already exist in our tag set, it can easily be added, as described in the next chapter.

Due to the different concepts behind specific and generic markup, our algorithm will

deal with each category separately. For specific markup, the internal tag set will need

to represent formatting information. For generalised markup, the structural elements

in documents must be able to be recorded by the internal format. The process for

converting each markup type is explained below. Once the conversion is performed,

the next step is the same as for identically marked-up documents.

4.3.1 Comparing Two Specifically Marked-up Documents

Comparing different specific markup schemes involves creating a mapping between

them. We intend to accomplish this by mapping each markup scheme to an

intermediary generic tag set. Such a tag set would need to encompass all possible

formatting information to be able to represent any document’ ̂markup. However, this

does not necessarily mean that an equivalent for every tag in all markup schemes must

exist, but rather that the format described by a tag or combination of tags in each

scheme has a corresponding tag. For example, MIF represents paragraphs with a Para

tag containing as a number of ParaLine tags representing lines in the paragraph,

whereas most other markup schemes consider the paragraph as a single element

54

containing only formatting information (e.g. bold, italic). The following example

shows the markup for a tag in MIF.

<Para
<ParaUne

<String This is ‘>
>
<Paral_ine

<Font
<FWeight ‘Bold’>

>
<String ‘bold ’>

>
<ParaLine

<Font
<FWeight ‘Regular’>

>
<String ‘text in MIF.’>

>
>__

Figure 4.1 Extract from MIF document

The following figure is an example of a paragraph in RTF.

/par This is {\b bold) text in RTF.____________________________

Figure 4.2 Extract from RTF document

Because there is no equivalent format or structure in the majority of markup schemes

for a ParaLine tag in MTF, we do not wish to include it in our generic tag set. This

allows for a better comparison of documents, as the format and structure of the

documents are being compared instead of the actual tags. For example, it is

inappropriate in trying to find a tag corresponding to a ParaLine tag in the RTF

document, as no such tag exists.

For the purpose of this research we propose using a smaller subset, composed of the

widely-used formats (e.g. font, font size, bold, underline), but allowing the easy

addition of new ones as necessary.

55

The formatting information we wish to represent in our tag set can be grouped into

four different categories: character formatting, paragraph formatting, page formatting

and objects.

Character Formatting can be applied to any single character or groups of characters

in a document. For example, one word of a piece of text can be underlined. The

following list contains examples of formats that can be applied to characters:

• Font Type

• Font Size

• Bold

• Italic

• Underline: Single, Double, Dotted, Words-Only

• Subscript

• Superscript

• Strike-through

• Colour

Paragraph Formatting is applied to the text of a whole paragraph, as opposed to

groups of characters within a document. For example, if a piece of text is centred, the

entire paragraph in which that that piece of text is contained will be centred.

Paragraph formatting includes:

• Justification - left, right, centre, full

• Bullets & Numbering

• Indentation - left indent for first line, left indent for body of paragraph,

right indent

• Line Spacing

• Paragraph Spacing - before paragraph, after paragraph

• Character Spacing

Page Formatting refers to the formats that can be applied to a single page of a

document. This includes:

4.3.1.1 Generic Tag Set

56

• Paper Size

• Orientation - portrait, landscape

• Margin - left, right, top, bottom

Objects: A document can contain many objects, even when specifically marked-up.

However, these objects are usually related to the appearance of the document, rather

than its structure. For example, borders and shading are physical, rather than logical,

attributes. Specific markup schemes can contain objects such as:

• Drawing Objects - line, text box, shape, etc.

• Graphics (i.e. bitmaps, etc.)

• Tables/Cells

• Page Break

• Section Break

• Carriage Return / Paragraph

• Header/ Footer

• Borders - left, right, top, bottom

• Shading

• Frames

• Links

• Cross Reference

• Index

• Table of Contents

This list of formats can be used as a basis to generate an internal tag set to which most

tags found in documents can correspond. To allow the conversion of the markup in

documents to its equivalent tag from our generic scheme, we must store the tag for

each markup scheme being used (e.g. MIF, RTF) and its relationship with our design.

An example is as follows:

GENERIC TAG MIF RTF
BOLD FWeiqht ‘Bold’ \b
ITALIC FAnqle ‘Italic’ Vi
PARAGRAPH Para \par
etc. etc. etc.

57

In this table, GENERIC TAG is our internal tag set and the MIF and RTF columns

contain the equivalent tag for that scheme.

4.3.1.1.1 Other Considerations

Any parameters or attributes given in a tag must also be recorded. For instance,

marking the left indent for a paragraph in MIF uses the following statement, where

the 1 .0 ” represents the size of the indent and therefore is significant:

<PgfLlndent 1.0”>

We intend to do this by associating a parameter field with each internal tag that can

take such values. For example, When the PgfUndent is encountered, the 1.0” will be

stored with it, in a separate field .

There are other rules in these schemes to which the document must adhere to be valid

within that scheme. Consider the following example from a MIF document:

<Para # Begin a paragraph
<Pgf # Begin paragraph format

<PgfAlignment Left> # Specify text alignment
> # End of paragraph format
<ParaUne # Begin a line in the paragraph

<String This paragraph is left justified.’ > # The actual text
> # End of <ParaLine> statement

> # End of <Para> statement

A Pgf statement can only occur in a Para, a Pgf Catalog or a Tbl Format statement but

never on its own. The PgfAlignment statement can only appear within other statements

such as Pgf, or FmtChangeList, and can only have one of a defined list of parameters.

As we are only concerned with comparing the tags to those of another document,

verifying such rules is beyond the scope of this research.

4.3.2 Comparing Two Documents with Generalised Markup

As with specific markup, generic markup requires that both tag sets must first be

converted to an internal format to allow a direct comparison. This appears a relatively

easy task, similar to that for specific markup, and in some instances this is the case. A

generic markup scheme such as LaTeX has a pre-defined, and therefore limited, tag

set, it can be treated in the same way as described for specific markup i.e. we can

58
V

specify an internal tag set to which these can be mapped. However, because generic

markup describes the document’s structure rather than the format, the internal tag set

for specific markup cannot be used. Therefore we must extend our internal tag set to

include structural elements such as:

• Document / Main Body

• Title

• Chapter

• Section

• Subsection

• List

• List Item

• Heading

• Table

• Table Cell

• Text

• Comment

• Note

• Highlighted Text (Emphasis)

Generalised markup languages such as SGML allow the user to identify their own

elements in documents instead of conforming to a pre-defined set, and allow the

definition of tags to mark up these elements. This can also be applied to style sheets,

which can be used as generalised markup when the style name describes the elements

in the text instead of the appearance required. Therefore, the technique used for

specific markup would not work if we tried to apply it to generalised markup

schemes. Although the majority of tags would be used for similar purposes, the name

for each may differ. For example, one user many identify a paragraph as <para>,

another with <p>, or <paragraph>. In fact, usually the only restrictions on naming tags

are related to the length and characters permitted, not with the actual name given.

Therefore <xyz> is a nonsensical, yet entirely valid, identifier for a paragraph tag,

assuming the combination of the characters xyz is allowed by the scheme.

59

Another problem when applying the same procedure used for specific markup is the

elements the user may need to categorise. A report may be structured as a title

followed by a number of sections, each starting with a heading and containing

paragraphs. Another document may contain poetry, with elements such as poem,

verse, line, etc. Therefore, because a document can contain elements of many types of

which we have no advance knowledge, our solution is to define a simple generic

document structure which can be applied to any document. Because we know the

reason behind the development of this process (i.e. software documentation), the

elements allowed could be confined to those normally found in typical documentation,

such as chapters, titles, headings and sections. However this would reduce the

generality of the process, which conflicts with the basis of this research, the

development of generic tools.

4.3.2.1 Generic Document Structure

Our generic document structure considers all documents to have a main body of text,

which can be composed of one or more sections (e.g. chapters, or sections in a book).

Each section can have sub-sections, paragraphs, or a combination of both in any

order. These sub-sections have the same composition as a section, with the root sub­

sections always containing a paragraph. Paragraphs can represent different elements,

e.g. a heading or title, a list item, or simply text. However, each of these will still be

composed of the same components - any combination of text, external entities (e.g.

graphics) or links (if an on-line document). These are always considered the

terminating elements in this structure. From this description we can create a standard

template for the main body of a document, represented by the following graph:

60

main body

[subsection paragraph]* text graphic link^J *

/ I \
text graphic link^J *

[^paragraph] *

[subsection paragraph^] *

[text graphic link̂ J

Figure 4.3 Generic Structure o f a Document

This structure considers elements such as the title, introduction, abstract, appendices,

etc. to be sections also, because in our representation a section can contain just a

single paragraph. Hence the title could be regarded as a paragraph in a section of its

own.

4.3.2.2 Converting Documents with Generalised Markup to a Generic

Structure

This structure contains components which can be used to describe any type of

element. For example, the poem element in a poetry document could correspond to a

subsection, with the verse element matching a subsection of that section, and the line

considered a paragraph under the assumption that each line of the poem will be ended

with a carriage return. (This constitutes a new paragraph in word processing).

Although it is relatively easy for a human to make these comparisons, defining a

process to accomplish the same task is more difficult. The method we chose is to

consider the document as a tree structure. For example, a document containing poetry

could be represented as follows:

61

poetry document
/ \

[poem
i

notes] *
11

[verse] *
i

1
[words] *

1
[line] *

i1
[words] *

Figure 4.4 Example structure o f a Poetry Document

By comparing this to our generic structure of a document, we can try to deduce a

mapping for each element. The document element poetry document obviously

corresponds to the main body of the generic structure. The terminal nodes, words,

correspond to one the terminal elements of the generic structure: text, graphic or link.

By examining the content of the element words allowed by the markup system, it can

be determined to which of these three options it is equivalent. For example, if this

were represented in an SGML DTD, the content list of the element words explains its

allowed content. If this were PCDATA11, this means anything delimited by the words

tags can contain only pure text.

The intermediary elements can then be either subsections or paragraphs. This can be

deduced by examining the permissible contents o f these elements. Any element

containing only terminal nodes (e.g. “line” contains only “words”) can be considered

the equivalent of a paragraph. All other elements can contain at least one other

element that is not terminal (e.g. “verse” contains “line”) and are therefore regarded

as subsections.

Applying this structure to a document results in a great loss of detail and information.

For example, lists are reduced to a series of paragraphs, as are headings and titles.

11 PCDATA (Parsed Character Data) is “zero or more characters that occur in a context in which

text is parsed and markup is recognised. They are classified as data characters because they were

not recognised as markup during parsing” [GQLD90, p!40].

62

The addition of optional elements common to the majority of documents, e.g.

chapters, headings, etc. (as listed in 3.3.2 above for the generic tag set) would recover

some of this lost information. However in an automated process, it would be very

difficult to recognise such elements in the document. Although we can identify

structural elements, we cannot determine the purpose of these. For example, we can

identify that a title is stored as a paragraph, but we cannot tell that the text in this

paragraph is a title. This can be overcome by presenting the user with our mapping

and allowing them to choose a more suitable alternative for each tag from the

additional list, if one exists.

4.4 Com paring Docum ents w ith D ifferent Types of M arkup

To compare documents with different markup schemes, some conversion process

must first be performed to ensure both use the same tag set to allow a direct

comparison, as with documents of the same markup type. The options available are to

convert both documents to an internal format or to convert one document to the

markup scheme of the other.

Converting the markup of both documents to a single internal format involves

formulating a tag set that is capable of encompassing the characteristics of both.

However, because there is no direct correspondence between the markup schemes,

we cannot create a tag to which both the specific tag and the equivalent tag in the

document with generalised markup can be mapped. For example, in the specifically

markup up document a heading may be centred:

<CENTER>Document Comparison<\CENTER>________________________________

However, in the document with generalised markup, the title will be identified with a

generic tag indicating what it is:

<HEADING> Document Comparison <\HEADING>_____________________________

There is no tag to which both of these tags can be mapped as we cannot assume

centred text will always be used for a heading and vice versa. Therefore this option is

unrealistic.

Converting specific markup to a generalised markup scheme involves deducing the

structure of the specifically marked-up document from its appearance. Although all

63

documents have an inherent structure [QUIN90], this deduction is complicated by

two facts:

1. there is no standard format for documents so, for example, one author may use

large bold text for titles whereas another may have underlined centred text.

2. there is no guarantee that an author will consistently use the same formatting

conventions throughout the whole document.

Using the generic structure as a basis for the deduction will simplify this process by

limiting the number of elements to be recognised, and will also standardise the

documents we are working with. Once a structure has been recognised for the

specifically marked-up document, the document with generalised markup must be

examined to ensure it also conforms to the generic structure. It may have elements

specific to that document: for example, a document containing poetry may have

elements such as poem, verse, line, etc. that cannot be incorporated into a generic

structure.

To transfer a generalised markup to a specific markup scheme, we can easily apply

formatting information to the generalised markup. However, there are a number of

difficulties. We still need to impose a generic structure on the document with

generalised markup for the same reason as above. Also, there is no guarantee that the

formatting we apply will be the same as that used in the specifically marked-up

document. To ensure that it is, the specific markup must be examined to determine its

usage, identifying how the format is applied to the structure. In other words, the same

process as for converting specific markup to generalised markup must be performed

before we can even do this. Therefore we are converting from specific to generalised

markup before we can convert from generalised to specific, doubling the processing.

Obviously much information will be lost in such a conversion process because of the

huge difference in the information recorded by the two schemes. Transferring text

from specific to generalised markup will result in the loss of all formatting

information, as generalised markup does not store such information. Similarly,

converting generalised markup to specific loses all structural information, because

specific markup does not have the facility to store this. However, after processing,

64

formatting can easily be re-applied to a document with generalised markup if required,

whereas it is much more difficult to convert specific markup back to generalised

markup. Using generalised markup also has many other advantages over specific

markup as already discussed in Chapter 2. Because of this, and the fact that replacing

specific with generalised markup involves less processing and is no more difficult, we

would convert all documents to generic markup describing a generic structure.

4.4.1 The Process for Converting Specific Markup To Generalised

Markup

To convert the documents from specific markup to generalised would involve using a

set of rules to apply the generic structure to the document. Each piece of text must be

examined to determine its purpose, as defined by the generic structure. Existing work

in the area of deducing document structure from layout includes a system developed

by Porter and Rainero [PORT92], Their system is capable of “deriving a high level

document structure from the layout and content of the document” [PORT92, p43]. It

can accept documents in paper (e.g. scanned raster) or Postscript form. The document

is then passed through three processes:

• The Low Level Structure Reconstruction (LLSR) process

• The High Level Structure Reconstruction (HLSR) process

• The Output Conversion process

The Low Level Structure Reconstruction process converts either raster or Postscript

input into a layout for high level reconstruction [PORT92]. Therefore existing

documents must be converted to Postscript for processing. For Postscript documents,

this process executes the code to determine the primitive elements on the page: chars,

lines, etc. High Level Segmentation constructs a tree containing textual elements such

as word fragments (WF), spaces, graphical elements such as rule and line art, and

images. The result of this process is the layout view structure containing the structural

elements and the associated layout (Figure 4.5). This is passed to the High Level

Structure Reconstruction process.

65

The High Level Structure Reconstruction process maps the layout view into a set of

additional views [PORT92]. This process builds high level structural views of the

document using various knowledge sources to improve classification, e.g. hyphenated

words are looked up by a lexicon to decide whether to remove the hyphen. For

example, if the document is a technical article, this involves classifying each line as

part of a known structure type such as a PARAGRAPH, TITLE-PART, AUTHOR-

PART, SECTION-HEADING, INDENTED LINE, HEADER, FOOTER, etc.

(Figure 4.6) Currently reconstruction code has only been written for article style

documents, but “additional document styles are being implemented” [PORT92, p51].

66

Document

Logical Structure

This is the

Figure 4.6 Logical Structure fo r a Technical Article [PORT92]

The result of the HLSR process is a mapping of the layout and logical views of the

document (Figure 4.7) that is passed to the output conversion process for conversion

to a specific form such as SGML.

Figure 4.7 The Mapping Between Layout and Logical Structure [PORT92]

67

The Output Conversion process converts the multi-view representation into various

external representation languages such as SGML [PORT92]. “Conversions are being

written to map the layout/logical structure onto additional document description

languages, such as LaTeX and Frame Maker Interchange Format (MIF)” [PORT92,

p51].

To summarise, this system takes the following steps:

Document -> Postscript
Postscript Interpreter -> Rendered Page Description Language

-> High Level Segmenter -> Layout View
-> High Level Structure Reconstruction -> Logical View
-> Structured Document Conversion -> SGML_________________ ________________

This system uses a template for certain types of documents, reducing its generality.

However, it takes a specifically formatted document and converts it to generalised

markup which is what we want to achieve. Therefore it is proposed that the process

on which this system is based could be incorporated in the conversion of specific

markup to generalised markup to compare these markup types to each other.

4.5 Conversion Process for M arked-up Docum ents

Bringing together all the components described in this chapter results in a process that

works as outlined in the following diagram:

68

Figure 4.8 System Overview o f Conversion Process

If the two documents have the same markup schemes, no conversion is necessary, as

they already use identical tag sets. Otherwise all specific documents are converted to

the internal tag set describing the formatting information. All documents with

generalised markup are converted to the internal generalised tag set describing the

elements, having first been made to conform to a generic structure.

Two documents of the same markup category can be directly compared in the

corresponding internal tag set. For example, two specifically marked-up documents

would be converted to the internal specific tag set.

For documents with different markup types, the specific markup has an extra

processing step before comparison. Its structure must be deduced from its formatting

information, and then have a generic structure applied to it. It is then converted to the

internal generic tag set for comparison with the internal representation of the

document with generalised markup.

69

To perform a direct tag-for-tag comparison, both documents must first use the same

tag set, as already described above. Once any necessary conversion is completed, the

next step is to compare the second document with the first. Because of the nature of

localised documents, a direct line-by-line comparison will not work, as each line is

expected to be different after translation. Therefore the tags must be separated from

the text.

The comparison process reads in the tags from each document, starting with the first,

and comparing them. If they are the same, the next tag from each file is read in and

compared. However, if the tags are different, this indicates either that there are tags

missing from the second document, there are extra tags in the second document, or

tags have been moved in one of the documents. The main difficulty in the direct

comparison of tags is, determining the reason for any difference encountered and re­

aligning the two documents appropriately. There are a number of existing difference

algorithms for file comparison. However, they are designed to deal with files of text,

rather than tags, and so are generally unsuitable.

For example, Lindsay’s text file difference utility, diff, [LIND89] is based on the

algorithm described in “A Technique for Isolating Differences Between Files”

[HECK78], The utility scans through each file and finds any lines that occur only once

in the file. These lines can then be matched up in both files. It then checks lines which

are next to matched lines, taking adjacency as enough reason to match such lines,

even though other matches exist. This approach is totally unsuitable for comparing

lists of tags, as is our requirement. The majority of lines in a text file will be different,

giving an excellent start for the adjacency rule to work on non-unique lines. However,

in our files, the probability of a tag being used only once is very small. Even looking at

groups of tags will not greatly improve this approach, as in a consistently marked-up

document the same combination of tags will be used for similar elements, e.g. all level

two headings may be font size 12, and underlined. Therefore this gives a very poor

starting point for the adjacency rule to work from.

4.6 Tag-for-Tag Comparison of Two Documents

70

Other work in the area of comparing two files includes Hearne’s [HEAR97] “QA

Tool for Help Files”. This takes two help files and performs a basic comparison on

each topic. However, because each topic in a help file is assigned a unique id number,

this task is greatly simplified and does not require the re-alignment necessary with

documentation files, which have no identification on chapters or sections. It also does

not implement a detailed analysis of the format of the topics, which is our aim for

documents.

GNU diff [SUNS971 works by identifying ‘hunks’, which are groups of differing lines

in documents. It tries to “minimise the total hunk size by finding large sequences of

common lines interspersed with small hunks of differing lines” [MACK93]. By

conducting tests using the diff command on files containing lists of tags, we have

discovered that it performs as well with these as with text files. Therefore we have

decided to implement the concepts of this command in the comparison process. This

algorithm is described briefly below.

Assuming that the tags in both documents are in the same format, we can compare the

two documents tag for tag until a difference is found. When a difference between two

tags is encountered, we need to determine if it is because of:

• a changed tag: The next X tags in both files are compared. Ideally if all the

following tags are the same, then one of the two has been changed. However, we

must allow for the possibility of one or more of the following tags being wrong

also, so instead, we assume that if the majority are the same, one of the two tags

that we are comparing has been changed during translation. Regarding the first

document as the original, the tag in the second document is reported as having

been changed.

