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A bstract

Enhancement of the cytotoxicity of MRP substrates by indomethacin

and related compounds.

Sam antha Touhey

C ertain  non-stero idal an ti-inflam m atory  drugs (N SA ID s), including 

indom ethacin  and sulindac, at non-toxic concentrations, w ere found to  enhance 

the tox icity  o f  a  range o f  chem otherapeutic  drugs, such as doxorubicin, 

epirubicin , v incristine  and V P -16. This effec t appeared to  be m ost significant 

in  M R P-expressing  cell lines such as D L K P and A 549, and w as n o t evident in  

Pgp-overexpressing  cell lines such as D L K PA . A nalogues o f  indom ethacin  

w ere subsequen tly  generated to investigate the structure-activ ity  relationship 

(SA R ) o f  indom ethacin-m ediated  tox icity  enhancem ent. A n  im portan t goal o f  

th is research  w as to identify  an analogue o f  indom ethacin , capable o f  

po ten tia ting  the  tox icity  o f  anticancer drugs to  the  sam e degree as 

indom ethacin  b u t w ithout the toxic side effects observed  after p ro longed  use o f  

indom ethacin . It is believed tha t these side effects are m edia ted  through 

inh ib ition  o f  the  constitu tively  expressed form  o f  the C yclooxygenase enzym e, 

C yclooxygenase-1  (COX -1). A  num ber the  positive  indom ethacin  analogues 

(B R I 138/1, B R I 153/1 and BR I 60/1) w ere found to have  the ability  to 

po ten tia te  the  tox ic ity  o f  a  num ber o f  an ticancer drugs w hile hav ing  little  or no 

COX-1 inh ib ito ry  activity  rendering these  com pounds less likely  to  cause 

gastro in testinal toxicity . BRI 60/1 w as also found to be a  good  CO X -2 

inhibitor. T hese resu lts for BRI 60/1 suggest a  potential clin ical application  due 

to  reduced  to x ic  side effects and in  addition, increased ability  as a tum our 

suppresser due to  inh ib ition  o f  CO X-2.

M ost o f  the active indom ethacin  analogues w ere found to  have very  little 

G lu tath ione S-transferase inhibitory  activ ity  and hence their m ode o f  action 

w as n o t by  inh ib iting  the conjugation o f  glu tath ione to the  an ticancer drug. 

Inside-ou t M em brane V esicles (IO V s) w ere u tilised  to  dem onstrate the ability 

o f  the  analogues to  directly  inhibit the M R P pum p by m easuring the  uptake o f



the M R P substrate, L T C4 in  to the vesicle. Surprisingly, B R I 138/1, w h ich  w as 

quite active in  the  com bination  tox icity  assay, w as a  w eak  inhibitor o f  L T C4 
transport as com pared  to  indom ethacin  and  o ther positive  indom ethacin  

analogues suggesting, due to  structural varia tions, reduced  ability o f  B R I 138/1 

to  b ind  to  the  active site on  the M R P m olecu le  and  com pete w ith  L T C4.

R esults from  drug  efflux  studies suggested  tha t the active N S A ID s are 

com petitive substrates for M R P1. Several o f  these analogues are as effective as 

indom ethacin  a t po ten tia ting  the tox icity  o f  certain  anticancer drugs b u t som e 

are less po ten t (on a  m olar basis) th an  indom ethacin . A n  analogue o f  

indom ethacin  (e.g. BR I 138/1, B R I 153/1, B R I 60/1) w ith  sim ilar po ten tia tion  

ability, bu t w ithou t the  side effects caused  by  the  inh ib ition  o f  CO X -1, m ay  be 

a  prom ising  candidate fo r fu ture cancer therapy .

The ability  o f  indom ethacin , indom ethacin  analogues and  sulindac to  po ten tia te  

the tox icity  o f  chem otherapeutic  drugs in  cell lines expressing  M R P2-6 has no t 

prev iously  been  investigated . The results from  the  com bination  tox icity  assays 

in  the  ovarian  carcinom a cell line, 2008, transfected  w ith  M R P2 or M R P3, 

suggest tha t indom ethacin  m ay have the  ability  to potentiate  adriam ycin  

tox ic ity  in  b o th  2008 M R P2 and M RP3. H ow ever, a  basal level o f  M R P 1 w as 

found in  all the  2008 cell lines w hich  m akes it d ifficu lt to  d istinguish  i f  the 

poten tia tion  w as sim ply as a  resu lt o f  the expression  o f  M R P 1 in  the cells. The 

tox icity  o f  m ethotrexate  w as not po ten tia ted  in  the 2008 M R P2-transfected  cell 

line (w hich is M T X -resistan t in  short-term  tox ic ity  assays) suggesting that 

indom ethacin  is no t active in  M R P2-overexpressing  cell lines. In  contrast, 

sulindac had  a  sm all, b u t significant, po ten tia tion  effect on m ethotrexate in  the 

2008 M R P2 cells.

The tox ic ity  o f  taxol and  taxotere w as po ten tia ted  by  indom ethacin  and 

sulindac in  a num ber o f  cell lines and the  effect appears to be M R P-related. 

H ow ever, the  synergy betw een  p iroxicam  (w hich  w as unab le  to enhance the 

tox icity  o f  o ther M RP1 substrate chem otherapeutic  drugs) and taxol suggests 

an  alternative o r additional m echanism  o f  taxane tox ic ity  enhancem ent m ay 

also be  present. E nhancem ent o f  taxol and taxotere  tox icity  w as no t observed  

in  A 549 cells w h ich  overexpress M RP1 b u t w ere also found to  h ighly  

overexpress M R P4.



In  contrast, the  tox ic ity  o f  c isp latin  w as decreased in  the presence o f  

indom ethacin  in  a  num ber o f  cell lines including D L K P, D L K PC  14, H epG 2 

and the 2008 cell lines. B R I 138/1 did no t po ten tiate  the toxicity  o f  cisplatin  

bu t the effect w as additive  no t antagonistic. Therefore, it is possib le that the  

antagonistic effect on  cisp latin  tox icity  is indom ethacin  specific. Perhaps 

indom ethacin  actually  enhances the  efflux (o r inh ib its efflux) o f  certain  

an ticancer drugs, includ ing  cisplatin , from  particular cancer cell lines.

Pulse selecting  D L K P cells w ith  300(.ig/ml indom ethacin  increased the 

resistance o f  the  cells to  adriam ycin, vincristine, V P -16, cisplatin , 

indom ethacin  and, in  particular, 5-FU. R T -PC R  analysis dem onstrated an 

increase in  M R P1, 2 and 4 m R N A  expression  in the pulsed cells relative to  the  

parental D L K P cell line.
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1.0 Introduction



1.1 Multidrug resistance in cancer

M ultidrug  resistance (M D R ) is a m ajor im pedim ent to  the success o f  cancer 

chem otherapy. M D R  m ay be observed in  prim ary therapy  (inherent resistance) or 

be acquired  during  o r after treatm ent (acquired resistance) (Y u et al., 1999). In 

vitro, M D R  can  appear after exposure o f  cells to  a  single drug, w hich  is alm ost 

alw ays a  na tu ra l product, and is characterised  b y  resistance to  structurally  

unrelated  com pounds w ith  different subcellu lar targets (L autier et al., 1996). 

T here are num erous m echanism s o f  drug resistance observed  in clinical settings 

and  the spectrum  o f  drugs to  w hich  resistance m ay  be conferred  is very b road  and 

encom passes a ll c lasses o f  chem otherapeutic agents including alkylating agents, 

antim etabolites, horm ones, p latinum  containing drugs and natural products (G rant 

et al., 1994).

O ne m ajor m echan ism  o f  such resistance is linked  to  decreased cellu lar 

accum ulation  o f  an ticancer drugs through  enhanced cellu lar efflux o f  the an ti

tum our com pounds. Such m ultidrug resistance can  be conferred  in vivo and  in 

vitro, by  a  num ber o f  p ro te ins including the M r 170,000 P-g lycopro tein  (encoded 

by  the MDRl gene) (G ottesm an et al., 1993), and the m ore recently  identified  

190kD a M R P (C ole et al., 1992 and G rant et al., 1994). B oth  o f  these proteins are 

m em bers o f  the A B C  (A T P-binding cassette) transporter fam ily and function  as 

A T P-dependen t active transporters (Sarkadi et al., 1997).

B o th  pro teins have  been  dem onstrated  to con ta in  tw o functional nucleo tide 

b ind ing  dom ains connected  to  large m em brane-bound regions (H iggins, 1992; 

H ipfner et al., 1997 and 1999). It has been  established tha t bo th  proteins can 

transport a  w ide  varie ty  o f  chem ically  unrelated, large, am phiphilic, uncharged  or 

sligh tly  positively  charged  m olecules in  an A T P-dependent fashion (Sarkadi et 

al., 1997), w h ile  M R P also transports som e negatively  charged com pounds, 

especially  g lu tath ione conjugates (Loe et al., 1996b). T he com pounds m ost 

frequently  applied  in  cancer chem otherapy bu t effectively  ex truded  by  M D R l and 

M R P from  the  tum our cells are o f  natural and sem i-synthetic  origin. These 

include the an thracyclines (e.g. adriam ycin, daunorub icin  and idarubicin), 

m itoxantrone, vinca alkaloids (vincristine, vinblastine), epipodophyllo toxins (e.g. 

V P-16), the taxanes (e.g ., taxo l and taxotere) and actinom ycin  D  (H ipfner et al, 

1999).
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Pgp is localised  m ainly  in  the p lasm a m em brane and confers drug resistance by 

functioning  as an  A T P-dependent drug efflux  pum p w hich  is ab le  to  transport 

an ticancer drugs against a  substrate concentration  gradient, causing both 

decreased  drug  uptake and increased drug efflux (G erm ann et ah, 1997). The 

basis fo r M R P-m ediated  drug resistance is less w ell defined. In  addition  to  drug 

accum ulation  defects, differences in  subcellu lar drug distribu tion  have been 

observed  in  a  num ber o f  drug-selected  M R P-expressing  cell lines o r M R P cD N A - 

transfected  cells (C ole et ah, 1992; Z am an  et al., 1993; Loe et ah, 1996 and 

V arsenvoort et ah, 1995). Therefore, M R P m ay  also function  by sequestering 

som e o f  its substrates in  in tracellu lar m em brane com partm ents.

It is generally  believed  tha t the preferential developm ent o f  m ultidrug  resistance 

is dependen t upon  the types o f  tum our and drugs used (C hoi et ah, 1999). The 

authors have also suggested that the overexpression  o f  M R P or Pgp is dependent 

upon  drug  concentrations and  reported  tha t in  experim ents w ith  adriam ycin  in 

acute m yelogenous leukaem ia, M R P w as first expressed  w ith  exposure to  low  

concentrations o f  adriam ycin  fo llow ed by an  overexpression  o f  Pgp by increasing 

the  drug concentration.

O ther b iochem ical m echanism s associated  w ith  acquired  resistance to  broad 

groups o f  cy to tox ic  drugs in  laboratory  system s include overexpression  o f  the 

hum an  m ajor vau lt protein , LR P (Izquierdo et ah, 1996a), cytosolic  detoxification 

due to  overexpression  o f  glutathione S-transferase and/or rela ted  enzym es 

(resu lting  in  resistance to anthracyclines and  alkylating agents including cisplatin) 

and nuclear changes including m odified  activ ity  o f  topoisom erase II (resulting  in 

resistance to  an thracyclines and ep ipodophyllo toxins) (T w entym an et ah, 1997). 

In  add ition  o ther b iochem ical determ inants, including m utations o f  the p53 gene 

o r overexpression  o f  the bcl-2  gene p roduct have been  associated  w ith  protecting 

the  cell against p rogram m ed cell death  or apoptosis (T w entym an et ah, 1997).

The u ltim ate  goal o f  M D R  research is to  im prove treatm ent outcom e in  patients 

w ith  cancer by  devising  strategies tha t are able to  prevent the em ergence o f  M D R  

or to  c ircum vent existing resistance. It appears tha t drug resistance in  m any 

cancers is m ultifactoral (Larsen et ah, 2000 and Lehnert, 1996), and m odulating  a 

single resistance  m echanism , such as M R P, m ay no t sufficient in  several cancer 

types. H ow ever, in  a  num ber o f  cancers, w here a  particu lar m echanism  is the 

dom inan t fac to r fo r clinical M D R , and has been  show n to be  o f  prognostic

3



significance, m odula tion  o f  a  single resistance m echan ism  could prove to  have a 

sign ificant im pact on  treatm ent outcom e.
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1.1.1 M ultidrug transporters from  bacteria to man.

Toxic com pounds have alw ays been  part o f  the  natural environm ent in  w h ich  all 

o rganism s dw ell. T he developm ent o f  strategies for life in  this habitat has been 

crucial for survival o f  the cell. A s a  resu lt organism s, from  bacteria to  m am m alian  

cells, have developed  versatile  m echanism s to  resist the effects o f  xenobiotics, 

including an tib io tics and  o ther cytotoxic drugs. Exam ples o f  such  m echanism s 

include the enzym atic  degradation  or inactivation  o f  drugs and the a lteration  o f  

drug targets. In  addition, m any cells have been  show n to  possess m em brane 

p ro teins w hich  can  actively  efflux  drugs, and hence, are able to overcom e cell 

tox icity  by low ering  the cytoplasm ic drug concentration.

Som e o f  these drug  transporters are specific for a  g iven drug or class o f  drugs, but 

the m ultidrug  transporters have specificity  fo r com pounds w ith  very  different 

chem ical structures and cellu lar targets (van V een  et al, 1997). These transport 

system s can be d iv ided  into tw o m ain  groups on  the basis o f  b ioenergetic  and 

structural criteria: 1. Secondary transporters, w hich  m ediate  the extrusion o f  drugs 

from  the cell in  a  coupled exchange w ith  ions (Paulsen  et al., 1996), and 2. A TP- 

b ind ing  cassette [ABC] transporters, w hich  u tilise  the  release o f  phosphate  bond- 

energy by A TP hydro lysis to  pum p drugs out o f  the cell (H iggins, 1992).

1.2 Secondary m ultidrug transporters

The study o f  m ultid rug  transporters is rapidly  developing. Secondary m ultidrug  

transporters belong  to  one o f  th ree d istinct fam ilies o f  transport p roteins: The 

M ajor F acilita to r Superfam ily  (M FS), The R esistance-N oduiation-C ell d iv ision  

(R N D ) fam ily , and the  Sm all M ultidrug R esistance (SM R) fam ily  (M a et al, 

1994; Saier et al, 1998; W illiam s, 1996) as described  in  Table 1.2.1.
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Table 1.2.1: Properties o f transport protein families that include multidrug 

resistance (MDR) efflux pumps.

A. The ATP binding cassette (ABC) superfamily

1. 28 fam ilies specific  for sugars, am ino acids, ions, drugs, antibiotics, 

vitam ins, iron  com plexes, peptides, proteins, com plex  carbohydrates etc.

2. D riven  by  A T P hydrolysis.

3. M ulticom ponent, m ultidom ain  system s; total size, >  1000 residues; 

U sually  12 (6+6) m em brane spanning dom ains.

4. Found in  bacteria , archaea, and eukaryotes.

5. > 500 sequenced  m em bers.

6. W ell characterised  m em bers: M alEFG K , M D R 1, M R P1, and CFTR.

7. D rug efflux  pum ps are found in a  few  (3 - 4) o f  the  m any  (about 3 dozen) 

recognised  fam ilies.

B. The major facilitator superfamily (MFS)

1. 17 fam ilies specific  for sugars, drugs, m etabolites, anions etc.

2. C onsists o f  sym porters, antiporters and uniporters.

3. Size, ~400 residues or larger; 12 or 14 m em brane spanning dom ains.

4. Found in  bacteria , archaea and eukaryotes.

5. A pprox. 500 sequenced  m em bers.

6. W ell characterised  m em bers: LacY , G lu tl and TetB.

7. M D R  pum ps are found in  3 o f  the 17 recognised fam ilies.

C. The small multidrug resistance (SMR) family

1. Tw o subfam ilies specific for drugs and unknow n substrates, respectively

2. C atalyze d rug :H + antiport.

3. P robably  hom ooligom eric; subunit size ~ 100 residues w ith  4 spanners.

4. Found on ly  in  prokaryotes.

5. 16 sequenced  m em bers.

6. W ell characterised  m em bers: Sm r and Em rE.

7. M D R  p um ps are found in  one o f  the tw o subfam ilies.
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D. The resistance/nodulation/division (RND) fam ily

1. Three subfam ilies specific for drugs, m etal ions and lipopolysaccharides 

respectively.

2. C atalyze drug:H + antiport.

3. Subunit size ~1000 residues; 12 spanners.

4. F ound  only  in  prokaryotes.

5. 16 sequenced  m em bers.

6. W ell characterised  m em bers: A crB  and M exB.

7. M D R  pum ps are found in  one o f  three subfam ilies.

(Table taken  from  Saier et al, (1998))

Secondary m ultid rug  transporters have been  detected  in  ra t k idney cells (OCT1) 

(G rundem an et al., 1994), and synaptic vesicles o f  p resynap tic  neurons (VM A T) 

(Schuld iner et al., 1995), in  pathogenic yeasts such  as Candida albicans 

(caM D R lp ) (B en-Y aacov et al., 1994; W alsh el al., 1997), and pathogenic 

bacteria , such  as m eth icillin  resistant Staphylococcus aureus (Q a c Q  (W illiam s,

1996), Mycobacterium smegmatis (LfrA ), Neisseria gonorrhoeae (M trD ) (van 

V een  et al., 1997), L. lactis (Lm rP) and Pseudomonas aeruginosa (M exB) 

(N ikaido et al., 1994). Som e o f  the m ost com m on secondary m ultidrug 

transporters are  listed  in  Table 1.2.2.
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Table 1.2.2: Examples of most common secondary multidrug transporters.

Transporter Organism Gene location Substrate

Major facilitator in Gram Positive Bacteria

OtrB Streptomyces rimosus Chromosome Oxytetracycline

Tel(L) Various cocci, Bacillus subtilis Plasmid Tetracycline

Mmr Streptomyces coelicolor 

A ctll Streptomyces coelicolor 

TcmA Streptomyces glaucescens 

Nor A Staphylococcus aureus

QacA* Staphylococcus aureus

Bmr Bacillus subtilis

Chromosome Methylenomycin 

Chromosome Actinorhodin 

Chromosome Tetracinomycin 

Chromosomal Fluoroquinolones,

Basic dyes, 

puromycin 

chloramphenicol, 

tetraphenylphosphonium. 

Plasmid Quarternary ammonium

compounds 

Chromosome Basic dyes,

chloramphenicol

puromycin,

fluoroquinolones.

Major facilitator in Gram Neeative Bacteria

TetA Eschericia coli 

CmlA Pseudomonas aeruginosa 

Bcr Eschericia coli 

EmrB Eschericia coli

EmrD Eschericia coli

Plasmid Tetracycline

Plasmid Chloramphenicol

Chromosome Bicyclomycin  

Chromosome CCCP**, nalidixic acid, 

tetrachlorosalicyanilide, 

phenylm ercury  acetate. 

Chromosome CCCP**, phenylmercury 

acetate.
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Transporter Organism Gene location Substrate

RND family

A crE (A crB )| Eschericia coli

EnvD Eschericia coli

M exB P.areuginosa

Smr family 

Sm r(Q acC )| S.aureus

Chromosome Basic dyes, S D S ,|

erythromycin, novobiocin, 

fusidic acid, tetracycline, 

mitomycin C.

Chromosome Basic dyes, SDS,f

erythromycin, fusidic acid, 

tetracycline, mitomycin C 

and others.

Chromosome Tetracycline,

chloramphenicol,, 

fluoroquinolones 

ß-lactams, pyoverdine.

Plasmid

QacE Klebsiella aerogenes Plasmid

Quartemary ammonium 

compounds, basic dyes. 

Quarternary ammonium 

compounds, basic dyes. 

M vrC (E m rE )| E.coli Chromosome basic dyes.

Methyltriphenyl-

-phosphonium

* QacB is very similar to QacA; ** CCCP, carbonyl cyanide m-chlorophenyl-hydrazone; 

j  SDS, sodium dodecylsulfate;

J  alternative nam es are show n in parentheses;

(T able taken  from  N ikaido  el al., (1994).)

M em bers o f  the  M FS and SM R  fam ilies tend  to  have specificity  for an 

exceptionally  w ide range o f  am phiphilic, cationic drugs including several types o f  

antib io tics, quaternary  am m onium  com pounds, arom atic dyes, and phosphonium  

ions. T ransporters in  the  R N D  fam ily tend  to  confer resistance to am phiphilic
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anionic com pounds such as antibiotics, basic  dyes and detergents. In  G ram  

negative bacteria , transport o f  drugs from  the  in terior o f  the cell to  the  external 

m edium  requires the  translocation  o f  solutes across the  cytoplasm ic outer 

m em brane. T herefore, there  are a  num ber o f  d rug  transporters (e.g., M exB ) in  

such organism s, w h ich  are found in  association w ith  an accessory protein , w hich  

spans the perip lasm ic  sphere and interacts w ith  a  po rin  in  the outer m em brane. 

These auxiliary p ro te ins belong  to  the M em brane F usion  P ro tein  fam ily and O uter 

M em brane F acto r fam ily  (van V een  et al, 1997).

1.3 ABC T ransporters

T he A T P-binding  cassette  (A BC ) transporters, p resen t in  organism s ranging from  

bacteria  to m an, are involved in  the  A T P-dependent transport o f  a w ide variety  o f  

com pounds, rang ing  from  inorganic ions to  large polypeptides (Tusnady et al.,

1997), and are invo lved  in  the to lerance to  a  w ide diversity  o f  cytotoxic agents in  

both  prokaryotes and  eukaryotes (H iggins, 1992).

In  m ost cases these  p ro teins have been  dem onstrated  to  function as transport 

A T Pases, tha t is, hydro lysing  A TP in conjunction  w ith  transporting substrate 

m olecules th rough  cellu lar or in tracellu lar m em branes. Included in  th is transport 

fam ily  are the  h um an  m ultidrug resistance P-glycoprotein , M DR1 (Pgp) 

(G ottesm an et al., 1993), and hum an m ultidrug  resistance associated pro tein  

M RP1 (M RP) (C ole  et al., 1992). B oth  are p lasm a m em brane transporters w hich  

catalyse the ex tru sion  o f  anti-tum our drugs from  drug-exposed  cancer cells. O ther 

characteristic eukaryo tic  A B C  transporters include the yeast pherom one 

transporter, STE 6, L tPgpA  (a Leishmania tarentolae protein) and the  hum an  

cystic  fibrosis transm em brane conductance regulator (C FTR ), the  m utations o f  

w h ich  are causative o f  cystic fibrosis.

The A B C transporters, form  one o f  the largest know n  pro tein  fam ilies. They are 

bu ilt from  com binations o f  conserved dom ains, that is, A TP- (nucleotide-) 

b inding A B C  un its and characteristic m em brane bound regions (V aradi et al,

1998). The A B C  un its contain  the h ighly  conserved  ‘W alker A ’ and ‘W alker B ’
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sequences, m ost p robably  d irectly  responsible for the in terac tion  w ith  A TP or 

o ther nucleotides. T hese W alker sequences are separated  by  a  stretch o f  about 

120-170 am ino acids, includ ing  a  short peptide m otif, 12-13 am ino acids in 

length , called  the A B C  transporter ‘signatu re’ reg ion , w hich  is in  fact 

characteristic  fo r these p ro teins. The m em brane bound dom ains o f  the ABC 

transporters in  m ost cases are predicted  to  contain  six  transm em brane (TM ) 

helices. In  som e bacteria l and  in  all eukaryotic A B C  transporters a t least one A B C  

un it and one transm em brane dom ain  are encoded by  a single gene (Tusnady et al, 

1997). T hey m ay  exist as a  single unit or be fused, as in  the  case o f  Pgp, so that 

they  contain  2 non-identical sets o f  transm em brane dom ains and nucleotide 

b ind ing  sites (H iggins et al., 1997).

1.4 Pgp, L R P and M R P  in M ultidrug R esistance

R em arkab le  advances in  cancer treatm ent have been  m ade since the  in troduction 

by Farber and associates, in  1948, o f  the folate antagonists for the  treatm ent o f  

leukem ia  (Farber et al., 1948).

D uring  the  last few  decades, n ew  cytotoxic agents have been  developed tha t have 

im proved  the  outcom e o f  m any  cancers, including solid  tum ours. A m ong these 

drugs, the  natural p roduct iso lates and their derivatives - including  anthracyclines, 

v inca  alkaloids, epipodophyllo toxins, and taxanes - have proved  to  be effective in 

inducing  rem issions and cures in  m any m alignancies (B eck  et al., 1997).

T he developm ent o f  resistance to  m ultiple drugs used  in  cancer chem otherapy is a 

serious lim ita tion  to  th is fo rm  o f  treatm ent and is considered to  be one o f  the m ost 

sign ifican t obstacle  to  curing  cancer (H ipfner et al., 1999 and deVita, 1989). In 

vitro, b road  resistance to  m ultip le  structurally  and functionally  unrelated  drugs is 

observed  in trinsically  or after in term ittent or pro longed  exposure o f  tum our cells 

to  only  a  single agent. This “classical” m ultidrug  resistance is typically  

characterised  by  cross-resistance to four classes o f  com m only  used  natural 

p roduct drugs, the an thracyclines, Vinca alkaloids, taxanes and 

ep ipdophyllo toxins (H ipfner et al, 1999). E lucidation  o f  the m echanism s 

determ ining  inherent or chem otherapy - induced  resistance in  hum an  tum ours to
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m any cancer agents, is o f  great in terest to  researchers and o f  great im portance to 

patients.

The nature o f  drug resistance is com plex. To date, m ultidrug  resistance in  m odel 

system s is know n  to  be conferred  by  tw o different in tegral m em brane proteins, 

the  170kD a P-g lycopro tein  (Pgp) (R iordan et al, 1985), and the 190-kD a 

m ultidrug  resistance-associated  pro tein  (M R P) (Cole et al, 1992). T hese proteins 

belong  to the  A TP binding  cassette  (A BC ) (H iggins, 1992), or traffic  A TPase 

superfam ily  o f  transport p roteins (A m es, 1992).

In  1993, Scheper et al, identified  a  llO k D a A T P-dependent cytoplasm ic 

transporter pro te in  in  a num ber o f  non-P-g lycopro tein-m ediated  M D R  tum our cell 

lines, norm al cells and  tissues by the use o f  a  p i  10-specific m onoclonal antibody 

LR P-56. T his protein , know n  as the Lung R esistance P ro tein  (LRP), w as 

identified  by  Scheper et al., (1995), as the m ajor vau lt protein. Isquierdo et al, 

(1996a), describes these  vaults as cellu lar organelles in  search  o f  a  function. They 

are com plex ribonucleopro tein  particles containing at least th ree m inor proteins 

and a sm all R N A  m olecule  in  addition  to  the 110-kD a m ajor vau lt protein. V aults 

are  m ain ly  located in  the cytoplasm  and current specu lation  sees vaults as part o f  

the  b idirectional transport system  betw een nucleus and cytoplasm  (Borst et al,

1997). Izquierdo  et al., (1996), have also suggested th a t vau lts  m ight som ehow  be 

invo lved  in  the transport o f  drugs into cytoplasm ic vesic les or directly  out o f  the 

cell, but, a t present, there is no evidence to back  th is  suggestion.

1.5 P-glycoprotein  (Pgp)

O ver-expression  o f  the transm em brane transport p rotein , P-glycoprotein , (P-gp), 

has been  detected  in  m any m ultidrug  - resistan t tum our cell lines and in  a variety  

o f  tum ours from  patien ts w ith  both  acquired  and inheren t drug resistance. This 

protein , encoded by  the hum an  M DR1 gene, is a 170 kD a m em brane pro tein  and 

from  its structure, appears to  be a m em ber o f  the  A B C  fam ily  o f  transporters 

(G ottesm an et al, 1993). It w as originally  found on  the  surface o f  m ultidrug 

resistan t tum our cells. In vitro studies have show n that it confers resistance to  a 

range o f  natu ral p roduct xenobiotics that are used  as chem otherapeutic  drugs
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(V inca alkaloids, anthracyclines, etoposide, taxol), calcium  channel blockers 

(verapam il, diltiazem , azidopine), im m uno- m odulators (cyclosporin  A , FK -506), 

cardiac g lycoside (d igoxin), fluorescen t dyes (rhodam ine 123, fluo-3), and 

steroids (cortisol, a ldosterone) (N aito  M  et al., 1998; C lynes et al., 1993 and 

Sharom  etal., 1999).

The basis o f  th is M D R  appears to  be a  decrease in  drug  accum ulation  in  the cells 

due to  increased expulsion  o f  drug from  the  cytosol by  th is  transm em brane 

transport protein. It is believed  tha t Pgp  is a transm em brane pore  form ing protein 

w ith  an  energy dependent drug effluxing ability. It has also been  suggested that 

Pgp  can low er in tracellu lar drug concentrations by  regu la ting  the plasm a 

m em brane pH  gradient and electrical m em brane po ten tia l (R oepe et al., 1994). 

T hree classes o f  Pgp gene products exist; the class I and  II isoform s are m ultidrug 

transporters, w hereas the class III isoform  appears to  be a  lip id  flippase, m oving 

phosphatidylcholine (PC) from  the  inner to  the outer leaflet o f  the b ile  canalicular 

p lasm a m em brane (Sharom  et al., 1999). Photoaffm ity  labelling  experim ents 

w ith  a  photoactive analogue o f  v inblastine have dem onstrated  the ability  o f  Pgp to 

b ind  cytotoxic drugs directly. M utations in  critical transm em brane regions can 

in terfere  w ith  th is b ind ing  (C ornw ell et al., 1986). P lasm a m em brane vesicles 

from  Pgp- overexpressing cells have the ability  to transport [3H ]-labelled  drug in  

an  A T P-dependent m anner (H orio et al., 1988).

P gp  has been  identified no t only in  tum our cells in vitro, b u t also in  a num ber o f  

d ifferen t types o f  cancers w here, in  a  num ber o f  cases, it has been  show n to be 

associated  w ith  the clin ical m anifestations o f  resistance (B arrand et al, 1997). In 

m any cases, P gp-expression  in  tum ours has been  show n to  be associated  w ith  a 

poor therapeutic  prognosis (F isher and Sikic, 1995).
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The Pgp pro tein  in  hum ans is encoded  by  the M D R  gene, w hich is present on the 

long  arm  o f  chrom osom e 7, band  q21.1 (C hen et al., 1986). This gene possesses 

27 exons in  the  pro tein  cod ing  reg ion  o f  the  gene w ith  14 o f  these exons coding 

fo r the  le ft and 13 fo r th e  righ t h a lf  o f  the  Pgp m olecule (R oninson, 1991). Tw o 

p rom oter regions for th is gene have b een  identified, one o f  w hich is upstream  and 

the  o ther is dow nstream  (U eda el al., 1987a, b). The m ajority  o f  resistant cells in 

vitro preferentially  use  the  dow nstream  prom oter (U eda el al., 1997).

1.5.2 Structure of the gene encoding P-glycoprotein

1.5.3 P-glycoprotein protein structure

The m dr 1 gene p roduct is a  170kD a m em brane-associated  protein o f  1280 am ino 

acids con tain ing  12 transm em brane dom ains w ith  6 extracellu lar loops and two 

cytoplasm ic A T P dom ains (G ros et a l, 1986). Pgp  is expressed  at the apical 

surface o f  in testinal ep ithelium , w here it is responsible for the low  b ioavailability  

o f  m any drugs in  the gut, and  in  the endothelial cells o f  capillaries in the brain, 

w here it  is a m ajor con tribu to r to  the  b lood-brain  barrier (Sharom  et al., 1999). 

T he Pgp pro te in  is p redom inately  localised  in  the p lasm a m em brane o f  M D R  cells 

(Isquierdo, 1996a), b u t low  levels o f  expression have b een  show n to  be present in  

association  w ith  the  endoplasm ic reticu lum  and G olgi apparatus (G erm ann, 

1996).

P-glycoprotein  is a  phosphory lated  glycoprotein. Increased  phosphorylation o f  P- 

g lycopro tein  has been  show n to  cause an  increase in Pgp-m ediated  drug efflux 

activ ity  w hilst inh ib ition  o f  phophorylation  decreases th is activity (Cham bers et 

al., 1990). It is now  be lieved  tha t phophorylation m ay  have an indirect role in 

certain  aspects o f  P gp  ac tiv ity  including  th e  kinetics o f  d rug  transport, Pgp pro tein  

stability  and  d rug  resistance pattern  o f  Pgp-overexpressing cells (Elliott, 1998).
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1.6 Multidrug Resistance Protein -  MRP

A  num ber o f  hum an  tu m our cell lines show  decreased cellu lar accum ulation and 

increased  resistance to  drugs associated  w ith the  M D R  phenotype, bu t do not 

possess P gp  (T w entym an  et al., 1996). A  novel 96-kD a m em brane protein  has 

been  characterised  in  the  hum an  breast cancer M C F-7/A drV p subline, w hich  does 

no t over-express Pgp. This p ro te in  has been  correlated  w ith  drug  resistance to 

doxorubicin  (C hen  et a l, 1990). S im ilarly, a 42-kD a and  85-kD a m em brane 

bound  pro tein  have  been  iden tified  by  a  polyclonal antibody against the putative 

A T P b inding  dom ain  o f  P gp  in  M C F/M X  cells selected  by m itoxantrone. These 

cells are cross resistan t to  doxorubicin  and etoposide bu t w ithout Pgp-over 

expression. (N akagaw a et al., 1992).

It w as know n th a t m em bers o f  the A T P-dependent fam ily o f  transporters shared 

certa in  structural and  sequence hom ologues and that, particularly  in  the region o f  

the  nucleo tide b ind ing  dom ains, there  w ere h ighly  conserved am ino-acid 

sequences. M arquard t el al, (1990), raised  antibodies to  a  num ber o f  different 

sequences a long  th e  leng th  o f  the  Pgp m olecule and  found tha t one particular 

antibody, (A SP 14), raised  against one o f  these h ighly conserved  dom ains was 

ab le  to  recognise a  protein , over-expressed  in  certain o f  these non-Pgp cell lines 

(B arrand et al, 1997).

W hile searching  fo r such  alternative m olecules, m any investigators analysed the 

H L 60 hum an  leukaem ia  cell line and its drug-selected  resistant variants. It was 

d iscovered th a t H L 60 cells se lected  fo r resistance to  doxorubicin  exhibited M D R  

bu t d id  n o t con ta in  detectab le  levels o f  P-g lycopro tein  (M cG rath, 1987). 

C om parison  o f  m em brane proteins from  the H L60 and  H L 60/A D R  cell lines, 

using  antibodies ra ised  against synthetic peptides derived  from  P-glycoprotein, 

revealed  the presence o f  a  190-kD a A T P-binding pro tein  tha t w as prim arily  

localised  in the  endoplasm ic reticu lum  o f  the H L60/A D R  cells. This pro tein  was 

no t detectable in  the m em branes o f  parental cells and could  easily b ind 8- 

azido[alpha-32P] A T P (M arquard t el al, 1990).

Investigators p roceeded  to  study gene expression in  various cell system s to  further 

characterise th is  unique 190kD a protein. O ne o f  the m ost extensively
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characterised non-Pgp multidrug resistant cell line is H69AR, a small cell lung 

cancer cell line which was derived from the drug-sensitive parental H69 line by 

stepwise selection in doxorubicin (Mirski et ah, 1987). H69AR displayed a drug 

resistance pattern typical of that associated with increased amounts of Pgp. The 

cells displayed moderately high levels of resistance (10-100-fold) to the Vinca 

alkaloids, epipdophyllotoxins, doxorubicin and mitoxantrone. In addition, these 

cells were highly resistant to daunorubicin, epirubicin and colchicine (Mirski et 

al., 1987 and Cole et ah, 1992). A number of biochemical alterations occurred 

during selection, including reduced levels of DNA topoisomerase II a  and P 

(Giaccone et ah, 1992), increased expression of annexin II, a decrease in reduced 

glutathione (GSH), and altered levels of GSH-associated drug detoxification 

enzymes. However, as with most clinical specimens of SCLC, H69AR does not 

over-express Pgp protein or its cognate mRNA. Consistent with this observation, 

major differences in net drug accumulation or efflux did not appear to be part of 

the resistant phenotype of the H69AR cell line (Cleary, 1995). Another feature 

that distinguishes H69AR from cell lines that over-express Pgp is the inability of 

cyclosporin A and several other chemosensitising agents to reverse doxorubicin 

(Cole et ah, 1992).

As a result of these findings, a search was undertaken for evidence of other 

alterations in gene expression using a differential hybridisation approach to 

identify mRNA species that are over-expressed in H69AR relative to those 

present in parental H69 cells. Using this technique a 7.8 - 8.2kb mRNA was 

identified, which was expressed in the resistant cell lines at levels approximately 

100 - 200 fold higher rate than the sensitive parental cell line. Sequencing of 

cDNA clones derived from this mRNA revealed that it had the potential to encode 

a 1531 amino acid protein that was predicted to be a member of the ABC 

transporter superfamily and was subsequently named the multidrug resistance 

protein, or MRP ( Loe el al., 1996). This protein is now recognised as MRP1 

(Hipfner et al., 1999).

Though MRP1 and Pgp both belong to the ABC transporter family, they share 

only 15% amino acid homogeneity (Cole et al., 1992). Nevertheless, both proteins 

confer resistance to a broad range of cytotoxic xenobiotics including doxorubicin, 

vincristine and VP-16 (etoposide), drugs that are widely used in the treatment of
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many human cancers. However, growing evidence suggests that the mechanisms 

by which MRP1 and Pgp reduce cellular drug accumulation are not the same, 

indicating that there are major differences in the drug protein interactions of these 

two molecules (Loe et al., 1996).

1.6.1 Homologues of MRP

When the sequence of MRP was first analysed in 1992, the most closely related 

members of the ABC superfamily were the CFTR chloride channel (19% identity) 

and LtPgpA (30% identity) (Cole et al., 1992). The first transport protein to be 

recognised as a member o f the MRP family was cMOAT (Taniguchi et al., 1996). 

The authors specifically targeted the ATP-binding domain conserved in MDR1, 

MRP, and CFTR genes and compared the difference in mRNA from both 

cisplatin resistant and sensitive cells. They isolated a full length human cMOAT 

cDNA which was highly homologous to rat cMOAT and found that human 

cMOAT was a homologue of MRP. Sequencing of cMOAT revealed an open 

reading frame coding for 1545 amino acids that showed 46% similarity to that of 

human MRP. Taniguchi et al.,(1996), estimated the size of cMOAT to be approx. 

4.5kb, similar to that of MRP mRNA but larger than the human MDR 1 mRNA. 

Since this time many proteins more closely related to MRP1 have been identified 

in a wide variety o f eukaryotic organisms, ranging from plants and yeast to 

mammals (Klein et al., 1999). The Yeast family contains one well characterised 

MRP homologue, the Yeast Cadmium Resistance Factor, YCFI, shown by Li et 

al, (1996), to be a vacuolar GS-X pump. YCFI mutants can be complemented by 

MRP1 (Borst et al., 1997). At least 4 MRP homologues are expressed in 

Caenorhabditis elegans (Kool et al., 1997), and it was therefore possible that the 

human MRP gene family would have more than two members. To date five 

human MRPl-related proteins, designated MRP2, MRP3, MRP4, MRP5 and 

MRP6  have been discribed (Kool et al., 1997; Taniguchi et al., 1996; Paulusma et 

al, 1996; Konig et a l, 1999; Kool et a l, 1999a and 1999b and Kiuchi et al,

1998). A search of the human Expressed Sequence Tag (EST) database by 

Allikmets et a l, (1996), yielded 21 new ABC genes, including genes for 

transporters related to MRP1. In an independent search, Kool et al., (1997), found
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four transporters related to MRP1 and cMOAT and analysed the expression of 

these genes, called MRP3-6, in normal tissues and tumour cell lines. A fifth 

homologue of MRP1 was also identified as the human SUR (sulfonyl urea 

receptor) gene. The percentages o f homology for the COOH-terminal 124 amino 

acids are shown in Table 1.6.1. The highest homology is found between MRP1 

and MRP3 (83% similarity) and the lowest between SUR and any of the MRPs (< 

59% similarity).

MRP1 cMOAT MRP3 MRP4 MRP5 M RP6 HSUR

MRP1 100 ■
I .  > J r A &

cMOAT 73 100
. . .  _ ________________ '

MRP3 83 73 100
. ' ■' . - ■ ■ . •

-

•

MRP4 69 65 64 100

MRP5 66 65 62 66 100 ■

MRP6 69 64 67 62 57 100

HSUR 59 57 57 58 57 46 100

Table 1.6.1: Homology between the COOH terminal 124 amino acids of the six 

human MRP homologues and human SUR. Percentages of identity were 

determined using the GAP program of GCG (Kool el al., 1997).

The existence of a seventh family member, MRP7, has only been inferred from a 

database search and so far there is no other information available (Borst et al.,

1999). Some of the MRPs are known by other names as summarised in table 

1.6 .2 .
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The Mammalian MRP family

MRP1 = ABCC1 = MRP

MRP2 = ABCC2 = cMOAT = cMRP = EBCR (rabbit)

MRP3 = ABCC3 = MOAT-D = cMOAT-2 = MLP-2

MRP4 = ABCC4 = MOAT-B

MRP5 = MOAT-C = MOAT- C = pABC 11 = sMRP*

MRP6 = ABCC6  = MLP-1 = ARA*

MRP7 = ABCC10

*only 3’end.

Table 1.6.2: Overview of the MRP family and the alternative names used in the 

literature for the individual members (Borst et al., 1999).

The sMRP has been reported by Suzuki et a l, (2000), to be a spliced variant of 

the MRP5 gene, expressed in various human tissues. ARA represents the 3’end of 

the MRP6  gene that is incidentally co-amplified with MRP1 in cells selected for 

adriamycin resistance (Kool et al., 1999). Within the group of mammalian ABC 

transporters the MRPs form a cluster that is clearly demarcated from the other 

known groups, such as Pgp, CFTR and the sulphonylurea receptors.

1.6.2 Chromosome location of MRP and homologues

The newly identified MRP homolgues MRP3-5 are all located on other 

chromosomes other than those containing MRP1 or cMOAT genes (Kool et al, 

1997; Cole et al. 1999). This confirms that MRP3, MRP4, and MRP5 are indeed 

new genes and not alternative splice products of MRP 1 or cMOAT. The MRP1 

gene has been mapped to chromosome 16 at band p i3.13-13.12, the cMOAT gene 

was mapped to chromosome 10, band q24, MRP3, MRP4 and MRP5 were found 

on chromosomes 17, 13 and 3 respectively (Kool et al., 1997). MRP6  is located 

on chromosome 16, band 16pl3.11, next to MRP1 (Kool et al., 1999).
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1.6.3 Cellular location of MRP

Although MRP was initially believed to be predominantly located in the 

endoplasmic reticulum of resistant cells (Krishnamachary and Centre, 1993), 

significant levels are now known to be predominantly localized to the plasma 

membrane (Flens et ah, 1994; Muller et ah, 1994 and Zaman et ah, 1994), with 

detectable levels present in intracellular membrane compartments of some cell 

types (Almiquist et ah, 1995 and Hipfner et ah, 1999). Immunohistochemical 

studies show that MRP1 in normal tissue is predominantly cytoplasmic, whereas, 

in malignant tissue, it is mainly plasma membrane located with some granular 

cytoplasmic staining observed (Flens et ah, 1996). However, Flens et ah, (1996), 

and Zaman et ah, (1994), have reported that resistant cell lines show 

predominantly plasma-membrane staining.

MRP2 is localised to the canalicular membrane of rat and human hepatocytes 

(Paulusma et ah, 1997 and Keppler et ah, 1996), as well as to the apical 

membrane of rat hepatoma cells (Konig et ah, 1999a). MRP3 was found in the 

basolateral membrane of hepatocytes but was not detectable in the canalicular 

membrane domain of hepatocytes. In polarised monolayers of kidney cells, MRP 

1, 3 and 5 are routed to the basolateral membrane and MRP2 is the apical MRP 

isoform (Borst et ah, 1999). The subcellular locations of MRP4 and MRP6  have 

not yet been analysed (Borst et ah, 1999). Using specific monoclonal antibodies, 

MRP2 has been located in apical and MRP1 and MRP3 in basolateral membranes 

of tissues (Kool et ah, 1999, Flens et al., 1996 and Konig et ah, 1999b).
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APICAL

MDRÍ MRP1 MRP2 MRP3
*

MRP5

BASOLATERAL

Figure 1.6.1: Schematic presentation of the localisation of MDR1 Pgp, MRP1, 

MRP2, MRP3 and MRP5 in transfected polarized epithelial cells. The physical 

barrier between the apical and basolateral plasma membrane is formed by tight 

junctions.

1.6.4 MRP expression in cell lines

Since the discovery of MRP1 in the small cell lung cancer cell line, H69AR, 

MRP1 has been identified in non-Pgp multidrug resistant cell lines from a variety 

o f tumour types, including leukemias, fibrosarcoma, non-small cell lung, human 

small cell lung, breast, cervix, prostate, and bladder carcinomas (Table 1.6.3) 

(Izquierdo et al., 1996). Although many of these cell lines have been selected in 

doxorubicin or other anthracyclines, others have been selected in etoposide (VP- 

16) or vincristine. (Loe, 1996). Recently cell lines have been identified which co

express both MRP1 and Pgp but the relative contribution of each protein to the 

overall multidrug resistance phenotype has yet to be determined. (Brock et al.,

1995).
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Tumour Tyne Cell line Selecting drug

Human small cell lung H69AR Doxorubicin

GLC4/ADR Doxorubicin

POGB/DX Doxorubicin

H69/VP VP-16

UNCC-VP VP-16

Non-small cell lung MOR/R Doxorubicin

CORL23/R Doxorubicin

Cervical HelaJ2 Doxorubicin

KB/C-A Doxorubicin*

KB/7d VP-16

Fibrosarcoma HT1080/DR4 Doxorubicin

Leukaemia HL60/ADR Doxorubicin

U-937/A Doxorubicin

CEM/E Doxorubicin

Breast MCF7/VP VP-16

MCF7/GL Geldanamycin

Bladder T24/ADM Doxorubicin

KK47/ADM Doxorubicin

5637/DR5.5 Doxorubicin

Prostate P/VP20 VP-16

Mouse Erythroleukemia PC-V Vincristine

WEH1-3B/NOVO Novobiocin

*With cepharanthine and mezerine. (Taken from: Loe et al., 1996a) 

Table 1.6.3 MRP1 expressing tumour cell lines.



1.6.5 MRP expression in tissues

MRP1 has been detected either at the protein or mRNA level in normal human 

tissues including lung, stomach, colon, peripheral blood macrophages, thyroid, 

testis, nerve, bladder, adrenal, ovary, pancreas, gall-bladder, duodenum, heart, 

muscle, placenta, brain, kidney, liver and spleen (Sugawara et al, 1997; Loe et 

al, 1996a; Zaman et a l, 1993; Cole et al, 1992 and Kool et al., 1997).

MRP2 (cMOAT) is found predominantly in the liver, duodenum and, in low 

levels, in the kidney (Kool et al, 1997; Schaub et al, 1997). Kool et al, (1997) 

and Kiuchi et al., (1998), reported that MRP3 mRNA is mainly expressed in the 

liver, colon, intestine and adrenal gland, and to a lesser extent in several other 

tissues.

MRP3, like MRP2, is found predominantly in the liver. High levels of MRP3 

mRNA in human liver have also been reported by other authors including Kiuchi 

et al, (1993); Belinsky et al, (1998) and Fromm et al, (1999). However, results 

with new MRP3 antibodies show that there is little MRP3 protein in normal 

human liver (Kool et al, 1999a). Hirohashi et al, (1998), reported that MRP3 

mRNA levels are low or undetectable in normal rat liver but that the level is 

increased in rats made cholestatic by bile duct ligation. Therefore, it appears that a 

high level of MRP3 is detected in diseased liver cells and only a very low 

expression is detected in normal liver cells.

Kool et al., (1997), reported that MRP4 was found only in a small number of 

tissues at very low levels. However, Lee et al., (1998), demonstrated, using RNA 

blot analysis, the expression of MRP4 in a wide range of tissues, with particularly 

high levels in prostate, but almost undetectable levels in the liver. MRP5, like 

MRP1, is readily detected in several tissues with highest levels in skeletal muscle, 

intermediate levels in kidney, testis, heart and brain and low levels in most other 

tissues, including lung, liver, spleen, thymus, prostate, ovary and placenta 

(Belinsky et al., 1998).

Recent investigations have shown that MRP6  is predominantly expressed in liver 

and kidney cells and to a lesser extent in other tissues (Kool et a l, 1999b). Table

1.6.4 shows the levels of RNA transcripts of MRP1, cMOAT, MRP3, MRP4, 

MRP5 and MRP6 .
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MRP11 cMOAT1 MRP3' MRP41 MRP51 MRP62

Lung •  • • • O • • • • •  •
Kidney • • • • • • •  • •  • • •
Bladder •  • • • o • • •  • 0
Spleen • • • • o • O •  • 0
Mammary gland ND o o ND ND ND
Salivary gland ND o o O • • • •
Thyroid • • • • o o O • •
Testis • • • • o o o • • O
Nerve • o o • • 0
Stomach • • • o • o • • 0
Liver • •  •  • • • • • o • • • • •
Gall bladder • • • ND ND • •  • 0
Duodenum •  • •  • •  • • ND ND • •
Colon • • • o •  • • o • • • •
Adrenal gland • • • • o •  • • o • D

Skeletal muscle • • o o o • • • • 0
Heart o o o • • O
Brain o o o • • • 0
Placenta • • o o o • 0
Ovary • • o o o • 0
Pancreas o • o • o
Tonsil ND o • • • • o

1 Kool et al., (1997); 2Kool et a l, (1999b). ND, not determined; O, no expression; 

•  - • • • • ,  low to high expression.

Tablel.6.4: Levels o f mRNA transcripts of MRP1, cMOAT (MRP2), MRP3, 

MRP4, MRP5 and MRP6  in human tissues.

1.6.6 MRP Protein structure

Both of the known human multidrug resistance transporters, P-glycoprotein and 

MRP, together with several other bacterial and eukaryotic transporters, are 

members of the ABC transporter protein family. In most cases these proteins have 

been shown to function as transport ATPases, hydrolysing ATP in conjunction 

with transporting their substrate molecules through cellular or intracellular
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membranes. These proteins share a common molecular architecture - they are 

built from combinations of conserved domains, that is ATP- (nucleotide-) binding 

ABC units, and characteristic membrane- embedded regions (Varadi et al, 1998).

Most ABC transporters are comprised of two polytopic MSDs (Membrane 

Spanning Domain) and two NBDs (Nucleotide Binding Domain) (Higgins, 1992). 

In proteins such as Pgp, CFTR, and STE6, all four domains are contained within a 

single polypeptide but others, such as bacterial transporters and the maltose and 

histidine permeases, consist of four polypeptides each encoding a single domain. 

Mammalian TAPI and TAP2, which are involved in antigen presentation, each 

contain one MSD and one NBD, and heterodimerise to form a functional 

complex. It is thought that ABC transporters such as Pgp, CFTR, and STE6 

evolved by duplication or fusion of genes encoding half-transporters with domain 

organisations similar to those of TAPI and TAP2 (Gao et a l, 1998). The 

predicted topology of MRP1 is inconsistent with the typical four-domain 

structure. It was the first example of a subgroup of the ATP-binding cassette 

superfamily whose members have three membrane spanning domains and two 

nucleotide binding domains (Hipfner et al., 1997 and 1999). Mutagenesis of 

potential N-glycosylation sites has recently shown that the NH2 terminus of 

MRP1 is extracellular so it appears most likely that MSD1 spans the membrane 

five times (Varadi et al., 1998). This additional hydrophobic domain is not 

present in ABC transporters such as Pgp and CFTR. Thus, it is a characteristic 

feature of members of the MRP branch of the ABC transporter superfamily 

(Hipfner el al., 1997).

More recently identified ABC transporters with a third NH2 terminal MSD 

include cMOAT (MRP2), MRP3 and MRP6 the yeast cadmium resistance factor 

(YCF1), and the sulfonylurea receptors (SUR), as well as several less well 

characterised MRP-related proteins (Lautier et al, 1996; Hipfner et al, 1999; 

Tusnady et al, 1997 and Bakos et al., 1996). Comparisons of protein primary 

structure and gene organisation suggest that the MRP-related proteins share a 

common, four-domain ancestor with the CFTR. It is also apparent from such 

comparisons that the NH2 terminal MSDs of the MRP-related proteins are poorly 

conserved relative to the other four domains in these proteins. Gao et al., (1998), 

investigated the possible role of the third MSD of MRP1 and its related
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transporters and their results demonstrated that two truncated molecules (MRP229- 

1531 and MRP2 8 I-1531) lacking MSD1 can be expressed in Sf21 cells as efficiently 

as the full length protein. They then examined the ability of various MRP1 

fragments, expressed individually and in combination, to transport the MRP 

substrate, Leukotriene C4 (LTC4). It was found that elimination of the entire NH2 

terminal MSD, or just the first putative transmembrane helix, or substitution of 

the MSD with the comparable region of the functionally and structurally related 

transporter, the canalicular multispecific organic anion transporter 

(cMOAT/MRP2), had little effect on protein accumulation in the membrane. 

However, all three modifications decreased LTC4 transport activity by at least 

90%. Transport activity could be reconstituted by co-expression of the NH2- 

terminal MSD with a fragment corresponding to the remainder of the MRP 

molecule, but this required both the region encoding the transmembrane helices of 

the NH2 terminal MSD and the cytoplasmic region (Lo) linking it to the next 

MSD. In contrast, a major part of the cytoplasmic region linking the N H r 

proximal nucleotide binding domain of the protein to the COOH-proximal MSD 

was not required for active transport of LTC4.

In most ABC transporters, the binding and the subsequent hydrolysis of ATP by 

the NBDs is believed to be coupled to, and provide the energy for substrate 

transport (Hipfner et al, 1999). These domains are highly conserved, typically 

showing 30-40% identity among different superfamily members in a core region 

of about 200 amino acids. The NBDs of ABC superfamily members share two 

sequence motifs, designated “Walker A” and “Walker B”, with many other 

nucleotide binding proteins (Walker et al, 1982). Mutational analysis of a 

number o f ABC proteins indicates that these two regions are critical for ATPase 

function (Hipfner et al, 1999). Another feature that distinguishes MRP 1-like 

transporters from other ABC superfamily members is a difference in the structure 

of the NH2-proximal NBD (NBD1). Alignment of the primary sequences of 

MRP1, LtPgpA, and CFTR with the human Pgp encoded by the MDR1 gene 

revealed that, in comparison to P-glycoprotein, these transporters all contain a 

“deletion” of 13 amino acids located between the Walker A and B motifs of 

NBD1.
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Figure 1.6.2: Proposed membrane topology of MRP 1. Models of the membrane 

topology o f MRP 1 are shown with amino acids experimentally determined to be 

localised to the cytosolic or extracytosolic side of the membrane indicated. Six 

amino acids have been localised to the extracytoplasmic side of the membrane by 

N-glycosylation site utilization analysis (N19, N23 and N1006$) or HA epitope 

insertion (amino acid positions 4, 574, 1001 and 1222^). Additional amino acids 

or regions have been localised to the cytosolic side of the membrane by epitope 

mapping of MRPl-specific mAbs MRPrl, QCRL-1 and MRPr6 ( 0  ) or by HA 

epitope insertion (at amino acid positions 163, 271, 653, 938A ). A glycoylation 

site that is not utilised but predicted to be extracytosolic is indicated ^  ) (Hipfner 

etal., 1999).
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Within the MRP family, homolgy is highest between MRP1, 2, 3 and 6. MRP 2, 

MRP3 and MRP6 have a similar structure to MRP1 and are characterised by the 

presence of MSD1 connected to a Pgp-like core by cytoplasmic linker, Lo. 

However, both the MRP4 and the MRP5 cDNA sequences predict a structure 

more similar to CFTR and MDR1 than MRP1 because of the lack of the NH2- 

terminal membrane-bound extension of about 280 amino acids. Although this 

segment is absent in these MRP homologues, it is reported that they still have the 

basic structure that seems to be required for GS-X pump activity in MRP1 (Bakos 

et a l, 1998), i.e. the P-glycoprotein-like core structure and the Lo loop.

The amino acid sequence of MRP 1 contains various sites known to be relevant 

for ATP binding and post-translational modification (Loe el a l, 1996a). MRP1 

has been detected immunologically as a 190 kDa N-glycosylated phosphoprotein 

which binds ATP. Various studies have shown that the unmodified MRP 

polypeptide has an apparent mass of 170 kDa and is processed into a mature 190 

kDa form by addition of N-linked oligosaccharides (Almiquist et al, 1995). Only 

three o f the twelve potential sites for N-linked glycosylation, contained in the 

human MRP1 gene, are external to the plasma membrane and glycosylated 

(Almiquist el al, 1995). The effect of glycosylation on MRP1 activity is not fully 

known but it has been demonstrated that tunicamycin-induced inhibition of 

glycosylation has little effect on the cellular drug accumulation characteristics of 

MRP1 expressing cells (Almiquist et al, 1995). Hipfner et a l, (1997), also report 

that although MRP1 expressed in Sf21 cells is underglycosylated, it displays 

transport kinetics similar to those of fully glycosylated MRP1.

MRP1 is highly phosphorylated with phosphate groups contained in at least 9 

tryptic peptides (Ma el al., 1995). All phosphate groups are present at serine 

residues and it has also been observed that certain protein kinase inhibitors such 

as chelerythrine and staurosporine are capable of reducing P I90 phosphorylation 

and reversing drug resistance (Ma et al, 1995).
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It is believed that phosphorylation of MRP 1 occurs mainly in the linker region of 

the protein but the precise location and functional role of these phosphorylated 

residues on MRP 1 are unclear.

1.6.7 Function /Transport by MRP1

Lutzky et a l, (1989), demonstrated that inhibition of Glutathione (GSH) 

synthesis by buthionine sulfoximide (BSO), an inhibitor of y-glutamylcysteine 

synthetase, resulted in significant sensitization to daunorubicin and suggested that 

changes in the intracellular distribution of GSH/Glutathione-S transferase (GST) 

and/or increased drug retention may have been involved in mediating this effect. 

Increased intracellular GSH levels were shown to correlate with intrinsic 

anthracycline resistance (Russo et al., 1985). Increased activity of GSH- 

dependent enzymes was associated with acquired resistance (Lutzky et al., 1989). 

In 1994 two groups independently demonstrated that MRP1 is able to transport 

glutathione (GSH) conjugates of drugs (Leier et al, 1994 and Jedlitschly et al, 

1994). Leier et a l, (1994), demonstrated, using isolated plasma membrane 

vesicles with an inside out orientation prepared from HeLa cells transfected with 

MRP1 expression vectors, that the MRP1 gene encodes a primary-active ATP 

dependent export pump that can transport the cysteinyl leukotriene, LTC4 and 

glutathione conjugates such as glutathione disulphate (GSSG). Elevated levels of 

ATP-dependent transport of LTC4 and certain other GSH conjugates were 

demonstrated by Jedlitschly et al, (1994), in membrane vesicles prepared from 

drug selected HL60/ADR cells. The findings that MRP1 can transport cysteinyl 

leukotrienes (e.g. LTC4) as well as other GSH conjugates suggest that this protein 

may be a GSH conjugate/organic anion transporter, a GSH-X pump. Therefore, it 

appears that MRP1 is a transporter of multivalent organic anions, preferably 

glutathione S-conjugates (Loe et al, 1996b; Jedlitsky et al, 1996; Muller et al., 

1994), but also of sulphate conjugates (Jedlitsky et al., 1996; Renes et al, 1999). 

MRP1 confers resistance to heavy metals that interact with GSH and transports 

oxidised GSH (GSSG), steroid glucuronides and bile salt derivatives (Loe et al, 

1996; Cole et al. 1994), and complexes of reduced glutathione (GSH) with 

arsenite (Zaman el al., 1995). Moreover, because of the MRP-mediated export of
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glutathione disulfide from cells (Leier et al, 1996), MRP family members are 

reported to play a role in the defence against oxidative stress (Keppler el al, 
1999a).

The mechanism of MRP-mediated transport of chemotherapeutic drugs is 

presently unclear. Although MRP1 has been shown to reduce cellular 

accumulation of at least some of the drugs to which it confers resistance, such as 

adriamycin, daunorubicin, vincristine and VP-16, it has previously not been 

possible to demonstrate direct transport of these compounds or other unmodified 

chemotherapeutic drugs by MRP 1-enriched membrane vesicles (Cole et al., 1998; 

Jedlitschky et al, 1996; Loe et al., 1996 and Muller et al., 1994), and contrary 

reports claiming to have shown direct transport of these compounds have recently 

been retracted (Cole et al., 1998). However, Vezmar et al., (1998), reported the 

direct binding of the antimalarial drug, chloroquine, to MRP1 and the transport of 

this compound in an ATP-dependent manner.

Because MRP1 has the ability to transport glutathione conjugates, it was 

postulated that the transporter confers multidrug resistance by pumping the 

glutathione conjugates of anionic metabolites of lipophilic cytotoxic drugs (Paul 

et al., 1996). However, glutathione conjugates of the natural drug products for 

which MRP1 confers resistance have not been isolated (Tew, 1994), and MRP 

transfectants do not exhibit increased resistance to alkylating agents, a class of 

drugs for which glutathione conjugation is known to occur (Grant et al., 1994; 

Paul et al. 1996; Loe et al, 1996 and Renes et al., 1999). There are also other 

reasons why the ability to transport drug conjugates is unlikely to provide a 

general explanation of the ability of MRP 1 to confer resistance to a structurally 

diverse spectrum of anti-neoplastic agents in such a wide variety of cell types. 

Most interesting is the observation that Phase II conjugation plays a relatively 

minor role in the in vivo and in vitro metabolism of these compounds (Loe et al.,
1998). In addition, Phase I and Phase II biotransformation reactions are known to 

occur primarily in the liver (and to a lesser extent in other tissues), and it is 

highly unlikely that all of the cell types in which MRP1 overexpression causes 

resistance are competent to carry out these reactions with the required efficiency 

and completeness (Cole et al., 1998; Hipfner at al., 1999).
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A number of authors have also reported the ability of the MRP protein to mediate 

the active transport of neutral (etoposide (VP-16)) and cationic (adriamycin, 

vincristine, daunorubicin and rhodamine 123) lipophilic drugs as well as anions 

(e.g. dinitrophenyl-S-glutathione and calcein) (Broxterman et al, 1996; Renes el 

al, 1999). Therefore, the need for extensive conjugation in tumour cells of such a 

variety of compounds makes this hypothesis even more unlikely.

However, a number o f authors have reported that depletion of cellular GSH 

(reduced glutathione) levels by treatment with BSO (buthionine sulfoximine), 

improved the efficacy of some natural product drugs both in cultured cells and in 

mice bearing tumours that express elevated levels of MRP1 (Loe et al., (1998); 

Lautier el al., 1996 and Schneider et a l, 1995). Recently Benderra et al., (2000), 

have reported that BSO was able to increase nuclear accumulation of 

daunorubicin in cells overexpressing MRP1 (MCF7/VP) but had no effect in cells 

that overexpressed Pgp.

These findings together with the observation that MRP1 increased drug efflux 

from intact cells but was apparently unable to transport the same compounds in 

isolated plasma membrane vesicles, suggested that either the efflux of certain 

drugs might require the activation of MRP1 by GSH or that some form of co

transport mechanism might be involved (Cole et al., 1998). Loe et al, (1996), 

reported that physiological concentrations of GSH significantly enhanced the 

ability of vinblastine and vincristine to inhibit MRP 1-mediated ATP-transport of 

LTC4 although GSH or vincristine alone are very poor inhibitors of MRP- 

mediated ATP-transport of LTC4. They also demonstrated the direct uptake of 

unmodified VCR by MRP 1-enriched vesicles in an ATP and GSH-dependent 

manner and that the tripeptide structure of GSH is a requirement for stimulation 

o f VCR transport to occur. Renes et al., (1999), demonstrated, using membrane 

vesicles isolated from in vitro selected multidrug resistant cell lines 

overexpressing MRP1 (GLC4/ADR) (which did not express MRP2, MRP3, 

MRP4 or MRP5 (Kool et al., 1997)) and a MRP 1-transfected cell line (SI (MRP)), 

that MRP1 transports vincristine and daunorubicin in an ATP-and GSH- 

dependent manner. This transport can be inhibited by the MRP1 inhibitor, 

MK571, and the MRP 1-specific monoclonal antibody, QCRL-3. Previously, Leier 

et al, (1996), reported that GSH was not transported by MRP1. But Loe et al,

(1998), reported that VCR stimulates the ATP-dependent transport of GSH in a
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concentration-dependent manner although in the absence of VCR, they detected 

no ATP-dependent GSH transport. Therefore, the information provided by Loe et 

al, (1996) and (1998), and Cole et al, (1998), indicates that MRP1 can actively 

cotransport GSH and unmodified vincristine and that these compounds probably 

interact, either with LTC4 binding site(s) on the protein or with a mutually 

exclusive site.

Additional evidence favouring a drug/GSH co-transport mechanism has been 

obtained from studies using murine MRP double-knockout (MRP7 ) cell lines. 

The export of GSH from murine wild type (MRP+/H ) embryonic stem cells, but 

not from the knockout (MRP_/ ) cell lines, has been reported to be increased in the 

presence of VP-16 (Cole et al., 1998; Rappa et a l, 1997; Wijnholds et al, 1997 

and Loe et al., 1998). In addition expression of MRP1 in some cell lines, but not 

all, is associated with a significant (2- to 6 -fold) decrease in intracellular GSH 

levels (Loe et al, 1998). Recently, Rappa et al., (1999), reported in studies of 

murine MRP knockout models that MRP, besides being capable of exporting 

certain glutathione conjugates, may also catalyse the co-transport of GSH and 

drugs or endogenous metabolites. A recent publication by Poirson -Bichat et al., 

(2 0 0 0 ), reported that most, if  not all, human tumours are dependent on methionine 

for growth and that depletion of methionine resulted in a reduction of the ATP 

pool and glutathione content, resulting in increased efficiency of a number of 

chemotherapeutic drugs including adriamycin, cisplatin and carmustine. This 

further indicates the involvement of GSH and ATP in chemoresistance and drug 

efflux mechanisms.

However, this co-transport mechanism still can not fully explain all MRP- 

mediated resistance mechanisms, in particular, with respect to the anthracycline 

antibiotics, since GSH displays little or no ability to enhance either their transport 

directly or their ability to inhibit ATP-dependent, MRP1 mediated LTC 4 transport 

(Loe et al, 1996b). These authors also found that treatment of either drug- 

selected or transfected cells with BSO restored sensitivity to vincristine far more 

effectively than to adriamycin. It appears that GSH is of far greater importance to 

MRP1-mediated transport of Vinca alkaloids compared to anthracyclines. 

However, recently several GSH-independent interactions of MRP 1 have have also 

been reported. The MRP 1-mediated transport of antifolates and the induction of 

MRP1 ATPase activity by the (iso)flavonoids, both in the absence of GSH,
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showed that the presence of GSH was not absolutely required for MRP1 function 

(Hooijberg et a l, 1999 and 2000).

A number of cell lines, which over-express MRP1, have been developed through 

a process of drug selection. Because these cell lines are obtained by a stepwise 

selection in drug it is difficult to obtain information on the potential drug 

transporting abilities of MRP1 as it is more than likely that a variety of drug 

resistance mechanisms are co-expressed in the cell lines. MRP- transfected cell 

lines may be more useful models for defining the profile of drugs transported by 

MRP as the use of cell systems such as these should avoid the interference from 

multiple resistance mechanisms found in drug selected cell lines. However, as 

most cells contain endogenous (organic anion) transporters, resulting in 

background transport activity (Borst et al., 1999), it has been difficult to generate 

cell lines which express one transport protein only. Therefore, MRP-transfected 

cell lines may only be useful when the problem of endogenous transporters is 

resolved.

Cole et al, (1994), found that MRP 1-transfected cell populations were 6.9-fold, 

6.3-fold, 8.6-fold, 11.6-fold, 10.3-fold more resistant to adriamycin, daunorubicin, 

epirubicin, vincristine and VP-16, respectively, than negative control transfectant. 

These transfectants were only slightly resistant to taxol, vinblastine, and 

colchicine (1.7-fold, 3-fold, 2.1-fold respectively). In addition, antifolates, such as 

the anticancer agent methotrexate, have recently been described as MRP1 

substrates (Hooijberg et al, 1999 and Kool et al, 1999a). In addition to 

methotrexate, several additional amphiphilic organic anions which are not 

conjugated have been shown to be transported by MRP1 directly in a GSH- 

dependent manner (Keppler et al, 1999 and Konig et a l, 1999). Although the 

resistance profiles of drug-selected MRP or Pgp-overexpressing cell lines were 

similar, considerable differences existed particularly with regard to taxol, 

mitoxantrone and colchine resistance (Cole et al, 1994). These three highly 

lipophilic drugs are normally included as members of the resistance spectrum of 

Pgp. However, a number of authors have reported low level resistance to taxol in 

MRP-overexpressmg cell lines (Zaman et al, 1994; Breuninger et al, 1995 and 

Vanhoefer et al., 1996 and 1997). The MRP transfected cells were also resistant 

to a number of heavy metal anions including arsenite, arsenate and trivalent and
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pentavalent antimonials but were not resistant to cadmium chloride. MRP1 

transfected cells were not resistant to 9-alkyl anthracyclines, or cisplatin (Loe et 

ah, (1996a). It appears that MRP1 has a preference for more hydrophilic 

xenobiotics.

The drug accumulation characteristics of MDR cell lines with high levels of 

MRP, vary significantly. Cell lines which over-express MRP following drug 

selection, can accumulate less drug and/or have higher rates of efflux than the 

sensitive cells from which they were derived. A number of MRP expressing cell 

lines also appear to sequester drug into cytoplasmic vesicles (Marquardt et ah 

1992) which may lead to the diversion of the drug from the relevant cellular target 

without affecting total cellular accumulation levels.

It is unclear why a cell develops MRP over Pgp-mediated resistance during drug 

exposure but it is believed that overexpression of MRP 1 may confer initial levels 

of resistance, while Pgp overexpression develops as higher levels of resistance are 

required for survival (Elliott, 1997 and Choi et ah, 1999). Brock et ah, (1995) 

showed that in the small cell cancer cell line, H69, MRP1 was over-expressed 

during selection in low concentrations of VP-16. Following further selection in 

higher concentrations of drug, MRP1 expression remained relatively constant, but 

Pgp expression developed.

1.6.8 MRP1 and clinical multidrug resistance

There is considerable interest in determining the potential involvement of MRP1 

in clinical multidrug resistance and a number of different MRP 1-specific 

monoclonal antibodies (mAbs) including mAbs QCRL-1, QCRL-3, MRPrl and 

MRPm6 have been used in a wide variety of immunoassays for the analysis of 

MRP1 expression and localization in both normal and malignant tissues (Flens et 

al., 1994). The expression of MRP 1 protein and/or mRNA has been detected in 

almost every tumour type examined, including both solid tumours (lung, 

gastrointestinal and urothelial carcinomas, neuroblastoma, glioma, 

retinoblastoma, melanoma, cancers of the breast, endometrium, ovary, prostate 

and thyroid) (Ito et ah, 1998; Canitrot et ah, 1998; Chan et ah, 1997; Nanashima 

et ah, 1999; Hipfner et ah, 1999; Oshika et ah, 1998; Loe et ah, 1996), and
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hematological malignancies (Filipits et al, 1997; Abbaszadegan et al., 1994; Loe 

et al, 1996). Among the common tumour types, expression of high levels of 

MRP1 is particularly frequent in the major histologic forms of non-small cell lung 

cancer (Nooter et al., 1996; Giaconne et al., 1996; Hipfner et al., 1999). There are 

difficulties in establishing a causative role for MRP1 (and other resistance- 

associated proteins such as Pgp) in clinical multidrug resistance. There are a 

number of reasons for this. The broad spectrum of drugs encompassed by clinical 

multidrug resistance indicates that multiple resistance mechanisms are likely 

involved. Due to differences in the methods used to quantify MRP in clinical 

samples discrepant results have been reported by different investigators. The 

design and execution of more informative studies to address the role of resistance 

proteins in chemotherapy failure has been hindered by difficulties in obtaining 

suitable patient samples (e.g. pre-and post-chemotherapy samples from the same 

patient) (Hipfner et al, 1999).

However, a number of authors have reported that the expression levels of MRP 1 

are of prognostic si gnificance. Chan et al., (1997), reported that MRP1 expression 

in retinoblastoma (RB) was associated with the rare failures of chemotherapy in 

RB. Canitrot et al., (1998), and Campling et al., (1997), reported that the 

expression of MRP 1 mRNA was a negative determinant of the chemotherapeutic 

response of untreated Small Cell Lung Cancer (SCLC). MRP1 was also reported 

by Ito et al., (1999), to have prognostic value in primary breast cancer and might 

be used as one of the markers for poor prognosis in patients with this disease 

(Huang et a l, 1998). Oda et a l, (1996), also suggested a link between MRP1 

expression and poor prognosis in Ewings sarcoma and malignant peripheral 

neuroectodermal tumour of bone (MPNT).

Norris et al., (1997), and Bordow et a l, (1994), have reported that amplification 

of the N-myc oncogene is a powerful indicator of poor response to chemotherapy 

and poor outcome in neuroblastoma and is central to the malignant phenotype of 

this disease. Expression of the MRP1 gene is common in both primary 

neuroblastoma tumours and cultured cell lines and was found to correlate with 

amplification and overexpression of the N-myc oncogene (Bordow et al, 1994). 

Norris et a l, (1997), have hypothesised that the N-wyc oncogene influences 

neuroblastoma outcome by regulating MRP1 gene expression.
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It has also been reported that mutant p53 gene significantly correlated with MRP 

overexpression in a number of cell lines derived from different tumour types 

including NSCLC (Oshika et al, 1998 and Wang et al., 1998), colorectal cancer 

(Fukishima et al, 1999), acute myeloblastic leukemia (Turzanski et al., 2000), 

leukaemia and ovarian carcinoma (Wang et al., 1998). Wang et al., (1998), have 

suggested that it may be feasible to overcome drug resistance due to MRP1 

overexpression by restoring the wild type p53 status of those cells bearing mutant 

p53.

1.6.9 Function/Transport properties of the MRP analogues

1.6.9.1a MRP2 (cMOAT)

The discovery that MRP1 is a GS-X pump also raised the question as to whether 

other GS-X pumps, known to exist in human tissues might be involved in some 

forms of drug resistance. The first of these pumps to be recognised as a member 

of the MRP family was the canalicular multispecific organic anion transporter 

gene, cMOAT (MRP2) (Taniguchi et al., 1996).

The liver converts many endogenous and xenobiotic lipophilic compounds into 

anionic conjugates with glutathione, glucuronate or sulfate. These conjugates are 

transported across the canalicular (apical) membrane into bile by the 190kDa 

membrane glycoprotein, MRP2 (Jansen et al., 1985; Taniguchi et al., 1996). 

Defects in MRP2 are known to cause Dubin-Johnson syndrome (DJS) (Mayer et 
al, 1995; Paulusma et al., 1996). Koike et al., (1997), reported that MRP2 

activity mediates the ATP-dependent transport of various hydrophobic anionic 

compounds in liver canalicular membranes and other tissues. Studies with mutant 

rats (TR/GY or EHBR), which lack the MRP2 protein in the canalicular 

membrane of hepatocytes, have shown that the substrate specificity of MRP2 is 

very similar to that of MRP 1 (Oude Elferink et al., 1995; Keppler et al., 1997; 

Roelofsen et al., 1999). Paulusma et al, (1999), demonstrated a role for cMOAT 

in the excretion of GSH both in vivo and in vitro. In several independent cMOAT 

transfectants, the level o f GSH excretion correlated with the expression level of
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the protein (Paulusma et al., (1999). The authors further demonstrated, using 

membrane vesicles isolated from cMOAT-expressing MDCKI1 cells, that GSH is 

a low-affmity substrate for the transporter and that its excretion is reduced upon 

ATP depletion.

Like MRP1, MRP2 transports bilirubin glucuronides in an ATP dependent 

manner. Bilirubin is secreted from the liver into bile mainly as glucuronosyl and 

bisglucoronsyl conjugates. Jedlitschy et al., (1997), demonstrated that bilirubin 

glucuronides were better substrates for MRP2 than MRP!. Keppler et al., 

(1998,1999a and 1999b), and Konig et al., (1999), have also reported that the KIn 

value (the Michaelis Menton constant (the dissociation constant for the complex)) 

of human MRP2 for LTC 4 was 10-fold higher than that for MRP1. Moreover, the 

Km of human MRP2 for 17p-glucuronosyl estradiol was 4.8-fold higher than for 

MRP1. MRP2 is also reported to be the predominant export pump responsible for 

hepatobiliary excretion of the amphiphilic anion Fluo-3 (Keppler et al., 1999 and 

Konig et al., 1999). In addition, the quinoline-based LTD4 analog, MK571, more 

potently inhibits MRPl-mediated transport than the rat MRP2-mediated transport 

(Keppler et a l, 1998).

1.6.9.1 b: Proposed working model for MRP1 and MRP2

Borst et al., (1999), proposed a working model for MRP1 and MRP2 with two 

drug binding sites: one with a relatively high affinity for GSH (G-site) and a low 

affinity for drug, and one with a relatively high affinity for drug and a low affinity 

for GSH (D-site). The authors propose that in the absence of drugs, both binding 

sites are occupied by GSH resulting in a slow export of GSH. At low drug 

concentrations, the G-site remains occupied by GSH and the D-site becomes 

occupied by drug, resulting in co-transport of both compounds. The authors infer 

that both sites show positive cooperativity i.e. the activity of MRP requires 

substrate binding to both binding sites and the binding of a substrate to to the G or 

D-site can affect the transport of the substrate on the other binding site (for 

example, GSH and vincristine). Borst et al, (1999), also suggest that at high drug 

concentrations some (negatively charged) drugs appear to be able to occupy both
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the G- and the D- site resulting in transport of drug alone. Evers et a l, (1998), and 

Jedlitschky et al., (1996) and (1997), reported that MRP1 and MRP2 do not 

require free GSH for the transport of compounds that are conjugated to 

glutathione, glucuronide or sulfate. Therefore, Borst et al., (1999), suggest that 

these substrates have a relatively high affinity for both the G- and the D-site and 

are therefore transported efficiently without requiring GSH or stimulating GSH 

export.

1.6.9.1c MRP2 and drug resistance in cancer

Cancer cells that overexpress Pgp or MRP1 do not show cross-resistance to 

platinum-containing compounds, alkylating agents and anti-metabolites 

(Taniguchi et al., 1996; Koike el al., 1997). MRP 1-transfected cells show 

resistance to anthracyclines, vinca alkaloids, epipodophyllotoxins and heavy 

metal anions but are sensitive to platinum-containing compounds. It was first 

suggested by Tanaguchi et al, (1996), that human cMOAT may function as a 

cellular cisplatin transporter, as expression of human cMOAT was enhanced in 

cisplatin resistant human cell lines with decreased cellular cisplatin accumulation, 

but was not enhanced in cell lines with normal levels of drug accumulation. 

Human cMOAT was overexpressed 4.0-6.0 fold in the three cell lines analysed by 

Tanaguchi et al, (1996), as compared to their parental drug-sensitive counterparts 

but did not overexpress MRP1. The cell lines analysed were the cisplatin resistant 

human (CRH) head and neck cancer KB cell line KB/KCP4, the CRH prostatic 

cancer PC-3 cell line P/CDP5 and the CRH bladder cancer T24 cell line T24 

DDP10.

HepG2, a human hepatic cancer cell line, was found to express high levels of 

cMOAT mRNA (Narasaki et a l, 1997), and protein (Koike et al, 1997). Koike 

et al., (1997), transfected an expression vector containing cMOAT antisense 

cDNA into the HepG2 cell line and observed a reduction in the cMOAT protein 

as well as an enhanced level of glutathione in the antisense transfectants but 

increased expression of MRP and MDR1 was not observed. The transfectants 

displayed an increased sensitivity to cisplatin, vincristine, doxorubicin and the
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camptothecin derivatives but not to etoposide (VP-16), mitomycin C and 5-FU 

(5’Fluorouracil). The results suggested that cMOAT levels are inversely 

correlated with those of glutathione and that cMOAT and it’s related genes may 

be involved in the sensitivity of cells to certain anticancer agents. Kool et al.,

(1996), examined a large number of cisplatin and doxorubicin resistant cell lines 

and showed a correlation between cMOAT transcript levels and sensitivity to 

cisplatin but not to doxorubicin. Increased resistance to vincristine and etoposide 

was observed in MDCKII cells transfected with MRP2. HEK292, transfected with 

MRP2, showed increased resistance to etoposide, cisplatin, epirubicin and 

doxorubicin (Konig et al., 1999). MRP2 was also shown to confer resistance to 

the antifolate drug, methotrexate (Hooijberg et al., 1999).

Thus there is indirect evidence to suggest that an organic anion pump, notably 

cMOAT, could contribute to cisplatin resistance by exporting the cisplatin -  GSH 

complex. Elevated GSH levels and synthesis may be required to drive formation 

of the complex if  contact with cisplatin is extended, as is usually the case with 

cell lines selected for resistance in vitro. However, even in the limited set of cell 

lines analysed by Kool et al., (1996), all chosen for lowered cisplatin 

accumulation, there was no simple quantitative correlation between cisplatin 

resistance and the combination of raised GSH and cMOAT (Borst et al., 1997). 

Kauffmann et al., (1997), demonstrated the inducibility o f cMOAT gene 

expression in rat hepatocytes treated with 2-AAF (acetyl aminofluorene), cisplatin 

or cyclohexamide. This group of researchers put forward the theory that 

expression of the cMOAT transporter may be part of an adaptive response 

mechanism aimed at preventing further cell damage. They also postulated that the 

stress-activated kinases, a subgroup of the mitogen-activated protein kinase 

family, are involved in the regulation of cMOAT. Additional candidates that may 

participate in cMOAT regulation include other protein kinases or factors 

inducible by cDNA damage such as gadd45 and p53.

It would seem, from the evidence to date that cMOAT may be induced by a 

variety of cytotoxic, carcinogenic and chemotherapeutic agents which is likely to 

be of relevance for the acquisition of multidrug resistance during chemotherapy. 

Matsunga et al. (1998), reported that the enhanced expression of MRP or cMOAT 

in childhood liver tumours was more common and higher, especially in advanced 

cases, with poor outcome, than that observed in normal liver or in 9 hepatocellular
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carcinomas from adult patients. The author suggests that the enhanced expression 

of these genes might be characteristic of childhood malignant tumours and related 

to their clinical chemoresistance. However, there is no direct evidence to date for 

the involvement of cMOAT in clinical drug resistance, particularly the cisplatin 

resistance of MDR (Borst et al, 1997).

1.6.9.2 MRP3

MRP3, like MRP1 and MRP2 has also been established as an organic anion 

transporter and is a GS-X pump (Kool et a l, 1999a). Among the current members 

of the MRP family, MRP3 has the highest sequence homology to MRP1. The 

most striking difference between MRP1 and MRP3 is that 2008 or MDCKII 

MRP3-transfected cells, overexpressing MRP3, do not detectably excrete more 

GSH than the parental cells, in contrast to cells transduced with either MRP1 or 

MRP2 constructs (Paulusma et al, 1999; Kool et al, 1999a). Kool et a l, (1999a), 

also suggested that cells with high levels of MRP3 did not secrete GSH. If the 

MRP model, proposed in section 1.6.8.1b, is correct, then it appears that the G- 

site in this transporter may have a very low affinity for GSH. Zeng et al, (1999), 

reported that MRP3 did not appear to transport natural product agents in a GSH- 

dependent manner in human embryonic kidney 293 cells transfected with MRP3. 

The authors also reported that the transport of glutathione conjugates such as 

LTC4, which is an excellent substrate for MRP1, was not detected. Hirohashi et 

al, (1999), reported that cloning of rat MRP3 and determination of its substrate 

specificity in inside-out membrane vesicles from transfected cells indicated that, 

unlike MRP1 and MRP2, it preferentially transported glucuronosides, such as 17 

(3-glucuronosyl estradiol, but that glutathione S-conjugates were relatively poor 

substrates. Konig et a l, (1999a), observed a particularly strong expression of the 

MRP3 protein in the basolateral hepatocyte membrane of two patients with 

Dubin-Johnson syndrome who are deficient in MRP2. They concluded that MRP3 

might be upregulated when the canalicular secretion of anionic compounds is 

impaired.

Early studies of MRP3 did not find any correlation between expression of this 

transporter and drug resistance (Kool et al, 1997). A more recent survey of a
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panel of lung cancer cell lines showed, however, a strong correlation between 

MRP3 and doxorubicin resistance and a weaker, but still highly significant 

correlation with resistance to vincristine, etoposide and cisplatin (Young et al,

1999). MRP3 was also found to transport methotrexate (Hirohashi el al, 1999 and 

Kool et al., 1999a), and was also reported by Kool et al, (1999a), to confer low 

levels of resistance on etoposide and teniposide. Uchiumi et al., (1998), analysed 

cisplatin resistant human head and neck cancer and human prostatic cancer cell 

lines over their parental counterparts for the overexpression of MRP3. They did 

not observe any specific change in cellular levels of the MRP3 mRNA in cisplatin 

resistant cancer cell lines with decreasing drug accumulation.

As it is difficult to generate transfected cells with high concentrations of MRP3 in 

the plasma membrane (Kool et al., 1999a and Borst et al., 1999), it remains 

possible that higher levels of MRP3 will also result in resistance to adriamycin 

and other drugs as suggested by the correlation study by Young et al., (1999). 

mRNA levels of MRP3 have been reported to be higher in NSCLC (non-small 

cell lung cancer) cell lines than in SCLC cell lines (Young et al., 1999), hence, 

this MRP-transporter may contribute to the multifactoral multidrug resistance 

phenotype of lung cancer cells, particularly NSCLC.

1.6.9.3 MRP4

Although MRP4 is expressed in a wide range of tissues (Lee et al., 1998), and the 

similarity between MRP1 and MRP4 suggested that it may share a similar 

substrate specificity, characterisation of MRP4 substrates remains to be 

elucidated. Borst et al, (1999), reported that the structure of MRP4 differed from 

that of MRP1, MRP2, MRP3 and MRP6 in that the NH2 terminal MSD was 

absent from MRP4. However, Bakos et a l, (1998), reported that MRP4 still had 

the basic structure required for GS-X pump activity in MRP1. Kool et al., (1997), 

screened a large number o f human cell lines derived from various tissues and their 

resistant sublines selected with either adriamycin, cisplatin, tetraplatin or CdCl2. 

They reported that MRP4 was expressed only at low or very low levels in the 

cells lines they analysed and no overexpression of MRP4 was detected in resistant
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sublines. Schuetz et al, (1999), carried out a study of alternative or additional 

mechanisms of resistance operating during antiviral therapy and discovered that 

the overexpression and amplification of the MRP4 gene correlated with the ATP- 

dependent efflux of PMEA (9-(2-phosphonylmethoxyethyl)adenine) and 

azidothymidine mono-phosphate from cells and, thus, with resistance to these 

drugs. Overexpression of MRP4 mRNA and MRP4 protein severely impaired the 

antiviral efficiency of PMEA, azidothymidine and other nucleoside analogues in 

the human T-lymphoid cell line, CEM-rl. The authors reported that increased 

resistance to PMEA and amplification of the MRP4 gene correlated with 

enhanced drug efflux; transfer of chromosome 13 containing the amplified MRP4 

gene also conferred resistance to PMEA. Therefore, these results appear to link 

expression of MRP4 with the efflux of nucleoside monophosphate analogs from 

mammalian cells.

1.6.9.4 MRP5

Little is known as yet about MRP5 (Borst et al, 1995). Suzuki et al, (2000), 

reported that MRP5 mRNA was detected in a large number of human tissues but 

also that the spliced variant of MRP5, sMRP, was preferentially expressed in the 

liver and placenta and that this sMRP may also have a physiological role.

Kool et a l, (1997), reported that MRP5 was expressed in all of the cell lines 

analysed with the highest levels in MOR/P and 2008, but MRP5 was not highly 

overexpressed in any of the resistant cell lines. The authors reported that MRP5 

was only slightly overexpressed in three cell lines selected for cisplatin resistance 

(T24/DDP10, HCT8/DDP and KCP-4(-)), but many other cisplatin-selected cell 

lines showed no overexpression. Therefore, it is questionable whether this low 

level of MRP5 overexpression has anything to do with cisplatin resistance. 

Recently, Wijnholds et al., (1999), reported a possible connection between MRP5 

and resistance to thio-purines although this remains to be substantiated by drug 

accumulation and vesicular transport studies (Borst et al, 1999).
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1.6.9.5 MRP6

Within the MRP family, homology is highest between MRP 1,-2,-3, and -6. Using 

3’ and 5’ derived MRP6 probes, Kool et al., (1999b), determined that MRP6 was 

highly expressed in liver and kidney cells and to a low or very low extent in a few 

other tissues including the colon, gall bladder and ovary. The authors reported 

that their analysis o f a number of MDR and cisplatin resistant cell lines provided 

no evidence for the involvement o f MRP6 in drug resistance. They found 

overexpression of MRP6 only in those cell lines with high expression or 

amplification of the MRP1 gene. It seems that MRP6 does not play a role in the 

resistance of the cells analysed and that MRP6 is only co-amplified with MRP1 

because of it's location, immediately next to it, on the same chromosome. 

However, Belinsky el al, (1999), suggested that MRP6 might participate in 

hepatobiliary and renal excretion of organic anions. While cMOAT (MRP2) is a 

major pump for organic anions in liver, the hepatobiliary excretion of organic 

anions is not completely abolished in cMOAT-deficient rat strains, suggesting the 

existence of other organic anion transporters. MRP1 is expressed in hepatocytes 

at low levels, but it is localised at the lateral membrane which does not 

communicate with bile canaliculi (Mayer et al, 1995). Belinsky et al, (1999), 

suggested that MRP6 may function as an alternative system to cMOAT for the 

hepatobiliary excretion of organic anions. The authors also suggest that MRP6 

may also serve a different function in the liver and suggests also that due to the 

abundant expression of MRP6 in the kidney, it may function as an ATP- 

dependent transporter of organic anions into urine.

1.6.10 Circumvention of chemotherapeutic drug resistance

In attempting to find modulators of multiple drug resistance, where membrane 

changes were clearly involved, a range of membrane active compounds were 

investigated by Tsuruo et a l, (1981). This investigation led to the development of 

the calcium channel blocker, verapamil, and the calmodulin inhibitor, 

trifluoperazine as specific modulators of Pgp in a mouse leukaemia cell line. A
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large number of other calcium antagonists were subsequently examined and 

compared with verapamil for effectiveness as Pgp modulators. However, it was 

not possible to achieve sufficient plasma levels of these early compounds, which 

could be predicted from in vitro studies to produce adequate reversal of Pgp 

(Twentyman et al, 1996). Subsequently, research began on the 

immunosuppressive cyclic peptide, cyclosporin A (Twentyman et a l, 1987). 

Because of its potent immunosuppression and also because adequate plasma 

levels could not be achieved in patients, cyclosporin A still left much to be 

desired as a clinical modifier (Twentyman et a l, 1996). Gaveriaux et al, (1991), 

reported a modifier of MDR, SDZ-PSC-833, which was non-suppressive and 10- 

20 fold more potent than cyclosporin A. Other compounds that have also been 

extensively studied as modifiers of Pgp-mediated multidrug resistance include 

quinine and quinidine, the anti-oestrogen, tamoxifen, dexniguldipine, and the 

acridone carbocamide derivative, GF120918 (Ford, 1995). These compounds 

have generally been shown to restore the defective drug accumulation seen in 

Pgp-mediated MDR cells and to displace binding of the photoactive calcium 

antagonist, azidopine, from a 170kD band on protein gels prepared from 

membranes of MDR cells. It is, therefore, assumed that their primary mode of 

action is competition for drug-binding sites on the Pgp molecule. Photoactive 

analogues of verapamil and cyclosporin A have been shown to bind directly to the 

170kD band (Safa 1988). In 1997, Germann et a l, evaluated the ability of VX- 

710 (Biricodar), a novel non-macrocyclic ligand of the FK506-binding protein, 

FKBP12, to reverse Pgp-mediated MDR in vitro. The authors demonstrated a 

direct, high affinity interaction of VX-710 with Pgp, preventing efflux of cytotoxic 

drugs by the MDR1 gene product in multidrug resistant tumour cells. Safa et al.,

(1999), reported that VX-710, modulated both Pgp as well as MRP mediated 

resistance. VX-710 reversed Pgp-mediated MDR at concentrations of 0.5-2.5jani 

by direct interaction with P-glycoprotein and inhibition of its efflux activity. 

