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Abstract

Formal Semantics is a topic of major importance in the study of 
programming language design. Action semantics is a recently developed 
framework for the specification of formal semantics which allows 
understandable, modular and reusable semantic descriptions of 
programming languages. Action laws are algebraic properties of 
primitive actions and action combinators which can be used to prove the 
existence of semantic equivalence between pairs of constructs, 
expressions etc. of programming language.

This thesis endeavours to show how action semantics can be formalised 
computationally by reporting on the representation of the kernel of action 
notation in CAML. CAML is a functional language whose type systems 
allow the user to define his/her own data structures. It allows the 
definitions of functions manipulating these data structures with the 
security provided by strict type verification. The representation of the 
kernel in the specification language of the Coq development system is 
also outlined. The Coq system is an implementation of the Calculus of 
Inductive Constructions and provides goal-directed tactic-driven proof 
search. The proof engine of the Coq system is then used to prove various 
action laws.
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Introduction
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1.1 Introduction

Designers, implementors and serious users of languages need a complete and 

accurate understanding of the semantics (meaning) and the syntax (form) of 

every construct of the language they are working with [Tennent, 1991], There 

is a well developed and widely known mathematical theory of formal languages 

supporting accurate description of the syntax of languages. A rigorous 

mathematical theory of the semantics of programming languages is then needed 

to support correct description and implementation of their meanings, systematic 

development and verification of programs, analysis of existing programming 

languages and design of new languages. Formal descriptions are mathematical 

theories used to model and analyse the essential properties of programming 

languages and programs [Meyer, 1991], In this thesis, we propose to adopt 

action semantics as the specification type we use to formalise programming 

languages semantically. Action semantics blends formality with good pragmatic 

features and is one of the most comprehensible and accessible types of semantic 

specification. Action semantics uses semantic entities called "actions" where 

actions can either be primitive or composite. A composite action is formed by 

action combinators which combine two or more primitive actions. These 

primitive actions and combinators satisfy a series of algebraic properties i.e. 

action laws which can lead to the proof of the existence of semantic 

equivalences between pairs of constructs in a programming language. Our 

overall objective was to prove the truth of these algebraic properties. We 

proposed to do this by looking at the formal semantics of the action notation 

and, somehow, represent it in a form which allowed us to prove these 

properties. We chose the Coq development system as it is a proof assistant and 

it possesses its own specification language and therefore, was an ideal choice. 

However, we decided to, firstly, make the translation to CAML to increase our

2



familiarisation with action notation, the structural operational semantics of 

action notation and for debugging purposes. Figure 1.1 illustrates the different 

modules involved in this thesis. In this chapter, we give the advantages and 

disadvantages of using formal descriptions. We then go on to give an overview 

of the research underlying this thesis. Finally, the contents of the chapters are 

outlined.

Implementation of 
Action Semantics

in CAML
CAML

Implementation of Proving Action Laws
Action Semantics --------------- in Coq

in Coq Coq

Figure 1.1 Research Modules

1.2 Why Formal Descriptions ?

We now look at the reasons behind the use of formal descriptions for the 

specification of programming languages.

Formal descriptions are useful for several reasons:

• help in the understanding of languages

• support language standardisation

• provide guidelines for the design of languages

• aid in the writing of compilers and language systems

• support program verification and software reliability

• act as a model for software specification
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1.2.1 Help in Language Understanding

A formal specification provides insight that an informal approach would not, It 

is possible that an informal specification may leave many questions unanswered 

whereas formal specifications of various programming language issues e.g. data 

types, block structuring, recursion etc. provide powerful insights. Therefore, 

programmers that are familiar with formal specification techniques may have a 

deeper understanding of programming languages.

1.2.2 Support Language Standardisation

A problem faced by programmers is the one of portability i.e. programs are 

needed which will adapt with minimum difficulty to different environments. For 

portability, standardisation is needed. Standards are needed for hardware 

interfaces, programming languages etc. However, some languages (such as 

Fortran, C, Pascal, Ada) are not free from portability problems. This is due to 

the fact that a programming language involves a large amount of fine points 

which are difficult to cover satisfactorily in a document written in a natural 

language. Formal specifications can help to solve this problem i.e. mathematical 

techniques are particularly effective whenever circumstances dictate that 

precision and absence of ambiguity are required.