• An extra tag in document two: if the tag has not been changed, the next matching

tag in the second document is found. If none is found, then the tag is obviously

missing from the second document. If a match is found, we must check the next X

tags in both documents to ensure this is the matching tag and not a coincidence. If

the majority of the tags are the same, we assume we have found our match. If not,

this process is repeated until either a match is found, or we deem the tag to be

71

missing from file 2 because we cannot find a suitable match. Using the adjacency

concept, we assume the subsequent unmatched tags in the first document to be

missing from document two also. To re-align the two documents we follow the

same procedure as if tags were missing from document 2, with the two original

unmatched tags.

• A missing tag from document two: This is the same as checking for extra tags,

except we try to find a match for the tag in document two in document one.

• A moved tag: Once all the matching up has been completed, the still unmatched

tags are checked for groups that match up. If any are found, these are considered

as having been moved during translation.

This algorithm is explained in more detail in the chapter on the implementation of a

prototype.

4.6.1 Issues in the Tag-for-Tag Comparison

This process assumes that both documents should be identical (except for translated

text) and reports any differences found as errors. However, for two reasons, certain

differences are not actually errors. Firstly, the content of the documents may differ

because of country-specific information, as described in Chapter 2. These differences

may be due to extra or removed text, examples specific to the locale, enforced page

breaks or the inclusion of different bitmaps for localised images. The second reason is

differences in the markup schemes. For example, some schemes allow optional end

tags. If one document omits the optional tags and the other uses them, this will cause

a difference between the files that is entirely valid. Certain schemes also use different

tags to end the same format. The order of tags marking the same text may differ in the

second document. For example, the first document may specify the text to be bold and

italic, whereas the second may be italic and bold. Another allowable difference in the

documents is due to the different methods of representing paragraphs, as described in

section 4.3.1. However, these have not been taken into consideration in this process

as the following assumptions have been made:

• Each application will output tags in the same order every time, e.g. Word always

outputs bold before italic in RTF,

72

• Each application will always use the same end tag to end formats, e.g. Word

always ends tags with a “}” in RTF documents, even though there are other ways

of doing this.

• Applications will be consistent in the use of end tags, e.g. FrontPage always inserts

the end-paragraph tags into a HTML document, even though they are optional.

Therefore, in cases where these assumptions fail, the comparison will report errors for

these differences, as discussed in the results chapter.

4.7 Summary

In a professional environment, source documents come in a wide variety of formats

[OVUM95]. In chapter 2, we categorised and described the markup of these formats,

highlighting the vast difference between them To allow for the interoperability of

these schemes, it is necessary to create a way of bridging the gap between generalised

and specific markup. This chapter discussed our design for a generic process to

compare these markup schemes in documentation files.

We have listed four different situations that the comparison may encounter: two

documents of identical file types, two documents with specific markup, but different

schemes (e.g. MIF and RTF), two documents with generalised markup and two

documents of different markup types. The process for handling each of these cases

was outlined: the generic tag set for specific markup and the generic document

structure for generalised markup. We discussed the issues involved in converting

specific markup to generalised markup, and the process which we would use to

implement it. The conversion of each markup scheme and internal format was

described, giving an overview of the system The algorithm for the comparison was

briefly discussed. This provides the basis for the implementation of the comparison

process, discussed in the next chapter.

73

5. A P rototyp e Im p lem en ta tion

5.1 Introduction

The design behind each com ponent in our generic process for com paring the m arkup

o f tw o text-based docum ents was outlined in C hapter 4. This chapter discusses how

this design w as im plem ented. B efore the main com parison can be applied to the

docum entation files, they m ust first be altered to the form at it expects. This

preparation is described in section 5.2. The main im plem entation is discussed in

section 5.3. This section first provides an overview o f the data structures used to

store the tags during the process, and the m ethod used to store the m apping o f the

m arkup languages to the generic tag set. The operation o f the overall system is

summarised, before introducing a description o f each p rocedure and the algorithm s it

uses. The conversion o f the m arkup languages to the generic tag set is discussed in

section 5.3.4; the com parison process is outlined in section 5.3.5; and finally section

5.3.6 describes the analysis o f the results o f the com parison.

5.2 Data Preparation

To perform the necessary conversion and com parison, the main p rogram needs to be

able to recognise each tag in a docum ent, any param eter associated w ith it (e.g. in the

tag <PgfLlndent 1.0”>, the “<” and “>” are the delim iters and the 1.0” is the param eter),

and the text o f the docum ent. The docum ent files can be prepared by a pre-processing

tool to output each in a form at that can be recognised by the main program . The

form at w ith which w e have chosen to w ork has the following features:

• Each tag is at the start o f a new line, w ith its delim iters rem oved.

• Any param eter for the tag is placed after the tag, separated by a tab character.

• Any com m ents are ignored.

• If the m arkup does not identify tex t w ith a tag, the tex t o f the docum ent is ou tput

with the w ord “T E X T ” as the tag, w ith a tab inserted betw een it and the tex t itself.

5.2.1 Generic Parser

The preparation too l m ust parse each docum ent file to identify each o f the elements

described above, and output them in the required form at. R esearch by H earne

74

[HEAR97] has suggested that a fully generic parser is an unrealistic aim due to the

vast differences in m arkup schemes. For exam ple, tex t in H TM L docum ents are

delimited by a start tag and end tag, with each tag surrounded by the TAGOPEN “< ”

and TAGCLOSE “> ” symbols. Only the tag and any related param eters are allowed

betw een these. For example:

<p> This is a paragraph.</p>

Tags in M IF are also surrounded by the same TAGOPEN and TAGCLOSE delimiters,

“<” and H ow ever, M IF allows certain tags to be “nested” inside other tags. In

the following example, the String tag is nested w ithin a ParaLine tag, which is itself

nested within a Para tag.

<Para
<ParaLine

<String 'This is a paragraph.^
> # end of ParaLine

> # end of Para__

In addition to this, m arkup schemes use different conventions to identify docum ent

text. The above exam ple illustrates how the tex t o f a M IF docum ent is included as a

param eter within the String tag, rather than outside all tags as in H TM L, thereby

complicating the task o f a generic parser.

The purpose o f the required parser is to identify tags, their param eters and the

docum ent text. H ow ever, despite the difficulties m entioned above, w e p ropose that a

generic parser could be used to perform this task on differeht m arkup schem es if it

could recognise all possible com ponents in a m arkup schem e (e.g. tags, param eters,

etc.). To com pile a list o f these, the com ponents in existing text-based m arkup

schemes and the delim iters used to distinguish them w ere first exam ined to identify

w hat the parser should expect. Obviously, each m arkup has a tag, bu t the delim iters

differed for each scheme. For example, M IF and H T M L surround tags w ith “< ” and

“>” (as in the above exam ples), w hereas R T F and T eX precede the tag w ith a ‘\ ’\

All the schem es exam ined used param eters, but again the m ethod in which they w ere

stored also differed. F o r example, M IF includes the param eter w ithin the tag

delimiters, separated by a space, but R T F appends the param eter onto the end o f the

75

tag with no separator. As well as param eters, LaTeX uses argum ents. H ow ever, in

this parser these stored in the param field, as few tags actually use param eters. In the

case o f a tag having both a param eter and an argum ent, both will be stored in the

param eter field in the order in which they occur in the docum ent. N evertheless, the

argum ents m ust be identified in the docum ent, so delim iters are required. O ther

com ponents that exist and therefore need inclusion are groups (R TF groups tags

together with the text) and com m ents.

A lthough none o f the schem es examined used separate delim iters to identify a style,

the text-based files from L otus Am iPro surround a style nam e in the tex t with @ ’s, as

in the following example:

@Title@ The Document Title

H ow ever, the m arkup from Am iPro has not been considered in this research for tw o

reasons. Firstly, it has since been replaced by L otus W ordP ro w ith a different ou tput

file form at, and secondly, the specification for the m arkup is no t published so to

determ ine the delimiters used in each case w ould require reverse engineering12, which

is outside the scope o f this research. H ow ever, w e m ust allow for delimiters

identifying styles, as this dem onstrates that they exist in certain form ats.

The m ost obvious com ponent o f a docum ent is the text. H ow ever, this is identified as

being outside all tags in m ost schem es, except in M IF w here tex t is recorded as a

param eter w ithin a specific tag. In both o f these cases, no delim iters exist to identify

text.

From this analysis, the following list o f elem ent delim iters w as recognised:

TAGOPEN
TAGCLOSE
GROUPOPEN
GROUPCLOSE
PARAMSTART

tag-open delimiter
tag-close delimiter
group-open delimiter
group-close delimiter
param eter start

12 Reverse engineering is “the process of analysing an existing system to identify its components and

their interrelationships and create representations of the system in another form or at a higher level

of abstraction” [HOWE97].

76

PARAMCLOSE param eter end
COMMENTSTART com m ent start
COMMENTEND com m ent end
STYLESTART style start
STYLEEND style end

W e believe that by identifying the symbols representing these delim iters for. each

m arkup schem e, this process could recognise all com ponents and tex t o f a docum ent.

H ow ever, som e schemes, such as TeX and LaTeX , do n o t use delim iters to identify

paragraphs, but rather use a blank new line to denote a new paragraph. A lthough this

will not cause problem s w hen com paring tw o TeX docum ents, it com plicates the

com parison o f a TeX docum ent to a docum ent in a m arkup schem e that uses tags to

identify paragraphs, such as RTF. This can be overcom e by keeping coun t o f the

num ber o f new-line characters that occur in a row . If there is m ore than one, the

generic tag PARAGRAPH is w ritten to the file to signify a new paragraph, and the next

characters are read in until another new line character is encountered. The generic tag

PARAEND can be written to the output file after the tex t has been w ritten to it.

Therefore PARASTART and PARAEND m ust be added to the above list to identify

schemes in which this is the only m ethod o f recognising a paragraph.

Given the above, we propose that the im plem entation o f such a process w ould create

a generic parser for the purpose o f recognising tags, tex t and delimiters. The main

difficulty in this process is identifying the occurrence o f tag delim iters in the text, as

described in the Results chapter. N evertheless, given the already extensive coverage

o f the parser, it w as deem ed w orthw hile to implem ent it, w ith a view to solving this

problem at a later stage.

5.2.2 The Data Preparation Tool

The data preparation too l based on the p rocess described in section 5.2.1 reads in a

file o f any m arkup schem e and defines the delimiters listed above depending on the

scheme.

It keeps track o f w hat type o f elem ent is being read in: either a tag , a param eter or

text. Each character is read and exam ined to determ ine its purpose. I f a new line

77

character is no t used as a delimiter, it is ignored. I f it is a TAGOPEN, w e are about to

read in a tag. Any tag and its param eter currently open are w ritten to the outpu t file

(e.g. M IF em beds tags so the previous tag m ust be recorded before reading the new

one). I f the tex t o f the docum ent outside any tags w as being read in, this m ust be

w ritten to the ou tpu t file. A GROUPOPEN sym bol is treated in the sam e w ay as a

TAGOPEN. W hen TAGCLOSE is encountered the tag is finished and is w ritten to the

file. Any GROUPCLOSE symbols are trea ted in the same way. I f the curren t character

is a PARAMSTART, and if a tag is currently being read, this tag is ended and we

prepare to accept a param eter. I f a PAR AM END is encountered, the param eter is ended

but is not considered finished yet, as there m ay be an argum ent to be read into the

param field. H ow ever, m ost tags do no t have a PARAMEND delim iter and the

TAGCLOSE will end both the param eter and the tag. If a STYLESTART is encountered,

the tag or tex t being read is finished and is w ritten to the file. The style is read into the

tag param eter until a STYLEEND is reached, and then w ritten to the file w ith no

param eter. O n reading a COMMENTSTART symbol, all characters betw een it and the

COMMENTEND are read in but ignored.

For example, Figure 5.1 show s an ex tract from a M IF file.

<Para
<Font

<FWeight 'Bold’>
> # end of Font
<ParaLine

<String' Pre-processing Input Files’>
> # end of ParaLine
<Font

<FWeight ‘Regular’>
> # end of Font
<ParaLine

<String 'To convert the markup in a document to our tag set, ’>
> # end of ParaLine
<ParaLine

<String 'the document tags must be read in one at a time and ’>
> # end of ParaLine
<ParaLine

<String compared to our mapping of each markup type to the internal tags. ’>
> # end of ParaLine

> # end of Para

Figure 5.1 Extract from MIF file before pre-processing

78

The symbols for M IF are defined in the process as follows:

TAGOPEN <
TAGCLOSE >
GROUPOPEN none
GROUPCLOSE none
PARAMSTART space
PARAMEND none
COMMENTSTART #
COMMENTEND new line
ARGSTART none
ARGEND none
STYLESTART none
STYLEEND none
PARASTART none
PARAEND none

The above process w ould read the file one character a t a time, and process each

character, depending on w hat it is. Using the M IF docum ent ex tract in Figure 5.1 as

an example, a description o f the actions taken by the process is as follows:

• The first character processed is the TAGOPEN delimiter “<” . This is considered the

start o f a new tag. The curren t tag string is em pty (because this is the start o f the

file) so there is no previous tag to be w ritten to the file.

• The character read in is “P”, and is stored in the tag string.

• The next characters “a” , “ r” and “a” are read in and processed in the same w ay

because they are not recognised as delimiters.

• The new line character is read in and because it is no t a delimiter, it is ignored and

the next character is retrieved.

• The space is assum ed (wrongly) to be a param eter separator, as w e are reading a

tag. The tag string is ended, and it is assum ed the next character is p a rt o f the

param eter.

• The “<” indicates the start o f a new tag. The current tag is w ritten to the file, and

the tag and param eter strings are em ptied.

• The next characters (“ F”, “o” , “n” and “t”) are read into the tag string until a

delimiter is encountered.

• The new line is ignored and the next character read.

• The space indicates a param eter separator so the tag string is ended and the

param eter is expected next.

79

• The “<” causes the curren t tag to be w ritten to the file, the tag and param eter

strings are emptied.

• “ F” , “W”, “e ”, “ i” , “g” . “h” and “t” are stored in the tag string.

• The space causes the tag string to be ended, and a param eter is expected next.

• “B” , “o” , “ I” , “d” and are stored in the param field.

• The > indicates the end o f the tag, so the tag and param eter are w ritten to the

output file. The tag and param eter strings are em ptied. The p rocess expects the

next character to be docum ent text unless it is a recognised delimiter.

• etc.

Figure 5.2 show s the ou tpu t o f this process. As can be seen, all tags are considered to

be o f the same level, even though the tags w ere originally nested. The nesting o f the

tags is o f no relevance to the com parison process, as each tag is considered

individually and it is outside the scope o f this research to determ ine the syntactic

validity o f the docum ent.

Para
Font
FWeight ‘Bold’
ParaLine
String ' Pre-processing Input Files'
Font
FWeight ‘Regular’
ParaLine
String T o convert the markup in a document to our tag s e t , '
ParaLine
String 'the document tags must be read in one at a time and '
ParaLine
String 'com pared to our mapping of each markup type to the internal tags. ’_______

Figure 5.2 Extract from MIF file after pre-processing

The output file is a representation o f the original file in a form that can be recognised

by the m ain program . The ou tpu t from all m arkup schem es will be in the same form at

so each can be processed identically.

5.2.2.1 Data Preparation Tool for Generalised Markup

B oth SG M L and LaTeX docum ents can be prepared using the sam e to o l as for

specific m arkup schem es to identify tags, param eters and docum ent text, as each

elem ent (TAGOPEN, TAGCLOSE, etc.) can be specified. H ow ever, problem s can arise

in m apping generalised m arkup to the internal generic tag set. W hile LaT eX has a

80

predefined tag set which allows a m apping o f each tag to be recorded , SG M L is a

language which allows the user to define their ow n tag sets, so tags cannot be know n

in advance. The m apping m ust therefore be m ade either by the user or a separate too l

specific to SGM L. A lthough w e have not im plem ented such a tool, the issues for an

im plem entation w ere discussed in section 4 .3 .2 .2 . The system currently expects the

user to map each elem ent in the SG M L D TD to a tag in the generic tag set, and save

this in a file called DTDname.m ap w here DTDname is the nam e o f the D T D to which

the m apping belongs.

5.3 M ain Im plem entation

5.3.1 Storing the M appings between Tags

The m appings betw een the tags in the m arkup languages and the generic tags are

stored in a simple tex t file (called tagmap.ini) that is read by the p rogram if the

docum ents need conversion. Each file type has its own “section” , which is headed by

the extension o f docum ents o f that file type surrounded by square brackets, all on a

separate line. The section itse lf contains each tag recognised by ou r p rocess and the

generic tag for it, separated by a tab character. Each such m apping appears on a new

line. The section is ended with the heading for the next file type. H ere is an example

tagmap.ini file. (The entire file as used by this system is included in A ppendix A):

[MIF]
FW eight 'Bold' BO LD
FW eight 'Regular' B O LD O FF
FUnderlining FSingle U N D ER LIN E
FUnderlining FN oUnderlining U N D ER LIN EO FF
Para PA RA G RA PH
[RTF]
b BO LD
bO BO LD O FF
ul U N D ER LIN E
ulO U N D ER LIN EO FF
ulnone U N D ER LIN EO FF
par PA RA G RA PH

Figure 5.3 Example Content of Tag Mapping File

81

As can be seen from this example, m ore than one tag from the m arkup language can

be m apped to the same generic tag. R T F has tw o tags to tu rn o ff underlining, so both

are equivalent to U N D ER LIN EO FF in our generic tag set. This will no t cause a

problem because w hen a tag is encountered in the input file, w e search for it in the tag

mappings and replace it w ith our generic tag, irrespective o f w hat it is. H ow ever, only

one instance o f each tag from the m arkup languages is allowed as m ore than one

w ould cause ambiguity w hen searching for the generic replacem ent.

5.3.2 Internal Representation of the Docum ents as Lists

To m anipulate the tags internally in the program , they are stored as linked lists13. For

this im plem entation, there are tw o types o f list defined, one to store the tags read in

from the input file (file jag), and one to store the m apping betw een tags (tag_map).

5.3.2.1 F iletag : List of Tags from Input File

File_tag stores all inform ation about each tag from an input file in a single node. The

following fields are stored in the nodes o f the file_tag list:

• ta g is a character string that stores the tag read in.

• param is a character string to store any param eters fo r the tag (described below).

• id is a unique identification num ber assigned to the tag.

• match is a num ber that stores the id num ber o f the m atching tag. This is initially 0

for all nodes because no tags have been identified as m atching.

• error_status is a num ber indicating the type o f erro r associated w ith this tag, or 0
if none.

The tag itself is separated into the keyw ord o f the tag and the param eter, if one exists.

For example, in the tag FWeight ‘Bold’ from the file in Figure 5.2, FWeight is the

keyw ord and the ‘Bold’ is the param eter. There are tw o reasons for storing the

param eter separately from the tag. Firstly, in a direct com parison o f tags, if only the

param eter differs, this should not be considered an error. For instance, in M IF the left

indent o f a paragraph is specified using the tag PgfUndent n w here n is the size o f the

13 A linked list is “a data structure in which each element contains a pointer to the next element, thus

forming a linear list.” [HOWE97],

82

indent. I f one file had the tag PgfUndent 1.0” and the corresponding tag in the second

file was PgfLlndent 1.5”, the com parison including param eters w ould consider these

different tags, rather than the same tags w ith differing param eters. Storing the

param eter separately overcom es this problem .

The second reason for isolating the param eter is for conversion. This conversion

process searches a list o f tags in the appropriate m arkup schem e until it finds the tag

required. For example, if w e wish to convert the tag PgfLlndent 1.0” to its generic

equivalent, the list o f M IF tags is searched for this tag. Only the tag PgfLlndent is

stored, so the tag will no t be found. B y separating the tag and param eter w e can

search solely for tags, and replace only the tag w ith the generic tag , retaining the

param eter.

O ther inform ation stored for each tag includes an identification num ber, the id o f its

m atching tag (or 0 if no m atch is identified), and an erro r num ber, denoting the reason

for any error w ith the tag , or 0 if no erro r exists. The e rro r reporting is described in

detail in section 5.3.6.

Each tag from the input file has its ow n node w ith the fields* describing it, and each

input file has its own linked list o f these nodes. For exam ple, Figure 5 .4 represents the

first four tags in the ex tract in Figure 5.2.

tag Para Pgf Font -> F Weight ParaLine

par am 'Bold’

id 1 2 3 4

m atch 0 0 0 0
error status 0 0 0 0

Figure 5.4 List o f Tags from Input File

53.2.2 Tag map: List of Mappings from Markup Tags to Generic Tags

T a g jn a p records the m apping betw een the tags in the m arkup languages and the

generic tags. It is a simpler structure than file_tag, w ith the following fields:

• spectag is a character string that stores a tag specific to the m arkup language.

• gentag is a character string that stores the generic identifier for the specific tag.

83

A list o f these nodes for each m arkup schem e will be used in the program , but only if

conversion is required. Each list is filled w ith the tags for the file type o f the input file

from tagmap.ini, the file recording the m appings betw een specific and generic tags.

