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Abstract

This thesis investigates the worst possible behaviour o f a source if the traffic emanating 

from it is constrained to pass through a selection of leaky buckets. Various criteria for 

judging the worst ease arc considered, including the average queue length when the traffic 

is passed through an infinite buffer served at a constant rate and the rate o f loss when 

the traffic is passed through a finite buffer, again served at a constant rate. Both o f these 

criteria may be used when the source traffic is buffered alone or in combination with other 

traffic. Another functional considered is the effective bandwidth function which governs 

the asymptotic loss rate when the number of sources becomes infinite. This functional 

turns out to be the most tractable and we concentrate our attention on it. In all cases 

considered it is found that the functional to be maximised is convex in the space o f traffic 

processes. This leads to the use of convex optimisation methods to characterise the worst 

case traffic process. In addition, Optimal Control Theory is used to show that the worst 

case traffic exhibits periodic behaviour.



Acknowledgment s

First and foremost I would like to thank John Lewis for all the guidance he has given 

me. His support and understanding have been invaluable.

Fergal Toomey suggested my thesis problem to me, for which I will be forever gratefi il. 

I doubt he could have suspected at the time how much mileage I would get from it.

I would like to thank Mark Dukes, my heroic proof reader, and apologise for not being 

able to respond in kind.

Thanks also to the other members of the APG who include: Raymond Russell, Meriel 

Huggard, Brian McGurk (who showed me how to juggle), Ken Duffy, Marc Corluy, and 

Sean Coffey. Together they have made DIAS a lively and interesting place to work.

A special thanks go to the librarian o f DIAS, Anne Goldsmith, and its secretary, 

Margaret Matthews. I would also like to thank Nick Duffield and Neil O ’Connell for the 

many interesting discussions I have had with each. Thank you Ian Dowse for keeping my 

machine running, and Emmanuel Buffet for doing the unrewarding job  (from his point of 

view) of liaising with DCU.

Lastly, my family deserves special mention for putting up with me through stressful 

times.



Contents

1 In trod u ction  3

1.1 Motivation ...................................................................................................................  3

1.2 The P r o b le m ................................................................................................................  4

1.3 Previous R e s u lt s .........................................................................................................  7

1.4 The C on jectu re ............................................................................................................  8

2 F in ite  B uffers 12

2.1 The Space o f R ealisations.........................................................................................  12

2.2 Continuous Time Q u e u e s .........................................................................................  13

2.3 Finite B u ffers ................................................................................................................  15

2.4 Some Properties o f the Queue L e n g t h ...................................................................... 18

2.5 An Equivalent Definition o f the Queue Length .............................   20

2.6 An Expression for the Queue L e n g th ......................................................................... 20

2.7 Large Deviations and the Effective Bandwidth ......................................................22

2.8 The Optimisation Problem ..........................................................................................26

3 P e rio d ic ity  and M arkov D ecision  P roced u res  31

3.1 The Pointwise Ergodic Theorem ................................................................................31

3.2 The Discrete Time Version o f the Optimisation P rob lem ..................................... 33

3.3 Markov Decision Procedures.......................................................................................... 33

3.4 Periodicity o f the Worst Case T ra ffic ......................................................................... 35

3.5 Infinite State M D P s ....................................................................................................... 38

3.6 Continuous Time O ptim isation ..........................................   45

3.7 Other Functionals .............................    50

1



4 C on vex ity  and E xtrem e P oints 52

4.1 Convexity and Topological Vector Spaces .................................................................52

4.2 Optimisation for Fixed p . ........................................................   55

4.3 C on vex ity ........................................................................................................................ 56

4.4 Choosing a T op o log y ........................................................................................................58

4.5 The Extreme Points of Cv .............................................................................................. 61

5 A n  A ltern ative  Linear S tructure 67

5.1 The Space o f A d jo in ts ................................. * ............................................................... 67

5.2 C on vex ity ............................................................................................................................68

5.3 Topologies............................................................................................................................69

5.4 Convexity o f the Effective B a n d w id th ....................................................................... 70

5.5 The Extreme Points o f F .............................................................................................. 73

6 E xam ples and A pp lica tion s 81

6.1 Bufferless R esou rces ........................................................................................................ 81

6.2 A Single S ou rce ..............................................................................................................  83

6.3 Calculations for the Worst Case Effective Bandw idth.............................................88

6.4 Numerical R e s u lt s ........................................................................................................... 91

6.5 Connection Admission Control in ATM n etw ork s...........................  93

2



Chapter 1

Introduction

We discuss here in general terms the problem addressed in this thesis.

1.1 Motivation

Our problem takes its motivation from the emerging technology o f Asynchronous Transfer 

Mode. This is the proposed standard for the future Broadband Integrated Services Digital 

Network. In this technology all traffic (data, video, voice) is sent in small, fixed length 

packets called cells. These cells are routed on the basis o f information contained in their 

headers. This information is not a global address, it is merely a label to identify the cell. 

Explicit addressing is not practical because the small cell size would make the overhead 

too great. When a cell arrives at a switch the switch uses a lookup table to decide which 

output port to send it to. It also changes the label to something understood by the next 

switch along the cell’s route. This new label will be used by the next switch to send 

the cell to the appropriate output port and to change the label again. All routing and 

creation of lookup tables is done at connection setup. This arrangement allows routing 

and Connection Acceptance Control (CAC) to be done once per connection, allowing 

individual cells to be switched with the minimum overhead.

Quality of Service (QoS) is guaranteed using CAC: a connection is accepted only if 

there is enough spare bandwidth at each node along the connection’s route to guarantee 

the appropriate cell delay and loss probabilities. To carry out CAC the network must 

have a reasonable description of the characteristics of the offered traffic. This is given
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at connection setup when a traffic contract is agreed. The user contracts that his traffic 

will conform to certain parameters, perhaps defining a policing algorithm that bounds 

properties of the traffic. In return the network contracts to carry this traffic with a 

particular QoS which may be specified in terms of delay and loss. The traffic contract 

gives the network information that will bound the network resources that will be required 

to carry the call.

Any charging scheme will typically be based on both the parameters of the contract 

and on quantities measured once the user has started transmitting: an incentive is needed 

for the user to accurately describe its anticipated usage and also to minimise this usage 

once transmission is underway.

The network may have no additional information about user traffic and must therefore 

infer its characteristics from the descriptors specified in the contract. In any decisions the 

network makes concerning resource allocation or call acceptance, it would be prudent of 

the network to assume the worst case, that is that the user is adversarial to the maximum 

extent permitted by the policer.

1.2 The Problem

The considerations above motivate an optimisation problem over the space o f traffic pro

cesses. We must choose a functional on this space to represent the performance o f the 

network, and a constraint to represent the action of the policer. We will discuss some 

possible choices o f functionals and constraints presently.

A major decision is whether to insist that the traffic sources be stationary and inde

pendent. Some authors do not, for example [1, 2]. Without this restriction the character 

o f the optimisation problem becomes deterministic. These authors can guarantee tight 

bounds on delay and queue length. Often, however, it is reasonable to assume that the 

sources know nothing about each other. In this case the network may extract significant 

multiplexing gains by allowing small loss probabilities. We shall therefore focus on this 

case.
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F u n ctio n a ls

There are many functionals that could plausibly represent the degree of congestion in a 

network. We shall concentrate on those associated with the simplest queueing system: 

the single server queue. Other possibilities include functionals relating to systems such 

as the fair queueing system introduced by Parekh and Gallager [2] and those relating to 

various priority schemes. In Chapter 2 we shall define our functionals rigorously; for the 

moment we will be content to describe them informally. Amongst these is the class of 

functionals relating to the queue length in an infinite buffer being served at constant rate. 

For example, a simple functional is the average queue length when the source passes alone 

through the buffer. The worst case traffic for this functional is somewhat trivial as will 

be shown in Chapter 6. More generally we are interested in the situation where there is 

some fixed number of identical stationary independent sources feeding the buffer.

Another situation is where the source is combined with a number of stationary sources 

with fixed statistics. By this we mean that their behaviour is fixed and is not to be 

optimised over. Since the sum of two independent stationary processes is a stationary 

process, the case of many fixed sources reduces to that o f one. The following simple 

argument shows that the problem of maximising the average queue length of a source 

multiplexed with another fixed source is the same as that of maximising the average 

queue length of a single source when the service is a certain stationary stochastic process. 

Since the average value of the total queue length is our only concern, we may think of the 

fixed source as receiving priority. The buffer space occupied by this source will then be 

independent o f the statistics o f the source over which we are optimising. The only thing 

which changes is the average queue length of the optimised source. This will be equal to 

the average queue length when the source is passed alone through a buffer being served at 

a rate equal to the service that is not being used by the fixed source. This unused service 

rate will be a stationary stochastic process.

Rather than being concerned with the delay in an infinite buffer, we may be concerned 

with the loss from a finite buffer. Again, we may consider a single source, a finite number 

o f identical independent sources, or a multiplex of the source with a fixed source. By 

reasoning in a manner similar to above, we see that maximising this latter functional is 

equivalent to maximising the loss when the buffer size and service capacity are particular
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stationary processes with fixed statistics.

Another functional, the maximisation of which turns out to be particularly tractable, is 

motivated by the study o f the asymptotic loss rate as the number o f sources becomes large. 

We can study the asymptotic loss in this regime using the techniques of large deviations 

and in Section 2.7 we show that finding the worst case traffic in this case reduces to 

minimising the value of a functional called the effective bandwidth o f the source.

C o n s tra in ts

In [3] Turner describes the “leaky bucket” mechanism for traffic regulation. This consists 

of a counter for each connection that is incremented whenever a cell from that connection 

arrives and is decremented periodically. If the counter exceeds a fixed threshold, the 

cell responsible is declared a non-conforming cell. These cells are discarded, delayed, or 

tagged as a low priority cells. The user specifies both the rate a  at which the counter 

is incremented and the threshold j3. We say that a traffic stream conforms to the leaky 

bucket constraint (c,/3) if none of its cells are non-conforming.

So far we have been considering discrete cells. However in this thesis we will mainly 

work with fluid models. There is an obvious continuous version of the leaky bucket regu

lator. Here continuous fluid is added at a constant rate to a buffer, and is taken from the 

buffer at a rate equal to that o f the arriving traffic stream. Again, a stream is conforming 

if the fluid never exceeds a level f3.

The discrete cell leaky bucket is the standard policing mechanism defined by the ATM 

Forum [4] under the name Generic Cell Rate Algorithm. There are various traffic classes 

defined by the ATM Forum, two of which are the Constant Bit Rate (CBR) and Variable 

Bit Rate (VBR) classes. CBR traffic is only required to meet a single constraint of the form 

(p, 0). Such a constraint is just a bound on the peak rate: the instantaneous transmission 

rate at any time must be less than p. In practice the leaky bucket threshold is not zero but 

some small amount called the cell delay variation tolerance. This allows a traffic stream 

to meet the constraint even if it encounters some jitter. The worst case source under a 

single peak rate constraint is trivial: it is the source that transmits at a constant rate p. 

Our main concern will therefore be the next simplest case, that o f two constraints. Again, 

ignoring the CDV tolerance, there is a peak rate constraint (p, 0). However, there is now
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also a mean rate constraint (a, /?). In the definition o f the VBR traffic class the parameters 

<7 and /3 are called the sustainable cell rate and the intrinsic burst tolerance.

1.3 Previous Results 

D e te r m in is t ic  B o u n d s

Parekh and Gallager [2] consider the deterministic worst case. They model the multiplexor 

as a finite number of queues, one for each input, being served by a single server. Each 

input is constrained by its own pair of leaky bucket parameters (<7*,/%) and (pi, 0). In 

addition each input has a weight <fa associated with it that governs the amount of service 

it will receive. The service is divided up amongst the non-empty queues in proportion to 

their weights so that input i will receive rate <j)lj  Y^jei <Aj> where I  is the set of queues that 

are not empty. There are two functionals of interest: the maximum delay experienced by 

any one o f the sources, and the maximum queue length it experiences. No assumptions 

are made about the stationarity or independence of the sources. They show that the worst 

case for both of these functionals occurs when the sources are greedy, that is when each 

source i transmits at rate pi for time /3i/(pi — ot) and then transmits rate at continuously. 

Note that the sources are behaving collusively by synchronising the start of their bursts.

The deterministic worst case is similar to the statistical worst case when the func

tional to be maximised represents a system in which there is only one source. This was 

investigated by Lee [5] for average queueing delay.

S ta tio n a ry , In d e p e n d e n t  S ou rces

Mitra and Morrison [6] investigate the worst case loss probability in a bufferless server 

with constant service rate. They use a large deviations estimate for the asymptotic loss 

as the number o f sources becomes infinite, and show that this estimate depends only 

on the distribution of the transmission rate. The leaky bucket policers place constraints 

on this distribution. Firstly, the average transmission rate must not exceed the smallest 

leaky bucket rate m. Secondly, the essential supremum of the distribution must not be 

exceed the peak rate constraint p. The distribution satisfying these two constraints that 

maximises the large deviation estimate of the loss is shown to have mass m/p at 0 and
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mass 1 — m/p at p. Furthermore they show that there is a periodic traffic source with 

random phase whose transmission rate has this distribution.

Oechslin [7] considers the special case where the server has a service rate equal to the 

sum of mean rates of the input traffic and the buffer size is close (within e) to the total 

burst size of the sources. He finds an upper bound on the expected loss rate experienced 

by any fixed number of independent on-off sources and a lower bound on that experienced 

by symmetric sources. By making e small enough, he can make the lower bound exceed 

the upper bound and thus prove that there are cases where on-off traffic is not the worst

Doshi [8] tackles essentially the same problem we do: he tries to maximise the loss ratio 

for a finite number of independent sources. In addition to considering the situation where 

there are N  identical sources (the homogeneous case) he also tackles the inhomogeneous 

case, that is where N  — 1 o f the sources remain fixed and the maximum is taken with 

respect to the behaviour of the remaining source. He shows that when the buffer size 

is zero, the worst case source is always on-off. We give details in Section 6.1. He also 

demonstrates with a counter-example that the loss rate for two identical and independent 

sources is not maximised when they are on-off.

1.4 The Conjecture

Consider the loss rate when a single source passes through a single server queue. We will 

show in Section 6.2 that this functional is maximised by a source transmitting a stream of 

traffic composed o f bursts at the peak rate followed by silences (Figure 1.2a). The bursts 

are just long enough to empty the token buffer and the silences are just long enough to 

allow it to fill again. This means that the mean rate of the source is the same as the leaky 

bucket rate. For the source to be stationary, the phase must be uniformly distributed. 

Heuristically, the loss rate is maximised when the traffic is bursty to the maximum extent 

permitted by the leaky bucket regulators.

When we multiplex sources the situation is somewhat different. We find that the loss 

rate can be increased by preceding or following the peak rate burst with an interval in 

which the source transmits at the leaky bucket rate (which again is the mean rate of the
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source). For instance, Figure 1.1 shows the cell loss rate when two independent sources of 

the type depicted in Figure 1.2b are multiplexed through a buffer, as the shoulder length 

7  is varied. These results were obtained numerically. The maximum loss rate is clearly 

not attained at 7  =  0 .

C on jectu re  1 For each of the functionals we have discussed, under leaky bucket con

straints (a, /3) and (p, 0), the worst case traffic consists of a periodic pattern with random 

phase and its sample paths are composed of following four phases:

• a peak rate burst of length f3/(p — cr),

• an interval in which the source transmits at rate a, the length of which depends on 

the particular functional under consideration,

• a silent interval of length (3/(7,

• another interval at rate a, the length of which again depends on the particular func

tional.

Note that the time intervals in which the source is transmitting at the peak rate and is silent 

are, respectively, just long enough to fill and empty the leaky bucket. We have not managed 

to prove the truth of this conjecture, however we have made some progress towards this 

end by restricting the class of sources over which the optimisation must be performed. 

Firstly we show in Chapter 3 that the optimisation of the effective bandwidth may be 

restricted to an optimisation over the periodic processes, that is processes whose sample 

paths are periodic and have uniformly distributed phase. This has a number o f interesting 

consequences, for example it shows that the worst case traffic is ergodic. It also allows us 

to consider the source behaviour over a compact interval which introduces considerable 

technical simplification. The effective bandwidth functional is then shown to be convex on 

the space o f periodic processes. Using this fact and choosing an appropriate topology on 

the space, we show how the optimisation may be reduced to one over the extreme points of 

the set of processes that obey the constraints. We give a characterisation of these extreme 

points in Section 4.5. In Chapter 5 we apply the same techniques again, but using a 

different linear structure on the set of periodic processes. In this new linear structure 

the set of processes that obey the constraints has a strictly smaller set o f extreme points
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which we again characterise. In Chapter 6 we give examples of some simple functionals and 

their worst case sources. We investigate more closely the effective bandwidth functional 

and show that in this case the optimum leading and trailing shoulder lengths are equal, 

and that their common value is always less than one o f the parameters taken by this 

functional (the timescale parameter). We calculate numerically the optimum shoulder 

lengths for several complicated functionals, including the effective bandwidth. Finally, we 

describe an application of our work to Connection Admission Control.

We do not deal with questions of existence or uniqueness o f the optimising source. We 

merely conjecture that for each of the functionals considered in Section 1.2 the supreinum 

over the set of sources that meet the constraints is attained by one o f those sources. We 

shall see in Chapter 6 that the functionals that represent a bufferless server do not have 

a unique maximum. The defining characteristic o f these functionals is that they depend 

only on the distribution o f the rate o f transmission of a source and not on the structure 

of the transmitted traffic. This means that any source which has the same distribution 

o f transmission rate as a worst case source will also be worst case. Also there is more 

than one behaviour of a source that maximises its loss rate in a finite buffer. This will be 

discussed in Section 6.2. However, the remaining functionals under consideration appear 

to have a unique worst case.
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Chapter 2

Finite Buffers

In this chapter we give a more precise definition of the space of traffic processes we will 

be working in, and of the performance functionals on this space.

2.1 The Space of Realisations

We work in a continuous time setting. The techniques required in continuous time are 

more sophisticated than those in discrete time but the results should be simpler because 

there are no discrete effects.

Let B4 be the space of functions M+ —> R+ that are are non-decreasing and right 

continuous. If a £ then a is a possible realisation of the traffic from a source: a(t) 

represents the amount o f traffic that has arrived in the interval [0, t]. Since the elements 

of are right continuous and non-decreasing, they have left limits. We shall denote the 

left limit of a function /  at a point t by f ( t~ )  :=  limx^  / (x).

There is an interesting interpretation of the elements o f which comes from the one- 

to-one correspondence between these functions and the set of cr-finite measures on K+ . For 

given any a-finite measure /Jon K + , define a{t) :=  //[0, t}. It can be shown that a is right 

continuous and non-decreasing. Conversely, for any a € ID>+ there is a unique measure [i on 

the measurable space (R+ ,^(M + )) such that /i[0, t] =  a(t). We may interpret the measure 

H as a set function telling us the amount of traffic transmitted by the source during any 

Borel set of instants.

It will be prove useful to embed ©+ in a linear space. To do this we take its linear
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completion D :=  O'1" — D+ , that is

B :=  {a  — b : a, b £ IDT1-}.

We find that the elements o f this set are right continuous and have bounded variation. 

Indeed any function R+ —> M that has these properties is in D . For any w € ID, the Jordan 

decomposition [9] defines the least a and b in D+ such that w =  a — b. We denote the 

positive variation o f w £ 0  by w+ , and the negative variation by w~. A cr-finite signed 

measure is a countably additive set function on the measurable sets such that the empty 

set is mapped to 0 and for which there exists a countable collection o f sets o f finite measure 

the union of which is the whole space. Again, for each cr-finite signed measure u there 

is a corresponding element w £ B defined by w(t) :=  u[0,t]. Also, for each w € ID) such 

that either vj+  or w ~  is bounded, there is a cr-finite signed measure. To see this, take 

the Jordan decomposition of w, form the positive measure associated with each part and 

then subtract one from the other to get a cr-finite signed measure. This measure will obey 

v[0, t] =  w[t) and can be the only measure to do so since {[0, t]}t>o is a 7r-system.

2.2 Continuous Time Queues

In discrete time, the queue length in an infinite buffer evolves from its initial value qo 

according to the recursion

q(t +  1) =  [q(t) +  w (t)]+ , t e  N.

Here, the workload w(t) is the excess of arrivals over service capacity at the time instant 

< 6 N, and x + denotes max(0,x). We will also write x  V y :=  max(:r,2/) and w [ti,t2] :=  

w (ti) +  ■ ■ ■ +  w fo ).  The recursion above may be easily solved by iteration:

q{t) =  \q(t -  1) +  w(t -  1)] V 0

=  [q(t — 2) +  w(t — 2) +  w(t — 1)] V w(t — 1) V 0

=  (90 +  w[0, i]) V max
0 < £ i < t

Defining the queue length in continuous time is more difficult however. A number of 

approaches have been taken in the literature, each appropriate to the characteristics of
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the sample paths of the particular model under investigation. One common method, used 

for example in [10 ], is to define the queue length to be the continuous time analogue of 

the expression above:

? (< ):=  (90+ ^ [0 ,* ]) V sup w[ti,t}. (2.1)
0<h<t

However, the corresponding formula for the queue length in an infinite buffer is consid

erably more complex and it does not seem natural to define it in this way. Also, we are 

interested in the amount of traffic lost and for this there is no known formula.

Another early approach was the use of limiting methods. These were used by Moran [11] 

and later by Gani and Pyke [12]. Here the units o f time and of traffic are scaled by 1/n. 

For each n, the queue length is defined recursively as above. In the limit as n —> 00, a 

continuous time fluid model is obtained. This approach is rather cumbersome and we find 

that more direct methods are preferable.