1.2.3 Guidelines for the Design of Languages

Proper design of programming languages is an important issue. The quality of 

the result of language design is mostly determined by the designer's talent and 

experience. As with any design discipline, certain general principles apply. 

Simplicity of specification is an important guideline i.e. concepts that are 

difficult to specify often turn out, once they are transposed to language features
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to be hard to implement. Although it is balanced with other requirements and 

there is no absolute criterion in language design, mathematical simplicity usually 

pays off.

1.2.4 Help in Writing Compilers and Language Systems

Formal descriptions provide a solid basis on which to design compilers, 

language systems (language systems refer to compilers with the tools that 

support the use of high level languages e.g. debuggers). The results of some of 

the formal language description methods e.g. denotational semantics may be 

understood as high level descriptions of abstract compilers for the languages 

studied.

1.2.5 Support for Program Verification and Software 

Reliability

Among the fundamental issues in software engineering are the issues of 

correctness and robustness of programs. Much time has been devoted by 

researchers to the development of techniques for proving programs' correctness. 

The idea is to associate with the program a mathematical transform and to use 

proof techniques to ensure that this transform achieves the program’s desired 

purpose.

Problems involved with proving the correctness of programs are:

• the purpose of each program or program element must be stated precisely

• the right type of mathematical theories must be developed to reason about 

programs and prove properties of their behaviour

• efficient tools are needed to support the detailed proof of a system
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Formal descriptions of programming languages are essential to achieve the 

second goal i.e. they provide the mathematical basis for reasoning for programs.

1.2.6 Models for Software Specification

Formal specifications of programming languages have an indirect but important 

bearing on software specification. The problem plays a fundamental role in 

program correctness - how can we describe the purpose of a software product 

precisely and unambiguously without overspecification. Formal descriptions are 

more concerned, in this context, with the specification of programming 

languages and not software systems. It transpires, however, that the methods 

used for the first of these goals gives powerful insights into the second goal. 

Many of the basic issues and techniques are the same.

1.3 Why Action Semantics ?

Having looked at the advantages of formal descriptions, we now look at the 

particular type of formal semantic specification which we propose to adopt 

during this thesis. An important question when considering this research was - 

why use action semantics for the specification of programming languages? As 

we know, action semantics is not the only framework available for giving the 

formal semantic description of programming languages. Why choose action 

semantics in preference to other types of formal semantics when considering the 

description of full-scale realistic languages? We should be aware that potential 

users of action semantics are likely to be reluctant to leave their current 

frameworks. We will consider the advantages of using action semantics in 

chapter 2 and will see this type of semantic description combines the strengths 

of informal descriptions i.e. readibility, understandability with formality.
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The development of action semantics originated from denotational semantics. 

Therefore, it is not surprising to observe many similarities between the two 

approaches along with many differences. For example, both approaches map 

abstract syntactic entities compositionally to semantic entities and semantic 

equations are used to defined semantic functions. The essential difference is 

concerned with the nature of semantic entities and how they are expressed. 

Denotational semantics uses higher order functions or so-called Scott domains 

and uses a rich, typed ^-notation to express particular functions together with 

the values on which the functions are defined [Mosses, 1992], When specifying 

the usual constructs of programming languages, the functions required tend to 

be rather complex. This is due to the fact that the basic operations on functions 

provided by ^.-notation e.g. application, abstraction do not correspond directly 

to the basic concepts of programming languages. Purely functional 

representation can make it difficult to read semantic equations and hard to 

understand the operational implications. The serious pragmatic problems lie in 

poor modifiability and extensibility. It is possible to reduce some of the 

pragmatic problems of denotational semantics by using auxiliary functions 

representing action primitives and combinators hence defining the interpretation 

of action notation as higher order functions.

With structural operational semantics, which was developed for use in 

describing programming languages by Plotkin [Plotkin, 1981] [Plotkin, 1983], 

transitions are specified in a structural way keeping track of control implicitly. 

