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Abstract

1) Treatment with the differentiating agent, 5-Bromo-2-deoxyuridine (BrdU) was 

capable of inducing keratin (K8/ K18) expression in the poorly differentiated stem 

cell-like lung cancer cell line, DLKP and the more differentiated adenocarcinoma 

line, A549. The absence of keratin induction by BrdU in the Leukaemic cell line, 

HL60 suggested that this effect may be epithelial-specific. Immunocytochemical 

analysis of DLKP, treated with BrdU for one week and then continuously cultured 

in the absence of BrdU for 3 months, revealed that keratin filament formation was 

maintained in these cells.

2) RT-PCR and Northern blotting analysis revealed equal levels of K8/18 mRNAs 

before and after BrdU treatment suggesting that induction occurred at a post- 

transcriptional level. Since treatment of DLKP with a cocktail of protease 

inhibitors failed to induce K8 and K18, it would appear that proteolytic 

mechanisms are not in operation and that control is likely to be at the level of 

translation.

3) BrdU-treated lung cancer cell lines exhibited significant increases in the levels and 

phosphorylation of the important translation initiation factor, eIF-4E. On the other 

hand, levels and phosphorylation of this factor were decreased in BrdU-treated 

HL60s. eIF-4E may represent a key effector molecule in BrdU-mediated induction 

of K8/18 expression in epithelial lines, but since little increase in eIF-4E mRNA is 

observed it may not be the primary target gene for BrdU activation. BrdU almost 

certainly acts at the transcriptional level, ultimately.

4) Protein levels of the general translation initiation factor, eIF-2a also increased 

following BrdU treatment of both epithelial lung cancer cell lines.

5) Levels of c-Mycl protein, the growth inhibitory c-Myc isoform, increase following 

treatment of epithelial lines with BrdU. (Expression of this factor is known to be



translationally regulated and dependent upon eIF-4E availability. In addition, c-myc 

has been reported to increase gene transcription of both eIF-4E and eIF-2a).

6) Since the transcription factor, YY1, has been shown to be induced by BrdU 

treatment, and it is known to be a regulator of c-myc gene transcription and c-Myc 

protein activity, we investigated its expression in this system. Levels of YY1 

protein increase significantly in BrdU-treated epithelial cell lines, while they 

decrease in BrdU-treated HL60 cells.

7) Investigations using in-vitro translation suggested that DLKP may contain an 

inhibitor of K8/18 translation, whose activity is abrogated by BrdU treatment.

8) Transfection of DLKP cells with eEF-4E cDNA results in increased expression, not 

only of eIF-4E protein, but also of K8/18, YY1 and c-Mycl proteins.

9) Transfection of DLKP with YY1 cDNA resulted in increased expression, not only 

ofY Y l protein, but also ofK8/18, eIF-4E and c-Mycl proteins.

10) From these results we have outlined a possible differentiation-inducing cascade that 

may be a target for BrdU activation. Emanating from the transcription factor, YY1 

it culminates in the activation of a proposed differentiation-inducing feedback loop 

revolving around e!F-4E and c-Mycl expression, and the induction of keratin 

expression.

11) Exposure of DLKP to the physiological differentiating agent, Retinoic Acid (RA) 

resulted in growth inhibition but did not influence the expression of keratins 8/18. 

The growth inhibitory affects of RA were attributed to the expression of Retinoic 

Acid Receptor-a in DLKP. The lack or expression of a truncated form of the 

Retinoic Acid Receptor-P is offered as an explanation for the inability of RA to 

affect keratin expression in DLKP. RA was shown to be capable of altering K8/18 

expression in the RAR-(3-positive cell line, A549. These findings may offer an 

insight into the poorly differentiated and aggressive nature of DLKP.
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Section 1.0

Introduction



1.1 General Introduction

Strategies designed to treat lung cancers have been severely impaired by the paucity 

of knowledge regarding the biological mechanisms controlling the differentiation and 

development of both normal and disease states of the lung. Despite recent advances in 

modern medical science the use of anti-cancer strategies such as irradiation and 

chemotherapy have done little to increase the life expectancy of those diagnosed with 

lung cancer. The use of antisense and ribozyme technology to treat cancers is far from 

widespread application in the medical field (Scanlon and Kashani-Sabet, 1998). Such 

oligonucleotide approaches, using RNA sequences that bind to cellular RNAs to 

increase their sensitivity to RNases (antisense) or cleave them into functionally 

inactive RNAs (Ribozymes), have been severely impeded by instability and toxicity 

of the oligonucleotides, and difficulties in delivery of these drugs to target organs. An 

alternative approach is that of "Differentiation Therapy", designed to induce a more 

differentiated phenotype in tumours in an attempt to slow and even halt growth and 

progression of the cancer (Roth, 1992; Lotan, 1996). The differentiation strategy that 

has shown most promise to date in both in-vitro and in-vivo trials is that of the 

Vitamin-A/Retinoid based differentiation-inducing compounds (Gendimenico and 

Mezich, 1993; Lotan, 1996). However, for this or any of the other therapies to have 

any realistic chance of being effective, a better understanding of lung tumour biology 

is urgently required. Cancer has been referred to as a "disease of abnormal 

differentiation" (Sporn and Roberts, 1983) and as such is theoretically a prime target 

for such therapies.

In many cells, division results in a simple duplication of the parental phenotype. 

However, in some tissues the cells at the end of the differentiation pathway cannot 

divide (terminal differentiation) and are renewed by proliferation of a distinct sub­

population, known as stem cells (Watt, 1991). These cells replenish both stem cell and 

daughter populations that can terminally differentiate (Figure 1.1, Section 1.4). A 

review by Emura (1997) highlighted the fact that understanding of lung stem cell 

biology lags behind that of organs such as the liver, skin, intestine and abdomenal 

mesothelium. This was attributed to the anatomical and functional complexity of the 

respiratory system, but data to date suggests that, analogous to other organs, there is 

only one type of epithelial stem cell throughout the lower respiratory tract. They are
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multipotent for cell differentiation and able to yield lineage progenitors for ciliated, 

goblet, basal, Clara, neuroendocrine, alveolar typel and alveolar typell cells. In 

addition, Emura (1997) suggested the possibility of de-differentiation of related cells 

to replenish one another during situations such as damage to the lining of the lung. A 

novel cell line, DLKP isolated at the NCTCC (Law et al, 1992) has been categorised 

as extremely poorly differentiated and consists of at least three subpopulations, 

termed SQ (Squamous), I (Intermediate) and M (Mesenchymal) (McBride et al., 

1998). These populations have shown the ability to interconvert and eventually, when 

cultured alone, replenish the parental phenotype. This, combined with the lack of 

expression of a number of differentiation-specific markers, has lead to the speculation 

that DLKP may represent a stem cell-like population. This has afforded a unique 

opportunity to study the process of lung cancer differentiation in-vitro, particularly the 

early stages of this process. Such studies will provide valuable insights into the 

mechanisms of early lung development, both in diseased and normal tissues, possibly 

identifying targets for therapeutic intervention and aiding in the design of strategies to 

treat lung cancers more effectively.
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1.2 Keratins as markers of epithelial differentiation

A large proportion of the cytoplasm of vertebrate cells, normal and transformed, is 

occupied by components of the cytoskeleton, including actin, tubulin and the 

intermediate filaments (Moll et al., 1982). They are formed in different cell types 

from different proteins of a multigene family or from different subunit polypeptides of 

a class of related proteins. By far the most striking differentiation specificity of 

composition has been observed in the intermediate-sized filaments. This class of 

filaments includes the desmin filaments typical of myogenic cells, the neurofilaments 

typical of neuronal cells, vimentins occur in mesenchymally derived cells and 

vascular smooth muscle cells, and the keratins occur in epithelial cells (Moll et al., 

1982, Hatzfeld and Franke, 1985; Daly et al., 1998). Keratin Intermediate Filament 

(IF) proteins have three domains: a central alpha-helical rod domain of constant size 

that derives from common ancestors, and two end-domains of variable structure 

thought to be involved in tissue-specific functions (Blumenberg, 1988). The 

specificity of keratin expression patterns in epithelial cells has been used in prognostic 

and diagnostic situations as markers of both epithelial origin and state of 

differentiation in patients with small cell lung cancer (Bepler et al., 1987; Broers et 

al., 1988), and other tumour pathologies (Virtanen et al., 1984; Trask et al., 1990) to 

distinguish normal and tumour-derived epithelial cells. Keratins are thought to serve a 

structural function to protect the cell against environmental stresses and strains as for 

other filaments (Daly et al., 1998), but their expression in human ovarian 

adenocarcinoma lines has been associated with altered sensitivity to various 

chemotherapeutic drugs (Parekh and Simpkins, 1995). Interestingly, in studies using a 

number of chemical differentiating agents the levels of mdr-l/Pgp (p-glycoprotein) 

increased and expression appears to correlate with the degree of differentiation 

(Mickley el al., 1989). However, induction of these pumps is not always accompanied 

by expression of the multidrug-resistance phenotype, which may possibly be 

explained by changes in keratin expression during the differentiation of these cells. 

The human K8 mRNA encodes a nucleic acid-binding domain, suggesting that keratin 

filaments may bind to nucleic acid sequences and play a role in regulating DNA 

replication and gene transcription (Yamamoto et al., 1990). It is also possible that 

they play a role in the regulation of translation of particular mRNAs through their 

localisation to regions within the cell, in a similar manner to the way in which polar

4



expression of developmental proteins nos and bicoid are regulated (Gavis el a l,

1992). Genetic disease states associated with loss of keratin regulation include the 

blistering phenotype of Epidermolysis Bullosa Simplex (EBS) (Oshima, 1992; Fuchs 

and Byrne, 1994) and development of dwarf phenotypes and diabetes in transgenic 

mice expressing the K8 gene (Casanova et al., 1995).

The keratins (K) are divided into two categories; the acidic type I keratins are K9-20, 

while the more basic type II keratins are Kl-8. Keratin filament formation is 

dependent on the pairing of partners from both groups to produce a proteolytically 

stable hetero-polymer filament (Kulesch et al., 1989). Despite the fact that their 

function is relatively unknown, the pattern of expression of keratin filaments is 

specific to both epithelial origin and degree of differentiation (Tseng et a l, 1982). As 

described in “The Catalog of Human Cytokeratins” (Moll et al., 1982), while K9-K11 

are predominant in the epidermis, K12 has only been observed in the cornea. 

Cytokeratin 8 represents simple epithelia, and its normal partner, K18, shows the 

same tissue distribution (Trask et al., 1990). K8 and K18 are the first keratins to 

appear during mouse development (Casanova et a l, 1995) and are thought to be the 

evolutionary ancestors of many of the present keratin forms (Blumenberg, 1988). 

Cytokeratin 19 is found in a broad range of epithelial tissues and is a major 

component of simple epithelia. K14 and K19 are known to be “promiscuous” in that 

they can partner Type II Keratins in the absence of their “usual” Type I partner to 

form stable filaments (Hatzfeld and Franke, 1985; Darmon, 1985; Lersch et a l, 

1989). K19 lacks a variable terminal domain. This, combined with its promiscuity, 

means that K19 is thought to play a critical regulatory role by pairing with any one of 

the basic keratins without contributing a potentially harmful variable terminal domain, 

the region in which tissue-specific function of keratins resides (Blumenberg, 1988). It 

therefore acts to redress keratin imbalances. Keratins 7/8/18/19/20 have been 

associated with simple epithelia, while K4/5/17 are associated with stratified epithelia 

(Mobus et al, 1994). Both classic and variant small cell lung cancers express K8 and 

K18/19, detectable by western blotting when immunocytochemical staining is weak 

(Elias et al., 1988). Stem cell populations of the lung have been speculated to exist as 

pluripotent populations residing in tumours and cell lines (Trask el al, 1990; Pfeifer 

et al, 1991). The almost complete absence of keratin expression in DLKP, a novel
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poorly differentiated NSCLC-NE/SCLC-variant cell line isolated at the NCTCC, has 

led to speculation that this cell line may represent a stem cell-like population.

1.2.1 Regulation of Keratin Expression

The regulation of keratin filament formation is complex and is controlled at multiple 

levels. Regulation of keratin expression has been reported at the transcriptional level 

(Roop et al., 1988), involving AP-1 (Section 1.5.2.1) activation of transcription 

(Neznanov and Oshima, 1993) which is mediated by the ras signalling pathway 

(Pankov et al, 1994). Relatively short sequences in the 5’ upstream region of keratin 

genes can confer tissue-specific transcription (Blessing et a l, 1989; Neznanov and 

Oshima, 1993). In addition, histone and chromosomal insulation of keratin genes 

(Casanova et a l, 1995), labile inhibitors of transcription (Cremisi and Duprey, 1987), 

and post-transcriptional proteolysis (Kulesh et al, 1989) have all been implicated in 

the cell-specific and developmental regulation of keratin filament formation. An 

important aspect to the proteolytic regulation of keratin filament formation, in which 

both partners of the pair are required for proteolytic stability and filament expression, 

is that it would appear that the expression of a type II keratin is sufficient to induce 

the expression of a type I partner (Giudice and Fuchs, 1987; Knapp and Franke, 1989; 

Lersch et al, 1989, Rothnagel et a l, 1993). Type I keratin expression has been 

suggested to be dependent on accumulation of unpolymerised Type II keratin 

(Giudice and Fuchs, 1987) for proteolytic stability for overall filament formation. 

Type I proteolysis may form a universal regulatory element while specificity in Type 

II expression will therefore result in Type I induction and tissue-specific Intermediate 

Filament formation (Rothnagel et al, 1993). Synthesis of both keratin types can be 

uncoupled and control of cytokeratin Intermediate Filament formation can occur at 

different levels (Knapp and Franke, 1989), strengthening this suggestion. There is 

substantial evidence for additional post-transcriptional regulatory mechanisms 

(Blouin et al, 1991; Crowe et al., 1993), including mRNA degradation (Paine et al,

1992) and the suggestion that there is a possible block on the translation of certain 

keratin mRNAs, such as K8 (Tyner and Fuchs, 1984). This speculatively involves 

translational repression (Su et al., 1994) and even masking of keratin mRNAs in 

epithelial squamous cell carcinomas (Winter and Schweizer, 1983).
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1.3 Differentiation Therapy and Differentiating Agents

Cancer has been referred to as a “disease of abnormal differentiation” (Sporn and 

Roberts, 1983) and is theoretically a prime target for “Differentiation Therapy” 

(Lotan, 1996). The ultimate objective of this concept/strategy is not aimed at killing 

the tumour so much as to induce the cancer cells, whose growth rate and cell cycle 

have become deregulated, to commit to differentiate into more “normal” cells. A 

number of differentiating agents have shown promise in both laboratory and clinical 

trials, the majority of which are based upon vitamin derivatives such as Vitamin A 

and Vitamin D3, while more toxic laboratory agents are used to delineate the actual 

mechanisms regulating the differentiation process in-vitro.

1,3.1 Retinoic Acid

The differentiation strategy that has shown most promise to date in both in-vitro and 

in-vivo trials is that of the Vitamin-A/Retinoid based differentiation-inducing 

compounds (Gendimenico and Mezich, 1993; Lotan, 1996). In clinical trials, topical 

application of Retinoic Acid (RA) was shown to reduce the formation of skin 

papillomas (Tenenbaum et al., 1998). Retinoic Acid has shown very strong potential 

as a therapeutic in cases of APL (Acute Promyelocytic Leukaemia) (Asou et al, 

1998) and AML (Acute Myeloid Leukaemia) (Tallman, 1996) reducing the risk of 

relapse and increasing the chance of long-term survival (Takeshita et a l, 1995; 

Degos, 1997). Alternative approaches include the development of novel RA 

metabolism blocking agents that increase endogenous levels of RA by inhibiting its 

breakdown in cancer cells (Sciarra et al, 1998), currently being applied to the 

treatment of prostate cancer.

Retinoids are chemical derivatives of Vitamin-A which are effective in modulating 

the differentiation of cells at physiological and non-toxic doses. Among the most 

commonly used are retinol, retinoic acid, and the synthetic retinoid N-(4- 

hydroxyphenyl), otherwise known as 4HPR (Sabichi et a l, 1998). These compounds 

act through common or similar mechanisms to influence the differentiation status of 

the cell. Retinoic Acid has been widely studied and its effects on cells are known to 

be mediated by a group of receptors that belong to the family of steroid hormone
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nuclear receptors (Giguere et al, 1987; Petkovic et al., 1987). There are two classes 

of Retinoic Acid-binding nuclear receptor, the Retinoic Acid Receptors (RARs) and 

the Retinoid X Receptors (RXRs) (Xu et al, 1997), to each of which belong three 

sub-species of receptor known as a, P, and y. These nuclear receptors become 

internalised into the nucleus upon stimulation with RA to directly interact with genes 

containing sequences called RAREs (Retinoic Acid Response Elements), affecting 

their transcription. They are therefore transcriptional enhancers (Section 1.5.2).

The importance of RARs in the regulation of gene expression and the differentiation 

process has been shown using dominant-negative/truncated forms of these receptors, 

which inhibit differentiation and development and can promote features of 

malignancy (Aneskiebich and Fuchs, 1995, Saltou et al, 1995). Mutant dominant 

negative RARs have been shown to inhibit skin development (Saltou et al, 1995). 

Expression of RAR-P in gynecological cancers was able to inhibit their growth 

(Sabichi et al., 1998) while suppression of RAR-P expression has been associated 

with development of NSCLC (Minna and Mangelsdorf, 1997; Xu et al, 1997). 

Results to date suggest that RAR-P may be the main effector of RA-induced 

differentiation, while RAR-a and RAR-y play roles in the induction of growth 

inhibition and apoptosis. RA has been observed to induce tissue transglutaminase 

expression and apoptosis in rat tracheobronchial epithelial cells (Zhang et al, 1995) 

through a specific retinoid signalling pathway that involves RAR-a. The cells used in 

these studies lacked any RARp mRNA expression, which suggests that these cells are 

incapable of a differentiation response to RA. Geradts et al (1993) showed that a 

number of human lung cancer lines, both NSCLC and SCLC, showed no detectable 

abnormalities in RAR-a gene structure but that in a high percentage there were 

obvious abnormalities in RAR-P, many failing to show RAR-P mRNA induction after 

treatment with RA. The RAR-P gene contains a RARE itself (Sucov et al., 1990), 

resulting in autoregulation that has implicated RAR-P in amplifying the cellular 

response to low-level changes in RA concentrations. The loss of RAR-P is thought to 

be responsible for the failure of some tumours to respond to retinoid-mediated 

differentiation therapy, and has also been implicated in the poor state of 

differentiation and aggressive nature of some tumours. This agrees with the concept 

that, “cancer is a disease of abnormal differentiation” (Sporn and Roberts, 1983). RA
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treatment of head and neck squamous cell carcinomas has been shown to increase the 

expression of all three RAR mRNAs, without any effect on the mRNAs of the RXRs 

(Zou et al, 1994), suggesting that the RXRs do not harbour RAREs, known to exist in 

RAR-(3.

While RARs directly influence gene activity in response to retinoic acid, the levels of 

retinoic acid in the cytoplasm and available to these receptors are thought to be 

regulated by cellular Retinoic Acid Binding Proteins (cRABPs). There have been two 

forms identified to date, cRABPI and cRABPII (Eller et al, 1994), which are thought 

to directly interact with Retinoic Acid taken up by the cell to regulate its intra-cellular 

availability.

1.3.1.1 Retinoic Acid affects Keratin Expression

Retinoic acid is a very potent regulator (both stimulatory and inhibitory) (Ivanyi et al,

1993) of both keratin expression and differentiation of a wide range of cell types, 

including prostatic epithelial cells (Stellmach et al, 1991; Peehl et al, 1993), 

keratinizing epidermal cells (Kopan et al, 1987), mammary carcinoma cells (Ivanyi et 

al, 1993), neuroblastoma cells (Irving et a l, 1997), and variant small cell lung cancer 

cells (Doyle et a l, 1989). Interestingly, Kopan et al (1987) reported the appearance of 

type II (Kl) expression in RA treated human epidermal cells that preceded the 

expression of their type I partner. This agrees with the hypothesis proposed in section

1.2.1 that type II keratins do indeed play a role in the regulation, stabilisation or 

induction of their type I partner. Vitamin A deficiency in culture has been shown to 

induce changes in a small cell lung cancer cell line to squamous cell type that could 

be reversed upon addition of retinoic acid to the medium (Terasaki et a l, 1987). In 

cultured human keratinocytes and in squamous cell carcinoma (SCC-13) cells of 

epidermal origin the expression of differentiation-specific K5, K6, K14 and K16 

proteins is inhibited by RA (Stellmach et a l, 1991). In epidermal keratinocytes 

keratins 5, 6, 14, and 17 are suppressed and keratins 13 and 19 are induced (Gilfix et 

al., 1985). A reduction in the levels of K18 mRNA was reported in the human 

NSCLC line, A549 upon exposure to RA (Ledinko and Costantino, 1990). In fact, it 

has been suggested that all keratins contain elements that make their expression
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subject to regulation by cellular concentrations of RA (Gilfix et a l, 1985). The 

expression of K14 in differentiating basal stratified epithelia was shown to be directly 

regulated by interaction of nuclear RA- and hormone- receptors with a RARE 

(Retinoic Acid Response Element) in the K14 gene (Tomic et a l, 1990; Tomic-Canic 

et al, 1992). A similar effect was reported for K19 expression in non-keratinizing oral 

epithelial subtypes (Hu and Gudas, 1994). Interestingly, this effect was attributed to a 

3’ enhancer in the K19 gene and K19 expression correlated with the levels of RAR-P 

mRNA. Transcriptional induction of K18 expression by RA in embryonal carcinoma 

(EC) and embryonic stem (ES) cells was attributed to the low levels of AP-1 (Section

1.5.2.1) and ETS complexes which increase during RA-induced differentiation of 

these cells (Pankov et al, 1994). In fact, it is thought that the delayed induction of 

keratin expression observed during RA-induced differentiation may be partly due to 

the requirement for prior induction of AP-1 complex formation, stimulatory to the 

expression of keratins.

1.3.2 5’-BromodeoxyUridine (BrdU)

Bromo-deoxyuridine (BrdU) is a halogenated thymidine analogue that is known to 

influence the differentiation of cells. It is best referred to as a differentiation 

modulating agent since it has been shown to be a potent inducer of differentiation in 

some cell lines (Yen et al, 1987; Sugimoto et al, 1988; Valyi-Nagy et a l, 1993), 

while it can inhibit the differentiation of others (Seecoff and Dewhurst, 1976, 

Tapscott et al., 1989; Lee et al., 1992). BrdU competes with naturally occurring 

Thymidine for incorporation into DNA during replication and as such it, and other 

similar compounds, should be ideal candidates for anti-tumour agents, since they 

require cell division and DNA synthesis to exert their effects (Bick and Devine, 

1977). While few clinical trials are based on the differentiation-modulating properties 

of this drug (Freeman, 1969; Ameye et a l, 1989), BrdU has been used widely as a 

radiosensitiser in an attempt to improve radiological treatments (Lawrence et al., 

1992; McGinn and Kinsella, 1993). Radiosensitisation trials to date include the 

treatment of malignant glioma (Vander et a l, 1990), ulcerative herpetic keratitis (van 

Bijsterveld et al., 1989), malignant astrocytomas (Greenberg et a l, 1988) and 

malignant brain tumours (Matsutani et a l, 1988). More recently, BrdU has entered
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clinical trials as a radiosensitiser in the treatment of pancreatic cancer (Robertson et 

al, 1997), colorectal liver metastases (Robertson et al, 1997) and cervical cancer 

(Eisbruch et a l, 1999), while studies in relation to malignant gliomas continue 

(Prados et al., 1998). Administration of BrdU is normally by controlled perfusion 

(Doirion et a l, 1999), and has been used in combination with radiolabelled 

monoclonal antibodies (Buchsbaum et al, 1994). While radiolabelled antibody 

approaches offer the potential of targeted chemotherapy, they are limited by low dose- 

relate deliverable. As such, the trials of Buchsbaum et al (1994) may offer a means of 

enhancing the efficacy of low dose radiolabelled monoclonal antibody approaches.

BrdU incorporates into DNA in a non-random fashion at sequences termed “fragile 

sites” (Hecht et al, 1988; Sutherland, 1988; Sutherland, 1991). This explains the 

reproducibility of the effects observed with BrdU-induced differentiation. O’Neill and 

Stockdale (1973) developed a model for BrdU-induced modulation of differentiation 

that assumes that BrdU “sensitivity” resides on a single pair of chromosomes, 

suggesting the presence of a “master gene” or target through which BrdU exerts its 

effects. In this model, inhibition of differentiation occurs in a dominant fashion if 

approximately 30% or more of naturally occuring thymidine is replaced by BrdU in 

the readout strand of either chromosome. This sort of model agrees with the predicted 

mechanisms of action of a number of DNA-intercalating agents. BrdU substitution 

into DNA and intercalation of such agents may have similar effects, thought to be 

through direct DNA bending at either major or minor grooves, thereby altering 

promoter structure and availability to transcription factors. Intercalation of the 

antibiotics, elsamicin A or actinomycin D in the promoter of the c-myc gene induced a 

decrease in the level of transcription from this promoter (Vaquero and Portugal, 

1998). However, relatively low levels of elsamicin incorporation actually induced an 

increase in c-myc transcription through the PI promoter (section 1.5.2.2.1). 

Bromodeoxyuridine (BrdU) has been demonstrated to decrease c-myc expression at 

the transcriptional level in the leukaemic cell line, HL60 (Yen and Forbes, 1990) and 

in human melanoma lines (Valyi-Nagyi et al., 1993). These results would appear to 

suggest that the c-myc promoter regions are particularly susceptible to modulation by 

agents that disrupt promoter structure either through Thymidine substitution (BrdU) 

or intercalation (Elsamicin). Alternatively, BrdU may directly influence the ability of
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proteins to associate with DNA. In the lac operon, BrdU-substitution has been shown 

to result in increased binding of the lac repressor protein (Lin and Riggs, 1972), 

suggesting that BrdU may be capable of altering the binding of regulatory factors.

BrdU is considered by some scientists to be an inducer of pre-commitment to 

differentiation rather than an actual differentiation inducing agent. This was 

highlighted by the findings that BrdU treatment of HL60s for 24 hours, followed by 

treatment with Retinoic Acid resulted in a faster response to Retinoic Acid (RA) than 

the single addition of RA alone (Yen et al., 1990). It would appear that BrdU can 

initiate some of the early changes induced by RA in HL60 differentiation, including 

early c-myc downregulation. However, the same author reported previously (Yen et 

al., 1987) that pre-commitment to differentiation involves an early increase in c-myc 

levels in the same Leukaemic line, as induced by RA. This suggests that pre­

commitment to differentiation in these cells involves increased expression of c-myc. It 

therefore appears that the true mechanisms of induction and commitment to 

differentiation remain unclear, even in individual cell types.

12



1.4 Lung Development and Cancer

While the processes behind differentiation, keratin expression patterns and 

development of the epidermis and some other organs are relatively well understood 

(Fuchs and Byrne, 1994), lung cell developmental biology lags behind. This is partly 

due to a failure to identify a stem cell of the lung. Essential properties of stem cells 

have been described as “immaturity to be able to generate a few lineages of partially 

differentiated progenitor cells for differentiation into mature cell types, lack of 

morphologically and functionally differentiated phenotypes, and a capacity for 

unlimited proliferative cycles and clonogenic growth” (Emura, 1997). Differentiated 

cells are thought to be produced, not directly from stem cells, but rather via a 

committed progenitor or transit amplifying population (Watt, 1991) (Figure 1.1). 

These cells continue and commit to differentiated cell types, allowing continual 

regeneration of the stem-cell population. The studies reviewed by Emura (1997) 

suggest the possibility of a single population of pluripotent stem cells in the lung with 

the additional possibility of de-differentiation of ciliated, secretory and basal cells to 

provide the lung with regenerative capacity. This has interesting parallels with the 

behaviour of the lung cell line, DLKP isolated here at the NCTCC (McBride et al., 

1998). Clones derived from this cell line exhibit the remarkable capacity to regenerate 

the mixed parental population over time.

Stem cell

P rogen ito r/

T ransit A m plify ing 
C om partm ent D ifferentiated  

cells

Figure 1.1: Stem Cell regeneration and differentiation via progenitor cells.

n



The onset and evolution of a cancer in-vivo is thought to occur via a process known as 

“field cancerization” (Sozzi et a l, 1995), which is a result of the progressive and 

cumulative loss of control of key growth regulatory factors. Loss of a key regulator 

(such as the DNA damage-repair regulator, p53) results in the loss of control of other 

key factors, which in turn results in further losses that rapidly spiral the cell out of 

control. Numerous proto-oncogenes, including both transcription and translation 

factors, have been identified as playing roles in the complex process of 

carcinogenesis. The complexity o f the roles that these factors play in the regulation of 

gene expression is becoming obvious, and additional roles for these regulators in the 

control of other processes, such as differentiation and apoptosis (“programmed cell 

death”) are now becoming evident.
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1.5 Transcriptional Control of Gene Expression

Transcriptional control of gene expression during both proliferation and 

differentiation has been widely studied. Transcription factors such as MyoD and 

Myogenin have been shown to play critical roles in the regulation of muscle-specific 

differentiation (Weintraub, 1993; Buckingham, 1994). On the other hand, factors such 

as c-fos, c-jun, and c-myc have long been established as playing roles in the regulation 

of cellular proliferation, differentiation and transformation of a wide variety of cell 

types. Selective transcription of genes such as alcohol dehydrogenase (Adh) during 

development is known to occur through specific sequences in the promoter regions of 

genes that bind regulatory factors known as transcriptional enhancers (Novina and 

Roy, 1996). Despite this, the process of transcription and the mechanisms by which 

transcription factors regulate differentiation are still not folly understood. The process 

of transcription initiation is described in section 1.5.1. Some of the key factors 

involved in these processes are described in section 1.5.2.

1.5.1 Transcription Initiation

Transcription occurs in stages termed initiation, promoter clearance, elongation and 

termination. The main target for regulation appears to be the process of RNA 

polymerase binding and transcription initiation. RNA polymerase is the enzyme that 

“reads” the DNA code and converts its message into an RNA “message”. This is then 

transported from the nucleus to the cytoplasm where it can be converted into protein 

by the translational apparatus of the cell (section 1.6). The three RNA polymerases 

lack intrinsic ability to interact specifically with DNA sequences but acquire 

specificity through interaction with cellular proteins called transcription factors. These 

place the RNA polymerase enzyme in the correct position on the DNA to begin 

transcription. There are three different RNA polymerase enzymes (Novina and Roy, 

1996), which carry out distinct functions: RNA polymerase I (Pol I) transcribes 

ribosomal RNA (rRNA), RNA polymerase II (Pol II) transcribes protein-encoding 

messenger RNAs (mRNAs) and RNA polymerase III (Pol III) transcribes genes 

coding for amino acid transfer RNAs (tRNAs). The Pol II transcription (protein- 

encoding genes) process is the focus of this section.
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The Process of Initiation; Pre-Initiation Complex Formation

The promoter region of eukaryotic protein-coding genes is arbitrarily divided into two 

segments: a core promoter region of around 50 nucleotides adjacent to the 

transcription start site and a more distal enhancer region (consisting of either positive 

or negative regulatory elements) (Figure 1.2). The two key genetic elements within 

the core promoter are the TATA box and/or the initiator (Inr) element. Core promoter 

structures contain combinations of these elements, termed TATA+ Inr', TATA+ Inr+ 

and TATA' Inr (reviewed; Novina and Roy, 1996). The majority of cellular 

promoters contain a TATA box. However, recently a growing number of genes are 

being identified that are termed “TATA-less” (do not contain a TATA motif) and 

appear to be predominantly housekeeping genes (Section 1.5.1.3).

E nhancer R eg ions 

▲
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Fi gur e  1.2: Bas i c  Struc t ure  o f  Ge ne  P r o m o t e r  R e g i o n s  o f  D N A .  A core 
p r o m o t e r  consis ts  o f  T A T A  (red) and In i t ia tor  (Inr)  (G re e n )  e lements  
p ro x im a l  to the start  site. Dis ta l  E n h a n c e r  R e g io n s  (O ra n g e )  can have  pos i t ive  
or  nega t ive  effects  on PIC format ion  at the core p r o m o t e r  region.

The basic process of transcription intiation involves the recruitment of RNA 

polymerase II to the transcriptional start site via tethering to various General 

Transcription Factors (GTFs) that recognise the promoter region and begin assembly 

of the “pre-intiation complex” (PIC), a giant complex estimated to consist of 

approximately 50 components adding up to a molecular weight of more than 3 MDa 

(3,000 kDa !!) (Halle and Meisteremst, 1996) (Figure 1.3). This occurs through the 

binding of a complex of factors called TFIID (Transcription Factor IID) to the TATA 

box in the vicinity of the start site (Roeder, 1991). The TBP (TATA-Binding Protein)



subunit of this complex provides the DNA-binding specificity and promoter 

recognition functions of this complex. This interaction is stabilised by TFIIA (Stargell 

and Strubl, 1996) and a “bridge” to the RNA polymerase holoenzyme (multi-subunit 

enzyme) is provided by TFIIB (Kornberg, 1996) and TFIIF. TFIIF is involved in both 

PIC formation and subsequent transcript elongation processes after initiation has 

occurred (decreasing “arrest” of elongation once transcription has begun) (Reines et 

al, 1996). TFIIB spans 30 bases and so places the RNA polymerase upon the 

transcription start site, located 30 base pairs downstream of the TATA box. After 

formation of the PIC, two more general factors, TFIIE and TFIIH, are required for 

efficient intiation and promoter clearance. TFIIH provides a helicase function thought 

to be involved in the separation of the DNA strands around the transcription start site 

(Kornberg, 1996). The requirement for these two factors is directly related to the 

degree of supercoiling of the transcribing template, suggesting that the topological 

state of the template may determine minimum sets of general factors (Novina and 

Roy, 1996) required by specific genes for efficient expression.

Two models for transcription initiation exist at present (Koleske and Young, 1995) 

(Figure 1.3); a stepwise assembly of the RNA Pol II holoenzyme in which TFIID (via 

TBP) recognises the TATA box and this interaction is stabilised by TFIIA. TFIIB 

forms a “bridge” that places RNA Pol II directly upon the transcription start site and 

additional helicase functions of TFIIH unwind the promoter region to allow 

transcription to begin. Alternatively, a pre-formed holoenzyme is simply recruited to 

start sites in genes to which TFIID is already bound. These are termed the assembly 

and docking models, respectively (Sachs and Buratowski, 1997). RNA Pol II contains 

a long hepta-peptide repeat “tail”, called the CTD (Carboxy-Terminal Domain) that 

interacts with numerous factors, such as GTFs and SRB (Supressor of Ribosome B) 

proteins, thought to be intermediates that interact in turn with transcriptional 

enhancers (Koleske and Young, 1995, Bjorklund and Kim, 1996). Phosphorylation of 

the CTD is thought to result in dissociation of attached factors to disassemble the PIC 

upon promoter clearance to begin the process of elongation, to transcribe the RNA 

message.
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Figure 1.3: Assembly (A) and Docking (B) Models of Transcription Pre-

Initiation Complex Formation. Transcription Factors bound to upstream Enhancer 

Elements (Orange Sequences) can interact with GTFs (General Transcription Factors) 

and CTD (Carboxy-Terminal Domain) tail-associated proteins (SRBs) to either 

positively or negatively regulate Complex Formation at the Promoter. The timing of 

their involvement in either model is unknown and as such is not included. A=TFIIA, 

D=TFIID.
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All eukaryotic Pol II genes utilise this “basal apparatus” to initiate transcription. So 

how is the specificity in gene expression observed between different cell types and at 

different times during development achieved? Regulation is provided via enhancer 

sequences specific to the promoters of particular genes and the binding of regulatory 

co-factors to these sequences influence the rate of PIC formation.

1.5.1.2 Transcriptional Enhancers

Every eukaryotic gene has a particular combination of positive and negative 

regulatory cis elements that are uniquely arranged as to number, type and spatial array 

upstream of the core promoter. These sequences, termed enhancer elements, are sites 

for sequence-specific transcription factors that either positively or negatively regulate 

PIC formation and control the cell-specific and temporal expression of that particular 

gene (Mitchell and Tjian, 1989). This is achieved by their ability to interact with one 

another and the basal transciption apparatus involved in PIC formation, and their 

activity and levels are regulated through signal transduction cascades (Karin and 

Smeal, 1992). Thus, extracellular mitogens (Section 1.6.4) control the growth and 

differentiation status of cells by directly influencing levels and activities of 

transcriptional enhancer molecules involved in gene-specific transcription.

The DNA binding activities of most transcription factors are localised to relatively 

small sub-regions consisting of 60-100 amino acids (Karin and Smeal, 1992). These 

form one of four structures known to date that are involved in DNA sequence 

recognition and binding: Zinc Fingers, Homeodomains, Leucine Zippers and Helix- 

Loop-Helix domains (figure 1.4). A common feature of all of these motifs is that they 

consist of a number of helical regions with different properties. A number of the 

helices place positively charged amino acids on the outer surfaces to contact DNA 

while the remainder are known to be involved in contacting other transcription factors 

(review; Watson et al, 1992c), allowing the enhancer to both bind DNA and interact 

with neighbouring factors. Additional domains, separate from DNA binding domains, 

have been identified as transcriptional activation domains and often factors have more 

than one of these. To date three primary types of activation domain are known (acidic, 

glutamine-rich, and proline-rich) and these activate transcription by directly 

contacting and stabilising general transcription factors, such as TFIID, and CTD-
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associated proteins. Activators have additional domains that allow them to interact 

with other proteins. As such, the universal activator, GAL4 contains DNA- and 

Activation-Domains, while the specific activator, VP 16, is unable to bind DNA and 

requires additional DNA-binding co-factors to function (Ptashne and Gann, 1990). It, 

therefore, can only function in cells containing these co-factors. Cellular expression of 

a particular gene depends on the complement of activator and repressor sequences 

(enhancer elements) present in its promoter and the relative levels of the respective 

binding factors (enhancer proteins) within a particular cell type at a particular time 

during development. Additionally, the complex interactions between various 

transcriptional enhancers themselves can result in altered activity of these factors, 

changing activators to repressors and vice-versa.

1.5.1.3 Regulation of Gene Transcription from TATA-less promoters

In recent years there have been a growing number of reports of promoter elements 

that lack any discernible TATA box motif, originally thought to be a critical control 

point in the initiation process. Surprisingly, many of these, including creatine kinase, 

dihydrofolate reductase, cytochrome c oxidase and a number of ribosomal proteins 

(Azizkhan et a l, 1993; Basu et al., 1993), are “housekeeping” genes. In the case of 

cytochrome c oxidase (COX), the -17 to +20 region of the promoter contains fused 

binding sites for two enhancer proteins, NF-E1 (also called YY1) and SP1 (Basu et 

al, 1993). The transcription start site at position -8 to +9 is flanked by a 17 base 

initiator element (Inr). Mutation studies showed that basal transcription from this Inr 

element did not involve SP1 binding but was completely dependent on YY1 binding. 

The importance of SP1 sites in the regulation of TATA-less promoter initiation may 

actually depend more upon the presence of immediately adjacent YY1 binding. This 

is highlighted by the findings of Basu et al (1993) above, together with the 

demonstration that SP1 and YY1 physically interact to form a protein complex (Lee et 

al, 1993; Seto et al, 1993), suggesting a synergistic effect on TATA-less promoter 

activity in the presence of both factors. The role of this interaction with SP1 is still 

unclear, however, since SP1 actually counters YY1-mediated transcriptional 

activation of the TATA-less dihidrofolate reductase gene in Drosophila (Azizkhan el 

al., 1993). In light of the importance of YY1 as both a transcriptional enhancer and
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core element in TATA-less promoter formation, YY1 is discussed further in section 

1.5.2.3.

1.5.1.4 Differentiation and Development; Chromatin and Methylation in

Gene Expression

An important mechanism by which gene expression is regulated during development 

involves the idea of “inaccessibility” of genes to the basal transcription machinery. 

Early developmental transcription is thought to be a “competitive” situation in which 

the transcriptional machinery of the cell compete with the chromatin for access to 

promoter elements (Prioleau et a l, 1994). Compartmentalisation of genes into 

chromatin, via histone proteins and nucleosomes, is thought to inhibit transcription 

until relieved by an appropriate activator signal. Supporting this concept, TBP cannot 

bind to the TATA box when DNA is complexed into nucleosomes, while activators 

such as SP1 and GAL4 retain DNA binding function (Stargell and Struhl, 1996). 

GAL4 was reported to be capable of displacing nucleosomes from the GAL1 

promoter in-vivo, suggesting that one role of activators may be to open up chromatin 

to initiate transcription of developmentally repressed genes. Additionally, the CTD- 

tail of the RNA Pol II holoenzyme (Section 1.5.1.1) has been found to associate with 

members of a family of proteins, termed the SWI/SNF family, that can disrupt 

nucleosomes (Halle and Meisterernst, 1996).

Methylation of enhancer binding sites has been reported to affect the binding capacity 

and hence ability to activate gene expression of a number of transcriptional enhancers 

(Lamb et al, 1991; Gatson and Fried, 1995). Therefore, methylation is thought to 

function in the silencing of gene expression during developmental processes. In 

addition, it has been suggested that methylation may play a role in carcinogenesis 

(Counts and Goodman, 1995) resulting either from the loss of methylation 

(hypomethylatioh) of promoter regions of oncogenes or hvpermethvlation of tumour 

supressor proteins.
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1.5.2 Transcription Factors Central to Proliferation and Differentiation

While there are a whole host of transcription factors that have been identified in 

recent years suggested to play important roles in the regulation of processes such as 

proliferation and differentiation, a number of key factors appear more frequently than 

others. This suggests that they may play central roles in such processes on a more 

universal scale. The role that these factors play in the regulation of both basal and 

specific gene transcription is extremely complex. The promoter regions o f many of 

these factors contain binding sites for the factors they regulate themselves, as well as 

binding sites for the protein they encode. This establishes very complex regulatory 

feedback loops that, at our present state of knowledge, appear dauntingly complex. 

While it is impossible to describe every transcription factor known to date, three key 

factors involved in proliferation, apoptosis and differentiation are discussed in greater 

depth below. Their interactions with many of the other well known enhancers are 

briefly described to give an impression of the complexity of the problem facing those 

attempting to solve the puzzle that is higher eukaryotic transcriptional regulation.

1.5.2.1 The AP-1 Transcription Factor Complex

AP-1 (Activating Protein-1) consists of a family of protein initiation factors that 

hetero- and homo-dimerise to form transcriptionally active complexes. AP-1 was 

discovered as a transcription factor that mediates gene induction by the ester tumour 

promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (Karin, 1995) and hence the 

name TRE (TPA Response Element) for its recognition sequence. The main members 

of this family are c-fos, FosB, c-jun, JunB and JunD, as well as ATF (Activating 

Transcription Factor) (Angel and Karin, 1991; Karin et al., 1997). Both Fos and Jun 

have been shown to possess DNA binding and leucine zipper regions, and contact 

DNA directly (Abate et al., 1990). AP-1 activity is regulated through the relative 

ratios of hetero- and homo-dimer complexes, which exhibit differential activating 

potentials e.g. jun-jun dimers are more active than fos-jun in transactivating AP-1 

sites (Smeal et a l, 1991) (Figure 1.4). The activity of fos and jun proteins is regulated 

by phosphorylation through MAP (Mitogen Activated Protein) kinases (Whitmarsh 

and Davis, 1996).
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Transcription (Strong) Transcription No Dimerisation 

c-Junm
c Fos Figure 1.4: Cellular AP-1 complexes that activate

CRE elements. (A) c-Jun Homodimers are strong 
activators. (B) c-Jun/c-Fos dimers are activators. 

CRE (C) c-Fos proteins do not homodimerise.

The reported roles of AP-1 in the regulation both proliferation and apoptosis appears 

contradictory, since thay are completely opposing processes. The decision to commit 

to apoptosis, differentiation or hyperproliferation probably depends on a whole host of 

other factors (activators) within the cell that will alter the response of genes to which 

API binds. While both c-fos and c-jun are well established positive regulators of both 

proliferation and apoptosis, AP-1 has been implicated in the negative regulation of 

MyoD expression in dividing myoblasts (Pedraza-Alva et al., 1994). This suggests 

that the growth stimulatory effects of AP-1 may include downregulation of 

differentiation-related regulatory factors, such as MyoD, through binding to negative- 

acting elements in the MyoD promoter region. Treatment o f breast cancer cell lines 

with mitogens was shown to induce AP-1 activity, while treatment with the growth 

inhibitor and differentiating agent Retinoic Acid resulted in decreased AP-1 activity 

(van der Burg et al., 1995). These reports suggest that growth stimulatory effects of 

AP-1 are downregulated during differentiation itself, while its activity may 

downregulate differentiation-related genes in actively dividing cells. However, in true 

cell-specific complexity, RA-induced differentiation of EC (Embryonal Carcinoma) 

and ES (Embryonal Stem) cells results in increased AP-1 expression (Pankov et al.,

1994), implying roles for AP-1 in the positive regulation of differentiation.



1.5.2.1.1 The c-fos and c-jun proto-oncogenes of AP-1

c-Fos (Finkel osteogenic sarcoma) is a 42 kDa protein that belongs to the same family 

of bZIP (basic leucine zipper) transcription factors as c-jun (Curran, 1988; Karin, 

1995). While a number of transcription factors have been shown to induce DNA 

bending around their binding sites to influence promoter structure, the ability of both 

Fos and Jun to induce such bends is dubious and presently in doubt (McGill and 

Fischer, 1998). However, DNA bending is probably only required by those factors, 

such as YY1 (section 1.5.2.3), that are central to the regulation of core promoter 

activity and transcription initiation. The regulatory function of both Jun and Fos 

probably lies in interactions with other enhancers and basal factors.