In [13], Reich defines the virtual waiting time in the M /G /l  queueing system. In this 

model batch arrivals with some general distribution arrive in a Poisson manner at the 

queue and are served at constant rate. The workload is thus given by w(t) =  a{t) — st, 

where a is non-decreasing and right continuous. Reich shows that the equation

q{t) =Qo +  a{t) - s t  +  s /  Ifz^gfaO^o} dx,
Jo

where I is the indicator function, has a unique solution and it is this he defines to be 

the queue length. The integral term acts as a compensator to account for the service 

that goes unused. Reich shows that this definition leads to the expression for the queue 

length in (2.1). This approach works not only for the M /G /l  queue but also for any 

input that is singular with respect to the Lebesgue measure. The reason that Reich’s 

approach only works for singular sample paths is that the compensator must be either 

on or oft'. For example, if the input is a(t) =  st/2 then there is no solution to the above 

equation. Kingman [14] supplied a modification that allows this approach to work in the 

more general situation where the workload has locally bounded total variation and no 

downward jumps. His queue length is the unique solution to the equation

q(t) =  <?0 +  w{t) +  [  l{a;>0:q(i)<0} du>~ (^),
Jo

where w~ is the negative variation o f w. This definition can also be shown to yield the 

expression for queue length in (2.1). It is difficult, however, to generalise this method
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further to the case where the workload is not o f locally bounded variation or there are 

atoms of service.

For continuous workload, Harrison [15] defines the queue length q(t) and the unused

service u(t) to be the unique pair o f functions that satisfy

• u is continuous and u(0) =  0,

• q(t) :=  qo +  w(t) +  u(t) > 0 for all t >  0,

• u increases only at those t for which q(t) =  0 .

He also applies the same method to the definition of the queue length in a finite buffer of 

size b. In this case the loss l(t) must also be considered. Harrison defines q, u, and I to be 

the unique solutions to

• u and I are continuous and 'u(O) =  1(0) =  0 ,

• q(t) qo +  w(t) +  u(t) G [0 , b] for all t >  0 ,

• u increases only at those t for which q(t) =  0 , and I increases only at those t for 

which q(t) =  b.

Pacheco [16] defines the unused service in an infinite buffer as the least, non-decreasing, 

right-continuous function u such that qo +  vj(t) + u (t )  >  0 for all t >  0. The queue length 

will then be q(t) :=  qo +  w(t) +  u(t). He shows that the problem of finding this unused 

service function is equivalent to finding a non-decreasing right continuous function u such 

that u(t) >  u (ti) 3t2 € [<i,t] : (w +  u)(t2) =  0 , and that both o f these problems have 

the solution

uW = + w(*1)) v °-
The expression for the queue length resulting from this solution is the same as in (2.1).

2.3 Finite Buffers

In a finite buffer, the discrete time recursion analogous to the infinite buffer recursion 

above is

q(t +  1 ) =  min [q(t) +  w(t), b] t € N.
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The solution was found by Toomey [17] to be

q(t) =  max min Iw\b\, t], b +  w fa, i ] ) \ /  min (90 +  w[0, i], w[£i, t ] ) . 
t \ < t  \  )  V  t \ < t  \  '

We shall attempt to define the queue length in a finite buffer in continuous time along the 

lines o f [16].

Our definition of the loss from a finite buffer is based on the following heuristics. 

Consider the traffic that is lost. If this traffic had been removed from the traffic stream 

before it entered the buffer then the buffer would not overflow. While a finite buffer 

does not overflow, it acts exactly like an infinite buffer. So if we subtract some function 

(corresponding to the loss) from the arrivals so that the resulting pattern does not cause 

the queue length in an infinite buffer to exceed the level b, then this function is a candidate 

for the loss function. If the server is efficient, it will only lose traffic when it must: it will 

lose as few cells as possible and it will drop them as late as possible.

We are thus led to consider the partial ordering of given by

ai <  02 iff a i (t) < a,2 (t) for all t G R+ .

Note that D+ is a conditionally complete lattice under this partial order. In such a lattice 

each non-empty subset that is bounded below has an infimum (greatest lower bound), and 

each non-empty subset that is bounded above has a supremum (least upper bound). For 

example, the lattice of real numbers R  is conditionally complete. If S C is non-empty 

and bounded below then its infimum is given by the pointwise infimum

(inf S)(t) =  inf{p(i) : p G S}.

The infimum is finite because {p(t) : p  G 5 }  is non-empty and bounded below for each 

t G R+ . The pointwise supremum sup{p(t) : p G 51} is not necessarily in E)>+ since it may 

not be right continuous. However sup S must exist: it can be shown that any partially 

ordered set in which each bounded non-empty subset has an infimum also has the property 

that each bounded non-empty subset has a supremum. We find that the supremum is the 

right continuous regularisation of the pointwise supremum:

(sup5)(i) =  lim sup{p(£i) : p G 5 }.
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Let qo > 0. For each w G D define

U^0)^ inf{w : w +  u +  qo >  0} 

and <Qfqo^w :=  w +  Uio +  qo ■

This is the way Pacheco defined the unused service and the queue length in an infinite 

buffer. Where no ambiguities arise we will drop the superscript specifying the initial queue 

length.

For any w G ID, define the set Lw to be

Lw :=  {I G B+ : I <  w+ , Q(w  — l)(t) < b for all t >  0}

This is the set of realisations which, when subtracted from the incoming traffic, yield a 

traffic stream that does not cause the buffer to overflow. We intend to define the loss as 

the least element of this set under the partial ordering defined above. We must show that 

such a least element exists.

T h eorem  1 For any w 6 D, the set Lw is a complete lattice.

Proof. Clearly Lw is non-empty since Q(w+ — w+ )(t) =  Q0(£) =  0 <  b and so w+ G Lw. 

Let S C Lw be non-empty. Since B+ is a conditionally complete lattice and S  is bounded 

below by 0, we have that m(t) :=  inf/e5 l(t) is in B)+ . We will show that m  G Lw. For all 

I G S and >  0 we have that

sup [ (w - / ) ( i2) -  {w -l ) { t i ) ]  V [qo +  ( w - l ) ( t 2)] <  b.
h < t 2

So (w—l)(t2) <  b+(w—l)(ti) and qo +  (w—l)(t2) <  b, for all I G S, t2 >  0, and t\ < t 2- Taking 

the supremum over Z G 5, we find that w(t2) — inf;6s l(t2) < b +  w (ti) — inf/G5 l(ti) and 

Qo +  (^ - in f /e5 Z)(i2) <  b. Thus w (t2) - m ( t 2) <  b +  w (t i )—m (ti) and qo +  {w -m ) (t2) <  b, 

for all t2 >  0 and t\ < t 2. Equivalently,

sup [(w—m )(t2) — (w —m )(ti)] V [go +  (w —m )(t2)] <  b, for all t2 >  0,
tl<t2

and we conclude that m  G Lw.

We have shown that every non-empty subset of Lw has an infimum in Lw. In addition 

Lw has a top element w+ . We conclude that Lw is a complete lattice. □
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In particular, inf Lw must itself exist and be an element of L w. We take this as our 

definition of the loss function, that is I* :=  inf{Z <  w+ : Q(w- i ) <  b}. The queue length 

and the unused service are then given by

q :=

u* :=  U (w — I*) =  q — w +  I*.

2.4 Some Properties of the Queue Length

We will now show that the operators we have defined have some simple but useful prop

erties. These will be found to agree with our intuition as to how a queue should behave.

T h e  M e m o r y le s s  P r o p e r t y

Pacheco [16] proves the memoryless property of the infinite buffer queue, that is if for 

some t\ >  0 we let w(t) :=  w(t + 1\) — w (t^) and %  :=  q(t["), then <Qw{t) =  Qw(t + 1\) 

and Uw(t) =  Uw(t +  h ) — Uw(t\), for all t >  0. Intuitively this means that the length of 

the queue and amount of service capacity that is unused at any time after a fixed time 

11 depends only on the queue length at time t\ and the arrivals afterwards. We use this 

result to prove the corresponding property for finite buffer queues.

T h eorem  2 For any t\ >  0, let w(t) :=  w(t +  ii)  — w (t^) and qo :=  q {ti)-  Then the 

memoryless property holds:

q ( t )= q ( t  +  t i), l(t) =  l(t -M i) -  l(t~), u(t) =  u(t +  t\) — u(t~).

Proof. Let /' :=  l(t +  t\) — l(t~). Using the memorylessness of Q we have that

Q {qo\ w - l )  = Q  W i » ( w - l ' ) .

Since — I) <  b, we have that I1 & L :=  {z  < w : ^(w  — z) <  b}. Thus

I :=  inf L <  I'. Now let

f  l(t), t <  ti
l{t) := • {- .

[ l ( t  - t ± )  + l ( t 1 ), t > t ±

Then 0 ( vj — l)(t) =  Q(w — l)(t) <  b for all t <  t\. Using the infinite buffer memoryless 

property again, we find that Q (w —l) =  ))(w —l) <  b for t >  t\. Thus I is in Lw and so
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I >  I. It follows that l{t — ti) + l ( t i ) >  l(t) for t >  or equivalently l(t) >  l ( t + h )  — l{tx ) 

for t >  0 . n

I s o to n ic ity

Intuitively, the more traffic that arrives at the buffer the longer the queue will be, and 

there will be less service unused and more traffic lost. However, the partial order we have 

been considering is too coarse to capture this effect: even if traffic arrives earlier, this does 

not necessarily mean that less will be admitted to the queue. We define a finer partial 

order X:

ai X a2 iff ai(t2) -a i ( t x )  <  a2(t2) -  a2(t i ) , for all t\ ,t2 £ K+ such that ti <  t2.

Under this definition, ax ■< a2 means that a\ has less traffic in every time interval than a2. 

This partial order is strictly finer than the previous one: if ai ■< a2 then a\ <  a2, but the 

converse does not hold. Pacheco proves that if a\ -< a2 then Qo,] <  Qa2 and Uai X Va2. 

We use these results to prove the following theorem.

T h eorem  3 If x i ^ x 2 then qXl <  qx2, uXl y  uX2, and lXl ^  lX2.

Proof. It will be straightforward to show that qXl < qX2 from the formula for the queue 

length given in Section 2.6. The following argument shows that 1X1 <  lX2:

X\ < x 2 => x \ -  lX2 < x 2 -  lX2

=» Q(^i — lx2)(t) <  Q (^2 — lx2)(t) <  b for all t >  0 

=r" lx 2 £ LX i

— inf LX\ 1 lx\'

We extend this result to the partial order <  using the memoryless property. First note 

that the infinite buffer queue length Q at any time t is isotonic in the initial queue 

length qo. This means that the loss in a finite buffer I is also isotonic in qo. Let 

Qi :=  Qxi(t) and q2 :=  qX2{t). For some ti > 0, let w i(t) :=  £ i(f  +  ii )  — £ i( i5~) and 

w2(t) :=  x 2( t +  ti) -  x 2( f [ ) .  So,

IxAh +  t) ~ lx i(* r) < ^ 22)W = l x 2( h + t )
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2.5 An Equivalent Definition of the Queue Length

We have defined the loss, unused service and queue length functions to be

I* := in f{Z  e B + : Q(w -  l){t) < b } ,  q := Q { w - l * ) ,  u * : = q - w  +  l*.

However, the barriers at 0 and at b are symmetrical and we could just as well have defined 

these functions to be

u* :=  inf{u G : Q (w +  u)(t) >  0}, q :=  Q(w  +  u*), I* :=  w +  u* — q,

where Qw  :=  w +  inf{Z >  0 : w(t) +  I(t) <  b for t >  0}. We will show that these two 

definitions are equivalent and furthermore that both are equivalent to the following set of 

definitions:

in f{( / ,« )  : 0 < w — I +  u <  b}, q :=  w — I* +  u*.

The order on B 1 x B+ we are using here is the usual product order, that is

(^ I ,^ i) <  0 x2, u2) iff Ixi <  lx2 an(i U1 ^  “ 2) for all lx!,lx 2,u i ,u 2 € B+.

Let I* and u* be defined according to the first of the three definitions above and let 

S :=  {(l,u )  : 0 < w — I +  u <  b}. We proved above that (l*,u*) G S and so clearly 

infS 1 <  (l* ,u*). Let (l ,u ) G S. Define n; :=  U(io — I). Then U[ <  u. Also w — I + u  <  b => 

Q(w — I) =  w — I +  ui < b. Therefore I* < I. Since w — I* >  w — I we have that u* <  ui 

by the previous section. Thus we conclude that (l*,u*) <  (l,u i) <  (l,u ) and hence that 

( r ,  u*) <  inf S. This proves that the first definition above is equivalent to the third. The 

equivalence of the second and third definitions may be proved in a similar manner.

2.6 An Expression for the Queue Length

In this section we obtain a pair of expressions for the queue length defined in the manner 

above. These are the continuous time version of the formulas given by Toomey in [17]. 

We do not know of any expression for the amount of traffic lost or the amount of service 

that goes unused. The fact that there are two expressions again reflects the symmetry o f
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the barriers at 0 and at b. For w e l 0, define w [ti,t2] :=  w fo )  — w (tl ). The expressions 

Q(t) :=  inf (  sup w[t2,t] V (6+  inf w[z, <])) A (  sup (go+w[0, i]) V w [ii,i]Y
0 < t i < t \ t l < i 2 < i  h < z < t  )  V o < t i  < t  J

Q (t) :=  sup (  sup w[t2,t] A (b+ inf V (  inf (§0+ w [0 ,t}) A (6+ io [ti,t ])V
0 < i i '  t i < t 2 < t  h < z < t  /  \ 0 < t i < t  /

We will need two lemmas to prove that these expressions give the queue length. The 

first states that these two expressions are indeed equivalent.

L em m a 1 Q(t) =  Q(t) for all t >  0.

Proof. Let t >  0. To simplify formulas we will write s(t\) :=  sup0<i] <t w\t\, t] and 

i{ti)  :=  inftl<t2< tw [h ,t] for all tx G [0,i].

Suppose that 5 (0) <  b +  i(0). Then s(t\) < b +  i(ti) for all t± G [0,t]. This means that 

Q (t) =  (6 +  i(0)) A [(g0 +  w[0,i]) V s(0)] and Q(t) =  s(0) V [(q0 +  w[Q, i]) A (6 +  *(0))]. 

Since 5 (0) < b +  i(0), these two expressions are equal.

Now suppose that s(0) >  b +  z(0). Then 5 (0) V (qo +  w[0, t]) >  s(0) =  5 (0) V (b +  

i(0)) >  inf0<tl<t[s(ii) V (b +  i(ti))]. Thus Q(t) =  inf0<tl<t[s(ii) V (6 +  i(ii))]. Similarly 

Q(t) =  sup0<tl<t[s(ii) A (b-H (ii))]. Note that for every 0 <  h  < t  either s(ti) or b+i(t\) is 

continuous as a function of t\, and that s(t\) is non-increasing and i(ti) is non-decreasing. 

Let c :=  supjii : s(<i) > « ( i i ) }  be the point at which s and i cross. Then in fo ^ ^ t  [s(h ) v

(6 +  *(ii))] =  s(c~) A (6 +  *(c)) and sup0<tl<t[s(ii) A (6 +  i(*i))] =  s(c) V (b +  i(c~ )).

Either s or i is continuous at c. If s is that is continuous, then b +  i(c) > s(c) — s(c~) and 

b+i(c~) < s(c“ ) =  s(c), and therefore s(c- ) A (b+i(c)) =  s(c) V (6+ i(c- )) =  s(c) =  s(c~). 

Similarly, if* is continuous at c, then s(c~) A (6 +  z(c)) =  s(c) V (b +  i(c~ )) =  i(c) =

L em m a 2 If for some t\ >  0 we have that suptl<t2<i w[t2,t] < Qw(t), then Q w fa )  +  

w[t2,t] =  Qw(t) for all 12 G

Proof. The memoryless property for the infinite buffer queue implies that 

Qw(t) =  sup w[t2 ,t] V (Q w (ti) +  w [ti,t]).
h<t2<t v '

So, if Qw(t) <  sup(l<i2<t w[t2, £], then we must have that Qw(t) — Qw(t\) +  w [ti,t]. □
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T h eorem  4 The queue length in a finite buffer is given by Q (t).

Proof. Suppose Q(t) <  Q(w -  l*)(t) for some t >  0. Then, since Q(w -  l*)(t) <  Qw(t) =  

suPo<ti<t(<7o +  w[0,t],V![ti,t]), we must have that

Q(t) — inf (  sup w[t2,t] V (6 +  inf w[z, £])).
0<tl<t \ ti<t2<-t tX<Z<t /

Let 5 be such that 0 <  5 <  Q(w -  l*)(t) -  Q{t). Then there exists t\ G [0, t] such that

sup w[t2 ,t] V (b +  inf w[z, t]) <  Q(t) +  <5 <  Q(w —
t l < t 2< t  t i < z < t

So suptl<t2<t w[t2,t] <  Q{w -  l*)(t), and therefore suptl<t2<t(w-Z*)[*2, t] <  Q(w -  

Applying the previous lemma, we find that

Q(w -  l*)(t2) +  (w -l* )[t2,i\ =  Q{w -  for all t2 € [ti,*].

Now,

<Q> ( w —l * ) ( t ) > b +  inf w[z,t] =» Q (w — l*)(t) >  b +  inf (w —l*)[z,t] 
t l < z < t  t l < z < t

=> sup ( q (w — l*)(t) — (w — l*)[z,t\) >  b
tx< z < t  '  '

sup Q(w — l*)(z) >  b,
t i < z < t

which is a contradiction since Q(w — l*)(z) <  b for all z >  0. We conclude that Q >  

Q(w — I*). By a symmetrical argument it may be shown that Q <  Q(w  +  u*). Since we 

have proved in Section 2.5 that Q(w  +  u*) =  Q(w — I*) and above that Q (t) =  Q (t), the 

equivalence of Q and Q(w  — I*) is established. □

2.7 Large Deviations and the Effective Bandwidth 

A s y m p t o t ic s  in  th e  n u m b e r  o f  so u rce s

Let a(t) be the the amount of work that a stationary source 2 transmits in the interval 

[0, t]. We define the effective bandwidth of the source to be

a (0 ,t) :=  ~  log EeflaW .
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The effective bandwidth is exactly what we need to calculate the behaviour of the loss rate 

when the number o f sources is large. The loss rate obeys the large deviations asymptotics

lim logL {sN ,bN ,N ) = -N I {s ,b ) ,
N —>oo

where the function I  is given by

I{s ,b ) :=  in f(6ta(-, t))* (b +  s t) .

Here /*  denotes the Legendre-Fenchel transform of a function / ,  which is defined to be

f* {y )  :=  sup[a;y -  f(x )} .

The asymptotics above are also obeyed by the probability that the queue length exceeds 

a level Nb in an infinite buffer and by the proportion of time buffer is full.

Anick, Mitra, and Sondhi [18] introduced a Markov modulated fluid model and proved 

large deviation results as the number of sources becomes infinite. In [19] Courcoubetis 

and Weber consider the case of several independent sources in discrete time. They prove 

that the fraction of time a finite buffer stays full has the above asymptotics. Simonian and 

Guibert [20] prove the result for on-off Markov fluid sources. Weakening the independence 

assumption, Botvich and Duffield [10] give more general Gartner-Ellis type conditions 

under which the result holds. They work in both discrete and continuous time and prove 

the result for the stationary probability that the queue length in an infinite buffer is greater 

than the level Nb.

For an overview of the many applications of the effective bandwidth function see the 

paper o f Kelly [21].

M in im is a t io n  o f  I (s ,b )

The asymptotics above motivate the optimisation program

minimise I(z\ s,b ), subject to z £ 5 ,

where S  represents the set o f stationary traffic sources that obey some choice o f constraints. 

This is related to another optimisation program

maximise subject to z £ S. (2.2)
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Indeed if

inf I ^ ( s ,  b) =  inf(£# sup a fo  (■,£))* [b +  st)
z e s  t> o ze$

then these two optimisation problems are the essentially the same.

Let us review some convex analysis. For a reference see [22]. The convex hull of a (not 

necessarily convex) function g is defined to be

(conv<7)(a;) :=  inf{o!ig(a;i) +  +  «2 =  1, otiX\ +  0.2X2 =  x, a i ,  a 2 € [0, 1]}.

The convex hull o f a family of convex functions is defined to be the convex hull of their 

pointwise infimum:

(co n v {/j}i6/)  :=  convg

where g(x) :=  i n f fi(x ). Under the pointwise partial order, the collection o f convex 

functions on R form a complete lattice. The infimum of a family of convex functions is 

their convex hull in f { / i } l£j  =  co n v {/j} jG/ ,  and the supremum is the pointwise supremum 

su p {/j} ie/(x ) =  supiG/ fi(x ). The following lemmas will prove useful.

L em m a 3 If { f i } i e i  is a family of real-valued proper convex functions on R, then the 

operations of taking the supremum and of taking the convex hull are conjugate, that is

(con v { f i } ieI)* =  sup { f * } i a ,

and (su p {/i} jG/)* =  co n v { /* }ie/.

L em m a 4 Suppose f (6 )  =  sup,: fi(9) and the supremum is attained for each 0, say at %q. 

Then f'_(d) <  f iB'_(0) and f + (9) > f ie'+ (d).

L em m a 5 If f  is convex and there exists some continuous function g such that f ' _ < g <  

f '_|_, then f  is differentiable.

L em m a 6 Let f ( x ,y )  be a function of two real variables. If f  is continuous in each 

variable and monotone in one then it is jointly continuous.

We wish to show that infz£s (s, b) — inft>o(if?supze<s a(-, t))*(b  +  st). This will 

be accomplished using the following theorem, which makes some assumptions about the 

family of functions.
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T h eorem  5 Let {/*}*£ / be a family of real-valued proper convex functions on R. Assume 

that for all x  the supremum f {x )  :=  sup fi(x ) is attained by one of the functions and that 

f  is differentiable. Then f* (y )  =  infiej[/* (y )].