Each node has one tag from the m arkup language, plus its equivalent generic tag. For

example, if the linked list contained M IF tags, it could be represented as follows:

spectag BOLD BOLDOFF -> PARAGRAPH etc.

gentag FWeight ‘Bold’ FWeight 'Regular' Para ...

Figure 5.5 List o f Tags from Tag Mapping File

5.3.3 System O verview

A fter pre-processing the docum entation files, the m ain p rogram perform s any

necessary conversion and the com parison. To m anipulate the tags in the system, they

are read into linked lists from the ou tpu t files o f the p reparation tool. B ecause both

files are in the form at described in section 5.3.1, w e know that the tag is com posed o f

all characters from the start o f the line to the tab character, and that everything after

the tab until the end o f the line is the param eter. A n identifier is then assigned to the

tag. The list o f tags from the first input file will be referred to as list 1 and the tags

from the second input files as list 2.

In order to determ ine w hether conversion is necessary, the file extension o f both input

files is examined. I f both files are o f the same type, no conversion is necessary.

O therw ise the tag_m ap lists are filled with the relevant m appings and the conversion

process is executed for each list. I f both files are SG M L files, the user is asked to

specify the DTDname.map for the conversion, otherw ise tagmap.ini (the file o f p re ­

defined m appings) is used. A fter any conversion, the com parison function is called.

This com pares the two lists tag by tag and finds any differences. The reason for each

difference is identified as one o f the following: a tag could be changed in the second

list, tags m ay be missing from list 2, there could be ex tra tags in list 2, or the

param eter o f the tag in list 2 m ay have changed. I t can also perfo rm a basic check for

untranslated text if the user chooses this option. The results o f the com parison are

analysed to report the errors to a file.

84

B efore the conversion o f a file can be perform ed, the tag_m ap list m ust be filled w ith

the m apping from the m arkup schem e o f that file to the generic tag list.

5.3.4.1 Filling the Tag Mapping List

The FillTagList function scans the tag m apping file to find a section for the relevant file

type. This is done by searching for an opening square bracket, “ [” . W hen one is found,

the file extension betw een it and the closing bracket, “]” , is com pared to the file type

passed in. I f they are no t the same, then this is no t the co rrec t section, so the heading

o f the next section is sought in the same way. I f the correc t section is not found, the

p rogram reports to the user that there are no tag m appings for files o f that m arkup

scheme. O therw ise, w hen the correct section is found, a list (henceforth referred to as

the generic list) is filled from the tag m apping file.

B ecause each tag is on a new line, the characters from the start o f the line are saved in

the spectag string in the node, until a tab is reached. The tab character separates the

generic tag from the specific tag. All characters after the tab are saved in the gentag

string, until the end o f the line is reached. I f the first character o f a line is a “ [” , this is

the heading o f a new section indicating that all tags for the curren t section have been

retrieved. The resulting list is a list similar in structure to F igure 5.5.

5.3.4.2 Conversion of Specific Markup to the Internal Tag Set

The conversion function accepts the list to be converted and the tag_map list

containing the appropriate tag mapping. The list o f tags from the input list are read in

one at a tim e and com pared to the specific tags in the generic list, one by one, until a

m atch is found. If the tag is found, it is replaced by the generic equivalent. I f it is not

found, it is replaced w ith NOMATCH. The NOMATCH tags are ignored in the

com parison. B ecause w e do no t recognise them , w e cannot attem pt to m atch them to

any tag in another scheme. This m eans that only the elem ents and form ats recognised

by the system are com pared. The im plications o f this are discussed in the Results

Chapter.

5.3.4 Conversion

85

For example, the first tag in list 1 for the ex tract in Figure 5.2 w ould be Para. I f the

generic list is the tag_map list in Figure 5.5, Para is com pared to each specific tag in

the generic list (FWeight ‘Bold’, FWeight 'Regular') until it finds a m atch. The current

tag is then replaced by the generic tag, in this case PARAGRAPH, the next tag in list 1

is examined and the process repeated, starting w ith the first tag in the generic list.

Finding a m atching tag in the specific tags o f the generic list is com plicated by

param eters in tw o ways. Firstly, part o f a tag m ay w rongly be considered a param eter.

All tags in this system are separated into the keyw ord and the param eter. H ow ever,

som etim es the param eter is an essential p a rt o f the tag, n o t ju st ex tra inform ation. For

example, FWeight ‘Regular’ is the tag in M IF for B O LD O FF. FWeight is stored as the

tag and ‘Regular’ is saved in the param field. Therefore w hen w e try to find a m atch for

this tag in the specific tags, it will no t be found as no entry exists for the tag FWeight.

B y concatenating the param eter onto the tag and com paring this, w e can locate the

m atching tag if one exists. I f a m atch is found in this way, then w e know that the

param eter field is part o f the tag, so it is deleted, and the tag is replaced with the

generic equivalent. For example, FWeight (the tag to be converted) is no t the same as

FWeight ‘Bold’ (the first tag in the generic list), so w e com pare the concatenation o f

the tag and param eter, FWeight 'Regular', to the tag. This still does not m atch, so the

next tag, FWeight 'Regular', from the list is read in. FWeight does not m atch this either,

so w e com pare the concatenation o f the tag and param eter, FWeight ’Regular', to it.

This does m atch, so the tag FWeight is replaced w ith B O LD O FF, and the param eter

'Regular' is deleted, as it w as part o f the tag.

The second issue w ith the conversion o f tags w ith param eters is that the param eter

may not have been identified at all. M arkup schem es such as R T F do not use any

character to separate the param eter from the tag. For exam ple, to specify the left

indent o f a paragraph, R T F uses \\\N, w here the N is the indent size. I f the indent is 2,

the tag is /Ii2. A com parison o f this to the specific tags o f the generic list will fail, as

the tag in the list obviously does not have a param eter. T o overcom e this, the

paragraph is represented in the generic tag set as a e.g. \li?. W hen the

com parison fails, the process com pares the tags character by character until a

difference is encountered, e.g. I = I, i = i, 2 * ?. I f the character in the specific tag in the

86

generic list (i.e. \li 7) at this point is a ?, as here, the rest o f the o ther tag (in this case 2)

is assum ed to be the param eter, and is stored in the param 'field. The tag is then

replaced w ith the generic equivalent, LEFTINDENT. I f the differing character is no t a ?

the tags do not correspond, so the next tag in the generic list is read in and the

process continues.

5.3.5 Comparison

The files on which the com parison is to be perform ed are the outpu t files from the

generic parser, possibly after conversion. H ow ever, before the com parison is

perform ed, these files require m odification for tw o reasons. Firstly the text m ust be

rem oved, as translated tex t obviously differs from the English and will cause

num erous errors in the com parison. Secondly, if the files have been converted , they

will contain num erous NOMATCH tags which m ust be ignored, as we do not w ish to

try and find a m atch for them.

5.3.5.1 UNIX diff Utility

The U N IX diff utility w as used to perform the com parison. I t com pares the conten ts

o f tw o files and ou tputs a list o f changes necessary to convert the first file into the

second. N o ou tpu t will be produced if the files are identical. T he ou tpu t from diff

consists o f one or m ore “hunks” o f differences, w ith each hunk indicating one place

where the files differ [M ACK93]. Each hunk is ou tpu t in the following form at:

change-command

< from-file-line

< from-file-line...

> to-file-line

> to-file-line...

There are three types o f change com m ands. Each consists o f a line num ber or range o f

lines in the first file, a single character indicating the kind o f change to m ake and a line

num ber or range o f lines in the second file. All line num bers are the original line

num bers in each file. The change com m ands are displayed in one o f the following

form s (which are explained below):

87

n1 a n3,n4

n1,n2d n3

n1,n2 c n3,n4

where n1 and n2 represent lines in file 1 and n3 and n4 represent lines in file 2. The “a ”

stands for “add” , “d” represents “delete” and “ c” m eans “change” .

• n1 a n3,n4

This indicates that the lines from n3 to n4 (inclusive) in the second file m ust be added

after line n1 o f the first file to m ake bo th files the same. For exam ple, “ 8a12,14”

means append lines 12, 13 and 14 o f file 2 after line 8 o f file 1. W hen applied to

our files o f tags, this indicates that the tags on lines n3 to n4 are ex tra in file 2, w ith

no m atch in file 1.

• n1,n2dn3

To m ake the second file resem ble the first, the lines from n1 to n2 in the first file m ust

be deleted; line n3 is w here they w ould have appeared in the second file had they

not been deleted. For example, “5,7d3” m eans delete lines 5 to 7 o f file 1. W hen

applied to our files, this indicates that the tags on lines n1 to n2 are missing from

file 2.

• n1,n2cn3,n4

This m eans that the lines from n1 to n2 in the first file should be replaced w ith the

range n3 to n4 o f the second file. This is a m ore com pact m ethod o f a com bined

add and delete. For example, “5,7c8,9” m eans change lines 5, 6 and 7 o f file 1 to

read as lines 8 and 9 o f file 2.

The lines that are affected by the difference follow each o f these change com m ands.

The range o f lines from the first file are displayed, preceded by follow ed by the

range from the second file, which are preceded by “> ”. H ow ever, this inform ation is

not required by our system as the tags associated by the errors can be determ ined

from the line numbers.

5.3.S.2 Analysis of diff Output

After calling the diff com m and, the ou tpu t m ust be analysed by our system to be

applied to the list representations o f the files. B y checking each “hunk” at a time, the

reasons for the differences and w here they occurred in our lists can be determ ined.

88

Locating the erroneous tags in docum ents is simplified by the fact tha t the id num ber

o f each tag is the same as the line num ber in the file. E ven if the docum ents w ere

converted and all NOMATCH tags ignored, the NOMATCH tags are deleted from the

lists, so the line num bers still correspond to the id num bers. T he analysis function uses

the following process to set the appropriate error_sta tus to the erroneous tags in both

lists.

The change com m and for the first difference identified by diff is exam ined to ex tract

the line num bers and reason for the change (i.e. the character representing the change

required). It sets node 1 to the first node in list 1 and node 2 to the first node o f list 2.

The function then steps through both lists from the beginning, setting the tags to

m atch each o ther by letting match in node 1 equal the id o f node 2 and match in node 2
equal the id o f node 1 (see Figure 5.6).

list 1 list 2
> 1. A > l . A

2. B 2. B
3. C 3. C
4. E 4. D
5. F 5. E
6. G 6. F

In this example, the current position in either list is indicated by “ > " , the
number in each list is the id o f the tag, the letter is the tag, and any
following characters are the parameter for the tag. The result o f the diff
command for these files would indicate that line 4 o f list 1 is missing.
Therefore the function would let the tag A in list 1 equal A in list 2, B =
B and C = C, until the line with the error (i.e. tag 4) is reached in list 1.

Figure 5.6 Setting Tags to Match

5.3.5.3 Checking for Changed Text

As the function steps through the lists, all tex t m ust be checked for translation.

H ow ever, because understanding the tex t o f the docum ent is beyond the scope o f this

research, this process cannot verify translation. Instead, w e assum e that the tex t o f the

localised docum ent should differ from the original, and simply check for changed text.

89

To do this w e em ployed the concept o f “pseudo-translation” - altering the English

text to simulate translation.

To determ ine if the param eter contains text, its tag is exam ined. H ow ever, some

m arkup schem es use a particular tag for text, w hereas o thers have none and will use

the generic tag TEXT. Therefore, the tagmap.ini file m ust first be searched to find the

tag that identifies text in the m arkup schem e o f either file. Then, w hen the analysis

function processes the tags, it can identify tex t tags regardless o f the m arkup scheme.

A string com parison is used to determ ine if the text has changed. I f bo th strings are

the same, this m eans that the text w as not altered. In this case, the error_status o f both

tags is set to 6 (see Figure 5.20 in section 5.3.6.1 for a full table o f errors).

S.3.5.4 Locating Errors

This process continues until the tag with the first error is reached. This is detected by

checking the id o f each node against the num ber o f the first line in the erroneous

range. W hen a tag with an erro r is reached, the character representing the change

required in the change com m and is exam ined to determ ine the reason for the

difference.

53.5.5 Checking for Extra Tags

If the character is “a” , this indicates that the tags w ith ids m atching the range betw een

n3 and n4 are ex tra tags in file 2 w ith no m atch in file 1. The erro r_sta tus for each o f

these tags is set to 3, indicating they are “ex tra” (see Figure 5.7). To continue

processing, the tag after the ex tra tags in list 2 corresponds to the next tag in list 1.

90

list 1 list 2
1. A l . A
2. B 2. B
3. C 3. C
4. D 4 .X
5. E 5. B
6. F 6. D
7. C 7. A
8. A 8. G
9. B 9. D
etc. 10. E

11. F
etc.

The tags in list 2 marked in bold are extra tags that have no match in list
1. The result o f the diff command fo r these files would be 3a4 ,8 , in other
words lines 4 to 8 are extra in list 2. Therefore the function would match
the first three tags in the lists, and then set the err or-status o f tags 4-8
(inclusive) in list 2 to indicate that they are extra. It would then continue
the process with the tag after the errors in list 2, i.e. tag 9, and the next
tag in list 1, i.e. tag 4.

Figure 5.7 Identifying Extra Tags in File 2

5.3.S.6 Checking for Missing Tags

If the character representing the required change in the change com m and is “d” , this

indicates that the lines indicated by n1 ,n2 are missing from file 2. In o ther w ords, there

are tags missing from list 1 in our representation. T hese tags can be identified by

matching the line num bers in the change com m and w ith the id num bers o f the tags,

and the error_sta tus o f each o f these erroneous tags is set to 3, indicating they are

“missing” (see Figure 5.8) To continue processing, the tag after the ex tra tags in list 1

corresponds to the next tag in list 2.

91

I

lis t 1 lis t 2
l . A l . A
2. B 2. B
3. C 3. C

> 4. X > 4. D
5. B 5. E
6. D 6. F
7. A 7. C
8. G 8. A
9. D 9. B
10. E etc.
11. F
etc.

The tags in list 1 marked in bold are missing from list 2. The result o f the
diff command for these files would be 4 ,8d3 . In other words lines 4 to 8
in list 1 are missing from list 2 after line 3. Therefore the function would
match the first three tags in the lists, and then set the err or-status o f tags
4-8 (inclusive) in list 1 to indicate that they are missing from list 2. It
would then continue to process the next tags, i.e. the tag after the errors
in list 2 (tag 9) and the next tag in list 2(tag 4).

Figure 5.8 Identifying Missing Tags in List 1

5.3.5.7 Checking for Changed Parameters

If the character representing the required change is “c ”, this indicates the tags

corresponding to n l,n 2 in file 1 have changed to those represented by n3,n4 in file 2.

The reason for the “change” m ust be determ ined to rep o rt an accurate erro r m essage.

To check if the param eters have changed, the tags corresponding to n l and n3 m ust

first be com pared. I f these are the same, then the param eters are checked and if they

are not the same, it is assum ed that the erro r is due to a changed param eter (assuming

the tags are not T E X T tags, in which case they m ust be checked for translation).

Therefore the error_sta tus o f both tags is set to 5 to indicate that the tags m atch, but

the param eters differ (see Figure 5.9). I f the tags are not the same, the reason for the

difference is determ ined in the following sections.

92

list 1 list 2
1. A a 1. A a
2. B b > 2. B z
3. C 3. C
4. D 4. D

In this example, the parameter for tag 2 in list 2 was changed, as
highlighted in bold text. The result from diff would be 2c2, indicating
that line 2 in file 1 has changed to tag 2 in file 2. To determine if the
reason fo r this is because o f the parameter change, the tags on line 2 in
list 1 and line 2 in list 2 are compared. They are the same (B=B) so they
are set to match each other. The parameters o f these tags are then
compared. They are not the same (b ¿ x) so the error_status fo r both tags
is set to 5. The process continues with the next two nodes, i.e. C and C.

Figure 5.9 Identifying Tags With Differing Parameters

5.3.5.8 Checking for Changed Tags

If the character representing the required change is “c” and the change is no t due to

the param eters, it is possible that the tag was changed in docum ent 2. W hereas this is

the m ost likely explanation if there is only one tag in either range (e.g., a bold tag w as

changed to italic), it is no t always accurate to assum e this, as it may possibly be a case

o f a deletion in one file and an coincidental addition in the same position in the other.

For example, consider the following extracts from tw o H T M L docum ents:

Document 1 Document 2
P P
TEXT TEXT
IMG SRC... IMG SRC...
P B
CENTER TEXT
TEXT AHREF...
A HREF TEXT
TEXT /A
/A IB
/CENTER /CENTER
etc. etc.

Figure 5.10 Example of an Incorrect Judgment by diff

93

The text w as rem oved for com parison (as translated tex t will obviously differ and

therefore m ust be rem oved). The tags highlighted in bold in docum ent 1 are missing

from docum ent 2, and those in docum ent 2 are extra, w ith no m atch in docum ent 1.

H ow ever, diff does not recognise this, and instead a ssu m es 'th a t these changes are

related and therefore reports that P and C E N T E R have been changed to B, which is

incorrect. The /B tag is correctly assum ed to be missing from docum ent 2.

Therefore, in cases like this, the tags follow ing the tw o tags are com pared by the

CompStraight function (described in section 5.3 .5 .10) to determ ine if there is a change,

or a m isjudgem ent by diff. I f m ost o f the subsequent tags are the same, then it is

assum ed that the tag in the second list w as changed. Ideally all tags should be the

same (see Figure 5.11).

list 1 list 2
1. A 1. A
2.B > 2.X
3. C 3. C
4. D 4. D
5. E 5. E
6. F 6. F

Note: “>” indicates the current position in either list

Figure 5.11 Example o f all Following Tags Matching

H ow ever, we m ust allow for other changes or om issions in the tags, so if the vast

m ajority o f tags are the same, we assum e that one o f the tags m ust have changed (see

Figure 5.12). The error_status o f the node 1 and node 2, in which the tags are

contained, are set to 1, indicating this. A lthough the tags are no t the same, they are in

matching positions in the docum ents, so they are set to m atch each other.

94

H ow ever, if m ost o f the subsequent tags differ, it is assum ed that the tags indicated by

n l,n 2 in list 1 are missing from list 2 and the tags represented by n3,n4 are extra tags

in list 2.

Using CompStraight, the incorrect “change” identified by diff in Figure 5.10 above is

solved and reported as separate sets o f missing and ex tra tags, as dem onstrated in the

figure below:

Document 1 Document 2
P P
TEXT TEXT
IMG SRC IMG SRC...

> P > B
CENTER TEXT
TEXT AH REF...
A HREF.... TEXT
TEXT /A
/A IB
/CENTER /CENTER
etc. etc.

In this example, the missing tags are in bold. CompStraight would
compare the tags after P and B i.e. CENTER and TEXT, TEXT and A
HREF, A HREF and TEXT etc. Because most o f the tags differ, the tags
are considered not have changed. P and CENTER are deemed to be
missing from list 1, and B is deemed to be extra in list 2.

Figure 5.13 Correcting the Inaccurate Judgement from diffusing CompNext

95
'I

If the tags are not deem ed to have changed, the reason for the difference m ust be

determ ined. For example, the tag in file 2 m ay m atch a tag in list 1 that was m arked as

missing, or vice versa. To determ ine this, the Re Align function is called to attem pt to

find a m atch for either tag in the following tags.

Document 1 Document 2
P P
TEXT TEXT
/P /P
P P

> A HREFx > A HREFy
TEXT TEXT
/A /A
/P /P
P P
A HREFy A HREFz
TEXT TEXT
/A /A
/P /P
etc. etc.

In this example, the missing tags are in bold. D iff identified a change in
the tags marked with a “> ” . However, A HREF y matches the same tag
further down in list 1. ReAlign would identify this, and then the A HREF
x is marked as missing, instead o f changed.

Figure 5.14 Using ReAlign to Identify a Missing Tag Incorrectly Considered as

Changed by d iff -j

If a m atch is found for one, then the other tag is deem ed to be missing. If this is not

the case, then the tag in file 1 is missing from file 2 and the tag in file 2 is missing from

file one (as w as the case in Figure 5.13).

5.3.S.9 ReAlign

The ReAlign function accepts tw o nodes, (nodel and node2) o f the type file_tag. Its

purpose is to find a m atch for the tag in n o d e l in the nodes following node2, as

illustrated in Figure 5.15.

n o d e 1 n o d e 2
> D* > X

E B
F D
C A
A G
B D*
etc. E

etc.

ReAlign compares the tag in nodel (D) to the tag in node2 (X). Because
these differ, node2 is let equal the node following node2, (i.e. node 2 now
is the node containing the tag B) and nodel and node2 are compared.
This continues until a match fo r the tag in nodel, D, is found.

Figure 5.15 Searching fo r a Match in ReAlign

I f a m atch is found, w e m ust ensure that it is no t a coincidence. The next node after

both node 1 and node 2 are passed to the function CompNext (described in section

5.3.5.10), which com pares the next n tags o f both nodes. I f a significant m ajority are

the same, it is assum ed w e have found the match. O therw ise w e find the next tag

m atching the tag in node 1 and repeat this process.

n o d e 1 n o d e 2
> D* X

E B
F D
C A
A G <1
B > D*
etc. E

F
C
etc.