The transitions for a compound phrase depends on the transitions appropriate 

for its subphrases giving a compositional flavour to structural operational 

semantics specification. As we know, in [Mosses, 1992] (Appendix C), the 

definition of action notation is based on a structural operational semantics 

(SOS). The pragmatic properties of SOS are acceptable but the modifiability
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and extensibility of SOS descriptions are better than for denotational semantics 

but not as good as action semantics.

Looking at some of the applications of action semantics and various tools, we 

see that a complete formal description of the dynamic semantics of Standard 

Pascal [Mosses & Watt, 1986] exists. Also, the ANDF-FS [Nielsen & Toft, 

1994] is the first example of the use of action semantics in industry. The 

ANDF-FS is being actively used for reference in the construction of an 

interpreter for ANDF-FS. The various parties working on this project have 

very little background in formal semantics, yet they found the document to be 

quite accessible. The ASD tools can be used for parsing, syntax-directed 

editing, checking and the interpretation of action semantics specifications. 

These tools are implemented using the ASF and SDF system [Klint, 1991] 

which is based on the Centaur system. David A. Watt's group at the University 

of Glasgow has developed prototype tools for interpreting action notation for 

compiling it into 'C'. Also, some work has been carried out by David A. Watt in 

[Watt, 1986] where he defines a method for executing action semantic 

descriptions. In his approach, actions are defined as higher order functions in 

Standard ML. Also, in [Moura, 1992], Hermano Moura describes an action 

notation interpreter (AN1) giving the meaning of program specifications in 

action semantics. This interpreter was also implemented in SML. The 

interpretation using ANI gives an output consisting of a triple representing 

transients, bindings and storage produced by an action.

1.4 Implementation of Action Semantics

Having decided on the type of formal semantic specification, our next step was 

to find an environment which allowed us to prove the truth of the action laws as 

discussed in section 1.1. As outlined before, we chose the Coq development
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system for these proofs but decided to firstly make the translation to CAML. 

The first question we should probably ask is why make the translation to CAML 

i.e. why make an intermediate translation at all? The reasons are rather basic 

and concern the achievement of a better understanding of action notation before 

looking at Coq, the implementation of action semantics executable 

specifications. Also, it is fundamental to understand the structural operational 

semantics of action notation as we found that, on first reading, that the 

document was rather difficult to follow initially and not suitable for direct 

implementation. Through the use of the functional language, CAML, it was 

possible to trace various action semantics specifications through the structural 

operational semantics i.e. observe the application of the various semantic 

functions and obtain interpretations for these specifications. This was not 

possible with Coq. For example, the use of lists to hold values for bindings and 

storage greatly aided the tracing procedures. These were subsequently replaced 

by functions in Coq. Therefore, it was possible to take the formal description to 

a different level where implementation could take place hence leading to 

executable semantic descriptions. The initial effort in attempting to completely 

understand the SOS through the use of CAML was required for correct 

representation in Coq. Coq is the environment which provides both a 

specification language and a proof assistant which would enable us to go about 

proving the various algebraic properties of actions. We should note that, in 

[Mosses, 1992] (Appendix C), the definition of observational and testing 

equivalence on actions relates the SOS of action notation to the algebraic 

properties as laid down in [Mosses, 1992] (Appendix B). We were also 

particularly interested in the program extraction facilities provided by Coq with 

respect to further work (which will be discussed in a later section).
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1.5 Limitations of Formal Descriptions

As well as the advantages of formal descriptions, there are also disadvantages. 

The argument against the use of formal specifications is their difficulty - it is 

said that they are hard to learn, write, read. Significant advances have been 

made over the past years making formal descriptions more understandable and 

usable. However, it is still the case that in order to create formal descriptions, a 

certain level of mathematical ability with substantial effort is required. A second 

argument that existed against formal descriptions was that they were only used 

for toy examples and not for full size realistic languages. This argument has 

since disappeared since the appearance of complete descriptions of languages 

such as Algol 60, Pascal, PL/1, Ada.

1.6 Previous Work

Much work has been carried out in the area of action semantics. An example of 

this work is the type inference system for action semantics implemented in 

object-oriented Pascal by Tony Jakobsen. Christian Lynbech (University of 

Aarhus) has implemented action semantics in Scheme. However, the system is 

only capable of evaluating simple expressions from simple specifications. The 

Actress [Brown et al., 1990] subset of action notation has already been 

implemented in Sictus-Prolog by Stephan Diehl (University of Saarbrticken). 