Proof. Take any y € R. Clearly f* (y )  =  co n v { /* }i6j(y ) <  in fie /[/*(*/)]• Define z :=  

argsupxeIK[a;?/ — f {x ) ]  and j  :=  argsupie jf i (z ) .  From Lemma 4, f j  is differentiable at z 

with the same derivative as / .  Also f j {z )  =  f ( z ) .  Thus f* (y ) =  f* (y )  and so f* {y ) >  

infje/[/j* («/)]■ This completes the proof. □

If we could show that Optimisation Problem (2.2) has a solution for each 9 and t and 

that maxzGs a ^ (9 ,t )  is differentiable in 9, then we could conclude that

i n f 6) =  inf in f(# to^ (-, t))*{b  +  st)
z£«$> z £ < S  t >̂0

=  inf inf (9 ta ^ (-, t))*(b  +  st)
t> 0  z £ < S

=  in f(9 tsu p a ^ (-,t))* (b  +  st).
t>o zes

In Chapter 6 we will see that the effective bandwidth optimisation problem is one dimen

sional. In this case we can use the following theorem to show differentiability.

T h eorem  6 Let fi be a family of convex functions parameterised by i 6 R and let f(9 ) =  

supi£i fi(9) which we assume is attained for each 9. If f [  exists and is continuous in i for  

fixed 9 and is :=  argsupifi{9) is continuous as a function of 9, then f  is differentiable.

Proof. Since ,fi(0) is convex and differentiable in 9, we have that / /(0 ) is nondecreasing and 

continuous in 9. But we have assumed that f-(9 ) is continuous in i and so, by Lemma 6, 

fl(9 ) is jointly continuous in i and 9. We conclude that f[e {9) is continuous in 9. But /  

is convex and fL (6) <  fL  ($) < /+($)> and so /  is differentiable by Lemma 5. □

To summarise, we need to show that a (9 ,t) attains its maximum for every 9 and t, 

that a{9 , t) is continuously differentiable with respect to 9 for all t and z, and that the 

value of 7  for which a (9 , t) is maximised is continuous in 9 for all t. We will consider these 

matters again in Chapter 6.
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2.8 The Optimisation Problem

We are now ready to give a precise definition of the optimisation problem that we shall 

be tackling.

The space o f realisations o f a source will be ID)+ , the set o f right-continuous, non

negative, non-decreasing functions from [0, oo) —> M+ . The a-algebra we use is the stan

dard one employed when dealing with continuous time processes, that is the cr-algebra 

generated by the coordinate functions {At}^e[o,oo)- This cr-algebra, which we denote by E,

is the smallest in which the coordinate functions are measurable. It is useful to use the

smallest since the smaller the cr-algebra, the more measures on it that exist.

It can be shown [23] that the difference of two random variables and the infimum 

of a countable set of random variables are also random variables. Since the coordinate 

functions are random variables, it follows that so to is the mapping

M cT : 1D)+ - »  M+ : a —> sup{a(i2) — a (h ) — o i  : ti ,tz  G Q+ ,i i  < £2}-

But the elements o f 1D>+ are right continuous, and so we have that M a(a) =  sup{a(t2) — 

a(t 1 ) — at : t\,t2 G [0,0 0 ),ii <  £2} , where this time the supremum is taken over all real 

pairs of times. This is the expression for the maximum queue length in an infinite buffer 

being served at rate a when the initial queue length is zero. Thus the set o f realisations 

C  :=  {a  G B+ : M a{a) <  /3, Mp(a) — 0 } which meet the leaky bucket constraint (a,/3) and 

the peak rate constraint p is a measurable set of E since it is the intersection of a level set 

of Mfj and a level set of Mp.

Recall that a probability measure p on the measurable space (B+ , S) is a cr-additive 

set function from E -»  [0,1] such that p [ID+ ] =  1. We denote the set o f such measures by 

M .  We define the time shift operator 9 : 1D)+ —> B+ to be

(l9ha){t) =  a(t +  h) — a(h~),

where a(h~) is the left limit of a at h. Note that this is a measurable map, that is 9~1S is E- 

measurable for every S-measurable set S. A probability measure p on (ID)1 , E) is said to be 

stationary if p[9~1S] =  p[S] for each measurable set 5; we denote the set of such measures 

by S. We are interested in the set of stationary probability measures whose realisations 

almost surely obey the leaky bucket constraints, that is the set C :=  {p, G <S : p[C] =  1}.
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We wish to define the average queue length and the long term loss rate. If the queueing 

process was stationary it would suffice to define the average queue length to be the expec

tation o f the queue length at any instant and the average loss rate to be the expectation of 

the loss in the interval [0,1]. Unfortunately the queueing process is not stationary because 

we assume that buffer is initially empty. To start with the correct initial queue length we 

shall construct the unique two sided process o f which the one sided process is a projection. 

Given any measure stationary probability measure on (D+ , E) we can construct a two- 

sided process as follows. For any finite sequence a i , . . . ,  a* of non-negative times, denote 

by ,...,ak the distribution in Rk of the k-dimensional random vector (X ai, . . .  ,X ak). We 

also use the more flexible notation D^(Y i , . . . ,  Yk) to denote the distribution of the fc-tuple 

of random variables (Y i , . . . ,  Y^). This latter notation includes the former since ptait.,.Ak is 

the same as D ^ (X i , . . . ,  X k). We call the measures /iQl,...,afc the finite-dimensional distri

butions of n.

L em m a 7 A measure /j, on (IB+ , E) is stationary with respect to 6 if and only if 

Hai,...,ak — D[i{Xai+h ~  X h , . . . , X ak+h — X h ) 

for any finite sequence of non-negative times { a i } i = i , and, for any h >  0 .

Proof. Suppose [i is stationary. Let Z  <S We denote by 7r the map ir : ID>+ —> :

a -> pTai .. . , X ak). Note that X t o Qh -  X t+h -  X ^ . So

Dni^ai+h , . . . , X ak+h ~ Xh )Z =  D ^ X ^  o 9^,. . . , Xak O 6h)Z

=  » { 0 ^ * - l Z)

=  n (ir -l Z)

=  ftai,. . .,ak Z .

Conversely, suppose that the finite dimensional distributions are the same. Let 5  be a 

measurable set in S. Then S can be expressed in terms o f a countable union o f sets of the 

form X f 1B  where t £ M+ and B  is a Borel set in M. But for any h >  0,

=  Dfj,(Xt o 0h)B =  D^Xt+h -  X ~ )B  =  D ^ X t)B =  ^ [ X ^ B ]

and, since fi is cr-additive, we have that i>\0h 1S] =  fi[S]. □
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For any finite sequence of possibly negative times {a,i}i=i,...,k we define the distributions 

Aai,...,ak to be

:=  Dp (-Xai—b — X b , . . . , X ak-b  — X b ),

where b :=  mini<j<fc at. These finite-dimensional distributions form a consistent family 

since

^ a i , . . . , a k ( S l  X X S k )  =  Ma7r(ij ,. . . ,a 7rCfc) (^ 7 r(l) X • • ■ X ^ ( / c ) )

for any permutation n of (1 , . . . ,  k), and

(^l X X Sk—i) =  Hai (^1 X ■ • • X Sfc — i X R).

By Kolmogorov’s existence theorem there exists a probability measure A on MK having 

the Aai,...,ak as its finite dimensional distributions. A similar result to Lemma 7 holds 

for the space R® and so A will be stationary since A01i...)0fc obeys the Rr  version of the 

stationarity criterion. In addition the projection on the positive half line o f A will have 

the same marginals as the original process.

However, although the measure A has the right marginals, it may not have the sample 

path behaviour we require. Fortunately, the stronger result holds that there is a separable 

process on the same space with the same marginals [24], If D  is a dense countable subset 

o f R, a function a : R —>■ R is said to be separable with respect to D  if for each f £ K 

there exists a sequence of times ti, t2) ■ ■ ■ in D  that converges to t such that a (ti), a f o ) , . . .  

converges to a(t). Clearly, if a G R —* R is separable then sup{a(t) : t G G } =  sup{a(t) : 

t G D  n G } for any open set G C  R. A process is called separable if for some countable 

dense subset D  of R, there is a measurable set of probability zero outside of which the 

realisations are separable with respect to D.

When constructing independent processes, a useful theorem is that o f Fubini. Given 

two measurable spaces (f&i, S i) and (T^, Sy), we form the product space (Jli x f22, S] x £ 2), 

where Qi x Q2 is the usual Cartesian product and S i x £2  :=  a (p i,p 2) is the cr-algebra 

generated by the coordinate functions p\ and p2- Suppose we have a probability measure 

pi on (O i , S i )  and a probability measure P2 on S 2)- Fubini’s theorem states that there 

is a unique probability measure p on (fii x S i  x S 2) such that /i[<Si x S2] =  pi[S i]p2[S2] 

for all Si G S i and S2 G S 2.
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We define the following functionals from S  —> M+ , each o f which in some way represents 

the performance o f a queueing network.

• The average queue length with a stationary stochastic service process. Assume that 

X  a stationary probability measure on the measurable space (B + , E) is given. X  

will represent the service process. Then for each /j, £ S we form the product measure 

I x / i o n  the space (B+ x l + , E x S ) .  The map B+ x B+ —v B : (a ,s) —> a — s 

is measurable and so induces a measure W  on B. We extend W  to the two-sided 

separable process A in the manner described above. The mean queue length o f traffic 

process /i with independent service X  is then defined to be supt<0(u;(0) —w (t)). Then 

we define Z\-(n) Ejsupt<0(Xo — X t)], where Xt are the coordinate functions on

• The average queue length with N  identical independent sources. For any stationary 

measure p, on (B+, E) we form the IV-fold product measure fiN. The map (B+ )w —> 

B : ( a i , . . . ,  aw) —» ai +  ■ ■ • +  ap? — sN  is measurable and induces a measure W  on B. 

Again we extend this measure to a two-sided separable process A on KR. We define 

Q ^e(/j) :=  E[sup4<0(AT0 -  X t)] as before.

• The average loss rate with a stationary stochastic service process. Just as for the 

infinite buffer queue, we take the product X  x fi, form the measure induced by the 

map (a, s) —> a — s and extend it to a separable process A on PK:. But now we define 

the random variable

<?oM :=  inf rsu p (w (0 )-w (z )) V {b +  inf ( w ( 0 ) - w ( * ) ) ) ) ,
t< 0 y  2 < q  t < z < 0 /

which may be interpreted as the queue length at time zero in a buffer of size b. The 

mean loss rate is defined to be y x in )  IEa[L^0^o;(1 )], the expected loss in the 

interval [0 , 1 ].

• The average loss rate with N  identical independent sources. This functional is defined 

using a combination of techniques already employed. The induced measure w{p N) 

is extended to a separable process A on I R. The random variable qo is defined as 

before and the mean loss rate is defined to be £jv(m) :=  M i ) ]
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• The effective bandwidth. This is the easiest of the functionals to define and re

quires none of the apparatus developed in this section. We merely define '■=

E;,e'3X t. The effective bandwidth o f the source /i is then (rdT)~l log Ssj'ifj)-
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Chapter 3

Periodicity and Markov Decision 

Procedures

In this chapter we show how to reduce the optimisation over all stationary processes to 

an optimisation over periodic processes. As well as being interesting in itself, this also 

greatly simplifies the theory in the next two chapters. We shall use the ergodic theorem 

to reformulate our problem as a Markov Decision Procedure; Sections 3.1 and 3.3 review 

the necessary background material. To illustrate the essential ideas in a technically simple 

setting we will initially work in discrete time and assume that the source emits traffic in 

discrete cells. It will also be necessary to place restrictions on the leaky bucket constraints. 

Later we will show how to extend these ideas, first to general source behaviour and then 

to the continuous time framework we are interested in.

Our strategy is to first use the Ergodic theorem to show that the problem of optimising 

the effective bandwidth functional is equivalent to that of optimising another invariant 

functional. Then we bound the value o f this functional on the constraint set using ideas 

from Dynamic Programming. We show that this bound can be approached arbitrarily 

closely by an (ergodic) stationary periodic source.

3.1 The Pointwise Ergodic Theorem

As stated our optimisation problem involves maximising the expectation of a given func

tional over the space of stationary processes. Using ergodic theory we will show that there
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exists an invariant functional with has the same expectation as the original functional for 

every stationary process. Thus the problem of optimising this functional is equivalent to 

the original problem.

We will work for the moment in discrete time. Let (fi, M )  be a measurable space on 

which there is a time shift operator 6 : SI -»  fl. We write 9~^M  to mean (w 6 fi : £ M }.

We must insist that 6 is measurable, that is 9~lM  G M. for all M  G M .  Recall that a 

measure v is said to be stationary if v[9~1M] =  v[M ] for all M  G M.. The ergodic theorem 

concerns integrable and invariant functions.

D efin ition  1 A measurable function f  : —> M is said to be integrable (also known as

L\) «/E|/| is finite. It is said to be invariant if f (9 u )  =  f(u>) fo r  all w E Cl.

T h eorem  7 (BirkhofF 1931) If f  is integrable and v is a stationary probability measure, 

then n - 1  f(Q luj) converges v-almost surely as n —»■ oo to an integrable and invariant

function f(uj), and E„ /  =  Evf .

For a reference see [25].

Ergodicity of the Worst Case Traffic

An invariant subset of a measurable space is a measurable set M  such that 9~XM  =  M . 

We say that a measure is ergodic if it is stationary and all invariant sets have measure 

either 0 or 1. The space of finite signed measures on (Q .M )  is a linear space under 

the operations of set-wise addition and scalar multiplication. In this space the set of 

probability measures is a convex set and it turns out that its extreme points are exactly 

those probability measures that are ergodic. All the functionals we have been considering 

are linear in this space since they are all expectations o f some quantity. If we were to 

choose an appropriate topology on the space of finite signed measures and show that any 

stationary measure can be expressed as a convex combination of ergodic measures, then 

we could exploit this linearity to show that the worst case traffic is ergodic. The theorem 

of Choquet-Bishop-de Leeuw [26] may be useful in this regard. We shall not pursue this 

matter here however— by showing the worst case traffic is periodic we will also be able to 

prove in passing that it is ergodic.
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3.2 The Discrete Time Version of the Optimisation Problem

Here time is indexed by the natural numbers N. We make the further simplifying assump

tion that the output from the source is discrete, in other words that at each time instant 

a whole number o f cells are emitted. The emissions will thus be in A  :=  { 0 , . . . ,  p}, where 

p G N is the peak rate, and the space of outcomes is therefore :=  The set A  has 

a natural a-algebra, its power set (set of all subsets) S :=  V {0 , . . . ,  p}. We choose as our 

a-algebra for il the infinite product n^Lo of copies of S, which is the smallest er-algebra 

such that the coordinate maps are measurable. Our shift operator is (9uj)n :=  wn+i. For 

all u) € 0 , define the random variable

/ (w)  :=  Ui.

where T  G N and i9 G R are fixed. The expected value o f (T'd)~1 log /  is the effective 

bandwidth of the source. Define the invariant function
n—11

/ (w )  :=  lim
n —voo m. * -*n->-oo n *- 

2—0

on the set of outcomes where the limit exists. By the pointwise ergodic theorem, if

v is a probability measure which is stationary with respect to 0, then /  is defined ^-almost 

everywhere and Ev f  =  Evj .  The set of outcomes that obey the leaky bucket constraint 

[a, p) is

C  :=  < u> G : sup ( V  w, — (n — m )a j <  /3 >.
I " ^ N \=m+ 1 ’  J

Let C be the set o f stationary probability measures on S~2 that are supported by C. Assume 

that the service rate o f the leaky bucket is rational. Then the leaky bucket queue length 

may only take values in a finite set Q. The discrete version of the optimisation problem is

maximise Euf ,  subject to u G C.

3.3 Markov Decision Procedures

A finite deterministic Markov Decision Procedure (MDP) consists of the following data:

• a finite set of states 5,
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• a reward function r - . S x . S - > R l l { - 00} on the set o f transitions.

It is customary to call a sequence of states a path. For any n >  1, define the n step average 

reward function on paths of length n +  1  to be

1 n
Rn(x ) :=  -  r(x i ,x i+i) 

n ' 
i= 1

Also define the long term average reward R(x)  :=  limn_>00 B.n(x) if the limit exists. We 

denote the set of paths for which the limit does exist by X .

A cycle of length n is a finite path x =  x i , . . . ,  xn, x\ where the last state is identical 

to the first. The maximal cycle mean o f a Markov Decision Procedure is the maximum 

reward per cycle length Rn(x ) over all cycles. Since there is a finite number o f states, this 

maximum is attained. A cyclic path a? is a path such that 9px  =  x  for some integer p >  1. 

If p is the smallest such number then it is called the period of the path. Obviously a cyclic 

path with period p is composed of a cycle of length p which is endlessly repeated. The 

following lemma shows that the supremum of the long term average reward over all paths 

where it is defined is attained by a cyclic path.

L e m m a  8  There is a cyclic path x* := x\, X2, . ■ ■, xp, x\,...  such that R(x)  <  R(x*) for 

all paths x where R(x) exists.

Proof. Denote the maximal cycle mean by c. By concatenating infinitely many copies 

of the cycle with maximal reward per unit length, we obtain a cyclic path x* such that 

R(x*) =  c. Let x  be any path such that R(x)  exists. Since there is a finite number of 

states, there exists a state s such that x  returns to s infinitely often. Let to be the first 

time that x  is in state s. Consider the path yn :=  xn+t0- 1 for n € N. Then R(y)  exists 

and is equal to R(x). Let tn be the nth time that y is in state s. Since Rn(y) —> R{y),  any 

subsequence must also converge to the same limit, in particular the subsequence Rtn(y). 

But for each tn, the finite path {yi}i<i<tn is a cycle and so Rtn{y) <  c. We conclude that 

R(x) =  R{y) < c. □

See [27] for more discussion about finite state MDPs and their relation to (max, + ) 

algebra. The idea o f representing the optimisation of the effective bandwidth as an MDP 

can be found in [28].
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3.4 Periodicity of the Worst Case Traffic

We will now apply the theory in the previous section to cast our optimisation problem in 

the form of a Markov decision procedure.

To calculate the block sum in the formula for the effective bandwidth it is necessary 

to know the number of cells emitted in T  consecutive time slots. Therefore a state of our 

MDP must contain this information. Also, to ensure that only paths which meet the leaky 

bucket constraint have reward greater than — oo, the content of the leaky bucket must be 

included in the state. We may include either the content of the leaky bucket at the start 

o f the block of T  time slots, or the content at the end— one may be calculated from the 

other. We choose the former.

Our states are thus of the form (q ,a i , . . .  ,a T -i ,a r )  where q £ Q and ai £ A  for 

1  < i <  T. However not everything of this form can be a state— a state for which 

q +  ai +  • ■ • +  an — na >  (3 for some n < T  would be unreachable, creating technical 

difficulties. We therefore exclude these states from consideration. Our Markov Decision 

Procedure is then

• State Space: S { ( g o ;a i , . . . ,  o t - i ,o , t )  '■ Qo £ Q, £ A, qn < (3 for all 1 <  n <  T }, 

where qn in the condition is defined recursively by qn [qn- i  +  an — a]+ for 1  < 

n <  T.

• Reward Function: The transitions

(q ,a i , . . .  , a r _ i ,a r )  —> ([g +  a\ — cr]+ ,a2, . . .  , o t ,  ar+ i)

have reward exp(^ Y^i=l ai) provided that both these elements of Q x AT are in S. 

To all other transitions we give weight —oo; they are thus forbidden.

Define the mapping En : Q x A n+T —> Sn+1 by

S n ( g  o;  a i t  • • • t a n +T )  : =  ( ( g o ; a i ,  • • ■ ,Ot) ,  ( 9 1 ) 0 2 )  ■ ■ • t aT + l ) t  • ■ ■ ) (qn, f ln+1)  ■ • • 5 O n + T )  j ,

where qm is defined as above. If qm < (3 for 1 <  m <  n +  T, in other words if the (finite 

length) realisation a =  a\, . . . ,  a,ny r  obeys the leaky bucket constraint when the initial 

queue length is qo, then the finite path En(a) will have finite average reward. Also, for any 

path x  o f length n +  1  with finite reward starting in some state (go, ai, • • •, an), there is a
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sequence a 1 , . . . ,  an+T such that En(qo;ai, . . . ,  an+:r) =  x. Thus this mapping is a one-to- 

one correspondence between the paths through S that have no forbidden transitions and 

the realisations o f the stochastic process that satisfy the constraints. Furthermore, the 

average reward per time unit of a path equals the value o f /  o f the corresponding outcome 

if either exist. Thus we have that supwgC-/(u>) =  supxeX R (x). It is this correspondence 

that enables us to apply results about MDPs to our optimisation problem.

Definition 2 A measure /x on is said to be periodic with period p if 6pco =  u) for almost 

all u £ Q and p is the smallest positive integer for which this holds.

Note that given any cyclic path x  there is a natural way to construct a periodic measure: let 

(q, w) E ^ (x )  and choose ui, Ou, 92lo, . . . ,  or 6p~1lj with probability 1/p. More formally, 

we take a probability measure pi on f) given by

1 P_1 
V := -  ̂ 2

P n—0

where 6  ̂ represents the probability measure concentrated on w £ fi. It is obvious that 

any probability measure constructed from cyclic path in this way is stationary and ergodic 

and that E ^ / =  R (x). We use V  to denote the set o f ergodic periodic measures on fi. 

The following theorem is the main result of this section.

Theorem 8 The suprernum s u p ^ E vf  is attained by a measure contained in V.