Key regulatory kinases control cell growth and differentiation through signalling 

pathways now known to influence the activity o f both transcription and translation 

factors (cell signalling is briefly described in section 1.6.4.4). Oncogenic 

transformation by the Ha-Ras (Harvey-Ras) signalling kinase was shown to be 

mediated in part by the activation of c-jun and AP-1 activity (Binetruy et al., 1991). 

Ras-mediated activation of both ERK/PKC and JNK (c-Jun N-terminal kinase) results 

in the phosphorylation of c-jun on Ser-73 and Ser-63 of the transactivation domain 

(Smeal et al., 1991). Phosphorylation at these sites results in increased ability of c-jun 

to homo- and hetero-dimerise (Karin et al., 1995), while phosphorylation next to its 

basic region inhibits its ability to homo-dimerise (Jun-Jun) but not to hetero-dimerise 

(Jun-Fos). This suggests that different signalling factors will activate different genes 

through the formation of different amounts of both hetero- and homo-dimers of c-jun. 

A similar mechanism of phosphorylation-mediated regulation of c-fos activity was 

reported by Deng and Karin (1994). The short sequence around the JNK 

phosphorylation site of c-jun containing Ser-63 and Ser-73, is conserved in c-fos 

(Derijard et al., 1994; Davis, 1999) and is phosphorylated by a novel c-fos kinase, 

termed FRK (Fos-Regulating Kinase) (Deng and Karin, 1994). Activated Ras is 

thought, therefore, to activate three different kinases that carry its signal to the 

nucleus to induce AP-1 activity by altering both Fos and Jun phosphorylation levels 

and affinities for one another.
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c-Fos expression occurs in a variety of different biological situations. While the basal 

levels of c-fos expression are very low in most cells, treatment with a variety of agents 

leads to a dramatic but transient induction of expression. Expression of c-fos can be 

induced throughout the cell cycle (Curran, 1988) in both quiescent and differentiating 

cells. Both viral (v-) and cellular (c-) Fos proteins can transform cells, despite their 

different carboxy terminals (Verma, 1986). However, to efficiently transform cells, c- 

fo s  requires the addition of a viral LTR (Long Terminal Repeat) sequence and the 

removal of a 3’ non-coding element. The resulting loss of a 67 nucleotide region 

between the coding sequence and the poly(A) tail of the c-fos mRNA, absent in v-Fos, 

was suggested by Verma (1986) to be involved in an autoregulatory translational 

control of c-fos expression. While monocytic cell lines induced to differentiate were 

shown to express c-fos mRNA for at least 10 days, the c-fos protein was only detected 

for 120 min. The Fos protein was suggested to interact with this 67 nucleotide 

element and inhibit its own translation. Interestingly, the same mechanism of 

regulation has been proposed to regulate the levels of c-jun (Vig et a l, 1994) (Figure 

1.5). Under normal conditions both c-jun and GR (Glucocorticoid Recpetor) are both 

transcriptionally active, through AP-1 sites in their 5’ promoters. However, the c-jun 

mRNA is not translated because the c-jun protein interacts with the c-jun mRNA to 

inhibit its own translation. However, under mitogenic stimulation the Glucocorticoid 

Receptor is phosphorylated and its associated kinases dissociate. This allows 

interaction between GR and c-jun proteins, resulting in two interesting downstream 

effects on c-jun expression. Firstly, both c-jun and GR transcription are 

downregulated due to the lack of free c-jun available for AP-1 complex formation, 

now associated with the GR. Secondly, the lack of available c-jun results in a removal 

of the autoregulatory translational block on c-jun. This results in an increase in c-jun 

protein despite a decrease in c-jun mRNA (figure 1.5).
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Figure 1.5: Translational Autoregulation of c-jun via association with the 

Glucocorticoid Receptor (GR). Mitogenic Stimulation results in association of c-jun 

with the GR, leading to dissociation of Fos/Jun AP-1 complexes. Despite decreased 

transcription, synthesis of the c-jun protein increases due to relief from autoregulation 

of c-jun translation.

While c-fos has been shown to play roles in oncogenic transformation (Verma, 1986; 

Ledwith et al., 1990), elevated levels of c-fos are also observed during both 

differentiation (Hayashi et al, 1998) and apoptosis (Colotta et al., 1992; Smeyne et 

al, 1993). c-jun on the other hand has been reported to inhibit receptor-mediated 

apoptosis (Shimizu et al, 1996) in murine bone marrow cells while strong evidence 

for c-jun expression during human leukaemic lymphoblast apoptosis was provided by 

Zhou and Thompson (1996).

Clearly the roles played by the AP-1 complex and its components in proliferation, 

differentiation and development are complex. The outcome of elevated expression of 

either factor probably depends upon the presence of complementary factors within the 

cell. As such, responses will undoubtedly be cell-specific, and will even alter within
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the same cell types depending upon the levels of complementary factors expressed at 

a particular time in development. Balsalobre and Jolicouer (1995) proposed that the 

effector genes for Fos proteins are likely to be different for different cellular 

processes. This undoubtedly applies to the majority of other transcription factors also. 

The complex and often seemingly contradictory roles and interactions between 

transcription factors is highlighted by the fact that both c-fos and c-Myc mRNAs are 

induced by the mitogenic signalling factor, PKC (Protein Kinase C) (Ran et al., 

1986). It would almost seem counter-productive then, that Fos/Jun has been reported 

to interact with a negative element in the c-myc promoter region (Takimoto et al., 

1989). This may, however, represent additional, as yet unknown complexities in the 

interactions and functions of enhancer proteins binding within individual genes.

1.5.2.2 The c-myc proto-oncogene

First identified as the transforming gene of the avian myelocytomatosis virus (y-myc) 

(reviewed; Evan, 1990), the myc family of oncogenes must rank among the most 

widely studied of all proto-oncogenes. Despite this, there is a relative paucity of direct 

c-myc targets that have been identified to explain the capacity of this gene to induce 

transformation and malignancy (Ryan and Birnie, 1996). While no direct role for c- 

myc was found in some malignant conversions (DeBenedetti et a l, 1994), c-myc 

expression has been shown to be critical to transformation by both v-abl and BCR- 

ABL, as evidenced using dominant negative c-myc expression (Sawyers et a l, 1992). 

Genetic instability and abnormality is associated with lung cancers (Fong et al, 1995) 

and c-myc abnormalities are frequently associated with carcinogenesis, c-myc 

activation has been shown to occur via gene amplification, chromosomal 

translocation, proviral insertion and retroviral transduction (Ryan and Birnie, 1997).

1.5.2.2.1 c-Myc structure and Function

The c-myc gene is highly conserved, apart from its first exon, throughout vertebrate 

evolution. It first came to notice because of its homology to the viral oncogene, v- 

myc. While deregulated expression of c-myc has been associated with a variety of 

neoplasms, early studies indicated that introduction of the c-myc gene into normal 

fibroblasts was not sufficient to transform cells (reviewed: Evan et a l, 1990). The 5’
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region of the c-myc gene contains four promoters, termed P0-P3. However, the two 

major promoters, PI and P2 contribute 75%-90% and 10-25% of the cytoplasmic c- 

myc mRNAs, respectively (Ryan and Birnie, 1996; Nanbru et al, 1997). The 

functional significance of these promoters remains a mystery. They may play roles in 

processes such as proliferation and differentiaion, or may simply represent 

evolutionary redundance of the P0 and P3 promoters. The c-Myc protein is a 

phosphoprotein, phosphorylated by casein kinase II (Hagiwara et al, 1992) and DNA- 

PK (DNA-activated protein kinase) (Iijima et al, 1992, Chibazakura et al, 1997), and 

its expression is induced in response to serum and growth factor stimulation. c-Myc 

possesses a short cluster of basic amino acids that serve as nuclear localisation 

sequences (NLS) (Saphire et a l, 1998), in addition to DNA-binding leucine zipper 

motifs. The N-terminal region contains the transcriptional transactivation domain 

(Ryan and Birnie, 1996). There are two isoforms of the protein, c-Mycl and c-Myc2 

(Section 4.2.4.1.2), which differ by 20 amino acids in their N-terminal region 

(DeBenedetti, personal correspondence).

c-Myc exerts its effects through oligomerisation with other proteins (Figure 1.6), 

characteristic of other DNA-binding transcription factors (e.g. Jun and Fos, section

1.5.2.1.1). Originally thought to homodimerize, it is now known that this is untrue. 

Oncogenic activation of c-Myc requires heterodimerization with activating Max 

proteins (Amati et al, 1993), which then bind DNA through basic-helix-loop-helix- 

leucine zipper motifs. Negative regulation of c-Myc activity occurs through 

interaction with another factor, termed Mad (Ryan and Birnie, 1996), which has no 

transactivating function but competes with Max for binding to the same region of the 

c-Myc protein. It is, therefore, a competitive inhibitor of c-Myc activation by Max. 

No initial sequence specificity of c-Myc binding was apparent, but it is now 

understood that c-Myc binds through a basic amino acid a-helix region (Fisher et al,

1993) to what are termed myc-binding sequences or “E-box elements” (CACGTG). 

These sites require association of Max in addition to c-myc for activation (Ryan and 

Birnie, 1997). In-vivo activation of E-box containing genes by Myc/Max 

heterodimers, including an RNA helicase gene belonging to the DEAD-box family, 

has been demonstrated (Grandori et al, 1996). c-Myc/Max complexes, active in 

transcription, appear to be dependent on the levels of c-Myc available within the cell
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(Amati et al, 1993), that is, Myc synthesis is rate-limiting for Myc-Max dimerisation 

and activity. Myc overexpression activates, while Max overexpression represses 

transcription through E-box sites. This is because Max/Max homodimers do not 

activate, and so compete with Myc/Max complexes when Max is overexpressed 

(Somer et a l, 1998). Max overexpressing lines show reduced expression of 

transiently transfected Myc-responsive genes (Zhang et al, 1997), implying a role for 

Max expression in the regulation of processes such as differentiation.

l  *  x
Transcription No Activity No Activity

c-Myc

Figure 1.6: Activity o f E-Box Elements 
, Max bound to combinations o f M yc-associated

enhancer proteins. (A) Myc requires Max 
Mad for activation. (B) Max homodimers are

'w jw  inactive, since they lack the transactivation
domain of c-Myc (Blue oval). (C) Myc 

E-Box DNA activity is negatively regulated by Mad.

Max appears to be extremely simple and is comprised of only 160 amino acids, 80 of 

which constitute the DNA-binding/dimerization domain (Cole, 1991), suggesting that 

transactivation of basal transcription occurs through the longer N-terminal region of 

the c-myc portion of the Myc/Max complex. This explains the lack of transactivation 

by Max homodimers and the findings that myc levels are rate limiting in the 

transactivation by Myc/Max heterodimeric complexes. Myc/Max, Max/Max and 

Mad/Myc complexes all bind to the Myc E-box with the same affinity (Somer et al, 

1998). Therefore, since the transactivation domain of these complexes lies in the Myc 

N-terminal, complexes lacking a Myc partner act as competitive inhibitors of 

Myc/Max transactivation.
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However, c-Myc has also been shown to exhibit a degree of “dual functionality” in 

that it is capable of transcriptional repression, as well as activation (Antonson et al., 

1995), depending upon the position of the E-box relative to the transcription start site. 

As such, the role of c-myc in the regulation of cellular growth and proliferation should 

not be confined to a narrow view of transcriptional enhancement and stimulation of 

proliferation. Roles for c-myc in apoptosis and differentiation are evident, but as yet 

unclear. “It would be naive to assume that the only transcriptional targets of c-myc are 

those involved in transformation” (Ryan and Birnie, 1997). Human bronchial 

epithelial cells transformed by over expression of c-raf- 1 and c-myc proto-oncogenes 

were capable of inducing multi-differentiated carcinomas in nude mice (Pfeifer et al., 

1991). This suggests that the role of c-myc in regulating differentiation may be cell- 

specific, and that downregulation of myc expression during differentiation (Yen and 

Forbes, 1990; Valy-Nagyi et al., 1993) may not be a “universal” requirement of all 

cell types, as observed for AP-1 (Section 1.5.2.1). In addition, c-myc has been shown 

shown to play a role in the induction of apoptosis (Harrington et al., 1994; Kohlhuber 

et al., 1995).

c-Myc has been found to directly interact with a number of additional proteins, many 

of which are novel transcription factors in themselves (Figure 1.7). These interactions 

may form another level at which myc exerts its influence over the transcription 

process. A novel zinc-finger protein, termed Miz-1 (Myc interacting zinc-finger 

protein-1) has been identified that specifically interacts with Myc, but not with Max 

(Peukert et al., 1997). Miz-1 is a transcription factor with potent anti-proliferative 

effects. Binding of Myc to Miz-1 inhibits the promoter activation activity of Miz-1, 

relieving the anti-proliferative effects of Miz-1 expression. Of note is the interaction 

between c-myc and the developmental regulator known as Yin-Yang 1 (YY1). YY1 

regulates c-Myc levels, while association of c-Myc and YY1 proteins reduces the 

activity of both proteins. This may form the basis of an autoregulatory mechanism to 

control the levels/activity of these two proteins (Section 4.2.5). Such interactions with 

key transcription factors, regulating their activity, may play a significant role in the 

activity of c-Myc. This is particularly intriguing in light of the lack of direct 

transcriptional targets identified for c-Myc to date. A diagram of the known 

interactions between c-Myc and other enhancer proteins is shown in Figure 1.7 

(reproduced from Ryan and Birnie, 1996):
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Figure 1.7: Regions of c-Myc interacting with other transcription factors. (Note: pl07 

is a member of the Retinoblastoma family of negative regulators. Its association with 

c-Myc inhibits the transactivation activity of c-Myc).

1.5.2.3 The Yin-Yang Transcription factor, YY1 (NF-E1, NF-S, UCRBP,

CF-1)

YY1 (Yin-Yang 1) is a developmentally important transcription factor, so-named 

because of its ability to act as both a transcriptional activator and repressor. It belongs 

to the GLI-Kruppel family of negative transcription factors (Licht et a l, 1990; Shi et 

al., 1991), of which relatively few are known in eukaryotes. The YY1 gene was 

localised to chromosome 14 in humans (Yao et al., 1998), although pseudogenes or 

additional YY1 genes have been suggested to exist (Zhu et al., 1994). The promoter 

region of YY1 lacks consensus TATA or CCAAT boxes, but contains multiple SP-1 

binding sites (Yao et al., 1998), including a critical promoter region (Safrany and 

Perry, 1993). Four laboratories working independently cloned the YY1 gene in 1991, 

perhaps highlighting the universally important role of YY1 in transcriptional 

regulation:

1. Park and Atchison (1991) isolated a factor they termed NF-E1, which was capable 

of binding to both the immunoglobulin k 3 ’ enhancer and the immunoglobulin 

heavy-chain pEl site, transcriptionally repressing and activating these promoters, 

respectively. The authors also reported that NF-E1 (Common Factor 1; CF1) was



capable of binding the c-myc promoter. The binding of CF1 was shown to be 

capable of activating transcription through a c-myc CF1 site (Riggs et al., 1991). 

Overexpression of YY1 was shown to be a strong activator of murine c-myc 

expression, with mRNAs increasing from both the PI and P2 promoters of the 

endogenous c-myc gene (Riggs et al., 1993). These promoters account for the vast 

majority of c-myc transcript present in the cytoplasm [Section 1.5.2.2.1],

2. NF-5 was found to bind to and activate critical downstream promoter elements in 

the mouse ribosomal protein rpL30 and rpL32 genes (Hariharan et al., 1991).

3. Flanagan et al (1991) isolated a negative transcription factor, UCRBP (UCR- 

Binding Protein) that bound to the upstream conserved region (UCR) of MMLV 

(Moloney Murine Leukemia Virus), downregulating promoter activity. A negative 

regulatory region in the HPV-18 (Human Papilloma Virus) was shown to bind 

YY1 with high affinity (Bauknert et al., 1992) and mutation of the YY1 binding 

site leads to enhanced activity of the HPV-18 promoter. Many viruses that cause 

cancer have been found to have lost YY1 binding sites, which may be a means of 

escaping this negative regulation (Shrivastava and Calame, 1994).

4. Finally, YY1 was isolated and given its more widely used name by Shi et al 

(1991) when it was found to associate with the Adenovirus P5 promoter, activated 

by the viral E l A protein. In the absence of E1A this promoter is silenced by YY1, 

and only becomes activated in the presence of E l A. Both E l A and YY1 were 

found to share overlapping binding sites in the P5 promoter, but YY1 binding is 

not eliminated upon E l A binding, suggesting that competition for binding is not 

the means by which regulation occurs. ElA-mediated activation is speculated to 

involve unmasking regions of the YY1 N-terminal involved in activation but 

normally masked in the full-length protein (Lee et al, 1994). (Figure 1.8).

Consensus activation and repression sequences for YY1 are shown below, although

these are known to vary giving rise to changes in binding capacity of these sites for

YY1 (Hyde-DeRuyscher et al., 1995).

Activation: CGGCCATCTTGNCTG

Repression: CCATNTTNNNA
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1.5.2.3.1 The Structure and Function of YY1

There is evidence that YY1 is a phosphoprotein. Eight consensus phosphorylation 

sites are found in the deduced amino acid sequence and YY 1 activity can be abolished 

through the use of phosphatases (Becker et al., 1994). The amino acid sequence of the 

YY1 protein displays a number of unique properties to date, including acid rich 

domains similar to transcriptional activators, as well as Ala+Gly-rich and His rich 

sequences common to transcriptional repressors (Park and Atchison, 1991). The very 

unusual N-terminal region consists of 11 consecutive negatively charged amino acids 

and 12 consecutive histidines, thought to form two oppositely charged symmetrical 

helices separated by a highly flexible glycine-rich loop (Helix-Loop-Helix; HLH) 

(Hariharan et a l, 1991). These regions are speculated to be capable of forming an 

acidic activation domain that could be neutralised or modulated under certain 

conditions to allow interaction with polymerase II before and after transcription has 

commenced. The amino terminal transactivation domain requires amino acids 16-29 

and 80-100 for maximal activity (Bushmeyer et al, 1995).

The C-terminal contains four zinc fingers, characteristic of DNA-binding transcription 

factors, while the central region is largely unstructured, consisting of large loop and 

helix regions. The YY1 repression domain lies near the carboxy terminus and is 

embedded within the YYl zinc finger region necessary for DNA-binding (Bushmeyer 

et al, 1995). Particular importance has been placed upon zinc fingers 3 and 4 for 

repression activity.

The functional diversity of YYl was conceivably attributed to its structural plasticity 

(Hariharan et a l, 1991). It is generally thought that repression of gene transcription is 

the usual function of YYl, with the activating N-terminal region being masked. 

Interaction with activating proteins, such as viral E l A, then releases the N-terminal 

region and converts YYl to an activator of transcription through the same promoter 

(Figure 1.8). However, it has also been suggested that repression is not the intrinsic 

activity of YYl. Rather, YYl acts to bend DNA (Natesan and Gilman, 1993) in a way 

that modulates the interaction of proteins bound to the two flanking regions. When the 

orientation of the YY 1 binding site is reversed or the phasing of the sites is changed, 

YYl becomes an activator of the same promoter (Natesan and Gilman, 1995). Rather
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than bending two proteins away from one another, YYl now bends them towards one 

another to bring them into closer contact and increase association. Therefore, YYl 

will have distinct local effects on protein-DNA and protein-protein interactions 

depending upon the position and orientation of its binding site within the promoter, 

supporting a general role for YYl in the building of highly organised promoter 

complexes. This is particularly important in the formation of promoter structures at 

TATA-less promoters (Section 1.5.1.3), since YYl has been shown to bend DNA in a 

manner suitable to provide a site for transcription initiation (Kim and Shapiro, 1996). 

Both promoter orientation-dependent and co-factor-dependent activity of YYl was 

also suggested in the human Interferon-y promoter (Ye et a l, 1994). In this case, 

DNA-binding is a required function of YYl, while in other cases DNA-binding is not 

required for YY 1 to exert its effects upon promoter formation and activity.

Figure 1.8: Diagrammatic Representation of EIA-mediated activation of YYl 

Transactivating Potential. YYl is a repressor of the P5 promoter (A), but in the 

presence of EIA, the N-terminal Activating Region (Blue) is unmasked and 

transcription is activated (B).

1.5.2.3.2 Transcription Factors interact with YYl to regulate its activity

A YYl binding site in the c-fos promoter is required for adenovirus EIA activation of 

c-fos transcription (Gedrich and Engel, 1995). Rather unusually and almost 

paradoxically, repression by YY 1 was also found to be independent of the presence of 

YYl binding sites in c-fos reporter constructs (Zhou et al., 1995). It was shown that 

YYl repression was mediated through interaction of YYl with CREB (cyclic AMP 

Response Element Binding) Proteins. Thus, within the c-fos promoter alone YYl is 

known to interact with EIA and CREBPs to either increase or decrease transcription, 

respectively, and these functions can be both dependent and independent of the ability 

of YYl to bind DNA. This has lead to claims that YYl activity is regulated through
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interactions with other proteins and that it must contain a C-terminal repression 

domain that is independent of its ability to bend DNA (Hyde-DeRuyscher et al, 

1995).

Numerous YYl-associated complexes appear to be targets for EIA  activation (Shi et 

al., 1991; Gedrich and Engel, 1995; Labrie et al., 995). In fact, a major role of viral 

EIA  may be the activation of genes normally repressed by YYl, including viral genes 

(Shrivastava and Calame, 1994). SP1 frequently acts as a regulator of YYl-associated 

complexes (Bennett et al., 1999), particularly during TATA-less promoter complex 

formation (Section 1.5.1.3). “Bi-functionality” is evident in the ability of YYl to 

simultaneously upregulate some genes while downregualting their antagonists. For 

example, transcription of the LDL (Low-Density Lipoprotein) receptor gene is 

inhibited by YYl during high cholesterol (Bennett et al., 1999), while that of 

Cholesterol Esterase is enhanced (Gauthier et al., 1999). This was attributed to 

interactions of YYl with SP1 in the cholesterol esterase promoter and with SRE-BP 

in the LDL promoter, inhibiting their function. The ability of YYl to repress 

numerous SRE-BP (Serum Response Elemement-Binding Proteins) regulated genes 

has been associated with the displacement of Factor Y, a positive regulator of gene 

transcription (Ericsson et al, 1999). Similar “bi-functionality” is evident during 

proliferation, in which YYl upregulates c-myc gene transcription, correlating with 

cellular proliferation, and inhibits muscle actin expression, correlating with 

differentiation (Lee et al, 1994). However, despite being shown to interact both in- 

vitro and in-vivo (Lee et al., 1993; Seto eta 1, 1993), both YYl and SP-1 appear to 

function independently at the surf-1 promoter, where the YYl binding site has been 

shown to be both necessary and sufficient to confer growth-factor inducibility in 

transcription of the Surf-1 gene (Cole and Gatson, 1997). Activation of transcription 

by YYl independent of DNA-binding has been shown for the a-1 acid glycoprotein 

(AGP) promoter through functional interaction with a negative DNA-binding factor, 

termed Factor B (Lee and Lee, 1994). In the human GM-CSF (Granulocyte 

Macrophage-Colony Stimulating Factor) promoter co-factors in addition to YYl were 

required for activator function and promoter complex formation (Ye et al., 1994), but 

in this case binding of YYl to DNA is required (Ye et al., 1996),
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Additionally, YYl has been suggested to participate in the stimulation of 

autonomously replicating human chromosome fragments through interaction with a 

replication-enhancing element, REE1 (Obuse et al., 1998) and in the regulation of 

transposable elements of the genome (Becker et al, 1993; Satyamoorthy et a l, 1993; 

Singer et a l, 1993). These elements are thought to be a major source of functional 

diversity allowing evolution to continue. Overall, YY 1 appears to perform a multitude 

of tasks, many of which are influenced by its ability to bind to DNA and affect 

promoter structure and formation, as well as interact with numerous transcriptional 

enhancers to modify its own activity. The complexity of the regulatory effects of YYl 

is highlighted by Bushmeyer et al (1995); “YYl can either activate or repress some 

promoters depending on either promoter architecture or intracellular milieu”. These 

unique properties suggest an unusual and complex role for YYl in the regulation of 

gene expression.

1.5.2.3.3 YYl and TATA-less Transcription

As outlined in Section 1.5.1.3, YYl is thought to play a central role in the formation 

of transcription initiation complexes at TATA-less promoters. Promotion of TATA- 

less transcription by YYl was initially suggested by the in-vitro transcription 

experiments of Seto et al (1991) and Hahn et al (1992). YYl has been shown to bend 

DNA and is thought to play a role in the formation of promoter structures for RNA 

pol II binding (Natesan and Gilman, 1995; Kim and Shapiro, 1996). In an in-vitro 

transcription reaction, supercoiled DNA templates could be transcribed in the 

presence of only YYl, TFIIB and RNA Pol II (Usheva and Shenk, 1994). Overall, 

YYl is thought to be a key regulator of TATA-less promoter initiation, probably in all 

TATA-less promoters (Azizkhan et a l, 1993). Its ubiquitous expression is in 

agreement with the findings that many universally expressed housekeeping genes 

appear to lack any discernible TATA recognition sequence, including the YYl gene 

itself (Yao et al, 1998). In light of this, a report challenging the concept that TBP- 

mediated association of TFIID with the TATA-box is limiting in the rate of 

transcription initiation is of interest (Antoniou et al, 1995). Altered transcription was 

only observed when TBP binding was drastically decreased in the promoter of the 0-
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globin gene. However, this promoter also contains an active YYl binding site, the 

importance of which may have been overlooked by the authors.

The ability of YYl to interact with TFIIB/D is also thought to be a means by which 

YYl regulates TATA-less promoter formation, by-passing the requirement for TBP in 

these systems. Recently TAFu55 (TATA-Binding Protein-Associated Factor), a 

subunit of TFIID, has been shown to interact directly with the largest subunit, 

TAFn230 through its central region and with multiple activators -  including SP1, 

YYl and Adenoviral EIA -  through a distinct amino-terminal domain (Chiang et a l,

1995). This subunit may form the “bridge” between transcriptional enhancers and the 

actual transcriptional components surrounding RNA polymerase II. It is possible that 

YYl is part of, or is actually the “bridging unit”, particularly in TATA-less promoters 

(since TAF55 is a basal unit, while YYl appears to be “in-limbo” between enhancer 

and basal transcription factor, depending upon the promoter). The effects of SP1 on 

YYl-mediated transcription initiation, particularly from TATA-less promoters, may 

reside in its interaction with TAFn55/230 to guide the initiation complex towards the 

Inr-associated YYl to begin initiation.

Further evidence that YYl plays a role transcription through TATA-less promoters 

has been provided by Gatson and Fried (1994), Cole and Gaston (1997), Johansson et 

al (1998) and Karantzoulis et al (1999). In addition, YYl is thought to play a role in 

the downstream regulation of transcription (Last et al, 1999). The majority of known 

transcriptional enhancers are upstream, since they would interfere with the actual 

transit of the RNA polymerase II if situated downstream, while YYl appears to 

interact with many of the basal factors and may form part of the basal RNA 

holoenzyme in some circumstances.

1.5.2.3.4 YYl in Differentiation and Development

The unusual nature of the YYl protein has led to speculation that it may play a key 

role in the regulation of differentiation and development. Both Chromatin structure 

and methylation are thought to be key mechanisms by which cells control specific 

gene transcription during differentiation. The Nuclear Matrix Protein-1 (NMP-1), a 

transcription factor which has been shown to associate with the nuclear matrix to
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mediate gene-matrix interactions within the nucleus, has been shown to be none other 

than YYl (Guo et al, 1995). Sequences necessary for nuclear localisation and 

association with the nuclear matrix have been identified in the C-terminal region of 

the YYl peptide (Bushmeyer and Atchison, 1998; McNeil et al., 1998), Nuclear- 

matrix-associated transcription factors may affect gene regulation by mediating 

transient associations between DNA and the nuclear matrix, locally unravelling 

chromatin structure to allow the transcriptional machinery to access promoters and 

begin transcription, implying roles for YYl in activating repressed genes during 

development.

Binding of YYl to DNA during globin promoter formation is known to be 

methylation-sensitive (Satyamoorthy et al, 1993; Yost et al., 1993), which may imply 

a role for YYl in tissue- and developmental-specific transcription of genes. A YYl 

binding site is thought to function in the stage-specific expression of the fetal 

(gamma) globin gene (Zhu et al., 1999). The human e-glob in gene is transcribed in 

erythroid cells only during the embryonic stages of development. A binding site for 

YYl, around nucleotide -269, was identified as critical in the formation of the e- 

globin repressor complex (Raich et a l, 1995), forming part of the local regulatory 

elements suggested to be involved in the regulation of embryonic stage-specific 

expression of this gene. Processes such as these, resulting in the stage-specific 

switches in gene expression, are thought to be associated with methylation of CpG 

islands, which silence transcription of developmentally important genes and to which 

YYl binding is sensitive.

In addition, levels of YYl have been shown to decrease during differentiation of 

mouse myoblasts (Lee et al., 1992). YYl contains several peptide regions prone to 

proteolytic cleavage, raising the possibility that protease-mediated degradation events 

may contribute to diminished YYl protein levels during myogenesis (Lee et al,

1994). Two proteolytic pathways through which YYl can be differentially targeted 

under different cell growth conditions have been identified (Walowitz et a l, 1998), 

identifying a role, at least partially, for protease calpain II (m-calpain). However, in 

serum starvation studies YYl protein expression was lost only after 24 hours, despite 

the fact that YYl transcript expression was lost within hours (Flanagan, 1995),

38



suggesting that the YYl protein is relatively stable. This does not exclude the 

possibility that proteolytic regulation of YYl levels may play a role in different 

processes.

Treatment of myoblasts with the differentiation modulating agent, BrdU results in 

inhibition of myogenesis, resulting in/from an increase in expression of YYl and 

decreased a-actin levels (Lee et al, 1992). Transfection of SRF (Serum Response 

Factor), which competes with YYl for the regulation of a-actin gene transcription, 

could directly transactivate the actin promoter in BrdU-treated myoblasts. Both SRF 

and YYl are ubiquitously expressed, suggesting that they may have antagonistic 

functions in regulating genes such as c-fos, a-actin and cardiac creatine kinase-M 

(Vincent et al, 1993; Liu et a l, 1995) during development. High levels of YYl in 

non-differentiated muscle cells down-regulate the dystrophin promoter, at least in 

part, by interfering with the spatial organisation of the promoter (Galvagni et al, 

1998). YYl and a positive regulator of dystrophin, DPBF (dystrophin promoter 

bending factor), induce opposite bends in the CArG element of this promoter, 

suggesting that their binding induces alternative promoter structures to regulate 

muscle development.
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1.6 Translational regulation of Gene Expression

Initial research into the control of gene expression in animal cells assumed that 

regulation would be mainly at the level of transcription, presuming that the cell would 

not expend valuable energy transcribing mRNAs that were not going to be translated 

into a functional protein. It has recently been realised, however, that regulation of 

gene expression at the level of translation is of critical importance to early embryonic 

development (Curtis et a l, 1995; Vassalli and Stutz, 1995), cell growth (DeBenedetti 

and Rhoads, 1990) and differentiation (Luis et a l, 1993; Beretta et al, 1998). 

Translational regulation also allows cells to respond more rapidly to environmental 

stimuli such as nutritional changes (Wang et al, 1998) and stresses such as viral 

infection (Clemens et al, 1996) than would otherwise be permitted by the de novo 

response of transcription. During early embryogenesis many of the mRNAs produced 

are translationally repressed and sequestered in “masked”, inactive but stable storage 

complexes called mRNPs (Messenger Ribonucleoproteins) (Vassalli and Stutz, 1995; 

Spirin, 1996). These allow a high rate of transcription in the early stages creating a 

stockpile of mRNA for use in later development. Translation has been shown to be 

essential for the generation of protein gradients and the graded distribution of proteins 

within a single cell, generating the asymmetries required for the formation of 

embryonic pattern (Gavis et al, 1992; reviewed by Curtis et al, 1995). It is now 

becoming evident that translational repression is an important mechanism employed 

by cells to closely regulate the temporal expression of differentiation-related genes 

such as LOX, Tra-2 and Lin-14 (section 4.2.2.1.1).

Eukaryotic mRNAs, unlike their Prokaryotic equivalents, have long runs of 

polyadenine residues, known as Poly(A) tails at their 3’ ends and a 5’ “Cap” 

consisting of methylated Guanine residues (Watson et al, 1992). Neither feature is 

encoded on the DNA sequence but is added to the ends of transcribed RNAs as the 

transcript is processed (Figure 1.9).

40



5 ’ Untranslated 
Region (UTR) Coding Region 3 ’ UTR and 

Poly(A) tail

Figure 1.9: Basic Structural Features of Eukaryotic the mRNA
molecule. (A) The Cap guides the ribosome onto the correct end of the 
mRNA. Complexity in the 5’ UTR (Blue) and binding of repressor 
proteins (Green) inhibit the progress of the scanning PIC. (B) An in­
context AUG (see fig. 1.11) determines the beginning of the coding 
region. (C) The 3’ UTR (Orange) consists of elements that regulate the 
polyadenylation (AAA) of the 3’ end of the mRNA.

1.6.1 The 3’ Untranslated region

The 3’ Untranslated region (UTR) of eukaryotic mRNAs consist of a string of non­

coding sequences followed by a stretch of Adenine residues at the extreme 3' end, 

called a poly(A)-tail (Figure 1.9). The significance of the poly(A)-tail is only now 

beginning to be realised. The 3' UTR and poly(A)-tail, and their binding proteins are 

now thought to play a crucial role in the regulation of translation initiation, mRNA 

masking, mRNA degradation and storage, mRNA transport and localisation within the 

cell. It is now generally accepted that the 3' end of the mRNA interacts with the 5' end 

to influence events at the start of the transcript, laying to rest the old ideas of the 

mRNA being a one-dimensional, non-interacting molecule (Figure 1.10). In fact, the 

3-D model of the structure of the mRNA is rapidly gaining support and it helps to 

explain the concepts of mRNPs, masking, and the very strong influence of the 3' UTR 

on initiation events at the extreme 5’ end of the transcript. In agreement, several EM 

images have proven the existence of circular mRNAs.



Figure 1.10: Circularisation of eukaryotic mRNAs is thought to be due to 

interaction between 5’- and 3’-bound proteins. Known to interact are eIF-4G and 

PAB (Poly(A)-binding protein) (Section 1.6.3.2.4.2).

The length of the poly(A)-tail influences the translation of many maternal mRNAs 

during early embryonic development. Repressed or dormant mRNAs are "awoken" 

through polyadenylation induced by developmental signals (Sonenberg, 1994; Spirin,

1996) which probaly recruits initiation factors to begin translation. The 3' UTR of 

maternal mRNAs is critical to the control of poly(A)-tail length and hence 

translational efficiency of the mRNA, as shown by the removal of the 3' UTR 

(Wormington, 1993). Dormant mRNAs have a short poly(A)-tail, mRNAs that are 

being silenced undergo a shortening in the length of the poly(A)-tail (deadenylation), 

mRNAs that are translationally recruited or activated undergo a poly(A)-tail 

lengthening, and it has been shown that a long poly(A)-tail is necessary for 

translation. Deadenylation is almost invariably coupled with translational repression 

(Wormington, 1993), with a large proportion of the cells mRNAs becoming 

deadenylated at maturation. The influence of the 3' UTR is thought to be due to the 

presence of cis-acting regulatory sequences that recruit factors that control the 

cytosolic deadenyaltion and readenylation of the mRNA (Vassali and Stutz, 1995), as
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well as sequestering particular proteins to the mRN A involved in the regulation of 

translation initiation (Sonenberg, 1994; Tarun and Sachs, 1996; Fraser et al., 1999).

1.6.2 The 5'-Untranslated Region ( 5'-UTR )

The 5’end of Eukaryotic mRNAs is blocked by the addition of a 7-Methyl-Gppp 

‘Cap’ (7-M-Gppp) which consists of seven methylguanosine residues joined to 

mRNAs by triphosphate linkages added during the synthesis of the primary transcript 

(Figure 1.9). The Cap-site guides the ribosome onto the transcript via the Cap-binding 

protein, eIF-4E, from where it scans along the 5’ UTR in search of an in-frame AUG 

start codon (Svitkin el al., 1996). The 5’ Cap-structure has been identified as playing 

roles, in addition to initiation, which include stability, splicing, 3 ’ end processing and 

nucleocytoplasmic transport (Sonenberg and Gingras, 1998).

Once bound to the cap, “scanning” for the AUG initiator codon is regulated by the 

degree of secondary structure adopted by a particular mRNAs 5’ UTR. Growth- 

related mRNAs tend to have long, complex 5’ UTRs that impedes the progress of the 

scanning ribosome and renders these RNAs extremely susceptible to translational 

regulation (van der Velden and Thomas, 1999). The sequence context surrounding the 

AUG/CUG start site determines the rate of initiator codon recognition by the scanning 

ribosomal RNA (Section 1.6.3). In addition, the binding of mRNA-specific repressors 

has been found to play critical roles in the regulation of developmental proteins 

(reviews; Wormington, 1993; Sonenberg, 1994; Standart and Jackson, 1995), as well 

as in the rapid response of cells to environmental changes, such as the iron response 

(Bhasker et al., 1993; Schalinske et al, 1998). These are discussed further in section 

4.2.3.3.1,

1.6.3 Translation Initiation

Initiation is the primary target for the control of translation, with the binding of the 

ribosomal pre-initiation complex to the mRNA and the scanning process being 

controlled through a number of mechanisms including RNA-binding repressors, 

modulation of the Initiation Factors involved (usually by phosphorylation), and the 

effects of secondary structure adopted by a particular mRNAs 5’-UTR.
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The basic process of translation initiation involves the binding of the 40S Ribosomal 

subunit complexed with a charged initiator tRNA (tMet) to the 5’ Cap from where it 

scans the 5’ UTR in search of an in-frame AUG start codon. tRNAs (transfer RNAsl 

carry the Amino Acids to the actively translating ribosome during protein synthesis. 

The Eukaryotic signal to begin translation is an AUG codon in a particular context, 

and as such, all proteins begin with a Methionine (encoded by AUG and recognised 

by t-Met) that is later cleaved. The 40S ribosomal subunit is guided onto the correct 

region of the mRNA to begin translation by numerous Initiation Factors, known as 

elFs (eukaryotic translation Initiation Factors), that catalyse various stages of the 

binding, scanning and initiation processes (reviews; Kaufman, 1994; Pain, 1996, 

Kleijn, 1998). The initiation complex binds to the mRNA 5’-UTR at the 7’-Methyl- 

Gppp Cap, guided by particular elFs, from where it “scans” the 5' UTR in search of 

the initiator AUG codon. Recognition involves the Ribosomal mRNA and tRNA and 

the rate of initiation is influenced by the context of the bases surrounding a particular 

mRNAs AUG (Figure 1.11). The better the context of the bases surrounding the AUG 

initiator match those of the scanning complex RNA the slower the complex passes 

over the AUG codon, stalling the ribosome and increasing the rate of recognition of 

the initiator codon. It is primarily structural complexity in the 5 ’ UTR that affects the 

rate of initiation due to the formation of secondary structures that can be quite 

inhibitory to the progress of the scanning 40S ribosomal complex.

(A ) (B )

Figure 1.11: R ibosom al Stalling and S tart Codon Recognition. (A) A
good context (green) match surrounding AUG Start codons results in 
W atson-Crick binding of RNAs, stalling of the ribosome and increased 
recogntion by the initiator M et-tRNA. (B) Poor contexts result in 
ribosomal “slipping”, where the moving ribosome does not stall and 
recognises the AUG less frequently. Poor translation occurs in this case.
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1.6.3.1 Pre-initiation complex formation and CAP-binding Events

The translation process is primarily regulated by the rate of Ribosome binding to the 

mRNA, which requires at least 13 different initiation factors known to date. The 

initiation factor eIF-2 binds Met-tRNA and forms a ternary complex with GTP, which 

then binds to the 40S Ribosomal subunit. This complex then associates with the 5'- 

end of the transcript via an interaction with another initiation factor, eIF-4F, which is 

the 5' Cap-binding complex, to form the 43 S Pre-Initiation Complex (PIC). eIF-4F 

(section 1.6.4) consists of three primary subunits; eIF-4E, the cap binding protein, 

eIF-4G (p220), the scaffold protein upon which the eIF-4F complex is formed, and 

eLF-4A, the helicase that is involved in the unwinding or “melting” of 5’UTR 

structure to allow efficient Ribosome binding and scanning to occur. The PIC binds 

the 5' end of the mRNA at the Cap recognition site and begins to scan the 5'-UTR of 

the mRNA in the 3' direction in search of an AUG initiator codon in the appropriate 

context. The event of initiation is cyclic, in that once initiation at the AUG codon 

occurs the initiation factors dissociate and are recycled for use in another round of 

intiation (Jackson, 1998) (Figure 1.12).

^  A
eIF-2-GDP

SOS Ribosome

A GTP

m7GpppG Scanning

eIF-4F

eIF-2-GTPm ettRN A

Figure 1.12: The process eukaryotic translation initiation is a “recycling” event.
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1.6.3.2 The initiation Factors

With their individual roles the eukaryotic translation Initiation Factors (elFs) act in 

concert to assemble the ribosome on the 5’ end of the mRNA and begin the scanning 

process in search of the initiator AUG codon.

1.6.3.2.1 eukaryotic Initiation Factor 1, eIF-1:

eIF-1 is essential to the transfer of Amino Acid-tRNA, as a tRNA-GTP-eIF2 complex, 

to the 40S ribosomal subunit (Pestova et al., 1998, CSHL Abstracts) through 

interactions with eIF-2. elF l/lA  can destabilise abberant preinitiation complexes.

1.6.3.2.2 eukaryotic Initiation Factor, eIF-2:

eIF-2 recruits the initiator tRNA (Met-tRNA) and conducts it as a Met tRNA-eIF2- 

GTP complex to the 40S Ribosomal subunit, to form the 43 S pre-initiation complex 

(Colhurst et al, 1987; Altman and Trachsel, 1993). Once the tRNA has released the 

charged Amino Acid upon AUG recognition, the eIF-2 polypeptide is released as a 

GDP bound inactive binary complex. The recycling of eIF-2 to begin another round of 

initiation requires that the bound GDP be exchanged for a molecule of GTP, which is 

catalysed by eIF-2B (Section 1.6.3.3.2.1). Within the cell, eIF-2B is present at lower 

molar concentrations than eIF-2, which forms a means for the regulation of eIF-2 

activity mediated by eLF-2B. Phosphorylation of eIF-2, on the a  subunits' Ser 51 

residue (Mellor et al, 1993) increases its affinity for eIF-2B thereby sequestering it in 

an inactive eIF2-GDP-eIF2B complex. The resultant reduction in the levels of free 

eIF-2B available to catalyse the recycling of eIF-2 reduces the rates of translation 

initiation (Oldfield et a l, 1994). Phosphorylation of the a-subunit of eIF-2 and the 

subsequent down-regulation of translation has been associated with the mammalian 

eIF-2a kinases PKR and HRI, and the Yeast kinase GCN2 (Section 1.6.3.2.2.2). 

Glucose, which stimulates insulin protein synthesis levels, has been shown to 

stimulate the activity of eIF-2B (Gilligan et al, 1996), increasing eIF-2 recycling.
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eIF-2 is a complex of three polypeptide chains, a , P and y, which are thought to 

remain associated throughout the process of initiation (Proud et al., 1991). The a- 

subunit is the site for regulation of eIF-2 activity, via phosphorylation. The P-subunit 

is involved in the interaction of eIF-2 with eIF-2B (Section 1.6.3.2.2.1), which 

recycles eIF-2 via GDP-nucleotide exchange, and with eIF-5 (section 1.6.3.2.5), 

which catalyses GTP-hydrolysis to release the tRNA during initiation (Figure 1.13). 

The y-subunit is the actual “carrier” of the GTP/GDP molecule (Asano et al., 1998; 

Pavitt etal., 1999).

eIF-2-mediated downregulation of translation is seen in response to viral infection, 

due to induction of PKR activity by viral ds-RNA, but recently roles have been 

discovered for eIF-2 phosphorylation in the regulation of cell growth and 

differentiation (Section 4.2.4.1.3).

e I F - 5

Figure 1.13: Diagrammatic Representation of the Structure of the eIF-2 multi­

unit Polypeptide and its interaction with eIF-5 and eIF-2B. They bind eIF-2 by 

similar mechanisms (bi-partite motifs) and are both involved in nucleotide exchange 

in eIF-2, recycling eIF-2 (eIF-2B) and catalysing Methionine release (eIF-5) during 

initiation.
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1.6.3.2.2.1 eukaryotic Initiation Factor, eIF-2B

eIF-2B is frequently referred to as the GEF, or Guanine Nucleotide Exchange Factor, 

and is a complex of five polypeptide chains, termed a, (3, y, 8 , and e, in both 

mammalian cells and yeast (Oldfield and Proud, 1992, Oldfield et al., 1994). It 

catalyses the guanine 

nucleotide (GTP/GDP)

exchange reaction required to 

recycle eIF-2 bound as an 

inactive binary complex with 

GDP, into the active GTP- 

bound form capable of 

recruiting new molecules of 

initiator tRNA. In the absence 

of eIF-2B, nucleotide exchange 

in eIF-2 is extremely slow 

(Oldfield et al., 1994).