Moreover, at 0.5-5.0p.m, it restored the sensitivity of IIL60/ADR cells, known to 

express MRP1, to the cytotoxic action of adriamycin, VP-16 and vincristine. VX- 

710 was about two-fold more effective than verapamil and cyclosporin A in 

circumventing MRP-mediated MDR.

In 1989, studies of two cell lines, H69AR and HT1080/DR4, now known to over

express MRP1, demonstrated that both verapamil and cyclosporin A had only a
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modest effect as modulators of resistance and that verapamil was the most 

effective of the two (Cole et al, 1989). Twentyman et al, (1996), reached the 

same conclusions using the MRP-overexpressing cell lines, CORL23 (R) and 

MOR(R). However, studies performed with MRP-transfected HeLa-T5 cells 

showed that the cytotoxic effects o f vincristine and adriamycin could be enhanced 

in a dose-dependent fashion by co-administration of verapamil (Cole et al, 1994). 

In addition, it was found that cyclosporin A also increased vincristine toxicity but 

that it had less of an effect on adriamycin toxicity. A further study by Brueninger 

et al, (1995), showed that verapamil increased the sensitivity of MRP-transfected 

HeLa-pSRa-MRP16 cells relative to control transfectants, to adriamycin and VP-

Barrand et a l, (1993), and Aszalos et al, (1999), reported that clinically optimal 

plasma levels of the Pgp blockers, verapamil, SDZ-PSC-833 and cremophor, 

which are capable o f completely blocking the functioning of Pgp in Pgp- 

overexpressing cell lines, only partially blocked the function of MRP. 

Combinations of these optimal concentrations acted antagonistically in MRP- 

overexpressing cells whereas these combinations resulted in synergistic effects in 

Pgp-overexpressing cells. The reasons for this antagonism were difficult to 

explain but Aszalos et a l, (1999), reported that verapamil, SDZ-PSC-833 and 

cremophor reduced membrane “fluidity” in the MRP-expressing MCF-7 cells 

than in the Pgp-expressing 3T3 cells and this reduction might effect the uptake of 

the chemotherapeutic drug in to the cell. Membrane fluidity is determined by the 

degree of unsaturation of the fatty acid residues in the component phospholipids 

and by the cholesterol content (Davies et al, 1999).

Nakamura et a l, (1999), demonstrated, by measuring [3H] leukotriene C4 uptake 

into membrane of cells and intracellular calcein and [3H]vincristine accumulation, 

that MS-209, a novel quinoline derivative capable of reversing P-glycoprotein- 

mediated multidrug resistance (MDR) is also effective at reversing intrinsic and 

acquired MRP-mediated MDR of gastric cancer cells by interacting directly with 

MRP, MK571 is also reported in the literature as an anionic quinoline LTD 4 

receptor antagonist MRP inhibitor which does not significantly inhibit Pgp 

(Gekeler et al., 1995 and Renes et al., 1999). A complete reversal of vincristine 

resistance was achieved by co-incubation with a non-toxic level (40jjM) of 

MK571 in an MRP-expressing cell line (HL60/AR). This compound was found to
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have no effect in a Pgp-overexpressing multidrug resistant HL60 subline. MK571 

has been shown to completely inhibit LTC4 transport by MRP in membrane 

vesicles prepared from MRP-overexpressing cells and has also been shown to 

totally inhibit photoaffinity labelling of MRP by [3H]-LTC4 (Jedlitschky et al,

1994). Gekeler et a l, (1995b), showed that the specific bisindolylmaleimide 

protein Kinase C inhibitor GF 109203X totally reversed vincristine resistance in 

one MRP-overexpressing cell line, but only partially reversed adriamycin and 

vincristine resistance in a second MRP-overexpressing cell line.

Nakano et al., (1998), demonstrated that ONO-1078, a new class of peptide 

leukotriene receptor antagonist, modulated multidrug resistance and inhibited 

LTC4 efflux in lung cancer cells (NCI-H520) by inhibition of MRP function. This 

resulted in the enhanced sensitivity of these cells to vincristine, doxorubicin and 

etoposide. Marbeuf-Gueye et al., (2000), reported that 2-[4-(diphenylmethyl)-l- 

piperazinyl]ethyl-5-(trans-4,6-dimethyl-l,3,2-dioxaphos-phorinan-2-yl)-2,6- 

dimethyl-4-(3-nitrophenyl)-3-pyridinecarboxylate P oxide (PAK-104P) was a 

non-competitive inhibitor of the of both Pgp and MRP 1-mediated efflux of 

anthracycline derivatives and calcein acetoxymethyl ester, at low concentrations. 

The authors suggested the existence of two very different mechanisms for the 

inhibition by PAK-104P of the MRP 1-mediated efflux of molecules: the first 

mechanism, involving a low-affinity site for PAK-104P, and which affects 

molecules such as calcein, LTC4 etc. whose efflux does not seem to depend on 

glutathione. The second mechanism involves a high-affinity site for PAK-104P 

and which interacts with molecules such as the anthracyclines and calcein 

acetoxymethyl ester whose efflux depends on the presence of glutathione.

Curtin et al., (1999), reported that the nucleoside transport inhibitor, dipyridamole 

(DP), caused chemosensitisation to VP-16, methotrexate and adriamycin in 

MRP 1-overexpressing cell lines, CORL23(R). However, this effect appears to 

have been caused by a depletion of cellular GSH rather than a direct effect of DP 

on MRP-mediated drug accumulation and efflux.

Hipfner et al., (1999), reported that MRP-specific monoclonal antibodies, QCRL- 

2, -3, -4 and - 6  can inhibit the transport of several MRP substrates by interfering 

with substrate binding or by trapping MRP in a conformation that does not allow 

transport to occur.
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In addition, a number of authors (Bennet et ah, 1982; Hall et ah, 1989; Maca et 

ah, 1991; Hollo et ah, 1996; Draper et ah, 1997; Kobayashi et ah, 1997; Duffy et 

ah, 1998 and Roller et ah, 1999), have described the ability of a number of Non- 

Steroidal Anti-Inflammatory Drugs (NSAIDS), at non-toxic concentrations, to 

enhance the toxicity of chemotherapeutic drugs, including adriamycin, 

daunorubicin, epirubicin, vincristine, methotrexate and VP-16. The spectrum of 

drugs, on which the NSAIDs exerted their potentiation effect, were recognised as 

being MRP substrates (Duffy et ah, 1998), and the enhancement effect was 

observed in cell lines which overexpressed MRP (Duffy et ah, 1998 and Hollo et 

ah, 1996). These authors also reported that the enhancement effect was 

independent of Pgp expression and Duffy et ah, (1998) and Roller et ah, (1999), 

demonstrated the effect to be independent of COX-1 and COX-2 inhibition. The 

potentiation of cytotoxic drug toxicity by the NSAIDs is discussed in detail in 

section 1.9. It appears that these NSAIDs are specific modulators of MRP- 

mediated resistance and may be of clinical significance as the potentiation effects 

were evident when these compounds were used at concentrations readily 

achievable in the blood.

These results suggest that the identification of the specific mechanism of drug 

resistance is important for the selection of chemotherapeutic strategies to block 

the efflux pump on the cancer cell. In addition, MRP and Pgp are reported to have 

protective functions in normal tissues (Twentyman et ah, 1997). Therefore, 

effective clinical application of resistance reversal strategies will depend on 

optimisation of therapeutic benefit versus increased toxicity.

1.6.11 Influence o f  D rug influx and accum ulation on m ultidrug  

resistance

Before the chemotherapeutic drug reaches its intracellular target, it has to be taken 

up in to the cell by some mechanism of drug uptake. In addition to increased drug 

efflux, it is possible that decreased drug uptake may also contribute to the drug 

resistance mechanism of a particular cell line. A reduction in drug influx has been 

identified in some MDR cell sublines as the only factor involved in drug 

resistance (Pallares-Trujillo et ah, 2000). Both the plasma membrane lipid
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composition (Pallares-Trujillo et al., 1993), and the pH of the extracellular 

medium (Gerweck et al., 1999, Larsen et al., 1998 and Larsen et al., 2000), have 

been reported to affect drug influx.

Many anticancer agents, such as the anthracyclines, adriamycin and daunorubicin, 

vincristine, vinblastine and mitoxantrone, are weak lipophilic bases with pATs 

between 7 and 9 (Larsen et al., 2000). A substantial fraction of these molecules 

are uncharged (non-ionized) at normal intracellular pH and in their non-ionized 

forms the lipophilicity of these drugs is increased, thereby enhancing their 

diffusion through the cell membrane to an intracellular site of action (Gerweck et 

al, 1999). Although the intracellular pH of tumour and normal tissues are similar, 

the extracellular pH of human tumours is more acidic than normal tissues, giving 

rise to substantially different cellular pH gradients in these tissues (Gerweck et 

al., 1999). Adriamycin accumulation and toxicity in Chinese Hamster ovary cells 

was reported by Gerweck et al., (1999), to increase with increasing medium pH 

and that the pH gradient across the cell membrane was the major determinant of 

adriamycin uptake. It appears that passive diffusion of the non-ionized form of the 

drug is the most likely explanation for the pH-dependent modification of cellular 

drug uptake (and by implication, cytotoxicity).

Several studies suggest that vesicular trafficking may be involved in the uptake, 

distribution and efflux of many cancer agents (Hindenburg et al., 1989; Coley et 

al, 1993). Larsen et al., (2000), reported that when the drug encounters an acidic 

environment, such as the interior of acidic vesicles, it is converted to a charged 

form that is unable to cross internal membranes. This results in the sequestering 

and accumulation of such anticancer agents in cytoplasmic organelles, followed 

by transport to the cell surface and extrusion in to the extracellular environment. 

Since the equilibrium between the charged and the uncharged forms of the drug is 

pH-dependent, drug accumulation in acidic vesicles is favoured by a large pH 

gradient between the cytoplasm and the acidic compartments, whereas 

acidification of the cytoplasm and/or alkalization of the acidic vesicles decreases 

drug accumulation in these organelles.

MRP is thought to cause multidrug resistance by decreasing the intracellular 

concentration of the cytotoxic drugs, and although most MRP-expressing cell 

lines show a defect in accumulation (Gaj et al., 1998; Zaman et al., 1993; 

Krishnamachary et al., 1993; Zaman et al., 1994), others do not (Gaj et al., 1998).
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There is no clear evidence in the literature to date to suggest a correlation between 

the MDR -transporters, Pgp and MRP, and drug uptake. However, Colin et al,

(1997), suggested that a reduced influx of drugs could be a major defect in MDR 

cells. Pgp modulators such as verapamil, sodium orthovanadate, chlorpromazine 

or triperazine induced an enhanced influx in CEM/VLB100 and also suggested a 

possible role for Pgp-membrane lipids in drug influx.

Protein Kinase C (PKC) may also be involved in the reduction of drug influx 

(Palleres-Trujillo et al, 2000). Sachs et a l, (1995), reported that the PKC-p I 

isoenzyme, which could reduce drug influx, was also shown to inhibit the Pgp 

ATPase and drug binding activity through phosphorylation which seemed to 

suggest an involvement between Pgp and drug uptake. However, Drew et al, 

(1996), Bergman et a l, (1997) and Sedlak el al., (1997), have reported the 

induction of drug uptake by PKC inhibitors by a mechanism that does not involve 

Pgp or MRP. This mechanism of drug uptake has yet to be fully elucidated. 

Decreased intracellular accumulation of cisplatin and carboplatin has been 

associated with resistance to these chemotherapeutic drugs (Shen el al., 2000). 

The mechanism(s) by which cisplatin enters the cell, and by which decreased 

accumulation occurs in resistant cells have yet to be determined. It has generally 

been believed that cisplatin enters cells largely through passive diffusion, 

however, evidence provided by Shen et al, (2000), suggest the involvement of a 

novel active transport process in the uptake of cisplatin and carboplatin in to the 

human liver carcinoma cell line, BEL-7404. This uptake was significantly 

reduced in the cisplatin resistant derivative 7404-CP20. Shen et al, (2000), 

demonstrated decreased MRP1 and MRP2 protein expression in this cisplatin 

resistant cell line making it highly unlikely that MRP1 or cMOAT is involved in 

reducing cisplatin or carboplatin influx or efflux in this particular cell line. 

Nucleoside transporters are involved in the uptake of nucleosides and provide the 

route of entry in to cells for many cytotoxic nucleoside analogues used in cancer 

and viral chemotherapy (Baldwin et al, 1999). Nucleoside transport into cells is 

divided into two categories. In equilibrative transport, the flux of nucleoside 

molecules across the membrane is driven solely by the concentration gradient, 

whereas in concentrative transport, the flux is coupled to that of sodium ions such 

that the electrochemical ion gradient can drive cellular uptake of nucleosides 

against their concentration gradient (Baldwin et al, 1999). It is possible that this
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mechanism is involved in the cellular uptake of chemotherapeutic agents such as 

5-FU, Gemcitabine and AZT.

1.7 N onsteroidal anti-inflam m atory drugs (NSA ID s)

The history of aspirin can be traced to ancient Egypt, where an extract of willow 

bark was used to treat inflammation. Willow bark contains the glucoside of salicyl 

alcohol, which can be converted to the actual anti-inflammatory agent salicylic 

acid through stepwise hydrolysis and oxidation (Vaino et al., 1997). The 

development of aspirin in 1897 was a significant landmark in the history of 

medicine because it stimulated the development of a family of medicines that are 

collectively called NSAIDs, which are amongst the most prescribed therapeutic 

drug class.

NSAIDs such as sulindac, indomethacin and piroxicam are effective in alleviating 

pain, inflammation and fever, and they are commonly prescribed for the treatment of 

rheumatoid arthritis (Vaino et al., 1997). In the USA the estimated number of 

NSAID prescriptions rose from 27.5 million in 1973 to 100 million in 1983., In 

1984 it was estimated that nearly one in seven Americans were treated with an 

NSAID, although since then the prescription trends have levelled off (Pace et al., 

1995 and Brooks et al, 1991). Over 20% of Australians over the age of 65 years are 

exposed to these drugs and in the UK over 20 million prescriptions for NSAIDs are 

issued each year (Pace et al., 1995). NSAIDs are the principle therapy for the 

majority of arthritis patients. It has been estimated that more than 15 million people 

with arthritis take these drugs daily. This use is predicted to increase greatly, not 

only as a result of an aging population, with the consequent increase in the 

prevalence of arthritis, but also because NSAIDs may prove to have a role in 

decreasing colonic neoplasma and in reducing the likelihood of conditions such as 

Alzheimers disease (Silverman, 1998).

NSAIDs come from a variety o f chemical classes (Table 1.7.1). Their 

physiochemical properties determine their distribution in the body, and thus
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differences in these properties may lead to variable therapeutic performance. 

NSAlDs are planar, anionic molecules that partition into lipid environments, such as 

the lipid bilayers of plasma membranes, and the more acidic the pH, as at 

inflammatory sites, the greater the lipophilicity (Abramson et ah, 1989). The more 

lipid soluble NSAIDs penetrate the central nervous system more effectively and may 

have greater central effects. The central effects of NSAIDs include mild changes of 

mood and cognition which are more common with the more lipid soluble NSAIDs. 

The vast majority of these drugs are weakly acidic, with ionizing constants (pKa) 

ranging from 3 to 5 (Verbeeck et ah, 1990). The proportion of an NSA1D that is not 

ionised at a particular pH is of importance as it influences the distribution of these 

drugs in tissue (Brooks et ah, 1991). More acidic NSAIDs become sequestered 

preferentially in the synovial tissue of inflammed joints, which may be of potential 

advantage during episodes of arthritis. Some NSAIDs are pro-drugs (such as 

sulindac), with the active drug being produced in vivo by the normal processes of 

metabolism.
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Table 1.7.1: Chemical Classification of NSAIDs 

Garbo- and heterocyclic acetic acids;

Etodolac

Indomethacin

Sulindac

Phenylacetic acids:

Diclofenac

Fenamates:

Niflumic acid 

Mefenamic acid 

Cfadcams:

Isoxicam

Tenoxicam

Propionic acid derivatives:

Benoxaprofen

Fenbufen

Flurbiprofen

Ketoprofen

Oxaprozin

Suprofen

Infoprofen

Pyrazoles:

Azapropazone 

Oxyphen butazone 

Salicylates:

Aspirin (ASA)

Diflunisal
Acetamidophenol

Salicylamide

Non-Acidic compounds:

Nabumetone

Bufecamic

Zomepirac

Acemetacin

Tolmetin

Aclofenac

Flufenamic acid 

Tolfenamic acid

Piroxicam

Sudoxicam

Carprofen

Fenoprofen

Ibuprofen

Naproxen

Pirprofen

Tiaprofenic acid

Acetaminophen (paracetamol)

Phenylbutazone

Fendosal 

Salicylic acid 

Acetaphenetidin

Proquazone

Compiled from Brooks etal., (1991); Lu et al., (1995) and Verbeeck et al., 1990.
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The increase in NSAID use has been accompanied by an increase in adverse effects 

reports. Brooks et al, (1988), reported that the adverse reactions due to treatment 

with NSAIDs could be produced by a number of different mechanisms:

i. consequences o f inhibition of prostaglandin synthesis,

ii. idiosyncratic reactions, dose-related effects

iii. production of reactive intermediate metabolites.

The most common toxic effects of NSAIDs are gastrointestinal pathology 

(gastrophy), renal dysfunction, liver function abnormalities and hypersensitivity 

reactions (Alhava, 1994).

It is generally believed that NSAIDs function pharmacologically primarily by 

reducing the synthesis of prostaglandins (Vane et al, 1991; Vainio et al, 1997; 

Vane et al, 1996; Levy et al, 1997 and Abramson et al, 1989). At sites of 

inflammation, prostaglandins are produced in excess amounts and exert pro- 

inflammatory effects. It is postulated that NSAIDs reduce the production of 

prostaglandins by inhibiting the enzyme prostaglandin endoperoxide synthase, 

which exists in two isoforms 1, and 2, and which transforms arachidonic acid, 

liberated by phospholipase A2, to prostaglandins. Vane et al, (1998), reported that 

the NSAIDs inhibit the binding of the prostaglandin substrate, arachidonic acid, to 

the active site of the enzymes. This enzyme is commonly referred to as 

cyclooxygenase (COX-1 and COX-2). COX is a dual function enzyme, 

incorporating both a cyclooxygenase and a peroxidase activity (Vane et al, 1996). 

PGE2 is the predominant eicosanoid detected in man in inflammatoiy conditions 

ranging from experimental acute oedemas and sunburn through to chronic arthritis. 

It is a potent dilator of vascular smooth muscle which causes the characteristic 

vasodilation and erythema (redness) seen in acute inflammation. PGE2 also acts 

synergistically with other mediators to produce inflammatory pain. Additionally, 

PGE2 is a potent pyretic agent and its production, stimulated by the release of IL-1, 

in bacterial and viral infections contributes to the associated fever. Other COX 

products have been found in inflammatory lesions including PGF20C, PGD2, 

prostacyclin (PGI2 as 6-oxo-PGFia) and thromboxane A2 (TXA2) (Vane et al,

1996), but usually they are present at less than a quarter of the concentrations of 

PGE2.
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The inhibition by aspirin is due to the irreversible acetylation of the cyclooxygenase 

component of COX, leaving the peroxidase activity of the enzyme unaffected. In 

contrast to the irreversible action of aspirin, other NSAIDs such as indomethacin or 

ibuprofen produce reversible COX inhibition by competing with the substrate, 

arachidonic acid, for the active site of the enzyme (Vane et ah, 1996; 1998). The 

inhibition of prostaglandin synthesis by NSAIDs has been demonstrated in a wide 

variety of cell types and tissues, ranging from whole animals and man to microsomal 

enzyme preparations.

Therefore NSAIDs prevent the pathological over-production of prostaglandins 

which contribute to the inflammatory process (therapeutic effects) and the 

physiological formation of prostanoids (which results in the characteristic side 

effects). Several of the NSAIDs inhibit the production of prostacyclin, an important 

cytoprotective product of the gastric mucosa, potentialy leading to the formation of 

ulcers (Fosslien et ah, 1996). NSAIDs also damage the gastrointestinal tract via 

other mechanisms including effects on neutrophil function, altering gastric mucosal 

blood flow in a non-prostaglandin dependent manner, direct irritant effects including 

ion trapping and interference with growth factors and ulcer healing mechanisms 

(Donnelly et al, 1997).

1.7.1 COX-1 and COX-2

It is now known that the cyclooxygenase enzyme exists as two distinct isoforms, 

Cyclooxygenase 1 (COX-1) and Cyclooxygenase 2 (COX-2). COX-1 is 

constitutively produced and is believed to be involved in regulating normal cellular 

processes, such as gastro intestinal (GI) cytoprotection, vascular homeostasis, and 

renal function. The concentration of the enzyme remains largely stable, but small 

increases of expression of two-to four-fold can occur in response to stimulation with 

hormones or growth factors (DeWitt et ah, 1991). In contrast, COX-2, identified by 

Fu et ah, (1990), as an inducible synthase and a distinct isoform of cyclooxygenase 

encoded by a different gene from COX-1, is undetectable in most normal tissue. 

However, the expression of COX-2 can be increased dramatically after exposure of
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fibroblasts, vascular smooth muscle or endothelial cells to growth factors, hypoxia, 

phorbol esters or cytokines and by lipopolysaccharides (LPS) in 

monocytes/macrophages (Bolten 1998 and Vane el al, 1996). In chronic 

inflammation, levels of COX-2 protein also increase in parallel with the over

elaboration of prostaglandins in many cells and tissues. The family of primary 

response genes, of which COX-2 is a member, also includes the gene for inducible 

nitric oxide synthase which is induced during inflammation and cell growth. 

Conversely, COX-2 seems to play a physiological role in some situations. It is 

believed to be involved in uterine contraction and appears to be present in the renal 

medulla. Recently, H in z  et al, (1999), reported that COX-2 is expressed 

constitutively in the brain, spinal cord and kidney as well as numerous other organs. 

Hence COX-2 inhibition may lead to adverse effects in these tissues (Donnelly et 

al, 1997).

Human COX-1, a 22kb gene, is a membrane bound hemo-and glyco-protein with a 

molecular weight of 71kD. It is found in greatest amounts in the endoplasmic 

reticulum of prostanoid forming cells. It functions by cyclizing arachidonic acid and 

then adding the 15-hydroperoxy group to form PGG2. The hydroperoxy group of 

PGG2 is reduced to the hydroxy group of PGH2 by a peroxidase (in the same 

enzyme protein). PGH2 is then coverted to PGE2, PGF2a. PGD2a> PGI2 and 

thromboxane A2. The three-dimentional structure, determined by Picot et al, (1994), 

shows that COX-1 comprises three independent folding units: an epidermal growth 

factor like domain, a membrane binding motif and an enzymatic domain. The sites 

for peroxidase and COX activity are adjacent but spatially distinct. Three of the 

helices of the structure form an entrance channel to the active site and it is postulated 

that their insertion into the membrane could allow arachidonic acid to gain access 

from the interior of the lipid bilayer. The COX active site is a long hydrophobic 

channel. Tyrosine at position 385 and serine 530 are at the apex of this active site. 

Aspirin irreversibly inhibits COX-1 by acétylation of serine 530 and as a result 

excludes access by arachidonic acid. Other subsites for drug binding may exist in the 

channel to explain the interactions of reversible COX inhibitors such as 

indomethacin and ibuprofen (Vane et al., 1996).

The human COX-2 gene is 8.3kb in size, smaller than COX-1 but with a similar 

molecular weight. The amino acid sequence of its cDNA shows only a 60%
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homology with COX-1. COX-2 and COX-1 also have similar active sites for the 

attachment of arachidonic acid or NSAIDs, although the active site of COX-2 is 

larger than that of COX-1 and can accept a wider range of structures as substrates 

(Meade et al, 1993). Both enzymes have similar Km and Vmax values for the 

metabolism of arachidonic acid. (Meade etal., 1993).

1.7.2 NSAIDs and inhibition of COX-1 and COX-2.

NSAID inhibit the synthesis of cytoprotective prostaglandins by COX-1 in the 

gastrointestinal tract leading to the accumulation of surplus arachidonic acids. The 

surplus enhances the generation of leukotrienes via the lipoxygenase pathway 

inducing neutrophil adhesion to endothelium and vasoconstriction. The NSAIDs 

containing a carboxyl group also inhibit oxidative phosphorylation (OXPHOS) 

lowering adenosine-triphosphate (ATP) generation, leading to loss of mucosal cell 

tight junctions and increased mucosal permeability (Fosslien, 1998). Inhibition of 

COX-2 by NSAIDs reduces synthesis of pro-inflammatory prostaglandins and 

produces analgesia (Fosslien, 1998). Evidence, therefore, suggests that much of the 

G1 toxicity associated with NSAID use is primarily the result of inhibition of COX-1 

and anti-inflammatory effects are largely due to the inhibition of COX-2. An 

NSAID, which selectively inhibits COX-2, and has little effect on COX-1, would be 

ideal. However, on the basis of data obtained in several laboratories by means of the 

"human whole blood assay", there is now convincing evidence that none of the 

currently available NSAIDs is a selective COX-2 inhibitor (Hinz B et al, 1999). A 

number of COX-2 specific inhibitors are presently being tested world wide in phase 

III clinical trials on patients with rheumatoid arthritis and osteoarthrits (Hinz B et al, 

1999; Lefkowith et al., 1999).

Aspirin, indomethacin, piroxicam, tolmetin and sulindac are slightly more potent 

against COX-1 than COX-2 but are generally considered as non-selective NSAIDs 

(Riendeau et al, 1997). These drugs are also known for their propensity to cause 

gastric damage. Meloxicam has been shown by Engelhardt et al, (1996), to possess 

a high preference in intact cells for inhibition of the COX-2 rather than COX-1 

isoenzyme. Two case control studies carried out in 1994 and data obtained from the 

UK Committee on the Safety of Medicines showed that ibuprofen and diclofenac
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were associated with the least number of adverse effects, while piroxicam was 

associated with the most (Bateman, 1994).

1.7.3 Non-prostaglandin-dependent properties of NSAIDs

NSAIDs exert biological effects other than the inhibition of PG synthesis. It is 

suggested that this broad spectrum of effects results from their physiochemical 

properties, which may disrupt protein-protein interactions of many kinds within 

biological membranes (Abramson et al, 1989).

NSAIDs have been found to inhibit a variety of membrane-associated processes, 

including that of superoxide anion generation by a cell-free NADPH oxidase system 

of neutrophils, mononuclear cell phospholipase C activity, and the 12- 

hydroperoxyeicosatetraenoic acid peroxidase of the lipoxygenase pathway in 

platelets. Aspirin-like drugs uncouple oxidative phosphorylation via effects with in 

the mytochondrial membrane. Aspirin also alters the uptake of precursor 

arachidonate and its insertion into the membrane of cultured human monocytes and 

macrophages. Salicylates inhibit anion transport across a variety of cell membranes 

including human erythrocyte and renal tubular epithelium. (Abramson et al, 1989). 

Acetaminophen, an anti-pyretic and analgesic, has little anti-inflammatory activity. 

Salicylate is an order of magnitude less active than aspirin on the crude COX- 

enzyme prepared from lung tissue, yet it is reported that salicylate is as potent as 

aspirin in suppressing arthritis (Vane et al., 1996 and Mitchell et al, 1994).

1.7.4 Initiation of carcinogenesis by Prostaglandin H synthases

Prostaglandin H synthases (PHS) (COX-1 and COX-2) may be involved in the 

initiation of carcinogenesis by activation of carcinogens to DNA-binding forms. The 

peroxidase activity of PHS has a broad specificity. Other hydroperoxides, other than 

the primary substrate PGG, can be reduced by PGH peroxidase. Among the classes 

of carcinogens that can be used as electron donors for "co-oxidation", and thereby 

activated by PHS, are polycyclic aromatic hydrocarbons, aflatoxins, halogenated 

pesticides, aromatic amines and phenols (Levy et al, 1997). PHS may be also
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involved in initiation of carcinogenesis by the generation of malondialdehyde 

(MDA), a direct acting mutagen in bacterial and mammalian test systems and also 

carcinogenic in rats. MDA is produced by non-enzymatic as well as enzymatic 

breakdown of PGH. The enzyme Thromboxane Synthase is particularly active in 

MDA production. MDA formation from PGH may be inhibited by NSAIDs 

(Mamett, 1992). A third suggested mechanism for the involvement of PHS in 

tumour initiation involves peroxyl radicals as reactive intermediates (Levy et al.,

1997). Peroxyl radicals may be formed by PHS and can epoxidize double bonds of 

pro-carcinogens such as benzopyrene-7,8-diol or dihydroxydihydrobenzo- 

anthracene to produce the carcinogens of these compounds (Levy et al, 1997).

1.7.5 NSAIDs and Cancer

Chemoprevention is defined as the use o f natural or pharmacological agents to 

disrupt the process o f  carcinogenesis (  Garay et al., 1999).

The origin of the hypothesis that NSAIDs have chemopreventative properties, dates 

back to 1975 when Bennet and Del Tacca (1975), observed that certain human 

cancers, including breast cancer and colorectal cancers contain more prostaglandin 

E2 than surrounding normal mucosa. They hypothesized that tumours that 

overproduce prostaglandin E2 might promote their own growth and /or spread 

(Bennet et al, 1975; Hwang et al, 1998; Vaimo et al, 1997).

Because NSAIDs reduce the synthesis of prostaglandins, a series of experimental 

studies in rodents were carried out to assess whether NSAIDs would inhibit or 

prevent the growth of coloretal cancer and various other forms of cancer. Most of 

the NSAIDs tested (aspirin, sulindac, piroxicam and indomethacin) effectively 

inhibited colorectal tumours in rats and mice. Oesophageal tumours in mice treated 

with N-nitrododiethylamine were reduced by indomethacin administered either with 

the carcinogen or 4 months after exposure (Rubio et al, 1984). Pancreatic tumours 

induced by N-nitrosobis(2-oxopropyl)amine were reduced in hamsters receiving 

indomethacin, aspirin or phenylbutazone beginning five weeks after initiation of 

carcinogenesis (Takahashi et al, 1990). Narisawa et al., (1981), demonstrated that 

rats exposed to methylnitrosourea developed colonic tumours but that their
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incidence could be significantly lowered by indomethacin. However, in rats given 

the carcinogen and then indomethacin, cessation of treatment led to rapid 

development of tumours. Thus, indomethacin treatment inhibited the development 

of tumours but did not kill the initiated cells. Piroxicam was shown by Reddy et al, 

(1987), to inhibit azoxymethane-induced colon cancer in rats in a dose-dependent 

manner. Sulindac was shown by Moorghen et al, (1988), to have a protective effect 

against dimethylhydrazine-induced colonic tumours in mice. Sulindac administered 

with the carcinogen caused a significant reduction in tumour incidence and tumour 

burden but sulindac administered 17 weeks after the carcinogen, had no inhibitory 

effect, thus demonstrating protection against initiation of tumours but no effect on 

regression of established tumours in this model. The incidence of adenocarcinomas 

was reduced 69% in rats with dimethylhydrazine-induced colonic carcinogensis, by 

aspirin received one week before and after the carcinogen (Craven et al, 1992). 

Aspirin also had no effect on tumour incidence when started 4 weeks after 

carcinogen exposure.

1.7.6 NSAIDs in Human Cancer.

Colorectal cancer is a major cause of death in the United States where it accounts for 

approximately 57,000 deaths per year (Garay et al, 1999). Differences in dietary 

habits and lifestyles among populations in different geographic locations have been 

associated with an altered risk for developing colorectal cancer (Smalley et al,

1997).

In 1988, Kune et al, reported an observational study in which a negative association 

was found between the incidence of colon cancer and the use of aspirin. This 

Australian study demonstrated that people who used aspirin had a 40-50% reduction 

in colon cancer incidence than those who reported no aspirin use and the reductions 

in colon cancer were of similar magnitude in men and women. Reduction of a lesser 

magnitude was noted with the use of other NSAIDs. No reduction of risk was 

observed with the use of steroids, oral contraceptives, tranquilizers or sedatives. 

Thun et al, (1991), reported that in a study of over one million persons, men who 

used aspirin more than 16 times a month had a relative risk of developing colorectal 

cancer of 0.48 (0.30-0.76) and women a relative risk of 0.53 (0.32-0.87) compared
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to those who didn't regularly use aspirin. Giovannucci et al., (1994), reported similar 

results from a study involving persons between the ages of 40 -70 who regularly and 

consistently took aspirin. Analysis of the duration of aspirin use showed that the 

protective effect of aspirin did not become statistically apparent unless intake had 

been for ten years or greater. This was attributed to the idea that adenomas take 

approximately 10 years to evolve into invasive carcinomas. (Giovannucci et al,

1995). In contrast to the results for aspirin use, no association of change in fatal 

colon cancer risk with acetominophen use was found (Levy et al., 1997).

1.7.7 NSAIDs and Familial Adenomatous Polyposis

Further evidence for the anti-carcinogenic effect of NSAIDs is provided by studies 

of familial adenomatous polyposis (FAP), an autosomal dominant disorder 

characterised by the formation of hundreds to thousands of colorectal 

adenomas/polyps in adults, usually below the age of thirty, and subsequent elevated 

risks of development of colorectal cancer (Levy et al, 1997 and Owen et al., 1998). 

Clinical trials using the NSAID sulindac have shown dramatic regression of colonic 

adenomas in patients with FAP (Wadell et al., 1983; Tonelli et al., 1994; Piazza et 

al, 1997 and Ahnen, 1998). D'Alteroche et al., (1998), reported the complete 

remission of a mesenteric fibromatosis in a male patient, after taking sulindac for 

periods of 1 to 8 months for 6 years, 11 years after having familial adenomatous 

polyposis coli treated by total colectomy. Hirata et al., (1994), demonstrated the 

regression of rectal polyps by indomethacin suppositories in FAP although it had 

previously been reported that oral indomethacin failed to reduce the number of rectal 

adenomas (Hirota et al., 1996).

Boolbal et al, (1996), used a mouse model of FAP in which a strain containing a 

dominant mutation in the APC (adenomatous polyposis coli) tumour suppressor 

gene was developed. This strain, known as MIN mice, developed gastrointestinal 

adenomas by 110 days of age. It was found that the MIN mice produced increased 

levels of COX-2 and PgE2 compared to wild type mice. Treatment with sulindac 

inhibited tumour formation and decreased PGHS2 and PgE2 levels to baseline as 

well as restoring normal levels of apoptosis (normally at a level of 27-47% of the
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levels of wild-type mice) (Giardiallo et al., 1998; and Vainio et al., 1997). In a study 

using piroxicam in the MIN mouse, Jacoby et al., (1996), showed a dose-dependent 

decrease in the intestinal adenomas and aberrant crypt foci as well as a parallel 

decrease in serum levels of thromboxane B2. Watson (1998), reported that mutation 

of APC caused the up-regulation of COX-2 whose products cause further tumour 

progression. Treatment of APC-mutated mice, with an NSAID selective for COX-2 

reduced tumour formation significantly.

However, Watson (1998), also raised the possibility that inhibition of submucosal 

COX-1 by NSAIDs could reduce the mutation frequency in colonic epithelium and 

prevent polyp initiation and this could explain how NSAIDs, such as aspirin and 

sulindac, which have greater potency against COX-1 than COX-2, can inhibit polyp 

formation.

Koki el al., (1999), characterised the expression of COX-1/-2 in biopsies of human 

lung, colorectal, oesophageal, breast, pancreatic and prostate cancers to assess the 

importance of COX enzymes in tumourigenesis. In human cancers, COX-2 was 

consistently detected in the angiogenic vessels, neoplastic epithelium and in 

in flam m atory cells. COX-2 was either not expressed, or detected at very low levels 

in normal, compared to hyperplastic or neoplastic regions. In contrast COX-1 was 

ubiquitously expressed throughout the malignant and non-malignant areas. 

(Langman et al., 1998; Koki et al., 1999 and Gilhooly et al., 1999).

A recent study found a statistically significant elevation of PGE2 in 21 surgically 

excised colorectal cancers compared to the accompanying normal colorectal 

mucosa. (Shenge/ al, 1998).

1.7.8 NSAIDs and Apoptosis.

Another common property of NSAIDs and related drugs that may explain their anti

neoplastic effect on colorectal cancer is their ability to induce apoptosis of 

colonocytes (Levy et al., 1997).
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This explanation for the antineoplastic properties of NSAIDs was first suggested by 

Aldolphie et al., (1972), who reported that certain NSAIDs were capable of 

inhibiting the proliferation of cultured HeLa cells by causing cell cycle arrest. 

Programmed cell death (Apoptosis) is an intrinsic part of organismal development 

and aging (Lu et ah, 1995). It is an orderly process of internal cellular disintegration 

which is associated with membrane blebbing, structural condensation and the 

maintenance of some organelle integrity (Samaha et ah, 1997).

Until recently, reports in the literature attributed the anti-neoplastic activity of 

sulindac and other NSAIDs to their ability to inhibit protaglandin synthesis. This 

rationale was based on studies showing that the levels of PGE2 and mRNA for 

COX-2 are elevated in a number o f human cancers (Hubbard et ah, 1988). 

Prostaglandins stimulate the proliferation of cancers (Qiao et ah, 1995), and PGE2 

may interfere with host anti-tumour immunologic functions (Sheng et ah, 1998).

1.7.9 COX-2 and apoptosis.

Colonic neoplasms are believed to develop through a series of sequential steps 

over 15-20 years that reflect the progressive accumulation of mutations. Early in 

the transition from normal colonic epithelium to adenoma, mutations of key genes 

occur, which have been implicated in the transformation process. One such gene 

is the APC gene. Inactivating mutations of this gene are known to cause 

colorectal cancer in patients with familial adenomatous polyposis syndrome, and 

truncation mutations in the APC gene occur somatically in a large percentage of 

colorectal cancers that form spontaneously (Sheng et al 1998). Recently, it has 

been shown that disruption of the APC gene in mice leads to increased levels of 

COX-2 in intestinal tumours (Oshima et ah, 1996). Therefore, the increased levels 

of COX-2 in intestinal tumours could represent an event downstream of an early 

mutation in a key regulatory gene, such as APC (Oshima et ah, 1996). COX-2 

levels are increased in human colorectal adenocarcinomas (Kargman et ah, 1995; 

Kutchera et ah, 1996). Forced expression of COX-2 in intestinal epithelial cells 

leads to inhibition of apoptosis and induction of Bcl-2 expression (Sheng et ah, 

1998). These authors determined the effect of COX-2-derived eicosanoids, such 

as PGE2 on the biology of human colon cancer cells. In addition to observing an
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increase in the number of HCA-7 human colon cancer cells, in response to PGE2 

treatment, there was also a reduction in the percentage of cells undergoing 

apoptosis. They also determined that PGE2 treatment led to a significant induction 

of Bcl-2 (the anti-apoptotic oncogene) expression but not Bax or Bcl-x. PGE2 

treatment also led to a marked activation of MAPK, which preceded induction of 

Bcl-2 and which may indicate a putative signal transduction pathway by which 

Bcl-2 expression and other genes could be induced. In the HCA-7 cell line 

apoptosis was found to be regulated by treatment with a highly selective COX-2 

inhibitor (SC-58125), and that this is reversible upon treatment with PGE2 .

Watson et al., (1998), reported that once polyp initiation had occurred, COX-2 was 

expressed in epithelial cells and acted to inhibit apoptosis and drive the growth of 

the tumour through interactions with growth factors such as TGF~p. TGF-|3 inhibits 

proliferation in normal intestinal epithelium but this anti-proliferative effect is 

frequently lost after malignant transformation. This change in the action of TGF-P 

from anti-proliferative to pro-proliferative is thought to be due to COX-2 

overexpression. COX-2 also enhanced angiogenesis and cell migration and thereby 

aided metastasis (Watson et al., 1998). This indicates that COX-derived eicosanoids 

are likely to play an important role in colorectal carcinogenesis. Many tumour types 

over-produce prostanoids and these prostanoids have been shown to increase the 

proliferation rate of tumour cells and related cells in vivo (Qiao et al., 1995). 

NSAIDs such as indomethacin can cause a subsequent reduction in tumour cell 

growth by inhibition of this growth stimulatory activity (Tripathy et al., 1996 and 

Tanaka et al., 1989).

1.8 The anti-tum our activities o f  N SA ID s

It is widely assumed that the inhibition of PGHS activity is the main mode of action 

by which the NSAIDs assert their anti-neoplastic effect (Bennet and Del Tacca, 

1975 and Mamett et al., 1992). However, the mechanism by which NSAIDs 

influence tumour growth is presently unclear.
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A number of recent reports indicate that there are several other possible explanations 

for the anti-tumour activity of NSAlDs. Suggested mechanisms include induction of 

apoptosis in the cancer cell by the NSAID, independent of COX inhibition, and 

interference with the tumour cell cycle (Shiff et al., 1995; 1996 and Qiao et al,

1998). It is known that the influence of NSAIDs on tumour cell growth is not 

entirely dependent on PGHS inhibition because of a number of factors:

i. DeMello et al., (1980), demonstrated that there was no correlation between 

the ability of an NSAID to inhibit tumour cell growth and the potency of that 

NSAID as an inhibitor of PGHS.

ii. When indomethacin was used to inhibit cell growth, the inhibition could not 

be overcome by the addition of prostaglandins or arachidonic acid. If 

inhibition of PG synthesis was the mechanism of NSAID cytostasis, addition 

of PG would be expected to overcome this inhibition. This was not the case; 

in fact higher concentrations of PG enhanced the cytostatic effect of 

indomethacin (DeMello et al, 1980). This was also demonstrated by 

Planchón et al., (1995), with the breast cancer cell line MCF-7.

iii. Sulindac is a pro-drug that is metabolised to a pharmacologically active 

sulfide derivative that potently inhibits prostaglandin synthesis. Sulindac can 

also be reversibly oxidised to sulindac sulfone, which is devoid of any PGHS 

inhibitory activity. Sulindac sulfone has been shown to inhibit HT-29 colon 

carcinoma cell growth to an extent comparable to that achieved with sulindac 

sulfide (Piazza et al, 1995). This inhibition was not due to inhibition of 

prostanoids due to the lack of any PGHS-inhibitory activity. Therefore, the 

mechanism of the anti-neoplastic affect of NSAIDs does not necessarily 

include anti-prostaglandin activity. (Piazza el al., 1995; 1997a; 1997b; Levy 

eta l, 1997).

iv Haniff et al., (1996), demonstrated that sulindac sulfide and piroxicam had

comparable growth inhibitory effects on two cell lines: HT-29, which 

produces PGE2,. PGF2tx and PGI2 and HCT-15, a cell line which does not 

possess PGHS and hence is devoid of prostanoid synthesising ability. 

Therefore, both NSAIDs exerted their growth inhibitory effects independent 

of any inhibition of PGHS.
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In 1995, Lu et al. used chicken embryo fibroblasts (CEFs) transformed with a 

temperature sensitive mutant of the Rous sarcoma virus (RSV) to demonstrate the 

ability of a large number of NSAIDs to induce programmed cell death. Of the 

effective drugs, indomethacin, diclofenac, carprofen, niflumic acid, mefanamic acid, 

flufenamic acid, diflunisal and acemetacin were the most potent in inducing 

apoptosis in the cells. Treatment of the CEFs with any of the above eight NSAIDs 

induced transglutaminase (Tgase), a molecular indicator of apoptosis. This induction 

was not proportional to the ability of these NSAIDs to inhibit COX-1 and/or COX-2. 

Piazza et al., (1995), concluded that increased apoptosis was the mechanism for 

growth inhibition of cells by sulindac sulfide and sulfone rather than inhibition of 

cell proliferation, altered differentiation or necrotic cell death.

The pro-apoptotic ability of sulindac and its metabolites was further defined by Han 

et al., (1998), who demonstrated that sulindac and its metabolites were capable of 

inducing apoptosis in MCF-10F and MCF-7, a normal human mammary epithelial 

cell line and a human mammary carcinoma cell line respectively (Han et al., 1998). 

Treatment of MCF-10F and MCF-7 cells with sulindac sulfide, the most potent 

inhibitor of cell growth of the three compounds tested by Han et al, (1998), resulted 

in accumulation of the cells in the GO/ Gl phase of the cell cycle, decreases in the 

percent of cells in the S and G2/M phases of the cell cycle, and induction of 

apoptosis. Chan et al., (1998), demonstrated the ability of sulindac sulfide to induce 

apoptosis in two colon cancer cell lines, HCT116 and SW480.

It was recently reported by Thompson et a l, (1997), that sulindac sulfone inhibited 

the occurrence of mammary carcinomas which were classified as having either the 

wild type or mutant Ha-ra.v gene, but was significantly more potent in the the case of 

carcinomas with the mutant Ha-rav gene. This group suggested that the effect of 

sulindac sulfone on mammary carcinogenesis involved interference in the signal 

transduction cascade involving Ha-ras.

Schiff et al., (1996), evaluated the effect of four structurally unrelated NSAIDs: 

aspirin, indomethacin, naproxen and piroxicam, on cell proliferation, cell cycle 

phase distribution and the development of apoptosis in the HT-29 colon 

adenocarcinoma cells in vitro. All of the NSAIDs examined reduced the 

proliferation and altered the morphology of these cells in a time- and concentration-
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dependent manner. In addition, they increased the proportion of the cells in the 

G0/G1 phase and reduced the proportion in the S phase of the cell cycle. Aspirin and 

indomethacin also reduced the percentage of cells in the GO/M phase but naproxen 

and piroxicam did not. Han et al, (1998), reported that sulindac sulfide treatment of 

the breast cancer cell lines resulted in:

i. An increase in the cyclin dependent kinase (CDK) inhibitor protein p21WAF1, 

which is often induced during differentiation or apoptosis, within 24 hours after 

treatment, and may be mediated by wild type p53 gene;

ii. A decrease in the cyclin D1 expression. Cyclin D1/CDK4 complex regulates 

progression through the G1 phase of the cell cycle. However, sulindac sulfide had no 

effect on the expression of CDK4 or the immediate early response gene c-jun.

Parallel to their effect on the cell cycle, aspirin and indomethacin also reduced the 

levels of p34odc2 and p33cdk2, two cyclin-dependent kinases that are important for cell 

cycle progression (Shiff et al, 1996).

Schiff et al, (1996), and Qiao et al, (1998), reported that indomethacin, naproxen, 

aspirin and piroxicam induced apoptosis inHT-29 colon adenocarcinoma cells.

Chan et al, (1998), hypothesised that the tumour suppressive effects of NSAIDs are 

not likely to be due to the reduction in prostaglandins but rather are due to the 

elevation of the prostaglandin precursor arachidonic acid (AA). NSAID treatment of 

colon tumour cells results in a dramatic increase in AA that in turn stimulates the 

conversion of sphingomyel into ceramide, a known mediator of apoptosis.

1.9 N SA ID s and enhancem ent o f  cytotoxicity o f  chem otherapeutic  

drugs

In 1982, Bennet et al., demonstrated that indomethacin and flurbiprofen 

decreased cancer development and spread in mice bearing a transplanted 

mammary adenocarcinoma when treated in combination with methotrexate and 

melphalan. Indomethacin increased cytotoxicity of methotrexate to the human 

breast cell lines DU4475 and T47D (though the mechanism of this enhancement 

was unknown). Hall et al., (1989), demonstrated that indomethacin enhanced the 

toxicity of chlorambucil (5.5-fold) in a resistant Chinese Hamster Ovary cell line.

66



Non-toxic concentrations of indomethacin were reported by Maca, (1991), to 

have the ability to potentiate the toxicity of VP-16 and methotrexate in a number 

o f cell lines including cultured Lewis lung carcinoma (LLC) cells, mouse 

lymphoma cells, a human acute lymphoblasic leukemia cell line and human 

chronic myelogenous leukemia cells. These cell lines are relatively insensitive to 

VP-16 alone but indomethacin was found to enhance VP-16 toxicity in all cases 

and this enhancement occured by increasing the cellular concentration of VP-16. 

In 1995, Jimbo et a l, reported that the antitumour effect of a synthetic lipid A 

derivative, DT-5461a, which markedly inhibited the growth of various syngenic 

tumours in mice, was enhanced by indomethacin.

Hollo et a l,  (1996), reported the ability o f the NSAID indomethacin to inhibit 

MRP-mediated calcein acetoxymethylester (calcein AM) extrusion from SI MRP 

cells (MRP-transfected SI cells re-selected and cloned in ADR-containing media) 

at IC50 concentrations of 10-20(o,M. In contrast, indomethacin was unable to 

inhibit MDR1 (Pgp)-mediated calcein AM extrusion by 50% at concentrations 

less than 800jaM. This suggests that indomethacin is selectively an MRP 

inhibitor. Draper et al., (1997), reported that indomethacin increased multi drug 

susceptibility o f both murine and human cell lines overexpressing MRP, but not 

those displaying Pgp-associated resistance. Indomethacin increased the 

accumulation of vincristine in MRP-overexpressing cell lines and sensitised these 

cell lines to vincristine and adriamycin. Indomethacin had little effect on the 

function of P-gp as it failed to modulate the P-gp-mediated altered accumulation 

of vincristine and failed to alter the drug resistance of both human and murine P- 

gp- overexpressing cell lines. This report suggested that indomethacin acts as a 

specific inhibitor of MRP and so modulated drug resistance as a result of this 

activity (Draper et al., 1997). Kobayashi et a l,  (1997), reported that 

indomethacin, mefenamic acid, sulindac and tolmetin enhanced the toxicity of 

both adriamycin and vincristine in two pulmonary adenocarcinoma cell lines. 

Indomethacin was shown to enhance the toxicity of methotrexate, adriamycin, 

VP-16 and vincristine but not cyclophosphamide, mitomycin C, 5-fluorouracil, 

cisplatin, vindestine or cytarabine. Djordjevic et al, (1998), reported that there 

was no synergistic interactions between 5-FU and indomethacin in a human colon 

adenocarcinoma cell line, and, in fact, this combination appeared to result in an
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alleviation of the 5-FU toxicity. In 1999, Roller et al, reported that indomethacin 

and ibuprofen specifically enhanced the cytotoxic effects of adriamycin and 

vincristine in T98G, human malignant glioma cells. In contrast, these NSAIDs did 

not alter the cytotoxic effects of cytarabine, camptothecin or cisplatin. The 

authors concluded that the effects of indomethacin and ibuprofen were not related 

to alterations in the formation or detoxicification of reactive oxygen species and 

was also independent of COX-1 and COX-2 expression.

A number of NSAIDs have been demonstrated by our group to have the ability to 

enhance the cytotoxicity of a number of anti-cancer drugs in vitro when co

administered to a multi-drug resistant cell line which overexpresses MRP.

The NSAIDs, indomethacin, sulindac, tolmetin, acemetacin, zomepirac 

(heteroarylacetic acids) and mefenamic acid, all at non-toxic levels, significantly 

increased the cytotoxicity of the anthracyclines (doxorubicin, daunorubicin and 

epirubicin), as well as teniposide, VP-16 and vincristine. The other vinca 

alkaloids, vinblastine and vinorelbine and other anticancer drugs including 

methotrexate, 5-fluorouracil, cytarabine, hydroxyurea, chlorambucil, 

cyclophosphamide, cisplatin, carboplatin, mitoxantrone, actinomycin D, 

bleomycin, paclitaxel and camptothecin displayed no synergy in combination 

with the NSAIDs (Duffy et al, 1998). In addition, two sulindac derivatives, 

sulindac sulfide and sulindac sulfone were found to be active in the combination 

toxicity assay (Duffy et al, 1998 and Elliot, 1997). As described previously, 

sulindac sulfone is, by definition, not an NSAID due to the fact that it is not a 

COX inhibitor.

This paper presents the first clear evidence that enhancement, by a range of 

NSAIDs, of the cytoxicity of several anti-cancer drugs was MRP related. The 

authors reported that the enhancement o f cytotoxicity was not found in p-170- 

overexpressing multidrug resistant cell lines, DLKP-A (a 300-fold resistant 

variant of DLKP, which overexpresses P-170) and DLKP pHaMDRl/A #2 (a 

MDR1 transfectant of DLKP, which is 15-fold resistant to doxorubicin) but was 

found in HL60/ADR, CORL23R, A549 and DLKP cell lines which express MRP.
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1.10 Aims of thesis.

The initial aim of the thesis was to investigate the structural requirements and aspects 

of the mechanism of chemotherapeutic drug enhancement by NSAIDs in MRP- 

overexpressing cell lines. It had been previously reported by our laboratory that 

indomethacin was capable of potentiating the toxicity of chemotherapeutic drugs, 

which were MRP substrates, in MRP-overexpressing cell lines (Duffy et al, 1998). 

Structural analogues of indomethacin were generated in a collaboration with a 

synthetic organic chemistry laboratory (Dr. Anita Maguire and Dr. Steven Plunkett, 

Chemistry Dept., University College, Cork) and in the work described here the SAR 

(Structure Activity Relationship) in a series o f indomethacin analogues was 

investigated in order to elucidate which substituents were required for the 

enhancement effect to occur. These analogues were analysed in a number of assays 

to determine if:

i. The indomethacin analogues were capable of enhancing the toxicity of 

chemotherapeutic drugs and if this enhancement effect was restricted to those 

drugs known to be MRP substrates.

ii. The mechanism of drug enhancement by the positive analogues was through 

an interaction with MRP and occurred only in MRP- expressing cell lines.

Most of the undesirable side-effects of NSAIDs are caused by inhibition of 

cyclooxygenase 1 (COX-1) but not of COX-2 (section 1.7). Furthermore inhibition 

of COX-2 appears to have anti-tumour effects (section 1.7.9, Sheng et al, 1998). 

Another aim of this thesis was, therefore, to find an analogue of indomethacin which 

had reduced COX-1 activity (but, preferably, while retaining COX-2 activity) and to 

determine the SAR, in the series of indomethacin analogues, for inhibition of these 

activities. It would also, of course, be beneficial if  this work could find an analogue 

of indomethacin, which had greater ability to enhance to toxicity of 

chemotherapeutic drugs, at lower concentrations, with less toxicity and reduced toxic 

side effects than indomethacin.

It has been reported that taxol is a relatively poor MRP1 substrate (Cole et al, 1994). 

There is evidence however, that resistance to taxol (paclitaxel) and taxotere 

(docetaxel) can, in part, be attributed to MRP1 (Vanhoefer et a l, 1996 and 1997). In
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previous work in our laboratory some of the positive NSAIDs were not capable of 

enhancing the toxicity of taxol in an MRP 1-overexpressing lung carcinoma cell line, 

A549 (Duffy et al, 1998). However, no analysis had previously been carried out on 

the ability of the NSAIDs to potentiate the toxicity of taxotere, another member of 

the taxane family of chemotherapeutic drugs. Further experimental work on the 

taxanes was therefore undertaken in order to assess the effects of selected NSAIDs 

on toxicities of these drugs in a number of cell lines and to investigate mechanisms 

by which NSAIDs might enhance the toxicity of taxol and taxotere.

A substantial body of work has been carried out in our laboratory (Duffy et al,

1998), and elsewhere (Hollo et al, 1996; Draper et al, 1997; Koboyashi et al, 1997 

and Roller et al., 1999), on enhancement of toxicity of cancer chemotherapeutic 

drugs in MRP 1-overexpressing cell lines. However, in contrast, there have been no 

corresponding reports in cell lines which overexpress other (more recently 

discovered) MRP homologues (MRP2-6). A human hepatic cancer cell line, HepG2, 

which overexpresses cMOAT (MRP2), and ovarian carcinoma cell line (2008) 

variants, transfected with cDNA for MRP1, MRP2 or MRP3, were investigated to 

determine if indomethacin, indomethacin analogues or another MRP-positive 

NSAID, sulindac, were capable of enhancing the toxicity of a range of 

chemotherapeutic drugs, including taxol and taxotere, in cell lines overexpressing 

MRP2 or MRP3.

It has yet to be determined if indomethacin is a substrate for MRP homologues other 

than MRP1. To investigate this DLKP cells were pulse-selected for a period of six 

weeks with concentrations of indomethacin which resulted in 80-90% cell kill. The 

resulting proliferating cell population were assessed to determine if  resistance to 

indomethacin cytotoxicity is associated with increased expression of specific MRP 

homologues.

The mechanism(s) of cisplatin resistance in cancer cells has not as yet been fully 

elucidated and, in particular, the relationship between cisplatin resistance and MRP 

overexpression remains unclear. The enhancement of the toxicity of cisplatin by 

NSAIDs was investigated in a number of cell lines. The aims of this were two-fold:

i. To investigate the possibility that cisplatin may be a substrate of a homologue 

of MRP other than MRP 1.

ii. To determine if  non-MRP 1 substrates, such as cisplatin, were potentiated by 

positive NSAIDs in cell lines which overexpress MRP2 or MRP3.

70



2.0 Materials and Methods
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2.1 Ultrapure W ater

Ultrapure water, (UHP) was used for the preparation of all media and 

solutions. This water was purified to a standard of 12-18 MQ/cm resistance by 

a reverse osmosis system (Millipore Milli-RO 10 Plus, Elgastat UHP). A 

conductivity meter in the system continuously monitored the quality of the 

UHP.

2.2 G lassw are

The solutions utilised in the various stages of cell culture were stored in sterile 

glass bottles. These sterile bottles and other glassware required for cell culture- 

related applications were prepared as follows: glassware and lids were soaked 

in a 2% solution of RBS-25 (AGB Scientific) for 1 hour. After this time they 

were cleaned and rinsed in tap water. The glassware were then washed in an 

industrial dishwasher, using Neodisher detergent and rinsed twice with UHP. 

The materials were finally sterilised by autoclaving as described in Section 

2.3.

2.3 Sterilisation Procedures.

All thermostable solutions, water and glassware were sterilised by autoclaving 

at 121°C for 20 min at 15 p.s.i.. Thermolabile solutions were filtered through

0.22(j,m sterile filters (Millipore, Millex-GV SLGV025BS). Large volumes, 

(up to 10 litres) of thermolabile solutions were filter sterilised through a micro

culture bell filter. (Gelman, 12158).
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2.4 Preparation o f cell culture media

The basal media used during cell culture were prepared as follows: 10X media 

was added to sterile UHP water, buffered with HEPES (N-(2-Hydroxyethyl) 

piperazine-N-(2-ethanesulfonic acid)) and NaHCC>3 as required and adjusted to 

pH 7.5 using sterile 1.5 N NaOH or 1.5 N HCL. The media was then filtered 

through sterile 0.22jam bell filters (Gelman, 12158) and stored in sterile 500ml 

bottles at 4°C. Sterility checks were performed on each bottle of media by 

inoculating samples of the media on to Colombia blood agar plates (Oxoid, 

CM217), Thioglycollate broths (Oxoid, CM 173) and Sabauraud dextrose 

(Oxoid, CM217) and incubating the plates at 37°C and 25°C. These tests 

facilitated the detection of bacteria, fungus and yeast contamination.

Basal media were stored at 4°C for up to three months. The HEPES buffer was 

prepared by dissolving 23.8g HEPES in 80ml UHP water and this solution was 

then sterilised by autoclaving. Then 5ml sterile 5N NaOH was added to give a 

final volume of 100ml. NaHC0 3  was prepared by dissolving 7.5g in 100ml 

UHP water followed by autoclaving. Complete media was then prepared as 

follows: supplements of 2mM L-glutamine (Gibco, 11140-0350) and 5% 

foetal calf serum (Sigma, F-7524) were, in the majority of cases, added to 

volumes of 100ml basal media. 1ml of 100X non-essential amino acids 

(Gibco, 11140-035) and 1ml of lOOmM sodium pyruvate (Gibco, 11360-035) 

were also added to MEM. Complete media were maintained at 4°C for up to a 

maximum of 1 week.

2.5 Cells and C ell C ulture

All cell culture work was carried out in a class II laminar air-flow cabinet

(Nuaire Biological Laminar Air-Flow Cabinet). All experiments involving

cytotoxic compounds were conducted in a cytogard laminar air-flow cabinet

(Gelman Sciences, CG series). Before and after use the laminar air-flow

cabinet was cleaned with 70% industrial methylated spirits (IMS). Any items

brought into the cabinet were also cleaned with IMS. At any time, only one

cell line was used in the laminar air-flow cabinet and upon completion of work

with the cell line the laminar air-flow cabinet was allowed to clear for at least
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15 minutes so as to eliminate any possibility of cross- contamination between 

the various cell lines. The cabinet was cleaned weekly with an industrial 

disinfectant (Virkon or TEGO) and these disinfectants were alternated every 

month. Details pertaining to the cell lines used for the experiments detailed in 

this thesis are provided in table 2.5.1. All cells were incubated at 37°C and 

where required, in an atmosphere of 5% CO2 . Cells were fed with fresh media 

or subcultured (see section 2.5.1) every 2-3 days in order to maintain active 

cell growth. All of the cell lines listed in table 2.5.1, except for HL60ADR, are 

anchorage dependent cell lines. HL60ADR cells were grown in suspension in 

vented 75cm2 flasks (Costar, 3276) at 37°C in an atmosphere of 5% C 0 2 in 

RPMI media (Gibco, 52400-025) containing 10 % serum.

2.5.1 Subculturing of cell lines

1. The waste cell culture medium was removed from the tissue culture 

flask and discarded into a sterile bottle.

The flask was then rinsed out with 1ml of trypsin/EDTA solution 

(0.25% trypsin (Gibco, 043-05090), 0.01% EDTA (Sigma, E9884) 

solution in PBS (Oxoid, BRI4a)) to ensure the removal of any residual 

media.

2. 5mls of trypsin was then added to the flask, which was then incubated 

at 37°C, for approximately 5 minutes, until all of the cells detached 

from the inside surface of the flask.

3. The trypsin was deactivated by adding an equal volume of complete 

media to the flask.

4. The cell suspension was removed from the flask and placed in a sterile 

universal container (Sterilin, 128a) and centrifuged at lOOOrpm for 5 

minutes.

5. The supernatant was then discarded from the universal and the pellet 

suspended in complete medium. A cell count was performed and an 

aliquot of cells was used to reseed a flask at the required density.
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Cell line Basal

Medium*

Cell type Source**

A549 ATCC Human lung 

adenocarcinoma

ATCC

DLKP ATCC Human lung squamous 

carcinoma

NCTCC

DLKPSQ ATCC Clonal subpopulation o f  

DLKP

NCTCC

DLKPC14 ATCC Carboplatin-selected 

variant o f  DLKPSQ

NCTCC

HL60ADR RPMI 1640 Adriamycin-resistant 

variant o f  HL60 human 

leukaemia cell line

Dr. M. Centre1

2008 RPMI 1640 Ovarian carcinoma Dr. M. Kool“

CORL23(P) RPMI 1640 Large cell lung cancer cell 

line

Dr.P.TwentymanJ

CORL23(R) RPMI 1640 Adr-resistant variant o f  

CORL23(P)

Dr.P.Twentyman3

HepG2 MEM Human hepatocellular 

carcinoma

ATCC

Table 2.5.1 Source description and media requirements of cell lines used in 

experiments described in this thesis 

University of Kansas, USA.

2Division of Molecular Biology and Centre of Biomedical Genetics, The 

Netherlands Cancer Institute, Amsterdam.

3MRC Clinical Oncology and Radiotherapeutics Unit, Hills Road, Cambridge 

CB2 2QH, U.K.

* ATCC basal media consists of a 1:1 mixture of DMEM and Hams F 12. 

**ATCC — American Tissue Culture Collection.

NCTCC = National Cell and Tissue Culture Centre.

R PM I1640 media supplied as a IX  stock (Gibco, 52400-025)
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2.5.2 Assessment of cell number and viability

1. Cells were trypsinised, pelleted and resuspended in media. An aliquot 

of the cell suspension was then added to trypan blue (Gibco, 525) at a 

ratio of 5:1.

2. The mixture was incubated for 3 minutes at room temperature. A 10)4,1 

aliquot of the mixture was then applied to the chamber of a glass 

coverslip-enclosed haemocytometer.

3. Cells in the 16 squares o f the four grids of the chamber were counted. 

The average cell numbers per 16 squares were multiplied by a factor of 

104 and the relevant dilution factor to determine the number of cells per 

ml in the original cell suspension.

4. Non-viable cells stained blue, while viable cells excluded the trypan 

blue dye as their membrane remained intact, and remained unstained. 

On this basis, % viability could be calculated.

2.5.3 Cryopreservation of cells

1. Cells for cryopreservation were harvested in the log phase of growth 

and counted as described in Section 2.5.2.

2. Cell pellets were resuspended in a suitable volume of serum. An equal 

volume of a 10 % DMSO/serum solution was added dropwise to the 

cell suspension.

3. A total volume of 1ml of this suspension (which should contain 

approximately 7x106 cells) was then placed in cryovials (Greiner, 

122278).

These vials were then placed in the vapour phase of a liquid nitrogen 

container, which was equivalent to a temperature of-80°C.

4. After a period of three hours, vials were removed from the vapour 

phase and transferred to the liquid phase for storage (- 196°C).
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2.5.4 Thawing of cryopreserved cells

1. A volume of 9ml of fresh growth medium was added to a sterile 

universal. The cryopreserved cells were removed from the liquid 

nitrogen and thawed rapidly at 37°C. The cells were removed from tire 

vials and transferred to the aliquoted media.

2. The resulting cell suspension was centrifuged at 1,000 r.p.m. for 5 

minutes. The supernatant was removed and the pellet resuspended in 

fresh culture medium.

3. An assessment of cell viability on thawing was then carried out 

(Section 2.5.2).

4. Thawed cells were then added to an appropriately sized tissue culture 

flask with a suitable volume of growth medium and allowed to attach 

overnight.

2.5.5 Monitoring of sterility of cell culture solutions

Sterility testing was performed in the case of all cell culture media and cell 

culture-related solutions. Samples of prepared basal media were inoculated on 

to Colombia blood agar plates (Oxoid, CM331), Thioglycollate broths (Oxoid, 

CM173) and Sabauraud dextrose (Oxoid, CM217) and incubating the plates at 

37°C and 25°C. These tests facilitated the detection of bacteria, fungus and 

yeast contamination. Complete cell culture media were sterility tested at least 

four days prior to use, using Columbia blood agar.
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2.6 Mycoplasma analysis of cell lines

C e l l  l in e s  w e r e  te s te d  fo r  p o s s ib le  M y c o p la s m a  c o n ta m in a tio n  b y  D r. M a r y  

H e e n a n  at th e  N a t io n a l C e l l  an d  T is s u e  C u ltu re  C e n tre , G la s n e v in , D u b lin  9. 

T h e  p ro to c o l u s e d  is  d e ta ile d  in  th e  fo llo w in g  S e c t io n s  2 .6 . 1  an d  2 .6 .2 .

2.6.1 Indirect staining procedure for Mycoplasma analysis

M ycoplasm a-n e g a t iv e  N R K  (N o rm a l ra t k id n e y  f ib r o b la s t)  c e l ls  w e r e  u s e d  as 

an  in d ic a to r  c e l ls  fo r  th is  a n a ly s is . T h e  c e l ls  w e r e  in c u b a te d  w ith  a  sa m p le  

v o lu m e  o f  su p e rn a ta n t f ro m  th e  c e l l  lin e s  in  q u e stio n  an d  th en  e x a m in e d  fo r  

M ycoplasm a  c o n ta m in a tio n . A  f lu o re sc e n t  H o e c h s t  s ta in  w a s  u se d  in  th is  

a n a ly s is .  T h e  s ta in  b in d s  s p e c i f ic a l ly  to  D N A  an d  so  s ta in s  th e n u c le u s  o f  th e  

c e l l  in  a d d it io n  to  a n y  M ycoplasm a  p re sen t. M ycoplasm a  in fe c t io n  w a s  

in d ic a te d  b y  f lu o re sc e n t  b o d ie s  in  the c y to p la sm  o f  th e  N R K  c e lls .

2.6.2 Direct culture procedure for Mycoplasma analysis

D ir e c t  s ta in in g  fo r  M ycoplasm a  a n a ly s is  in v o lv e d  in o c u la t in g  sa m p le s  o n  to  a  

M ycoplasm a  c u ltu re  b ro th  (O x o id , C M 4 0 3 ) .  T h is  w a s  su p p le m e n te d  w ith  1 6 %  

se ru m , 0 .0 0 2 %  D N A  ( B D H , 4 2 0 2 6 ) , 2|ag/m l fu n g iz o n e  ( G ib c o , 0 4 2  0 5 9 2 0 ) , 

2 x l 0 3 u n its  p e n ic i l l in  ( S ig m a , P e n -3 )  an d  10 m l o f  a  2 5 %  y e a s t  e x tra c t  so lu tio n . 

In c u b a tio n  w a s  c a rr ie d  o u t at 3 7 ° C  fo r  a  p e r io d  o f  4 8  h o u rs . S a m p le s  o f  th is  

b ro th  w e re  th e n  s tre a k e d  on to  p la te s  o f  M ycoplasm a  a g a r  b a s e  (O x o id , 

C M 4 0 1 )  w h ic h  h a d  b e e n  su p p le m e n te d  a s  d e sc r ib e d  a b o v e . T h e  p la te s  w e r e  

in c u b a te d  fo r  th re e  w e e k s  at 3 7 ° C  w h ile  e x p o s e d  to  C 0 2 . T h e  p la te s  w e re  

e x a m in e d  m ic r o s c o p ic a l ly  e v e r y  7  d a y s . T h e  a p p e a ra n c e  o f  sm a ll o v a l  sh a p e d  

c o lo n ie s  in d ic a te d  th e  p re se n c e  o f  M ycoplasm a  in fe c t io n .
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2.7 Miniaturised in vitro toxicity assays

2.7.1a “Long-term” in-vitro toxicity assay experimental procedure

1 .  C e l ls  in  th e  e x p o n e n t ia l p h a se  o f  g ro w th  w e r e  h a rv e s te d  b y

tr y p s in is a t io n  a s  d e sc r ib e d  in  se c t io n  2 . 5 . 1 .

2 .  C e l l  su sp e n s io n s  c o n ta in in g  l x l  0 4 c e lls / m l w e r e  p re p a re d  in  c e ll

cu ltu re  m e d iu m . V o lu m e s  o f  1 0 0 (il/w e ll o f  th e se  c e l l  su sp e n s io n s  w e r e  

a d d e d  to  9 6 - w e ll  p la te s  (C o sta r , 3 5 9 9 )  u s in g  a  m u ltic h a n n e l p ip e tte . 

P la te s  w e r e  a g ita te d  g e n t ly  in  o rd er to  e n su re  e v e n  d isp e rs io n  o f  c e lls  

o v e r  a  g iv e n  w e l l .  C e l ls  w e re  th en  in c u b a te d  o v e r n ig h t  a t 3 7 ° C  in  an  

a tm o sp h e re  c o n ta in in g  5 %  C O 2.

3 .  C y to to x ic  d r u g / N S A ID  d ilu tio n s  w e r e  p re p a re d  at 2 X  th e ir  f in a l 

c o n c e n tra tio n  in  c e l l  c u ltu re  m e d iu m . V o lu m e s  o f  th e  d ru g  d ilu tio n s  

( 10 0 j.i l)  w e r e  a d d e d  to  e a c h  w e l l  u s in g  a  m u ltic h a n n e l p ip e tte . P la te s  

w e r e  th e n  m ix e d  g e n t ly  a s  a b o v e .

4 . C e l ls  w e r e  in c u b a te d  fo r  a  fu rth e r 6 d a y s  a t 3 7 ° C  a n d  5 %  C O 2. A t  th is  

p o in t  th e  c o n tro l w e l ls  w o u ld  h a v e  re a c h e d  a p p ro x im a te ly  8 0 -9 0 %  

c o n flu e n c y .

5 . A s s e s s m e n t  o f  c e l l  s u r v iv a l  in  th e p re s e n c e  o f  d ru g  w a s  d e te rm in e d  b y  

th e  a c id  p h o sp h a ta se  a s s a y  (se c t io n  2 .7 .2 ) .  T h e  c o n c e n tra tio n  o f  d ru g  

w h ic h  c a u s e d  5 0 %  c e l l  k i l l  ( IC 50 o f  th e  d ru g )  w a s  d e te rm in e d  fro m  a  

p lo t  o f  th e  %  s u r v iv a l  ( re la t iv e  to  th e  c o n tro l c e l ls )  v e r s u s  c y to to x ic  

d ru g  c o n c e n tra tio n .

2.7.1b “Short-term” in-vitro toxicity assay experimental procedure

1 .  C e l l s  in  th e  e x p o n e n tia l p h a se  o f  g ro w th  w e r e  h a rv e s te d  b y  

t r y p s in is a t io n  a s  d e sc r ib e d  in  se c t io n  2 . 5 . 1 .

2 . C e l l  s u sp e n s io n s  c o n ta in in g  2 x 1 04 c e lls / m l w e r e  p re p a re d  in  c e ll  

cu ltu re  m e d iu m  a n d  th e  9 6 -w e ll  p la te s  w e r e  se t  u p  an d  in c u b a te d  

o v e r n ig h t  a s  d e s c r ib e d  in  2 .7 . 1 a .

3 . C y t o t o x ic  d ru g  d ilu t io n s  w e re  p re p a re d  at 2 X  th e ir  f in a l  co n c e n tra tio n  

in  c e l l  c u ltu re  m e d iu m . V o lu m e s  o f  th e  d ru g  d ilu tio n s  ( 10 0 |j,l)  w e re
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th e n  a d d e d  to  e a c h  w e l l  u s in g  a  m u ltic h a n n e l p ip e tte . P la te s  w e re  th en  

m ix e d  g e n t ly  a s  a b o v e  a n d  a llo w e d  to  in c u b a te  a t 3 7 ° C  a n d  5 %  C O 2 fo r  

4  h o u rs .

5 . A f t e r  th is  in c u b a tio n  p e r io d  th e p la te s  w e r e  r e m o v e d  fro m  the 

in c u b a to r , th e  d r u g / N S A ID  w a s  re m o v e d  fro m  th e  w e lls  a n d  the p la te s  

w e r e  w a s h e d  ou t 4  t im e s  w ith  fre sh  m e d ia . A f t e r  w a s h in g , th e w e lls  

w e r e  re - fe d  w ith  fr e s h  m e d ia .

6 . C e l ls  w e r e  in c u b a te d  fo r  a  fu rth e r 4  d a y s  at 3 7 ° C  an d  5 %  C O 2. A t  th is  

p o in t  th e  c o n tro l w e l ls  w o u ld  h a v e  re a c h e d  a p p ro x im a te ly  8 0 -9 0 %  

c o n flu e n c y .

5 . A s s e s s m e n t  o f  c e l l  s u r v iv a l  in  the p re s e n c e  o f  d ru g  w a s  d e te rm in e d  b y

th e  a c id  p h o sp h a ta se  a s s a y  (se c t io n  2 .7 .2 ) .  T h e  c o n c e n tra tio n  o f  d ru g  

w h ic h  c a u s e d  5 0 %  c e l l  k i l l  ( I C 50 o f  th e  d ru g ) w a s  d e te rm in e d  fro m  a  

p lo t  o f  th e  %  s u r v iv a l  ( re la t iv e  to  th e  c o n tro l c e lls )  v e r s u s  c y to to x ic  

d ru g  c o n c e n tra tio n .

2.7.2 Assessment of cell number - Acid Phosphatase assay

1 .  F o l lo w in g  th e  in c u b a tio n  p e r io d  o f  6 d a y s , m e d ia  w a s  re m o v e d  fro m

th e  p la te s .

2 . E a c h  w e l l  o n  th e p la te  w a s  w a s h e d  w ith  10 0 |J.l P B S .  T h is  w a s  th en

re m o v e d  a n d  lOOjxl o f  f r e s h ly  p re p a re d  p h o sp h a ta se  su b stra te  ( lO m M  

p -n itro p h e n o l p h o sp h a te  ( S ig m a  10 4 - 0 )  in  0 . 1 M  so d iu m  a ceta te  

( S ig m a , S 8 6 2 5 ) ,  0 . 1 %  tr ito n  X - 1 0 0  ( B D H , 3 0 6 3 2 ) ,  p H  5 .5 )  w a s  a d d e d  

to  e a c h  w e l l .

3 . T h e  p la te s  w e r e  th en  in c u b a te d  in  th e  d a rk  at 3 7 ° C  fo r  2  h o u rs.

4 . T h e  e n z y m a tic  re a c t io n  w a s  sto p p ed  b y  th e a d d it io n  o f  50fj.l o f  I N

N a O H .

5 . T h e  p la te  w a s  re a d  in  a  d u a l b e a m  p la te  re a d e r  at 4 0 5 n m  w ith  a

re fe re n c e  w a v e le n g th  o f  6 2 0 n m .
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2.7.3a NSAID-raediated drug toxicity enhancement assays 

(Long-term assays)

1 .  C e l ls  w e r e  t ry p s in is e d  fro m  th e f la s k  in  th e  e x p o n e n tia l p h a se  o f  

g ro w th  a s  d e s c r ib e d  in  se c t io n  2 . 5 . 1 .

2 . C e l l  su sp e n s io n s  c o n ta in in g  l x l  0 4 c e lls / m l w e r e  p re p a re d  in  c e l l  

c u ltu re  m e d iu m . V o lu m e s  o f  1 0 0 |4,l/w e ll o f  th is  c e l l  su sp e n s io n  w e re  

a d d e d  in to  9 6 - w e ll  p la te s  (C o s ta r , 3 5 9 9 )  u s in g  a  m u ltich a n n e l p ip e tte . 

P la te s  w e r e  a g ita te d  g e n tly  in  o rd e r  to  en su re  e v e n  d isp e rs io n  o f  c e lls  

o v e r  a  g iv e n  w e l l .  C e l ls  w e re  th en  in c u b a te d  o v e r n ig h t  at 3 7 ° C  in  a n  

a tm o sp h e re  c o n ta in in g  5 %  C O 2.

3 .  C y to to x ic  d ru g  d ilu tio n s  an d  N S A I D  d ilu tio n s  w e r e  p re p a re d  at 4 X  

th e ir  f in a l  c o n c e n tra tio n  in  m e d ia . V o lu m e s  o f  5 0 ja l o f  th e  d ru g  d ilu tio n  

a n d  50(j,l o f  th e  N S A I D  d ilu tio n  w e r e  th en  a d d e d  to e a c h  re le v a n t  w e l l  

so  th at a  to ta l f in a l  v o lu m e  o f  200(j,l w a s  p re se n t in  e a c h  w e ll .  A l l  

p o te n tia l to x ic ity -e n h a n c in g  a g e n ts  w e r e  d is s o lv e d  in  D M S O , eth a n o l 

o r  m e d ia . S t o c k  so lu tio n s  w e re  p re p a re d  at a p p ro x im a te ly  1 5  m g / 10 m l 

m e d ia , f i lte r  s te r i lis e d  w ith  a  0 .22 (j.m  f i lte r  ( M i l le x - G V , S L G V 0 2 5 B S )  

a n d  th en  u s e d  to  p re p a re  a l l  su b se q u e n t d ilu tio n s . S o lv e n t  co n tro l 

e x p e r im e n ts  s h o w e d  th at n o  t o x ic it y  e n h a n c e m e n t e f fe c ts  w e r e  d u e  to  

th e  p re s e n c e  o f  D M S O  o r  eth an o l.

4 . C e l ls  w e r e  in c u b a te d  fo r  a  fu rth e r  6 d a y s  a t 3 7 ° C  in  an  a tm o sp h e re  

c o n ta in in g  5 %  C O 2. A t  th is  p o in t th e  c o n tro l w e l ls  w o u ld  h a v e  re a c h e d  

a p p ro x im a te ly  8 0 -9 0 %  c o n flu e n c y .

5 . C e l l  n u m b e r  w a s  a s s e ss e d  u s in g  th e  a c id  p h o sp h a ta se  a s s a y  (se c tio n  

2 .7 .2 ) .

6 . S ta t is t ic a l  a n a ly s is  o f  th e  d a ta  w a s  p e r fo rm e d  as d e ta ile d  in  S e c t io n

2 . 1 6 .

2.7.3b NSAID-mediated drug toxicity enhancement assays 

(Short-term assays)

1. Cells were set up in 96-well plates as described in section 2.7.1b.



2 . C y t o t o x ic  d ru g  d ilu tio n s  an d  N S A I D  d ilu t io n s  w e r e  p re p a re d  an d  

a d d e d  to  th e  9 6 -w e ll  p la te s  a s  d e sc r ib e d  in  se c t io n  2 .7 .3 a .

3 .  P la te s  w e r e  th en  m ix e d  g e n t ly  an d  a llo w e d  to in c u b a te  at 3 7 ° C  an d  5 %  

C O 2 f o r  4  h o u rs.

4 . A f t e r  th is  in c u b a tio n  p e r io d  th e  p la te s  w e r e  re m o v e d  fro m  th e 

in c u b a to r , th e  d r u g / N S A ID  w a s  re m o v e d  fro m  th e  w e l ls  a n d  the p la te s  

w e r e  w a s h e d  o u t 4  t im e s  w ith  fre s h  m e d ia . A ft e r  w a s h in g , th e  w e lls  

w e r e  r e - fe d  w ith  f r e s h  m e d ia  o r  fre s h  m e d ia  c o n ta in in g  th e  re q u ire d  

d ilu t io n  o f  N S A I D .

5 . C e l l s  w e r e  in c u b a te d  fo r  a  fu r th e r  4  d a y s  at 3 7 ° C  a n d  5 %  C O 2. A t  th is  

p o in t  th e  c o n tro l w e l ls  w o u ld  h a v e  re a c h e d  a p p r o x im a te ly  8 0 -9 0 %  

c o n flu e n c y .

6 . A s s e s s m e n t  o f  c e l l  s u r v iv a l  in  th e  p re se n c e  o f  d ru g  w a s  d e te rm in e d  b y  

a c id  p h o sp h a ta se  a s s a y  (se c t io n  2 .7 .2 ) .

7 .  S ta t is t ic a l  a n a ly s is  o f  th e  d a ta  w a s  p e r fo rm e d  a s  d e ta i le d  in  S e c t io n

2 . 1 6 .

2.8 Procedure for determination o f COX-1 and COX-2 activity

2.8.1 E LISA  for assessm ent of COX-2 production

T h e  c o n c e n tra t io n  o f  P g E 2 in  c e l l  cu ltu re  su p ern atan ts  w a s  a n a ly s e d  as

fo llo w s :

1 .  C e l l s  w e r e  se e d e d  a t  h ig h  d e n s ity  (2 .5  x  1 0 5 c e l ls  p e r  w e ll)  in  6 w e ll  

p la te s  ( F a lc o n , 3 0 4 6 ) .

2 . P la te s  w e r e  th en  in c u b a te d  o v e rn ig h t  in  se ru m -c o n ta in in g  m e d ia .

3 . T h e  m e d ia  w a s  th e n  re m o v e d  and c e l ls  w a s h e d  tw ic e  w ith  D M E . T h e  

c o m p o u n d s  o f  in te re st  (su c h  a s  N S A I D s  o r  I L - 1 P )  w e r e  th e n  a d d ed  to 

th e  c e l ls  at a  c o n c e n tra tio n  a p p ro p ria te  fo r  th e  c e ll  d e n s ity  p re sen t. 

C o n tro l w e l ls  w e r e  tre a te d  w ith  m e d ia  o n ly .

4 . A f t e r  2 4  h o u rs  th e  m e d ia  w a s  re m o v e d  fr o m  th e w e l ls ,  p la c e d  in  to 

a p p ro p r ia te ly  la b e lle d  e p p e n d o r fs  an d  s to re d  a t - 8 0 °C .
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5 .  S a m p le s  w e re  a n a ly s e d  u s in g  a  P g E 2 e n z y m e  im m u n o a s s a y  k it  

(C a y m a n  C h e m ic a l, 5 1 4 0 1 0 ) .  C o n c e n tra tio n s  o f  P g E 2 p re se n t in  the 

sa m p le s  w e r e  d e te rm in e d  fro m  a  stan d ard  c u rv e  o f  a b so rb a n c e  at 4 0 5  

n m  v e r s u s  P g E 2 co n c en tra tio n .

T h e  P g E 2 a s s a y  k it  w a s  b a s e d  o n  th e  c o m p e tit io n  b e tw e e n  P g E 2 an d  a  P g E 2 - 

a c e ty lc h o lin e s te r a s e  c o n ju g a te  fo r  a  lim ite d  a m o u n t o f  P g E 2 m o n o c lo n a l 

a n tib o d y . B e c a u s e  th e  co n c e n tra tio n  o f  th e  P g E 2 tra c e r  w a s  h e ld  co n sta n t w h ile  

th e  c o n c e n tra t io n  o f  th e P g E 2 v a r ie d , th e a m o u n t o f  th e d e te c ta b le  P g E 2 tra ce r 

th at w a s  a b le  to  b in d  to  th e  P g E 2 m o n o c lo n a l a n t ib o d y  w a s  in v e r s e ly  

p ro p o rt io n a l to  th e  co n c e n tra tio n  o f  th e P g E 2 p resen t.

2.8.2 Procedure for detection of COX-1 activity

T h e  e x p e r im e n t u se d  to  te st  fo r  th e  a b ility  o f  th e N S A I D s  a n d  th e  U C C  

c o m p o u n d s  to  in h ib it  C O X - 1  is  a  sp e c tro p h o to m e tric  a s s a y  in  w h ic h  

a ra c h id o n ic  a c id  is  u se d  a s  th e  su b stra te  fo r  th e  C O X - 1  e n z y m e .

T h e  C O X  - 1  a s s a y  w a s  b a s e d  o n  th at u sed  b y  B o o p a th y  et a l ,  ( 19 8 4 )  an d  

P ia z z a  et al., ( 1 9 9 7 ) :

1 .  10 0 m l o f  lO O m M  T R I S - H C L  ( S ig m a  T - 1 3 7 8 )  (p H  7 .4  -  8) w a s  

p re p a re d  ( 1 . 2 1 1  g  in  1 OOmls U H P ).

2 .  T h e  fo l lo w in g  c o m p o u n d s  w e r e  w e ig h e d  o u t a n d  a d d e d  to  10 0 m l  o f  

lO O m M  T R I S - H C L :

0 .0 5 m M  G lu ta th io n e  ( S ig m a  G - 9 0 2 7 )  1 5 . 3 7 m g

0 .6 2 5 JJ .M  H a e m o g lo b in  ( S ig m a  H - 2 5 0 0 )  4 .0 3 m g

0 .5 m M  H y d ro q u in o n e  ( S ig m a  H -9 0 0 3 )  5 . 5 1  m g

1 . 2 5 m M C a C l 2  1 8 .3 m g

3 .  T h e  re a c t io n  m ix tu re  fo r  the C O X - 1  a s s a y  w a s  p re p a re d  a s  fo llo w s :

•  2 5 0  u n its  o f  P ro s ta g la n d in  H  sy n th e s is  1 ( C O X - 1 )  (C a y m a n  

C h e m ic a ls )

•  lO O jaM  a ra c h id o n ic  a c id  (C a y m a n  C h e m ic a ls , 9 0 0 10 )
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T R I S  -H C 1  +  co m p o n en ts  (a s  p re p a re d  a b o v e )  - a d d e d  to  m a k e  a  fin a l 

v o lu m e  o f  1 m l in  th e  re a c t io n  m ix tu re .

(N o te : 2 5 0  u n its  o f  C O X - 1  e n z y m e  w a s  u s e d  in  th e  a s s a y  a s  it  w a s  

a s s e s s e d  in  p r io r  tr ia ls  th at th is  a m o u n t o f  e n z y m e  g a v e  th e  o p tim u m  

le v e l  o f  a c t iv ity  w h e n  in c u b a te d  w ith  a ra c h id o n ic  a c id .)

T h e  re a c t io n  m ix tu re  w a s  in c u b a te d  @  3 7 ° C  fo r  2 0  m in u te s .

T h e  re a c t io n  w a s  te rm in a te d  b y  th e  a d d it io n  o f  0 .2 m l o f  1 0 0 %  (w /v )  

t r ic h lo ro a c e t ic  a c id  in  1 M  H C 1  ( 9 1 .7 m l  H 2O  +  8 .3 m l c o n c . H C 1 ).

A f t e r  th o ro u g h  m ix in g , 0 .2 m l o f  1 %  (w /v )  th io b a rb itu ric  a c id  so lu tio n  

( in  1 M  N a O H )  w a s  a d d e d  a n d  th e  m ix tu re  w a s  h e a te d  in  a  b o ilin g  

w a te r  b a th  fo r  2 0  m in .

A ft e r  c o o lin g  to  ro o m  te m p e ra tu re  a n d  b r ie f  c e n tr ifu g a t io n , th e  e n z y m e  

a c t iv ity  w a s  m e a su re d  b y  th e  th io b a rb itu r ic  a c id  c o lo u r  re a c t io n  o f  

m a lo n a ld e h y d e  fo rm e d  in  th e  re a c t io n  an d  d e te rm in e d  b y  a  

sp e c tro p h o to m e te r  at 5 3 0 n m .

T o  a s s e s s  th e  a b ility  o f  th e  N S A I D s  an d  B R I  c o m p o u n d s  to  in h ib it  

C O X - 1 ,  12 | ig / m l o f  th e  c o m p o u n d s  w e r e  a d d e d  to  th e  re a c t io n  m ix tu re , 

th e  v o lu m e  b ro u g h t u p  to  1  m l w ith  T R I S - H C L  +  co m p o n e n ts  an d  the 

C O X - 1  a s s a y  c a rr ie d  o u t a s  p e r  s te p s  4 - 9 .

1 2 ( ig /m l o f  co m p o u n d  w a s  u se d  in  th e  a s s a y  a s  th is  w a s  fo u n d  to  b e  the 

c o n c e n tra tio n  at w h ic h  in d o m e th a c in  in h ib ite d  C O X - 1  b y  a p p ro x . 5 0  

% . T h e  e n z y m a tic  a b ility  o f  C O X - 1  w a s  a s s e s s e d  b y  its  a b il i t y  to  a c t o n  

th e  su b stra te  a ra c h id o n ic  a c id  to  fo r m  m a lo n a ld e h y d e . T h e  g re a te r  th e 

o p t ic a l d e n s ity  re a d in g  th e  g re a te r  th e  a c t iv ity  o f  C O X - 1  in  th e  re a c tio n  

m ix tu re . In d o m e th a c in  w a s  u s e d  a s  th e  p o s it iv e  c o n tro l. T h e  B R I  

c o m p o u n d s  w e re  a d d e d  to  th e  re a c t io n  m ix tu re  at th e  sa m e  

c o n c e n tra tio n  as in d o m e th a c in  a n d  th e ir  a b ilit ie s  to  in h ib it  C O X - 1  w e re  

c o m p a re d .

T h e  c o n tro ls  u se d  in  th e  e x p e r im e n t w e re :

i. A ra c h id o n ic -n e g a t iv e  co n tro l.

i i . In d o m e th a c in -n e g a tiv e  c o n tro l

i i i .  D M S O  co n tro l.

In  th e  c o n tro l re a c tio n  m ix tu re  a ra c h id o n ic  a c id  o r  e n z y m e  w a s  a d d ed  

to  th e  re a c t io n  m ix tu re  a fte r  th e  a d d it io n  o f  th e  t r ic h lo ro a c e t ic  a c id .



2.9.1 Sample preparation

1 .  C e l ls  w e r e  s e e d e d  a t  a  d e n s ity  o f  3 x 1 0 6 c e l ls  p e r  1 7 5 c m 2 f la s k  tw o  d a y s  

b e fo re  th e  e x p e rim e n t.

2 . M e d ia  w a s  re m o v e d  an d  r e p la c e d  w ith  m e d ia  c o n ta in in g  th e  a g e n ts  o f  

in te rest ( su c h  a s  a  c y to to x ic  d ru g ).

3 . A f t e r  a n  a p p ro p ria te  t im e  p e r io d , m e d ia  w a s  re m o v e d  a n d  c e l ls  w e re  

try p s in is e d  a s  d e sc r ib e d  in  se c t io n  2 . 5 . 1 .

4 . C e l ls  w e r e  w a s h e d  t w ic e  w it h  ic e  c o ld  P B S .  A l l  p ro c e d u re s  f ro m  th is

p o in t  fo r w a r d  w e r e  p e r fo rm e d  o n  ic e .

5 . C e l ls  w e r e  re su sp e n d e d  in  1 m l  o f  N P - 4 0  ly s i s  b u ffe r . T a b le  2 .9 . 1  b e lo w

p r o v id e s  th e  d e ta ils  o f  th e  l y s i s  b u ffe r . Im m e d ia te ly  b e fo r e  u se , 1 Ofal o f  

th e  1 0 0 X  s to c k s  l is te d  in  ta b le  2 .9 .2  w e r e  a d d e d  to 1 m l  o f  l y s i s  b u ffe r .