Proof. The correspondence between realisations in C  and paths with no forbidden tran

sitions means that suptjeC/(a ;) =  sup,^^ R(x). We know from Lemma 8 that there is 

a cyclic path x* with some cycle length p such that R (x) < R(x*) for all other paths x. 

Using this path to construct a periodic measure /y, from x* in the manner described above, 

we find that supweC f(w ) =  R(x*) = E llf .

But now let v e  C. Since v is stationary, BirkhofFs theorem applies and thus /  is 

defined /^-almost surely and is integrable. Also, Evf  — Evf . Since we have assumed 

that v[C] =  1, we have that E,,/  <  s u p f i 00)- Therefore E „ /  < E^f =  E/t/  and the 

conclusion follows since □

We have thus restricted our search to the set of processes that are ergodic and periodic.
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A More Sophisticated Approach

Consider the finite horizon optimisation problem. Let f n : S —> R+ be the function that 

assigns to each state the maximum total reward achievable starting from that state over 

a horizon o f length n:

The optimum reward over the horizon n is then maxKes f n(u)- Clearly f n obeys the 

recursion

This is Bellman’s famous Optimality Principle. It has been pointed out that this equation 

looks like a linear recursion in an exotic algebra on R. Write a ® b :=  max (a, b) and 

a <g> b :=  a +  b for any a, b £ R U { - o o } .  Under these two operations R U { —00}  is an 

idempotent semiring. This means that both operations are associative and have identity 

elements, that a © a  =  a for all a G R U { —00}, and that ® distributes over ©. The identity 

element of © is —00 and of ® is 0 .

Multiplication of a vector by a matrix or of two matrices is defined in the usual way, 

but using (max, + ) arithmetic. Thus

where R  is a |£| x |5| matrix with entries R uv =  r(u ,v ).

In the usual algebra on R, the asymptotic behaviour of powers of a matrix is governed 

by its largest eigenvalue. In the (max, + ) algebra, the asymptotic behaviour is governed 

by the (max, + ) eigenvalue A, which is the solution of the equation

find. There are analogues of the Perron-Probenius theorem that guarantee the existence

n
n >  1 .

fn+i(u) =  max r{u ,v ) +  f n{v) , n >  1 . v£S L J

(M N )UV :— (J )  (Mim ® Nwv) and (M v)u (M uw <S> Vyj).
wes

Defined in this way, matrix multiplication is a semi-group. 

The recursion for f n above can now be written

w£S

fn+1 — Rfni n ^  lj

It is this eigenvalue that is the maximum long term average reward that we are trying to



o f a (max, + ) eigenvalue for irreducible matrices; however, we shall proceed immediately 

to the infinite dimensional case.

3.5 Infinite State MDPs

Our first embellishment on the theory above is to drop the requirements o f discrete arrivals 

and rational leaky bucket service rate. We will now allow p, a  and 6 to assume any positive 

values such that a <  P, and at each integral time instant we will allow the source to emit 

any real valued amount of traffic in the range A  :=  [0,p]. Now Q  :=  [0, /3\.

The definition of the MDP is similar to the finite state space case.

• State Space: S  =  {(g, a i , . . . ,  a x -i .a x )  € Q x AT : qn <  /3 for all 1 <  n <  T }, where

qn is defined as before.

• Reward Function: The transitions

(g ,a i , . . .  ,aT- i , a T) ( f a  +  ai -  a]+ ,a2, ■ ■ ■ ,aT,aT+i)

have reward exp(t? Ya =i ai) provided both these elements of Q x AT are in S. Again,

all other transitions have reward — oo. We denote this reward function by r(-, ■).

The state space S is no longer finite— instead we will choose a topology on S which makes 

it compact and the reward function continuous. The natural choice is the restriction of 

the product topology on Q x AT. Since Q and A  are compact, Q x A T is compact by 

Tychonoff’s theorem. This topology is metrisable since there are only a finite number of 

factors. A compatible metric is d(u ,v ) :=  Y li-i \av ~  au\ +  \Qv ~  where u :=  (qu,au) 

and v :=  (qv,av) are any two states. We will investigate questions o f continuity later.

Bellman Operators

We use the usual norm ||/|| :=  inax,,Gs |/(s)| on the space C(S) of continuous real valued 

functions on S. A reward function b may be regarded as the kernel o f a nonlinear operator 

on C(S):

B f{u )  := m a x {b(u,v) +  f { v ) } .  (3.1)
vES
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It is easy to verify that this operator is linear in the (max, + ) sense:

B ( f V g )  =  B fV B g ,  B(X +  f )  =  A +  B (f ) ,  V f,g  <E C (S ),X  e l  

Indeed it may be shown [29] that if an operator is (max, + ) linear and obeys

B {sup f a) =  sup B  f a,
c l a

for any uniformly bounded family o f functions { / a}, then there exists a kernel b(u,v) 

such that B  may be represented in the form (3.1). Operators that can be represented 

in this form are called Bellman operators. We will now discuss some of their properties. 

References for this section include [29] and [30].

Lemma 9 Every Bellman operator is isotone.

Proof. This follows from the linearity of Bellman operators. Let f , g  e  C (S). If /  >  g

then /  =  /  V g, and so B f  =  B f  V Bg  for any Bellman operator B. Thus B f  > Bg. □

A corollary to this lemma is that Bellman operators are non-expansive. If ||/ — (?|| <  c 

for two functions f , g £  C (S ) and c >  0, then /  < g +  c and g <  f  +  c. Therefore, 

B f  < B (g  +  c) =  Bg  +  c and vice versa. Thus ||Bf — Bg\\ <  c. This is a special case of 

a theorem proved in [31] that states that an homogeneous operator is isotone if and only 

if it is non-expansive. The non-expansiveness of Bellman operators means that they are 

continuous on C(S).

An important class of Bellman operators are those that are compact.

Definition 3 A Bellman operator on a compact metric space is said to be compact if its 

kernel is jointly continuous in its two entries and nowhere takes the value — oo.

This condition may be considered a replacement o f the finiteness condition of the previous 

section. The justification for calling these operators compact is that they are compact in 

the usual sense of the term: they take bounded sets of C (S ) to precompact ones. The 

proof uses the following lemma.

Lemma 10 The image of the set of continuous functions under a compact Bellman op

erator is uniformly equicontinuous.
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Proof. Since the kernel is continuous and S x S is compact, the kernel is uniformly 

continuous in its first argument equicontinuously in its second. Thus for any e > 0, there 

exists 5 >  0 such that |6(ui ,v) — b(u2,v)\ <  e, for all u\,u2 ,v  G S such that d (u i,u 2) <  S. 

Therefore if d(v,i,U2) < S, then

B f(u i )  =  max{fr(ui, v) +  f ( v ) }  <  max{b(u2,v) +  e +  / ( « ) }  =  B f  (U2) +  e. 
vES v £ S

Similarly, B f (u 2) <  B f{u  1 ) +  e and so \Bf(ui) -  B f (u 2)\ <  e for all /  G C(S) whenever 

d(u i,u2) <  5. 1=1

Theorem 9 A compact Bellman operator is continuous on the Banach space C (S ) and 

takes bounded sets of continuous functions to precompact ones.

Proof. The continuity has been demonstrated above. The image of any bounded set 

U G C(S) of continuous functions is uniformly bounded by

max |6(«,«)| +  sup ||/||.
u,v£S

Furthermore its image B (U ) is equicontinuous by the previous lemma. The precompact

ness of B (U ) follows from an application of the Ascoli-Arzela theorem. □

As we have seen in the discussion o f the finite state MDP, the maximum long term 

reward is given by the (max, +)-eigenvalue of the Bellman operator that has the reward 

function as its kernel. The following theorem, which we state without proof, is crucial 

when dealing with operators of this sort.

Theorem 10 Every compact Bellman operator possesses a unique eigenvalue.

We have said that the eigenvalue of an operator governs the long term behaviour o f its 

iterates. This is expressed formally in the next theorem.

Theorem 11 If B  is a com,pact Bellman operator with eigenvalue X, and f  G C (S ), then 

the iterates B nf  grow arithmetically:

IIB nf  — f  — nA|| =  0 (1 ) as n —» 00.
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We define the trace of an operator to be

trB  sup b(s, s).
seS

This may be interpreted as the maximum reward over a cycle of length one. Similarly tri?" 

is the maximum reward over a cycle of length n. The corollary to the following theorem 

shows that the maximum cycle mean of an MDP is nothing other than the eigenvalue o f 

its reward operator.

Theorem 12 If B  is a compact Bellman operator with eigenvalue 0, then

Corollary 1 The eigenvalue X of a compact Bellman operator B  is equal to the maximal 

cycle mean of the associated MDP:

X =  supn_ 1 trBn.
n> 1

Quasi-compact Operators

The operator R  associated with our infinite state MDP is not compact since some transi

tions are forbidden. Fortunately, we are interested in the reward over the long term and 

it suffices that R  be quasicompact.

Definition 4 We call an operator quasicompact if some power o f it is compact.

We shall prove that R  is quasicompact presently.

Let u =  (qu, a i , . . . ,  ar)  and v =  (qv, bi , . . . ,  bp) be two states in S such that u —» v 

is a forbidden transition, in other words r(u ,v) — —oo. Then either qv /  [qu +  a\ — cr]+ 

or bk- 1  7  ̂ flfc for some k in the range 2 < k <  T. It is clear therefore that the set o f 

forbidden transitions is open. But, on the set of allowed transitions, r is continuous and 

so we conclude that that r is upper semicontinuous. A useful lemma about operators 

having kernels with this property is the following.

Lemma 11 On a compact state space, the product o f two Bellman operators, each of 

whose kernels are upper semicontinuous, also has an upper semicontinuous kernel.
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Proof. Let B\ and B2 be Bellman operators with upper semicontinuous kernels &i and b2 

respectively. The kernel of B 1 B 2 is b\ ^b^iu, v) :=  supzeS(bi(u, z) +  b2 (z ,v ) ) . Let I >  —00. 

Suppose that there are two sequences of states un and vn that converge respectively to u 

and v in S such that 6] ® 62 {un, vn) >  I for all n > 1. Then, given any e >  0, there exists 

a sequence o f states zn such that bi(un,z n) +  b-i(zn,vn) >  I — e for all n >  1 . Since S is 

compact, some subsequence znk converges to a state z € S. Now

b\®b2{u,v) >  &i(u, z) +  b2{z,v )

>  limsup 61 (unh, znk) +  b2(znk, vnk)
k—>os L

> Z — e,

by the upper semicontinuity of b\ and 62. Since e is arbitrary, b\ ® 62 {u ,v) > I. Thus the 

upper level set of b\ ® b2 is closed for every level I, and so 61 0  b2 is upper semicontinuous.

Theorem 13 The operator Rp is compact for p — T +  \(3/ min(cr, p — cr)] +  1.

Proof. We must show that rp(u ,v) >  —00 for all u,v  6 S, and that rp is continuous. 

Let u :=  (qu',Ui,. . .  , ut) and v :=  (qv; Ui,. . . ,  vr) be states in S. For any state s :=  

(qs, s u . .. ,s T), define qs :=  max2<n<T Y^i=n(si ~  CT) v  +  T,J=i(si ~  (T))> which we 

interpret as the queue length at the end o f the block o f T  emissions defined by the state. 

Let z  :=  (qv ~ Qu)/(p ~  T) +  a. Then 0 < z <  p and the path

'-‘pi.qui ^1 > • • ■ j 'U'T5 . . . , Z, Vl, . . . , Vx)

has a finite total reward.

The upper semicontinuity of rp follows from the previous lemma by induction.

To establish lower semicontinuity we again exploit the correspondence between valid 

paths and traffic realisations that obey the leaky bucket constraint. Let u ,v  £ S. We 

know from above that rp(u,v) >  —00. As a sum of upper semicontinuous functions, Rp 

is is upper semicontinuous on Sp, and so reward Rp(x) =  rp(u ,v) is attained by some

path x  =  u ,x  1 , . . .  ,x p- i , v  of length p between u and v. Denote by an :=  (3 ~ 1 (a;))n the

realisation corresponding to a;. A simple argument using the isotonicity of our functional 

shows that qv — qu — Y ^ = t+ 1 (a™ ~  CT)> that is to say no service goes unused in the middle
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section. For, if an amount s of service is unused at time m, then we could add s to am 

and construct a path x' of length p between u and v for which Rp (;x ') >  Rp(x). We will 

construct a continuous function that assigns to any pair o f states (« ', v') near (u, v) a path 

near x  in the product topology on Sp+1.

The coordinate map S —» M+ : (qs; s i , . . . ,  sn) —> qs and the function S —» R+ : s —»■ qs 

defined above are both continuous. Therefore the map A  : S2 - »  R+ : {v!, v') —»• qv> — qv — 

Qu1 +  Qu is continuous and A (u, v) =  0.

Consider the set of maps from [0, p] -> [0, p\ defined by

f (1 +  5)x, 8 <  0
z5{x) : =

[ (1 — S)x +  Sp, 5 >  0, 

for 8 in the range [—1,1]. Define Z : [—1,1] —> Ap+T by

(Z (8))n -=  z${an).

Each component of Z(5) lies in A :=  [0, p\, and Z  is a continuous function of 8 using the 

product topology on Ap+1. The function Z  : [—1,1] —>■ R  : 8 —> Y^n=i(Z(8))n is clearly 

continuous. Since there must be some m  in the range T +  1 <  m < p for which am >  0 

and some n in the same range for which an <  p, we conclude that Z  is strictly increasing. 

Therefore Z  is invertible and its inverse Z ~ l is continuous.

Define the operator : Ap+T —> Ap+T:

i ^ n -  i>n-l +  cr, T  <71 < p
(*c)„ := î  c„, n < T  or n > p.

where
n

i ’n ■= (ft A {qu +  ^ ( c *  -  a )) V 0^.
i= l

Clearly, ^  is continuous in c and ^ (a ) =  a. Furthermore, every point in the image o f ^  

will obey the leaky bucket constraints.

We now combine the functions we have defined. The function $  : ^  o Za o Z ~ x o A  : 

S x S -> Ap+t is a composition of continuous functions and is therefore continuous. Also 

$(u , v) =  a. The image obeys the leaky bucket constraints. Let W  : S x 5  —> M be 

defined by W  :=  R  o S _ l o $  which is the reward of the corresponding path as a function 

of the end points. This function is continuous. Furthermore, W (u, v) =  rp(u ,v ) and
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W (u',v') < rp(u',v') for all u',v' G S. It follows that rp is lower semicontinuous at (u, v).

T h eorem  14 If B  is a compact Bellman operator with kernel b, then for any path x  such 

that B (x ) :=  lim^-H*, n_ 1 Y % = i H x h x i + i )  exists, we have that B (x ) <  supyeP B (y ), where 

P  is the set of cyclic paths.

Proof. Since B  is compact it has a unique eigenvalue A. The maximum reward over n 

transitions is supueS(B n0 )(u ), where 0 is the function that maps each state to 0. Therefore

2 = 1

< -\\Bn0-n\\\. 
n

From Theorem 11 we have that n~1\\Bn0 — nA|| —> 0 as n -> oo. Thus if B (x ) exists,

Proof. Denote by X  the set of paths x  for which B (x )  exists. Since B  is quasicompact,

reward function

b(u, v) :=  m ax{6(u, x i)  +  b(x 1 , 0:2) +  ■ ■ ■ +  b(xp-\ ,v ) : x\ ,. . . ,  xv^\ G 5 } .

Then the Bellman operator B  corresponding to this MDP is equal to B p. We apply the 

theorem above and deduce that su p ^ ^  B (x ) =  supyeP B (y).

suPxex B (x ) >  psupxeX B (x). Conversely, by choosing p — 1 states x™’v, . . . ,  x ^ 1 for each

then B (x ) <  A. But the eigenvalue of B  equals the maximal cycle mean o f the associated

MDP and so supyeP B (y ) =  A. The conclusion follows. □

C oro lla ry  2 Even if B  is merely quasicompact the same conclusion holds.

there exists p >  0 for which B p is compact. Consider the MDP with state space S and

For any path x  =  {zijigN) the path x =  xq, x p , X2P, . . .  satisfies B {x ) >  p B (x ) and so

u,v G S, such that b(u, x^’v) +  b (x i’v, x £ v) +  • • • +  b(x™!?lt v) =  b(u, v), we can take any

cyclic path y and construct another cyclic path

44



such that B (y) =  p~1B (y). Thus s u p ^ p B (x ) <  psupxeP B (x ). Putting all o f this 

together we find

sup B (x) <  p~l sup B (x) =  p~x sup B (x ) <  sup B (x).
xEX xEX X €P x£P

We may use these theorems and reasoning similar to that o f the previous section to 

reduce the optimisation of the effective bandwidth over all stationary processes to an 

optimisation over periodic processes. Again the correspondence between realisations in 

C  and paths in that have finite average reward means that supwef7 q(ui) =  supxejX- B,{x). 

Applying Corollary 2 to the operator R, the latter supremum is equal to sup^gp R,(x). 

For each cyclic path x , we may construct a periodic process v in the manner described in 

Section 3.3 such that R (x) =  Ej,q. Thus

E^q =  E^q <  supg(w) =  supE^q =  supE^g
we c  v&V vet

for any stationary measure fi.

3.6 Continuous Time Optimisation

Finally we are ready to tackle the continuous time optimisation problem that is our main 

interest. First we must consider ergodic theory in this setting.

Ergodic Theory in Continuous T im e

In this setting we have a one-parameter semigroup {9t}t>o o f  measure preserving mappings. 

This means that 9t+s =  6t@s- We assume that 9 is el measurable function of both its 

arguments, that is for every measurable subset M  of 0  x , the set {(w, t) : 9iu> € M }  is 

also measurable in the product cr-algebra on 0  x R+ .

The following is the continuous ergodic theorem.

Theorem 15 If f  is an integrable function and /j , is a stationary probability measure, 

then h~ 1 f ( 9 tuj) dt converges /j,-almost surely as h —» oo to an integrable and invariant 

function f{u>), and E^ f  — E ^ f.
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MDPs in Continuous Time

Continuous time variational problems generally take place in a state space that is a differ

entiable manifold. The paths take the form of absolutely continuous trajectories through 

this space. The role o f transition function is played by a Lagrangian function L(u, v), so 

that the reward of a path x  over an interval [0 , h] is

L[x{t), x{t)\ dt.

In our variational problem the Lagrangian is purely a function o f the state: it does not 

depend on its second parameter. This will allow us to dispense with an investigation of 

the differentiable structure of our space. Also we do not require that paths be absolutely 

continuous.

The MDP we wish to consider is

• State Space. Let A  be that set of right continuous, nondecreasing functions from 

[0, T ) —» M+ that obey the peak rate constraint p. Then the state space S is

S :=  {(q ,a ) e Q x A :  Q ̂ a ( t )  < 0  for all t G [0 ,T )}

• Reward Function. The Lagrangian is L : S —> M"1" : (a,q) —> exp(a(T~)). W e define 

the reward of any valid path x(t) o f length h to be

fh
lZ(x) :=  / L[x(t)} dt.

J o

The valid paths are those for which the arrivals and queue lengths are consistent. In 

other words, denoting by (qt, at) the state that x  is in at time t, then the valid paths 

are those for which aj(s) — a^(u) =  at+z{s — z) — â +z(u — z) and qt+z =  Q ^ a t (z )  

for any t G [0, h], s G [0,T), « g [ 0 , s ) , 0 < 2 < min(s,w,T — t). We denote the set 

of valid paths by V.

A Bellman operator R h : C(S) —>■ C(S) is defined for each h G M+ as follows:

(Rhf) (u )  :=  sup /  f  L[x(t)\ dt +  f (x (h ))  : x(0) =  u 
xev  [ J o

We also define R° to be the identity operator on C (S). This operator has the kernel

0, u =  v

- o o ,  u /  v
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For h > 0, the operator R h has the kernel

r h(u, v ) =  sup < /  L[x(t)] d t : x(0) =  u, x (h ) =  v > .
xev  u o  )

The operators R h, h >  0 together form a semigroup of operators, that is for any s ,t  >  0

we have R s+t =  R sR t =  RtR s. The identity element o f this semigroup is R°.

Definition 5 A function f  G C (S) is said to be a (max, +) eigenfunction of a semigroup 

of Bellman operators B h with eigenvalue X, if B hf  =  f  +  hX for all h >  0.

If B h is a compact Bellman operator for each h >  0, then each operator can have at most 

one eigenvalue and we have the following proposition.

Proposition 1 If a semigroup of compact Bellman operators has an eigenvalue then it is 

unique.

There is a continuous time version of Theorem 10 which guarantees the existence of an 

eigenvalue when the semigroup is continuous.

Definition 6 A semigroup B h of Bellman operators is called a continuous semigroup if 

each operator is compact and

lim \\Bhf  — /|| =  0 for all f  G C (S).
h~J>0+

Theorem 16 Every continuous semigroup of Bellman operators has a continuous eigen

function.

The semigroup R h is not continuous: for small values of h, R h is not compact. However, 

just as in discrete time all we require is that Rh be compact for some h >  0. The 

development parallels that of the previous section.

Theorem 17 The operator Rv is compact for p =  T  -f /? / min(cr, p — a) +  1.

Proof. Positivity. Let u =  (qu,a u) and v =  (qv,av) be in S. For any state x  :=  {qx ,a), 

define qx :=  Q q̂x^a(T~). Define the realisation a : [0,p +  T) —̂ M+ by



Define yt : [0, T) ->■ K+ : s i->- a(s — i) — a(i~). Then the path x(t) :=  (Qa(t), yt) is a path 

of length p from to v such that lZ(x) >  —oo, and so rp(u ,v) >  —oo.

Upper semicontinuity. Let I >  —oo. Suppose there exists a sequence of pairs o f states 

(Ui,Vi) converging to some pair of states (u ,v) such that Rp(ui,Vi) >  I for all i >  1 . 