When the next match is found (indicated above by “>”), we can tell it is
the correct match by examining the subsequent nodes o f both.

Figure 5.16 Finding a Correct Match

97

W hether tw o tags are a co rrec t m atch can be determ ined by com paring the

subsequent tags. CompNext is given the next node o f both nodes that are to be

checked. DEPTHJJMIT is defined in the p rogram to be 15. This m eans that the 15 tags

following both nodes are com pared. I f DEPTHJJMIT is too low , w e m ay not consider

corresponding tags to m atch because if too few o f the subsequent tags w ere checked,

the erroneous tags will have too m uch weight and the tw o tags will no t be deem ed to

m atch. H ow ever, if DEPTHJJMIT is too high, w e m ay consider tags to m atch even if

they do not. This is because m ost o f the tags in the docum ents probably correspond,

and the erroneous tags will lose their significance if too m any surrounding tags are

deem ed to match.

CompNext is com prised o f three similar recursive com parison functions: CompStraight,

CompNextl and CompNext2, each o f which accepts the tw o nodes passed into

CompNext. These perform different com parisons on the subsequent nodes o f those

passed in, and set the variables sam etags to the num ber o f tags found to m atch and

difftags to the num ber o f tags that differed.

To determ ine if the tags in node 1 and node 2 are a correc t m atch, sam etags and

difftags are analysed. B y dividing difftags by sam etags w e get the ratio o f the num ber

m atching to the num ber differing, and this is com pared to the acceptable cu t-o ff level.

To determ ine the cu t-off point, it m ust first be decided how m any differing tags we

will accept and still consider the tags a correct m atch. For exam ple, if w e w ant at least

80% o f the tags to be the same, this ratio is 3 differing to 12 m atching for 15 tags.

The cu t-o ff level is then calculated as follows:

difftags 3
---------------= — = 0.25 = cut-off level
sametags 12

Therefore, if the ratio o f difftags to sam etags is greater than the cu t-o ff level o f 0.25,

w e will no t accept the tags as m atching. W hen tw o tags are com pared and found to be

the same, the param eters m ust then be checked. I f these also m atch, one is added to

sametags. I f the param eters differ, it is assum ed the tags correspond. H ow ever,

because there is a possibility that they do not, 0.75 is added to sam etags.

5.3.5.10 CompNext

98

W hen CompNext is called, it calls CompStraight first. This com pares each o f the

corresponding subsequent tags to each other in sequence, as illustrated in Figure 5.17.

n o d e 1 n o d e 2
> D > D

E E
G F
F C
C A
A B
B etc.
etc.

CompStraight would compare E with E, G with F, F with C, C with A,
etc. Although the current tags are a correct match, this comparison does
not identify this because the tag G (bold in list 1) is missing from list 2.

Figure 5.17 Determining the Validity o f a Match using CompStraight

The values o f sam etags and difftags are com pared to determ ine if CompStraight found

the tags to be an accurate m atch. I f it did not, then sam etags and difftags are reset to

0, and CompNextl is called. This will establish a m atch if tags w ere added to the list

after node 2, or tags w ere deleted after node 1. The exam ple in Figure 5.18

dem onstrates how this function w orks.

n o d e 1 n o d e 2
> D > D

E E
G F
F C
C A
A B
B etc.
etc.

CompNextl would compare E with E, G with F. When these do not
match, it tries the node after F, comparing G with C, G with A, G with B,
etc. The ratio o f sametags to difftags will not be acceptable, so this
function will also fa il to identify the match.

Figure 5.18 Determining the Validity o f a Match using CompNextl

99

The values o f sametags and difftags are checked, and if this does no t p rove the tags to

have m atched, CompNext2 is called to find a m atch if tags w ere added in list 1, or

missing from list 2 (see Figure 5.19). I f this also fails, the tw o tags are no t considered

to be equivalent; otherw ise the tags are said to be a correct match.

n o d e 1 n o d e 2
> D > D

E E
G F
F C
C A
A B
B etc.
etc.

CompNext2 would compare E with E, G with F. When these do not
match, it tries the node after G, comparing F with F, C with C, A with A,
etc. With only one differing tag, the ratio o f sametags to difftags is
acceptable, and the tags are deemed to match.

Figure 5.19 Determining the Validity o f a Match using CompNext2

5 .3 .6 E rro r A n a lysis

W hen the com parison is finished, the lists m ust be exam ined to prin t an erro r log for

the user. This function starts at the first node in each list, and checks their error_status

and m atch fields to determ ine if an erro r m essage is required , and m oves on to the

next nodes. The reason for m oving through the lists in parallel is to rep o rt error

m essages that correspond to both files, e.g . changed tags.

The first node in list 1 is read into node 1, and the first node in list 2 is read into node

2. The match field in node 1 is examined. I f it is 0, this m eans that it is unm atched,

indicating tha t it is missing from list 2. T he node is sent to the PrintError function to

display the position in the docum ent and a relevant error m essage. The m atch field for

node 2 is then checked, irrespective o f the value for match in node 1. I f it is 0, it is

unm atched in list 1, and therefore is an ex tra tag in list 2. The node is sent to the

PrintError function to display the position in the docum ent and a relevant error

message.

100

I f both nodes have the value o f 0 for match, this m eans that both tags have been

reported , so w e read the next node in list 1 into node 1 and the next node in list 2 into

node 2, and repeat the analysis. I f node 1 has a nonzero value for match and node 2

has a value o f 0, this m eans that node 1 requires no m ore processing and the next

value in list 1 can be read into it. H ow ever, node 2 has a m atching tag in list 1 w ith an

id corresponding to the value in match. B ecause w e are m oving through list 1, its

m atch will be reached eventually, so w e do not change it. This is because m atching

tags are p rocessed together, thereby keeping the two lists in alignment.

I f node 2 has a nonzero value for match and node 1 has a value o f 0, then the next

value for node 2 is read in. O therw ise, if bo th node 1 and node 2 have m atching tags,

it m ust first be determ ined if they m atch each o ther to process th e m I f they do, this

does no t guarantee that there are no errors. For exam ple, even if tags are said to

match, they m ay still have param eters that differ. Therefore the error_status o f the

current tags o f both lists m ust be checked.

If both have a value o f 0, then the tags m atch and have no errors so there is nothing to

report. The next tw o nodes are read in and the process repeated. I f the error_status o f

node 1 is g reater than 0 and the error_status o f node 2 is 0, it is sent to the PrintError

function, and then read the next node into node 1. W e do no t p rocess node 2 because

it m ust be processed w ith its m atching tag. I f the error_status o f node 1 is 0 and the

error_status o f node 2 is greater than 0, it is sent to the PrintError function, and then

read the next node into node 2. I f both nodes have a non-zero error_status, then both

are sent to the PrintError function together, as errors such as a param eter change or a

tag change need both m atching tags for an accurate error m essage.

The only tim e both nodes w ould have a nonzero match field and no t m atch each other

is when m oved tags had been identified. H ow ever in our system this is considered to

be an error, as w e do not check for tags that have m oved. Therefore this should never

happen, but if it does the system will detect it, print an error and read in the next tw o

tags.

101

If the docum ents have been converted, the user is given a w arning tha t there m ay be

other errors in the docum ents than those printed due to the possibility o f tags not

being recognised. For example, the NOMATCH tags m ay have represented different

elem ents in both docum ents, but the parser could not de tec t this, as it did not

recognise w hat they w ere. C areful m aintenance o f a full set o f all possible form ats and

elem ents w ould eliminate this risk because the parser w ould recognise all elem ents

and therefore ignore only those tags w ith no equivalent in o ther schem es, such as

ParaLine. H ow ever, this requires a user with an in-depth know ledge o f the m arkup

schem es to recognise the correspondence betw een tags, and identify tags w ith no

equivalent.

5.3.6.1 PrintError

This function accepts one or tw o nodes to print the relevant erro r m essage. I f only

one node has an error, an em pty node is passed in as the o ther node. The error_status

o f the nodes are checked and the erro r m essage printed. All error m essages have a

similar form at:

"ERRORTYPE: the X tag between previous text and following text error text

w here ERRORTYPE is one o f the erro r types in Figure 5.20; the tag X is obtained from

the com bination o f the tag and param eter fields in the node; the previous text is

obtained from the function GetPrevText, described in section 5 .3 .6.2, the following

text is retrieved by GetNextText (section 5 .3 .6.2), and error text depends on the type

o f error. T he error type is determ ined from the error_status o f the node(s). These are

outlined in Figure 5.20, along w ith the relevant error text.

102

e rro r_
s ta tu s

D escrip tio n E R R O R T Y P E E r r o r T ex t

0 T he tag has no
m atch

M ISSIN G if node 1
E X T R A if node 2

“in file 1 is m issing from file 2”
“has been added to file 2”

1 T he tag was
changed in file 2

TA G CH A N G E “in file 1 w as changed to tag
from node 2 betw een previous
text fo r node 2 and next text

2 The tag is missing
from file 2

M ISSIN G “in file 1 is m issing from file 2”

3 The tag was added
to file 2

EX TR A “has been added to file 2”

4 The tag was m oved
in the text

M O V ED This has no t been im plem ented

5 T he param eter o f
the tag was
changed in file 2

PA R A M ET ER
CH A N G E

“has had its param eter changed
from parameter from node 1 to
parameter from node 2”

6 The tex t was not
changed in file 2 (to
mimic translation)

U N C H A N G ED “The tex t betw een previous
text and following text has not
been changed”

Figure 5.20 Description o f Possible Errors and Their Related Messages

The first node passed into the function, errornodel, is checked to see if it is NU LL. If

it is not, its error_status is checked. Errornodel com es from list 1, so it cannot have an

error_status o f 3 o r 6 as these only apply to tags from list 2. Therefore there is no need

to check for these. I f the status is 1, 2 or 4, the m essage for these also requires the

inform ation in errornode2, so it is checked to ensure it is no t N U LL, before printing

the error to the error file. I f the first node is NU LL, this m eans that only the second

node, errornode2, has an error. The only erro r codes applicable only to list 2 are 0, 3

and 6 (as the rest either apply only to list lo r to both lists), so only these are checked

for. Depending on the error_status, the relevant m essage is prin ted and the function

returns to the erro r analysis.

5.3.6.2 Locating Docum ent Text Surrounding an Errdr

G e tP rev T ex t: This function is passed the node with the error. Its purpose is to find

the text before this tag in the docum ent. CurrPos records the position o f the current

position in the list, i.e. this node. The previous tex t is found by m oving from the

current node, back through the relevant list, checking the tag in each node until the

tag ‘T E X T ’ is found.

103

G etN ex tT ex t: The text following the error tag is found in a similar m anner to

GetPrevText, except that instead o f m oving backw ards th rough the list, the function

m oves forw ard until the tex t is found.

f i
5.4 Sum m ary

This chapter outlined how the design o f our system was im plem ented. A description

was given o f the tools necessary for preparing the files before they can be used in our

system. The files for storing the m apping w ere described, as w ere the lists for storing

the data internally. W e discussed the m ethod for converting the docum ents to the

generic tag set. Each function in the com parison w as outlined, describing how this

process w orks. Finally, we discussed the algorithm used fo r identifying and reporting

errors in the tags. Our system w as tested w ith a series o f test cases to determ ine the

success o f its design. The following chapter discusses the resu lts o f these experiments.

104

6. Results

6.1 Introduction
In Chapters 4 and 5, the design and im plem entation o f a generic p rocess for the

com parison o f tw o docum ents w ere described. To assess the perform ance o f this

process, a num ber o f sample docum ents w ere used to test the system. Som e o f these

docum ents have artificially created errors in the m arkup in o rder to test each function

o f the system. The next section discusses the data preparation tool. W e then describe

the results o f the com parison o f tw o docum ents o f the sam e m arkup schem e. These

docum ents w ere tested for changed tags, changed param eters, m issing tags, extra tags

and untranslated text. W e then deal w ith the com parison o f tw o docum ents with

different m arkup schemes, w ith the conversion process necessary to allow the

com parison discussed first, follow ed by the issues encountered in the com parison o f

these converted docum ents. Finally, w e discuss the accuracy o f the errors reported .

6.2 Data Preparation Tool

To test the data preparation tool, docum ents w ith several m arkup schem es w ere used.

The overall perform ance is sum m arised in Figure 6.1, and details o f each m arkup

scheme are then described in the following sections.

M IF R T F H T M L L aT eX
No. o f docum ents tested 10 10 10 6
% o f actual tags identified 100% 100% 100% 100%
% o f erroneous tags 1.3% 0.5% 1. 1% 1%
% o f actual param eters identified 100% n/a14 100% 100%
% o f erroneous param eters 3.1% n/a 8% 0.8%
% o f actual tex t identified correctly n /a15 96.2% 97.5% 73.5%
% o f erroneous text n/a 45.8% 1.2% 26.5%

Figure 6.1 Results o f Tests on Data Preparation Tool

where:

• % o f a c tu a l tag s id en tif ied is the percentage o f tags in the docum ent that w ere
correctly identified, calculated as follows:

14 Parameters in RTF are not separated from the tag, and are therefore identified as part of the tag.

15 MIF identifies text within a tag, so this is not applicable as it deals with text outside tags.

105

(tags found - erroneous tags')
actual tags in docum ent

• % of erroneous tags is the percentage o f tags identified by the system that w ere
not tags in the docum ent, calculated as follows:

erroneous tags
to ta l tags found

• % of actual parameters identified is the percentage o f param eters in the
docum ent that w ere correctly identified.

(param eters found - erroneous parameters')
actual param eters in docum ent

• % of erroneous parameters is the percentage o f tags identified by the system that
w ere not tags in the docum ent.

erroneous param eters
to ta l param eters found

• % of actual text identified is the percentage o f pieces o f tex t16 that w ere correctly
identified.

(text found - erroneous tex t-)
actual tex t in docum ent

• % o f erroneous text is the percentage o f pieces o f tex t identified by the system
that w ere not actually docum ent text.

erroneous tex t
to ta l text found

As can be seen from this, the parser identified all o f the tags and param eters in the

docum ents. H ow ever, it also recognised som e o f the tex t as tags o r param eters. The

reasons for this are explained for each m arkup type in the following sections. The

reasons for the high percentage o f erroneous tex t in R T F and L aT eX is also

explained.

6.2 .1 M IF

The following symbols are defined in the system as the delim iters for tags in M IF files:

TAGOPEN <
TAGCLOSE >
GROUPOPEN none
GROUPCLOSE none

16 Where the pieces are words surrounded by tags, e.g. in the following example, there are three

pieces of text: <P>This is bold<\b> text.</P>

106

PARAMSTART
PARAMEND
COMMENTSTART
COMMENTEND
ARGSTART
ARGEND
STYLESTART
STYLEEND
PARASTART
PARAEND

#
new line
none
none

space
none

none
none

none
none

Using these delimiters, a num ber o f M IF files w ere passed through the system The

parser correctly recognised all tags and param eters in the M IF docum ents on which it

w as tested. Because tex t is stored as a param eter in a tag , this w as found in the tag

identification.

6.2.1.1 Issues Encountered & Possible Solutions

If a TAGOPEN delimiter w as found in the tex t string o f a docum ent, the generic parser

assum ed this to be a new tag and w ro te the tex t following it to the file as a tag. This

caused problem s in the com parison, as the text considered to be the tag w as translated

in the second docum ent, meaning that the tw o erroneous tags could no t be m atched

and an irrelevant error indicating that these non-existent tags w ere missing w as

reported . In the conversion, no generic equivalent could be found for the tag , so it

w as ignored, causing no problem s. For example, consider the following String

statem ent:

<String ‘The < character is used as a TAGOPEN in MIF’>______________________

T he generic parser reads String as the tag and “ The ” as the param eter. On

encountering the “<” in the text, the parser assum es it is a new tag and the next

characters in the tex t are read until a param eter separator (a space) is reached. This

text, the “ character” , is w ritten to the file as a tag and “ is used as a TAGOPEN in MIF’”

is considered its param eter. In the localised docum ent, this text will be translated, but

will encounter the same problem . H ow ever, the erroneous “tag ” in that docum ent will

be a translated w ord from the string. As neither tag will have a m atch in the other

docum ent, the user will be given the m essages “The tag ‘character’ is missing from file

107

2” and similarly for the ex tra tag, both o f which are irrelevant and confusing to the

user.

Similarly, a TAGCLOSE symbol in the tex t will end the tag, and the following

characters are considered tex t as they occur outside the tags. To overcom e this, the

parser needs to know when a delim iter occurs in the text. For M IF, it w ould have to

know that all characters betw een the quotes in a String tag are docum ent text. This

could be recognised in a rule-based system w here each m arkup schem e has a set o f

specific rules by which it can be processed [H EA R97]. H ow ever, due to the

com plexity o f implementing such a system, it was not used by this parser and rem ains

an issue for further work.

6 .2 .2 R T F

The symbols for R T F delimiters are defined in the system as follows:

TAGOPEN \
TAGCLOSE space
GROUPOPEN {
GROUPCLOSE }
PARAMSTART none
PARAMEND none
COMMENTSTART none
COMMENTEND none
ARGSTART none
ARGEND none
STYLESTART none
STYLEEND none
PARASTART none
PARAEND none

All tags w ere found in the R T F docum ents used to test the system. H ow ever, because

the param eter is appended to the tag with no intervening space in RTF, the entire

expression is assum ed to be the tag. The com bination o f tag and param eter is allowed

for in the conversion, so this does not cause a problem for the main program .

6.2.2.1 Issues Encountered & Possible Solutions

Text is identified by either a space after a tag, or the text after a GRO UPC LOSE

bracket (i.e. “}”) if the next character is not a recognised delim iter, such as the

108

TAGOPEN symbol (i.e. H ow ever, in the header inform ation, expressions such as

style names in the style sheet definition and font nam es in the font table are also

deem ed to be text, as they are also separated from the tags w ith a space. For exam ple,

the following example defining a style sheet is taken from the header o f an R T F

docum ent:

{\stylesheet
{\widctlpar \f4\fs20\lang2057 \snextO Normal;}
j\s16\widctlpar \b\f4\ul\lang2057 \sbasedonO\snextO Heading;}

1 ___

The style Normal is com posed o f all the tags in the group. I t is no t a m arkup tag , so it

cannot be stored in the tag field. It cannot be considered a param eter to a tag as it is

associated w ith all tags in the group, and m ost o f the tags already have param eters.

B ecause o f the space separating the NsnextO from the style name, Normal is judged to

be text by our system This is no t an accurate description o f such expressions, but in

the system there is no o ther field in which to store it. In o rder to recognise it as a style

name requires a know ledge o f RTF, which a generic parser cannot have. H ow ever, it

sufficed for our com parison as all R T F docum ents are p rocessed in the same w ay and

thus all will contain these com ponents as text. The only p roblem caused by

considering such com ponents as text is w hen com paring docum ents o f the same type

is in erro r reporting. B ecause the previous tex t is displayed in the m essage, these

expressions m ay be used, but this will only happen for errors in the header inform ation

o f the docum ent, no t the docum ent tex t itself. H ow ever, if w e are com paring an R T F

docum ent to another docum ent, this T E X T field will be considered part o f the

docum ent text and will be reported as missing from the o ther docum ent. To overcom e

this p roblem requires the parser to recognise textual com ponents in R TF, such as style

names and font names. A distinction can be m ade betw een these com ponents and the

docum ent text, as the tex t that appears in the header inform ation is part o f the

m arkup, and the rest can then be assum ed to be docum ent text.

As w ith M IF, the use o f a TAGOPEN delim iter in the tex t will be regarded as the start

o f a new tag, causing the sam e problem s as described in section 6.2.1.1. A

GROUPOPEN or GROUPCLOSE delimiter in text will signify the start or end o f a

109

group in this system. Even though R T F precedes delim iters in tex t w ith a “\ ”

[M ICR95], this can only be detected if the p re-processor has a previous know ledge o f

RTF, which a generic too l cannot have.

6.2.3 HTML

The following symbols are defined in the system as the delim iters for tags in HTM L:

TAGOPEN <
TAGCLOSE >
GROUPOPEN none
GROUPCLOSE none
PARAMSTART space
PARAMEND none
COMMENTSTART none
COMMENTEND none
ARGSTART none
ARGEND none
STYLESTART none
STYLEEND none
PARASTART none
PARAEND none

One o f the H T M L docum ents on which the too l was run is given in A ppendix B. The

output file is also given. All o f the tags w ere correctly identified, as w as all text.

6.2.3.1 Issues Encountered & Possible Solutions

T ags in H T M L have attributes instead o f param eters. A ttributes typically consist o f an

a ttribute name (which is a defined keyw ord), an equal sign and a value. For example,

the IM G tag is used to insert im ages into a H T M L page. This tag has a num ber o f

attributes [GRA H96], including:

• SRC, specifying the im age to insert (this is com pulsory).