2.9 Western blotting

Addition required per 500ml stock Final concentration

425ml U H P  w a te r -

2 5 m l 1 M  T R I S - H C L  (p H  7 .5 ) 5 0 m M  T R I S - H C L  (p H  7 .5 )

1 5 m l 5 M  N a C I 1 5 0  m M  N a C I

2 .5 m l  N P - 4 0 0 .5 %  N P -4 0

Table 2.9.1: N P - 4 0  ly s i s  b u f fe r

100X stock Preparation instructions

lO O m M  N a 3 V O 4 1 .8 3 g N a 3 V O 4 in 10 0m l UH P

lO O m M  D T T 15 4 m g  in 10m l U H P

lO O m M  P M S F I74 m g  in 10m l 10 0 %  ethanol

1 0 0 X  P ro te a s e  in h ib ito rs 2 .5  m g/m l leupeptin, 2 .5  m g/m l aprotinin, 1 5  m g/m l 

benzam idine and 1 m g/m l trypsin  inhibitor in U H P 

w ater

Table 2.9.2: N P - 4 0  ly s i s  b u f fe r  1 0 0 X  s to c k s
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6 . C e l l s  w e r e  so n ic a te d  im m e d ia te ly  w ith  9 p u lse s  la s t in g  0 .9  s e c o n d s  a t 

5 0 %  p o w e r .

7 . L y s e d  c e l ls  w e r e  t ra n s fe rre d  to  a n  e p p e n d o r f  and p e lle te d  a t 1 3 ,0 0 0  

r .p .m  fo r  1 0  m in u te s

8 . S u p e rn a ta n t w a s  re m o v e d  a n d  p ro te in  co n c e n tra tio n  q u a n tifie d  a s  

d e ta ile d  in  se c t io n  2 .9 .2 .  S a m p le s  w e r e  th en  sto re d  in  a liq u o ts  at -8 0 °C .

2.9.2 Protein Quantification

P ro te in  le v e ls  w e r e  d e te rm in e d  u s in g  th e  B io - R a d  p ro te in  a s s a y  k it  ( B io - R a d ,

5 0 0 0 0 0 6 )  a s  fo llo w s .

1 .  A  2 m g / m l b o v in e  se ru m  a lb u m in  ( B S A )  so lu tio n  ( S ig m a , A 9 5 4 3 )  w a s  

p re p a re d  f r e s h ly  in  ly s is  b u ffe r .

2 . A  p ro te in  stan d ard  c u rv e  w a s  p re p a re d  fro m  th e  B S A  s to c k  w ith  

d ilu t io n s  m a d e  in  ly s i s  b u ffe r .

3 . T h e  B io - R a d  re a g e n t w a s  d ilu te d  1 : 5  in  U H P  w a te r  an d  f i lte re d  

th ro u g h  W h a tm a n  p a p e r  b e fo r e  u se .

4 . A  2 0 (j.l v o lu m e  o f  p ro te in  stan d ard  d ilu tio n  o r  sa m p le  w a s  a d d e d  to

0 .9 8 m l o f  d ilu te d  d y e  re a g e n t  an d  th e m ix tu re  v o rte x e d .

5 . A f t e r  5 m in u te s  in c u b a tio n , a b so rb a n c e  w a s  a s s e ss e d  a t 5 7 0 n m .

6 . T h e  c o n c e n tra tio n  o f  th e  p ro te in  sa m p le s  w a s  d e te rm in e d  fro m  th e p lo t  

o f  th e  a b so rb a n c e  at 5 7 0 n m  v e r s u s  c o n c e n tra tio n  o f  th e  p ro te in  

stan d ard .

2.9.3 Gel electrophoresis

P ro te in s  fo r  a n a ly s is  b y  W e ste rn  b lo tt in g  w e re  r e s o lv e d  u s in g  S D S -  

p o ly a c r y la m id e  g e l  e le c tro p h o re s is  ( S D S - P A G E ) .  T h e  s ta c k in g  an d  r e s o lv in g  

g e ls  w e r e  p re p a r e d  a s  illu s tra te d  in  ta b le  2 .9 .3 .  T h e  g e ls  w e r e  se t  in  c le a n  1 0 c m  

x  8c m  g e l  c a s s e tte s , w h ic h  c o n s is te d  o f  a  g la s s  p la te  an d  an  a lu m in iu m  p la te . 

T h e s e  p la te s  w e r e  se p a ra te d  b y  0 .7 5 c m  p la s t ic  sp a c e rs . T h e  r e s o lv in g  g e l  w a s  

a d d e d  to th e  g e l  c a s se tte  a n d  a llo w e d  to  se t w h ile  c o v e re d  w ith  0 . 1 %  S D S .

86



O n c e  set, th e  0 . 1 %  S D S  w a s  re m o v e d  an d  th e  s ta c k in g  g e l  w a s  th e n  ad d ed . A  

c o m b  w a s  p la c e d  in to  th e  s ta c k in g  g e l  a fte r  p o u r in g , in  o rd e r  to  c re a te  w e l ls  

fo r  s a m p le  lo a d in g  (m a x im u m  sa m p le  lo a d in g  v o lu m e  o f  15 -2 0 ( x l)

7.5% Resolving  

Gel

15% Resolving 

Gel

5% Stacking

Gel

A cry lam id e  stock 3 .8 m l 5 .0 m l 0 .8m l

U H P  w ater 8 .0 m l 6 .8m l 3 .6 m l

1.8 7 5  M  T R IS -H C L  

pH  8.8

3 .0 m l 3 .0 m l

1 .2 5  M T R IS -H C L  

pH  6.8

0 .5 m l

10 %  S D S 1 5 0 jj.L 15 0 j.iL 5 0 p L

10 %  N H 4- persulfate 6 0|xL 5 0 j iL 17 j. iL

T E M E D 9j.iL 10 j.iL 8 j.iL

Table 2.9.3: P re p a ra t io n  p ro to c o l fo r  S D S - P A G E  g e ls  (2  x  0 .7 5 m m  g e ls ) .

T h e  a c r y la m id e  s to c k  in  T a b le  2 .9 .3 . 1  w a s  c o m p o se d  o f  2 9 . l g  a c ry la m id e  

( S ig m a , A 8 8 8 7 )  a n d  0 .9 g  N N -m e th y le n e  b is -a c ry la m id e  ( S ig m a , N 7 2 5 6 )  m a d e  

u p  to  1 0 0 m l  w ith  U H P  w a te r . In  a d v a n c e  o f  sa m p le s  b e in g  lo a d e d  in  to  th e 

r e le v a n t  sa m p le  w e l ls ,  1 5 j j ,g  o f  p ro te in  w a s  d ilu te d  in  5 X  lo a d in g  b u ffe r  ( 2 .5 m l 

1 . 2 5  M  T R I S - H C L ,  l.O g  S D S ,  2 .5 m l  m e rca p to e th a n o l ( S ig m a , B 6 2 5 0 )  5 .8 m l 

g ly c e r o l  ( B D H , 4 4 3 0 5 )  a n d  0 . 1 %  b ro m o p h e n o l b lu e  ( S ig m a , B 8 0 2 6 )  m a d e  u p  

to  10 m l  w ith  d is t i l le d  w a te r ) . T h e  m o le c u la r  w e ig h t  m a rk e rs  ( S ig m a , P I 6 7 7 )  

a n d  p ro te in  s a m p le s  ( fo r  P G H S - 2  a n a ly s is )  w e r e  h e a te d  to  9 5 ° C  fo r  2  m in u te s. 

A f t e r  h e a t in g , e q u a l a m o u n ts  ( 15 j j .g  in  5 X  lo a d in g  b u f fe r  in  a  to ta l v o lu m e  o f  

I O pl) o f  p ro te in  w e r e  a d d e d  in  to  e a c h  w e ll .  T h e  g e ls  w e r e  ru n  a t 2 5 0 V  an d  

4 5 m A  u n til th e  b ro m o p h e n o l b lu e  d y e  fro n t  w a s  fo u n d  to  h a v e  re a c h e d  th e en d  

o f  th e  g e l,  at w h ic h  t im e  s u ff ic ie n t  re so lu t io n  o f  th e  m o le c u la r  w e ig h t  m a rk e rs  

w a s  a c h ie v e d .
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'.4 Western Blotting - Transfer of protein to nitrocellulose

O n c e  e le c tro p h o re s is  h a d  b e e n  c o m p le te d , th e  S D S - P A G E  g e l w a s  

e q u ilib ra te d  in  tra n s fe r  b u f fe r  ( 2 5 m M  T R I S  ( S ig m a , T 8 4 0 4 ) , 19 2 m M  

g ly c in e  ( S ig m a , G 7 1 2 6 ) ,  p H  8 .3 - 8 .5 )  fo r  a p p ro x im a te ly  3 0  m in u te s.

P ro te in  w a s  tra n s fe rre d  fro m  th e g e l to  H y b o n d  E C L  n itro c e llu lo s e  

m e m b ra n e s  (A m e rs h a m , R P N  2 0 2 0 D )  b y  s e m i-d ry  e le c tro b lo tt in g . F iv e  

sh e e ts  o f  W h a tm a n  3 m m  f i lte r  p a p e r  w e r e  s o a k e d  in  f r e s h ly  p re p a re d  

tra n s fe r  b u f fe r . T h e s e  w e re  th en  p la c e d  o n  th e c a th o d e  p la te  o f  a  s e m i

d ry  b lo tt in g  a p p a ra tu s  (B io -ra d ) . A i r  p o c k e ts  w e r e  th en  re m o v e d  fro m  

fro m  b e tw e e n  th e  f i lte r  p a p e r . N it r o c e llu lo s e  w a s  a lso  so a k e d  in  the 

tra n s fe r  b u f fe r  a n d  p la c e d  o v e r  th e  f ilte r  p a p e r  o n  th e  ca th o d e  p la te . A i r  

p o c k e ts  w e r e  o n c e  a g a in  re m o v e d . T h e  a c r y la m id e  g e l  w a s  la y e re d  

g e n t ly  o n  to p  o f  th e  n itro c e llu lo se . F iv e  a d d it io n a l sh e e ts  o f  tra n s fe r  

b u f fe r - s o a k e d  f i lte r  p a p e r  w e r e  p la c e d  o n  to p  o f  th e  g e l  an d  a ll  a ir  

p o c k e ts  re m o v e d . T h e  p ro te in s  w e re  t ra n s fe rre d  fro m  th e  g e l  to  th e 

n itro c e llu lo s e  a t  a  cu rre n t o f  3 4 m A  at 1 5 V  fo r  3 5  m in u te s.

T h e  p ro to c o l u s e d  fo r  M R P  p ro te in  a n a ly s is  is  su m m a rise d  in  se c t io n  

2 .9 .6 .

F o r  a n a ly s is  o f  P G H S - 1  an d  P G H S - 2 ,  th e  m e m b ra n e s  w e re  b lo c k e d  

o v e r n ig h t  u s in g  5 %  m ilk  p o w d e r  (C a d b u ry s ; M a r v e l  sk im m e d  m ilk )  in  T B S  

( 1 2 5 m M  N a C l ,  2 0 m M  T R I S  p H  7 .5 )  at 4 ° C .

M e m b ra n e s  w e r e  tre a te d  w ith  p r im a ry  a n tib o d y  o v e rn ig h t  a t 4 ° C  (w ith  

p ro s ta g la n d in  H  sy n th a se  I  m o n o c lo n a l a n t ib o d y  (C a y m a n  C h e m ic a ls  

1 6 0 1 1 0 )  o r  p ro s ta g la n d in  H  sy n th a se  2  (h u m an ) p o ly c lo n a l a n tib o d y  

( C a y m a n  C h e m ic a ls , 1 6 0 1 0 7 )  d ilu te d  at 1 in  1 ,0 0 0 )  a  n e g a t iv e  co n tro l 

w h e re  th e  g e l  w a s  e x p o s e d  to  a n tib o d y  d ilu e n t o r  a n im a l p re -b le e d  w a s  

a ls o  p e r fo rm e d .

P r im a r y  a n tib o d y  w a s  re m o v e d  a fte r  th is  p e r io d  an d  th e m e m b ra n e s  

r in se d  5  t im e s  w ith  T B S  fo r  a  to ta l o f  3 0  m in u te s .

S e c o n d a r y  a n tib o d y  ( 1  in  1 ,0 0 0  d ilu tio n  o f  a n t i-m o u se  I g G  p e ro x id a s e  

c o n ju g a te  ( S ig m a , A 4 9 1 4 )  in  T B S  o r a  1  in  1 ,0 0 0  d ilu t io n  o f  a n ti

ra b b it  I g G  ( S ig m a , A 4 9 1 4 )  in  T B S )  w a s  a d d e d  fo r  1 h o u r  at ro o m  

te m p e ra tu re .



7 . T h e  m e m b ra n e s  w e r e  w a s h e d  th o r o u g h ly  in  th e  w a s h  b u ffe r  ( T B S  

c o n ta in in g  0 .5 %  T w e e n  ( S ig m a , P 7 9 4 9 ) )  fo r  1 5  m in u te s.

2.9.5 Enhanced chemiluminescence (ECL) detection

Im m u n o b lo ts  w e r e  d e v e lo p e d  u s in g  an  E n h a n c e d  C h e m ilu m in e sc e n c e  k it

(A m e rsh a m , R P N 2 1 0 9 )  w h ic h  fa c ilita te d  th e  d etectio n  o f  b o u n d  p e ro x id a se -

co n ju g a te d  se c o n d a ry  an tib o d y .

1 .  F o llo w in g  th e f in a l w a sh in g , n itro c e llu lo se  f ilte rs  w e re  su b je c te d  to  E C L .

2 .  A  la y e r  o f  p a ra film  w a s  fla tten ed  o v e r  a  g la s s  p la te  an d  the n itro c e llu lo se  

p la c e d  g e n tly  u p o n  the p late .

3 . A  v o lu m e  o f  3 m l o f  a  5 0 :5 0  m ix tu re  o f  E C L  re ag en ts w a s  u se d  to  c o v e r  

th e  n itro c e llu lo se .

4 . T h e  E C L  re a g e n t  m ix tu re  w a s  c o m p le te ly  re m o v e d  a fte r  a  p e r io d  o f  

o n e  m in u te  an d  th e m e m b ra n e  w r a p p e d  in  c l in g fi lm . A l l  e x c e s s  a ir  

b u b b le s  w e r e  re m o v e d .

5 . T h e  n itro c e llu lo se  w a s  th en  e x p o s e d  to  a u to ra d io g ra p h ic  f i lm  (K o d a k , X -

O M A T S )  fo r  v a r io u s  tim es ( fro m  1 to  1 5  m in u te s d e p en d in g  o n  th e 

s ig n a l) .

6 . T h e  e x p o s e d  a u to ra d io g ra p h ic  f i lm  w a s  d e v e lo p e d  fo r  3  m in u tes in

d e v e lo p e r  (K o d a k , L X - 2 4 )  fo r  2  m in u tes.

7 . T h e  f i lm  w a s  th en  w a sh e d  in  w a te r  fo r  1 5  seco n d s an d  tra n sfe rred  to  a

f ix a t iv e  (K o d a k , F X -4 0 )  fo r  2  m in u tes.

8 . T h e  f i lm  w a s  th en  w a sh e d  w ith  w a te r  fo r  5 - 1 0  m in u tes an d  le ft  to  d ry  at

ro o m  tem p eratu re .

2.9.6 Western blot analysis of MRP in inside-out vesicles.

W e ste rn  b lo ttin g  fo r  M R P  p ro te in  d etectio n  in  1 0 V s  w a s  p e r fo rm e d  as d e scr ib e d

in  S e c t io n s  2 .9 . 1  to  2 .9 .5  w ith  the fo llo w in g  m o d ifica tio n s:

89



1 .  A  tota l o f  20(j,g  p ro te in  w a s  d ilu ted  in  5 X  lo a d in g  b u ffe r  and lo a d e d  onto 

the 5 %  sta c k in g  g e l an d  7 .5 %  r e so lv in g  g e l.

2 .  M o le c u la r  w e ig h t  m a rk e rs  ( N e w  E n g la n d  B io la b s , 7 7 0 8 S )  w e re  h eated  to 

9 5 - 1 0 0 ° C  fo r  3 -5  m in u te s o r  h eated  a t 4 0 ° C  fo r  1  m in u te .

3 . M e m b ra n e s  w e re  b lo c k e d  u sin g  5 %  m ilk  (C a d b u ry s : M a r v e l sk im m e d  

m ilk )  in  T B S  ( 1 2 5 m M  N a C l,  2 0 m M  T R I S  p H  7 .5 )  fo r  4  h ou rs at ro o m  

tem p eratu re .

4 . A n ti-h u m a n  M R P  m o n o c lo n a l p r im a ry  a n tib o d y  (T C S  B io lo g ic a ls ,  

Z U M C - 2 0 1 )  w a s  ad d ed  ( 1 :5 0  d ilu tio n  in  T B S )  to  m e m b ran e s o v ern ig h t 

at 4 ° C .

5 . R a b b it  an ti-rat se c o n d a ry  a n tib o d y  (D a k o , P 0 4 0 5 0 )  w a s  a d d ed  a t a  

1 : 1 2 , 0 0 0  d ilu tio n  in  T B S  fo r  2  h o u rs  at ro o m  tem perature. M e m b ra n e s  

w e re  th en  w a sh e d  5 t im e s  in  T B S  co n ta in in g  0 .5 %  T w e e n -2 0  

(C a lb io c h e m , 6 5 5 2 0 5 ) .

6 . A  S u p e rS ig n a l U L T R A  C h e m ilu m in e sc e n c e  k it (P ie rc e , 3 4 0 7 5 )  w a s  u se d  

fo r  the d e v e lo p m e n t o f  im m u n o b lo ts. T h is  in v o lv e d  m ix in g  1 .5 m l  S u p e r 

S ig n a l R e a g e n t  1  w ith  S u p e r  S ig n a l  re a g e n t 2  an d  a d d itio n  o f  th is m ix tu re  

to  the m e m b ra n e s  as  d e sc r ib e d  in  2 .9 .5 . A ft e r  5  m in u te s the re ag en ts  w e re  

re m o v e d  an d  th e m e m b ran e  w rap p e d  in  c lin g  film . T h is  w a s  th en  e x p o se d  

to  a u to ra d io g ra p h ic  f i lm  fo r  3 0  seco n d s. A u to ra d io g ra p h e d  f i lm  w a s  

p ro c e sse d  a s  d e sc r ib e d  in  S e c tio n  2 .9 .5 .

2.10 Inside-out vesicle preparation

2.10.1 Spinner flask preparation

S p in n e r  f la s k s  w e re  so ak e d  in  a  so lu tio n  o f  2 %  R B S  fo r  o n e  h ou r an d  scru b b ed  

v ig o r o u s ly  w ith  a  sc ru b b in g  bru sh . T h e y  w e re  r in se d  th ree  tim e s w ith  tap  w a te r  

an d  th ree  t im e s  in  U H P  w a ter . S p in n e r  f la s k s  w e re  a llo w e d  to c o m p le te ly  d ry  at 

3 7 ° C ,  an d  a fte r  th is  p o in t w e re  treated  w ith  10 m l o f  d im eth y lc h lo ro silan e  

(S ig m a , D 6 2 5 8 ) . T h e  v e s s e l  w a s  rotated  to  en su re  e x p o su re  o f  a ll  g la s s  su rfa ce s  

to  th e s il ic o n is in g  agen t. S u rp lu s  flu id  w a s  th en  re m o v e d  an d  th e v e s s e l  le ft  in  the
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fu m e  h o o d  to d ry . O n c e  c o m p le te ly  d ry , the f la s k  w a s  rin se d  th ree tim e s in  U H P

w a ter . T h e  sp in n er f la s k s  w e re  th en  a u to c la v e d  ( 1 2 1 ° C  fo r  2 0  m in u tes).

2.10.2 Large Scale culture of cells.

— 4 -y a c

1 .  C e l ls  w e r e  su b cu ltu re d  in to  7 5 c m  f la s k s  at a  d e n s ity  o f  2 x 1 0  c e lls  p e r 

fla sk .

2 .  O n ce c e l ls  re a c h e d  7 0 %  to 8 0 %  c o n flu e n c y , th e y  w e re  try p s in ise d  an d  

u sed  to  se e d  a  1 7 5 c m 2 fla sk .

3 .  C e lls  w e r e  cu ltu red  fo r  4 -5  d a y s  un til th ey  re a c h e d  7 0 %  to  8 0 %  

c o n flu e n c y . T h e  c e lls  w e re  th en  try p sin ise d , an d  u se d  to see d  a  la rg e  

5 0 0 m l sp in n e r  f la s k  (T e c h n e , T R 1 7 4 -3 0 )  co n ta in in g  2 5 0 m l m ed ia .

4 . S p in n e r  f la s k s  w e re  in c u b a ted  at 3 7 ° C  an d  p la c e d  o n  a  sp in n er ap p aratu s 

set at a  ro ta tio n a l sp eed  o f  2 5  r.p .m .

5 . A fte r  a  p e r io d  o f  2 4  h o u rs, th e ag ita tio n  rate  w a s  in c re a se d  to  3 5  r.p .m .

6 . C e lls  w e re  fe d  w ith  10 0 m l o f  m e d ia  a fte r  three d a y s  o f  g ro w th  in  the 

sp in n er f la s k s .

7 . C e lls  w e re  h a rv e ste d  a fte r  7  d a y s  a t w h ic h  tim e  c e ll n u m b er w a s
o

a p p ro x im a te ly  1 . 5 x 1 0  c e lls  p e r f la sk .

8 . W h en  I O V s  w e re  iso la te d  fro m  H L 6 0 - A D R , c e lls  ( in  R P M I  m e d ia

su p p lem e n ted  w ith  1 0 %  seru m ) w e re  cu ltu red  in  5  v e n te d  7 5  cm 2 f la s k s  

(C o sta r , 3 2 7 6 )  un til 7 0 -8 0 %  co n flu en t. T h e  m e d ia  co n ta in in g  the 

an ch o rag e -in d ep e n d en t H L 6 0 - A D R  c e ll lin e  w a s  re m o v e d  fro m  the 

f la s k s  an d  ce n tr ifu g e d  at lOOOr.p.m. fo r  5  m in u tes. T h e  p e lle ts  w e re  th en  

re su sp e n d e d  in  5 m l m e d ia  an d  u se d  to  see d  th e ro lle r  bottle (F a lc o n , 

3 0 2 7 )  co n ta in in g  5 0 0 m l o f  m e d ia . C e l ls  w e re  cu ltu red  in  the ro lle r  b o ttle  

until 6 0 %  co n flu e n t. O n ce  th is h ad  b e e n  a ch ie v e d , c e lls  w e re  sp lit  e q u a lly  

in  to  a n  a d d itio n al fo u r  ro lle r  b o ttles  an d  th e f in a l v o lu m e  in  e a c h  o f  th e 

f iv e  ro lle r  b o ttle s  m a d e  u p  to  5 0 0 m l w ith  co m p le te  m ed ia . C e lls  w e re  

h a rv e ste d  u p o n  re a c h in g  7 0 %  c o n flu e n c y .
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2.10.3 Isolation of IOVs

T h e  iso la t io n  o f  IO V s  fro m  v a r io u s  c e ll  lin e s  w a s  p e r fo rm e d  a s  d e sc r ib e d  b y

I s h ik a w a  et a t ,  ( 19 9 4 ) ,  an d  a s  d e ta ile d  b e lo w :

1 .  A p p r o x im a te ly  7 x 1 0 s c e l ls  w e re  p e lle te d  a t  5 ,0 0 0 r .p .m . ( l ,2 0 0 g )  fo r  1 0  

m in u te s  at 4 ° C  in  a  S o r v a l l  re fr ig e ra te d  ce n trifu g e .

2 . T h e  su p ern atan t w a s  d e ca n ted  an d  th e p e lle ts  re su sp e n d e d  in  5 0 m l ic e  

c o ld  P B S .  T h e  co m b in e d  p e lle ts  w e re  th en  tra n sfe rred  to  a  5 0 m l tu b e  and 

sp u n  a t 4 ,0 0 0  r.p .m . fo r  5  m in u tes.

3 .  T h e  re su lt in g  c e ll  p e lle t  w a s  re su sp e n d ed  in  2 3 0 m l  h y p o to n ic  b u ffe r , 

(T a b le  2 . 1 0 . 1 ) .  T h e  P M S F  w a s  ad d ed  to  th e b u ffe r  im m e d ia te ly  b e fo re  

u se .

Buffer constituent Preparation instructions

0 .5 m M  S o d iu m  p h o sp h a te  (p H  

7 .0 )

3 0  m g  N a P  in  5 0 0 m l U H P

0 .1  m M  E G T A 19 .2  m g  E G T A  ad d ed  to  N a P  

so lu tion

0 . 1  m M  P M S F lO O m M  sto c k  p re p a re d  in  E tO H

Table 2.10.1: H y p o to n ic  b u ffe r  fo r  I O V  iso latio n

4 . C e l ls  w e re  ly se d  b y  g e n tle  a g ita tio n  a t 4  ° C  fo r  1 . 5  h ou rs.

5 . T h e  c e ll  ly sa te  w a s  ce n tr ifu g e d  a t 2 8 ,0 0 0  r.p .m . ( 10 0 ,0 0 0 g )  fo r  3 5  

m in u te s  a t 4 °  C  w ith  a  b e c k m a n  S W 2 8  ro to r in  a  B e c k m a n  X L - 8 0  

u ltrac en trifu g e .

6 . T h e  re su lt in g  p e lle ts  w e re  th en  re su sp e n d ed  in  10 m l o f  h y p o to n ic  b u ffe r  

a n d  th en  h o m o g e n ise d  fo r  1 5  m in u tes a t 4 ° C  w ith  a  B r a u n  P o tter S 886 

h o m o g e n ise r .

7 .  T h e  h o m o g e n ise d  c e ll  ex tra c t  w a s  d ilu ted  to  a  f in a l v o lu m e  o f  2 0 m l w ith  

in c u b a tio n  b u ffe r  w h ic h  w a s  p re p ared  as  sh o w n  in  ta b le  2 . 1 0 .2 .
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Buffer constituent Preparation instruction

1 O m M  T R I S - H C L  (pH  7 .4 ) 1 . 2 1  l g  T R I S  in 1 L U H P  w a te r

2 5 0 m M  S u c ro se 4 2 .7 9 g  S u c ro se  in  5 0 0 in l 10  m M  T R IS -  

H C L  (p H  7 .4 )

Table 2.10.2: In cu b a tio n  b u ffe r  fo r  I O Y  iso la tio n .

8 . A  100|_tl a liq u o t o f  th is cru d e  m e m b ran e  frac tio n  w a s  then retained  fo r  

m a rk e r  e n z y m e  a ss a y s

9 . T h e  cru d e  m e m b ran e  fra c tio n  w a s  la y e re d  o v e r  3 8 %  su cro se/ lO m M  

T R I S - H C L  p H  7 .4 , ( 3 8 g  su cro se  in 10 0 m l lO m M  T R JS - H C L  pH  7 .4 )  

and c e n tr ifiig e d  at 2 8 ,0 0 0  r .p .m  ( 10 0 ,0 0 0 g )  fo r  3 5  m in u tes at 4 ° C  w ith  a 

S W 2 8  rotor. A  v o lu m e  o f  10 m l crud e m e m b ra n e  fractio n  w a s  layered  

o v e r  2 8 .5 m l 3 8 %  su cro se/1 OmM T R I S - H C L , p H  7 .4 . T h e  in terface  w a s  

m a rk ed  to s p e c ify  the lo catio n  o f  the p la sm a  m e m b ran e  band w h ic h  

d e v e lo p e d  a fte r  the su c ro se  ce n trifu g atio n  step.

1 0 .  A  thin w h ite  b and  b e c am e  lo ca lise d  at the in te rfa ce  a fte r cen trifu gatio n  

an d  th is w a s  re m o v e d  w ith  a  p asteu r p ipette an d  d ilu ted  to a  fin a l v o lu m e  

o f  2 0 m l w ith  in cu b atio n  b u ffer.

1 1 .  T h e  su sp e n sio n  w a s  ce n trifu g ed  at 3 8 ,2 0 0  rpm  ( 10 0 ,0 0 0 g )  fo r  3 5  m in u tes 

at 4 ° C  u s in g  a  B e c k m a n  7 0 .1  rotor.

1 2 .  T h e  p e lle ts  w e re  resu sp en d ed  in  0 .2 m l in cu b atio n  b u ffe r . V e s ic le s  w e re  

fo rm ed  b y  p a ss in g  resu sp en d ed  p e lle ts  th ro u g h  a  2 7 -g a u g e  n ee d le  2 0  

tim e s u s in g  a  I m l sy r in g e .

1 3 .  A  p ro te in  a ssa y  w a s  then p erfo rm ed  (S e c tio n  2 . 1 0 .4 )  and the IO V  

p re p aratio n  w a s  th en  d ilu ted  to a  co n cen tra tio n  o f  5 m g  protein  /m l w ith  

in cu b atio n  b u ffe r . V o lu m e s  o f  50|.il IO V s  w e re  then fro ze n  at -8 0 °  C .
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2.10.4 Protein assay

T h is  a s s a y  w a s  p e r fo rm e d  in  th e  sa m e  m a n n er a s  d e sc r ib e d  in  se c tio n  2 .9 .2 . F o r  

th e  1 0 V s  a n d  th e c ru d e  m e m b ra n e  p rep aratio n s, sa m p le s  w e re  d ilu ted  1  in  5 

b e fo re  a n a ly s is .

2.11 Transport assays with IOVs.

T ra n sp o rt a ss a y  w ith  IO V s  w e re  p e rfo rm ed  as d e sc r ib e d  b y  Ish ik a w a  et a l,  

( 19 9 4 ) .  T h e  p ro to co l u sed  in th ese  a s s a y s  is  a s fo llo w s :

1 .  A  n u m b er o f  so lu tio n s  w e re  prep ared  in a d v a n c e  o f  the a ssa y . T h e  

p ro to co l used  fo r  the p rep aratio n  o f  the in cu b atio n  b u ffe r  h as a lre a d y  

b een  p ro v id e d  in  T a b le  2 . 1 0 .2 .

A n  A T P /c re a t in e  p h o sp h a tc / M g C l2/ 1 O m M  T R I S - H C L  (p H  7 .4 )  

s o lu tio n  is  p re p a re d  a s  d e ta ile d  in  T a b le  2 . 1 1 . 1 .  V o lu m e s  o f2 0 0 f .i l  w e re  

then  fro z e n  at - 8 0 °C .

Buffer constituent Preparation instructions

M g C I2 6 H 20 2 0 3 .3 m g  in 3 0 m l In cu b atio n  b u ffe r

A T P  (D iso d iu m  salt) 6 .0 5  m g  A T P  in 3 m l M g C l26 H 20 

so lu tio n

C re a tin e  p h o sp h ate 3 2 .7  m g  in  3 m l A T P  so lu tion

Table 2.11.1: A T P / C re a t in e  p h o sp h a te /M g C l2/ l  O m M  T R I S - H C L  (p H  7 .4 )  

p re p aratio n  p ro to c o l.

2 . F o r  th e  A M P  so lu tio n , 4 .9 9 m g  A M P  (S ig m a , A 1 7 5 2 )  w a s  su bstitu ted  fo r  

th e  A T P  ( S ig m a  A 7 6 9 9 ) . O n ce  p re p ared  a s  in  T a b le  2 . 1 1 . 1  a b o v e , 1 OOjj.1 

v o lu m e s  w e r e  fro z e n  at -8 0 °  C .
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A  crea tin e  k in a se  so lu tio n  (2m g /m l), (S ig m a , C 5 7 5 5 )  w a s  p rep ared  in  

in c u b a tio n  b u ffe r  an d  50|xl a liq u o ts  fro z e n  at -8 0  °C .

P r io r  to  p e r fo rm in g  the a ssa y , filte rs  (M illip o re , G S W P -0 2 5 0 0 )  w e re  

so a k e d  in  th e in cu b atio n  b u ffe r  fo r  1  h o u r at 4 ° C .  O n ce  so ak e d , the filte rs  

w e re  a p p lie d  to  th e f ilte r  ap p aratu s (M illip o re , 1 2 - 2 5  S a m p lin g  M a n ifo ld )  

a n d  a  v a c u u m  w a s  a p p lie d  to  th e syste m .

A n  E p p e n d o r f  th e rm o m ix e r  (E p p e n d o rf, 5 4 3 6 )  w a s  a llo w e d  to  eq u ilib rate  

at 3 7 ° C  an d  o n c e  at tem p eratu re , th e  A T P , A M P , c rea tin e  k in a se  and IO V  

so lu tio n s  w e re  th a w e d  ra p id ly  a t 3 7 ° C .  A fte r  th a w in g , so lu tio n s w e re  

im m e d ia te ly  p la c e d  o n  ic e .

A n  e p p e n d o r f w a s  p la c e d  in  the th e rm o m ix e r  an d  th e fo llo w in g  ad d ed  

se q u e n tia lly : 6 0 jj.L  in cu b a tio n  b u ffe r , 3 0 ^ 1  A T P , 5p.l creatin e  k in a se , 5 u l 

[3H ] - L T C 4 (D u P o n t N E N , N E T - 1 0 1 8 ,  0 .0 1  m C i/m l)  and 10(j.l IO V s . 

A fte r  e v e r y  seq u e n tia l ad d itio n  th e  th e rm o m ix e r  w a s  a d ju sted  to  h a l f  

sp e e d  m ix in g  to  a l lo w  a g ita tio n  o f  th e  v a r io u s  co m p o n en ts o f  the m ixtu re . 

A liq u o ts  o f  20|xl w e re  re m o v e d  at ap p ro p ria te  tim e -p o in ts  an d  ad d ed  in  to 

l m l  o f  ic e  c o ld  in cu b a tio n  b u ffe r .

T h e se  w e re  th en  w a s h e d  th ro u g h  th e  filte r  ap p aratu s. T h e  e p p e n d o r f w a s  

w a s h e d  ou t w ith  lm l  o f  ic e  c o ld  in cu b atio n  b u ffe r . T h e  f ilte r  w a s  f in a lly  

w a sh e d  w ith  2  m l o f  ic e  c o ld  in cu b a tio n  b u ffe r .

F ilte rs  w e re  re m o v e d  and p la c e d  in  8m l sc in tilla tio n  co c k ta il ( IC N , 

8 8 2 4 7 5 )  in  a  sc in tilla tio n  v ia l. A fte r  a llo w in g  1 2  h o u rs  fo r  the filte rs  to  

fu l ly  d is s o lv e , th e  v ia ls  w e re  co u n ted  fo r  [3H ] co n ten t u s in g  a  B e c k m a n  

L S - 6 5 0 0  sc in tila tio n  co u n ter u s in g  a  1 m in u te  co u n t tim e.

F o r  an  A M P  n e g a tiv e  con tro l, th e a b o v e  p ro c e d u re  w a s  rep eated  w ith  

A T P  re p la c e d  b y  A M P . F o r  a  to ta l n e g a t iv e  co n tro l, n eith er A T P  n o r 

A M P  w e re  in c lu d e d  b ut w e re  in stead  re p la c e d  w ith  3 0 ja L  in cu b ation  

b u ffe r .

F o r  a sse ssm e n t o f  a  co m p o u n d s a b ility  to  in h ib it L T C 4 transport, the 

co m p o u n d  o f  in terest w a s  d isso lv e d  in  in cu b a tio n  b u ffe r  at the d e sired  

c o n cen tra tio n . 5p.l o f  th is  w a s  a d d ed  to  an  e p p e n d o r f  in  the th erm o m ixe r. 

5 5 jj.1 o f  in c u b a tio n  b u ffe r  w a s  th en  add ed . T h e  stan d ard  v o lu m e s  o f  A T P , 

A M P , cre a tin e  k in a se , L T C 4 and IO V  w e re  th en  ad d ed  to  a tota l f in a l 

v o lu m e  o f  1 1 0 p.l.



2.12 Glutathione-S-Transferase assay.

2.12.1 Preparation of cell extract

1 .  D L K P  c e lls  w e re  g ro w n  in a  7 5 c m 2 f la s k  un til a p p ro x im a te ly  8 0 -9 0 %  

co n flu en t. T h e  c e lls  w e re  then tiy p s in ise d  and p e lle te d  as d escrib ed  in 

sec tio n  2 . 5 . 1 .

2 . T h e  p e lle t  w a s  w a sh e d  w ith  5 m l P B S  and th e c e lls  re su sp e n d ed  in  2 m l 

P B S  +  2 m l lOO m M  P M S F  (p rep ared  a s  in T a b ic  2 .9 .2 ) .

3 .  T h e  c e l ls  w e re  so n ica ted  un til th ey  burst (~  2 0  p u lse s  at 0 .9 m sec) and the 

supernatant w a s  then sp u n  at 3 8 ,0 0 0  rp m  ( 10 0 ,0 0 0 g )  fo r  1 h our at 4 ° C  

u s in g  a  B e c k m a n  7 0 .1  rotor.

4 . A  protein  a ss a y  (d e sc rib ed  in  sectio n  2 .9 .2 )  w a s  then  carried  out on  the 

supernatant, w h ic h  co n ta in ed  the c e ll extract.

5 . T h e  c e ll ex tra c t w a s  fro z e n  at -8 0 °C  until req u ired .

2.12.2 GST assay

1 .  A  n u m b er o f  so lu tio n s  w e re  p rep ared  in a d v a n ce  o f  th e G S T  a ssa y . T h e se

are  d e sc r ib e d  in  ta b le  2 . 1 2 . 1 .

Buffer constituent Preparation instructions

3 0 m M  G lu tath io n e 18 4 .2 0  m g  in 2 0 m l U H P

3 0 m M  l-C h lo r o -2 ,4 -  

d in itro b en zen e

1 2 1 . 2  m g  in 2 0 m l E th an o l

lO O m M  P o ta ss iu m  P h o sp h ate  

b u ffe r

13 6 m g  P o ta ss iu m  d ih y d ro g e n  +  17 4 m g  

P o ta ss iu m  h y d ro g e n  in  2 0 m l U H P

Table 2.12.1: B u f fe r  co n stitu en ts fo r  G S T  a ssa y .

2 . T h e  re a c tio n  m ix tu re , co n s is t in g  o f  th e  fo llo w in g  co m p o n en ts w a s  

p re p ared :

•  0 . 1 m l  G lu ta th io n e  sto ck
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•  0 . 1m l  l-C h lo ro -2 ,4 -d in itro b e n z e n e

•  2 .2 m l  P o ta ss iu m  b u ffe r

•  0 .6  m l C e l l  ex tra c t  (p rep are d  as in  sectio n  2 . 1 2 . 1 )

T h e  f in a l v o lu m e  o f  the re a c tio n  m ix tu re  w a s  3 m l.

3 . T h e  in c re a se  in  a b so rb a n c e  w a s  m o n ito red  at 3 4 0 n m  fo r  3  m in u tes b y  a  

sp ectro p h oto m eter. T h e  a b o v e  re ac tio n  m ix tu re  w a s  th e  n e g a t iv e  con tro l 

(no te st  co m p o u n d  ad d ed ) fo r  th e  a ssa y . T h e  re fe re n c e  c e ll  m ix tu re  

co n s is te d  o f  th e  sa m e  co m p o n en ts  a s  th e re ac tio n  m ix tu re  a b o v e  e x c e p t

0 .6 m ls  c e ll  ex tra c t w a s  re p la c e d  w ith  0 .6 m l P B S .

4 . F o r  a sse ssm e n t o f  the a b ility  o f  a  co m p o u n d  to  in h ib it G S T  a c tiv ity , the 

co m p o u n d  o f  in terest w a s  d is so lv e d  in  D M S O  a t th e  re q u ired  

c o n cen tra tio n  ( 5 - 1 0  m g /m l). A n  a liq u o t o f  the c o m p o u n d  to b e  tested  

w a s  ad d ed  to 0 . 1 m l g lu tath io n e  s to ck , 0 . 1 m l l-c h lo r o -2 ,4 -d in itro b en zen e  

an d  2 .2 m l p o ta ss iu m  b u ffe r . A  f in a l v o lu m e  o f  3 m l w a s  o b ta in e d  b y  th e 

a d d itio n  o f  c e ll e x tra c t to  th e  re a c tio n  m ix tu re  an d  th e  a d d itio n  o f  P B S  to  

th e re fe re n c e  c e ll  m ixtu re .

5 . T h e  in c re a se  in  a b so rb a n c e  is  m o n ito re d  at 3 4 0 n m  fo r  th ree  m in u tes in  

th e  sp ectro p h oto m eter.

6 . In d o m e th a c in  w a s  u se d  as  th e p o s it iv e  con tro l in  th e  G S T  a ss a y  a s  it is  a  

k n o w n  G S T  in h ib itor.

2.13 Quantification o f adriamycin efflux in DLKP cells

1 .  D L K P  c e lls  w e re  se e d e d  into  7 5 c m 2 f la sk s  (C o sta r, 3 3 7 5 )  at 0 .5 x l0 6 c e lls  

p e r  f la sk . C e lls  w e r e  in cu b ated  fo r  48  h ou rs, a fte r w h ic h  tim e  m ed iu m  

w a s  re m o v e d  a n d  fre sh  m e d iu m  co n ta in in g  a d r ia m y c in  ( 10 j iM ) ,  

in d o m e th a c in  (o r o th er N S A ID / in d o m e th a c in  a n a lo g u e s)  ( 2 7 .9 5 p M ) , o r 

c o m b in a tio n  o f  b o th  a d ria m y c in  and in d om eth ac in /co m p o u n d  o f  in terest, 

w a s  ad d ed . F la s k s  w e r e  in cu b a ted  at 3 7 ° C  fo r  a  p e r io d  o f  tw o  h ours.

2 .  A ft e r  th is tw o -h o u r in cu b atio n , the m e d ia  w a s  re m o v e d  fro m  a ll  f la sk s  

a n d  re p la c e d  w ith  fre sh  m e d ia , o r  m e d ia  co n ta in in g  in d om eth acin /
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in d o m eth ac in  a n a lo g u e  or a d ria m y e in , a s  th e e x p e rim e n t req u ired . T h e  

f la s k s  w e re  return ed  to  the 3 7 ° C  incubator,

A t  re le v a n t  t im e  p o in ts  the m e d ia  w a s  re m o v e d  fro m  th e  f la s k s  an d  the 

f la s k s  w e re  w a sh e d  tw ic e  w ith  P B S .  C e lls  w e re  th en  try p s in ise d  as 

d e sc r ib e d  in  sec tio n  2 .5 . 1  an d  co u n ted  a s  d e sc r ib e d  in  se c tio n  2 .5 .2 .  

P e lle ts  w e re  th en  w a sh e d  w ith  P B S  an d  fro z e n  a t - 2 0 ° C .

W h e n  re q u ire d  fo r  H P L C  a n a ly s is , th e  fr o z e n  p e lle ts  w e r e  th a w e d , 

re su sp e n d e d  in  10 0 p ,l  U H P  an d  a d d ed  to  g la s s  tu b e s  (te st sa m p le s) .

U n tre a te d  D L K P  c e l ls  w e r e  re su sp e n d e d  in  8 0 0 p l  U H P  an d  10 0 j.il  

a liq u o ts  o f  th is  w e r e  p la c e d  in to  8 g la s s  tu b e s . T h e s e  w e r e  the 

a d r ia m y e in  c o n tro l tu b es a n d  w e re  la b e lle d  a s  fo l lo w s :  50(j.g/m l, 

10 | ig / m l, 5 jog/m l, 2(xg/m l, 1 fig /m l, 0 .5 |j.g /m l, 0 .2 5 p g / m l, O pg/m l 

a d r ia m y e in .

l m l  o f  th e  a p p ro p ria te  c o n c e n tra tio n  o f  a d r ia m y e in  w a s  th en  a d d e d  to 

th e  a d r ia m y e in  c o n tro l tu b es.

A  v o lu m e  o f  lOO^il 3 3 %  a q u e o u s  s i lv e r  n itra te  ( S ig m a , S 6 5 0 6 )  w a s  

th en  a d d e d  to th e  p e lle ts  ( a ll  tu b es  fro m  4  a n d  5 ) ,  fo l lo w e d  b y  m ix in g  

fo r  5 m in u te s . A  q u a n tity  o f  3 0 0 p l  o f  th e  in te rn a l stan d ard  

(d a u n o ru b ic in , 6 u g /m l in  5 0 m ls  m e th a n o l)  w a s  th en  a d d e d  to  a ll  tu b es.

1 . 3 m l  H P L C  g ra d e  a c e to n itr ile  (L a b s c a n )  w a s  a d d e d  to  th e  test sa m p le  

tu b e s  o n ly . 3 0 0 p ,l H P L C  g ra d e  a ce to n itr ile  w a s  a d d e d  to  th e  a d r ia m y e in  

c o n tro l tu b es .

A l l  tu b e s  w e r e  m a in ta in e d  a t 4 ° C  fo r  1  h o u r. T h is  w a s  fo l lo w e d  b y  

c e n tr ifu g a t io n  at 4 0 0 0 rp m  fo r  1 5  m in u te s.

1 . 1 m l  o f  th e  su p ern a tan t w a s  re m o v e d  an d  a d d e d  to  H P L C  a u to sa m p le r  

v ia l s .  A l l  s o lv e n t  w a s  th en  re m o v e d  u n d e r a  s tre a m  o f  n itro g e n  g a s .

T h e  re m a in in g  s o lid s  w e re  re su sp e n d e d  in  5 0 jj.L  o f  H P L C  m o b ile  p h a se

T h e  H P L C  m o b ile  p h a se  w a s  p re p a re d  a s  fo l lo w s :  6 4 m l o f  0 . 1 M  

p h o sp h o r ic  a c id  ( S ig m a , P 6 5 6 0 )  w a s  a d d ed  to  4 8 8 m l U H P . T h e  p H  w a s  

th e n  a d ju ste d  to  2 .3  w ith  I N  p o ta ss iu m  h y d r o x id e  ( S ig m a  P 6 3 1 0 ) .  A  

v o lu m e  o f  2 4 8  m l a c e to n itr ile  w a s  ad d ed  f in a l ly  an d  th e  c o m p le te d  

m o b ile  p h a se  a l lo w e d  to  d e g a s  at 4 ° C  o v e rn ig h t .



1 3 .  2 0  1 o f  sa m p le  fo r  a n a ly s is  w a s  a u to m a tic a lly  in je c te d  in to  th e  H P L C  

s y s te m  (B e c k m a n  S y s te m  G o ld  5 0 7  a u to sa m p le r , 1 2 5  p u m p  an d  16 6  

d e tecto r). M o b ile  p h a s e  f lo w  ra te  w a s  set at 0 .5 m l p e r  m in u te  w ith  a 

to ta l ru n  t im e  o f  1 6  m in u te s . T h e  c o lu m n  u se d  fo r  H P L C  a n a ly s is  o f  

a d r ia m y c in  in  D L K P  w a s  a  C l 8 re v e rs e d  p h a se  P r o d ig y  5 p m  p a rtic le  

s iz e  O D S -3  c o lu m n  (P h e n o m e n e x , U .K .) .  A b s o r b a n c e  w a s  m o n ito re d  

a t 2 5 3 n m .

1 4 .  A  s tan d ard  c u rv e  o f  a d r ia m y c in  p e a k  a r e a  /d a u n o ru b ic in  in te rn a l 

s tan d ard  p e a k  a re a  v e r s u s  a d r ia m y c in  c o n c e n tra tio n  w a s  u se d  to 

q u a n t ify  th e  le v e ls  o f  a d r ia m y c in  p re se n t in  th e  s a m p le s . R e s u lt s  w e re  

f in a l ly  re p o rted  a s  th e  a m o u n t o f  a d r ia m y c in  p e r  m il l io n  c e lls .

2.14 Quantification o f indomethacin efflux in DLKP cells

1 .  D L K P  c e l ls  w e r e  p re p a re d  a n d  tre a te d  a s  in  step s  1 - 3  in  se c t io n  2 . 1 3 .

2 .  W h e n  re q u ire d  fo r  H P L C  a n a ly s is , th e  fro z e n  p e lle ts  w e r e  th aw ed , 

re su sp e n d e d  in  lOOOpl U H P  a n d  a d d ed  to  g la s s  tu b e s  (test sam p le s).

3 . U n tre a te d  D L K P  c e l ls  w e r e  re su sp e n d e d  in  8 .5 m l U H P  and 9 0 0 p l 

a liq u o ts  o f  th is  w e re  p la c e d  in to  8 g la s s  tu b e s . T h e s e  w e re  the 

in d o m e th a c in  co n tro l tu b e s  a n d  w e r e  la b e lle d  a s  fo l lo w s : 8 p g/m l, 

4 p g / m l, 2 p g / m l, lp g / m l, 0 .5 p g / m l, O .lp g / m l, 0 .0 5 jig /m l, 0 p g /m l 

in d o m e th a c in .

4 . 10 0  p L  o f  th e a p p ro p ria te  in d o m e th a c in  d ilu tio n  ( lO x )  w a s  a d d e d  to the 

c o rre sp o n d in g  la b e lle d  in d o m e th a c in  co n tro l tu b e s .

5 . In to  a ll o f  th e  tu b e s  (test s a m p le s  an d  in d o m e th a c in  c o n tro l sa m p le s)  

th e  fo llo w in g  w a s  a d d ed : 1 0 0  p L  m e fe n a m ic  a c id  ( in tern a l stan d ard ) 

( lO p g /m l) , 5 0 0 p L  1 M  c itra te  b u f fe r  (p H  3 .0 ) , 7 m l d ich lo ro m e th a n e .

6 . A l l  tu b es  w e re  m ix e d  fo r  1 0  m in u te s  an d  w e r e  th e n  c e n tr ifu g e d  at

4 ,0 0 0  r .p .m  fo r  1 5  m in u te s.

7 . 1 . 1 m l w a s  re m o v e d  fro m  th e  d ic h lo ro m e th a n e  p h a se  (b o tto m  p h ase) 

an d  a d d e d  to  H P L C  a u to sa m p le r  v ia ls . T h e  v ia ls  w e r e  le ft  in  a  

fu m e h o o d  o v e r n ig h t  to  a l lo w  e v a p o ra t io n  o f  th e  so lv e n t .
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8 . T h e  re m a in in g  s o lid s  w e r e  re su sp e n d e d  in  5 0 p ,L  o f  H P L C  m o b ile  p h a se

9 . T h e  H P L C  m o b ile  p h a se  w a s  p re p a re d  a s  fo l lo w s :  2 0 0 m l o f  0 .0 2 M  

so d iu m  a c e ta te  w a s  a d d e d  to  a  H P L C  f la s k  a n d  th e  p H  w a s  a d ju ste d  to

3 .6  w ith  a c e t ic  a c id . A  v o lu m e  o f  8 0 0 m l m e th a n o l (L a b s c a n )  w a s  

a d d e d  f in a l ly  a n d  th e  c o m p le te d  m o b ile  p h a se  a llo w e d  to d e g a s  at 4 ° C  

o v e rn ig h t.

1 0 .  2 0  1 o f  sa m p le s  fo r  a n a ly s is  w e r e  a u to m a tic a lly  in je c te d  in to  th e H P L C  

s y s te m  ( B e c k m a n  S y s t e m  G o ld  5 0 7  a u to sa m p le r , 1 2 5  p u m p  an d  16 6  

d e tecto r). M o b i le  p h a se  f lo w  ra te  w a s  se t  at 1 m l  p e r  m in u te  w ith  a  to ta l 

ru n  t im e  o f  1 6  m in u te s . T h e  c o lu m n  u se d  fo r  H P L C  a n a ly s is  o f  

in d o m e th a c in  in  D L K P  w a s  a  C l  8 r e v e rs e d  p h a se  P r o d ig y  5 ¡am  p a rt ic le  

s iz e  O D S - 3  c o lu m n  (P h e n o m e n e x , U .K .) .  A b s o rb a n c e  w a s  m o n ito re d  

at 3 2 0 n m .

1 1 .  A  stan d ard  c u r v e  o f  in d o m e th a c in  p e a k  a re a /m e fe n a m ic  in te rn al 

stan d ard  p e a k  a r e a  v e r s u s  in d o m e th a c in  c o n c e n tra tio n  w a s  u se d  to  

q u a n t ify  th e  le v e ls  o f  in d o m e th a c in  p re se n t in  th e sa m p le s . R e s u lts  

w e r e  f in a l ly  re p o rte d  a s  th e  co n ten t o f  in d o m e th a c in  p e r  m ill io n  c e lls .

2.15 Preparation for RNA analysis.

D u e  to  th e  la b ile  n a tu re  o f  R N A  an d  th e  h ig h  a b u n d a n ce  o f  R N a s e  e n z y m e s  in  

th e  e n v iro n m e n t a  n u m b e r o f  p re c a u tio n a ry  ste p s  w e r e  fo llo w e d  w h e n  

a n a ly s in g  R N A  th ro u g h o u t th e c o u rse  o f  th e se  stu d ie s.

•  G e n e ra l la b o ra to ry  g la s s w a r e  and p la s t ic w a r e  a re  o fte n  co n ta m in a ted

b y  R N a s e s .  T o  re d u c e  th is  r is k , g la s s w a r e  u se d  in  th e se  stu d ie s  w e re  

b a k e d  a t 1 8 0 ° C  (a u to c la v in g  at 1 2 1 ° C  d o e s  n o t d e s tro y  R N a s e  

e n z y m e s)  fo r  at le a s t  8hr. S te r ile , d isp o sa b le  p la s t ic w a re  is  e s s e n t ia lly  

f r e e  o f  R N a s e s  a n d  w a s  th e re fo re  u se d  fo r  th e  p re p a ra t io n  an d  sto ra g e  

o f  R N A  w ith o u t  p re -trea tm e n t. P o ly a l lo m e r  u ltra c e n tr ifu g e  tu b es , 

e p p e n d o r f  tu b e s , p ip e tte  t ip s  e tc ., w e re  a ll a u to c la v e d  b e fo re  u se . A l l  

sp a tu la s  w h ic h  c a m e  in to  co n ta ct  w ith  a n y  o f  th e  so lu tio n  co m p o n en ts  

w e r e  b a k e d , c h e m ic a ls  w e r e  w e ig h e d  o u t o n to  b a k e d  a lu m in iu m -fo il
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a n d  a  s to c k  o f  c h e m ic a ls  fo r  " R N A  a n a ly s is  o n ly "  w a s  k e p t  se p a ra te  

f r o m  a l l  o th e r  la b o ra to ry  a g en ts .

•  A l l  s o lu t io n s  (w h ic h  c o u ld  b e  a u to c la v e d )  th at c a m e  in to  co n ta c t  w ith  

R N A  w e r e  a l l  p re p a re d  fro m  s te r ile  u ltra -p u re  w a te r  an d  tre a te d  w ith

0 . 1 %  d ie th y l p y ro c a rb o n a te  ( D E P C )  (S ig m a , D 5 7 5 8 )  b e fo re  

a u to c la v in g  (a u to c la v in g  in a c t iv a te s  D E P C ) .

•  D is p o s a b le  g lo v e s  w e r e  w o r n  at a ll  t im e s  to  p ro te c t  b o th  th e  o p e ra to r  

an d  th e e x p e r im e n t (h a n d s a re  a n  a b u n d an t so u rc e  o f  R N a s e  e n z y m e s) . 

T h is  p re v e n ts  th e in tro d u c tio n  o f  R N a s e s  a n d  fo r e ig n  R N A / D N A  in  to  

th e  re a c t io n s . G lo v e s  w e re  c h a n g e d  fre q u e n tly .

•  A l l  p ro c e d u re s  w e re  c a rr ie d  o u t u n d e r  s te r i le  co n d it io n s  w h e n  fe a s ib le .

2.15.1 Total RNA extraction from cultures cell lines.

1 .  A d h e re n t  c e l ls  w e re  g r o w n  in  7 5 c m 2 f la s k s  u n til a p p ro x im a te ly  8 0 %

c o n flu e n t.

2 .  M e d ia  w a s  re m o v e d  a n d  1 m l  o f  T R I  re a g e n t p e r  7 5  c m 2 f la s k s  ( S ig m a , 

T - 9 4 2 4 )  w a s  a d d e d  to th e  f la s k  fo r  5 m in u te s  e n su r in g  th at a ll  c e l ls  are  

c o v e r e d  w ith  th e so lu tio n . T R I  re a g e n t is  a  m ix tu re  o f  g u a n id in e  

th io c y a n a te  and p h e n o l in  a  m o n o -p h a se  so lu tio n . I t  e f fe c t iv e ly  

d is s o lv e s  D N A , R N A ,  an d  p ro te in  on  ly s is  o f  c e l l  cu ltu re  sa m p le s . 

A f t e r  a d d it io n  o f  th e  re a g e n t, th e  c e l l  ly sa te  w a s  p a s se d  s e v e r a l  t im e s  

th ro u g h  a  p ip e tte  to  fo rm  a  h o m o g e n o u s  ly sa te .

3 .  T o  e n su re  c o m p le te  d isa s s o c ia t io n  o f  n u c le o p ro te in  c o m p le x e s , the 

sa m p le  w a s  a llo w e d  to  stan d  fo r  5 m in u te s  at ro o m  tem p era tu re .

4 . 0 .2 m l o f  c h lo ro fo rm  (n o t c o n ta in in g  is o a m y l a lc o h o l o r a n y  o th er

a d d it iv e )  p e r  m l o f  T R I  re a g e n t  w a s  a d d ed  to th e c e l l  ly sa te . T h e

s a m p le  w a s  c o v e r e d  t ig h t ly , sh a k e n  v ig o r o u s ly  fo r  1 5  se c o n d s  an d

a llo w e d  to stan d  fo r  2 - 1 5  m in u te s  at ro o m  tem p era tu re .

5 . T h e  re su lt in g  m ix tu re  w a s  c e n tr ifu g e d  at 1 2 ,0 0 0 g  fo r  1 5  m in u te s  at 

4 ° C .  C e n tr ifu g a t io n  se p a ra te d  th e m ix tu re  in to  3  p h a se s : an  o rg a n ic
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p h a se  (c o n ta in in g  p ro te in ), an  in te rp h a se  (c o n ta in in g  D N A )  an d  a  

c o lo u r le s s  u p p e r  a q u e o u s  p h a s e  (c o n ta in in g  R N A ) .

6 . T h e  a q u e o u s  p h a se  w a s  tra n s fe rre d  to  a  f r e s h  tu b e  a n d  0 .5 m l o f

is o p ro p a n o l p e r  m l o f  T R I  re a g e n t  u se d  in  sa m p le  p re p a ra tio n  an d  

m ix e d . T h e  sa m p le  w a s  a llo w e d  to  stan d  fo r  5 - 1 0  m in u te s  at ro o m  

te m p e ra tu re .

7 . T h e  sa m p le  w a s  th en  c e n tr ifu g e d  at 1 2 ,0 0 0 g  fo r  1 0  m in u te s  at 4 ° C .  T h e

R N A  p re c ip ita te  fo rm e d  a  p e lle t  o n  th e  s id e  a n d  th e  b o tto m  o f  th e  tu b e.

8 . T h e  su p ern atan t w a s  re m o v e d  a n d  th e  R N A  p e lle t  w a s  w a s h e d  b y

a d d in g  1 m l  (m in im u m ) o f  7 5 %  eth a n o l p e r  1 m l  o f  T R I  re ag en t. T h e  

s a m p le  w a s  v o r te x e d  an d  c e n tr ifu g e d  a t 7 ,5 0 0 g  fo r  5  m in u te s  a t 4 ° C .  

S a m p le s  c a n  b e  sto red  in  e th a n o l at 4 ° C  fo r  at le a s t  1  w e e k  an d  u p  to  

o n e  y e a r  a t - 2 0 ° C .

9. T h e  R N A  p e lle t  w a s  a ir -d r ie d  b r ie f ly . A p p r o x im a t e ly  5 0 ja l D E P C -

tre a te d  H 2O  w a s  a d d ed  to th e  p e lle t . T h e  R N A  w a s  th e n  sto re d  at - 8 0 ° C  

u n til re q u ire d  fo r  P C R  a n a ly s is .

2.15.2 RNA Quantitation

R N A  w a s  q u a n tifie d  sp e c tro p h o to m e tr ic a lly  at 2 6 0 n m  an d  2 8 0 n m . A n  o p tic a l 

d e n s ity  o f  1  a t 2 6 0 n m  is  e q u iv a le n t  to  4 0 m g /m l R N A .  A n  A 260/ A 280 ra tio  is  

u s e d  to  in d ic a te  th e  p u r ity  o f  th e  R N A .  P a r t ia l ly  s o lu b il is e d  R N A  h a s  a  ra tio  o f  

< 1 . 6  (A u s u b e l et a l ,  1 9 9 1 ) .  T h e  y ie ld  o f  R N A  fro m  m o st  l in e s  o f  cu ltu red  c e l ls  

is  10 0 -2 0 0 ( ig / 9 0 m m  p la te  (S a m b ro o k  et a l,  19 8 9 ) .

2.15.3 Reverse transcription of RNA isolated from cell lines

T h e  fo l lo w in g  c o m p o n e n ts  w e r e  u se d  in  th e r e v e r s e  tra n sc r ip ta se  ( R T )  re a c tio n  

fo r  R N A  is o la te d  fro m  c e l l  lin e s :

1 .  1  jal o l ig o  ( d T ) i2- i8 p r im e rs  ( l^ g / m l)  (p ro m e g a , C l  1 0 1 ) ,  l|_il o f  to ta l

R N A  ( 1  jog/m l), an d  3  p i  o f  D E P C - H 20  w e re  m ix e d  to g e th e r  an d  h ea ted
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at 7 0 ° C  fo r  1 0  m in  an d  th en  c h il le d  o n  ic e  to  r e m o v e  a n y  R N A  

se c o n d a ry  stru ctu re  fo rm a tio n  an d  a l lo w  o l ig o  (d T )  p r im e rs  to  b in d  to  

th e  p o ly  ( A ) + ta il  o n  th e  m R N A .

2 .  4 | i l  o f  a  5 X  b u ffe r  (c o n s is t in g  o f  2 5 0 m M  T R I S - H C L ,  p H  8 .3 ,  3 7 5 m M  

K C 1  a n d  1 5 m M  M g C fe ) , 2 ^ 1  o f  D T T  (lO O m M ), l j i l  o f  R N a s in  (40U /jo l) 

(P ro m e g a , N 2 5 1 1 ) ,  l ja l  o f  d N T P s  ( lO m M  e a c h  o f  d A T P , d C T P , d G T P  

a n d  d T T P ) , 6 (0,1 o f  w a te r  a n d  l ( i l  o f  M o lo n e y  m u rin e  le u k a e m ia  v iru s -  

r e v e r s e  tra n sc r ip ta se  ( M M L V - R T )  ( G ib c o ; 5 1 0 8 0 2 5  S A )  w a s  th en  

a d d e d  to  th e  h e a t-d e n a tu re d  R N A  c o m p le x  an d  th e  m ix tu re  w a s  

in c u b a te d  a t 3 7 ° C  fo r  1  h o u r  to  a l lo w  th e  M M L V - R T  e n z y m e  c a ta ly s e  

th e fo rm a tio n  o f  c D N A  o n  th e  m R N A  tem p late .

3 . T h e  e n z y m e  w a s  th en  in a c t iv a te d  a n d  th e  R N A  an d  c D N A  stra n d s 

se p a ra te d  b y  h e a tin g  to  9 5  ° C  fo r  2  m in . T h e  c D N A  w a s  u se d  

im m e d ia te ly  in  th e  P C R  re a c tio n  o r s to re d  at - 2 0 ° C  u n til re q u ire d  fo r  

a n a ly s is .

2.15.4 PCR analysis of cDNA formed from mRNA isolated from cell lines

T y p ic a l  P C R  re a c t io n s  w e re  se t  u p  a s  50fol v o lu m e s  u s in g  5(.il o f  c D N A  

fo rm e d  d u r in g  th e  R T  re a c t io n  (se e  se c t io n  2 . 1 7 . 2 ) .  c D N A  w a s  a m p lif ie d  fo r  

v a r y in g  c y c le  n u m b e rs  b u t, w h e re  p o s s ib le , a m p lif ic a t io n  w a s  c a rr ie d  o u t o n  

th e  e x p o n e n tia l p h a se  o f  a m p lific a t io n .

1 .  E a c h  P C R  re a c t io n  tu b e  c o n ta in e d  2 6 .5 ( i l  o f  w a te r , 5 ( il  1 0 X  b u f fe r  

( lO O m M  T R I S - H C L ,  p H  9 .0 , 5 0 m M  K C 1 ,  1 %  T r ito n  X - 1 0 0 ) ,  2\il 

2 5 m M  M g C b ,  1^-1 o f  f ir s t  stran d  ta rg e t  p r im e r  (250 n g /(o l), l(o l o f  

se c o n d  s tra n d  ta rg e t  p r im e r  (2 5 0 n g /| il) , 0 .5p ,l o f  f ir s t  stran d  e n d o g e n o u s  

c o n tro l p r im e r  (250 n g /|o l), a n d  0 .5 ( i l  o f  se c o n d  stran d  e n d o g e n o u s  

c o n tro l p r im e r  (250 n g /jo l) .

2 . 5 (0,1 o f  c D N A  (p re -h e a te d  to  9 5 ° C  fo r  3  m in . to se p a ra te  stra n d s an d  

re m o v e  a n y  se c o n d a ry  stru ctu re  i f  th e  sa m p le  h a d  b e e n  s to re d  a t - 2 0 ° C )
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w a s  a d d e d  to  th e  a b o v e  a n d  h e a te d  to  9 4 ° C  fo r  5 m in  (re d u c e s  n o n 

s p e c i f ic  b in d in g  o f  p r im e rs  to  tem p late ).

3 . 8 (4.1 o f  1 .2 5 m M  d N T P  a n d  0.5(41 o f  T a q  D N A  P o ly m e r a s e  e n z y m e

(P ro m e g a , N 1 8 6 2 )  w a s  th en  a d d e d  to  th e a b o v e . T h e  c D N A  w a s  

a m p lif ie d  b y  P C R  u s in g  th e  fo llo w in g  p ro g ra m :

•  9 4 ° C  fo r  1 . 5  m in u te s  (d e n atu re  d o u b le  stra n d ed  D N A ) ;

•  1 5 - 3 5  c y c le s  9 4 ° C  fo r  1 . 5  m in . (d e n atu re  d o u b le  stra n d ed

D N A ) ;

4 2 - 6 2 ° C  *  fo r  1 m in . (an n e a l p r im e rs  to  c D N A )

7 2 ° C  fo r  3  m in  (e x te n s io n )

•  7 2 ° C  fo r  7  m in u te s  (e x te n s io n )

* A n n e a lin g  te m p e ra tu re s  f o r  M R P  p rim e rs  w e r e  as fo llo w s :

M R P 1 :  5 5 ° C ;

M R P 2  ( c M O A T ) : 5 3 ° C ;

M R P 3 :  6 3 ° C ;

M R P 4 : 4 2 °  C ;

M R P 5 :  4 9 ° C .

M R P 6 : 6 8 ° C .

4 . A l l  re a c t io n  tu b e s  w e r e  th e n  k e p t at 4 ° C  u n til a n a ly s e d  b y  g e l 

e le c tro p h o re s is  fo llo w e d  b y  d e n sito m e try .

5 . A  1 0 (4l  a liq u o t  o f  t ra c k in g  b u ffe r , c o n s is t in g  o f  0 .2 5 %  b ro m o p h e n o l

b lu e  ( S ig m a ; B 5 5 2 5 )  an d  3 0 %  g ly c e r o l  in  w a te r , w a s  a d d ed  to  ea ch  

tu b e  o f  a m p lif ie d  c D N A  p ro d u cts .

6 . 1 0 (4.1 o f  c D N A  p ro d u c ts  fro m  e a c h  tu b e w e r e  se p a ra te d  b y

e le c tro p h o re s is  fo r  a p p ro x . P /2 - 2  h o u rs  a t 1 0 0 V  th ro u g h  a  2 - 4 %

a g a r o s e  (P ro m e g a , V 3 1 2 2 )  g e l c o n ta in in g  e th id iu m  b ro m id e  (S ig m a ,

E 8 7 5 1 ) ,  u s in g  T B E  ( 2 2 .5 m M  T R I S - H C L ,  2 2 .5 m M  b o r ic  a c id  (S ig m a , 

B 7 9 0 1 ) ,  0 .5 m M  E D T A )  as ru n n in g  b u ffe r . M o le c u la r  w e ig h t  m a rk e rs  

"< |)-X 174 " H a e  I I I  d ig e s t  (P ro m e g a , G 1 7 6 1 )  w e re  ru n , s im u lta n e o u s ly  as 

s iz e  re fe re n c e .
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7 . T h e  re su lt in g  p ro d u c t b a n d s  w e r e  v is u a l is e d  a s  p in k  b a n d s  (d u e  to  

in te rc h e la tio n  o f  th e  c D N A  w ith  th e  e th id iu m  b ro m id e )  w h e n  th e g e ls  

w e r e  p la c e d  o n  a  tra n s illu m in a to r  ( U V P  T ra n s illu m in a to r) .

8 . T h e  g e ls  w e r e  p h o to g ra p h e d  a n d  th e n e g a t iv e s  p ro d u c e d  w e r e  a n a ly se d  

b y  d e n s ito m e try  ( Im a g in g  D e n s ito m e te r , B io - R a d . M o d e l  G S - 6 7 0 ) .

2.15.5 Densitometric analysis

D e n s ito m e tr ic  a n a ly s is  w a s  c a r r ie d  o u t u s in g  th e  M S  W in d o w s  3 . 1  c o m p a tib le  

M o le c u la r  A n a ly s t  so ftw a r e /P C  im a g e  a n a ly s is  so ftw a re  u s e d  w ith  th e 6 7 0  

Im a g in g  D e n s ito m e te r  ( B io - R a d . C A )  V e r s io n  1 . 3 .

N e g a t iv e s  o f  P C R  g e ls  w e r e  sc a n n e d  u s in g  tra n sm iss io n  l ig h t  a n d  th e  im a g e  

tra n s fe rre d  to  th e  co m p u te r . T h e  a m o u n t o f  lig h t  b lo c k e d  b y  th e D N A  b a n d  is  

in  d ire c t  p ro p o rtio n  to  th e  in te n s ity  o f  th e  D N A  p re sen t. A  s ta n d a rd  a re a  is  set 

w h ic h  is  sc a n n e d  an d  a  v a lu e  ta k e n  fo r  th e  O D  o f  c a c h  in d iv id u a l p ix e l  o n  th e 

sc re e n . T h e  a v e r a g e  v a lu e  o f  th is  O D  (w ith in  a  se t  a re a )  w a s  n o rm a lise d  fo r  

b a c k g ro u n d  o f  an  id e n tic a l se t  a rea . T h e  n o rm a lise d  re a d in g  w a s  ta k e n  a s  th e 

d e n s ito m e tr ic  v a lu e  u se d  in  a n a ly s is .

2.16 Statistical analysis.

A n a ly s is  o f  e x p e r im e n ts  in v e s t ig a t in g  p o s s ib le  s y n e r g y  b e tw e e n  c y to to x ic  

d ru g s  an d  c o m p o u n d s  su ch  a s  N S A I D s  w e re  p e r fo rm e d  in it ia l ly  u s in g  the 

fra c t io n a l p ro d u c t m e th o d . T h e  e q u a tio n  u s e d  w a s  a s  fo l lo w s :

Equation 2.16.1: F ra c t io n a l p ro d u c t eq u atio n .

( f u ) l , 2  =  ( f u ) l X ( f u ) 2

w h e r e : ( f  u) i ,2 =  E x p e c te d  fr a c t io n  u n a ffe c te d  b y  c o m b in in g  c o m p o u n d s  

1 an d  2
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( f  u ) i  =  A c tu a l  fra c t io n  u n a ffe c te d  b y  co m p o u n d  1 tre a tm e n t 

( f  u)2  =  A c tu a l  fra c t io n  u n a ffe c te d  b y  co m p o u n d  2  tre atm e n t

It  w a s  fo u n d  th a t ( f  u) i ,2 w a s  s ig n if ic a n t ly  g re a te r  th an  th e a c tu a l fra c t io n  

u n a ffe c te d  b y  c o m b in in g  c o m p o u n d s  1  a n d  2 , a  sy n e rg is t ic  le v e l  o f  c e l l  k i l l  

w a s  d e m o n stra te d . M u tu a l ly  e x c lu s iv e  d ru g s  sh a re  a  co m m o n  m e c h a n ism  o f  

a c tio n , su c h  a s  b in d in g  to  th e  sa m e  ta rg e t in  th e  c e ll. M u tu a lly  n o n -e x c lu s iv e  

d ru g s  h a v e  in d e p e n d e n t m e c h a n ism s  o f  a c tio n . T h e  fra c t io n a l p ro d u c t  m e th o d  

is  o n ly  th e o r e t ic a lly  a p p lic a b le  in  c a s e s  in v o lv in g  m u tu a lly  e x c lu s iv e  d ru g , an d  

so  w a s  o n ly  u s e d  a s  a  ra p id  a p p ro x im a t io n  to  in v e st ig a te  p o s s ib le  s y n e r g y  

b e tw e e n  d ru g s . F o r  th is  re a so n , re su lts  o b ta in e d  fro m  th e  a n a ly s is  o f  d ata  

u s in g  th e  fra c t io n a l m e th o d  w e r e  c o n firm e d  u s in g  a  co m p u te r  p a c k a g e  fo r  

m u lt ip le  d ru g  e f fe c t  a n a ly s is , “ D o s e - E f fe c t  A n a ly s is  w ith  M ic r o c o m p u te r s ” , 

(C h o u  a n d  C h o u , 1 9 8 7 ) .  T h e  p ro g ra m  p ro v id e s  co m b in a tio n  in d e x  ( C l)  v a lu e s  

w h ic h  a re  a  q u a n tita t iv e  s ta t is t ic a l m e a su re  o f  d ru g  in te ra c tio n  in  te rm s o f  an  

a d d it iv e  ( C l  = 1 ) ,  s y n e rg is t ic  ( C l  <  1 )  o r  a n ta g o n is tic  ( C l  > 1 )  e f fe c t  fo r  a  

g iv e n  e n d p o in t o f  th e  a s s a y  u se d , a d a p te d  fro m  C h o u  et ah, ( 1 9 8 3 ) .
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S e v e r a l  n o n s te ro id a l a n t i- in fla m m a to ry  d ru g s , N S A I D s ,  h a v e  b e e n  re p o rte d  b y  

a  n u m b e r  o f  a u th o rs , in c lu d in g  D u f f y  e t al., ( 19 9 8 ) ,  D ra p e r  e t ah, ( 1 9 9 7 )  an d  

K o b a y a s h i  e t ah, ( 1 9 9 7 ) ,  to  h a v e  th e  a b il ity  to  e n h a n c e  th e  c y to to x ic ity  o f  a n ti

c a n c e r  d r u g s  in vitro  w h e n  c o -a d m in is te re d  to  a  m u lt i-d ru g  re s is ta n t  c e l l  lin e  

w h ic h  o v e r e x p r e s s e s  M R P  ( S e e  se c t io n  1 .9 ) .

A n  in s p e c t io n  o f  th e  s c ie n t if ic  lite ra tu re  in d ic a te d  th at m o re  re se a r c h  h a d  b e e n  

c a r r ie d  o u t o n  in d o m e th a c in  th an  o n  a n y  o f  th e  o th e r N S A I D s ,  th u s it  w a s  

c h o s e n  a s  th e  le a d  ca n d id a te  fo r  fu rth e r  in v e s t ig a t io n  (se e  stru ctu re  p a g e  2 7 9 ) . 

T o  d e te rm in e  th e  S A R  (S tru c tu re  A c t iv i t y  R e la t io n s h ip )  o f  in d o m e th a c in , th e 

stru ctu re  o f  in d o m e th a c in  w a s  v a r ie d  to  g e n e ra te  a  n u m b e r o f  a n a lo g u e s  o f  th is  

N S A I D .  T h e s e  a n a lo g u e s  w e r e  su b se q u e n tly  a n a ly s e d  in  a  n u m b er o f  

e x p e r im e n ts  a n d  th e ir  a c t iv it ie s  w e r e  c o m p a re d  to  th a t o f  in d o m e th a c in  so  th at 

th e im p o rta n c e  o f  th e  v a r io u s  in d o m e th a c in  su b stitu e n ts  c o u ld  b e  d e term in ed . 

Note: T h e  c h e m ic a l  p ro p e rtie s  o f  th e  in d o m e th a c in  a n a lo g u e s  w e r e  th o ro u g h ly  

e x a m in e d  in  th e  a n a ly t ic a l  la b o ra to ry  in  U C C , a s  d e sc r ib e d  in  A p p e n d ix  D , 

p r io r  to  a n y  b io lo g ic a l  te s t in g  in  o u r  la b o ra to r ie s .

In vitro  te s t in g  w a s  c a rr ie d  ou t, in  th e  N C T C C ,  o n  2 3  in d o m e th a c in  a n a lo g u e s  

s y n th e s ise d  b y  D r . A n ita  M c G u ir e  a n d  D r . S te p h e n  P lu n k e tt  in  th e  C h e m istry  

d e p a rtm en t, U n iv e r s ity  C o lle g e  C o rk . 1 9  o f  th e se  c o m p o u n d s  w e r e  stru ctu ra l 

v a r ia t io n s  o f  in d o m e th a c in  an d  th e  re m a in in g  fo u r  c o m p o u n d s  w e r e  k n o w n  

P L A 2 in h ib ito rs  w ith  stru ctu res s im ila r  to  th at o f  in d o m e th a c in .

A  n u m b e r  o f  a s s a y s  w e r e  c a rr ie d  o u t o n  e a c h  o f  th e  in d o m e th a c in  a n a lo g u e s  to 

t ry  to  d e te rm in e  th e ir  S A R .  In d o m e th a c in  w a s  fo u n d  to  h a v e  th e  a b ility  to  

p o te n tia te  th e  t o x ic it y  o f  a d r ia m y c in , s p e c i f ic a l ly  in  c e l l  l in e s  e x p re s s in g  th e 

M u lt id ru g  R e s is ta n c e  P ro te in  ( M R P )  ( D u f fy  et al., 19 9 8 ) . C o m b in a tio n  

t o x ic it y  a s s a y s  w e r e  f ir s t ly  u t il is e d  to  g iv e  an  in d ic a t io n  a s  to  th e a b il ity  o f  a n y  

o f  th e  in d o m e th a c in  a n a lo g u e s  to  p o te n tia te  th e  to x ic it y  o f  a d r ia m y c in  in  o u r 

m in ia tu r ise d  in vitro  to x ic ity  a s s a y  a s  d e sc r ib e d  in  se c t io n  ( 2 .7 ) .  T o  fu rth e r 

in v e s t ig a te  th e  S A R  o f  in d o m e th a c in  an d  in d o m e th a c in  a n a lo g u e s  G S T  

(G lu ta th io n e  S -tra n s fe r a s e )  a s s a y s  w e r e  c a rr ie d  ou t, a c c o rd in g  to  s e c t io n  2 . 1 2 .  

1 0 V  ( In s id e  O u t V e s ic le )  a s s a y s  w e r e  su b se q u e n tly  c a rr ie d  o u t to  d e te rm in e  i f  

th e in d o m e th a c in  a n a lo g u e s  w e r e  c a p a b le  o f  in h ib it in g  th e  tra n sp o rt o f  th e 

M R P  su b stra te , L T C 4 . A s  D u f f y  et ah, ( 19 9 8 ) ,  h a v e  sh o w n  th at in d o m e th a c in
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in h ib its  th e  tra n sp o rt  o f  th is  M R P  su b stra te  in  1 0 V s ,  th is  e x p e r im e n t w a s  

c a rr ie d  o u t to  a s s e s s  i f  s tru ctu ra l c h a n g e s  to  in d o m e th a c in  re d u c e d  th e a b il it y  

o f  th is  N S A I D  to in h ib it  L T C 4 tran sp o rt. C O X - 1  an d  C O X - 2  a s s a y s  w e re  

p e r fo rm e d  to a s s e s s  i f  th e  stru ctu ra l c h a n g e s  a lso  m o d ifie d  th e  a b il ity  o f  

in d o m e th a c in  to  in h ib it  th e  a c t iv ity  o f  th e se  c y c lo o x y g e n a s e  e n z y m e s.

3.1 Combination in vitro toxicity assays with adriamycin and 

indomethacin analogues.

In  th e se  p re lim in a ry  a s s a y s  th e  D L K P  c e l l  l in e  w a s  u se d . D L K P  is  a  h u m a n  

lu n g  c a rc in o m a  c e l l  lin e  w h ic h  e x p r e s s e s  M R P 1  an d  w a s  e s ta b lish e d  in  the 

N C T C C  ( L a w  e t al., 19 9 2 ) .  T h e  a n ti-c a n c e r  d ru g  u se d  in  th e se  a s s a y s  w a s  

a d r ia m y c in  (d o x o ru b ic in ) , a  w id e ly  u se d  c h e m o th e ra p e u tic  a g e n t, an d  

in d o m e th a c in  w a s  u s e d  a s  a  p o s it iv e  s y n e r g y  c o n tro l. T h e  a s s a y s  w e r e  c a rr ie d  

o u t in  tr ip lic a te . P r io r  to  c a r ry in g  o u t th e  c o m b in a tio n  to x ic ity  a s s a y s , e a c h  o f  

th e  in d o m e th a c in  a n a lo g u e s  w e r e  a n a ly s e d  in  t o x ic it y  a s s a y s , a c c o r d in g  to  the 

p ro c e d u re  d e s c r ib e d  in  se c tio n  2 . 7 . 1 a ,  to  a s s e s s  th e  h ig h e s t  n o n -to x ic  

co n c e n tra tio n s  o f  e a c h  o f  th e se  c o m p o u n d s . T h e  h ig h e st  n o n -to x ic  

c o n c e n tra tio n  fo r  in d o m e th a c in  a n d  th e  in d o m e th a c in  a n a lo g u e s  a re  l is te d  in  

ta b le  3 . 1 . 1 .

S in c e  th e  s c re e n in g  re su lts  are  d a ta - in te n s iv e  an d  re p e tit iv e , I w i l l  start w ith  a 

s u m m a ry  o f  th e  re su lts . T h e  d a ta  su p p o rtin g  th e  su m m a ry  fo llo w s .

D a ta  o b ta in e d  fr o m  th is  te stin g  in d ic a te d  th at n in e  o f  th e  in d o m e th a c in  

a n a lo g u e s , B R I  6 0 / 1 ,  8 8 / 1 ,  9 2 / 1 ,  10 4 / 2 , 1 1 4 / 2 ,  1 1 5 / 2 ,  1 5 3 / 1 ,  1 3 8 / 1  an d  2 0 3 / 1 ,  

w e r e  a ls o  c a p a b le  o f  in c re a s in g  th e  t o x ic i t y  o f  a d r ia m y c in . It  w a s  p o stu la te d  

th at in d o m e th a c in  an d  th e p o s it iv e  a n a lo g u e s  p o ten tia te d  th e to x ic it y  o f  

a d r ia m y c in  in  th e  c a n c e r  c e l l  b y  in h ib it in g  th e  a c t io n  o f  th e M R P  p u m p  in  the 

c e l l  a n d , in  so  d o in g , d e c re a s in g  th e  le v e l  o f  ch e m o th e ra p e u tic  d ru g  b e in g  

p u m p e d  ou t o f  th e  c e ll. A n  e n h a n c e m e n t o f  ch e m o th e ra p e u tic  d ru g  to x ic ity , 

c a u se d  a s  a  d ire c t  re su lt  o f  th e p re s e n c e  o f  an  N S A I D , w a s  re g a rd e d  as 

s ig n if ic a n t  i f  th e  le v e l  o f  c e l l  k i l l  a c h ie v e d  b y  th e c o m b in a tio n  w a s  

s ig n if ic a n t ly  g re a te r  th an  th e  p ro d u c t o f  th e  in d iv id u a l to x ic ity  o f  the d ru g  an d  

N S A I D  a s  a s s e s s e d  b y  C h o u  an d  T a la la y  a n a ly s is  (C h o u  et al., 19 8 3 ) .
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•  T h e  f ir s t  se t  o f  in d o m e th a c in  a n a lo g u e s  a n a ly s e d  w e r e  B R I  1 3 / 1 ,  B R I  

1 5 / 1 ,  B R I  1 7 / 1  a n d  B R I  1 8 / 1  (F ig u re s  3 . 1 . 1 - 3 . 1 . 4 ) .  T h e s e  w e r e  a n a lo g u e s  

o f  in d o m e th a c in  re ta in in g  th e  in d o le a c e t ic  a c id  stru ctu re  b u t w ith  

su b stitu e n t v a r ia t io n  to  e s ta b lis h  S A R .  T h e  m e th o x y  a n d  th e m e th y l 

g ro u p s , p re se n t  in  in d o m e th a c in , w e re  re m o v e d  fro m  a ll  fo u r  c o m p o u n d s  

a n d  th e  p a r a - s u b s t itu e n t  w a s  v a r ie d  in  B R I  1 5 / 1 ,  1 7 / 1  an d  1 8 / 1 .  T h e s e  

w e r e  s u b s e q u e n t ly  te s te d  in  th e  c o m b in a tio n  to x ic ity  a s s a y , a s  d e sc r ib e d  

p r e v io u s ly ,  a n d  w e r e  n o t fo u n d  to  p o ten tia te  th e  t o x ic it y  o f  a d r ia m y c in .

Figure 3.1.1: BR113/1

l-B en zy lin d o le -3 -a c e tic  a c id

Figure 3.1.2: BRI 15/1

1 -(4 -B rom oben zyl) indole—3 -a ce tic  ac id
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l-(4 -C h loroben zy l)in do le-3 --ace tic  ac id

Figure 3.1.3:BRI 17/1

Figure 3.1.4: B R I18/1

l-(4~M ethoxybenzyl) in d o le -3 -a ce tic  ac id

•  T h e  se c o n d  se t  o f  in d o m e th a c in  a n a lo g u e s , B R I  6 0 / 1 ,  B R I  5 9 / 1  an d  B R I  

6 9 /2  w e r e  a n a lo g u e s  o f  in d o m e th ac in  w ith  v a r ie d  su b stitu e n ts . T h e  re su lts  

fo r  th e se  c o m p o u n d s  a re  p re se n te d  in  T a b le  3 . 1 . 2 .  T h e  re su lts  sh o w e d  th at 

o n ly  B R I  6 0 / 1 ,  a  N -b e n z y l  a n a lo g u e  ( f ig u re  3 . 1 . 5 ) ,  w a s  p o s it iv e  in  the 

c o m b in a tio n  a s s a y . T h is  w a s  an  in te re stin g  re su lt  a s  it  sh o w e d  that th e 

c a rb o n y l g ro u p  w a s  n o t n e e d e d  fo r  th e  s y n e r g is t ic  e f fe c t  o f  th e  c o m p o u n d  

to  b e  m a n ife s te d . In d o m e th a c in  w a s  tre ate d  w ith  d ic y c lo h e x lc a r b o d iim id e  

( D C C ) ,  a  w e l l  k n o w n  c o u p lin g  re a g e n t w id e ly  u s e d  fo r  th e  p re p a ra tio n  o f  

e s te rs  an d  a m id e s  f ro m  c a r b o x y l ic  a c id s  to  g e n e ra te  tw o  in d o m e th a c in
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a n a lo g u e s , B R I  5 9 / 1  ( 3 . 1 .6 )  a n d  B R I  6 9 /2  ( 3 . 1 . 7 ) .  T h e s e  a n a lo g u e s  (N - 

b e n z o y l  a n a lo g u e s  w ith  a lte re d  a c e t ic  a c id  s id e  c h a in s)  w e r e  le s s  so lu b le  

th a n  B R I  6 0 / 1  a n d  w e r e  n e g a t iv e  in  th e  c o m b in a tio n  t o x ic it y  a s s a y . B R I  

6 9 /2  w a s  m o re  t o x ic  to  th e  D L K P  c e l ls  th an  B R I  5 9 / 1  a n d  B R I  6 0 / 1  at 

s im ila r  co n c e n tra tio n s .

Figure 3.1.5: BRI 60/1

l —(4-C hlorobenzyl)—5—m ethoxy—2-m ethylindole—3 -a ce tic  acid

Figure 3.1.6: BRI 59/1

M ethyl l-(4 -ch lo ro b en zo y l)—5—methoxy—2—m ethylindole—3-aceta te
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Figure 3.1.7: BRI 69/2

M ethyl l —(4 -chlorobenzoyl) - 5 -  m ethoxy-2 -  m ethylindole—3- acetate

•  T h e  th ird  se t o f  a n a lo g u e s  a n a ly s e d  w e r e  N -b e n z o y l in d o m eth ac in  

a n a lo g u e s , B R I  8 8 / 1 ,  B R I  9 2 / 1  an d  B R I  10 4 / 2 . T h e s e  a n a lo g u e s  o f  

in d o m e th a c in  w e r e  g e n e ra te d  to  in v e s t ig a te  th e  e f fe c t  o f  th e  a ry l 

su b stitu tio n  in  th e  a c t iv ity  o f  th e  b e n z o y l d e r iv a t iv e s  o f  in d o m e th ac in . T h e  

h ig h e s t  n o n -to x ic  c o n c e n tra tio n  o f  e a c h  co m p o u n d  u se d  w a s  5(j,g/m l. 

C h lo r in e  w a s  re m o v e d  fr o m  th e in d o m e th a c in  stru ctu re  to  fo rm  B R I  8 8 /1 

( F ig u r e  3 . 1 .8 ) .  T h e  c h lo r in e  su b stitu e n t o n  th e in d o m e th a c in  m o le c u le  w a s  

re p la c e d  w ith  a n o th er h a lo g e n , b ro m in e , to  fo r m  B R I  9 2 / 1  ( F ig u r e  3 . 1 .9 ) ,  

a n d  th e m e th o x y  g ro u p  w a s  re m o v e d  fro m  th e in d o m e th a c in  stru ctu re  to 

g e n e ra te  B R I  10 4 / 2  ( F ig u r e  3 . 1 . 1 0 ) .  In  th e c o m b in a tio n  to x ic ity  a s s a y  

(T a b le  3 . 1 . 3 )  a ll  th ree  w e r e  p o s it iv e , su g g e s t in g  th at th e su b stitu tio n  o f  th e  

c h lo r in e  w ith  b ro m in e , r e m o v a l  o f  th e  c h lo r in e  o r  re m o v a l o f  th e  m e th o x y  

g ro u p  d id  n o t a d v e r s e ly  e f fe c t  th e  e f f ic a c y  o f  th e  co m p o u n d s . (N o te : it 

a p p e a rs  th at c o m p o u n d s  w ith  th e h a lo g e n  o r m e th o x y  g ro u p  re m o v e d  are  

p o s it iv e  in  th e  c o m b in a tio n  a s s a y  o n ly  w h e n  c a rb o n y l g ro u p  is  p resen t).
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Figure 3.1.8: BRI 88/1

1 -Benzoyl-5-m ethoxy-2-m ethylindole-3-acetic ac id

Figure 3.1.9: BRI 92/1

l-(4-B rom obenzoyl)-5-m ethoxy-2-m ethylindole-3-acetic ac id
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Figure 3.1.10: B R I104/2
l —(4 -Chlorobenzoyl)—2—m ethylindole-3  -acetic ac id

•  T h e  fo u rth  se t o f  in d o m e th a c in  a n a lo g u e s  a n a ly s e d  w e r e  B R I  1 0 6 / 1 ,  B R I  

1 0 7 / 1 ,  B R I  1 1 3 / 1 ,  B R I  1 1 4 / 2 ,  B R I  1 1 5 / 2  an d  1 2 4 / 1 ,  N -b e n z y l  a n a lo g u e s  

o f  in d o m e th a c in . T h e s e  in d o m e th a c in  a n a lo g u e s  w e r e  d e v e lo p e d  to 

in v e s t ig a te  th e  sy s te m a t ic  v a r ia t io n  o f  th e p o s it io n  a n d  th e  n atu re  o f  th e 

b e n z e n e  r in g  su b stitu e n t in  b e n z y l d e r iv a t iv e s  o f  in d o m e th a c in . C h lo r in e  is  

in  th e  / ;a r a -p o s it io n  o n  th e b e n z en e  r in g  o f  th e  in d o m e th a c in  stru ctu re . 