Given any e > 0, there exists a sequence of paths xh : [0,p] —> S such that 2:^(0) =  Uh, 

x h(p) =  Vh, and 'R(xh) >  I — e for all h >  1. We have seen above that the set o f paths 

over a finite time interval is compact and so some subsequence x\lk converges to a path x. 

Now the set o f valid paths is closed and so x  is valid. Furthermore 7Z is continuous on the 

set o f valid paths. Thus

R (u,v) >  % {x) =  lim lZ(xhk) >  I — e. 
fc—» 00

Since e is arbitrary, R (u ,v) > I. Therefore, the upper level set is closed for each level I 

and so R  is upper semicontinuous.

Lower semicontinuity. Since R  is upper semicontinuous, there is a path x  : [0,p] —» S 

from u to v which attains the supremum of the reward over all paths from u to v. Clearly, 

Ux (T + p ) =  Ux(T) since otherwise, by the isotonicity of the effective bandwidth functional, 

we could find a path which still obeys the leaky bucket parameters but has a higher reward. 

In other words, no service goes unused in the time interval [T,T  +  p\. This path will 

correspond to a realisation a of emissions from the source. We will construct a

continuous function that assigns to any pair of states (u',v ') near (u ,v) a realisation near 

a in the uniform topology on

The coordinate map S —> M+ : {qx,x )  —> qx and the function S —>• M+ : x  —> qx are 

both continuous. Therefore the map A  : S2 —> K+ : (V , v') -> qvi — qv — qui +  qu is 

continuous and A (u, v) =  0.

As a nondecreasing function a is differentiable almost everywhere. However a' can not 

be p at almost all points of [0,jo], for if it is then qv =  qu +  pip -  a) >  /3 and a' does not 

obey the leaky bucket constraint. Similarly, a' can not be 0 at almost all points of [0,p]. 

For 6 in the range [—1,1], we define the set of maps zg ■ [0, p] —>■ [0, p] by

f (1 +  8)x, 5 <  0
z5(x) :=  <

[ (1 — 5)x +  5p, 8 >  0
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( z (8 ) ) ( t )  :=  r  25 [a'(3;)] eta:.

Clearly, Z(<5) obeys the peak rate constraint and is non-decreasing for each 8 G [—1,1]. 

Also, Z  is a continuous function of 5, using the uniform topology on ^ +T ■ The function 

Z  : [—1,1] —>■ K+ : 5 —> (Z(8))(p~) is continuous and strictly increasing in 8. Therefore 

this function is invertible and its inverse Z ~ 1 is continuous.

Define the operator ip : ->• ©p+T by

(ipc)(t) :=  (j3 A (qu +  c(t) -  at) V o ) +  at -  qu.

Clearly, ipc is continuous in c and ip a =  a. Furthermore, every point in the image of ip 

will obey the leaky bucket constraints.

We now combine the functions we have defined. The function ip o Z  o Z ~ v o A  :

5 x 5 - >  ©jJ+t  a composition of continuous functions and is therefore continuous. Also

(ipoZoZ~l oA ) (it, v) =  a and each element of the image obeys the leaky bucket constraints. 

□

The further development is almost exactly the same as that for discrete time, and so 

we merely provide a summary. Consider the discrete time MDP with state space S and 

operator Rv . Since RP is compact, it has a unique eigenvalue A, and there are periodic 

paths with long term average reward arbitrarily close to A. For each o f these, we may 

interpolate between consecutive states to form a periodic path x  in continuous time such 

that 7Z(x) is arbitrarily close to long term average reward of the discrete time path. Also 

the eigenvalue of Rp is an upper bound on 1Z{z) for any other path z. Thus the supremum 

of 1Z over all paths is the same as its supremum over periodic paths.

The continuous time ergodic theorem implies that

7 (a) :=  lim -  e*(«(*+r)-a(*-)) dx
t->o° t J o

has the same expectation with respect to any stationary measure on H3>+ as / ( a )  := 

exp[$(a(T))]. Again, the correspondence between valid paths of states and realisations 

that obey the leaky bucket constraints means that, for any e >  0 , there exists some peri

odic realisation a* in C  such that / (a )  <  f(a*) +  e for all a G C. Constructing a measure

Consider the mapping Z  : [—1,1] —>■ ®p+T defined by
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/ia* on ID)+ by choosing the phase of a* uniformly, wee see that E„ /  < /  +  e for any

measure u supported by C. We conclude that the supremum of over all proba

bility measures supported on C  is equal to its supremum over the ergodic and periodic 

probability measures supported on C.

3.7 Other Functionals

The methods o f this chapter may be applied to other functionals apart from the effective 

bandwidth. As an example we deal with the functional that represents the mean queue 

length in an infinite buffer with stochastic service rate. This functional is more difficult 

to deal with than the previous one because even if the sample path output o f the source 

is given there will still be some randomness in the form of the service process. This 

randomness is different from the sort usually encountered in stochastic optimal control 

theory. There a decision is made based on the current state of the system. However the 

source in our problem receives no feedback from the queuing system— it must decide in 

advance on the traffic which is the worst on average and send it regardless of what the 

service process ends up doing. Thus whenever we apply dynamic programming ideas they 

will always be of the deterministic variety. We will need a method of dealing with the fact 

that the behaviour o f the server is stochastic however.

It is technically simpler to assume the service process is two sided. This means that 

the time shift operator 6 is a bijection. We have seen in Section 2.8 that a separable 

stationary two sided process may be constructed from any one sided process. We will 

also work in discrete time— the extension to continuous time is obvious. Assume that 

the service capacity is represented by 7r, a stationary measure on the space Q :=  (R+ )z . 

If outcome lo G Q, occurs then each clock tick % an amount aj(i) of work can be done. 

The possible states o f the leaky bucket are L :=  [0,/5], Denote by V  the set o f non

negative random variables on the space Q. Here we identify random variables that agree 

almost surely. The coordinate random variables are denoted Xi(ui) :=  cu(i). We define the 

following Markov Decision Procedure:

• State Space: X  :=  L x V,

• Reward Function: For any a G [0, p], the transition (I, Q) —>([/ +  a — cr]+ , [Q o 9~l +
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a — X qoQ 1]+) has reward E ^ - i  [Q], provided that [I +  a — cr]+ € L. Otherwise the 

reward is — oo.

Heuristically, a state has knowledge o f the instantaneous content o f the leaky bucket and 

the queue length for each outcome of the service process.

If 7r was not stationary we would get an inhomogeneous MDP, that is the reward 

function would change with time. Under such circumstances we would not expect to see 

periodic behaviour in the path that maximises the long term reward— the optimum path 

would be likely to react to changes in the reward function. However, if n is stationary 

then the MDP described above is homogeneous. Thus the methods we have employed 

previously to show that the worst case traffic is periodic are applicable here also. However 

it is likely that showing that the reward operator for this MDP is quasicompact will prove 

to be difficult.

For the loss rate functional the state space is the same and the reward function is 

replaced by

• Revjard Function (loss rate): For any a € R. the transition (I, Q) —> ([Z +  a — <r]+ , b A 

[Q o Q~l +  a — X o o #-1 ]+ ) has reward r; :=  E ^ - i  [Q 0 +  a — X o o 9_1 — &]+

A stationary stochastic buffer size, experienced for example by low priority traffic, may 

be dealt with in a similar manner. As yet we are unable to represent as an MDP the 

maximisation of any o f the functionals describing the behaviour o f the network fed by a 

finite number of independent identical sources.
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Chapter 4

Convexity and Extreme Points

In the previous chapter we have shown how the optimisation problem may be reduced 

from examining all stationary traffic processes to just examining those that are periodic. 

We can break the optimisation into an optimisation over all periodic processes with fixed 

period p , followed by an optimisation over p. It is the former that we will consider here. 

The fact that all realisations are periodic means that we may concentrate our attention 

on the compact interval [0,p]. This introduces considerable technical simplification.

The main technique we use is to exploit the convexity o f the functionals. If a convex 

functional on a convex set attains its supremum, then it does so at an extreme point of the 

set. If we could show that a functional /  is convex and continuous and that the constraint 

set C  is the closure of the convex hull of the set f  of its extreme points, then we could 

conclude that sup, /  =  supconv̂  /  since /  is convex, and that supconv  ̂/  =  supggg^ /  =  

supc  / ,  since /  is continuous. We will then have reduced the problem from an optimisation 

over the entire constraint set to an optimisation over its extreme points.

4.1 Convexity and Topological Vector Spaces

We collect here some background material we will need. As our setting is that o f a 

topological vector space, it will be useful to discuss their general features.

A topological vector space is a linear space V  endowed with a topology under which 

the operations

V  x V  -> V  : (a, b) a +  b 
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and R x V  —̂ V  : (A, ai) —̂ A a

are continuous. A set S C V  is said to be convex if it is closed under the operation of 

taking convex combinations of pairs of points, that is if

(1 — a)a +  ab E S

for all a,b G S and a  G [0,1]. A topological vector space is said to be a locally convex 

space if it is Hausdorff and the origin possesses a base of convex neighbourhoods. Normed 

spaces are locally convex since the balls centered at the origin form a neighbourhood base 

and each ball is convex by the triangle inequality. If the origin possesses a base o f convex 

neighbourhoods then so will every other point since neighbourhoods may be translated: 

if N  is a neighbourhood of a then b +  N  {b +  p \ p G N }  is a neighbourhood o f a +  b.

A function /  : V  —> R  is said to be convex if

f ( ( l - a ) a  +  ab) < ( l - a ) f ( a )  +  a f(b )

for all a,b G V  and a  G [0,1]. The space of convex functions on V  is closed under 

the operations of addition and scalar multiplication. Furthermore, if { / 7}  is a family of 

convex functions then their pointwise supremum sup7 / 7 is also convex. An interesting 

feature o f convex functions is that their one-sided derivatives always exist. For example, 

let /  : I  —> R  be convex function on an interval I  C  R . Then (f (b ) — f(a ))/ (b  — a) is 

nondecreasing in b and thus has a limit f'+ (a) as b \  a. Similarly the left hand derivative 

f'-(a ) :=  limb/ a (f {a) — / (^ ) ) / ( a ~ fy also exists. Both of these derivatives can be shown 

to be non-decreasing functions.

The effective domain of a convex function is the set on which it is finite. In the 

finite dimensional space Wl equipped with the usual topology, it can be shown that every 

convex function is continuous in the interior of its effective domain. However, in an infinite 

dimensional space this in not in general true. A useful theorem is the following which gives 

a condition for a convex function to be continuous.

T h e o r e m  18  In a topological vector space V , a convex function f  : V  —> R  is continuous 

if it is bounded above in a neighbourhood of some point.
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The convex hull of a subset S of a vector space is defined to be the set of all finite

convex combinations of its elements. Thus
I i

conv S ■.= ctiPi : ^  a.{ =  1, a.{ >  0, Pi £ S, I  £ N j
i=i i=i

The convex hull of S can be shown to be the intersection of all convex sets containing S, 

and is therefore the smallest such set. Note that the supremum of a convex function over 

a set is the same as the supremum over the convex hull o f the set. For if p £ conv S then 

p is a convex combination Yhia iPi ° f  points in S. Therefore f (p)  <  Y lia if(Pi) and so 

f (p)  <  maXif(pi)  < supaeSf(a) .

When considering the supremum of a convex function over a convex set S , the extreme 

points play an important role.

Definition 7 We say that a point p is an extreme point of a convex set S C V  if p € S

and p is not an interior point of any line segment contained in S.

It is amongst the extreme points that we look for a maximum. However, some sets are 

deficient in extreme points; for example, any open set has none. To ensure that there are 

enough extreme points to fully represent the constraint set we will need to show that the 

closure o f the convex hull o f its extreme points is the constraint set itself. One theorem 

that is useful in this regard is that of Krein and Milman.

Theorem 19 (Krein-Milman) Every compact convex subset of a locally convex t.v.s. is 

the closed convex hull of the set of its extreme points.

Thus it will prove advantageous to choose a topology such that the constraint set is 

compact.

A subset of a metric space is said to be precompact (totally bounded) if for any e >  0 

it can be covered by a finite number of open balls of radius e, each of which is centered on 

a point of the set. There is also an equivalent notion in a topological vector space. Here 

the linear structure provides the necessary uniformity to define precompactness. Let V  be 

a locally convex space. Instead of using open balls to cover sets, we use neighbourhoods 

of the origin. For any neighbourhood U of the origin, we say that a set S £ V  is small 

o f order U if p — q £ U for all p, q £ S. A set S £ V  is then said to be precompact if for
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any neighbourhood U of the origin it can be covered by a finite number o f sets which are 

small of order U.

In a locally convex space which is also a metric space the two definitions are equiv

alent. To see this let assume that S £ V  is precompact in the metric sense. For any 

neighbourhood U of the origin we can find some radius e such that any open ball with this 

radius is small of order U , and S can be covered by a finite number of these. Conversely, 

for any e >  0, the ball B ( of radius e about the origin is a neighbourhood o f the origin. 

Therefore, if S is compact in the t.v.s. sense, there is a finite collection o f set

in V  that cover S each of which is small of order B c. Choose q% £ Si for each t e l , . . .  i. 

Then Si £ B e(qi) for each i £ 1 ,. . .  i and therefore these open balls cover S.

A metric space is called complete if every Cauchy sequence converges. Again there is a 

similar notion in topological vector spaces. We need to use nets over arbitrary directed sets 

rather than sequences to define completeness because the t.v.s. may not be metrisable. A 

net { x n} U£D in a t.v.s. is called a Cauchy net if, for every neighbourhood U of the origin, 

there is an N  £ D  such that x n -  xm £ U for all n, m > N. If every Cauchy net in a 

subset of the t.v.s. converges to a point in the subset, the subset is said to be complete. 

It can be shown [32] that in a metrisable t.v.s. a set is complete in this sense if and only 

if it is complete in the metric sense.

We have the following useful facts about precompactness and completeness. A subset 

o f a locally convex space is compact if and only if it is precompact and complete. Also 

a closed subset o f a complete t.v.s. is complete. Putting these together, we have that a 

closed precompact subset o f a complete t.v.s. is compact.

4.2 Optimisation for Fixed p

Consider a stationary ergodic process with periodic realisations, each of period p. It 

is obvious that to specify this process it is enough to specify the behaviour o f one o f its 

realisations in the interval [O.p). The behaviour of this sample path over any other interval 

may be reconstructed since it is periodic, and every other realisation is just this realisation 

shifted in time. The space of possible behaviours of the source in [0, p) is the space B+ 

of right-continuous nondecreasing functions from [0,p) —> IR+ . To make this into a linear
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space, we take the linear completion Dp :=  D+ — 15+ =  {a  — b : a, b G D+ }. The elements 

o f Dp are the right-continuous functions from [0, p) —► K of bounded variation. We will 

consider possible choices of topology on this space in a later section. In what follows, if 

a G Dp and t 0 [0,p), then a(t) is understood to mean \t/p\a(p~) +  a (t— \t/p\p).

The space Dp is a linear space under the usual operations o f addition and multiplication 

by scalars. Let qo :=  <Q%a(p~) and qft :=  (QPsa(p~). We define the following functionals on

1 fP
• average queue length Qave(a) :=  -  /  Q(qo^a(t)dt,

P Jo

• maximum queue length Q"'ax(a) :=  sup
te[o,p)

• loss A >s(a) :=  - L iQo)a(p~),
p

• effective bandwidth =  -  J  e’5[a(7n+,') - “ (i)] dt.

It may be easily verified that each o f these functionals agrees with its version defined 

on the set of periodic ergodic processes. For example, consider the average queue length 

functional. If we write ax (t) =  9xa(t), where 0xa(t) :=  a(t +  x) — a,(x~), then the process 

obtained by choosing x  uniformly in [0,p) is seen to be the double sided process corre

sponding to a. The average queue length as defined in Section 2.8 is Qax (0) dx. But this 

is equal to Q^0'a(t) by the memoryless property. Similarly for the other functionals.

The set C :=  {a  E : Q™ax«  <  /3, Q"iaxa =  0} o f elements of Dp that obey the leaky 

bucket constraint (a, /3) and the peak rate constraint p is intersection o f two lower level 

sets of Qmax.

The optimisation for fixed p  is now a deterministic optimisation problem:

Maximise £ ^ (< 2), subject to a € C.

4.3 Convexity

We prove here some convexity results that are fundamental to our programme.
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Queue Length

Recall for a G ID,

fsqo^a) (t) =  sup [a (t )-a (r  ) - ( t - r ) s ]  V (qo 4- a(£))
r€(0,i]

In addition to the isotonicity result of Chapter 2 we have the following properties o f Q:

• homogeneity: aa =  at.Qilo)a,

• joint convexity in a and s:

<G^2+(1-a)Sj(cra2 +  ( l - a ) a i )  < aQs2a2 +  ( l -o O O s ,^ .

The latter property follows since, for fixed t, the queue length is the supremum of a family 

o f affine functions o f s and a(t).

It is a immediate consequence that Qave is a convex functional on Dp since an equivalent 

expression for Qave to that above is

and so Qmax is convex.

Loss Rate

In Chapter 2 we defined the loss path I associated with an arrival path a. We shall show 

that the function -¥  IDrJ- : a —> I is jointly convex in a, s, and b.

Theorem 20 Let b\,s\,b2, s 2 >  0 and let a\,a2 G B+ . Then the loss I* associated with 

buffer size ab2 +  (1 — a)&i, service rate a s2 4- (1 —a).Si and arrivals aa2 +  (1 —a )o i obeys

In this form it is clear that Qave is convex. Similarly,

s r »  =  sup
te[p,2p]

<  (<^2 +  (1 — a;)Zi)(i) for  all t >  0.
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Proof. Let l\ :=  { /  G 0 + : I <  ai,<2Sl(ai) <  &i} and Z2 :=  { /  G D+ : Z < a2iQs2(a2) <  2̂}- 

For any a  G [0,1], define aa :=  aa,2 +  (1—a)a i, ba :=  ab2 +  (1—ai)b\, sa a s2 +  (1—a )s i, 

and la :=  a /2 +  (1 — a)li- Then

QsaiO'Ot lot) ^ QaS2{^^2 ~ ^ 2) (1 &)W)

=  otQS2(a,2 — h )  +  (1 —a )Q a i(o i  — h )

< ab2 +  (1—a)bi.

Therefore

la G Let 0 ^  ̂ i Oso (®a ) —

Thus Z* :=  in fL a <  la . □

Effective Bandwidth

As the mean of a family o f convex functionals, the functional is clearly convex for all 

0, T  G K +.

4.4 Choosing a Topology

We need to choose a topology on the space Bp. There are some natural criteria for an 

appropriate topology:

• The topology must make Dp into a locally convex topological vector space.

• The various functionals under consideration should be continuous in the topology.

• The constraint set should be compact in the topology. This will enable us to use the 

Krein-Milman theorem to show that the constraint set is the closure o f the convex 

hull of its extreme points.

The Uniform Topology

Since we have insisted that the source obeys a peak rate constraint, all elements o f the 

constraint set C  are continuous. We may therefore consider the subspace consisting of
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the continuous elements of Bp. A natural topology to take on this space is that induced 

by the norm

||iu|| :=  sup w (x).
xE[0,p)

Since it is induced by a norm, this topology automatically makes IF into a locally convex 

space. It is well known [32] that this space is complete and separable.

Let w G B£ and let {tUjjieN be a sequence in B£ such that | |tyj—w\\ —> 0 as i —» oo. Then 

fi(t) :=  exp [$(wi(T  +  t) — iOj(<))] converges uniformly to f ( t )  :=  exp [$(w(T  + 1 ) — io(i))]. 

Thus £$pr{wi) =  J0P fi{t)d t  converges to E<q.t{w) =  J0P f ( t )d t  and so 8,yr is continuous. 

In a similar manner we may also show that Qrnax is continuous. Since C  is a level set of 

Qmax, it follows that C  is closed in the uniform topology. Since Wp is complete and C  is 

closed, C  is complete. A useful theorem for establishing compactness in this space is the 

following.

Theorem 21 (Arzela-Ascoli) If X  is a compact m,etric space, then a subset of C (X ,R ), 

the set of continuous real valued functions on X , is precompact if and only if it is uniformly 

bounded and equicontinuous.

Because of the peak rate constraint C  is equicontinuous; indeed, it is Lipschitz with 

constant p. It is also uniformly bounded: w(t) <  pp for all w G ID̂ ; and t G [0,p). Applying 

the Arzela-Ascoli theorem, C  is therefore precompact. Since it is also closed, it is compact 

and we can immediately use the Krein-Milman theorem to conclude that C  =  conv£, where 

f  is the set of extreme points of C. Moreover, we have that supw6  ̂f (w )  =  su p ^ ^  f{w )  

for all continuous convex functionals /  on B£.

The Topology of Weak Convergence

To make the constraint set compact in the above topology, we needed to restrict our 

attention to the case where there is a peak rate constraint. However, such a constraint 

is not fundamental to the optimisation problem, which is just as meaningful without a 

peak rate constraint. We will define another topology on \\\ that will allow us to drop 

this restriction. This topology is motivated by the interpretation o f B+ discussed earlier. 

Recall that Bp can be thought of as the space of distribution functions of finite signed
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measures on [0,p). The most commonly used topology on this space is the topology of 

weak convergence.

Consider the set C[0,p) of continuous functions on [0,p). Endow this space with the 

uniform topology. Consider the dual of this space, that is the set of continuous real-valued 

linear functionals on the this space. The Riesz representation theorem states that this 

dual space is the same as the space of finite signed measures on [0,p).

Theorem 22 (Riesz) If K  is com,pact then every continuous linear functional on the lin

ear space C[K] can be represented as a signed measure on the measurable space (K , B (K )).

The interval [0,p) may be regarded as compact if we identify the points 0 and p.