Composed of five non-identical 

subunits, eIF-2B is structurally

Figure 1.14: Interactions between eIF-2 and 
its regulatory factor, eIF-2B. R= Regulatory 
Region, C= Catalytic Region.

complex compared with other exchange factors. eIF-2B can be physically and 

functionally divided into two parts (Figure 1.14): the regulatory subcomplex is 

composed of three homologous subunits (a, (3, and y) that responds to eIF-2a Ser51 

phosphorylation, while the functional nucleotide exchange/catalytic complex resides 

in the other two subunits (8 , s) (Pavitt et al., 1999). The eIF-2Bs subunit appears to 

possess the nucleotide exchange activity (Oldfield et al., 1996). It has recently been 

speculated that eIF-2B, in conjunction with eIF-2a, are the key factors in the 

regulation of global protein synthesis (Kimball et al., 1998; Kimball et al., 1999). All 

eukaryotic mRNAs exhibit the same dependence for Met-tRNA for initiation, 

regulated by association with eIF-2a to become incorporated into the 43S PIC and 

ultimately into the translating ribosome.
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1.6.3.2.2.2 The eIF2a Kinases

Phosphorylation of the eEF2a subunit of eIF2 is the best-characterised mechanism for 

the downregulation of protein synthesis (Review; Clemens et al., 1996). This 

phosphorylation has been shown to involve a group of enzymes known as the eIF2a 

kinases. The eIF2a kinases possess catalytic domains that show 12 conserved 

subdomains characteristic of all eukaryotic Serine/Threonine kinases, together with 

similarities such as large insert sequences that distinguish them from other kinases 

(DeHaro et al, 1993; Chen and London, 1995). The subdomain V homology within 

this class of kinases may indicate that this motif contains the substrate specificity 

domain. However, the non-catalytic regions are very different from one another, 

allowing different physiological signals to stimulate phosphorylation of eIF2 under 

different circumstances. For example, both HRI and PKR (discussed in the following 

paragraph) perform the same task of phosphorylating eIF-2a, via the subdomain V 

shared by this class of kinases. However, due to different non-catalytic regions, their 

activity is induced in response to different physiological signals (heme deficiency and 

viral infection, respectively) (DeHaro etal., 1993).

Of the known eIF-2a kinases, HRI (Heme Regulated Inhibitor) is a mammalian 

Heme-Regulated Inhibitor kinase that is induced by heme deficiency (Chen and 

London, 1995). GCN2 is a yeast kinase that is activated by uncharged tRNA during 

conditions of Amino Acid starvation (DeHaro et al., 1993), shutting down host 

protein synthesis at times when it is inappropriate. The best characterised of the 

kinases is the viral-induced PKR (Protein Kinase RNA-dependent/activated) protein. 

PKR is normally present in the cell in very low amounts, but it is rapidly induced to 

very high levels by the presence of interferons and is activated through interaction 

with dsRNA (Thomas and Samuel, 1992; Davis and Watson, 1996). PKR is one of the 

cells most critical defences against viral infection. Infected cells release interferons 

that induce neighbour cells to rapidly build up levels of PKR. When infected, dsRNA 

(a replication intermediate of many viruses) stimulates PKR activity, phosphorylating 

eIF-2 and inhibiting translation. Viral translation is “cap-independent” (Section 

1.6.3.2.4.2) but still requires eIF-2 and the ribosome. Downregulation of eIF-2/2B 

activity by PKR therefore shuts down infected cells and also inhibits viral mRNA
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translation. Strategies targetting eEF2a kinases are usually employed by viruses in an 

attempt to outwit the hosts defence mechanisms against infection (review; DeHaro et 

al., 1993, Chen and London, 1995). These include virally encoded small RNAs with 

extensive secondary structures that bind to PKR, proteins that bind and sequester 

dsRNA a protease that degrades PKR, and a protein that resembles a truncated 

version of the eIF2a substrate of PKR, acting as a decoy.

1.6.3.2.3 eukaryotic Initition Factor 3, eIF-3

eIF-3 is composed of at least five subunits and strongly interacts with eIF-5 (Phan et 

al., 1998). It promotes the binding of initiator tRNA to the Ribosome through 

interaction with eIF-2/5 and stabilises tRNA binding to the 40S subunit (Block et al., 

1998). It is thought to be involved in eIF-5/eIF-2 recruitment to the ribosome during 

PIC formation, the factors involved in AUG recognition. eIF-3 also interacts with elF- 

4G (Section 1 .6 .3.2 .4.2) and is thought to be the “bridge” between initiation factors 

and the ribosome itself.

1.6.3.2.4 eIF-4; The Cap-binding Initiation Complex, eIF-4F

The eIF-4F initiation factor is a high-molecular-mass complex, the primary subunits 

being eIF-4A, eIF-4E, and eIF4G ( eIF4y, p220 ). Evidence now points to a role for 

eIF4G in bringing together, in the correct orientation and in close proximity to the 

cap, the components necessary to unwind secondary structure in the mRNA and place 

the 40S Ribosomal subunit at the 5' end of the eukaryotic message.

1.6.3.2.4.1 eukaryotic Initiation Factors, eIF-4A and eIF-4B

eEF4A is an ATP-hydrolysis-dependent RNA helicase that unwinds mRNA 5'

structure to generate an efficient Ribosome binding site. eIF-4A is a prototype of a 

large family of RNA-helicases called the DEAD box family (Linder et al., 1989). It 

plays a critical role in the initiation process and is required for mRNA-Ribosome 

binding both in its free form and as a subunit of eIF-4F, playing roles in both cap- 

dependent and cap-independent translation (Pause et al., 1994; Sonenberg, 1996).
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While dominant-negative eIF-4A inhibited translation in-vitro, addition of eIF-4A 

restored activity, the restoration being six-fold stronger for eIF-4F-associated eIF-4A. 

The activity of this enzyme has been shown to be weak without the presence of 

eIF4B, a subunit of eIF-4F that greatly enhances eIF-4A activity, possibly explaining 

the significant difference found by Pause et al (1994) between free and eIF-4F- 

associated eIF-4A in reactivating translation. eIF-4B requires eIF-4F formation at the 

cap, as well as ATP hydrolysis, for association with the PIC (Haghighat and 

Sonenberg, 1997).

1.6.3.2.4.2 The “scaffold”; eIF-4G

eIF-4G is a 220 kDa protein that acts as a scaffold upon which the eIF-4F complex is 

formed and mediates the binding of the mRNA to the ribosome through interaction 

with 43 S associated eIF-3 (Rau el al., 1996). eIF-4G alone has no cap-binding 

function

(Haghighat, 1995). On the eIF-4G peptide, eIF-4E (the cap-binding protein) binds to 

the amino-terminal half and guides the complex onto the mRNA cap, while eIF-4A 

binds to the carboxy-terminal half (Sonenberg, 1996), forming the eIF-4F complex 

(Figure 1.15).

eIF-4G shares a common binding site with 4E-BPs (negative regulators of eIF-4E 

activity; Section 1.6.3.2.4.4) for association with eIF-4E, thereby establishing a 

competitive regulatory mechanism for eIF-4F complex formation (Rau et al., 1996; 

Ptushkina et al., 1998). Overexpression of eIF-4G has been shown to result in 

malignant transformation of NIH3T3 cells (Fukuchi-Shimogori et al., 1997). While 

this occurred in the absence of increased levels of eIF-4E expression, it would seem 

logical to assume that the mechanism is simply through an increased competitive 

advantage over the 4E-BPs for association with eIF-4E, thereby increasing initiation 

events in eIF-4G overexpressing lines. eIF-4G has been shown to dramatically 

increase the binding affinity of eIF-4E for the cap structure (Haghighat and 

Sonenberg, 1997).

eIF-4G interacts with the Poly(A)-binding protein (PAB) resulting in increased 

translation (Tarun and Sachs, 1996). The exact sequence of events resulting in eIF-4F
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complex formation and ribosome association are unknown, but are thought to occur as 

outlined in figure 1.15. Control of translation initiation is very reminiscent of its 

transcriptional counterpart, a fact highlighted by Sachs and Buratowski (1997) and 

may represent evolutionary “fine-tuning” of such complex regulatory mechanisms. 

PAB is thought to be involved in the recruitment of intitiation factors such as eIF-4G 

to the mRNA to allow them to interact with cap-bound eIF-4E. Its association with 

eIF-4G explains both the “circular” mRNA model and the seemingly strange 

influence of the 3’ UTR on initiation events at the extreme 5’ end of the transcript. 

PAB only associates with eIF-4G when complexed to poly(A) (Tarun and Sachs,

1996). eIF-4G-mediated association of the poly(A)-binding protein with eIF-4F is 

increased by serum stimulation (Fraser et al., 1999) and enhances initiation of cellular 

capped mRNAs during growth stimulatory conditions.

Figure 1.15: Recruitment of eIF-4F factors to the mRNA by Poly(A)-binding 

protein (PAB): (A) Poly(A)-associated PAB recruits elF-4G (B) to bring it into the 

vicinity of cap-bound eIF-4E to form the eIF-4F complex (C) at the cap site. 

Additional elFs that interact with eIF-4G then mediate the association of the ribosome 

with eIF-4F to begin scanning.

5 ?



Section 1.6.3.2.4.2.1 Viral IRES and eIF-4G:

Viral infection results in cleavage of eIF-4G (Etchison and Smith, 1990; Huang and 

Schneider, 1991) and a reduction in cap-dependent translation (Haghighat et al.,

1997), since cleavage destroys eIF-4F complex formation (Figure 1.16). Viral 

mRNAs do not possess a cap and are translated via ERES (Internal Ribosome Entry 

Site) mechanisms, which are cap-independent. The C-terminal domain of eIF-4G is 

sufficient to support cap-independent translation in the absence of eIF-4E (Ohlmann 

et al., 1996). eIF-4A, required for both cap-dependent and cap-independent translation 

in higher eukaryotes (Pause et al., 1994; Sonenberg, 1996), remains associated with 

the C-terminal region of eIF-4G. eIF-4G cleavage during viral infection is mediated 

by virally encoded cysteine proteinases (L proteinases) and picarnovirus 2A protease 

(Lamphear et al., 1993) that bisects the eIF-4G polypeptide shutting down host cap- 

dependent translation initiation and conferring selective advantage to viral mRNAs.

An alternative approach is observed in the case of the rotavirus RNA-binding protein 

NSP3, associated with the 3’ end of the viral mRNA. NSP3 interacts with eEF-4G and 

evicts the poly(A)-binding protein from elEMF (Piron et al., 1998), thereby 

downregulating host cell cap-dependent mRNA translation and “hijacking” eIF-4G.
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Figure 1.16: elF-4F complex formation is a target for downregulation of host 
protein synthesis by picarnoviruses. (A) During growth 4E-Binding Proteins 
(4E-BPs) are phosphorylated, eIF-4F complexes form and translation proceeds. 
(B) During stress or apoptosis, 4E-BPs are dephosphorylated and inhibit eIF-4F 
formation. Translation is inhibited. (C) Viruses cleave eIF-4G. eIF-4F complexes 
do not form, but the C-terminal region, containing elements for helicase activity 
and ribosome binding, is sufficient for viral translation via IRES (Internal 
Ribosome Entry Sites) (Red Sequence) in the viral mRNA.

Figure 1.17: An alternative mechanism for “hijacking” host translation 
employed by rotaviruses also targets eIF-4G. Viral NSP3 competes for EIF-4G 
and evicts it from the PAB/4F complex, inhibiting host translation and allowing 
viral translation.
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1.6.3.2.4.3 eukaryotic Translation Initiation Factor, eIF-4E:

eIF4E, otherwise known as eIF4a or the small cap binding protein, binds directly to 

the 5' 7-Methyl-Gppp cap in an ATP-dependent manner, and is thought to be the first 

factor to interact with the mRNA to initiate translation. eIF-4E is a 25 kDa phospho- 

protein responsible for Cap-binding specificity in eIF-4F complexes during eukaryotic 

translation initiation events. eIF-4E consists of a single «P domain which contains 8 

antiparallel P strands forming a curved P sheet (Sonenberg and Gingras, 1998). This 

sheet is backed by three long a-helices. The mRNA cap-structure binds loosely to an 

hydrophobic pocket in the concave inner surface of eIF-4E, across which salt-bridges 

form after phosphorylation to “lock” the cap in place (Marcotrigiano et a l, 1998, 

CSHL abstracts), while the convex dorsal surface interacts in a mutually exclusive 

manner with either eIF-4G or the 4E-BPs [Sections 1.6.3.2.4.2 and 1.6.3.2.4.4], 

Phosphorylation of eIF-4E occurs as part of the eIF-4F complex (Tauzon et a l, 1990) 

greatly enhancing and stabilising its association with the cap (Minich et a l, 1994; 

Joshi etal., 1995).

eIF-4E is widely accepted as the limiting factor in translation initiation, particularly 

for mRNAs with complex 5’ UTRs (section 1.6.5). It is present in molar levels 

significantly lower than that of other initiation factors (DeBenedetti and Rhoads, 

1990; Sonenberg, 1996). It is the most specifically targeted mRNA-binding elF and is 

an essential component of the cytoplasmic cap-binding complex. The cap-binding 

activity of the eIF-4E peptide is thought to reside in a highly evolutionarily conserved 

placement of tryptophan residues in both yeast and mammals (Altmann et a l, 1988). 

This factor therefore plays a critical role in the regulation of translation, particularly 

of specific mRNA species [Section 1.6.5], and the levels and activity of eIF-4E are 

critical to the control of cellular proliferation and differentiation (Jaramillo et a l, 

1991). A rather novel and as-yet to be proven additional function for eIF-4E has been 

suggested, namely that it may play some part in the transport of mRNAs from the 

nucleus. The 5’ Cap-structure is known to be involved in the process of 

nucleocytoplasmic transport (Sonenberg and Gingras, 1998), already thought to be the 

function of the novel eIF-4E homologue protein, eIF-4EHP (Rome et al, 1998). In 

light of the Cap-binding specificity of eIF-4E and recent findings of localisation of a
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fraction of eIF-4E to the nucleus (Pollard et al., 1999), this additional role for eIF-4E 

is not implausible.

Frequently mammalian cells express at least two forms of this factor (Jaramillo et al., 

1991; Haghighat et al., 1995). The gene(s) for eIF-4E is thought to lie on 

chromosome 4 in humans (Gao et al., 1998). Gao et al. (1998) isolated two genes for 

eIF-4E from placental genomic libraries, in which case eIF-4El contained six introns 

but the other (eIF-4E2) was intronless. Subtle differences between the two genes were 

identified and both genes were reported to be differentially expressed in four human 

cell lines. A notable difference between the two genes was that the eIF-4El promoter 

contained c-myc-binding elements while that of eIF-4E2 did not, suggesting 

constitutive expression of the latter and inducible expression of the former. In fact, 

eIF-4E has been identified as one of the few targets for c-Myc induction (Rosenwald 

et al., 1993; Jones et al, 1996). The complexity of eIF-4E expression patterns in 

eukaryotic cells was highlighted by the findings that in Drosophila a single eIF-4E 

gene could code for three alternatively spliced mRNA transcripts, two of which 

resulted in expression of the same form of eIF-4E, while the other encoded an isoform 

differing at the amino-terminal sequence of the protein (Lavoie et a l, 1996). The 

three eIF-4E transcripts varied greatly in the lengths of their respective 5’ UTRs, 

suggesting that each was subject to varying degrees of translational regulation 

themselves. This may reflect a means of autoregulating levels of eIF-4E expression 

during phases of hyper- and hypo-proliferation of cells.

1.6.3.2.4.4 The 4E-Binding Proteins (4E-BPs)

The 4E-BPs are small, stable proteins (also called PHAS; Protein Heat- and Acid- 

Stable) (Lin et al, 1994) that bind to the convex dorsal surface of eIF-4E. They 

inhibit translation by competing with eIF-4G for association with eIF-4E. They do not 

disrupt the binding of eIF-4E to the Cap, but interfere with the formation of the elF- 

4F complex (Haghighat et al, 1995) (Figure 1.16, Figure 1.19).

The 4E-BP family of phospho-proteins, of which there are three to date, conserve a 

central amino acid domain which contains the eIF-4E binding domain (Poulin el al., 

1998). They are phosphorylated along 5 phosphorylation sites clustered in the middle
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of the protein, flanking the 4E-binding domain, and this degree of phosphorylation is 

thought to cause dissociation of the 4E-BPs from eIF-4E through electrostatic 

repulsion (Sonenberg and Gingras, 1998). The 4E-BPs are among the first proteins 

phosphorylated in response to Insulin and growth factors (Graves et al., 1995; Lin et 

al., 1995). Mitogenic stimulation results in a double activation of eIF-4E through the 

phosphorylation of eIF-4E-associated 4E-BP proteins, which results in their 

dissociation from the inactive eIF-4E-4E-BP complex (Poulin et al., 1994) allowing 

eIF-4F formation and increased phosphorylation of eIF-4E itself (Tauzon et al.,

1990).

An unusual aspect of the 4E-BP family is that the structure only becomes ordered 

upon binding to eIF-4E. In the unbound form, 4E-BPs are structurally disordered, but 

once bound to the target through a conserved Yx4L region shared with eIF-4G, they 

become structured and can inhibit eIF-4E interaction with eIF-4G (Fletch et al., 

1998). They undergo what is called a disorder-to-order transition upon association 

with eIF-4E.

1.6.3.2.4.5 eukaryotic Initiation Factor 5; eIF-5

eEF-5 is a monomeric phosphoprotein that interacts with the 40S initiation complex to 

promote the hydrolysis of ribosome-bound GTP, releasing GDP-eIF-2 (and Pi) (Si et 

al., 1996) and allowing translation to begin once the AUG start codon has been 

recognised. This step is essential for the subsequent joining of the 60S ribosomal 

subunit to form a functional 80S Ribosomal complex that is active in peptidyl 

transferase activity. eIF-5 cannot hydrolyse GTP when in the free form. It has to be 

complexed with eIF2 in the 40S complex. eIF-5 interacts with the (3-subunit of eIF2, 

through a C-terminal region between amino acids 315-340.

The interaction with eIF2 is thought to be mediated through sequences called Bipartite 

Motifs on eIF5 (Asano et al., 1998), which interact with motifs in the (3 subunit of the 

eIF-2 protein, known as K-boxes (Figure 1.13; Section 1.6.3.2.2). Mutations in the K- 

box region decrease GDP/GTP exchange. Archaebacteria do not have bipartite motifs 

and k-boxes, and do not form complex initiation complexes. It is thought that
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evolution has added these motifs to eukaryotic factors as “handles” to literally grab 

hold of other factors required for complex formation.

1.6.3.2.4.6 eukaryotic Initiation Factor 6; eIF-6

eIF- 6  prevents 40S binding directly to the 60S Ribosomal units (termed anti­

association) (Si et al., 1998, CSHL Abstracts). It is thought to mediate binding of the 

PIC to the 60S subunit to form the 80S ribosomal complex. It is a 26kDa protein that, 

in-vivo, associates only with free 60S ribosomes, and is involved in 60S biogenesis. 

eIF- 6  is a ribosomal-associated protein and not a ribosomal protein itself

1.6.4 Signalling pathways and translation initiation

It has long been accepted that the transmission of signals from the surface of the cell 

to the nucleus by protein kinases is the mechanism by which mitogenic signals act to 

stimulate cellular proliferation. Extracellular signals stimulate membrane receptors, 

which initiate a chain of phosphorylation that results in activation of downstream 

kinases that transport mitogenic signals to the nucleus. The final targets for 

phosphorylation and activation by this cascade are the functional proteins that affect 

gene transcription, the transcriptional enhancers (Marais and Marshall, 1996; Frost et 

al., 1997; Sugden and Clerk, 1997). Therefore, different mitogens stimulate different 

receptors and as such activate different kinase cascades that have different effects on 

cellular proliferation and differentiation through activation of different sets of 

transcriptional enhancers. Both the activity and nuclear localisation of transcription 

factors such as c-Myc, c-fos and c-jun (Section 1.5.2) are regulated by signalling 

kinases. However, in recent years it has been realised that the role of kinases is not 

confined to the regulation of nuclear factors. Phosphorylation by kinases plays a 

critical role in regulating the activity of cytoplasmic translation factors, including a 

number of translation initiation and elongation factors (Proud and Denton, 1997).

Ras plays a central role in the regulation of numerous mitogen activated signalling 

pathways, as illustrated in Figure 1.18. Oncogenes such as src and ras were originally 

identified as retro-virus encoded genes that produced tumours, now known to be 

dominant mutated forms of host genes (proto-oncogenes) that had been picked up by
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viruses (Cantley et al., 1991). Ras was discovered as the cellular homologue of the 

transforming genes of the Harvey (H-Ras) and Kirsten (K-Ras) retroviruses (Bar- 

Sagi, 1989). The viral versions of the gene carried specific mutations (codons 12, 13 

or 61) that prevented their proteins from becoming deactivated by dephosphorylation, 

resulting in uncontrolled growth stimulation and transformation of many cell types. In 

mammalian cells, ras genes encode 21-kDa GTP-binding proteins (Sjolander et al,

1991). Activated Ras activates three distinct downstream MAPK (Mitogen Activated 

Protein Kinase) pathways, ERK, INK and p38 (Vojtek and Der, 1998), two of which 

converge upon eIF-4E via the MAPK-integrating kinase, Mnk (Waskiewicz et a l,

1997). Mutated Ras proteins are incapable of becoming deactivated when a mitogenic 

signal has been removed, leading to uncontrolled stimulation of downstream kinases 

as if there was a continuous signal to proliferate emanating from the surface of the 

cell. The prevalence of Ras mutations in numerous cancer phenotypes, including 

those of lung tissues (Gazdar et al., 1994) highlights the importance of signal 

transduction in the regulation of normal cellular proliferation and differentiation. 

There is a predominance of codon 12 K-Ras (Kirsten-Ras) mutations in non-small cell 

lung carcinoma (NSCLC), while there is a significant lack of Ras mutations in small 

cell lung carcinomas (SCLC) (Mitsudomi et al, 1991), which compose an estimated 

25% of all lung carcinomas (Woll et a l, 1991). The frequency of K-ras mutations in 

lung adenocarcinoma is estimated to be around 56% (Mills et al., 1995). K-ras 

mutations have been suggested to be directly caused by exposure to carcinogens in 

tobacco smoke (Rodenhius and Slebos, 1992), perhaps explaining the prevalence of 

such mutations in lung carcinomas. Overall carcinogenesis of lung and other tissues is 

thought to be due to the accumulation of multiple chromosomal alterations (Testa et 

a l, 1992), in a process referred to as the “field cancerization” (Sozi et al., 1995). 

However, Slebos et al (1989) suggest that simultaneous amplification of 

protooncogenes such as myc and activation of ras are rare events in NSCLC. While it 

has been suggested that activation of protooncogenes to oncogene status occurs 

through mutation, chromosomal translocation, gene amplification, or deregulation of 

transcription (Kern and Filderman, 1993), evidence now suggests a role for

deregulated translation in these events (Saito et al, 1983; West et a l, 1993).

Downstream events induced by Ras activation include increased expression and/or 

activity of myc, fos and jun transcription factors, but in addition they are now known

to increase protein synthesis rates (de Vries et a l, 1996).
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It is noteworthy that the activity of eIF-4E is regulated by at least three major 

signalling pathways. eIF-4E is directly phosphorylated by ERK and p38, and 

indirectly by FRAP through dissociation of 4E-BPs (Graves et al., 1995; Hara et al., 

1998). This highlights the importance of eIF-4E in the overall regulation of translation 

and cellular proliferation in response to mitogens. FRAP also stimulates the activity 

of eIF-4B and eIF-2B (Figure 1.18), the regulatory factors of eIF-4F helicase activity 

(eIF-4A) and initiator tRNA recruitment (eIF-2).

Growth Factors

Figure 1.18: Regulation of elF activity by signalling cascades. eIF-4E is a target 

for both p38 and ERK, via the integrating kinase, Mnk. In addition, its activity is 

regulated via FRAP/mTOR-mediated inactivation of 4E-BP activity. FRAP also 

activates eIF-2B and eIF-4B, the regulatory factors for eIF-2 and eIF-4, respectively.

Phosphorylation of eIF-4E results in increased cap-binding efficiency and increased 

translation (Minich et al., 1994). Rychlik et al. (1987) suggested that Ser53 was the 

active site for eIF-4E phosphorylation, later confirmed by the inability of Ser - 

mutants to transform cells (DeBenedetti and Rhoads, 1990). The altered protein failed 

to bind to the 43 S initiation complex but was not inhibited in cap-binding affinity 

(Joshi-Barve et al., 1990). However, disputing this without ruling out Ser53 as one of



the sites, Kaufman et al (1993) illustrated the strong probability that there were 

additional phosphorylation sites for eIF-4E.

Ser209 has now been illustrated to be the major phosphorylation site in mammalian 

eIF-4E (Flynn and Proud, 1995; Joshi et a l, 1995), that regulates its cap-binding 

efficiency. A novel kinase, termed Mnk (MAPK-integrating Kinase), has recently 

been discovered and is now thought to be the direct kinase for eIF-4E 

phosphorylation, which forms salt-bridges across the cap-binding site of eIF-4E to 

enhance its binding (Marcotrigiano et al, 1998). Mnk was independently isolated by 

two groups. Fukanaga and Hunter (1997) isolated Mnk as a substrate for ERK and 

p38 kinases using a novel expression screening method for identifying protein kinase 

substrates. They showed that Mnk, a 47 kDa peptide, was expressed ubiquitously but 

at very low levels, and that the C-teminal contains the primary ERK phosphorylation 

site(s). Waskiewicz et al (1997) demonstrated that Mnk, of which there are two 

isoforms (Mnkl and Mnk2), phosphorylates eIF-4E in-vitro. In-vivo inhibition of 

ERK and p38 resulted in inhibition of Mnk activity and eIF-4E phosphorylation. Mnk 

was suggested to defme a convergence point between growth factor- and stress- 

induced protein kinase cascades (Figure 1.18). Mnk complexes more strongly with 

inactive than active ERK, suggeting that Mnk and ERK may dissociate after mitogen 

stimulation (Waskiewicz et al, 1997), perhaps allowing Mnk to incorporate into the 

eIF-4F complex to phosphorylate eIF-4E. Mnk phosphorylates eIF-4E at its 

physiological site, Ser209, and it has recently been demonstrated that Mnk associates 

with the C-terminus of eIF-4G (Pyronnet et al., 1998), perhaps explaining the fact that 

eIF-4E is a better substrate for phosphorylation as part of the eIF-4F complex (Tauzon 

et al, 1990). Despite at least five phosphorylated forms of the protein, two forms 

predominate, namely the non- and mono-phosphorylated (Ser209) forms of elF-4E 

(Flynn and Proud 1995; Sonenberg, 1996). It is now generally accepted that both 

Ser53 and Ser209 are phosphorylated in mammalian eIF-4E, probably playing distinct 

regulatory roles, and that Ser209 is the major site detectable by isoelectric focusing. 

The yeast homologue of elF-4E has been shown to be phosphorylated in different 

regions of the protein than the mammalian counterpart, at Ser and Ser in the N- 

terminal region (Zanchin and McCarthy, 1995).
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A role for 4E-BP2 has been suggested in the developmental regulation of eIF-4E 

phosphorylation during human thymocyte maturation (Beretta et al., 1998). However, 

this may not be a universal mechanism, as suggested by the lack of evidence of a role 

for either 4E-BP1 or 4E-BP2 in the regulation of eIF-4E phosphorylation in serum 

stimulated Xenopus Kidney cells (Fraser el al., 1999). Phosphorylation of eIF-4E and 

4E-BPs occurs through distinct kinase pathways (Diggle et al., 1996; Wang et al.,

1998), namely the ERK/p38 and FRAP/mTOR pathways, respectively (Figure 1.18). 

This allows different physiological signals to regulate the activity of eIF-4E by 

different mechanisms.

Taken together a picture appears in which concomitant phosphorylation of Ser53 and 

Ser209 may occur, increasing both affinity for eIF-4G and the cap-structure, 

respectively. A sequence of activation might be suggested from the data known to 

date, but is purely hypothetical; FRAP-mediated phosphorylation of 4E-BPs results in 

dissociation from eIF-4E, eIF-4E phosphorylation at Ser53 (either pre-existing, 

concomitant with 4E-BP phosphorylation or after) may mediate association of eIF-4E 

with eIF-4G to form the eIF-4F complex, resulting in phosphorylation at Ser209 by 

eIF-4F-associated Mnk, stabilising Cap-bound eIF-4F (Figure 1.19). In agreement 

with this, eEF-4F-associated eIF-4E has been shown to be 85-100% phosphorylated, 

while “free” eIF-4E exists predominantly in the 50% phosphorylated form (Joshi- 

Barveetal., 1992; Minich etal., 1994).

It would appear paradoxical, therefore, that the stress kinase p38 is also capable of 

phosphorylating Mnk (Waskiewicz et al., 1997) and eIF-4E. Cellular stresses such as 

arsenite and cytokines are capable of phosphorylating eIF-4E, and this 

phosphorylation is inhibited by the specific inhibitor of p38 kinase, SB203580 (Wang 

et al., 1998). It has recently been speculated that phosphorylation of eIF-4E does not 

play a direct role in the stress response of the cell, but is rather a “preparation” by the 

cell for future recovery (McKendrick et al., 1999). Arsenite, however, also increases 

eIF-2a subunit phosphorylation resulting in the observed decrease in global protein 

synthesis with this stress agent in these studies (Wang et al., 1998). On the other 

hand, other stresses such as heat shock do not result in eIF-4E phosphorylation, due to 

dissociation of the eIF-4G/Mnk/eIF-4E complex and increased association between
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eIF-4E and 4E-BP1 (Burley et al., 1998, CSHL Abstracts; Cuesta et ah, 1998, CSHL 

Abstracts). Translation of Heat shock protein (hsp) mRNAs appears to be relatively 

cap-independent (Joshi-Barve et al., 1992). Increased association of 4E-BP1 and elF- 

4E was suggested by de Vries et al (1997) to play a role in the shut-down of general 

protein expression while retaining hsp synthesis during the heat-shock response in 

cells.

Mitogenic Stimulus

Figure 1.19: Mitogenic Stimulation results in a double activation of eIF-4E and 

eIF-4F formation. Initial events are thought to be the phosphorylation of the eIF-4E 

inhibitors, 4E-BPs by FRAP pathways (A), “free” eIF-4E is then available for 

association with eIF-4G. ERK/p38 kinase pathways stimulate eIF-4E phosphorylation 

through the eIF-4F associated kinase, Mnk (B), resulting in enhanced cap-binding of 

eIF-4F. Two points in this cascade as yet remain unclear: (1) eIF-4E is not definitely 

cap-associated prior to eIF-4F formation. (2) The timing and exact function of Ser53 

phosphorylation are unsure.



1.6.5 eIF-4E and selective translation of specific mRNAs

While eIF-4E is involved in the regulation of translation initiation in all cap- 

dependent eukaryotic events (all eukaryotic mRNAs are capped except for organellar 

mRNAs (Jaramillo et al, 1991)), there are implications that eIF-2 and its regulatory 

factor, eIF-2B, are the critical factors in the regulation of global protein synthesis 

(Kimball et a l, 1998). Why then is eIF-4E still regarded as so critical in the regulation 

of the processes of cellular proliferation and the development of malignancy ? The 

answer lies in the fact that it regulates the primary initiation event of all cap- 

dependent mRNAs, the primary target for translational repression events, and more 

importantly in its ability to selectively increase the expression of growth-related 

mRNAs such as growth factors, receptor proteins and even transcription factors 

(review; Sonenberg and Gingras, 1998). This specificity in translational induction by 

eEF-4E is what has given this factor such status in the field of translation research in 

recent years.

Many growth-related mRNAs contain extremely complex, GC-rich 5’ UTRs (Kevil et 

al, 1995; Kevil et al, 1996). The significance of this is only now being realised, as 

the role of eIF-4E and initiation of translation is becoming apparent. Such mRNAs are 

inefficiently translated and poorly compete for available elF-4F, and as such have a 

high requirement for active eEF-4E to be translated efficiently. Elevated levels of elF- 

4F, primarily regulated by the availability and activity of eIF-4E, result in dramatic 

and selective increases in the translation of these complex mRNAs. This is because 

simple, housekeeping mRNAs have short 5’ UTRs and are naturally competitive for 

available eIF-4E. Therefore increased availability of eIF-4E/4F does not significantly 

enhance their translation. However, complex mRNAs can now compete for the excess 

eIF-4F, unwinding their secondary structure more efficiently. Increased rates of 

initiation due to excess eIF-4E prevent the secondary structure reforming in the 5’ 

UTR, resulting in more frequent and efficient initiation (polysomal initiation). This 

results in very significant increases in translation of these mRNAs, as illustrated in 

figure 1 .2 0 .
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Figure 1.20: Selective Translation of Complex mRNAs by during increased elF- 
4E levels/activity. (Left) Complex mRNAs are normally inefficiently translated. 
Elevated eIF-4E (bottom) unwinds complex mRNA structures and increases initiation 
rates. This maintains the unwound state of the complex mRNA resulting in more 
frequent and efficient initiation. (Right) Simple mRNAs are translated efficiently and 
are relatively unaffected by elevated eIF-4E (bottom).

Selective translation by by eIF-4E has been reported for numerous growth-related 

mRNAs with complex 5’ UTRs. A 10-fold increase in c-myc translation was observed 

in serum-stimulated EBV (Epstein-Barr Virus)-immortalised B-cells (West et al.,

1998). Overall protein synthesis rates only increased 3-fold, suggesting that c-myc 

was being selectively translated. Overexpression of eIF-4E in CHO cells results in a 

selective increase in VPF (Vaso Permeability Factor) expression (Kevil et al., 1996), 

exhibiting as much as 130-fold increase in secreted VPF protein. A role for eIF-4E in
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the regulation of cell growth was also shown by its ability to regulate the expression 

of other complex mRNAs, such as cyclin Di (Rosenwald et al., 1995) and Ornithine 

Decarboxylase (Rousseau et al., 1996; Shantz et al., 1996). A role in cell cycle 

progression may be implied by the fact that cyclin Di is an initiator of this process 

(Won et al., 1992) and the fact that eIF-4E is a major MAPK target, a kinase shown to 

be required for G2 to M-phase transition during the mitotic cycle (Abrieu et al., 1997). 

A direct link between Mekl, an upstream kinase of Mnk, and the cell cycle machinery 

has also been established (Greulich and Erickson, 1998). Rapamycin, an inhibitor of 

FRAP kinase activity, causes increased binding of 4E-BP1 to eIF-4E but has only a 

small effect on total protein synthesis in many cell types. This is probably due mainly 

to marked inhibition of the translation of specific mRNAs that have a high 

requirement for eIF-4E, such as myc, rather than effects on global translation (Vries et 

al., 1997).

1.6.5.1 eIF-4E: a new oncogene?

The ability of eIF-4E to selectively and dramatically increase the translation of 

specific growth-related mRNAs (Section 1.6.5) has highlighted it as a critical factor in 

the regulation of cellular proliferation. eIF-4E is among the few known targets for 

transcriptional activation by c-Myc (Rosenwald et al., 1993; Jones et al., 1996; Gao et 

al., 1998) and it is now suspected that eIF-4E may be a major effector of c-myc 

activity. In fact, eIF-4E is now considered to be an oncogene in its own right and has 

been associated with numerous cancers. To date, eIF-4E has been identified as 

overexpressed in head and neck, and breast tumours (DeFatta et al., 1999). eIF-4E- 

mediated selective synthesis of factors such as VPF (Kevil et al., 1996) and VEGF 

(Vascular Enodothelial Growth Factor) is thought to be an additional factor in 

explaining the role of eIF-4E in malignancy (Scott et al., 1998). Such dramatic and 

selective increases in expression of VPF might contribute to the ability of a tumour to 

form blood vessels at points of metastasis, allowing enhanced invasion by tumours 

overexpressing eIF-4E. Overexpression of eIF-4E in HeLa cells results in aberrant 

growth and morphology (DeBenedetti and Rhoads, 1990), while in NIH3T3 and Rat2 

fibroblasts, eIF-4E overexpression caused tumorigenic transformation (Lazaris- 

Karatzas et al., 1990). CHO cells transformed with eIF-4E display increased c-myc 

expression but only become tumorigenic upon transplantation to mice in the presence
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of co-transfected Max (DeBenedetti et al., 1994), inferring a role for c-myc in 

transformation of cells by eIF-4E. However, DeBenedetti et al. (1994) stated that they 

could not find a role for c-myc in transformation, nor could they determine whether 

its increased expression was a cause or consequence of the transformed phenotype. It 

is therefore possible to suggest that the transforming ability of c-myc may lie, at least 

to some significant degree, in its ability to induce eIF-4E expression. This statement is 

not as wild as it seems taken in light of the relative lack of c-myc targets identified, 

combined with the ability of eIF-4E to selectively regulate the expression of growth 

related transcripts, including c-myc itself. One important biological function of c-myc 

may be to increase cell growth by increasing the expression of eIF-4E and elF-2a 

(Rosenwald et al., 1993). In addition, an RNA helicase from the DEAD-box family, 

possibly eIF-4A, has been shown to be c-myc inducible (Grandori et al., 1996), 

adding to the idea that c-Myc may be a key regulator of the translational capacity of 

the cell.

West et al. (1995) showed that c-myc levels were increased in Blooms syndrome cell 

lines and that this increase was at the translational level. While it was suggested that 

this translational increase was unrelated to eIF-4E levels, which remained unchanged 

in control and BS cells, notably eIF-4E levels but not phosphorylation were examined 

in these studies. It was suggested that aberrant translational control of this proto­

oncogene may be a factor in the cancer predisposition of BS individuals, with 

increasing evidence that translational control plays a pivotal role in the normal 

regulation of the c-myc gene. Perhaps overlooked by the authors was an additional 

translation-based mechanism by which cancers can overexpress c-myc, reported by 

Saito et al (1983). c-Myc expression is elevated in a form non-Hodgkins Lymphoma 

and involves a translocation of the c-Myc gene. The translocated gene is expressed, 

but possesses a significantly simplified 5’ UTR due to the loss of exon 1 during the 

translocation. The translocated c-Myc, therefore, escapes the requirement of the 

“normal” c-Myc mRNA for elevated levels of eIF-4E, and increases its ability to 

compete for available eIF-4F resulting in high levels of c-Myc expression.
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1.7 Aims of Thesis:

Immunocytochemical and Northern Blotting analysis by Dr. Shirley McBride 

(NCTCC) suggested that treatment of the lung cancer cell lines, DLKP and A549, 

with 5’-Bromo-2-deoxyuridine (BrdU) induces keratin expression at a post- 

transcriptional level. However, for publication, clearer immunocytochemical analysis 

was required, along with the development of quantitative methods (western blotting/ 

immunoprecipitation) for the determination of keratin levels in both treated and 

untreated cells; performing these experiments formed the starting point for the project 

described in this thesis.

Due to the lack of detectable keratin expression in DLKP by immunocytochemistry 

and the induction of keratin expression in only 10-15% of DLKP cells upon exposure 

to BrdU, immunoprecipitation techniques rather than western blotting alone were 

required. Problems of antibody breakdown and background interference were 

overcome through the adaptation of a biotinylation-based procedure, modified to 

detect low level keratin expression.

The mechanism by which BrdU induced keratin expression in DLKP was completely 

unknown. The question was approached from a number of angles:

1 Does DLKP regulate keratin synthesis at the translational level?

2. Does BrdU influence this translational mechanism in any way and how?

3. Are there any key factors induced by BrdU that may explain its ability to

influence the differentiation status of DLKP?

To address the question of translational repression in DLKP, in-vitro translation 

procedures needed to be developed. After optimising conditions and determining the 

most suitable system for our needs, cytoplasmic extracts from DLKP were prepared 

by modifying a technique for the isolation of cytoplasmic RNAs. This procedure was 

used to ensure the stability of RNAs added to these sytems for further investigation. 

The basic principle of these experiments was to see if an extract from DLKP could 

inhibit the translation of keratin synthesis in-vitro, which would provide strong 

evidence for translational repression.
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To address our second question, the effect of BrdU on translation initiation factors 

was examined, to identify any possible changes that might explain the ability of BrdU 

to increase keratin protein levels without altering keratin gene transcription. We 

suspected that BrdU-induced changes in the translational capacity of cells might be 

involved in the post-transcriptional induction of keratin expression in the lung 

epithelial cell lines studied.

To investigate the mechanism by which BrdU influences the differentiation of 

epithelial lung cancer cells, and more particularly how BrdU could influence the 

translational capacity of cells, an unexpected effect for a DNA-interacting drug, key 

regulators of eIF-4E function were investigated in BrdU-treated cells. Regulators of 

both eIF-4E levels (transcriptional enhancers) and activity (kinases) were examined.

cDNAs coding for key proteins identified by studies using BrdU were transfected into 

DLKP to assess their ability to induce simple epithelial differentiation in this poorly 

differentiated cell line. It was hoped that compiling results from BrdU-treated cells 

and transfections would allow us to develop a model for the regulation of K8 and K18 

synthesis in our lung cell line models, with possible implications for understanding 

the early stages of lung development as well as aspects of de-differentiation in lung 

cancer. Such models are severely lacking in lung biology.

Additional studies were carried out using the vitamin-A derivative, Retinoic Acid 

(RA) in order to assess the ability of physiological differentiating agents to affect the 

differentiation status of DLKP.
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Section 2.0

Materials & Methods



2.1 WATER

Ultrapure water was used in the preparation of all media and solutions. This water 

was purified by a reverse osmosis system (Millipore Milli-RO 10 Plus, Elgastat UHP) 

to a standard of 12 - 18 MD/cm resistance.

2.2 GLASSWARE

Solutions pertaining to cell culture and maintenance were prepared and stored in 

sterile glass bottles. Bottles (and lids) and all other glassware used for any cell-related 

work were prepared as follows:- all glassware and lids were soaked in a 2 % (v/v) 

solution of RBS-25 (AGB Scientific) for at least 1 hour. Following scrubbing and 

several rinses in tap water, the bottles were then washed by machine using Neodisher 

detergent, an organic, phosphate-based acid detergent. The bottles were then rinsed 

twice with distilled water, once with ultrapure water and sterilised by autoclaving.

2.3 STERILISATION

Water, glassware and all thermostable solutions were sterilised by autoclaving at 

121°C for 20 minutes (min) under pressure of lbar. Thermo labile solutions were 

filtered through a 0.22\xm sterile filter (Millipore, millex-gv, SLGV-025BS). Low 

protein-binding filters were used for all protein-containing solutions.

2.4 MEDIA PREPARATION

Medium was routinely prepared and sterility checked by Joe Carey. The basal media 

used during routine cell culture were prepared according to the formulations shown in 

Table 2.4.1. lOx media were added to sterile ultrapure water, buffered with HEPES 

and NaHCOs and adjusted to a pH of 7.45 - 7.55 using sterile 1.5M NaOH and 1.5M 

HC1. The media were then filtered through sterile 0.22|im bell filters (Gelman, 121-
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58) and stored in 500ml sterile bottles at 4°C. Sterility checks were carried out on 

each 500ml bottle of medium as described in Section 2.5.6.

The basal media were stored at 4°C up to their expiry dates as specified on each 

individual lOx medium container. Prior to use, 100ml aliquots of basal media were 

supplemented with 2mM L-glutamine (Gibco, 25030-024) and 6 % foetal calf serum 

(Sigma, F-7524 Batch # 78H3355) and this was used as routine culture medium. This 

was stored for up to 2  weeks at 4°C, after which time, fresh culture medium was 

prepared.

Table 2.4.1 Preparation of basal media

DMEM

(Gibco, 12501-029)

Hams F12

(Gibco, 21700-109)

10X Medium 500ml Powder

Ultrapure H2O 4300ml 4700ml

1M HEPES*

Sigma, H-9136

1 0 0 ml 1 0 0 ml

7.5% NaHCOs 

BDH, 30151

45ml 45ml

* HEPES = N-(2-Hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid)

For most cell lines, ATCC (Ham’s F12/ DMEM (1:1)) supplemented with 6 % FCS, 

1% Sodium Pyruvate and 2mM L-glutamine was routinely used.
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2.5 CELL LINES

All cell culture work was carried out in a class II down-flow re-circulating laminar 

flow cabinet (Nuaire Biological Cabinet) and any work which involved toxic 

compounds was carried out in a cytoguard (Gelman). Strict aseptic techniques were 

adhered to at all times. The laminar flow cabinet was swabbed with 70% industrial 

methylated spirits (IMS) before and after use, as were all items used in the cabinet. 

Each cell line was assigned specific media and waste bottles. Only one cell line was 

worked with at a time in the cabinet which was allowed to clear for 15min between 

different cell lines. The cabinet itself was cleaned each week with industrial 

detergents (Virkon, Antec. International; TEGO, TH.Goldschmidt Ltd.), as were the 

incubators. The cell lines used during the course of this study, their sources and their 

basal media requirements are listed in Table 2.5.1. Lines were maintained in 25cm2 

flasks (Costar; 3050) or 75cm2 flasks (Costar; 3075) at 37°C and fed every two to 

three days.

2.5.1 Subculture of Adherent Lines

During routine subculturing or harvesting of adherent lines, cells were removed from 

their flasks by enzymatic detachment.