T h is  c h lo r in e  w a s  m o v e d  to  e ith e r th e  m eta- o r  th e  o ri/zo -p o sitio n  ( B R I  

1 0 6 / 1  (F ig u r e  3 . 1 . 1 1 )  a n d  B R I  1 0 7 / 1  (F ig u re  3 . 1 . 1 2 )  r e sp e c t iv e ly ) . T h e  

n a tu re  o f  th e  su b stitu e n t a t th e / ? a ra -p o s it io n  w a s  a lso  v a r ie d  in  th e N -  

b e n z y l- in d o m e th a c in  a n a lo g u e s . In  B R I  1 1 3 / 1  ( F ig u r e  3 . 1 . 1 5 )  the 

su b stitu e n t in  th e  /> a ra -p o s it io n  w a s  re m o v e d  c o m p le te ly . A n a lo g u e s  o f  

in d o m e th a c in  w e r e  d e v e lo p e d  so  th at th e  c h lo r in e  w a s  re p la c e d  w ith  

b ro m in e  ( B R I  1 1 4 / 2 ,  F ig u r e  3 . 1 . 1 3 ) ,  w ith  f lu o r in e  ( B R I  1 1 5 / 2 ,  F ig u re  

3 . 1 . 1 4 )  a n d  w ith  a  m e th y lth io  su b stitu en t ( B R I  1 2 4 / 1 ,  F ig u r e  3 . 1 . 1 6 ) .  T w o  

o f  th e se  c o m p o u n d s , B R I  1 1 4 / 2 ,  an d  B R I  1 1 5 / 2 ,  w e r e  p o s it iv e  in  th e 

c o m b in a tio n  a s s a y  (T a b le  3 . 1 .4 ) .  T h e  h ig h e s t  n o n -to x ic  c o n c e n tra tio n  fo r  

th e se  tw o  c o m p o u n d s  w a s  10 |x g /m l. B R I  1 1 4 / 2  w a s  le s s  so lu b le  in  D M S O  

th an  B R I  1 1 5 / 2 .  F r o m  th e se  re su lts  w e  ca n  a ssu m e  th at th e  ¿> a ra -p o s itio n



o f  th e  h a lo g e n  is  im p o rta n t, a s  c o m p o u n d s  B R I  1 0 6 / 1  a n d  B R I  1 0 7 / 1 ,  w ith  

th e  h a lo g e n  in  th e  m et a  a n d  ortho  p o s it io n s  re s p e c t iv e ly , w e re  b o th  

n e g a t iv e .

Figure 3.1.11: BRI 106/1

l-(3-C hlorobenzyl)-5-m ethoxy-2-m ethylindole-3-acetic ac id

Cl

Figure 3.1.12-.BRI 107/1

l-(2-C hlorobenzyl)-5-m ethoxy-2-m ethylindole-3-acetic ac id
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Figure 3.1.13 BRI 114/2

l-(4-B rom obenzyl)-5-m ethoxy-2-m ethylindole-3-acetic a c id

F

Figure 3.1.14 BRI 115/2

l-(4-F luorobenzyl)-5~m ethoxy-2-m ethylindole-3-acetic ac id
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Figure 3.1.15: BRI 113/1

1 -B e n z y l-5 -m e th o x y -2 -m e th y lin d o le -3 -a c e t ic  a c id

Figure 3.1.16: BRI 124/1

l- (4 -M e th y llh io b e n z y l) -5 -m e th o x y -2 -m e th y lin d o le -3 -a c e t ic  a c id

•  T h e  p o s it io n  o f  th e flu o r in e  su b stitu e n t in  th e f lu o ro b e n z y l- in d o m e th a c in , 

B R I  1 1 5 / 2 ,  w a s  th en  v a r ie d  to a s s e s s  th e e f fe c t  o f  c h a n g in g  the p o s itio n  o f  

th e  f lu o r in e  fro m  th e / ja r a -p o s it io n  o n  th e b e n z e n e  rin g . T h is  re su lte d  in 

th e d e v e lo p m e n t  o f  B R I  1 3 8 / 1  ( f ig u re  3 . 1 . 1 7 ) .  P re v io u s  re su lts  fro m
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c o m b in a tio n  t o x ic it y  a s s a y s  u s in g  me (a- a n d  ortho- fo rm s  o f  th e  

in d o m e th a c in  a n a lo g u e s  w e r e  n e g a t iv e  a n d  it s e e m e d  th at th e  p a ra -  fo rm  

o f  th e  c o m p o u n d s  w a s  re q u ire d  to  e n h a n c e  th e  t o x ic it y  o f  th e  

ch e m o th e ra p e u tic  d ru g s . H o w e v e r , 1 3 8 / 1  p r o v e d  to  h a v e  a lm o st  a s  s tro n g  

a n  a b il ity  to  p o te n tia te  th e  t o x ic it y  o f  a d r ia m y c in  a s  its  p a ra -  co u n te rp art, 

1 1 5 / 2  ( T a b le  3 . 1 . 8 ) .  1 3 8 / 1  w a s  le s s  t o x ic  in  th e  c e l ls  a s  its  h ig h e s t  n o n 

t o x ic  c o n c e n tra t io n  in  D L K P  c e l ls  w a s  1 5  jag/m l a s  o p p o se d  to  1 0  |o.g/ml 

fo r  B R I  1 1 5 / 2 .

Figure 3.1.17: BRI 138/1

l - ( 3 —F luorobenzyl)—5—methoxy—2—m ethylindole—3—acetic ac id

•  T h e  c h a ra c te r isa t io n  o f  N -b e n z y l- in d o m e th a c in  w a s  co n tin u e d  w ith  th e 

d e v e lo p m e n t o f  B R I  1 1 9 / 1  ( fig u re  3 . 1 . 1 8 )  in  w h ic h  th e  m e th o x y  

su b stitu e n t w a s  re m o v e d  to  a s s e s s  th e  e f fe c t  o f  r e m o v in g  b o th  th e  b e n z o y l 

u n it  an d  th e  m e th o x y  su b stitu e n t o n  th e a c t iv ity  o f  in d o m e th a c in . T o  a s s e ss  

th e  e f fe c t  o f  r e m o v in g  b o th  th e  b e n z o y l u n it  a n d  th e  m e th y l g ro u p  o n  

in d o m e th a c in  a c t iv ity , B R I  1 2 0 / 1  (F ig u r e  3 . 1 . 1 9 )  w a s  g e n e ra te d . T h e s e  

tw o  in d o m e th a c in  a n a lo g u e s  w e re  fo u n d  to b e  u n a b le  to  p o te n tia te  th e  

t o x ic ity  o f  a d r ia m y c in  in  th e  c o m b in a tio n  to x ic ity  a s s a y . T h e  re su lts  are  

p re se n te d  in  T a b le  3 . 1 . 5 .
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Figure 3.1.18 BRI 119/1

l - ( 4 - C h l o r o b e n z y l ) - 2 - m e t h y l ì n d o l e - 3 - a c e t i c  a c i d

Figure 3.1.18 BRI 120/1

I - ( 4 - C h l o r o b e n z y l ) - 5 - m e t h o x y i n d o l e - 3 - a c e t i c  a c i d

A s  in d o m e th a c in  is  a  w e l l  k n o w n  P L A 2 in h ib ito r  ( K a p la n  e t al., 19 7 8 ) ,  th e  

n e x t  co m p o u n d  to  b e  a n a ly se d , B R I  1 5 3 / 1 ,  (4 - [ [3 -a m id o m e th y l) -2 -e th y l- l-  

( p h e n y lm e th y l) - l- in d o l-5 -y l]o x y ]b u ta n o ic  a c id ), w a s  b a se d  o n  th e  

s tru ctu re s  o f  k n o w n  P L A 2 in h ib ito rs  d e v e lo p e d  b y  F le is c h  e t al., ( 19 9 6 ) ,  

an d  M ih e lic h  e t al., ( 19 9 7 ) ,  ( fig u re  3 . 1 . 2 0 ) .  T h is  co m p o u n d  w a s  

s tru c tu ra lly  s im ila r  to  in d o m eth ac in . I t  w a s  d e v e lo p e d  to  in v e s t ig a te  i f  a  

k n o w n  P L A 2 in h ib ito r  co u ld  p o ten tiate  th e to x ic ity  o f  c y to to x ic  d ru g s  in  a  

m a n n e r  s im ila r  to  in d o m e th ac in  i.e . a s w e l l  a s  h a v in g  th e  a b ility  to  in h ib it
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P L A 2 w o u ld  B R I  1 5 3 / 1  a ls o  h a v e  th e  a b il it y  to  in h ib it/in te rac t w ith  

M R P 1 ?  A t  50(j,g/m l B R I  1 5 3 / 1  d e m o n stra te d  s im ila r  p o te n tia tio n  a b ility  

to  in d o m e th a c in  a t 2.5(o,g/m l.

Figure 1.3.20 BRI 153/1

4-[[3-(am idom ethyl)-2-ethyl-l-(phenylm ethyl)-l H -indol-5-yl]  
oxyjbu ianoic acid

•  B R I  2 0 3 / 1  ( f ig u re  3 . 1 . 2 1 )  w a s  su b se q u e n tly  d e v e lo p e d , an d  w a s  s im ila r  to  

B R I  1 5 3 / 1  e x c e p t , in  B R I  2 0 3 / 1  a  m e th y l su b stitu e n t re p la c e d  th e  e th y l 

su b stitu e n t in  B R I  1 5 3 / 1  ( fig u re  3 . 1 . 2 1 ) .  T h e s e  P L A 2 in h ib ito rs  w e re  N -  

b e n z y l-2 - (m )e th y lin d o le -3 -a c e ta m id e s  fu n c t io n a lis e d  a t th e  5 -p o s it io n  w ith  

a  sh o rt-c h a in  a lk o x y  u n it  te rm in a ted  b y  a  c a r b o x y l ic  a c id . B R I  2 0 3 / 1  w a s  

p o s it iv e  in  th e  c o m b in a tio n  to x ic ity  a s s a y  a n d  its  h ig h e s t  n o n -to x ic  

c o n c e n tra tio n  in  D L K P  c e l ls  w a s  20(j.g/m l.
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conh2
C 0 2!

c h 3

Figure 3.1.21 BR I203/1

4-[[3-(am idom ethyl)-2-m ethyl-l-(phenylm ethyl)-l H -indol-5-yl]  
oxyjbu tanoic acid

•  B R I  2 0 5 / 4  ( F ig u r e  3 . 1 . 2 2 )  an d  B R I  2 1 5 / 1  (F ig u re  3 . 1 . 2 3 )  w e r e  th en  

d e v e lo p e d , th e  s tru ctu re s  o f  w h ic h  a re  a lso  b a se d  o n  th e  stru ctu re  o f  B R I  

1 5 3 / 1 .  T h e s e  c o m p o u n d s  w e r e  a lso  N -b e n z y l-2 - (m )e th y lin d o le -3 -  

a c e ta m id e s  fu n c t io n a lise d  a t th e  5 -p o s it io n  b u t th e  sh o rt-c h a in  a lk o x y  u n it 

w a s  te rm in a te d  b y  a  p h o sp h o n ic  a c id  re s id u e  in ste a d  o f  a  c a r b o x y l ic  a c id  

re s id u e . B R I  2 0 5 / 4  an d  B R I  2 1 5 / 1  a re  s tru c tu ra lly  id e n tic a l e x c e p t  th e 

m e th y l su b stitu e n t in  2 0 5 / 4  is  re p la c e d  w ith  a n  e th y l su b stitu e n t in  2 1 5 / 1  

a n d  th e  s tru ctu re s  o f  w h ic h  a re  s im ila r  to th e  b a c k b o n e  stru ctu re  o f  

in d o m e th a c in . H o w e v e r , B R I  2 0 5 / 4 , at its h ig h e s t  n o n -to x ic  co n c e n tra tio n  

o f  2 5 jo g /m l, an d  B R I  2 1 5 / 1 ,  at its  h ig h e s t  n o n -to x ic  c o n c e n tra tio n  o f  

50|i.g/m l, d id  n o t p o ten tia te  th e  t o x ic it y  o f  a d r ia m y c in  in  th e  co m b in a tio n  

to x ic it y  a s s a y s  (T a b le  3 . 1 . 7 ) .
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Figure 3.1.22: BRI 205/4

[3-[[3-(am idom ethyl)-2-m ethyl-l-(phenylm ethyl)-indol-5-yl]oxy]  
propylJphosphon ic a c id

c o n h 2

Figure 3.1.23: BRI 215/1

[3-[[3-(am idom ethyl)-2-ethyl-l-(phenylm ethyl)-indol-5-yl] 
oxyjphosphonic a c id
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T h e  re su lts  o f  th e  c o m b in a tio n  t o x ic it y  a s s a y s  in d ic a te  th at a lth o u g h  th ere  

a re  a  n u m b e r  o f  in d o m e th a c in  a n a lo g u e s  th at a re  c a p a b le  o f  p o te n tia tin g  

th e  t o x ic i t y  o f  a d r ia m y c in  in vitro , th e  p o ten tia tio n  a b il ity  o f  m o st  o f  th e se  

c o m p o u n d s  a re  o n ly  c o m p a ra b le  to  in d o m e th a c in  at h ig h e r  co n c e n tra tio n s  

th an  th o se  u s e d  fo r  in d o m e th a c in  (T a b le  3 . 1 .9 ) .  T h e  h ig h e s t  n o n -to x ic  

c o n c e n tra tio n  o f  in d o m e th a c in  w a s  2 .5p .g /m l. O n ly  s i x  o f  th e  p o s it iv e  

in d o m e th a c in  a n a lo g u e s  w e r e  a n a ly s e d  at th is  c o n c e n tra tio n  

(c o n c e n tra tio n s  g re a te r  th an  2 . 5 jag/m l w e r e  re q u ire d  fo r  B R I  1 3 8 / 1 ,  1 5 3 / 1  

a n d  2 0 3 / 1  fo r  a  p o te n tia tio n  e f fe c t  to  b e  e v id e n t) . C o m p a r in g  the 

c o m b in a tio n  in d e x  v a lu e s  fo r  in d o m e th a c in  an d  in d o m e ta h c in  a n a lo g u e s  at 

2 .5 [x g /m l in d ic a te d  th at o f  th e  n in e  p o s it iv e  in d o m e th a c in  a n a lo g u e s , B R I  

10 4 / 2 , 9 2 / 1  a n d  1 1 4 / 2  h a d  s im ila r  p o te n tia tio n  a b il ity  to  in d o m e th a c in  ( i.e . 

e q u iv a le n t  e f fe c t  at th e  sa m e  co n c e n tra tio n ).
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Compound ( ig/m l Molar conc. (mM)

Indomethacin 2 .5 0 .0 0 7

BRI 60/1 5 .0 0 .0 1 5

BRI 59/1 5 .0 0 .0 1 3

BRI 69/2 2 .5 0 .0 0 6

BRI 88/1 5 .0 0 .0 1 6

BRI 92/1 5 .0 0 . 0 1 2

BRI 104/2 5 .0 0 .0 1 5

BRI 106/1 10 .0 0 .0 2 9

BRI 107/1 5 .0 0 .0 1 5

BRI 114/2 10 .0 0 .0 2 6

BRI 115/2 10 .0 0 .0 3 1

BRI 113/1 10 .0 0 .0 3 2

BRI 119/1 5 .0 0 .0 1 6

BRI 120/1 5 .0 0 .0 1 5

BRI 124/1 5 .0 0 .0 1 3

BRI 153/1 5 0 .0 0 . 1 3 0

BRI 203/1 20 .0 0 .0 5 4

BRI 205/4 2 5 .0 0 .0 6 2

BRI 215/1 5 0 .0 0 . 1 1 9

BRI 138/1 1 5 .0 0 .0 4 6

Table 3.1.1: H ig h e s t n o n -to x ic  co n c en tra tio n s o f  in d o m e th a c in  a n d

in d o m e th a c in  a n a lo g u e s  u s e d  in  th e  c o m b in a tio n  t o x ic it y  a s s a y s  in  D L K P  

c e l ls .  T h e  n o n -to x ic  c o n c e n tra t io n  o f  e a c h  co m p o u n d  w a s  d e te rm in e d  u s in g  

d a ta  f r o m  th re e  se p a ra te  e x p e r im e n ts .

125



Combination toxicity assay: DLKP and Adriamycin + Indomethacin

1 0 0

Figure 3.1.24: Combination Toxicity assay: DLKP c e ll s u rv iv a l +  

a d ria m y c in  in  co m b in a tio n  w ith  n o n -to x ic  co n cen tra tio n s  o f  in d om eth ac in . 

T h e  g ra p h  d e m o n stra te s  th e ab ility  o f  in d o m eth ac in  to  p o te n tia te  th e 

to x ic ity  o f  a d ria m y c in  in  a  co n c en tra tio n  d ep en d en t m an n er in v i tr o .
T h e  re su lts  a re  th e  a v e ra g e  o f  tr ip lic a te  d eterm in ation s in  th re e  se p e ra te  

ex p e rim e n ts.
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DLK P, A driam ycin and Indom ethacin, BR I 60/1, BRI 59/1, BRI 69/2,

Test Sample % Cell Survival S.D.

Adr. 10ng/ml 58 .6 1 .7

Indo (2.5|og/ml) 9 4 .1 4.4

Indo + Adr 24.5 1.1
Indo (1.25(J.g/ml) 9 7 .7 7.4

Indo + Adr 30.7 1.7
Indo (0.625jxg/ml) 9 5 .1 2 . 1
Indo + Adr 36.3 1.0

60/1 (5p,g/ml) 93.8 0.9

60/1 + Adr 20.3 1.8
60/1 (2.5|ig/ml) 98.6 0.8
60/1 + Adr 31.5 2.8
60/1 (1.25ng/ml) 10 1 .0 2 .3
60/1 + Adr 40.3 13.5

59/1 (5|J.g/ml) 1 0 1 . 1 5.6
59/1 + Adr 54.1 3.1
59/1 (2.5fj.g/ml) 1 0 1 .3  . 0.6
59/1 + Adr 57.5 4.4
59/1 (1.25|J,g/mI) 9 7 .3 5.4

59/1 + Adr 59.0 5.5

69/2 (5|j.g/ml) 6 1 .8 2 .5

69/2 + Adr 24.7 2.7
69/2 (2.5jxg/ml) 97.9 0.9
69/2 + Adr 59.4 1.6
69/2 (1.25jxg/ml) 10 7 .7 1 .2
69/2 + Adr 63.5 2.6

Table 3.1.2: %  S u r v iv a l  o f  D L K P  c e lls  in  th e  p re s e n c e  o f  v a r io u s  

c o n c e n tra t io n s  o f  a d r ia m y c in  an d  in d o m e th a c in  (P o s . co n tro l) , B R I  6 0 / 1 ,  5 9 / 1  

an d  6 9 /2  a s  fo u n d  u s in g  th e  p ro to c o l d e ta ile d  in  se c t io n  2 .7 .3 .  S u r v iv a l  is  

re p re se n te d  a s  a  %  o f  th e  g ro w th  o f  u n tre a te d  c e l ls  in  th e  sa m e  p la te  +  S .D . 

R e s u lt s  a re  th e  a v e r a g e  o f  t r ip lic a te  d e te rm in a tio n s  in  th re e  se p a ra te  

e x p e r im e n ts .
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DLKP, Adriamycin and Indom ethacin, 88/1, 92/1 and 104/2

Test Sample % Cell Survival S.D.

Adr. lOng/ml 42 .9 6.8

Indo (2.5(Ag/ml) 98.6 4.5
Indo + Adr 21.8 2.5
Indo (1.25(J,g/ml) 98.4 1 .7
Indo + Adr 24.8 2.5
Indo (0.625p.g/ml) 9 7 .7 6.0
Indo + Adr 28.1 2.9

88/1 (5|j.g/ml) 94.7 2.0
88/1 + Adr 25.9 1.9
88/1 (2.5|og/ml) 99.3 4 .2
88/1 + Adr 23.7 0.4
88/1 (1.25ng/ml) 99.2 1 .4
88/1 + Adr 32.2 4.4

92/1 (5|xg/ml) 9 3 .7 4 .7
92/1 + Adr 20.1 1.6
92/1 (2.5|ig/ml) 96.8 0.9
92/1 + Adr 21.4 0.3
92/1 (1.25ng/ml) 98.7 2 .1
92/1 + Adr 23.7 0.4

104/2 (5(j,g/ml) 9 6 .1 0 .7
104/2 + Adr 18.5 2.5
104/2 (2.5fig/ml) 99.7 2 .4

1 104/2 + Adr 18.3 2.7
104/2 (1.25jig/ml) 99.5 2.6
104/2 + Adr 22.4 3.3

Table 3.1.3: %  S u r v iv a l  o f  D L K P  c e lls  in  th e  p re s e n c e  o f  v a r io u s  

co n c e n tra tio n s  o f  a d r ia m y c in  an d  in d o m e th ac in  (P o s . c o n tro l) , B R I  8 8 / 1 , 9 2 / 1  

a n d  10 4 / 2  a s  fo u n d  u s in g  th e  p ro to c o l d e ta ile d  in  se c t io n  2 .7 . 3 .  S u r v iv a l  is  

re p re se n te d  a s  a  %  o f  th e  g ro w th  o f  u n treated  c e l ls  in  th e  sa m e  p la te  ±  S .D . 

R e s u lt s  a re  th e  a v e r a g e  o f  t r ip lic a te  d e te rm in a tio n s  in  th re e  sep a ra te  

e x p e r im e n ts .
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DLKP, Adriamycin and Indomcthacin, 106/1,107/1,114/2 and 115/2

Test Sample % Cell Survival S.D.

Adr. 10ng/ml 44.9 5.5

Indo (2.5|ag/ml) 98.6 4.5
Indo + Adr 21.7 1.1
Indo (1.25|ig/ml) 98.4 1 .7
Indo + Adr 24.8 2.5
Indo (0.625(J.g/ml) 9 7 .7 6.0
Indo + Adr 28.1 2.9

106/1 (10|ig/ml) 99 .5 0.5
106/1 + Adr 39.4 5.4
106/1 (5|ig/ml) 98.8 3 . 1
106/1 + Adr 42.7 1.1
106/1 (2.5ug/ml) 10 0 .7 3 .5
106/1 + Adr 41.8 1.3

107/1 (5fig/ml) 9 6 .7 4 .2
107/1 + Adr 34.1 2.8
107/1 (2.5jig/ml) 98.9. 4 .1
107/1 + Adr 38.0 1.5
107/1 (1.25|ig/ml) 99.0 4.5
107/1 + Adr 41.0 1.0

114/2 (10|ag/ml)) 99 .2 2 .5
114/2 + Adr 10.3 1.2
114/2 (5|ig/ml) 10 4 .2 2 .7
114/1 + Adr 12.3 1.8
114/2 (2.5fj.g/ml) 10 3 .3 3 .4
114/2 + Adr 18.4 2.7

115/2 (10ug/ml) 9 3 .1 6 .7
115/2 + Adr 18.6 0.5
115/2 (5fig/ml) 9 3.0 7 .7
115/2 + Adr 24.3 2.0
115/2 (2.5(j,g/ml) 94.5 3 .2
115/2 + Adr 30.4 3.7

Table 3.1.4: %  S u r v iv a l  o f  D L K P  c e l ls  in  th e  p re se n c e  o f  v a r io u s  

co n c e n tra tio n s  o f  a d r ia m y c in  a n d  in d o m e th a c in  (P o s . c o n tro l) , B R I  1 0 6 / 1 ,  

1 0 7 / 1 ,  1 1 4 / 2  a n d  1 1 5 / 2  a s  fo u n d  u s in g  th e p ro to c o l d e ta ile d  in  se c tio n  2 .7 .3 .  

S u r v iv a l  is  re p re se n te d  a s  a  %  o f  th e  g ro w th  o f  u n trea ted  c e lls  in  th e  sa m e  

p la te  ±  S .D . R e s u lt s  a re  th e  a v e r a g e  o f  tr ip lic a te  d e te rm in a tio n s  in  th ree  

se p a ra te  e x p e r im e n ts .

129



DLKP, Adriaraycin and Indomethacin, BRI 113/1,119/1,120/1 and 124/1.

Test Sample % Cell Survival S.D.

Adr. 10ng/ml 5 2 .5 4.0

Indo (2.5|ug/ml) 98.6 4.5
Indo + Adr 21.8 1.1
Indo (1.25p.g/ml) 98.5 1 .7
Indo + Adr 24.8 2.5
Indo (0.625|Og/mI) 9 7 .7 6.0
Indo + Adr 28.2 3.0

113/1 (10|ig/ml) 98.4 1 .2
113/ 1 + Adr 37.6 4.7
113/1 (5|j.g/ml) 97.6 2 .5
113/1 + Adr 45.3 0.8
113/1 (2.5^g/ml) 10 0 .1 2.8
113/1 + Adr 47.3 2.5

119/1 (5ng/ml) 97.4 0.6
119/1 + Adr 50.0 1.8
119/1 (2.5|ig/ml) 96.5 2 .1
119/1 + Adr 57.3 3.5
119/1 (1.25fig/ml) 99.0 0.5
119/1 + Adr 55.8 3.1

120/1 (5fig/ml) 98.0 5.6
120/1 + Adr 41.0 3.6
120/1 (1.25/ag/mI) 10 0 .5 4 .2
120/1 + Adr 48.1 2.6
120/1 (0.625/J.g/ml) 9 6 .1 2 .5
120/1 + Adr 51.7 3.6

124/1 (5ng/ml) 99.0 7.7
124/1 + Adr 42.2 3.3
124/1 (2.5jog/ml) 10 0 .3 0.9
124/1 + Adr 47.9 5.3
124/1 (1.25fig/ml) 99.3 3 . 1
124/1 + Adr 50.0 2.7

Table 3.1.5: %  S u r v iv a l  o f  D L K P  c e l ls  in  th e p re s e n c e  o f  v a r io u s  

c o n c e n tra t io n s  o f  a d r ia m y c in  a n d  in d o m e th ac in  (P o s . c o n tro l) , B R I  1 1 3 / 1 ,  

1 1 9 / 1 ,  1 2 0 / 1  a n d  1 2 4 / 1  a s  fo u n d  u s in g  th e p ro to c o l d e ta ile d  in  se c t io n  2 .7 .3 .  

S u r v iv a l  is  re p re se n te d  a s  a  %  o f  th e  g ro w th  o f  u n trea ted  c e l ls  in  th e  sa m e  

p la te  ±  S .D . R e s u lt s  a re  th e  a v e r a g e  o f  tr ip lic a te  d e te rm in a tio n s  in  th ree  

se p a ra te  e x p e r im e n ts .
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DLK P, A driam ycin and BR I 153/1

Test Sample % Cell Survival S.D.

Adr. 10ng/ml 4 1 .2 8 9.48

Indo (2.5(J.g/ml) 98.6 4.5
Indo + Adr 15.9 6.6
Indo (1.25|i.g/ml) 9 7.6 0.4
Indo + Adr 19.7 8.28
Indo (0.625jj.g/ml) 10 2 . 1 2 .6 2
Indo +A dr 24.5 1 1 . 0

153/1 (50jJ.g/ml) 97.8 3 . 1
153/1 + Adr 13.2 2.9
153/1 (25(J,g/ml) 9 9 .1 1 .4
153/1 +A dr 15.7 3.8
153/1 (12.5fig/ml) 99.5 2 .1
153/1 + Adr 23.2 8.5

Table 3.1.6: %  S u r v iv a l  o f  D L K P  c e l ls  in  th e p re s e n c e  o f  v a r io u s  

c o n c e n tra t io n s  o f  a d r ia m y c in  a n d  in d o m e th a c in  (P o s . c o n tro l) , a n d  B R I  1 5 3 / 1  

a s  fo u n d  u s in g  th e  p ro to c o l d e ta ile d  in  se c t io n  2 .7 .3 .  S u r v iv a l  is  re p re se n te d  a s  

a  %  o f  th e  g ro w th  o f  u n trea ted  c e l ls  in  th e  sa m e  p la te  ±  S .D . R e s u lt s  a re  th e 

a v e r a g e  o f  t r ip lic a te  d e te rm in a tio n s  in  th re e  sep a ra te  e x p e r im e n ts .
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DLKP, Adriamycin and Indomethacin, BRI 203/1,205/4 and 215/4

Test Sample % Cell Survival S.D.

Adr. lOng/ml 5 7 .6 1 . 1

Indo (5jig/ml) 91.2 0.3
Indo + Adr 14.8 0.5
Indo (2.5fj.g/ml) 95.4 0.5
Indo + Adr 23.2 1.4
Indo (1.25fxg/ml) 94.7 0.8
Indo + Adr 37.0 0.3

203/1 (20jig/ml) 99.9 0.5
203/1 + Adr 26.9 0.1
203/1 (10fAg/ml) 10 0 .3 0.0
203/1 + Adr 38.9 1.3
203/1 (5|ig/ml) 100.6 0.3
203/1 + Adr 49.0 3.0

205/4 (25|xg/ml) 86.8 10 .4
205/4 + Adr 52.1 1 1 . 0
205/4 (12.5ng/ml) 9 5.5 5.4
205/4 + Adr 52.4 12.4
205/4 (6.25fjg/ml) 97.9 4.5
205/4 + Adr 51.5 13.6

215/1 (50jJ,g/mI) 10 0 .4 0.1
215/1 + Adr 49.3 3.5
215/1 (25^g/ml) 9 2.0 3 .1
215/1 + Adr 60.6 3.5
215/1 (12.5jjg/ml) 10 0 .9 0.1
215/1 + Adr 63.3 5.1

Table 3.1.7: %  S u r v iv a l  o f  D L K P  c e l ls  in  th e p re se n c e  o f  v a r io u s  

c o n c e n tra t io n s  o f  a d r ia m y c in  a n d  in d o m e th a c in  (P o s . c o n tro l) , B R I  2 0 3 / 1 ,  

2 0 5 / 4  an d  2 1 5 / 4  a s  fo u n d  u s in g  th e  p ro to c o l d e ta ile d  in  se c t io n  2 .7 .3 .  S u r v iv a l  

i s  re p re se n te d  a s  a  %  o f  th e g ro w th  o f  u n tre a te d  c e l ls  in  th e  sa m e  p la te  ±  S .D . 

R e s u lt s  a re  th e  a v e r a g e  o f  t r ip lic a te  d e te rm in atio n s  in  th ree  se p a ra te  

e x p e r im e n ts .
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DLKP, Adriamycin and Indomethacin and BRI 138/1

Test Sample % Cell Survival S.D.

Adr. 10ng/ml 5 7 .6 1 . 1

Indo (2.5^g/ml) 9 1 .2 0.3
Indo + Adr 10.8 0.5
Indo (1.25|ug/ml) 9 5 .4 0.5
Indo +A dr 23.2 1.4
Indo (0.625fxg/ml) 9 4 .7 0.8
Indo +A dr 37.0 0.3

138/1 (15jo.g/mI) 9 3 .6 1.8
138/1 + Adr 13.4 2.0
138/1 (7.5ug/ml) 98.0 1.9
138/1 + Adr 24.0 0.8
138/1 (3.75ng/ml) 9 8 .1 1.8
138/1 + Adr 55.7 0.7

Table 3.1.8: %  S u r v iv a l  o f  D L K P  c e l ls  in  th e  p re s e n c e  o f  v a r io u s  

c o n c e n tra t io n s  o f  a d r ia m y c in  a n d  in d o m e th a c in  (P o s . co n tro l)  an d  B R I  1 3 8 / 1  

a s  fo u n d  u s in g  th e  p ro to c o l d e ta ile d  in  se c t io n  2 .7 .3 .  S u r v iv a l  is  re p re se n te d  as  

a  %  o f  th e  g ro w th  o f  u n treated  c e l ls  in  th e  sa m e  p la te . R e s u lt s  a re  th e  a v e ra g e  

o f  t r ip lic a te  d e te rm in a tio n s  in  th re e  se p a ra te  ex p e rim e n ts .
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No Anticancer 
agent

+ Adriamycin  
(lOng/ml)

Cl value*

No NSAID 1 0 0  +  0.0 5 2 .5  ±  4 .0 0.000

Indo.(2.S(ag/inl) 9 8 .6  +  4 .5 2 1 . 8  ±  1 . 1 0 .5 5 7

60/1 (5|.ig/ml) 9 3 .8  +  0 .9 2 0 .3  ±  1 .8 0 .4 8 3

59/1 (5[.ig/nil) 1 0 1 . 1  +  0.6 5 4 . 1  ±  3 . 1 1 .0 2 4

69/2 (2.5jag/ml) 9 7 .9  ± 0 . 9 5 9 .4  ±  1 .6 1 .2 8 6

88/1 (5[.ig/ml) 9 4 .7  ±  2 .0 2 5 .9  ±  1 .9 0 .6 0 9

92/1 (5|o.g/ml) 9 3 .7  ± 4 . 7 2 0 . 1  ±  1 .6 0 .5 6 6

104/2 (5|ag/ml) 9 6 .1  ± 0 . 7 1 8 .5  ±  2 .5 0 .5 5 0

106/1 (10(.ig/ml) 9 9 .5  ±  0 .5 3 9 .4  ±  5 .4 1 . 0 3 5

107/1 (5(.ig/ml) 9 6 .7  ± 4 . 2 3 4 . 1  ±  2 .8 1 .0 0 0

113/1 (lO^ig/nd) 9 8 .4  ±  1 . 2 3 7 .6  ±  4 .7 1 .0 2 0

114/2 (10|.ig/ml) 9 9 .2  ±  2 .2 1 0 .3  ±  1 . 2 0 .4 3 7

115/2 (10 jig/ml) 9 3 . 1  ±  6 .7 1 8 .6  ±  0 .5 0 .5 6 3

119/1 (5|ug/ml) 9 7 .4  ±  0 .6 5 0 .0  ±  1 .8 1 .0 4 4

120/1 (5(ig/ml) 9 8 .0  ±  5 .6 4 1 . 0  ±  3 .6 1 .0 7 4

124/1 (10|ig/m l) 9 9 .0  ±  7 .7 4 2 .3  ±  3 .3 1 .0 0 0

153/1 (50|.ig/ml) 9 7 .8  ±  3 . 1 1 3 . 2  ±  2 .9 0 .3 9 7

203/1 (20|.ig/ml) 9 9 .9  ±  0 .5 2 6 .9  ±  0 . 1 0 .5 5 1

205/4 (25|ig/m l) 86.8  ±  10 .4 5 2 . 1  ±  1 1 . 0 1 . 3 8 5

215/1 (50|j.g/ml) 10 0 .4  ±  0 .1 4 9 .3  ±  3 .5 1 .0 5 0

138/1 (15|ag/ml) 9 3 .6  ±  1 .8 1 3 .4  ± 2 . 0 0 .3 4 0

*CI: Combination Index

Table 3.1.9: T a b le  s h o w in g  re su lts  o f  c o m b in a tio n  o f  in d o m e th a c in  an d  

in d o m e th a c in  a n a lo g u e s , a t th e ir  h ig h e s t  n o n -to x ic  co n c e n tra tio n s , w ith  

a d r ia m y c in  in  D L K P  c e l ls .  D a ta  a re  e x p re s se d  a s  %  c e ll  su rv iv a l  ±  stan d ard  

d e v ia t io n  fo r  a  m in im u m  o f  th ree  d e te rm in a tio n s .
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Figure 3.1.25: Combination Toxicity assay: DLKP + A d ria m y c in  

in  co m b in a tio n  w ith  th e  h ig h est n o n -to x ic  co n c en tra tio n s  o f  in d om eth ac in  

and p o s it iv e  in d o m eth ac in  a n a lo g u es.

T h e  g ra p h  d e m o n stra te s  th e  ab ility  th e se  co m p o u n d s to  p o te n tia te  th e 

t o x ic ity  o f  a d ria m ycin  in  D K L P  ce lls  in vitro.
T h e  re su lts  are  th e  a v e ra g e  o f  tr ip lic a te  d eterm in ation s in  th re e  sep e ra te  

e x p e rim e n ts.
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Molar conc. 

in assay 

(mM)

No Anticaneer 

agent

+ Adriamycin 

(10ng/ml)

Cl value

No NSAID 100 ± 0 . 0 5 2 .5 4  ± 4 . 0 4 0.0

Indo.(2.5|og/ml) 0 .0 0 7 0 9 8 .6 3  ± 4 . 5 0 2 1 . 7 8  ±  1 .0 8 0 .5 5 7

60/1 (2.5|ig/ml) 0 .0 0 7 5 9 3 .7 7  ± 0 . 9 3 1 . 5  ± 2 . 8 0 .6 1 9

88/1 (2.5fog/ml) 0 .0 0 8 0 9 4 .6 7  ± 2 . 0 1 2 5 .9  ±  1 .9 0 .6 1 9

92/1 (2.5fj.g/ml) 0 .0 0 6 2 9 3 .6 8  ± 4 . 7 2 2 1 . 4  ± 0 . 3 4 0 .5 6 6

104/2

(2.5(ag/ml)

0 .0 0 7 5 9 6 .0 9  ± 0 . 7 1 8 .3  ± 2 . 7 0 .5 4 4

114/2

(2.5f.ig/ml)

0 .0 0 6 4 9 9 .1  ± 2 . 5 1 8 .4  ± 2 . 6 0 .5 7 1

115/2

(2.5jog/ml)

0 .0 0 7 6 9 4 .5  ± 3 . 2 3 0 .4 4  ±  1 . 7 0 .7 5 4

Table 3.1.10: T a b le  c o m p a r in g  sy n e rg is t ic  c o m b in a tio n  o f  in d o m e th a c in  an d  

in d o m e th a c in  a n a lo g u e s  at 2 .5 |x g /m l, w ith  a d r ia m y c in  in  D L K P  c e lls . D a ta  are  

e x p r e s s e d  a s  %  c e l l  s u r v iv a l  ±  stan d ard  d e v ia t io n  fo r  a  m in im u m  o f  th ree  

d e te rm in a tio n s .
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Combination toxicity assay: DLKP and Adriamycin + 
Indomcthacin/Indomethacin analogues

60 i------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Figure 3,1.26: Combination Toxicity assay: D L K P  +  A d ria m y c in  

in  co m b in a tio n  w ith  in d o m eth ac in  and p o s it iv e  in d o m eth ac in  a n a lo g u e s  

a t  2 .5 u g /m l.

T h e  g ra p h  c o m p a re s  th e  ab ility  o f  in d o m eth ac in  and a n a lo g u e s  to  

p o te n tia te  th e  to x ic ity  o f  a d ria m ycin  at id en tica l co n cen tra tio n s.

T h e  re su lts  a re  th e  a v e ra g e  o f  tr ip lic a te  d eterm in ation s in  th re e  sep e ra te  

ex p e rim e n ts.
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3.2 Glutathione S-transferase

T o  fu rth e r  d e te rm in e  th e  S A R  o f  th e  co m p o u n d s , G lu ta th io n e  S -tra n s fe r a s e  

( G S T )  a s s a y s  w e r e  c a rr ie d  ou t fo r  tw o  re a so n s :

•  O n e  p o s s ib le  e x p la n a t io n  fo r  th e  m e c h a n ism  b y  w h ic h  th e  in d o m e th a c in  

a n a lo g u e s  h a v e  th e ir  to x ic ity  e n h a n c in g  e f fe c t  o n  th e  ch e m o th e ra p e u tic  

d ru g  is  th ro u g h  in h ib it in g  th e  o p e ra tio n  o f  M R P .  G lu ta th io n e  c o n ju g a te s  

a re  tra n sp o rte d  v e r y  e f fe c t iv e ly  b y  M R P  a n d  th e se  g lu ta th io n e  c o n ju g a te s  

a re  fo rm e d  b y  th e  G lu ta th io n e -S -  tra n s fe ra se  e n z y m e  ( G S T ) .

•  In d o m e th a c in  i s  a ls o  a  c la s s ic  in h ib ito r  o f  G S T  so  th e  G S T  a s s a y  is  c a rr ie d  

o u t o n  th e  in d o m e th a c in  a n a lo g u e s  to  a s s e s s  i f  th e y  a ls o  h a v e  th is  G S T  

in h ib ito ry  a c t iv ity .

T h e  G S T  a s s a y  w a s  c a rr ie d  ou t a c c o rd in g  to  se c tio n  2 . 1 2  to  d e term in e  i f  G S T  

in h ib it io n  b y  th e  a n a lo g u e  w a s  re q u ire d  fo r  th e  s y n e r g is t ic  a c t iv ity  se e n  in  th e  

c o m b in a tio n  t o x ic i t y  a s s a y s  in  se c tio n  3 . 1 .  O n ly  th re e  o f  th e  in d o m e th a c in  (N -  

b e n z o y l)  a n a lo g u e s , B R I  8 8 / 1 , 9 2 / 1  a n d  10 4 / 2 , w h ic h  w e r e  p o s it iv e  in  th e  

c o m b in a tio n  t o x ic it y  a s s a y  w ith  D L K P ,  s h o w  c o m p a ra b le  G S T  in h ib ito ry  

a c t iv ity  to  in d o m e th a c in . T h e  re su lts  in d ic a te  th at B R I  9 2 / 1  is  c o m p a ra b le  to  

in d o m e th a c in  a s  a n  in h ib ito r  o f  G S T . T h e  re m a in d e r  o f  th e in d o m e th a c in  

a n a lo g u e s  th at w e r e  p o s it iv e  in  th e  c o m b in a tio n  t o x ic it y  a s s a y , 6 0 / 1 ,  1 1 4 / 2 ,  

1 1 5 / 2  an d  1 5 3 / 1 ,  2 0 3 / 1  a n d  1 3 8 / 1 ,  w e re  n o t g o o d  G S T  in h ib ito rs  (T a b le  3 . 2 . 1  

a n d  F ig u r e  3 . 2 . 1 ) .  I t  is  u n d e rsto o d  th at g lu ta th io n e  ( G S H )  is  re q u ire d  to  k e e p  

M R P  in  a  c o n fo rm a t io n a l state  th at a llo w s  th e  tra n sp o rt o f  n eu tra l o r  p o s it iv e ly  

c h a rg e d  m o le c u le s  — p e rh a p s  a s  a  te rn a ry  c o m p le x . H e n c e , it w a s  p o s tu la te d  

th a t i f  G S T  w a s  in h ib ite d , le s s  c o n ju g a te s  w o u ld  b e  fo rm e d  w ith in  th e c e ll  a n d , 

a s  a  re su lt , le s s  m o le c u le s  w o u ld  b e  p u m p e d  o u t o f  th e  c e ll . H o w e v e r , th e  

re su lts  o b ta in e d  s t r o n g ly  su g g e s t  that th e  e f fe c t  o n  th e  M R P  p u m p  is  n o t 

th ro u g h  in h ib it io n  o f  G S T .  T h e se  re su lts  s u g g e s t  that th e  a b il ity  o f  th e  

c o m p o u n d s  to  e n h a n c e  th e  to x ic ity  o f  th e c h e m o th e ra p e u tic  d ru g  in vitro  is  d u e  

to  a  d ire c t  in te ra c t io n  w ith  th e  M R P  p u m p .
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Compound Molarity of comp, in test 

solution (mM)

Average % Inhibition

Indomethacin 0.9 93.1 ± 3.5

B R I60/1 1.0 7.2 ± 1.0

B R I59/1 0.9 0.1 ± 0.1

BRI 69/2 0.8 0.1 ± 0.1

BRI 88/1 1.0 70.9 ± 4.7

BRI 92/1 0.9 94.3 ± 2.6

BRI 104/2 1.0 74.0 ± 3 . 8

BRI 106/1 1.0 2.0 ± 0.2

BRI 107/1 1.0 46.7 ± 0.7

BRI 113/1 1.1 17.6  ± 2.3

BRI 114/2 1.0 15 .1  ± 2.7

BRI 115/2 1.0 21.2 ± 2.6

BRI 119/1 1.1 4.0 ± 0.3

BRI 120/1 1.0 0.1 ± 0.1

BRI 124/1 0.9 0.0 + 0.0

BRI 203/1 0.8 12 .1  ± 0.9

BRI 153/1 0.8 13 .4  ± 1.2

BRI 205/4 0.8 9.7 ± 1.4

BRI 138/1 1.0 8.2 ± 0.8

BRI 215/1 0.8 1 1 . 7  ± 2.1

DMSO Control 0.9+ 1.3

Table 3.2.1: G S T  a s s a y  re su lts  s h o w in g  th e  %  in h ib it io n  o f  p ro d u c tio n  o f  

g lu ta th io n e  c o n ju g a te s  b y  in d o m e th a c in  a n d  in d o m e th a c in  a n a lo g u e s . R e s u lt s  

a re  th e  a v e r a g e  o f  a  m in im u m  o f  tw o  re a d in g s  fo r  e a c h  c o m p o u n d  fro m  a  

m in im u m  o f  th re e  a s s a y  re p e a ts .

D a t a  is  e x p r e s s e d  a s  %  in h ib it io n  re la t iv e  to  a n  u n trea ted  c o n tro l (N e g a t iv e  

c o n tro l) .
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Figure 3.2.1: G ST assay results showing th e  %  inhibition o f  p roduction  o f  
g lu tathione conjugates by indom ethacin and indom ethacin analogues.
The results are the  average o f  tw o readings fo r each com pound from  a m inimum 
o f  th ree  assay repeats.
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3.3 Inside Out Vesicle Assay

P ro tein  analysis studies failed  to  show  the existence o f  M R P pro tein  in  w hole 

cell extracts o f  D LK P. It had  been  dem onstrated  that all o ther cell lines in  

w hich  the tox icity  enhancem ent effect had been  found to  occur expressed M RP 

(D uffy  et al., 1998). The drug p rofile  for w hich  the N S A ID -m ediated  toxicity  

enhancem ent effect w as found to  occur w as exactly  sim ilar to the range o f  

drugs believed  to  be  transported  by  M RP. This suggested that co-treatm ent o f  

M R P-expressing  cells w ith  an  M R P-substra te  drug and an N SA ID  w ith  the 

ability  to  in terfere w ith  the drug pum ping  ab ility  o f  M RP, m ay  have resulted  in 

increased reten tion  o f  drug w ith in  the  cell. This w ould  u ltim ately  cause an 

enhancem ent o f  cytotoxic drug-induced  cell kill. A lthough the toxicity  

enhancem ent effect w as found to  occur in  D L K P, M R P expression had  not 

been  detected  in  th is cell line. It w as suggested  tha t D L K P expressed M R P at 

levels undetectab le  by W estern  b lo tting  o f  w hole cell extracts. In  order to 

iso late  the  p lasm a m em brane from  these cells and specifically  target W estern 

b lo tting  analysis to the area in  w hich  the M R P m olecule m ay have localised, 

Inside O ut V esicles w ere p repared  from  D L K P cells. It w as found that M RP 

w as detectable by W estern  b lotting , in 10V s isolated from  D LK P. The level o f  

M R P  pro tein  in D L K P w as significantly  low er than  the levels found in  IOVs 

iso lated  from  H L 60/A D R  cells bu t th is level appears to  be functionally  

effective for d rug  transport ou t o f  the cell (D uffy  et al., 1998; E llio tt, 1997).

T he glutath ione conjugate, L T C ^ w as found to  be transported  into vesicles in  

an  A T P-dependent m anner (Jed litsch ly  et al., 1994 and L eier et al., 1994). 

D uffy  et al., (1998), dem onstrated  the  influence o f  various N S A ID s on  M RP 

activ ity  in  H L 60/A D R  IO V s by m easuring the ability  o f  the com pounds to 

inh ib it the  transport o f  L T C 4. The authors reported  tha t that the positive 

N S A ID s, especially  sulindac and indom ethacin , have M R P pum p inhibitory 

activ ity , w hereas, inactive N S A ID s, naproxen  and  piroxicam , do not.

To further determ ine i f  indom ethacin  and the  indom ethacin  analogues w ere 

acting on  M R P, an  assay w as devised in  w h ich  a  pure p repara tion  o f  M R P (an 

active enzym e preparation) w as used along w ith a radiolabelled  M RP 

substrate, L T C4. T his pure p reparation  o f  M R P w as contained  w ith in  vesicles, 

p repared  from  H L 60/A D R  cells, w hich  w ere subsequently  turned inside out. 

(To a llow  m easurem ent o f  the  transport o f  L T C4 - instead o f  M R P pum ping
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the substrate  ou t o f  the  vesicle it no w  pum ped it in  to the vesicle using  A T P as 

an energy source). The ability  o f  the indom ethacin  analogues to  inh ib it M R P 

w as determ ined  by  m easuring  their ability  to  inh ib it the uptake o f  Leukotriene 

C4 into the  vesicle.

The results o f  the  Inside O ut V esicle assay show  that all bu t one o f  the 

com pounds, positive  in  the com bination  tox icity  assay, w ere effective 

inhibitors o f  M R P. F rom  the  data, the  strongest M RP inhibitors appeared  to be 

B R I 92/1 and 153/1, fo llow ed closely b y  88/1, 115/2 and 114/2. O f  the 

positive group, B R I 60/1 and 104/2 w ere the  w eakest inhibitors o f  the uptake 

o f  LTC4 in  to th e  vesicle. C om pounds, w hich  w ere negative in  the 

com bination  tox ic ity  assay, w ere used  as negative controls and the results 

(Figure 3 .4.12) ind icate  that these com pounds are no t inhibitors o f  M R P 

activity  in  the  IO V s.

Therefore, there  appears to  be a  good corre la tion  betw een the com bination  

tox icity  assay  and  the  IO V  assay in  th a t it seem s likely tha t indom ethacin  and 

its analogues po ten tia te  the  tox icity  o f  adriam ycin  on the cancer cells by 

inhibiting  the  expu lsion  o f  the  chem otherapeutic  drug  from  the cell by  M R P. 

H ow ever, th e  one exception  w as com pound B R I 138/1, the meta- fo rm  o f 

com pound 115/2. T hough th is com pound w as very  positive in  the com bination  

toxicity  assay in the  D LK P cells w ith  adriam ycin, it w as only w eakly  positive  

in  the  IO V  assay. This resu lt w ould  suggest that this com pound is n o t exerting 

its effect th rough  an  in teraction w ith  M RP1 or perhaps its m eta-structure is 

effecting the  affin ity  o f  th is com pound fo r M R P1. It m ay be possib le th a t th is 

analogue o f  indom ethacin  is potentiating the  toxicity  o f  adriam ycin  th rough  an 

in teraction w ith  another form  o f  M RP1 or possib ly  by interacting w ith  Pgp 

(M D R 1) w h ich  is also expressed  in  D L K P cells.
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Comp. Molarity of 

compound in test 

solution

Average %  

Inhibition

S.D.

Indom ethacin 46.0joM 83.1 10.4

B R I 60/1 47.6fxM 57.7 4.7

B R I 88/1 51.0fiM 64.4 7.8

B R I 92/1 41 .0pM 85.0 2.8

B R I 104/2 50.2p.M 60.4 8.0

B R I 115/2 50.1p,M 67.1 13.5

B R I 153/1 41.8jj.M 85.0 9.0

B R I 205/4 39.8|oM 0.0 0.8

B R I 114/2 47.2(iM 66.9 7.7

B R I 203/1* 13.3pM 65.1 19.5

B R I 138/1 50 .1pM 26.8 5.2

B R I 215/1 38.2|xM 22.5 5.6

T a b le  3 .3 .1 : E ffec t o f  indom ethacin  and selected analogues on transport o f  

[3H ]-L T C4 in  to  inside-out vesic les from  H L 60/A D R  cells.

T he rela tive A T P-dependen t rates are expressed as a  percen tage o f  un treated  

control, taken  as 100% , by  subtracting the  rate  in  the p resence  o f  A M P, w hich  

w as used  as the  b lank.

%  inhib ition  w as calcu lated  using the fo llow ing form ula:

£LTCi uptake @ T180 seconds (untreated) - Levels of LTCa @ T180 seconds (+ compound) )x  J0O 
LTC4 uptake @ T180 seconds (untreated)

D ata  g iven  are from  a  m in im um  o f  three assay repeats.

* Indom ethacin  analogue 203/1 proved  very d ifficult to  dissolve in  the 

reac tion  m ix ture  — results show n m ay be a  reflection  o f  so lubility  problem s 

and n o t a  true reflec tion  o f  the inhibiting ability  o f  the com pound.
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Figure 3.3.1 : Graph showing the effect o f indomethacin and indomethacin analogues 

on the transport o f [3H]-LTC4 in to inside-out vesicles from HL60/ADR cells.
Data are the average o f at least three minimum repeats.
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Figure: 3.3.2: Time course of LTC4 transport into IOVs isolated from the HL60/ADR
cell line in the presence of ATP, AMP or a combination of ATP and indomethacin 
Similar results were obtained in at least one additional experiment.

Figure: 3.3.3: Time course of LTC4 transport into IOVs isolated from the HL60/ADR 
cell line in the presence of ATP, AMP or a combination of ATP and BR1 60/1 
Similar results were obtained in at least one additional experiment.

Figure: 3.3.4: Time course of LTC4 transport into IOVs isolated from the HL60/ADR
cell line in the presence of ATP, AMP or a combination of ATP and BRI 88/1
Similar results were obtained in at least one additional experiment.

145



Figure: 3.3.5: Time course of LTC4 transport into IOVs isolated from the HL60/ADR 
cell line in the presence of ATP, AMP or a combination of ATP and BRI 92/1 
Similar results were obtained in at least one additional experiment.

Figure: 3.3.6: Time course of LTC4 transport into IOVs isolated from the HL60/ADR 
cell line in the presence of ATP, AMP or a combination of ATP and BRI 104/2 
Similar results were obtained in at least one additional experiment.

Figure: 3.3.7: Time course of LTC4 transport into IOVs isolated from the HL60/ADR
cell line in the presence of ATP, AMP or a combination of ATP and BRI114/2
Similar results were obtained in at least one additional experiment.
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Figure: 3.3.8: Time course of LTC4 transport into IOVs isolated from the HL60/ADR 
cell line in the presence of ATP, AMP or a combination of ATP and BRI 115/2 
Similar results were obtained in at least one additional experiment.

Figure: 3.3.9: Time course of LTC4 transport into IOVs isolated from the HL60/ADR 
cell line in the presence of ATP, AMP or a combination of ATP and BRI138/1 
Similar results were obtained in at least one additional experiment.

Figure: 3.3.10: Time course of LTC4 transport into IOVs isolated from the HL60/ADR
cell line in the presence of ATP, AMP or a combination of ATP and BRI 153/1
Similar results were obtained in at least one additional experiment.
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Figure: 3.3.11: Time course of LTC4 transport into lGVs isolated from the HL60/ADR 
cell line in the presence of ATP, AMP or a combination of ATP and BRI 203/1 
Similar results were obtained in at least one additional experiment.

Figure: 3.3.12: Time course of LTC4 transport into IOVs isolated from the HL60/ADR 
cell line in the presence of ATP, AMP or a combination of ATP and BRI205/4 
Similar results were obtained in at least one additional experiment.

Figure: 3.3.13: Time course of LTC4 transport into IOVs isolated from the HL60/ADR
cell line in the presence of ATP, AMP or a combination of ATP and BRI 215/1
Similar results were obtained in at least one additional experiment.
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3.4.1 Cyclooxygenase 1 assays

Further in vitro testing  w as carried  out on  the  indom ethacin  analogues, 

particu larly  on the  positive  com pounds, to  determ ine i f  they  had  any inhibitory 

activ ity  on  either C yclooxygenase 1 (C O X -1) or C yclooxygenase 2 (COX -2). 

The anti-inflam m atory  properties o f  N SA ID s are know n to  be m ediated  by 

C O X  inhib ition  and m any  have attributed their an tineoplastic  properties to  

reduction  o f  p rostag land in  levels in  the  target tissue  (V ane et al., 1991; V ainio 

eta!., 1997; Levy et al., 1997; V ane et al., 1996 and A bram son et al., 1989). It 

is possib le  that C O X  inhib ition  does not m ediate the  anti-neoplastic  properties 

o f  N SA ID s and th is is o f  considerable clin ical significance because a 

reduction  in  prostag land in  levels, th rough inhib ition  o f  CO X -1, is know n  to be 

responsib le fo r the gastro intestinal and renal tox ic ity  that accom panies chronic 

N S A ID  adm inistration. I f  C O X  inhib ition  is no t necessary  o r sufficient for the 

an ti-neoplastic  properties o f  N SA ID s it should  be  feasib le to  develop less 

tox ic  N S A ID -like drugs to  aid  in  the treatm ent o f  cancer (P iazza et al., 1997). 

COX-1 is the constitu tive form  o f  the C ox enzym es w hereas CO X -2 is the 

induced  form . Inh ib ition  o f  C ox explains bo th  the therapeutic  effects 

(inh ib ition  o f  C O X -2) and side effects (inhibition  o f  C O X -1) o f  N SA ID s. A n 

N SA ID , w h ich  selectively  inhibits CO X -2, is like ly  to  reta in  m axim al an ti

inflam m atory  efficacy com bined w ith  less toxicity.

The C yclooxygenase 1 assay is a  spectrophotom etric  assay, based on  the  assay 

used  by  B oopathy  et al., (1986) and P iazza et al., (1997), to  m easure inh ib ition  

o f  COX-1 by  various com pounds. The experim ental m ethod is as per section 

2.8. In  brief, COX-1 w as incubated w ith  1 OOjim arachidonic acid and 

cofactors (0 .5m M  glutath ione, 0 .5m M  hydroquinone, 0.625(xm haem oglobin  

and 1.25m M  C aC l2 in  lOOmM TR IS-H C L, pH  7.4-8 .0) at 37°C for 20 m in  in 

the p resence o f  various N SA ID s or their so lvent (1%  D M SO  final 

concentration). T he reaction  w as term inated by the  addition  o f  trichloroacetic  

acid. E nzym e activ ity  w as m easured by  the th iobarb ituric  acid colour reaction 

o f  m alonaldehyde form ed in the reaction  and determ ined by a  

spectrophotom eter a t 530nm .
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R esults ob tained  from  th e  COX-1 assay (T able 3.4.1.1 and  F igure 3.4.1.1) 

ind icated  that, o f  the  positive  indom ethacin  analogues, B R I 60/1, 114/2, 115/2 

153/1 and  138/1 w ere n o t good  inhib itors o f  CO X -1. A nalogues B R I 88/1 and 

B R I 104/2 com pared  favourably  w ith  the  CO X-1 inhibitory  ability  o f  

indom ethacin . The resu lts  fo r B R I 92/1 ind ica ted  th a t i t  m igh t be a  stronger 

COX-1 inh ib ito r than  indom ethacin. O verall, the  strongest COX-1 inhibitor 

appeared  to  be  B R I 92/1 and  the  w eakest inhibitors w ere B R I 153/1 and 138/1. 

The rem ainder o f  the com pounds tested  w ere poor inh ib itors o f  CO X -1. The 

com pounds can  be  listed  in  order o f  decreasing  ab ility  to  inh ib it COX-1 as 

fo llow s: B R I 92/1 >  B R I 88/1 >  indom ethacin  >  B R I 104/2 >  B R I 114/2 >  

B R I 115/2 >  B R I 60/1 >  B R I 153/1 > B R I  138/1.
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Compound

(1 2 pg/ml)

Molar conc. of 

compound in

assay (pM)

Average % 

Inhibition of 

CO X -1

%  S.D.

Indom ethacin 0.033 60.9 12.2

B R I 60/1 0.035 16.3 12.4

B R I 88/1 0.038 59.9 13.2

B R I 92/1 0.030 79.0 11.3

B R I 114/2 0.030 24.5 5.8

B R I 104/2 0.037 57.3 12.9

B R I 115/2 0.037 26.6 9.9

B R I 153/1 0.031 -0.1 7.4

B R I 138/1 0.037 0.8 3.6

BR I 203/1 0.032 22.1 8.2

B R I 215/1 0.030 1.7 8.1

B R I 205/4 0.037 -7.4 2.8

B R I 113/1 0.038 -1.0 7.4

N o  com pound (C ontrol) N /A 0.0 0.0

W ith  D M SO  (no com pound) N /A -1.3 9.0

T a b le  3 .4 .1 .1 : Cyclooxygenase-1 (C O X -1) assay resu lts show ing the %  

inhib ition  o f  CO X -1 activ ity  b y  indom ethacin  and indom ethacin  analogues.

A ll o f  the indom ethacin  analogues analysed, except B R I 215/1, 205/4 and 

113/1, w ere positive  in  the  com bination tox icity  assays.

T he results are  the  average o f  a  m inim um  o f  three assay repeats. D ata  is 

expressed as %  inhib ition  relative to  an  un treated  control.
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Cyclnoxygenase-1 assay
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Figure 3.4.1: G raph show ing the  %  inhibition o f  COX-1 activity by 
indom ethacin and indom ethacin analogues.

T he results are the average o f  a m inimum o f  three assay repeats. 
D a ta  is expressed as %  inhibition relative to  an un trea ted  control.
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3.4.2. Cyclooxygenase 2 assays

C ytokines such as IL-1 are produced  by m any cells and  appear to bring about 

the effects o f  d isease or dam age such as fever and inflam m ation. IL - ip  can act 

directly  and/or stim ulate the release o f  o ther pro-inflam m atory  cytokines and 

grow th factors, w h ich  then  act upon target cells. T hese actions include the up- 

regulation  o f  certain  key enzym es involved in  the  generation o f  eicosanoids 

such as PLA 2 and CO X -2 (C roxtall et al., 1996; E ndo et al., 1995). Typically 

the release o f  arachidonic acid  and PgE 2 is increased follow ing IL - ip  

trea tm ent o f  m any cells (C roxtall et al., 1996).

The cell line, A 549, a hum an lung adenocarcinom a, w as chosen for the 

experim ent as it was dem onstrated  by A sano et al., (1996), that CO X-2 is the 

constitu tive and dom inant isoform  in unstim ulated  and  stim ulated cultured 

hum an  lung epithelial cells. A 549 cells express CO X-2 m R N A  and pro tein  

w hen  they  are stim ulated  w ith  epiderm al grow th factor or pro-inflam m atory 

cytokines such as IL - lp  (A sano et al., 1996).

A  prelim inary  E L IS A  for PgE 2 w as carried  ou t on  A549 cells, treated w ith 

vary ing  concentrations o f  IL-1 P (Ong/mL -2 Ong/mL), and it w as found that the 

optim um  level o f  PgE 2 production in  the A549 cells w as obtained w ith 

lOng/m L IL - lp . W estern  blotting  w as carried  out on pro tein  extracted from  

A 549 cells trea ted  w ith  Ong/mL and lOng/m L IL - lp  to assess the expression 

o f  COX-2. E xpression  o f  CO X -2 could not be detected  in  A 549 cells treated  

w ith  Ong/mL IL-1 p. H ow ever, low  expession o f  CO X-2 was observed in  the 

cells treated  w ith  5ng/m l IL - lp  and expression o f  CO X-2 w as increased in 

those A 549 cells trea ted  w ith  1 Ong/mL IL-1 p.

Figure 3.4.2.1: W estern  blot analysis o f  CO X -2 pro tein  from  A549 cells 

treated  w ith vary ing  concentrations o f  IL-1 P

Ong/mL IL -1 p 1 Ong/mL IL -1P 5ng/m L IL -1P

C O X -2—>

L

♦
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A  study w as carried  out to  investigate i f  co-treatm ent o f  the  A 549 cell line 

w ith  IL - ip  and indom ethacin  or indom ethacin  analogues, resu lted  in  inh ib ition  

o f  the p roduction  o f  PgE2 by  CO X -2. A  PgE2 E L ISA  assay w as u sed  to 

quantify  the  P gE2 p roduction  by  A 549 cells during treatm ent w ith  IL - ip , 

indom ethacin  and B R I com pounds. The experim ental p ro tocol used  in  these 

experim ents is de ta iled  in  section  2.8. In  sum m ary, cells w ere seeded at a 

density  o f  1.5 x  10s cells per w ell in  6 w ell p lates and  allow ed to attach 

overnight. The w aste  m ed ia  w as then  rem oved  and rep laced  w ith freshly  

prepared  m ed ia  contain ing  the  com pounds o f  interest. Indom ethacin  and 

indom ethacin  analogues (those com pounds positive  in  the com bination 

tox icity  assays) w ere  added  w ith  and w ithout IL - ip  to  ensure  that the addition  

o f  indom ethacin  and  the  indom ethacin  analogues alone d id  not induce the 

p roduction  o f  C O X -2. A fter a  further 24 hours, aliquots o f  m edia w ere th en  

rem oved from  each  o f  the  trea ted  w ells and added  to  the  E L ISA  p late  for 

analysis. The resu lts  o f  th is study are analysed in  tab le  3.5.2.1. A nalysis o f  the  

resu lts dem onstrated  th a t w hen  the  unstim ulated  PgE2 p roduction  is taken  as 

zero, IL - ip -  induced  A 549 cells produced approxim ately  112 pg PgE2 p e r 105 

cells. lOnM  o f  indom ethacin  and indom ethacin  analogue w ere added to  the 

A 549 cells and it w as found tha t indom ethacin , B R I 60/1, 88/1, 92/1 and 104/2 

w ere m ost capable o f  inh ib iting  PgE2 production  (90.2 - 73.6 % inhib ition  o f  

P gE 2). B R I 92/1 w as the m ost po ten t inh ib itor o f  PgE2 p roduction (90.2%  

inhib ition  o f  PgE2). B R I 114/2, 115/2 w ere only  capable o f  inhibiting C O X -2 

by  39.7 and 33 .6%  respectively  w hereas indom ethacin  analogues 153/1, 

203/1 , and 138/1 w ere  n o t capable o f  inhibiting PgE2 p roduction  by CO X -2. 

B R I 215/1, w h ich  w as negative in  the com bination  tox icity  assay, w as also 

negative in  the C O X -2 assay.
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T re a tm e n t

%  In h ib itio n  

o f  p ro d u c tio n  o f  P g E 2 by 

Cox-2

S.D .

C ell control 0.0 0.0

IL -1B  (10m g/m l) 0.0 0.0

Indom ethacin  (lO nM ) +  IL-1B 86.1 5.9

60/1 (lO nM ) +  IL-1B 78.1 11.1

88/1 (lO nM ) +  IL-1B 80.4 12.7

9 2 /l(1 0 n M ) +  IL-1B 88.1 4.4

104/2 (lO nM ) +  IL-1B 79.6 12.2

114/2 (lO nM ) +  IL-1B 44.1 12.2

115/2 (lO nM ) +  IL-1B 40.1 18.5

153/1(1 OnM) +  IL-1B 14.7 15.0

138/1 (lO nM ) +  IL-1B 13.6 10.6

203/1 (1 O nM )+  IL -IB 24.2 8.1

215/1 (lO nM ) +  IL-1B 0.2 0.3

2 0 5 /4 (1  O nM )+  IL-1B 48.0 0.0

T a b le  3 .4 .2 .1 : E ffect o f  indom ethacin  and analogues on p roduction  o f  PgE 2 by 

C O X -2. R esults are represented  as m eans ±  S.D. for duplicate determ inations 

carried  o u t on  three separate occasions. Inh ib ition  is expressed as a percentage 

o f  un trea ted  contro l (IL-1(3 (10m g/m l)), taken  as 100%.
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Figure: 3.4.2: G raph show ing %  inhibition o f  CO X -2 enzyme by indom ethaci 
and indom ethacin analogues. Results are represented as m eans +/- S.D. for 

triplicate determ inations carried out on  three separate occasions.
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Combination GST IOV Cox-1 Cox-2
Toxicity

Assay

Indomethacin +++ +++ +++ ++ +++

BRI 60/1 +++ - ++ + +++

BRI 59/1 - - - i
BRI 69/2 - - -

sSBraB 1 -

BRI 88/1 +++ ++ ++(+) ++ +++

BRI 92/1 +++ +++ +++ +++ +++

BRI 104/2 +++ ++ ++ ++ +++

BRI 106/1 

BR1107/1 - +/-
■

’.'ilfe AK-ÿv

. 4 r 1, '•') 1rJCHL

- .• ■
■ .■ ■■ ■ •

' ÿ W ’r

BRI 114/2 +++ - ++(+) + ++

BRI 115/2 +++ +/- +++ + ++

BRI 113/1 - +/- - ^ ■ l  I
BR1124/1 - - I  H i

BRI 119/1 - - -

BRI 120/1 - - - H ’-W -o r:-■■■, ■

BRI 153/1 +++ - +++ - +/-

BRI 203/1 +++ - ++ + +

BRI 205/4 - - - - ++

BRI 215/1 - - +/- +/- -

BR1138/1 + + + - + - + / -

T a b le  3.4 .3 : Sum m ary table o f  all results from  investigations o f  the  SA R  

(S tructure A ctiv ity  R elationship) o f  indom ethacin  (section  3.1 to  section  3.4).

+ + +  V ery strong positive; ++  Strong positive; +  positive; +/- w eakly  positive; 

-  negative.
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3.5 Indomethacin and adriamycin efflux studies using HPLC  

analysis.

3.5.1 A d r ia m y c in  e fflux  s tud ies

T here is strong  ev idence to suggest tha t indom ethacin  and analogues potentiate  

the  tox ic ity  o f  adriam ycin  by in teracting  w ith  M RP. It is postu la ted  th a t these 

com pounds have a  strong affinity  fo r M R P and w hen  added to  an M R P- 

expressing cell line, in  com bination w ith  a  chem otherapeutic  drug, the 

com pounds inh ib it o r interfere w ith  the  activ ity  o f  the pum p and reduce the 

rate at w h ich  the chem otherapeutic drug  is effluxed. I t is possib le tha t the 

active com pounds m ay also be very  good substrates for M R P and com pete 

w ith  the chem otherapeutic  drug fo r th is protein. A driam ycin  quantita tion  w as 

carried  ou t o n  D L K P cells treated  w ith  a com bination  o f  adriam ycin  and 

indom ethacin  o r indom ethacin  analogues. T he cells, w h ich  w ere
t 'y

approxim ately  80%  confluent in 75cm  flasks, w ere 'loaded' for tw o hours at 

37°C  w ith  IOjoM  adriam ycin  alone, or, adriam ycin  and 28fxM indom ethacin  

com bined. A fter th is  initial loading period, the  m ed ia  w as rem oved from  the 

cells (TO hr) the flasks w ere w ashed  tw ice  w ith  fresh  m edia  and m edia 

contain ing  the  test com pound (indom ethacin /indom ethacin  analogue), m inus 

adriam ycin , w as added  to  the appropriate flasks. The cells w ere incubated  fo r a 

further 5 hours (T5 hr). A t required  tim e poin ts, the cells w ere rapidly  

trypsin ised , counted, pelle ted  and frozen  a t -20°C  until analysed by  H PLC  as 

described  in  section  2.13. A n  analogue o f  indom ethacin , w h ich  w as positive  in  

the  com bination  tox ic ity  assay (138/1) and a negative analogue (205/4) w ere 

also used  in  th is  assay.

The resu lts o f  th is  H PL C  analysis show ed a  notab le  d ifference in  the cellular 

adriam ycin  conten t in  D L K P cells incubated  w ith  10jj.m adriam ycin  alone 

versus D L K P cells incubated w ith  adriam ycin  and  28 (am indom ethacin  or 

138/1 com bined. A fter the initial 2 hour loading period, there w as sim ilar 

accum ulation  o f  adriam ycin  in  the cells trea ted  w ith  adriam ycin  alone (2.4foM 

adriam ycin /m illion  cells) and the  cells treated  w ith  a  com bination o f  

adriam ycin  +  indom ethacin  or 138/1 (2.2(j,M adriam ycin  /m illion  cells). W hen 

the  levels o f  indom ethacin  and 138/1 w ere m ain tained  in  the cells for a  further 

five hours the  level o f  adriam ycin  w ere only sligh tly  decreased in  these cells
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(1.8 -  1.9|xM adriam ycin /m illion  cells). H ow ever, there w as decreased 

accum ulation o f  adriam ycin  in  those cells treated  w ith  adriam ycin alone 

(1.0|j.M  adriam ycin /m illion  cells). The negative indom ethacin  analogue, B R I 

205/4, had  no  effect on  the  accum ulation  o f  adriam ycin  in  the D LK P cells. 

M aintain ing the  levels o f  B R I 205/4 in  the  m edium , during the five hour 

incubation period , d id  n o t reduce the efflux  o f  adriam ycin  from  the cells. The 

results suggest tha t the  export o f  adriam ycin  from  M R P-expressing cells can 

be  inh ib ited  by  indom ethacin  and it's active analogues.

Time Treatment Average fiM 

adriamycin per 

million cells

S.D.

TO A driam ycin  alone 2.4 0.05

T5 A driam ycin  alone 1.0 0.09

TO A driam ycin  +  Indom ethacin 2.3 0.15

T5 (+) Indom ethacin 1.8 0.17

T5 (-) Indom ethacin 1.2 0.17

TO A driam ycin  + 1 3 8 /1 2.3 0.12

T5 (+) 138/1 1.9 0.07

T5 (-) 138/1 1.0 0.22

TO A driam ycin  +  205/4 2.0 0.17

T5 (+) 205/4 0.9 0.09

T5 (-) 205/4 0.7 0.09

T a b le  3 .5 .1 .1 : A driam ycin  levels in  D LK P cells trea ted  w ith  adriam ycin  alone 

versus D L K P cells trea ted  w ith  adriam ycin  and indom ethacin  / indom ethacin  

analogues com bined. D a ta  show n are the average o f  three separate 

determ inations.

TO: T im e po in t im m ediately  after initial 2  h our loading  period  

T5: T im e po in t 5 hours after in itial 2 hour loading period  

(+) Indom ethacin /analogue: F lasks re-fed  w ith  either indom ethacin or 

analogue after in itia l 2 ho u r loading period.

(-) Indom ethacin /analogue: F lasks re-fed  w ith  m ed ia  only after initial 2 hour 

loading  period.
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F ig u re  3.5 .1 : H P L C  analysis o f  the effect o f  indom ethacin and 
indom ethacin analogues on  adriamycin content in  D LK P cells.
R esults are represented as m eans +/- S.D. fo r triplicate determinations.
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3.5.2 Indomethacin efflux studies

Indom ethacin  e fflux  w as also analysed, by  H PLC , in  cells trea ted  w ith  

indom ethacin  alone o r adriam ycin  and indom ethacin  com bined. The cells, 

w h ich  w ere approxim ately  80%  confluent, w ere 'loaded' fo r tw o hours at 37°C  

w ith  28 p m  indom ethacin  alone, or indom ethacin  and 10pm  adriam ycin  

com bined. A fter the  in itial load ing  period  sam ples w ere taken  at TO and the 

rem ain ing  flasks w ere  re-fed  w ith  either fresh  m edia  or fresh  m ed ia  containing 

adriam ycin  to  assess i f  m ain tain ing  the  level o f  the an ticancer drug in  the  cells 

w ou ld  have an  effect on the  accum ulation o f  indom ethacin  in  the cells. The 

cells w ere incubated  fo r a  further 90 m inutes. (This tim e poin t w as chosen  as 

prelim inary  H P L C  experim ents indicated  th a t fo llow ing tw o hours incubation, 

a fter the  in itial loading  period, the levels o f  indom ethacin  in  the cells had 

decreased to  a lm ost undetectab le  levels).

T he results ind icate  tha t after the initial loading  period  the  level o f  

indom ethacin  in  the  cells w as h igher in  those cells trea ted  w ith  a  com bination  

o f  indom ethacin  and  adriam ycin  (0 .044pM  indom ethacin/m illion  cells) than  

the  level o f  indom ethacin  in  those cells treated  w ith  indom ethacin  alone 

(0 .03 jjM  indom ethacin /m illion  cells). In  those  cells incubated  w ith  bo th  

indom ethacin  and  adriam ycin  during the initial loading period, and then  refed  

w ith  adriam ycin  alone for a  further 90 m inutes, there w as alm ost no  efflux  o f  

indom ethacin  from  the  cells at the end o f  th is period  (0.03 pM  

indom ethacin /m illion  cells) as com pared to  those cells incubated  w ith  fresh  

m ed ia  alone (0.006p.M  indom ethacin /m illion  cells). This suggests that in  the 

p resence o f  ad riam ycin  the efflux  o f  indom ethacin  from  the cell is reduced.

A n  experim ent w as also carried  out to investigate i f  co-incubation o f  

indom ethacin  w ith  adriam ycin  during the in itial loading period  w as requ ired  

for m ain tanance o f  the cellu lar indom ethacin  content. The cells w ere loaded  

for tw o hours w ith  indom ethacin  and after th is in itial period  the  m edia  w as 

rem oved  from  the  cells and the cells w ere refed  w ith  adriam ycin  alone fo r 90 

m inutes incubation. A fter th is incubation the level o f  indom ethacin  in  the cells 

w as m easured  and w as found to have decreased  to  0 .007pM  

indom ethacin /m illion  cells (as com pared to  0 .3pM  indom ethacin  per m illion  

cells in  those cells  co-incubated w ith  indom ethacin  and adriam ycin). These
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resu lts  indicate th a t co-incubation  o f  indom ethacin  w ith  adriam ycin  is required  

fo r the  m ain tenance o f  cellu lar indom ethacin content. T his suggests tha t 

ad riam ycin  and indom ethacin  com pete for the sam e binding  site on  the M R P 

m olecu le  and the  resu lts  indicate th a t adding adriam ycin  to  the  cells after the 

in itia l loading period  only  w as n o t as effective as indom ethacin  had already 

bo u n d  to  the M R P b ind ing  site.

Time Treatment Average j.iM 

indomethacin per 

million cells

S.D.

TO Indom ethacin  alone 0.03 0.002

T 90m in Indom ethacin  alone 0.01 0.002

TO Indom ethacin  +  A driam ycin 0.04 0.008

T 90m in (+) A driam ycin 0.03 0.007

T 90m in (-) A driam ycin 0.01 0.001

T 90m in Indom ethacin  (+  A dr @ T0)* 0.01 0.002

T a b le  3 .5 .2 .1 : Indom ethacin  content in  D LK P cells trea ted  w ith  indom ethacin  

a lone versus D L K P cells treated  w ith  adriam ycin and indom ethacin  com bined. 

D a ta  show n are the  average o f  th ree separate determ inations.

TO: T im e poin t im m ediately  after in itial 2 hour loading  period

T 90m in: T im e po in t 90 m inutes after initial 2 hour loading period

(+) adriam ycin: F lasks re-fed  w ith  adriam ycin  after in itia l 2 hour loading

period .

(-) adriam ycin: F lasks re-fed  w ith  m edia only after in itia l 2 hour loading 

period .

* F lasks w ere incubated  w ith  indom ethacin  alone for the in itial 2 hour loading 

period  and w ere th en  w ashed  and refed  w ith  m edia  contain ing  adriam ycin. 

T hese  flasks w ere subsequently  incubated for a  further 90 m inu tes.

162



0.05

0.045

|  0.04
0 
•M
|  0,035

J  0.03

I
0 0.025 
|
1  0.02 

I
|  0.015

0.01

0.005 

0

Indomethacin accumulation studies using HPLC analysis

0.055

F ig u re  3.5 .2 : H PL C  analysis o f  the effect o f  adriamycin on  indom ethacin 
conten t in D LK P cells.
R esults are represented  as m eans +/- S.D. for triplicate determ inations.
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3.6 In vitro combination toxicity assays -  CORL23 cell line

The resistan t varian t o f  the  cell line C O RL23, C O R L23(R ), overexpresses 

M RP1 w hich  is no t overexpressed by  the parental form , C O R L23(P) (Kool et 

al, 1998). A  W estern  b lo t carried  out on bo th  cell lines dem onstrates the 

d ifference in  the expression o f  M R P pro tein  in  the cell lines. There is a  very 

low  level o f  expression o f  M R P in  the CO RL23(P) cell line as opposed to  a 

very strong expression  in  the  C O R L23(R ) cell line (figure 3.6.1). As it was 

postu lated  th a t the N S A lD s and indom ethacin  analogues potentiated the 

toxicity  o f  chem otherapeutic  drugs by  inhibiting  M R P (D uffy  e t al., 1998), 

this d ifference in  expression o f  M R P  in  the  CO RL23 cells was exploited to 

further assess the m ode o f  ac tion  o f  the com pounds. A  num ber o f  the BRI 

com pounds, w hich  had been  positive in  the com bination toxicity  assay in 

D L K P cells (section  3.1), w ere added  a t non-toxic concentrations to  both the 

C O R L 23(R ) and C O R L23(P) cells, in  com bination w ith a  range o f  

chem otherapeutic  drugs. The expected  resu lt w as that the  active analogues 

w ould  poten tiate  toxicity  only  in  the  resistan t cell line.

(A) (B)

M RP1 (190kD ) ->

F igure 3.2a: W estern  b lo t analysis o f  CO RL23 variants fo r M RP1 expression 

using  an  M R P1 specific  m onoclonal antibody, M R P rl: (A) 

C O R L23(S); (B ) CO RL23(R).
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Indom ethacin , B R I 153/1, B R I 88/1 and B R I 92/1 in  com bination  w ith  the 

chem otherapeutic  drugs, v incristine , adriam ycin  and V P -16, resu lted  in  an 

increase in  the  tox ic ity  o f  the chem otherapeutic  drugs in  the  C O R L23(R ) cell 

line (Table 3.6 .6b, 3.6.9b and 3.6.15b). There w as ev idence o f  an  increase in  

the  tox ic ity  o f  the  sam e drugs in  the  C O R L23(P) cell line (Table 3.6.6a, 3.6 .9a 

and 3.6.15a). H ow ever, there is low  expression o f  M R P 1 in  th is parental cell 

line (K ool et ah, 1997) (and  as show n in  figure 3.2a) w hich  ind icates th a t th is 

po ten tia tion  o f  tox icity  by  the indom ethacin  analogues is ev ident even  in  the 

p resence o f  a  very  low  expression  o f  M R P1. The hypothesis tha t the 

com pounds in teract w ith  M R P w as further strengthened by  the results 

ob tained  in  the com bination  tox ic ity  assays on  the CO RL23 cell lines using 

the  indom ethacin  analogues and  the  M R P-negative chem otherapeutic  drugs 

5 ’F luorouracil and cisplatin. T here w as no evident increase in  tox ic ity  o f  these 

drugs in  any o f  the  tox icity  assays w hen  used  in  com bination w ith  B R I 88/1, 

92/1, 153/1, su lindac and indom ethacin  (Table 3.6.12b).

In teresting ly , su lindac, indom ethacin  and the  positive indom ethacin  analogues, 

B R I 88/1, 92/1 and  153/1 also poten tia ted  the  tox icity  o f  the  taxanes, taxol and 

taxotere, in  bo th  the  resistan t and  the  parental CO RL23 cell lines. There w as 

only  sligh tly  greater enhancem ent in  the resistan t cell line than  in  the  sensitive 

cell line. The com bination index  values for the short-term  com bination 

tox ic ity  assays w ere low er th an  those obtained w ith  the long-term  assays using 

the  sam e drug  com binations suggesting that sulindac is n o t as effective at 

po ten tia ting  the  tox icity  o f  these anticancer drugs in the short-term  assay and 

requires longer incubation  tim es to  exert the optim um  effect (see section 3.8). 

T axol and  taxo tere  toxicity  w as also analysed in  these cell lines in  

com bination  w ith  the negative indom ethacin  analogue 205/4. The results 

ind icated  that there  w as also no enhancem ent o f  the tox icity  o f  taxo l or 

taxo tere  by  th is  negative analogue. These resu lts w ould  suggest that the 

enhancem ent o f  the  tox icity  o f  taxol and taxotere, by the active com pounds, is 

th rough  the  sam e m echanism  by w hich  the toxicity  o f  adriam ycin , vincristine 

and V P -16 are potentiated . H ow ever, the taxanes had p reviously  been  reported  

by  a  num ber o f  authors including C ole et ah, (1992), and T w entym an  et ah, 

(1994), to  be poor M RP1 substrates.
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The resu lts  from  the  toxicity  assays on  the parental CO RL23 cell line, using  a  

com bination  o f  v incristine and indom ethacin , 88/1 o r 92/1 dem onstrated  a  

sign ificant enhancem ent o f  the tox ic ity  o f  the chem otherapeutic  drug. This 

enhancem ent w as com parable to  the  m agnitude o f  the enhancem ent effect in  

the  resistan t C O R L23 cell line. T he C O R L 23(R ) cells w ere m ore resistan t to 

the range o f  an ti-cancer drugs analysed in th is set o f  experim ents w hich  seem s 

to  correla te  w ith  the  overexpression o f  M RP1 in  the C O R L 23(R ) cell line. 

T here w as sligh tly  greater enhancem ent o f  adriam ycin, v incristine, Y P16, 

taxo l and taxotere  in  the C O R L23(R ) cell line than  in  the C O R L23(P) cell 

line. H ow ever, the  com bination index  values obtained  for bo th  o f  the  cell lines 

suggest tha t the  level o f  the expression o f  M R P does n o t appear to strictly 

correlate to  the  rate  o f  po ten tia tion  o f  the  an ticancer drug by  the positive  

N SA ID s. D uffy  et al., (1998), also dem onstrated  h igher levels o f  M R P pro tein  

expression  in  the A 549, a  hum an  lung adenocarcinom a cell line, than  in the 

D L K P cell line. Y et, the authors reported  com parable synergistic com bination 

o f  selected  N S A ID s w ith  certain  chem otherapeutic  drugs in  both  cell lines. 

N ote:

•  A ll tox ic ity  assays in  th is section, except for those specifically  referred  to 

as “ Short-term ” w ere carried according to section  2 .7 .3a i.e. 7 day tox icity  

assays w hereby  drug and/or com pound w ere added to the cells on D ay  2 

and  rem ain  in  the  cells until D ay 7 w hen  the cells w ere analysed.

•  T he Short-term  toxicity  assays referred  to  in  th is section w ere perform ed 

using  the  m ethod  described in  section  2 .7 .3b  i.e. 6 day toxicity  assays 

w hereby  the  cytotoxic drugs and test inhibitors are added to  the  cells on 

D ay  2 and w ere incubated in the assay for a  period  o f  four hours only. The 

cells w ere th en  re-fed  w ith  fresh m edia  and incubated  until D ay 6 w hen the 

cells w ere analysed.
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E
ORL23(P), Adriamycin + BRI 153/1 and Indomethacin.

est Sample % Cell Survival S.D.

dr. 20 ng/ml 52 .8  4 .7
Indo (2.5pg/ml) 1 0 1 . 6  5.6
Indo + Adr 31.9 6.4

|Indo (1.25fxg/ml) 10 4 .5  5 .7
Indo +A dr 32.9 4.3
Indo (0.625p.g/ml) 98.7  5 .0
Indo + Adr 38.5 5.7

153/1 (50p.g/ml) 97.5  5.9
153/1 + Adr 34.8 5.0
153/1 (25|og/mI) 10 5 .0  4.3
153/1 + Adr 38.1 9.0
153/1 (12.5]Lig/ml) 10 4 .2  4 .4
153/1 + Adr 41.4 5.1

Adr. 10 ng/ml 9 5 .4 5  4 .7

Indo (2.5pg/ml) 1 0 1 . 3  4 . 1
Indo + Adr 87.1 4.4
Indo (1.25p.g/ml) 1 0 1 . 4  2 .5
Indo + Adr 91.0 L9
Indo (0.625|og/ml) 10 0 .7  1 .9
Indo +A dr 95.2 1.6

153/1 (50|J.g/ml) 10 0 .3  4.7
153/1 + Adr 81.1 6.0
153/1 (25jJ.g/ml) 10 3 .7  3 .0
153/1 + Adr 86.0 1.6
153/1 (12.5|ag/ml) 10 3 .8  3 .8
153/1 + Adr 90.1 6.2

Table 3.6.1: %  Survival o f  CO RL23 (parental) cells in  the presence o f  various 

concentrations o f  adriam ycin , indom ethacin  and B R I 153/1 as found using the 

pro tocol detailed  in  section  2.7.3a. Survival is represen ted  as a  %  o f  the 

grow th o f  un trea ted  cells in  the sam e plate ±  S.D . R esults are the average o f  

trip licate determ inations in  three separate experim ents.
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CORL23(R), Adriamycin + B R I153/1 and Indomethacin. 

Test Sample % Cell Survival S.D.

Adr. 250ng/ml 46.7 3.1

Indo (2.5ng/ml) 98.1 3.8
Indo + Adr 16.1 5.7
Indo (1.25jJ,g/ml) 101.0 4.3
Indo +A dr 21.4 3.6
Indo (0.625|J.g/ml) 100.6 201
Indo + Adr 28.7 4.1

153/1 (50|Xg/ml) 103.4 5.8
153/1 + Adr 13.0 1.4
153/1 (25^ig/ml) 103.1 3.0
153/1 + Adr 25.7 3.8
153/1 (12.5|ag/ml) 106.5 5.1
153/1 + Adr 36.3 3.1

Adr. 125 ng/ml 74.6 2.8

Indo (2.5|og/ml) 102.3 3.7
Indo + Adr 31.2 7.5
Indo (1.25jo.g/ml) 102.0 3.6
Indo + Adr 47.0 5.1
Indo (0.625|J.g/ml) 99.1 7.6
Indo + Adr 60.2 6.5

153/1 (50|Og/ml) 102.2 4.4
153/1 + Adr 18.5 5.2
153/1 (25[ig/ml) 98.3 7.6
153/1 + Adr 48.8 2.9
153/1 (12.5fxg/ml) 105.0 4.6
153/1 + Adr 63.7 4.7

T a b le  3 .6 .2 : %  Survival o f  CO RL23 (resistant) cells in  the presence o f  various 

concentrations o f  adriam ycin, indom ethacin  and BR I 153/1 as found using  the 

p ro tocol detailed  in  section  2.7.3a. Survival is represented  as a  % o f  the  grow th  

o f  untreated  cells  in  the sam e plate ±  S.D. R esults are the average o f  trip licate  

determ inations in  three separate experim ents.
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CORL23(P), Adriamycin + BRI 88/1, 92/1 and Indomethacin. 

Test Sample % Cell Survival S.D.

Adr. 20 ng/ml 3 8 .0 7.2

Indo (2.5|xg/ml) 98.9 1 . 2
Indo +A dr 18.5 4.6
Indo (1.25|ig/ml) 1 0 1 . 7 2.8

Indo +A dr 21.04 11.1
Indo (0.625fO,g/ml) 10 0 .7 2.9

Indo +A dr 24.3 13.7

88/1 (5jJ,g/ml) 10 3 .0 5.6
88/1 + Adr 17.2 1.3
88/1 (2.5fxg/ml) 97.8 4.8
88/1 + Adr 19.1 1.6
88/1 (1.25fJ,g/ml) 9 7 . 1 6.8
88/1 + Adr 18.4 2.1

92/1 (5|ig/ml) 10 2 .0 1 1 . 7
92/1 + Adr 24.6 8.6
92/1 (2.5|i.g/ml) 10 7 .7 4 . 1
92/1 + Adr 25.2 9.8
92/1 (1.25fig/ml) 10 8 .4 9.5

92/1 + Adr 26.5 8.3

Table 3.6.3: %  Survival o f  CORL23 (parental) cells in  the presence o f  

20ng /m l adriam ycin  +  various concentrations o f  indom ethacin , B R I 88/1 or 

B R I 92/1, as found  using  the protocol detailed  in  section 2.7.3a. Survival is 

represen ted  as a  %  o f  the  grow th o f  untreated  cells in  the  sam e p late  ±  S.D. 

R esu lts  are the  average o f  triplicate determ inations in  three separate 

experim ents.
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CORL23(R), Adriamycin + BRI 88/1, 92/1 and Indomethacin. 

Test Sample % Cell Survival S.D.

Adr. 250 ng/ml 29 .2 1 1 . 4

Indo (2.5|0g/ml) 99.3 1 .4
Indo + Adr 13.0 2.9
Indo (1.25fJ.g/ml) 99.8 2 . 1
Indo +A dr 20.4 4.8
Indo (0.625|ig/ml) 1 0 1 . 0 4.8
Indo + Adr 31.9 12.8

88/1 (5|J.g/ml) 1 0 1 . 9 2.5
88/1 + Adr 5.8 1.0
88/1 (2.5ng/ml) 10 0 .9 5 .2
88/1 + Adr 7.8 0.7
88/1 (1.25(J,g/ml) 10 2 .4 5.9
88/1 (3) + Adr 11.1 1.8

92/1 (5|4,g/ml) 94.0 7.6
92/1 + Adr 9.7 0.2
92/1 (2.5^ig/ml) 10 0 .7 6.5
92/1 + Adr 14.9 1.0
92/1 (1.25^ig/ml) 10 3 .4 9 .1
92/1 + Adr 19.6 2.5

T a b le  3.6 .4 : %  Survival o f  CORL23 (resistant) cells in  the presence o f  

250ng/m l adriam ycin  +  various concentrations o f  Indom ethacin , B R I 88/1 or 

B R I 92/1, as found  using  the protocol detailed  in  section  2.7.3a. Survival is 

represented  as a  %  o f  the  grow th o f  untreated  cells in  the sam e plate ±  S.D. 

R esults are the  average o f  triplicate determ inations in  three separate 

experim ents.
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CORL23(P) A driam ycin and B R I 205/4 

Test Sample % Cell Survival S.D.