Definition 8 The weak* topology on the dual space of C[Q,p) is the coarsest topology 

under which all the elements o fC [0,p), regarded as linear functionals, are continuous.

The weak* topology is metrisable since the space of continuous functions on [0,p) is 

separable [32].

An important theorem concerning weak convergence is the following characterisation 

of compact sets.

Theorem 23 (Helly) A set of measures is precompact in the topology of weak conver

gence if and only if the total variation of the measures is bounded.

The following characterisation of convergent sequences is also useful.

Theorem 24 The sequence {wijieN in Dp converges to w G B+ if and only if Wi(t) —> 

w (t) for each t G [0,p) at which w is continuous.

We shall now prove the continuity o f the effective bandwidth functional on B+ in this 

topology.

Theorem 25 The functional is continuous in the weak topology.

Proof. Note that the topology of weak convergence is a metric topology. Let be

a sequence o f paths in B+ that converges in the weak topology to some w G Bj}". Then 

Wi(x) —> w(x) converges at every point x  at which w is continuous. Consider the sequence 

o f functions

fi  : [0,p) - »  R : x  -»• e»M *+T)-i»i(*)].
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Then fi(x )  converges to f ( x )  =  exp(i?[it;(x +  T) — ^(a ;)]) at every point x  such that w is 

continuous at both x  and x + T .  Since w may be discontinuous at no more than a countable 

number o f points, it follows that fi —> f  almost everywhere. Each fi is bounded above 

by exp[$-u;j(p- )] which converges to exp[i?n;(p_ )]. This means that for i large enough the 

functions fi are uniformly bounded and we can apply the Bounded Convergence Theorem 

to conclude that
rp rv

/  fi{x) d x — > /  f (x )dx.
Jo J 0

Thus £^tT{wi) and so this functional is continuous. □

An interesting fact, although one we do not use, is that the weak topology is compatible 

with the cr-algebra we have been using, in the sense that the Borel cr-algebra £J(B1 ) that 

it generates is also the cr-algebra generated by the coordinate functions.

Theorem 26 £?(B+ ) =  cr({Xt}o<t<p)> where Xt(w) w(t) for

Proof. In the weak topology the coordinate functions are upper-semicontinuous. They are 

thus measurable. Therefore er({Ai}(>o) C # (B + ).

Conversely, consider the projection mapping cj) : B+ —>■ R® where {<j>w)(q) :=  w(q) 

for each q 6 Q. This mapping is a bijection between ID)+ and 0(B+ ). It seems natural to 

consider the topology r  :=  {0 (G ) : G is weakly open} on </j(D+ ). On B+ the weak topology 

is coarser than that relativised from the product topology. Therefore r  is coarser than 

{4>{G) : G is open in the product topology} which is the topology on </>(B+ ) relativised 

from the product topology on R^. Let G c D + be open in the weak topology. Then G is 

open in the product topology. So 4>{G) is open in the product topology on R^ and hence 

is a measurable set of the cr-algebra yS(R^). But R® is a countable product o f separable 

terms and therefore 6(R®) =  S(R )8-’1. Thus G is measurable S(R )<® which is the cr-algebra 

generated by the rational coordinate functions. It follows that G is measurable in the 

a -algebra generated by all the coordinate functions. □

4.5 The Extreme Points of Cp

Recall that a point q is said to be an extreme point of a set H  if q € H  and q is not 

an interior point of any line segment in H. For a € B+ , € R  define t^) :=
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a { h )  ~  a (h ) — ( h  ~  h)&-  Then a G Cp if and only if w(ti , t2 )  <  ft for all h , t 2  G M.

For i  G I ,  we define Qa(t) ■= suptl<t vi(t] , t) and Ra{t) :=  suptl>( w(t, t\). We will now

characterize the set o f extreme points of the set Cp.

T h eorem  27 A point a G Bp is an extreme point o f Cp iff for  almost all points t G [0,p) 

one of the following hold

(X I) a is differentiable at t and a'(t) =  p,

(X2) a is differentiable at t and a'(t) =  0,

of the four conditions (XI)- (X4) hold at any point in S and that Leb(S) >  0. We shall 

construct two paths a and a that satisfy the peak rate and leaky bucket constraints such

that a =  (a +  a)/2.

Since Qa and R a are continuous, the set G :=  { t  G (0,p) : Qa(t) <  0 ,R a(t) <  /3} 

is open. It is a property of the real numbers that every open set can be expressed as a 

countable disjoint union of open intervals. Let G =  UneN where each Gn is an open 

interval. Since (JneN^n C\ S D S, there exists N  G N such that Leb(Gjv fl 5 ) > 0 .  In 

what follows it will be convenient to work on a compact interval. It is obvious that there 

exists a compact interval K  C Gjv such that L eb (if fl S) >  0. Furthermore, since the 

Lebesgue measure is non-atomic, we can find compact intervals C K , such that

L e b (ififlS ) >  0 and L ebfi^  HS) >  0. Since K  is compact and Qa and R a are continuous, 

these two functions attain their supremum over K . Therefore T  :=  supte#  Qa(f) <  P and 

B \= supteK Ra(t) <  /3.

We shall perturb a in the following way. For each 8 G (0,1) define the following two 

maps from [0, p] —> [0, p}:

(X3) Q a (t )= P ,

(X4) R a(t) =  0.

Proof.

a is extreme => condition holds. Assume that there is a set S C [0, p) such that none
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r (1 — S)x, x  <  p/2
Zj(x) :=  <

[ (1 +  5)x — Sp, x >  p/2

Note zg(x) >  x  and Zj(x) <  x  for all x  G [0, p] and that (z +  z )(x ) =  x. Both maps leave 

0 and p unchanged. Let

ki{6) :=  f  {{zs -  Id) o a')(x) dx =  [  ((Id -  zj) o a')(x) dx
J k i J K x

and

&2(£) ’■= [  {{zs — Id) o a!)(x) dx =  f  ((Id -  z 5) o a ')(x) dx.
J K2 J K2

Clearly both of these functions are continuous and strictly increasing, and therefore they 

are both invertible. Choose e >  0 such that 0 <  e <  min(/3 — T,/3 — B , fci(l), £2 ( 1 ))- Then 

we can find Si, 82 G (0,1) such that &i(<Si) =  ^2 (^2) — e.

Now consider

a£{t) :=  (a1 IKl'nK2> +  (zSl ° a') IKl +  (zg2 0 a') lK^j (x ) dx

and

Oe{t) :=  J (o ' lKl'nk2' +  USi 0 a>) lKi +  (zs2 °  a') I ( x )  dx,

where Si and J2 are such that k\(^i) =  ^2(^2) =  £• Clearly a =  (a€+ a £)/2 . Since zs(x) >  x  

for all 0 <  x < p and K\ and K 2 each contain a set of positive measure in which 0 < a' <  p, 

we have that ae > a for all e > 0. Similarly a < a and thus a, ae, and af are all distinct 

for each e. Therefore, a is in the interior of the line segment [ae,a e]. We will show that 

both at and at are in Cp if e is small enough.

Since neither z  nor z take values outside [0, p], we have that 0 <  z(a!(x)) <  p for 

almost all x  G R + . We conclude that both a and a  are non-decreasing and satisfy the 

peak rate constraint: a(z) < a(y) +  p(z — y ) and a(z) <  a(y) +  p(z  — y) for y <  z.

Let t i , t 2 6 i .  If (t2 mod p) g  K , then Wa{t i , t 2) <  w ihifa ) <  /5. Otherwise 

(t2 m odp) G K  and so w (ti,t2) <  T. Therefore W a(ti,t2) <  w (ti ,t2) +  e < T  +  e < / 3 .  

Thus a obeys the leaky bucket constraint.

Similarly, if (ti mod p) £ K  then W a(ti,t2) <  w (ti,t2) <  /?, while if ti G K , then 

w {ti,t'i) < B. Thus W a(ti,t2) <  w {ti,t2) +  e < B  +  e < ( 3  for ti G K . Therefore a also 

obeys the leaky bucket constraint.
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condition holds => a is extreme. Suppose that a obeys at least one of (X 1)-(X 4) at almost 

every time t and that a =  (a +  a) / 2 for two traffic paths a and a, each o f which obeys 

the leaky bucket constraints. Since a, a, and a are nondecreasing, the derivatives o f all 

three exist almost everywhere. Let t G [0,p) be such that a obeys one of the conditions 

(X 1)-(X 4) at i, and a and a are both differentiable at t.

• If a'(t) =  0 then a'(t) =  a/(t) =  0, since a'(t) =  [a'{t) +  g/(t)]/2 and 0 <  a'(t) <  p 

and 0 <  a '(i) < p.

• Similarly, if a'(t) =  p then a'(t) =  a '(i) =  p.

• If Qa(t) =  P then Qa(t) =  Qa(t) =  P since Qa(t) <  (Qa(t) +  Qa(t))/2 and both 

Qa(t) and Qa{t) are less than p.

• Similarly, if R a(t) =  P then Ra(t) =  Ra(t) =  P

We have shown that if a obeys any one of the four conditions at t, then a and a also obey 

the same condition at t. Since either o f the last two conditions imply that the derivative 

is the leaky bucket service rate a, we conclude that a! — a! — a' almost everywhere. 

Applying the Fundamental Theorem of Calculus and using the absolute continuity o f a, a, 

and a, we find that a =  a =  a. Thus, a is not in the interior of any line segment contained 

in Cp and is therefore an extreme point of Cp. □

Note that if a G Cp obeys either (X3) or (X4) at an instant t and a is differentiable 

there, then a!{t) =  a. Thus, at any instant t the source may only transmit at one o f three 

rates: 0, the peak rate p, or the leaky bucket service rate o. The source can transmit at 

rate 0 or p at any time, but may transmit at rate a  only when the leaky bucket buffer is 

full, or is empty and will fill before any service goes unused. Figure 4.1 shows a typical 

extreme point of Cp. The figures 0 and ft above the diagram indicate times when the leaky 

bucket is full and when it is empty.

We see that Cp has many extreme points. In fact we will show that the extreme points 

form a dense subset of Cp in the uniform topology. Since this is a finer topology than 

the weak topology, the result holds in the weak topology also. Heuristically, any source 

behaviour can be approximated by the source transmitting at rates 0 and p. All that is
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Figure 4.1: A typical extreme point of G. The values above the figure give the content of 

the leaky bucket at that time.

needed is for the source to switch between these two rates sufficiently quickly and to spend 

an appropriate proportion of time in each state. This result means that we do not need 

to use the convexity of the effective bandwidth functional to show that this functional 

approaches its supremum on £p, all we need is its continuity. Unfortunately, we have 

not yet reduced the domain of our optimisation significantly. In the next chapter we will 

see how, in another linear structure on the space of traffic processes, convexity is crucial 

and enables us to make a more meaningful reduction in the domain of our optimisation 

problem.

T h eorem  28 The constraint set Cp is the closure of the set of its extreme points £p in 

the uniform topology.

Proof. Let a 6 Cv and let e >  0 be given. Choose rj <  e / (2a(p)) and define

b :=  (1 — rj)a.

Since a satisfies the leaky bucket constraint (o', /?), we have that b satisfies the leaky bucket 

constraint ((1 ~r])a, (1—rj)P). The maximum queue length functional is continuous in the 

uniform topology and so we can find £ > 0 such that |Q“ axa — Q™axb| < i)p whenever 

||a — 6|| <  £. Choose k <  min(e/2, ( ) .  Define the sequences of times { x n}  and {y n}  

recursively to be

x0 0
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yn :=  in f{i >  x n : 6(f) < b{xn) +  (t - x n)p -  k }, n >  0 

x n :=  inf{t > yn- i  : 6(f) >  6(j/n- l )  +  « } ,  n >  1.

Since a is non-decreasing and satisfies the peak rate constraint, we have that yn —x n >  n/p 

and xn+i — yn >  n/p for all n G N. Thus for any t G [0, p), there will be an xn such that 

x n > t. Define the path c G B+ to be

Since b is continuous we have that b(xn) =  c(yn_ i) +  «  and that 6(y,t) =  c(xn) +  ( t - x ) p —n. 

We have that |6(f) — c(f)| <  k for all t G [0, p). It follows that

Thus c obeys the leaky bucket constraint (a ,p ). Since c also clearly obeys the peak 

rate constraint and the conditions of Theorem 27, we conclude that c is in £p. Now, 

||a — 6|| =  r/o(p) and ||6 — c|| <  k , and so

||a — c|| <  i}a(p) +  k <  e.

We have shown that any path in Cp may be approximated arbitrarily closely in the uniform 

topology by a path in £p. □

for all t. G [0, p).

Q ? ilxc <  Q T xb +  vP

< ( 1  -  ri)p +  i]0

=  P.
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Chapter 5

An Alternative Linear Structure

In this chapter we consider another way o f representing traffic streams. Here the time 

taken for a certain amount of traffic to arrive is specified rather than the amount o f traffic 

that arrives within an interval. This representation leads to a linear structure on the set 

o f arrival paths which is different to that considered in the previous chapter. It turns out 

that all o f the performance measures we have been considering are convex in this linear 

structure also. Moreover, the set of extreme points of the constraint set in this linear 

structure is strictly smaller. This enables us to derive a stronger result, restricting even 

further the set over which the optimisation must be performed.

5.1 The Space of Adjoints

Let a be any right continuous, non-decreasing function M+ —» M+ . We define the adjoint 

of a to be

(<a)(c) :=  in f{i 6 M+ : a(t) >  c}.

Then o a will belong to the class of non-decreasing, left continuous, functions that have 

left limit 0 at c =  0. We denote the set of such functions by 1ST. Note that < is a bijection 

between B+ and B+ . The inverse mapping is

(>d)(t) :=  sup{c € K+ : d(c) <  t}

If either of a or < a is strictly increasing and continuous then the other is also and < a =  a-1 .
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In the previous chapter we exploited the periodicity o f the realisations. We may do the 

same here. If a is periodic with period p then <a is periodic also with period q :=  a{p~). 

For each q > 0, let B+ be the subspace of periodic paths with period q.

We define a linear structure on Bg :=  B+ — B+ in the natural way:

(d i+ d 2)(c) :=  d i ( c ) + d 2(c) 

and (A d)(c) :=  A d(c),

for any d\,d2 G B+ and A G ffi.

We use the bijection > to define the performance functionals on B+. For example 

£19,r(d) :=  £tf,T(t>d) for d G B+. Although we use the same symbol to represent functions 

on different spaces, there should be no confusion. We define the constraint set in B+ to 

be Fq :=  {d  G B+ : >e? G Cd{q- ) } .

5.2 Convexity

We conjecture that all o f the functionals defined in Section 2.8 are convex in this linear 

structure also. However, while establishing convexity was trivial in the linear structure 

o f the previous chapter, here it is considerably more difficult. We will remain content 

to prove convexity of the average queue length of a single source which is still relatively 

trivial, and of the effective bandwidth which is our main concern.

Single Source, Average Queue Length

Little’s law [33] states that the average queue length over time Q and the average delay 

per customer D  are related by Q =  Dm, where m is the average arrival rate. (Here 

customers are infinitesimal amounts o f fluid.) Since the service rate s is constant, the 

delay experienced by the cth piece of fluid is 1 /s times the length of the queue when the 

piece of fluid arrives. Thus

D d{c) :=  sup[(c -  c ') /s  -  d(c) -  d(c')]-
c ' < c

This expression is clearly convex in d for each c £ t

We restrict our attention to the set {d  G F  : d(q) =  q/cr}. On this set Qave is clearly 

convex.
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As the convexity proof for the effective bandwidth functional relies on a topological 

argument, we will discuss the choice of topology on B first.

5.3 Topologies

We will not discuss the topology of uniform convergence in this linear structure. Since 

discontinuities of the elements of B + correspond to times when the source is silent, the 

paths may be discontinuous even in the presence of a peak rate constraint. For example, 

the sample paths of the process that we have conjectured to be the worst case are dis

continuous. Thus we can not expect the constraint set to be compact in this topology. 

We therefore concentrate our attention on the topology o f weak convergence. Again we 

interpret the elements of B+ 9 as finite signed measures on (0, q}.

Consider D q>p : =  {d  G B+ : d(q) =  p} ,  for some p >  0. The elements o f D q .p may also 

be considered to be members of APtQ :=  {a  G Bp : a(p~ ) =  q}  through the embedding 

d -H- i>d. This mapping is a bijection between D QtP and APiQ. In fact, if we use the weak 

topology on both sets then this bijection is a homeomorphism.

T h eorem  29 The bijection a -H- < a is a homeomorphism, between APtq and D QtP.

Proof. Let { a „ } neM be a sequence of points in APtq which converges to a G A q. Let d :=  < a. 

Then an(t) —> a(t) for all t G [0,p) at which a is continuous. Let c* G [0, q) be such that d 

is continuous at c* and let e > 0 be given. Define t* :=  d(c*). Since d is continuous at c*, 

we have that a is strictly increasing at d(c*). Also a(t) =  sup{c G M : d(c) <  t }  and a in 

non-decreasing, and so we conclude that a(t) >  c* whenever t >  t*. Since a may only be 

discontinuous at a countable set of points, we may choose 51 in the range 0 <  <  e such

that a is continuous at t* +  Sy. For n large enough,

|fln[t* +  $i) — a(t* +  $i)| < a(t* +  $i) — c*.

Therefore an(t* +  8i) > c* and so dn(c*) :=  in f{c G M : an(c) > c*} <  t* +  8i — d(c*) +  8i < 

d(c*) +  e, for n large enough.

In a similar manner we may choose 82 such that 0 <  82 < e and a is continuous at t* — 82 ■ 

Again, for n large enough, an(t* -  82) <  c* and so dn(c*) > t * - 82 =  d(c*) —82 >  d(c*) — e. 

We have thus shown that, for n large enough, |dn(c*) — d(c*)\ < e for arbitrary e >  0; in
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other words that dn(c*) —> d(c*) as n oo. Since c* was any point o f continuity o f d, the 

criterion for convergence is satisfied and dn —>• d.

That dn -4 d implies an —> a may be shown in a similar manner. The two spaces are 

thus homeomorphic. □

We have an immediate corollary.

C oro lla ry  3 The functionals Qave, C, and defined above are continuous in the weak 

topology on D q>p.

The constraint set Fq is not compact in the topology of weak convergence. To see 

this, one need only consider the sequence dn(c) :=  nca  which is in Fq and is unbounded. 

However, the isotonicity of each of our functionals enables us to restrict our attention to 

the subset D Qtq/a :=  {d € Fq : d,(q) =  q/cr}. This subset is closed since Fq is closed and 

the function d —> d{q) is continuous. It is also precompact by the Helly-Bray theorem and 

therefore compact since Bg is complete. We may now apply the Krein-Milman theorem to 

conclude that D q>q/a is equal to the closure of the convex hull of its extreme points. We 

have already seen that £$̂ t  is continuous on Eq. To reduce to optimisation problem to an 

optimisation over the extreme points o f D qq/a, we need only show that £$^  is convex on

D q,q/a -

5.4 Convexity of the Effective Bandwidth

In this section we prove the convexity of the effective bandwidth functional in the alter

native linear structure. We restrict our attention to the set D qq/a. Recall that

£$T{d) :=  -  f P em t+T)-^(t)} dt,
P Jo

where p :=  q jo  and a =  >d. We will first prove the convexity of £-o.t  in the space of simple 

realisations and then extend the result to F)q qja using a continuity argument.

Simple Paths

By a simple path, we mean one that is piecewise constant, in other words one which has 

a finite number o f discontinuities but is otherwise constant. We denote by AQtP the set of
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elements o f D qtP which have this property. Since the elements of D qp are non-decreasing, 

the discontinuities of any element of A qtP must be simple.

Note that the adjoint o f a simple path is also simple; the intervals on which the path 

is constant become the discontinuities of the adjoint and vice versa.

For any a  G (0,1) and d\, d2 G A QiP, the convex combination za :=  {l — a)d\ +  ad2 is 

also in A q;p. If the set of discontinuity points of d\ is {a n}i<n<jv and the set of discontinuity 

points of d2 is {&n}i<n<M, then the set of discontinuity points of za is the union of these 

two sets. The size o f the jump in za at c is a m j, +  (1 — a jm ^ , where rn^ and rrid2 are 

the size o f the jumps, if any, in d\ and d2 at c. Thus the A q:p is a convex subset o f D q^.

Simple paths are useful because in the topology of weak convergence any path may be 

approximated by simple paths. In other words, for every d G B + there exists a sequence 

of simple paths {a n}neN such that an —»■ d.

Lem m a 12 The set A qjP is dense in D QtP for all p ,q  >  0.

Proof. Let d G D qj) Define the sequence of simple paths

dn{c) :=p[nd(c)/p\/n

for n eN .  Clearly, dn G D q.p. Now \\d- d,n\\ < p/n and so dn d in the uniform topology 

on D q>p. Since the uniform topology is finer than the weak topology, we have that dn —>• d 

in the weak topology also. □

T h eorem  30 The functional £$tT is convex on A qtP.

Proof. Write g(x) :=  exp(i9x). The only property of g we will use is its convexity. To 

show that is convex on Aq>p, it will suffice to show that the one-dimensional function 

f (a )  : [0,1] —>■ M :=  £ 0 ,t ((1 ~ cn)di +  ad2) is convex for any two points d\ and d2 in A QjP.

Let d\,d2 G A qtP. Then ad2 +  (1 — a)di has discontinuities at {a ;„}i< n<Ar, a set which 

is independent of a. Define mn :=  Zn+i ~  xn and tn(a) :=  ad2(x +) +  (1 — a)d\{x+). Let 

vn :=  d2(x+ ) -  di(®+).

Denote by Ja the set of ordered pairs (i, j )  such that tj(a ) — U(a) =  T  and vt ^  Vj. 