Waste medium was removed from the flasks and rinsed with a pre-warmed (37°C) 

trypsin/EDTA (TV) solution (0.25% trypsin (Gibco, 25090-028), 0.01% EDTA 

(Sigma, EDS) solution in PBS A (Oxoid, BR14a)). The purpose of this was to 

remove any naturally occurring trypsin inhibitor which would be present in residual 

serum. Fresh TV was then placed on the cells (2ml/25cm2 flask or 4ml/75cm2 flask) 

and the flasks incubated at 37°C until the cells were seen to have detached (5-10 min). 

The trypsin was deactivated by addition of a equal volume of growth medium (i.e. 

containing 6 % serum). The entire solution was transferred to a 30ml sterile universal 

tube (Sterilin; 128a) and centrifuged at 1,000 rpm for 5 min. The resulting cell pellet 

was resuspended in pre-warmed (37°C) fresh growth medium, counted (Section 2.5.3) 

and used to re-seed a flask at the required cell density or to set up an assay.

73



2.5.2 Subculture of suspension cells

Cell lines growing in suspension did not require enzymatic detachment. The cell 

suspension was removed to a sterile universal and centrifuged at lOOOrpm for 5 min 

The resulting cell pellet was resuspended in pre-warmed (37°C) fresh growth medium, 

counted (Section 2.5.3) and used to re-seed a flask at the required cell density or to set

up an assay.

Table 2.5.1 Cell lines used during the course of this study

Cell line Basal medium Cell type Source

DLKP

(and subpopulations 

SQ/I/M)

ATCC2 - Human

differentiated

carcinoma

poorly-

lung

Dr. Geraldine

Grant,

NCTCC

HL60 RPMI-16401 Human leukaemic line ATCC1

A549 ATCC2 Human

adenocarcinoma

lung ATCC2

* These cells grow in suspension

1 RPMI-1640 (Gibco, 52400-025) supplemented with 10% FCS and 2mM L- 

glutamine

2 ATCC = American Type Culture Collection

2.5.3 Cell Counting

Cell counting and viability determinations were carried out using a trypan blue 

(Gibco, 15250-012) dye exclusion technique.

An aliquot of trypan blue was added to a sample from a single cell suspension in a 

ratio of 1:5. After 3 min incubation at room temperature, a sample of this mixture 

was applied to the chamber of a haemocytometer over which a glass coverslip had 

been placed. Cells in the 16 squares of the four outer corner grids of the chamber 

were counted microscopically, an average per corner grid was calculated with the
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dilution factor being taken into account, and final cell numbers were multiplied by 1 0 4 

to determine the number of cells per ml. The volume occupied by the chamber is

0.1cm x 0.1cm x 0.01cm i.e. 0.0001cm3. Therefore cell number x 10 4 is equivalent to 

cells per ml. Non-viable cells were those that stained blue while viable cells excluded 

the trypan blue dye and remained unstained.

2.5.4 Cell Freezing

To allow long term storage of cell stocks, cells were frozen and cryo-preserved in 

liquid nitrogen at temperatures below -180°C. Once frozen properly, such stocks 

should last indefinitely.

Cells to be frozen were harvested in the log phase of growth (i.e. actively growing and 

approximately 50 - 70% confluent) and counted as described in Sections 2.5.3. 

Pelleted cells were re-suspended in serum. An equal volume of a DMSO/serum (1:9, 

v/v) was slowly added dropwise to the cell suspension to give a final concentration of 

at least 5xl06 cells/ml. This step was very important as DMSO is toxic to cells. 

When added slowly the cells had a period of time to adapt to the presence of the 

DMSO, otherwise cells may have lysed. The suspension was then aliquoted into 

cryovials (Greiner, 122 278) which were then quickly placed in the vapour phase of 

liquid nitrogen containers (approximately -80°C). After 2.5 to 3.5 hours, the cryovials 

were lowered down into the liquid nitrogen where they were stored until required.

2.5.5 Cell Thawing

Immediately prior to the removal of a cryovial from the liquid nitrogen stores for 

thawing, a sterile universal tube containing growth medium was prepared for the rapid 

transfer and dilution of thawed cells to reduce their exposure time to the DMSO 

freezing solution which is toxic at room temperature. The suspension was centrifuged 

at 1,000 rpm. for 5 min, the DMSO-containing supernatant removed and the pellet re­

suspended in fresh growth medium. A viability count was carried out (Section 2.5.3) 

to determine the efficacy of the freezing/ thawing procedures. Thawed cells were 

placed into tissue culture flasks with the appropriate volume of medium (5ml/25cm2 

flask and 10ml/75cm2 flask) and allowed to attach overnight. After 24 hours, the cells
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were re-fed with fresh medium to remove any residual traces of DMSO.

2.5.6 Sterility Checks

Sterility checks were routinely carried out on all media, supplements and trypsin used 

for cell culture. Samples of basal media were inoculated into Columbia (Oxoid, 

CM331) blood agar plates, Sabauraud (Oxoid, CM217) dextrose and Thioglycollate 

(Oxoid, CM 173) broths which detect most contaminants including bacteria, fungus 

and yeast. Growth media (i.e. supplemented with serum and L-glutamine) were 

sterility checked at least 2  days prior to use by incubating samples at 37 C, which 

were subsequently examined for turbidity and other indications of contamination.

2.6 MYCOPLASMA ANALYSIS

Mycoplasma examinations were carried out routinely (at least every 3 months) on all 

cell lines used in this study. These analyses were performed by Mary Heenan and 

Michael Henry.

2.6.1 Indirect Staining Procedure

In this procedure, Mycoplasma-negative NRK cells (a normal rat kidney fibroblast 

line) were used as indicator cells. These cells were incubated with supernatant from 

test cell lines and then examined for Mycoplasma contamination. NRK cells were 

used for this procedure because cell integrity is well maintained during fixation. A 

fluorescent Hoechst stain was utilised which binds specifically to DNA and so will 

stain the nucleus of the cell in addition to any Mycoplasma DNA present. A 

Mycoplasma infection would thus be seen as small fluorescent bodies in the 

cytoplasm of the NRK cells and sometimes outside the cells.

NRK cells were seeded onto sterile coverslips in sterile Petri dishes at a cell density of 

2 x 1 0 3 cells per ml and allowed to attach over night at 37°C in a 5% C 02, humidified 

incubator. 1ml of cell-free (cleared by centrifugation at 1,000 rpm for 5 min) 

supernatant from each test cell line was then inoculated onto a NRK Petri dish and 

incubated as before until the cells reached 20 - 50% confluency ( 4 - 5  days). After
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this time, the waste medium was removed from the Petri dishes, the coverslips 

washed twice with sterile PBS A, once with a cold PBS/Carnoys (50/50) solution and 

fixed with 2ml of Carnoys solution (acetic acid:methanol-l:3) for 10 min. The 

fixative was then removed and after air drying, the coverslips were washed twice in 

deionised water and stained with 2ml of Hoechst 33258 stain (BDH)(50ng/ml) for 10 

min.

From this point on, work was carried out in the dark to limit quenching of the 

fluorescent stain.

The coverslips were rinsed three times in PBS. They were then mounted in 50% (v/v) 

glycerol in 0.05M citric acid and 0.1M disodium phosphate and examined using a 

fluorescent microscope with a UV filter.

2.6.2 Direct Staining

The direct stain for Mycoplasma involved a culture method where test samples were 

inoculated onto an enriched Mycoplasma culture broth (Oxoid, CM403) - 

supplemented with 16% serum, 0.002% DNA (BDH; 42026), 2mg/ml fungizone 

(Gibco, 15290-026), 2x103 units penicillin (Sigma, Pen-3) and 10ml of a 25% (w/v) 

yeast extract solution - to optimise growth of any contaminants and incubated at 37°C 

for 48 hours. Samples of this broth were then streaked onto plates of Mycoplasma 

agar base (Oxoid, CM401) which had also been supplemented as above and the plates 

incubated for 3 weeks at 37°C in a CO2 environment. The plates were viewed 

microscopically at least every 7 days; the appearance of small, “fried egg” -shaped 

colonies is indicative of a mycoplasma infection.
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2.7 DIFFERENTIATION STUDIES -  Bromodeoxyuridine (BrdU) and Retinoic 

Acid (RA)

Differentiation studies were carried out using 5-bromodeoxyuridine (BrdU) (Sigma, 

B5002) or Retinoic Acid (Sigma, R2625). BrdU powder was reconstituted in UHP 

water to a stock concentration of lOmM and the resultant solution was filter sterilised 

through a sterile 0.22(im filter, aliquoted into sterile Eppendorfs and stored at -20°C 

for up to 1 year. Retinoic acid powder was reconstituted in 95% EtOH in sterile UHP 

to a stock concentration of 2mM and the resultant solution was filter sterilised through 

a sterile 0.22\xM filter. RA stocks were aliquoted into sterile cryovials to prevent loss 

due to evaporation, and stored at -80°C for up to 1 year.

2.7.1 Differentiation Assays:

For immunocytochemical analysis (Section 2.8), cells were plated onto 6 -well plates 

(Costar, 3516) at densities of lxlO4 cells per well. 1 ml of medium was sufficient for 

each well. The cells were allowed to attach and form colonies by incubating at 37°C, 

5% CO2 for 24 hours. The plates were covered with parafilm to prevent 

contamination. 1 ml fresh medium containing either 2x BrdU (20fiM) or 2X RA 

(40|jM) was then added to each well. Plates were wrapped in aluminium foil because 

of the light-sensitive nature of BrdU-treated cells and the RA compound, and 

incubated for up to 7 days. Medium was replaced every 3-4 days over the course of 

the assay. All waste medium was retained for disposal by incineration. At the end of 

the assay the cells were fixed with methanol as described in Section 2.8.1. 

Immunocytochemistry/fluorescence was then carried out using a range of antibodies 

as described in Section 2.8.2.

For additional analytical techniques (western blotting, immunoprecipitation, iso­

electric focusing, PCR and Northern blotting), cells were inoculated into 75cm2 flasks 

at a density of lx l 0 5 cells per flask and allowed to attach and form colonies. BrdU- 

or RA-containing medium, at a concentration of 10(iM or 20fiM, respectively, was 

then added to the cells after 24 hours. The medium was replaced with fresh, BrdU- or
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RA-containing medium every 3-4 days. The cells were then harvested by 

trypsinisation, washed in sterile PBS A, counted, pelleted and stored at -80°C until 

required. For RNA extraction (section 2.14), pellets were lysed in tri-reagent and 

stored at -80°C.

For HL60 suspension cultures, 75-cm2 flasks were inoculated with 1 x  106 cells in 10 

ml medium and incubated for 24 hours. 2.5 ml 5X BrdU-containing medium was then 

added to the cells. Medium was replaced every 3-4 days by centrifugation and 

resuspension of the resultant cell pellet in 10-15 ml fresh, lOpM BrdU-containing 

medium. Cells were then harvested by centrifugation, washed in sterile PBS A and 

stored at -80°C until required. No RA studies were performed on these cells.
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2.8 IMMUNOCYTOCHEMISTRY

2.8.1 Fixation of cells

For fixation, medium was removed from 6 -wells plates, cells were rinsed 3 times with 

PBS A and then incubated at -20°C for 7 minutes using ice-cold methanol. The 

methanol was then removed from the cells, which were allowed to dry at 37°C for a 

few minutes and then stored at -20°C until required.

2.8.2 Immunocytochemical procedure

The avidin-biotin complex (ABC) technique combined with the vector red 

visualisation (Vector Laboratories, SK-5100) procedure was used in all 

immunocytochemistry experiments. The ABC method involves application of a 

biotin-labelled secondary antibody to cells probed with a primary antibody, followed 

by the addition of avi din-biotin-alkaline phosphatase complex which results in a high 

staining intensity due to the formation of an avidin-biotin lattice which contains 

alkaline phosphatase (AP) molecules. The AP enzyme then reacts with a Vector Red 

solution to give an insoluble, red-coloured precipitate. The formation of this red- 

coloured precipitate is indicative of primary antibody reactivity.

The procedure used is as follows:

Cell preparations (6 -well tissue culture plates) which had been previously fixed in 

methanol and frozen at -20°C were allowed to thaw and equilibrate at room 

temperature. A grease pen (DAKO, S2002) was used to encircle cells in tissue culture 

plates to retain the various solutions involved. The cells were equilibrated in Tris- 

buffered saline (TBS) (0.05M Tris/HCl, 0.15M NaCl, pH 7.6) for 5 minutes. The 

slides were then incubated for 20 minutes at room temperature (RT) with either 

normal rabbit (DAKO, X092) or goat (DAKO, X0907) serum diluted 1:5 in TBS to 

block non-specific binding, depending upon the host source of the primary antibody 

in question. This was then removed and 25-30|il of optimally-diluted primary 

antibody (Table 2.8.1) was placed on the cells. The slides and tissue-culture plates
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were placed on a tray containing moistened tissue paper and incubated at 37°C for 2  

hours or 4°C overnight. The primary antibodies used in the study are listed in Table

2.8.1. The slides were then rinsed in TBS/ 0.1% Tween (Sigma, P-1379) for 5min x3 

times, and then incubated for 30 min with a suitable biotinylated secondary antibody 

(rabbit anti-mouse immunoglobulins (DAKO, E354); goat anti-rabbit (DAKO, 

E0432) diluted 1:300 in TBS. The slides were rinsed as before and incubated with 

strepABComplex/Alkaline Phosphatase (AP) (DAKO, K377) for 30 min at RT, after 

which they were rinsed again in TBS/ 0.1 % Tween for 5min x3 times. The cells were 

then incubated with a Vector Red solution (DAKO, S3000) for 10-15 min. Excess 

Vector Red solution was then rinsed off with UHP water, allowed to dry and samples 

mounted using a commercial mounting solution (DAKO, S3023).

2.8.3 Immunofluorescence

Immunofluorescence was performed using a similar approach to that described in 2.14 

above. Cell preparations (6 -well tissue culture plates) which had been previously 

fixed in methanol and frozen at -20°C were allowed to thaw and equilibrate at room 

temperature. A grease pen (DAKO, S2002) was used to encircle cells in tissue culture 

plates to contain the various solutions involved. The cells were equilibrated in Tris- 

buffered saline (TBS) (0.05M Tris/HCl, 0.15M NaCl, pH 7.6) for 5 minutes. The 

slides were then incubated for 20 minutes at room temperature (RT) with normal 

rabbit/goat serum (DAKO, X092/Dako, X0907) (depending upon the primary in 

question) diluted 1:5 in TBS to block non-specific binding. This was then removed 

and 25-30|al of optimally-diluted primary antibody was placed on the cells and 

incubated on a tray containing moistened tissue paper at 4°C overnight. The following 

day the slides were then rinsed in TBS/ 0.1% Tween (Sigma, P-1379) for 5min x3 

times. All subsequent manipulations were performed in a darkened room, and 

incubations were performed in trays covered in tinfoil as a precaution to minimise 

“quenching” of fluorescence by exposure to light for extended periods. Cells were 

incubated for 60 min with TRITC-labelled rabbit anti-mouse immunoglobulins 

(Sigma, T-5393) diluted 1:160 in TBS/0.l%Tween or FITC-labelled goat anti-rabbit 

immunoglobulin (Sigma, F-6005). The slides were then rinsed in TBS/ 0.1% Tween 

(Sigma, P-1379), x3 in 15 min., air-dried and mounted in fluorescent mounting
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medium (DAKO, S3023). Antibody reactivity was determined by UV-excitation of 

the conjugated secondary antibodies through the appropriate filters (Rhodamine; 

TRITC and Ultra-violet; FITC). Co-fluorescent studies were performed by co­

incubation of antibodies from different hosts (Keratin 8 and eIF-4E, table 2.8.1) and 

detected using a mixture of both TRITC-labelled mouse and FITC-labelled rabbit 

secondary antibodies, visualised through different filters.

Table 2.8.1 Primary antibodies used for immunocytochemistry/immunoflourescence

Antibody Dilution/

Concentration

Supplier Catalogue no.

Keratin 8 (M) 1 /2 0 0 Sigma C-5301

Keratin 18 (M) 1/800 Sigma C-8541

eIF-4E (M) 1/250 Transduction

Laboratories

E27620

eIF-4G (y) (M) 1/150 Transduction

Laboratories

E46520

eIF-4E (R) 1 /1 0 0 0 Simon Morley X

eIF-4G (R) 1 /1 0 0 0 Simon Morley X

Nomenclature: (M) = Mouse-anti-human IgG

(R) = Rabbit-anti- human IgG 

P-elF4E = Phospho-specific anti-eIF-4E antibody 

X = Antibody was a gift
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2.9 WESTERN BLOT ANALYSIS

Proteins for western blot analysis were separated by SDS-polyacylamide gel 

electrophoresis (SDS-PAGE).

2.9.1 Sample preparation

Cell pellets (Section 2.7.1) were lysed in TG lysis buffer (20mM Tris-HCl pH 8 , 10% 

glycerol, 1% TritonX-100, 1.5mM MgCl2, 2mM EDTA, 137mM NaCl, lmM 

Na3V0 4 , lmM Pefabloc (Boehringer, 84500920-22), and IX Protease inhibitor 

cocktail (Boehringer, 1697498) for 20 min on ice. The extracts were either used 

immediately for western blot analysis or snap frozen in liquid nitrogen and stored at -  

80°C. Alternatively, cells were lysed by resuspension in boiling loading buffer (2.5ml 

1.25M-Tris/HCl, l.Og SDS, 5.8ml glycerol and 0.1% bromophenol blue (Sigma, 

B8026) made up to 25ml with distilled water) and incubated at 100°C for 2-3 min., 

cooled to room temperature and used immediately for western blot analysis.

2.9.2 Gel electrophoresis

Resolving and stacking gels were prepared as outlined in Table 2.9.1 and poured into 

clean 1 0 cm x 8 cm gel cassettes which consisted of 1 glass and 1 aluminium plate, 

separated by 0.75cm plastic spacers. The resolving gel was poured first and allowed 

to set. The stacking gel was then poured and a comb was placed into the stacking gel 

in order to create wells for sample loading. Once set, the gels could be used 

immediately or wrapped in aluminium foil and stored at 4°C for 24 hours.

Before samples were loaded onto the stacking gels, equal cell numbers (2x104 cells 

per lane) were lysed in 2x loading buffer (Section 2.9.1). The samples were then 

loaded alongside molecular weight colour protein markers (Sigma, C-3437). The gels 

were run at 250V, 45mA for approximately 1.5 hours (until the protein was run at 

least half way into the gel as judged by the migration of colour markers during the 

electrophoretic process). An exception was that of eIF-4G, a 220 kDa protein that 

required electrophoresis for approximately 2.5-3.5 hours at 350V, 63 mA on 7.5% 

gels (apparatus was cooled on ice during the process and all running buffers were pre-
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chilled by incubation at -20°C for approximately 30-60 min). To resolve different 

forms of 4E-BP1, samples were separated on 15-20% polyacrylamide gels. All gels 

were made from a stock of Acrylamide (details below). Sample calculations for two 

different percentage gels are shown in table 2.9.1.

Table 2.9.1 Preparation of electrophoresis gels

Components Resolving gel

(7.5%)

Resolving gel

(1 2 %)

Stacking gel

Acrylamide stock’ 3.75ml 6 ml 0 ,8 ml

Ultrapure water 8 .0 ml 5.75ml 3.6ml

1.875M-Tris/HCl, pH 8 .8 3.0ml 3.0ml -

1.25M-Tris/HCl, pH 6 .8 - - 0.5ml

10% SDS (Sigma, L-4509) 150(al 150(0,1 50(0,1

10% APS (Sigma, A-1433) 60|il 60(j,l 17(0.1

TEMED (Sigma, T-8133) 1 0 [il 1 0 p,l 6 |ol

Acrylamide stock = 29. lg  acrylamide (Pharmacia, 17-1300-02) and 0.9g NN’- 

methylene bis-acrylamide (Sigma, N-7256) made up to 100ml with distilled water

2.9.3 Western blotting

Following electrophoresis, the acrylamide gels were equilibrated in transfer buffer 

(25mM Tris, 192mM glycine (Sigma, G-7126) pH 8 .3-8.5 without adjusting) for 20 

min Proteins in gels were transferred onto Hybond ECL nitrocellulose (Amersham, 

RPN 2020D) or PVDF (Polyvinyl diflouride) (Boehringer, 1722026) membranes by 

semi-dry electroblotting. Six sheets of Whatman 3mm filter paper (Whatman, 

1001824) were soaked in transfer buffer and placed on the cathode plate of a semi-dry 

blotting apparatus. Excess air was removed from between the filters by moving a 

glass pipette over the filter paper. Nitrocellulose or PVDF (pre-activated in methanol 

for 1-2 min. and washed in UHP for 5 min), cut to the same size of the gel, was 

soaked in transfer buffer and placed over the filter paper, making sure there were no 

air bubbles. The acrylamide gel was placed over the nitrocellulose and six more 

sheets of presoaked filter paper were placed on top of the gel. Excess air was again
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removed by rolling the pipette over the filter paper. The proteins were transferred 

from the gel to the nitrocellulose/PVDF at a current of 0.34mA at 15V for 20-30 min 

depending upon the size of the protein.

eIF-4G, due to its size (220 kDa), required transfer for 2 hours at 0.8mA and 20-25 V. 

Semi-dry transfer set-up was as follows, protocol obtained from Dr. Simon Morley 

(Sussex, UK):

1. Anode buffer 1: (4 sheets of filter paper; squeeze dry)

33.35g Tris, 200ml Methanol in 1 L.

2. Anode buffer 2 : ( 2  sheets of filter paper; squeeze dry)

3.03g Tris, 200ml Methanol in 1 L.

3. PVDF membrane (pre-activated in methanol as before).

4. Polyacrylamide gel.

5. Cathode Buffer: (4 sheets of filter paper; squeeze dry)

3.03g Tris, 5.25g 6 -amino-n-hexanoic acid (Sigma, A-2504), 200ml Methanol 

in 1 L.

All incubation steps from now on, including the blocking step, were carried out on a 

revolving apparatus to ensure even exposure of the membrane blot to all reagents.

The nitrocellulose/PVDF membranes were blocked for 2 hours at room temperature 

with fresh filtered 5% non-fat dried milk (Cadburys; Marvel skimmed milk) in TBS/ 

0.1% Tween, pH 7.4.

After blocking, the membranes were rinsed with TBS/0.1% Tween and incubated 

with primary antibody overnight at 4°C. Primary antibodies used are listed in table

2.9.2. The following day the primary antibody was removed and the membranes 

rinsed 3 times with TBS/ 0.1% Tween. The membranes were incubated in 1/1000 

dilution of a suitable HRP-labelled secondary antibody (Mouse; Sigma, A-6782 or 

Rabbit; Sigma, A-4914) in TBS/0.1% Tween for 1 hour at room temperature (R.T.). 

The secondary was then removed and blots were washed for 15 min in 

TBS/0.1%Tween. Bound antibody was detected using enhanced chemiluminescence 

(ECL) (Section 2.9.4).
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Table 2.9.2: Antibodies used for western blot analysis

Antibody Dilution/

Concentration

Supplier Catalogue no.

Keratin 8 (M) 1/400 Sigma C-5301

Keratin 18 (M) 1/800 Sigma C-8541

eIF-4E (M) 1/500 Transduction

Laboratories

E27620

c-myc (M) 1/500 Santa Cruz SC-040

eIF-4E (R) 1/ 1 0 ,0 0 0 Simon Morley X

eIF-4G (R) 1/ 1 0 ,0 0 0 Simon Morley X

4E-BP1 (R) 1/2,500 Nahum Sonenberg X

YY1 (R) 1/500 Santa Cruz SC-281

eIF-2a (M) 1 /1 0 0 0 Simon Morley X

ERK-1 (M) 1/500 Pharmingen 13621A

P-ERK (M) 1 /1 0 0 0 John Lyons X

RAR-a 1 /1 0 0 0 Santa Cruz Sc-551

RAR-P 1 /1 0 0 0 Santa Cruz SC-552

CRABP1 1 /1 0 0 0 Affiniti, UK MA3-813

Nomenclature: (M) = Mouse anti-human IgG.

(R) = Rabbit anti-human IgG.

P-ERK = Phospho-specific anti-ERK antibody 

X = Antibody was a gift.
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2.9.4 Enhanced chemiluminescence detection

Protein bands were developed using the Enhanced Chemiluminescence Kit (ECL) 

(Amersham, RPN2109) according to the manufacturer’s instructions.

After blots were washed in TBS/0.1% Tween x3 times for 5 min, a sheet of parafilm 

was flattened over a smooth surface, e.g. a glass plate, making sure all air bubbles 

were removed. The membrane was then placed on the parafilm, and excess fluid 

removed. 1.5ml of ECL detection reagent 1 and 1.5ml of reagent 2 were mixed and 

covered over the membrane. Charges on the parafilm ensured the fluid stayed on the 

membrane. The reagent was removed after one minute and the membrane wrapped in 

cling film. The membrane was exposed to autoradiographic film (Kodak; X-OMAT 

S, 500 9907) in an autoradiographic cassette for various times, depending upon the 

strength of the signal obtained. The autoradiographic film was then developed.

The exposed film was developed for 5min in developer (Kodak, LX24), diluted 1:6.5 

in water. The film was briefly immersed in water and transferred to a Fixer solution 

(Kodak, FX-40) diluted 1:5 in water, for 5min. The film was transferred to water for 

5 min and then air-dried.

87



2.10 IMMUNOPRECIPITATION

Immunoprecipitation was carried out using a cellular labelling and

immunoprecipitation kit (Boehringer Mannheim, 1647652) according to

manufacturer’s instruction.

2.10.1 Sample preparation

Cells were treated with BrdU or RA as described in Section 2.7.1, harvested, pelleted 

at a known cell number and stored at -80°C until required.

Pre-chilled lysis buffer was added to the cells which were then sonicated (10 pulses) 

on ice and incubated at 4°C for 30min. The lysate was then centrifuged at 13000rpm 

in a microfuge for 10 min at 4°C. The supernatant was transferred to a fresh 

Eppendorf and labelled with 25 pi of biotin-7-NHS stock solution for 15 min at RT, as 

described in the manual accompanying the kit. The reaction was stopped by adding 

50 pi of stop solution (50mM NH4CI) and incubating for 15 min at 4°C on a rotating 

belly-dancer (Stovall).

2.10.2 Sample immunoprecipitation

The lysates were pre-cleared using 50pi of Protein A or Protein G beads per ml of 

sample for 3 hours to completely remove proteins that may bind to the agarose beads 

and result in non-specific binding. The samples were then centrifuged at 13000rpm in 

a microfuge for 20 seconds to pellet the beads. The supernatants were collected in 

fresh eppendorfs to which an equivalent to lOpg of either K8 or K18 antibody was 

added. Samples were then rocked overnight at 4°C. 50pl of protein A (Boehringer 

Mannheim, 1719408) or protein G (Boehringer Mannheim, 1719416) agarose beads, 

depending on the binding specificity of the Ab to be tested (see Table 2.10.1), were 

then added to the samples. The precipitated protein was then allowed to bind to the 

beads by incubating the mixture on a belly-dancer overnight at 4°C. Controls included 

both K8/18 antibodies in lysis buffer and irrelevant antibodies (EGF-R) to illustrate 

the specificity of keratin immunoprecipitation.
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The complexes were then collected by brief centrifugation at 13000rpm in a 

microfuge for 20 seconds. The supernatant was carefully removed. The protein-bead 

complexes were washed with a number of different stringency buffers. Samples were 

washed in 1ml of wash buffer 1 (50mM Tris-HCl pH 7.5, 150mM NaCl, 0.1% NP-40, 

100(ig/ml PMSF, 1 (ig/ml each of leupeptin and aprotonin) on a rocking apparatus for 

20 min. The complex was then pelleted by centrifugation as before and the 

supernatant carefully removed and discarded. A second wash in buffer 1 was 

performed, followed by washes (x2) with 1ml of wash buffer 2 (50mM Tris-HCl pH 

7.5, 150mM NaCl, 0.1% NP-40) in a similar manner to the first wash. A third wash 

was carried out in buffer 3 (50mM Tris-HCl, 500mM NaCl and 0.1% NP40).

Table 2.10.1 Agarose beads chosen to precipitate the required proteins

Antibody used Isotype of Ab Avidity to 

Protein-A

Avidity to 

Protein-G

Beads chosen

Keratin 8  Mouse IgGl + ++++ Protein-G

Keratin 18 Mouse IgGl + ++++ Protein-G

After the final wash, 60 pi 5x loading buffer was added to the pellets. The proteins 

were then denatured by heating to 100°C for 3 min. Equal volumes were loaded and 

separated on 12% polyacrylamide gels, as described in Section 2.9.

The proteins were then transferred to nitrocellulose/PVDF membrane as described 

previously in Section 2.9.3 and were blocked overnight at 4°C in 5% Marvel in TBS/ 

0.1% Tween. The following day, membranes were then rinsed briefly with PBS A 

and incubated for 1 hour in anti-biotin secondary antibody (mouse monoclonal anti­

biotin IgG (Sigma, A0185) diluted 1:4000 in TBS). The precipitated proteins were 

then visualised using ECL as described in Section 2.9.4, or supersignal ECL (Pierce, 

34075) for shorter timepoints in differentiation studies.
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2.11 VERTICAL SLAB ISOELECTRIC FOCUSING (IEF) FOR elF-4E

Vertical slab IEF is more convenient than older methods for the determination of the 

phosphorylation status of proteins, allowing samples to be run and separated vertically 

alongside each other for direct comparison. The procedure was developed in the 

laboratories of Prof. Chris Proud (Dundee, UK) and Dr. Simon Morley (Sussex, UK).

The procedure was carried out in a Bio-Rad Protean II mini-gel apparatus (0.75 mm 

spacers) (Biorad, 165-4998).

2.11.1 IEF Gel preparation

Gels were poured as described by the manufacturer (Biorad). The gels were as 

follows:

Incomplete stock solution (Filter sterilised through 0.22pM filter and stored at 4°C):

❖ 42.8 ml UUP

❖ 4.86 g acrylamide

❖ 274.3 mg bis-acrylamide

❖ 1.71 g CHAPS (Sigma, C-9426)

Working gels were then prepared from the stored incomplete stock solution as 

follows:

❖ 3.5 ml incomplete gel mix

❖ 3.24 g Urea

❖ 0.45 ml ampholines (Pharmacia, wide range pH 3.5-10, (80-1125-87)

❖ 2 0  jal 1 0 % APS

❖ 10 [0,1 TEMED

Gels were covered loosely in cling film while setting, which improves the quality of 

wells formed (avoiding drafts).
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2.11.2 Sample Buffer Preparation

7X sample buffers were prepared and stored in aliquots at -20°C:

❖ 21% (v/v) amp ho lines (as for IEF gel)

❖ 14% (v/v) P-mercaptoethanol

❖ 35% (w/v) CHAPS

❖ 30% deionised water

For working IEF buffer, 7X sample buffers were thawed:

❖ 143 7X sample buffer

❖ 0.54 g Urea

❖ 1.1 ml UHP.

Samples, in TG lysis buffer, were mixed with an equal volume of working IEF buffer 

and analysed as in section 2.11.4. Alternatively, cell pellets were lysed directly in IEF 

working buffer.

2.11.3 Running Buffers

Both anode and cathode buffers were prepared and chilled at -20°C before use.

The outer chamber of the IEF apparatus was filled with Cathode Buffer:

0.05 M Histidine (Sigma, H-8000) in UHP.

The inner chamber of the IEF apparatus was filled with Anode Buffer:

0.01 M Glutamic Acid (Sigma, G-1251) in UHP.
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2.11.4 The IEF procedure

Due to the very high voltages used in this procedure the apparatus was surrounded

with ice to avoid overheating of the gels. This is not completely necessary, but is used

as a precaution and to improve the resolution of bands.

1. Once the gel was set the combs were removed and wells were washed out 

thoroughly with UHP.

2. 30 [j,l working IEF buffer was added to each well.

3. Each well was then carefully overlaid with 10|nl 6 M Urea.

4. An overlay of 0.01M glutamic acid was then applied, and the chambers filled with

cathode and anode buffers as described in section 2.11.3.

5. Gels were then prefocused for 1 hr on reverse polarity.

20 min. at 200 V.

20 min. at 300 V.

20 min. at 400V.

6 . After prefocusing, the wells were washed out thoroughly with UHP and the 

samples were loaded. A control lane consisting of rabbit reticulocyte lysate (see 

section 2.19) in IEF buffer was used as a means of orientating the gel (runs as a

brown smear) for transfer and as a positive control for eIF-4E.

7. Wells were then overlaid with 10p.l 6 M Urea and glutamic acid as for prefocusing.

8 . Focusing was carried out as follows, all on reverse polarity:

20 min. at 500 V.

20 min. at 550 V.

20 min. at 600 V.

20 min. at 650 V.

20 min. at 700 V.

20 min. at 750 V.

20 min at 1,000 V.

9. After focusing the gel is gently “floated” off the plates into transfer buffer and 

subjected to standard transfer and antibody detection as described for western 

blotting (section 2.9.3) using anti-eIF-4E antibody (Table 2.9.2). Focusing 

separated the phosphorylated and non-phosphorylated forms of the protein.
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2.12 SERUM STARVATION AND KINASE ACTIVATION STUDIES

Cells were innoculated at 5 x 1 0 5 cells in 5 ml fresh medium in 25 cm2 flasks (Costar, 

3050) and allowed to grow for 48 hours. Flasks were then washed x3 times in Serum 

Free Medium (SFM) and incubated for 48 hours in SFM. Cells were then pre­

incubated for 60 min in the presence of specific kinase inhibitors (Table 2.12.1) (see 

Figure 4.10; Section 4.3.2) before re-stimulation with medium containing 10% serum.

Table 2.12.1: Kinase Inhibitors for Serum Starvation Studies

Inhibitor Target Kinase Concentration Source Cat. No.

PD98059

(MW=267.29)

MEK-ERK

activation

50(j,M John Lyons 

Onyx Pharm.

X

SB203580

(MW=*)

p38 kinase 30nM John Lyons 

Onyx Pharm.

X

Rapamycin

(MW=914.2)

FRAP/mTOR 20nM Calbiochem CN 681675

Wortmannin

(MW=428.4)

PI-3K lOOnM Calbiochem CN 553210

Nomenclature: X = Inhibitor was a kind gift of Dr. John Lyons.

* = MW unavailable. Supplied as a lOmM stock solution.

Samples were harvested by washing x3 times in chilled, sterile PBS A, followed by 

incubation in 650 (al ice-cold TG lysis buffer (section 2.9.1) for 20 min. Samples were 

snap frozen in liq. N 2 and stored at -80°C. Protein concentrations of samples were 

determined using the BCA micro-assay described in section 2.13.

The effect of serum stimulation on ERK activity was determined by western blotting 

(Section 2.9) using phospho-specific antibodies (Table 2.9.1). Even loading of ERK 

protein in lanes was shown using ordinary ERK antibody, allowing the relative levels 

of ERK phosphorylation to be determined. The effects of specific kinase inhibitors on 

the phosphorylation of eIF-4E were determined using IsoElectric Focusing, as 

described in section 2 .1 1 .

93



2.13 BCA Micro-assay for protein concentration

A 1/10 dilution of samples was made in sterile UHP. All standards were diluted in

0.2% Triton X-100 (final concentration of Triton X-100 in diluted samples to be 

measured) to ensure that the same amount of triton was present in samples and 

standards. This was only a precaution since the BCA assay is relatively insensitive to 

triton concentrations below 1%.

A working BCA reagent mixture (Pierce, 23235) was made by combining 25 parts 

Solution A with 24 parts Solution B, mixing and then adding 1 part Solution C. 120|xl 

samples and standards were added to the wells of a 96-well plate, to which 120 pi 

working BCA mix was added. The plate was gently agitated to mix the samples and 

incubated for 30 min at 37°C. After ensuring no air-bubbles were present, samples 

were read at 595 nm in a plate reader. From a standard curve, the protein content of 

each sample was determned.
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2.14 RNA EXTRACTION

For all procedures using RNA, most glassware, solutions and plastics were treated 

with 0.1% diethyl pyrocarbonate (DEPC) before use, a strong inhibitor of RNase 

activity.

RNA was extracted from cells as follows:

Cells were trypsinised, washed once with PBS A and the sample was counted. 

Approximately 108 cells were pelletted and lysed using 1ml of TRI REAGENT™ 

(Sigma, T-9424). The samples were allowed to stand for 5 min at RT to allow 

complete dissociation of nucleoprotein complexes and then snap-frozen in liq. N2 and 

stored at -80°C.

When thawed, samples were allowed to stand for 5 min before 0.2ml of chlorofom 

was added per ml of TRI REAGENT™ used. Samples were then shaken vigorously 

for 15 sec and allowed to stand for 15 min at RT. Samples were then centrifuged at 

13000rpm in a microfuge for 15 min at 4°C. This step separated the mixture into 3 

phases; the RNA was contained in the colourless upper aqueous layer. This layer was 

then transferred to a fresh Eppendorf and 0.5ml of isopropanol was added. The 

sample was mixed and allowed to stand at RT for 10 min before being centrifuged at 

13000rpm in a microfuge for 10 min at 4°C. The RNA formed a precipitate at the 

bottom of the tube. The supernatant was removed and the pellet was washed with 1ml 

of 75% ethanol and centrifuged at 4°C for 5-10 min at 8500rpm. The supernatant was 

removed and the pellet was briefly allowed to air-dry. 20-30(0.1 of DEP-C water was 

then added to the RNA to resuspend the pellet.

Concentrations of RNA in samples were calculated by determining OD at 260nm and 

280nm and using the following formula:-

OD260nm x Dilution factor x 40 = (ig/ml RNA 

The purity of the RNA extraction was calculated by determining its OD at 260nm and 

280nm. An A260nm : A280nm ratio of 2 is indicative of pure RNA. Only those samples 

with ratios between 1.7 and 2.1 were used.
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2.15 REVERSE TRANSCRIPTASE REACTION

Reverse transcriptase (RT) reactions were carried out in laminar flow cabinets using 

micropipettes which were specifically allocated to this work.

cDNA was formed using the following procedure: -

❖ 1 pi oligo (dT)12'18 primers (1 pg/pl) (Promega; C1101)

❖ 1 pi total RNA (1 pg/pl) (section 2.14)

❖ 3 pi water

were mixed in a 0.5ml Eppendorf (Eppendorf, 0030 121.023), heated to 70°C for 10 

min and then chilled on ice. To this, the following were added:-

❖ 4pi of a 5x buffer (250mM-Tris/HCl pH 8.3, 375mM-KCl and 15mM-MgCl2)

❖ 2pl DTT (lOOmM) (Gibco; 510-8025 SA)

❖ 1 pi RNasin (40U/pl) (Promega; N2511)

❖ 1 pi dNTPs (lOmM of each dNTP)

❖ 6 pi water

❖ 1 pi Moloney murine leukaemia virus-reverse transcriptase (MMLV-RT) 

(40,000U/pl) (Gibco; 510-8025 SA).

The solutions were mixed and the RT reaction was carried out by incubating the 

Eppendorfs at 37°C for 1 hour. The MMLV-RT enzyme was then inactivated by 

heating to 95°C for 2 min. The cDNA was stored at -20°C until required for use in 

PCR reactions as outlined in Section 2.16.

2.16 POLYMERASE CHAIN REACTION

A standardised polymerase chain reaction (PCR) procedure was followed in this 

study. The Eppendorf tubes used (Eppendorf, 0030 121 023) and the sterile water 

were DEPC-treated. All reagents had been aliquoted and were stored at -20°C and all 

reactions were carried out in a laminar flow cabinet.

Each PCR tube contained the following:-

❖ 24.5pi water

❖ 5pi lOx buffer* (lOOmM-Tris/HCl, pH 9.0, 50mM-KCl, 1% Triton X-100)
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❖ 3(0.1 25mM-MgCl2*

❖ 8|ol dNTPs (1.25mM each of dATP, dCTP, dGTP and dTTP) (Promega; U1240)

❖ 1 (0,1 each of first and second strand target primers (250ng/[ol)

❖ 1 |o.l each of first and second strand endogenous control primer (250ng/|o,l) (P-actin)

❖ 0.5(ol of 5U/(ol Taq DNA polymerase enzyme*

❖ 5(ol cDNA 

*(Promega; N1862)

A drop of autoclaved mineral oil was placed in each reaction tube to prevent 

evaporation and the DNA was amplified by PCR as follows:

95°C for 1.5 min - to denature double-stranded DNA 

30 cycles: 95°C for 1.5 min. - denature

55°C for 1 min - anneal 

72°C for 3 min. - extend 

72°C for 7 min. - extend 

The reaction tubes were then stored at 4°C until analysed by gel electrophoresis as 

described in Section 2.17.

Primers were: K8/18 (McBride et al., 1999), eIF-4E (designed by Dr. Noel Daly, 

NCTCC), c-myc (NicAomhlimh, R., PhD thesis, 1997) and P-actin (NicAomhlimh, R., 

PhD thesis, 1997).
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2.17 ELECTROPHORESIS OF PCR PRODUCTS

A 3% agarose gel (NuSieve, GTG) was prepared in TBE buffer (5.4g Tris, 2.75g 

boric acid, 2ml 0.5M-EDTA pH 8.0 in 500ml water) and melted in a microwave oven. 

After allowing to cool, 0.003% of a lOmg/ml ethidium bromide solution was added to 

the gel which was then poured into an electrophoresis apparatus (BioRad). Combs 

were placed in the gel to form wells and the gel was allowed to set.

10fj.l loading buffer (50% glycerol, lmg/ml xylene cyanol, lmg/ml bromophenol blue, 

ImM EDTA) was added to 50(_l1 PCR samples and 20[_il was run on the gel at 80- 

90mV for approximately 2 hours. When the dye front was seen to have migrated the 

required distance, the gel was removed from the apparatus and examined on a UV- 

transilluminator and photographed.

2.18 NORTHERN BLOT ANALYSIS OF RNA LEVELS

Standard Northern Blotting techniques were used to examine cellular RNA levels. 

The RNA samples to be analysed were first separated by Formaldehyde-Agarose gel 

Electrophoresis

2.18.1 Formaldehyde-Agarose gel Electrophoresis

A 100ml 1% agarose gel was prepeared by dissolving lg  of agarose in 73.4 ml of 

sterile distilled water (SDW). The gel was then cooled to around 60°C and 10ml of 

10X MOPS buffer (0.25M MOPS, 0.05M Na acetate, 0.01 EDTA, pH 7.0) was added 

along with 16.6 ml formaldehyde and mixed well before pouring. The running buffer 

for the gel was IX MOPS containing 12.9 ml formaldehyde/300ml. RNA samples 

were diluted to the same concentration to allow equal loading volumes. The RNA 

samples were mixed with RNA loading buffer (2.9^1 10X MOPS, 5fxl formaldehyde, 

14.3 |ol formamide, 1.43^1 tracking buffer) and heated to 65°C for 15min, placed on 

ice and loaded onto the gel. The RNA samples were run on the gels at 75mV for 2 

hours alongside RNA size markers (Promega). The gels were washed in 3 changes of 

sterile UHP over 30 minutes.

98



2.18.2 Northern Blotting

A sheet of Hybond-N (Amersham) was cut to the same size as the RNA gel. A tray or 

glass dish was half filled with the transfer buffer (20X SSC (8.823 % (w/v) tri-sodium 

citrate, 17.532 % (w/v) NaCl, pH 7-8)). A platform was made to stand in the tray 

above the level of the transfer buffer and a wick (3MM filter paper) was placed over 

the platform into the transfer buffer. The RNA gel was placed loading side down on 

the wick platform without trapping air bubbles. The Hybond-N was placed on top of 

the RNA gel and three sheets of 3MM filter paper placed upon the Hybond-N. A stack 

of absorbent tissue paper over 5cm high was placed on top of the filter paper and 

finally a glass plate with a 75 Og weight were placed on top of the paper stack. The 

transfer was carried out overnight. After blotting, the transfer apparatus was 

dismantled and the gel loading tracks were marked on the Hybond-N to allow land 

identification. The nucleic acid was fixed to the membrane by baking at 80°C for 2 

hours and stored until use between two sheets of dry filter paper.

After blotting, the gel was rehydrated in a 1 (J.g/ml EtBr solution. The gel was than 

viewed under a U.V. lamp. The efficiency of RNA transfer to the membrane could 

then be assessed by looking for remaining traces of 28 and 16S ribosomal bands. The 

lane on the gel containing the RNA markers was removed from the gel before blotting 

and stained with EtBr alongside the blotted gel. The position of the RNA markers 

were photographed and used as a reference to size bands on the developed Northern 

Blots.

2.18.3 Radioactive Labelling of Probes

All DNA probes were labelled with [a-32P]dCTP (Amersham) using the Prime-a-gene 

labelling kit (Promega : U1100) according to the supplied protocol.

To test the percentage incorporation of nucleotides into the DNA probes the following 

protocol was carried out. 1 |a,l out of the 50|il reaction mix was diluted 1 in i00 with 

water. l(j,l of the diluted probe was then blotted onto four 1cm2 pieces of filter paper 

and air dried. Two of these pieces of filter paper were washed twice for 10 minutes in
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10% Tri-chloro Acetic Acid (Riedel-del Haen: UN-No-1839), rinsed in 100% ethanol 

and air dried. Then the counts on the two washed and unwashed pieces of filter were 

measured using a scintillation counter. The filter paper was placed in scintillation 

counter tubes with 10ml of scintillation fluid (Ecolite) and the Counts per minute 

(CPM) read. The CPM of the washed pieces of filter paper as a percentage of the 

unwashed pieces of filter paper gave the percentage incorporation of oligonculeotides 

into the probe.