Adr. 20ng/ml 3 2 .7 4.6

205/4 (25|J,g/ml) 9 8 .1 6.0

205/4 + Adr 28.6 2.6
205/4 (12.5fig/ml) 9 7 .7 4 .7
205/4 + Adr 29.9 3.5
205/4 (6.25fig/ml) 98.2 3 . 1
205/4 + Adr 31.3 3.1

CORL23(R) Adriam ycin and BR I 205/4 

Test Sample % Cell Survival S.D.

Adr. 250ng/ml 50.8 2.9

205/4 (25|J,g/ml) 10 3 .2 6.4
205/4 + Adr 46.9 2.6
205/4 (12.5|J,g/ml) 96.4 3 . 1
205/4 + Adr 47.9 2.4
205/4 (6.25|4.g/ml) 10 3 .3 6.4
205/4 + Adr 51.1 4.3

T a b le  3.6 .5 : %  Survival o f  C O R L23(P) and C O R L23(R ) cells in  the presence 

o f  adriam ycin, in  com bination  w ith  205/4 as found using  the  protocol detailed  

in  section 2.7.3a. Survival is represented  as a %  o f  the grow th  o f  untreated  

cells in  the sam e p late  ±  S.D. R esults are the average o f  trip licate 

determ inations in  th ree  separate experim ents.
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No Anticancer 

agent

Adriamycin

(20ng/ml)

Cl values

No NSAID 10 0  +  0.0 52 .8  ± 4 . 7

Indomethacin 2.5|ig/ml 1 0 1 . 6  +  5.6 3 1 . 9  +  6.4 0.779

B R I153/1 50|ig/ml 9 7.5  +  5.9 34 .8  +  5 .0 0 .8 13

BQTi-. ’. * . • )
B  - . • | w ' i i v  ?  U M . ■ v .

No NSAID 10 0  +  0.0 3 8 .0  +  7 .2

Indomethacin 2.5(ig/ml 9 8 . 9 + 1 . 2 18 .5  +  4.6 0 .672

BRI 88/1 5jjg/ml 10 3 .0  +  5.6 1 7 . 2  +  1 .3 0.670

BRI 92/1 5 jog/ml 1 0 2 . 0 + 1 1 . 7 2 4 .6  ±  8.6 0.749

1 ‘ - - '
. . .

'• -'=: • •
No NSAID 10 0  +  0.0 3 8 .9  +  5.5

BRI 205/4 2.5(j.g/ml 9 8 . 1 + 6 . 0 3 6 . 3 + 4 . 2 1 .0

T a b le : 3 .6 .6a: C O R L 23(P), A driam ycin  +  h ighest non-toxic concentrations o f  

indom ethacin  and indom ethacin  analogues.

D ata  are expressed as % Cell Survival ±  standard dev iation  for a  m inim um  o f  

three assay repeats.

S tatistical w eight o f  the  resu lts is indicated  by  C l values (see section  2.16)

C l: C om bination  index  values.

C l < 1: synergism ; C l > 1: antagonism ; C l =  1: additive.
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No Anticancer  

agent

Adriainycin

(20ng/nil)

C l values

No NSAID 100 ± 0 . 0 46.7 ±3.1

Indomethacin 2.5(0,g/ml 98.1 ±3.8 16.1 ±5.7 0.542

BRI 153/1 50jxg/ml

No NSAID

10 3 .4  ± 5 . 9

100 ± 0.0

1 3 .0  ±  1 .4 0.382

2 9 .2  ±  1 1 . 4

Indom ethacin  2.5|a.g/ml 99.3 ±  1 .4 13 .0  ± 2 . 9 0.704

BRI 88/1 5(j.g/ml 1 0 1 . 9  ± 2 . 5 5.8 ± 1 . 0 0.432

BRI 92/1 5 fig/ml

No NSAID

94.0 ±  7.6

100 ± 0.0

9.7  ± 0 . 2 0.552

S . 7

50.8 ± 2 . 9

BRI 205/4 2.5|og/ml 10 3 .2  ± 6 . 4 4 7 .0  ± 2 . 6 1.0

T a b le : 3 .6 .6b : C O R L 23(R ), A driam ycin  +  h ighest non-toxic  concentrations 

o f  indom ethacin  and indom ethacin  analogues.

D ata  are  expressed  as %  Cell Survival ±  standard deviation for a  m inim um  o f  

three assay  repeats.

S tatistical w eigh t o f  the  resu lts is indicated  by C l values (see section  2.16)

C l : C om bination  index.

C l < 1: synergism ; C l > 1: antagonism ; C l =  1: additive.
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CORL23(P), Vincristine + BRI 88/1, 92/1 and Indomethacin.
Test Sample % Cell Survival S.D.

Vin. 1 ng/ml 42 .0 2 .4

Indo (2.5j.ig/ml) 99.3 0.9
Indo +V in 11.3 3.2
Indo (1.25|J.g/ml) 99.5 0.7
Indo + Vin 12.6 0.5
Indo (0.625|Xg/ml) 98.8 0.7
Indo +V in 16.4 3.4

88/1 (5fJ.g/ml) 90.5 5 . 1
88/1 + Vin 12.9 1.2
88/1 (2.5|J,g/mI) 9 7 . 1 8.5
88/1 + Vin 18.6 2.3
88/1 (1.25|Xg/ml) 1 0 1 . 3 6.2
88/1 + Vin 31.9 3.4

92/1 (5ng/ml) 106 .8 7.7
92/1 + Vin 19.0 2.4
92/1 (2.5ng/ml) 10 9 . 1 7.8
92/1 + Vin 20.6 0.9
92/1 (1.25fJ.g/ml) 10 8 .2 1 .9
92/1 + Vin 22.8 1.6

T a b le  3 .6 .7 : %  Survival o f  CO RL23 (parental) cells in  the presence o f  ln g /m l 

V incristine  +  various concentrations o f  indom ethacin  B R I 88/1, 92/1, as found 

using  the p ro toco l detailed  in  section 2.7.3a. Survival is represented as a  %  o f  

the  grow th  o f  un treated  cells in  the  sam e plate ±  S.D.

R esults are the  average o f  trip licate determ inations in  three separate 

experim ents.
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CORL23(R), Vincristine + BRI 88/1, 92/1 and Indomethacin.

Test Sample % Cell Survival S.D.

Vin. 12 ng/ml 57 .5 1 5 . 1

Indo (2.5|ag/ml) 98.9 1 . 7
Indo +V in 16.9 3.0
Indo (1.25)J.g/ml) 10 5 .0 4.4
Indo +V in 27.7 3.6
Indo (0.625)0g/ml) 10 5 .3 4.5
Indo +V in 38.7 3.2

88/1 (5|Xg/ml) 90.4 4.8
88/1 + Vin 15.2 1.5
88/1 (2.5|Og/ml) 92.0 8.0
88/1 + Vin 18.9 2.1
88/1 (1.25)ig/ml) 92.5 2.8
88/1 + Vin 44.4 1.43

92/1 (5|0g/ml) 93.3 7.3
92/1 + Vin 11.5 3.7
92/1 (2.5|0g/ml) 96.0 9.4

92/1 + Vin 17.7 6.9
92/1 (1.25)ig/ml) 10 0 .3 6.0
92/1 + Vin 25.0 10.4

T a b le  3.6 .8 : %  Survival o f  CO RL23 (resistant) cells in  the presence o f  12 

ng /m l V incristine  +  various concentrations o f  indom ethacin  B R I 88/1, 92/1, as 

found  using  the p ro toco l detailed  in  section 2.7.3a. Survival is represented as a 

%  o f  the grow th o f  un treated  cells in  the sam e plate ±  S.D.

R esults are the average o f  triplicate determ inations in  th ree separate 

experim ents.
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No Anticancer 

agent

Vincristine

(lng/.n l)

C l values

No NSAID 100 ± 0 . 0 42.0 ± 2 . 4

Indom ethacin 2.5p,g/ml 99.3 ± 0 . 9 11.3 ± 3 . 2 0.333

BRI 88/1 5(ag/ml 90.5 ± 5 .1 12.9 ±  1.2 0.554

BRI 92/1 5|ag/ml 106.8 ± 7 . 7 19.0 ± 2 . 3 6 0.532

Table: 3.6.9a: CO R L23(P), V incristine  +  highest non-toxic  concentrations o f  

indom ethacin  and indom ethacin  analogues.

D a ta  are expressed as % Cell Survival ±  standard dev iation  for a m inim um  o f  

th ree  assay repeats.

No Anticancer 

agent

Vincristine

(12ng/nil)

C l values

No NSAID 100 ± 0 . 0 57.5 ±  15.1

Indom ethacin 2.5fJ.g/ml 98.9  ± 1.7 16.9 ± 3 . 0 0.417

BRI 88/1 5(j.g/ml 90.4 ± 1.5 15.2 ±  1.5 0.329

BRI 92/1 5(J.g/ml 93.3 ± 7 .3 11.5 ±  3.7 0.284

Table: 3.6.9b: CO R L23(R ), V incristine  + h ighest non-toxic concentrations o f  

indom ethacin  and indom ethacin  analogues.

D ata  are expressed as %  C ell Survival ±  standard deviation  for a m inim um  o f  

th ree  assay repeats.

S tatistical w eight o f  the results is indicated by Cl values (see section  2.16)

Cl: Combination index values.

Cl < 1: synergism; Cl > 1: antagonism; Cl = 1: additive.

176



I CORL23(P), 5-FU + BRI 92/1, 88/1 and Indomethacin.

Test Sample % Cell Survival S.D.

5-FU. 0.4 (ig/ml 28.9 1 . 1

Indo (2.5p,g/ml) 97.4 2 .8
Indo + 5-FU 27.7 7.0
Indo (1.25|Og/ml) 99.6 1.9
Indo + 5-FU 27.0 7.3
Indo (0.625)4g/ml) 98.8 1 .6
Indo + 5-FU 27.2 6.5

92/1 (5|xg/ml) 10 3 .5 1 1 . 6
92/1 + 5-FU 28.2 9.3
92/1 (2.5jog/ml) 10 3 .3 7.8
92/1 + 5-FU 27.7 8.8
92/1 (1.25|og/ml) 10 5 .2 8.2
92/1 (3) + 5-FU 28.7 9.2

88/1 (5ng/ml) 97.8 4.7
88/1 + 5-FU 28.4 3.1
88/1 (2.5|Og/ml) 9 9 .1 2 .0
88/1 + 5-FU 28.9 4.0
88/1 (1.25)og/ml) 99.0 4.3
88/1 + 5-FU 28.2 7.1

T a b le  3 .6 .10: %  Survival o f  C O R L23 (parental) cells in  the presence o f  0.4 

fog/ml 5 ’F luorouracil +  various concentrations o f  indom ethacin, BR I 88/1 and 

B R I 92/1, as found  using  the p ro tocol detailed  in  section 2.7.3a. Survival is 

represen ted  as a  %  o f  the grow th  o f  un treated  cells in  the sam e p late  ±  S.D. 

R esults are the average o f  trip licate determ inations in  three separate 

experim ents.
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CORL23(R), 5-FU + BRI 92/1, 88/1 and Indomethacin.

Test Sample % Cell Survival S.D.

5-FU. 0.4 jig/ml 15 .5 1 . 2

Indo (2.5|xg/ml) 99.0 4.6
Indo + 5-FU 14.0 5.0
Indo (1.25p,g/ml) 99.9 6.5
Indo + 5-FU 14.0 4.0
Indo (0.625jag/ml) 1 0 1 . 9 6.3
Indo (4) + 5-FU 14.2 3.5

92/1 (5fj.g/ml) 94.6 0.9
92/1 + 5-FU 15.7 3.5
92/1 (2.5|i.g/ml) 92.9 1 .8
92/1 + 5-FU 15.3 3.0
92/1 (1.25/ig/ml) 9 7 . 1 8.2
92/1 (3) + 5-FU 15.4 3.5

88/1 (5(4,g/ml) 98.8 5.8
88/1 + 5-FU 14.9 1.4
88/1 (2.5jo.g/ml) 9 9 .1 2.0
88/1 + 5-FU 15.1 1.8
88/1 (1.25|4g/ml) 99.0 4.3
88/1 + 5-FU 15.6 1.8

T a b le  3 .6 .11 : %  Survival o f  C O R L23 (resistant) cells in  the  presence o f  2.0 

fxg/ml 5 ’F luorouracil +  various concentrations o f  indom ethacin, B R I 88/1 and 

B R I 92/1, as found using  the p ro tocol detailed  in  section 2 .7.3a. Survival is 

represen ted  as a %  o f  the grow th  o f  untreated  cells in  the sam e p late  ±  S.D. 

R esu lts are the average o f  trip licate determ inations in  th ree  separate 

experim ents.
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No Anticancer 

agent

5-FU

(0.4|.ig/ml)

Cl values

No NSAID 100 ± 0 . 0 28.9 ± 1.1

Indomethacin 2 .5 |4.g/ml 97.4 ± 2 . 8 27.7 ±  7.0 1.000

BRI 88/1 5jig/ml 97.8 ± 4 . 7 28.4 ± 3 .1 1.000

BRI 92/1 5(j,g/ml 103.5 ±  11.6 28.2 ± 9 . 3 1.146

Table: 3.6.12a: C O R L23(P), 5-FU  +  h ighest non-toxic  concentrations o f  

indom ethacin  and indom ethacin  analogues.

D ata  are expressed  as %  C ell Survival ±  standard dev iation  fo r a m inim um  o f  

th ree assay  repeats.

No Anticancer 

agent

5-FU

(2 .0ng/ml)

Cl values

No NSAID 100 +  0.0 15.45 ±  1.2

Indomethacin 2.5 fig/ml 99.0 ±  4.6 14.0 +  5.2 1.114

BRI 88/1 5fig/ml 98.8 +  5.8 14.9 ±  1.4 1.151

BRI 92/1 5|j.g/ml 94.6 ±  0.9 15.7 ±  3.5 1.127

Table: 3.6.12b: C O R L 23(R ), 5-FU  +  h ighest non-toxic concentrations o f  

indom ethacin  and indom ethacin  analogues*.

D ata  are expressed  as %  Cell Survival ±  standard deviation  fo r a  m inim um  o f  

th ree  assay  repeats.

S tatistical w eigh t o f  the  results is indicated by  C l values (see section  2.16)

Cl: Combination index values.

Cl < 1: synergism; Cl > 1: antagonism; Cl = 1: additive.
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CORL23(P), VP-16 + BRI 88/1, BRI 92/1 and Indomethacin

Test Sample % Cell Survival S.D,

VP-16. 0.4 |xg/ml 2 3 .4 2.8

Indo (2.5|Jg/mI) 99.0 4.6
Indo + VP-16 15.5 6.7
Indo (1.25jig/ml) 99.9 6.5
Indo + VP-16 18.5 2.1
Indo (0.625|ug/ml) 1 0 1 . 9 6.3
Indo + VP-16 21.7 1.7

88/1 (5jig/ml) 90.8 3.6
88/1 + VP-16 16.2 1.3
88/1 (2.5|ig/ml) 10 2 .6 8.0
88/1 + VP-16 20.7 3.7
88/1 (1.25fig/ml) 1 0 1 . 2 3 .9
88/1 + VP-16 22.1 7.2

92/1 (5(ig/ml) 96.0 7 . 1
92/1 + VP-16 16.8 4.4
92/1 (2.5|ig/ml) 98.7 7.8
92/1 + VP-16 19.2 3.6
92/1 (1.25/o.g/ml) 1 0 1 . 4 8.5
92/1 + VP-16 20.4 3.0

T a b le  3 .6 .13: %  Survival o f  CO RL23 (parental) cells in  the presence o f  

0.1(j.g/ml V P-16 + various concentrations o f  indom ethacin , B R I 88/1 and BRI 

92/1 as found  using the  p ro tocol detailed  in  section 2.7.3a. Survival is 

represen ted  as a  %  o f  the grow th  o f  un treated  cells in  the sam e plate ±  S.D. 

R esults are the average o f  trip licate determ inations in  three separate 

experim ents.
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CORL23(R), VP-16 + BR1 88/1, BRI 92/1 and Indomethacin

Test Sample % Cell Survival S.D.

VP-16.2.5 jig/ml 3 4 .5 5.3

Indo (2.5fj.g/ml) 99.0 4.6
Indo + VP-16 9.9 3.4
Indo (1.25|J.g/ml) 99.9 6.5
Indo + VP-16 15.1 7.2
Indo (0.625fxg/ml) 1 0 1 . 9 6.3
Indo + VP-16 19.0 4.4

88/1 (Sfig/ml) 93.8 3.6
88/1 + VP-16 9.8 1.1
88/1 (2.5ng/ml) 94.5 3.6
88/1 + VP-16 13.1 2.3
88/1 (1.25^g/ml) 9 8 .1 5 . 1
88/1 + VP-16 19.8 3.5

92/1 (5jJ.g/ml) 96.0 7 . 1
92/1 + VP-16 10.1 5.1
92/1 (2.5jig/ml) 98.7 7.8
92/1 + VP-16 14.6 1.5
92/1 (1.25jxg/ml) 1 0 1 . 4 8.5
92/1 + VP-16 21.2 3.3

L _         _

T a b le  3 .6 .14 : %  Survival o f  C O R L23 (resistant) cells in  the presence o f  

2.5|Xg/ml V P 16 +  various concentrations o f  BR I 88/1, B R I 92/1 and 

indom ethacin  as found  using  the p ro tocol detailed  in  section 2.7.3a.

Survival is represented  as a %  o f  the  grow th o f  untreated cells in  the sam e 

plate  ±  S.D . R esu lts are the average o f  trip licate determ inations in  three 

separate experim ents.
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No Anticancer 

agent

VP-16

(O.lfig/ml)

Cl values

No NSAID 100 ± 0 . 0 28.9 ±  1.1

Indomethacin 2.5|ig/ml 99.0 ± 4 . 6 15.5 ± 6 . 7 0.893

BRI 88/1 5jJ,g/ml 90.8 ± 3 . 6 16.2 ±  1.3 0.922

BRI 92/1 5(J.g/ml 96.0 ± 7 .1 16.8 ± 4 . 4 0.895

T a b le : 3 .6 .15a : C O R L23(P), V P 16 + h ighest non-toxic concentrations o f  

indom ethacin  and indom ethacin  analogues.

D ata  are expressed  as %  Cell Survival ±  standard deviation for a m in im u m  o f  

three assay  repeats.

No Anticancer 

agent

VP-16

(2.5^g/ml)

Cl values

No NSAID 100 ± 0 . 0 34.5 ± 5 . 3

Indomethacin 2.5|ag/ml 99.0 ± 4 . 6 9.9 ± 3 . 4 0.572

BRI 88/1 5(j,g/ml 93.8 ± 3 . 6 9.8 ±  1.1 0.569

BRI 92/1 5(j,g/ml 96.0 ± 7 .1 10.1 ± 5 .1 0.541

T a b le : 3 .6 .15b : C O R L23(R ), V P16 +  h ighest non-toxic concentrations o f  

indom ethacin  and indom ethacin  analogues.

D ata are  expressed  as %  Cell Survival ± standard deviation for a m in im um  o f  

three assay  repeats.

S tatistical w eigh t o f  the results is indicated by  C l values (see section  2.16)

Cl: Combination index values.

Cl < 1: synergism; Cl > 1: antagonism; Cl = 1: additive.
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CORL23, Taxol, Taxotere & Sulindac

Test Sample % Cell Survival S.D.

CORL23(P) Taxotere and Sulindac

Taxotere. 1.0ng/ml 45 .7  4.9

Sul (8jig/ml) 9 2 .1  0.4
Sul + Taxotere 23.9 2.1
Sul(4ng/ml) 98.7 2 . 1
Sul + Taxotere 32.5 3.9
Sul (2|4g/ml) 1 0 1 . 1  2 .0
Sul + Taxotere 40.4 11.0

CORL23(R) Taxotere and Sulindac
Taxotere. 2.0ng/ml 50.7 6.6

Sul (8fjg/ml) 9 1 .0  0 . 1
Sul + Taxotere 27.7 1.7
Sul (4^g/ml) 98.9 2 .5
Sul + Taxotere 31.5 3.5
Sul (2jag/ml) 10 2 .5  3 .5
Sul + Taxotere 33.6 0.1

CORL23(P) Taxol and Sulindac
Taxol. 1.0ng/ml 34.5  4 .2

Sul (8ng/ml) 93.8 1 .9
Sul + Taxol 16.8 0.5
Sul (4|4,g/ml) 99 .1  4 .5
Sul + Taxol 23.4 5.5
Sul (2|xg/ml) 104 .9  1 .9
Sul + Taxol 25.1 7.4

CORL23(R) Taxol and Sulindac
Taxol. 7.0ng/ml 39.5  3 .8

Sul (8ng/ml) 94.0 2 .8
Sul + Taxol 22.1 0.9
Sul (4|ug/ml) 98.4 1 .8
Sul + Taxol 28.5 2.4
Sul (2|xg/ml) 1 0 2 . 1  2 .6
Sul + Taxol 33.6 0.6

Table 3.6.16: %  Survival o f  C O R L23(P) and  C O R L23(R ) cells in  the 

presence o f  T axo tere  and Taxol, in  com bination  w ith  sulindac, as found  using 

the p ro tocol detailed  in  section 2.7.3a. Survival is represented  as a  %  o f  the 

grow th o f  un trea ted  cells in  the sam e plate  ±  S.D . R esults are the average o f 

trip licate de term inations in  three separate experim ents.
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SHORT TERM  ASSAY: CORL23, Taxol, Taxotere & Sulindac

Test Sample % Cell Survival S.D.

CORL23(P) Taxotere and Sulindac
Taxotere. 4.0ng/ml 46.4 1.9

Sul (8jig/ml) 92.4 0.3
Sul + Taxotere 22.4 2.1
Sul (4|xg/ml) 98.6 5.3
Sul + Taxotere 29.0 0.4

j Sul (2jjg/ml) 99.6 0.6
Sul + Taxotere 31.9 1.8

CORL23(R) Taxotere and Sulindac
Taxotere. 8.0ng/ml 48 .2 1.9

Sul (8jjg/ml) 99.6 0.6
Sul + Taxotere 28.4 4.8
Sul (4fjg/ml) 10 0 .5 1 .4
Sul + Taxotere 33.3 1.7
Sul (2fig/ml) 99.6 0.6
Sul (3 ) + Taxotere 36.0 4.4

CORL23(P) Taxol and Sulindac
Taxol. 90ng/tnl 4 3 .4 0.2

Sul (8|4g/ml) 1 0 1 . 3 0.7
Sul + Taxol 29.7 4.4
Sul (4fjg/ml) 99.9 0.5

, Sul + Taxol 36.4 0.1
Sul (2 fig/ml) 98.9 0.5
Sul + Taxol 38.0 1.0

CORL23(R) Taxol and Sulindac
Taxol. 180ng/ml 5 5 .7 4.6

Sul (8j.ig/ml) 96.3 7.4
Sul + Taxol 39.9 4.0
Sul (4(xg/ml) 97.5 3 .6

i Sul + Taxol 43.3 1.9
Sul (2|jg/ml) 1 0 1 .9 2.0
Sul + Taxol 48.4 3.8

T a b le  3 .6 .17: %  Survival o f  C O R L23(P) and C O R L23(R ) cells in  the 

p resence o f  Taxotere and Taxol, in  com bination  w ith  sulindac, as found using 

the  p ro tocol detailed  in  section 2.7 .3b (Short term  assay). Survival is 

represented  as a %  o f  the grow th o f  un treated  cells in the  sam e plate ±  S.D. 

R esults are the average o f  trip licate determ inations in  three separate 

experim ents.
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Long-term assay

No NSAID Sulindac

(8 |.ig/ml)

Cl values

CORL23(P) [
ferUL" ... i . . t - . '. : . :i

No Anticancer agent 100 ± 0 . 0 92.1 ± 0 . 4

Taxol 1.0ng/ml 34.5 ± 4 . 2 16.8 ± 0 . 5 7 0.652

Taxotere 1.0ng/ml 45.7  ± 4 . 9 23.9 ± 2 .1 0.679

CORL23(R)
•

No Anticancer agent 100 ± 0 . 0 94.0 ± 2 . 8

Taxol 7.0ng/ml 39.5 ± 3 . 8 22.1 ± 0 . 9 0.559

Taxotere 2.0ng/ml 50.7 ± 6 . 6 27.7 ±  1.7 0.474

Table: 3.6.18a: Long-term  assay: CO RL23 cell lines +  Taxol/Taxotere +  

H ighest non-toxic  concentrations o f  Sulindac.

D ata  are expressed  as % Cell Survival ±  standard deviation  for a m inim um  o f  

th ree  assay repeats.

Short-term assay

No NSAID Sulindac 

(8 ng/ml)

Cl values

CORL23(P)
■ .■ ■ .. . . -•

No Anticancer agent 100 ± 0 . 0 96.3 ± 7 . 4

Taxol 90.0ng/ml 43.4 ± 0.2 29.7 ± 4 . 4 0.905

Taxotere 4.0ng/ml 46.4 ± 1 . 9 22.4 ± 2 .1 0.779

CORL23(R)

No Anticancer agent 100 ± 0 . 0 96.3 ±  7.4

Taxol 180.0ng/ml 55.7 ± 4 . 6 39.9 ± 4 . 0 0.852

Taxotere 8.0ng/ml 48.2 ±  1.9 28.4 ± 4 . 8 0.729

Table: 3.6.18b: Short-term  assay: CO RL23 ce 1 lines +  T axol/Taxotere +

H ighest non-toxic concentrations o f  Sulindac.*

D ata  are expressed  as %  C ell Survival ±  standard deviation for a  m inim um  o f  

th ree  assay repeats.

Cl: C om bination  index values.

C l < 1 : synergism ; C l >  1 : antagonism ; C l =  1 : additive.
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CORL23 cell lines + Taxol and Indomethacin

Test Sample % Cell Survival S.D

CORL23(P) Taxol and Indomethacin
Taxol. 1.0ng/ml 3 3 . 1 2 .7

Indo (2.5jxg/ml) 10 0 .5 0.8
Indo + Taxol 17.0 2.1
Indo (1.25jJ.g/ml) 100 .6 1 .5
Indo + Taxol 23.2 2.4
Indo (0.625jxg/ml) 97.7 0.8
Indo + Taxol 25.8 2.4

CORL23(R) Taxol and Indomethacin
Taxol. 7.0ng/ml 4 1 . 2 0 .1

Indo (2.5|ig/ml) 96.5 3 .5
Indo + Taxol 26.3 0.8
Indo (1.25|xg/ml) 100.0 0 .1
Indo + Taxol 28.8 1.6
Indo (0.625jag/ml) 100.9 2 .3
Indo + Taxol 31.2 0.3

CORL23(P) Taxol and BRI 153/1
Taxol. 1.0ng/ml 30.8 3 .2

153/1 (50ng/ml) 94.5 0.9
153/1 + Taxol 9.8 2.6
153/1 (25jxg/ml) 96.7 0.4
153/1 + Taxol 17.9 1.7
153/1 (12.5(j.g/ml) 98.9 0.0
153/1 + Taxol 21.2 1.0

CORL23(R) Taxol and BRI 153/1
Taxol. 7.0ng/ml 4 2 . 1 1 .7

153/1 (50|ig/ml) 94.6 0.2
153/1 + Taxol 17.6 0.2
153/1 (25(j,g/ml) 98.5 2 .7
153/1 + Taxol 23.7 1.3
153/1 (12.5}xg/ml) 10 0 .4 0.6
153/1 + Taxol 23.4 0.2

T a b le  3 .6 .19 : %  Survival o f  C O R L23(P) and CO R L23(R ) cells in  the  

presence o f  taxol, in  com bination w ith  indom ethacin  and BR I 153/1 as found 

using  the p ro toco l detailed  in  section 2.7.3. Survival is represented as a  %  o f  

the grow th  o f  un trea ted  cells in  the sam e plate ±  S.D. R esults are the  average 

o f  trip licate  de term inations in  three separate experim ents.
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Test Sample % Cell Survival S.D.

CORL23(P) Taxol and BRI 205/4

Taxol. 1.0ng/ml 38.9 5.5

205/4 (25fig/ml) 96.8 3 .0
205/4 + Taxol 36.3 4.2
205/4 (12.5jo.g/ml) 100 .9 0.6
205/4 + Taxol 37.2 4.5
205/4 (6.25|4,g/ml) 10 0 .7 0.6
205/4 + Taxol 38.1 5.6

CORL23(R) Taxol and BRI 205/4

Taxol. 7.0ng/ml 39.9 4.9

205/4 (25|xg/ml) 99.2 5 . 1
205/4 + Taxol 34.4 5.4
205/4 (12.5^g/ml) 10 0 .7 2.4
205/4 + Taxol 35.7 5.6
205/4 (6.25|4g/ml) 1 0 1 . 1 1 .9
205/4 + Taxol 39.7 2.8

T a b le  3 .6 .20: %  Survival o f  C O R L23(P) and C O R L23(R ) cells in  the 

p resence o f  T axol, in  com bination w ith  205/4 as found using  the protocol 

detailed  in  section  2.7.3a. Survival is represented  as a  %  o f  the grow th  o f  

un trea ted  cells in  the  sam e plate ±  S.D. R esults are the  average o f  trip licate 

determ inations in  th ree  separate experim ents.
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No Anticancer 

agent

Taxol

(1 .0|ig/inl)

Cl values

No NSAID 100 +  0.0 33.1 ± 2 . 7

Indomethacin 2.5|J,g/ml 100.5 +  0.8 17.0 ± 2 . 1 0.659

B R I153/1 50|xg/ml 94.5 ±  0.2 9.8 ± 2 . 6 0.352

B R I205/4 25jJ.g/ml 96.8 ± 3 . 0 36.3 ± 4 . 2 1.365

Table: 3.6.21a: C O R L23(P), T axol +  H ighest non-toxic  concentrations o f  

Indom ethacin  and Indom ethacin  analogues.

D ata  are expressed  as %  C ell Survival ±  standard dev iation  for a  m in im um  o f  

th ree assay repeats.

No Anticancer 

agent

Taxol

(7.0f.ig/iiil)

C! values

No NSAID 100 ± 0 . 0 42.1 ±  1.7

Indomethacin 2.5|_ig/nil 96.5 ± 3 . 5 23.3 ± 0 . 8 0.688

BRI 153/1 50jj.g/ml 94.6 ±  0.2 17.6 ± 0 . 2 0.337

BRI 205/4 25ng/ml 103.2 ±  6.4 46.9 ± 2 . 6 1.045

Table: 3.6.21b: C O R L23(R ), V P16 +  H ighest non-toxic concentrations o f  

Indom ethacin  and Indom ethacin  analogues.

D ata  are expressed  as % C ell Survival ± standard deviation  for a  m in im um  o f  

three assay repeats.

Cl: Combination index values.

Cl < 1: synergism; Cl > 1: antagonism; Cl =  1: additive.
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CORL23 (S) Adr. Vin. VP-16 5-FU Taxol Taxoterc

Indo. 0.725 0.333 0.893 1.000 0.659

Sulindac
'

.

0.652 0.679

B R I88/1 0.670 0.554 0.922 1.000

llSff # f!l
B R I92/1 0.749 0.532 0.895 1.146

BRI 153/1 0.813
I K

0.352 Sill
BRI 205/4 1.000 1.365

Table 3.6.22a: Sum m ary table o f  C l values from  com bination tox ic ity  assays 

in  C O R L 23(P) cells in  section 3.6.

C l: C om bination  index  values.

C l <  1: synergism ; C l >  1: antagonism ; C l =  1: additive.

CORL23(R) A dr . Vin. VP-16 5-FU T axo l T a x o te rc

Indo. 0.626 0.417 0.572 1.114 0.688

Sulindac IIn :' ||| 0.559 0.474

BRI 88/1 0.432 0.329 0.569 1.151 jp l
BRI 92/1 0.552 0.284 0.541 1.127

BRI 153/1 0.382 l i f 0.337

BRI 205/4 1.000 1.045
■

Table 3.6.22b: Sum m ary table o f  C l values from  com bination tox icity  assays 

in  C O R L 23(R ) cells in  section 3.6.

C l: C om bination  index  values.

C l <  1: synergism ; C l >  1: antagonism ; C l =  1: additive.
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3.7 cMOAT experiments in HepG2, lung carcinoma cell line.

A  hum an  hepatic  cancer cell line, H epG 2, w as reported  by  a num ber o f  authors 

to  express a  h igh  level o f  cM O A T  (M R P2), bo th  at p ro te in  (K oike et al,

1997), and m R N A  levels (N arasaki et al, 1997). K ool et al., (1997), 

T anaguchi et al, (1996) and  K oike et al (1997), p rov ide indirect evidence that 

an  organic pum p, no tab ly  cM O A T , could  contribute to  cisp latin  resistance by 

exporting the c isp latin  -G SH  com plex. B u t they  also agree that other 

m echanism s m ay  contribute to  resistance. In  a m ore recent paper O guri et al., 

(1998), observed  no association  betw een  ante-m ortem  platinum  drug exposure 

and steady state cM O A T  m R N A  and suggests tha t cM O A T  does not p lay  a 

m ajor ro le in  p latinum  drug  resistance or transport. T hey  also suggest that the 

increased expression o f  cM O A T  m R N A , after exposure to  p latinum  drugs, is 

part o f  the norm al stress response to  xenobiotics.

3.7.1 Combination toxicity assays in the HepG2 cell line

D uffy  et al., (1998), reported  th a t the positive N S A ID s and indom ethacin 

analogues w ere unable to  po ten tia te  the toxicity  o f  cisplatin.

C om bination  tox icity  assays w ere carried  out on  the  H epG 2 cell line using a 

com bination  o f  adriam ycin  and indom ethacin, or c isp latin  and indom ethacin to  

assess i f  indom ethacin  w as capable o f  potentiating the  tox icity  o f  the cytotoxic 

drug in  cM O A T -overexpressing  H epG 2 cells. P rev iously  the com bination 

tox ic ity  assays w ere carried  out on  cell lines, w hich  overexpress MRP1 

(D LK P and CO R L23). C isp latin  is no t a  substrate for M RP1 (D uffy et al.,

1998). The m echanism  by  w hich  cells develop resistance to cisplatin  is 

p resently  unclear bu t it is postu lated  tha t th is resistance m ay be a  result o f  the 

activ ity  o f  the M R P analogue, cM O A T  in  certain  cell lines. The com bination 

tox ic ity  assay w as carried  out on  th is cell line using  a  com bination o f  cisplatin  

and indom ethacin  to  try  to  assess i f  M R P analogues, o ther than  M R P1, could 

be inh ib ited  in  the sam e w ay  as M R P1.

T he resu lts dem onstrated  th a t indom ethacin  w as capable o f  potentiating the 

tox ic ity  o f  adriam ycin  in  H epG 2 and D LK P cells (Table 3.7.1). The highest 

non-toxic  concentration  o f  indom ethacin  used  in  the H epG 2 cells w as 10|og/ml 

as com pared  to  2.5(o,g/ml for D L K P cells. H ow ever, results from  the
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com bination  tox ic ity  assays w ith  c isp latin  and indom ethacin  in  H epG 2 and 

D L K P cells revealed  that indom ethacin  w as no t capable o f  po ten tia ting  the 

tox icity  o f  c isp la tin  in  these cells (3.7.2). In terestingly  the tox ic ity  o f  cisplatin  

seem ed to  decrease w hen  com bined  w ith  indom ethacin  in  the H epG 2 and 

D L K P cell lines. The results indicate tha t either indom ethacin  is n o t a good 

substrate fo r cM O A T  (M R P2) and  is unable to  inhibit the activ ity  o f  th is pum p 

in  the  H epG 2 cells. O r they  m ay also indicate that cisp latin  is n o t a  substrate 

for cM O A T  and  inhib ition  o f  the activ ity  o f  cM O A T in  the H epG 2 cells by 

indom ethacin  d id  n o t affect the  transport o f  cisplatin  out o f  the  cell. K oike el 

al. (1997) d id  n o t detect M RP1 pro te in  expression in  the  H epG 2 cell line. 

H ow ever, N arasak i et al., (1997), reported  tha t H epG 2 cells expressed  M RP1 

at m R N A  levels. It is possib le th a t the enhancem ent o f  adriam ycin  tox icity  by 

indom ethacin  in  th e  H epG 2 cells is entirely  due to  the expression  o f  M RP1 

and m ay  n o t be  attributed to  the expression  o f  M RP2.
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DLKP, Adriamycin and Indomethacin

Test Sample % Survival S.D.

Adr. lOng/ml 46.5 1.7

Indo. (2.5fig/ml) 96..9 2.7
Indo. + Adr 11.5 6.5
Indo. (1.25|j,g/ml) 102.7 1.5
Indo. + Adr 14.1 0.9
Indo. (0.625fjg/ml) 102.5 1.4
Indo. +A dr 19.6 4.35

HepG2, Adriamycin and Indomethacin

Test Sample % Survival S.D.

Adr. 20ng/ml 58.3 1.3

Indo. (lOfig/ml) 82.7 2.7
Indo. +A dr 20.6 6.2
Indo. (5(J.g/ml) 91.4 2.5
Indo. + Adr 20.5 0.5
Indo. (2.5|j.g/ml) 102.7 1.4
Indo. + Adr 23.6 3.2

Table 3.7.1: %  Survival o f  D L K P and H epG 2 cells in  the  p resence o f  various 

concentrations o f  adriam ycin  and indom ethacin  as found using  the protocol 

detailed  in  section  2.7.3a. Survival is represented as a  %  o f  the grow th o f  

u n trea ted  cells in  the  sam e plate ±  S.D. R esults are the  average o f  trip licate 

de term inations in  th ree separate experim ents.



D LK P, Cisplatin and Indomethacin

Test Sample % Survival S.D.

Cis. 250ng/ml 3 3 .6 2.9

Indo. (2.5|xg/ml) 95 .5 1 .3
Indo. + Cis 44.1 4.2
Indo. (1.25(o.g/ml) 10 0 .7 0.9
Indo. + Cis 38.1 2.4
Indo. (0.625(j.g/ml) 10 4 .5 5.6
Indo. + Cis 35.9 3.5

H epG 2, C isplatin and indomethacin

Test Sample % Survival S.D.

Cis. 250ng/ml 3 2 .8 0.9

Indo. (10|ig/ml) 9 6 .1 1 .8
Indo. + Cis 46.7 4.5
Indo. (5|jg/ml) 10 6 .3 7.4
Indo. + Cis 49.4 0.5
Indo. (2.5ng/ml) 1 0 0 . 1 1 .4
Indo. + Cis 40.4 3.2

T a b le  3.7 .2 : Survival o f  D LK P and H epG 2 cells in  the p resence o f  various 

concentrations o f  cisplatin  and indom ethacin  as found using  the protocol 

detailed  in  section  2.7.3a. Survival is represen ted  as a %  o f  the  grow th  o f  

un treated  cells in  the  sam e plate ±  S.D. R esults are the average o f  trip licate 

determ inations in  three separate experim ents.
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3.8: In Vitro Combination Toxicity Assays: 2008 cell line.

C ertain  N S A ID s can  poten tiate  the  tox icity  o f  a  num ber o f  anticancer drugs in  

cell lines w h ich  overexpress M R P1, e.g. C O R L23(R ), D LK P, H L 60/A D R  and 

A 549 cell lines (D uffy  et al., 1998). W estern  B lo t analysis has indicated  that 

the over-expression  o f  M R P 1 is the  m ain  m ode o f  resistance in  these cell lines 

(D uffy et al., 1998; K ool et al., 1997 and C onnolly , 1999). It is now  know n 

th a t there  are a t least 6 m em bers o f  the  hum an  M R P fam ily, M R P 1-6 (B orst et 

al., 1999). A nalysis for the presence o f  a  selection  o f  M R P hom ologues w as 

undertaken  to  assess i f  the poten tia tion  o f  the tox ic ity  o f  the an ticancer drugs 

w as associated  w ith  expression o f  one m em ber o f  the  M R P fam ily  or i f  th is 

effect w as also ev iden t in  cell lines expressing different m em bers o f  th is 

transport fam ily.

T hree cell lines w ere generated by  transfec tion  o f  an  ovarian  carcinom a cell 

line, 2008, w ith  the cD N A  for M R P1, M R P2 or M RP3 and w ere used  in  a  

num ber o f  experim ents to  assess the effect o f  the  expression o f  these proteins 

o n  the tox ic ity  o f  a  num ber o f  anticancer drugs. T hese cell lines w ere received  

as a k ind  g ift from  D r. M arcel K ool and  Prof. P ie t B orst from  the D epartm ent 

o f  M olecu lar B io logy , N etherlands C ancer Institu te, A m sterdam .

T he L ong-term  tox ic ity  assays referred  to  in  th is section w ere carried  out using  

th e  sam e procedure used  fo r the tox icity  assays carried  out in  section 3.1 and 

according to  section  2 .7 .1a  and 2 .7 .3a  (i.e. 7 day tox icity  assays w hereby drug 

and/or com pound  w ere added to the cells on D ay 2 and rem ain  in  the  cells 

un til D ay  7 w hen  the  cells w ere analysed).

T he Short-term  tox icity  assays referred  to  in  this section w ere perfo rm ed  using 

the  m ethod  described  in  section 2 .7 .1b and 2 .7 .3b  (i.e. 6 day toxicity  assays 

w hereby  the  drug/com pound w ere added to  the cells on D ay 2 and w ere 

incubated  in  the cells for a period  o f  four hours only. The cells w ere then  re 

fed  w ith  fresh  m ed ia  and w ere incubated until D ay  6 w hen the cells w ere 

analysed) (K ool et al., 1999). R easons fo r using  Short-term  toxicity  assays 

versus L ong-term  toxicity  assays to analyse the effects o f  chem otherapeutic  

drug  on  these cell lines are described in  detail in  section 4.11.

T he drug  resistance profile  o f  the 2008 parental and transfected  cell lines is 

p rov ided  in  tab le  3 .8 .1a (Long-term  toxicity  assays) and 3.8.1b (Short-term  

tox ic ity  assays).
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Long-term

Adr.

ng/ml

MTX 

fig/m I

Taxol

ng/ml

Taxotere

ng/ml

Cisplatin

ng/ml

2008 P 21.0 ± 1.2 5.0 ± 0.6 7.18 + 1.1 0.98 ± 0.11 202.9 ± 15.4

2008 MRP1 117.5 ± 4.2 4.8 ± 0.2 3.0 ± 0.5 1.02 + 0.09 52.1 + 3.7

2008 MRP2 10.0 ± 0.5 5.1 ± 0.3 2.94 ± 0.7 0.95 ± 0.08 15.6 ± 1.3

2008 MRP3 19.2 ± 1.8 5.1 ± 0.2 3.1 ± 1.5 1.08 ± 0.10 31.1 + 0.8

Table 3.8.1a: IC50 values o f  chem otherapeutic drugs in  2008 parental and 

transfected  cell lines determ ined  using the long-term  toxicity  assay. These 

values are identified  as the  drug concentrations giving rise to 50%  cell kill 

relative to  un treated  control cells according to  protocol detailed  in  section 

2.7.1a.

Short-term

Adr.

ng/ml

MTX

Hg/ml

Taxol

ng/ml

Taxotere

ng/ml

2008 P 82.3+ 5.7 10.4 ± 1.1 984 ±41.0 50.6 ± 4.4

2008 MRP1 246.6 ± 9.8 903.2 + 25.2 2011 + 27.4 4.0 ± 0.5

2008 MRP2 129.0 ± 6.5 312.7 ± 19.6 968 ± 31.8 49.8 ± 5.9

2008 MRP3 250.4 ± 11.2 888.1 ± 30.4 1992 ± 20.7 26.4 ±2 .1

Table 3.8.2a: IC50 values o f  chem otherapeutic drugs in  2008 parental and 

transfected  cell lines determ ined using the short-term  toxicity  assay. These 

values are identified  as the  drug concentrations giving rise to  50%  cell kill 

relative to  un treated  control cells according to protocol detailed  in  section 

2.7.1b.

3.8.1 Analysis of 2008 cells for enhancement of adriamycin, 

methotrexate and cisplatin toxicities by indomethacin.

Toxicity  assays w ith  adriam ycin  and m ethotrexate w ere carried  on the four cell 

lines, 2008 P  (parental), 2008 M RP1, 2008 M R P2 and 2008 M R P3, to assess 

their tox icity  profile. T he results obtained from  the long-term  toxicity  assays 

w ith  adriam ycin  (table 3.8.1a) indicated that 2008 M RP1 w as approxim ately
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6-10 fo ld  m ore resistan t to  adriam ycin  than  the o ther three cell lines. 2008 

M R P3 and 2008 P  cells w ere tw o-fo ld  m ore resis tan t to  adriam ycin  than  2008 

M R P2. These resu lts suggested  tha t overexpression o f  M RP1 resulted  in  the 

g reatest level o f  resistance to  adriam ycin. Short-term  toxicity  assays on the 

2008 cells using  adriam ycin  (table 3.8.1b) ind icated  that, in  short-term  

exposure experim ents, w here the cells w ere exposed  to the anticancer drug for 

four hours only  (as described  in  section 2.7.1b), there  w as equal resistance to 

adriam ycin  in  b o th  the  M RP1 and M RP3 transfected  cells. These cell lines 

w ere only  tw o-fo ld  m ore resis tan t to  adriam ycin  th an  2008 M R P2 and th ree

fo ld  m ore resis tan t than  the 2008 parental cells. In itia l long-term  toxicity  

assays on these cell lines using  m ethotrexate (M TX ) (table 3.8.1a) failed  to 

dem onstrate any difference in  resistance levels be tw een  the parental and the 

M R P-transfected  cells. H ow ever, short-term  M T X  tox icity  assays on  the  2008 

cells show ed 2008 M RP1 and 2008 M RP3 to be alm ost 100-fold m ore 

resistan t to  M T X  than  the parental cell line. 2008 M R P2 cells w ere 30-fold  

m ore resistan t to  M T X  than  the  parental cell line (table 3.8.1b).

B ecause o f  the  differences in  the  tox icity  profiles be tw een  the short-term  and 

the long-term  tox ic ity  assays, bo th  long-term  and  short-term  com bination 

tox icity  assays, w ith  indom ethacin  in  com bination  w ith  adriam ycin or M TX , 

w ere carried  out on  these cell lines. These assays w ere carried  out to  assess i f  

po ten tia tion  o f  the  tox icity  o f  either anti-cancer drug w as possib le using either 

m ethod. T he resu lts fo r adriam ycin  in  com bination w ith  indom ethacin  (Tables

3.8.2 and 3.8.6) indicate tha t the  toxicity  o f  adriam ycin  w as potentiated  by  

indom ethacin  in  the  long term  assay, in  all four cell lines, particularly  in  the 

2008 M RP1 cells. In  the short term  assay there w as po ten tia tion  o f  the tox icity  

o f  adriam ycin  by  indom ethacin  in  the M R P 1-transfected  cells and to a  lesser 

ex ten t in  the M R P3-transfected  cells. There w as no poten tia tion  o f  adriam ycin  

tox icity  by  indom ethacin  in  either the parental or 2008 M R P2 cells. 

Indom ethacin  has been  show n, using  Inside O ut V esicles prepared from  M RP1 

overexpressing  H L 60/A D R  cells, to be a good substrate  fo r M RP1 (see section 

3.3). The resu lts from  the com bination toxicity  assays in  2008 cells indicate 

tha t indom ethacin  m ay  also be a  substrate for M R P2 and M RP3. W estern  B lot 

analysis o f  the  2008 cell lines indicated a  strong expression  o f  the transfected  

M RP1 in  the  2008 M RP1 transfected  cell line. H ow ever, basal expression  o f  

M RP1 w as detected  in  the 2008 P, 2008 M R P2 and 2008 M RP3 cells
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(C onnolly, 1999). R esults from  previous experim ents in  the  CO RL23 cell lines 

(Section  3.6) ind ica ted  tha t M RP1 pro tein  levels d id  n o t correlate w ith  the 

m agnitude o f  enhancem ent by  indom ethacin  and rela ted  active com pounds in 

these cell lines. R T -P C R  analysis show ed that M RP1 w as expressed at m R N A  

levels in  all the  2008 cell lines. The expression  o f  M RP1 m R N A  w as only 

sligh tly  stronger in  the M RP1 transfected  cell line (section 3.16). Together 

these  results m ay  indicate tha t indom ethacin  is a better substrate for M RP1 

th an  M R P2 and  M RP3 and  the poten tiation  o f  adriam ycin  by indom ethacin  

m ay  sim ply be due to  the expression  o f  M R P 1 in  all the cell lines. The poorest 

com bination  index  values for adriam ycin in  com bination w ith  indom ethacin  

w ere obtained  in  the 2008 M R P2 cells (Table 3.8.5). In  the  short-term  assays 

the  low  po ten tia tion  o f  adriam ycin  by indom ethacin  m ay suggest tha t a  four 

h our exposure period  in  the  cells is insufficient for indom ethacin  to  exert its 

po ten tia tion  effec t on  2008 cells. It appears tha t indom ethacin  is requ ired  in 

the  cells fo r a  longer period  o f  tim e for sufficient po ten tia tion  o f  adriam ycin  

tox ic ity  to occur.

Indom ethacin  poten tia ted  the  toxicity  o f  M T X  in  2008 M RP1 and to a  lesser 

ex ten t in  the  2008 M RP3 cells only, in  the long-term  toxicity  assay (Table 

3.8.4). H ow ever, in  the short-term  com bination  tox ic ity  assays there  w as 

increased  po ten tia tion  o f  M T X  in both  the  2008 P and 2008 M RP1 cells. There 

w as poorer po ten tia tion  o f  M T X  toxicity  in  the 2008 M R P3 cells in  the short

term  assay than  in  the  long-term  assay. The poorest com bination  index values 

for m etho trexate  in  com bination  w ith  indom ethacin  w ere obtained in  the 2008 

M R P2 cells (T able 3.8.5) w here there w as no evidence o f  po ten tia tion  o f  M T X  

tox ic ity  by indom ethacin  in  the  2008 M R P2 cell line in  either the long-term  or 

the short-term  assays.

P oten tial indom ethacin  interactions w ith  cisplatin  w ere investigated  using 

long-term  tox ic ity  assays. The results clearly  show  that there  w as no 

po ten tia tion  o f  th e  tox icity  o f  cisplatin  by  indom ethacin  in  any o f  the 2008 cell 

lines (Table 3 .8 .4  and 3.8.5). In terestingly , co-incubating cisp latin  w ith  

indom ethacin  appeared  to  increase the resistance o f  the cells to the an ti-cancer 

drug  instead  o f  increasing the toxicity o f  the drug as m igh t be expected. The 

resu lts indicate th a t c isp latin  is not a  good substrate fo r any o f  the M R P
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hom ologues expressed  in  the  2008 cells. In teresting ly , com paring the  IC 50 
resu lts  fo r c isp la tin  in  the  2008 cell lines ind icate  tha t the  paren tal cell line  is 

m ore  resistan t to  cisp latin  (200ng/m l) th an  the  transfec ted  2008 cells (50, 15 

and  30ng/m l fo r M R P1, M R P2 and M RP3 transfec ted  cells respectively).
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LONG TERM  ASSAY

Test Sam ple % Cell Survival S.D.

2008 P Adriam ycin and Indom ethacin

Adriamycin 20ng/ml 56 .4 8.8

Indo (1) 97.6 3 .7
Indo (1) + Adriamycin 33.3 7.9
Indo (2) 9 9 .1 1 .5
Indo (2) + Adriamycin 39.8 7.6
Indo (3) 10 0 .0 1 .0
Indo (3) + Adriamycin 41.6 8.7

2008 M RP1 Adriam ycin and Indom ethacin
Adriamycin 120ng/ml 55 .6 6.6
Indo (1) 93.5 3 .0
Indo (1) + Adriamycin 15.7 1.2
Indo (2) 9 9 .1 3 .4
Indo (2) + Adriamycin 20.7 5.1
Indo (3) 99.0 3 .5
Indo (3) + Adriamycin 25.0 3.4

2008 M RP2 Adriam ycin and Indom ethacin
Adriamycin 10ng/ml 47.8 1 .3
Indo (1) 98.9 2 .3
Indo (1) + Adriamycin 28.9 0.6
Indo (2) 10 0 .2 2.6
Indo (2) + Adriamycin 31.0 2.1
Indo (3) 99.2 1 .2
Indo (3) + Adriamycin 32.0 0.8

2008 M RP3 Adriam ycin and Indom ethacin
Adriamycin 20ng/ml 70 .7 2 .4
Indo (1) 95.0 0.8
Indo (1) + Adriamycin 45.9 4.0
Indo (2) 98.0 1 .8
Indo (2) + Adriamycin 52.4 2.1
Indo (3) 99.0 2 .3
Indo (3) + Adriamycin 53.8 1.7

Table 3.8.2a: % Survival o f  2008 P, 2008 M R P1, 2008 M R P2 and 2008 

M R P3 cells in  the  presence o f  adriam ycin, in  com bination  w ith  indom ethacin, 

as found using  the pro tocol detailed  in  section 2.7.3a. Survival is represented 

as a %  o f  the  grow th  o f  un treated  cells in  the sam e p late  ±  S.D. R esults are the 

average o f  trip licate  determ inations in  th ree separate experim ents. The 

concentrations o f  indom ethacin  were: (1) lO^ig/ml; (2) 5fj,g/ml; (3) 2.5p.g/ml.
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SHORT TERM ASSAY f-Indomethacin <®T4 hours)

Test Sample % Cell Survival S.D.

2008 P Adriamycin and Indomethacin

Adriamycin 80ng/ml 57 .4 2 .5

Indo (1) 9 2 .2 0.8
Indo (1) + Adriamycin 49.5 1.9
Indo (2) 93.0 2 . 1
Indo (2) + Adriamycin 50.2 1.4
Indo (3) 9 5 .7 1 .8
Indo (3) + Adriamycin 52.2 0.2

2008 MRP1 Adriamycin and Indomethacin
Adriamycin 250ng/ml 74 .2 2.9
Indo (1) 92.6 1 .7
Indo (1) + Adriamycin 43.8 5.0
Indo (2) 94.6 1 .7
Indo (2) + Adriamycin 52.4 8.0
Indo (3) 9 6 .1 4 . 1
Indo (3) + Adriamycin 59.0 5.8

2008 MRP2 Adriamycin and Indomethacin
Adriamycin 125ng/ml 72 .0 4.4
Indo (1) 9 0 .1 2 .5
Indo (1) + Adriamycin 58.6 4.0
Indo (2) 98.0 7.3
Indo (2) + Adriamycin 63.8 4.9
Indo (3) 1 0 1 . 1 9 .7
Indo (3) + Adriamycin 67.6 5.6

2008 MRP3 Adriamycin and Indomethacin
Adriamycin 250ng/ml 54.6 3 .3
Indo (1) 97.4 2.9
Indo (1) + Adriamycin 41.3 1.0
Indo (2) 96.5 3 .2
Indo (2) + Adriamycin 42.7 0.9
Indo (3) 96.0 3 .2
Indo (3) + Adriamycin 47.3 4.4

Table 3.8.2b: %  Survival o f  2008 P, 2008 M R P1, 2008 M R P2 and 2008 

M R P3 cells in  the presence o f  adriam ycin, in  com bination  w ith  indom ethacin, 

as found using  the  pro tocol detailed  in  section 27.3b (Short term  assay). 

Survival is represented  as a  %  o f  the  grow th o f  untreated  cells in  the  sam e 

plate ±  S.D . R esults are the average o f  trip licate determ inations in  three 

separate experim ents. The concentrations o f  indom ethacin  were: (1) 100 

|j.g/ml; (2) 50 |ig /m l; (3) 25 (xg/ml.
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LONG TERM ASSAY

Test Sample % Cell Survival S.D.

2008 P Methotrexate and Indomethacin

Methotrexate 5fig/ml 25.5 7.6
Indo (1) 96.9 1.2
Indo (1) + Methotrexate 22.5 4.2
Indo (2) 99.4 0.9
Indo (2) + Methotrexate 23.8 1.8
Indo (3) 102.3 2.3
Indo (3) + Methotrexate 24.8 2.6

2008 MRP1 Methotrexate and Indomethacin
Methotrexate 5|ag/ml 28.5 3.6
Indo (1) 93.5 0.6
Indo (1) + Methotrexate 14.1 5.2
Indo (2) 93.9 2.6
Indo (2) + Methotrexate 22.4 4.8
Indo (3) 96.7 1.0
Indo (3) + Methotrexate 25.6 3.6

2008 MRP2 Methotrexate and Indomethacin
Methotrexate 5 jag/ml 30.1 9.6
Indo (1) 90.2 4.2
Indo (1) + Methotrexate 27.0 4.1
Indo (2) 97.1 2.7
Indo (2) + Methotrexate 28.1 5.4
Indo (3) 98.2 1.4
Indo (3) + Methotrexate 29.7 9.0

2008 MRP3 Methotrexate and Indomethacin
Methotrexate 5 jig/ml 50.3 0.8
Indo (1) 95.5 3.8
Indo (1) + Methotrexate 36.6 5.9
Indo (2) 97.9 2.2
Indo (2) + Methotrexate 46.5 1.5
Indo (3) 99.9 0.7
Indo (3) + Methotrexate 46.4 4.0

T a b le  3 .8 .3a : %  Survival o f  2008 P, 2008 M R P1, 2008 M R P2 and 2008 

M R P3 cells in  the presence o f  m ethotrexate, in  com bination  w ith 

indom ethacin , as found u sing  the protocol detailed  in  section 2.7.3a. Survival 

is represented  as a  %  o f  th e  grow th o f  untreated  cells in  the sam e plate ±  S.D. 

R esults are the  average o f  triplicate determ inations in  three separate 

experim ents. T he concentrations o f  indom ethacin were: (1) 10|ag/ml; (2) 

5j_ig/ml; (3) 2.5(-ig/ml.
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SHORT TERM ASSAY (-Indomethacin @T4 hours)

Test Sample % Cell Survival S.D.

2008 P Methotrexate and Indomethacin

Methotrexate lOng/ml 53.3 6.9
Indo(l) 93.4 1.7
Indo (1) + Methotrexate 21.0 5.5
Indo (2) 96.4 2.0
Indo (2) + Methotrexate 25.8 7.9
Indo (3) 95.3 1.4
Indo (3) + Methotrexate 35.3 9.3

2008 MRP1 Methotrexate and Indomethacin 
Methotrexate 900ng/ml 42.5 1.7
Indo (1) 98.5 2.0
Indo (1) + Methotrexate 22.8 3.0
Indo (2) 96.1 4.1
Indo (2) + Methotrexate 34.2 5.0
Indo (3) 100.7 4.3
Indo (3) + Methotrexate 36.4 3.3

2008 MRP2 Methotrexate and Indomethacin 
Methotrexate 300ng/ml 30.0 4.7
Indo (1) 90.0 2.9
Indo (1) + Methotrexate 24.7 2.9
Indo (2) 92.8 0.6
Indo (2) + Methotrexate 26.6 2.6
Indo (3) 95.8 1.8
Indo (3) + Methotrexate 27.6 2.8

2008 MRP3 Methotrexate and Indomethacin 
Methotrexate 900ng/ml 37.4 3.9
Indo (1) 96.4 1.2
Indo (1) + Methotrexate 28.2 7.5
Indo (2) 97.6 3.2
Indo (2) + Methotrexate 29.3 7.5
Indo (3) 100.4 2.0
Indo (3) + Methotrexate 30.3 4.8

Table 3.8.3b: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of methotrexate, in combination with 

indomethacin, as found using the protocol detailed in section 2.7.3b (Short 

term assay). Survival is represented as a % of the growth of untreated cells in 

the same plate ± S.D. Results are the average of triplicate determinations in 

three separate experiments. The concentrations of indomethacin were: (1) 100 

|j.g/ml; (2) 50 p.g/ml; (3) 25 jj.g/ml.
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LONG TERM ASSAY

2008 P Cisplatin and Indomethacin

Cisplatin 200ng/ml 55.5 7.6
Indo (1) 98.2 5.8
Indo (1) + Cisplatin 76.8 6.5
Indo (2) 102.6 5.0
Indo (2) + Cisplatin 69.1 8.5
Indo (3) 102.5 4.2
Indo (3) + Cisplatin 60.2 6.9

2008 MRP1 Cisplatin and Indomethacin 
Cisplatin 50ng/ml 59.5 3.1
Indo (1) 96.4 0.9
Indo (1) + Cisplatin 59.2 4.7
Indo (2) 95.9 4.8
Indo (2) + Cisplatin 59.1 10.0
Indo (3) 99.7 1.9
Indo (3) + Cisplatin 58.0 7.9

2008 MRP2 Cisplatin and Indomethacin 
Cisplatin 15ng/ml 61.7 9.2
Indo (1) 103.5 4.2
Indo (1) + Cisplatin 75.0 4.4
Indo (2) 103.4 2.6
Indo (2) + Cisplatin 68.7 7.6
Indo (3) 103.6 4.5
Indo (3) + Cisplatin 61.9 8.1

2008 MRP3 Cisplatin and Indomethacin 
Cisplatin 30ng/ml 75.1 3.5
Indo (1) 92.3 3.2
Indo (1) + Cisplatin 84.4 6.4
Indo (2) 104.8 1.2
Indo (2) + Cisplatin 79.8 6.1
Indo (3) 104.4 1.5
Indo (3) + Cisplatin 76.9 5.7

Test Sample % Cell Survival S.D.

Table 3.8.4: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 MRP3 

cells in the presence of cisplatin, in combination with indomethacin, as found 

using the protocol detailed in section 2.7.3a. Survival is represented as a % of 

the growth of untreated cells in the same plate ± S.D. Results are the average 

of triplicate determinations in three separate experiments. The concentrations 

of indomethacin were: (1) 10[o.g/ml; (2) 5 jig/ml; (3) 2.5jxg/ml.
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Adr + Indo 

L.T S.T

MTX + Indo 

L.T S.T

Cis + Indo 

L.T

2008P 0.488 1.048 1.056 0.372 2.422

MRP1 0.186 0.683 0.653 0.581 1.345

MRP2 0.493 0.958 1.064 1.000 2.030

MRP3 0.433 0.860 0.738 0.879 2.198

Table 3.8.5: Summary of combination index (Cl) values for adriamycin (Adr), 

methotrexate (MTX) or cisplatin (Cis) in combination with indomethacin, 

obtained using the method of Chou and Talalay as described in section 2.16 

(Cl < 1: synergism; Cl > 1: antagonism; Cl = 1: additive.)

L.T: Long-term assay as described in section 2.7.3a

S.T (1): Short-term assay. Drug and compound removed from the cells after 4 

hours incubation and replaced with fresh medium only as described in section 

2.7.3b

S.T (2): Short-term assay. Drug and NSAID removed from the cells after 4 

hours incubation and replaced with NSAID only as described in section 2.7.3b

3.8.2 Analysis of 2008 cells for enhancement of adriamycin or 

methotrexate toxicities by sulindac.

To further investigate the effects of drug combinations in the transfected 

2008cell lines, long-term and short-term combination toxicity assays were 

carried out using a number of anti-cancer drugs in combination with the active 

NSAID, sulindac. Duffy et al., (1998), previously reported the ability of 

sulindac to enhance the anti-cancer effect of a number of chemotherapeutic 

drugs in MRP-overexpressing cell lines. The results for the long-term toxicity 

assays with adriamycin in combination with sulindac were similar to those 

obtained with adriamycin in combination with indomethacin (Table 3.8.6). 

Sulindac potentiated the toxicity of adriamycin in all of the 2008 cell lines, 

particularly in the 2008 P and 2008 MRP1 cell lines. In the long term assays
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the concentration of sulindac used in the assays (35|j.g/ml (98.3(J.M)) was 3- 

fold higher than the indomethacin concentrations used in these cells (10[j,g/ml 

(28|aM)) as sulindac was less toxic to the cells than indomethacin. This could 

account for the greater potentiation of adriamycin by sulindac in the 2008 cells 

in the long-term assay. The results suggest that sulindac is a better substrate 

for MRP1 than MRP2 and MRP3 in the long-term combination assays. The 

short-term combination toxicity assays with adriamycin and sulindac (Table 

3.8.7) also produced similar results to those obtained with adriamycin and 

indomethacin. There was no potentiation of adriamycin toxicity in the 2008 P 

and 2008 MRP2 cell lines. There was reduced potentiation of adriamycin 

toxicity by sulindac in the 2008 MRP1 and MRP3 cells as compared to that 

observed in the long-term assays. As the short-term combination assays with 

indomethacin indicated that short-term exposure to indomethacin is 

insufficient to significantly enhance the toxicity of adriamycin, an experiment 

was carried out to assess if  re-addition of the NSAID, after removing the anti

cancer drug and NSAID from the medium at the end of the four hour exposure 

time, would increase the potentiation of the drug toxicity by the NSAID. There 

was increased potentiation of adriamycin in the short term assay after re

addition of sulindac (Table 3.8.6a) compared to the short-term assay where 

sulindac was completely removed from the medium (Table 3.8.6b). However, 

the combination effect was less than that obtained in the long-term toxicity 

assay. This may be due to adriamycin being effluxed during the washing stage 

of the short-term assay as described in section 2.7.1b. The procedure requires 

four washes to ensure complete removal of the drug from the medium (Kool et 

al., 1999), so by the time sulindac-containing medium was added to the cells it 

is possible that there was less adriamycin in the cells on which to exert its 

effect.

Identical experiments were carried out using methotrexate in combination with 

sulindac and the results indicated that there was poorer potentiation of MTX 

toxicity in the long-term combination toxicity assays (Table 3.8.7a) than in the 

short-term assays for 2008 P and 2008 MRP1 cells (Table 3.8.7b). The re

addition of sulindac in the short-term assay further enhanced the toxicity of 

methotrexate in these cells which indicates that long-term maintenance of 

sulindac levels is required for optimal potentiation of the drug to occur (Table 

3.8.7c). There was poor potentiation of MTX toxicity by sulindac in both the
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2008 MRP2 and MRP3 cells in both the long term and the short term assays. 

Re-addition of sulindac to the medium in the short-term assay did not 

significantly increase the potentiation of methotrexate toxicity. The results 

suggest that MRP2 and MRP3 are also poorer transporters of sulindac than 

MRP1.

3.8.3 Analysis of 2008 cells for enhancement of taxol and taxotere 

toxicities by sulindac.

The effect of sulindac on taxotere and taxol was subsequently analysed to try 

to assess other possible substrates for MRP 1-3 and also to assess if  synergism 

between the anticancer drug and the NSAID would occur. Initial long-term 

and short-term toxicity assays were carried out to assess the toxicity profile of 

these drugs in the 2008 cell lines. In the long-term assay the IC5o values for 

taxotere were the same for all the 2008 cells (lng/ml). In the short-term assay 

the IC50 value increased to 50ng/ml for both the parental and MRP2- 

transfected cells and 25ng/ml for 2008 MRP3. However, a most unexpected 

result was obtained for 2008 MRP1. The IC50 value for 2008 MRP1 increased 

only to 4ng/ml, 12-fold less resistant than the parental and 2008 MRP2 cells. 

The result indicate that overexpression of MRP1 resulted in decreased 

resistance to taxotere in the short-term assays. The toxicity results for taxol 

show the parental 2008 cells to be approximately 2-fold more resistant to taxol 

than the transfected cell lines (7ng/ml versus 3ng/ml). In the short-term 

toxicity assay the IC50 concentration for the parental and MRP2-transfected 

cell lines increased to lOOOng/ml and the IC50 concentration for 2008 MRP1 

and MRP3 increased to 2000ng/ml.

The combination toxicity assay results indicate that greater synergy between 

taxotere/taxol and sulindac was evident in the long-term combination toxicity 

assays than in the short-term toxicity assays (Tables 3.8.8a and 3.8.8b). Again, 

re-addition of sulindac in the short-term assay demonstrated that long term 

exposure to sulindac was more effective in enhancing the anti-cancer effect of 

the chemotherapeutic drugs. The combination index values indicate that there 

was a good combination effect between taxotere and sulindac in all of the cell 

lines (Table 3.8.10a). This effect was strongest in the MRP1 and parental 2008
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cell lines despite the reduced resistance associated with MRP1. In the case of 

taxol, there was excellent synergism in all cell lines between taxol and 

sulindac (Table 3.8.9a). The strongest synergism was observed in the 2008 

MRP 1-transfected cells and the lowest combination index value for this 

particular combination was obtained for the 2008 MRP2 cells (Table 3.8.10a). 

The results for taxotere followed the trend observed with methotrexate and 

adriamycin with the strongest combination effect observed in the MRP1 and 

parental cells and poorer effects observed in the 2008 MRP2 and MRP3 cells. 

However, the results for taxol are very surprising. The combination index 

results indicate that sulindac can potentiate the toxicity of taxol to a greater 

extent than any of the other chemotherapeutic drugs. It is possible that the 

effect of sulindac on taxol may not be entirely due to sulindac interacting with 

MRP1 and could be due to an additional mechanism of action (see section

4.11.2).

207



LONG TERM ASSAY

Test Sample % Cell Survival S.D.

2008 P Adriamycin and Sulindac

Adriamycin 20ng/ml 65.4 5.1
Sul (1) 96.2 3.9
Sul (1) + Adriamycin 14.3 8.5
Sul (2) 99.4 2.6
Sul (2) + Adriamycin 24.4 4.5
Sul (3) 101.2 2.2
Sul (3) + Adriamycin 27.6 9.0

2008 MRP1 Adriamycin and Sulindac
Adriamycin 120ng/ml 61.9 7.0
Sul (1) 92.1 4.4
Sul (1) + Adriamycin 4.4 1.5
Sul (2) 97.6 1.0
Sul (2) + Adriamycin 26.9 6.0
Sul (3) 96.8 1.1
Sul (3) + Adriamycin 52.2 5.4

2008 MRP2 Adriamycin and Sulindac
Adriamycin lOng/ml 60.7 0.4
Sul (1) 95.2 3.1
Sul (1) + Adriamycin 34.3 6.6
Sul (2) 96.9 3.4
Sul (2) + Adriamycin 43.4 5.7
Sul (3) 101.7 3.6
Sul (3) + Adriamycin 44.9 4.6

2008 MRP3 Adriamycin and Sulindac
Adriamycin 20ng/ml 55.0 3.8
Sul (1) 93.9 7.2
Sul (1) + Adriamycin 30.9 2.1
Sul (2) 101.9 0.2
Sul (2) + Adriamycin 34.4 1.4
Sul (3) 97.8 3.8
Sui (3) + Adriamycin 35.1 4.1

Table 3.8.6a: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of adriamycin, in combination with sulindac, as 

found using the protocol detailed in section 2.7.3a. Survival is represented as a 

% of the growth of untreated cells in the same plate ± S.D. Results are the 

average of triplicate determinations in three separate experiments. The 

concentrations of sulindac were: (1) 35|ig/ml; (2) 17.5(ig/ml; (3) 8.75jj,g/ml.
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SHORT TERM ASSAY f-Sulindac ®T4 hours)

Test Sample % Cell Survival S.D.

2008 P Adriamycin and Sulindac

Adriamycin 80ng/ml 59.1 2.7
Sul (1) 97.3 3.6
Sul (1) + Adriamycin 59.3 6.4
Sul (2) 98.2 3.4
Sul (2) + Adriamycin 59.8 6.1
Sul (3) 99.4 1.4
Sul (3) + Adriamycin 60.5 6.4

2008 MRP1 Adriamycin and Sulindac
Adriamycin 250ng/ml 76.4 3.6
Sul (1) 92.8 2.8
Sul (1) + Adriamycin 45.0 10.8
Sul (2) 99.2 2.0
Sul (2) + Adriamycin 52.9 9.8
Sul (3) 98.0 1.4
Sul (3) + Adriamycin 61.6 9.5

2008 MRP2 Adriamycin and Sulindac
Adriamycin 125ng/ml 76.0 3.4
Sul (1) 92.8 2.3
Sul (1) + Adriamycin 71.9 1.8
Sul (2) 96.7 1.8
Sul (2) + Adriamycin 72.4 2.0
Sul (3) 101.4 2.9
Sul (3) + Adriamycin 74.4 2.9

2008 MRP3 Adriamycin and Sulindac
Adriamycin 250ng/ml 61.9 1.9
Sul (1) 96.1 1.9
Sul (1) + Adriamycin 47.5 4.2
Sul (2) 102.3 4.5
Sul (2) + Adriamycin 48.6 2.7
Sul (3) 97.7 2.4
Sul (3) + Adriamycin 50.1 5.6

Table 3.8.6b: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of adriamycin, in combination with sulindac, as 

found using the protocol detailed in section 2.7.3b (Short term assay). Survival 

is represented as a % of the growth of untreated cells in the same plate ± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of sulindac were: (1) 100 (J-g/ml; (2) 50 

jag/ml; (3) 25 jj,g/ml.
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SHORT TERM ASSAY i+Sulindac ®T4 hour)

Test Sample % Cell Survival S.D.

2008 P Adriamycin and Sulindac

Adriamycin 80ng/ml 59.5 2.7
Sul (1) 96.0 6.8
Sul (1) + Adriamycin 33.9 9.8
Sul (2) 99.7 3.2
Sul (2) + Adriamycin 47.3 4.1
Sul (3) 95.9 4.2
Sul (3) + Adriamycin 48.8 4.5

2008 MRP1 Adriamycin and Sulindac
Adriamycin 250ng/ml 76.7 2.1
Sul (1) 92.9 1.4
Sul (1) + Adriamycin 23.8 1.5
Sul (2) 93.9 1.6
Sul (2) + Adriamycin 48.2 6.7
Sul (3) 98.7 3.1
Sul (3) + Adriamycin 64.5 0.4

2008 MRP2 Adriamycin and Sulindac
Adriamycin 125ng/ml 57.7 2.7
Sul (1) 92.8 2.9
Sul (1) + Adriamycin 51.7 3.0
Sul (2) 100.3 0.3
Sul (2) + Adriamycin 54.4 6.2
Sul (3) 96.6 0.2
Sul (3) + Adriamycin 54.9 5.9

2008 MRP3 Adriamycin and Sulindac
Adriamycin 250ng/ml 51.5 10.7
Sul (1) 94.4 0.5
Sul (1) + Adriamycin 40.2 9.6
Sul (2) 100.4 7.2
Sul (2) + Adriamycin 40.4 11.2
Sul (3) 95.7 0.4
Sul (3) + Adriamycin 42.3 6.7

Table 3.8.6c: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of adriamycin, in combination with sulindac, as 

found using the protocol detailed in section 2.7.3b (Short term assay). Survival 

is represented as a % of the growth of untreated cells in the same plate ± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of sulindac were: @T0: (1) 100 ng/ml; (2) 50 

H-g/ml; (3) 25 (J-g/ml; @T4hours: (1) 35 |ig/ml; (2) 17.5 fag/ml; (3) 8.75 fig/ml
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LONG TERM ASSAY

Test Sample % Cell Survival S.D.

2008 P Methotrexate and Sulindac 

Methotrexate 5fig/ml 21.2 5.3
Sul (1) 98.4 3.5
Sul (1) + Methotrexate 12.8 3.1
Sul (2) 101.8 2.1
Sul (2) + Methotrexate 14.4 3.3
Sul (3) 102.9 2.4
Sul (3) + Methotrexate 16.2 4.4

2008 MRP1 Methotrexate and Sulindac 
Methotrexate 5(ig/ml 24.2 2.2
Sul (1) 93.5 2.4
Sul (1) + Methotrexate 11.8 1.4
Sul (2) 96.5 4.8
Sul (2) + Methotrexate 14.5 2.8
Sul (3) 99.1 5.4
Sul (3) + Methotrexate 19.1 3.6

2008 MRP2 Methotrexate and Sulindac 
Methotrexate 5^g/ml 21.6 1.4
Sul (1) 98.1 2.2
Sul (1) + Methotrexate 17.6 0.7
Sul (2) 99.5 1.4
Sul (2) + Methotrexate 18.7 1.0
Sul (3) 98.9 1.8
Sul (3) + Methotrexate 18.7 0.2

2008 MRP3 Methotrexate and Sulindac 
Methotrexate 5|og/ml 30.6 1.5
Sul (1) 91.9 3.9
Sul (1) + Methotrexate 20.5 2.0
Sul (2) 101.1 2.1
Sul (2) + Methotrexate 26.8 3.8
Sul (3) 105.2 3.9
Sul (3) + Methotrexate 28.0 2.4

Table 3.8.7a: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of methotrexate, in combination with sulindac, as 

found using the protocol detailed in section 2.7.3a. Survival is represented as a 

% of the growth of untreated cells in the same plate ± S.D. Results are the 

average of triplicate determinations in three separate experiments. The 

concentrations of sulindac were: (1) 35|j.g/ml; (2) 17.5|ig/ml; (3) 8.75|ig/ml.
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SHORT TERM ASSAY t-Sulindac tffiT4 hours)

Test Sample % Cell Survival S.D.

2008 P Methotrexate and Sulindac

Methotrexate lOfig/ml 59.2 4.8
Sul (1) 93.5 5.8
Sul (1) + Methotrexate 38.2 7.9
Sul (2) 98.2 2.1
Sul (2) + Methotrexate 38.3 9.4
Sul (3) 99.6 2.4
Sul (3) + Methotrexate 41.5 9.9

2008 MRP1 Methotrexate and Sulindac
Methotrexate 900jxg/ml 32.1 1.9
Sul (1) 97.7 2.0
Sul (1) + Methotrexate 18.3 1.6
Sul (2) 98.3 2.0
Sul (2) + Methotrexate 22.7 2.8
Sul (3) 96.7 3.6
Sul (3) + Methotrexate 28.6 2.4

2008 MRP2 Methotrexate and Sulindac
Methotrexate 300frg/ml 20.2 6.9
Sul (1) 93.2 3.1
Sul (1) + Methotrexate 14.3 5.8
Sul (2) 103.3 8.4
Sul (2) + Methotrexate 15.4 6.7
Sul (3) 97.8 4.3
Sul (3) + Methotrexate 17.2 6.2

2008 MRP3 Methotrexate and Sulindac
Methotrexate 900jig/ml 28.1 3.7
Sul (1) 95.8 6.4
Sul (1) + Methotrexate 22.9 4.3
Sul (2) 97.2 4.6
Sul (2) + Methotrexate 24.6 5.9
Sul (3) 101.5 4.6
Sul (3) + Methotrexate 26.6 6.5

Table 3.8.7b: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of methotrexate, in combination with sulindac, as 

found using the protocol detailed in section 2.7.3b (Short term assay). Survival 

is represented as a % of the growth of untreated cells in the same plate± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of sulindac were: (1) 100 ng/ml; (2) 50 

(j,g/ml; (3) 25 jag/ml.
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SHORT TERM ASSAY i+Sulindac (a).T4 hours)

Test Sample % Cell Survival S.D.

2008 P Methotrexate and Sulindac

Methotrexate 10fag/ml 50.9 6.2
Sul (1) 92.7 1.0
Sul (1) + Methotrexate 16.7 7.7
Sul (2) 98.6 1.0
Sul (2) + Methotrexate 20.8 7.4
Sul (3) 102.6 7.8
Sul (3) + Methotrexate 30.9 7.3

2008 MRP1 Methotrexate and Sulindac
Methotrexate 900|xg/ml 45.0 5.2
Sul (1) 92.0 3.3
Sul (1) + Methotrexate 16.4 2.0
Sul (2) 96.0 3.6
Sul (2) + Methotrexate 27.8 6.7
Sul (3) 102.5 6.3
Sul (3) + Methotrexate 35.0 5.4

2008 MRP2 Methotrexate and Sulindac
Methotrexate 300|ig/ml 25.5 1.4
Sul (1) 95.7 4.0
Sul (1) + Methotrexate 19.2 1.5
Sul (2) 100.1 2.0
Sul (2) + Methotrexate 20.4 3.2
Sul (3) 101.0 2.2
Sul (3) + Methotrexate 22.2 3.1

2008 MRP3 Methotrexate and Sulindac
Methotrexate 900|a,g/ml 31.2 6.7
Sul (1) 92.0 0.2
Sul (1) + Methotrexate 17.8 2.3
Sul (2) 99.7 3.8
Sul (2) + Methotrexate 21.9 1.0
Sul (3) 100.9 3.4
Sul (3) + Methotrexate 25.5 2.4

Table 3.8.7c: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of methotrexate, in combination with sulindac, as 

found using the protocol detailed in section 2.7.3b (Short term assay). Survival 

is represented as a % of the growth of untreated cells in the same plate± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of sulindac were: @T0: (1) 100 |j.g/ml; (2) 50 

(ig/ml; (3) 25 (J.g/ml; @T4hours: (1) 35 |xg/ml; (2) 17.5 |4g/ml; (3) 8.75 [xg/ml.
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LONG TERM ASSAY

2008 P Taxotere and Sulindac

Taxotere 1.0ng/ml 60.0 1.6
Sul (1) 95.1 2.7
Sul (1) + Taxotere 26.5 2.7
Sul (2) 96.7 1.5
Sul (2) + Taxotere 37.8 2.3
Sul (3) 94.5 3.2
Sul (3) + Taxotere 43.4 4.8

2008 MRP1 Taxotere and Sulindac 
Taxotere 1.0ng/ml 34.4 5.8
Sul (1) 89.5 2.3
Sul (1) + Taxotere 10.6 3.2
Sul (2) 94.8 2.8
Sul (2) + Taxotere 14.3 3.9
Sul (3) 99.5 2.5
Sul (3) + Taxotere 22.1 3.1

2008 MRP2 Taxotere and Sulindac 
Taxotere 1.0ng/ml 34.2 6.9
Sul (1) 95.9 2.9
Sul (1) + Taxotere 15.3 2.3
Sul (2) 99.2 0.5
Sul (2) + Taxotere 26.5 0.7
Sul (3) 97.7 0.8
Sul (3) + Taxotere 31.0 3.5

2008 MRP3 Taxotere and Sulindac 
Taxotere 1.0ng/ml 54.1 9.2
Sul (1) 93.5 3.8
Sul (1) + Taxotere 32.1 6.9
Sul (2) 101.5 4.8
Sul (2) + Taxotere 45.1 8.4
Sul (3) 102.5 0.6
Sul (3) + Taxotere 47.0 10.6

Test Sample % Cell Survival S.D.

Table 3.8.8a: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of taxotere, in combination with sulindac, as found 

using the protocol detailed in section 2.7.3a. Survival is represented as a % of 

the growth of untreated cells in the same plate ± S.D. Results are the average 

of triplicate determinations in three separate experiments. The concentrations 

of sulindac were: (1) 35|ag/ml; (2) 17.5(ig/ml; (3) 8.75(j,g/ml.
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SHORT TERM ASSAY f-Sulindac @T4 hours)

Test Sample % Cell Survival S.D.

2008 P Taxotere and Sulindac

Taxotere 50.0ng/ml 47.5 1.4
Sul (1) 96.5 2.3
Sul (1) + Taxotere 43.9 4.5
Sul (2) 102.5 6.1
Sul (2) + Taxotere 43.1 5.6
Sul (3) 100.5 4.0
Sul (3) + Taxotere 44.4 4.7

2008 MRP1 Taxotere and Sulindac 
Taxotere 4.0ng/ml 56.5 4.5
Sul (1) 95.3 1.2
Sul (1) + Taxotere 46.6 7.1
Sul (2) 102.5 4.5
Sul (2) + Taxotere 50.4 4.9
Sul (3) 97.9 4.1
Sul (3) + Taxotere 51.6 6.8

2008 MRP2 Taxotere and Sulindac 
Taxotere 50ng/ml 47.7 6.3
Sul (1) 94.8 1.5
Sul (1) + Taxotere 35.7 9.8
Sul (2) 98.6 2.3
Sul (2) + Taxotere 36.6 9.2
Sul (3) 99.4 1.0
Sul (3) + Taxotere 40.3 8.7

2008 MRP3 Taxotere and Sulindac 
Taxotere 25ng/ml 48.1 4.9
Sul (1) 92.9 3.5
Sul (1) + Taxotere 38.2 4.7
Sul (2) 100.6 4.4
Sul (2) + Taxotere 47.0 4.7
Sul (3) 97.9 0.7
Sul (3) + Taxotere 47.0 3.4

Table 3.8.8b: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of taxotere, in combination with sulindac, as found 

using the protocol detailed in section 2.7.3b (Short term assay). Survival is 

represented as a % of the growth of untreated cells in the same plate ± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of Sulindac were: (1) 100 |J.g/ml; (2) 50 

(ig/ml; (3) 25 (j,g/ml.
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SHORT TERM ASSAY i+Sulindac ®T4 hours)

Test Sample % Cell Survival S.D.

2008 P Taxotere and Sulindac

Taxotere 50.0ng/ml 49.3 4.2
Sul (1) 95.0 2.7
Sul (1) + Taxotere 12.5 3.2
Sul (2) 98.8 2.4
Sul (2) + Taxotere 31.5 3.0
Sul (3) 100.9 4.8
Sul (3) + Taxotere 38.6 8.5

2008 MRP1 Taxotere and Sulindac
Taxotere 4.0ng/ml 68.6 1.9
Sul (1) 91.01 1.2
Sul (1) + Taxotere 26.0 4.0
Sul (2) 93.6 1.7
Sul (2) + Taxotere 42.9 1.9
Sul (3) 98.7 2.0
Sul (3) + Taxotere 52.5 9.4

2008 MRP2 Taxotere and Sulindac
Taxotere 50ng/ml 37.1 6.7
Sul (1) 95.6 3.1
Sul (1) + Taxotere 21.9 4.2
Sul (2) 99.6 5.5
Sul (2) + Taxotere 30.0 8.3
Sul (3) 101.9 4.6
Sul (3) + Taxotere 32.9 6.9

2008 MRP3 Taxotere and Sulindac
Taxotere 25ng/ml 51.5 8.1
Sul (1) 92.6 4.2
Sul (1) + Taxotere 24.6 6.0
Sul (2) 98.9 1.4
Sul (2) + Taxotere 39.1 1.8
Sul (3) 97.7 2.1
Sul (3) + Taxotere 42.3 3.1

Table 3.8.8c: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of taxotere, in combination with sulindac, as found 

using the protocol detailed in section 2.7.3b (Short term assay). Survival is 

represented as a % of the growth of untreated cells in the same plate ± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of sulindac were: @T0: (1) 100 n-g/ml; (2) 50 

Hg/ml; (3) 25 ng/ml; @T4hours: (1) 35 (ig/ml; (2) 17.5 fJg/ml; (3) 8.75 |Jg/ml
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LONG TERM ASSAY

2008 P Taxol and Sulindac

Taxol 7.0ng/ml 35.2 3.6
Sul (1) 98.0 2.1
Sul (1) + Taxol 7.8 4.7
Sul (2) 97.7 1.2
Sul (2) + Taxol 14.3 2.4
Sul (3) 99.7 1.9
Sul (3) + Taxol 19.7 4.0

2008 MRP1 Taxol and Sulindac 
Taxol 3.0ng/ml 46.3 1.1
Sul (1) 96.1 1.0
Sul (1) + Taxol 5.0 0.9
Sul (2) 101.1 4.8
Sul (2) + Taxol 11.4 1.3
Sul (3) 100.9 2.9
Sul (3) + Taxol 30.3 1.8

2008 MRP2 Taxol and Sulindac 
Taxol 3.0ng/ml 35.9 1.1
Sul (1) 99.6 2.0
Sul (1) + Taxol 13.3 1.7
Sul (2) 100.8 0.4
Sul (2) + Taxol 18.9 1.5
Sul (3) 100.1 0.4
Sul (3) + Taxol 24.3 5.2

2008 MRP3 Taxol and Sulindac 
Taxol 3.0ng/ml 40.3 5.7
Sul (1) 95.4 3.8
Sul (1) + Taxol 8.4 5.5
Sul (2) 103.2 4.3
Sul (2) + Taxol 13.0 5.3
Sul (3) 102.5 4.0
Sul (3) + Taxol 15.8 4.6

Test Sample % Cell Survival S.D.

Table 3.8.9a: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of taxol, in combination with sulindac, as found 

using the protocol detailed in section 2.7.3a. Survival is represented as a % of 

the growth of untreated cells in the same plate ± S.D. Results are the average 

of triplicate determinations in three separate experiments. The concentrations 

of sulindac were: (1) 35|_ig/ml; (2) 17.5jag/ml; (3) 8.75|.ig/ml.
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SHORT TERM ASSAY

Test Sample %  Cell Survival S.D.

2008 P Taxol and Sulindac

Taxol 1000ng/ml 50.0 7.4

Sul (1) 98.3 2.3
Sul (1) + Taxol 33.9 10.5
Sul (2) 94.7 2.0
Sul (2) + Taxol 35.7 11.2
Sul (3) 99.3 3.0
Sul (3) + Taxol 41.1 10.6

2008 MRP1 Taxol and Sulindac 
Taxol 2000ng/ml 48.9 2.8
Sul (1) 94.0 4.6
Sul (1) + Taxol 29.3 8.7
Sul (2) 97.5 0.4
Sul (2) + Taxol 40.3 12.5
Sul (3) 100.7 0.4
Sul (3) + Taxol 42.3 5.6

2008 MRP2 Taxol and Sulindac 
Taxol 1000ng/ml 59.8 0.3
Sul (1) 97.1 0.7
Sul (1) + Taxol 34.2 0.6
Sul (2) 100.5 4.2
Sul (2) + Taxol 54.7 8.9
Sul (3) 99.9 3.1
Sul (3) + Taxol 54.5 3.3

2008 MRP3 Taxol and Sulindac 
Taxol 2000ng/ml 62.6 1.5
Sul (1) 96.1 3.4
Sul (1) + Taxol 50.5 0.8
Sul (2) 97.3 1.0
Sul (2) + Taxol 59.0 4.2
Sul (3) 96.9 4.5
Sul (3) + Taxol 59.6 0.6
Table 3.8.9b: % Survival of 2008 P, 2008 MRP I, 2008 MRP2 and 2008 

MRP3 cells in the presence of taxol, in combination with sulindac, as found 

using the protocol detailed in section 2.7.3b (Short term assay). Survival is 

represented as a % of the growth of untreated cells in the same plate± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of sulindac were: (1) 100 (ag/ml; (2) 50 

|j,g/ml; (3) 25 [ag/ml.
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Taxotere + Sulindac Taxol + Sulindac

L.T S.T(l) S.T(2) L.T S.T(l)

2008P 0.371 1.365 0.324 0.172 0.631

MRP1 0. 465 0.963 0.279 0.046 0.652

MRP2 0.612 0.977 0.851 0.283 0.590

MRP3 0.516 0.996 0.537 0.199 0.780

Table 3.8.10a: Combination index (CF' values for taxote

combination with sulindac obtained using the method of Chou and Talalay as 

described in section 2.16.

Methotrexate + Sulindac 

L.T S.T(l) S.T(2)

Adriamycin + Sulindac 

L.T S.T(l) S.T(2)

2008P 0.729 0.550 0.220 0.218 1.082 0.534

MRP1 0. 591 0.357 0.343 0.091 0.528 0.357

MRP2 0.883 0.823 0.792 0.463 1.009 0.918

MRP3 0.709 0.790 0.640 0.509 0.786 0.658

Table 3.8.10b: Combination index (Cl) values for taxotere or taxol in 

combination with sulindac obtained using the method of Chou and Talalay as 

described in section 2.16.

(Cl < 1: synergism; Cl > 1: antagonism; Cl = 1: additive.)

L.T: Long-term assay as described in section 2.7.3a

S.T (1): Short-term assay. Drug and compound removed from the cells after 4 

hours incubation and replaced with fresh medium only as described in section 

2.7.3b

S.T (2): Short-term assay. Drug and NSAID removed from the cells after 4 

hours incubation and replaced with NSAID only as described in section 2.7.3b.
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3.8.4 Analysis of 2008 cells for enhancement of adriamycin, taxol, 

taxotere and cisplatin toxicides by B R I138/1 and piroxicam.

Long-term and short-term combination toxicity assays were carried out on the 

2008 cells using taxol and taxotere in combination with piroxicam. Duffy el 

al., (1998), reported that piroxicam was not an MRP substrate and did not 

potentiate the toxicity of any of the chemotherapeutic drugs analysed. Hence, 

this NSAID was used in the combination toxicity assays as a negative control. 

The results for taxotere in combination with piroxicam in both the long-term 

and the short-term assays indicate that there is no significant synergy between 

piroxicam and taxotere in the 2008 cell lines (Table 3.8.11 and 3.8.17a). 

However, the results for taxol and piroxicam are interesting. There 

appears to be some potentiation of the toxicity of taxol by the NSAID 

piroxicam in the long-term toxicity assay (Table 3.8.12). The combination 

index values for taxol and piroxicam in the 2008 cell lines range from 0.795 

for 2008 MRP1 to 0.820 for 2008 P (Table 3.8.17a). These results indicate 

significant potentiation of the toxicity of taxol by piroxicam in the long-term 

toxicity assay. Considering these results, it is possible that there is an 

alternative or additional mechanism of taxol toxicity potentiation by NSAIDs. 