There are only a finite number of values of a  for which Ja is nonempty. For any other
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value o f a, let <5 be such that

2max |ucJ| <  min|t,(o;) —ti(a) +T| A m in \tj(a) — U (a)|.
^  j  3

Let zc(a ) aa (tc +  T~) —aa(tc) and bc(a ) :=  aa(t~ ) - a a (tc - T ) ,  where aa :=  >(0^ 2 -

(1 — a)d\). Then

f ( a  +  5) -  f ( a )  =  vc8 g{zc +  m c) -  g{zc) +  g(bc) -  g(bc +  m c) ,
C

suppressing the dependence on a for clarity. So /  is piecewise affine and the changes in 

its slope occur when (1 — a)di +  ad,2 has two flat pieces with a difference in height of T, 

moving at different rates. For each pair (i, j )  G Ja, let Zij(a) :=  Zi(a) — bj(a). Then the 

magnitude o f the change in the derivative o f /  at a  is given by

A f'(a )  =  ^ 2  visgn(vi-vj ) g(zij+ m l+ni,j) -  g(zi:j+m i) -  g(zij+ m j ) +  g(zij)

+  ^ 2  V j s g n { v i - v j ) [ g ( z i j + m i )  -  g ( z i j )  -  g { z i j + m i + m j )  +  g ( z i j + m j )  

\vi-vj\ [cg i z i j + r r i i + m j )  -  5 ( % + m * )  -  g ( z ij + m j ) +  g { z i j )  , 

where sgn(a?) : =  x / \ x \  is the signum function. From the convexity o f g  we have that

/  \ ^ \ TTlj f *g(zij +rrii) <    g{zij+ m ^ -m j) H------- f — g(zij)
J mi +  rtij J mi +  rrij

and
1Tb ' TTl 1

g{zij +  nrij) < --------1— g(zij+ m i+ m j)  H------ - — g(zij).
J J rrii +  mj J mi +  mj

Therefore A / '( a )  >  0, and the convexity of /  follows. □

L em m a 13 Let S be a convex subset of a metrisable topological vector space and le tT  C S 

be convex and dense in S. If f  : S —>■ R  is a continuous function and its restriction to T  

is convex, then f  is also convex on S.

Proof. Let p ,q  G 5  and let a  G [0,1]. Then there exist sequences pn and qn in T  such that 

Pn —̂ P and qn -> q. Consider the sequence rn :=  (l — a)pn +  aqn which lies in T  since this 

set is convex. The operations of addition and multiplication by a scalar are continuous, 

and so this sequence must approach the limit r :=  (1 — a)p  +  aq. Now the continuity o f /
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implies that f (p n) - »  f(p ),  that f(q n) -4 f(q )  and that f ( r n) -4  f ( r ) .  Furthermore, the 

convexity o f /  implies that f ( r n) <  (1 — a )f (p n) +  otf(qn) for all n € N. It follows that 

f ( r )  <  (1 — a )f(p )  +  a f(q )  and therefore /  is convex on S. □

We can now extend the convexity result to the whole of D q,p.

T h eorem  31 The functional S$tT is convex on D q>v.

Proof. We have shown that is continuous on D,hV and convex on a dense convex subset 

A q,p o f Dq.p- The conditions of the previous lemma therefore hold and the conclusion 

follows. □

5.5 The Extreme Points of F

We will now characterise the set of extreme points of the set F  in the linear structure 

described in this chapter. In contrast to the elements of (7, the elements o f F  need 

not be Lipschitz or even continuous. However, they are nondecreasing and therefore 

differentiable almost everywhere. It can be shown [24] that every distribution function 

can be decomposed into a sum of a singular and an absolutely continuous function. We 

denote the decomposition o f d € B+ by d =  ds+ d a, where ds is singular and da is absolutely 

continuous. In Section 2.1 we discussed the correspondence between distribution functions 

and measures. We denote by jid the measure corresponding to a distribution function d. 

We define z(c i, C2) :=  C2 — c\ — [d{c2) — d(ci))a . Clearly, d £ F  if and only if z(c\ , C2) <  fi 

for all ci, C2 € R. For d 6 IB+ and c G [0, q), we write

Qd(c) :=  sup z (c i,c )
c i € ( — 0 0 , c )

and Rd{c) :=  sup z(c, ci).
c i £ ( c , o o )

The support o f a measure is the intersection o f all closed subsets of full measure.

L em m a 14 If d is an extreme point of Fq then one of the conditions

(d x i )  d'(c) =  1  /p,

(DX2) Qd(c) =  p,
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(DX3) R d(c) =  0. 

hold for almost every c € [0, q).

Proof. Suppose that there is a subset S o f [0, q) o f positive Lebesgue measure in which 

none of the conditions (DX1),(DX1), nor (DX3) hold at any point. We shall construct 

two paths d and d that satisfy the leaky bucket constraints such that d =  (d +  d)/2 .

Since Qd and R j  are upper semicontinuous, the set {c  6 [0, q) : Qd{c) <  /3, Rd{c) < /3} 

is open and therefore is the countable disjoint union of open intervals. The intersection 

o f a least one o f these with S must have positive measure, for otherwise the countable 

union, which contains S', would have measure zero. Let G be this interval. In what follows 

it will be convenient to work on a compact interval. It is obvious that there exists a 

compact interval with the above property. Furthermore, since the Lebesgue measure is 

non-atomic, we can decompose the compact set into two intervals K\ and K 2, each with 

positive measure. Let U :=  snpceK Qd(c) and B  :=  swpceK Rd(c). Clearly, U < /3 and 

B < f3 since K  is compact and Qd and Rd are upper semicontinuous.

Define the following two maps from [1/p, 00) —> [1/p, 00):

zg(x) :=  (1 +  S)x — 5/p 

and z s(x) :=  (1 — 8)x  +  5/p.

Note that z  >  Id and z <  Id, and that z +  z =  Id. Both maps leave 1 /p unchanged. Let

k\(S) \= f  ((zg — Id) o d ')(x) dx =  f  ((Id — z 5) o d')(x) dx
J K i  J K\

k2(S) :=  I ((zg — Id) o d!)(x) dx =  f  ((Id — z_g) o d'){x) dx.
Jk 2 Jk 2

Clearly, both o f these functions are continuous and strictly increasing, and therefore they 

are both invertible. Choose e >  0 such that e <  min(/? — U,/3 — B,  &i(l), ^2 (1 )). Then we 

can find £1,^2  G (0 , 1 ) such that fci(5i) =  ^2(^2) =  e.

Now consider

de(t) :=  ds(t) +  j  (d' IKl'nK2' +  (zSl o d') lKl +  (zg2 o d') I^2)  {x) dx. 

and ^ ( t) :=  ds(t) +  I  (d' IKl'nK2' +  Us2 0 d') l K, +  (ztl o d') lK^j (x) dx.
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Clearly d =  (de +  de)/2. Since z(x ) > x  for all x  >  1 / p and both K\ and contain a set 

in which d' >  p, we have that de > d. Similarly d <  d and thus d, d, and d are distinct. 

Therefore, d is in the interior o f the line segment [d, d]. We will show that both d and d 

are in F  and therefore so also is the line segment.

Since neither ~z nor z take values below 1 /p , we have that 1  o d'(x) >  1 /p for almost 

all x G [0,§). Furthermore, ds is non-decreasing and we conclude that d and d are non

decreasing and satisfy the peak rate constraints d(z) >  d(y) +  (z — y)/p and d(z) > 

d(y) +  0  -  y)/p for y <  z.

Let c i ,c 2 G R. If (02 mod q) £ K  then z^(ci,c2) <  z (c i ,c 2) <  fi- Otherwise 

(C2 mod q) G K  and so ^ (c i,c2) <  U. Therefore z-j(ci,c2) <  z (c i ,c 2) +  e < U  +  e <  ft. 

Thus d obeys the leaky bucket constraint.

Similarly, if (cj mod q) 0 K  then ^ (^ 1 , C2) <  z(c.], C2) <  /3, while if ci G K ,  then 

z (c i ,c 2) <  fi — B. Thus ^ ( c i , c 2) <  z (c i ,c 2) +  e <  ft — B  +  e <  ft for c\ G K . Therefore, 

in this case also, d obeys the leaky bucket constraint and the theorem is proved. □

Note that if d obeys (DX2) or (DX3) at c and d is differentiable there, then d'(c) =  1/a.

L em m a 15 If d is an extreme point of Fq then d(q~)/q =  1/er, in other words the mean 

arrival rate is the leaky bucket token rate.

Proof. Define the function

u(c) :=  -  inf [z(0 ,x) +  Qrf(O)].
xe[o,c]

which is the unused service in the interval [0, c ) . This function clearly has the memoryless 

property:

u{c2) -  u(ci) =  -  inf \z{c\,x) +  Qd(ci)]-
Xe[ClyC2\

We will need the following two facts. Firstly, since d! equals either l/o  or 1 /p  almost 

everywhere, da(c2) — da(ci) <  (C2 -  c\)/a for all c i ,c 2 G R. Therefore

u{c) =  -  inf [ c - { d a(ci) +  ds(c i))a  +  Qd{0)]
cie[o,c]

<  [da(c) +  ds(c)\cr

< ds(c)a.
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We may use the memoryless property to conclude that u(c2) — u(ci) <  [ds (c2) — df:(ci)]a. 

Secondly,

z(0, c) +  u(c) =  sup [z(ci, c) +  Q d ( 0 ) ]  =  Qd(c) <  /3.
c i £ [ 0 , c ]

We can again use the memoryless property to deduce that

2 (c i,c2) < f3 -  [u(c2) -u ( c i ) ] .

Suppose that d(q~) < q/a. Let i :=  \/3/(q — ad(q~))]. Then Qd(0) >  z (—iq, 0) =

(q — ad(q))i >  /3, and d is not in F.

Suppose now that d(q~) > q/a. Since rt[0, <7) =  q — ad(q~), the support o f nu must

be non-empty. In other words there is some x £ [0, q) such that fiu[N] >  0 for every

neighbourhood N  of x.

If u is discontinuous at x  then so also is d, and the size o f the jump in d is greater 

than that in u, that is to say pd ({x })  > fj,u( {x } ) .  We use the following construction. Let 

S < fj,u( {x } ) .  Define

and so d obeys the leaky bucket constraint. Also z^id, C2) =  ^ ( c i ,  C2) for ci, C2 £ l  such 

that x  0 (c i ,c 2). For x  € (c i,c2), % (ci,C 2) =  z (c i ,c2) +  S <  /3 — u(x) +  6 <  f3, and so d 

also obeys the leaky bucket constraint.

Suppose now that d is continuous at x. Then we can find three intervals I\, / 2, and 

J3 each o f positive measure with respect to fiu, such that sup/3 — in f / i  <  [3. We use the 

following construction. Define the measure A  on [0, d) by A (A ) :=  (A Pi I /2) for any 

measurable set A. Choose S <  min(/xu[/i], [iu[h})/nds [-̂ 2]■ Let d(c) :=  d(c) +  dA[0, c) and 

let d(c) :=  d(c) — 5A[0,c). Clearly, d, d, and d are distinct since A ^ O .  Again, d clearly 

obeys the leaky bucket constraint.

Let c i , C2 € M be such that 0 < c2 — c\ <  d. There are three cases to consider. Firstly, 

if ci, c2 G ( in f / 1 , sup 73), then Zd(c] , c2) <  sup 73 -  inf I\ < /3. Secondly, if I2 fl (ci, C2) =  0

d(c) +  5/a, x  <  c <  q
0 < c <  x

-  5/a, x < c <  q.

0 <  c <  x

and d :=

Then d and d are in and d +  d =  d. Clearly ^ ( c i , c 2) <  Zd(ci,C2) <  P for all c i , c2 £ l
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then % (ci, c2) =  z(ci, c2) < P. Finally, if / 2 D (ci, c2) #  0 and I2 D (ci, C2) ^  0, then either 

I\ or I3 is a subset o f (c i,c2). Either way,

2d(ci, c2) <  ^(ci, c2) +  [J2] <  P ~  min(/iu[/i], /iu[J3]) +  [h] <  P-

Thus d obeys the leaky bucket constraint. □

Lemma 16 If d is an extreme point of Fq, then for each pair of points c\ and c2 in the 

support ofpids, either supce(ci c2) Qd(c) =  p or supce(ci;c2) R d(c) =  p.

Proof. Suppose d G F  is such that 0 < Qd(c) <  P for c 6 (ci, c2) for some ci, c2 6 M+ with 

ci <  c2 <  ci +  q. Let U :=  sup{Qd(c) : c G (c i,c2) }  and B  :=  sup{Rd{c) : c G (0 1, 02)} . In 

the following manner we construct d ,d € .F  such that d, d, and d are distinct and d + d  =  d.

If d is continuous at ci then Qd is also continuous at c\, and Qd(c) <  {U  +  P)/2 for 

all c in some open interval I\ about c\. In this case define a measure A i on [0, q) by 

Ai[A] :=  Hd3[h  H -4], If, on the other hand, d has a discontinuity at ci then it must be 

simple. Its magnitude is [{ci}]- In this case we define A i [A] :=  fids [A] I{Cl}.

Similarly, if d is continuous at C2 then we define A 2[A] :=  Hds[h  H A], where I2 is an 

open set about c2 for which Qd(c) > B/2 when C G I2 . Again, if d is discontinuous at C2 

then we define A 2[A] :=  Hds[A\ 1{C2}-

Let k\ Ai[0, q) and k2 :=  A 2[0, <7). Choose ^  >  0 and 62 >  0 such that 5ik\ =

52k2 <  min((/3 +  U)/2,B/2). We now define

d(c) :=  d(c) +  5 iA i[0 ,c) — £2A 2[0, c) 

and d(c) :=  d(c) — <5iAi[0, c) +  tf2A 2[0, c).

Let x, y be in R  If y is in the region between c\ and c2, then zd(x, y) <  z(x , y) +  S\ki <  

(U +p )/2 +  Siki <  p. If y is outside the region between ci and c2, then zd(x, y) <  z(x , y) < 

p. Therefore, d obeys the leaky bucket constraint.

Recall that z(x\ y ') < P ~ Q d {y ')-  for any x' G M+ and y' >  x '. Therefore, if x  is in the 

region between ci and c2, then z (x ,y ) < P — B/2. Therefore, z-j(x,y) <  z (x ,y )  +  tf2fc2 <  

P~B/2+52k2 < P- If y is outside the region between c\ and c2, then zd(%, y) <  z (x , y) <  p.

Therefore, d obeys the leaky bucket constraint. □
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The preceding three lemmas establish that each of three conditions hold if d is extreme. 

We shall now prove the converse.

T h eorem  32 d € Fq is an extreme point if and only if each of the following three condi

tions hold:

(DX) for almost every c G [0, q), one of the following hold

(d x i )  d'(c) =  l /p,

(DX2) Qd(c) =  (3,

(DX3) R d(c) =  p.

(D Y) d{q~)/q =  1 /a,

(DZ) for each pair of points c\ and c2 in the support of pds> cither supcG(Cl)C2) Qd(c) =  P 

or supce(ciic2) R d{c) =  a.

Proof. Assume that d obeys the given conditions and that d, =  (d +  d)/2 for d ,dE  Fd- Let 

c 6  t + be such that d obeys one of (DXI), (DX2), or (DX3) at c and d and d are both 

differentiable at c.

• If d'(c) =  1/p then d!(c) =  d!(c) =  1/p since d'(c) =  (d!(c) +  dr(c ))/2  and d (c) >  1 jp  

and d! (c) >  1 / p.

• If Qd{c) =  /3 then, since Qd <  (Q-j +  Qd)/2, we have Qd{c) =  Qd{c) =  p.

• Similarly, if R d(c) =  f3 then, since Rd <  (Q j +  Qd)/2, we have Rd(c) =  R j{c) =  p.

We have proved that if d obeys one of the three sub-conditions of (D X )  at c, then 

both d and d obey the same condition. Since either o f the last two conditions imply 

that the derivative is the leaky bucket service rate a, we conclude that d' =  d  =  d' 

almost everywhere. Thus the absolutely continuous parts da, d ,̂ and da of d, d, and d, 

respectively, are equal.

To show that the singular parts are equal, note that ds(c) =  ds(c) =  ds(c) for each 

point c for which either Qd(c) =  /3 or R d(c) =  /3. But we have assumed that between 

every two points of the support of ds there is such a point.

78



We have shown that d is not in the interior of any line segment contained in F  and is

therefore an extreme point o f F. □

We will now show that the set of extreme points in this linear structure is strictly

smaller than that of the previous chapter.

T h eorem  33 If d E ipq then >d £ £p where p :=  d(q~).

Proof. Let a :=  t>d. Then a E Cp and so a(t) is differentiable at almost all t E [0,p). 

Let X  :=  { t  E [0,j>) : a is differentiable at t, and a'(t) =  0}. Let Z  be the set o f t E [0,p) 

such that a is differentiable at i, and a'(t) >  0. Then LebX +  LebZ =  p. Let K  be the 

set of c E [0,^) for which neither of (DX1), (DX1), nor (DX3) hold for d at c. Then K  

has measure zero. Let Y  be { t  E Z  : a(t) 0 K\. Since a is strictly increasing at every 

point in Z , for each c in [0, q) there is at most one t E Z  for which a(t) =  c. Therefore 

L eby  =  LebZ, and so LebX +  L eby  =  p. If t E X  then (X I )  holds for o at i  H t E Y  

and d'(a(t)) =  1 /p then a'(t) =  p. We define Qa(t) :=  supi1 <t[a(£) — a(t\) — (t — fi)er] and 

R a(t) :=  suptl>t[a(£i) — a(t) — (ii — t)a\ as in the previous chapter.

If t e  Y  and Qd(c) =  0  then Qa(t) — /3 . l i t  e Y  and Rd{c) =  (3 then Ra(t )  =  p. We 

have proved that X  U Y  has measure p and that for each point t in this set, a obeys one 

of (X I),(X 2), (X3), or (X4) at t. Thus a is an extreme point o f Cp. □

For any p >  0, let tp :=  min(/3/2(p — o),crp/p). Then

( pt, 0 <  t < tp 
z(t) :=  {

[  ptP, tp < t < p ,

is an extreme point o f Cp, but <z is not an extreme point o f Fptp.
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Figure 5.1: A typical extreme point of F  in this linear structure. The values above the 

figure give the content o f the leaky bucket at that time. Note that each burst must either 

start when the leaky bucket is empty or end when it is full.
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Chapter 6

Examples and Applications

We deal in this chapter with applications o f our results and examples o f functionals where 

the maximum is easily computed.

6.1 Bufferless Resources

A  set of functionals with a particularly simple worst case behaviour is the set of functionals 

which represent the performance of bufferless systems. The defining characteristic o f these 

systems is that the functional depends only on the distribution of the arrival rate and not 

on the details of the sample paths. In other words, a real valued functional F  on the set o f 

stationary probability measures on B+ will represent a bufferless resource if there is some 

function G : M  —* M+ such that F(fi) =  G (nfj,) for all stationary probability measures /i 

on B+ . Here M  is the set of probability measures on M+ and is the image law of /i 

under the mapping ir : B+ —> R+ : a - »  a'( 1), which evaluates the derivative at t — 0.

A partial order on the set of random variables is called a stochastic order. A useful 

example is the following: R\ <  R% if and only if E / ( i ? i ) <  for every non decreasing

convex function /  : M —> K. We find that the bufferless functionals considered in this 

thesis are all isotonic with respect to this stochastic order, that is to say G(R\) <  G(J?2) 

if i?,| -< i?2- For example

• the loss rate in a buffer o f size zero, served at constant rate s. In this case G(R) :=  

E(i? — s)+ . In general, if G(R) =  Ef {R )  for some nondecreasing convex function /  

then G will be isotonic with respect to
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• the loss rate in a buffer o f size zero, served at constant rate s when multiplexed with 

a fixed, independent, stationary source. Here G (r) :=  E(R  +  X  — s)+ where X  is a 

real valued random variable which is independent o f R.

• the loss rate in a buffer of size zero, served at constant rate s when N  identical 

and independent stationary sources are multiplexed. This functional was considered 

by Doshi in [8]. Here G(R) :=  E(i?i +  • • • +  R n  — •s)+ , where R ± ,. . .  ,R n  are N  

independent copies of R.

• the function G(R) :=  for some constant i) 6  K, which was investigated by 

Mitra and Morrison [6]. This functional can be related to the finite time moment 

generating function discussed in Section 2.7. DufReld and Botvich [10] show that 

the loss rate in a bufferless server has the asymptotics

lim ± -lo g L (N ,N s ,0 ) =  - m ,
n ->oo

where

1(0) =  (lm ilogE e^ W /4)*  =  .

Assume we have a finite collection {(0 ,p ), (&i,0 i ) , . . . ,  (bn,a n)}  of leaky bucket con

straints which includes a bound p on the peak rate. If // is stationary measure on D+ which 

satisfies the leaky bucket constraints almost surely, and R  is a random variable whose dis

tribution is the image law of p, under n, then clearly we must have that P(i? >  p) =  0 and 

that ER < m  :=  miniO{. In fact the converse also holds: given any real valued random 

variable R  that satisfies these two conditions we may find a stationary process a that sat

isfies the leaky bucket constraints such that R, is equal in distribution to a '( l) . Thus the 

problem of finding the worst case behaviour of a bufferless system reduces to finding the 

distribution of R  that maximizes G(R) under the constraints ER < m  and P (R  >  p) =  0.

T h eorem  34 Let R* be a random variable taking value p with probability m/p and value 

zero with probability 1 — m /p . If ER <  m and P (R  >  p) =  0 then R  H R*.

Proof. Let /  be any convex nondecreasing P+ -valued function on R+ . We have that

Ef (R )  <  E ^ f ( p ) + ( l - ^ j f ( Q )
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=  E /(i2*).