• ALT provides a text description o f the image.

• ALIGN, which specifies how the im age is positioned relative to the tex t line in

which it occurs.

• HEIGHT and WIDTH, specifying the intended height and w idth o f the im age in

pixels.

e.g.

110

O ur system will consider everything after the IM G tag as part o f the param eter.

Therefore if any one attribute has changed, it is not distinguished from the o thers and

a general m essage reports that the param eter has changed. For exam ple, if the tag

above w as com pared to , the im ages w ould be

found to differ because the param eters differ, rather than being considered the same

image with different alignments. Ideally, these attributes should be extracted and

treated as tags also, e.g. the tag “ IMG SRC” with the param eter “ =”picture.gif"” , the tag

“ IMG ALIGN” and param eter “ =middle” . H ow ever, the com parison process m atches the

tags, no t the param eters, so the correct m atch will still be m ade.

It m ay be possible to overcom e this problem generically by storing any attributes for a

tag together w ith how the end o f the attribute can be recognised in a tex t file, as in:

TAG ATTRIBUTE ENDATTRIBUTE
IMG SRC space
IMG ALIGN space
etc.

On encountering a tag, w e can check the file to see if the param eter contains any o f

the attributes. I f it does, each can be w ritten to the file as a tag and a param eter,

namely:

Tag Parameter

IMG SRC ="picture.gif"

IMG ALIGN =middle

A lthough it is usually om itted, white space is allowed around the equal sign, and

therefore cannot be used accurately as a delimiter. Therefore, a p rocessor could either

rem ove the white space w hen it know s that it is dealing w ith an attribute, or by

recognising the second quotes in the attribute as the end o f the attribute. H ow ever,

this requires a process specific to H T M L which is in conflict w ith the generic nature

o f our research.

The inclusion o f a TAGOPEN delim iter in the tex t can cause problem s as already

discussed. For instance, a TAGCLOSE delimiter used in the attributes o f a tag can

indicate the end o f the tag , e.g. in the following tag , the tag will be ended w hen the

“>” is read in from the ALT value:

111

 b”>_____________________________________

H ow ever, many H T M L docum ents use an entity or num eric character reference to the

symbol to allow com patibility w ith applications that consider any occurrence o f “> ” as

to signify the end o f a tag [RA G G 95]. For example, the num ber corresponding to a

TAGCLOSE symbol is 62, so the following tag could be replaced with:

 b”>__________________________________

O therw ise, a too l specific to H T M L w ould have to be used, which is no t the object o f

the exercise here.

6.2.4 LaTeX

The following table describes the

TAGOPEN
TAGCLOSE
GROUPOPEN
GROUPCLOSE
PARAMSTART
PARAMEND
COMMENTSTART
COMMENTEND
ARGSTART
ARGEND
STYLESTART
STYLEEND
PARASTART
PARAEND

The following docum ent was used to test the parser for LaTeX :

17 In the Implementation Chapter, we discussed how a paragraph identified only with a preceding

blank line can be recognised in the parser by keeping count of the number of new line characters in a

row. If more than one new line character is read in before some text, and the PARASTART delimiter is

BLANKLINE, the text is assumed to be in a new paragraph.

symbols in the system used for the delimiters:

\
space
none
none
[
]
none
none
{
}
none
none
BLANKLINE17
new line

112

\documentclass[12pt]{article}
\begin{document}
\title{LaTeX Overview}
\maketitle
\section{Ovetview}
LaTeX is considered to be generic markup because of its macro commands with
logical names, such as:
\begin{itemize}
\item “title”
\item “section" or
\item “quotation”
\end{itemize}
\section{Logical Or Physical}
“These logical tags coexist with the physical ones, so the user can define the
physical appearance if they wish, but otherwise this can be done using style sheets
for the type of document they declare their work to be. LaTeX can thus be said to
be a generic markup language, though it can be used in an old, physical way or in
the newer logical way” [DILL].
\end{docum ent}___

Figure 6.2 Sample Input LaTeX File

The output file is as follows:

documentclass 12pt article
begin document
title LaTeX Overview
maketitle
section Overview
TEXT LaTeX is considered to be generic markup because of its macro commands

wit
begin itemize
item
TEXT "title"
item
TEXT "section" or
item
TEXT "quotation"
end itemize
section Logical Or Physical
TEXT "These logical tags coexist with the physical ones, so the user can define the

ph
end document

Figure 6.3 Parsed Output File fo r LaTeX Document

The tags and text w ere all correctly identified in this docum ent.

6.2.4.1 Issues Encountered & Possible Solutions

LaTeX has both argum ents and param eters associated w ith tags. For example, in the

m arkup \documentclass[12pt]{article}, the 12pt surrounded by “ [” and “] ” is a param eter,

and article with the “ {” and “ }” is an argum ent. Because w e only have one tex t field,

param, associated w ith the tag , both m ust be stored in this one field. This will cause

113

similar problem s to those described for storing m ore than one attribute in the
Y i

param eter o f a H T M L tag. H ow ever, the com parison will still find m atching tags as

the tag itself rem ains intact.

A nother problem related to the argum ents in L aT eX docum ents is the fact that they

som etim es contain keyw ords (e.g. article, docum ent, itemize) and som etim es

docum ent text, e.g. \title and \section tags take the docum ent and section titles as

argum ents. Therefore the first type o f argum ent should be stored as a param eter to

the tag, but the latter as text to be checked for translation. This can only be achieved

by processing specific to LaT eX to distinguish keyw ords from text. I f all keyw ords

w ere stored in a tex t file, the generic parser could check each argum ent against this

file. I f the argum ent is found it is recognised as a keyw ord, otherw ise it is considered

as text. H ow ever, if this p rocess is applied to m ost o ther m arkup schem es (such as

M IF, RTF), all param eters will be considered as tex t as these schem es do no t use the

concept o f keyw ords. I t is therefore not an acceptable solution and a separate to o l is

required to overcom e this problem , which again contrad icts the concept o f generic

tools.

As in other m arkup schem es, the generic parser cannot cope successfully w ith the

occurrence o f a delimiter in the text, so a separate p rocessor w ould need to be used to

overcom e any related problem s. The im pact o f this on our research is discussed in the

sum m ary o f this chapter (section 6.6).

6.2.5 Overall Evaluation of Generic D ata Preparation Tool

The too l identified all tags and the m ajority o f param eters. The inaccuracies o f the

parser are summarised as follows:

• A ttributes that are a key part o f the tag, such the SR C and A LIG N keyw ords in

 in H TM L, are considered part o f the

param eter. H ow ever, the current m ethod still allows an accurate com parison. I f the

order o f the attributes have changed or any one attribu te has changed, it is not

distinguished from the o thers and a general m essage repo rts that the param eter has

changed.

114

• Certain tags in LaTeX have both param eters and argum ents. This requires both to

be stored in a single field as the system only uses one param eter field. Again, the

current m ethod still allows an accurate com parison o f tags. I f any either the

param eter or argum ent has changed, the erro r m essage only reports that the ta g ’s

param eter has changed, no t which specific part, as discussed in section 6.2.4.1.

• T ext in docum ent header inform ation can be w rongly identified as docum ent tex t in

certain m arkup schem es such as RTF, because it is neither a tag nor a param eter.

They are also associated w ith m ore than one tag. Therefore there is no appropriate

place to store them in our system and they are incorrectly considered as text, as

discussed in section 6.2.3.1.

• Any delimiter w ith m ore than one character cannot be detected in our system as it

w orks on a character by character basis. For example, the following exam ple is a

com m ent from a H T M L docum ent where <-- and --> are the delimiters:

< - This is a comment. -->__
The generic parser ignores all com m ents, as they are irrelevant in the com parison

of the tags in tw o docum ents. H ow ever, in H T M L com m ents, the parser

recognises the “<” as a T A G O P E N delimiter and considers the ” as a tag, w ith

“This is a com m ent. —” as the param eter. This can resu lt in num erous m essages

being reported for missing tags, as the com m ents in the files will no t

necessarily m atch up.

• The occurrence o f delim iters in the docum ent tex t causes problem s in all m arkup

schemes. B ecause an inclusion is handled differently by each scheme, the only w ay

to identify a delimiter in the tex t is to use a to o l for each form at.

This generic parser is successful in locating docum ent tags and param eters which are

the key to our com parison, bu t there are som e problem s w ith tex t in som e m arkup

schemes. Therefore, although it w orks well for our system as the tags are identified, it

is an im practical process for an all-purpose generic parser that w ould require an

accurate and detailed representation o f the param eters and text.

Because each file is trea ted in the same way, each ou tpu t file will be in the same

form at. Therefore, even with som e o f these errors, the com parison still w orks

adequately once all tags are identified. Problem s will arise, how ever, w ith the

115

incorrect identification o f tex t as tags. I f tex t considered as a tag is a direct

com parison, no m atch will be found for it in the o ther docum ent and inappropriate

m essages will rep o rt that a non-existent tag is missing from the docum ent. I f it is to be

converted, no m atch will be found for it in the generic tag set and will be ignored.

The data preparation too l was designed to w ork only on the body o f the docum ent

because o f the different conventions in docum ent header inform ation. H ow ever, m ost

schemes include ex tra inform ation w ith the docum ent, and each has its ow n w ay o f

distinguishing it from the body o f the docum ent, so the main body cannot no t be

identified and extracted by a generic tool. Therefore the header inform ation had to be

processed along with the body o f the docum ent, causing a num ber o f difficulties such

as the style names or font names in RTF, described in section 6.2.2.

6.3 The Com parison of Docum ents

To test the com parison tool, docum ents w ith several m arkup schem es w ere used. The

overall perform ance is sum m arised in Figure 6.4, w ith details o f the errors

encountered described in the following sections. The figures w ere no t broken dow n

by file type as the results for each w ere similar.

% changed tags correctly identified
% tags incorrectly identified as changed
% changed param eters correctly identified
% param eters incorrectly identified as changed
% missing tags correctly identified
% tag incorrectly identified as missing
% extra tags correctly identified
% tags incorrectly identified as extra
% untranslated text identified
% translated text incorrectly identified as untranslated.

Figure 6.4 Results o f Tests on Comparison

where:

• % changed tags correctly identified =
(changed tags found - erroneous changed tags)

actual changed tags

• % tags incorrectly identified as changed (w here this is the percentage o f tags
that w ere identified to have been changed, even though they had not) =

92.3%
1.1%

93.5%
3%

91.4%
8.1%

90.1%
7.9%
100%

16.3%

116

erroneous changed tags
changed tags found

• % changed parameters correctly identified =
(changed param eters found - erroneous changed param eters)

actual changed param eters

• % parameters incorrectly identified as changed =
erroneous changed param eters

changed param eters found

• % missing tags correctly identified =
(missing tags found - erroneous missing tags)

actual missing tags

• % tag incorrectly identified as missing = erroneous missing tags
missing tags found

• % extra tags correctly identified = (extra tags found - erroneous ex tra tags)
actual ex tra tags

• % tags incorrectly identified as extra = erroneous ex tra tags
ex tra tags found

• % untranslated text identified =
(untranslated tex t found - e rroneous untranslated text)

actual untranslated tex t

• % translated text identified as untranslated = erroneous untranslated text
untranslated tex t found

The errors in the com parison w ere due to m any factors, including the problem s o f

constructing a generic parser. The results are discussed fo r each possible difference

below. A list o f errors that m ust be taken into consideration w ere com piled and are

discussed for the com parison o f docum ents w ith identical schem es in section 6.3.6,

and for the com parison o f different schemes in section 6.4.3.

6.3.1 Recognising Changed Tags

The com parison process was successful in recognising m ost o f the changed tags in a

docum ent. H ow ever, it will no t recognise changed tags if there are a num ber o f

117

changes reported in the sam e “hunk”, and it there are erro rs in m ore than 20% o f the

15 tags immediately after the changed tag. In the follow ing exam ple many o f the

following tags have changed. The changes are highlighted in bold:

18

Document 1 Document 2
P P
CENTER * 1
B TEXT *Phone:
TEXT Phone: /I
/B TEXT 01-7045618
TEXT 01-7045618 IP
/P HR
P P
B 1
TEXT Project Title; TEXT ‘ Project Title: *Generic ...
IB 11
TEXT Generic Comparison... IP
/P etc.
etc.

Figure 6.5 Example o f a Tag Change That is Not Detected in the System

The tag B in the first hunk o f changes (i.e. those m arked w ith a “*”) has been changed

to I. H ow ever, because the CENTER tag is missing from file 2 at the same position, the

ReAlign function was called to verify which o f these tags has been changed to I. M any

o f the subsequent tags had changed, so the process did no t consider either CENTER or

B to have changed to I. Therefore, CENTER and B are considered as missing from list

2, and I is considered to be missing from list 1. D espite this error, the inclusion o f the

CompNext and ReAlign functions have im proved the identification o f changed tags, and

tags that have no t changed are less likely to be w rongly identified.

6.3.2 Recognising Changed Param eters

O nce the correct tags had been m atched, all changed param eters w ere recognised by

the system H ow ever, in som e instances, a tag m ay have been incorrectly considered

to m atch another, and if the param eters differed, an error reported that the param eter

had changed, w hen in reality, the tags w ere in fact an inaccurate match.

18 In Chapter 5, we described how up to three differing tags in the next fifteen will be accepted and

the tags will still be considered to match. The percentage is then 3/15 = 20%

118

Som e param eters w ere reported as having changed when the attributes w ere the same

but the order was different, or w here only som e o f the attributes w ere missing, as

described for H T M L in section 6.2. Ideally, a com parison system w ould recognise this

and report an appropriate m essage detailing the reason fo r the difference instead o f

simply stating that the param eter has changed. H ow ever, in o rder to identify missing

sections, the com parison w ould need to know which m arkup schem es use attributes,

which tags have attributes and how the attributes are com posed. As indicated in

section 6.2, this requires separate processing for each schem e. This could be done

either by a separate preparation too l outputting each section as a separate tag , or in

the com parison itself, if it w ere adapted for particular m arkup schem es. H ow ever, the

use o f specific tools is n t an option for us here, as it is outside the scope o f this

research.

6.3.3 Recognising M issing Tags

T he com parison process w as successful in finding m ost o f itihe missing tags in the

docum ent. H ow ever, certain issues such as the order in which tags occur, different

end tags for the same form at, tags that have been m oved and different paragraph

representations will cause tags to be w rongly considered as missing. These issues are

explained later in this chapter. Tags that had changed but w ere not identified correctly

w ere also deem ed as missing. Furtherm ore, som e missing tags w ere m atched to tags,

causing others to be deem ed missing, e.g.

6.3.2.1 Issues in Recognising Changed Parameters

Document 1 Document 2
P P
TEXT Phone: 01-7045618 TEXT *Phone: 01-7045618
/P IP
P P
B B
TEXT Project Title: TEXT ‘ Description:
IB IB
TEXT Generic Comparison... TEXT *This research is involved
IP IP
P HR
B CENTER
TEXT Description: P
/B etc.
etc.

Figure 6.6 Example of an Incorrect Identification of a Missing Tag

119

In this example, the tags in bold are missing from docum ent 2. H ow ever, because o f

the similarities betw een the tags in the same position in docum ent 2, the text “Project

T itle:” is considered to m atch “^D escription” in docum ent 2, and “D escription” in

docum ent 1 is deem ed to be missing. This is explained in m ore detail in section

6.3.6.1.

6.3.4 Recognising Extra Tags

The com parison process w as successful in finding m ost o f the ex tra tags in the second

docum ent. H ow ever, certain issues such as the order in which tags occur, different

end tags for the same form at, tags that have been m oved, different paragraph

representations and the inclusion o f accented characters will cause tags to be w rongly

considered as missing. These issues are explained later in this chapter. Som e tags that

had changed but w ere no t identified correctly w ere also considered as additional tags.

Similarly, groups o f similar tags as described above will again cause tags to be

incorrectly considered as extra.

6.3.5 Recognising Changed Text

To test for the translation o f text, any text in the docum ent that w ould have been

translated w as instead prefixed w ith a * to indicate such a change. The process

com pares the strings and w hen they are found to differ, no error is reported. All tex t

that had been changed w as identified. H ow ever, num erous pieces o f tex t that had not

changed w ere reported as being errors, as no t all tex t in a docum ent is translated. For

example, names, num bers, com panies or p roducts will n o t usually change during

translation, and should not cause an error. If unchanged w ords such as these are part

o f a “translated” sentence, the sentence as a w hole had changed and no erro r is

reported. H ow ever, if the tex t w as broken up by tags, each pibce o f text betw een the

tags is considered separately, and the unchanged tex t m ay be stored on its own. For

example, Author is the only w ord to be translated in the following text, but because the

tex t is considered as a whole, no error is reported to say that Joe Soap had not

changed.

<P>Author: Joe Soap </P>__

120

H ow ever, in the following text, Joe Soap is separated from Author by the bold tag and

stored in a TEXT tag o f its own.

<P>Author: Joe Soap</P> _____________________________________

Therefore, the com parison considers the unchanged Joe Soap as an error. This results

in m essages for unchanged tex t being reported , even though it is no t an error.

H ow ever, to identify parts o f the text that should no t be translated requires the

program to understand the text, which is well beyond the scope o f this research.

6.3.6 Issues Encountered During the Com parison of Docum ents of

the Same M arkup Scheme

6.3.6.1 Groups of Sim ilar Tags

I f a docum ent is form atted consistently, certain groups o f tags can occur repeatedly

throughout the docum ent. For example, each section m ay start with a similar heading.

Therefore, if the docum ents need to be re-aligned, the w rong group o f tags m ay be

chosen to m atch the current tags. In the exam ple in Figure 6.7, a paragraph is missing

from docum ent 2. The missing tags are highlighted in bold in docum ent 1.

Because the tags in the missing group are similar to the tags following it (i.e. they

both consist o f the tags P, B, TEXT, /B, /P), the group o f tags num bered as 2 in

docum ent 1 will be m atched with group 2 in docum ent 2. H ow ever, group 2 in
V»
A

docum ent 2 should m atch group 3 in docum ent 1. T herefore, the com parison will no t

identify the missing tags. W hen the com parison tries to m atch group 3 in docum ent 1

with group 3 in docum ent 2, it will find a difference, and rep o rt the tags in group 3 in

docum ent 1 are missing. The only w ay to solve this is to examine and m atch the

docum ent text. H ow ever, the tex t is expected to differ after translation, so a direct

com parison cannot be applied and the deduction o f the m eaning o f the tex t is beyond

the scope o f this research.

121

Document 1 Document 2
p N\ f p
B

1
B

TEXT Name: TEXT *Name:
/B IB
TEXT Michelle Timmons TEXT Michelle Timmons

'P / V IP
P NV f P
B B
TEXT Phone: 2 TEXT ‘ Project Title:
IB /B
TEXT 01-7045618

/
TEXT ‘ Generic...

/P t V IP
P \ / f HR
B \ / P
TEXT Project Title: 3 IMG SRC = “picture.gif”
/B TEXT This image is...
TEXT Generic... V etc.
/P / /
HR \
etc.

Figure 6.7 Example o f Two Documents with Similar Groups o f Tags

6.3.6.2 Optional Tags

In some m arkup schem es, such as tag sets created using SG M L, certain tags can have

end tags that are optional. The end tag m ay be om itted fo r any elem ent that cannot

contain another elem ent o f the same type, e.g. a paragraph cannot contain another

paragraph. The occurrence o f another paragraph indicates the end o f the previous

one, w hether an end tag is specified or not. T ags o ther than end tags can be optional

also. For example, “the H TM L, H EAD and B O D Y start and end tags can be om itted

from the m arkup as these can be inferred in all cases by parsers conform ing to the

H T M L 3.2 D T D ” [RAG G97]. Therefore, one docum ent in the com parison m ay use

the optional tags and the o ther m ay not. F o r cases such as this, our system reported

num erous errors for missing tags in the docum ent in which the end tags w ere om itted,

even though this is no t an error for certain schemes.

122

For the system to ignore missing tags that are optional requires a know ledge o f the

m arkup to know which are optional and which are not. A tex t file could store a list o f

optional tags for each schem e, e.g.

[HTM]
HTML
/HTML
HEAD
/HEAD
/P
etc.

This information could be stored in the tag m apping file, but this w ould resu lt in the

inform ation only being available for those tags that have generic equivalents in the

system. Therefore, the use o f a separate tex t file is recom m ended.

The preparation too l could then check each tag as it is encountered against this file

and if the tag is optional, it would no t w rite it to the ou tpu t file. This ensures that the

optional tags will no t occur in any docum ent, so a difference will no t be identified in

the com parison. H ow ever, if the docum ent is being com pared to a docum ent from a

different m arkup schem e in which end tags are com pulsory, num erous errors will be

reported for missing end tags, as discussed in section 6.4.3.2.