BRI 138/1, an indomethacin analogue was found to be positive in the 

combination toxicity assays in both DLKP and CORL23 cells. BRI 138/1 was 

analysed in the 2008 cell lines in combination with taxol and taxotere to assess 

if this compound was also active in an ovarian carcinoma cell line. The results 

obtained from these assays indicate that BRI 138/1 potentiated the toxicity of 

taxol, taxotere and adriamycin in the long-term combination toxicity assays 

(Tables 3.8.13, 3.8.14 and 3.8.15). Again, the toxicity of taxol was potentiated 

to a greater extent by BRI 138/1 as compared to the potentiation of adriamycin 

and taxotere by this indomethacin analogue. There was no significant 

potentiation of the toxicity of the chemotherapeutic drugs in the short-term 

assays suggesting that BRI 138/1 required a longer period of time in the cells 

to exert its enhancement effect. This indomethacin analogue, like 

indomethacin, was not able to potentiate the toxicity of cisplatin in the 2008 

cells (Table 3.8.16). This result suggests that cisplatin is not an MRP substrate.
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LONG TERM ASSAY

2008 P Taxotere and Piroxicam

Taxotere l.Ong/ml 58.9 4.8
Pirox (1) 92.4 2.1
Pirox (1) + Taxotere 48.8 2.4
Pirox (2) 99.7 0.9
Pirox (2) + Taxotere 48.8 3.5
Pirox (3) 100.6 1.6
Pirox (3) + Taxotere 51.2 1.8

2008 MRP1 Taxotere and Piroxicam

Taxotere l.Ong/ml 50.7 6.2
Pirox (1) 93.3 1.7
Pirox (1) + Taxotere 45.7 5.2
Pirox (2) 95.5 3.5
Pirox (2) + Taxotere 47.6 4.0
Pirox (3) 94.2 6.2
Pirox (3) + Taxotere 49.8 4.4

2008 MRP2 Taxotere and Piroxicam

Taxotere l.Ong/ml 44.0 10.9
Pirox (1) 97.6 1.1
Pirox (1) + Taxotere 39.4 6.6
Pirox (2) 100.2 2.8
Pirox (2) + Taxotere 40.0 3.9
Pirox (3) 96.8 0.5
Pirox (3) + Taxotere 41.8 4.1

2008 MRP3 Taxotere and Piroxicam

Taxotere l.Ong/ml 47.4 9.1
Pirox (1) 98.1 1.1
Pirox (1) + Taxotere 43.4 0.9
Pirox (2) 99.1 0.5
Pirox (2) + Taxotere 45.5 3.7
Pirox (3) 98.3 2.8
Pirox (3) + Taxotere 46.8 5.4

Test Sample % Cell Survival S.D.

Table 3.8.11a: Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 MRP3 

cells in the presence of taxotere, in combination with piroxicam, as found 

using the protocol detailed in section 2.7.3a. Survival is represented as a % of 

the growth of untreated cells in the same plate± S.D. The untreated cell 

survival % is taken as 100%. Results are the average of triplicate 

determinations in three separate experiments. The concentrations of piroxicam 

were: (1) 40|xg/ml; (2) 20fj,g/ml; (3) 10jj.g/ml.
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I SHORT TERM ASSAY

2008 P Taxotere and Piroxicam

Taxotere 50.0ng/ml 47.2 1.8
Pirox (1) 98.8 1.8
Pirox (1) + Taxotere 45.0 2.4
Pirox (2) 98.7 1.0
Pirox (2) + Taxotere 47.0 2.1
Pirox (3) 99.1 1.0
Pirox (3) + Taxotere 46.6 1.7

2008 MRP1 Taxotere and Piroxicam 
Taxotere 4.0ng/ml 41.6 7.1
Pirox (1) 99.6 3.1
Pirox (1) + Taxotere 40.9 6.4
Pirox (2) 100.3 2.7
Pirox (2) + Taxotere 41.3 7.1
Pirox (3) 100.6 0.9
Pirox (3) + Taxotere 41.6 7.1

2008 MRP2 Taxotere and Piroxicam 
Taxotere 50ng/ml 50.6 6.6
Pirox (1) 99.9 1.0
Pirox (1) + Taxotere 47.5 5.8
Pirox (2) 99.2 1.1
Pirox (2) + Taxotere 49.4 6.6
Pirox (3) 94.8 0.6
Pirox (3) + Taxotere 49.4 8.2

2008 MRP3 Taxotere and Piroxicam 
Taxotere 25ng/ml 57.8 1.8
Pirox (1) 95.2 1.1
Pirox (1) + Taxotere 56.9 0.9
Pirox (2) 95.9 1.3
Pirox (2) + Taxotere 57.6 1.9
Pirox (3) 98.2 2.6
Pirox (3) + Taxotere 58.1 0.3

Test Sample % Cell Survival S.D.

Table 3.8.11b: Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 MRP3 

cells in the presence of taxotere, in combination with piroxicam, as found 

using the protocol detailed in section 2.7.3b (Short term assay). Survival is 

represented as a % of the growth of untreated cells in the same plate ± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of piroxicam were: (1) 100 ng/ml; (2) 50 

(j.g/ml; (3) 25 ng/ml.
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2008 P Taxol and Piroxicam

Taxol 7.0ng/ml 48.9 5.0
Pirox (1) 98.4 1.5
Pirox (1) + Taxol 36.1 5.5
Pirox (2) 96.5 2.6
Pirox (2) + Taxol 37.7 7.8
Pirox (3) 99.6 1.7
Pirox (3) + Taxol 39.9 3.2

2008 MRP1 Taxol and Piroxicam 
Taxol 3.0ng/ml 51.2 3.5
Pirox (1) 97.7 1.6
Pirox (1) + Taxol 38.3 5.7
Pirox (2) 101.4 0.3
Pirox (2) + Taxol 42.4 3.0
Pirox (3) 102.6 4.1
Pirox (3) + Taxol 49.1 6.2

2008 MRP2 Taxol and Piroxicam 
Taxol 3.0ng/ml 50.2 2.9
Pirox (1) 96.9 0.5
Pirox (1) + Taxol 39.8 6.1
Pirox (2) 97.8 0.3
Pirox (2) + Taxol 42.6 4.8
Pirox (3) 99.1 0.2
Pirox (3) + Taxol 44.1 5.1

2008 MRP3 Taxol and Piroxicam 
Taxol 3.0ng/ml 55.5 5.2
Pirox (1) 97.4 2.0
Pirox (1) + Taxol 42.3 2.5
Pirox (2) 99.1 0.2
Pirox (2) + Taxol 45.9 5.0
Pirox (3) 100.3 2.3
Pirox (3) + Taxol 51.9 8.0

LONG TERM ASSAY

Test Sample %  Cell Survival S.D.

Table 3.8.12a: Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 MRP3 

cells in the presence of taxol, in combination with piroxicam, as found using 

the protocol detailed in section 2.7.3a. Survival is represented as a % of the 

growth of untreated cells in the same plate± S.D. Results are the average of 

triplicate determinations in three separate experiments. The concentrations of 

piroxicam were: (1) 40(j.g/ml; (2) 20fo,g/ml; (3) 10(ig/ml.
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SHORT TERM ASSAY

Test Sample % Cell Survival S.D.

2008 P Taxol and Piroxicam

Taxol lOOOng/ml 57.6 0.8
Pirox (1) 99.0 0.4
Pirox (1) + Taxol 51.5 4.8
Pirox (2) 95.1 1.6
Pirox (2) + Taxol 52.8 1.9
Pirox (3) 97.9 3.6
Pirox (3) + Taxol 57.2 1.0

2008 MRP1 Taxol and Piroxicam 
Taxol 2000ng/ml 53.7 3.0
Pirox (1) 98.9 0.6
Pirox (1) + Taxol 50.6 1.2
Pirox (2) 101.2 4.1
Pirox (2) + Taxol 51.2 0.7
Pirox (3) 99.7 0.9
Pirox (3) + Taxol 53.4 1.0

2008 MRP2 Taxol and Piroxicam 
Taxol lOOOng/ml 52.3 0.8
Pirox (1) 96.5 1.9
Pirox (1) + Taxol 50.5 0.8
Pirox (2) 97.7 0.4
Pirox (2) + Taxol 50.9 1.0
Pirox (3) 99.0 1.0
Pirox (3) + Taxol 51.2 0.6

2008 MRP3 Taxol and Piroxicam 
Taxol 2000ng/ml 59.4 6.2
Pirox (1) 98.8 1.1
Pirox (1) + Taxol 55.9 3.0
Pirox (2) 99.3 0.7
Pirox (2) + Taxol 57.2 1.3
Pirox (3) 101.9 4.5
Pirox (3) + Taxol 57.5 0.9

Table 3.8.12b: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of taxol, in combination with piroxicam, as found 

using the protocol detailed in section 2.7.3b (Short term assay). Survival is 

represented as a % of the growth of untreated cells in the same plate± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of piroxicam were: (1) 100 |ig/ml; (2) 50 

fig/ml; (3) 25 ng/ml.
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LONG TERM ASSAY

Test Sample % Cell Survival S.D.

2008 P Taxotere and BRI 138/1

Taxotere 1.0ng/ml 42.8 9.2
138/1(1) 95.6 1.8
138/1 (1) + Taxotere 20.6 0.5
138/1 (2) 100.0 2.5
138/1 (2) + Taxotere 27.9 3.0
138/1 (3) 100 7.2
138/1 (3) + Taxotere 33.8 1.3

2008 MRP1 Taxotere and 138/1 
Taxotere 1.0ng/ml 43.6 5.4
138/1 (1) 96.7 3.2
138/1 (1) + Taxotere 9.2 1.9
138/1 (2) 100.0 0.8
138/1 (2) + Taxotere 13.2 0.9
138/1 (3) 100.2 0.8
138/1 (3) + Taxotere 21.8 1.3

2008 MRP2 Taxotere and 138/1 
Taxotere 1.0ng/ml 38.1 3.9
138/1(1) 91.4 5.4
138/1 (1) + Taxotere 16.0 3.0
138/1 (2) 101.9 4.4
138/1 (2) + Taxotere 17.0 0.8
138/1 (3) 100.9 3.1
138/1 (3) + Taxotere 19.1 2.0

2008 MRP3 Taxotere and 138/1 
Taxotere 1.0ng/ml 40.0 7.7
138/1 (1) 93.3 2.5
138/1 (1) + Taxotere 9.5 0.9
138/1(2) 95.5 1.5
138/1 (2) + Taxotere 10.5 3.7
138/1 (3) 99.9 2.8
138/1 (3) + Taxotere________122_______   5.4

Table 3.8.13a: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of taxotere, in combination with BRI 138/1, as 

found using the protocol detailed in section 2.7.3a. Survival is represented as a 

% of the growth of untreated cells in the same plate± S.D. Results are the 

average of triplicate determinations in three separate experiments. The 

concentrations of 138/1 were: (1) 35p,g/ml; (2) 17.5(j.g/ml; (3) 8.75(j,g/ml.
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I SHORT TERM ASSAY

Test Sample % Cell Survival S.D.

2008 P Taxotere and 138/1

Taxotere 50.0ng/ml 47.3 3.2
138/1 (1) 93.6 5.7
138/1 (1) + Taxotere 35.2 4.5
138/1 (2) 98.5 4.3
138/1 (2) + Taxotere 40.5 3.7
138/1 (3) 100.1 0.6
138/1 (3) + Taxotere 43.2 2.6

2008 MRP1 Taxotere and 138/1
Taxotere 4.0ng/ml 60.6 2.7
138/1 (1) 94.8 2.8
138/1 (1) + Taxotere 51.4 6.6
138/1 (2) 96.8 0.5
138/1 (2) + Taxotere 56.1 8.3
138/1 (3) 101.5 1.1
138/1 (3) + Taxotere 59.4 4.9

2008 MRP2 Taxotere and 138/1
Taxotere 50ng/ml 44.5 0.6
138/1 (1) 91.3 0.1
138/1 (1) + Taxotere 32.9 2.8
138/1 (2) 95.9 8.9
138/1 (2) + Taxotere 40.3 3.4
138/1 (3) 100.0 2.6
138/1 (3) + Taxotere 40.5 3.2

2008 MRP3 Taxotere and 138/1
Taxotere 25ng/ml 43.6 7.1
138/1(1) 94.3 3.0
138/1 (1) + Taxotere 31.2 7.5
138/1 (2) 95.6 2.3
138/1 (2) + Taxotere 34.9 6.7
138/1 (3) 100.7 6.9
138/1 (3) + Taxotere 37.0 5.0

Table 3.8.13b: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of taxotere, in combination with BRI 138/1, as 

found using the protocol detailed in section 2.7.3b (Short term assay). Survival 

is represented as a % of the growth of untreated cells in the same plate± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of 138/1 were: (1) 100 |J.g/ml; (2) 50 (ig/ml; 

(3) 25 |j.g/ml.
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2008 P Taxol and BRI 138/1

Taxol 7.0ng/ml 39.6 0.5
138/1 (1) 96.6 3.1
138/1 (1) + Taxol 10.4 1.0
138/1 (2) 98.9 2.7
138/1 (2) + Taxol 15.6 1.6
138/1 (3) 100.3 0.8
138/1 (3) + Taxol 24.0 1.0

2008 MRP1 Taxol and BRI 138/1 
Taxol 3.0ng/ml 35.4 1.2
138/1 (1) 96.5 3.9
138/1 (1) + Taxol 5.6 2.9
138/1(2) 97.2 1.3
138/1 (2) + Taxol 15.3 0.7
138/1(3) 99.3 1.3
138/1 (3) + Taxol 23.1 2.4

2008 MRP2 Taxol and BRI 138/1 
Taxol 3.0ng/ml 35.3 7.2
138/1 (1) 93.9 2.2
138/1 (1) + Taxol 7.6 5.1
138/1(2) 98.0 1.5
138/1 (2) + Taxol 15.6 8.2
138/1 (3) 100.3 1.9
138/1 (3) + Taxol 20.5 8.3

2008 MRP3 Taxol and BRI 138/1 
Taxol 3.0ng/ml 32.6 7.1
138/1 (1) 90.5 10.3
138/1 (1) + Taxol 3.4 0.6
138/1 (2) 99.8 0.3
138/1 (2) + Taxol 11.0 1.9
138/1(3) 101.5 2.5
138/1 (3) + Taxol 21.8 6.5

LONG TERM ASSAY

Test Sample % Cell Survival S.D.

Table 3.8.14a: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of taxol, in combination with BRI 138/1, as found 

using the protocol detailed in section 2.7.3a. Survival is represented as a % of 

the growth of untreated cells in the same plate± S.D. Results are the average of 

triplicate determinations in three separate experiments. The concentrations of 

BRI 138/1 were: (1) 35|ig/ml; (2) 17.5jxg/ml; (3) 8.75|ag/ml.
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SHORT TERM ASSAY

2008 P Taxol and B R I138/1

Taxol lOOOng/ml 52.9 2.6
138/1(1) 93.0 3.2
138/1 (1) + Taxol 43.5 1.8
138/1 (2) 97.6 0.6
138/1 (2) + Taxol 47.8 0.5
138/1 (3) 98.6 1.6
138/1 (3) + Taxol 50.3 2.3

2008 MRP1 Taxol and BRI 138/1 
Taxol 2000ng/ml 49.6 1.0
138/1 (1) 92.5 0.6
138/1 (1) + Taxol 44.5 1.3
138/1 (2) 97.7 2.6
138/1 (2) + Taxol 46.5 0.1
138/1 (3) 99.3 1.9
138/1 (3) + Taxol 48.5 1.0

2008 MRP2 Taxol and BRI 138/1 
Taxol lOOOng/ml 54.6 2.1
138/1 (1) 95.6 2.7
138/1 (1) + Taxol 51.6 4.3
138/1 (2) 96.5 2.4
138/1 (2) + Taxol 51.6 4.1
138/1(3) 94.1 1.7
138/1 (3) + Taxol 56.8 0.9

2008 MRP3 Taxol and BRI 138/1 
Taxol 2000ng/ml 46.1 1.0
138/1(1) 93.8 1.7
138/1 (1) + Taxol 35.3 3.0
138/1 (2) 94.3 2.9
138/1 (2) + Taxol 40.9 2.3
138/1(3) 101.7 2.4
138/1 (3) + Taxol 39.2 0.6

Test Sample % Cell Survival S.D.

Table 3.8.14b: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of taxol, in combination with BRI 138/1, as found 

using the protocol detailed in section 2.7.3b (Short term assay). Survival is 

represented as a % of the growth of untreated cells in the same plate± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of BRI 138/1 were: (1) 100 |J.g/ml; (2) 50 

fxg/ml; (3) 25 fig/ml.
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LONG TERM ASSAY

2008 P Adriamycin and BRI 138/1

Adriamycin 20ng/ml 54.1 2.4
138/1 (1) 93.9 4.0
138/1 (1) + Adriamycin 25.7 2.4
138/1 (2) 100.4 2.6
138/1 (2) + Adriamycin 38.3 1.2
138/1 (3) 103.7 4.0
138/1 (3) + Adriamycin 48.1 1.1

2008 MRP1 Adriamycin and BRI 138/1 
Adriamycin 120ng/ml 49.3 3.7
138/1(1) 94.5 4.1
138/1 (1) + Adriamycin 12.6 3.2
138/1 (2) 98.7 4.9
138/1 (2) + Adriamycin 25.1 3.3
138/1 (3) 101.5 3.1
138/1 (3) + Adriamycin 32.8 1.3

2008 MRP2 Adriamycin and BRI 138/1 
Adriamycin 10ng/ml 46.5 5.5
138/1(1) 92.2 1.3
138/1 (1) + Adriamycin 22.6 3.5
138/1(2) 94.5 1.6
138/1 (2) + Adriamycin 33.2 2.2
138/1 (3) 100.2 4.4
138/1 (3) + Adriamycin 36.7 4.8

2008 MRP3 Adriamycin and BRI 138/1 
Adriamycin 20ng/ml 75.9 3.2
138/1(1) 93.1 2.1
138/1 (1) + Adriamycin 49.2 4.8
138/1 (2) 95.7 1.7
138/1 (2) + Adriamycin 54.4 5.8
138/1 (3) 98.0 2.0
138/1 (3) + Adriamycin 63.4 4.0

Test Sample % Cell Survival S.D.

Table 3.8.15: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of adriamycin, in combination with BRI 138/1, as 

found using the protocol detailed in section 2.7.3a. Survival is represented as a 

% of the growth of untreated cells in the same plate± S.D. Results are the 

average of triplicate determinations in three separate experiments. The 

concentrations of BRI 138/1 were: (1) 35fig/ml; (2) 17.5|j.g/ml; (3) 8.75fxg/ml.
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LONG TERM ASSAY

Test Sample % Cell Survival S.D.

2008 P Cisplatin and B R I138/1

Cisplatin 200ng/ml 56.7 8.3
138/1 (1) 93.9 5.9
138/1 (1) + Cisplatin 74.9 9.7
138/1 (2) 97.6 1.6
138/1 (2) + Cisplatin 70.4 7.9
138/1 (3) 98.9 5.5
138/1 (3) + Cisplatin 64.7 7.4

2008 MRP1 Cisplatin and BRI 138/1
Cisplatin 50ng/ml 58.0 4.9
138/1 (1) 93.0 2.9
138/1 (1) + Cisplatin 59.1 4.0
138/1 (2) 99.2 8.2
138/1 (2) + Cisplatin 58.6 6.6
138/1 (3) 101.2 7.0
138/1 (3) + Cisplatin 58.0 5.8

2008 MRP2 Cisplatin and BRI 138/1
Cisplatin 15ng/ml 58.0 3.8
138/1 (1) 94.0 8.9
138/1 (1) + Cisplatin 64.2 3.5
138/1 (2) 96.1 2.1
138/1 (2) + Cisplatin 62.2 5.0
138/1 (3) 100.7 7.3
138/1 (3) + Cisplatin 59.5 7.0

2008 MRP3 Cisplatin and BRI 138/1
Cisplatin 30ng/ml 78.4 0.8
138/1 (1) 92.0 3.4
138/1 (1) + Cisplatin 90.1 6.8
138/1 (2) 108.0 0.1
138/1 (2) + Cisplatin 83.0 9.1
138/1 (3) 110.4 11.5
138/1 (3) + Cisplatin 81.5 0.3

Table 3.8.16: % Survival of 2008 P, 2008 MRP1, 2008 MRP2 and 2008 

MRP3 cells in the presence of cisplatin, in combination with BRI 138/1, as 

found using the protocol detailed in section 2.7.3a. Survival is represented as a 

% of the growth of untreated cells in the same plate± S.D. Results are the 

average of triplicate determinations in three separate experiments. The 

concentrations of BRI 138/1 were: (1) 35[ig/ml; (2) 17.5 jig/ml; (3) 8.75|j,g/ml.
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Taxotere+ Piroxicam 

L.T S.T

Taxol + Piroxicam 

L.T S.T

2008P 0.978 0.960 0.820 1.007

MRP1 0.942 1.004 0.795 1.042

MRP2 0.938 0.978 0.817 1.000

MRP3 0.954 1.026 0.801 0.930

Tabic 3.8.17a: Combination index (Cl) values for taxotere or taxol in 

combination with piroxicam, obtained using the method of Chou and Talalay 

as described in section 2.16.

Taxotere +138/1 

L.T S.T

Taxol +138/1 

L.T S.T

Adr.+138/l

L.T

Cis. +138/1 

LT

2008P 0.576 0.940 0.580 1.212 0.476 1.007

MRP1 0.340 1.000 0.230 1.336 0.222 1.042

MRP 2 0.649 0.927 0.235 1.503 0.454 1.000

MRP3 0.438 0.930 0.227 1.188 0.724 0.930

Table 3.8.17b: Combination index (Cl) values for taxotere, taxol, adriamycin 

(Adr) or cisplatin (Cis) in combination with BRI 138/1, obtained using the 

method of Chou and Talalay as described in section 2.16.

(Cl < 1: synergism; Cl > 1: antagonism; Cl = 1: additive.)

L.T: Long-term assay as described in section 2.7.3a

S.T (1): Short-term assay. Drug and compound removed from the cells after 4 

hours incubation and replaced with fresh medium only as described in section 

2.7.3b
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Adriamycin Methotrexate Cisplatin
Indomethacin LT ST(1) ST(2) LT ST(1) ST(2) LT

2008 P 0.488 1.048 1.056 0.372 2.422
2008 MRP1 0.186 0.683 0.653 0.581 1.345
2008 MRP2 0.493 0.958 1.064 1.000 2.030

2008 MRP3 0.433 0.860 0.738 0.879 2.198
Sulindac

2008 P 0.218 1.082 0.534 0.729 0.550 0.220

2008 MRP1 0.091 0.528 0.357 0.591 0.357 0.343

2008 MRP2 0.463 1.009 0.918 0.883 0.823 0.792

2008 MRP3 0.509 0.786 0.658 0.709 0.790 0.640

B.RI 138/1

2008 P 0.476 1.007

2008 MRP1 0.222 1.042

2008 MRP2 0.454 1.000

2008 MRP3 0.724 0.930

Table 3.8.18a: Summary table with Combination index (Cl) values for the 

highest concentrations of adriamycin, methotrexate and cisplatin in 

combination with indomethacin, sulindac, BRI 138/1 and piroxicam.

(Cl < 1: synergism; Cl > 1: antagonism; Cl = 1: additive.)

L.T: Long-term assay as described in section 2.7.3a.

S.T (1): Short-term assay. Drug and compound removed from the cells after 4 

hours incubation and replaced with fresh medium only as described in section 

2.7.3b.

S.T (2): Short-term assay. Drug and NSAID removed from the cells after 4 

hours incubation and replaced with NSAID only as described in section 2.7.3b.
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Taxol Taxotere

LT ST(1) LT ST(1) ST(2)

Sulindac

2008 P 0.172 0.631 0.371 1.365 0.324
2008 MR IM 0.046 0.652 0.465 0.963 0.279
2008 MRP2 0.283 0.590 0.612 0.977 0.851

2008 MRP3 0.199 0.780 0.516 0.996 0.537
BRI 138/1

2008 P 0.580 1.212 0.576 0.940

2008 MRP1 0.230 1.336 0.340 1.000

2008 MRP2 0.235 1.503 0.649 0.927

2008 MRP3 0.227 1.188 0.438 0.930

Piroxicam

2008 P 0.820 1.007 0.978 0.960

2008 MRP1 0.795 1.042 0.942 1.004

2008 MRP2 0.817 1.000 0.938 0.978

2008 MRP3 0.801 0.930 0.954 1.026

Table 3.8.18b: Summary table with Combination index (Cl) values for the 

highest concentrations of taxol and taxotere in combination with 

indomethacin, sulindac, BRI 138/1 and piroxicam.

(Cl < 1: synergism; Cl > 1: antagonism; Cl = 1: additive.)

L.T: Long-term assay as described in section 2.7.3a.

S.T (1): Short-term assay. Drug and compound removed from the cells after 4 

hours incubation and replaced with fresh medium only as described in section 

2.7.3b.

S.T (2): Short-term assay. Drug and NSAID removed from the cells after 4 

hours incubation and replaced with NSAID only as described in section 2.7.3b.
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3.9 RT-PCR analysis o f 2008(P), 2008 M RP1, 2008 M RP2 and 

2008 M RP3 cell lines.

RT-PCR analysis was carried out on all the 2008 cell lines to characterise the 

MRP mRNA expression in these cells and to compare the levels of MRP 

mRNA to protein expression in the analysed cells. Photographs of the RT-PCR 

gels and densitometric analysis of the bands are in section 3.16. The sequences 

for the primers used for MRP 1-5 PCR were identical to those used by Kool et 

al., (1997). The sequence for the primers for MRP6 were obtained from 

O’Neill et al, 1998.

3.9.1 MRP1 mRNA expression

MRP1 RT-PCR analysis of the 2008 P, 2008 MRP1, MRP2 and MRP3 cells 

indicated that there was very little difference in expression of MRP 1 in all of 

the 2008 cell lines. There appeared to be an up-regulation of MRP 1 expression 

in the transfected 2008 MRP1 cell line and slight down regulation of MRP1 

mRNA in the 2008 MRP3 cells (Figure 3.16.1a). Western blot analysis of 

these cell lines using the MRP specific rat monoclonal antibody (MAb), 

MRPrl, demonstrated a very strong expression of MRP1 in the MRP1 

transfected cells. However, there was also a low level of MRP expression in 

the 2008 P, 2008 MRP2 and 2008 MRP3 cells (Connolly, 1999). The results 

indicate that regulation of MRP1 expression may be post-transcriptional and 

that MRP1 mRNA expression does not correlate with MRP1 protein levels in 

these 2008 cell lines.

3.9.2 MRP2 mRNA expression

MRP2 RT-PCR analysis of the 2008 P, 2008 MRP1, MRP2 and MRP3 cells 

indicated that there was a very low expression of MRP2 in the parental 2008 

cell line. MRP2 was upregulated in the 2008 MRP1 and MRP3 transfected cell 

lines as compared to the parental cell line. However, the expression of MRP2 

mRNA was strongest in the 2008 cell line transfected with MRP2 cDNA 

(Figure 3.16.2a). Western blot analysis of these cell lines using the MRP2 

specific, mouse MAb, M2III-6, demonstrated a very strong expression of
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MRP2 in the MRP2-transfected cells only (Connolly, 1999). There appeared to 

be no expression of MRP2 in the parental and MRP1 and MRP3 transfected 

2008 cell lines.

3.9.3 MRP3 mRNA expression

MRP3 RT-PCR analysis of the 2008 P, 2008 MRP1, MRP2 and MRP3 cells 

indicated that there was highest expression of MRP3 mRNA in the 2008 

MRP3- transfected cell line. There were similarly low levels of MRP3 mRNA 

expression in the 2008 parental and 2008 MRP1 cell lines. The expression of 

MRP3 mRNA was down-regulated in the 2008 MRP2-transfected cell line as 

compared to expression of MRP3 mRNA in the parental 2008 cell line (Figure

3.16.3). Western blot analysis of these cell lines using the MRP3 specific 

mouse MAb, M311-21, demonstrated a very strong expression of MRP3 in the 

MRP3 transfected cells only (Connolly, 1999). There seemed to be no 

expression of MRP3 in the parental and MRP1 and MRP2-transfected 2008 

cell lines.

3.9.4 MRP4 mRNA expression

MRP4 RT-PCR analysis of the 2008 P, 2008 MRP1, MRP2 and MRP3 cells 

indicated that there was a low expression of MRP4 mRNA in the 2008 

parental cell line. A similar level of expression of MRP4 mRNA was observed 

in the 2008 MRP3 transfected cell line. There was an up-regulation of MRP4 

mRNA in the MRP2 2008 transfected cells as compared to the 2008 parental 

cell line. The expression of MRP4 mRNA was strongest in the 2008 MRP1 

transfected cell line (Figure 3.16.4a). Western Blot analysis for MRP4 was not 

carried out on these cell lines.

3.9.5 MRP5 mRNA expression

MRP5 RT-PCR analysis of the 2008 P, 2008 MRP1, MRP2 and MRP3 cells 

indicated that MRP5 mRNA was expressed in all four cells lines. There 

appeared to be down-regulation of MRP5 mRNA in the 2008 MRP1, MRP2 

and MRP3 transfected cell lines as compared to the level of MRP5 mRNA in
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the parental cell line (Figure 3.16.5a). Western Blot analysis for MRP5 was 

not carried out on these cell lines.

3.9.6 MRP6 mRNA expression

MRP6 RT-PCR analysis of the 2008 P, 2008 MRP1, MRP2 and MRP3 cells 

indicated that MRP6 mRNA was expressed in all four cells lines. There 

appeared to an up-regulation of MRP6 mRNA in the 2008 MRP1, MRP2 and 

MRP3 transfected cell lines as compared to the level of MRP6 mRNA in the 

parental cell line (Figure 3.16.6). The highest expression of MRP6 mRNA was 

evident in the 2008 MRP2 cell line. Western Blot analysis for MRP6 was not 

carried out on these cell lines.

3.9.7 MDR1 mRNA expression

MDR1 RT-PCR analysis of the 2008 P, 2008 MRP1, MRP2 and MRP3 cells 

indicated that MDR1 mRNA was expressed in all four cells lines. There 

appeared to an up-regulation of MDR1 mRNA in the 2008 MRP1 and MRP2 

transfected cell lines as compared to the level of MDR1 mRNA in the parental 

2008 and MRP3 transfected cell lines (Figure 3.16.7). The highest expression 

of MDR1 mRNA was evident in the 2008 MRP2 cell line. Western Blot 

analysis for MDR1 was not carried out on these cell lines.
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3.10 Investigation of enhancem ent of chemotherapeutic drugs by 

sulindac and indomethacin in a range o f cancer cell lines.

To investigate if  the potentiation of taxol and taxotere by sulindac and 

indomethacin was limited to particular cell lines, combination toxicity assays 

using taxol, taxotere and adriamycin in combination with indomethacin or 

sulindac were carried out on four more cell lines. The cell lines analysed were 

a breast cancer cell line, MCF-7, a poorly differentiated human lung cancer 

cell line, DLKP, and a human lung adenocarcinoma cell line, A549, from two 

different sources, the NCTCC cell culture collection (originally from the 

ATCC) and Quintiles. Long-term combination toxicity assays were used to 

analyse these cell lines as it had been demonstrated in section 3.8 that both 

indomethacin and sulindac required longer incubation periods in the cells to 

exert their enhancement effect. As it was already known that indomethacin 

enhances the toxicity of adriamycin in the DLKP cell line (section 3.1), initial 

combination toxicity assays were carried out to assess if this effect was similar 

in the other cell lines. The results indicate that indomethacin also potentiated 

the toxicity of adriamycin in the MCF-7 and A549 cell lines, although the 

enhancement effect was not as good as that observed in the DLKP cells (Table

3.10.1).

The toxicity of taxol or taxotere in combination with indomethacin was 

subsequently analysed in the four cell lines. The results indicated that 

indomethacin was unable to significantly potentiate the toxicity of taxol in the 

DLKP, MCF-7 and A549 cell lines (Table 3.10.2). There is a small 

enhancement of the toxicity of taxotere by indomethacin in the DLKP and 

MCF-7 cell lines (Table 3.10.3) but no enhancement of the toxicity of this 

drug by indomethacin in the A549 cell lines.

Taxol and taxotere were then analysed in these cell lines in combination with 

sulindac and the results showed that there is very good synergism between 

taxol + sulindac and taxotere + sulindac in the DLKP cell line. There was 

average potentiation of taxol by sulindac in the MCF-7 cell line and only a 

very weak potentiation of taxotere by sulindac in the same cell line. Sulindac 

was unable to potentiate the toxicity of taxol or taxotere in either the A549 

cells (Tables 3.10.5, 3.10.6 and 3.10.7).
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Test Sample % Cell Survival

DLKP, Adriamycin and Indomethacin

Adr. 10ng/ml 46.6 5.1
Indo (1) 96.0 2.4
Indo (1) + Adr 12.9 1.1
Indo (2) 95.7 2.4
Indo (2) + Adr 28.1 3.9
Indo (3) 99.3 0.4
Indo (3 ) + Adr 40.1 1.1

1.8
2.7
5.3 
2.5
5.4 
3.9
7.4

5.0
6.5
5.2 
0.4
5.2
1.3

A549 (Quintiles) Adriamycin and Indomethacin
Adr. 50ng/ml 48.2 3.6
Indo (1) 93.6 2.6
Indo (1) + Adr 28.9 3.6
Indo (2) 98.4 1.9
Indo (2) + Adr 34.1 0.5
Indo (3) 98.6 1.3
Indo (3) + Adr 39.4 2.7

Table 3.10.1: % Survival of DLKP, MCF-7 (Quintiles), A549 (Quintiles) and 

A549 (NCTCC) cells in the presence of various concentrations of adriamycin 

and indomethacin as found using the protocol detailed in section 2.7.3a. 

Survival is represented as a % of the growth of untreated cells in the same 

plate ± S.D. Results are the average of triplicate determinations in three 

separate experiments. The concentrations of indomethacin were: (1) 2.5 |j.g/ml; 

(2) 1.25 ng/ml; (3) 0.625 ng/ml.

MCF-7 (Quintiles) Adriamycm and Indometha
Adr. 30ng/ml 54.0
Indo (1) 96.0
Indo (1) + Adr 29.1
Indo (2) 97.0
Indo (2) + Adr 37.0
Indo (3) 98.3
Indo (3) + Adr 41.8

A549 (NCTCC) Adriamycin and Indomethacin
Adr. 50ng/ml 47.2
Indo (1) 94.6
Indo (1) + Adr 24.2
Indo (2) 100.3
Indo (2) + Adr 36.4
Indo (3) 99.3
Indo (3) + Adr 41.7
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Test Sample % Cell Survival S.D.

DLKP, Taxol and Indomethacin

Taxol. 1.0ng/ml 59.0 6.2
Indo (1) 97.8 4.7
Indo (1) + Taxol 50.7 3.9
Indo (2) 100.7 1.1
Indo (2) + Taxol 56.1 3.5
Indo (3) 93.9 0.7
Indo (3 ) + Taxol 57.5 4.4

MCF-7 (Quintiles) Taxol and Indomethacin
Taxol. 2.0ng/ml 33.6 7.9
Indo (1) 96.0 2.3
Indo (1) + Taxol 27.7 8.5
Indo (2) 102.3 1.5
Indo (2) + Taxol 31.9 5.2
Indo (3) 108.5 7.5
Indo (3 ) + Taxol 30.2 1.9

A549 (NCTCC) Taxol and Indomethacin
Taxol. 1.2ng/ml 78.4 9.4
Indo (1) 92.6 3.5
Indo (1) + Taxol 65.8 6.9
Indo (2) 91.7 4.0
Indo (2) + Taxol 67.7 8.0
Indo (3) 99.2 3.3
Indo (3 ) + Taxol 72.4 3.9

A549 (Quintiles) Taxol and Indomethacin
Taxol. 1.2ng/ml 50.0 4.7
Indo (1) 95.6 1.5
Indo (1) + Taxol 42.7 0.6
Indo (2) 99.8 2.2
Indo (2) + Taxol 50.9 1.9
Indo (3) 95.8 5.1
Indo (3 ) + Taxol 46.7 3.2

Table 3.10.2: % Survival of DLKP, MCF-7 (Quintiles), A549 (Quintiles) and 

A549 (NCTCC) cells in the presence of various concentrations of taxol and 

indomethacin as found using the protocol detailed in section 2.7.3a. Survival is 

represented as a % of the growth of untreated cells in the same plate ± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of indomethacin were: (1) 2.5 (ig/ml; (2) 1.25 

|o,g/ml; (3) 0.625 fig/ml.
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Test Sample % Cell Survival S.D.

DLKP, Taxotere and Indomethacin

Taxotere. 1.0ng/ml 46.0 4.8
Indo (1) 96.8 0.9
Indo (1) + Taxotere 38.0 2.9
Indo (2) 98.2 1.7
Indo (2) + Taxotere 39.4 1.6
Indo (3) 96.7 5.5
Indo (3) + Taxotere 41.4 5.1

MCF-7 (Quintiles) Taxotere and Indomethacin 
Taxotere. 2.0ng/ml 26.5 5.9
Indo (1) 102.7 7.3
Indo (1) + Taxotere 20.4 2.2
Indo (2) 97.3 1.2
Indo (2) + Taxotere 21.3 1.9
Indo (3) 98.3 2.8
Indo (3) + Taxotere 22.2 2.0

A549 (NCTCC) Taxotere and Indomethacin 
Taxotere. 1.2ng/ml 42.1 6.5
Indo (1) 98.3 1.7
Indo (1) + Taxotere 33.1 7.7
Indo (2) 102.1 5.3
Indo (2) + Taxotere 36.2 6.1
Indo (3) 102.7 2.6
Indo (3) + Taxotere 39.2 5.4

A549 (Quintiles) Taxotere and Indomethacin 
Taxotere. 1.2ng/ml 42.0 5.9
Indo (1) 93.9 1.2
Indo (1) + Taxotere 36.2 3.9
Indo (2) 97.3 3.2
Indo (2) + Taxotere 39.6 2.5
Indo (3) 96.6 2.0
Indo (3) + Taxotere 40.0 3.2

Table 3.10.3: % Survival of DLKP, MCF-7 (Quintiles), A549 (Quintiles) and 

A549 (NCTCC) cells in the presence of various concentrations of taxotere and 

indomethacin as found using the protocol detailed in section 2.7.3a. Survival is 

represented as a % of the growth of untreated cells in the same plate ± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of indomethacin were: (1) 2.5 H-g/ml; (2) 1.25 

fj.g/ml; (3) 0.625 (j.g/ml.
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Adr + Indo 

L.T

Taxol + Indo 

L.T

Taxotere + Indo 

L.T

DLKP 0.319 0.930 0.851

MCF7 0.507 1.213 0.856

AS49 0.564 1.066 0.952

A549Q 0.607 1.166 1.464

Table 3.10.4: Combination index (Cl) values for Adriamycin (Adr), taxol or 

taxotere in combination with indomethacin, obtained using the method of 

Chou and Talalay as described in section 2.16.

(Cl < 1: synergism; Cl > 1: antagonism; Cl = 1: additive.)

L.T: Long-term assay as described in section 2.7.3a
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Test Sample % Cell Survival

DLKP, Taxol and Sulindac

Taxol. 1.0ng/ml 51.6 3.1
Sul (1) 94.5 2.6
Sul (1) + Taxol 18.8 5.4
Sul (2) 98.7 0.9
Sul (2) + Taxol 41.8 2.4
Sul (3) 98.9 3.3
Sul (3 ) + Taxol 48.2 2.4

MCF-7 (Quintiles) Taxol and Sulindac 
Taxol. 2.0ng/ml 43.7 5.1
Sul (1) 95.6 4.4
Sul (1) + Taxol 26.5 6.6
Sul (2) 101.7 1.1
Sul (2) + Taxol 35.7 8.0
Sul (3) 100.8 3.7
Sul (3 ) + Taxol 36.5 4.9

A549 (NCTCC) Taxol and Sulindac 
Taxol. 1.2ng/ml 77.2 8.5
Sul (1) 90.1 2.7
Sul (1) + Taxol 59.1 6.1
Sul (2) 92.0 3.0
Sul (2) + Taxol 68.3 3.5
Sul (3) 95.8 5.4
Sul (3) + Taxol 71.2 1.5

A549 (Quintiles) Taxol and Sulindac 
Taxol. 1.2ng/ml 54.4 3.8
Sul (1) 94.2 2.2
Sul (1) + Taxol 40.5 2.4
Sul (2) 98.0 0.9
Sul (2) + Taxol 41.6 1.7
Sul (3) 102.2 5.9
Sul (3) + Taxol 48.9 4.1

Table 3.10.5: % Survival of DLKP, MCF-7 (Quintiles), A549 (Quintiles) and 

A549 (NCTCC) cells in the presence of various concentrations of taxol and 

sulindac as found using the protocol detailed in section 2.7.3a. Survival is 

represented as a % of the growth of untreated cells in the same plate ± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of sulindac were: (1) 8|wg/ml; (2) 4(ig/ml; (3) 

2(j.g/ml.
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Test Sample % Cell Survival S.D.

DLKP, Taxotere and Sulindac

Taxotere. 0.5ng/ml 46.3 2.3
Sul (1) 97.7 2.6
Sul (1) + Taxotere 11.5 0.4
Sul (2) 99.7 2.2
Sul (2) + Taxotere 21.3 4.3
Sul (3) 100.4 2.4
Sul (3) + Taxotere 24.4 7.8

MCF-7 (Quintiles) Taxotere and Sulindac 
Taxotere. 1.5ng/ml 34.2 5.0
Sul (1) 98.7 1.6
Sul (1) + Taxotere 24.7 4.0
Sul (2) 94.9 2.4
Sul (2) + Taxotere 26.1 4.8
Sul (3) 96.5 6.1
Sul (3) + Taxotere 27.2 5.0

A549 (NCTCC) Taxotere and Sulindac 
Taxotere. 1.2ng/ml 28.9 7.7
Sul (1) 94.6 2.7
Sul (1) + Taxotere 23.7 6.1
Sul (2) 98.3 1.1
Sul (2) + Taxotere 25.9 7.1
Sul (3) 98.4 3.2
Sul (3) + Taxotere 28.6 7.9

A549 (Quintiles) Taxotere and Sulindac 
Taxotere 1.2ng/ml 33.6 7.3
Sul (1) 97.5 1.3
Sul (1) + Taxotere 27.4 6.1
Sul (2) 98.8 1.0
Sul (2) + Taxotere 31.1 6.3
Sul (3) 98.8 3.6
Sul (3) + Taxotere 31.5 7.6

Table 3.10.6: % Survival of DLKP, MCF-7 (Quintiles), A549 (Quintiles) and 

A549 (NCTCC) cells in the presence of various concentrations of taxotere and 

sulindac as found using the protocol detailed in section 2.7.3a. Survival is 

represented as a % of the growth of untreated cells in the same plate ± S.D. 

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of sulindac were: (1) 8 fig/ml; (2) 4|j,g/ml; (3) 

2ng/ml.
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Taxol + Sulindac 

L.T

Taxotere + Sulindac 

L.T

DLKP 0.323 0.261

MCF7 0.686 0.915

A549 1.062 1.338

A549Q 1.094 1.122

Table 3.10.7: Combination index (Cl) values for Taxol or Taxotere in 

combination with Sulindac, obtained using the method of Chou and Talalay as 

described in section 2.16

L.T: Long-term assay as described in section 2.7.3a
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3.11 Pulse selection of DLKP cells with indomethacin.

Results obtained from the IOV assays (section 3.3), drug efflux experiments 

(section 3.5) and combination toxicity assays carried out in DLKP, CORL23 

and 2008 cell lines (section 3.1, 3.6, and 3.8 respectively) strongly indicated 

that indomethacin is a good substrate for MRP. Pulse selection of DLKP cells 

with indomethacin for a period of 6 weeks was carried out (i.e. 4 hour pulse 

with indomethacin once each week after which the cells were re-fed in fresh 

media) to assess the effect of this NSAID on the resistance profile of the 

DLKP cells. The DLKP cells were grown up in 25 cm2 flasks until 

approximately 80% confluent and then pulsed with 300|_ig/ml indomethacin. 

This concentration of indomethacin was found to kill approx. 80-90% of the 

DLKP cells in the 25cm2 flasks.

3.11.1 IC50 values

The IC50 values for a range of chemotherapeutic drugs and indomethacin were 

obtained after pulsing the DLKP cells for four weeks (DLKP Indo4) and six 

weeks (DLKP Indo6) (Table 3.11.1).

DLKP DLKP lndo4 DLKP Indo6

Adriamycin (ng/ml) 12.7 ±0.38 16.1 ±0.35 19.0 ±0.14

Vincristine (ng/ml) 1.41 ±0.23 1.80 ±0.28 2.05 ± 0.28

VP-16 (ng/ml) 96.7 + 16.0 160.5 ±12.02 190.0 ±7.1

5-FU (ng/ml) 483.3 ±30.6 1410 ± 147.3 1860 ± 410.1

Cisplatin (ng/ml) 310.0 ±20.1 500.0 ±28.3 610.7 ± 15.2

Indomethacin (p.g/ml) 15.4 ± 1.24 31.4 ± 3.9 34.1 ±4.7

Table 3.11.1: IC50 values for adriamycin, vincristine, VP-16, 5-FU, cisplatin 

and indomethacin on parental DLKP cells and DLKP cells pulsed with 

300|o,g/ml indomethacin for four weeks (DLKP Indo4) and six weeks (DLKP 

Indo6). Data are the average of results from three separate experiments.
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The results indicate an increase in IC50 values for all drugs analysed. A 

particularly significant increase in the IC50 value was evident for the non-MRP 

substrate, 5-FU, which was increased more than 4-fold after pulsing for 6 

weeks. Resistance to cisplatin, a non-MRP 1 substrate was also increased two

fold in the pulsed cell lines as compared to the parental DLKP cells. 

Approximately, a 2-fold increase in resistance was evident with the MRP 

substrates adriamycin, vincristine, VP 16 and indomethacin after pulsing the 

DLKP cells with indomethacin for 6 weeks.

3.11.2 RT-PCR analysis of DKLP and DLKP pulsed cells.

RT-PCR analysis of DLKP, DLKP Indo4 and DLKP Indo6 was carried out to 

assess if  pulse selecting DLKP cells for a number of weeks with indomethacin 

resulted in a change in the expression of the multidrug resistance associated 

proteins expressed in DLKP cells. The results indicated an up-regulation of 

MRP1 mRNA in the both DLKP Indo4 and DLKP Indo6 cells. The highest 

expression of MRP 1 was observed in the DLKP Indo-6 cells (Figure 3.16.1a). 

There also appeared to be slight up-regulation of MRP2 in both the pulsed cell 

lines as compared to the parental DLKP cells (Figure 3.16.2a). Again the 

highest expression of MRP2 was in the cells pulsed for six weeks with 

indomethacin. There was no detectable expression of MRP3 mRNA in the 

parental DLKP and pulsed DLKP cells indicating that the increased drug 

resistance in the DLKP cells, pulsed with indomethacin, was not due to 

expression of MRP3 (Figure 3.16.3). MRP4 RT-PCR analysis of the DLKP 

cell lines, indicated that there is an increased expression of MRP4 mRNA in 

the DLKP Indo4. This expression was further increased in the DLKP Indo6 

cells (3.16.4a). These results suggest that pulsing the DLKP cells with 

indomethacin resulted in an up-regulation of MRP4 (Figure 3.16.4) and MRP6 

mRNA (Figure 3.16.6). The results for RT-PCR analysis of the DLKP cell 

lines indicated that there was a very slight down-regulation of MRP5 in both 

the DLKP Indo4 and DLKP Indo6 cells as compared to the parental DLKP 

cells (Figure 3.16.5a).. MDR1 RT-PCR analysis of the DLKP cells indicate 

that there was almost undetectable levels of MDR1 in the parental DLKP cells. 

There was no increase in MDR1 expression after pulsing these cells with 

indomethacin for 6 weeks (Figure 3.16.7). These results indicate that pulsing
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DLKP cells with indomethacin for 4-6 weeks resulted in an up-regulation of 

MRP1, 2, 4 and 6 mRNA expression and a down-regulation of MRP5 mRNA 

expression. MRP3 and MDR1 do not appear to be associated with the drug 

resistance mechanisms in the DLKP and DLKP pulsed cells.

3.11.2 Combination toxicity assays in DLKP and DLKP pulsed cells

Combination toxicity assays were then carried out on the DLKP and DLKP 

Indo4 and DLKP Indo6 cell lines, using indomethacin in combination with 

adriamycin, to assess if an increase in the resistance to indomethacin in the 

pulsed cells resulted in a loss of the combination effect already shown to be 

present in DLKP cells (section 3.1). The results indicate that although there 

was an increase in resistance to both indomethacin and adriamycin, both the 

pulsed cell lines demonstrated a combination effect equal to that achieved in 

the parental cell line (Table 3.11.2).
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DLKP, Adriamycin and Indomethacin

Test Sample % Cell Survival S.D.

Adr. 10ng/ml 46.6 5.1

Indo (2.5|ig/ml) 96.0 2.4
Indo + Adr 12.9 1.1
Indo (1.25|ag/ml) 95.7 2.4
Indo + Adr 28.1 3.9
Indo (0.625|ag/ml) 99.3 0.4
Indo +Adr 40.1 1.1

DLKP Indo4, Adriamycin and Indomethacin

Adr. 20ng/ml 44.8 1.8

Indo (2.5ng/ml) 99.9 1.2
Indo + Adr 11.6 4.3
Indo (1.25[ag/ml) 99.9 1.2
Indo + Adr 16.6 4.7
Indo (0.625}J,g/ml) 99.3 1.1
Indo + Adr 27.5 0.5

DLKP Indo6 , Adriamycin and Indomethacin

Adr. 20ng/ml 47.3 0.3

Indo (2.5jug/ml) 99.3 3.4
Indo + Adr 10.0 4.5
Indo (1.25|J.g/mI) 101.6 3.2
Indo + Adr 16.9 2.6
Indo (0.625jJ,g/ml) 98.9 2.3
Indo + Adr 27.8 3.1

Table 3.11.2: % Survival of DLKP (parental), DLKP Indo4 and DLKP Indo6 

cells in the presence of various concentrations of adriamycin and 

Indomethacin as found using the protocol detailed in section 2.7.3a. Survival is 

represented as a % of the growth of untreated cells in the same plate ± S.D. 

Results are the average of triplicate determinations in three separate 

experiments.
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3.12 Effect o f pulsing HepG2 cells with Cisplatin

HepG2 cells were pulse selected with cisplatin for four weeks i.e. 4 hour pulse

once each week after which the cells were re-fed in fresh media. The HepG2
*  2 •  • cells were grown up in 25 cm flasks until approximately 80% confluent and

then pulsed with 4000ng/mL cisplatin. This concentration of cisplatin was

found to kill approx. 80-90% of the HepG2 cells in the 25cm2 flasks.

3.12.1. Toxicity profile of cytotoxic drugs in HepG2 cell line

Toxicity assays were carried out on the HepG2 cell line, prior to pulsing and 

after pulsing for 1 0  weeks with cisplatin, to assess the toxicity profile of the 

chemotherapeutic drugs on this cell line and to assess if there was a difference 

in these toxicity profiles after pulsing. The IC5o of these drugs (the 

concentration of the drugs at which 50 % cell kill is obtained) in HepG2 

parental and pulsed cells were calculated after pulsing for 4 weeks and 10 

weeks (Table 3.12.1).

Drug HepG2 (parental) HepG2 4P HepG2 10P

Adriamycin 20.1 ± 4.7 ng/ml 13.0 ± 4.2 ng/ml 8.5 ± 3.5 ng/ml

Vincristine 4.2 ±1.1 ng/ml 3.5 ± 0.9 ng/ml 1.5 ± 0.6 ng/ml

5'fluorouracil 164.5 ± 36.3 ng/ml 380 ±32.1 ng/ml 400 ±35.1 ng/ml

VP-16 250.0 ± 25.1ng/ml 189 ± 15.1ng/ml 100 ± 7.5ng/ml

Cisplatin 215.0 ±35.4 ng/ml 2065 ±194 ng/ml 2518 ±202 ng/ml

Table 3.12.1: IC50 of Cytotoxic drugs in the HepG2 cell line pulsed with 

cisplatin. Results are the average of triplicate determinations in three separate 

experiments.

The results indicate that pulsing the HepG2 cells with 4000ng/ml cisplatin for 

4 weeks, resulted in a decrease in the resistance to adriamycin, vincristine and 

VP-16. These anti-cancer drugs are good substrates for MRP1, 2 and 3 

substrates (Duffy et al., 1998; Cole et al., 1994 and Hipfner et al., 1999, Borst 

et al, 1999 and Konig et al, 1999). However, the results indicate that the
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resistance to both 5-FU and cisplatin increased after pulsing HepG2 cells with 

4000ng/ml cisplatin for four weeks. This resistance was further increased after 

pulsing these cells for a period of ten weeks. A number of authors including 

Duffy et al., (1998) and Nishiyama el al., (1999), reported that MRP did not 

seem to play an important role in 5-FU resistance. The mechanism of cisplatin 

resistance is uncertain and reports linking cisplatin resistance to MRP are 

inconclusive and conflicting. (See section 1.6.8).

3.12.2 RT-PCR analysis of HepG2 parental cells.

RT-PCR analysis was carried out on the HepG2 cell line to assess if  MRP was 

expressed at the RNA level and also to assess which form of MRP was 

expressed in the cell line. RT-PCR analysis was carried out on the HepG2 

cells, using primers for MRP1, cMOAT, MRP3 and MRP4, prior to pulsing. 

The results show that HepG2 cells express mRNA for MRP1 (3.12.1), MRP2 

(cMOAT) (3.12.2), MRP3 (3.12.2) and MRP4 (3.12.3). Narasaki et al., (1997), 

have demonstrated the presence of cMOAT and MRP1 but as of yet the 

presence of MRP3 and MRP4 in HepG2 cells had not previously been 

reported. RT-PCR was not carried out using primers for MRP5 and 6 but these 

primers will be included in future RT-PCR experiments on HepG2 parental 

and pulsed cells so that complete MRP expression in these cells can be 

assessed.
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Figure 3.12.1: RT-PCR analysis of MRP1 expression in HepG2 cells carried 

out according to the method described in section 2.15.

1. MRP2 2. MRP3

P-actin

MRP2/3

Figure 3.12.2: RT-PCR analysis of MRP2 and MRP3 expression in HepG2 

cells carried out according to the method described in section 2.15.



P actin 

MRP4

OAVH

Figure 3.12.3: RT-PCR analysis of MRP4 expression in HepG2 cells carried 

out according to the method described in section 2.15.
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3.13 Investigation of the mechanism of resistance in DLKP C14 

cells

3.13.1 Toxicity profile of cytotoxic drugs in DLKPC 14 cell line

The parental cell line, DLKP, was exposed to varying concentrations of 

carboplatin to develop a resistant variant called DLKPC 14 (Cleary, 1995). 

The parental DLKP cells were initially exposed to l|xg/mL carboplatin and 

adjusted to growth in 6.2 (ig/mL and after approximately four months, to 

14(j.g/mL. The resistant cell line, selected to and maintained in 14|ig/mL 

carboplatin were designated DLKPC 14.

Toxicity assays were carried out on the parental DLKP and the DLKPC 14 

cell lines to assess the toxicity profile of the chemotherapeutic drugs on this 

cell line. The IC50 of these drugs (the concentration of the drugs at which 50 

% cell kill is obtained) in DLKPC 14 are as follows:

Cytotoxic drug ICso concentrations 

DLKP

IC50 concentrations 

DLKPC 14

Adriamycin 14.13 +2.7 ng/ml 15.1 ± 2.5 ng/ml

Vincristine 2.25 + 0.2 ng/ml 3.2 ± 0.22ng/ml

5-FU 590 ± 52.3 ng/ml 720 ±61.3 ng/ml

VP-16 112.5 ± 17.6ng/ml 210 ± 14.1ng/ml

Cisplatin 480.0 ± 35.4 ng/ml 3010.0 ± 156.4 ng/ml

Table 3.13.1: IC50 of Cytotoxic drugs in the DLKPC 14 cell line.

Results are the average of triplicate determinations in three separate 

experiments.

Immunocytochemical studies on the expression of the 190kDa protein, MRP, 

revealed no alteration in the level of MRP in the DLKPC 14 cell line when 

compared to the parental DLKP cell line (Cleary, 1995). These results suggest 

that MRP was not involved in cisplatin resistance in these cell lines. Further
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evidence to support this theory was obtained from RT-PCR studies, where no 

significant difference was observed in MRP1 mRNA levels (Lorraine 

O'Driscoll, personal communication). Cleary (1995), also reported no 

detectable levels of Pgp in the parental cells of the resistant variants.

3.13.2 Combination toxicity assays in DLKPC 14 cells

Combination toxicity assays were carried out on the DLKPC 14 cell line using 

a combination of adriamycin and indomethacin, or cisplatin and indomethacin. 

Previous experiments demonstrated that the cytotoxic drug was rendered more 

toxic in a number of cancer cell lines including DLKP (section 3.1), CORL23 

(section 3.6), HepG2 (section 3.7) and 2008 cells (section 3.8) when combined 

with indomethacin by a process involving inhibition of the activity of MRP1. 

The aims of carrying out the combination toxicity assays on the DLKPC 14 

cell line were to assess if  indomethacin (and analogues) were capable of 

potentiating the toxicity of the cytotoxic drugs, cisplatin and adriamycin, in a 

carboplatin and cisplatin resistant cell line.

The results of the combination toxicity assay are reported in Tables 3.13.2 and 

3.13.3. The results demonstrated that indomethacin was capable of 

potentiating the toxicity of adriamycin in DLKPC 14 and DLKP cells. The 

highest non-toxic concentration of indomethacin used in both the DLKPC 14 

and DLKP cells was 2.5fag/ml. However, results from the combination toxicity 

assays with cisplatin and indomethacin in DLKPC 14 and DLKP cells revealed 

that indomethacin was not capable of potentiating the toxicity of cisplatin in 

these cells. The toxicity of cisplatin seemed to decrease when combined with 

indomethacin in the DLKPC 14 and DLKP cell lines. This interesting effect 

was also evident in the HepG2 cells (section 3.7) treated with a combination of 

cisplatin and indomethacin and the in 2008 cell lines (section 3.8) treated with 

a combination of cisplatin with either indomethacin and sulindac. Combining 

an active NSAID, indomethacin or sulindac, with cisplatin, appears to render 

the cells more resistant to cisplatin.
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DLKP, Adriamycin and Indomethacin

Test Sample % Survival S.D.

Adr. lOng/ml 46.5 1.7

Indo. (2 .5 |o.g/ml) 96.9 2.7
Indo. + Adr 11.5 6.5
Indo. (1.25fig/ml) 102.7 1.5
Indo. + Adr 14.1 0.9
Indo. (0.625|ig/ml) 102.5 1.4
Indo. +Adr 19.6 4.35

DLKP C14, Adriamycin and indomethacin

Test Sample % Survival S.D.

Adr. lOng/ml 43.2 7.5

Indo. (2.5|ig/ml) 89.1 4.4
Indo. + Adr 6.5 3.6
Indo. (1.25ng/ml) 90.4 2.5
Indo. + Adr 8.4 1.5
Indo. (0.625) 103.0 3.2

; Indo. + Adr 10.6 6.2

Table 3.13.2: % Survival of DLKP and DLKP C14 cells in the presence of 

various concentrations of adriamycin and indomethacin as found using the 

protocol detailed in section 2.7.3a. Survival is represented as a % of the 

growth of untreated cells in the same plate± S.D. The untreated cell survival % 

is taken as 100%.

Results are the average of triplicate determinations in three separate 

experiments. The concentrations of the compounds were: (1) 2.5 fag/ml; (2) 

1.25 (ig/ml (3) 0.625 |a.g/ml



DLKP, Cisplatin and Indomethacin

Test Sample % Survival S.D.

Cis. 250ng/ml 33.6 2.9

Indo. (2.5(J.g/ml) 95.5 1.3
Indo. + Cis 44.1 4.2
Indo. (1.25|ig/ml) 100.7 0.9
Indo. + Cis 38.1 2.4
Indo. (0.625|xg/ml) 104.5 5.6
Indo. + Cis 35.9 3.5

DLKP C l4, Cisplatin and Indomethacin

Test Sample % Survival S.D.

Cis. 3000ng/ml 19.1 2.9

Indo. (2.5jig/ml) 96.1 2.5
Indo. + Cis 20.5 2.2
Indo. (1.25jig/ml) 98.6 6.8
Indo. + Cis 19.4 2.6
Indo. (0.625|Xg/ml) 99.4 0.9
Indo. + Cis 19.2 5.1

Table 3.13.3: % Survival of DLKP and DLKP C14 cells in the presence of 

various concentrations of cisplatin and indomethacin as found using the 

protocol detailed in section 2.7.3a. Survival is represented as a % of the 

growth of untreated cells in the same plate ± S.D. Results are the average of 

triplicate determinations in three separate experiments.
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3.14 Analysis of Adriamycin Metabolite

One of the problems associated with using adriamycin as a chemotherapeutic 

drug in human cancers is the cardiotoxicity associated with long-term 

adriamycin use in vivo. This toxicity is primarily associated with the primary 

metabolite of adriamycin, adriamycinol. Adriamycinol was analysed in 

toxicity assays and combination toxicity assays to assess if  this metabolite of 

adriamycin was as toxic as adriamycin in DLKP cells and if  the toxicity of this 

drug was also enhanced by indomethacin. adriamycinol was found to have an 

IC50 value of 40.3 ± 2.5ng/ml in DLKP cells as compared to an IC50 value of

12.7 ± 0.38 for adriamycin in these cells.

Combination toxicity assays were carried out using both adriamycin and the 

adriamycinol in combination with indomethacin to compare the potentiation of 

toxicity of both these drugs when combined with indomethacin. The results 

indicate that there is a poorer combination effect in the cells treated with 

indomethacin and adriamycin metabolite. The toxicity o f the metabolite is 

potentiated by indomethacin but not to the same extent as adriamycin (Table

3.14.1). Combination toxicity assays were also carried out on A549 cells 

treated with epirubicin in combination with sulindac. Epirubicin has been 

reported by Minotti et al., (1999), and Stewart et al., (1993), to be an analogue 

of adriamycin which causes less cardiotoxicity. These combination toxicity 

assays were carried out to assess if  sulindac was capable of enhancing the 

toxicity of epirubicin as effectively as it enhances the toxicity of adriamycin. 

The results indicate that this is the case (3.14.2). There was greater 

potentiation of epirubicin by sulindac in the A549 cell line than was observed 

when adriamycin was combined with sulindac. It is also interesting to note that 

the concentration of epirubicin used in the A549 cells was 4-fold less than the 

concentration of adriamycin. These results indicate that epirubicin is more 

effective than adriamycin in this cell line and greater potentiation of this 

chemotherapeutic drug can be achieved when combined with sulindac.
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DLKP, Adriamycin and Indomethacin

Test Sample % Cell Survival S.D.

Adr. lOng/ml 45.2 4.9

Indo (2.5[ag/ml) 95.5 2.2
Indo +Adr 10.3 5.2
Indo (1.25|0.g/ml) 97.3 2.4
Indo + Adr 28.1 3.6
Indo (0.625ng/ml) 98.0 2.6
Indo + Adr 37.2 5.7

DLKP, Adriamycinol and Indomethacin

Adr. 40ng/ml 53.5 1.5

Indo (2.5fJ,g/ml) 96.9 3.3
Indo + Adrol 33.4 2.9
Indo (1.25|Xg/ml) 99.9 3 .6
Indo + Adrol 44.0 3.5
Indo (0.625) 100.8 1.4
Indo + Adrol 50.4 1.0

Table 3.14.1: % Survival of DLKP (parental) cells in the presence of various 

concentrations of adriamycin /adriamycinol and indomethacin. Survival is 

represented as a % of the growth of untreated cells in the same plate ± S.D. 

Results are the average of triplicate determinations in three separate 

experiments.
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A549, Adriamycin and Sulindac

Test Sample %  Cell Survival S.D.

Adr. 50ng/ml 52.3 4.7

Sul (8.0|xg/ml) 96.0 5.4
Sul + Adr 25.1 3.6
Sul (4.0jig/ml) 100.1 2.4
Sul + Adr 31.5 6.2
Sul (2.0ng/ml) 101.0 0.9
Sul + Adr 42.5 3.3

A549, Epirubicin and Sulindac

Epi. 12ng/ml 72.7 2.1

Sul (8.0|j.g/ml) 97.5 3.3
Sul + Epi 26.0 1.4
Sul (4.0jxg/ml) 99.9 1.0
Sul + Epi 40.9 5.0
Sul (2.0ng/ml) 98.7 1.7
Sul + Epi 57.1 1.9

Table 3.14.2: % Survival of A549 cells in the presence of various 

concentrations of adriamycin/epirubicin and sulindac as found using the 

protocol detailed in section 2.7.3. Survival is represented as a % of the growth 

of untreated cells in the same plate ± S.D. Results are the average of triplicate 

determinations in two separate experiments.

259



3.15 Investigation o f other drugs as possible M RP1 substrates

Studies were carried out on a number of TB/AIDS related drugs to determine 

if there was a correlation between acquisition of chemotherapeutic resistance 

mechanisms and resistance to TB and /or AIDS drugs.

Hollo et al. (1996), reported that the antimalarial compound quinine is a 

substrate of MRP. Rifampicin, an anti-TB agent, had previously been reported 

to down-modulate Pgp mediated drug efflux (Fardel et al., 1995 and Furusara 

et al., 1997). It is now reported that rifampicin can increase the accumulation 

of two MRP substrates, vincristine and calcein, in GLC4/ADR, an adriamycin 

resistant human lung cancer cell line (Courtois et al., 1999). There is no 

evidence to date that AZT (Zidovudine), an anti-AIDs drug or tetracycline, an 

antibiotic, are substrates for MRP but it is possible that one of the mechanisms 

by which cells develop resistance to these compounds is through the activity of 

a cellular pump with actions similar to MRP.

Combination toxicity assays were carried out in DLKP cells using 

indomethacin and varying concentrations of the compounds, AZT, rifampicin, 

quinine and tetracycline. These assays were carried out to assess if  these 

compounds, were substrates for MRP and to determine if indomethacin could 

potentiate the toxicity of compounds other than the chemotherapeutic drugs 

already known to be substrates of MRP1. The compounds were analysed in the 

DLKP cells at non-toxic concentrations.

Of the four compounds analysed, both rifampicin and quinine were found to 

potentiate the toxicity of adriamycin in the DLKP cells (Cl values of 0.833 and 

0.769 respectively). AZT and tetracycline had no effect on the toxicity of 

adriamycin in the DLKP cells (Figures 3.15.1 and 3.15.2). The results indicate 

that quinine and rifampicin may be substrates for MRP and are effective in 

reducing the efflux o f adriamycin from the cells
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DLKP, Adriamycin and AZT, Rifampicin, Quinine and Tetracycline

Test Sample %  Cell Survival S.D.

Adr. lOng/ml 56.9 3.1

AZT (50p.g/ml) 96.2 1.9
AZT + Adr 52.6 2.2
AZT (25|a.g/ml) 97.9 1.6
AZT + Adr 54.2 2.7
AZT (12.5jig/ml) 102.5 1.6
AZT + Adr 57.3 1.9

Adr. lOng/ml 59.8 7.7

Rif (15jo.g/ml) 94.8 0.6
Rif + Adr 44.1 3.9
Rif(7.5ng/ml) 98.3 1.7
Rif + Adr 50.6 5.9
Rif (3.75/xg/ml) 100.4 1.3
Rif + Adr 54.1 4.7

Adr. lOng/ml 61.4 9.4

Quin (15|j,g/ml) 95.0 1.2
Quin + Adr 42.2 6.1
Quin (7.5fig/ml) 96.7 . 2.9
Quin + Adr 54.4 4.3
Quin (3.75ng/ml) 99.4 0.6
Quin + Adr 61.1 7.0

Adr. lOng/ml 59.3 5.7

Tetra (5(j.g/ml) 90.3 1.5
Tetra + Adr 56.4 4.1
Tetra (2.5/a.g/ml) 100.5 1.3
Tetra +Adr 55.6 3.7
Tetra (1.25(J.g/ml) 100.2 3.6
Tetra + Adr 56.9 5.2

Table 3.15.1: % Survival of DLKP cells in the presence of various 

concentrations of adriamycin and AZT, Rifampicin (Rif), Quinine (Quin) and 

Tetracycline (Tetra) as found using the protocol detailed in section 2.7.3a. 

Survival is represented as a % of the growth of untreated cells in the same 

plate ± S.D. Results are the average of triplicate determinations in three 

separate experiments.
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No Anticanccr 

agent

Adr.*

(10ng/ml)

Cl values

No compound
100 ± 0.0 59.3 + 5.7

AZT 50)a.g/ml
96.2 ± 1.9 52.6 ±2.2 1.578

Rifampicin lS^ig/ml
94.8 ± 0.6 44.1 ±3.9 0.833

Quinine 15|ig/ml
95.0. ± 1.2 42.2 ±6.1 0.769

Tetracycline 5fo,g/ml
90.3 ± 1.5 56.4 ±4.1 1.701

Table: 3.15.2: DLKP and Adriamycin + highest non-toxic concentrations of 

AZT, Rifampicin, Quinine and Tetracycline.

*Data are expressed as % Cell Survival ± standard deviation for a minimum of 

three assay repeats.

C l : Combination index.

(Cl < 1: synergism; Cl > 1: antagonism; Cl = 1: additive.)
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3.16 RT-PCR analysis of MRP1, MRP2, MRP3, MRP4, MRP5, 

MRP6 and MDR1 mRNA expression in cancer cell lines.

RT-PCR analysis was carried out on RNA extracted from DLKP, DLKP 

Indo4, DLKP Indo6, A549, 2008 P, 2008 MRP1, 2008 MRP2, 2008 MRP3, 

HL60 (S) and HL60/ADR cells to determine the expression of MRP 1-6 and 

MDR1 mRNA these cell lines. The RT-PCR procedure was carried out 

according to section 2.15. The primers used in the detection if the MRP and 

MDR genes are described in Appendix A.
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3.16 RT-PCR analysis of MRP1, MRP2, MRP3, MRP4, MRP5, 

MRP6 and MDR1 in cancer cell lines.

Figure 3.16.1a RT-PCR analysis of MRP1 expression
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* O.D. is presented as the ratio of the levels of each specific gene product to

the internal P-actin.
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Figure 3.16.1b RT-PCR analysis of MRP1 expression in HL60(S) and

HL60/ADR cell lines
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Figure 3.16.2a RT-PCR analysis of MRP2 expression

Ph

P

v©Pm

hJ
P

È
P

ON
WÌ
<

00o
©N 0©oors

MRP2 - densitometric analysis

3.50
3.00
2.50

*. 2.00 
P
O 1.50

1.00 
0.50 
0.00

y \
/

/

/
/

Aa o
i* Tt *
J  h J  P h

«  P

Ph
00
©o

(NoterDLKP P4 = DLKP Indo4; DLKPP6 = DLKP Indo6)

* O.D. is presented as the ratio of the levels of each specific gene product to

the internal P-actin.
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Figure 3.16.2b RT-PCR analysis of MRP2 expression in HL60(S) and

HL60/ADR
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* O.D. is presented as the ratio of the levels of each specific gene product to 

the internal P-actin.
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Figure 3.16.3 RT-PCR analysis of MRP3 expression
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Figure 3.16.4a RT-PCR analysis of MRP4 expression
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Figure 3.16.4b RT-PCR analysis of MRP4 expression in HL60(S) and

HL60/ADR
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Figure 3.16.5a RT-PCR analysis ofMRP5 expression

M RP5 - densitometric analysis
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Figure 3.16.5b RT-PCR analysis of MRP5 expression in HL60(S) and

HL60/ADR
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Figure 3.16.6 RT-PCR analysis of MRP6 expression

MRP6 - densitometric analysis
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Figure 3.16.7 RT-PCR analysis of MDR1 expression
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Discussion



4.1 General discussion

Overexpression of the 170kDa drug efflux pump, P-glycoprotein, has been 

observed in many multidrug resistant cell lines and some human tumours 

(Gottesman et ah, 1993; Arceci, 1993; Aszalos et ah, 1998). However, it has 

been clear for some time that alternate mechanisms of multidrug resistance 

must exist both in vivo and in vitro. A number of multidrug resistant cell lines 

have been described that do not overexpress P-glycoprotein but display drug 

resistance profiles very similar to those that do (Mirski et ah, 1987; McGrath et 

ah, 1987; Hill et ah, 1993).

Until the early 1990s, non-Pgp-mediated multidrug resistance was generally 

attributed to a variety of mechanisms, including enhanced expression of drug 

detoxification enzymes and alterations in topoisomerase II (Cole et ah, 1990; 

1992a and 1992b). In addition, elevated levels of a number of uncharacteristic 

proteins had been reported in some non-Pgp multidrug-resistant cell lines. In 

1992, Cole et ah, cloned MRP and hence permitted the identification of one of 

these uncharacteristic proteins as a member of the ATP-binding cassette 

transporter superfamily as described in section 1.6. Grant et ah, (1994), 

subsequently demonstrated that MRP-overexpression was sufficient to confer 

multidrug resistance to previously sensitive cells. Since the cloning of MRP 

cDNA from the multidrug resistant H60Ar cell line, overexpression of MRP 

has been reported in many other previously described non-P-glycoprotein 

multidrug resistant cell lines (Cole et ah, 1992; Krishnamachary et ah, 1993; 

Zaman et ah, 1993; Barrand et ah, 1994; Kruh et ah, 1994). These observations 

suggest that MRP may be a relatively common mediator of resistance, at least 

in vitro.

As described in section 1.6, other homologues of MRP have now been 

identified, MRP2 (cMOAT), MRP3, MRP4, MRP5 and MRP6 (Kool et al., 

1997 and Borst et ah, 1999). The mechanisms of these transport proteins have 

yet to be fully elucidated but it is thought that these proteins may also have 

some role in drug transport and chemo-resistance.

During the last decade, there has been much research in the field of multidrug 

resistance circumvention. Fischer and Sikic (1995), carried out clinical trials 

using a range of Pgp modulators. The result of these clinical trials were
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relatively disappointing as it had been found that currently available Pgp 

modulators lack the potency to completely reverse the MDR phenotype at 

clinically achievable concentrations without significant side-effects or toxicity. 

A number of MRP-modulating agents have been described in section 1.6.9. 

Although some of these compounds seem promising in vitro it is not known if 

the MRP-modulating agents, listed in section 1.6.9, could be used to modulate 

MRP-mediated resistance in vivo. It is possible that these compounds could 

cause serious toxic side effects when added at concentrations required for 

modulation of MRP.

The NSAID, indomethacin, is a well-known inhibitor of prostaglandin 

synthesis (Vane et al, 1996) and has also been shown to be a potent inhibitor 

of glutathione-S-transferase (Primiano et al, 1993). It has previously been 

shown to enhance the anti-cancer activity of chlorambucil (Hall et al, 1989), 

methotrexate (Henderson et al, 1994), vincristine (Draper et al, 1997 and 

Kobayashi et al., 1997), VP-16, methotrexate (Maca, 1991), and adriamycin 

(Kobayashi et a l, 1997).

The concentrations at which indomethacin was effective in enhancing the 

cytotoxicity of the cancer cells was also reported by Kobayashi et al, (1997), 

to be clinically safe (approx. 2fag/ml).

Duffy et al., (1998), examined the effect on cytotoxicity of combining a range 

of clinically important non-steroidal anti-inflammatory drugs (NSAIDs) with a 

variety of chemotherapeutic drugs in the human lung cancer cell lines DLKP, 

A549, CORL23R and in the human leukemia cell line HL60/ADR. They found 

that a specific group of NSAIDs (indomethacin, sulindac, tolmetin, acemetacin, 

zomepirac and mefenamic acid) all at non-toxic levels, significantly increased 

the cytotoxicity of the anthracyclines (doxorubicin, daunorubicin and 

epirubicin), as well as tenopside, VP-16 and vincristine, but not the other vinca 

alkaloids, vinblastine and vinorelbine. Other anti-cancer drugs, including 

methotrexate, 5-fluorouracil, cytarabine, hydroxyurea, chlorambucil, cyclo

phosphamide, cisplatin, carboplatin, mitoxantrone, actinomycin D, bleomycin, 

paclitaxel and camptothecin, were also tested but displayed no synergy in 

combination with the NSAIDs. The enhancement of cytotoxicity was observed 

in a range of tumour cell lines which over-expressed MRP but did not occur in 

multidrug resistant cell lines which overexpress P-170 (Pgp). As it appeared 

that the NSAIDs exerted their positive effect only in combination with MRP
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substrates and in MRP positive cell lines, it seemed logical to postulate that the 

NSAIDs were affecting the activity of MRP and reducing the expulsion of the 

chemotherapeutic drugs from the cell. This resulted in a reduction in the 

resistance of the cell to the chemotherapeutic drug.

The mechanism behind indomethacin’s ability to chemosensitise MRP- 

overexpressing cells remains uncertain. It is unlikely that the enhancement 

effect is due to the inhibition of prostaglandin synthesis as explained in section 

1.8. Therefore, it is most probable that indomethacin exerts its effect on the 

chemotherapeutic drugs through interacting with the functioning of MRP. 

Zaman et al., (1995), reported that MRP is an extremely effective transporter 

of glutathione conjugates. Drug transport in MRP- but not Pgp- overexpressing 

MDR tumour cell lines can be regulated by intracellular GSH levels 

(Versantvoort et al., 1995). Duffy et al., (1998), discovered that glutathione-S- 

transferase activity was inhibited by the NSAIDs found to have the ability to 

potentiate the toxicity of chemotherapeutic drugs, but not the inactive NSAIDs. 

Our group also found that the efflux of adriamycin from cells treated with 

indomethacin was significantly retarded relative to untreated cells or cells 

treated with the inactive NSAIDs. Therefore, it would appear that the positive 

NSAIDs might function by directly inhibiting the MRP pump and as a result of 

this binding, inhibit efflux of the drugs. Alternatively, the NSAIDs may act as a 

competitive substrate for MRP resulting in the NSAIDs being preferentially 

pumped out of the cells, therefore, allowing the cytotoxic drugs to remain in 

the cell for a longer period exerting their chemotherapeutic effect.

This thesis describes an investigation of the modulation of MRP by 

indomethacin and a number of indomethacin analogues. These experiments 

were carried out to:

i. Determine the structure activity relationship of MRP inhibition by 

indomethacin analogues

ii. Discover an analogue of MRP with greater MRP modulating activity 

than indomethacin at less toxic concentrations with less side effects;

iii. Determine the mechanism by which indomethacin and similar 

compounds potentiate the toxicity of a range of chemotherapeutic drugs.
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As a result of the results reported by Duffy et al., (1998), a study was 

undertaken by our group, in collaboration with the chemistry department in 

University College, Cork, to develop a series of compounds based on the basic 

structure of indomethacin. These indomethacin analogues were then analysed 

in a number of assays to determine the Structure Activity Relationship (SAR) 

of the compounds. The aim of such experiments was to find the structure with 

optimum ability to enhance the cytotoxicity of the chemotherapeutic drugs and 

to determine the function of the various substituents on the indomethacin 

structure.

4.2 Investigation of Structure Activity Relationship (SAR) of

indomethacin-mediated toxicity enhancement

W hat is the influence of this 
substituent? Is the carboxyl group 

significant?
C 02H

c h 3

QH Is the methyl group
significant?

What is the requirement 
for the aryl substituent?

Must the N substituent be 
benzoyl or will a benzyl 
group play the same role 
biologically?

Figure 4.1: Indomethacin structure indicating which substituents 
were varied to generate the indomethacin analogues.
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23 of these indomethacin analogues were generated (section 3.1). 19 of these 

compounds were directly related to indomethacin with substituent variation to 

determine the SAR of the compounds. The remaining four compounds were 

based on the structure of a known PLA2 inhibitor with a basic structure similar 

to that of indomethacin.

4.2.1 Investigation of ability of indomethacin analogues to enhance the 

toxicity of adriamycin in DLKP cells in vitro.

The compounds were initially assayed in combination toxicity assays in DLKP 

cells to assess their ability to enhance the cytotoxicity of the anthracycline, 

adriamycin, as compared to indomethacin. The highest non-toxic concentration 

of indomethacin, which exerted its positive effect, was 2.5|xg/ml. The 

concentrations of adriamycin used in the combination toxicity assays were 

lOng/ml and 5ng/ml. The IC50 of adriamycin in DLKP cells is approximately 

lOng/ml. The procedure for the combination toxicity assay was carried out as 

per section 2.7.3a. The structures of the compounds assayed are described in 

section 3.1.

The results obtained from the combination toxicity assays indicated that:

• The activity of the compounds was concentration dependent.

• A number of the substituents on the indomethacin structure were critical 

in the functioning of the compounds.
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Figure 4.1a: Analogues of N-benzyl-indomethacin
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Figure 4.1b: Analogues of N-benzoyl-indomethacin
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The first significant results from the combination toxicity assay demonstrated 

that the benzoyl substituent on the indole nitrogen atom was not required for 

the potentiation ability of indomethacin. This N-benzyl-indomethacin analogue 

(BRI 60/1) was found to be active in the combination toxicity assay and 

moreover, its activity was found to be comparable to that of indomethacin. 

Removing the benzoyl substituent also rendered this indomethacin analogue 

less toxic (2-fold) than N-benzoyl-indomethacin to the DLKP cells.

Subsequent assessment of a number of benzyl derivatives of indomethacin, 

with various substituent variations, demonstrated the importance of a number 

of these substituents for the enhancement of toxicity of adriamycin by 

indomethacin. Changing the position of the chlorine from the /?ara-position on 

the benzyl ring to the meta-position (BRI 106/1) or the ortho-position (BRI 

107/1) rendered N-benzyl-indomethacin incapable of potentiating the toxicity 

of adriamycin. Removing the halogen from the benzene ring (BRI 113/1) also
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resulted in loss of ability to enhance the toxicity of adriamycin. These results 

indicated that in the benzyl series, not only was the presence of a halogen 

necessary for the potentiating activity of N-benzyl indomethacin, but the para- 

position of the halogen was also critical for a positive effect in the combination 

toxicity assays. Further investigations indicated that the chlorine substituent in 

the pora-position on the benzene ring of N-benzyl-indomethacin could be 

replaced with either bromine (BRI 114/2) or fluorine (BRI 115/2) without loss 

o f activity in the combination toxicity assays. Replacing chlorine with fluorine 

very slightly reduced the potentiating activity of indomethacin. Replacing 

chlorine with bromine did not result in any notable decrease in activity and 

when analysed in the combination toxicity assays, this analogue of 

indomethacin was found to compare very favorably to indomethacin. In 

addition, replacing chlorine with bromine or fluorine resulted in a 2-fold 

decrease in toxicity to DLKP cells as compared to N-benzyl indomethacin and 

a 4-fold decrease in toxicity as compared to N-benzoyl indomethacin.

An additional benzyl-derivative was generated in which the fluorine, attached 

to the benzene ring in N-benzyl-indomethacin, was moved from the para- to 

the weta-position. Moving the chlorine from the para- to the meta and ortho- 

positions on the benzene ring in N-benzyl-indomethacin had already been 

shown to result in a loss of activity of these indomethacin analogues in the 

combination toxicity assay. However, moving the fluorine to the meta-position 

on the benzene ring resulted in the generation of an analogue of indomethacin 

that still demonstrated an ability to potentiate adriamycin in the combination 

toxicity assays (BRI 138/1). Although this analogue required concentrations 3- 

fold higher than N-benzyl-indomethacin to obtain a comparable potentiation 

effect, it was found to be 1.5-fold less toxic than the para-form of this 

indomethacin analogue and 3-fold less toxic than N-benzyl-indomethacin to 

the DLKP cells. The effect of moving fluorine to the ori/zo-posilion was not 

examined. In addition, the effect of moving bromine to either the meta- or the 

ortho-position was not investigated. The development and subsequent analysis 

of additional indomethacin analogues are required to fully elucidate the roles of 

these halogens on the N-benzyl-indomethacin structure.

Further analysis of N-benzyl-indomethacin analogues demonstrated that 

replacing chlorine on the benzene ring with a non-halogen substituent, a 

methylthio substituent (BRI 124/1), rendered this N-benzyl-indomethacin
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analogue inactive in the combination toxicity assays. This result indicated that 

a halogen was the desired substituent at this position on the benzyl- 

indomethacin structure.

Variations of the halogen group on the benzene ring in the N-benzoyl- 

indomethacin series were also investigated with the development of two 

benzoyl derivatives where the chlorine was completely removed from the 

benzene ring (BRI 88/1) or was replaced with bromine in the /?ara-position 

(BRI 92/1). Results from the combination toxicity assay showed these two 

compounds to be positive with comparable activity to indomethacin. However, 

both of these compounds were 2-fold less toxic to the DLKP cells than N- 

benzoyl-indomethacin. This result indicates that the presence of the halogen in 

the N-benzoyl-indomethacin series is not critical and when removed does not 

render the compound inactive in the combination toxicity assay. However, no 

compounds were developed in which the halogen was placed in the ortho- and 

meta- position in the N-benzoyl derivatives of indomethacin so one cannot 

affirm for certain that the positioning of the halogen is not critical.

In subsequent analysis of N-benzyl derivatives of indomethacin, two 

compounds were developed in which the methoxy (BRI 119/1) or the methyl 

substituents (BRI 120/1) were removed. Both analogues were inactive in the 

combination toxicity assay indicating that both these substituents were required 

for the benzyl compounds to be active. Another interesting result was obtained 

with the development of an analogue of N-benzoyl indomethacin in which the 

methoxy substituent was removed (BRI 104/2). Removal of this substituent 

was not tolerated in the N-benzyl series, but in the N-benzoyl derivative the 

removal of this substituent did not render the compound inactive. This 

analogue was comparable in activity to indomethacin in the combination 

toxicity assay when used at similar concentrations and was also found to be 2- 

fold less toxic than N-benzoyl-indomethacin in the DLKP cells.

The acetic acid side chain was manipulated in two of the N-benzoyl- 

indomethacin analogues in which this substituent was converted to a methyl 

ester or a tolyl amide. This structural change rendered both these compounds 

inactive in the combination toxicity assay. These compounds were relatively 

insoluble in DMSO and media and this was most likely due to the changes 

made to the acetic acid side chain as the rest of the indomethacin structure 

remained unchanged.
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Therefore, results obtained from analysis of the N-benzyl derivatives of 

indomethacin indicate that the nature and the position of the functional groups 

are critical when the benzoyl substituent is removed from the indomethacin 

structure. It appears that the presence of the benzoyl group on the indole 

nitrogen atom confers greater structure rigidity to N-benzoyl-indomethacin. 

There is a large barrier to free rotation associated with groups joined by a 

double bond (Solomon, 1996). Therefore, upon removal of this benzoyl group, 

the rigidity of the structure of indomethacin is affected which may affect the 

binding of the structure to MRP. As it is postulated that indomethacin 

potentiates the activity of adriamycin by binding to MRP and subsequently 

inhibiting the efflux of adriamycin (Duffy et ah, 1998), it is very likely that 

variations to the indomethacin structure can affect its binding to the MRP 

protein.

Seelig et al., (2000), suggested that MRP1 binds its substrates via hydrogen 

bond formation and that the transport of anionic substrates by MRP1 is 

facilitated by cationic amino acid residues present in the transmembrane 

helices of MRP I. The authors demonstrated that the compounds analysed in 

the study and found to interact with MRP1, carried units consisting of two 

electron donor groups with a spatial separation of 2.5 ± 0.3 Â (defined as type I 

units) or, less frequently, units consisting of three electron donor groups with 

the two outer groups exhibiting a spatial separation of 4.6 ± 0.6 A (defined as 

type II units). They also reported that negatively charged electron donor units 

e.g. the carboxylic acid group, COO", are required for efficient transport by 

MRP1.

It appears that MRP transports amphiphilic anionic and some cationic 

substrates (section 1.6.6). The carboxyl (COOH) substituent is required on the 

indomethacin structure to render the indomethacin molecule more water- 

soluble. When the carboxyl group was substituted with either COOMe (BRI 

59/1) or CONHTol (BRI 69/2), in two N-benzoyl-indomethacin analogues, the 

potentiation ability of the compound was lost. Therefore, it is possible that 

altering the carboxyl side chain in N-benzoyl-indomethacin rendered these 

analogues too lipid soluble making them poor substrates for MRP. Substituting 

the carboxyl group may also have had the effect of reducing the ability of the
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analogues to bind to MRP due to the loss of this negatively charged electron 

donor group which appears to be necessary for substrate binding to MRP1.

It is postulated that when the benzoyl group is removed from the indomethacin 

structure, the chlorine substituent on the benzene ring functions to maintain the 

rigid structure o f indomethacin, which may be most suited to binding with 

MRP. If  the halogen is required in the /?ara-position on the benzene ring to 

maintain the rigid structure of indomethacin, it is difficult to explain why 

moving the fluorine group to the meta-position did not render the compound 

inactive. Fluorine is the least dense of the halogens and due to its smaller size 

(atomic mass of fluorine = 18.99) (chlorine = 35.45, bromine = 79.9) it is 

possible that moving its position to the meta-position did not have a large 

effect on the structure of indomethacin. But moving the larger chlorine 

structure resulted in a greater alteration to the shape of the indomethacin 

structure. Fluorine is more electronegative (4.1) than chlorine (2.8) or bromine 

(2.7), and has a greater dipole moment (1.91ja. (D)) than chlorine (1.08(j. (D)) or 

bromine (0.80fi (D)) when bonded to hydrogen. These properties may result in 

stronger binding of the meta-fluoro-benzyl indomethacin structure to the MRP 

molecule than if chlorine or bromine were in the meta-position.

Another hypothesis concerns the actual binding site on the MRP molecule. 

Perhaps one side of the indomethacin structure binds to a particular binding site 

on the MRP. Presumably the side that binds to the MRP binding site is that 

with the carboxylic acid group (Seelig et al., 2000). If this is so, it is possible 

that the position of the chlorine substituent, either in the ortho- or the meta

position of the benzene ring, but on the same side of the indomethacin structure 

as the carboxylic acid group, might result in an indomethacin structure which is 

too large to bind to the MRP binding site. The smaller size of fluorine, when it 

is in the meta-position, may not render the indomethacin structure too large for 

the binding site on MRP.

It is also possible that the lipophilicity of the indomethacin structure is affected 

by the position of the halogen on the benzene ring and in particular in N- 

benzyl-indomethacin analogues. MRP transports amphiphilic anionic 

compounds and the chlorine substituent helps to maintain the lipophilic 

properties of certain compounds (O’Connor, 1995). Moving chlorine to the 

meta- or the ortho-position on the benzene ring may reduce the lipophilicity of 

N-benzyl-indomethacin rendering it a poorer substrate for MRP. However, this
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hypothesis is unlikely, as removing the halogen group completely from the 

benzene ring in the N-benzoyl-indomethacin analogues did not render the 

indomethacin analogues inactive. Therefore, it is most likely that the position 

and the nature o f the halogen in the N-benzyl-indomethacin analogues affect 

the overall conformation (i.e. size and electron distribution) of the compound 

and as a result, its ability to bind to MRP.

The fact that the removal of the methoxy substituent on the N-benzoyl 

indomethacin structure did not result in a loss of activity in the combination 

toxicity assays, but removing the same substituent in the N-benzyl analogue of 

indomethacin resulted in loss of activity, strongly suggests that the nature and 

the function of the substituents on the benzene ring are not as crucial for N- 

benzoyl-indomethacin due to the greater structural rigidity of the N-benzoyl 

substituted indole nucleus.

As indomethacin is a known PLA2 inhibitor (Kaplan et al., 1978; Lobo et al., 

1994), four compounds were developed which are PLA2 inhibitors, adapted 

from studies of Fleisch et al., (1996) and Mihelich et al., (1997), of Lilly 

research laboratories. Another suggested explanation for the ability of the 

NSAIDs to potentiate the toxicity of the chemotherapeutic drug, was through 

inhibition of the enzyme PLA2 by these compounds. It was postulated that 

through the inhibition of the production of arachidonic acid the NSAIDs might 

exert their cytotoxic enhancing effects. Arachidonic acid is released from 

phopholipid stores in the cell membrane by the action of phopholipase A2 (Lehr 

et al., 1997; Fleisch et al., 1996 and Fox et al., 1996). This polyunsaturated 

fatty acid is a substrate for the lipoxygenase and cyclooxygenase enzymes and 

leads to a family of bioactive lipids that include the leukotrienes, 

prostaglandins, prostacyclins and thromboxanes (Mann et al., 1994). Despite a 

great deal of investigation, the roles that these arachidonic acid metabolites 

play in cancer have yet to be fully elucidated. However, as described in section 

1.7, a number of studies, including those carried out by Mamett et al., (1992) 

and Ara et al., (1996), have discussed the lipoxygenase and cyclo-oxygenase 

inhibitory properties of NSAIDs and their effects on tumour growth and 

promotion.