2.18.4 Hybridisation of labelled probes to RNA membranes

The baked Hybond-N membranes with the mRNA samples were prehybridised 

overnight at 65°C in 10ml of hybridisation buffer (In 100ml : 43ml 1 M Sodium 

phosphate pH 7.2, 33 ml 20% Sodium Dodecyl Sulphate (SDS), 20 ml 5% BSA, 4ml

0.5 M EDTA) per membrane. The hybridisation was carried out in glass hybridisation 

tubes in a hybridisation oven. The appropriate probe was heated to 94°C for 3 min 

before addition to 10ml of preheated (65°C) hybridisation buffer. Sufficient probe was 

used to give 3x10 6 CPM/ml hybridisation buffer. The pre-hybridisation buffer was 

discarded from the hybridisation tubes and replaced with the fresh hybridisation 

buffer containing the probe. Hybridisation was carried out at 65°C overnight. The 

membranes were then washed at 65°C for 5 min in 2X SSC, followed by 2 x 15 min 

washes in 0.5X SSC, 0.1% SDS and 2 x 1 5  min washes in 0.1X SSC, 0.1% SDS. The 

membranes were wrapped in cling film and exposed to X-ray film at -80°C for the 

desired length of time (typically 24h to 5 days).

Probes used were: K8/18 (McBride et al., 1999); eIF-4E (made by Dr. Noel Daly, 

NCTCC).
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2.19 IN-VITRO TRANSLATION

In-vitro Translation (IVT) was performed using commercially available Wheat Germ 

Extract (WG) and Rabbit Reticulocyte Lysate Systems (RRLs) (Promega, L-4330) 

and RRLs (Boehringer, 1103-032). Wheat Germ (WG) Systems proved unsuitable for 

use and so the procedure described below is for RRL (Boehringer) systems only.

1. “Master-mixes” were made for all reactions to avoid differences between 

individual reactions. Translation mixtures were made as follows (per reaction):

2 pi Translation reaction mixture (vial 2 and 3) (Amino Acids)

1 pi Potassium Acetate (vial 4)

1.5 pi Magnesium Acetate (vial 5)

8.5 pi Nuclease free UHP (vial 8)

2 pi RNA (stock of 0.5 pg/pl in nuclease free UHP)

Total Volume 15 pi. For control reaction not containing RNA, 2pl nuclease

free UHP (vial 8) was added to maintain constant volumes.

2. Reactions were mixed thoroughly. Rabbit Reticulocyte Lysate aliqouts were then 

thawed quickly, as recommended by the manufacturer, mixed thoroughly and 

added to the reaction mixtures:

lOpl Rabbit Reticulocyte Lysate (vial 1)

Total volume 25 pi

3. Reactions were mixed again, centrifuged briefly in a microfuge tube and 

incubated for 60 min. in a water-bath at 30°C.

4. Reactions were stopped by placing on ice and then subjected to Western blotting 

analysis (section 2.9) to determine protein synthesis from exogenous RNA added 

to the systems (RNA was prepared as described in section 2.14).

2.19.1 Translation Inhibition Studies

To determine whether or not inhibitors of translation were present in the poorly 

differentiated cell line, DLKP, cellular extracts were added to IVT reactions.
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2.19.1.1 Preparation of Cellular Extracts

1. Approximately 108 cells were harvested and washed in ice-cold PBS.

2. The cells were carefully resuspended in 375 [i\ ice-cold lysis buffer (50 mM 

EDTA, 100 mM NaCl, 5 mM MgC^, 0.5% (v/v) Nonidet P-40, lOOOU/ml 

RNAsin (Sigma, R-2520), made up in DEPC-treated UHP and filter sterilised.

3. The cell suspension was incubated on ice for 5 min. and cell lysis was observed 

microscopically (nuclear lysis, as expected, did not occur).

4. The suspension was then transferred to an eppendorff and centrifuged at 2,000 

rpm for 10 min to remove nuclei.

5. The supernatant was carefully removed to a fresh eppendorff and stored in 

aliquots at -80°C.

Since these preparations are based on a simple method for isolation of cytoplasmic

RNA, and included RNase inhibitors, they were deemed suitable for translation

inhibition studies.

2.19.1.2 IVT using cytoplasmic extracts

Standard IVT reactions were used, as described in section 2.19 above.

1. 50(il Cytoplasmic extract was thawed on ice and combined with an additional 60U 

RNAsin for 2-3 min. 5[il extracts were used for inhibitor studies.

2. 2[i\ total RNA (0.5[xg/pl) was added to this and incubated for 20-30 min at 30°C 

or 4°C (works using both temps) (“inhibition study mixture”). A water control, 

containing DEPC UHP in place of extract was included.

3. IVT reaction mixtures were prepared during this incubation period. They were as 

described in section 2.19 except 1.5 (il of water was used in place of 8.5 (il to 

allow for the volume of the inhibition study mix (7[il) to be added.

4. After incubation of the inhibition study mixes and controls, IVT mixes from step 3 

were added, and samples were subjected to IVT and western blotting analysis as 

described in section 2.19 and 2.9, respectively.
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2.20 OVEREXPRESSION STUDIES

eIF-4E and YYl cDNAs were kind gifts of Prof. Arrigo DeBenedetti (Louisiana, 

USA) and Dr. Finian Martin (Dublin, Ireland), respectively. Both plasmids were 

obtained as a culture of pre-transformed cells resistant to geneticin (GEN) and 

ampicillin (AMP).

2.20.1 Plasmid Preparation

Cultures were streaked on LB agar containing 50p,g/ml Geneticin (Sigma, G9516) and 

50|ag/ml Ampicillin and incubated at 37°C overnight. From these, a single colony was 

inoculated into 10ml of LB AMP/GEN (50|-ig/ml each) and grown overnight. A 2ml 

sample of this suspension was then added to 200ml of TB AMP/GEN 50fig/ml and 

left to grow overnight at 37°C for large-scale isolation of plasmid from transformed 

cells. The following day the cells were pelleted and pZ523 spin columns (5 Prime -»  

3 Prime Inc.; 5-523523) were used to isolate the plasmid according to the 

manufacturer’s instructions. This procedure involved lysing the pellet in 20ml of an 

ice-cold solution containing 50mM glucose, 25mM Tris-Cl, lOmM EDTA, pH8.0 

and 5mg/ml lysozyme (Sigma; L6876) at room temperature for 10-15min. 40ml of a 

0.2N NaOH and 1.0% SDS solution was gently mixed with the lysate until the 

suspension became clear and then incubated on ice for lOmin. 30ml of 3M K-Acetate, 

pH5.2 was added to the above and mixed gently until a flocculent precipitate appeared 

at which stage the mixture was stored on ice for at least lOmin. The sample was 

centrifuged at 35,000g. for lh  at 4°C after which the supernatant was recovered and 

added to 0.6 volume of 100% Isopropanol, mixed gently and left at room temperature 

for 20-30min. The suspension was then centrifuged at 35,000g. for 30min at 20°C 

after which the supernatant was discarded and the pellet washed in ice-cold 70% 

ethanol and resuspended in 5ml of TE, pH8.0. To remove any contaminating RNA 

the plasmid solution was treated with RNase Plus (5 Prime —» 3 Prime Inc.; 5- 

461036) (to a final dilution of 1:250) for 30min at 37°C followed by 

phenol: chloroform: isoamyl alcohol extraction. 10M ammonium acetate was added to 

the aqueous phase to a final concentration of 2.0M and 0.6 volume of 100%
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Isopropanol was added to the sample, mixed and stored at room temperature for 20- 

30min. The sample was centrifuged at maximum speed in an epifuge and the DNA 

pellet was washed in 70% ethanol and resuspended in 3.6ml of lOmM Tris-HCl, 

ImM EDTA, and 1.0M NaCl, pH8.0. 1.8ml of this sample was loaded into one of 

two pZ523 columns (following the manufacturer’s instructions) and the column 

effluent was precipitated with 0.6 volume 100% Isopropanol, as described previously. 

The DNA was pelleted at maximum speed in an epifuge, washed in 70% ethanol and 

resuspended in TE. The DNA concentration was determined by measuring the 

OD260nm.

2.20.2 Lipofectin Transfection of attached mammalian cells

On the day prior to transfections, cells to be transfected were plated from a single cell 

suspension and seeded into 25cm2 flasks at 3x105 cells per flask. On the day of the 

transfection, the plasmids to be transfected were prepared along with the lipid 

transfection reagents according to the manufacturers protocols (Lipofectin - 

GibcoBRL ; 18292-011). The cells were transfected for four hours in the absence of 

serum after which the media was supplemented with 10% serum overnight. The 

following morning flasks were washed with serum-containing medium and re-fed. 

Selection began 12-24 hours after re-feeding. For all transfections the cells were 

incubated at 37°C.

2.20.3 Selection of Transfected cells

After transfection, cells that had taken up the plasmid were selected by feeding the 

cells with media containing geneticin (Sigma; G9516) - the plasmids used had a 

geneticin-resistant marker, therefore, only those cells containing the plasmid will 

survive treatment with geneticin. 2 days after transfection the flask of cells was fed 

with 200|ig/ml geneticin in complete media. The concentration of geneticin was 

increased step-wise evey 2 days to a final concentration of 800|ig/ml. Untransfected 

control flasks died off after 4-5 days. From transfected cells, frozen stocks were made 

and cells were prepared for immunocytochemical (Section 2.8) and western blot 

(Section 2.9) analysis.
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Section 3.0

Results



Section 3.1 Bromodeoxyuridine and Keratin Expression:

3.1.1 Morphological changes in BrdU-treated cells:

Figures 3.1.1.1 and 3.1.1.2 show the morphological changes induced in BrdU-treated 

A549 and DLKP. Both cell types exhibit distinct changes in morphology, with BrdU- 

treated cells appearing flattened and significantly larger than untreated cells, 

attributable to the induction of attachment factors and changes in cytoskeletal protein 

expression.

To determine whether or not BrdU induces a terminal differentiation in these cells 7 

day-old treatments of DLKP were washed in fresh medium to remove residual BrdU 

and re-fed in the absence of BrdU. Figure 3.1.1.3 illustrates the gradual reversal of the 

morphology adopted by BrdU-treated DLKP in the absence of continued exposure to 

BrdU. By days 10-14 of removal of BrdU cells retain a degree of morphological 

change characteristic of differentiated cells, maintaining an increased cell flattening 

and surface area. At this stage it was noted that the growth rates and medium 

consumption remained below that of untreated cells but progressively increased. By 

day 30, cells had reverted to a morphology more characteristic of untreated cells. 

Continued treatment of cells with BrdU results in maintenance of the differentiated 

phenotype (figure 3.1.1.3) and very slow cell division and growth rates (flasks only 

required passaging every 5 weeks or more) over a period of four months. These 

results suggest that BrdU is not killing or selecting for responsive cells.
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(a)

(b )

Figure 3.1.1.1 Morphological changes in A549 upon exposure to BrdU.

(a) Untreated A549, (b) IOjiM BrdU-treated A549, grown for 7 days. 

Magnification x20.
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(b)

Figure 3.1.1.2 Morphological changes in DLKP upon exposure to BrdU.
(a) Untreated DLKP, (b) 10|xM BrdU-treated DLKP, grown for 7 days. Image 
Analysis revealed, on average, a 2-fold increase in diameter of cells upon treatment 
with BrdU. Size Bar (bottom left) = 50 jam. Magnification x20.
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A .l 7 (0) Day B .l 7 (0) Day

A.2 17(10) Day B.2 17(10) Day

A.3 37 (30) Day B.3 37 (30) Day

Continued Exposure Discontinued Exposure

Figure 3.1.1.3: Removal of BrdU from differentiated DLKP cells. Cells were 
treated for 7 days with lOpM BrdU. Subsequently cells were re-fed with medium 
lacking BrdU. Days are numbered to include the original 7-day BrdU exposure 
(numbers in brackets represent days after removal of stimulation with BrdU). 
Magnification x20. (A) Continued exposure to BrdU maintains and even enhances the 
differentiation of DLKP, as assessed by morphology (A.l - A.3). (B) Removal of 
BrdU results in a gradual reversion of DLKP to a morphology more characteristic of 
the parental population (B.l - B.3).

10Q



3.1.2 Growth Profiles of BrdU-treated Cells

Figure 3.1.2 illustrates the growth inhibitory effects of lO^M BrdU on the epithelial 

cell lines studied. Both A549 and DLKP exhibit a strong inhibition of growth upon 

exposure to BrdU.

0 0.5 1 2 3 4 5 6 7
Days

(a)

0 0.5 1 2 3 4 5 6 7
Days

(b)

Figure 3.1.2. Growth Inhibition observed in BrdU-treated (a) A549 and (b) 
DLKP. Untreated control cells are in blue (left). BrdU-treated cells are in red (right).

110



3.1.3 Simple Keratin Expression in Differentiating Epithelia

Keratins are markers of epithelial differentiation (Section 1.2). BrdU-treated and 

untreated cells were stained with monoclonal antibodies to simple keratins, K8 and 

K18, as described in section 2.8, in order to investigate changes in keratin expression 

in differentiating epithelial lung cancer cells.

3.1.3.1 Immunocytochemistry for Simple Keratin Expression in A549

Immunocytochemical analysis showed A549 expressed moderately high levels of 

keratin prior to treatment. However, the levels of expression of partner keratins K8 

and K18 were found to increase upon exposure to 10[.iM BrdU. Keratin filaments are 

markers of epithelial differentiation and can be seen to radiate from the nucleus 

through the cytoplasm. The results are illustrated in figure 3.1.3.1. Again, the 

morphology of BrdU-treated cells can be seen to be quite distinct from that of the 

untreated control cells.

3.1.3.2 Immunocytochemistry for Simple Keratin Expression in DLKP

Keratin expression was not detectable by immunocytochemistry in DLKP DLKP is a 

very poorly differentiated NSCLC-NE/SCLC-V line (McBride et al, 1998), and as 

such do not express any keratin filaments as determined by immunocytochemistry. 

Treatment of these cells with 10(j.M BrdU results in the induction of K8 and K18 in 

about 10-15% of cells. Representative photographs are shown in figure 3.1.3.2. The 

induction in these cells is quite strong. Again, cytoplasmic filaments can be seen in 

these cells radiating through the cytoplasm from the nucleus.

3.1.3.3 Keratin expression after prolonged exposure to BrdU 

(Immunocytochemistry)

Prolonged exposure to lOfiM BrdU resulted in increased morphological changes in 

both A549 and DLKP, accompanied by increased staining in keratin positive cells. 

Representative photographs are shown in figures 3.1.3.3.1 and 3.1.3.2, in which cells
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were exposed to BrdU for 21 days. Weak keratin filament formation was detectable in 

approximately 70% DLKP after exposure to BrdU for 3 months, while again a small 

percentage of cells exhibited very strong keratin filament staining (figure 3.1.3.3.3). 

Removal of BrdU and re-feeding with fresh medium in the absence of BrdU resulted 

in a “reversal” of the morphology of BrdU-treated DLKP (Section 3.1.1). However, 

keratin expression was maintained in these cells, as shown by immunocytochemistry 

(figure 3.1.3.3.4). These results suggest that BrdU is an irreversible maturational 

inducer of the epithelial lung cancer cell line, DLKP, in agreement with findings 

reported by Feyles et al (1991), using a small cell lung cancer cell line, NCI-H69.
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(C) (D)

Figure 3.1.3.1 Immunofluorescence/lmmunocytochemistry for K8 and K18 
expression in BrdU-treated A549.
(A) 7-day Untreated A549 stained for cytokeratin 8. (B) Cytokeratin 18 stains in the 
same manner. (C) 7-day BrdU-treated A549 stained for cytokeratin 8. (D) 7-day BdU- 
treated A549 stained for cytokeratin 18. Immunofluorescence (A&C) (Section 2.8.3) 
was photographed at x40. Immunocytochemistry (B&D) (Section 2.8.2) was 
photographed at xlO.
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(b)

(d)

Figure 3.1.3.2 Immunocytochemistry for K8 and K18 Expression in BrdU- 
treated DLKP. (a) Untreated DLKP control cells stained with anti-K8 antibody, (b) 
7-day BrdU-treated DLKP cells stained with the same K8 antibody as for (a), (c) 
Untreated DLKP control cells stained with anti-K18 antibody, (d) 7-day BrdU-treated 
DLKP cells stained with the same K18 antibody as for (c). Magnification x20.

(a)

(c)
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(a)

(b)

Figure 3.1.3.3.1 The appearance of 21-day BrdU-treated A549 stained with anti­
keratin antibodies, (a) Keratin 8. (b) Keratin 18. Magnification x40.
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(b)

(c)

Figure 3.1.3.3.2 The appearance of 21-day BrdU-treated DLKP stained with 
anti-keratin Antibodies, (a) Untreated control cells are negative for Keratin 8 (and 
K18; not shown). Magnification x40. (b) 21-day BrdU-treated DLKP stained with 
anti-K8 antibody and (c) 21-day BrdU-treated DLKP stained with anti-K18 antibody, 
(b) and (c) Magnification x20.

11



(A)

3 ■4< • w ,

•wT'-n

4  '  ■'* ■ '-Oi. ■
v ■' Cv ■

■" e ^ V s ; - 1 '
*

*
.

K

;
$ L A

.■ :  . * i x  ;** ! b .  .<  *  -

(B)

O i v &

©  <{ • 0 ?  9  ■
': '•  O k . -Q

(fr . . #  w

* ' ^ 51 | ) .

t s  • o
v # °  . £ \  •*

Figure 3.1.3.3.3 Keratin Expression in BrdU-treated DLKP extended over 3 
months. (A) Keratin 8. (B) Keratin 18. (C) A large percentage of cells now stain 
weakly for keratin filaments (representative photograph is of K8 expression). Again, 
untreated parental DLKP were keratin negative (not shown). Magnification x20.
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Figure 3.1.3.3.4 Discontinued BrdU treatments of DLKP. Cells were treated for 1 
week with BrdU, washed in fresh medium and then cultured for 3 months in the 
absence of BrdU. These cells remain keratin positive. (A) Keratin 8. (B) Keratin 8. 
(C) Keratin 18. Again, untreated parental DLKP remain keratin negative (not shown). 
Magnification x40.
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3.1.3.4 Keratin Expression in two DLKP clones

Two of the three clones identified in the clonal population that comprises DLKP were 

examined for keratin induction upon exposure to 10[xM BrdU. This was done to 

ensure that a single clone from the parental population comprising DLKP was not 

responsible for the keratin induction observed upon exposure to BrdU. Keratin 

filaments from both K8 and K18 subtypes were shown to be inducible in both DLKP- 

SQ (Squamous) and DLKP-I (Intermediate) clones. Representative photographs are 

shown in figure 3.1.3.4.

119



■f

■5 %

(a)

(b)

Figure 3.1.3.4 Induction of K8 expression in two of the clones identified in 
DLKP. (a) BrdU-treated DLKP-SQ, stained with anti-K8 antibodies, (b) BrdU-treated 
DLKP-I, stained with anti-K8 antibodies. Untreated DLKP-SQ, DLKP-I and parental 
DLKP all remain keratin-negative (not shown). Magnification x20.
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3.1.4. Western Blot Analysis for Keratin Expression

In order to confirm and quantify the changes in keratin expression observed by 

immunocytochemical analysis upon exposure to 10|jM BrdU, western blot analysis 

was performed as described in section 2.9. All lanes are numbered in terms of the 

days of exposure to BrdU.

3.1.4.1 Keratin expression in A549

Both K8 and K18 were shown to be upregulated in BrdU-treated A549. Moderately 

high levels of both keratins were detectable in untreated controls, with an increase in 

expression occurring within 24 hrs of exposure to BrdU. Elevated levels of both 

keratins were detectable up to 3 weeks after initial exposure to BrdU. This is 

illustrated in figure 3.1.4.1. K8 appears as a doublet due to major and minor forms of 

the protein detected by this antibody. Expression reaches a maximum after only 3-4 

days, beyond which expression of both keratins remains elevated but constant.

3.1.4.2 Keratin Expression in DLKP; Development of immunoprecipitation

Due to the fact that expression of keratins 8 and 18 is induced in only about 10-15% 

of cells (by immunocytochemistry) from a keratin negative cell line, initial attempts to 

detect K8 an K18 expression in these cells failed. It was decided to develop 

immunoprecipitation in the hope of detecting keratin expression in these cells. At first 

a simple RIPA-based precipitation procedure was used. However, persistent problems 

with this technique, primarily antibody decomposition to products of 30 and 50 kDa 

masking the 45-50 kDa keratin filaments of interest, led to the development of an 

alternative immunoprecipitation technique. Biotinylation of cellular proteins 

(Boehringer) allowed the specific immunoprecipitation of proteins of interest (in this 

case keratins) using monoclonal antibodies, followed by their detection by western 

blot analysis using an anti-biotin antibody (Section 2.10). Problems of antibody 

breakdown were overcome by the removal of reducing compounds such as DTT and 

mercapto-ethanol from all lysis, precipitation and loading buffers. Low levels of 

keratin expression were compensated for by increasing the incubation time for both
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the precipitating antibody and protein-G beads from the recommended lhr to an 

overnight incubation at 4°C.

Figure 3.1.4.2.1(a) shows the detection of keratin proteins in A549 using 

immunoprecipitation. Lanes 1 and 2 are controls containing antibody but no keratin 

protein, illustrating the elimination of the problem of antibody breakdown (IgG band 

is detectable only at 180 kDa). Keratin detection is shown in lanes 3, 6 and 8. 

Sonicated A549 cells were used to develop the technique to eliminate the possibility 

that any failure to detect keratin expression using this procedure might be due to the 

absence of keratin in samples, since A549 are already keratin positive. If BrdU-treated 

DLKP were used, it could not be 100% sure that any failure to detect keratin 

expression was not simply due to the failure of the cells to take up the drug or a 

problem with the drug itself, resulting in a failure to induce keratin expression in 

DLKP in the first place, i.e. no fault of the immunoprecipitation procedure at a l l !!!

Figure 3.1.4.2.1(b) shows an attempt made to use immunoprecipitation to quantify 

changes in keratin 8 expression in A549 cells upon exposure to Retinoic Acid. While 

the decrease in expression on day 1 is detected (Section 3.7.3.1), true increases at later 

time-points are not detectable. Immunoprecipitation is designed for accurate detection 

and quantification of low level expression, as in the case of BrdU-treated DLKP. 

However, A549 already express significant levels of keratin protein and as such, 

increases in keratin expression are unreliably detected using this technique due to 

saturation of the system with keratin protein.

It was then decided to test the immunoprecipitation procedure on a gradient of keratin 

protein established by diluting cell lysates from A549. This was used to confirm the 

ability of the system established to quantitatively detect changes in keratin protein 

levels within samples. The detection of a protein gradient is shown in figure 

3.1.4.2.1(c).
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3.1.4.3 Keratin Expression in DLKP

Once the reliability of the immunoprecipitation procedure described in section 3.1.4.2. 

was established, keratin expression in BrdU-treated DLKP could be reliably 

quantified. Immunoprecipitation of keratin proteins from DLKP was optimised at 

between 106 and 107 cells, depending on the time period of exposure to BrdU under 

examination. Earlier time-points than 7-day treatments were not feasible due to 

prohibitive costs and time consumed in setting up enough flasks to obtain the required 

number of cells. Figure 3.1.4.3.1 shows the induction of keratin expression in DLKP 

exposed to 10[xM BrdU over a seven-day time-period. 107 cells were 

immunoprecipitated using K8 and K18 antibodies, followed by western blot analysis 

and detection using anti-biotin antibodies. Both K8 and K18 are strongly induced in 

DLKP upon exposure to BrdU. Of interest, a low level of keratin expression is 

detectable at such high cell numbers. This may represent extremely low level “leaky” 

expression or degradation products that do not form filaments detectable by 

immunocytochemistry.

Figure 3.1.4.3.2. shows the increased expression of K8 in DLKP when exposure to 

10|iM BrdU is increased to 21 days. This is in agreement with the increased intensity 

with which the 21-day treated cells stain by immunocytochemistry. Due to the length 

of exposure to BrdU, only 106 cells were immunoprecipitated per sample in this case. 

Therefore, the increase at day 7 is not visible. The use of 107 cells in figure 3.1.4.3.1 

could, therefore, be considered as a magnification or “zoom” on the earlier part of this 

treatment. Similar results were obtained for the partner keratin, K18 (data not shown).

3.1.4.4 Immunoprecipitation of Keratins in HL60 cells

The non-epithelial cell line, HL60, failed to show any keratin expression by 

immunoprecipitation in either BrdU-treated or untreated cells, suggesting an 

epithelial-specific induction of keratin expression by BrdU. This is shown in figure 

3.1.4.4. 107 cells were used per precipitation.
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K eratin  8

Figure 3.1.4.1 Western Blot Analysis of Keratin Expression in BrdU-treated 
A549. Numbers represent days of exposure to 10|xM BrdU.
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Figure 3.1.4.2.1 Steps in the Development of a non-radioactive 
immunoprecipitation procedure to detect keratin protein, (a) Immunoprecipitation 
of K8 from A549, a keratin positive cell line (gel leaked, so bands appear skewed), (b) 
Immunoprecipitation of Retinoic Acid-treated A549 cells. Immunoprecipitation 
systems become saturated at high antigen levels. Numbers represent days exposed to 
RA. (c) Immunoprecipitation of a Keratin gradient to test the quantitative capacity of 
the technique developed.

19S



K18 » >  
(45 KDa)

Note: U = Untreated Control Cells T = 7-Day BrdU-treated

Figure 3.1.4.3.1 Immunoprecipitation of Keratins from BrdU-treated DLKP. (a)
K8 Immunoprecipitation in DLKP (107 cells used), (b) K18 Immunoprecipitaion in 
DLKP (107 cells used).
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Figure 3.1.4.3.2 Immunoprecipitation of K8 in BrdU-treated DLKP over 21 days.
Numbers represent days of exposure to 10 |iM BrdU. 106 cells per precipitation.
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Figure 3.1.4.4 Immunoprecipitation of K8 and K18 in 7-day BrdU-treated
HL60s. 107 cells per precipitation. C = antibody control in lysis buffer. Numbers 
represent days of exposure to BrdU.
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3.1.5 Northern Blot and PCR analysis for K8/18

Northern blot and PCR analysis for the expression of both K8 and K18 was performed 

by Dr. Shirley McBride and Dr. Noel Daly. Both K8 and K18 transcript levels were 

unaffected by exposure to 10|iM BrdU, suggesting a post-transcriptional regulation of 

keratin expression in BrdU-treated A549 and DLKP cells. Representative Northern 

and PCR analysis is shown in figure 3.1.5. GAPDH and Ribosmal RNA levels were 

used as internal standards to confirm equal loading of RNA in each lane (not shown).
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Figure 3.1.5 Representative Northern Blot and PCR analysis of Keratin 
expression, (a) Northern Blot Analysis for Keratin 8 (similar results for K18) (A549). 
(b) PCR Analysis for Keratin 8 (similar results for K18) (A549). (c) Northern blot 
analysis for K8 and K18 expression in differentiating DLKP. Analysis performed by 
Dr. Shirley McBride and Dr. Noel Daly. Numbers represent days of exposure to 
BrdU.
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Section 3.2 Bromodeoxyuridine and its effects on Translation

3.2.1 Immunocytochemistry for eIF-4E:

Immunocytochemical analysis (Section 2.8), using monoclonal anti-eIF-4E (Affiniti 

Research, UK) and polyclonal anti-eIF-4E (Dr. Simon Morley, Sussex, UK) 

antibodies, demonstrated the cytoplasmic localisation of eIF-4E. This small Cap- 

binding translation initiation factor is the limiting factor in the regulation of 

eukaryotic translation initiation (Section 1.6.3.2.4.3).

3.2.1.1 eIF-4E Expression in A549

Treatment of A549 with lOfiM BrdU results in an increase in eIF-4E expression. The 

pattern of overexpression was determined by immunocytochemistry, and was shown 

to be distributed throughout the population evenly. Representative photographs are 

shown in figure 3.2.1.1.

3.2.1.2 eIF-4E Expression in DLKP

Immunocytochemical analysis of eIF-4E expression in DLKP shows the cytoplasmic 

expression of this factor in both treated and untreated cells. However, treatment with 

10[iM BrdU appears to induce a very strong upregulation in eIF-4E expression in a 

small percentage of cells (figure 3.2.1.2). Due to morphological changes and slight 

differences in coloration due to film development, it is difficult to determine if there is 

a universal upregulation in eIF-4E expression, as observed in A549 upon exposure to 

BrdU. However, it is clear that BrdU induces about 10-15% of DLKP to express very 

high levels of eIF-4E.
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Figure 3.2.1.1 Immunocytochemistry for eIF-4E expression in BrdU-treated 

A549. (a) Untreated Control A549 and (b) BrdU-treated A549 on day 7, stained with 

monoclonal anti-eIF-4E.
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Figure 3.2.1.2 Immunocytochemistry for eIF-4E Expression in DLKP.
(a) Untreated Control DLKP, (b) & (c) BrdU-treated DLKP show a percentage of 
cells that express very high levels of eIF-4E. Cells were stained with monoclonal elF- 
4E. Magnification x20.



3.2.2 Western Blot Analysis of eIF-4E expression

Overexpression of eIF-4E in BrdU-treated cells was confirmed using western blot 

analysis. Antibodies used were mouse monoclonal anti-eIF-4E (Affmiti Research) and 

rabbit polyclonal anti-eIF-4E (kind gift of Dr. Simon Morley).

The BrdU-induced upregulation in eIF-4E expression is very clear in both epithelial 

lines examined, A549 (figure 3.2.2.(a)) and DLKP (figure 3.2.2.(b)). Of interest, 

western blot analysis suggested that the expression of eIF-4E appears to be higher in 

the more poorly differentiated and aggressive DLKP, which is in agreement with later 

findings by Northern blot analysis (section 3.2.5). The high level of expression of 

eIF-4E is illustrated in figure 3.2.2(b), while lower exposure illustrates the increased 

expression in these cells more clearly (figure 3.2.2(c)).

Figure 3.2.2(d) shows the effect of 10pM BrdU on eIF-4E expression in the 

Leukaemic cell line, HL60. eIF-4E was found to be downregulated upon exposure of 

HL60 cells to BrdU.
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Figure 3.2.2 Western Blot Analysis of eIF-4E expression in BrdU-treated cells.
(a) BrdU-treated A549, (b) BrdU-treated DLKP, (c) BrdU-treated DLKP (low 
exposure to reveal increase more clearly), detected with monoclonal eIF-4E. (d) 
BrdU-treated HL60, detected with polyclonal eIF-4E (a kind gift of Dr. Simon 
Morley). Numbers represent days of exposure to BrdU. M = 29 kDa marker.
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3.2.3 PCR analysis of eIF-4E expression in differentiating lung cancer cells

To investigate the level at which eIF-4E is induced in BrdU-treated cells, RT-PCR 

analysis was performed on total RNA isolated from A549 and DLKP. Initial RT-PCR 

reactions were performed using RNA that had been isolated almost 20 months 

previously. eIF-4E did not appear to be significantly upregulated in DLKP (figure 

3.2.3(a)) upon treatment with BrdU. Figure 3.2.3(b) shows a repeat of this RT-PCR, 

using freshly isolated RNA, which suggests a small increase in eIF-4E transcript 

levels in BrdU-treated DLKP (days 7, 14, and 21 are upregulated when actin levels 

are accounted for).

Using the freshly isolated RNA, RT-PCR suggested an increase in eIF-4E transcript 

levels (day 2 appears to be degraded) in BrdU-treated A549 (figure 3.2.3(b)). The 

initial PCR reactions, using the older RNA show clear increases on days 1 and 7, 

while increases on days 14 and 21 are evident when actin levels are accounted for 

(figure 3.2.3(a)). Results with A549 suggest that there may be minor increases in elF- 

4E transcript levels, undetectable in DLKP.

3.2.4 Northern Blot analysis of eIF-4E expression

Northern blot analysis for eEF-4E expression in BrdU-treated A549 and DLKP is 

shown in figure 3.2.4.1-3. Even loading of samples was visually assessed by the 

levels of ribosomal RNA in lanes. Overall, Northern blot analysis suggests that there 

is little or no increase in transcript levels for eIF-4E in BrdU-treated epithelial cell 

lines, DLKP and A549. Ribosmal RNA levels were used as internal standards to 

confirm equal loading of RNA in all lanes (not shown).

Taking all of the mRNA analysis into account, it appears that, if there is any increase 

in mRNA levels for eEF-4E following BrdU treatment, it is relatively small.
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Figure 3.2.3 PCR Analysis of eIF-4E expression inBrdU-treated cells. Numbers 
represent days of exposure to BrdU. (a) PCR performed on 18-month-old RNA. (b) 
PCR performed on RNA isolated by Dr. Paula Meleady. Numbers represent days of 
exposure to BrdU. Primers were designed by Dr. Noel Daly. eIF-4E = 333bp. (3-actin 
= 142bp.
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Figure 3.2.4.1 Northern Blot Analysis and Densitometry of eIF-4E expression in 
BrdU-treated A549. (a) Northern blot analysis. eIF-4E probes were made by Dr. 
Noel Daly, (b) Graphical representation of Densitometry readings. Numbers represent
days of exposure to BrdU.
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Figure 3.2A.2 Northern Blot and Densitometry of eIF-4E expression in BrdU- 
treated A549. (a) Northern Blot analysis. eIF-4E probe was made by Dr. Noel Daly,
(b) Graphical representation of Densitometry readings. It must be noted that the 
sample for day3 BrdU (lane 3) was poorly loaded due to loss of sample during 
loading.
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Figure 3.2.4.3 Northern Blot Analyis and Densitometry of eIF-4E in BrdU 
DLKP. (a) Northern blot analysis. eIF-4E probe was made by Dr. Noel Daly, (b) 
Graphical representation of Densitometry readings.
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3.2.5 Iso-electric Focusing (IEF) for eIF-4E

In order to assess the activity of eIF-4E in BrdU-treated and untreated cells vertical- 

slab Iso-Electric Focusing (IEF) was performed. IEF was developed for these cells 

with the kind help of Dr. Simon Morley (Sussex, UK). Vertical-slab IEF (Section 

2.11) is an adaptation of standard isoelectric focusing techniques, in which samples 

are run through a low percentage polyacrylamide gel and pH gradient. This serves to 

separate proteins, not by size like conventional western blot analysis, but by changes 

in their pi (iso-electric point) due to phosphorylation. At the end of the run, proteins 

have reached equilibrium within the pH gradient of the gel. While multiple 

phosphorylation of eIF-4E is thought to occur, two forms predominate and are readily 

detected by this technique. They are the Ser209 phosphorylated, more acidic form 

(upper band; pH 5.9) and the non-phosphorylated (lower band; pH 6.3) form of elF- 

4E (Flynn and Proud, 1995; Sonenberg, 1996). Rabbit Reticulocyte lysate, due to the 

high content of translation factors and the manner in which it runs as a brown “smear” 

on IEF gels, is used as a positive control and also to orientate the gels for blotting.

IEF for eIF-4E in both DLKP and A549 is shown in figure 3.2.5. The increase in elF- 

4E expression is again evident in both A549 (figure 3.2.5(a)) and DLKP (figure 

3.2.5(b)). The upper band is the phosphorylated, more active form of eIF-4E (P-4E), 

while the lower band is the non-phosphorylated, less active form of the protein (4E). 

There appears to be a shift in the phosphorylation status of eIF-4E in both A549 and 

DLKP towards the more phosphorylated and active form of eIF-4E, in addition to an 

increase in eIF-4E levels. The high levels of eIF-4E in DLKP (mentioned in section 

3.2.2) are reflected again in the IEF for eIF-4E (figure 3.2.5(a)).

Interestingly, when eIF-4E phosphorylation was examined in differentiating HL60s 

the majority of the observed reduction in eIF-4E detected by western blot analysis 

would appear to be in the non-phosphorylated form of the protein, as determined by 

IEF (figure 3.2.5(c)). There is a reduction in P-4E, however, illustrating that there is a 

reduction in active eIF-4E, but this is significantly less dramatic than the reduction in 

the non-phosphorylated, less active form of eIF-4E.
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Figure 3.2.5 Iso-Electric Focusing for eIF-4E in BrdU-treated cells, (a) BrdU- 
treated A549, (b) BrdU-treated DLKP, (c) BrdU-treated HL60, detected using 
monoclonal eIF-4E. Numbers represent days of exposure to lOpM BrdU.
4E = eIF-4E (pi 5.9).
P-4E = Phosphorylated eIF-4E (pi 6.3)
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3.2.6 ERK Activity in BrdU-treated cells

BrdU appears to affect the expression of numerous genes, including the upregulation 

of integrin expression (attachment and signalling molecules, important in metastasis 

and differentiation) (Meleady and Clynes, in preparation). It was decided, therefore, 

to investigate the possible contribution of ERK (Extra-cellular Signal Regulated 

Kinase) (Section 1.6.4 & 4.3) to the activity of eIF-4E in differentiating lung cancer 

epithelia. Figure 3.2.6 shows that there are slight increases in the expression of 

phosphorylated, active ERK in BrdU-treated A549, which may explain the shift in 

eIF-4E phosphorylation observed previously (Section 3.2.5). The levels of active 

ERK in DLKP do not appear to change significantly (figure 3.2.6).

P - E R K > »

*■ ^  lH* m.

4 6 0 2 4 6

A549 DLKP

Figure 3.2.6 Levels of Phosphorylated ERK in BrdU-treated A549 and DLKP.
Levels of phosphorylated (active) ERK were determined using phospho-specific 
antibodies (a kind gift of Dr. John Lyons). The doublet detected is ERK1 and ERK2, 
identified by this antibody. Numbers represent days of exposure to BrdU.
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3.2.7 eDMF Complex Formation in Differentiating Lung Cancer cell lines

3.2.7.1 Immunofluorescence for eIF-4G

Immunofluorescence (Section 2.8.3) was performed using a rabbit polyclonal 

antibody directed against amino acids 920-1396 that will detect both eIF-4GI and elF- 

4GII (a kind gift of Dr. Simon Morley). Once optimum conditions for 

immunofluorescence using this antibody were determined (an overnight incubation at 

4°C rather than 2 hours at room temp.) it was possible to assess eIF-4G I/II expression 

in both A549 and DLKP.

The cytoplasmic localisation of eIF-4G is illustrated in figure 3 .2.7.1. The images for 

both treated and untreated A549 are a little unclear, due to a problem with the focus 

on the fluorescent microscope, but they illustrate the effect sufficiently. 

Immunocytochemical analysis suggests that no significant changes in eIF-4G 

expression occur during the differentiation of either cell line.

3.2.7.2 Western blot analysis of eIF-4G expression

Western blot analysis on 7.5% gels run for long periods (3 hours at 325-350 V) 

separates and distinguishes both eIF-4GI and eIF-4GII. Lower bands are frequently 

detected and are C-terminal modifications of eIF-4G (Dr. Simon Morley, personal 

correspondence). eIF-4G expression appeared to remain unaltered during the 

differentiation of DLKP, while there appeared to be a low to moderate increase in 

A549 (figure 3.2.7.2). Low exposure blots for A549 are shown to illustrate the 

increase more clearly. Longer exposures show a significantly less dramatic increase in 

expression. This suggests that there are slight changes in eIF-4G levels beyond the 

detection capacity of immunofluorescence. These changes, however, are not as 

significant as those of eIF-4E or other proteins in this study.
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3.2.7.3 Western blot analysis of 4E-BP1 expression

4E-BP1 expression was analysed on 15% polyacrylamide gels using a rabbit 

polyclonal anti-4E-BPl antibody, a kind gift of Dr. Nahum Sonenberg and Dr. Anna- 

Claude Gingras. This antibody is capable of detecting three forms of 4E-BP1 when 

run on higher resolution gels (15%). These represent the a  (hypo-phosphorylated), P 

(phosphorylated) and y (hyper-phosphorylated) forms of 4E-BP1. Thus, the relative 

association of 4E-BPs with eIF-4E can be determined, since only the non- 

phosphorylated, a-form of the protein is capable of association.

When examined, the levels and ratios of the three forms of 4E-BP1 appeared to 

remain unchanged. To date, the resolution obtained has been sufficient for these 

studies, being a little unclear at times. A representative blot for A549 is shown in 

figure 3.2.13. Attempts will be made to improve resolution using larger gel systems 

that allow larger sample sizes and longer resolution times (Dr. Anna-Claude Gingras, 

personal correspondence).

144



(A)

DLKP

(B)

(C) (D)

A549

Figure 3.2.7.1 Immunofluorescence for eIF-4G expression in BrdU-treated 
DLKP and A549. Immunofluorescence using anti-eIF-4G antibody (a kind gift of Dr. 
Simon Morley) shows no apparent change in eIF-4G levels. (A) DLKP Untreated,
(B) DLKP 7-day BrdU. (C) A549 Untreated, (D) A549 7-day BrdU. Magnification 
x20.
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Figure 3.2.7.2 Western Blot Analysis of eIF-4G expression. Analysis shows a 

slight increase in e!F-4G expression in BrdU-treated A549, undetectable by 

immunofluorescence (Figure 3.2.7.1). Low exposures clearly illustrate slight changes 

in expression in A549, while longer exposure loses resolution of the isoforms of elF- 

4G. No significant changes in eIF-4G expression were detected in DLKP during a 7- 

day treatment. Numbers represent days of exposure to BrdU.

0 7

Figure 3.2.73 4E-Binding Protein 1 (4E-BP1) expression in BrdU-treated A549.

4E-BP1 levels and phosphorylation remain unchanged in untreated (0) and 7-day 

BrdU treated (7) A549. Techniques are currently being refined to improve resolution.
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3.2.8 Crude Protein per Cell Readings

Crude calculations of total protein content per cell were made by lysing a known 

number of cells in a known volume of TG lysis buffer. Knowing the concentration of 

protein in each sample, from B.C.A. assays for protein content of samples, and the 

number of cells per sample, it was then possible to roughly estimate the levels of 

protein per cell. This involved dividing the sample concentration by the cell number 

(to reduce figures to “per cell”) and multiplying by the sample volume (to determine 

“total protein”) gave an estimate of total protein per cell. Averages of results are 

represented in figure 3.2.8.

There appears to be an increase in total protein in both epithelial lines, reflecting the 

morphological changes observed in these cells. Similarly, the morphologically 

smaller, non-adherent HL60 line proved to contain approximately half the level of 

protein of that of both DLKP and A549. Upon BrdU treatment these cells appear to 

decrease in size, reflected in the decreased protein content per cell.
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Figure 3.2.8 Protein content per cell as determined by crude B.C.A. assay. 
Increased protein-per-cell is observed in differentiating epithelial cells, A549 and 
DLKP, while decreased levels are observed in differentiating HL60s.
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Section 3.3 In-Vitro Translation

In light of the post-transcriptional induction of keratin expression in DLKP upon 

exposure to BrdU (Section 3.1.3), and the knowledge that translational control of gene 

expression is particularly important during differentiation and development, it was 

decided to investigate the possibility that there may exist a translational repressor of 

keratin expression in DLKP. If any cell line is to contain such a repressor of keratin 

translation it would be expected that DLKP would, due to its poorly differentiated 

state and epithelial origin.

3.3.1 Optimisation of In-Vitro Translation (IVT)

There are two main types of in-vitro translation system available; Rabbit Reticulocyte 

Lysate (RR) and Wheat Germ (WG) Extract Systems. Initially both systems were 

tested in order to assess which of them was best suited to our needs. A trial pack 

containing both systems was purchased from Promega for this purpose. Total RNA 

isolated from A549, as described in section 2.14, was used to develop the IVT 

procedure because high levels of transcript are present in these cells which are known 

to be translatable in-vivo.

Figure 3.3.1(a) shows the problems encountered in trying to analyse the products of 

in-vitro translation of exogenous RNA. Due to the high protein content of the 

translation systems attempts to analyse the translation of keratin RNAs in these 

systems by western blot analysis produced so much background that it proved 

impossible to determine the band of interest. In parallel, attempts using the B.C.A. 

assay of protein concentration in systems with and without template mRNA to assess 

whether or not the translations had been successful failed (data not shown). The levels 

of protein in these systems proved so high that any increase due to the translation of 

added RNAs was not detectable.

It was decided to use the biotin-based immunoprecipitation technique modified for the 

detection of keratins in DLKP (section 3.1.4.2) as a “clean-up” to improve detection 

in translation mixtures. Completed IVT reactions were stopped on ice, diluted to 1ml
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in chilled precipitation buffer, biotinylated and specifically immunoprecipitated using 

monoclonal antibodies. The resultant detection of keratin 8 expression in the Rabbit 

Reticulocyte (RR) translation system is illustrated in figure 3.3.1(b). Control lanes (C) 

containing no RNA showed no detectable keratin expression. Keratin protein was 

detectable in samples to which RNA was added, illustrating that the detection of 

keratins in these systems was due to translation of exogenously added RNAs.

3.3.2 Optimisation of RNA concentrations for IVT

Once established that RRLs were the most efficient systems for our needs, a cheaper 

source of such systems was found due to the expensive nature of these products. The 

manufacturer (Boehringer) recommend a starting concentration of ljig total RNA per 

reaction mixture, but that conditions should be optimised for individual sets of RNAs. 