6.3.6.3 Different End Tags for the Same Format

Even though tw o docum ents o f the sam e m arkup schem e are being com pared, a

m arkup schem e can have different end tags for the same form at or object. In the

following exam ple from RTF, the G R O U PC LO SE tag ends bo th the \i and \b form ats:

\par this paragraph contains text that is both {\i\b bold and italic.}________________

H ow ever, in the following example, the \i0 ends the \i tag and \b0 ends \b.

\par this paragraph contains text that is both \i\b bold and italic.\iO\bO_____________

Therefore, although these tw o examples are equivalent, the tags are not identical, so

an error will be reported .

6.3.6.2.1 Possible Solution

123

It may be possible to overcom e this problem in the data processing to o l by keeping

track o f all tags opened since the G R O U PO PE N sym bol (e.g. by im plem enting a

stack). W hen a G R O U PC LO SE tag is reached an end tag for each opened tag in that

group can be output. To determ ine the end tag fo r each tag, a list o f all start tags and

their corresponding end tags m ust be know n by the sy stem A n external tex t file can

store this inform ation for each schem e and the process can examine this to find the

appropriate end tag. The following exam ple show s a sample file containing only R TF

tags, w ith the start tag on the left and the corresponding end tag on the right:

[RTF]
b bO
i iO
ul ulO
uldb ulO
etc.

Using this m ethod, the first example w ould be processed and ou tpu t as:

6.3.6.3.1 Possible Solution

par
TEXT this paragraph contains text that is both
i
b
TEXT bold and italic.
iO
bO ________________

This is identical to the ou tpu t that w ould resu lt from processing the second exam ple

above, allowing a correct com parison. Also, this form at can be com pared without

error against a similar file in a scheme such as H T M L that uses end tags. The original

form at w ould cause errors fo r a m issing end-bold tag and end-italic tag.

6.3.6.4 The Order in Which Tags Occur

The order in which certain tags can occur in a docum ent m ay differ. For exam ple, if a

piece o f tex t is both bold and italic, there is no standard for the o rder in which the

bold and italic tags should appear. A lthough each application has its ow n conventions,

not all applications will adhere to this order. For example, M icrosoft W ord will ou tpu t

the bold tag and then the italic tag in an R T F docum ent, bu t o ther applications

creating R T F docum ents m ay not necessarily ou tpu t the same order. Also, many

124

docum ents such as H T M L and LaTeX are often crea ted manually, so the o rder is

determ ined by the user.

In our system, if the tags in the tw o docum ents are no t in the same order, tags in the

second docum ent will be skipped over to find the m atch for the tag in the first

docum ent. For example, consider the following extracts from tw o R T F docum ents,

w here the \b tag represents bold, \i is italic, \ul is underline and TEXT is the generic tag

used by the system for docum ent text:

Document 1 Document 2
• ■ • * • t 1

\par \par
ul i
i b
b ul
TEXT TEXT
\b0 \ulO
\i0 \b0
\ulO \i0
etc. etc.

Figure 6.8 Examples o f Groups o f Similar Tags in Different Orders

The \ul tag in the second docum ent will be found by skipping over the \\ and \b tags,

reporting them as missing. W hen the com parison process attem pts to find a m atch for

the \i tag from the first docum ent, it will no t backtrack to the tags it skipped over, and

therefore will no t find the correct m atching tag. The \i and \b tags will then be

reported as missing from the second docum ent because they will no t be found.

6.3.6.4.1 Possible Solution

This problem can be overcom e in a num ber o f ways. Firstly, the process could check

previous unm atched tags. This is no t im plem ented in our system as the algorithm on

which it was based does not incorporate this. It m ay be possible to update the

algorithm to include this a t a later stage.

The second w ay to overcom e this problem is for the p re-processor to keep track o f

certain form ats which are active (i.e. those that have been opened but no t yet closed),

and output them in the o rder specified by our system. T o do this, the pre-processor

125

m ust know which tags can be rearranged, e.g., a paragraph tag cannot be m oved. The

only tags that can be m oved are those specifying the form at o f the text, such as

underline, bold, end bold, etc. This inform ation can be stored in an external file to let

the process know the tags in each schem e for these form ats. The p rocess also needs

to know w hat groups o f tags can be rearranged. For exam ple, consider the following

extract from an R T F docum ent:

\par \ul\b This is some text \bO\ulO\i\b and this is more text \bO\iO________________

The tags \b0, \ulO \i and \b (in bold) are all form atting tags that can be re-ordered.

H ow ever, if these are re-ordered alphabetically, they becom e:

\par \ul\b Text \b\bO\i\ulO more text \bO\iO____________________________________

The start tags and end tags have been mixed together, which is no t a correct

representation o f the docum ent. For example, the \b tag is im m ediately follow ed by a

\b0 tag which turns o ff bold. Therefore, start tags can only be rearranged am ong

them selves, and similarly w ith end tags. Furtherm ore, character form atting tags should

not be mixed w ith paragraph form atting tags such as line spacing, indentation, etc.

The inform ation to be stored in the external file is the tag , w hether it is a start tag or

end tag, and w hether it is a character or paragraph form at, e.g.:

[RTF]
b STARTTAG CHAR
i STARTTAG CHAR
bO ENDTAG CHAR
¡0 ENDTAG CHAR
\sl STARTTAG PARA
\li STARTTAG PARA
\ri STARTTAG PARA
etc.

where \sl is line spacing, \li is left indent o f a paragraph and \ri is the righ t indent o f the

paragraph.

Using this m ethod, the data preparation to o l w ould read in each tag and check the

external file to determ ine if it can be m oved. I f it can, it w ould be stored in the

program using a stack, for example. The next tags are read in and checked until a tag

is encountered that either is no t in the file, or it is in the file bu t is o f a different type

(i.e. if the tag is a start tag, w e stop w hen an end tag is reached and vice versa. The

126

same steps are taken w hen checking for character and paragraph form atting). The

group o f tags are sorted and output in this new order, and the p rocess continues in the

same manner. In the exam ple in Figure 6.8, the to o l could outpu t \b \i \ul, if the order

chosen for the system w as alphabetical. The second docum ent w ould be processed by

the same tool, and so the tags w ould be w ritten in the sam e o rder allowing an

accurate com parison.

6.3.6.5 Accented Characters

I f one o f the docum ents being com pared has been localised, it is possible that it will

contain accented characters. These are usually included in the docum ent using another

tag. The following exam ple shows how an is included in an R T F docum ent:

\par An accented a: {{\field{*\fldinst SYMBOL 171 \\f "Times New Roman Special
G1"\\s10}{\fldrslt\f45Vfs20}}}___

The text “ An accented a:” precedes the accented character, and the {{\field{*\fldinst

SYMBOL 171 \\f "Times New Roman Special G1" \\s 10}{\fldrslt\f45\fs20}}} represents the

character. I t is referencing a symbol on the “Tim es N ew R om an Special G l ” font. The

com parison o f this to the original docum ent will obviously repo rt num erous erro rs for

the extra tags.

6.3.6.5.1 Possible Solution

A list o f tags representing all accented characters in a tex t file could be checked when

an error is encountered in the com parison. H ow ever, because o f the num ber o f tags

that constitu te each accented character, it m ay be better to w ait until after the

com parison and then check all groups o f unm atched tags w ith the tags com prising

each accented character. I f a m atching group is found, then these tags are not

reported as errors.

6.3.6.6 Moved Tags

If a group o f tags had been m oved in a docum ent, the interm ediary tags w ere reported

as missing. In the following example, the tags m arked in bold w ere m oved in the

docum ents.

127

Document 1 Document 2
p P
B B
TEXT ‘ Name: TEXT Name:
/B /B
TEXT Michelle Timmons TEXT Michelle Timmons
IP IP
P > HR
B P
TEXT ‘ Project Title: IMG SRC = “picture.gif”
IB TEXT This image is...
TEXT ‘ Generic... IP
IP P
HR B
P TEXT Project Title:
IMG SRC = “picture.gif” /B
TEXT This image is... TEXT Generic...
IP IP
etc, etc.

Figure 6.9 Example o f Two Documents with Groups o f Moved Tags

W hen the com parison reaches the tags m arked w ith the it recognises the

difference in the tw o docum ents, as P does not m atch HR. I t skips over the bold tags

in docum ent 2 until it finds the tags m atching those in docum ent 1. These tags in

docum ent 2 are m arked as extra in that docum ent. The com parison continues until the

m oved tags (m arked in bold) are found in docum ent 1. N o m atch can be found for

them as the m atching tags have already been processed and the function does not

backtrack. B ecause o f this, the m oved tags in docum ent 1 are considered to be

missing.

6.3.6.6.1 Possible Solution

It may be possible to solve this problem by examining the unm atched tags in both

docum ents after the com parison and trying to find groups o f tags that m atch. These

can then be deem ed as having been m oved. H ow ever, it is possible that this w ould

m atch groups o f similar tags even though they do not correspond, as described in

section 6.3.6.1.

128

In order to allow the com parison o f tw o docum ents in different form ats, they w ere

first converted to the generic tag set. The perform ance o f the conversion p rocess is

described below. W e then discuss the com parison o f tw o converted docum ents,

followed by a discussion o f the issues encountered therein. B ecause the resu lts o f the

com parison o f converted docum ents w ere so similar to those o f docum ents w ith the

same m arkup, they are incorporated into the results o f the overall com parison in

Figure 6.4.

6.4.1 Conversion

The conversion process is limited by the num ber o f tags o f each file type associated

w ith generic tags in the tag m apping file. All unrecognised tags are changed to

NOMATCH as w e cannot m ake a guess as to w hat the unrecognised tags m ean and are

subsequently ignored in the com parison. B ecause o f this lim itation, no t all tags w ere

identified for the com parison p rocess in the tests, resulting in a loss o f accuracy. In

fact some o f the tags that do no t have generic equivalents are com m only used w ithin

the m arkup scheme. For example, the M IF tags Pgf (defining a paragraph form at),

PgfFont (defining character form ats for a paragraph), and ParaLine (defining a line

w ithin a paragraph) w ere not converted. H ow ever, on examining the tags w ith no

mapping to the generic tag set, it w as d iscovered that m any o f them do no t have an

equivalent in o ther m arkup languages, and therefore a m atching tag w ould no t be

found in a docum ent o f another m arkup scheme.

6.4.2 Com paring the Equivalence of Two Docum ents

A lthough there is a loss o f detail during the conversion for tags that are not contained

in the generic tag set, this results in the equivalence o f the docum ents, ra ther than

each tag, being com pared. For example, consider the following paragraphs. Figure 4.2

illustrates a paragraph in RTF:

6.4 Comparing Two Documents with Different Markup

/par This is {\b bold} text in RTF.___________________________

Figure 6.10 Extract from RTF document

129

The figure below is the same paragraph m arked up using M IF:

<Para
<ParaLine

<String This is ‘>
>
<ParaLine

<Font
<FWeight ‘Bold’>

>
<String ‘bold ’>

>
<ParaLine

<Font
<FWeight ‘Regular’>

>
<String ‘text in MIF.’>

>

Figure 6.11 Extract from MIF document

The conversion o f the R T F and M IF extracts w ould result in the figure below:

(a) PARAGRAPH
TEXT This is
BOLD
TEXT bold
BOLDOFF
TEXT text in RTF

(b) PARAGRAPH
NOMATCH
TEXT ‘This is ‘
NOMATCH
NOMATCH
BOLD
TEXT ‘bold ‘
NOMATCH
NOMATCH
BOLDOFF
TEXT ‘text in MIF.’

Figure 6.12 Extract from Documents After Conversion: (a) RTF (b) MIF

If ParaLine and Font had equivalent generic tags, then com paring these tw o

paragraphs w ould give three errors fo r ex tra ParaLine tags and tw o for the extra Font

tags in the M IF docum ent. H ow ever, because there is no generic equivalent and

NOMATCH tags are ignored in the com parison, no errors are reported . Therefore, this

loss o f detail results in a com parison w ith an emphasis on the equivalence o f the

docum ents.

This is m ore beneficial to the user because reporting that a ParaLine tag is missing

from an R T F docum ent, for exam ple, is irrelevant because R T F does no t support the

130

concept o f lines in paragraphs so nothing can be done to the R T F docum ent to “fix”

this error. H ow ever, reporting that a tag such as PA R A G R A PH or BO LD from the

generic tag set is missing, informs the user o f an error tha t can possibly be corrected

in another m arkup scheme, as the generic tag set consists o f elem ents and form ats

com m on to m ost schemes. Therefore it is recom m ended that if the user wishes to

extend the generic tag set, they only do so for widely used form ats.

Instead o f relying on the user to m aintain the generic tag set correctly, there is another

w ay to eliminate the problem o f differing am ounts o f tags describing the same form at.

This is to create a too l to identify the com bination o f tags in a M IF docum ent that

constitu te bold text, for example, and outpu t a single tag for them . H ow ever, this

requires a too l for each separate m arkup schem e in which this problem can occur, and

this conflicts w ith the concept o f generic tools.

O ther tags that are com m on in m any schem es such as line spacing, borders and those

relating to tables, w ere also ignored by the system, but this w as because the existing

tag m appings do no t cover all form ats and elem ents as only a subset w as included to

test the design.

6.4.3 Issues in the Comparison of Two Converted Documents

The issues encountered w hen com paring docum ents w ith identical form ats (e.g.

recognising changed tags, missing tags) are also applicable to the com parison o f tw o

docum ents o f different m arkup schem es, given that the com parison p rocess is the

same after conversion. In addition to these, a num ber o f o ther issues w ere discovered

when com paring tw o converted docum ents.

6.4.3.1 Paragraph Representations

The w ay in which different m arkup schem es represent paragraphs can cause problem s

in the com parison. H T M L and R T F record only the paragraph and consider all the

tex t betw een the paragraph start tag and paragraph end tag as one block o f text.

H ow ever a paragraph in M IF is broken dow n into separate strings o f tex t in ParaLine

elem ents, w here the ParaLine m arks a single line o f the parag raph’s text. Therefore the

ParaLine tags have no equivalent in o ther schem es and w ould simply be reported as

131

missing from the o ther docum ent. For instance, consider the following paragraph in

RTF:

/par Another problem that can arise in comparing different markup schemes is the
way in which each scheme represents paragraphs.____________________________

Figure 6.13 Example Paragraph in an RTF Document

The paragraph in the figure below is the equivalent paragraph in M IF:

<Para
<ParaLine :l

<String ‘Another problem that can arise in ’>
>
<ParaLine

<String ‘comparing different markup schemes schemes is the way ’>
>
<ParaLine

<String ‘in which each scheme represents paragraphs.’>
>

>__________________

Figure 6.14 Example Paragraph in a MIF Document

The conversion o f the R T F paragraph w ould resu lt in the following:

PARAGRAPH
TEXT Another problem that can arise in comparing different markup schemes is
the way in which each scheme represents paragraphs._________________________

Figure 6.15 Converted Paragraph in RTF

The M IF paragraph w ould resem ble the following figure after conversion:

PARAGRAPH
NOMATCH
TEXT ‘Another problem that can arise in ‘
NOMATCH
TEXT 'comparing different markup schemes schemes is the way ’
NOMATCH
TEXT ‘in which each scheme represents paragraphs.’__________________

Figure 6.16 Converted Paragraph in MIF

Com paring these docum ents reports that there are num erous ex tra T E X T tags in the

M IF docum ent.

6.4.3.1.1 Possible Solution

Any tex t separated w ith ju st NOMATCH tags could be com bined into a single TEXT tag

because NOMATCH tags are ignored by the com parison anyway. H ow ever, this m ay

132

no t be an accurate representation as the NOMATCH tag m ay have been an elem ent

such as a table that is no t currently recognised by this system. Elem ents such as this

w ould split the tex t in the docum ent. N evertheless, bo th docum ents w ould be

processed in the same m anner and therefore the tex t w ould be com bined in both

docum ents.

For a m ore accurate solution, a separate parser for M IF and o ther such schem es could

join all the ParaLine’s w ithin the paragraph tags into a single paragraph for

com parison to o ther file form ats while ensuring that it is valid union, but this w ould

no t be a generic tool as it w ould rely on processing specific to the m arkup scheme.

6.4.3.2 Differing M ethods o f Ending Tags

M any m arkup schemes, including H TM L, use a start tag to identify the start o f an

elem ent or form at, and an end tag identifying the end o f it, e.g.

<P>This is a HTML p a ra g ra p h and < B x l> th is text is italic and b o ld .< /B x /lx /P >

In this example, the paragraph is started with the <P> tag, and < /P> signifies the end

o f the paragraph elem ent. The tex t is set to bold w ith the tag, turns it off,

and likewise for the italic.

O ther schem es such as M IF nest tags within each other, ra ther than using end tags.

Therefore the delimiter sym bol used to close the tag also ends the elem ent itself, as

<Para
<ParaLine

<String This is a MIF paragraph and ’>
> # end of ParaLine
<Font

<FWeight ‘Bold’>
<FAngle ‘ltalic’>

> # end of Font
<ParaLine

<String ‘this text is italic and bold.’>
> # end of ParaLine
<Font

<FWeight ‘Regular’>
<FAngle ‘Regular’>

> # end of Font
> # end of Para

133

In this example, the String tag is nested inside the ParaLine tag, w here it itself is

nested inside the Para tag. The “> ” m arking the end o f the Para tag ends the

paragraph, and similarly the “>” m arking the end o f the ParaLine tag ends the ParaLine

elem ent, i.e. there is no separate tag used to end the elem ents.

Schem es such as R T F use yet another m ethod o f ending form ats and elements.

A lthough m any R T F tags have end tags, (e.g. \b0 ends a \b tag), usually tags are

grouped together using group-open and group-close delim iters, { and }, and a group-

close delim iter will end all tags w ithin that group, e.g.

\p a r This is an RTF p a ra g ra p h and {\i\b this text is italic and bold.)_______________

H ere, the \i and \b tags are grouped together, and on reaching the } fo r that group,

both tags are ended.

These differences in the m ethods o f ending tags can cause problem s w hen trying to

com pare them. A n actual end tag in H T M L is equivalent to a “> ” in M IF that ends the

tag, or an end group in R T F to which m any end tags can correspond. A lso, our data

preparation too l rem oves all delimiters, leaving no indications o f w here tags are

closed in M IF and RTF. H ow ever, for the system to have used this inform ation, it

would have to understand each form at, requiring separate processing for each

scheme. I f no m atch is found for an end tag , w e cannot assum e that this is because the

m arkup in the other docum ent does not record them, as it could be the case o f a

missing end tag.

6.4.3.2.1 Possible Solution

To overcom e this problem , a separate too l could process each m arkup schem e that

does no t use an end tag, outputting a relevant tag on m eeting the TAGCLOSE or

G R O U PC LO SE symbol. For exam ple, w hen parsing a M IF docum ent, on finding a >

that closes a Para tag, for example, the too l could ou tpu t E N D PA R A for the tag.

D etecting which tag it is ending will also differ depending on the schem e. For M IF,

the too l could keep track o f the tags that have been opened and w rite an end tag for

the m ost recently opened. For exam ple, in the following paragraph, the first

TAGCLOSE delimiter encountered is for the m ost recently opened tag, String:

134

<Para
<ParaLine

<String This is a paragraph.’>
> # end of ParaLine

> # end of Para__

Alternatively, the tools could use the com m ents output by Fram e p roducts for each

tag-close, in the same w ay as fm2HTML [STEP], although m anually generated files

may not include com m ents. A to o l for R T F could use flags to reco rd w hat tags are

open, and output appropriate end tags on encountering the group close delimiter, as

described in section 6.3.6.3 above.

H ow ever, each o f these solutions requires a too l for each specific m arkup language,

which is in conflict w ith the concept o f generic tools. T he im pact o f this on our

research is discussed in the sum m ary o f this chapter (section 6.6).

6.4.3.3 The Storage o f M easurem ents

A nother problem encountered during testing is the w ay in w hich num bers and

m easurem ents are stored in different m arkup schemes. For exam ple, num bers can be

stored as integers or decim als by the m arkup scheme. B ecause they are treated as

characters by this system, a string com parison o f 1 and 1.0 will fail to find them the

same.

6.4.3.3.1 Possible Solution

W e could try to convert the param eters to num bers, and com pare these (i.e. com pare

the values o f 1 and 1.0 instead o f the characters they are com prised of). H ow ever,

some o f these num bers m ay be used to represent a m easurem ent, and different m arkup

schem es use different units o f m easurem ent. For example, R T F m easures in tw ips19,

w hereas M IF uses inches. To specify a left indent o f 1 inch for a paragraph, R T F will

use the tag \N1440, w ith the param eter being 1440, and M IF will use <PgfLlndent 1.0">

so the param eter is 1.0". E ven though these are equivalent, they are not the same. To

convert these to num bers will no t w ork in this case, as firstly, the M IF indent contains

19 A twip is “l/1440th of an inch or 1/20 of a printer's point. There are thus 1440 twips to an inch or

about 567 twips to a centimeter” [HOWE97].