The structures of the four PLA2 inhibitors developed for analysis, BRI 153/1, 

203/1, 205/4 and 215/1, are described in figures 3.1.20, 3.1.23 and 4.2 (below). 

BRI 153/1 and BRI 203/1 were N-benzyl-l-(m)ethylindole-3-acetamides
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functionalised at the 5-position with a short chain alkoxy unit terminated by a 

carboxylic acid unit. Both compounds were structurally identical except for an 

ethyl substituent in BRI 153/1 was replaced with a methyl substituent in BRI 

203/1. When analysed in the combination toxicity assay, BRI 153/1 was non

toxic to the DLKP cells at concentrations up to 50ng/ml (0.130mM). It was 

only at this concentration that BRI 153/1 enhanced the toxicity of adriamycin 

in the DLKP cells at a level comparable that obtained by indomethacin at 

2.5(ag/ml (0.007mM), BRI 203/1 was more toxic to the cells than 153/1. The 

highest non-toxic concentration of BRI 203/1 was 20p,g/ml (0.054mM), 

indicating that the methyl substituent was involved in increasing the toxicity of 

the compound to the DLKP cells. At this highest non-toxic concentration BRI 

203/1 was positive in the combination toxicity assay but at its highest non-toxic 

concentration was not as effective in enhancing the toxicity of adriamycin as 

indomethacin at 2.5¡ag/ml.

co nh2

X

BRI 203/1: X=CH3 
BRI 153/1/1: X=CH2CH3

c o n h2

X

BRI 205/4: v ~ ™  
BRI 215/1:

BRI 205/4 and BRI 215/1 were also developed with structures similar to that of 

153/1. These compounds were N-benzyl-2-(m)ethylindole-3-acetamindes, 

functionalised at the 5-position. However, the short-chain alkoxy unit was



terminated by a phosphonie acid residue instead of a carboxylic acid residue. 

Again, BRI 205/4 and BRI 215/1 were structurally identical except for an ethyl 

substituent in BRI 215/1 was replaced with a methyl substituent in BRI 205/4. 

In the combination toxicity assay BRI 205/4 was negative. This compound had 

no cytotoxic enhancing ability when used at its highest non-toxic concentration 

of 25[j.g/ml (0.062mM). BRI 215/1 could also be used at concentrations up to 

50fj.g/ml (0.119mM), again indicating that the replacing of the ethyl substituent 

for a methyl substituent increases the toxicity of the compound in the cells. 

Although BRI 215/1 was at such high concentrations it was only weakly 

positive as compared to indomethacin. The results obtained in the combination 

toxicity assay for the four PLA2 inhibitors, indicate that BRI 153/1 and BRI 

203/1 were most positive. This indicates that the phosphonie acid residue, 

terminating the short chain alkoxy unit in BRI 215/1 and 205/4 had a negative 

effect on the ability of these compounds to enhance the toxicity of adriamycin. 

As explained previously, Seelig et al., (2000), reported that the carboxylic acid 

residue is a typical, negatively charged type I unit, (unit consisting of two 

electron donor groups with a spacial separation 2.5 ± 0.3 Á) suitable for 

substrate binding to MRP. Therefore, it is possible that when the carboxylic 

acid residue on the short chain alkoxy unit of BRI 153/1 and 203/1 is removed, 

and replaced with a phosphonie acid residue on BRI 205/4 and 215/1, these 

compounds lose their ability to bind to MRP. As a result BRI 205/4 and 215/1 

cannot potentiate the toxicity of adriamycin. The results also suggested that the 

ethyl substituent was the most favourable in terms of lower toxicity in the cell. 

At its highest non-toxic concentration, BRI 153/1 was the most positive of the 

PLA2 compounds analysed. Yet it could only achieve enhancement of the 

toxicity of adriamycin, comparable to that obtained by indomethacin at 

2.5 fig/ml, when used at 50(a.g/ml. These results suggest that the potentiating 

ability of indomethacin and positive indomethacin analogues is not through 

PLA2 inhibition.
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Combination

Toxicity

Assay

Combination

Toxicity

Assay

Indomethacin + BR1115/2 +

BRI 60/1 + BR1113/1 -

BRI 59/1 - BR1124/1 -

BRI 69/2 - BR1119/1 -

BRI 88/1 + BR1120/1 -

BRI 92/1 + BR1153/1 +

BRI 104/2 + BRI 203/1 +

BRI 106/1 - BRI 205/4 -

BRI 107/1 - BRI 215/1 -

BRI 114/2 + BR1138/1 +

Table 4.2.1: Summary table of results from combination toxicity assays. 

+ Positive; - Negative.
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One postulated mode by which the chemotherapeutic drugs are transported by 

MRP is through the formation of glutathione conjugates, which are then 

effluxed from the cell by MRP, resulting in the development of multidrug 

resistance (Paul et al., 1996). The findings that MRP can transport cysteinyl 

leukotrienes (e.g. LTC4) as well as other GSH conjugates suggest that this 

protein may be a GSH conjugate/organic anion transporter (Leier et al, 1994; 

Jedlitschly et al., 1994; Loe el al, 1996 and Cole et al., 1994). However, this 

theory is questionable as glutathione conjugates of the natural drug products 

for which MRP confers resistance have not been isolated (Tew et al, 1994) 

and MRP transfectants do not exhibit increased resistance to alkylating agents, 

a class of drugs for which glutathione conjugation is known to occur (Grant et 

al, 1994). Loe et al, (1996), demonstrated the direct uptake of unmodified 

vincristine by MRP-enriched vesicles in an ATP and GSH-dependent manner 

and that the tripeptide structure of GSH is a requirement for stimulation of 

VCR transport to occur. However, co-transport mechanisms still cannot 

explain all MRP-mediated resistance mechanisms, in particular with respect to 

the anthracycline antibiotics since GSH displays little or no ability to enhance 

either the transport directly or their ability to inhibit ATP-dependent, MRP- 

mediated LTC4 transport (Loe et al, 1996b).

Our group postulated that the mode of action of indomethacin and positive 

indomethacin analogues, in circumventing resistance in MRP positive cell 

lines, was through some form of inhibition of the activity of MRP. An 

investigation was carried out to assess if  these positive compounds were active 

against MRP through inhibition of the enzyme glutathione S-transferase (GST) 

which is the enzyme involved in the formation of glutathione conjugates (Yang 

et al, 1992). Hall et al, (1989), showed a partial reversal of chlorambucil 

resistance in Chinese hamster ovary cells by preincubation of the cells with 

indomethacin. These CHO cells were found to exhibit resistance to 

bifunctional nitrogen mustards while maintaining sensitivity to a range of other 

alkylating agents. This enhanced drug resistance was associated with a greater 

than 40-fold increase in the level o f GST as compared to the parental, CHO-K1 

cell line (Robson et al, 1986). Hall et al, (1989), found that indomethacin was
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an inhibitor of GST enzyme activity and also demonstrated that following 

exposure of the CHO cells to 500|im of indomethacin, the cytotoxicity of 

chlorambucil was potentiated. In contrast, the anti-inflammatory agent 

acetylsalicylic acid (aspirin) failed to inhibit the activity of GST and caused no 

potentiation of chlorambucil activity, suggesting that the potentiation by 

indomethacin is not due to the effects of this drug on prostaglandin synthesis. 

These studies led the authors to believe that GSTs may be involved in the 

development of resistance to bifimctional alkylating agents and suggest that 

indomethacin, or agents with similar activities may be of value as an adjunct to 

chemotherapy in some patients with tumours resistant to treatment with 

alkylating agents.

Results from the GST assays demonstrated varying ability among 

indomethacin and analogues to inhibit GST. Indomethacin was used as the 

positive compound control as its GST inhibiting ability was known and DMSO 

was used as the negative control (no compound). At approx. 500(am, 

indomethacin was found to inhibit GST by approx. 50% and l,000|xm inhibited 

GST activity by approx. 100%. The indomethacin analogues were analysed at 

similar concentrations. The results obtained from these assays were interesting. 

BRI 60/1, 88/1, 92/1, 104/2, 114/2, 115/2, 153/1, 138/1 and 203/1 were 

positive in the combination toxicity assays in DLKP cells. However, only three 

of those compounds, BRI 88/1, 92/1, 104/2, positive in the combination 

toxicity assay, were strongly positive in the GST assay. GST inhibition by BRI 

92/1 was comparable to that of indomethacin whereas the other two 

compounds were slightly less inhibitory. It was also interesting to note that 

indomethacin and BRI 88/1, 92/1, 104/2, are N-benzoyl compounds and vary 

only with indomethacin by the removal/replacement of one substituent in each 

of the compounds (Figures 1.10.5 - 1.10.7). The remaining indomethacin 

analogues, positive in the combination assay, are N-benzyl derivatives of 

indomethacin, and demonstrate insignificant or no GST inhibitory ability. This 

suggests that the GST active site is more selective for substrate binding than 

the MRP active site and the rigid structure of N-benzoyl-indomethacin is 

required for binding to this GST active site. The results indicate that inhibition 

of GST is not important for the enhancement of the toxicity of the 

chemotherapeutic by indomethacin and the active indomethacin analogues.

291



GST 

Assay Results

GST 

Assay Results

Indomethacin +++ BRI 115/2 +/-

BRI 60/1 - BRI 113/1 +/-

BRI 59/1 - BRI 124/1 -

BRI 69/2 - BRI 119/1 -

BRI 88/1 ++ BRI 120/1 -

BRI 92/1 +++ BR1153/1 -

BRI 104/2 ++ BRI 203/1 -

BR1106/1 - BRI 205/4 -

BR1107/1 +/- BRI 215/1 -

BR1114/2 - BRI 138/1 -

Table 4.2.2: Summary table of results from GST assay

+++ Very strong positive; ++ Strong positive; + positive; +/- poor positive;

- negative.

4.2.3 Investigation of MRP inhibiting ability of indomethacin and 

indomethacin analogues using a membrane-enriched preparation of MRP.

Western blotting analysis failed to demonstrate expression of MRP protein in 

whole cell extracts of DLKP (Duffy el ah, 1998). This contradicted the 

suggestion that NSAIDs interfered with MRP-mediated drug efflux resulting in 

chemotherapeutic drug toxicity enhancement. It was found, however, that MRP 

was detectable by Western blotting of inside-out vesicles (IOVs) isolated from 

DLKP. The levels were relatively low in comparison to the levels present in 

IOVs isolated from the MRP- overexpressing cell line HL60-ADR, but these 

levels were sufficient to render the cells less sensitive to chemotherapeutic 

drug and to allow circumvention of the resistance by the active NSAIDs 

(Elliott, 1997 and Duffy et ah, 1998).

The precise mechanism by which MRP renders the cells resistant to cytotoxic

insults has not been definitely established but it is believed (at least as one

possible mechanism) to act as an efflux pump for GSH conjugates of
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xenobiotics (Ishikawa et al., 1994). Active NSAIDS, indomethacin, sulindac 

and tolmetin have previously been demonstrated by our group to inhibit the 

uptake of leukotriene C4, an MRP substrate, using inside-out vesicles prepared 

from the plasma membrane of HL60/ADR cells (Duffy et al., 1998).

To gain insight into the mechanism of action of indomethacin and its 

analogues, the in vitro substrate specificity of MRP was examined by analysing 

the uptake of LTC 4  into membrane vesicles prepared from MRP- 

overexpressing HL60/ADR cells in the presence or absence of indomethacin or 

its analogues. Membrane vesicles were prepared as described in section 2.10, 

and according to the methods described by Paul et al., (1996), and Leier et al., 

(1994b). Uptake of LT C 4  was measured by the rapid filtration technique 

described by Horio et al., (1988), and Paul et al., (1996).

The results obtained from these assays demonstrated that approximately 50mM 

indomethacin inhibited the transport of LTC4 by approx. 80%. Similar molar 

concentrations of each of the active analogues were assayed and the results 

demonstrated that, of the nine indomethacin analogues active in the 

combination toxicity assay, eight of these compounds were very positive in the 

IOV assay. Analogues of indomethacin that were found to be negative in the 

combination toxicity assay were also found to be negative in the IOV assay in 

that they failed to inhibit the uptake of LTC4. These results strengthen the 

theory that the enhancement of the toxicity of the chemotherapeutic drug is 

through the interaction of the positive analogues with MRP. It is suggested that 

indomethacin and its analogues exerted their positive effect through inhibition 

of the pumping ability of MRP either by:

i. Binding to MRP and inhibiting the activity of the pump;

ii. Competing with LTC4 for a particular binding site on the MRP 

molecule, inhibiting the binding of LTC4 to MRP and curtailing the 

pumping of this substrate;

iii. Competitively inhibiting the pumping of L T C 4  by MRP, causing the 

MRP pump to preferentially transport indomethacin and its analogues 

from the cell (i.e. indomethacin and analogues may be competitive 

substrates for MRP).
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The glutathione conjugate transporter is also believed to be involved in the 

transport of cytotoxic drugs (Paul et al, 1996; Ishikawa et al, 1995; Shen et 

al, 1996) (Section 1.6.6). This may indicate that the NSAIDs and the 

indomethacin analogues potentiate the toxicity of the chemotherapeutic drugs 

through direct interaction with the MRP pump, causing a reduction in the 

amount of drug being pumped out of the cell and as a result increasing the 

toxicity of the drug to the cell.

However, one of the indomethacin analogues, BRI 138/1 (meta-fluorobenzyl- 

indomethacin), which was active in the combination toxicity assay in DLKP 

cells, was only weakly positive in the IOV assay. Approximately 50(jM of BRI 

138/1 was only capable of inhibiting the uptake of LTC4 by approx. 20% as 

compared to approx. 80% inhibition by equivalent concentrations of 

indomethacin. This would suggest that BRI 138/1 is a very poor MRP 

inhibitor/substrate even though it potentiated very strongly the toxicity of 

adriamycin in the combination toxicity assay, (although a potentiation ability 

comparable to indomethacin was only evident when BRI 138/1 was added to 

the combination toxicity assay at 6-times the concentration of indomethacin).

It may be possible that BRI 138/1 is exerting its effect on a different analogue 

of MRP which might have different substrate specificities than MRP1. RT- 

PCR analysis of DLKP cells (Section 3.11.2) has demonstrated a strong 

expression of MRP1 in these cells. Low expressions of MRP2, -4, -5 and -6  

mRNA have also been detected in DLKP cells (Section 3.16). mRNA 

expression of the various homologues of MRP was also investigated in the 

HL60/ADR cell line, the cell line from which the IOVs were prepared. Again, 

a strong expression of MRP1 mRNA was detected in these cells with lower 

levels of MRP2, -5 and -6  mRNA expression also detected. There are no 

detectable levels of MRP4 or MRP3 in the HL60/ADR cells (Section 3.16). 

Perhaps BRI 138/1 potentiated the toxicity of adriamycin by interacting with 

MRP4 which was detectable in DLKP cells but not in HL60/ADR cells. 

However, there is no evidence to date to suggest that adriamycin or 

indomethacin/indomethacin analogues are substrates for MRP4.

BRI 138/1 was negative in the GST assays so its activity is most likely not 

through inhibition of the formation of glutathione conjugates. BRI 115/2, the 

para-form of BRI 138/1, was positive in the IOV assay. It may be possible that
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because of its particular meta-structure (other meta-analogues of benzyl 

indomethacin were inactive in the combination toxicity assay), BRI 138/1 has a 

lower affinity for the binding site on the MRP molecule than LTC4 and the 

other active analogues. As a result of this, if the actual mode of action by 

which the positive analogues work is via competitive inhibition of MRP it may 

be unable to compete with LTC4 for preferential pumping by MRP. In contrast, 

in the combination toxicity assay, the levels of BRI 138/1 added to the cells is 

quite high, (15fag/ml (46|iM)), when compared to the concentration of 

adriamycin added (lOng/ml (17.2nM)) to the same cells. As a result BRI 138/1 

may be capable of competing with adriamycin for preferential pumping by the 

MRP pump due to the greater concentration of this compound in the cell. 

Hence, affinities of the compounds for the MRP binding site may not be so 

critical in the combination toxicity assay.

The comparison between the concentrations of indomethacin and indomethacin 

analogues used in both the combination toxicity assay and the IOV assay is 

also of interest. In the combination toxicity assay, BRI 138/1 was required at 6- 

times the concentration of indomethacin to produce a similar potentiation effect 

whereas, BRI 153/1 was required at 50-times the concentration of 

indomethacin. In comparison, in the IOV assay, the concentration of BRI 153/1 

(42|oM) was similar to that of indomethacin (46|aM), with similar abilities to 

inhibit LTC4 transport. However, BRI 138/1 at a concentration of 50(.iM was 3- 

fold less effective than indomethacin in the IOV assay. The fact that 

indomethacin and BRI 153/1 could be used at similar concentrations in the 

IOV assay, but not in the combination toxicity assay suggests differences in 

substrate requirements for binding to MRP between both assays. It appears 

that, although the fluorine in the meta-position on BRI 138/1 did not affect 

binding to the MRP binding site in the combination toxicity assay, the position 

of this halogen rendered BRI 138/1 a poor substrate in the IOV assay. It is 

possible that the procedure of turning vesicles inside-out, and thus, the 

direction of transport by MRP, affected, in some way, the conformation of the 

MRP active site which resulted in less effective binding by BRI 138/1. 

Alternatively, this discrepancy with the results obtained with BRI 138/1 may 

be simply due to the solubility of the compound in the IOV assay. Moving the 

fluorine from the para-to the meta-position in fluorobenzyl indomethacin may 

effect the solubility and electronegativity of the compound. MRP seems to
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have a preference for amphiphilic xenobiotics (Cole et al., 1994 and Loe et al., 

1996a). Fluorine is a smaller molecule (MW 18.998) than chlorine (MW 

35.453) and bromine (MW 79.904) and is also more electronegative which 

may be associated with reduced lipophilicity. In the combination toxicity assay, 

BRI 138/1 was dissolved in DMSO and added to medium prior to adding to the 

cells. However, in the IOV assay, BRI 138/1 was dissolved in DMSO and then 

added to an incubation buffer, which consisted of a high concentration (8% 

w/v) of sucrose in lOmM TRIS-HCL. Therefore, the solubility of BRI 138/1 in 

this buffer and, thus, in the IOV assay, may have been affected by the fluorine 

in the meta-position.

Further experiments are required to determine if BRI 138/1 is exerting its effect 

through an interaction with MRP and if its mode of action is similar to that of 

the other active indomethacin analogues. Efflux studies (section 3.5) suggest 

that the DLKP cells efflux chemotherapeutic drug, in combination with BRI 

138/1, in a manner similar to the efflux of drug with indomethacin. These 

efflux experiments may also be expanded to determine preferential pumping of 

one indomethacin analogue over another. The affinity of BRI 138/1 versus 

other indomethacin analogues for MRP may be analysed here.

IOV Assay 

Results

IOV Assay 

Results

Indomethacin ++ + BRI 115/2 +++

BRI 60/1 ++ BRI 113/1 N/D

BRI 59/1 - BRI 124/1 N/D

BRI 69/2 - BRI 119/1 -

BRI 88/1 + + (+ ) BRI 120/1 -

BRI 92/1 ++ + BR1153/1 +++

BRI 104/2 ++ BRI 203/1 ++

BRI 106/1 N/D BRI 205/4 -

BRI 107/1 N/D BRI 215/1 + /-

BRI 114/2 + + (+ ) BRI 138/1 +

Table 4.2.3: Summary table of results from IOV assay

+++ Very strong positive; ++ Strong positive; + positive; +/- poor positive; 

negative.
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Indomethacin has been shown by a number of researchers (Vane et al., 1996; 

Engelhardt et al., 1996; Mitchell et al., 1993) to be an inhibitor of both 

cyclooxygenase-1 and -2 (COX-1 and COX-2). This NSAID is slightly more 

potent against COX-1 than COX-2 but is generally considered as a non- 

selective NSAID (Reindeau et al., 1997). Indomethacin is also known for its 

propensity to cause gastric damage (Bateman, 1994).

It is unlikely that the cyclooxygenase inhibitory activity of the NSAIDs is 

involved in the enhancement of the cytotoxicity of chemotherapeutic drugs 

because:

• Many NSAIDs known to be cycloxygenase inhibitors have been shown in

our laboratories not to have the ability to potentiate the toxicity of

chemotherapeutic drugs. These negative NSAIDs include aspirin,

diclofenac, fenoprofen, flufenamic acid, naproxen and piroxicam (Duffy et 

al., 1998).

• Sulindac sulfone, a metabolite of sulindac, is an active toxicity enhancer

(Duffy et al., 1998), although it does not possess cyclo-oxygenase

inhibitory activity (Piazza et al, 1995; 1997a; 1997b and Levy et al,

1997).

• The addition of PgD2 or PgE2 does not reverse the enhancement effect 

(Duffy et al., 1998; De Mello et al., 1980; Elliot 1997).

NSAIDs are reported to inhibit the synthesis of cytoprotective prostaglandins 

by COX-1 in the gastrointestinal tract leading to the accumulation of surplus 

arachidonic acids. These can enhance the generation of leukotrienes via the 

lipoxygenase pathway inducing neutrophil adhesion to endothelium and

vasoconstriction. The NSAIDs containing a carboxyl group also inhibit oxidative 

phosphorylation (OXPHOS) lowering adenosine-triphosphate (ATP) generation, 

leading to loss of mucosal cell tight junctions and increased mucosal permeability 

(Fosslien, 1998). Inhibition of COX-2 by NSAIDs reduces synthesis of pro- 

inflammatory prostaglandins and produces analgesia (Fosslien, 1998). Evidence, 

therefore, suggests that the GI toxicity associated with NSAID use is primarily
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the result of inhibition of COX-1 and anti-inflammatory effects are largely due to 

the inhibition of COX-2. An NSAID, which selectively inhibits COX-2, and has 

little effect on COX-1, would be ideal for the purpose of our work especially 

since COX-2 inhibitors may have anti-tumour activity (section 1.7). Therefore, 

the indomethacin analogues were analysed to investigate their COX-1 and COX- 

2 inhibitory abilities and to assess if one of the analogues of indomethacin, 

positive in the combination toxicity assay, might be capable of exerting its effect 

on the chemotherapeutic drug without causing the gastric damage customarily 

associated with NSAIDs, including indomethacin.

Indomethacin was used as the positive control in both the COX-1 and COX-2 

assays as its ability to inhibit both enzymes was known. BRI 215/1 and 205/4 

were also analysed in the COX assays to assess if  analogues of indomethacin, 

which were negative in the combination toxicity assay, would also be devoid of 

COX-inhibitory activity. Separate assays were utilised to analyse the inhibitory 

effect of the compounds on the enzymes. The COX-1 assay was a 

spectrophotometric assay based on the assays utilised by Boopathy et al., 

(1986), and Piazza et al., (1997). The assay used to measure the inhibition of 

COX-2 was an ELISA- based assay and the experiment was based on the fact 

that COX-2 is the constitutive and dominant isoform in stimulated and 

unstimulated cultured human lung epithelial cells (Asano et al., 1996). The cell 

line A549, a human lung adenocarcinoma, was shown to express COX-2 

mRNA and protein when it is stimulated with epidermal growth factor or pro- 

inflammatory cytokines such as IL-ip.

The compounds analysed in both the COX-1 and COX-2 assays were those 

compounds that were positive in the combination toxicity assay in DLKP cells. 

O f the agents analysed, the results indicate that only four of the compounds 

positive in the combination toxicity assay, including indomethacin were good 

inhibitors of both COX-1 and COX-2. The indomethacin analogues most 

effective at inhibiting COX-1 and COX-2 were BRI 88/1, 92/1 and 104/2. Of 

these compounds BRI 92/1, bromo-indomethacin, was most effective at 

inhibiting both enzymes and seemed to be slightly more effective than 

indomethacin. 12|j.g/ml (33nM) indomethacin inhibited COX-1 by 60.9 ± 

12.2% and at slightly lower molar concentrations BRI 92/1 at 30nM inhibited 

COX-1 by 79.0 ± 11.3%. Indomethacin at lOnM inhibited the activity of COX- 

2 by 86.1 ± 5.9%. BRI 92/1 at lOnM inhibited the activity of COX-2 by 88.1 ±
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4.4%. Indomethacin, BRI 88/1 and BRI 104/2 (N-benzoyl-indomethacin 

analogues) had similar COX-inhibiting ability. Perhaps the replacement of the 

chlorine substituent with bromine in N-benzoyl indomethacin increased the 

COX- inhibitory ability of the compound.

BRI 60/1, BRI 114/2, BRI 115/2, BRI 203/1 and BRI 215/1 (negative control 

compound) inhibited COX-1 by approximately 20-30% (Table 3.4.1.1), so 

were relatively weak COX-1 inhibitors as they were approximately 50% less 

effective than indomethacin at inhibiting COX-1. These compounds are all N- 

benzyl derivatives o f indomethacin and this indicates that the N-benzoyl unit in 

indomethacin is critical in COX-1 inhibition and removal of this unit renders 

the compound too dissimilar to indomethacin to be an effective COX-1 

inhibitor. Zoete et al., (1999), reported that electron-donating properties are 

essential in the action of NSAIDs as inhibitors of prostaglandin 

cyclooxygenase activity. Perhaps removal of the benzoyl group diminishes the 

electron-donor ability of indomethacin rendering it unable to inhibit COX-1.

Of interest here are the compounds BRI 153/1 and BRI 138/1. These 

compounds demonstrated extremely low ability to inhibit the activity of COX- 

1. BRI 153/1 and BRI 138/1 had no inhibitory activity against COX-1. This 

suggests that as well as the N-benzoyl unit being critical for COX-1 inhibition^ 

the presence of the halogen in the /?ara-position also seems to be critical for 

inhibition of COX-1. Both these compounds were positive in the combination 

toxicity assays, BRI 153/1 was very positive in the IOV assay but BRI 138/1 

was only weakly positive. These compounds would be of clinical interest as 

they seem to both have a good enhancement effect on the chemotherapeutic 

drugs in vitro and have very weak COX-1 inhibitory ability. These properties 

would make them attractive as active compounds, with adriamycin potentiation 

ability, without the characteristic adverse side effects of NSAIDs which result 

from inhibition of COX-1.

BRI 60/1 was the only indomethacin analogue which exhibited a weak COX-1 

inhibitory activity but a strong COX-2 inhibitory activity comparable to that of 

indomethacin (« 85% inhibition of COX-2). BRI 114/2 and BRI 115/2 

inhibited COX-2 by approximately 40% which is only 50% the COX-2 

inhibitory ability of indomethacin. BRI 153/1, BRI 138/1 and BRI 203/1 only 

inhibited COX-2 by approx. 20%. BRI 215/1 exhibited no COX-2 inhibitory 

activity. BRI 60/1 was the only benzyl analogue of indomethacin to exhibit
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strong COX-2 inhibitory activity. The results seem to indicate that there is a 

relationship between the benzoyl/benzyl unit and the halogen attached to the 

benzene ring. In the benzoyl series, removal of the halogen (BRI 88/1) or 

replacing it with another halogen (BRI 92/1) did not seem to effect the 

compounds ability to inhibit COX-2 activity once the benzoyl unit was present. 

However, in the benzyl series, removing the chlorine from the benzene ring, 

changing its position from para-, or replacing it with another halogen, affected 

the ability of the compound to inhibit COX-2. The COX active site is a long 

hydrophobic channel (Vane et al., 1996) and it is possible that changing the 

structure of indomethacin, in particular altering the halogen substituent, might 

result in a number of analogues becoming less lipophilic and incapable of 

binding to the COX active site as effectively as indomethacin. Meade et al., 

(1993), reported that the active site of COX-2 is larger than that of COX-1 and 

can accept a wider range of structures as substrates. Perhaps this explains why 

removal of the benzyl group in BRI 60/1 did not diminish its COX-2 inhibitory 

activity. The structure was too dissimilar to indomethacin for significant COX- 

1 inhibition but due to the wider substrate specificity of the COX-2 active site, 

BRI 60/1 was able to bind to the active site of enzyme.
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Combination

Toxicity GST lOV COX-1 COX-2
Assay

Indomethacin +++ +++ +++ ++ +++

BRI 60/1 +++ - ++ + +++

BRI 59/1 

BRI 69/2 - - -

S H B H i
BRI 88/1 +++ ++ ++(+) ++ +++

BRI 92/1 +++ +++ +++ +++ +++

BR1104/2 +++ ++ ++ ++ +++

BR1106/1 

BR1107/1 - +/-
• -p .'""mm

fflwauwB r, ■' '■'! Ilf
BR1114/2 +++ - ++(+) + ++

BR1115/2 +++ +/- +++ + ++

BR1113/1 - +/- -

BRI 124/1 -

•-•lÉlSBR1119/1 - - -

BR1120/1 - - -
BR1153/1 +++ - +++ - +/-
BRI 203/1 +++ - ++ + +

BRI 205/4 - - - - ++

BRI 215/1 - - +/- +/- -

BRI 138/1 + + + - + - + / -

Table 4.2.4: Summary table of results from investigation of SAR of indomethacin 

+++ Very strong positive; ++ Strong positive; + positive; +/- poor positive;

- negative.
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In summary, investigations of the structure activity relationship of 

indomethacin have indicated that the N-benzoyl substituent on the 

indomethacin structure is crucial for GST and COX-1 inhibitory activity. This 

substituent does not seem to be as critical in N-benzyl-indomethacin analogues, 

for inhibition of COX-2. But, this is only so when the halogen group is present 

and in the /rara-position which suggests, in the absence of the N-benzoyl 

substituent, that the para-halogen bonds to a particular part of the active site of 

COX-2, locking the compound in to position. Analysis of the indomethacin 

analogues in the S AR assays has yielded a number of interesting indomethacin 

analogues. Of primary interest are those compounds which were found to be 

active in the combination toxicity assay. Six of these compounds, N-benzyl 

indomethacin analogues, BRI 60/1, 114/2 and 115/2, and N-benzoyl 

indomethacin analogues, BRI 88/1 92/1 and 104/2, demonstrated potentiating 

ability similar to indomethacin at similar concentrations but they also 

demonstrated reduced toxicity in the DLKP cells as compared to indomethacin. 

These indomethacin analogues were 2-fold (BRI 60/1, 88/1 and 92/1), and 4- 

fold (BRI 114/2 and BRI 115/2) less toxic than indomethacin in the DLKP 

cells. The required concentrations of the remaining active indomethacin 

analogues, BRI 138/1, 153/1 and 203/1, are higher than the required 

concentration of indomethacin, for enhancement of adriamycin toxicity. 

However, although they are less potent than indomethacin, these analogues are 

also less toxic to the DLKP cells than indomethacin. As a result, these 

indomethacin analogues may prove to be more clinically beneficial than 

indomethacin for enhancement of chemotherapeutic drug activity due to their 

reduced toxicity.

Of particular interest also, are those indomethacin analogues with reduced 

COX-1 inhibitory ability. The N-benzyl-indomethacin analogues demonstrated 

reduced ability to inhibit COX-1 as compared to the indomethacin and the N- 

benzoyl indomethacin analogues. This reduced COX-1 inhibition would be of 

great benefit, as the toxicity of the anticancer drugs could be enhanced by the 

active indomethacin analogues without the gastrointestinal toxic side effects 

associated with indomethacin. In particular, BRI 138/1 and 153/1, N-benzyl 

indomethacin analogues, were active in the combination toxicity assay, were 

less toxic than indomethacin and demonstrated no COX-1 and some COX-2 

inhibitory activity. BRI 60/1 also demonstrated very low COX-1 inhibitory

302



ability but, in contrast to BRI 138/1 and 153/1, this indomethacin analogue was 

also a very strong COX-2 inhibitor. The results for BRI 60/1 suggest a 

potential clinical application due to possible lower toxic side effects than 

indomethacin and in addition, increased ability as a tumour suppresser due to 

inhibition of COX-2.

Duffy et al., (1998), reported that indomethacin was unable to potentiate the 

toxicity of chemotherapeutic drugs in Pgp-overexpressing cell lines. Therefore, 

indomethacin and indomethacin analogues function as selective inhibitors of 

MRP-mediated efflux of the chemotherapeutic drugs from MRP- 

overexpressing cell lines and are effective at biologically relevant 

concentrations. There is enough evidence to suggest that these compounds 

interact with MRP1. The implications of using these compounds in cell lines 

which express MRP homologues other than MRP1 are discussed in section 

4.11 of this thesis.

The active indomethacin analogues are promising candidates for future clinical 

applications, in particular those with reduced toxicity and COX-1 inhibitory 

activity. Two of the active indomethacin analogues with reduced COX-1 

inhibitory activity, BRI 115/2 and 138/1, are completely novel (Dr. Anita 

Maguire, personal communication) and so may also be promising candidates 

for patent and commercial applications.

However, extensive biological analysis of these compounds in animal 

experiments, clinical trials etc. are required to fully elucidate the effectiveness 

of these compounds before they can be used in the treatment of human cancers.
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4.3.1 Investigation o f Adriamycin efflux

Drug efflux experiments were carried out to determine the accumulation of 

adriamycin in DLKP cells in the presence of indomethacin/indomethacin 

analogues and the accumulation of indomethacin in the cells in the presence of 

adriamycin.

The results of the adriamycin efflux studies (Table 3.5.1) showed a notable 

difference in the levels of cellular adriamycin content in DLKP cells incubated 

with lOfim (5.44(j,g/ml) adriamycin alone versus co-incubation of adriamycin 

and 28jj.m (10|a.g/ml) indomethacin. After the initial 2 hour loading period, 

there was similar accumulation of adriamycin in the cells treated with 

adriamycin alone and adriamycin + indomethacin. When the levels of 

indomethacin were maintained in the cells for a further five hours the level of 

adriamycin remained almost constant with only a slight decrease evident after 

this time. When indomethacin was removed from the medium after the initial 

loading period, the concentration of adriamycin in the cells greatly decreased. 

However, there was a decrease in the levels of adriamycin in those cells treated 

with adriamycin alone.

4.3.2 Effect of indomethacin analogues on adriamycin efflux

Similar results to indomethacin were obtained with BRI 138/1. BRI 138/1 was 

positive in the combination toxicity assay (section 3.1), in that it could 

potentiate the toxicity of adriamycin in DLKP cells. The efflux of adriamycin 

from the DLKP cells was also reduced in the presence of BRI 138/1, also at 

28|im, as compared to cells incubated with adriamycin alone. Removing BRI 

138/1 from the DLKP cells also resulted in a decrease in adriamycin 

accumulation. However, when this experiment was carried out using an 

analogue of indomethacin, BRI 205/4, which was negative in the combination 

toxicity assay (section 3.1), the efflux of adriamycin from the cells was similar 

to that observed in cells treated with adriamycin alone i.e. this negative
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indomethacin analogue had no effect on adriamycin accumulation in the DLKP 

cells. The results suggest that the efflux of adriamycin from MRP-expressing 

cells can be significantly reduced by indomethacin and BRI 138/1 and as a 

result can lead to greater adriamycin toxicity to the cell. This supports results 

obtained in the combination toxicity assay (section 3.1) in which in the 

presence of indomethacin and BRI 138/1, the toxicity of adriamycin was 

potentiated in the DLKP cells. It appears that the active compounds have direct 

inhibitory potential against the activity of MRP. It is possible that 

indomethacin and indomethacin analogues exert their positive effect through 

inhibition of the pumping ability of MRP either by:

i. Binding to MRP and inhibiting the activity of the pump.

ii. Competing with an MRP substrate, such as LTC4 or chemotherapeutic 

drug, for a particular binding site on the MRP molecule, inhibiting the 

binding of the substrate.

iii. Competitively inhibiting the pumping of the substrate by MRP, causing

the MRP pump to preferentially transport active NSAIDs such as 

indomethacin (competitive substrate).

4.3.3 Investigation of Indomethacin efflux

An investigation was then carried out to assess the effect of adriamycin on the 

efflux of indomethacin from the DLKP cell.

The results indicate that after the initial loading period, the level of 

indomethacin in the cells was higher in those cells treated with a combination 

of indomethacin and adriamycin, than in those cells treated with indomethacin 

alone. After the cells were refed with fresh media alone, subsequent to loading 

with both adriamycin and indomethacin, the concentration of indomethacin in 

the cells decreased considerably. However, there was almost no efflux of 

indomethacin from the cells refed with adriamycin and incubated for a further 

90 minutes. The results indicate that in the presence of adriamycin the efflux 

of indomethacin from the DLKP cells is notably reduced. These experiments 

demonstrate that indomethacin as well as adriamycin is effluxed from the 

DLKP cells. This suggests that both compounds are competitive substrates for
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MRP1 and reduce the efflux of one another from the DLKP cells by competing 

for the same binding site on the MRP protein and competing for preferential 

pumping from the cell by MRP1.

An experiment was also carried out to investigate if co-incubation of 

indomethacin with adriamycin during the initial loading period was required 

for maintenance of the cellular indomethacin content. The cells were loaded 

for two hours with indomethacin and after this initial period the medium was 

removed from the flask and the cells were refed with adriamycin containing 

medium alone for 90 minutes incubation. The level of indomethacin in the 

cells was found to have decreased to similar levels observed in the cells treated 

with indomethacin alone, indicating that co-incubation of indomethacin with 

adriamycin is required for the maintenance of cellular indomethacin content.

Adriamycin also seems to have exerted an effect on the initial uptake of 

indomethacin by the DLKP cells. The results indicate that in the presence of 

adriamycin there was a greater uptake of indomethacin in the cell than when 

the cells were incubated with indomethacin alone (23.3ng/million cells and 

12.8 ng/million cells respectively). It is possible that indomethacin is such a 

good substrate for MRP due to its amphiphilic anionic properties and the 

presence of the carboxylic acid group which seems to be required for binding 

to MRP, that it is effluxed from the cell almost immediately, resulting in the 

low levels of indomethacin being present in the cells after the initial 'loading1 

period. In the presence of adriamycin, the efflux of indomethacin seems to be 

reduced, resulting in a greater net uptake of indomethacin in the cell after the 

initial 'loading' period.

The concentrations at which indomethacin and adriamycin are added to the 

DLKP cells must also be taken in to consideration. A concentration of 

27.95|iM indomethacin was added to the DLKP cells in comparison to 10f,iM 

adriamycin. Perhaps indomethacin is only capable of competing with MRP 

when present in the cell at such high concentrations. However, preliminary 

drug efflux experiments which were carried out to determine the length of time 

adriamycin or indomethacin were detectable in the DLKP cells demonstrated 

that five hours after the initial loading period, low levels of adriamycin was
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still detected in the DLKP cells. In contrast, very low levels of indomethacin 

could only be detected up to 2 hours after the initial loading period.

These preliminary results thus indicate that indomethacin is pumped out of the 

cells at a much faster rate than adriamycin, suggesting that indomethacin 

/indomethacin analogues are pumped preferentially by MRP1 when combined 

with adriamycin, resulting in increased toxicity of the chemotherapeutic drug 

to the cells. As mentioned previously, this preferential binding is possibly due 

to the amphiphilic anionic properties of indomethacin in contrast to the more 

hydrophilic, cationic properties of adriamycin. Although MRP is reported to 

transport both of these compounds (section 1 .6) it seems to have a preference 

for amphiphilic anionic substrates with negatively charged substituents (e.g. 

the carboxylic acid substituent on indomethacin) (Seelig et al., 2000).

Thus, it appears that these active compounds compete with the 

chemotherapeutic drugs, which are MRP1 substrates, for a binding site on the 

MRP pump and are preferentially pumped out of the cell. As a result of this, 

while MRP is effluxing the active NSAIDs out of the cell, there is less efflux of 

the chemotherapeutic drug resulting in greater accumulation of the 

chemotherapeutic drug in the cell and greater cell kill.

Interesting future experiments could include similar drug efflux studies with 

DLKP cells using combinations of adriamycin and a number of the active and 

inactive indomethacin analogues. The concentrations of adriamycin and 

indomethacin/indomethacin analogues used in these efflux studies were chosen 

as initial experiments carried out in our laboratory indicated that these 

concentrations were the minimum concentrations required for detection by the 

HPLC apparatus (Dr. Robert O’ Connor, personal communication). It would be 

interesting to add both the compound and the drug to the cell at the same 

concentrations to analyse the effect.

These drug efflux studies have been carried out with adriamycin only, in 

combination with indomethacin and indomethacin analogues. Preliminary work 

has been carried out on a number of other chemotherapeutic drugs to validate 

protocols for measuring these drugs using HPLC analysis. To further elucidate 

the mechanisms by which the active NSAIDs potentiate the anticancer drugs a 

large number of drug efflux experiments are required using 

indomethacin/indomethacin analogues and other NSAIDs such as sulindac and
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piroxicam in combination with a range of anti-cancer drugs which were shown 

to be potentiated or unpotentiated in the combination toxicity assays. These 

experiments would determine if  the toxicity of the anticancer drugs were 

potentiated by the active NSAIDs by a reduction of efflux from the cells or if 

there are different mechanisms of toxicity enhancement by the active NSAIDs 

other than modulation of efflux. Efflux studies using other cell lines such as 

MRP+ and MRP- cell lines and cell lines which over-express Pgp, could also 

be carried out to compare the rate of efflux of indomethacin, indomethacin 

analogues and other active NSAIDs in these cell lines.

4.4 Investigation o f potentiation o f adriam ycin, vincristine, VP-16  

and 5-FU  by indom ethacin and indom ethacin analogues in the  

C O R L23 parental and resistant cell lines.

From the human lung cancer cell line CORL23, a resistant variant was 

developed by growth of the parental cells in increasing concentrations of 

doxorubicin over a period of eight weeks (Mirski et al., 1987 and Twentyman 

et al., 1994). This CORL23(R) subline does not overexpress Pgp but has high 

levels of a 190-kDa protein we now know to be MRP1. Borst et al., (1997), 

and Kool et al., (1997), characterised the CORL23 cell line and determined the 

levels of MRP present in the parental and resistant variants. Both variants do 

not express Pgp. The parental CORL23 cell line expresses only very low levels 

of MRP1 and MRP4, and a very low level of MRP5 was detected. After 

continuous selection of the cell line with adriamycin, the CORL23(R) cell line 

was found to highly overexpress MRP1. This overexpression of MRP1 in the 

resistant cell line resulted in a ten-fold increase in resistance to vincristine and 

adriamycin, and a 6-fold increase in resistance to VP-16. As the resistant 

variant does not express Pgp, even after continuous exposure to adriamycin, 

this resistance can be attributed to the over expression of MRP 1.

This characteristic of the CORL23 cell line was exploited to further analyse a 

number of the indomethacin analogues, combination toxicity assays were 

carried out on both the CORL23(P) and CORL23(R) to determine if  those 

compounds, which enhanced the toxicity of chemotherapeutic drugs in DLKP
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cells, were active in another MRP positive cell line (CORL23(R)). Experiments 

had previously been carried out on the CORL23(R) cell line, by Duffy el al., 

(1998), and it was found that the positive NSAIDs, including indomethacin, 

potentiated the toxicity of a range of chemotherapeutic drugs in this cell line. 

Therefore, indomethacin was used as the positive control NSAID in these 

combination toxicity assays. Duffy et al., (1998), also reported that 

5’fluorouracil displayed no synergy in combination with NSAIDs in the MRP1 

overexpressing cell lines so 5’fluorouracil was used as the negative control 

chemotherapeutic drug in these assays. BRI 205/4, an indomethacin analogue, 

negative in the combination toxicity assay in DLKP cells, was used as a 

negative control compound in these assays. The results show that BRI 205/4 

was also found to be unable to potentiate the toxicity of the anti-cancer drugs in 

the CORL23 cell lines. These results indicate that indomethacin and 

indomethacin analogues are potentiating the toxicity of the chemotherapeutic 

drugs using a mechanism similar to that observed in the DLKP cells.

A number of the active indomethacin analogues were found to potentiate the 

toxicity of MRP1 substrates, adriamycin, VP-16 and vincristine, in the MRP 

overexpressing cell line, CORL23(R). There was also a potentiation of the 

same drugs in the parental CORL23 cell line when combined with the active 

analogues. MRP1 is expressed in both the CORL23 variants (Borst et al.,\991 

and Kool et al.,\991), albeit very little expressed in the CORL23 parental cells. 

However, the fact that MRP1 is expressed at such a low level in DLKP cells 

(i.e. it was only visible on Western blots when a concentrated plasma 

membrane preparation was used (Duffy et al., 1998)), indicates that even the 

presence of a small amount of functional MRP1 may be sufficient to render 

cells less sensitive to chemotherapeutic drugs. The results obtained in the 

CORL23(R) and parental cell lines suggest that the level of expression of MRP 

does not appear to strictly correlate to the rate of the potentiation of the 

anticancer drug by the positive NSAIDs. Duffy et al., (1998), also 

demonstrated higher levels of MRP 1 protein expression in A549, a human lung 

adenocarcinoma cell line, than in the DLKP cell line. Yet the authors reported 

comparable synergistic combination of selected NSAIDs with certain 

chemotherapeutic drugs in both cell lines. Therefore, it seems that the 

enhancement of toxicity of the chemotherapeutic drugs by the active compound
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MRP is understood to not play an important role in 5-FU resistance (Nishiyama 

et al., 1999). Kirihara et al, (1999), also report that the mechanisms of 5-FU 

resistance appear to be different from drug resistance associated with the 

multidrug resistance phenotype related to Pgp and MRP. Indomethacin and the 

active analogues were unable to potentiate the toxicity of 5-FU in both the 

CORL23 parental and resistant cell lines. These results concur with the 

hypothesis that the mode of action of the active NSAIDs is through an 

interaction with MRP.

Kobayashi et al, (1997), reported that vincristine is a most effective 

chemotherapeutic drug in combination with indomethacin in two pulmonary 

adenocarcinoma cell lines. In our experiments the active indomethacin 

analogues did not demonstrate as strong an ability to potentiate the toxicity of 

adriamycin and VP-16, in the parental cell line as they did in the resistant 

variant. However, the magnitude of the enhancement of the toxicity of 

vincristine by indomethacin, BRI 88/1 and BRI 92/1 was almost equivalent in 

the parental CORL23 and in the resistant cells. Vincristine is an extremely 

good substrate for MRP and Loe et al, (1996), demonstrated the direct uptake 

of unmodified vincristine by MRP in an ATP and GSH-dependent manner, this 

unmodified uptake has not been demonstrated for adriamycin or VP-16. It may 

be possible, due to the fact vincristine is a better substrate for MRP than 

adriamycin and VP-16, that inhibition of even low levels of MRP results in a 

dramatic potentiation of the toxicity of vincristine, as it appears that low levels 

of MRP would be capable of effluxing vincristine very effectively.

Alternatively, the greater increase in vincristine toxicity, in both the CORL23 

sensitive and resistant cell lines, by indomethacin and indomethacin analogues, 

may simply be as a result of the lower concentrations of this chemotherapeutic 

drug in the cells. In the parental CORL23 cells the IC50 for vincristine was 

lng/ml (1.21fj.M). 20ng/ml (34.4|jM) of adriamycin was required to achieve 

the same level of cell kill in these cells. Similarly, in the resistant CORL23 

cells 50% cell kill was achieved using vincristine at 12ng/ml (14.52|iM) as 

compared to 250ng/ml (430p.M) for adriamycin. Therefore, this data indicates 

that indomethacin may potentiate the toxicity of vincristine better than
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adriamycin and VP-16 due to the lower concentrations of vincristine with 

which it has to compete for a binding site on the MRP protein.

The mechanisms of action of the drugs used in this combination assay may also 

contribute to an explanation for the strong potentiation of the toxicity of 

vincristine in the parental CORL23 cell as opposed to a lower potentiation of 

adriamycin and VP-16. Both VP-16 and adriamycin interact with the DNA of 

the cell. The major actions of adriamycin include high affinity binding to DNA 

through intercalation, with consequent blockade of the synthesis of DNA and 

RNA, and DNA strand scission through effects on topoisomerase II. The mode 

of action of VP-16 (etoposide) involves inhibition of topoisomerase II which, 

results in DNA damage through strand breakage induced by the formation of a 

ternary complex of drug, DNA and enzyme. However, the mode of action of 

vincristine does not involve binding to DNA. Its mechanism of action involves 

depolymerisation of microtubules, which are an important part of the 

cytoskeleton and the mitotic spindle. The drug binds specifically to the 

microtubular protein tubulin in dimeric form; the drug-tubulin complex adds to 

the forming end of the microtubules to terminate assembly, and 

depolymerisation of the microtubules then occurs. This results in mitotic arrest 

at the metaphase, dissolution of the mitotic spindle, and interference with 

chromosome segregation (Pratt et al., 1994; Katzung, 1998). Hence, due to the 

fact that vincristine does not bind to DNA in the nucleus, it is possible that 

there is more vincristine freely available in the outer part of the cells, for 

effluxing from the cell by MRP. As a result any inhibition of the MRP pump 

may result in a large increase in the amount of vincristine within in the cell, 

resulting in a greater level of toxicity to the cells.

If the proposed working model for MRP, described in section 1.6.8.1a, which 

involves the presence of two co-operative binding sites, is correct, it may 

support an additional hypothesis for the superior enhancement of vincristine 

toxicity in the CORL23 cell lines. As vincristine transport is reported by Loe et 

al., (1996) to require co-transport with GSH, it is postulated that vincristine 

binds to the D-site while GSH binds to the G-site. Indomethacin is reported by 

Borst et al., (1999), to stimulate GSH transport in MDCKII-MRP2 cells. 

Therefore, it appears that indomethacin preferentially binds to the D-site of the 

MRP protein, reducing the amount of vincristine bound to this site, resulting in 

reduced efflux of this chemotherapeutic drug from the cell. Whereas, it is
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postulated that adriamycin and VP-16, chemotherapeutic drugs which do not 

appear to form glutathione conjugates or require co-transport with GSH (Tew 

et al., 1994 and Loe et al., 1996b), can bind to both the G- and the D-sites 

(Borst et al., 1999). Therefore, modification of the efflux of these 

chemotherapeutic drugs requires binding to both the G- and the D- site by 

indomethacin also. Or if indomethacin only binds to the D-site there still may 

be some transport of adriamycin and VP-16 attached to the G-site.

4.5 Investigation  o f potentiation o f  taxol and taxotere in  the  

C O R L 23 parental and resistant cell lines.

Taxanes are a new class of anti-mitotic anticancer drugs with a unique 

mechanism of action (Van Ark-Otte et al., 1998). Unlike vinca alkaloids, a 

group of antimicrotubule drugs which act mainly as spindle poisons and inhibit 

the polymerisation of tubulin, taxanes promote the polymerisation of tubulin 

(Jordan et al., 1993). Microtubules formed in the presence of taxanes are stable 

and non-functional, leading to cell death by disruption of the normal 

microtubule dynamics required for cell division and vital interphase processes 

(Van Ark-Otte et al., 1998). Taxol (paclitaxel), a compound derived from the 

bark of Taxus brevifolia, and taxotere (docetaxol), a semi-synthetic taxane 

extracted from the needles of Taxus baccata have both been shown to have 

significant activity in ovarian breast and non-small cell lung cancer (Rowinsky 

et al., 1995).

Previously, our group reported that the toxicity of taxol (paclitaxel) was not 

potentiated in A549 cells when in combination with the active NSAIDs (Duffy 

et al., 1998). However, when taxol was analysed in the CORL23 cells in 

combination with sulindac, indomethacin and BRI 153/1, the toxicity of the 

drug was increased in both the resistant and the sensitive variants. Taxol has 

been reported to be a substrate for Pgp (Germann, 1993). Cole et al., (1994), 

reported that when two different eukaryotic expression vectors containing 

MRP complementary DNA, were transfected into HeLa cells, the drug 

resistance patterns of the two MRP-transfected cell populations were similar 

and demonstrated a low (<3-fold) level of resistance to taxol. More recently
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there have been reports suggesting that these taxanes may be better MRP 

substrates than first believed (Vanhoefer et al, 1996 and 1997). Vanhoefer et 

al, (1996), demonstrated the ability of PAK-104P (see section 1.6.9) to 

completely reverse taxol resistance in HL60/ADR cells and concluded that this 

effect was due to an interaction with MRP1. PAK-104P was also shown to 

restore sensitivity to both taxol and taxotere (docetaxel) in MRP-expressing 

HT1080 (human sarcoma) tumour xenografts (Vanhoefer et al, 1997). The 

authors also reported that taxotere (docetaxol) at its Maximum Tolerated Dose 

(MTD) was more active against MRP-expressing tumour xenografts than taxol 

and that the observed resistance to taxol and taxotere appears to be related to 

MRP.

Combination toxicity assays were carried out in the CORL23 cells with 

taxotere in combination with sulindac. The results also demonstrated 

potentiation of taxotere by sulindac in both the resistant and parental CORL23 

cell lines. Slightly greater potentiation of this chemotherapeutic drug was 

observed in the resistant cell line than in the parental CORL23 cells which is 

most likely due to the higher expression of MRP1 in the resistant CORL23 

cells. However, there was no significant difference between the potentiation of 

taxol by indomethacin, sulindac and BRI 153/1 in the resistant and the 

sensitive CORL23 cell lines.

Indomethacin and sulindac were unable to potentiate the toxicity of a range of 

chemotherapeutic drugs in Pgp over-expressing cell lines, such as DLKPA 

(Duffy et al, 1998). Kool et al, (1997), did not detect mRNA expression for 

Pgp, MRP2, MRP3 in the CORL23 parental or resistant cells and there was 

only a very low expression of MRP4 and MRP5. Therefore, it appears that the 

enhancement of taxol and taxotere by indomethacin and the other active 

NSAIDs is MRP 1-related.

These results were extremely interesting as it was the first time the potentiation 

of taxol and taxotere by the active NSAIDs, indomethacin and sulindac (at 

non-toxic concentrations), had been demonstrated. Soriano et al, (December

1999) reported the ability of sulindac sulfone (exsulind), a metabolite of 

sulindac which does not inhibit COX enzymes, to potentiate the toxicity of 

taxotere, VP-16 and cisplatin in a number of non-small cell lung cancer cell 

lines. However, the concentrations of sulindac sulfone used by the authors to 

obtain potentiation of cisplatin and taxotere toxicities were quite toxic
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Van Ark-Otte et al, (1998), reported that taxol and taxotere achieved greater 

cell kill in a non-small cell lung cancer (NSCLC) cell line, SW-1573, a human 

breast cancer cell line, MCF-7, and an adenosquamous NSCLC cell line NCI- 

H322, than adriamycin and cisplatin at similar concentrations. Au et al, 

(1998), have reported that taxol is one of the most important anticancer drugs 

developed in the past two decades as it has shown impressive activity against 

human solid tumours i.e. ovarian, head and neck, bladder, breast and lung 

cancers. Taxotere had been reported by a number of authors including 

Vanhoefer et al., (1997), and Van Ark-Otte et al, (1998), to be even more 

potent than taxol. Therefore, the taxanes appear to be the more promising 

choice of treatment for a wide range of cancer types. The implications of 

potentiating the toxicity of taxol and taxotere are very exciting for the future 

treatment of cancer.

However, to assess that the potentiation of taxol and taxotere was not specific 

to the CORL23 cell lines, the ability of indomethacin and sulindac to potentiate 

the toxicity of taxol and taxotere was assessed in a range of cancer cell lines as 

described in sections 4.6 and 4.7.

concentrations (100-400|j.M) as compared to concentrations of sulindac (<

25|j.M) used in this thesis.

4.6 Investigation  o f chem otherapeutic drug enhancem ent by 

sulindac and indom ethacin in D L K P, A 549 and M C F-7 cell 

lines.

Duffy et al., (1998) and Elliot (1997), both in our laboratories, had reported 

that the active NSAIDs were not able to potentiate the toxicity of taxol in A549 

cells. However, results from sections 3.6 and 3.8 demonstrated the ability of 

indomethacin, indomethacin analogue BRI 138/1 and sulindac to potentiate the 

toxicity of both taxol and taxotere in the CORL23 and the 2008 cell lines. 

A549 overexpresses MRP1 and combination assays carried out by Duffy et al, 

(1998), and Elliot (1997), in A549 cells, using other MRP1 substrate, 

chemotherapeutic drugs, in combination with the active NSAIDs, demonstrated 

potentiation of these drugs by the NSAIDs. To investigate the non-potentiation
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of taxol by NSAIDs in the A549 cells a range of cancer cell lines were 

investigated to determine if perhaps the effect with taxol and taxotere was cell 

line specific.

The cell lines investigated included the poorly differentiated human lung 

cancer cell line, DLKP, a breast cancer cell line, MCF7, and two A549 cell 

lines. One of the A549 cell lines was obtained from the culture collection in the 

NCTCC (originally from the ATCC) and the other was obtained from an 

external source to investigate if  different drug resistance profiles were observed 

in the same cell line from different sources. Initial toxicity assays were carried 

out on the cell lines and the IC50 values obtained for adriamycin, taxol and 

taxotere were identical for both the A549 cell lines.

Combination toxicity assays were carried out on the four cell lines with 

adriamycin, taxol or taxotere in combination with indomethacin, and taxol or 

taxotere in combination with sulindac. The results demonstrated that 

indomethacin was able to potentiate adriamycin in all four cell lines with the 

greatest potentiation observed in the DLKP cells. MRP1 mRNA expression 

was demonstrated in all four cell lines (Duffy et al., (1998); Lorraine 

O’Driscoll, personal communication, and section 3.16) and this expression 

correlated with MRP1 protein expression in these cell lines (Dr. Lisa Connolly, 

personal communication). Therefore, these results, and evidence presented in 

previous sections of this thesis, strongly support the hypothesis that the 

potentiation of adriamycin by indomethacin in these cell lines was as a result of 

an interaction with MRP1.

There was poorer potentiation of taxol and taxotere by indomethacin in the four 

cell lines as compared to the magnitude of the potentiation of adriamycin by 

indomethacin in the same cell lines. Low, but significant enhancement of taxol 

and taxotere toxicity by indomethacin was observed in the DLKP cells. Low 

enhancement of taxotere, but not of taxol toxicity was observed in the MCF7 

cell line. There was no potentiation of taxol or taxotere toxicity by 

indomethacin in either of the A549 cell lines.

In contrast there was very strong potentiation of taxol and taxotere by sulindac 

in the DLKP cell line. There was lower but significant potentiation of these two 

chemotherapeutic drugs by sulindac in the MCF7 cell line. These results 

indicate that in these cell lines sulindac was a better potentiator of taxol and
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taxotere toxicity than indomethacin. This increased potentiation by sulindac 

was also observed in the CORL23(R) cell line (section 3.6) and in the 2008 cell 

lines (section 3.10).

However, there was no potentiation of taxol or taxotere by sulindac in either 

the A549 cell lines. This supports findings by Duffy et al., (1998) and Elliot 

(1997). Therefore, it appears that the potentiation of taxol and taxotere by the 

active NSAIDs, including indomethacin and sulindac, is cell line specific. All 

cell lines had previously been shown to express MRP1. RT-PCR analysis also 

demonstrated higher levels of MRP2, MRP3, MRP4 and MRP6 in the A549 

cells as compared to the DLKP cell line (section 3.16). A549 (NCTCC) cells 

have been shown by RT-PCR (section 3.16) to express very high levels of 

MRP4 mRNA as compared to MRP4 levels expressed in DLKP cells (11-fold 

higher expression) and the 2008 cell lines (at least 4-fold higher expression). 

Expression of MRP4 protein levels in this cell line has not been determined, as 

there was no commercially available MRP4 antibody.

MRP4 has been reported to be directly linked to the efflux of nucleoside 

monophosphate analogs from mammalian cells (Schuetz et al, 1999) (see 

section 1.6.9.4). It is hypothesized that taxol and taxotere may act as GTP 

mimics due to the following facts:

i. Taxol stabilizes microtubules, and microtubule function is GTP- 

dependent (Caudron et al, 2000; Phelps et al., 2000 and Martin et al.,

2000). It is possible that taxol competes with GTP at a specific binding 

site.

ii. Taxol and taxotere have been shown to alter the phosphorylation status of 

proteins in the apoptotic pathway (e.g. bcl-2) (Wang et al, 2000 and 

Kalechman et a l, 2000) suggesting that the taxanes may interfere in the 

phosphorylation mechanisms (mainly involving ATP and GTP) in cells.

Therefore, it is possible that taxol/taxotere are ‘seen’ by the MRP binding site 

as nucleoside analogues, transported by MRP4. Perhaps when the NSAIDs are 

combined with taxol and taxotere in the A549 cells the ability of MRP1 to 

pump taxol and taxotere is reduced but this is overcome by the activity of 

MRP4. In addition, the active NSAIDs may not be effective inhibitors of 

MRP4 activity. However, it has not yet been determined if indomethacin is a
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substrate for MRP4. The complete range of substrates for MRP4 has yet to be 

elucidated (section 1.6.9.4).

Interestingly, Theodossiou et al, (1998), reported that a nucleoside-based drug, 

gemcitabine, when combined with taxol, could antagonise the effect of the 

chemotherapeutic drug. The authors reported that taxol imposed a G2/M block, 

while gemcitabine blocks entry into S-phase. Cells that were delayed during S- 

phase by gemcitabine could not proceed through the cell cycle and, therefore, 

the cytotoxic effects of taxol, which required entry into mitosis, were 

diminished. If taxol is ‘seen’ by MRP4 as a nucleoside analogue, it might be 

expected that both gemcitabine and taxol would be transported by MRP4, and 

would therefore, act as competitive substrates for this transport pump, resulting 

in synergism between both agents. However, antagonism of taxol cytotoxicity 

was observed when combined with gemcitabine. It is possible that gemcitabine 

and taxol compete for some, as yet uncharacterised, uptake mechanism.

Further investigations in to the range of substrates for MRP4 and the 

mechanism of transport is required to fully understand the contribution (if any) 

by MRP4 to taxol and taxotere resistance. Interestingly, there are higher levels 

of MRP5 mRNA expressed in the DLKP cells and the 2008 parental and 

MRP 1-transfected cell lines than in the A549 cell line (section 3.16). The best 

potentiation of taxol and taxotere by sulindac were observed in these cell lines 

(section 3.8 and 3.10). Again, the substrates for MRP5 have yet to be 

determined (section 1.6.9.5) but it is possible that there may be a connection 

between this expression of MRP5 and taxol/taxotere potentiation.

Soriano et al, (1999), reported the ability of sulindac sulfone to enhance the 

toxicity of taxotere in A549 cells. However, as stated previously in section 4.5, 

the concentrations of sulindac sulfone which were used to potentiate the 

toxicity of taxotere (100foM-400n.M) were greater than the highest non-toxic 

concentrations of sulindac used in the combination toxicity assays outlined in 

this thesis (< 23|iM).
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4.7 Investigation  o f  chem otherapeutic drug enhancem ent in 2008, 

an ovarian carcinom a cell line, transfected  w ith M R P1, -2 and  

-3.

There is much evidence to support the hypothesis that indomethacin, positive 

indomethacin analogues and other positive NSAIDs, such as sulindac, enhance 

the toxicity of a number of chemotherapeutic drugs through an interaction with 

MRP1. It is not known, however, if  these NSAIDs are capable of this 

potentiation in cell lines expressing MRP2 - 6.

The results from the experiments described in sections 4.5 and 4.6 demonstrate 

an enhancement of toxicity of taxol and taxotere in a number of MRP1- 

expressing cell lines. However, in A549 cells, where MRP1 was also expressed 

sulindac and indomethacin were unable to potentiate the toxicity of taxol and 

taxotere, even though there was strong potentiation of adriamycin by 

indomethacin in the A549 cell line. As RT-PCR analysis demonstrated that 

there was a very high expression of MRP4 in the A549 cells (section 3.16) it 

was postulated that perhaps the expression of other homologues of MRP might 

modify in some way the potentiation of the chemotherapeutic drug by the 

NSAIDs. These findings raised the question as to whether or not the 

potentiation of taxol and taxotere was due to an interaction with MRP1 only or 

if it was possible to potentiate the toxicity of these drugs in cell lines 

expressing homologues of MRP other than MRP1.

4.7.1 MRP homologues and chemotherapeutic drug resistance

To determine if  indomethacin, sulindac and indomethacin analogues could 

potentiate the toxicity of a range of anticancer drugs in cell lines which 

overexpressed MRP2 or MRP3, an ovarian carcinoma cell line, transfected 

with cDNA for MRP1, MRP2 or MRP3 and kindly donated to us by Dr. 

Marcel Kool from the Netherlands Cancer Institute, Amsterdam, was used.
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ong-term Adr. MTX Taxol Taxotere Cisplatin

2008 P 1.0 1.0 1.0 1.0 1.0

008 MRP1 5.6 1.0 0.4 1.0 0.3

008 MRP2 0.5 1.0 0.4 1.0 0.1

008 MRP3 0.9 1.0 0.4 1.0 0.2

Table 4.7.1a: Fold resistance values for chemotherapeutic drug in 2008 

transfected cell lines relative to the parental 2008 cell line in the Long-term 

toxicity assay (section 2.7.1a).

Short-term Adr. M TX Taxol T axotere

2008 P 1.0 1.0 1.0 1.0

2008 MRP1 3.0 86.8 2.0 0.1

2008 MRP2 1.6 30.1 1.0 1.0

2008 MRP3 3.0 85.4 2.0 0.5

Table 4.7.1b: Fold resistance values for chemotherapeutic drug in 2008 

transfected cell lines relative to the parental 2008 cell line in the Short-term 

toxicity assay (section 2.7.1b).

Toxicity assays and combination toxicity assays were carried out on the cells 

using a range of both NSAIDs and chemotherapeutic drugs. Initial long-term 

toxicity assays (6-day exposure to drug) on these cell lines using methotrexate 

(MTX) failed to demonstrate any difference in resistance levels between the 

parental and the MRP transfected cells. However, short-term MTX toxicity 

assays (4-hour exposure to drug) on the 2008 cells showed 2008 MRP1 and 

2008 MRP3 to be almost 100-fold more resistant to MTX than the parental cell 

line. 2008 MRP2 cells were 30-fold more resistant to MTX than the parental 

cell line. Kool et ah, (1999), and Hooijberg et ah, (1999), reported that the 

transfected 2008 MRP1, 2008 MRP2 and 2008 MRP3 cells showed a marked 

level of resistance to the polyglutamatable antifolate, methotrexate. These 

results were obtained by analysing the cells using a short-term toxicity assay as 

described in section 2.7.1b, in which the cells are exposed to the anti-cancer 

drug for 4-hours only, as opposed to a 6-day exposure in the long-term toxicity
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assay (2.7.1a). The authors suggest that the difference in toxicity of MTX 

between the two assays was due to the fact that MTX is polyglutamylated after 

entering the cell. The polyglutamylated form is an effective inhibitor of 

dihydrofolate reductase. Polyglutamylation of MTX is slow and after short

term exposures to MTX, cells with a good MTX efflux pump can pump out the 

monoglutamate MTX. These cells will accumulate much less long-chain 

polyglutamates of MTX. In continuous exposures to MTX, a good efflux pump 

for MTX makes no difference, because these cells will eventually accumulate 

enough polyglutamylated MTX to block the dihydrofolate reductase 

efficiently, resulting in cell death.

As a result of these findings, both long-term and short-term toxicity assays 

were carried out with a number of chemotherapeutic drugs in the 2008 parental 

(2008 P) and transfected cells. These cells showed greater resistance to 

adriamycin, methotrexate, taxol and taxotere in short-term assays versus long

term assays (table 4.11.2).

Resistance to adriamycin was greatest in the 2008 MRP1 cell line in the long

term assay but in the short-term assay both 2008 MRP1 and MRP3 were 

equally resistant to adriamycin. MRP1 has been associated with adriamycin 

resistance (Cole et al., 1992; Cole et al., 1994; Zaman et al., 1993; Loe et al., 

1996a). Protein analysis of the 2008 cell lines indicated that although there was 

basal expression of MRP1 in all the 2008 cell lines (Dr. Lisa Connolly, 

personal communication) there was a much higher level of MRP1 protein 

expression evident in the 2008 MRP1 cell line which accounts for the higher 

resistance to adriamycin in this cell line over the other 2008 cells in the long

term assay. Perhaps, the equal resistance to adriamycin in the short-term assay 

is due to the expression of MRP1 in both 2008 MRP1 and 2008 MRP3 cells 

which, although the expression is higher in 2008 MRP1 cells, functions at a 

similar level in both 2008 MRP1 and MRP3 cells in short-term exposure 

assays. However, the results may also indicate that MRP3 is involved in 

adriamycin resistance and MRP3 involvement in drug resistance has also been 

suggested by Young et al., (1999).

2008 MRP2 is less resistant to adriamycin than the parental 2008 cells in the 

long-term assays. RT-PCR analysis of these cells has indicated a decrease in 

MRP3 and MRP5 mRNA expression in these cells as compared to the parental 

cell line. The substrate specificities for these transporters remain uncertain but
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it is possible that MRP3 and MRP5 contribute to adriamycin resistance in the

2008 cell lines.

Adr. M TX Taxol Taxotere

2008 P 4.0 2.1 137.0 51.6

2008 MRP1 2.1 188.1 670.3 3.92

2008 MRP2 13.0 61.3 329.3 52.4

2008 MRP3 13.0 174.1 642.6 24.4

Table 4.7.2: Fold resistance values for chemotherapeutic drug in 2008 parental 

and transfected cell lines in the Short-term toxicity assay relative to resistance 

of these chemotherapeutic drugs in the parental and transfected 2008 cell lines 

in the Long-term toxicity assay (section 2.7.1a).

There was only a 4-fold increase in resistance to taxotere in the 2008 MRP1 

cells in the short term assay relative to the long-term assay and these cells were 

at least 6-fold less resistant to taxotere than the other 2008 cell lines. In 

contrast there was highest resistance to adriamycin, taxol and methotrexate in 

the 2008 MRP1 cells. Vanhoefer et al, (1997), demonstrated that both taxol 

and taxotere were substrates for MRP1 (section 4.6) in MRP 1-expressing 

HT1080/DR4 cells. The authors also reported that taxotere was not as readily 

transported by MRP1 as taxol leading to an increased therapeutic ratio in 

MRP 1-expressing tumours in vivo. They suggested that taxotere may have 

therapeutic advantages in the clinical treatment of MRP-expressing tumours. 

Therefore, the lower resistance to taxotere in the 2008 MRP1 cells may be due 

to the fact that taxotere is a poorer MRP1 substrate than taxol.

4.7.2 Problems associated with determining resistance profiles of 

transfected cell lines

Kool et al., (1999) and Borst et al., (1999), have reported a number of

problems observed when studying cells transfected with MRP. The authors

reported that it has been difficult to get MRP transfectants giving high

expression and product routed to the cell membrane. Transfected cells produce

a transporter that is trapped in an endosomal compartment and does not reach
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the plasma membrane (Borst et al, 1999). The problem was illustrated by data 

for MRP2. Some cell lines transfected with a retroviral MRP2 construct did not 

express the protein at all, or in a patchy fashion with only 10% of the cells 

positive. This 10% was maintained after cloning and was thought to reflect a 

deleterious effect of the transporter on cell viability Some of the initial 

transfection constructs produced low levels of transporter (Borst et al, 1999). 

Evers et al, (1998), reported that intra-cellular routing of MRP2 is also 

sensitive to growth conditions and in kidney cells or hepatocytes, MRP2 only 

goes to the plasma membrane if  cells are in contact with one another.

In the case of 2008 MRP3, Kool et al., (1999), reported that they were not 

successful in isolating non-polarized cells with high MRP3 levels. As a result it 

was difficult for the author to fully determine the range of compounds 

transported by MRP3. The transfection of 2008 cells with MRP1 cDNA was 

the most successful of the three transfectants (Kool et al., 1999 and Marcel 

Kool, personal communication). It is possible that the large increase in 

resistance to adriamycin, methotrexate, taxol and taxotere in the 2008 MRP2 

and MRP3 cells is due to the fact that even though there may not be high 

expression of MRP2 and MRP3 in the 2008 transfected cells, there is sufficient 

protein expressed, to effectively pump the anticancer drugs from the cell in the 

short exposure time (4hrs), in the short-term toxicity assay. Whereas in the 

long-term assays the low levels of MRP2 or MRP3 in the cells are insufficient 

to effectively efflux the chemotherapeutic drug from the cells over a long 

period of time.

In addition, most cells contain endogenous, organic anion transporters, 

resulting in background transport activity. As the endogenous transporters are 

often uncharacterised and, hence, undetectable by antibody it is difficult to find 

a solution to this problem (Borst et al, 1999). The 2008 parental cells express 

basal levels of MRP 1 protein and significant levels of MRP 1 mRNA. Although 

it is possible that the drug resistance observed in the 2008 cells may be as a 

result of the transfected MRP2 or MRP3, due to the basal levels of MRP 1 in 

the parental cells, attempts to relate the resistance profile of such cells to a 

single transporter is risky.

Borst et al, (1999), also report that cells transfected with MRP1, MRP2 or 

MRP5 cDNAs secrete GSH in to the medium, suggesting that they must be
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producing GSH at a high rate to counteract this drain. This suggests that, if the 

mechanism by which the MRP substrates are transported is through 

conjugation or in conjunction with GSH, there may not be sufficient GSH 

present in the cells to support transport of MRP substrates from the cells. 

Therefore, it may be difficult to assess the complete range of substrates for 

cells transfected with MRP1 or MRP2. Cells with high levels of MRP3 do not 

secrete GSH (Kool et al., 1999) which may limit the ability of MRP3 to 

transport non-anionic organic molecules.

4.7.3 Investigation of the potentiation of adriamycin and methotrexate 

toxicity in the 2008 cell lines.

In the combination toxicity assays, indomethacin was shown to potentiate the 

toxicity of adriamycin in all 2008 cell lines and in particular in 2008 MRP1, in 

the long-term assay. This potentiation was not so notable in the short-term 

assay with the best potentiation also observed in 2008 MRP1 cell line. Results 

obtained from HPLC experiments on DLKP cells (section 2.5) indicated that 

when indomethacin and adriamycin were removed from the medium after a 

two-hour loading period, indomethacin was effluxed from the MRP expressing 

cells very rapidly (< 2 hours). This was followed by a rapid efflux of 

adriamycin from the cells. However, when the level of indomethacin was 

maintained in the medium there was much reduced efflux of adriamycin from 

the cells. Hence, it appears that maintaining indomethacin in the cells and in 

the medium surrounding the cells was required for the enhancement of the 

toxicity of the anti-cancer drug. In the long-term combination toxicity assays 

the concentration of indomethacin in the medium and cells remained constant 

throughout the total incubation period (6 days). In the short-term combination 

toxicity assays, indomethacin was removed from the medium after four hours. 

It is possible that as there was no indomethacin in the medium to maintain the 

required levels o f indomcthacin in the cell there was an increased efflux of 

adriamycin from the cells. The positive indomethacin analogue, BRI 138/1 

was also shown to potentiate adriamycin in the 2008 cells, in the long-term 

assay at a similar rate to indomethacin, with greatest potentiation in the 2008
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Both Kool et al., (1999), and Hooijberg et al, (1999), reported that MRP1, 

MRP2 and MRP3-overexpression is associated with resistance to short-term 

exposure of polyglutamatable antifolate drugs such as MTX. Due to the 

pharmacological characteristics of methotrexate, as discussed previously, it 

was not surprising to observe very little enhancement of MTX toxicity by 

indomethacin in the 2008 cells in the long-term assays. However, there was 

potentiation of methotrexate by indomethacin in the MRP 1-transfected cell 

line. Perhaps this indicates that indomethacin is a better substrate for MRP1, 

and to a lesser extent MRP3, than MRP2 in long-term assays. In the short-term 

assays the potentiation of methotrexate was greatest in the parental 2008 cell 

line. This may be due to the fact that the IC50 of methotrexate in the parental 

cell line was only 10|a.g/ml compared to 900|j,g/ml for both 2008 MRP1 and 

MRP3 and 300(j.g/ml for 2008 MRP2. Work outlined earlier indicates that 

indomethacin enhances the toxicity of MRP substrates by acting as a 

competitive substrate for MRP, i.e. indomethacin and other such NSAIDs 

compete with the anticancer drug for preferential pumping from the cell by the 

MRP pump. In our previous combination toxicity experiments indomethacin 

was always used at much higher concentrations in the cells than the anti-cancer 

drugs (fig quantities versus ng quantities). Perhaps the potentiation effect is 

greater in the parental cell line in the short-term assay due to the lower 

concentrations of methotrexate used in these cells and the concentrations of 

indomethacin present in the parental cell line were sufficient to compete with 

methotrexate for MRP-efflux from the cell. There was very little potentiation 

of the toxicity of methotrexate in the 2008 MRP3 and no potentiation in the 

2008 MRP2 cells (Table 3.7.2b). In the transfected cell lines the concentration 

of methotrexate used in the cells was 100-fold greater than the concentration of 

indomethacin in the cells. This indicates that indomethacin was not capable of 

competing successfully for preferential pumping by MRP and as a result 

methotrexate was pumped out of the cells at a greater rate. In addition, as 

mentioned previously, a four-hour exposure of the cells to indomethacin may 

not be sufficient to sufficiently reduce the efflux of methotrexate from the 

cells. The results for 2008 MRP1, MRP2 and MRP3 cells may also suggest that
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indomethacin is a better substrate for MRP1 than MRP2 and MRP3 and hence 

is better capable to preferentially pump indomethacin before methotrexate.

A number of authors, including Hooijberg et al., (1999), and Bakos et al., 

(2000), have reported that methotrexate is a particularly good substrate for 

MRP2. However, Bakos et al, (2000), reported that low concentrations of 

indomethacin (< lOOpM) enhanced the efflux of N-ethylmaleimide glutathione 

(NEM-GS), an MRP1 and MRP2 substrate, in S/9 cells transfected with a 

recombinant baculoviruse containing MRP2 cDNA. Indomethacin was unable 

to potentiate the toxicity of methotrexate in the 2008 MRP2-transfected cell 

line. Therefore, as a result of the above findings by Bakos et al., (2000), it is 

possible that indomethacin was interacting with MRP2 to increase the efflux of 

methotrexate from the 2008 MRP2 cell line. These results suggest that, in the 

case of methotrexate, there are differences in transport properties for this drug 

in each of the 2008 cell lines which may indicate that the expression of MRP 1 

does not account for all of the potentiation effects observed in the 2008 cell 

lines.

Results from the combination toxicity assays in the 2008 cell lines using 

adriamycin or methotrexate in combination with sulindac, yielded similar 

results to those obtained when these anti-cancer drugs were used in 

combination with indomethacin. The best potentiation of both 

chemotherapeutic drugs was observed in the 2008 MRP1 transfected cells. 

However, there was also a small but significant potentiation of methotrexate by 

sulindac in the 2008 MRP2 cell line which indicates that sulindac does not 

behave similarly to indomethacin in this particular cell line. It appears that 

sulindac does not function to enhance the efflux of methotrexate in cells lines 

overexpressing MRP2 and that this effect is specific to indomethacin. It was 

also observed that sulindac, like indomethacin, required a longer incubation 

period in the cells than the 4hrs incubation period of the short-term assay, for 

optimum potentiation of the chemotherapeutic drugs. The results also suggest 

that MRP2 and MRP3 are poorer transporters of sulindac than MRP1.
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4.7.4 Investigation of potentiation of taxol and taxotere in the 2008 cell 

lines.

The com bination  tox ic ity  assay resu lts for taxol and taxotere in  com bination  

w ith  sulindac ind icated  that long-term  exposure to  sulindac resu lted  in  better 

po ten tia tion  o f  these  chem otherapeutic  drugs by  th is N SA ID . The strongest 

com bination  effec t w as, as before, observed  in  the M R P 1-transfected  cells. 

H ow ever, the  resu lts  obtained w ith  taxo l w ere  surprising as sulindac w as able 

to  po ten tia te  the  tox ic ity  o f  taxo l to  a  greater extent than  the o ther three 

chem otherapeutic  drugs analysed. In  addition, w hen taxotere w as com bined 

w ith  the N S A ID  piroxicam , in  the  2008 cells, no po ten tia tion  o f  this 

chem otherapeutic  drug  w as observed. D uffy  et al, (1998), had  found  that 

p iroxicam  w as n o t effective in  po ten tia ting  the tox icity  o f  chem otherapeutic  

drugs in  any o f  the cell lines analysed. T he authors postulated  th a t th is N SA ID  

w as n o t a  substra te  for M R P. H ow ever, w hen  p irox icam  w as used  in  

com bination  w ith  taxo l there w as a  statistically  significant po ten tia tion  o f  the 

an ti-cancer drug  in  the  2008 cell line. T hese results suggest the p resence o f  an 

additional m echan ism  o f  enhancem ent o f  taxo l tox icity  or th a t taxol/taxotere 

use  a  d ifferen t o r m odified  active site on  M R P. M oos et al, (1999), indicated  

th a t taxol (but n o t taxotere) increased  C O X -2 (but not CO X -1) p ro te in  and 

m R N A  expression  in  R A W  264.7  m urine m acrophages. T he authors also report 

tha t taxo l also induced  CO X -2 in  hum an  and m urine m onocytes v ia  a p38 

m itogen-associa ted  p ro te in  k inase pathw ay. Taxotere w as reported  to  induce 

C O X -2 p ro te in  expression  in  hum an  m onocytes only. A  num ber o f  studies 

have reported  th a t truncation  m utations o f  the  A P C  gene occur som atically  in  a 

large percen tage o f  colorectal cancers (Sheng et al., 1998; O shim a et al,

1996). T his m u ta tion  in  the A PC  gene has been  associated  w ith  increased 

levels o f  C O X -2 and  a decrease in  apoptosis in  a  num ber o f  cancer cell lines 

(section  1.7.9) (Sheng  et al, 1998; K argm an et al, 1995; K utchera et al, 1996 

and W atson  et al, 1997). Indom ethacin , sulindac and p iroxicam  are recognised 

as be ing  non-se lective  N SA ID s, inhibiting  bo th  COX-1 and CO X -2 (R iendeau 

et al, 1997 and  H inz  et al, 1999). It is suggested  that the inh ib ition  o f  CO X -2 

by  the  active N S A ID s, in  addition  to an  in teraction  w ith  M R P, m ay  explain  the 

increased  enhancem ent o f  taxo l tox ic ity  in  the 2008 cell lines. P iroxicam  has 

no M R P inh ib ito ry  ability so the  slight potentiation o f  taxol tox icity  by
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p irox icam  m ay  be  due to inh ib ition  o f  C O X -2, resu lting  in  an  increase in  

apoptosis in  the 2008 cell lines. The possib ility  that th is effect is cell line 

specific cannot be ru led  out as the com bination  o f  taxol/taxotere and p iroxicam  

w as on ly  analysed  in  the 2008 cell lines. It is necessary  to  carry  out th is 

com bination  in  a  num ber o f  d ifferen t cell lines to  assess i f  th is po ten tia tion  o f  

taxol tox icity  by p iroxicam  can be dem onstrated. In addition, com bination  

tox ic ity  assays using  CO X -2 specific inhibitors in  com bination  w ith  taxol and 

taxotere  w ould  a lso  be  interesting. A  recent publication  by H i da  et a l, (2000), 

reported  the ab ility  o f  a  CO X -2 inhibitor, n im esulide, to enhance the  tox icity  o f  

taxotere  in  four N S C L C  cell lines. The po ten tia tion  o f  taxo l tox icity  w as no t 

assessed. A lthough  the  results in th is thesis only dem onstrated  the  poten tia tion  

o f  taxo l by  p irox icam , th is resu lt w as observed in  one cell line only so i t  is 

possib le  th a t assessm en t o f  a range o f  cell lines m ay show  po ten tia tion  o f  bo th  

taxol and taxo tere  toxicities by  CO X -2 inhibitors. The resu lts serve to 

dem onstrate  the  p resence  o f  a  com plex m echan ism  by  w hich  taxol and taxotere 

m ay be po ten tia ted  by  N SA ID s.

4.8 Investigation o f the effect on cisplatin toxicity of indomethacin

and possible correlation between M RP2 (cM OAT) expression 

and cisplatin resistance.

A  num ber o f  au thors including C ole et al, (1992), and Loe et al, (1996), 

reported  th a t M R P1 d id  not confer resistance to  p latinum -contain ing  

com pounds such as cisp latin  and carboplatin. C isp latin  is an anticancer drug 

used  w idely  fo r the  trea tm ent o f  various cancers. H ow ever the developm ent o f  

resistance to  its cy to tox ic  effect is a m ajor problem  in  its clinical use. C isp latin  

b inds to  the N 7 position  o f  guanosine and form s in trastrand and in terstrand 

cross-links. In  add ition  to its direct b inding  to  D N A , the o ther cellu lar effects 

o f  c isp la tin  that have been  reported  include d isruption  o f  the m itochondrial 

m em brane po ten tia l, depolym erisation o f  the  m icrotubules and collapse o f  the 

in term ediate  filam en t netw ork  (Parekh et al., 1995).

cM O A T , a  190kD a m em brane glycoprotein  and a  G S-X  pum p w as first 

recogn ised  by T anaguch i et al, (1996), as a  m em ber o f  the M R P fam ily  w hich  

show s 46%  sim ilarity  to  hum an M RP1. cM O A T m ediates the A T P-dependent

327



transport o f  various hydrophobic an ionic  com pounds in  liver canalicular 

m em branes and o ther tissues (K oike et al., 1997). T he spectrum  o f  hydrophilic 

anionic com pounds transported  by cM O A T resem bles that o f  M R P (R oelofsen 

et al., 1999). The function  o f  cM O A T in  drug tran spo rt and cancer is a t present 

unclear.

Tanaguchi et al., (1996), postulated tha t hum an  cM O A T  m ay  function  as a 

cellu lar c isp latin  transporter, as expression o f  hum an  cM O A T  w as enhanced in 

these c isp la tin  resis tan t cell lines w ith  decreased  cellu lar accum ulation  o f  

c isp latin  (section  1.6.8). K ool et al., (1996), also dem onstrated  a  correlation 

betw een cM O A T  transcrip t levels and sensitiv ity  to  cisplatin. H ow ever, there 

are conflicting  theories concerning the function  o f  cM O A T  in  clinical 

resistance and, in  particu lar, its relationship  w ith  cisp latin  resistance. 

T anaguchi et al., (1996) and K oike et al., (1996), acknow ledge that their 

results are no t conclusive and agree w ith  authors such  as O guri et al, (1998), 

w ho observed  no association betw een an te-m ortem  p latinum  drug  exposure 

and steady state cM O A T  m R N A , and K auffm an  et al., (1997), w ho  reported 

that the increased expression  o f  cM O A T  m R N A , after exposure to  p latinum  

drugs, m ay  be p a rt o f  the norm al stress response to xenobiotics.

4.8.1 Investigation of the potentiation of cisplatin toxicity in 2008 cells 

transfected with MRP1, -2, -3 and the HepG2 cell line which 

constitutively expresses MRP1, -2, -3.

D uffy et al., (1998), reported  that cisp latin  tox icity  w as no t po ten tia ted  in  a 

num ber o f  M R P 1 overexpressing cell lines, A 549 and  D LK P. T he resu lts from  

the  long-term  tox icity  assays in  the 2008 cell lines w ith  c isp latin  w ere 

interesting. T ransfecting M R P1, M R P2 o r M RP3 cD N z\ in  to  the 2008 parental 

cell line resu lted  in a  decrease in  resistance to c isp latin  (table 3.8.1a). The 

greatest decrease in  resistance was evident in  the 2008 M R P2 transfected  cell 

line. T he reasons for the decrease in  resistance to  c isp latin  in  the 2008 

transfected  cell lines are uncertain. R T -P C R  analysis (section 3.16) o f  the  2008 

cell lines ind icated  a decrease in  the expression  o f  M R P5 m R N A  in the 

transfec ted  cell lines rela tive to  the parental cell line. The expression  o f  M RP5 

w as increased slightly  in three cell lines selected  for c isp la tin  resistance
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(T 24/D D P10, H C T8D D P and K C P-4) (K ool et al., 1997). Therefore, M RP5 

m ay  be  involved  in  cisplatin  resistance but there is little  evidence in  the 

literature to  support th is hypothesis.

C om bination  tox icity  assays w ere carried  out in  the  2008 cell lines, w ith  

cisp latin  in  com bination  w ith  indom ethacin  and the  positive  indom ethacin 

analogue 138/1, to  assess the ab ility  o f  these com pounds to  enhance the 

tox icity  o f  c isp latin  in  cell lines expressing M R P1, -2, or -3 .  The results 

(section 3.8) dem onstrated  tha t there  w as no po ten tia tion  o f  c isp latin  in any o f  

the  2008 cell lines excep t fo r a  very  low  level o f  synerg ism  in  the  2008 M RP3 

cell line (C l =  0.930) w hen  used  in  com bination w ith  B R I 138/1. This m ay 

indicate tha t cisp latin  is a  w eak  M R P3 substrate. Y oung  et al., (1999), reported  

h ighly  significant correla tion  betw een  M RP3 and resistance to  vincristine, 

e toposide and cisplatin. H ow ever, to  date, there  have been  no other 

publications to  support these  findings and the substrate  specificities for M RP3 

rem ain  uncertain . The accurate range o f  substrates fo r each  transport protein  

cannot be e lucidated  until cell lines are generated  w h ich  express single 

transporters, w ithout background  expression  o f  other transporters as discussed 

in  section  4.7.

The hum an  hepatic  cancer cell line, H epG 2, w as found  to  express h igh  levels 

o f  cM O A T  m R N A  and  p ro te in  (N arasaki et al., 1997; K oike et al., 1997), and 

antisense transfec tion  w ork  w ith  cM O A T  in  th is cell line, resu lted  in  the  cell 

line becom ing m ore sensitive to  a range o f  drugs including  c isp latin  (section

1.6.9.1). T here w as also an  increased level o f  g lu tath ione in  the antisense 

transfectan ts ind icating  th a t the  levels o f  cM O A T w ere inversely  correlated  to 

levels o f  g lu tathione. R T -P C R  analysis carried ou t on  th is cell line (section 

3.16) dem onstrated  the  expression  o f  M R P 1, M R P2, M R P3 and M R P4 bu t not 

M R P5 m R N A . The expression  o f  M R P6 m R N A  in  th is cell line w as not 

investigated.

C om bination  tox ic ity  assays w ere carried  out on  H epG 2 cells to  assess i f  the 

po ten tia tion  o f  adriam ycin  by  indom ethacin  w as also observed in  a  cell line 

w hich  constitu tively  over-expresses M R P2. These assays w ere also carried  out 

to  investigate i f  c isp la tin  could  be poten tia ted  by  indom ethacin  in  th is cell line 

w hich  constitu tively  over-expresses M R P2 and has also been  show n by  RT- 

P C R  (section  3.16) to express M RP3 and M R P4 m R N A . In  addition to
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com bination  tox icity  assays in  the H epG 2 cell line, concurrent com bination 

tox icity  assays w ere carried  out in  D L K P cells as a  control.

Indom ethacin  significantly  enhanced the  tox icity  o f  adriam ycin  in  both  the 

H epG 2 and D L K P cell lines w hich m ay  be attributed to  the  expression  o f  

M RP1 in  these cells. H ow ever, indom ethacin  w as unab le  to  po ten tia te  cisplatin  

in  both  o f  these cell lines. In  fact, indom ethacin  appears to antagonise c isp latin  

tox icity  in  bo th  the D L K P and H epG 2 cells, i.e. the cells appeared  to becom e 

m ore resistan t to  cisp latin  w hen com bined  w ith  indom ethacin  resu lting  in  an 

increase in  cell survival. This effect w as also observed w hen cisplatin  w as 

com bined  w ith  indom ethacin  in the 2008 cell lines. S ignificant differences 

w ere observed  betw een  the com bination index  (C l) values obtained for 

cisp latin  in  com bination  w ith  indom ethacin  and the  values obtained fo r the 

com bination  w ith  the  indom ethacin  analogue B R I 138/1 in  the 2008 cell lines. 