Since no one set of RNA will be translated at the exact same efficiency a stock of 

RNA was isolated from A549 cells, diluted and aliquoted to avoid constant freeze- 

thaw. This RNA was then optimised for in-vitro translation by setting up a series of 

reactions at varying RNA concentrations. The results of these reactions are shown in 

figure 3.3.2. It is clear that the lower concentrations of RNA are translated more 

efficiently and consistently in terms of K8 detection. The higher concentrations begin 

to saturate the system and produce inefficient and inconsistent translation. From this, 

it was decided that the recommended concentration of 1 \\g per reaction would be used 

for future work using these IVT systems. All subsequent studies were performed 

using the same stock of RNA.
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(Note: C = Control with no RNA + = RNA present in reaction mixture)

Figure 3.3.1 Development of In-Vitro Translation, (a) Rabbit Reticulocyte Lysate 
and Wheat Germ Extract Translation Systems analysed for Keratin Protein by 
Western blot analysis (in the absence of Immunoprecipitation) after translation of 
A549 Total RNA. (b) Rabbit Reticulocyte Lysate System immunoprecipitated for 
Keratin expression after translation of total RNA isolated from A549.
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Legend: Total RNA per reaction:
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Figure 3.3.2 In-Vitro Translation of a range of RNA concentrations, (a) Lower 
concentrations of RNA are consistently translated, (b) Higher concentrations of RNA 
can become saturating and produce inconsistent translation.
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3.3.3. Inhibition of Translation in-vitro:

To investigate the possibility that DLKP might express a novel translational 

repressor/regulator of simple keratin synthesis, experiments were designed to test this 

using in-vitro translation.

The principle behind the design of these experiments is simple; can a cytoplasmic 

preparation from DLKP inhibit the translation of keratin mRNAs in total RNA 

isolated from A549, known to be translatable both in-vivo and in-vitrol Cytoplasmic 

preparations from DLKP were isolated as outlined (Section 2.19.1.1). Prior to the 

addition of RNA these extracts were incubated with additional RNase inhibitor 

(RNasin) to eliminate any possible traces of RNase activity remaining in these 

extracts. The extracts were prepared by modifying a technique used to isolate 

cytoplasmic RNA for use in Northern Blot analysis, and as such RNase activity 

should be minimal. Total RNA from A549 was then pre-incubated with these extracts 

for 30 min, before in-vitro translation was performed. The cell extract was replaced 

with water as a positive control in these experiments.

Figure 3.3.3.1(a) shows that the Rabbit Reticulocyte Lysate (RRL) system worked 

well, while the Wheat Germ (WG) system showed no results. Inhibition of K8 

translation was observed when RNA was pre-incubated with cytoplasmic extracts 

from DLKP. Figure 3.3.3.1(b) shows the results obtained using another source of 

RRL translation system (Boehringer). Again, significant inhibition of K8 translation 

appears to follow pre-incubation of RNA with DLKP extract. Notably, a small 

amount of keratin was detectable in lanes 3 and 4. This provides additional evidence 

that the RNA was not degraded in these samples. The cytoplasmic extracts from 

DLKP would appear to be translationally active (lane 3) when RNA from A549 is 

added. When exogenous RNA is not added (lane 2) no keratin protein is detectable. 

This suggests that keratin mRNAs are stable in these extracts and but that they are 

inefficiently translated in the presence of DLKP extract (with or without addition of 

RRL). We attribute this to repression of a large amount, but not all of the exogenously 

added RNA in these sytems.
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In contrast, incubation of RNA with DLKP extracts did not inhibit the translation of 

K18 mRNAs (figure 3.3.3.2), suggesting that RNases, as suspected, were not active in 

these cytoplasmic extracts. Scans are a little unclear due to darkness of blots, but 

illustrate the point sufficiently.

Unfortunately this approach is not suitable for use in A549 (figure 3.3.3.2). The high 

levels of Keratin mRNA and protein in cytoplasmic preparations from this cell line 

make it impossible to decipher any true results. We are currently designing 

modifications to the extract preparation potocol to eliminate these problems (antibody 

precipitation to remove protein, but the RNA may still pose a significant problem).

To demonstrate that the K8 mRNA transcripts in DLKP were functional and 

translatable, total RNA from DLKP was isolated, translated and specifically 

immunoprecipitated for K8 products of translation (figure 3.3.3.3).
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C l) Control, RRL with no RNA or extract. C2) Control, Extract with no RRL or 

RNA. C3) Control, Extract and RNA, with no RRL.

+Extract Translation of RNA pre-incubated with DLKP Extract 

-Extract Translation of RNA pre-incubated with Nuclease-free water.

Figure 3.3.3.1 Inhibition of the translation keratin 8 mRNA from A549 total 
RNA by the addition of DLKP cytoplasmic extracts, (a) In-Vitro Translation of 
A549 total RNA in both Rabbit Reticulocyte (RRL) and Wheatgerm (WG) Systems. 
Imunoprecipitation of Keratin 8 showed that the addition of crude cytoplasmic 
extracts from DLKP inhibited the in-vitro translation of Keratin 8. No results were 
obtained from the Wheatgerm system, (b) Repeat of the experiment described in (a) 
using the Rabbit Reticulocyte lysate system from Boehringer. Again, translation is 
severely inhibited, but not completely eliminated.
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Figure 3.3.3.2 Keratin 18 translation does not appear to be translationally 
repressed in DLKP. A. A549 RNA. B. A549 RNA + DLKP Extract. C. Control 
(DLKP Extract, No RNA). D. A549 RNA + A549 Extract. E. Control (A549 Extract, 
No RNA). (D & E) High levels of both K18 protein and mRNA in A549 cytoplasmic 
extracts makes it difficult to determine whether or not repression is truly present in 
A549 or not.

K 8 »

Figure 3.3.3.3 Keratin 8 mRNAs in DLKP are translatable. In-vitro translation of 
total RNA isolated from DLKP showed that the keratin 8 transcripts present in DLKP 
are translatable, Keratin 8 protein was detectable when 3 jag RNA was used, probably 
due to the low level of expression of this mRNA as a percentage of total RNA in 
DLKP.

Control lug RNA 3jig RNA



3.3.4 Identification of Unusual Sequences within the K8 mRNA that may play a 

role in translational regulation of K8 synthesis

(A) The 5’ UTR of K8 and K18:

The 5’ UTRs of both K8 and K18 show no significant homology when compared 

using blast sequence comparison programs. However, a very interesting repeat 

sequence was identified in the short 5’ UTR of K8 (highlighted in red), situated only 

one nucleotide from the AUG start site. The repeat is separated by only a single 

nucleotide and is unique to K8 mRNAs in humans. This 10-nucleotide repeat (20- 

nucleotide in total) within the short, 60 nucleotide 5 ’ UTR may be a prime candidate 

for a repressor binding site that regulates K8 translation during development.

K8 (59 nucleotides)

CTGCTCCTTCTAGGATCTCCGCCTGGTTCGGCCCGCCTGCCTCCACTCCTG

CCTCCACC

K18 (51 nucleotides)

CGGGGTCGTCCGCAAAGCCTGAGTCCTGTCCTTTCTCTCTCCCCGGACAGC

(B) The 3’ UTR of K8 and K18:

Sequence comparisons revealed that the 3’ UTR of K8 is significantly longer than that 

of K18. While the K18 3’ UTR is encoded by nucleotides 1344-1472 (128 nts), that of 

K8 spans nucleotides 1511-1752 (241 nts), approximately twice the length of the K18 

3’UTR. Within this sequence we have identified an unusual almost identical 12- 

nucleotide triple-repeat, the core of which is a CCCACCTGGGGA sequence:

1606 CCCACCTGAGGC 1617 

1635 CCCACCTGGGGA 1646 

1651 ACTACCTGGGGA 1662

Complete matches in all three are marked in blue, while base mismatches to the core 

sequence are highlighted in red. A diagrammatic representation of these unusual 

sequences is presented in figure 3.3.4.
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Figure 3.3.4 Sequences identified in the keratin 8 mRNA that may be involved in 
translational control. The keratin 8 5’ UTR is only 60 nucleotides and yet it 
harbours a 10-nucleotide repeat placed a single nucleotide from the translation start 
site. Additionally, the 3’ UTR of K8 is twice the length of its partner, K18, and 
harbours an interesting 11-nucloetide triple-repeat. The 3’ UTR is thought to be 
involved in regulating the developmental translation of mRNAs.
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Section 3.4 BrdU and the regulatory factors possibly involved in the 

induction of eIF-4E

In order to investigate the possible mechanisms by which BrdU modulates the 

expression of eIF-4E and the possible role of transcription in differentiating lung 

cancer cells, factors thought to be involved in the regulation of eIF-4E expression 

were examined.

3.4.1 Expression of c-Myc

eIF-4E is regulated at the transcriptional level by c-myc (Rosenwald et al, 1993; Jones 

et al, 1996). There are two isoforms of c-Myc, of which c-Myc 1 was examined in 

BrdU-treated epithelial cells. The significance of these isoforms, and particularly c- 

Mycl is discussed in section 4.2.4.1.2. When levels of c-Mycl expression were 

investigated using a p67-specific antibody (Santa Cruz), they were found to 

dramatically increase upon exposure to 10|iM BrdU. Figure 3.4.1(a) and figure 

3.4.1(b) show the increase in c-Mycl levels in BrdU-treated A549 and DLKP, 

respectively. Due to the long film-exposure times required to detect the low level 

expression of c-Mycl in untreated cells and the use of PVDF membranes for blotting, 

non-specific background bands are often detectable on autorads.

BrdU has been shown to cause down-regulation of c-myc gene expression in HL60 

cells (Yen and Forbes, 1990). As such, to observe the possible downstream effects of 

BrdU-mediated changes in c-myc expression, conditions were reproduced from Yen 

and Forbes (1990). To date, c-Myc expression has proven undetectable in HL60s 

using two independent sources of c-Myc antibody (Santa Cruz and Biomol, UK). This 

may be attributable to the fact that c-Myc levels decrease in this cell line upon 

exposure to BrdU, making detection impossible when levels are not even detectable in 

untreated HL60s. The down-regulation of c-myc gene expression in these cells was 

confirmed by PCR on a single occasion, but photographs were lost due to poor film 

development.
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Figure 3.4.1 Western Blot Analysis of c-Myc 1 Expression. Numbers represent the 

days of exposure to BrdU. BrdU-treated (a) A549, (b) DLKP show a strong induction 

of c-Mycl. Long exposures are required to detect c-Myc 1 expression in untreated 

cells, which results in elevated background bands on blots.
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3.4.1.1 eIF-2a Expression in BrdU-treated Epithelial Cells

Probably the two most important of the translation initiation factors, eIF-4E (Section

1.6.3.2.4.3) and eIF-2a (Section 1.6.3.2.2) are among the few known c-myc regulated 

genes to date (Rosenwald et al, 1993). To indirectly test whether or not c-myc was 

actively involved in the BrdU-mediated upregulation in eIF-4E, the levels of eIF-2a, 

which should also increase, were investigated.

Western blot analysis revealed an increase in eIF-2oc in both A549 and DLKP upon 

exposure to BrdU (Figure 3.4.1.1). eIF-2a is a 34-kDa protein and appears 

approximately mid-way between the 45kDA and 25kDa markers. Non-specific 

background binding is probably due to the use of PVDF membranes for blotting and 

the polyclonal nature of the antibody used. It must be stressed, however, that this 

western was not possible to repeat due to the scarcity of the antibody. The antibody 

used was a kind gift of Dr. Simon Morley, whose source no longer exists. Dr. Morley 

was kind enough to supply a small aliquot of this antibody from his limited supply.
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Figure 3.4.1.1 Western Blot Analysis for eIF-2a Expression. Increased expression 

of eIF-2a was detected in BrdU-treated (a) A549, and (b) DLKP. These were one-off 

westerns using an antibody generously provided from a limited supply by Dr. Simon 

Morley. While background levels are high, the 34-kDa eIF-2a is relatively clear.
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3.4.2 Expression of transciption factor, Yin-Yang 1 (YY1)

YY1 protein levels were found to be upregulated in BrdU-treated epithelial lung 

cancer cell lines, A549 and DLKP (figure 3.4.2a), while it is downregulated in the 

leukaemic line, HL60 (figure 3.4.2b). This is in agreement with the levels of c-Myc 

observed in both epithelial lines (section 3.4.1), and with the reported changes in c- 

myc levels in leukaemic lines (Yen and Forbes, 1990). YY1 has been shown to be 

upregulated in BrdU-treated embryonic myoblasts (Lee et al, 1992) in which case 

BrdU treatment was actually used as a substitute for transfection of the YY1 cDNA.

3.4.2.1 Expression of cdc2

A recent report (Jun et al, 1998) sequenced the 5’ promoter of the murine cdc2 gene, 

identifying a YY1 binding site and promoter characteristics that we suspect may make 

cdc2 another candidate for regulation by YY1. To test both the possible activity of 

YY1 in BrdU-treated cells, and at the same time confirm our suspicions that cdc2 may 

be another YY 1 regulated gene, cdc2 levels were examined and shown to increase in 

BrdU-treated DLKP (figure 3.4.2.1).
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Figure 3.4.2 Western Blot Analysis of YYl expression in BrdU-treated A549,

DLKP and HL60. Exposure to BrdU increases the expression of YYl in both 

epithelial cell lines, DLKP and A549, while it decreases levels of expression in the 

leukaemic line, HL60.
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BrdU-treated DLKP

Figure 3.4.2.1 Western Blot Analysis of cdc2 expression in BrdU-treated DLKP.
Levels of cdc2 protein expression in DLKP were found to be upregulated by BrdU. 
Numbers represent the days o f exposure to BrdU.



Section 3.5 Overexpression studies

A number of important factors were identified over the course of these studies that we 

suspect play critical roles in the regulation of early lung cancer differentiation and 

development. A central role is proposed for the small cap-binding translation 

initiation factor, eIF-4E in the differentiation cascade induced by BrdU (Section 

4.2.6). We suspect that the developmental transcription factor, YY1 is the initiating 

factor in this cascade. cDNA constructs for both eIF-4E and YY1 were obtained to 

study their roles in mediating the effects observed during BrdU-induced 

differentiation. Unfortunately, A549 proved extremely difficult to transfect. More 

importantly, however, the novel poorly differentiated cell line, DLKP proved to be 

transfectable.

It must be noted that these plasmids were obtained as gifts. Unfortunately control 

plasmids were not included, but in light of the interesting results they are currently 

being arranged. However, a temporary control, DLKP-SQ-pHP (transfected with an 

empty vector encoding geneticin-resistance; NicAomhlaoibh, R., PhD Thesis, 1997) 

was used to ensure that exposure to geneticin or the general transfection protocol was 

not responsible for the effects observed in transfected cell lines. Immunocytochemical 

analysis of K8 expression showed no detectable induction (figure 3.5), suggesting that 

geneticin does not affect the pathway proposed to induce simple keratin expression in 

DLKP (Section 4.2.6).
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(b)

Figure 3.5 Both DLKP-SQ and geneticin-resistant DLKP-SQ-pH(3 are negative 

for K8 protein by immunocytochemistry. Slight background is detectable in both 

cell lines, but results show that geneticin does not alter the keratin status o f resistant 

cells.
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3.5.1 Overexpression of translation initiation factor, eIF-4E

A plasmid encoding the small cap-binding initiation factor, eIF-4E (Section

1.6.3.2.4.3) was obtained from Prof. Arrigo DeBenedetti (Louisiana, USA), a pioneer 

of eIF-4E function.

Several initial attempts to transfect DLKP with this plasmid failed, attributed to the 

size of the plasmid (13 Kb). This reduces its transfection efficiency to about 1% (Prof. 

DeBenedetti, personal correspondence). This is particularly relevant in A549, a cell 

line that appears to be particularly difficult to transfect in comparison with DLKP and 

its clones. A series of transfections using a range of plasmid concentrations and cell 

numbers finally yielded two sets of eIF-4E-transfected DLKP, named DLKP-4E1 and 

DLKP-4E2. Overexpression of eIF-4E was confirmed by Western blot analysis 

(Figure 3.5.1.3). Morphologically, eIF-4E overexpressing DLKP grow in looser 

colonies and are on average 1.5-fold larger than the parental line (Figure 3.5.1.1). 

Some cells exhibited distinct enlargement, suggesting that some cells may be 

expressing this plasmid significantly better than others. However, 

immunocytochemical analysis (Figure 3.5.1.2) showed that expression of eIF-4E was 

homogenous in the mixed population. We suspect that this is simply due to the fact 

that this is an episomally replicating vector, eliminating variability normally 

associated with integrating vectors (their expression is dependent upon the site of 

integration and its relative transcriptional activity). Unlike standard transfection 

protocols, these transfections were not cloned, for two reasons. Firstly, the very poor 

efficiency of transfection yields very few transfected cells after selection using 

geneticin. Attempting to transfer them to 96-well plates would result in further loss of 

transfected cells. It takes a considerably long time for selected cells to “recover” and 

grow to workable numbers, due to very low density within the flask after selection. 

Secondly, DLKP is a mixed population. Cloning of transfected parental DLKP results 

in a situation where there is no parental line for comparison, since there is no way of 

distinguishing the cellular origin of the cloned transfectants (i.e. was the cell from the 

DLKP-SQ, DLKP-I, DLKP-M or an as yet unidentified sub-clone). Both eIF-4E- and 

YYl-transfected DLKP (Figures 3.5.1.1 and 3.5.2.1, respectively), retain their “mixed 

population” appearance, suggesting that the geneticin-resistant clones that replenished
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these populations consist o f  a representative mix o f  the parental populations and not 

one particular sub-population.

Both DLKP-4E1 and DLKP-4E2 exhibited c-M ycl expression (Figure 3.5.1.3). This 

is in agreement with predictions and findings using eIF-4E overexpressing CH O -cells 

in Prof. DeBenedetti’s laboratory (Carter et al, 1999). In addition, induction o f  simple 

keratins, K8 and K18, was observed in these lines (Figure 3.5.1.2 & 3.5.1.3). eIF-4E  

overexpressing DLKP also appears to express higher levels o f  a larger form o f  the 

YY1 protein (Figure 3.5.1.3.1), suggesting a similar mechanism o f  isoform regulation 

to that proposed for c-M yc (Carter et al, 1999) (Section 4.2.4.1.2).
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(C) (D)

Figure 3.5.1.1 Morphological appearance of DLKP and DLKP-4E cells. (A)
DLKP grow in clustered colonies. (B) DLKP-4E1 are morphologically larger and 
grow in looser colonies. Some significantly enlarged cells are illustrated by the green 
arrows. (C) DLKP-4E2 exhibits a similar morphological appearance to DLKP-4E1. 
(D) DLKP-4E2. Image analysis revealed an average 1.5-2-fold increase in cell size.
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(1) Parental DLKP (2) DLKP-4E1
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Figure 3.5.1.2 Immunocytochemistry in eIF-4E overexpressing DLKP, DLKP- 
4E1. (A) (1) Untransfected parental DLKP and (2) DLKP-4E1, stained with 
polyclonal anti-eIF-4E antibody (a kind gift of Dr. Simon Morley). (B) Induction of 
both K8 and K18 expression in DLKP-4E1. Again, untransfected parental DLKP 
were keratin negative (as in figure 3.1.3.2) (not shown).



eIF-4E

PK PK-4E1 PK-4E2
(A)

c-Mycl

PK PK-4E1 PK-4E2 
(B)

K8 K18

PK PK-4E1 PK PK-4E1

(C)

Figure 3.5.1.3 Western blot analysis of eIF-4E-transfected DLKP. (A) Levels of 

eIF-4E in transfected DLKP (PK-4E1 & PK-4E2) are higher than in parental DLKP 

(PK). (B) Overexpression ofeIF-4E induces c-Mycl expression in DLKP. (C) Over­

expression of eIF-4E induces the expression in simple keratins, K8 and K18 in DLKP
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DLKP DLKP-4E1
(PVDF membrane)

DLKP DLKP-4E2 DLKP-4E1
(Nitrocellulose membrane)

Figure 3.5.1.3.1 YYl expression in eIF-4E Overexpressing DLKP. There appears 

to be a shift in YY 1 expression towards a larger form of the protein in eIF-4E- 

transfected DLKP. Levels of YYl do not appear to change significantly overall, but 

expression of this larger isoform may have significant effects on YY 1 activity, similar 

to those described for c-Myc (Section 4.2.4.1.2).
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3.5.2 Overexpression of Yin-Yang 1, YY-1

A plasmid encoding the transcription factor, YYl (Section 1.5.2.3) was obtained from 

Dr. Finian Martin (Dublin, Ireland). This plasmid proved reasonably efficient to 

transfect. However, to retain the mixed population that comprises DLKP for 

comparison with the parental line (as discussed in section 3.5.1), three flasks of the 

parent population were transfected, selected with geneticin but not cloned. Again, the 

morphology of resistant cells suggested that a representative mixture of cells 

comprising the parent population was present in transfected populations (Figure

3.5.2.1). Some cells exhibited significantly enlarged morphologies, suggesting that 

these cells expressed the plasmid more efficiently than others. The YYl plasmid is an 

integrating vector and, unlike the eIF-4E plasmid, its expression is influenced by the 

site at which it integrates, explaining the variable expression suspected in these cells. 

A clone of DLKP, DLKP-SQ was also transfected and compared to its parental clone 

(Figure 3.5.2.1). DLKP transfectants were termed DLKP-Y1 to DLKP-Y3, while the 

DLKP-SQ transfectant was termed SQ-Y.

Overexpression of YYl was confirmed using western blot analysis (Figure 3.5.2.2). It 

is suspected that the low level of YYl overexpression in some of these transfectants is 

attributable to the overall heterogeneity in expression of the plasmid in this mixed 

population, since this plasmid is an integrating vector. Unfortunately the YYl 

antibody available was not suited to immunocytochemistry. However, in agreement 

with this speculation, both Keratin and eIF-4E staining in transfected cells was found 

to be heterogenous (Figure 3.5.2.2).

Figures 3.5.2.2 and 3.5.2.3 show that transfection of YYl was capable of inducing 

simple keratin, K8 and eIF-4E expression. Additionally, two out of three YY1- 

transfected DLKP populations showed elevated c-Mycl expression (Figure 3.5.2.3b).
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(A) (B)

(C) (D)

Figure 3.5.2.1 Morphological changes in YYl-transfected DLKP and DLKP-SQ.
(A) Morphology of DLKP. (B) DLKP-YYl exhibits distinct enlargement of cells 
(green arrows), while sub-populations remain relatively unchanged and retain the 
clonal appearance of parental DLKP (red arrow). (C) Morphology of DLKP-SQ. (D) 
SQ-YY1 are larger and grow in more dispersed colonies than parental DLKP-SQ. 
Image analysis showed that both DLKP-YYl and SQ-YY1 were morphologically 
larger than their respective parental lines.
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Figure 3.5.2.2 Keratin 8 and eIF-4E expression in YYl-transfected DLKP. (A)
and (B) YY1 induces Keratin 8 expression in the keratin-negative cell line, DLKP. K8 
induction is not uniform (green arrows), suggesting heterogenous expression of 
transfected YY1 plasmid in this mixed, uncloned population. (C) eIF-4E expression in 
parental DLKP. (D) eIF-4E induction in YYl-transfected DLKP appears 
heterogenous (coloured arrows), in agreement with the mixed nature of these 
transfections and the pattern of keratin induction.
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Figure 3.5.2.3A Western blot analysis of YYl-transfected cells. (A) Levels of YYl 

are higher in transfected lines than those in parental DLKP or DLKP-SQ. (B) eIF-4E 

expression in YYl-transfected lines.
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Figure 3.5.2.3B Western blot analysis of YY1-transfected cells. (A) Keratin 8 is 

induced in YY1 overexpressing lines. (B) Conclusive elevations in Mycl expression 

were only detectable in DLKP-Y1 and DLKP-Y3. DLKP-Y2 samples may have been 

degraded.
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Section 3.6 The control of eF-4E activity in A549

Seram starvation studies were used to further examine the regulation of eIF-4E 

activity in the epithelial cell lines used in these differentiation studies. By removing 

the mitogenic stimulation of serum, cells shut down their signal transduction cascades 

via dephosphorylation. Subsequent re-stimulation with serum then allows the roles of 

various kinases to be examined as signal pathways are reactivated, by measuring the 

relation between reactivation of kinases versus their target proteins, and through the 

use of specific kinase inhibitors. Attempts to serum starve DLKP failed (data not 

shown), probably due to the suspected high level expression of autocrine growth 

factors. In agreement, DLKP has been shown to grow very well in serum-free 

medium (Meleady and Clynes, 1995). However, after 48 hrs serum starvation, A549 

exhibited sufficient dephosphorylation of ERK and eIF-4E for use in such studies. 

Ras protein turnover in the absence of any mitogenic signals was probably sufficient 

to overcome the K-12 Ras “GTP-loading” of these cells (Mitsudomi et al, 1991).

3.6.1 ERK and eIF-4E Phosphorylation in serum-stimulated A549

Inactivation after 48 hrs serum starvation and re-activation of both ERK and eIF-4E 

upon re-stimulation with 10% serum is shown in figure 3.6.1. ERK levels within the 

cell do not change, as illustrated using anti-ERK antibodies (3.6.1a). Use of Phospho- 

specific antibodies to ERK reveal, however, that the levels of phosphorylation of ERK 

protein were hugely increased upon re-stimulation with serum after only 5 min (figure 

3.6.1b). The phosphorylation of eIF-4E exhibited the same sort of behaviour (figure 

3.6.1c). The level of eIF-4E phosphorylation was determined by Iso-Electric 

Focusing, and as such is interpreted differently. The phosphorylation of elF-4E is 

assessed by the relative ratio of phosphorylated, active eIF-4E (upper band) compared 

to the levels of non-phosphorylated, less active eIF-4E (lower band). It is not the 

intensity of bands in different lanes that is compared in the case of IEF, but changes in 

the relative intensity of the upper and lower bands in the same lane, which reveals the 

activity of the eIF-4E present in these lanes. Serum starved cells show only the lower, 

non-phosphorylated form of the protein. Upon serum stimulation of these cells a shift

179



occurs, with the appearance phosphorylated eIF-4E (upper band) (see also; Section 

3.2.5).

3.6.2 ERK and eIF-4E Phosphorylation profiles in A549

An extended profile of rephosphorylation for both ERK and eIF-4E (figure 3.6.2) 

showed that both profiles exhibited “normal” characteristics; a peak in ERK 

phosphorylation around 10-15 min after re-stimulation with serum due to sudden re­

exposure of signal cascades to mitogenic stimulation, causing an initial 

“hyperactivation” of the kinases in these pathways. eIF-4E phosphorylation follows a 

similar profile. The phosphorylation of these factors then subsides and returns to 

normal, suggesting that ERK autoregulation is active in these cells, despite the 

reported presence of Ras. mutations in this cell line (Mitsudomi et al, 1991).

3.6.3 The effects of Specific Kinase inhibitors on eIF-4E Phosphorylation in

A549

Prior incubation of cells with specific kinase inhibitors allows the role of individual 

kinases to be evaluated in cells after re-stimulation with serum. To date Mnk is the 

only known direct kinase for eIF-4E, and its activity is regulated mainly by ERK, as 

well as by the stress response p38 kinase. The use of specific kinase inhibitors in such 

studies can be used to confirm current understandings in relation to the regulation of 

eEF-4E activity. Anomalies/unexplained inhibition of eIF-4E rephosphorylation by 

kinase inhibitors can be the earliest indication of possible novel kinases or pathways 

involved in this control, perhaps as yet undiscovered. The results are shown in figure

3.6.3.1 and 3.6.3.2. The inhibitors used were (see also; Figure 4.10, Section 4.3.2):

Inhibitor

PD98059

SB203580

Wortmannin

Rapamycin

Point of Inhibition 

MEK-ERK Phosphorylation 

p38-Mnk phosphorylation 

PI-3K Phosphorylation 

FRAP/mTOR Phosphorylation

Concentration used 

50 |iM 

30 nM 

100 nM 

20 nM
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Figure 3.6.1. Re-stimulation of serum starved A549. After only 5 min (a) ERK levels 
in both stimulated and unstimulated samples are the same while (b) Phosphorylation 
levels of ERK increase as detected using phospho-specific antibodies (c) Re­
phosphorylation of eIF-4E as assessed by IEF.
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Figure 3.6.2 Rephosphorylation Profiles for ERK and eIF-4E in serum 
stimulated A549. (a) ERK phosphorylation exhibits a “classic” profile due to 
autoregulation. Doublet represents ERK1 (42 KDa) and ERK2 (44 KDa). (b) eIF-4E 
rephosphorylation peaks between 15-30 min and returns to normal by 120 min. Rabbit 
Reticulocyte lysate is used as a control and means of orientating gels.
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Figure 3.6.3.1. The Effects of various specific kinase inhibitors on the Re­
phosphorylation of eIF-4E in A549 cells, (a) Serum stimulation induces 
rephosphorylation of eIF-4E. (b) PD980589, an ERK inhibitor, significantly reduces 
the rephosphorylation of eIF-4E. (c) SB203580, ap38 kinase inhibitor, slightly affects 
initial eIF-4E rephosphorylation, but has no significant or lasting effects.



RR 0 15 30 100

(a) Wortmannin
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(b) Rapamycin

Figure 3.6.3.2 The effects of various specific kinase inhibitors on the 
rephosphorylation of eIF-4E. (a) Wortmannin, an inhibitor of PI-3K, produces a 
mild inhibition of eIF-4E rephosphorylation, (b) Rapamycin appears to have no effect 
on the rephosphorylation of eIF-4E.

1X4



Section 3.7 Retinoic Acid and Keratin Expression

Retinoic Acid (RA) was used to investigate the effects of physiological differentiating 

agents on keratin expression in the epithelial lines, A549 and DLKP. Initial attempts 

to treat cells with RA  using DMSO as a solvent, proved unsuccessful due to the fact 

that DMSO is a differentiating agent itself. Keratin expression was found in control 

treatments exposed only to DMSO (data not shown). All cells were exposed to a final 

concentration of 20(iM RA, using 95% Ethanol as a solvent.

3.7.1 Growth profiles of cells grown in 20p,M RA

Both DLKP and A549 exhibited significant growth inhibition when grown in the 

presence of 20fiMRA. Results are presented in figure 3.7.1.

3.7.2 Immunocytochemistry for Keratin Expression

Immunocytochemistry (Section 2.8) on 6-day RA-treated epithelial cells was 

performed using monoclonal antibodies to K8 and K18 in order to investigate changes 

in keratin expression in epithelial lines exposed to RA.

3.7.2.1 Keratin Expression in A549

Retinoic Acid-treated A549 cells stained strongly for both K8 and K18 expression 

(figure 3.7.2.1a). On occasions a decrease in K18 expression was detectable (figure 

3.7.2.1b). Keratin filaments were seen to radiate from the nucleus throughout the 

cytoplasm. Cells appeared to grow in loosely contacted colonies, similar to those 

described in other cell lines exposed to RA (Kopan et al, 1987).

3.7.2.2 Keratin Expression in DLKP

Retinoic Acid-treated DLKP did not stain for either K8 or K18 expression. Unlike 

BrdU-treatment, RA did not appear to be capable of altering keratin expression in 

DLKP.
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Figure 3.7.1 Growth inhibition in Retinoic Acid-treated (a) DLKP and (b) A549.
Untreated Control Cells are in blue (left)
RA-treated cells are in red (right)
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Figure 3.7.2.1a Immunocytochemistry for Keratin expression in RA-treated 
A549. (a) Untreated A549 cells stained with anti-K18 antibody. Cytokeratin 8 stains 
in the same manner (data not shown), (b) 6-day RA-treated A549 cells stained with 
anti-K18 antibody (c) 6-day RA-treated A549 cells stained with anti-K8 antibody.
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(a) K8 Control
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Figure 3.7.2.1b Immunocytochemistry for Keratin expression in RA-treated 
A549. (a) Untreated A549 cells stained with anti-K8 antibody. Cytokeratin 18 stains 
in the same manner (data not shown), (b) 7-day RA-treated A549 cells stained with 
anti-K8 antibody (c) 7-day RA-treated A549 cells stained with anti-K18 antibody.
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Figure 3.7.2.2. Immunocytochemistry for Keratin Expression in RA-treated 
DLKP. (a) Untreated Control DLKP stained with anti-K18 antibody (Cytokeratin 8 
stains in the same manner (data not shown), (b) 7-day RA-treated DLKP stained with 
anti-K8 antibody, (c) 7-day RA-treated DLKP stained with anti-K18 antibody. Slight 
background staining is evident in some cells.



3.7.3 Western Blot Analysis for Keratin Expression

In order to quantify the changes in keratin expression observed in cells upon treatment 

with 20|iM RA western blot analysis was performed using the monoclonal antibodies, 

K8 and K18 (Sigma). All lanes are marked in terms of the number of days cells were 

exposed to RA.

3.7.3.1 Keratin Expression in A549

Western blot analysis showed that K18 expression was decreased upon exposure to 

RA (figure 3.7.3. lb), while K8 expression consistently showed a decrease on day one, 

which was restored by day two and was either maintained or actually increased with 

continued exposure to RA (figure 3.7.3.1a). The levels of K18 expression are quite 

strong and blots exposed for relatively short periods show that K18 expression, while 

decreased, remain high in RA-treated A549 (figure 3.7.3.1c). This may explain the 

apparently conflicting immunocytochemical staining of K18 in RA-treated A549 

compared to control cells (figures 3.7.2.1a & 3.7.2.1b). Morphological changes in 

cells can be misleading when protein levels are assessed by immunocytochemistry. As 

such, immunocytochemistry is never taken as completely quantitative in the absence 

of western blot analysis.

3.7.3.2 Keratin Expression in DLKP

DLKP is a very poorly differentiated carcinoma, and as such expresses virtually no 

keratin proteins. Figure 3.7.3.2(a) shows that there is no induction of K8 expression 

upon exposure to 20|iM RA as detected by Immunoprecipitation and western blot 

analysis. Increasing the cell number to 5x107 cells per precipitation, the point where 

low level “leaky” keratin expression is detectable, shows that Keratin expression does 

not change in DLKP exposed to RA (figure 3.7.3.2(b)).
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Figure 3.7.3.I. Keratin Expression in RA-treated A549. (a) Keratin 8 expression in 
RA-treated A549, (b) Keratin 18 Expression in RA-treated A549, (c) Keratin 18 
expression in RA-treated A549. Numbers represent days o f exposure to RA.
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Figure 3.7.3.2 Immunoprecipitation of Keratins from RA-treated DLKP.
(a) Immunoprecipitation of K8 from RA-treated and untreated DLKP. 106 cells per 
precipitation. Numbers represent days of exposure to RA. (b) Immunoprecipitation of 
Keratins from 7-day RA-treated (T) and untreated (U) DLKP. 5xl07 cells per 
precipitation.
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3.7.4 Northern Blot analysis of Keratin Expression

Northern blot analysis revealed that there was no change in keratin 8 mRNA levels in 

RA-treated A549 and DLKP (figure 3.7.4). Analysis was performed by Dr. Noel 

Daly. Even loading was confirmed by ribosomal RNA levels (not shown). K18 

mRNA levels have been previously shown to be downregulated by RA in A549 

(Ledinko and Costantino, 1990), in agreement with the findings reported here in 

relation to K18 protein expression.

K8

0 1 2 4 7 14 21

DLKP

K8

0 0 1 2 4 7 14 21
A549

Figure 3.7.4 Northern blot analysis of K8 expression in DLKP and A549 upon
exposure to RA. Northern blot analysis was performed by Dr. Noel Daly. Numbers 
represent days of exposure to RA.
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3.7.5 Retinoic Acid Receptor (RAR) Analysis

In order to investigate possible mechanisms whereby these cells differ in their 

response to RA, the expression of two important Retinoic Acid Receptors (RARs) 

(Section 1.3.1), RAR-a and RAR-P, were examined in both cell lines.

3.6.5.1 RAR-a Expression in A549 and DLKP

Western blot analysis of RA-treated and untreated A549, as well as DLKP, showed 

that both cell lines expressed this receptor at relatively similar levels (Figure 3.7.5.1). 

RAR-a has been implicated in the mediation of growth arrest and at times induction 

into apoptotic pathways in RA-treated cells, and may explain the growth inhibition 

observed in both cell lines.

3.7.5.2 RAR-P Expression in A549 and DLKP

Western blot analysis of RAR-P expression in RA-treated and untreated A549, as well 

as DLKP revealed that A549 expresses this receptor, which appears to be modestly 

upregulated upon exposure to RA (figure 3.7.5.2). RAR-P contains a RARE (Section

1.3.1) and is autoregulated, thereby increasing the response to RA in RA-responsive 

cells.

On the other hand, it would appear that DLKP lacks or expresses a truncated form of 

the RAR-P receptor (figure 3.7.5.2). A second sample of day-7 RA-treated A549 was 

loaded in the lane beside the DLKP sample to ensure that the absence of a band in 

DLKP was not due to defects in transfer during blotting or skewing of the gel. Longer 

exposure of blots revealed a lower band present in DLKP, at about 40-42 kDa. This 

may simply represent a background band, or alternatively, this may be a truncated 

form of the RAR-P receptor. In this case, it may be that the truncated form of the 

protein is inactive. The importance of RAR-P expression is discussed in section 4.4.2.
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Figure 3.7.5.1 RAR-a Expression in RA-treated A549 and DLKP. RAR-a is 
expressed in RA-treated and untreated A549, as well as in a sample of DLKP (Lane
9).

195



66kDa >

RAR-p » >  
(45-46kDa)

25kDa>
M O  1 2 3 4 6 7 DLKPA549

A549 (RA7)

(a)

M 0 1 2 3 4 6 7 DLKPA549
A549 (RA7)

Figure 3.7.5.2 RAR-P Expression in RA-treated A549 and DLKP. (a) RAR-P is 
detectable in A549 and appears to be upregulated slightly upon exposure to RA. The
receptor is absent in DLKP (lane 9). (b) Longer exposure reveals a band at about 40- 
42kDa. This may simply be background appearing due to longer exposure of film, or 
may represent a truncated form of this receptor in DLKP, which may be inactive. 
Numbers represent days of exposure to RA.



Section 4.0

Discussion



4.1 General Introduction:

Developmental genetics itself is undoubtedly in its infancy, and the failure to identify a 

stem cell(s) of the lung (Emura, 1997) only acts as a further obstacle to progress in 

understanding the mechanisms regulating early development of the lung. We have been 

afforded a unique opportunity to study an in-vitro model for early lung development 

using a very poorly differentiated lung cancer cell line, DLKP, isolated here at the 

NCTCC (Law et al, 1992).

Recent advances have suggested that the role of translation in the regulation of gene 

expression may be very significant, particularly during development. To date, models are 

based largely on discoveries in Drosophila, Xenopous and C.elegans (Klein and Melton, 

1994; Curtis et al, 1995; Vassalli and Stutz, 1995). Translation is now suspected to play 

critical roles in regulating precisely timed stages of development. While now accepted as 

an oncogene (DeBenedetti and Rhoads, 1990), the possible role of translation initiation 

factor, elF-4E in regulating the differentiation process has gone largely unstudied. In 

addition, it has been suggested that a major function of transcription factors, such as c- 

myc, is to indirectly regulate the translational efficiency of the cell (Grandori et al, 1996). 

This could be a partial explanation for the lack of transcriptional targets identified for the 

enigmatic c-myc to date, which include two rate-limiting translation initiation factors 

(Rosenwald el al, 1993) and an RNA helicase (Grandori et al, 1996).

The work detailed in this thesis, using the poorly differentiated lung cancer cell line, 

DLKP highlights the complex inter-relationship between transcription and translation 

factors during differentiation. Deregulation of such intricate mechanisms is thought to 

result in the onset of cancer, a “disease of abnormal differentiation” (Sporn and Roberts, 

1983). We propose a model for the regulation of simple keratin filament formation in 

early lung development under certain circumstances. Elucidation of such models will be 

critical to improving the overall understanding of lung development and the design of 

therapies to treat the greatest cancer killer of our time (Parker et al, 1996).

198



4.2 BrdU-induced Differentiation in Epithelial Cell Lines:

The speculation that the poorly differentiated NSCLC-NE/SCLC-V (Non-small cell lung 

carcinoma-neuroendocrine differentiation/Small cell lung cancer-variant) DLKP may 

represent a stem cell-like population of the lung provided a unique opportunity to study 

some of the possible mechanisms regulating early lung development in-vitro. Studies 

were carried out on DLKP, in addition to a more differentiated adenocarcinoma cell line, 

A549, exposed to the differentiating agent BrdU. Key findings were also investigated in 

the non-epithelial, leukaemic cell line, HL60, to identify possible cell-type specific 

effects observed during the differentiation process. Additional studies using the 

physiological agent, Retinoic Acid, are detailed in Section 4.4.

4.2.1 Morphological Changes during BrdU-induced differentiation:

When both the adenocarcinoma cell line, A549, and the very poorly differentiated cell 

line, DLKP were exposed to 10(_iM Bromo-deoxyuridine, induction of a differentiated 

phenotype was evidenced by changes in morphology, including cell flattening and 

enlargement (Figures 3.1.1.1. and 3.1.1.2.), accompanied by increased protein content per 

cell (Figure 3.2.8) and decreased growth rate (Figure 3.1.2). In order to assess whether or 

not a terminal differentiation was induced, these cells were initially treated for 7 days to 

induce differentiation, followed by removal of BrdU and continued feeding of these cells 

in fresh medium (Figure 3.1.1.3). Removal of BrdU results in what appears to be a 

gradual reversion towards the parental phenotype. Reversion occurs in the absence of 

passaging, reducing the possibility of a simple dilution of terminally differentiated cells 

upon passaging by outgrowth of less differentiated or unresponsive cells.

Over the first 10-14 days the reversion is rather slow and growth rates (assessed by 

consumption of medium and passaging requirements) are relatively low over this period. 

This is presumably due to the need for the cells to "dilute" out the BrdU incorporated into 

their DNA through cell division. Growth rates are slow at first, but as cells divide in the 

absence of BrdU the effect is gradually depleted. By day 30 of removal of BrdU, cells
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have all but reverted to "normal" morphology and growth rate. This, combined with the 

fact that continued exposure to BrdU appears to maintain morphological characteristics 

of differentiation in DLKP would suggest that BrdU does not induce a terminal 

differentiation but probably a pre-commitment to differentiate. BrdU has been suggested 

to induce pre-commitment to differentiation in a leukaemic cell line (Yen and Forbes, 

1987) and can replace replace Retinoic Acid (RA) over the first 24 hrs. (i.e. 48 hour 

treatment with RA is the same as 24 hour with BrdU followed by 24 hr with RA). 

Therefore, in HL60 cell differentiation BrdU appears to be capable of inducing some of 

the early effects induced by RA, and as such may act to “prime” cells for differentiation.

4.2.2 BrdU induces Simple Keratin Filament formation:

Immunocytochemical analysis of DLKP with anti-keratin antibodies showed that it lacks 

the expression of many of the major keratins, including keratins 8 and 18 (Section

3.1.3.2), which would be indicative of simple epithelial differentiation (Daly et al, 1998). 

This is in agreement with its characterisation as a very poorly differentiated, stem cell­

like NSCLC-NE/SCLC-V cell line. K8 and its partner K18 are the first intermediate 

filaments expressed during mouse development (Casanova et al, 1995). While 

heterogenous and weak expression of keratins is often found in many SCLC lines, they 

are readily detectable by western blot analysis (Elias et al, 1988). Western blot analysis 

failed to detect keratin expression in DLKP, until immunoprecipitation with very high 

cell numbers was used (107 cells) (Section 3.1.4.3). Treatment with BrdU, however, 

induced about 10-15% of DLKP cells to express the simple keratins 8 and 18, as 

determined by both immunocytochemistry (Section 3.1.3.2) and immunoprecipitation 

(Section 3.1.4.3). The immunocytochemical staining of BrdU-treated DLKP was strong 

and shows the formation of keratin filament structures radiating through the cytoplasm. It 

was necessary to develop immunoprecipitation techniques to quantify keratin expression 

in DLKP due to the fact that BrdU induced expression in only about 10-15% of these 

cells (Section 3.1.4.2). The extremely low-level keratin expression found in untreated 

DLKP suggests either leaky expression or degradation products that do not form 

filaments detectable by immunocytochemistry. The more differentiated cell line, A549
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expresses moderate to high levels of keratin protein, which is upregulated upon exposure 

to BrdU. This was shown using immunocytochemistry (Section 3.1.3.1) and western blot 

analysis (Section 3.1.4.1).

Prolonged exposure of both cell lines to 10|jM BrdU results in further morphological 

changes and increased staining intensity for both K8 and K18 in DLKP, with slight but 

not highly significant increases in the percentage of cells induced (Section 3.1.3.4). These 

findings were verified when immunoprecipitation was extended to 21 days (Figure

3.1.4.3.2). In order to demonstrate that this was not a selective "cloning" of BrdU- 

responsive cells, two of the clonal populations identified by McBride et al (1998) were 

treated with 10(jM BrdU and assessed for keratin expression using 

immunocytochemistry. Both DLKP-SQ and DLKP-I clones proved to be inducible 

(Section 3.1.3.5). In the case of A549, while treatment resulted in further morphological 

changes in these cells, becoming more stretched and beginning to "bridge" one another, 

the apparent increased staining intensity of these cells for K8 and K18 (Figure 3.1.3.4) 

was not observed in western blot analysis (Figure 3.1.4.1), which suggested that K8 and 

K18 expression in these cells reaches a maximum after only 3-4 days. While expression 

remained elevated throughout the study, the increase reached a maximum within a few 

days. A549, unlike DLKP, already express keratins and an explanation for this effect is 

offered in section 4.2 3.3.3. The relative extent of differentiation of both cell lines is 

highlighted and discussed in Section 5.0.