135

a non-numeric character ("), and even if they both could be converted to numbers, a

comparison will fail because they are not identical.

Our system reports an error stating that the parameters of these tags are different in

cases such as this. Ideally, it would recognise the equivalence between the parameters

and not give an error. As most markup schemes use only one unit of measurement,

this could be used to convert the measurements to a single unit used in our system.

For example, if we decided to use centimetres in the system, all measurements in MIF

are in inches, so any parameters that are numeric and are ended with a " (identifying

the unit of measurement) could easily be changed to centimetres in the conversion

process. However, in schemes such as RTF that do not use a symbol to indicate the

unit, this is not possible. For example, RTF uses numbers for many purposes,

including the indication of fonts in the font table, font size, styles in the style sheet,

dates and colours. Because there is no indication of the purpose of any number, it is

wrong to assume all numbers are twips and then convert them to centimetres. We

would need to know the purpose of each number, which can only be determined by

understanding the markup scheme. It may be possible to do this by listing the tags that

use measurements for each scheme, along with the default units used, in an external

file that can be examined by the preparation tool. If the tag is ¡in this list, it could then

convert it to the unit used in our system. If this is not possible, a separate tool for

each scheme would be required, which is conflicting with the concept of our research.

6.5 Error Reporting
An example of the errors reported in a comparison of two documents as follows

136

RESULT OF COMPARISON OF c:\bcw\test\htmltest1\myoutput.htm AND
c:\bcw\test\htmltest1\myoutput2.htm
UNCHANGED: The text "E-mail:" between

Michelle Timmons
and

mtimmons@compapp.dcu.ie
has not been changed in file 2
MISSING TAG: The 'B ' tag between

mtimmons@compapp.dcu.ie
and

Phone:
in file 1 is missing from file 2.
MISSING TAG: The '/B ’ tag between

Phone:
and

01-7045618
in file 1 is missing from file 2.

Figure 6.17 Extract from an Error Report File

6.5.1 Issues In the Error Reporting of the System

6.5.1.1 Displaying the Erroneous Tag

Displaying the actual document tag is not a desirable way of presenting the user with

the problem because they will not necessarily understand the tag, especially if the

document was created in a WYSIWYG package. However, because the process is

designed to be generic and accept document of any type, we cannot give an

explanation of the tag without a list of all tags of all types.

6.5.1.1.1 Possible Solution

It may be possible to add this description to the tag mapping file, as in:

[RTF]
par PARAGRAPH Paragraph
b BOLD Bold
bO BOLDOFF End bold
qj JUSTIFY Full justification of paragraph text
etc.

Alternatively, we could check the existing tag mapping file for its generic equivalent if

one exists, and display that in the message, e.g. using BOLDOFF is more informative

than displaying the \b0 from RTF.

137

mailto:mtimmons@compapp.dcu.ie
mailto:mtimmons@compapp.dcu.ie

I

For each tag with an error, the system displays the tag with the text preceding and

following it in the document, even though the tag will apply to only one of the pieces

of text displayed. This may confuse the user as to which piece of text is in. Displaying

the associated piece of text would be more beneficial. However, to do this requires an

understanding of each tag to determine whether it is a start tag or end tag. A start tag

applies to the text following it, and an end tag is associated with the previous text.

Consider the following example:

<P>Text 1 text 2 <\Bxl> text 3 <\l> text 4.<\P><P><Bxl> text 5_______

The <P> is a start tag and is therefore associated with the text following it, i.e. “Text

1”. is setting the text following it to bold. As a start tag, it has no bearing on the

previous text, “Text 1”, so it is associated with text 2. <\B> turns off the bold

formatting of the text preceding it, so is associated with “text 2”. <l>, even though it is

directly beside <\B>, has nothing to do with “text 2”, but rather is applied to “text 4” to

make it italicised, and so on. This demonstrates that determining the text to which the

tag applies is not related to the proximity of the tag to the text (e.g. the second <P>

tag in the above example is closer to “text 4” but actually is associated with “text 5”)

or which tags are adjacent (e.g. the <\B> and <I> are beside each other, but yet they

apply to different text). Rather, determining the associated text depends on whether

the tag is a start tag or end tag.

Deciding if a tag is an end tag is complicated by the use of different end tags for the

same format as described in 6.3.6.3 and the different methods of ending tags, as

discussed in section 6.4.3.2. For example, in MIF the text is embodied in a String tag

and the end of the tag is indicated by the TAGCLOSE delimiter. There is no separate

end tag so there is no uncertainty as to which piece of text the tag applies. However,

HTML uses end tags like those in the example above. RTF can use different ways of

ending the same tag, so this can cause ambiguity. Therefore, to decide whether a tag

is a start tag or end tag depends on the markup scheme. Information indicating the

role of a tag could be stored in an external file which could be examined during the

error reporting process. This file could be similar to the layout of the tag mapping

file, as in:

6.5.1.2 Displaying the Associated Text

138

By careful maintenance of the tag mappings in the system, the conversion will result in

a comparison of the equivalence of documents of differing schemes, which is more

beneficial to the user.

The comparison worked well in most cases. However, problems were encountered

that were again due to the peculiarities of each markup scheme. These can be

categorised in two ways: those that require information about each markup scheme

and those that require special processing. Our method of allowing the process to

“understand” each scheme is to store information on each scheme in an external text

file to be examined during processing, as used in the conversion. Many of these, such

as optional tags, the order of tags, and the specification of numbers could be

overcome by extending the text file(s) to cover other characteristics of the schemes.

However, the issues requiring special processing (such as the number of tags used to

specify a single format, the representation of paragraphs, different ways of ending

tags) can only be overcome a specific tool to process each scheme to solve them

The system as a whole would obviously benefit greatly from a knowledge of each

scheme to handle the issues of each individually, as is currently the case for tools used

in the industry. However, each of these tools is designed to work specifically with a

single scheme, and a new tool must be developed for each new markup scheme. Our

aim was to discourage this practise by developing a generic process that can be used

on all schemes. To keep the comparison as generic as possible required omitting all

details of any markup scheme. Despite this, however, the comparison successfully

dealt with most of the test cases.

140

The purpose of this research was to examine the viability of a generic process to

compare two documentation files. The motivation behind this research came from the

localisation industry. An important part of the localisation process is the quality

assurance of all localised products, including help and documentation. Translation of

text inevitably introduces accidental alterations into the formatting and layout of the

document, requiring the verification of the localised document against the original.

We also aimed to contribute to the standardisation of localisation software by devising

a solution that is generic, allowing reusability. Therefore the process was developed

to work on the markup of any documentation. In keeping with the concept of

generality, the process also incorporates the comparison of documents with different

markup schemes. Although localised documents usually employ the same scheme, this

process could be applied to the comparison of the equivalence of documents

published in different formats (e.g. printed documentation, on-line documentation,

WWW pages).

We proposed the development of a generic process that can compare any two

documentation files and explain the differences found. This process involves the

identification and comparison of the markup codes that specify the format and

structure in both documents, where the format is the physical appearance of a

document (e.g. bold text, underlines) and the structure is how the document is

composed (e.g. chapters, paragraphs). This markup is extracted from the document by

a generic parser that identifies the tags from the specified delimiters.

Because of the differences between the two categories of markup (specific and

generalised), four different cases were identified in which different treatment is

required:

• the comparison of two documents of the same markup scheme.

• the comparison of two documents with specific markup.

• the comparison of two documents of with generalised markup.

7. Conclusion

141

• the comparison of two documents of the different markup categories (i.e.

one specific and one generalised).

The comparison of two documents of the same markup scheme required an algorithm

to compare the documents tag for tag and to identify and report the reasons for any

differences found. The process checks for tags that have changed, parameters to tags

that have been altered, tags missing from either document and untranslated text. Our

process could be implemented with any comparison algorithm deemed suitable for the

task in hand. The comparison we considered most suitable was the algorithm on

which the UNIX diff command is based. However the comparison algorithm used is

extraneous to our process, as it is only used to allow us to implement our generic

process. This research involved the modification of a comparison algorithm to be

applied to document markup, rather than its development as such.

The comparison of two documents with specific markup uses the same comparison as

for documents with identical markup schemes. However, because each markup

scheme uses its own set of tags, the markup of both documents must first be

converted to the same tag set. Our generic tag set to which the documents are

mapped incorporates formats and elements common to most markup schemes.

The comparison of two documents with generalised markup required the markup of

both documents to conform to a generic structure to allow the elements to be

compared. For schemes with a defined tag set, each tag is mapped to a tag in our

generic tag set describing the structure. However, for generalised markup languages,

the elements in each document need to be assessed to determine their role in the

structure of the document, e.g. a paragraph, section, etc. In our prototype, the user

must create a separate text file with a mapping for each tag identifying an element in

the document to a tag in our generic tag set describing the structure. However, this

may be automated by developing a process to examine the contents of each element to

determine the generic element to which it corresponds.

142

In order to compare two documents of the different markup categories, we proposed

that both documents should be converted to the generic elements in the internal tag

set to allow the comparison process to be applied. This was not implemented in our

prototype, but is a topic for future work. We described how this could be done by

identifying textual and graphical elements (e.g. words, lines, images) and determining

their role in the structural elements of the document.

A prototype was developed to implement these ideas and assess the viability of our

design. We found that the concept of a generic parser was successful for its intended

purpose. It identified all tags in the documents, which was the main aim, as well as all

of the parameters. However, some of the text was incorrectly identified as tags or

parameters. From an analysis of the results, it can be seen that the results for the

identification of text vary greatly over the different schemes, which leads us to believe

that this is due to the different characteristics of the schemes, rather than the process

itself.

The generic comparison process worked well in most cases, correctly identifying over

90% of the differences between the files. However, not all of these differences were

errors. Some are necessary as part of the localisation, for example, the deletion of

U.S.-specific information. However, many of the discrepancies are due to issues with

the markup such as optional tags, the order of tags, different end tags for the same

format, different paragraph representations and differing methods of ending tags. For

example, if optional tags are used in one document, but omitted from the second, all

the optional tags are reported as missing from the second document. Although this

causes differences between the files, they are not errors. If the results were adjusted to

take account of all such issues, the accuracy of the comparison would be considerably

reduced. However, many of these issues were anticipated, but we chose to ignore

them partly due to time constraints, but more importantly because of the infrequency

of their occurrence. For example, applications are consistent in outputting documents,

so tags from the same application will always be in the same order, with the same end

tags and the with same treatment for optional tags (e.g. most applications always use

optional tags). Nevertheless, these issues should be overcome to develop a more

beneficial process, as they are of no concern to the user.

143

The conversion process was limited by the number of mappings from specific to

generic tags stored in the system. The design of the process requires that all of the

common formats and elements are covered, but for the purpose of this research only a

subset was used and therefore needs to be extended. However, the conversion was

successful for all mappings defined in the system. This approach resulted in a

comparison of the equivalence of the two documents, as tags with no counterpart in

other schemes are ignored. The success of this process is dependent on the careful

maintenance of the mappings. The inclusion of tags particular to a scheme introduces

unnecessary detail in the comparison, yet if too few tags are included, formats and

elements are overlooked.

To summarise, there were many issues that affected the overall performance of the

process, most of which were caused by the different features of each markup scheme.

To keep the process as generic as possible required omitting all details of any markup

scheme. As discussed in Chapter 6, for a process to be successful it needs to

understand each scheme it deals with to handle each of its characteristics and process

them correctly. Some information about each scheme can be incorporated through the

inclusion of text files during processing. This can help to overcome issues caused by

optional tags, the order in which tags occur and different methods of ending tags in

the same format. However any scheme that requires special processing rather than a

knowledge of its characteristics needs a specific tool to perform this. These include

problems caused by different representations of paragraph and differing methods of

ending tags in different schemes. Therefore there is a trade off between accuracy and

generality.

The majority of issues encountered in this research were due to the differences in each

markup scheme, and the whole process would obviously benefit from a knowledge of

each scheme. However, our aim was to overcome the development of separate tools

for each markup scheme by creating a generic comparison process. Therefore this

knowledge could not be built into the system. Despite this, it still achieved satisfactory

results, illustrating that there are benefits to using generic processes.

144

However, if a specific parser was introduced to handle the peculiarities of each

application area, many of the obstacles previously encountered by the generic process

would be eliminated. If this research were to be extended in this way, each file could

be output in a standard format (e.g. all elements are marked with separate start and

end tags), thereby maintaining the comparison process as generic. Although this is not

a truly generic solution, it is still in keeping with the intention of this research, to

develop a generic comparison process rather than a wholly generic system for

localisation verification. A suite of generic tools could be developed to take the

standardised files as input and perform identical processing steps on each. This

requires one parser for each markup scheme and a single tool for each process that

can work on the output from all of the specific parsers. Therefore, we propose that

generic tools are a viable and beneficial option when used in conjunction with tools

specific to the application area.

7.1 Future Work

Expansion of the Generic Tag Set: The expansion of the generic tag set is necessary

to include other text-based markup schemes and to incorporate elements and formats

such as:

• tables

• frames

• cross references

• page breaks

• section breaks

• columns

• document headers

• document footers

• footnotes

• endnotes

• colours

• borders and shading

• drawing objects (e.g. lines, text boxes)

• automatic heading numbering

145

Comparison of Specific and Generalised Markup: A process was described in

Chapter 4 in which the textual elements of the document are identified and examined

to determine their role in the structure of the document. It is proposed that this is

implement to allow the comparison of documents of differing markup categories.

Recognition of Elements in Generalised Markup: An automated process could be

used to examine the content allowed in each element of the document to determine its

role. For example, if an element can contain only text, it would be considered part of a

paragraph. The process is discussed in chapter 4.

A number of anticipated problems were not addressed in the prototype for our generic

comparison process. Solutions for these, as well as the other issues encountered in the

assessment of the prototype, were suggested in the results chapter. These are

summarised as follows:

Optional Tags: All optional tags for each scheme should be listed in an external file

to be included during processing. If the tag considered missing is in this list, the

difference is not reported as an error.

Different End Tags for the Same Format: All start tags should be matched with

their end tags in an external file to be included when processing schemes that allow

different end tags. When a difference is encountered, the file is checked and if the

erroneous tag is found, the other equivalent end tags are examined to see if replacing

the erroneous tag with one of these will solve the problem. If the problem is due to

the use of end-group delimiters to end all tags in the group, the end-group delimiter is

replaced with the end tags found in this file for any tags opened in the group.

Accented Characters: An external file should also store a list of all accented

characters in each scheme. When extra tags are encountered in the translated

document, this file can be examined to see if the difference is caused by the inclusion

of tags representing an accented character.

146

The Order in Which Tags Occur: A list distinguishing start tags from end tags, and

character formatting from paragraph formatting can be used to identify groups of tags

in which rearrangement is allowed. By re-ordering the tags in the preparation tool, no

differences caused by the order of the tags can occur in the comparison.

Moved Tags: It was suggested that the process is extended to examine the

documents after comparison to find groups of unmatched tags. If a group in one

document could be matched to another group in the second document, it can be

assumed that these tags were moved.

Different Paragraph Representations: If a paragraph is represented as separate

lines in a scheme, the lines can be merged into a single paragraph by ignoring all

NOMATCH tags between the TEXT tags, and considering a group of TEXT tags as a

single entity. A more accurate solution requires separate processing.

Differing Methods of Ending Tags: Separate tools are required to identify the end

tag in each scheme and output a generic equivalent. This problem cannot be solved

simply by providing extra information through a file, but requires a different process

for each scheme.

The Storage of Measurements: A list of all tags that have numeric parameters

representing measurement, and the units in which these measurements are stored,

would allow all measurements to be converted to the unit of measurement used by the

system. For example, if a parameter represents a measurement in inches, it can be

converted to centimetres, if that was the unit chosen for the system.

It is recommended that the solutions for issues caused by specific markup schemes are

implemented in the data preparation tool as we proposed that all characteristics of the

schemes are removed in the pre-processing stage to allow the comparison to remain

generic.

147

Bibliography

[ADOB95] On-line MIF Reference manual (shipped with FrameMaker 5.1), Adobe

Systems Inc., 1995

[APPL94] Introducing SGML, the Word Processing Standard fo r the 90’s,

AppleSeeds (Newsletter of the Society of Technical Communication, New

York Metro Chapter), 1994

[BOVE87] The Art o f Desktop Publishing: Using Personal Computers to Publish

it Yourself, T. Bove, C. Rhodes, W. Thomas, Bantam Books, New York,

1987.

[BSM96] Living with the Guidelines : An Introduction to TEI Tagging, Lou

Burnard & C. M. Sperberg-McQueen (http://www.lib.virginia.edu/)

[CRD87] Markup Systems and the Future o f Scholarly Text Processing, James H.

Coombs, Allen H. Renear, Steven J. DeRose. Communications of the ACM,

vol. 30, no. 11, 1987. p933 - 47 (http://www.sil.org/)

[DIGI91] Digital Guide to Developing International Software, Digital Equipment

Corporation, Digital Press, Massachusetts, 1991

[DILL97] Markup Languages: LaTeX, SGML, HTML, George Dillon,

http://weber.u. washington.edu/~dillon/netbook/markup/node2 .html

[DRAK94] From Text to Hypertext: a Post-Hoc Rationalisation o f LaTeX2HTML,

Nikos Drakos, Computer Networks and ISDN Systems (Special Issues) Vol.

27, no. 2, in: Selected Papers o f the First World-Wide Web Conference,

Geneva, Switzerland, 25-27May 1994, page 215-224, 1994

[ENL96] SGML Introduction (ENL210E Introduction to SGML), Technical Writing

course “English 210E”, English Department of the University of Waterloo,

1995. (http://watarts.uwaterloo.ca/ENGL/courses/engl210e/)

[HOWE97] Free On-line Dictionary o f Computing, D. Howe, 1997,

http://wombat.doc.ic.ac.uk/foldoc/index.html

148

http://www.lib.virginia.edu/
http://www.sil.org/
http://weber.u
http://watarts.uwaterloo.ca/ENGL/courses/engl210e/
http://wombat.doc.ic.ac.uk/foldoc/index.html

[GOLD90] The SGML Handbook, Charles F. Goldfarb, Oxford University Press,

New York, 1990

[GRAH96] The HTML Sourcebook, Ian S. Graham, 2nd Ed., Wiley Computer

Publishing, New York, 1996

[GURG90] Mastering PageMaker, G. Keith Gurganus, Blue Ridge Summit PA,

Windcrest, 1990

[HAND90] ADAPT - Automated Document Analysis Processing and Tagging,

John Handley, Stuart Weibel, in: EP90 - Proceedings of the International

Conference on Electronic Publishing, Document Manipulation &

Typography, Maryland, The Cambridge Series on Electronic Publishing,

Cambridge University Press, New York, 1990, p i 83 - 194

[HARS96] Organizing Babylon, Adele Hars, BYTE Magazine, March 1996, Vol.

21, no. 3.

[HEAR97] A Generic Quality Assurance Tool fo r Windows Help Systems, Gary

Hearne, School of Computer Applications, Dublin City University, 1997

[HECK78] A Technique fo r Isolating Differences Between Files, Paul Heckel,

Communications of the ACM, Apr 1978, Vol. 21, No. 4, p 264

[HERW90] Practical SGML, Eric van Herwijnen, Kluwer Academic Publishers,

Dordrecht, 1990

[INTE94] The SGML Guide, Interleaf Inc., 1994 (http://www.ileaf.com/)

[KAN095] Developing International Software fo r Microsoft® Windows® 95 and

Windows NT®, Second Edition, Nadine Kano, 1995

[KAY94] Software goes Global, Russell Kay, BYTE Magazine, Vol. 19, No 6, June

1994.

[LIND89], Literate programming: A file difference program, Donald Lindsay,

Communications of the ACM, June 89, Voi 32, no. 6, p740-755

[LOCA97] Localisation Ireland Newsletter, Localisation Resources Centre, U.C.D.,

Volume 1, Issue 2, June 1997.

149

http://www.ileaf.com/

[LOTUS95] Lotus Notes © information and help databases in Lotus Development

Ireland Ltd.

[MACK93] Comparing and Merging Files, D. MacKenzie, P. Eggert, R. Stallman,

http://math.unice.fr/laboratoire/help/info/diff/diff_toc.html, September 1993

[MARC96] An Introduction to SGML, Benoit Marchai, 1996,

http://www.brainlink.com/~ben/

[MCD95] Multimedia Development, Marion McDonald, in the Proceedings of SLIG

’95 Conference, LRC, UCD, Oct 1995.

[MICR95] Rich Text Format (RTF) Specification and Sample RTF Reader

Program, Microsoft Product Support Services Application Note for RTF

version 1.4, http://www.microsoft.com, 1995

[MILL94] Transborder Tips and Traps, L. Chris Miller, BYTE Magazine, Vol. 19,

No 6, June 1994, p93-102.