S ignificant an tagonism  o f  the  tox icity  o f  cisplatin  w as observed w hen 

com bined  w ith  indom ethacin  in  the  2008 cells. The C l values ranged  from  

1.345 fo r 2008 M RP1 to 2.422 for the 2008 parental cell line. In  contrast the C l 

values w ere  approx im ately  1.0 for the 2008 parental, 2008 M RP1 and 2008 

M R P2 cell lines w hen  cisp latin  w as co-incubated w ith  BR I 138/1. A s discussed 

above, the  C l value for cisplatin  and B R I 138/1 in  2008 M R P3 w as 0.930, 

w hich  suggested  synergism  betw een these tw o com pounds in the 2008 M RP3 

cell line. B R I 138/1 is an N -benzyl analogue o f  indom ethacin , as described  in 

section 3.1, w ith  the  ch lorine in  the p a ra -p o s itio n  on  the benzene ring replaced 

w ith  fluorine in  the  m eta-position. These resu lts suggest tha t a lthough the 

structures o f  indom ethacin  and B R I 138/1 are sim ilar, changing the 

indom ethacin  structure to  generate BRI 138/1 also resulted  in  functional 

d ifferences betw een  the  tw o com pounds. B R I 138/1 is less toxic than  

indom ethacin  in  the  D L K P cells (section 3.1) and could  be used  in  the 2008 

cells a t h igher concentrations than  indom ethacin, 35pg/m l versus 10|j.g/ml. The 

h igher concentrations o f  B R I 138/1 in  the 2008 cells m ight partially  explain  the 

low er C l values.

It is also possib le  that the increase in  the resistance to cisplatin  is associated 

w ith  indom ethacin  alone. A part from  the  set o f  com bination tox icity  assays 

carried  ou t in  the 2008 cell lines w ith  BR I 138/1 in  com bination  w ith  cisplatin, 

com bination  tox ic ity  assays w ere only  carried  out in the 2008, H epG 2 and 

D L K PC 14 (sections 3.15 and 4.9) cell lines w ith  indom ethacin  in  com bination
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w ith  cisplatin . C isp latin  reacts read ily  w ith  com pounds contain ing  SH groups 

(P ratt et al., 1994). Thus, resistance to cisplatin  has been  found to  correlate 

w ith  increased  glutath ione conten t (B ehrens et al., 1987 and P arekh  et al., 

1995). It has been  suggested th a t quenching o f  the p latinum  com pounds by 

reaction  w ith  nucleophilic  SH  groups in  glutath ione m ay  b e  a m ajor 

determ inan t o f  tum our response to  in itial therapy. It is in teresting  that the 

an tagon ism  to c isp latin  tox icity  is observed  w ith  indom ethacin  b u t no t w ith  

B R I 138/1. R esults from  the G ST assays (section  3.2) dem onstrated  that 

indom ethacin  w as a very  good G ST inh ib ito r w hereas B R I 138/1 w as unable to 

inh ib it the  activ ity  o f  th is enzym e. H ow ever, the relevance o f  th is to  the 

observed  an tagonism  o f  cisplatin  tox icity  is unclear.

A  study w as carried  out by C osolo  et al., (1991), on  the pharm acokinetics o f
• • • • • 0 • 

c isp latin  in  five cancer patients receiving cisp la tin  (5 0 -1 0 0 m g /m ) in

com bination  w ith  indom ethacin  (12.5(j.g/ml). These patients w ere receiving

cisp latin  fo r carc inom a o f  the  ovary, testicu lar carcinom a or transitional

carcinom a o f  the bladder. The authors reported tha t there w as an  increase in

free c isp latin  in  the  p lasm a o f  these patien ts w hen co-treated  w ith

indom ethacin  at 12.5(ig/m l. The authors d id  not offer any explanations for this

in teraction. T hey d id  not investigate the expression o f  M R P in  these cancers

and d id  n o t investigate the effects o f  indom ethacin  on  cisp latin  toxicity . The

resu lts  o f  th is study suggest tha t indom ethacin  m ight be capable o f  increasing

the  efflux  o f  cisp latin  from  the cancer cells resu lting  in increased cisplatin  in

the p lasm a. I f  M R P is p resent in  these cancer types, the  results suggest that

indom ethacin  m igh t enhance the ability  o f  the M R P pum p to export cisplatin

from  the cells m ore rapidly  than  M RP alone. It rem ains to  be elucidated  i f

c isp latin  is a  substrate  for any o f  the M R P hom ologues and w hat p a rt they play

in  cisp latin  resistance. It is also possib le  that indom ethacin  inh ib its  in som e

w ay the  up take  o f  cisplatin  into the  cells.

F uture  experim ents w ill include drug efflux experim ents to  m easure  both  the 

uptake and  the  efflux  o f  c isp latin  in  a  num ber o f  cell lines, in the presence or 

absence o f  active N S A ID s such  as indom ethacin.

In addition , further experim ents are required using cisplatin  in  com bination 

w ith  a range o f  active N SA ID s such as sulindac and a num ber o f  the active 

indom ethacin  analogues (± G ST inhibitory activity), to assess i f  the  effect is
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indom ethacin  specific and also to  investigate i f  any o f  these com pounds are 

capable o f  po ten tia ting  the tox icity  o f  cisplatin.

4.8.2 Correlation between cisplatin resistance and MRP2

B oth  D L K P and H epG 2 cells  express M RP1 (section  3.16 and N arasak i et al.,

1997). The findings from  th is thesis seem  to suggest that the active N SA ID s 

m ay be only capable o f  potentiating the tox ic ity  o f  those drugs w hich  are 

substrates fo r M R P1. H ow ever, it w as no t possib le  to  determ ine from  these 

resu lts i f  indom ethacin  w as capable o f  po ten tia ting  the  tox icity  o f  adriam ycin  

by in teracting w ith  M R P2. M R P2 is reported  to  have a  sim ilar substrate 

specificity  to  M RP1 (O ude E lferink et al., 1995; K eppler et al., 1997 and 

R oelofsen et al., 1999), and  K oike et al., (1997), reported  th a t adriam ycin 

resistance is also conferred  by M RP2. Indom ethacin  is an  am phiphilic  organic 

anion so it is possib le  tha t indom ethacin  can in teract w ith  M R P2 as w ell as 

w ith  M R P1.

H ow ever, it is also possib le  that indom ethacin  m ay  n o t have an affin ity  for the 

b ind ing  site on  cM O A T  and m ay no t be able to  com pete w ith  the natural 

substrates o f  cM O A T . L T C4, the G SH  conjugate, w hich  is a  substrate for 

M R P1, is also  a  substrate  fo r cM O A T (M ayer et al., 1995; K oike et al., 1997). 

H ow ever, K epp ler et al., (1998, 1999a and 1999b) and K onig  et al., (1999), 

reported  that the L T C4 has greater affinity  for M RP1 than  cM O A T  Sim ilarities 

in  the  substrate specificity  betw een M RP1 and cM O A T (R oelofsen et al., 

1999), indicate th a t the  b inding  betw een pro tein  and substrate  in  bo th  M R P and 

cM O A T  requires sim ilar conditions. H ow ever, the sensitiv ity  o f  H epG 2 cells to 

etoposide (V P -16), w h ich  is a substrate for M R P1, w as no t increased w hen 

transfected  w ith  an tisense M R P2 cD N A  (K oike et al., 1997). In  contrast, these 

transfected  cells d isp layed  an  enhanced sensitiv ity  to cisplatin, C PT-11, ((45)- 

4,11 -d iethyl-4-hydroxy-9-[(4-p iperid inopiperid ino)carbonyloxy]d ione-hydro- 

chloride triethydrate), and SN -38, (7 -e thy l-10-hydroxycam ptothecin) w hich are 

reported  no t to  be M RP1 substrates (K oike et al., 1997). T his seem s to  indicate 

tha t there  are som e differences in  substrate specificity  betw een the  two M R P 

hom ologues. I f  the m ode o f  action o f  the active N SA ID s is v ia  com petitive
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inh ib ition  w ith  the  chem otherapeutic drugs fo r an  active site on  the M R P 

protein , th is d ifference in  substrate specificity  m ay  account for the  inability  o f  

the  active com pounds to  b ind  to  the M R P2 p ro te in  and  exert their effect.

V ersantvoort et ah, (1995), dem onstrated  th a t g lu tath ione m etabo lism  is a  

critical e lem ent in  the  drug efflux capabilities o f  M RP. It w as show n th a t 

bu th ion ine su lphoxim ine (BSO ), an inh ib itor o f  G SH  (reduced glutath ione) 

synthesis caused  an  inh ib ition  o f  the drug efflux  activ ity  o f  M R P in  M R P- 

overexpressing  cell lines. Loe et ah, (1996b) and (1998), have dem onstrated  

the ability  o f  M R P  to  co-transport v incristine w ith  G SH  in  m em brane vesicles. 

Perhaps the  active N S A ID s and analogues also requ ire  co-transport w ith  

glutath ione to  be good M R P substrates. K oike et ah, (1997), dem onstrated  tha t 

the  stable transfec tion  o f  H epG 2 cells w ith  cM O A T  antisense construct led to  a 

m arked  increase in  cellu lar GSH. N arasaki et ah, (1997), have dem onstrated , 

u sing  quan tita tive  R T -PC R , that the h ighest expression  o f  cM O A T  m R N A  is 

found in  H epG 2 cells. It appears that as a  resu lt o f  the  h igh  expression  o f  

cM O A T  in  H epG 2 cells there is a low  level o f  G SH  in  the  cells. This low  level 

o f  G SH  m ay  reduce  the  ability  o f  the active com pounds to  be  effluxed  from  the 

cell by  cM O A T  in  preference to cisplatin. H ow ever, as discussed previously , 

resistance to  c isp la tin  has also been  associated  w ith  increased GSH. T herefore, 

it appears th a t c isp la tin  resistance m ay no t be due to  the expression  o f  cM O A T  

in  the cells.

T here have  been  a  num ber o f  publications suggesting that M R P3 does not 

secrete G SH  (Z eng et ah, 1999 and B orst et ah, 1999). T herefore, the  h ig h  

G SH  content in  cells expressing M RP3 m ay  contribute to  cisplatin  resistance in  

M R P3 expressing  cell lines. C hen et ah, (1999), reported  that an  unknow n 

transporter, d istinct from  M R P1, M R P2 and Pgp, w as expressed  in  the 

cisp latin -resistan t hum an  epiderm oid carcinom a cell line, K C P-4, and w as 

involved in  c isp la tin  transport in these cells. The authors also report the ability  

o f  th is pum p to transport LT C4, w hich  is an excellen t substrate fo r M RP1 

(L eier et ah, 1994 and  Jedlitschy et ah, 1994). It is possib le  tha t a  m em ber o f  

the M R P  fam ily  o f  transporters, o ther th an  M RP1 and M R P2, contributes to 

c isp latin  resistance.
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4.9 Investigations in to the mechanisms involved in increased 

cisplatin resistance in DLKP C 14 cells

T he D L K PC  14 cell line w as developed by C leary  (1995), b y  continuous 

exposure  o f  the parental cell line D LK P in vary ing  concentrations o f  the 

p latinum  drug, carboplatin . T h is drug  selection  rendered  the cells m ore 

resis tan t to  a num ber o f  chem otherapeutic  drugs, in  particu lar, carboplatin 

(C leary, 1995) and cisplatin. The tox icity  assays carried  ou t on  the  D LK PC  14 

and  parental D L K P cells indicate th a t there w as a  sign ifican t increase in  

resistance to  cisplatin  in  the  D L K PC  14 cells (IC50 3010 ±  156.4 ng/m l) as 

com pared  to  the resistance o f  D L K P to the sam e drug (IC 50 480.0 ±  35.4 

ng/m l). There w as no  significant cross-resistance to the  chem otherapeutic 

agents adriam ycin  and v incristine. The resistan t varian t show ed  sligh t increase 

in  resistance to  5 ’fluorouracil (approx. 1.2-fold) and V P-16 (approx. 2-fold).

I t has been  postu lated  by  a  num ber o f  authors tha t c isp latin  resistance is as a 

resu lt o f  the  overexpression  o f  cM O A T  in  the cancer cells (section  1.6.9.1 and 

section  4.8 and 4.13). Im m unocytochem ical studies and  R T -P C R  analysis 

dem onstrated  that there  w as no increase in  the expression  o f  M R P 1 or Pgp in  

the  D L K P C  14 cells as com pared  to  the  parental D L K P cells (C leary, 1995). 

T hese results suggest tha t resistance to  cisplatin  in  th is particu lar cell line, 

D L K P C  14, is no t by  overexpression  o f  Pgp or M R P1. Future  R T -PC R  

experim ents w ill investigate  the  ro les o f  M R P2, M R P3, M R P 4, M RP5 and 

M R P6 in  cisplatin  and carbop latin  resistance in  th is carboplatin-selected  D LK P 

cell line.

C leary  (1995), reported  tha t the  c isp latin  resistant cells d isp lay  a unique cross

resistance profile to  m ultip le agents including antim etabolites, such as 

5 'fluorouracil and m ethotrexate, topoisom erase inhibitors such as cam ptothecin 

and  etoposide, and D N A  polym erase inhibitors such  as azidothym idine. The 

cell lines resistan t to c isp latin  and  m entioned in  the  literature have  been show n 

to have  m ultifactorial m echanism s o f  resistance (see section  4.8). Four 

b io log ical alterations capable o f  producing cisp latin  resistance have been 

reported  and include:
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•  Decreased ce llu la r accum ulation o f  cisplatin,

•  Increased levels o f  g lu tath ione or increased glutath ione-S -transferase 

activity,

•  Increased  levels o f  in tracellu lar m etallothionein,

•  E nhanced  D N A  repair,

(C leary, 1995 and P arekh  et al., 1995).

C leary  (1995), carried  o u t a  num ber o f  experim ents to  try  to determ ine 

the m echanism  o f  resistance in  the  D L K PC  14 cells and found that:

•  G lutath ione did no t appear to  p lay  a m ajor ro le  in  m ediating  drug 

resistance in  the c isp la tin  resistan t D LK P cell lines. The addition o f  

B SO , the glutath ione b iosynthesis inhibitor, to the D L K PC  14 cells did 

no t significantly  alter the  tox ic ity  profile  o f  carboplatin  in  these cells.

•  G ST  activ ity  d id not p lay  a  m ajor ro le in  drug resistance in the D L K PC  

variants. C leary  (1995), dem onstrated  a  slight decrease in  the activity  o f  

G ST  in  the D L K PC  14 ce ll line. Furtherm ore, the  add ition  o f  ethacrynic 

acid, w hich  has been  reported  by  T ew  et al., (1988), to cause a 

reduction  in  the  levels o f  G S T  activity  and an increase in  the 

cy to toxicity  o f  a  num ber o f  alkylating agents in resistance cell lines, 

caused no significant alteration  in  the cytotoxicity  o f  carboplatin  in  the 

D LK PC  14 cells (C leary, 1995).

•  A n  overexpression  o f  m etallo th ionein  in  the D L K PC  14 cell line m ay 

be involved  in  m ediating  drug resistance in  these cells

•  T opoisom erases d id  no t seem  to  p lay  a  m ajor role in  the drug resistance 

o f  the D L K PC  variants as W estern  b lot and R T -PC R  analysis indicated 

that there w as no significant difference in  the levels o f  topoisom erase I 

and II in  the D L K PC  14 cells relative to the parental D LK P cells.

A  num ber o f  in teresting observations w ere reported  by Parekh  et al., (1995).

T he authors reported  tha t a cisplatin  resistan t hum an ovarian carcinom a cell

line, 2 0 0 8 /C l3, contained  m arkedly  low er levels (6-fold) o f  cytokeratin  18,
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w hen com pared  to  the  c isp latin  sensitive 2008 cell line. T hey  also 

dem onstrated  that the  transfection  o f  a  full length  cytokeratin  18 cD N A  in to  

the c isp latin  resistan t 2008/C  13 cell line, resu lted  in  clones w ith  increased 

levels o f  cy tokeratin  18, w hich  w as accom panied in  the m ajority  o f  the clones 

by  a m arked  increase  in  their sensitiv ity  to  cisplatin. These authors also report 

that a  decreased  expression  o f  cytokeratin  14 w as reported in c isp latin-resistan t 

varian t o f  a  hum an  lung squam ous cell carcinom a line and since in term ediate 

filam ent p ro te ins b ind  to  cisplatin-dam aged D N A  it  is possib le th a t they  m ay 

p lay  a  ro le in  the  cy to toxic action o f  cisplatin.

C om bination  tox ic ity  assays carried  out on  the D LK PC  14 cell line using a 

com bination  o f  adriam ycin  o r c isp latin  w ith  indom ethacin, gave sim ilar results 

to  those ob tained  from  com bination tox icity  assays carried out on  H epG 2 cells 

(section 3.6) and 2008 transfected  and parental cells (section 3.8). The results 

indicate th a t an  enhancem ent effect w as only observed w hen indom ethacin  w as 

com bined  w ith  adriam ycin . A n  antagonistic  effect w as observed in  D L K PC  14 

cells trea ted  w ith  c isp latin  and indom ethacin. These resu lts support the 

hypothesis that the  enhancem ent o f  the  toxicity  o f  chem otherapeutic  drugs by 

the active N S A ID s, is only observed fo r those drugs w hich are substrates for 

M R P1. A n  increase in  resistance to  cisplatin  w as also observed in  the  D L K PC  

14 cells w hen  th is chem otherapeutic  drug w as com bined w ith  indom ethacin. 

R esults p resen ted  in  th is thesis have show n that th is effect is no t cell line 

specific. T he m echan ism  o f  th is increase in  resistance is unclear (see section 

4.8) b u t da ta  p resen ted  in  th is thesis suggest an interesting in teraction  betw een 

indom ethacin  and cisplatin .

4.10 Investigation of the effect o f  pulsing HepG2 cells with  

cisplatin.

H epG 2 cells w ere pu lsed  w ith  cisp latin  for a period o f  ten  w eeks to  assess the 

effects on  chem oresistance in  H epG 2 cells due to pu lsing  w ith  th is 

chem otherapeu tic  drug. A s described in section 1.6.9.1, H epG 2 cells w ere 

found to  h igh ly  express both  M R P2 m R N A  and protein  (N arasaki et al., 1997
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and K oike  et al., 1997). There has been  a  great deal o f  conflicting evidence 

concern ing  cisp latin  as a  substrate for M RP (section 1.6.9.1 and section 4.12) 

and, as in  the  case o f  the 2008 cells (section 4.9), it  has so far been  im possible 

to  ob ta in  a  resistan t cell line w ith  resistance attribu ted  to  one single transport 

pum p to  elucidate the  substrate  specificity  o f  each  ind iv idual transporter. 

C om bination  tox icity  assays carried out in  the H epG 2 cells, w ith  cisplatin  in 

com bination  w ith  indom ethacin , dem onstrated the  inability  o f  indom ethacin  to 

enhance  the tox ic ity  o f  c isp latin  (section 3.7) and  in  fac t the cells seem ed to 

develop  greater resistance to  cisplatin  in  the p resence o f  indom ethacin  as 

described  in  section  4.8.

R T -P C R  analysis on  R N A  extracted from  the paren tal H epG 2 cell line 

dem onstrated  the  expression  o f  M R P 1, M RP2, M R P3 and M R P4 m R N A  in  the 

cells (section 3.16). N o  expression o f  M RP5 m R N A  w as detected  and M R P6 
expression  w as n o t investigated. N arasaki et al., (1997) dem onstrated  the 

p resence o f  M RP1 and a low  level o f  Pgp m R N A  expression. The results 

ob tained  to  date support the findings o f  N arasaki et ah, (1997) and K oike et ah, 

(1997). In  add ition  the resu lts  presented in  this thesis dem onstrate the presence 

o f  at least tw o m ore M R P hom ologues in the H epG 2 cell line, M RP3 and 

M R P4.

T oxic ity  assays w ere  carried  out on  the H epG 2 cells a fter pu lsing  for four 

w eeks and ten  w eeks, to  assess i f  resistance to  adriam ycin , v incristine, V P -16, 

5-FU  and cisplatin  increased  or decreased in the pu lsed  cell lines relative to  the 

paren tal H epG 2 cells. The results w ere surprising in  tha t the resistance to 

adriam ycin , v incristine  and V P -16 w as decreased approxim ately  2 .5 -fold after 

pu lsing  for ten  w eeks w ith  cisplatin. This reduction  in  resistance w as also 

ev ident, bu t no t quite  so notable, after pulsing  fo r four w eeks. H ow ever, in 

contrast, the resistance in  the  pulsed H epG 2 cells increased  10-fold  to cisplatin  

and 2.5 fold to 5-FU . D ue to  tim e constraints, R T -P C R  analysis w as no t carried 

out on  the pu lsed  H epG 2 cell lines. This analysis w ill be  carried  out in  the 

im m ediate  future to  assess i f  pulsing the H epG 2 cells w ith  c isp latin  resulted  in 

changes in  the expression  o f  any o f  the M RP hom ologues. These results w ould  

help  to  exp la in  the  changes in  resistance to the chem otherapeutic  drugs after 

pu lsing  w ith  cisplatin .
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A driam ycin , v incristine  and V P-16 are substrates for M RP1 (C ole et al, 1994, 

D uffy  et al, 1998), and  M R P2 (Koike et al, 1997 and K onig  et al, 1999). 

T hese results suggest tha t pulsing w ith cisp latin  resu lted  in  a decrease in  a  

transport m echan ism  shared by  adriam ycin, v incristine and V P -16, possib ly  

M R P1. It is possib le  tha t 5-FU  is a substrate for M R P4 (section  4.11). A s there 

is M R P4 presen t in  the  parental H epG 2 cells p rio r to  pulsing it is possib le that 

pu lsing  these cells w ith  cisplatin  resulted in  an increase in  the  expression o f  

M R P4 and hence, an  increase in  5-FU  resistance. N ish iyam a et al, (1999), 

reported  that se lecting  gastrointestinal cell lines w ith  cisp latin  (0.1 jag/ml), 

resu lted  in  an increase in  GSTtc and dihydropyrim idine dehydrogenase (D PD ) 

expression, w h ich  have been  associated w ith  5-FU  resistance (section 4.11). It 

is possib le  tha t these  genes are also being  overexpressed  in the H epG 2 cells 

after pu lsing  w ith  c isp latin  for a period o f  tim e.

It is no t clear w h a t resistance m echanism (s) caused  the  large increase in  

resistance to  c isp la tin  after pulsing the H epG 2 cells w ith  cisplatin . A gain  RT- 

P C R  analysis w ill hopefully  help  to  answ er som e o f  the questions. Possibly, 

pu lsing  w ith c isp la tin  resulted  in  an increase in  M R P2 (cM O A T) expression. I f  

th is  is the case it could  explain  the increase in  sensitiv ity  to adriam ycin, 

v incristine and V P -16. I t is postulated  tha t these anticancer drugs are 

transported  from  the cells by  M RP1 in a  G SH  dependent m anner. K oike et al,

(1997), observed reduced  levels o f  glu tath ione w hen  cM O A T w as expressed in  

the  H epG 2 cell line. I f  cM O A T  is overexpressed  in  these pulsed  cells, it is 

possib le  that the level o f  G SH  in the cells is also reduced  w h ich  m ay resu lt in  a 

reduction  o f  the G S H  dependent transport o f  adriam ycin , v incristine and V P -16 

from  the  cells. F u rther detailed  analysis o f  the pulsed  cells is required  to 

determ ine the resis tan t m echanism s present in these pulsed  cells.

4.11 Investigation o f effect o f pulsing DLKP cells with 

indomethacin.

I t has yet to  be  determ ined  which o f  the  M R P hom ologues transport 

indom ethacin . I t  is clear th a t this N S A ID  is a substrate  for M RP1 as 

determ ined  by  experim ents carried out in  th is thesis and previous w ork carried
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out by  D uffy  et a t, (1998) and  E llio t (1997). In  the 2008 transfec ted  cell lines 

the true substrates o f  M R P2 and  M RP3 could no t be determ ined  as there was 

background  expression  o f  M R P  1 m R N A  (section 3.16) and pro tein  (C onnolly, 

1999), in  these cell lines. T herefore, D LK P cells w ere pu lse  selected w ith  

indom ethacin  to  assess i f  pu lsing  w ith  this N SA ID  w ould  resu lt in  an increase 

in expression o f  M R P 1 or the  o ther M R P hom ologues.

P ulsing  D LK P cells w ith  300pg/m l indom ethacin resu lted  in  an increase in  

resistance to  all chem otherapeutic  drugs analysed (section  3.11.1 and table

4.11.1) after 4 w eeks and a g reater increase in  resistance after pulsing for 6 
w eeks. There w as also a  sm all but significant increase in  resistance to 

indom ethacin  in  the pulsed  cell lines relative to  the  parental D L K P cells (table

4.11.1). It m ust be noted, how ever, that the levels o f  indom ethacin  used in  th is 

assay  are approxim ately  100-fo ld  greater than the norm al pharm acological 

relevant concentrations (2.5fj,g/ml) used for indom ethacin.

Drug DLKP DLKP lndo6

Adriamycin 1.0 1.5

Vincristine 1.0 1.5

VP-16 1.0 2.0
5-F U 1.0 3.8

Cisplatin 1.0 2.0
Indomethacin 1.0 2.0

Table 4.11.1: Fold  resistance values for chem otherapeutic  drug and 

indom ethacin  in D L K P Indo6 cells relative to  the parental D L K P cells.

The m R N A  expression  w as analysed in  the D L K P cells after pu lsing w ith  

indom ethacin  for 4 w eeks and 10 w eeks to com pare the expression  o f  M R P 1-6 

in  these cells w ith  the  M R P expression  in the paren tal D LK P cells. The results 

ind icated  that there w as only  a  slight increase in  expression  o f  M RP1 in the 

pulsed  cells as com pared  to  the  parental cells. T here  w as also an increase in  

M R P2, M R P4 and M R P6 m R N A  expression. There w ere undetectable levels 

o f  M R P3 in the D L K P parental and the D LK P pulsed cells. Interestingly, 

pu lsing  the D L K P cells for 4-6 w eeks resulted  in  a notable decrease in M RP5
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m R N A  expression. There w as a  very low  expression  o f  Pgp in  the parental 

D L K P cells w hich w as n o t increased  or decreased  in  the  pulsed cells. 

T herefore, it is possib le  tha t indom ethacin  is a substrate  fo r M RP1, M R P2, 

M R P4 and M R P6 o r tha t these M R P hom ologues all contribute to  a  resistance 

m echanism , in  D L K P cells, to indom ethacin. It is possib le also that the 

increased  expression  o f  these M R P hom ologues are part o f  a very generalised  

response, associated  w ith  exposure to h igh  tox ic  doses o f  indom ethacin  

(300|4.g/ml) m aking  it d ifficult to  assess w h ich  (or any) o f  the M R P 

hom ologues actually  transport indom ethacin. In  the  D L K P cell line, 

indom ethacin  does n o t appear to be a  substrate  fo r M RP3 or Pgp. It is possib le  

also, that, as in  the  case o f  the  bcl and bax fam ily  o f  proteins, the upregulation 

o f  one o f  the M R P pro teins m ay resu lt in  an  upregu lation  o r dow n regulation o f  

ano ther o f  the M R P proteins. H ow ever, there  is no evidence to  support th is 

hypothesis. The increase  in  resistance to adriam ycin , v incristine, V P -16 and 

indom ethacin  m ay  be attributed to  an increase in  expression o f  M RP1 or 

M R P2, for w hich  these com pounds are know n substrates (section 1.6). 

H ow ever, the increase in  resistance to  c isp latin  and 5-FU  is m ore d ifficult to  

explain  as the m echanism s o f  resistance to  these chem otherapeutic  drugs are 

no t clear. T here has been  no  conclusive evidence to suggest that expression o f  

M R P is im portan t in  conveying resistance to  c isp latin  and 5-FU in  any 

particu lar cell line. H ow ever, a num ber o f  authors have suggested  that cisp latin  

is a  substrate  for M R P2 (cM O A T) (section 1.6.9). It is possib le  that an increase 

in  the  expression  o f  M R P2 contributed to  an  increase in  cisplatin  resistance b u t 

it is also possib le th a t pu lsing D L K P cells w ith  indom ethacin  results in  an  

increase in  o ther m echanism s o f  cisplatin  resistance and o ther transport 

proteins. N o c lear-cu t sim ple m echanism  for c isp la tin  resistance has been  

identified  as d iscussed  in  sections 4.8 - 4.10.

M echanism s o f  5-FU  resistance have also been  m uch  researched  over the last 

num ber o f  years. M R P is understood not to p lay  an im portan t role in  5-FU  

resistance (N ish iyam a et al., 1999). K irihara  e( al., (1999), also reports tha t the 

m echanism s o f  5 -FU  resistance appear to be d ifferen t from  drug resistance 

associated  w ith  the  m ultidrug  resistance phenotype related  to  Pgp and M RP. 

H ow ever, bo th  au thors have reported  an increase in  M RP1 expression in  5-FU - 

selected  gastro in testinal cell lines. They also reported  a  very h igh  increase o f  

thym idy late  synthase (TS) gene expression in  these cells as w ell as increased
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levels o f  g lu tath ione S-transferase n (GSTrc) and d ihydropyrim idine 

dehydrogenase (D PD ). It is possib le tha t the expression o f  M R P is an  effect 

due to  or associated  w ith  an  increase in  the expression o f  the  o ther 5-FU  

resistance m echan ism s b u t does no t have d irect involvem ent in  5-FU  drug 

resistance. H ow ever, there  is no evidence to  support th is hypothesis. 5-FU  can 

be m etabo lised  to  5 ’fluorodeoxyuridine m onophosphate (FdU M P), w hich  

inh ib its thym idylate  synthase and consequently  D N A  synthesis. 5 -FU  can also 

be m etabo lised  to the ribonucleoside triphosphate FU TP, and incorporated  into 

various types o f  R N A , inh ib iting  their m etabolism  and function. A  very  low  %  

o f  th is chem otherapeutic  drug can  also be converted  to  the 

deoxyribonucleoside triphosphate, FdU TP, w hich  is incorporated  n  to  D N A  

(Pratt et al., 1994). A s described  in  section 1.6.9.4, M R P4 has been  linked  w ith  

efflux o f  nucleoside m onophosphate analogues (Schuetz et al., 1999). R T -PC R  

analysis dem onstrated  an increase in  M R P4 m R N A  expression in  the pulsed 

D LK P cells as com pared  to  the parental D L K P cells. Therefore, it is possib le 

tha t 5-Fu  resistance is as a  resu lt o f  M R P4 expression  in resistant cells.

Pulsing  D L K P  cells w ith  indom ethacin  did no t dim inish  the ab ility  o f  th is 

N SA ID  to po ten tia te  the  tox icity  o f  adriam ycin  in  these cells. H ow ever, 

pu lsing  the  D L K P cells w ith  indom ethacin  resulted  in  greater resistance to  the 

an ti-cancer drugs. This could  poten tially  be a w orry ing  factor i f  indom ethacin  

is to be u sed  in  cancer chem otherapy to  overcom e resistance to a range o f  an ti

cancer drugs. A lthough, it m ust be considered  that the concentrations used  in  

the pu lse  selection  are m ore than  100-fo ld  greater than  the  concen tration  o f  

indom ethacin  used  in  the com bination tox icity  assays (2.5p.g/ml). The p lasm a 

relevant concentrations o f  indom ethacin  are also approxim ately  2.5|j,g/m l. 

Therefore the  h igh  concentration  o f  indom ethacin , w hich  w as used  in  the  pulse 

selection, w ou ld  n o t be adm inistered to  patien ts in  a clinical setting.

4.12 Investigation o f other possible M RP substrates

Studies w ere carried  out on  a  num ber o f  T B /A ID S related drugs to  determ ine i f  

there w as a  correla tion  betw een acquisition  o f  chem otherapeutic resistance
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m echanism s and resistance to  TB and /o r A ID S drugs. R esistance to  TB and 

A ID S related  drugs is no t generally  considered a  'cellu lar' phenom enon. 

A cquired  resistance is u sually  associated  w ith the m icroorganism  acquiring the 

resistance and n o t as a  resu lt o f  the in tracellu lar availab ility  o f  the drug to the 

m icrobe, such  as by  a  m em brane pum p extruding the d rug  from  the cell (Larder 

et al, 1991). H ow ever, there  have been  a num ber o f  publications, w hich  

consider the  possib ility  that resistance to certain  com pounds, in  particular 

resistance o f  H IV -1 to  A Z T  m ight also involve the  cellu lar expression  o f  

m ultidrug  resistance P gp  (A ntonelli et al, 1992 and  C inatl et al., 1994). In 

1994, D ianzani el al, reported  that exposure o f  the  drug  sensitive CEM  cell 

line to  continuous increasing  concentrations o f  A Z T , a  nucleoside analogue, 

resu lted  in  a  cell line resis tan t to both  the anti-proliferative and  anti-v iral action 

o f  the  drug. H ow ever, Pgp  levels, sensitivity  to chem otherapeutic  drugs and 

sensitiv ity  to  o ther anti-H IV  drugs (even w ith in  the  sam e class) rem ained 

unaltered. T he au thor suggests that there  m ay be o ther a lternative possib ilities 

to  explain  the A Z T -induced  cellu lar resistance:

i. o ther transm em brane transporter proteins cou ld  be overexpressed in  the 

C E M  resistan t cell line sim ilar to those proteins th a t are responsible for 

the expu lsion  o f  an ticancer agents

ii. the m echanism  underly ing  A Z T  resistance resides in a  defect in  

thym id ine k inase activity . This latter suggestion  is supported  by  the 

find ings o f  T urriz ianni et al, (1996).

Saw chuk et a l, (1999), investigated  the  distribution, transport and uptake o f  

an ti-H IV  drugs, including A ZT, to the central nervous system  (CN S) and 

reported  th a t the  active efflux  transport o f  A Z T  out o f  the  C N S appears to be  a  

p redom inan t m echan ism  lim iting nucleoside access to the  CNS. The authors 

have speculated  tha t th is efflux  transport is due to  the  activ ity  o f  an M R P-like 

transporter in b lood-brain  and  blood-cerebrospinal flu id  barriers. W ijnholds et 

al, (2000), has also reported  tha t M R PI helped to  lim it the  tissue d istribution 

o f  certain  drugs, including  A Z T  and contributed to  the  blood-cerebrospinal 

flu id  perm eability  barrier.

T here have been  no pub lica tions associating TB resistance to  cellu lar resistance 

m echanism s such  as transm em brane pum ps and altered  accum ulation  o f  the
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drug  in  the cell. H ow ever, T a k iff  et al. (1996) reported  the appearance o f  

F luoroqu ino lone (FQ ) resistan t strains o f  tuberculosis. T he authors selected a 

gene tha t confers low -level FQ  resistance w hen p resen t on  a  m ulticopy 

p lasm id . This gene IfrA , encodes a  putative m em brane efflux  pum p o f  the 

m ajo r facilita tor fam ily, w h ich  appears to  recognise the  hydrophilic  FQ , 

e th id ium  brom ide, acridine and som e quaternary  am m onium  com pounds. It is 

hom ologous to  qacA  from  Staphylococcus aureus.

M R P transports a  range o f  com pounds that include glutath ione-S -conjugates, 

am phiph ilic  anionic drugs, and natural product toxins. V ezm ar et al, (1998), 

dem onstrated  that the  lysosom otropic o r antim alarial drug  chloroquine w as a 

substrate  fo r M R P and tha t M R P m odulated  the transport o f  chloroquine by 

d irec t binding. H ollo  et al. (1996), has also reported  th a t the antim alarial 

com pound  quinine is also a  substrate o f  M RP. Recently , V ezm ar et al, (2000), 

reported  that a  num ber o f  quinoline drugs, chloroquine, quinine, quinidine and 

prim aquine potentiated  the tox icity  o f  adriam ycin  in a  concentration-dependent 

m anner in  tw o M R P overexpressing cell lines, H L 60 /A D R  and H69/AR. 

M oreover, the m echanism  o f  reversal appeared to  be  m edia ted  through  direct 

b ind ing  to  M RP. These findings suggest that resistance to  quinine could 

possib ly  be due to  overexpression  o f  M RP.

C ourto is et al, (1999), also reported  the ability  o f  rifam picin , the an ti

tubercu losis drug, to  inhibit M RP. The authors dem onstrated  that rifam picin  

w as capable o f  increasing in tracellu lar accum ulation o f  calcein, a  fluorescent 

dye substrate  fo r M R P and PgP, in  M R P-overexpressing G L C 4/A D R , hum an 

lung cancer cells, th rough  inhibition  o f  its export ou t o f  cells. In  addition, 

rifam picin  also enhanced levels o f  accum ulation o f  the  anticancer drug 

v incristine , another know n substrate o f  M RP, in  G L C 4/A D R  cells. Z am an et 

a l,  (1993), dem onstrated  tha t G L C 4/A D R  cells do n o t express Pgp w hich 

ind icates that the inh ib ition  o f  efflux by  rifam picin  is th rough  an  interaction 

w ith  M R P. The exact m echanism  by  w hich  rifam picin  m odulates M RP- 

m edia ted  drug transport rem ains to be determ ined. C ourto is et al, (1999), 

hypo thesised  that rifam picin  interferes w ith  substrate-b inding  sites on M RP. 

This conclusion  is supported  by  the fact that rifam picin  and o ther rifam ycins 

m ay be considered  substrates for the M R P efflux pum p since G L C 4/A D R  cells
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w ere show n to  d isplay low , bu t sign ificant levels o f  cross-resistance to these 

com pounds w hen  com pared  to  parental drug-sensitive  G LC4 cells. H ow ever, 

both  quin ine and rifam picin  w ere used  in  experim ental procedures carried out 

by C ourtois et al., (1999) and V ezm ar et al., (2000), at quite toxic 

concentrations (20|_im and 100-200|_im respectively). So w hile they  m ay  be 

prom ising  as inhib itors/m odulators o f  M R P further studies are required  to 

develop analogues o f  these com pounds w hich  are effective against M R P at less 

toxic concentrations.

Tetracycline resistance has been  attribu ted  to  the  afflux  activities o f  secondary 

m ultidrug transporters such as the  chrom osom ally  encoded T etA  (L) pro tein  o f  

Bacillus subtilis (W ang et al., 2000), the  T etA  (K ) pro tein  o f  Staphylococcus 

aureus (G inn et al., 2000 and G ibbons et al., 2000), the T etQ  pro tein  in  

Prevotella intermedia (O kam oto et al., 2000), T et (W ) in  bacteria  from  hum an 

gut (Scott et al., 2000), EnvD  and T etA  in  E. coli, Tel (L) in  Bacillus subtilis 

and M exB  in  Pseudomonas areuginosa (N ikaido el al., 1994). H ow ever, to 

date, there is no evidence that the antib io tic tetracycline, is a  substrate for M R P 

or tha t one o f  the m echanism s by w hich  cells develop resistance to these 

com pounds is th rough  activity o f  M RP.

The results from  the com bination tox icity  assays (section 3.13) indicate that 

only rifam picin  and quinine w ere found to  po ten tia te  the  toxicity  o f  adriam ycin 

in  the  D L K P cells. The enhancem ent o f  adriam ycin  tox icity  w as slightly  better 

in  the presence o f  quinine than  rifam picin. These results support the 

experim ental find ings o f  Courtois et al., (1999), and V ezm ar et al., (2000). As 

both  quin ine and rifam picin  are reported  by these authors to  b ind directly  w ith  

M R P it is possib le tha t they are com petitive substrates for the M R P pum p, 

com peting w ith  adriam ycin  for pum ping  from  the cell by  M RP. It appears that 

these com pounds poten tiate  adriam ycin  in  a m anner sim ilar to  indom ethacin. I f  

rifam picin  and  quin ine are substrates for M RP it is also possib le that M RP m ay 

contribute to resistance to these com pounds. Further studies are required  to 

determ ine the m echanism  by w hich  rifam picin  and quinine potentiate  the 

tox icity  o f  adriam ycin  and to elucidate i f  these com pounds are substrates for 

M RP1 alone o r for o ther hom ologues o f  M R P also. Future experim ents should 

include inside-out vesicle  assays to  determ ine i f  these com pounds inhibit the 

transport o f  L T C4 by  a pure M R P preparation and w ould  provide evidence that
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these com pounds are  substrates for M RP. Future w ork  should also include G ST 

assays to  assess i f  these  com pounds inhibit G S -X  conjugation. T heir ability  to 

inh ib it the activ ity  o f  GSTy, the  rate lim iting step in the production o f  G SH , 

should  also be investiga ted  as it is possible rifam picin  and quinine potentiate 

the  toxicity  o f  ad riam ycin  by  inhibiting G SH  w hich  m ay be required  for the 

transport o f  adriam ycin  by  M R P. D rug efflux  studies w ould also aid in  

determ ining the po ten tia tion  m echanism  o f  these tw o  com pounds.

Tetracycline and A Z T  w ere unable to potentiate  the tox icity  o f  adriam ycin  in  

the D LK P cells. M R P1 is overexpressed in  D L K P cells so the results indicate 

tha t these tw o com pounds are n o t substrates fo r M R P1. H ow ever, D L K P cells 

express very  low  levels o f  M R P2 and alm ost undetectab le levels o f  M RP3 and 

M R P4 (section 3.16). I t  is possib le  that tetracycline and A ZT are substrates for 

o ther M R P hom ologues bu t th is w ould  be d ifficult to  ascertain  until cell lines, 

w ith  one single tran spo rt p ro tein  and no background expression o f  o ther 

pum ps, are generated  to e lucidate the range o f  substrates for each  transport 

protein. O f  particu lar in terest is the fact that A Z T  is a  nucleoside analogue, 3 ’- 

az ido-3’-deoxythym id ine (Saw chuck et al, 1999; B atrakova et al., 1999 and 

A rion  et al., 2000). M R P4 has been reported  by  Schuetz  et al, (1999), to  be 

involved in  nucleoside  m onophosphate analogue transport from  m am m alian  

cells (section 1.6.9) and, thus, in  resistance to  these  drugs. It is possib le tha t 

A Z T is also transported  by  M R P4. There are alm ost undetectable levels o f  

M R P4 in D L K P cells so it is possible that transport o f  A ZT w ould be evident 

in  cell lines such  as A 549  w hich  overexpresses M RP4.

4.13 Investigation of potentiation of chemotherapeutic drugs with 

reduced cardiotoxicity.

A driam ycin  is an  an thracycline antineoplastic agent used  to  treat a  w ide variety  

o f  solid  and hem atogenous tum ours and differs from  daunorubicin  by the 

p resence o f  an  add itional hydroxyl group on  the adriam ycin  structure. 

A driam ycin  and  o ther anthracyclines induce cytotoxicity  through several 

d ifferent m echanism s. A driam ycin  com plexes w ith  D N A  by in tercalating  

betw een D N A  base pairs causing the helix  to  change shape. This sim ple act o f
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changing the  conform ation  o f  D N A  can  in terfere w ith  strand elongation  by 

inh ib iting  D N A  polym erase and can  inh ib it p ro tein  synthesis due to  affects on 

R N A  polym erase. (P ratt et al., 1994).

U nfortunately , the  risk  o f  congestive cardiom yopathy increases rap id ly  once 

the to ta l cum ulative lifetim e dose o f  adriam ycin  exceeds 450-500m g/m 2 

(M inow  et al., 1977). The authors report that adriam ycin  induced  tox ic ity  can 

cause substan tia l m orb id ity  and m ay  prove fatal. M oreover, there  is a  concern 

that u se  o f  adriam ycin  as part o f  ad juven t or curative chem otherapy  m ay resu lt 

in  decreased  cardiac reserve tha t w ill lead to  the developm ent o f  congestive 

heart failu re  a t som e tim e follow ing discontinuation o f  adriam ycin  treatm ent 

(S tew art et al., 1993). C onsequently  adriam ycin  analogues have been 

developed, such  as epirubicin  (Y eung et al., 1989), and idarubicin  (G anzina el 

al., 1986), th a t in  p reclin ical studies re ta in  doxorubicin’s an tineoplastic  activity 

bu t w ith  a  lesser degree o f  cardiotoxicity.

S tew art et al., (1993), suggested that there is a gradual conversion  o f  

adriam ycin  to  adriam ycinol w ith in  cardiac tissue. A driam ycin  m ay  be 

converted  to  adriam ycinol by  the activ ity  o f  the cytoplasm ic enzym e aldo-keto 

reductase, w hich  is p resen t in  m any tissues including the heart. A driam ycinol 

appears to  b e  taken  up  in  to  the cells at a  slow er rate than  adriam ycin  but 

adriam ycinol produced  from  adriam ycin w ith in  the cell is po ten tia lly  cytotoxic 

and m ay  cause  even  m ore cardio-dam age than  adriam ycin  (F errazzi et al.,

1991). M ino tti et al., (1995), have reported tha t the card io toxicity  o f  

adriam ycin  and o ther qu inone-containing antitum our an thracyclines has been 

ten tatively  attribu ted  to  the  form ation o f  drug sem iquinones w h ich  generate 

superoxide an ion  and reduce ferritin-bound Fe(III), favouring the  release o f  

Fe(II) and  its subsequent involvem ent in  free radical reactions. This 

card io tox ic ity  has also been  reported  by  M inotti et al., (1999), to  also be as a 

resu lt o f  the  form ation  o f  a secondary alcohol m etabolite  o f  adriam ycin, 

adriam ycinol, w hich  is involved in a  non-enzym atic and superoxide anion- 

independen t redox coupling w ith Fe(III)-b inding proteins d istinct from  ferritin. 

This coup ling  resu lts in  the regeneration  o f  sto ichiom etric  am ounts o f  

adriam ycin , m obilising  a  tw o-fold excess o f  F e(ll) ions. It has prev iously  been 

postu la ted  th a t the reduced  cardiac toxicity  o f  ep irub icin  rela tive to 

doxorub ic in  could  be  due to the relatively  low  conversion o f  ep irubicin  to 

ep irub icino l (Sw eatm an et al., 1987). Epirubicin, daunorubicin  and idarubicin
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are reported  to be sign ificantly  less effective than  adriam ycin  in  m obilising 

Fe(II) (M inotti et al., 1999).

C om bination  tox ic ity  assays w ere carried out in  the  D LK P cell line using  

doxorubicin , adriam ycinol or epirubicin in  com bination  w ith  indom ethacin  to 

investigate i f  the  tox icity  o f  adriam ycinol and the less cardiotoxic analogue, 

epirubicin, can be poten tia ted  by indom ethacin  to  the sam e extent as 

adriam ycin. The results (section 3.12) indicate that to achieve 50%  cell k ill in  

the D LK P cell line, a  4-fo ld  greater concentration  o f  adriam ycinol than  

adriam ycin  w as requ ired  to  obtain  this level o f  cell kill. Indom ethacin  w as 

capable o f  po ten tia ting  the  toxicity  o f  adriam ycinol bu t the enhancem ent w as 

no t as no tab le  as the  m agnitude o f  the enhancem ent o f  adriam ycin  by 

indom ethacin . T his is o f  in terest as this m etabolite  o f  adriam ycin  causes greater 

cardiotoxicity  and i f  b o th  adriam ycin  and adriam ycinol are p resent in  the  cell 

the  tox icity  o f  adriam ycin  w ill be preferentially  poten tia ted  by  indom ethacin.

H ow ever, m ore  prom ising  results w ere obtained  from  the com bination  toxicity  

assays carried  ou t in  the A 549 cell line w ith  adriam ycin/epirubicin  in 

com bination  w ith  sulindac. G reater po ten tia tion  o f  ep irubicin  than  adriam ycin  

w as observed  w hen these  chem otherapeutic drugs w ere com bined w ith  

sulindac. In  addition, to  obtain  sim ilar cell kill to  adriam ycin, a 4-fo ld  low er 

concentration  o f  epirubicin  w as sufficient. T hese resu lts  indicate tha t epirubicin  

has greater chem otherapeutic  ability in  A 549 cells than  adriam ycin, at low er 

concentrations. E p irub icin  is also m ore effective than  adriam ycin  w hen 

com bined  w ith  sulindac in  th is cell line. This w ou ld  suggest that epirubicin  

could  effectively  rep lace adriam ycin  in vitro resu lting  in  reduced  cardiotoxicity  

w ith  greater cell kill.

A s the com bination  tox icity  assays w ith  epirubicin  w ere carried out in  one cell 

line only, w ith  one N S A ID , it is not clear i f  th is effect is cell line specific or i f  

th is chem otherapeutic  drug w ould  be m ore effective than  adriam ycin  in  a  range 

o f  cell lines. Therefore, fu ture experim ents w ill include analysis o f  epirubicin  

in  a range o f  cell lines from  different tum our types. C om bination  toxicity  

assays using  ep irub icin  in  com bination w ith a  range o f  active N S A ID s and 

indom ethacin  analogues to  assess i f  better po ten tia tion  o f  this drug can  be 

obtained. I t w ou ld  also be o f  interest to com bine epirubicin  w ith  an  active 

N SA ID , w hich  causes reduced  gastrointestinal tox icity , w hich  w ould  result in a
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com bination  o f  N S A ID  and chem otherapeutic  drug w hich is effective against 

cancer w ith  m uch  reduced tox ic  side effects.
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5.0 Conclusions
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5.1 Investigation o f SAR o f indomethacin analogues

T he results obtained from  the  in vitro com bination tox icity  assay using  an  M R P 

expressing  cell line, D L K P, indicated  that the  activity  o f  indom ethacin and 

analogues w as concentration-dependent and th a t a num ber o f  the substituents on  

the  indom ethacin  structure w ere  critical fo r the  tox icity  po ten tia ting  ability o f  the 

com pounds. E xperim ental findings are sum m arised as follows:

i. Changing indom ethacin  from  a benzoyl (indom ethacin , figure 1.10.1) to  a 

benzyl com pound (B R I 60/1, figure 1.10.3) (i.e. rem oving  the carbonyl 

oxygen, thus a llow ing potential free  ro tation) did n o t affect the 

potentiating activity  o f  the  structure. H ow ever, in  th e  benzyl and the 

benzoyl series o f  indom ethacin  analogues the  structural requirem ents for 

drug tox icity  enhancem ent differ.

ii. A lterations to  the  benzyl structure indicated th a t th e  presence o f  the 

halogen  on  the  benzene  ring  w as necessary fo r the  poten tiating  activity o f  

N -benzy l-indom ethacin  (B R I 113/1, figure 1.10.9) and could n o t be 

replaced w ith  non-halogen  substituents such  as a m ethylth io  substituent 

(B R I 124/1, figure 1.10.9).

iii. The activity o f  N -benzyl-indom ethacin  w as retained w h en  the chlorine, in  

the  />ara-position, w as replaced w ith  brom ine (B R I 114/2, figure 1.10.8) 

and fluorine (B R I 115/2, figure 1.10.8). The com pound w as inactive w hen 

chlorine w as in the  m eta-position  (B R I 106/1, figu re  1.10.8) and in  the 

or/Zzo-position (B R I 107/1, figure 1.10.8). H ow ever, w hen  fluorine w as 

m oved to  the  m eta-position  the com pound w as still active (BRI 138/1, 

figure 1.10.10). Perhaps th is is due to  the sm aller size o f  the  fluorine 

m olecule, w h ich  m ay allow  a  different type o f  in terac tion  w ith  the  active 

site.

iv. R em oval o f  the ha logen  in  N -benzoyl-indom ethacin  (BRI 88/1, figure

1.10.5) or rep lacing  the  chlorine m olecule w ith  brom ine (B R I 92/1, figure

1.10.6) indicated th a t th is substituent w as no t required  for the potentiating 

activity  o f  the  com pound. Perhaps the  lack  o f  free ro ta tion  in  the benzoyl 

com pound equates to  “locking” in to  a particular conform ation in  the 

benzyl series v ia  in teractions betw een a p a ra -h a lo g e n  and a group in the 

active site o f  M RP.
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v. F u rther investigations o f  N -benzyl-indom ethacin  com pounds determ ined 

th a t bo th  the  m ethoxy (on  the  benzene ring) and m ethyl (o n  the  indole 

ring) g roups w ere necessary  fo r the  activity  (B R I 119/1 and B R I 120/1, 

figure 1.10.11) o f  N -benzyl-indom ethacin .

vi. In  the  benzoyl series, changing  the  acetic acid side chain  to  a m ethyl ester 

(B R I 59/1, figure 1.10.4) o r a to ly l am ide (BRI 69/2, figure  1.10.4) 

reduced  the  solubility o f  the  com pound and rendered the  com pound 

inactive.

vii. R em oval o f  the  m ethoxy substituent from  the N -benzoyl-indom ethacin  

structure  did n o t render the  com pound inactive (BRI 104/2, figure  1.10.7).

F o u r com pounds w ere  produced  w ith  chem ical structures sim ilar to  know n  PL A2 
inh ib itors and o f  these, tw o  com pounds, bo th  o f  w h ich  w ere  N -benzyl-2- 

(m )ethylindole-3-acetam ides functionalised  at the  5-position  w ith  a sho rt chain 

alkoxy u n it te rm inated  by a  carboxylic  acid, w ere  capable o f  po ten tia ting  the 

tox icity  o f  adriam ycin , albeit a t h igher m olar concentrations th an  th a t required  for 

indom ethacin. T he tw o  rem aining com pounds from  th is group o f  fou r w ere  N - 

benzyl-2-(m )ethylindole-3-acetam ides w ith  a phosphonic acid residue term inating  

the  short chain  alkoxy  unit. N either o f  these com pounds had sign ifican t toxicity- 

enhancing ability. T hese resu lts suggest that the poten tiating  ability  o f  the 

N SA ID s w as n o t th ro u g h  PL A2 inhibition. H ow ever, the specific activ ity  o f  these 

com pounds and the  indom ethacin  analogues on  PLA2 activity need to  be fully 

investigated  befo re  definite conclusions re  PL A2 activity  can be draw n.

The nine analogues o f  indom ethacin  w h ich  exhibited  toxicity  enhancing ability 

w ere  all less tox ic  to  D LK P cells th an  indom ethacin  b u t only th ree  o f  these 

com pounds had sim ilar po ten tia tion  ability to  indom ethacin. The resu lts from  the 

in vitro tox icity  assays ind icate  th a t in  term s o f  po ten tia tion  ability, the  structure 

o f  indom ethacin  is the  optim um  structure  and the substituent varia tion  reported  in 

this thesis did n o t significantly  enhance the  po ten tia tion  ability o f  th is  NSAUD; 

som e o f  the  com pounds, how ever, have properties w h ich  m ay m ake them  

preferab le  to  indom ethacin  fo r in vivo use.

A  num ber o f  experim ents w ere  carried ou t to  determ ine the m echanism  by w hich  

indom ethacin  and positive  indom ethacin  analogues po ten tia te  the  tox icity  o f
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chem otherapeutic  drugs. R esults w h ich  w ere crucial in  e lucidation o f  the

m echan ism  involved  are sum m arised below:

i. A  num ber o f  the  indom ethacin  analogues, w h ich  w ere  show n to  be 

positive  in  the  com bination  toxicity  assays, did n o t inh ib it the enzym e 

G lutath ione S-transferase (G ST) w hich  is active in  the  form ation  o f  

g lu tath ione conjugates. In  particular, the N -benzyl-indom ethacin  

analogues (e.g. B R I 60/1, B R I 114/2 and B R I 115/2) w ere  poor GST 

inhib itors indicating th a t the carbonyl substituent is im portan t in  the 

inh ib ition  o f  GST. The results indicate that indom ethacin  and the active 

indom ethacin  analogues do no t potentiate the  tox ic ity  o f  the 

chem otherapeutic  drugs by inhibiting the fo rm ation  o f  glutathione 

conjugates.

ii. E xperim ents w ere  carried  out to  assess i f  these com pounds had a  direct 

effect on  the  M R P pum p. U sing  inside-out vesicles p repared  from  the 

p lasm a m em brane o f  H L 60/A D R  cells, w hich  overexpress M R P, it w as 

dem onstrated  p reviously  that the active N SA ID s, indom ethacin , sulindac 

and to lm etin , inh ib ited  up take  o f  L T C4, an M RP1 substra te  (D uffy et al,

1998). This m ethod w as used  to  assess i f  the indom ethacin  analogues had 

sim ilar ability  to  inhibit M R P-m ediated  pum ping o f  th is substrate. A ll o f  

the  active indom ethacin  analogues w ere show n to  have  the  ability to  

inh ib it the  up take  o f  L T C4 in to  the vesicles. H ow ever, one o f  the 

indom ethacin  analogues, B R I 138/1, w here the  chlorine in  the para- 

position  on  the benzene ring w as replaced w ith  a fluorine in  the m eta- 

position, w as a  very  strong potentiator in  the com bination  tox icity  assay 

but, a lthough it m odulated  the transport o f  L T C4 in  the  IO V  assay, this 

m odulation  w as rela tively  w eak as com pared to  indom ethacin  and the 

o ther active indom ethacin  analogues. Overall, how ever, the  results indicate 

tha t these com pounds are inhibiting the activity o f  the  M R P1 pum p, in  

som e w ay, and p reven ting  the pum ping o f  the M RP1 substra te  L T C 4.

iii. Indom ethacin  and the  indom ethacin  analogues w ere  assayed in  another 

M R P 1-overexpressing  lung carcinom a cell line, C O R L23(R ) to  assess that 

the po ten tia tion  effec t w as not cell line specific. T he results show ed that 

the active indom ethacin  analogues w ere capable o f  po ten tia ting  the 

toxicity  o f  a  range o f  chem otherapeutic drugs in  the  C O R L 23(R ) cell line. 

In teresting ly  po ten tia tion  o f  these drugs by indom ethacin  and active
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analogues w as also observed to  a slightly  lesser ex ten t in  the  parental cell 

line, C O R L23(S). W estern  b lo tting  ind icated  tha t there  is a basal level o f  

expression  o f  M R P 1 in  the paren tal cell line (B orst et ah, 1997, D uffy et 

ah, 1998 and K oo l et ah, 1997), w hich  is increased after the  stepw ise 

selection  w ith  adriam ycin  used  to  generate  the C O R L23(R ) cell line. The 

com bination  index values obtained fo r bo th  o f  the  cell lines (section 3.6) 

suggest th a t th e  level o f  expression o f  M R P  does n o t appear to  strictly 

correla te  w ith  the rate  o f  po ten tia tion  o f  the anticancer drugs by the 

N SA ID s. I t  appears that even the presence o f  a sm all am ount o f  functional 

M R P can be sufficient to  render cells less sensitive to  chem otherapeutic 

drugs.

iv. Indom ethacin  and the  indom ethacin  analogues w ere capable o f  

po ten tia ting  the  toxicity  o f  adriam ycin, v incristine and V P -16 in  the 

CO RL23 cell lines. These chem otherapeutic  drugs have been  reported  to  

be M RP1 substrates (Cole et ah, 1998 and H ipfner et ah, 1999). The 

positive  indom ethacin  analogues w ere  unab le  to  enhance the  toxicity  o f  

non-M R P 1 substrates 5-FU  and cisplatin  w h ich  ind icates tha t the 

enhancem ent o f  the  toxicity  o f  chem otherapeutic  drugs in  an M R P1- 

overexpressing  cell lines is specific fo r those drugs w h ich  are M RP1 

substrates. These results further indicate an in teraction  w ith  M R P as the 

m echan ism  o f  action fo r the potentiation o f  toxicity  by  indom ethacin  and 

the  positive  analogues.

v. T he efflux  o f  adriam ycin from  D LK P cells trea ted  w ith  indom ethacin  or 

active indom ethacin  analogues w as significantly  retarded  relative to 

un trea ted  cells or cells trea ted  w ith  an inactive indom ethacin  analogue. 

T hese resu lts strongly indicate th a t the  active com pounds have direct 

inh ib ito ry  poten tia l against the activity o f  M RP. It is postu lated  that 

indom ethacin  and indom ethacin  analogues exert their positive effect either 

by  b ind ing  to  M RP and inhibiting the activity o f  the  pum p or by 

com peting  w ith  an M R P substrate, such as LTC 4  o r chem otherapeutic 

drug, fo r preferential pum ping from  the  cell by the  M R P m olecule, 

inh ib iting  the  b inding  and subsequent pum ping o f  o ther substrates. Further 

efflux  studies dem onstrated  that adriam ycin w as also capable o f  reducing 

the  efflux o f  indom ethacin  from  the  D LK P cells, suggesting that 

indom ethacin  and adriam ycin  m ay be com petitive substrates fo r M RP.
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vi. D uffy  et a l, (1998), had previously  reported  tha t the  enhancem ent effect 

w as no t due to  th e  cyclooxygenase inhibitory  activ ity  o f  N SA ID s. 

H ow ever, the indom ethacin  analogues w ere  analysed fo r COX-1 and 

C O X -2 activity to  assess i f  any o f  the active analogues w ere  capable o f  

enhancing the  tox icity  o f  the  chem otherapeutic drug w ithou t COX-1 

inhibition, and therefo re  possib ly  w ithou t causing the  gastric dam age 

custom arily  associated  w ith  N S A ID s including indom ethacin  w h ich  is 

believed to  be associated  w ith  COX-1 inhibition. A gain, the  N -benzoyl- 

indom ethacin  analogues w ere  m ost effective at inh ib iting  COX-1 and 

C O X -2, w hich  ind icates tha t the  benzoyl un it in  indom ethacin  m ay be 

critical fo r COX-1 and C O X -2 inhib ition  and rem oval o f  this un it renders 

the  analogues too  dissim ilar to  indom ethacin  to  be effective 

cyclooxygenase inhibitors. It appears tha t rem oving the  chlorine from  the 

benzene ring, changing  its position  from  para-, or rep lacing  it w ith  another 

halogen, also reduces the  ability  o f  the N -benzyl-indom ethacin  analogues 

to  inhibit COX-2.

T w o o f  the  active indom ethacin  analogues, B R I 138/1 and 153/1, w ere 

found to  have a lm ost no COX-1 inhib itory  activity and w ere w eak  

inhibitors o f  C O X -2 w h ich  renders these com pounds quite interesting in  

term s o f  h igh  chem o sensitising ability w ith  likely m inim al gastro intestinal 

toxicity. O f  g rea t in terest is the  positive indom ethacin  analogue B R I 60/1 

w h ich  is a very  po o r COX-1 inh ib ito r but, in  con trast to  B R I 138/1 and 

153/1, th is analogue is a very  good  CO X -2 inhibitor. Therefore, B R I 60/1 

w ould  potentially  be very  usefu l in  a clinical situation for its high 

chem o sensitising ability, m inim al gastro intestinal tox icity  and inhibition  

o f  tum our enhancing properties associated w ith  CO X -2 (as discussed in  

section 1.7).

5.2 E nhancem ent o f chem otherapeutic drug toxicity  by N SA ID s in cell 

lines w ith varying expression o f M RP1-6.

T o assess the  ability o f  the  N SA ID s to  potentiate the tox icity  o f  a range o f  

chem otherapeutic  drugs in cell lines w hich  overexpress hom ologues o f  M R P other 

th an  M RP1 an  ovarian  carcinom a cell line, 2008, transfected  w ith  M R P1, M R P2 

o r  M R P3, w as used  in  a  num ber o f  com bination tox icity  assays.
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5.2.1 Enhancement of adriamycin toxicity

i. Indom ethacin  and sulindac w ere  bo th  show n to  have the  ability to  

po ten tia te  the  tox ic ity  o f  the M R P 1 substrate, adriam ycin, in  the 2008 

paren tal and transfec ted  cell lines. The results ind icate  tha t although the 

tox icity  o f  the  chem otherapeutic  drug w as poten tia ted  in  all the 2008 

transfec ted  cell lines, the  effect w as greatest in  the M R P 1 transfected  cells. 

The resu lts also suggest that the  enhancem ent effect, overall, w as slightly  

b e tte r in  the 2008 M R P 3  cell line than  in  the 2008 M R P 2  cell line; 

H ow ever, M R P 1 m R N A  and p ro te in  expression w as detected  in the  2008 

paren tal and transfec ted  cell lines. Therefore, it cannot be ruled out th a t the  

enhancem ent effect observed in the 2008 cell lines is as a resu lt o f  M R P  1 

expression  in  all th ese  cell lines.

ii. A driam ycin  has also been  reported  to  be a substrate fo r M RP1 (Cole et al,

1992), M R P2 (K oike et al., 1997), and M RP3 (Y oung et al., (1999). 

H ow ever, K ool et al., (1999), have show n that transfecting  M RP3 cD N A  

in to  the  2008 cell line  did n o t confer resistance to  adriam ycin, indicating 

th a t adriam ycin  w a s  n o t a substrate for M RP3 expressed in the  2008 cell 

line. Therefore, i f  th is is the case, po ten tiation  o f  adriam ycin  in  the 2008 

M R P3 cell line is m ost likely due to  the N S A lD s in teracting w ith  M RP1. 

H ow ever, in  the  short-term  assays, sim ilar resistance to  adriam ycin w as 

dem onstrated  in  the  2008 M RP3 and 2008 M RP1 cells. There is low er 

p ro te in  expression  o f  M RP1 in the 2008 M RP3 cells th an  in  the 2008 

M RP1 cells (Dr. L isa  Connolly, personal com m unication), and the  2008 

M RP3 cells overexpress M RP3 protein, therefore, it is possible tha t 

resistance to  adriam ycin  in  the short-term  assays is due to  the  expression 

o f  b o th  M RP3 and M R P1. m R N A  and pro tein  analysis o f  the  2008 M RP3 

cell line have show n  undetectab le levels o f  M R P2 (section  3.8 and 3.16). 

F rom  the resu lts detailed  in section 3.8 it is difficult to  determ ine i f  

indom ethacin  o r sulindac potentiate  the toxicity  o f  adriam ycin  in  the 2008 

M R P2 cells. A driam ycin  is poorly poten tia ted  in  the short-term  assays by 

either sulindac o r  indom ethacin  in the 2008 M R P2 cells w h ich  suggests 

th a t either these N S A ID s are poor substrates fo r M R P2 or th a t the sm all 

observed po ten tia tion  o f  adriam ycin tox icity  is due to  the low  pro tein  

expression  o f  M R P 1 in  the  2008 M R P2 cells. N o  M R P2 pro tein  expression
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w as observed  in  any o f  the  2008 cell lines except 2008 M R P2 as expected. 

T herefore, the  po ten tia tion  o f  adriam ycin  in  the  o ther 2008 cell lines is 

m o st likely  n o t due to  the  N SA ID s in teracting w ith  M R P 2 To folly 

e lucidate  the  roles o f  the  active N SA ID s and indom ethacin  analogues in  

M R P 2 and M R P3 expressing cell lines it w ill be necessary  to  obtain cell 

lines transfec ted  w ith  M R P 1, 2 o r 3 but w ith  no basal expression  o f  M R P 1 

o r o ther M R P transporters in  the  parental cell.

5.2.2 Enhancement of methotrexate toxicity

M ethotrexate  has been  show n to  be a substrate  fo r M RP1, M R P2 (H ooijberg et 

al, 1999) and M RP3 (K ool et al., 1999). H ow ever, in  our experim ents there  w as 

po ten tia tion  o f  m ethotrexate  in  2008 P, 2008 M RP1 and 2008 M RP3 only, by 

indom ethacin , w ith  g rea test po ten tia tion  in  the parental and 2008 M RP1 cell lines 

T here w as no observed po ten tia tion  o f  m ethotrexate in  the 2008 M R P2 cell line, 

by indom ethacin , bu t there  w as som e po ten tia tion  by sulindac in  the  sam e cell 

line. Sulindac w as capable o f  po ten tia ting  m ethotrexate in  all the  2008 cell lines 

w ith  g rea test po ten tia tion  in  the  paren tal and 2008 M RP1 cell lines. A  num ber o f  

authors, includ ing  H ooijberg  et a l, (1999), and B akos et al., (2000), have reported  

th a t m etho trexate  is a particu larly  good  substrate for M RP2. H ow ever, B akos et 

al, (2000), reported  th a t low  concentrations o f  indom ethacin  (< lOOpM) 

enhanced the  efflux o f  N -ethylm aleim ide glutath ione (N E M -G S), an  M RP1 and 

M R P2 substrate, in  S/9 cells transfected  w ith  a recom binan t baculoviruses 

contain ing  M R P2 cDNA.

Indom ethacin  w as unab le  to  poten tiate  the  toxicity  o f  m etho trexate  in  the 2008 

M R P2 transfec ted  cell line. Therefore, as a result o f  the  above findings by  B akos 

et a l, (2000), it is possib le th a t indom ethacin  w as in teracting  w ith  M R P2 to  

increase the  efflux  o f  m etho trexate  from  the 2008 M R P2 cell line. These results 

suggest that, in  the case o f  m ethotrexate, there  are d ifferences in  transport 

properties fo r th is drug in each  o f  the 2008 cell lines w h ich  m ay ind icate  th a t the 

expression  o f  M R P 1 does n o t account fo r all o f  the poten tia tion  effects observed 

in  the  2008 cell lines. I t  is also possible that the  transporter, M R P2, is trapped  in 

an endosom al com partm ent w ith in  the  2008 cells and cannot reach  the  plasm a 

m em brane so the  problem s w ith  the in tracellu lar routing o f  M R P2 m ay m ake it 

d ifficult to  determ ine the exact substrate specificities fo r M RP2.
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5.2.3 Enhancement of taxol and taxotere toxicity

i. In itia l experim ents w ere carried out in  the CORL23 paren tal and resistan t 

cell lines, u sing  indom ethacin  and an indom ethacin  analogue, B R I 153/1, 

in  com bination  w ith  taxol, a poor M R P substrate (Cole et a l, 1994 and 

B reun inger el al., 1995), as a negative control. P revious experim ents by 

D uffy  et al., (1998), dem onstrated  tha t th e  toxicity  o f  taxo l w as not 

po ten tia ted  by the  active N S A ID s in  A 549 cells. H ow ever, indom ethacin  

and B R I 153/1 enhanced the  tox icity  o f  taxo l in  the  CO RL23 parental and 

resis tan t cells. The effect w as n o t specific fo r indom ethacin  as sulindac 

could  also poten tiate  the tox icity  o f  taxol in  the CO RL23 cell lines.

A no ther m em ber o f  the  taxanes, taxotere, w as also found to  be  potentiated 

by  sulindac in  th e  CO RL23 cells.

ii. B o th  these taxanes w ere analysed in  the  2008 cell lines and their toxicity  

w as potentiated  by sulindac, indom ethacin  and one o f  the indom ethacin  

analogues, B R I 138/1. The poten tia tion  effect w as m ost ev ident in  the 

M R P1 transfected  cell line suggesting  that these drugs are be tte r M RP1 

substrates. R ecen t reports have suggested  th a t bo th  taxol and taxotere  are 

substrates for M RP1 (V anhoefer et al., 1997). Therefore, it is possib le that 

the  enhancem ent o f  taxol and taxo tere  toxicity  is due to  an  in teraction 

betw een  the  N S A ID  and M R P1. I t also appears th a t the  effect is cell line 

specific as the enhancem ent o f  taxo l and taxotere  tox icity  by  indom ethacin  

o r sulindac w as evident in  D L K P cells, very  slightly in  the  M C F-7  cells, 

bu t no t in  the  A 549 cell lines (from  tw o different external sources). All 

cell lines had previously been  show n to express M RP1. A 549 cells have 

b een  show n by  R T -PC R  to express very  h igh levels o f  M R P4 m RNA . 

E xpression  o f  M R P4 protein  levels in  this cell line  h as  not been 

determ ined as there  w as no com m ercially  available M R P4 antibody. 

M R P4 has b een  reported  to  be directly linked to  the  efflux o f  nucleoside 

m onophosphate  analogs from  m am m alian  cells (Schuetz et al., 1999 and 

section 1.6.8.4). The range o f  substrates fo r M R P4 has no t been  elucidated 

yet, so it  is possib le th a t taxo l and taxotere  are substrates fo r M RP4. 

Perhaps w hen  the  N SA ID s are com bined w ith  taxol and taxo tere  in  the 

A 549 cells, the  ability o f  M R P 1 to  pum p taxo l and taxo tere  is reduced but 

th is is overcom e by the activity o f  M RP4.
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This theo ry  is also dependent on  the active N SA ID s n o t being substrates 

fo r M R P4. W e have no t been able to  determ ine th is yet. Taxol and taxotere 

tox icities w ere  potentiated  in  the  2008 cell lines, w h ich  have been  show n 

to  express M R P4, bu t the  levels are m uch low er than  th a t observed in  the 

A 549 cell line.

P irox icam  w as unable to  poten tiate  the tox icity  o f  any o f  the 

chem otherapeutic  drugs analysed in the  2008 cells, except fo r taxo l w here 

th e  com bination  index  values ind icated  a slight po ten tia tion  o f  taxol 

tox icity  by piroxicam . M oos et al, (1999), indicated th a t taxol (but no t 

taxo tere) increased CO X -2 (but no t CO X -1) protein and m R N A  

expression  in  R A W  264.7 m urine m acrophages. It is suggested  th a t the 

inh ib ition  o f  C O X -2 by the active N SA ID s, in  addition to  an  interaction 

w ith  M RP, m ay explain  the increased enhancem ent o f  taxo l tox icity  in  the 

2008 cell lines. P iroxicam  has no M R P-inhibitory  ability  so the  slight 

po ten tia tion  o f  taxo l tox icity  by  p iroxicam  m ay be due to  inh ib ition  o f  

CO X -2, resu lting  in  an  increase in  apoptosis in  the 2008 cell lines. The 

possib ility  tha t th is effect is cell line specific cannot be  ru led  ou t as the 

com bination  o f  taxol/taxotere  and p iroxicam  w as analysed only in  the 

2008 cell lines. This com bination  needs to  be tested  in  a num ber o f  

d ifferen t cell lines.

.4 Enhancement of cisplatin toxicity

T he m echanism  o f  c isp latin  resistance has proven  d ifficult to  elucidate but 

a  num ber o f  reports have linked cisplatin  resistance to  M R P2 (cM O A T) 

expression  (N arasaki et al, 1997; K oike et al, 1997; Taniguchi et al, 

1996 and K ool et a l, 1996). The toxicity  o f  cisplatin, a non-M R Pl 

substrate, could no t be potentiated  by indom ethacin  in  any o f  the  cell lines 

assayed in  th is thesis including the 2008 M R P 1-3 cell lines, H epG 2, a 

M R P2-overexpressing  cell line, and D L K PC  14, a  carboplatin  selected  cell 

line resis tan t to  cisplatin. This indicates that either c isp latin  is no t a 

substra te  fo r any o f  the  M RP hom ologues analysed in th is thesis o r that 

indom ethacin  is no t capable o f  com peting w ith  this chem otherapeutic  drug 

fo r the  cisp latin  resistance m echanism . In  fact, resistance to  cisplatin  was 

increased  in  all o f  the  above cell lines in the presence o f  indom ethacin.



Shen et a l, (2000), reported  th a t a decrease in  c isp latin  uptake m ay 

account fo r some resistance to  this chem otherapeutic  drug  in  a num ber o f  

cancer cell lines, and tha t th is reduction  o f  in flux  w as  independent o f  

M RP1 and M R P2.

H ow ever, B R I 138/1 poten tia ted  very  slightly the tox ic ity  o f  cisplatin  in  

2008 M RP3 suggesting th a t bo th  B R I 138/1 and cisplatin  are w eak  

substrates fo r M RP3. In  addition  resistance to  c isp latin  w as not increased 

in  the presence o f  B R I 138/1 in  the o ther 2008 paren tal and transfected 

cell lines w h ich  suggests th a t this enhancem ent o f  resistance to  cisplatin 

m ay be an indom ethacin  specific m echanism .

Effect of pulsing DLKP cells with indomethacin

Pulsing  D L K P cells w ith  indom ethacin  resulted  in  an  increase in  resistance 

to  adriam ycin  («  1.5-fold), v incristine («  1.5-fold), V P -16 («  2-fold), 

c isplatin  («  2-fold), 5-FU  («  4-fold) and indom ethacin  («  2.2-fold). R T - 

P C R  analysis indicated tha t pulsing D L K P cells w ith  indom ethacin 

resu lted  in  an increase in  the expression o f  M R P 1, 2, 4 and 6, no change in 

M RP3 or M D R 1 expression and a dow n-regulation  o f  M RP 5 m RNA. 

A driam ycin, v incristine  and V P -16 are reported  to  be  substrates for M RP1 

and 2 and th e  overexpression  o f  these pro teins could  account fo r the 

increase in  resistance to  these three chem otherapeutic  drugs. H ow ever, 

there  is no evidence tha t M R P4 is involved in  the transport o f  

chem otherapeutic  drugs. A lthough experim ents in  th is thesis have not 

produced  evidence tha t cisplatin is a substra te  fo r M R P2 it is possible tha t 

M R P2 is involved in  som e w ay  in a com plicated  m echanism  o f  cisplatin  

resistance. Pulsing  the D L K P cells w ith  indom ethacin  m ay also have had a 

negative effec t on  the  up take  o f  chem otherapeutic  drug in  to  the  cell.

The m echanism s o f  5-FU  resistance are know n to be different from  drug 

resistance associated  w ith  the  m ultidrug resistance phenotype related to 

Pgp and M R P (K irihara et al., 1999). H ow ever, a num ber o f  authors have 

reported  th a t although it appears tha t 5-FU  resistance is no t due to  M R P or 

Pgp, M R P w as identified as a  pred ictor o f  prim ary 5-FU resistance 

(K irihara et a l, 1999 and N ishiyam a et a l, 1999). It is possible that



pulsing the  D L K P cell line w ith  indom ethacin  resu lted  in  an increased 

activity  o f  thym idy late  synthase (TS) or dihydropyrim idine dehydrogenase 

(D PD ), a ra te  lim iting  enzym e o f  5-FU  catabolism  (F ischel et al., 1995), in  

the  cells, resu lting  in  resistance to  5-FU. Future experim ents should  

determ ine the  activ ity  o f  bo th  enzym es in  the  D L K P cells prior to  and after 

pu lsing th e  cells w ith  indom ethacin  to  determ ine i f  they  are involved in  5- 

F U  resistance in  D L K P cells. 5 -FU  can be m etabolised to  

5 ’fluorodeoxyurid ine m onophosphate, w h ich  inhibits thym idylate synthase 

and consequently  D N A  synthesis. Therefore, it is also possible th a t 5-FU  

is a substra te  fo r the  M R P4 w hich  has been  linked to  the transport o f  

nucleoside m onophosphate  analogs (Schuetz  et al., 1999).

Indom ethacin, positive  indom ethacin  analogues, sulindac and o ther active 

N SA ID s are capable o f  poten tiating  the  toxicity  o f  a class o f  chem otherapeutic 

drugs know n to  be M RP1 substrates, in  cell lines w h ich  have been show n to  

overexpress M R P1. The results indicate th a t these active N SA ID s m ay be 

substrates for M R P2 and M R P3 also bu t cell lines w ith  expression o f  these M R P 

hom ologues only, w ithou t expression o f  M R P1, are required  to  elucidate the 

activity  o f  the active N S A ID s on  M R P2 and 3 and th is has p roven  difficult. The 

poten tia tion  o f  taxo l and taxotere  by the  active N SA ID s and positive  

indom ethacin  analogues is very  in teresting as it w as believed that the taxanes 

w ere  poor M R P substrates and tha t the po ten tia tion  effect w ould  n o t be ev ident 

w ith  these drugs. H ow ever, there  also appears to  be an alternative o r additional 

m echanism  o f  enhancem ent o f  taxol toxicity  in  certain  cell lines w h ich  m ay 

invo lve the inh ib ition  o f  taxol induced C O X -2 by the  N SA ID s. The lack  o f  

po ten tia tion  o f  these taxanes in  the A 549 cells m ay  be due to  the high expression  

o f  M R P4 (o r another taxane efflux pum p) in  these cells. Further research  is 

required  in  th is  area  to  fully  elucidate the  m echanism  o f  taxo l/taxo tere  

poten tia tion  in  any o f  the  cell lines analysed.

Overall, the  results have  dem onstrated  the ability o f  indom ethacin, a num ber o f  

indom ethacin  analogues and o ther active N SA ID s, w h ich  appear to  be relatively  

selective M R P inhib itors, to  have the ability to  po ten tia te  the toxicity o f  a num ber 

o f  clin ically  im portan t chem otherapeutic drugs at non-toxic concentrations. F o r 

certain  cancers, w here  drug resistance is particularly  as a result o f  M R P over-
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expression, these active N S A ID s and analogues are prom ising  as poten tiators o f  

the  tox ic ity  o f  chem otherapeutic  d rug  in  fu ture cancer treatm ents and therefore, 

enhanced treatm ent fo r cancer patients.
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6.0 Future experiments

There are a  num ber o f  future experim ents areas th a t could  fo llow  from  w ork  in 

th is thesis:

i. The generation  and analysis o f  cell lines, w hich  express a  single M RP 

transport p ro te in  only , w ithou t background expression  o f  other M RP 

hom ologues o r Pgp, to  elucidate the  range o f  substrates for each transport 

protein . Ideally  th is w ould  involve transfection  o f  cell lines w hich  have no 

background expression  o f  any M RP fam ily  m em bers.

ii. T oxicity  assays w ill be  carried out in  the  2008 cells using  a w ider range o f 

chem otherapeutic  drugs, including V P -16 and 5-FU , to  assess the resistance 

profiles fo r a  w ider range o f  drugs in  the 2008 cells th an  those used  in  section

3.8 o f  th is  thesis.

iii. Investigations o f  the ability  o f  N SA ID s to  po ten tia te  the  toxicity  o f  anticancer 

drugs w here drug resistance is due to the  expression  o f  M R P hom ologues 

o ther th an  M R P1. A gain, cell lines expressing single transport proteins, as 

described  above, w ould  be ideal for som e experim ents.

iv. A nalysis o f  the  poten tia tion  o f  taxol and taxotere in  a  w ide range o f  cell lines, 

in  com bination  w ith  the active N SA ID s, and in  particu lar w ith  piroxicam , to 

further asses i f  the  po ten tia tion  o f  taxol and  taxo tere  is cell line-specific  and 

also to determ ine i f  the potentiation o f  taxol by  p irox icam  is observed in  cell 

lines o ther than  the  2008 cell line.

v. W estern  b lo t analysis o f  a num ber o f  cell lines, exposed  to  taxol or taxotere, 

to  assess i f  the  expression  o f  CO X -2 is increased or induced in  these  cell 

lines. T h is experim ent w ould  help  to  clarify  i f  po ten tia tion  o f  taxo l by 

p irox icam  is th rough  inhibition  o f  COX-2.

v i. Pu lse  selecting  D L K P cells w ith  indom ethacin  resu lted  in  an increase in  the 

expression  o f  M R P4. Toxicity  assays should  be carried  out in  these pulsed 

cells using  taxol and taxotere to assess i f  there is increased  resistance to  taxol 

and taxotere in  the pu lsed  cells versus th e  parental cells. A lso, com bination  

assays should  be  carried  out on the parental and pu lse  selected D L K P cell 

lines to  e lucidate  i f  taxol and taxotere are poten tia ted  in  the pulsed cell line 

w here there  is a  h igher expression o f  M R P4 as com pared  to the paren t cell
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line. T his w ork  w ould  aid in  determ ining  the role o f  M R P4 in taxol and 

taxo tere  resistance.

vii. It w ould  also be o f  in terest to  pulse select D L K P cells w ith  a  com bination o f

both  indom ethacin  and chem otherapeutic  drug to  assess the difference in

tox ic ity  profiles betw een the  cells pu lsed  w ith  indom ethacin  alone and those 

pulsed  w ith  a  com bination  i f  indom ethacin  and chem otherapeutic  drug.

viii. Pulse selecting D LK P cells (w hich  express very low  levels o f  M R P4, w ith 

taxo l o r taxo tere  to  assess i f  an  increase o f  any o f  the M R P transport proteins, 

in  particu lar M R P4, is observed.

ix. R T -P C R  analysis o f  the H epG 2 cells w hich  w ere pu lsed  w ith  cisplatin, to

assess i f  the  expression  o f  M RP1 or its hom ologues have increased or

decreased due to the pu lse  selection  o f  these cells w ith  cisplatin.

x. To assess i f  the changes in  the expression  o f  the M RP1 and M R P  hom ologues 

are also observed  at p ro te in  level as w ell as m R N A  level, in  the indom ethacin 

pulsed  D L K P cell line and the c isp la tin  pulsed H epG 2 cell line, W estern 

b lo tting  should  be carried out on bo th  cell lines to  fu rther elucidate the effects 

o f  pu lsing  these cell lines w ith  indom ethacin  or cisplatin.

xi. A s described  in  section  4.6, further drug efflux studies w ould also be 

beneficial in  defining the  effect o f  indom ethacin , indom ethacin  analogues or 

o ther active N SA ID s, such  as sulindac, on the efflux  o f  a range o f  

chem otherapeutic  drugs, especially  taxol, taxotere and cisplatin. These efflux 

studies w ould  also aid in  determ ining m echanism s o f  resistance in  cancer 

cells to  these chem otherapeutic drugs.

xii. It w ould  also be in teresting to carry out efflux studies on cells treated  w ith 

tw o active N SA ID s or tw o chem otherapeutic drugs, to assess i f  there is 

p referen tial pum ping  o f  one N SA ID  over the other, or one chem otherapeutic 

drug over another drug in  M R P expressing cell lines. Cell lines expressing 

single transport m echanism s w ould  also be useful so tha t the efflux  o f  drugs 

o r com pound can be attribu ted  to  specific transport m echanism s.

xiii. To aid in  determ ining the  m ode o f  action o f  the N S A ID s in poten tiating  the 

tox icity  o f  certain  chem otherapeutic  drugs, the ability  o f  the N SA ID s to 

inh ib it G SH  synthesis should  be exam ined. It is possib le that the active 

N S A ID s po ten tia te  the  tox icity  o f  the chem otherapeutic  drugs through 

inhib ition  o f  the synthesis o f  G SH  w hich  m ay be required  fo r their transport
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by M RP. T his experim ent w ould  also help to determ ine i f  the transport o f  the 

chem otherapeutic  drugs, w h ich  are substrates for M R P, is G SH  dependent,

xiv. It w ou ld  also be  in teresting  to  investigate further ho w  cytokeratins influence 

cisp latin  resistance in  the  H epG 2 and the D L K PC  14 cells. Possib le future 

experim ents include the transfec tion  o f  cytokeratin  18 or cytokeratin  14 in  to 

D L K PC  14 cells, to  determ ine i f  increased levels o f  e ither cy tokeratin  in  the 

cells resu lts  in  increased sensitiv ity  o f  the cells to cisplatin . Perhaps also, 

N orthern  b lo t analysis could  be  carried out to  investigate i f  D L K PC  14 cells 

express cy tokeratin  18 o r cytokeratin  14 and assess i f  the levels in  the 

D L K PC  14 cells com pare to  the levels o f  the  cytokeratins in  the parental cell 

line. A dditional fu ture experim ents to  be perform ed in  this area include RT- 

P C R  and W estern  b lo t analysis o f  the parental and resistan t cell lines to 

estab lish  i f  pu lsing  the D L K P cells w ith carboplatin  resu lted  in  an  increase in 

M R P2, -3, -4, -5, -6. T hese experim ents w ould  help  to  elucidate the 

contribu tion  ( i f  any) o f  these  transporters to  p latinum  drug resistance.
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Appendix A  PCR primers used for the detection of MDR genes.

Gene Primer

length

A+T:G+C Tm* Amplified cDNA 

length (bases)

‘MRP1 21 13:8 55 203

^MRP2 20 11:8 53 241

2MRP3 19 7:12 63 262

iMRP4 19 10:9 42 239

^MRP5 18 9:9 49 381

3MRP6 20 9:11 68 221

'm d r i 21 10:11 56 324

*Tm: Annealing temperature

1 NicAmhlaoibh, (1997);2 Kool et al, (1997);3 O’Neill el a l, (1998).
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Appendix B Abbreviations

AA Arachidonic Acid
ABC ATP Binding cassette
ADR Adriamycin
AMP Adenosine 5'-monophosphate
ATCC American Tissue Culture Centre
ATP Adenosine triphosphate

BSA Bovine serum albumin
BSO DL -Buthionine- [S ,R] -sulfoximine

cDNA Complementary deoxyribonucleic acid
CHO Chinese hamster ovary
COX Cyclooxygenasc or Prostaglandin H synthase

DEPC Diethyl Pyrocarbonate
DMEM Dulbeccos modified Eagles medium
DMSO Dimethyl sulfoxide
DNA Deoxyribonucleic Acid
dNDP Deoxynucleotide Diphosphate (where N= A,C,G,T,U)
dNMP Deoxynucleotide Monophosphate (where N= A,C,G,T,U)
dNTP Deoxynucleotide Triphosphate (where N= A,C,G,T,U)

ECACC European Collection of animal cell culture
ECL Enhanced Chemiluminescence
EDTA Ethylenediaminineetetraacetic acid
ELISA Enzyme linked immunosorbant assay

FCS Foetal calf serum
5-FU 5-fluorouracil

GSH Reduced glutathione
GST Glutathion S-transferase

HC1 Hydrochloric acid
Hepes 4-(2-hydroxyethyl)-1 -piperazine ethane sulphonic acid
HIV Human Immunodeficiency Virus
HPLC High pressure liquid chromatography

IC50 Inhibitory Concentration 50%
IL-ip Interleukin 1P
IMS Industrial Methylated Spirits
Indo Indomethacin
IOV Inside Out Vesicles

Kcl Potassium chloride
Km Substrate concentration which allows reaction to proceed 

at one half of maximum rate
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LRP Lung related-resistance protein
Lt Leukotriene
LT Long-term

MDR Multidrug resistance
Mef Mefenamic acid
MEM Minimum essential medium
MgCl2 Magnesium chloride
MMLY-RT Molomey Murine Leukemia Virus-Reverse Transcriptase
mRNA Messenger ribonucleic acid
MRP Multidrug Resistance Protein
MTX Methotrexate

NaCl Sodium chloride
NADPH Nicotine adenine dinucleotide phosphate
NaOH Sodium hydroxide
NCTCC National Cell and Tissue Culture Centre
NEAA Non-essential amino acids
NSAID Nonsteroidal antiinflammatory drugs
NSCLC Non-small cell lung carcinoma
NTP Nucleotide Triphosphate (where N=ACGTU)

OD Optical Density

PAGE Polyacrylamide gel electrophoresis
PBS Phosphate buffered saline
PCR Polymerase Chain Reaction
Pg Prostaglandin
PGHS Cyclooxygenase or Prostaglandin H synthase
Pgl2 Prostacycline
PgP P-glycoprotein
PKC Protein Kinase C
PMSF Phenylmethylsulphonyl fluoride

RNA Ribonucleic acid
r.p.m. Revolutions per minute
RNase Ribonuclease
RNasin Ribonuclease inhibitor
RT-PCR Reverse Transcriptase Polymerase Chain Reaction

SCLC Small cell lung carcinoma
SD Standard deviation
SDS Sodium dodedecyl sulphate
ST Short-Term
Sul Sulindac

TBS Tris buffered saline
TEMED N,N,N',N'-Tetramethyl-ethylenediamine
TGF-p Transforming growth factor p
Topo II Topoisomerase II
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Tris Tris(hydroxymethyl)aminomethane
TS Thymidylate Synthase
UV Ultraviolet

Vcr Vincristine
V max Maximum rate of reaction when substrate present at 

saturation levels
V P-16 Etoposide
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A ppendix C M olecular W eights

Compound Molccular Weight
Adriamycin 580

ATP 509
Cisplatin 300

Daunorubicin 564
5-FU 130
GSH 307

Indomethacin 358
BRI 60/1 344
BRI 88/1 322
BRI 92/1 402

BRI 104/2 328
BRI 59/1 372
BRI 69/2 447

BRI 106/1 344
BRI 107/1 344
BRI 114/2 388
BRI 115/2 327
BRI 113/1 308
BRI 124/1 391
BRI 138/1 327
BRI 119/1 314
BRI 120/1 329
BRI 153/1 384
BRI 203/1 370
BRI 205/4 406
BRI 215/1 420

Leukotriene C4 626
Methotrexate 454

Piroxicam 331
Sulindac 356

Taxol 854
Taxotere 808

Vincristine 825
VP-16 589
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Appendix D

Chemical analysis of indomethacin and indomethacin analogues

The indomethacin analogues described in this thesis were synthesised by Dr. 

Anita Maguire and Dr. Stephen Plunkett in the Department of Chemistry, 

University College Cork (UCC). To identify, characterise and assess purity of 

each of the analogues a number of analytical procedures were carried out on 

the indomethacin analogues in UCC prior to being sent to our group for 

biological analysis. These analytical procedures consisted of the following (Dr. 

Anita Maguire, personal communication):

• Nuclear Magnetic Resonance spectroscopy (NMR) was recorded on a Joel 

PMX60SI (60 MHz) spectrometer;

• Mass spectra were recorded on a Kratos Profile HV-4 double focussing 

high resolution mass spectrometer;

• IR spectra were recorded on a Perkin Elmer Paragon 1000 FT-IR 

spectrometer as liquid films, chloroform (CHCI3) solutions or potassium 

bromide (KBr) disks;

• Elemental analyses were recorded on a Perkin Elmer 240 elemental 

analyser;

• Thin layer chromatography was performed on DC-Alufoilen Kieselgel 

6OF254 0.2mm plates (Merck) and visualised under UV light with a vanillin 

stain;
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