In addition, immunocytochemical analysis of DLKP treated with BrdU extended over 

three months showed a weak induction of K8 expression in approximately 70% cells, 

with a small percentage still exhibiting strong keratin induction (Figure 3.1.3.3.3). More 

interestingly, immunocytochemical analysis of DLKP initially treated with BrdU for 7 

days and then grown in its absence for 3 months (Section 4.2.1) showed that these cells 

retained the pattern of keratin expression (Figure 3.1.3.3.4) observed in BrdU-treated 

cells. These results suggest that BrdU is an “irreversible” maturational inducer of DLKP, 

in agreement with findings reported by Feyles et al (1991) using a SCLC cell line, NCI- 

1169. It would appear therefore, that the induction of differentiation and growth inhibition
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upon exposure to BrdU (Section 4.2.1), at least in these cells, may occur by separate 

mechanisms. BrdU may be capable of inducing a specific pathway(s) that commits these 

cells to an irreversible differentiation, but induces additional growth-arresting or 

cytostatic effects that can be reversed upon withdrawal of BrdU. A decrease in cyclin A 

and increase in p21 expression in human melanoma cells upon exposure to BrdU 

suggested that BrdU is capable of arresting these cells at a Gi transition point in the cell 

cycle (Rieber et al, 1996). Attempts to detect p21 expression in BrdU-treated DLKP and 

A549 failed due to problems with the antibody used (Santa Cruz) (data not shown).

Induction of keratin intermediate filament proteins K8 and K18 is indicative of simple 

epithelial differentiation (Section 1.2). The pattern of expression of keratin intermediate 

filaments (IFs) has been shown to alter with the differentiation status of the epithelial cell 

type. For example, as the dermal layer of the skin develops, the pattern of keratin 

filament expression changes in epithelial cells as they migrate to the surface of the skin, 

reflecting their change in function and differentiation status (Tseng et al, 1982; Fuchs and 

Byrne, 1994). A non-epithelial leukaemic cell line, HL60 was used to determine the 

specificity of induction of keratin expression in epithelial versus non-epithelial cell types. 

Figure 3.1.4.4 shows that there was no detectable keratin expression in either treated or 

untreated HL60s using immunoprecipitation, suggesting that keratin induction by BrdU 

may be epithelial-specific.

4.2.2.1 BrdU Induces Keratin Expression at a post-transcriptional level:

To examine the level at which keratin expression was induced in these cells, Northern 

blot and PCR analysis was performed to measure transcript levels for both K8 and K18. 

Surprisingly, in both DLKP and A549, despite significant changes in protein expression, 

there was no change in the levels of message for either K8 or K18 in either cell line 

(Figure 3.1.5). This indicated that the level of induction of simple keratin expression in 

these epithelial cells was post-transcriptional. Even more surprisingly, both K8 and K18 

transcripts were detectable in DLKP, albeit at a lower level than that for A549. This
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suggested that proteolytic instability due to the absence of one partner keratin (Section

1.2) was unlikely to be a factor, unless one of the transcripts was not being translated.

The majority of research into the regulation of keratin expression during differentiation 

has focused at the level of transcription. A number of researchers have identified 

elements in numerous keratin genes that appear to be important in cell-specific regulation 

of their expression. Oshima et al (1990) identified an AP-1 site involved in the regulation 

ofK18 expression by c-Jun and c-Fos (Section 1.5.2.1). In addition, it was suggested that 

low levels of K18 expression in undifferentiated F9 cells may be due to low levels of 

both AP-1 factors, that are increased during Retinoic Acid-induced differentiation. The 

K18 gene has been reported to contain a RA-responsive Alu element (Vansant and 

Reynolds, 1995). Seven expression-specific DNA sites for protein binding were 

identified in the K18 gene (Neznanov and Oshima, 1993), two of which were identified 

as subject to differential methylation in expressing and non-expressing tissues. An 

enhancer element suggested to regulate cell type and differentiation-specific expression 

was located 3' to the human K1 gene (Huff et al, 1993; Rothnagel et al, 1993) that 

conferred calcium sensitivity. The promoters of K5, K14 and K17 were shown to contain 

elements that were direct targets for transcriptional regulation by both Retinoic Acid and 

thyroid hormone receptors (Tomic-Canic et al, 1996). The complexity of keratin 

regulation in mammalian tissues is highlighted by the fact that at least five DNA sites that 

specifically bind nuclear proteins have been identified in the K5 gene alone (Ohtsuki et 

al, 1992). Of these, two activate transcription, one inhibits it, and the remaining two are 

of unknown function. The cell type- and differentiation-specific expression of keratins is 

more than likely an extremely complex affair, involving the interaction of both negative 

and positive regulatory elements. Expression will depend on the cellular complement of 

enhancers that bind to these regions. In the type II keratin, K8, important control 

elements are thought to he within the body of the K8 gene itself (Casanova et al, 1995). 

In addition, methylation (Casanova et al, 1995) and labile repressors of transcription 

(Cremisi and Duprey, 1987) have been implicated in cell-specific expression of keratins.
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A number of post-transcriptional mechanisms regulating keratin expression have been 

proposed (Section 1.2.1), including post-transcriptional down-regulation of K5 (type II) 

mRNA levels (Paine et al, 1992). Since both K8 and K18 mRNAs are detectable this 

suggests that such mechanisms are not involved in the inhibition of keratin filament 

formation in DLKP, especially in light of the fact that there are no changes in mRNA 

levels to accompany the induction of keratin expression upon exposure to BrdU. In 

addition, proteolytic degradation, reported by Kulesch et al (1989), is not likely to play a 

role since both transcripts are present, and if translated efficiently stable filaments should 

form. In agreement with this, treatment of DLKP with a cocktail of protease inhibitors at 

0.5, 1 and 2x concentrations recommended for such studies (Roche, #1-697-498) could 

not induce keratin expression in these cells (Dr. Noel Daly).

The absence of keratin expression in poorly differentiated cell lines such as DLKP may 

represent very early developmental mechanisms regulating keratin expression in lung 

epithelia or a mechanism whereby tumours downregulate their differentiated phenotype. 

To further investigate the induction of keratin expression in both DLKP and A549, the 

effects of BrdU on the translational apparatus of the cell were investigated.
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4.2.3 BrdU and its effects on Translation:

In light of the mechanism by which Bromo-deoxyuridine exerts its effects on cells it is 

not surprising that research to date has focused on the transcriptional effects of this drug. 

BrdU is a Thymidine analogue that competes with naturally occurring Thymidine for 

incorporation into DNA, where it alters promoter behaviour and ultimately the 

transcription of targeted genes (Section 1.3.2). However, recent reports on the role of 

translation in the regulation of differentiation and development (Luis et al, 1993; 

Wormington, 1993; Curtis et al, 1995) highlight the possible importance of translational 

regulation of gene expression in the control of such processes. To date, no-one has 

extended studies with differentiating agents such as BrdU to determine the downstream 

effects of transcriptional activation upon the translational apparatus of the cell. In 

addition, few studies have investigated the role of translation in the regulation of 

processes such as lung cancer differentiation, particularly in poorly differentiated lung 

cancers. This is despite the suggestion that, in type II cells o f the lung, growth factors 

might regulate the translation rather than the mRNA abundance of at least some growth- 

related genes and that this ability to respond to translational control may be 

developmentally regulated (Clemens et al, 1990).

4.2.3.1 BrdU and its effects on translation Initiation Factor eIF-4E:

eIF-4E (Section 1.6.3.2.4.3) is the only specific mRNA-binding protein of the translation 

initiation complex and provides the cap-binding specificity of the eIF-4F complex. It is 

present in limiting concentrations and is a key factor in translation initiation, the primary 

target for regulation of translation rates. This regulation occurs through complexity in 

mRNA structure and binding of repressors proximal to the cap. While much is now 

understood regarding the roles of such RNA complexity and eIF-4E expression/activity 

in the regulation of cellular growth, little is known about their roles in differentiation.
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4.2.3.1.1 Altered elF-4E expression in differentiating cell lines:

Examination of the levels of eIF-4E in BrdU-treated epithelial lines showed a marked 

increase in the expression of this protein over time (Figure 3.2.2(a)&(b)). The induction 

in response to BrdU-treatment is very rapid with significant changes in expression within 

one day. This makes it very difficult to pin down exact timing of induction of eEF-4E in 

relation to other factors described in this study, since the costs to examine induction 

within hours of treatment would be prohibitive and extremely labour intensive. In any 

case, the sensitivity of methods used to detect the expression of both mRNAs and 

proteins may not be precise enough to determine with certainty which factor appears first, 

with this short timeframe.

Immunocytochemical analysis of eIF-4E in both A549 and DLKP revealed some 

differences in the pattern of expression of this protein. While in A549 there is a universal 

increase in eIF-4E distributed amongst all of the cells (Figure 3.2.1.1), in BrdU-treated 

DLKP there appears to be a percentage of cells that stain far more intensely than other 

cells (Figure 3.2.1.2). Due to the morphological changes in BrdU-treated cells it is 

difficult to assess by immunocytochemistry alone if all cells have increased expression of 

eIF-4E. Many of the treated DLKP cells exhibit a similar staining intensity to those of 

untreated cells, but they are significantly larger than the untreated cells. Does this mean 

that there are elevated levels of eIF-4E in these cells but that it is simply distributed over 

a larger area in the cell, or is there no change? It is difficult to say.

Either way, immunocytochemistry tells us that a percentage of DLKP cells very similar 

to that induced to express keratins, are also induced to express very high levels of eIF-4E. 

Co-immunocytochemistry has so far failed (perhaps due to incompatibility o f co­

incubation of the antibodies available) to tell us whether or not this effect on both 

keratins and eIF-4E is coincidental or actually indicative of a relationship between the 

two. It is not unreasonable to imply that it is indeed those cells induced to overexpress 

eIF-4E that are also induced to express keratin filaments, especially in light of the fact 

that eIF-4E is universally upregulated in BrdU-treated A549 cells, also reflecting the
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pattern of upregulation of keratins in these cells. It is hoped that continued modification 

of conditions for co-immunofluorescence will help to answer this question. It will, 

however, not establish a direct link between keratin expression and eIF-4E levels. More 

direct evidence was provided by the induction of keratin expression in DLKP when 

transfected with the eIF-4E cDNA (Section 3.5.1). A mechanism by which eIF-4E 

induces keratin expression is proposed in section 4.2.3.3.3.

In the leukaemic cell line HL60, the levels of eIF-4E dramatically decreased upon 

exposure to BrdU (Figure 3.2.2(d)). This may correlate with a decrease in translation as 

this cell line commits to differentiation. Bloume et al (1999) reported significant 

decreases in both transcriptional and particularly translational efficiency, together with 

decreased size during erythrocyte differentiation. This is reflected in a visual decrease in 

the size and protein content (Figure 3.2.8) of BrdU-treated HL60s, attributable most 

likely to similar transcriptional and translational decreases in these cells.

Overexpression of eIF-4E has been shown to selectively upregulate the translation of 

mRNAs with complex 5' UTR secondary structures (Rosenwald et al, 1995; Kevil et al, 

1996; Rousseau et al, 1996). In an attempt to assess eIF-4E activity during epithelial 

differentiation, the expression of one of these, Ornithine Decarboxylase (ODC), was 

examined by western blot analysis. Unfortunately, the antibody (Sigma) constantly 

produced high levels of background non-specific binding, making it impossible to 

decipher any sort of true result (data not shown). A role for elevated eIF-4E expression 

during the differentiation of DLKP is outlined in section 4.2.6.1.

4.2.3.1.2 Transcriptional induction of translation initiation factor, eIF-4E?:

To date, both RT-PCR (Section 3.2.3) and Northern blotting (3.2.4) analyses suggest that 

there is little change in eIF-4E mRNA levels in the BrdU-treated epithelial lung cancer 

cell lines, DLKP and A549. However, DLKP expresses high levels of eIF-4E, evidenced 

by both Western blot (Figure 3.3.2) and Northern blot signals (Section 3.2.4), while it 

appears to be only induced to express significantly higher levels of the protein in
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approximately 10-15% cells by immunocytochemistry (Figure 3.2.1). This may mean that 

changes in expression in this system are beyond the sensitivity of conventional methods 

for the determination of transcript levels within cells (RT-PCR/ Northern Blotting). In 

A549, in which the response appears more universal, RT-PCR analysis suggests that 

there may be an increase in eIF-4E transcript levels in BrdU-treated cells (Section 3.2.3). 

It is possible that analysis o f gene transcription using more sensitive techniques (Nuclear 

Run-on/ RNase protection assays) may provide evidence for altered transcription of the 

eIF-4E gene in BrdU-treated cells. However, conventional methods suggest that 

induction of eIF-4E by BrdU is not at the transcript level. An alternative mechanism by 

which eIF-4E may be induced, at a post-transcriptional level, is outlined in the following 

section (Section 4.2.3.1.3).

4.2.3.1.3 Investigation of eIF-4E phosphorylation levels:

Vertical slab iso-electric focusing (IEF) (Section 2.11) of samples from both DLKP and 

A549 revealed a very interesting shift in the phosphorylation status of eIF-4E in BrdU- 

treated cells from predominantly non-phosphorylated towards and possibly even in 

favour of the phosphorylated form of the protein (Figure 3.2.5). This indicates that not 

only is there an increase in eIF-4E expression in differentiating lung cancer lines DLKP 

and A549, but there is also a shift in the phosphorylation ratio towards the more active 

form of eIF-4E. These cells exhibit elevated expression of integrins (Meleady and 

Clynes, in preparation), which are signalling and attachment factors involved in 

metastasis and differentiation. Integrins signal through both Rho and Ras kinase 

pathways (Schlaepfer and Hunter, 1998). Examination of ERK, the downstream kinase of 

Ras, showed a small but significant increase in the levels of active, phosphorylated ERK 

in A549 upon exposure to BrdU (Figure 3.2.6.). ERK exhibits a high degree of 

autoregulation (Cook et al, 1997; Frost et al, 1997), even in the presence of activated 

upstream kinases, that may prevent it from becoming excessively phosphorylated in 

situations where upstream signalling from integrins or other signalling factors is elevated. 

Serum stimulation studies (Section 4.3) revealed that ERK was indeed capable of 

autoregulation in A549, despite the fact that A549 has been reported to harbour Ras
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mutations (Mitsudomi et al, 1991) (Section 1.6.4). In the case of DLKP, no significant 

increases in ERK activity were detected in BrdU-treated cells (Figure 3.2.6). We attribute 

this to the suspected high level expression of autocrine growth factors in this cell line 

(Section 4.3), in which case the additional stimulus of increased integrin expression may 

not have significant/detectable effects on ERK activity. It is possible that the increase in 

integrin expression in BrdU-treated DLKP and A549 (Meleady and Clynes, in 

preparation) may result in stimulation of eIF-4E phosphorylation, which in turn enhances 

the translation of eIF-4E mRNAs, which are complex and suggested to be heavily 

dependent on the availability of phosphorylated, active eIF-4E (Lavoie et al, 1996). This 

may explain the failure of both RT-PCR and Northern blotting to detect significant 

changes in eIF-4E transcript levels (4.2.3.1.2).

Interestingly, it has been suggested by eIF-4E overexpression studies that the kinase 

involved in eIF-4E phosphorylation has the catalytic capacity to accommodate higher 

amounts of eIF-4E, but that the phosphatase that controls its dephosphorylation does not 

(DeBenedetti and Rhoads, 1990). Therefore, increased signalling may not be necessary to 

achieve the observed effects on eIF-4E phosphorylation in eIF-4E overexpressing lines, 

and may not be the initiator of these events. We have provisional evidence for the 

increased expression of the translation initiation factor, eIF-2a (Section 3.4.1.1). 

Induction of this factor, a regulator of global translation (Kimball et al, 1998) may result 

in translational increases in eIF-4E, initiating the increase in eIF-4E which is then 

phosphorylated, allowing selective translation to begin, including further and selective 

increases in eIF-4E itself.

The leukaemic line, HL60 showed a predominance of non-phosphorylated eIF-4E in 

control cells (Figure 3.2.5). However, upon differentiation, the decrease in eIF-4E 

observed by western blot appeared to be predominantly in the non-phosphorylated form 

of the protein. This may reflect a basal requirement of the cell for phosphorylated and 

active eIF-4E for survival, or may simply imply that the high levels of eIF-4E in 

undifferentiated HL60s are largely redundant or surplus to cellular requirements for 

general household translation. These results would indicate that, while there is probably a
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decrease in translation initiation rates in these cells, it is not likely to be as dramatic as 

western blotting would predict (Figure 3.2.2 (d)).

4.2.3.2 eIF-4F complex formation:

eEF-4F complex formation (Section 1.6.3.2.4) is determined by competition between elF- 

4G and 4E-BPs for association with eIF-4E. The levels of eIF-4G do not appear to 

change significantly in DLKP (Figure 32.12). However, there appears to be a slight 

increase in eIF-4G in differentiating A549s (Figure 3.2.12). Detection of these slight 

changes may be more difficult in DLKP if, as suspected, only a small percentage of cells 

are reacting so dramatically to BrdU exposure. To date, a commercial antibody (Santa 

Cruz) has failed to satisfactorily detect 4E-BP1 (Section 1.6.3.3.4.4) expression in these 

cells. However, a private source (Dr. Nahum Sonenberg, Montreal) of 4E-BP1 antibody 

has shown more promise (Section 32.1.3). Conditions are currently being refined to 

improve the quality of blots obtained using this antibody, by using extended gel systems 

to allow improved resolution. Preliminary western blotting analyses, while unclean, 

suggest that 4E-BP1 levels and phosphorylation remain unaffected during BrdU-induced 

differentiation (Figure 3.2.7.3). This is in agreement with serum stimulation studies using 

the specific FRAP/mTOR kinase inhibitor, Rapamycin (Section 4.3), which suggests that 

4E-BPs may not play a significant role regulating eIF-4E phosphorylation in A549. A 

number of others have reported such findings (citations within Fraser et al, 1999), 

suggesting that 4E-BPs may not regulate eIF-4E phosphorylation in all cell systems or 

under all circumstances. 4E-BPs may play roles under different circumstances, but it may 

be that some cell types, perhaps poorly developed cells in particular, show little 

dependence on 4E-BPs for eIF-4E regulation. More detailed examinations of the levels of 

4E-BP1 expression and activity, in addition to FRAP (the 4E-BP1 regulatory kinase) 

activity in differentiating cells would be an important future direction for the research 

program.

Correlations have been reported between phosphorylation of eIF-4E, association of elF- 

4E with eIF-4G protein, and enhancement of RNA helicase activity (Fukuchi-Shimogori
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et al, 1997). While phosphorylation of eIF-4E is not a direct indicator of eIF-4F 

formation (Dr. Simon Morley, personal correspondence), it is a good indication thereof

(see also; Section 4.2.3.1.3).

4.2.3.3 In-Vitro Translation:

In-vitro translation is a technique used to closely examine the regulation of translation 

(Bablanian and Banerjee, 1986; Wu et al, 1993; Ohlmann et al, 1996). The advantage of 

these systems is that they allow a greater control of the environment, and while they are 

artificial in the sense that the experiments are removed from the cellular environment, 

they are a useful tool to investigate the finer details of translation control. In-vitro 

translation has been used to confirm the inhibitory effects of proteins on the translation of 

specific mRNAs (Bhasker et al, 1993; Ostareck-Lederer et al, 1994) and examine the 

roles of factors in controlling translation initiation (Rau et al, 1996; Svikin et al, 1996). 

These systems were used to further pursue the possibility that simple keratin protein 

expression may be regulated at the translational level during early lung development. A 

number of developmentally important genes appear to display a high degree of 

translational regulation.

4.2.3.3.1 Development of in-vitro Translation (IVT):

The in-vitro translation systems most commonly used are Rabbit Reticulocyte Lysate and 

Wheat Germ extracts; Commercial sources (Promega and Boehringer) were used (Section

3.3). It was decided to use RNA from A549 to develop this technique, as A549 cells 

express relatively high levels of K8 mRNA that is translatable in-vivo, and as such should 

also be translatable in-vitro. Initial attempts to translate total RNA isolated from A549 

cells in both systems for subsequent analysis by western blotting proved problematic 

(Section 3.3.1.1). It was decided to adapt the immunoprecipitation procedure developed 

to detect keratin expression in DLKP (Section 3.1.4.2) as a "clean-up" step to try to 

reduce this background interference (Section 3.3.1). Having determined that RRL 

systems produced the best results, an optimal concentration of l(ig total RNA per
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reaction mixture was determined (Section 3.3.2) for use in further studies on keratin 

regulation.

4.2.3.3.2 A Putative Translational Repressor of Keratin Synthesis in DLKP:

RNA from A549 cells, known to be translatable both in-vivo and in-vitro (Section

4.2.3.3.1), was significantly inhibited in its ability to synthesise K8 protein in the 

presence of cytoplasmic extracts from DLKP (Figure 3.3.3.1). On the other hand, the 

level of K18 synthesis did not appear to be significantly affected by DLKP extracts 

(Figure 3.3.3.2). Reactions were set up from "master-mixes" to ensure equality in all 

reactions. This suggested that K8 mRNAs may be translationally repressed in DLKP. 

These crude cytoplasmic extracts (section 2.19.3) are basically the entire contents of the 

cell, with the nucleus centrifuged out. If a translational repressor is present it should be 

present in the cytoplasm to exert its effect.

In these systems, the RNA template would be expected to be stable since the cytoplasmic 

extraction protocol used was an adaptation of an older protocol used for the isolation of 

cytoplasmic RNA for use in Northern Blotting. Combined with the addition of RNase- 

inhibitor during preparation of the extracts and again prior to in-vitro translation, this 

should eliminate the possible influence of RNases in the inhibition observed. In addition, 

the failure to affect K18 in these reactions provides very strong evidence that, as 

suspected, RNAses are not active in these cytoplasmic extracts. To further investigate the 

possible repression of K8 synthesis in DLKP, we demonstrated that the K8 transcripts 

present in DLKP itself were functional and translatable (Figure 3.3.3.4). These results 

suggest that the absence of keratin expression in DLKP is due to a repressor of K8 

synthesis at the translational level and not due to non-translatable/non-functional 

transcripts in this cell line. Previous work in this laboratory (Meleady, 1997) 

demonstrated that cyclohexamide could weakly induce keratin expression in about 5% 

DLKP. At the time it was speculated that this was due to the inhibition of the synthesis of 

a “destabilising” factor in DLKP that degraded keratin proteins more rapidly in DLKP
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than A549, thought not to express this factor. We now propose that this effect is due to 

the inhibition of the synthesis of a repressor of K8 translation.

The presence of a repressor of simple keratin translation has been suggested from 

previous in-vivo tissue studies (Tyner and Fuchs, 1986), and has led to speculation that 

keratin mRNAs may be either masked (Winter and Schweitzer, 1983) or translationally 

repressed (Su et al, 1994). Here we provide additional evidence and propose a 

mechanism by which such repression regulates the temporal expression of simple keratin 

K8/18 filaments during early lung development. Very little is known about the regulation 

of K8 gene expression in comparison with that of its partner, K18 (Casanova et al, 1995). 

We suggest that K8 expression may be significantly regulated at the level of translation. 

Numerous reports have suggested that type II keratins (K8) are involved in the induction 

of their type I partners (K18) and that the regulation of both can be uncoupled (Section

1.2.1) (Darmon, 1985). Comparison of the gene sequences encoding the partner keratins 

K5 and K14 offers no insight into their co-ordinate expression (Ohtsuki et al, 1992). Such 

findings have led to suggestions that stricter regulation of overall filament formation 

occurs through tight regulation, at as yet unidentified levels, of the expression of the type 

II partner of a keratin filament. This probably allows a more co-ordinate and rapid 

response to differentiation signals than does induction of two or more separate genes. We 

suggest that translational repression of the simple type II keratin, K8 is a simple and 

precise means of regulating overall K8/18 filament formation until definite moments in 

early development.

Section 3.3.4 highlights some unusual properties of the K8 mRNA observed during data­

base searches. The 3’ UTR of K8 is significantly longer than that of its partner, K18. 

Sequences within the 3’ UTR are thought to be critical in the developmental 

“unmasking” of repressed mRNAs (Standart and Jackson, 1994; Spirin, 1996) (Section

1.6.1). The 5’ UTR of the K8 mRNA spans only 60 nucleotides, while that of K18 is 52 

nucleotides in length. However, within the 60 nucleotides of the K8 5’ UTR, a 10- 

nucleotide sequence is repeated, separated by only a single nucleotide, and is located +2 

to the AUG start codon. According to data-base searches this motif is unique to the K8

213



mRNA in humans and we speculate that it may represent a binding site for the putative 

repressor of K8 synthesis suggested by in-vitro translation studies (Section 3.3.3). This is 

the first solid evidence of such repression.

4.2.3.3.3 A role for eIF-4E in early development?

Roles for eIF-4E in differentiation (Jaramillo et al, 1991) and maturation (Beretta el al, 

1998) have been suggested. While increased eIF-4E availability during development may 

simply act by increasing the ability of normally uncompetitive, poorly expressed 

differentiation-related mRNAs to avail of eIF-4E to begin translation, we suggest that 

eIF-4E may play a role in the relief of translational repression. Developmental “cues or 

signals” have been proposed to initiate unmasking events during development but as yet 

no such “signals” have been identified. We propose that one such “signal” may be 

increased eIF-4E availability. In agreement with this, over expression of eIF-4E in DLKP 

was capable of inducing K8 expression (Section 3.5.1), strongly suspected to be 

translationally repressed in this cell line (Section 4.2.3.3.2). eIF-4E/4F increases the 

helicase activity of cells (Rebagliati and Melton, 1989; Klein and Melton, 1994) and can 

displace proteins associated with the 5' UTR (Svitkin et al, 1996), both possible means of 

relieving translational inhibition (Figure 4.1). 573’ UTR-bound repressors and increased 

eDME availability may form the basis of a mechanism for global repression and 

unmasking of repressed mRNAs at critical points in development. This would be a rapid 

and reversible means of cellular differentiation in response to stimuli and could possibly 

be the means by which rapid de-differentiation, thought to be a mechanism involved in 

recovery from tissue damage (Emura et al, 1997), could occur in the lung. We suggest 

that transcription and translation may combine during early development to regulate the 

precise cell-specific and timed expression of developmental genes, respectively. The 

extended 3’ UTR of K8 may mean that polyadenylation during very early development is 

the “true” signal to relieve repression of K8 synthesis. Sequences within the 3’ UTR of 

masked mRNAs are thought to recruit factors that polyadenylate the mRNA (reviews; 

Wormington, 1993; Vassalli and Stutz, 1995). Developmental polyadenylation of 

mRNAs is thought to recruit PAB (Poly(A)-binding proteins) (Figure 1.15; Section
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1.6.3.4.2), which in turn recruits eIF-4E/4F to the 5’ end of mRNAs. BrdU may have 

simply by-passed or mimicked this event by increasing eIF-4E availability by alternative 

means. Thus the proposed 5’ UTR repression element and significantly longer 3’ UTR of 

K8 (in comparison to K18) may act in concert to both repress and bring about unmasking 

of the K8 mRNA in early development (Figure 4.1). Alternatively, the “developmental 

signal” proposed to unmask mRNAs may be elevated availability of eIF-4E itself, and 

polyadenylation may be a result of activation of translation. The actual timing and role 

for developmental polyadenylation remains unclear, speculated to be either a cause or 

consequence of unmasking.

(A) Undifferentiated Cells — Moderate/Low eIF-4E activity

5’ UTR Coding Region

(B) Differentiating Cells — Elevated eIF-4E availability

Figure 4.1: A possible mechanism for both repression of simple keratin K8 synthesis
and its induction. (A) Under normal circumstances K8 mRNAs are translationally 
repressed in DLKP. (B) Increased availability of eIF-4E/4F during differentiation 
displaces the putative 5’-bound repressor of K8 translation. Increases may be due to 
increased eIF-4E levels/activity, or through recruitment to repressed mRNAs due to 
developmental polyadenylation, which recruits PAB/eIF-4F complexes to RNAs. In 
undifferentiated cells (A), RNAs are not polyadenylated and so compete for eIF-4E 
poorly.
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The very low level expression of keratins in DLKP may represent slight "leakiness" in 

this regulation, known to occur in distally-placed translational repressors (the putative 

repressor binding site is located -36 nucleotides from the cap site; Figure 3.3.4). Of 

interest, in A549 the synthesis of K8 reaches a maximum after only 3-4 days, suggesting 

that these RNAs simply reach maximum translational efficiency at this point (Section

3.1.4.1), The strong increase in expression over the 3 days probably represents the very 

high level of transcript present in these cells. To date we have not been able to confirm 

the presence or absence of this repressor in A549 due to the high levels of K8/18 

transcripts and proteins in cytoplasmic extracts from these cells (Figure 3.3.3.2).

Translational repression has been shown to play important roles in both early 

development and in somatic cells committing to terminal differentiation. As erythrocytes 

develop into enucleated reticulocytes transcription is inactive, and important nuclear 

breakdown events are catalysed by the appearance of an enzyme called 5'-Lipoxygenase 

(LOX). The LOX mRNA is produced in the bone marrow but translationally repressed 

(Ostareck-Lederer et al, 1994) until the very final stages of mammalian erythropoiesis 

(Standard and Jackson, 1995; Sun and Funk, 1996). 5’UTR-based translational regulation 

has been shown to control the levels of the iron detoxification protein, ferritin, and 

repressor-binding activity is directly regulated by iron levels within the cell (review; 

Altmann and Tracshel, 1993). Specific 3’UTR-based repression has been shown in the 

tra-2 (review; Sonenberg, 1994; Curtis et al, 1995) and the Lin-14 (Arasu et al, 1991; Lee 

et al, 1993) mRNAs of C.elegans, whose correct temporal expression is critical for 

normal development (Austin, 1994). In addition, elements within the 3’ UTR of activin, a 

potent mesoderm inducing factor, have been identified in its translational repression 

(Klein and Melton, 1995). Overexpression of eEF-4E was shown to induce expression of 

this factor and development of mesoderm in Xenopous laevis embryos (Klein and 

Melton, 1994). These results are very reminiscent of our own findings in relation to the 

regulation and induction of simple keratin expression in the poorly differentiated 

epithelial line, DLKP.
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The exact nature of this translational repressor is unknown. With 97% of the human 

genome not coding for proteins or RNAs with clear functions (Nowak, 1994) and the 

identification of novel functions for RNAs such as small RNAs, antisense and ribozymes 

(Wickens and Takayama, 1994), this factor could be a protein, small RNA or antisense, 

all of which should be stable in these extracts. Translation of the lin-14 mRNA is actually 

regulated by a repressor encoded by the lin-4 gene, which encodes a small RNA and not a 

protein (Arasu et al, 1991; Lee et al, 1993). As yet to be proven, relief from this 

repression is presumably due to loss of lin-4 gene expression (encoding the antisense 

RNA) or increased helicase activity in developing cells, known to be associated with 

increased eIF-4E availability (Rebagliati and Melton, 1989; Klein and Melton, 1994). 

Further characterisation and isolation of this putative novel translational repressor of K8 

synthesis will require considerable effort and expertise, but we have provided additional 

evidence for its existence and propose a mechanism by which repression occurs and is 

relieved to allow simple keratin filament formation during early lung development.
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4.2.4.1 c-Myc Expression:

Despite intensive investigation for almost two decades, c-myc remains a fascinating and 

enigmatic subject. A large and compelling body of evidence indicates that c-myc is a 

transcription factor with central roles in the regulation of cell proliferation, differentiation 

and apoptosis, but its exact function remains elusive (Sakamuro and Prendergast, 1999).

Some authors, however, still retain the narrow view that oncogenes simply promote cell

growth (or death, acting as “life-or-death signals”) while blocking differentiation. This 

view is not compatible with the results presented in this thesis.

4.2.4.1.1 BrdU and c-Myc expression:

Western blot analysis showed a dramatic increase in the levels of c-Myc protein (MW 67 

kDa) during the differentiation of both epithelial lines (Figure 3.4.1). Increased 

expression of c-Myc protein in A549 and DLKP upon exposure to BrdU may contribute 

to the induction of eIF-4E expression in these systems (Section 4.2.3.1.1). eIF-4E has 

been identified as one of the few known transcriptional targets of the c-myc proto­

oncogene (Jones et al, 1996).

BrdU has been reported to induce differentiation of the leukaemic cell line, HL60 (Yen 

and Forbes, 1990) and melanoma lines (Valyi-Nagy et al, 1993) resulting in/from 

decreased levels of c-myc mRNA transcript. In order to investigate the downstream 

effects of modulating c-myc expression during BrdU-induced differentiation, human 

leukaemia cells, HL60s were cultured and BrdU-treated under the same conditions as 

described in the literature by Yen and Forbes (1990). Decreased c-myc expression upon 

differentiation of these cells was confirmed by PCR. The analysis for c-myc was only 

performed on a single occasion, to confirm that conditions were reproducing those of Yen 

and Forbes (1990). Unfortunately the data was lost due to poor development of film. 

Western blot analysis repeatedly failed to detect c-Myc expression, most likely due to the

4.2.4 Transcription Factors involved in BrdU-induced Differentiation:
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fact that c-Myc levels in this system were decreasing. However, we repeatedly 

demonstrated that the expression of its downstream target, eIF-4E, decreased in BrdU- 

treated HL60s (Figure 3.2.2(d)).

It may appear contradictory that both c-Myc and eIF-4E are upregulated during epithelial 

lung cancer differentiation, while, as might be more readily expected (given their 

importance in growth regulation), they are observed to decrease during leukaemic 

differentiation. The widespread reports of decreased c-myc expression during 

differentiation (Yen and Forbes, 1990; Valyi-Nagy et al, 1993; Shimizu et al, 1994; 

Warner et al, 1999) have led to suggestions that c-myc downregulation is a signal for 

growth arrest (Bennett et al, 1994). However, the roles of oncogenes such as c-myc and 

eIF-4E in differentiation are very poorly understood. Much work has focused on their 

roles in transformation, but, as stated by Ryan and Birnie (1996), "it would be naive to 

assume that the only transcriptional targets of c-myc are those involved in 

transformation". In addition, it is equally naive to assume that effects in one cell type are 

universal, and in fact, it has been stated that the effects of BrdU itself are cell-specific 

(Valyi-Nagy et al, 1993). Pre-commitment to differentiation, which involves changes in 

protein expression to accommodate differentiation, have been suggested to require an 

upregulation of growth regulatory genes, such as c-myc (Yen el al, 1987). In fact, the 

analysis of cell cycle arrest in adipocyte differentiation reveals that c-myc levels actually 

increase (Reichert and Eick, 1999). The growth arrest induced in these cells was 

attributed to the expression of the cdk (cyclin dependent kinase) inhibitors p21 and p27 

(see also; Section 4.2.2). c-myc has been shown to promote differentiation of human 

epidermal stem cells (Gandarillas and Watt, 1997) and constitutive expression of c-myc 

promotes terminal differentiation by driving keratinocytes from the stem cell 

compartment into the transit amplifying compartment (Watt, 1998) (Figure 1.1, Section

1.4). c-myc antisense has been shown to inhibit the neuroendocrine differentiation of 

SCLC lines (van Waardenburg et al, 1998) and transformation of human bronchial 

epithelial cells with c-myc induced multidifferentiated carcinomas in nude mice (Pfeifer 

et al, 1991), implying a role for elevated c-myc expression during lung cancer 

differentiation. We feel that a major problem at present is the preoccupation of many

219



studies with the levels of c-myc mRNA expression in cells. Current understanding in 

relation to c-Myc isoform expression show that Mycl and Myc2 have different properties 

and that their expression is regulated at the translational level (Section 4.2.4.1.2).

4.2.4.1.2 A role for c-Myc expression during Lung Cancer Differentiation:

We propose a role for increased expression of both c-myc and eIF-4E during epithelial 

lung cancer differentiation based on the work presented here and on very recent 

understandings in relation to the expression of c-Myc isoforms and their functions. The c- 

myc gene is transcribed from four promoters (Figure 4.2), with the vast majority of 

transcripts originating from the PI and P2 promoters, which encode 75-90% and 10-25% 

of c-myc mRNAs, respectively (Ryan and Birnie, 1996), while the P0/P3 promoters are 

relatively inactive. Within the extended 5' UTR of the c-myc mRNAs, except for those 

few originating from the P3 promoter (Bodescot and Brison, 1996), there is an alternative 

translation initiation site, encoded by an upstream CUG (also recognised by initiator 

tRNAs) (Figure 4.3).

Translation initiation at the AUG encodes the p64 (Myc 2) form of the c-Myc protein, 

while initiation at the alternate CUG encodes an N-terminally extended form of the 

protein, Myc 1 (p67) (Figure 4.3). Both Myc 1 and Myc 2 are capable of transactivating 

Myc E-Box elements, which are the DNA-recognition sequence for c-Myc binding 

(Section 1.5.2.2.1) (Blackwood et al, 1994). The N-terminal transactivation domain of 

the c-Myc protein is essential to Myc biology (Luscher and Larsson, 1999) and its 

extension in Myc 1 been suggested to be the cause of c-Mycl’s ability to transactivate an 

additional subset of genes (Onclerq et al, 1988; Hann et al, 1994) through an additional 

non-canonical E-box element. The overexpression of c-Myc 1, but not c-Myc 2, is 

significantly inhibitory to cell growth (Hann et al, 1994), suggesting that c-Myc 1 may be 

necessary to keep the c-Myc 2 protein “in check” (Hann et al, 1995). In agreement with 

this, numerous reports of cancers are associated with translocations or mutations in exon 

1 of the c-Myc gene (Saito et al, 1983; Hann et al, 1984; Hann el al, 1995), which result 

in the loss of c-Myc 1 expression.
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Figure 4.2: The c-myc gene (A) produces four mRNA transcripts (B) from four 

distinct promoters (P0-P3). The overwhelming majority of c-myc mRNAs originate 

from the PI and P2 promoters. The other promoters (PO and P3) are relatively inactive 

and their functional significance is unknown.
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Figure 4.3: Alternate usage of an internal CUG in the 5’ UTR of c-myc mRNAs.
Translation normally initiates at the AUG start codon, resulting in c-Myc 2 (p64) 
expression. However, under certain conditions, initiation switches to the CUG initiator 
upstream of the AUG, resulting in an N-terminally extended form of the Myc protein, c- 
Myc 1 (p67).

Reports of alternate, non-AUG intiated translation in c-myc (Harm and Eisenmann, 1984) 

have suggested that Myc isoforms may be reciprocally synthesised under conditions such 

as methionine deprivation (Hann, 1994; Hann, 1995). Attempts to explain the 

phenomenon of alternate translation initiation in c-myc mRNAs produced reports that c- 

myc mRNAs contain an IRES (Internal Ribosome Entry Site) that allows cap- 

independent translation (Nanbru et al, 1997) (Section 1.6.3.2.4.2.1). However, IRES do 

not explain the mechanism by which alternate usage of AUG and CUG codons occurs in 

c-myc mRNAs and their existence in c-myc is now heavily disputed (Carter et al, 1999).

Evidence for a scanning mechanism of translational regulation of Myc isoform 

expression was provided by Hann et al (1994). The exact mechanism of differential 

translation was very recently shown to be dependent upon the availability of eIF-4E/4F
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(Carter et al, 1999) (Figure 4.4). Under normal conditions the ribosome scans along the 5' 

UTR of the c-myc mRNA, subject to translational regulation due to the complexity of the 

5' UTR. At a particular point, termed the Internal Ribosome Repositioning Element 

(IRPE) (Carter et al, 1999), the scanning ribosome is positioned close-and "jumps" 

across-to the AUG initiator to begin translation. However, under conditions of elevated 

eIF-4E, initiation at the alternate CUG codon begins due to unwinding of the 5’ UTR and 

the IRPE itself. In this situation, while both AUG and CUG initiation occurs, the relative 

increase in CUG recognition is significantly stronger than that of AUG. Because the 

overwhelming majority of c-Myc transcripts contain the AUG/CUG initiators, it is 

primarily eIF-4E/4F levels and activity that determine the induction of c-Myc 1 

expression. Alternate uses for upstream CUG initiation codons that result in expression of 

isoforms of FGF-2 have also been reported (Kevil et al, 1996). Breast carcinomas 

expressing elevated eIF-4E also exhibit the larger isoforms of FGF-2, which could play 

an important role in tumourigenesis (Nathan et al, 1997).

We propose that the induction of differentiation in lung epithelial, and also possibly in 

other cell types may revolve at least in part around the complex inter-relationship 

between eIF-4E and c-Myc 1 expression, highlighted in figure 4.5. Differentiating lung 

cancer cell lines showed elevated eIF-4E expression, in addition to a shift towards the 

phosphorylated and more active form of the protein (Section 3.2). When c-Myc 1 levels 

were examined, very strong induction of p67 expression was detected (Section 3.4.1). 

The antibody used (Santa Cruz) is p67-specific, and as such we have not determined the 

levels of c-Myc2 expression in our systems. Since both isoforms activate Myc E-box 

elements (Blackwood el al, 1994), while c-Myc 1 can activate an additional subset of 

genes and repress growth (Hann et al, 1994) and is translationally enhanced by increased 

eIF-4E availability, we suspect that it is c-Myc 1 expression that is more important in 

early development. We are currently seeking an antibody that detects both forms of this 

protein to allow direct comparison of expression during differentiation. This is the first 

direct demonstration during cellular differentiation of both p67 induction and an increase 

in the factor (eIF-4E) that regulates c-Myc isoform ratios. In addition, overexpression of

223



eIF-4E induced both K8/18 and c-Mycl expression, as well as a larger form of YY1 in 

DLKP (Section 3.5.1).

(A) Normal

(B) Elevated eIF-4E levels/activity:

j c-Myc 1 |

Figure 4.4: Alternate initiation from the CUG in c-myc mRNAs is dependent upon 
the availability of eIF-4E/4F. (A) Translation normally initiates at the AUG start site 
due to IRPEs (Internal Ribosome Repositioning Elements) (Red Circle). (B) On 
occasions of increased eIF-4E availability, both the complex 5’ UTR and the IRPE itself 
are unwound, shifting the balance of translation toward the upstream CUG codon and 
enhancing translational efficiency of the mRNA itself.

We propose that c-Myc 1 induction may be the mechanism by which eIF-4E uncouples 

its own growth stimulatory effects to allow it to function in the induction of 

developmental mRNAs and new protein synthesis required for differentiation (Section

4.2.3.3.3). The close inter-dependency between eIF-4E (transcriptionally enhanced by 

Mycl/2) and Myc 1 (selectively translated during increased eIF-4E availability) has led 

us to suspect that these two proteins may form the core of a differentiation pathway that 

is particularly important in early development (Section 4.2.6), establishing a feedback
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loop that drives the cell towards differentiation (Figure 4.5). Nature has always proven to 

be very complex, and such interaction and “feedback” communication between 

regulatory factors is probably a truer reflection of reality than single-step, unidirectional 

cascades and pathways. The complexity of such pathways is further elaborated upon in 

figure 4.7 and 4.8.

c-Mycl/2i

elF-

c-Myc 1

Growth Inhibition/  
Differentiation

Transactivation

Figure 4.5: Differentiation of epithelial lung cancer cells revolves around a complex

relationship between eIF-4E and c-myc. While the eIF-4E gene is a target for activation 

by c-Myc, increasing eIF-4E gene transcription, increased availability of eIF-4E results in 

selective translation of the growth inhibitory c-Myc 1 isoform. Since c-Myc 1 can still 

transactivate eIF-4E, a feedback loop is established that continues to increase both eIF-4E 

and selective c-Myc 1 isoform expression, driving the cell towards differentiation.
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When levels of eIF-2a protein were examined they were shown to increase in both A549 

and DLKP upon exposure to BrdU (Figure 3.4.1.1). It is suspected that this reflects the 

activity of the BrdU-induced upregulation in c-Myc expression in these cells (Section

4.2.4.1.1) (Rosenwald et al, 1993). Unfortunately these western blots could not be 

repeated due to the scarcity of the antibody (a kind gift of Dr. Simon Morley). eIF-2a and 

its regulator, the GTP exchange and recycling factor, eIF-2B (Section 1.6.3.2.2) display a 

very complex inter-relationship (Section 1.6.3.3.2 & briefly reviewed below).

After AUG start codon recognition by the met-tRNA eIF-2 is released as an inactive, 

GDP-bound molecule. Recycling to an active, GTP-bound form requires GTP-GDP 

exchange, catalysed by eIF-2B. eIF-2B activity is regulated by eIF-2 itself. 

Phosphorylation of the eIF-2a sub-unit on Ser51, by kinases such as PKC and HRl, 

results in eIF-2B becoming sequestered in an inactive eIF-2-GDP-eIF-2B complex. 

Elevated eIF-2a expression in the non-phosphorylated form could increase global 

translation rates. Alternatively, increased expression and phosphorylation of eIF-2a could 

result in a global decrease in translation by providing excess phosphorylated eIF-2a to 

"mop-up" available eIF-2B within the cell. A very interesting observation is that the 3' 

UTR. of differentiation-related mRNAs, such as tropomyosin, activate PKR (Protein 

Kinase RNA activated; Section 1.6.3.2.2.2) activity (Davis and Watson, 1996), 

decreasing translational efficiency (Rastinejad et al, 1993) and inducing differentiation 

(Rastinejad and Blau, 1993; L'Ecuyer et al, 1995) (Figure 4.6).

While levels of keratin mRNAs do not change during BrdU-induced differentiation and 

probably do not possess the above activity, we speculate that other differentiation-related 

mRNAs may be increased during BrdU treatment, possibly as part of the unique subset of 

genes activated by Myc 1 that inhibit cellular growth (Section 4.2.4.1.2). In this scenario 

c-myc also provides PKR with its substrate by transcriptionally increasing the levels of 

eIF-2a. It would be of interest to examine the possible influence of increased eIF-2a, in 

either the active or inactive, phosphorylated form during differentiation. eIF-2a levels

4.2.4.1.3 eIF-2a expression in differentiating lung cancer lines:
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and activity are thought to regulate global translation (Kimball et al, 1998), and as such 

may play a role in regulating the overall protein synthesis and growth rates during 

differentiation. Under conditions of elevated eIF-4E expression complex or repressed 

RNAs are initiated more frequently, and can compete more efficiently for eIF-2a, 

becoming translated at the same rate as “normal” mRNAs. The levels of global protein 

synthesis then become dependent upon eIF-2a availability. This would be an interesting 

approach to pursue and should form the basis of an extensive study of the function and 

interaction of both eIF-4E and eIF-2a during differentiation.