[NCC87] The NCC Interconnecting Applications Handbook - Desktop Publishing,

National Centre for Information Technology, Manchester, 1987

[OPEN96] Standard Generalized Markup Language, SGML Open Consortium

Home Page, http://www.sgmlopen.org/

[OVUM95] Globalisation - Creating New Markets With Translation Technology,

Rose Lockwood, Jean Leston, Laurent Lachal, Ovum Reports, Ovum Ltd.,

1995

[PORT92] Document Reconstruction: A System fo r Recovering Document

Structure from Layout, Gilbert B. Porter, Emil V. Rainero, in: EP92 -

Proceedings o f Electronic Publishing Document Manipulation &

Typography, Maryland, The Cambridge Series on Electronic Publishing,

Cambridge University Press, 1990, p l7 - 30

[QUIN90] Towards Document Engineering, V. Quint, M. Nanard, J. Andre, in:

EP90 - Proceedings o f the International Conference on Electronic

Publishing, Document Manipulation & Typography, Maryland, The

150

http://math.unice.fr/laboratoire/help/info/diff/diff_toc.html
http://www.brainlink.com/~ben/
http://www.microsoft.com
http://www.sgmlopen.org/

Cambridge Series on Electronic Publishing, Cambridge University Press, 1990,

pl7 - 30

[RAGG95] HyperText Markup Language Specification Version 3.0 INTERNET

DRAFT, Dave Raggett, http://sparc2.lib.cuhk.edu.hk/~ernest/info/htmB/,

1995

[SMAR95] Manual fo r Tex2RTF 1.52, Julian Smart, Artificial Intelligence

Applications Institute, University of Edinburgh, October 1995,

http://www.calband.berkeley.edu/calchart/docs/tex2rtf_contents.html

[SOFT96] Software Localisation, Quarterly Newsletter of the Localisation

Resources Centre, University College Dublin, Volume 1, No. 2, October 96

[STEP94] Converting Formatted Documents to HTML, Jon Stephenson von

Tetzchner, presented at WWW94: First World-Wide Web Conference,

Geneva, Switzerland, 25-27 May 1994, http://pigeon.elsevier.nl/cgi-

bin/WWW941ink/28/overview, 1994

[SUNS97] Diffutils 2.7, GNU Diff freeware (written by M. Haertel, D. Hayes, R.

Stallman, L. Tower, P. Eggert), Solaris Freeware, SunSITE Ireland,

http://sunsite.compapp.dcu.ie/solaris-freeware/solaris_2.5.html

[TANA94] DTP Software: The Right Tool But fo r What?, David Tanaka,

(http://www.tcp.ca/Nov94)

[TEIP96] A Gentle Introduction to SGML, Edited by C. M. Sperberg-McQueen &

Lou Burnard (http://info.ox.ac.uk/~archive/teip3sg/)

[TIMM96] The Localisation Industry in Ireland and the Issues it Encounters, M.

Timmons, G. Hearne, A. Way, M. Roantree, School of Computer Applications

Working Paper Series: CA-0896, Dublin City University, 1996

[USER95] SGML Users’ Group History, International SGML Users' Group, 1995,

http://www. sil. org/

[WATS 92] Brief History o f Document Markup, Dennis G. Watson, University of

Florida, Circular 1086, November 1992

(http://hammock.ifas.ufl.edu/txt/fairs/ae/)

151

http://sparc2.lib.cuhk.edu.hk/~ernest/info/htmB/
http://www.calband.berkeley.edu/calchart/docs/tex2rtf_contents.html
http://pigeon.elsevier.nl/cgi-
http://sunsite.compapp.dcu.ie/solaris-freeware/solaris_2.5.html
http://www.tcp.ca/Nov94
http://info.ox.ac.uk/~archive/teip3sg/
http://www
http://hammock.ifas.ufl.edu/txt/fairs/ae/

[ZHEN92] “A Document Composition Environment fo r Multi-Language

Processing”, Min Zheng, in: EP92 - Proceedings o f Electronic Publishing

1992, Cambridge University Press, Cambridge, 1992, p43-52

Company Home Page Web References
[CLOC97] Clockworks Multimedia, http:Uwww.clockworksmultimedia.com!

[DLG96] DLG Software Services, http://ireland.iol.ie/~dlg/

[GECAP96] GECAP, http:/lwww.gecap.de/homepage.htm

[ITP96] International Translation and Publishing Ltd, http:llwww.itp.ie/

[LRC97] Localisation Resources Centre, http://lrc.ucd.ie/

[POLY96] Polylang Limited, http://www.polylang.com/

[SYM96] Symantec Corporation, http://www.symantec.com/

152

http://www.clockworksmultimedia.com
http://ireland.iol.ie/~dlg/
http://www.gecap.de/homepage.htm
http://www.itp.ie/
http://lrc.ucd.ie/
http://www.polylang.com/
http://www.symantec.com/

Appendix A
This appendix contains the tag mappings file, tagmap.ini that was used in the system.

MIF:

RTF:

[MIF]
STARTTAG
ENDTAG
PARAGRAPH
PARAEND
BOLD
BOLDOFF
ITALIC
ITALICOFF
UNDERLINE
UNDERLINEOFF
DOUBLEULINE
DOUBLEULINEOFF
STRIKETHRU
STRIKEOFF
EMPHASIS
FIRSTINDENT
LEFTINDENT
RIGHTINDENT
LEFTALIGN
RIGHTALIGN
JUSTIFY
CENTRE
FONTTYPE
FONTSIZE
FONTCOLOUR
SUPERSCRIPT
SUPEROFF
SUBSCRIPT
SUBOFF
TEXT
LINE
LISTITEM
ENDLISTITEM
[RTF]
STARTTAG
ENDTAG
PARAGRAPH
PARAEND
BOLD
BOLDOFF
ITALIC
ITALICOFF
UNDERLINE
DOUBLEULINE
UNDERLINEOFF
UNDERLINEOFF
STRIKETHRU
STRIKEOFF
EMPHASIS
FIRSTINDENT
LEFTINDENT
RIGHTINDENT
LEFTALIGN
RIGHTALIGN

<
>
Para
FWeight 'Bold'
FWeight 'Regular'
FAngle 'Italic'
FAngle 'Regular'
FUnderlining FSIngle
FUnderllnlng FNoUnderlining
FUnderlining FDouble
FUnderlining FNoUnderlining
FStrike Yes
FStrike No
FTag 'Emphasis'
PgfFlndent
PgfLlndent
PgfRlndent
PgfAlignment Left
PgfAllgnment Right
PgfAlignment LeftRight
PgfAlignment Center
FFamily
FSize
FColor
FPosition FSuperscript
FPosition FNormal
FPosition FSubscript
FPosition FNormal
String

par
b
bO
i
iO
ul
uldb
ulO
ulnone
strike

fi?
li?
ri?
ql
qr

A-l

HTML:

JUSTIFY
CENTRE
FONTTYPE
FONTSIZE
FONTCOLOUR
SUPERSCRIPT
SUPEROFF
SUBSCRIPT
SUBOFF
LINE
STARTLIST
ENDLIST
LISTITEM
ENDLISTITEM
TEXT
[HTM]
STARTTAG
ENDTAG
PARAGRAPH
PARAEND
BOLD
BOLDOFF
ITALIC
ITALICO FF
UNDERLINE
UNDERLINEOFF
DOUBLEULINE
DOUBLEULINEOFF
STRIKETHRU
STRIKEOFF
EMPHASIS
EMPHASISOFF
FIRSTINDENT
LEFTINDENT
RIGHTINDENT
LEFTALIGN
RIGHTALIGN
JUSTIFY
CENTRE
CENTREOFF
FONTTYPE
FONTSIZE
FONTCOLOUR
SUPERSCRIPT
SUPEROFF
SUBSCRIPT
SUBOFF
LINE
STARTLIST
ENDLIST
LISTITEM
ENDLISTITEM
TEXT

qj
qc

col?
super
nosupersub
sub
nosupersub

pntext
TEXT
<
>
P
/ P
B
/B
I
/I
U
/u

STRIKE
/STRIKE
EM
/EM

CENTER
\CENTER
FONT size
FONT COLOR

SUB
/SUB
HR
UL
/UL
LI
/LI
TEXT

A-2

Appendix B
This appendix contains a full set of files for one of the tests on the system CSE.HTM

is the original HTML file.

<HTML> <! Creation 05/01 /96>
<HEAD>
<TITLE>Centre for Software Engineering Home Page</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFCC" TEXT="000000" LINK="0000FF"
VLIN K="C40026">
<CENTER>
<TABLE WIDTH=95% CELLSPACING=5>
<TR>
<TD WIDTH=25%xCENTER>

<H6>The Irish government designated

IT support organisation</H6x/CENTER>

</TD>
<TD ROWSPAN=3 VALIGN=MIDDLE> <HR>
<CENTER> < P x H 4 x l> The Centre for Software Engineering is
committed to raising the standards of quality and productivity
within the software development community, in Ireland and
internationally.</P>
<P>Our goal is to make the most flexible and comprehensive range of partnership
programmes available to software developers.</lx/H4x/P>
<HRx/CENTER>
<CENTER>
cTABLE WIDTH=80%>
<TR>
<TD>
<P>
About the CSE < /A x/P>
<P>
Specialist Areas</Ax/P>
<P>
Membership Programmes</Ax/P>
<P>
Services</Ax/P>
</TD>
<TD>
<P>
Projects</Ax/P>
<P>
Publicatlons</Ax/P>
<P>
Staff</Ax/P>
<P>
Mlscellaneous</Ax/P>
</TD>
</TABLE> <HR>
<l>Last updated 13/08/97</l>
</CENTER>
</TR>
<TR >

B-l

<TD WIDTH=25%>
<CENTER>
<H6>Centre for Software Engineering Ltd., Dublin City University Campus,

Dublin 9, Ireland.
<P>Tel: +353 1 7045750

Fax: +353 1 7045605 </P> </H6>

<P> <A HREF="mailto:admin@cse.dcu.ie"xlMG SRC="cse/gifs/mail.gif"
HEIGHT="40" WIDTH="40" ALIGN=MIDDLE HSPACE=4 VSPACE=4>
 <H6> Email admin@cse.dcu.ie</H6x/P>
</TD>
</TR>
<TR >
<TD WIDTH=25%>
<CENTERxH6>To fully view other pages at this site you will need a browser that
supports FRAMES<H6x/CENTER>
</TD>
</TR>
</TABLE>
</CENTER>
</BODY>
</HTML>

B-2

mailto:admin@cse.dcu.ie%22xlMG

CSE2.HTM is the “translated” file with artificial errors to simulate translation.

<HTML> <! Creation 05/01/96>
<! Translated 22/03/96>
<HEAD>
<TITLE>*Centre for Software Engineering Home Page</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFCC" TEXT="000000" LINK="0000FF"
VLINK="C40026">
<CENTER>
<TABLE WIDTH=95% CELLSPACING=5>
<TR>
<TD WI DTH=25%xCENTER>

</CENTER>
<H5>*The Irish government designated

*IT support organisation</H5>
</TD>
<TD ROWSPAN=3 VALIGN=MIDDLE> <HR>
<CENTER> < P x H 4 x l> *The Centre for Software Engineering is
committed to raising the standards of quality and productivity
within the software development community, in Ireland and
internationally.</lx/P>
<P>*Our goal is to make the most flexible and comprehensive range of partnership
programmes available to software developers.</H4x/P>
<HRx/CENTER>
<CENTER>
<TABLE WIDTH=80%>
<TR>
<TD>
<P>
*About the CSE < /A x/P>
<P>
*Speciallst Areas</Ax/P>
<P>
*Membership Programmes/Ax/P>
<P>
*Services</Ax/P>
</TD>
<TD>
<P>
*Projects</Ax/P>
<P>
<A HREF"cse/c_staff.html">*Staff</Ax/P>
<P>
*Miscellaneous</Ax/P>
</TD>
</TABLE> <HR>
*Last updated 12/05/97
</CENTER>
</TR>
<TR>
<TD WIDTH=25%>
<CENTER>
<H6>*Centre for Software Engineering Ltd., Dublin City University Campus,

‘ Dublin 9, Ireland.
<P>*Tel: +353 1 7045750

Fax: +353 1 7045605 </P> </H6>

B-3

<P> <A HREF="mailto:admin@cse.dcu.ie"xlMG SRC=”cse/gifs/mail2.gif"
HEIGHT="40" WIDTH="40” ALIGN=MIDDLE HSPACE=4 VSPACE=4x/A> <H5>
Email admin@cse.dcu.ie</H5x/P>
</TD>
</TR>
<TR >
<TD WI DTH=25%>
</TD>
</TR>
</TABLE>
</CENTER>
</BODY>
</HTML>

B-4

mailto:admin@cse.dcu.ie%22xlMG

CSE.HTMX is the output files from the generic parser for CSE.HTM.

HTML
! Creation 05/01/96
HEAD
TITLE
TEXT Centre for Software Engineering Home Page
/TITLE
/HEAD
BODY BGCOLOR="FFFFCC" TEXT="000000" LINK="0000FF" VLINK="C40026"
CENTER
TABLE WIDTH=95% CELLSPACING=5
TR
TD WIDTH=25%
CENTER
IMG SRC="cse/gifs/cselogo.gif" HEIGHT="67" WIDTH="126"
H6
TEXT The Irish government designated
BR
TEXT IT support organisation
/H6
/CENTER
/TD
TD ROWSPAN=3 VALIGN=MIDDLE
HR
CENTER
P
I
TEXT The Centre for Software Engineering is committed to raising the standards of
IP
P
TEXT Our goal is to make the most flexible and comprehensive range of productivit
/1
/H4

/CENTER
CENTER
TABLE WIDTH=80%
TR
P
IMG SRC="cse/gifs/blue.gif" HEIGHT="14" WIDTH="14"
A HREF="cse/c_whatis.html"
TEXT About the CSE
/A
P
IMG SRC="cse/gifs/blue.gif" HEIGHT="14" WIDTH="14"
A HREF="cse/c_sparea.html"
TEXT Specialist Areas
/A
P
IMG SRC="cse/gifs/blue.gif" HEIGHT="14" WIDTH="14"
A HREF="cse/c_prog.html"
TEXT Membership Programmes
/A

B-5

IMG SRC="cse/gifs/blue.gif" HEIGHT="14" WIDTH="14"
A HREF="cse/c_service.html"
TEXT Services
/A
IP
/TD
P
IMG SRC="cse/gifs/blue.gif" HEIGHT="14" WIDTH="14"
A HREF="cse/c_proj.html"
TEXT Projects
/A
P
IMG SRC="cse/gifs/blue.gif” HEIGHT="14" WIDTH="14"
A HREF="cse/c_pubs.html"
TEXT Publications
/A
P
IMG SRC="cse/gifs/blue.gif" HEIGHT="14" WIDTH="14"
A HREF=”cse/c_staff.html"
TEXT Staff
/A
P
IMG SRC="cse/gifs/blue.gif" HEIGHT="14" WIDTH="14"
A HREF="cse/c_misc.html"
TEXT Miscellaneous
/A
/TD
/TABLE
HR
I
TEXT Last updated 13/08/97
/I
/CENTER
/TR
TR
TD WIDTH=25%
CENTER
H6
TEXT Centre for Software Engineering Ltd., Dublin City University Campus
BR
TEXT Dublin 9, Ireland.
P
TEXT Tel: +353 1 7045750
BR
TEXT Fax: +353 1 7045605
IP

P
A HREF="mailto:admin@cse.dcu.ie"
IMG SRC="cse/gifs/mail.gif" HEIGHT="40" WIDTH="40" ALIGN=MIDDLE
HSPACE=4VSPACE=4
/A
H6
TEXT Email admin@cse.dcu.ie

p

B-6

mailto:admin@cse.dcu.ie
mailto:admin@cse.dcu.ie

/H6
IP
/TD
/TR
TR
TD WIDTH=25%
CENTER
H6
TEXT To fully view other pages at this site you will need a browser that supports FR
H6
/CENTER
/TD
/TR
/TABLE
/CENTER
/BODY
/HTML

B-7

CSE2.HTMX is the output files from the generic parser for CSE2.HTM.

HTML
! Creation 05/01/96
! Translated 22/03/96
HEAD
TITLE
TEXT ‘ Centre for Software Engineering Home Page
/TITLE
/HEAD
BODY BGCOLOR="FFFFCC" TEXT="000000" LINK="0000FF" VLINK="C40026"
CENTER
TABLE WIDTH=95% CELLSPACING=5
TR
TD WIDTH=25%
CENTER
IMG SRC="cse/gifs/cselogo.gif" HEIGHT="90" WIDTH="150”
/CENTER
H5
TEXT *The Irish government designated
BR
TEXT *IT support organisation
/H5
/TD
TD ROWSPAN=3 VALIGN=MIDDLE
HR
CENTER
P
I
TEXT *The Centre for Software Engineering is committed to raising the standards o
/1

P
TEXT *Our goal is to make the most flexible and comprehensive range of partnersh
/H4
/P
HR
/CENTER
CENTER
TABLE WIDTH=80%
TR
P
IMG SRC="/gifs/orange.gif" HEIGHT="14" WIDTH="14"
A HREF="cse/c_about.html"
TEXT ‘About the CSE
/A
P
IMG SRC="/gifs/orange.gif" HEIGHT="14" WIDTH="14"
A HREF="cse/c_sparea.html"
TEXT ‘ Specialist Areas
/A
P
IMG SRC="/gifs/orange.gif" HEIGHT="14" WIDTH="14"
A HREF="cse/c_prog.html"

B-8

IMG SRC="/gifs/orange.gif" HEIGHT="14" WIDTH="14"
A HREF="cse/c_service.html"
TEXT ‘ Services
/A
/TD
TD
P
IMG SRC="/gifs/orange.gif" HEIGHT="14" WIDTH="14"
A HREF="cse/c_proj.html"
TEXT ‘ Projects
/A
P
IMG SRC="/gifs/orange.gif" HEIGHT="14" WIDTH="14"
A HREF"cse/c_staff.html"
TEXT ‘ Staff
/A
P
IMG SRC="/gifs/orange.gif" HEIGHT="14" WIDTH="14"
A HREF="cse/c_misc.html"
TEXT ‘ Miscellaneous
/A
/TD
/TABLE
HR
B
TEXT ‘ Last updated 12/05/97
/B
/CENTER
/TR
TR
TD WIDTH=25%
CENTER
H6
TEXT ‘ Centre for Software Engineering Ltd., Dublin City University Campus,
BR
TEXT ‘ Dublin 9, Ireland.
P
TEXT ‘Tel: +353 1 7045750
BR
TEXT Fax: +353 1 7045605
IP

P
A HREF="mailto:admin@cse.dcu.ie"
IMG SRC="cse/gifs/mail2.gif" HEIGHT="40" WIDTH="40" ALIGN=MIDDLE

HSPACE=4VSPACE=4
/A
H5
TEXT Email admin@cse.dcu.ie
/H5

p

B-9

mailto:admin@cse.dcu.ie
mailto:admin@cse.dcu.ie

TD WIDTH=25%
/TD
/TR
/TABLE
/CENTER
/BODY
/HTML

B-10

i

jimneenm

The M ih gcvŒniami dtdgjvried
IT rapport crguùsation

Cadre fc i Software Engineemg Ltd., Dublin City
Uniwrify Canipui,
DubKn 9, IrtLmd.

Td: +3SÎ 1 704575#
Fax: +353 1 7045É05

The Centre fo r Software Engineering is committed to raising the standards o f quality and
productivity w ithin the software development community, in Ireland and internationally.

Our goal is to make the nwst flexible and comprehensive range o f partnership programmes
available to software developers.

Email adrnin@Me dcuie

• About the CSE

• Specialist Areas

• Membership Programmes

•Services

• Projects

• Publications

• Staff

•Miscellaneous

To fully view ether page atthi* ritt yeu need
a browserflial suppest; FRAMES Last updated 13/08/97

Figure 1 This is an Image o f the CSE.HTM File Opened in Netscape

B -ll

*The Irish government designated
*IT support organisation

* Cerate fox Software Engmeamg Ltd., Dublin
City University Campus,

‘Dublin 9, hxlm d

‘ Td: +353 1 7C4575C
Fax: +3531 7«tó«C5

«S3

Email a d m in @ G s e jd im ie

*The Centre fo r Software Engineering is committed to raising the standards o f quality and
productivity within the software development community, in Ireland and internationally.

*Our goal is to make the most flexible and comprehensive range of partnership programmes
available to software developers.

About the CSE

^Specialist Areas

PServices

^Projects

%*Staff

*Last updated 12/05/97

Figure 2 This is an Image o f the "Translated" CSE2.HTM File Opened in Netscape (with a used to simulate translation o f a string, as

described in Chapter 6).

B-12