Consider the periodic source that transmits at rate p for time tp :=  m inj{/3i/(p — cr.t)}  

and is silent for time •'= ptp/m. Clearly none o f the leaky buckets overflow during 

the time the source is transmitting and they are all empty at time tp +  to- The latter 

statement follows since the contents of leaky bucket i are less than that of leaky bucket 

im a rg in in e at any time, and leaky bucket irn is empty at time tp +  to- For this process 

o /(l)  has the same distribution as R*. We immediately conclude that such a process is 

the worst case traffic for all the performance functionals discussed above.

6.2 A  Single Source

When the functional to be maximised represents the queueing behaviour o f a single source 

the optimisation problem may be tackled using elementary methods.

Loss Rate

It follows from Theorem 20 that the loss rate o f any source is jointly convex in the service 

rate and buffer size. Assume that a single leaky bucket constraint (/3, a) is given, along 

with a peak rate constraint p. Consider the loss rate l(b,s) of a stationary source that 

satisfies these constraints, as a function o f the buffer size b and the service rate s. We 

know that

• at (/3, a) the loss rate is 0,

• at (0 ,/j) the loss rate is 0 .

• at (x , 0) the loss rate is less than <7, for all x >  0 .
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P

Figure 6.1: The three regions of the (b, s) plane in which l(b, s ) is affine.

We may use this knowledge to bound I since the it is jointly convex in b and s. Thus

l(b, s) <  l(b: s ) :=

s a

p j  13 p ’ b ~  0 ' b ~  0
p — s _ p — a

0,

Note that the bound is affine in each of the three regions that are depicted in Figure 6.1. 

We will show that there is a stationary traffic source whose loss function is exactly l(b, s). 

This traffic source is therefore the worst case traffic for this functional.

T h eorem  35 An on-off source with on periods of length fi/(p — a) and off periods of 

length /3/a has a loss rate equal to the convex hull mentioned above.

Proof. In the region of the (b, s) plane where b/s >  0/a and s <  <r, the buffer will fill up 

but will never empty. It follows that the rate of loss over a period will be a — s. In the 

region where b/s <  /3/cr and b/(p — s) <  b/(p -  a), the buffer will fill up and then empty, 

and so service will be wasted. The loss rate will be (p — s)a/p — b{p — a)a//3p. If s >  a  

and b/(p — s) >  b/(p — a), then the buffer will never overflow. The loss rate is thus found 

to be an affine function of b and s in each of the three regions. □

We have found that when we have only one leaky bucket parameter in addition to 

the peak rate, there is a single traffic source that is the worst case for any buffer size and
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Figure 6.2: An illustration of the construction of the worst case traffic for more than one 

leaky bucket constraint.

service rate. When extra leaky bucket parameters are given the situation is more complex. 

We find in general that the convex hull bound is attained, but that the traffic source that 

attains the bound differs for different values o f b and s. A construction of a source that 

attains the convex hull bound is now given.

We allow a possibly infinite number o f constraints o f the form l(bi,S{) =  0. Without 

loss of generality we may assume that C :=  {{Pi, cri)} is convex. Assume that the mean 

rate is not constrained to be zero, in other words that a :=  inf{/3j : (/%,(?{) € C} >  fl. 

Extend a line from origin through (b, s) to intersect the boundary of C at (x , y). This set 

is convex, therefore it has a line of support line at the (x, y ). Let p* be the ordinate of the 

intersection o f this line with the y-axis. and let ({3*, a) be the point o f intersection with the 

line y  =  a. Consider the on-off source S* that has peak rate p*, on-time f3*/(p* — a), and 

off-time ft*/cr. Let l*(b, s) be the loss rate of this source as a function of b and s. S* clearly 

obeys the constraints C. Also, if Kb, s) is the loss rate o f any other source that obeys the 

constraints, then l(x ,y )  =  0 and 1(0,0) <  a. Therefore l(b, s) <  a (l  — b/x) =  a( 1 — s/y). 

But l*(b,s) =  cr( 1 — b/x) =  cr( 1 -  s/y) and so S* is the worst case traffic source. This 

construction is illustrated in Figure 6.2.

Since the peak rate of S* is less than p, this source is not o f the form conjectured 

in Section 1.4 to be the worst case. However, for the single source loss rate functional 

the worst case not unique and we will now show how to find a source of this form that
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obeys the constraints and has a loss rate in a buffer o f size b served at rate s equal to 

that of S*. For simplicity we assume that there are a finite number of constraints (/3i,ai) 

arranged in order of increasing , and that there is a peak rate constraint (0 , cto). Let 

I  :=  m ax{i : /3; <  x }, where x  is defined above. Define to :=  0, and tt :=  — a,L)

for % e  { 1 , . . . , / } .  Consider the source that transmits at rate er; in the interval of 

for i e  { 0 , — 1} followed by a silent interval o f length J2i=i(ai- 1  ~  ai)U- This source 

obeys the constraints, has the same loss rate as S* in a buffer o f size b served at rate s, 

and is of the form discussed in Section 1.4.

A v e r a g e  Q u e u e  L e n g th

Here the functional to be maximised is the average queue length when a single source passes 

through a single server queue with constant service rate s and infinite storage capacity. 

Again we assume there is a peak rate constraint p and another leaky bucket constraint 

(/3, a). This problem was considered by Lee [5]. There are a number o f differences between 

his approach and ours:

• Lee models the traffic as a point process and his traffic policer creates discrete tokens 

at fixed intervals. Our results correspond to the fluid limit, that is where the token 

bucket size, the leaky bucket rates, and the service rate are large compared with the 

size of the token.

• Lee considers only a single leaky bucket constraint; there is no peak rate constraint.

• Lee considers the case of more than one source, however he does not assume that 

they are independent. This is equivalent to the one source case where there is an 

arbitrary periodic pattern of token generation.

• Lee maximises the average delay per cell rather than the average queue length over 

time. The two problems are equivalent since we know from the isotonicity o f both 

functionals that the mean rate of the worst case traffic of either is equal to the 

service rate of the leaky bucket policer. Applying Little’s law, the two functionals 

are related by a constant factor on the set of sources that have this mean rate.
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Figure 6.3: The tri-state source

Figure 6.4: Queue length vs. time for the tri-state source

Lee reasons that the average delay over all cells is bounded by the maximum delay 

averaged within each busy period. One can therefore reduce the problem o f finding the 

worst case traffic to that of maximising the average over a single cycle. This will be 

accomplished when each cell in the busy period, apart from the first, arrives as early 

as possible. Therefore the worst case source will be the one that transmits the tri-state 

pattern shown in Figure 6.3, for some value of the shoulder length 7 . We shall calculate 

the average queue length for this type o f source as a function o f the shoulder length, and 

then maximise over the shoulder length.

Let tp :=  /3/(p — a ) be the length o f time the source transmits at the peak rate and let 

to :=  0/a be the length of time it is silent. The average queue length over time is

Qave = P(P -  s)t2 +  2a{p  -  s)tp”t -  a(s  -  a ) j 2
2s (7 +  tp +  to)

The derivative o f this expression with respect to 7  is

^  _  a)72 _  2cr(s _  cr)(tp +  t 0)7  +  p {p ~ s ) t2p

d'y 2s (7 +  tp +  to)'
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The numerator is quadratic in 7  and its root may be found using the quadratic formula:

P
7 o p t  — +

sp
a  p — a  y (s -  a){p -  a)

Substituting this expression back into the formula for the mean queue length we find the 

maximum to be ___

Qolt =  P 1 -
lp ( 8 - o )
s { p - o )

6.3 Calculations for the Worst Case Effective Bandwidth

In this section we assume that the conjecture in Section 1.4 is true, and based on this we 

attempt to calculate the optimal shoulder lengths for the effective bandwidth functional. 

Define
0 , 0 <  t < t0,

<7, to <  t < to +  x,

P, t0 +  x  <  t <  t0 +  x  +  tp,

<7, to +  x  +  tp <  t < t0 +  x  +  tp +  y,

which is the rate o f transmission at time t of a source with shoulder lengths x  and y. The

corresponding realisation is given by

rt
a(x,v)(t) :=  f  ĥ x’y\ z) dz. 

Jo

The period of the source is p to +  x  +  tp +  y. Again we use the convention that

a(t) :=  \t/p\a{p~) +  a (t— \t/p\p) for t 0 [(),/;). The effective bandwidth o f the source is

1 log E ^ 1 where(z.y)

:=  i r ,
P Jo

fi[a^'y\z+T)~a^<y\z)] dz

p(®. v)We want to find the x  and y that maximise

The effective bandwidth function is symmetric in the shoulder lengths, in other words 

E ^ j )  =  E ^ fip . Alone this is not enough to imply that the two shoulder lengths o f the 

worst case traffic are equal. However we can also make use of the following theorem.

T h eorem  36 For fixed y, ft, and T, the function E ^  x  ̂ is concave in x  in the range 

[0, 2/]-
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Proof. Write gx (t) :=  a^ y~ x\ t +  T) -  a ^ ~ x\t) and f y (t) :=  g^(t -  7 ). Differentiating, 

we find that

1 rx + tp  1 r x + t p —T
=  -  I d ( p -  cr)e*a*W dz -  -  /  #(p -  a)e*<>*W dz

T J  x  T  J x —Td xE»'T x - T
ta—T

=  — f  -d(p — cr)e^^x^  dz — — I ft(p — dz.
T JO T J - T

Let 0 <  7 1 <  72 <  y. Then / 72(t) <  / Tl(t) for t 6 [0,fp] and f l2{t) >  / 7l (t) for 

t 6 [—T, tp — T], Thus

dz <  [ h dz, and /  '
Jo  Jo  j - 1

g«A iW
> -i:

t0 —T
J fy2(z) dz.

Therefore

and the result follows.

d Tp(x,y-x)
dx *’T

x = 7 2

^ d jp(x,y-x)
-  d i e °-t

® = 7 i

We have that E ^ ^  =  E ^ x,x\ and so E ^ ~ x  ̂ is symmetrical in x about x  =  y/2. 

It follows that attains its maximum at x =  y/2.

We will now show that this optimum shoulder length is shorter than the time-scale T.

T h eorem  37 For x > T we have that E ^ ^  <  E .̂

Proof. Write px :=  to +  tp +  2x and px  :=  to +  tp +  2T. Comparing g(t) :=  â x'x^(t +  T) — 

cS-x,x\t) with / ( t )  :=  â T,T\ t +  T) — â T,T\ t), we find that 

' / (*)> 0 < t < t 0

Ter, to < t  <  to +  x  — T

g(t) =  f ( t  — x +  T ), t0 +  x -  T  < t <  t0 +  x  +  tp

Tcr, to “I- ® tp ^  t ^  "I- tp 4" 2 a: — T

K f  (t — 2a; +  2T), to +  +  2a: — T  <  t <  to "I- "I- 2a:.

Therefore
rpx rp T

/  e*9® d t =  /  e’9 m dt +  2 ( x - T ) e &Ta.
Jo  Jo

Since exp(i?.x) is convex in x, we have that

JTo
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Figure 6.5: Graph of a (t+ T ) — a(t) in region [0, to + tp+2y\

and so

dt <  eV ®  dt +  2 - — -  f PT e 9^  dt
Jo Jo P T  Jo

= 1 +
2(x -  T )

to tp 2T  J

to +  tp +  2x r em ) d t .  
to + tp + 2T J0

Thus E f ^ ] <  E f p . □

Calculation of the effective bandwidth can be tricky as there are a number o f cases 

depending on the relative sizes of the time-scale T, the shoulder lengths, and the burst 

and silence lengths. We will concentrate on the case when the time-scale is less than the 

burst length and silence lengths. This is the simplest case since, from the theorem above, 

we know that the optimum shoulder lengths are shorter than the time-scale and therefore 

smaller than to and tp.

Take T  <  m m (to,tp). The graph of a(t +  T) — a(t) is shown in Figure 6.5. Using the 

identity

/J a

it is easy to verify that

b 1■d(c+mx) _  1

mi?
=i}(c+ m b )    J ( c + m a )

i=0
where

OL2
dp flip — m ) ’

ai dp'

“ 3 =  w ^ , o  +  (‘ " - T ) ’
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A 0 =  0, A\ =  7  m,

A2 =  7 m +  p(T -  7 ), A 3 =  pT.

To find the maximum, this expression may be differentiated and set equal to zero. However 

this gives rise to a transcendental equation which is best solved numerically.

Since E is clearly continuous in 7 , its supremum over 7  6 [0,T] is attained. Thus, 

assuming that the conjecture in the Introduction is true, the effective bandwidth functional 

provides an example where the optimisation problem has a solution. We also have that 

E^ 7  is differentiable in r) with continuous derivative. The only remaining property 

required in Section 2.7 is that the 7  for which the supremum is attained is continuous in 

1) for each T  6 . As yet however we are unable to prove this.

6.4 Numerical Results

We report here on some numerical investigations that we have carried out. Assuming 

that the conjecture in Section 1.4 is correct, we numerically optimise the shoulder lengths 

to maximise various functionals. The functionals we consider are: the average queue 

length for a small number of identical and independent sources, the loss rate for identical 

independent sources, and the effective bandwidth.

First we investigate the worst case average queue length in an infinite buffer queue 

served at constant rate for N  independent sources. We use a program that calculates the 

mean queue length averaged over all phases of the sources. For N  — 1, we find that the 

leading shoulder length 7 1 that maximises the average queue length is zero, which is in 

accord with the results of Section 6. The optimum trailing shoulder length 72 is plotted 

against the service rate in Figure 6 .6 . The parameters used in all experiments are f3 =  0.5, 

a =  0.5, and p =  1.0. The service rate ranges from the mean rate 0.5 to the peak rate 

1. When there is more than one source the optimum leading shoulder length is no longer 

zero. Figures 6.7 and 6.8 show the optimum leading and trailing shoulder lengths for the 

case o f iV =  2 and iV =  3 respectively. Further values of N  are impractical because the 

computational effort required grows exponentially in N. In all cases 72 becomes infinite as 

the service rate decreases towards the mean rate. This is what we would expect because, 

for a service rate that is only slightly larger than the mean rate, the buffer empties very
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slowly and it pays to have a long trailing shoulder. Also, it may be seen that 72 goes to 

zero as the service rate approaches the peak rate. Again, this is understandable because 

at service rates just below the peak rate, the maximum queue length is small and so the 

buffer empties quickly. The optimum trailing shoulder length will be less than the time 

it takes for the buffer to empty, and so it will be short in this case. For both N  =  2 and 

N  =  3, the optimum length of the leading shoulder goes to the limit 1 time unit as the 

service rates approaches the mean rate. This is possibly related to the fact that our choice 

of leaky bucket parameters mean that the burst and silent periods have length 1  time unit. 

Interestingly, above a critical service rate the optimum value o f 7 1 is zero. This critical 

service rate is higher for N  =  3 than for N  =  2. The actual worst case value of the average 

queue length is shown in Figure 6.9, for N  =  1, N  =  2, and TV =  3. The value has been 

scaled by the number o f sources to facilitate comparison. Unsurprisingly, for each value 

of N  the optimised average queue length varies between 0.5 traffic units/source when the 

service rate is near the mean rate and zero traffic units when it is near the peak rate. Note 

that these curves are convex as predicted.

We turn now to investigate the worst case o f the loss rate functional. When there is 

just a single source the results are trivial: the worst case is the on-off source discussed in 

Section 6.2. For more than one source, we find in general that the optimum values of the 

leading and trailing shoulder lengths are still equal. The optimum shoulder length (both 

leading and trailing) for TV =  2 and N  =  3 are shown in Figures 6.10 and 6.11 respectively. 

I11 both o f these graphs, the optimum shoulder length is plotted against service rate for 

several values of the buffer size. It is seen to change slowly as the service rate is increased 

but then to drop suddenly. The optimum shoulder length is always less than 1 time unit, 

which is the length of the on period and of the silent period. The actual value of the 

maximum loss rate (Figures 6.12 and 6.13) is seen to be decreasing in the service rate and 

the buffer size and is jointly convex in these parameters, as expected.

For the effective bandwidth functional the optimum values of the leading and trailing 

shoulder lengths are again equal for all parameter values. In Figure 6.14 we see the 

optimum shoulder length plotted against the space scale 9 for several values of the time 

scale T. We see that it is decreasing in 9 and increasing in T. As T  gets larger, the 

optimum value o f shoulder length increases without bound. Note that optimum shoulder
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Figure 6.6 : Trailing shoulder length that maximises the average queue length for a single 

source. The optimum leading shoulder length in zero.

length is always less than T  as predicted. The maximum value of the effective bandwidth 

can be seen in a 3-dimensional plot against T  and Q in Figure 6.15. The effective bandwidth 

of a periodic on-off source with on time /3/(p — a) =  1 , off time ft/a =  1 , and uniformly 

distributed phase is shown in Figure 6.16 for comparison. We see that the two graphs 

agree for small values o f T. This is because, for small T, the optimum shoulder length 

is small and so the worst case traffic will be similar in nature to the on-off source. The 

main difference between the two plots is that the worst case effective bandwidth plot does 

not have the valleys seen in the on-off traffic plot. The valleys occur when T  is close to 

a multiple of the period of the on-off traffic pattern because here the effective bandwidth 

functional only sees the average behaviour of the source over its period. In the worst case 

plot, the period o f the source increases along with T  and so this effect does not occur.

6.5 Connection Admission Control in ATM  networks

We now describe an application of the results on the thesis to the problem of Connection 

Admission Control (CAC) in ATM networks. Recall that the network must make a decision 

whether to admit a connection based on the parameters supplied by the customer as
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service rate

Figure 6.7: Shoulder lengths that maximise the average queue length for two independent 

sources.

service rate

Figure 6.8 : Shoulder lengths that maximise the average queue length for three independent 

sources.
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Figure 6.9: Maximum value of the average queue length for oue, two, and three indepen

dent sources.

Figure G.10: The shoulder length that maxiraises the loss rate o f two independent sources, 

plotted against service rate for several values of the buffer size.
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Figure 6.11: The shoulder length that maximises the loss rate o f three independent sources, 

plotted against service rate for several values o f the buffer size.
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service rate

Figure 6.12: Maximum loss rate as a function o f service rate for several values o f the buffer 

size for two independent sources.
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Figure 6.13: Maximum loss rate as a 

size for three independent sources.

service rate

function of service rate for several values o f the buffer
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Figure 6.14: The optimum shoulder leugth for the effective baudwidth fuuetiouel for 

several values of the time-scale T.

97



a (9 ,T )

T

Figure 6.15: The worst case effective bandwidth against the time-scale T  and the space- 

scale 9.

Figure 6.16: The effective bandwidth o f the on-off periodic source.
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part of the traffic contract. Many algorithms for doing this have been proposed in the 

literature [34, 35, 36]. The algorithm described here is based on that in [37]. This algorithm 

makes use o f the declared peak rate of a connection request along with measurements of 

the current multiplex of connections. The ATM switch is modelled as a single server queue 

with a constant service rate S and a fixed buffer size B. Let L (X ,Y )  denote the average 

loss rate in a buffer of size X  and a service rate of Y  fed with the current multiplex of 

connections. Since the peak rate p declared by the new connection is an upper bound on 

its rate of transmission, L (B ,S  — p) will be a conservative bound on the total loss rate 

should the connection request be granted. The problem of CAC is thus reduced to that of 

estimating this quantity. We have seen in Section 2.7 that the loss rate obeys the following 

asymptotics in the number of sources N :

where I  is given by

lim log L (N b,N s) =  - I (b ,s ) ,
N - t  o o

I(b ,s) :=  in f(6 ta(-,t))*(b ,s)

and the effective bandwidth is defined to be

a {9 ,t) :=  lim — l o g E e ^ 10A". (6.1)
N^yoo i \  u t

We shall assume that the traffic sources are independent but not necessarily identical. In 

this case the effective bandwidth reduces to a (6 ,t)  :=  JV- 1  t), where

is the effective bandwidth of the nth source defined analogously to (6.1 ) as a^n\ 6 ,t)  :=
(n)

(9t)~l logEeeA* . We can use this as the basis for an approximation scheme: for N  finite 

but large we use the approximation

log L (B ,S )  »  —N I(B /N , S/N)

=  -N w £ (9 ta (-,t))* (B / N  +  St/N)

t>0 n

In [37] a method of estimating is proposed. This leads to an estimate 

logL (B ,S )  «  -  in f ( 0 i ] T « ( ” )(•••,t))* (B  +  St).
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The decision procedure is that a connection is accepted if this estimate o f the loss rate 

is less than the Quality o f Service (QoS) bound r on the loss rate guaranteed to the 

connections.

However, it is likely that the customer making the request will be obliged to declare 

other parameters in addition to the peak rate, for example the leaky bucket parameters 

with which we have been dealing. Adapting the CAC algorithm proposed in [37] to deal 

with parameters such as these in addition to the peak rate would allow greater link usage 

while still maintaining QoS guarantees.

Finding a tight bound on the effective bandwidth is made even more important by the 

fact that the CAC algorithm must continue to use the declared parameters o f a connection 

for some time after it has been accepted while measurements are being made on the 

statistics o f the new connection. If connections are short and there are many o f them, 

there may be a significant number of calls in the system for which no measurements are 

available.

The work of this thesis suggests a method of using declared leaky bucket parameters to 

predict the effect of new connections. The effective bandwidth o f the new call is bounded 

by that of the worst case traffic and we have conjectured what this worst case is. When a 

new connection makes its request, the ATM switch can calculate the worst case bound a  on 

its effective bandwidth based on its declared leaky bucket parameters using the methods 

of Section 6.3. It can then accept the connection if

inf (6 ta (-,t) +  6ta(-, t))*(B  +  St) >  — logr

In practice a complete optimisation over 6 and t will not be necessary since we would not 

expect the critical space-scale and time-scale to change appreciably with the addition of 

a single connection. An occasional updating of 6 and t should be sufficient.
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