Inactive PKR

Active

GTP GDP 
Translation

Differentiation- 
related mRNAs 
activate PKR

Inactive eIF-2 
complex.

Reduced Translational efficiency

(A) “normal” cells (B) Differentiating Cells

Figure 4.6: A role proposed for eIF-2a induction during differentiation. Activation 

of PKR activity by the 3’ UTR of differentiation-related mRNAs results in eIF-2a 

phosphorylation and reduction in global translation rates.
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4.2.5 YYl Expression:

The Yin-Yangl (YYl) transcriptional regulator is thought to be of critical importance in 

the control of normal development (Riggs et al, 1991). The unusual properties exhibited 

by this transcription factor allow it to regulate the expression of different genes in 

opposing fashion (Section 1.5.2.3), making it a pivotal factor in the regulation of 

developmental gene expression. Normally it acts as a negative transcriptional element, 

downregulating the expression of genes possessing the YYl-binding motif within their 5' 

promoter element (Lee et al, 1994; Zhou et al, 1995). However, certain genes are actually 

transcriptionally upregulated by the binding of this factor, among these being the c-myc 

gene (Riggs et al, 1993; Lee et al, 1994). It was therefore decided to examine the levels 

of YYl expression in BrdU-treated cells to determine if there was any effect, and if so, if 

there was any correlation between YYl and c-Myc expression in both epithelial and 

leukaemic lines.

4.2.5.1 BrdU and YYl expression:

When the levels of YYl were investigated in DLKP and A549, they showed elevated 

expression of YYl protein upon treatment with BrdU (Figure 3.4.2). A role for YYl in 

inducing and regulating c-Myc, initiating a cascade of events leading to epithelial 

differentiation is discussed in section 4.2.6. In contrast to the situation in DLKP and 

A549, the levels of YYl in BrdU-treated HL60s actually decrease (Figure 3.4.2), further 

implying a role for YYl in the regulation of c-myc expression during BrdU-induced 

differentiation.

Bromo-deoxyuridine has been shown to upregulate the levels of YYl in embryonic 

myoblasts (Lee et al, 1992), in agreement with our observations in epithelial lines. It 

seems very likely that YYl plays a central role in the control of normal differentiation 

and development, due to its unusual ability to differentially regulate the expression of 

various genes. YYl plays a role in the development of both B-cells and fibroblasts (Riggs 

et al, 1991) and in myogenesis (Lee el al, 1992; Shrivastava and Calame, 1994). The
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modulation of YY1 expression by BrdU may be central to the ability of this drug to 

influence the differentiation status of cells.

YY1 has been shown to increase transcription from the PI and P2 promoter of the c-myc 

gene (Riggs et al, 1993). In addition, YY1 has also been shown to associate with the c- 

Myc protein itself (Shrivastava et al, 1993) and their association inhibits the 

transactivation properties of both proteins. YY1 is thought to compete with Max (Section

1.5.2.2.1), excluding it from association with c-Myc (Shrivastava et al, 1994). Myc does 

not block the binding of YY1 to DNA, in agreement with previous findings (Shrivastava 

et al, 1993), and association studies suggest that c-Myc interferes with the ability of YY1 

to contact the basal transcription factors TATA-binding protein (TBP) and TFIIB 

(Section 1.5.1.1). Changes in c-Myc levels, which accompany mitogenic stimulation or 

differentiation of cultured cells, affect the ratio of free to c-Myc-associated YY1 

(Shrivastava et al, 1996). This has led to speculation that one function of the c-Myc 

oncoprotein is to modulate the expression of YY1-dependent developmental genes by 

virtue of its association with YY1 (Liu et al, 1995). In co-transfection experiments, c-myc 

expression was able to reduce YY1 activating function from eight-fold in the absence of 

co-expressed c-myc to two-fold in its presence (Shrivastava et al, 1993). In light of YYls 

ability to activate c-myc gene transcription, association between these two proteins may 

form the basis of an autoregulatory mechanism that controls the expression and activity 

of both proteins (Grignani et al, 1990), preventing excessive loss of growth control 

during periods of elevated c-myc expression. In light of the very recent discoveries 

regarding the functions and regulation of c-Myc isoforms (Section 4.2.4.1.2), it would be 

of great interest to determine if there is a preferential association of YY1 with either p64 

or p67. Does association with YY1 inhibit only the transactivating properties of c-Myc? 

Does this actually enhance the additional growth-inhibitory effects of c-Myc 1? 

Unfortunately the antibodies used in these studies (Santa Cruz) were not suited to co- 

immunoprecipitation to determine the relative rates of association between these two 

factors during the BrdU-induced differentiation process. The complexity of their inter­

relationship is highlighted in Figure 4.7. A possible role for YY1 in initiating epithelial 

differentiation in response to BrdU is outlined in Section 4.2.6.
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Figure 4.7: The inter­
relationship between YY1, 
c-Myc and eIF-4E. YY1
can both activate 
transcription of the c-myc 
gene and interact with the 
c-Myc protein to inhibit the 
transactivating potential of 
both proteins (red arrow), c- 
Myc is a regulator of elF- 
4E gene activity (green 
arrow), while both YY1 and 
c-Myc are targets for 
translational regulation by 
eIF-4E (blue arrows). YY1 
regulates c-Myc 
transcription, but may also 
regulate the expression of 
the TATA-less eIF-4E2 
gene (black arrows).

It has recently been shown that humans possess two forms of the eIF-4E gene (Gao et al,

1998). While the protein products are the same, the eIF-4El gene contains a c-Myc 

activated E-box element (Section 1.5.2.2.1), thought to regulate growth-inducible eIF-4E 

expression, while eIF-4E2 lacks a TATA-box (Section 1.5.1.3) and is thought to be 

constitutively expressed. This raises the possibility that eIF-4E2 may be a target for 

activation by YY1 (Section 1.5.2.3.3). An intriguing possibility is that eIF-4E activation 

occurs as part of a YY1-induced developmental cascade to induce early differentiation 

events, including a switch to c-Mycl protein synthesis. Since both eIF-4E genes encode 

the same protein, the induction of eIF-4E expression observed in these studies cannot be 

attributed to either YY1 or c-Myc activation, and may even be attributable to both 

(Figure 4.7). TATA-less genes are commonly “house-keeping” genes whose ubiquitous 

expression may be attributed to the ubiquitous expression of YY1. However, it is possible 

that elevated expression of YY1 may also form the basis of a mechanism whereby cells 

increase the expression of such genes to fulfil new protein synthesis and growth 

requirements during early development. The complex interactions between the regulatory
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factors in figure 4.7 steps away from the old view o f  single-step, unidirectional cascades 

that are non-interacting. In reality, nature’s regulatory pathways are likely to be very 

com plex, depending upon “feedback” mechanisms and “comm unication” between factors 

to regulate processes such as differentiation. This com plexity is highlighted by the 

differentiation observed when either eIF-4E or Y Y l, key regulatory factors in the 

proposed “differentiation cascade”, were overexpressed in DLKP using cD N A  constructs 

(Section 3.5).
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4.2.5.1.1 cdc2 expression in BrdU-treated cells:

When the levels of cdc2 were examined in BrdU-treated DLKP, the levels of cdc2 

protein were elevated in treated cells as determined by western blot analysis (figure

3.4.2.1). These experiments were performed to examine the possible role of YYl in 

regulating the expression of cdc2, based on a recent report on the characterisation of the 

murine cdc2 gene (Jun et al, 1998). Interestingly, no consensus sequence for a TATA box 

exists at an appropriate position within the promoter region of the cdc2 gene. The TATA 

sequence motif forms the most common transcription factor binding site for RNA 

polymerase II transcribed mRNAs and is usually located around 30 bp from the 

transcriptional start site (Watson et al, 1992a) (Section 1.5.1.1). YYl can promote 

transcription from TATA-less promoters (Section 1.5.2.3.3). Very similar to the c-myc 

sequence known to be activated by YYl due to the presence of SP1 and E2F binding sites 

proximal to the YYl site (Riggs et al, 1991), the cdc2 promoter has a major positive 

regulatory sequence between -188 and -38 (Jun et al, 1998) containing several putative 

transcription factor binding sites, including those of YYl, SP1, and E2F. cdc2 would 

therefore be a prime candidate for YYl regulation based on its promoter sequence.

While the observed increase in cdc2 expression in differentiating epithelial lung cancer 

cells is very likely due to the BrdU-induced upregulation in YYl expression in these 

cells, the fact remains that BrdU may also affect the levels of other factors involved in the 

expression of cdc2. Inappropriate expression of cell-cycle related proteins such as cyclin 

D, cdc2, and cdk2 have been associated with growth arrested rat fibroblasts 

overexpressing c-Fos (Balsalobre and Jolicoeur, 1995). However, BrdU has been used to 

increase the levels of YYl protein, in place of transfection of the YYl cDNA (Lee et al, 

1992). This would seem to indicate that BrdU is accepted as a direct, or very nearly 

direct, modulator of YYl expression. In light of the results presented here it would 

appear, therefore, that cdc2 is a likely candidate for positive activation by YYl, joining c- 

myc and the ribosomal protein delta sites (Riggs et al, 1993; Lee and Lee, 1994). YYl 

appears to be a positive regulator of a number of growth-related genes (Shrivistava and 

Calame, 1994), and cdc2 may be another of these.
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4.2.6 BrdU and a possible Differentiation Cascade:

BrdU is a synthetic halogenated thymidine analogue and, unlike RA (Section 4.4), it does 

not elicit a “true” receptor-mediated differentiation in exposed cells. The uniqueness of 

BrdU would appear to lie in its ability to modulate the levels of only a few, if not a single 

regulatory gene that may, once it is discovered, hold the key to the control (both positive 

and negative) of a whole host of regulatory pathways involved in the differentiation, 

development and proliferation of eukaryotic cells. Our results suggest that BrdU activates 

at least two events in DLKP, a reversible growth inhibitory effect (Section 4.2.2) and a 

differentiation-inducing effect. Our work has focused on determining key factors in the 

latter. Based on the results presented here, we propose a cascade of events in 

differentiating lung cells upon exposure to BrdU (Figure 4.8). While speculative at this 

stage, further experiments will either confirm this cascade or lead to modifications, 

redefining the proposed cascade in an attempt to more accurately determine the nature of 

such complex regulatory mechanisms. Section 4.2.6.1 breaks this cascade down, 

highlighting the roles of key factors (A-E) identified by this study. This cascade may 

offer an insight into alternate interactions and functions of what are commonly taken to 

be growth-promoting factors, the roles of which are poorly characterised in situations 

such as differentiation.

It must be noted that it is not known whether eIF-4E is directly involved in the increase in 

P-integrin expression observed in BrdU-treated A549 and DLKP (work by Dr. Paula 

Meleady) (Figure 4.8). Pi-integrin subunits are known to be heavily regulated at the post- 

transcriptional level (Zutter et al, 1992) and findings with BrdU treated cells agree with 

this (Meleady and Clynes, in preparation). Pi-integrin dimerises with, among others, a.2- 

integrin subunits to form an active attachment and signalling cell surface complex, c- 

Myc-regulated a-integrin subunits have been identified (Liu et al, 1998), and in 

agreement a 2-integrin expression has been found to be increased in BrdU-treated cells at 

both transcript and protein levels (Meleady and Clynes, in preparation). Results with 0 ,2- 

integrin expression independently confirm, by implication, that Myc is both upregulated 

and actively involved in the regulation of gene expression in BrdU-treated epithelial
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cells. However, similar to keratins (Section 1.2.1), Pi-integrin subunit expression may 

simply depend on wyc-regulated a-integrin expression for proteolytic stability, but they 

are included in the diagram to illustrate their post-transcriptional induction by BrdU.
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Figure 4.8: A full cascade incorporating findings to date in BrdU-treated epithelial 
lines. YYl is proposed as a possible master target for initiating the cascade. BrdU-induced 
activation of integrin expression is proposed to initiate eIF-4E phosphorylation (Blue lines). 
Activated eIF-4E results in altered isoform expression in c-Myc, and possibly YYl (Green 
Lines) establishing a “feedback communication” within the cascade. In addition, eIF-4E is 
proposed to relieve translational repression (the putative repressor of K8 synthesis is 
represented by the red triangle) or increase the translation of poorly competitive mRNAs. 
Induction of eIF-2a may be involved in the induction of eIF-4E. Induction of PKR during 
differentiation, however, may result in the phosphorylation of eIF-2a and the down­
regulation of global translation (Red lines), allowing eIF-4E to selectively increase the 
translation of poorly competitive mRNAs while global translation is controlled separately by 
eIF-2a.



4.2.6.1 The Cascade and how it works:

At first sight this cascade probably appears very complex. However, in comparison with 

the overall control of differentiation, this cascade more than likely represents a single, 

incomplete “branch” of a complex regulatory “tree”, very similar to the branching and 

interaction of the regulatory kinase cascades that control cell signalling (Figure 1.18; 

Section 1.6.4). Each of the factors involved in this cascade have already been introduced 

and their roles discussed. This section briefly summarises findings to highlight the 

intricacy of the proposed cascade and the individual and interactive contributions of each 

key factor (Figure 4.8; A-E).

(A) Yin-Yang 1 (Section 1.5.2.3):

1. Initiates and Regulates the cascade through its ability to both 

transcriptionally activate c-m y c  gene transcription and interact with the c-Myc 

protein (Section 4.2.5.1).

2. We suspect that YY1 may also influence eIF-4E levels directly, as well as via 

c-myc (Section 4.2.5.1).

(B) c-Myc (S ection 1.5.2.2):

1. The proposed target for YY1 initiation and regulation of this cascade (A. 1 

above).

2. The complex inter-relationship between M ycl isoform expression and elF- 

4E forms the basis of a differentiation-inducing feedback loop (Section

4.2.4.1.2).

3. Myc 1 expression is proposed to keep growth “in check” to allow elevated 

eIF-4E activity during early development without loss of growth control.

(C) eIF-4E (Section 1.6.3.2.4.3):

1. Selectively increases the translation of poorly competitive or repressed 

mRNAs involved in differentiation (Section 4.2.3.3.3).
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2. Selective translation of c-Myc 1 forms the basis of a “safeguard” against 

aberrant growth during periods of elevated eIF-4E activity (B.3 above).

(D) eIF-2a (Section 1.6.3.2.2):

1. We have provisional evidence that eIF-2a levels increase during BrdU- 

induced differentiation and suggest a role for this induction in allowing elF- 

4E to operate in inducing differentiation-related mRNAs without stimulating 

global translation (Section 4.2.4.1.3).

(E) Keratin 8/18 (Section 1.2 & 4.2.2):

1. We have provided additional evidence for the existence of translational 

control in the regulation simple keratin expression in poorly differentiated 

epithelial lines (Section 4.2.3.3.2).

2. Little is known about the regulation of K8 expression (Casanova et al, 1995). 

Based on our results we suggest that translation may be an important control 

point in the regulation of K8 expression, particularly in early development.

3. We propose a mechanism by which simple keratin synthesis is regulated at 

the level of translation in DLKP, dependent upon elevated eIF-4E 

availability (Section 4.2.3.3.3 & C.l above).

The events proposed in this cascade probably occur very rapidly, since strong induction 

of eEF-4E is observed within one day (Figure 3.2.2). Unfortunately determination of the 

exact timing and sequence of induction of YY1, c-Myc and eIF-4E to hours and minutes 

is difficult to achieve practically. The cascade rapidly becomes very complex as the three 

factors central to the overall induction of differentiation (YY1, c-myc and eIF-4E) 

display an intricate inter-regulatory relationship. YY1 is a transcriptional activator of c- 

myc gene transcription, while interaction between YY1 and the Myc protein 

downregulates the activity of both factors. c-Myc is a transcriptional activator of eIF-4E 

expression, while eIF-4E is the key determinant in Myc isoform expression.
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In addition, YY1, Myc and eIF-4E have all been predicted to exhibit a high degree of 

translational regulation and dependence upon elevated eIF-4E (Safrany and Perry, 1993; 

West et al, 1998; Lavoie et al, 1996, respectively), confirmed by changes in both YY1 

and c-Myc in eIF-4E overexpressing DLKP (Section 3.5.1). In eIF-4E overexpressing 

CHO cells, c-myc transcription was found to shift to the PI promoter, in addition to 

enhancing translation of c-myc mRNAs (DeBenedetti et al, 1994). Could this be due to 

the effect of eIF-4E overexpression on YY1 (Section 3.5.1.3)? YY1 regulates 

transcription from both the PI and P2 promoters of the c-myc gene (Riggs et al, 1991). 

As such, while changes in protein levels (the functional effectors of the gene) are very 

obvious in BrdU-treated cells, we have had some difficulty in demonstrating precise 

changes in mRNA levels for these factors. We suspect that BrdU initiates this cascade at 

the transcriptional level, but that the translational enhancement of the synthesis of these 

key regulators by eIF-4E may overshadow the contribution of transcription, particularly 

in DLKP, in which induction does not appear to be a universal phenomenon. However, 

the critical factor is the level of the functional protein within the cell, not the RNA, unless 

an antisense or ribozyme is involved. This is highlighted by the regulation of c-Jun 

expression (Figure 1.5; Section 1.5.2.1.1) and the finding that overexpression of eIF-4E 

can increase the levels of secretable vaso-permeability factor (VPF) 130-fold at the 

translational level (Kevil et al, 1996).

Might the failure to detect changes in keratin mRNAs be questioned? To induce such a 

strong protein expression either keratins are strongly transcriptionally induced, which 

would have been detected, or they show a high degree of translational dependence upon 

eEF-4E, as for complex mRNAs. Since the 5’ UTR of keratins is very short and 

uncomplicated (Section 3.3.4), there must be a factor bound to this region that simulates 

complexity (by impeding ribosomal progression under normal levels of eIF-4E 

expression). This would then act as a target for translational relief by eIF-4E, as 

suggested by our studies (Section 4.2.3.3.3).

Application of this model to other systems will test its validity and possibly explain some 

as yet unexplained results. For example, BrdU-treated human melanoma cells exhibited
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decreased Endothelin A receptor expression despite an increase in E T a  mRNA levels 

(Ohtani et al, 1997). This was attributed to a decrease in either receptor stability or 

translational efficiency. Levels of c-myc mRNA have been reported to decrease upon 

exposure to BrdU in human melanoma cells (Valyi-Nagy et al, 1993). Applying this to 

the model we have developed, a decrease in eIF-4E similar to that of HL60s could be 

predicted. mRNAs with complex 5' UTRs, such as many receptors, are particularly 

sensitive to eIF-4E levels and as such BrdU-mediated modulation of eIF-4E in these cells 

may explain this anomaly.

4.2.6.2 A potential “master-target” for BrdU .... YY1?

From Figure 4.8, YY1 may be considered as a “master target” for BrdU-activation and 

initiation of the differentiation cascade proposed. The ability of YY1 to interact with 

numerous other proteins (Section 1.5.2.3.2), influencing its activity as a repressor or 

activator of transcription, suggests that it may also serve to regulate and respond to 

additional cascades. Alternatively, this ability to interact with other proteins may imply 

that it is simply an important downstream target of other, as yet unidentified 

developmental proteins induced by BrdU. BrdU may directly influence the expression of 

a number of key developmental genes, and the YYl-based cascade proposed here is 

undoubtedly only one cascade of many induced by BrdU. These cascades more than 

likely “cross-talk” to influence one another, making elucidation of the exact molecular 

mechanisms by which BrdU operates very complex. As stated by Watt (1991), “The idea 

of a single master gene that encodes a transcription factor that binds to a common motif 

upstream of all genes that are activated during differentiation turns out to be an 

oversimplification”. Identification of key factors and tying-together of “cascades” such 

as those proposed here will enable more advanced models for lung differentiation to be 

developed.

The fact that transient transfection of YY1 (Section 3.5.2.3) induces K8 and c-Mycl 

expression in DLKP, showing elevated eIF-4E (the speculated effector for YY1 in this 

induction), only serves to enforce the idea that YY1 is a key factor/regulator of the
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proposed cascade. In addition, BrdU has been used in place of transfection of the YYl 

cDNA (Lee et al, 1992), further suggesting that YYl is a primary target for activation by 

BrdU. While suspected, however, we have as yet to provide conclusive evidence of a 

contribution from transcription to the regulation of these key factors.

4.2.6.3 BrdU and Cytotoxicity:

Due to the synthetic nature and mechanism of action of BrdU (substitution into DNA) the 

issue of cytotoxicity and selection has been raised (Alexander et al, 1992). This was 

answered, in part, by the fact that a toxic chemotherapeutic agent, Adriamycin, used at 

numerous concentrations cannot induce or select for keratin positive cells (McBride et al,

1999). Using a clonal neural crest stem cell line that exhibited remarkable similarity to 

our own poorly differentiated clonal lung cell line, DLKP, Ross et al (1995) were able to 

show that BrdU could induce differentiation but did not select for any one particular 

clone. DLKP contains SQ-, I-, and M-type subclones (McBride et al, 1998), all of which 

prove keratin negative and at least two of which can be induced to express keratins by 

BrdU (Section 3.1.3.5). BrdU has been described as an irreversible maturational inducer 

of a SCLC cell line (Kidson and DeHaan, 1990; Feyles et al, 1991), in agreement with 

our findings (Section 4.2.2). These findings suggest that BrdU is not acting via a 

selection process, and suggests that BrdU is a potent and perhaps irreversible inducer of 

differentiation, at least in these cells.

The most convincing experiment that BrdU does not select for reactive or pre­

differentiated cells was that of Rauth and Davidson (1993), Treating mouse melanoma 

cells with BrdU, and the two related analogues IdU (Iododeoxyuridine) and FdU 

(Flourodeoxuridine), the authors demonstrated an inhibition in cell growth of 60%, 78% 

and 96% respectively. When the authors correlated growth inhibition with Tyrosinase 

activity, both IdU and FdU are cytotoxic, since they inhibited cell growth and tyrosinase 

activity proportionally. However, BrdU was shown to inhibit tyrosinase activity 

significantly more than it inhibits cell growth, proving that BrdU is exerting its effects at 

a gene expression level and not at a cytotoxic level.
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4.3 The ERK Kinases and eIF-4E Phosphorylation in NSCLC:

Results in BrdU-treated epithelial cells (Section 3.2.6 & 4.2.3.1.3) suggested that in the 

lung cancer cell lines examined, ERK retains its ability to regulate its own activity (Cook 

et al, 1997). To further investigate this, serum starvation experiments were used to 

quickly assess the roles of various kinase pathways in the regulation of eIF-4E activity in 

these lung cancer cell lines (Section 3.6).

4.3.1 Serum stimulation studies in A549 NSCLC:

Interestingly, serum-starvation of DLKP proved to be difficult (data not shown). This 

may be due to the fact that DLKP is categorised as a very poorly differentiated NSCLC- 

NE/SCLC-V that grows quite aggressively. This, combined with the fact that DLKP 

grows quite happily in serum-free medium (SFM) (Meleady and Clynes, 1995), would 

seem to indicate that DLKP is capable of producing autocrine growth factors or harbours 

mutations which render intracellular pathways independent of extracellular signals.

On the other hand, serum starvation of A549 for 48 hours proved sufficient to achieve the 

desired de-phosphorylation of both ERK and eIF-4E. Initial results demonstrated that, 

upon withdrawal of serum, ERK becomes dephosphorylated in A549 cells (Figure 3.6.1). 

Even protein loading was shown by the use of anti-ERK antibodies, showing that the 

levels of ERK per lane are the same, while the decrease in phosphorylation was 

evidenced using phospho-specific antibodies (a kind gift of Dr. John Lyons). The 

rephosphorylation of ERK upon serum stimulation is paralleled by a concomitant 

rephosphorylation of eIF-4E (Figure 3.6.1), as assessed by iso-electric focusing (IEF).

When the re-phosphorylation profiles of both ERK and eIF-4E in serum-stimulated A549 

were examined (Figure 3.6.2) they appear “normal”, compared to other cell lines (Foschi 

et al, 1997). The ‘peak or spike’ in the phosphorylation profile is due to the 

“hyperphosphorylation” of kinases, caused by the sudden re-exposure of inactivated 

kinases to mitogens that stimulate their rephosphorylation. There is a peak in eIF-4E
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phosphorylation (30 min.), reflecting the ERK phosphorylation (15 min.) profile. This 

agrees with the theory that ERK is the major kinase of Mnk, the only know direct kinase 

of eIF-4E (Waskiewicz et al, 1997) to date. The slower return to “normal” levels of 

phosphorylation in eIF-4E probably reflect the sluggish activity of the eIF-4E 

phosphatase, suggested by DeBenedetti and Rhoads (1990).

In “normal” cells, ERK can regulate its own activity through the phosphorylation of SoS 

and the induction of MKP (Cook et al, 1997) (Figure 4.9). Phosphorylation of SoS (Son 

of Sevenless) results in dissociation of the SoS-Grb2 complex, breaking the signal 

emanating from surface receptors and downregulating ERK activity. MKP (MAP-Kinase 

Phosphatase) is a family of dual specificity phosphatases that dephosphorylate ERK1 and 

ERK2 (Cook et al, 1997). ERK is a downstream activation target of the Ras signalling 

molecule, which in turn is itself a target for activation by SoS (Figure 4.9). Theoretically, 

the dephosphorylation of Ras is not possible in A549, reported to harbour a K-12 

mutation (Mitsudomi et al, 1991) (Section 1.6.4), thereby “short-circuiting” the SoS- 

mediated autoregulation of ERK activity (Figure 4.9). Assuming the Ras mutational 

status of A549 reported by Mitsudomi et al (1991) is maintained in these cells, these 

studies confirm the presence SoS-independent autoregulation of ERK activity alluded to 

previously (Cook et al, 1997; Greulich and Erickson, 1998). Further analysis using 

“GST-Raffette” (a fragment of Raf interacting with Ras) may be required to ensure the 

Ras mutational status of the current stock of cells. Flowever, Ras mutated or not, the 

results of these phosphorylation studies confirm the autoregulatory capacity of ERK in 

the stock of A549 used for BrdU differentiation studies (Section 4.2).
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Figure 4.9: The autoregulatory capacity of ERK. Induction of ERK activity rapidly 
induces two mechanisms by which shuts down its own activation. (A) ERK 
phosphorylates SoS, resulting in its dissociation from the SoS/Grb-2 complex and 
breaking the signal cascade from the surface of the cell. (B) ERK activity induces the 
expression of MKP, a family of phosphatases the inactivate both ERK1 and ERK2.

4.3.2 Specific Kinase inhibitors in A549 serum studies:

Specific kinase inhibitors were used to investigate the roles o f various key kinases in the 

regulation of eIF-4E activity in A549 (Figure 4.10) (Section 2.12). Results of serum 

stimulation of A549 in the presence of specific kinase inhibitors are presented in section

3.6.3 (A-E).
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Growth Factors

Figure 4.10: Specific Kinase Inhibitors. Points at which inhibitors operate are 
illustrated by the red T-bars. Notably, Rapamycin inhibits the phosphorylation of 4E-BPs, 
enhancing their ability to associate with and inhibit eIF-4E. Therefore, the use of 
Rapamycin, unlike the other inhibitors mentioned, inhibits eIF-4E phosphorylation 
indirectly.
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The most significant inhibition of eIF-4E rephosphorylation upon re-stimulation with 

serum was achieved with PD98059, a direct inhibitor o f ERK activity. eIF-4E 

phosphorylation was also mildly affected by SB203580, which is a specific inhibitor of 

the stress-related p38 kinase. Both ERK and p38 regulate the activity of the eIF-4E 

kinase, Mnk (Waskiewicz et al, 1997). The contribution of the stress-related kinase, p38 

is not as significant as that of ERK, and results from both PD98059 and SB203580 

suggest that ERK is the major kinase of Mnk/eIF-4E in these cells. This may be the 

reason why ERK exhibits such a strong autoregulatory capacity, as it plays a critical role 

as a downstream regulator of mitogenic activation of both eIF-4E and a number of 

transcription factors (Frost et al, 1997; Sugden and Clerk, 1997). A lesser but significant 

inhibition of eIF-4E phosphorylation occurred in the presence of Wortmannin, a fungal 

P1-3K inhibitor that will interfere with PI-3K-Raf-mediated ERK activation, as well as 

the FRAP/mTOR-mediated phosphorylation of 4E-BPs. However, there was no 

inhibition by the FRAP/mTOR inhibitor, Rapamycin, suggesting that the effects observed 

using Wortmannin are probably due to its ability to interfere with PI-3K-mediated 

activation of the MEK/ERK pathway. It would appear unusual to say that eIF-4E 

phosphorylation was not noticeably affected by the inhibition of the 4E-BP-regulatory 

FRAP/mTOR pathway. However, it has been reported previously in a number of cell 

systems that eIF-4E phosphorylation was not prevented by rapamycin (citations within 

Fraser et al, 1999), suggesting that 4E-BPs may not play a major role in eIF-4E 

regulation in all cell types. Cumulatively, the results of these inhibitor studies suggest 

that ERK, p38 and PI-3K/PKC directly regulate eIF-4E activity in A549, but that the 4E- 

BPs are not involved.
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Retinoic Acid (RA) has been shown to regulate the differentiation of skin epithelial 

(Peehl et al, 1993) and lung cancer (Doyle et al, 1989) cell lines, and modulate the 

expression of keratins in RA-responsive cells at both transcriptional and post- 

transcriptional levels (Gilfix and Eckert, 1985; Tomic et al, 1990; Stellmach et al, 1991; 

Jing et al, 1996). Retinoic Acid is one of the Retinoids (Vitamin-A derivatives) that has 

been extensively used in clinical applications of “Differentiation Therapy” for the 

treatment of various cancers and has shown the most potential to date (Section 1.3.1). 

Vitamin-A deficiency has been associated with an increased risk of cancer development, 

while Vitamin-A deficiency-induced squamous cell characteristics in small cell 

carcinomas are reversed by the addition of Retinoic Acid to the medium (Terasaki et al, 

1987). The topical addition of RA has been shown to reduce papilloma formation 

(Tennenbaum et al, 1998). Both A549 and DLKP were exposed to all-trans Retinoic 

Acid in culture to assess their ability to respond to physiological differentiating agents.

4.4.1 Retinoic Acid induces differentiation in A549 but not in DLKP !!

As can be seen from the growth profiles, both cell lines exhibited significant growth 

inhibition (Figure 3.7.1) when exposed to 20pM Retinoic Acid. A549 cells grew in 

colonies exhibiting minimal cell-cell contact (Figure 3.7.2.1), similar to that reported for 

other RA-treated cell types (Kopan el al, 1987). Morphologically DLKP did not exhibit 

significant changes (Figure 3.7.2.2). The growth inhibitory effect observed in DLKP is 

more than likely due to a very different mechanism than that of A549 and is discussed 

later (Section 4.4.2.).

In A549, treatment with RA results in the downregulation of K18 protein expression 

(Figure 3.7.3.1.). This is in agreement with findings that RA downregulates K18 

transcript levels in the same cell line (Ledinko and Costantino, 1990). Surprisingly the 

partner filament protein of K18, K8 decreased over 24-48 hours before recovering and

4.4 Retinoic Acid and its effects on Epithelial Lung Cancer

Differentiation:
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even increasing in expression (Figure 3.7.3.1). Despite the continued decrease in K18 

protein, its partner, K8 was often elevated after 48-72 hours of RA treatment. There was 

no detectable change in transcript levels for K8 in the experiments presented here (Figure 

3.7.4). The initial decrease in K8 protein expression is probably a reflection of the 

proteolytic instability of K8 in the absence of its partner, K18 (Kulesh et al, 1989). The 

increase in K8 after 24-48 hrs would, therefore, seem to contradict the whole concept of 

keratin filament pairing and proteolytic stability. However, K8 is also capable of 

partnering K19 (Section 1.2). It has been shown that, under these conditions, A549 is 

induced to express K19 by Retinoic Acid (Meleady, unpublished data) (Section 4.4.2). 

With the induction of K19 expression, K8 can form new filaments and regain proteolytic 

stability. The pattern of keratin expression would therefore appear to reflect a switch in 

keratin partnering, and may explain the fact that no changes in transcript levels were 

observed for K8. It is thought that the majority, if not all keratin genes respond to 

Vitamin-A whether it be induction or repression. However, there is very little known 

about K8 gene regulation compared to its partner, K18 (Casanova et al, 1995).

On the other hand, the very poorly differentiated NSCLC-NE/SCLC-V cell line, DLKP 

showed no detectable induction of keratin expression (Figure 3.7.3.2). When 

immunoprecipitation of keratins was increased to 5x107 cells, the very low level of 

“leaky” keratin expression observed in this cell line was not altered in any way (Figure

3.7.3.2). Immunocytochemistry showed no detectable levels o f keratin expression in 

either treated or untreated cells (3.7.2.2.) (there is slight background staining, an artefact 

of film development). The results for both A549 and DLKP suggest that RA induces an 

alternative differentiation pathway to that observed using BrdU (Section 4.2). RA is 

known to induce AP-1 complexes (Pankov et al, 1994) (Section 1.5.2.1) that 

transcriptionally regulate simple keratin gene expression (Oshima et al, 1990). The RA- 

response probably does not overlap with the pathway proposed for BrdU-mediated 

differentiation. In agreement, one-off western blot analysis showed no significant 

changes in either c-Myc or eIF-4E expression (data not shown).

247



cRABPs (cellular Retinoic Acid Binding Proteins) (Section 1.3.1) have been shown to be 

involved in the regulation of cytoplasmic RA levels (Zou et al, 1994) and cRABPII levels 

are elevated during the differentiation of human skin (Eller et al, 1994). Unfortunately, 

cRABPI proved undetectable in both A549 and DLKP by western blot analysis. It is 

possible the effects are attributable to cRABPII, which appears to be more widespread in 

human squamous cell carcinomas (Eller et al, 1994; Zhou et al, 1994). However, an 

alternative explanation for the effects and differences observed between the two cell lines 

is proposed in section 4.4.2.

4.4.2 Retinoic Acid Receptor (RAR) expression:

Examination of the expression of two RARs, RAR-a and RAR-(3, yielded some 

interesting results. RAR-a was present in both cell lines (Figure 3.7.5.1), while RAR-p is 

expressed in A549 but appears to be absent or truncated in DLKP (Figure 3.7.5.2). The 

lack of RAR-P in DLKP may explain the inability of RA to modulate keratin gene 

expression in these cells. The modulation of keratins, and perhaps altered morphology 

and general differentiation induced by RA in A549 cells, may be largely attributable to 

the presence of RAR-P in these cells.

The retinoic acid receptors belong to a family of nuclear hormone receptors (Giguere et 

al, 1987; Petkovich et al, 1987). The RA-responsive receptors consist of two subfamilies, 

the Retinoic Acid Receptors (RARs) and the Retinoid X Receptors (RXRs), of which 

there are three family members, the a, P, and y forms of each. The receptors have been 

shown to mediate the RA response and influence the expression of several 

developmentally important genes, including keratins (Tomic et al, 1990) (Section

1.3.1.1). K19 is upregulated in K8/18 positive luminal epithelial cell lines, with a 

concomitant loss of K5/14 expression and the expression of RAR-P closely correlated 

with K19 mRNA levels (Ivanyi et al, 1993). Treatment of a pluripotent human germ cell 

tumour-derived cell line, NCCIT with RA resulted in the induction of both K8 and K19 

expression in these cells (Damjanov et al, 1993). Positive and negative recognition 

elements in these genes may explain the decrease in K18, while K19 levels increase
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under the same conditions. Modulation of K8 levels would then be attributable to a post- 

transcriptional proteolytic stabilisation of K8 as it switches partner.

The role of RARs in the control of differentiation and development has been shown using 

truncated RARs that can block differentiation and promote features of malignancy 

(Aneskievich and Fuchs, 1995) and overexpression of dominant-negative RARs could 

inhibit skin development in transgenic mice (Saltou et al, 1995). The RAR-P subtype of 

these receptors appears to be particularly important to the control of differentiation and 

development. The loss of RAR-P expression has been associated with aggressive, 

metastatic and poor clinical diagnosis of cancers. In-situ hybridisation studies have 

shown that approximately 58% of NSCLC have lost the expression of RAR-P, while 25% 

have lost RAR-y and 5% have lost RAR-a expression (Xu et al, 1997). Geradts et al 

(1993) showed that abnormalities in RAR-P expression are common in human lung 

cancer cell hnes, with 75% of SCLCs and approximately 50% of NSCLC failing to show 

RAR-P induction after treatment with RA. Loss or truncation of RAR-P in DLKP may 

help to explain its lack of response to RA as well as its characterisation as a very poorly 

differentiated, aggressive NSCLC-NE/SCLC-variant.

DLKP does, however, exhibit a growth inhibition in the presence of 20faM RA. Beyond a 

simple toxicity of RA, the presence of RAR-a may play a role in this response. Rat 

tracheobronchial epithelial cells that express RAR-a, RAR-y, and RXR-P (but lack RAR- 

P), were shown to be induced into growth arrest and apoptosis by retinoids via RAR-a- 

dependent pathways (Zhang et al, 1995). The response in DLKP may be a more simple 

RAR-a-mediated growth arrest or apoptotic induction without a true commitment to 

differentiation. Such tumours would be difficult to treat, but may be potential targets for 

combination therapies using drugs, such as BrdU at low levels, that may induce RAR-p 

expression in these cells, allowing subsequent treatment with RA. Such therapies, 

however, could only truly be designed once the differentiation of such cells is more 

clearly understood.
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Section 5.0 Conclusions and Future Work

This project began as an investigation into the mechanism by which the differentiating 

agent, BrdU is able to alter the differentiation status of epithelial lung cells. Results 

suggested a possible role for translation in regulating simple keratin filament 

formation, a rather unexpected mode of action for such a drug. Our results highlight 

novel roles for the small cap-binding translation initiation factor, eIF-4E in our in- 

vitro systems, with possible relevance for early lung development and lung 

carcinogenesis. In addition, we propose a differentiation-regulating cascade based 

upon the observed changes in the levels of both c-Myc and YY 1 transcription factors, 

which we suspect may be involved in the induction of eIF-4E-dependent 

differentiation mechanisms. We suspect that YYl is an initiator of this cascade, and 

may be a direct target for BrdU activation. The fact that this cascade appears to be 

downregulated in HL60 cells suggests that we may be looking at an epithelial-specific 

pathway.

The oncogenic properties of eIF-4E have been established (DeBenedetti and Rhoads, 

1990; Lazaris-Karatzis et al, 1990). However, we propose that one of the “natural” 

roles of eIF-4E is to regulate the translational efficiency of differentiation-related 

mRNAs during early development. Poorly expressed or repressed mRNAs are unable 

to efficiently compete for available eIF-4E. Increased availability of eIF-4E during 

early development may be one of the as yet unidentified developmental “signals” to 

begin translation of these mRNAs. It has been show that overexpression of eIF-4E can 

induce mesoderm formation in Xenopous laevis embryos (Klein and Melton, 1994), 

increasing expression of activin, known to be translationally repressed in these cells 

(Klein and Melton, 1995). Similarly, we provide strong evidence for the translational 

repression of simple keratin expression in the poorly differentiated, stem cell-like cell 

line, DLKP, and propose a model whereby increased expression of eIF-4E in this cell 

line can induce K8/18 proteins, an indication of simple epithelial differentiation. The 

majority of studies into the regulation of keratin filament formation during epithelial 

differentiation have focused on the transcriptional regulation of their expression. 

However, very little is known about the mechanism(s) by which they are regulated, 

particularly in poorly differentiated cell types. In addition, in comparison to its partner 

keratin, K18, the mechanisms regulating K8 expression are relatively unknown
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(Casanova et al, 1995). We suggest that translation may be a significant regulatory 

point in the expression of K8, and perhaps overall K8/18 filament formation, 

particularly in early development. Translation is now becoming more widely accepted 

as a critical regulator in the correct timing of developmental gene expression.

In both BrdU-treated and eIF-4E overexpressing epithelial cell lines, we have shown 

the induction of c-Mycl expression. The expression of this Myc isoform has been 

shown to be heavily dependent upon the availability of eIF-4E (Carter et al, 1999). 

We suggest that the induction of this growth-inhibitory form of the Myc protein may 

be a mechanism by which eIF-4E can prevent aberrant growth of cells during periods 

of elevated eIF-4E expression in the early stages of development. In agreement with 

this hypothesis, loss of c-Mycl expression due to mutation or translocation has been 

associated with numerous cancers (Saito et al, 1983; Hann et al, 1984; Hann et al, 

1995), commonly thought of as a disease of “abnormal differentiation” (Spom and 

Roberts, 1983).

We suspect that YY1 may be an important initiator of the cascade proposed to be 

activated by BrdU (Section 4.2.6). It is an important developmental regulator that has 

been shown to be a target for BrdU-induced transcriptional activation in myoblasts 

(Lee et al, 1992). Y Y l’s unusual nature and ability to alter its properties as an 

activator or repressor of transcription through interaction with other proteins may 

highlight YY1 as an extremely important “cross-talk” factor, allowing this cascade to 

respond to and influence the activity of other factors/cascades within individual cell 

types. This may form at least part of the basis of cell-specific differences during 

differentiation. Different cell types will have a different complement of transcription 

factors and as such will have different responses to and effects upon the activity of 

both YY1 and this cascade as a whole. In addition, there may be an autoregulatory 

mechanism within the cascade itself, through interaction between YY1 and c-Myc, 

controlling the activity of these factors themselves and the overall activity of this 

cascade. Such cascades, while complex in appearance, are probably a truer 

representation of the natural “communicating” regulatory pathways that control 

cellular processes such as differentiation than “single-step” models.
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BrdU ultimately acts at the transcriptional level. Its ability to increase the availability 

of eIF-4E and therefore the selective translation of complex, repressed and poorly 

competitive mRNAs is likely to be a major factor in its ability to influence the 

differentiation status of cells. Our studies suggest that BrdU may induce eIF-4E 

activity through changes in signalling activity during differentiation (altering 

phosphorylation levels of eIF-4E) and/or via small increases in transcription of the 

eIF-4E gene (via changes in c-myc expression, a regulator of eIF-4E transcription); a 

combination of both may strongly influence eIF-4E availability. The induction of c- 

Mycl expression is due to alternate translation initiation at an upstream codon, a 

process dependent upon eIF-4E availability, further confirming the increased activity 

of eIF-4E in BrdU-treated epithelial cells and highlighting the possibly 

underestimated importance of translation in the regulation of processes such as 

differentiation. Our results with eIF-4E overexpressing DLKP suggest that YY1 may 

also be subject to translational regulation of isoform expression in a manner similar to 

that shown for c-Myc. Such N-terminal extension of transcription factors by eIF-4E 

may be a means of altering the transcriptional capacity of the cell during periods of 

elevated eIF-4E activity.

It is difficult to directly compare the effects observed in DLKP and A549. While they 

are both epithelial lung cancer cell lines, they are also very different. DLKP is a 

poorly differentiated, NSCLC-NE/SCLC-V, while A549 has been categorised as a 

diffuse, glandular adenocarcinoma. The activation of the YY1 cascade in A549 may 

represent activation of a “dormant relic” of a cascade required for earlier 

development. Alternatively, its activation may drive A549 towards another 

differentiated state. Their differences are highlighted by their response to the 

physiological differentiating agent, Retinoic Acid (RA). While RA is capable of 

altering the differentiation status of A549, it appears to be unable to do so in DLKP. 

Our results suggest that the lack of expression, or expression of a truncated form of, 

RAR-P is a major factor in the failure of DLKP to respond RA, and may hold the key 

to the poorly differentiated nature of this cell line. The elevated levels of eIF-4E in 

DLKP may represent a developmental function of eIF-4E in poorly differentiated cell 

types, downregulated at later stages of differentiation, and may not be directly related 

to its “cancer state”.
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Future Work:

The work described in this thesis has identified a number of key factors and 

mechanisms that may be critical in the control of simple keratin filament formation in 

differentiating lung epithelial cells. Avenues that would be of value to further pursue 

are briefly outlined:

1) Examine mRNA levels and gene activity of eIF-4E, eIF-2a, YYl and c-myc using 

more advanced techniques (Nuclear Run-on/ Rnase protection) to determine the 

relative contribution of transcription to the regulation of the proposed cascade.

2) Examine the levels of c-Myc2 expression in BrdU-treated and eIF-4E 

overexpressing cells.

3) Transfection studies: Examine the individual effects of each of the key factors 

identified by this study on epithelial differentiation by cDNA overexpression 

studies: eIF-4E, YYl, eIF-2a and c-myc (distinguishing between c-Mycl and c- 

Myc 2 isoform expression) would be prime candidates for critical regulatory 

factors in this process.

4) Further develop in-vitro translation investigations to determine more exactly the 

specificity of translational repression in DLKP and possibly identify the nature of 

this repression.

5) DNA array technology may be a means of “mass-screening” for BrdU-activated 

genes, by comparing RNA extracts from BrdU-treated and untreated cells.

6) Immunocytochemical and in-situ hybridisation studies using tissue sections from 

early lung and cancer samples may be used to identify the in-vivo relevance of 

factors, such as eIF-4E, shown to be involved in differentiation in our in-vitro 

system.
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