This implementation consists of two parts - one part using semantic equations to 

translate abstract syntax of a source program into an action and the second part 

interpreting the action. The "Actress" system is an action semantics directed 

compiler generator developed by Deryck F. Brown, Hermano Moura and David 

A. Watt [Brown et al., 1990], It consists of a number of modules in SML that 

can be composed to construct either an action notation compiler or a simple 

compiler generator. An action interpreter (ANI) has been implemented in SML
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by Hermano Moura (University of Glasgow) [Moura, 1992], The initial 

inspiration to guide the implementation came from the structural operational 

semantics in [Mosses, 1992] (Appendix C). ANI gives a clear picture of the 

behaviour of actions. It can be used in conjunction with the "actioneer 

generator" (developed at the University of Glasgow) to obtain an interpreter 

for a language from its action semantic description. Refer to [Moura, 1992] for 

a complete action semantic description of a small language and how this 

language can be used with ANI and the actioneer generator to generate an 

interpreter. Looking at Coq, Jill Seaman and Amy Felty have used the Coq 

development system to prove properties of the operational semantics of a lazy 

functional language [Seaman & Felty, 1993],

1.7 Outline of Chapters

In this thesis, we focus on the research which was carried out which consisted 

of three parts. The first part dealt with the implementation of the structural 

operational semantics (SOS) of action notation in CAML. The second part 

concerned the implementation of the SOS in the specification language of the 

Coq development system. Finally, we looked at the proof of some action laws 

using the proof assistant in Coq. This work is divided into appropriate chapters 

as described below. In chapter 2, we focus on the different types of formal 

semantics and in particular, action semantics. Chapter 3 takes a look at the 

formal description of the kernel of action notation while chapter 4 illustrates the 

translation of this formal description to CAML. In chapter 5, we look at the 

Coq development system and observe the conversion into the specification 

language of the Coq system. We also see, in this chapter, the proofs of the 

various action laws using the Coq proof assistant. Chapter 6 is responsible for 

illustrating our conclusions and further work.
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CHAPTER 2

Semantics

12



2.1 Introduction

We previously saw that to specify a programming language totally, the syntax 

and semantics of that language needed to be described. To describe syntax, all 

symbols that can appear in programs are enumerated and grouped to indicate 

how phrases are formed. To describe semantics, the behaviour of the language 

must be specified. There are several different ways of doing this each with a 

distinctive type of semantic specification. This chapter deals with formal 

semantics and introduces three different types of approach to the semantic 

formalisation of programming languages. It also introduces a fourth type which 

is the kind of semantic description with which we are particularly interested. 

Illustrations of the different types of semantics can be found in [Watt, 1991] and 

[Pagan, 1981],

2.2 Operational/Natural Semantics

The meaning of a construct of a language is specified by the computation it 

induces when executed on a machine, refer to [Hennessy, 1990], It is of interest 

how the effect of a computation is produced.

An operational explanation of the meaning of a construct will tell us how to 

execute it;

• To execute a sequence of statements separated by , the individual 

statements are executed one after the other.

• To execute a statement consisting of a variable followed by a and 

another variable, determine the value of the second variable and assign it to 

the first variable.

13



Looking at Figure 2.1, the execution of the three assignment statements can be 

recorded starting in a state where x  has the value 5, y  has the value 7 and z has 

the value 0 by following the derivation sequence illustrated in Figure 2.1.

{z\=x\  x:= y; y:= z, [x  t-> 5, y  i-» 7 ,z  0]^
=> (x\ = y\ y:= z, [x i-> 5, y  7, z h-> 5])
=> (7:= z, [x i-» 7, y  i-» 7, z i-> 5])
=> [x l-> 7, y  (-» 5, z h-> 5]

Figure 2.1 Example of operational semantics

The above figure is an explanation giving an abstraction of how the program is 

executed. Details of registers and machine addresses are ignored. The above 

figure illustrates the different states before and after execution of the assignment 

statements where the states are enclosed in square brackets. For example, after 

execution of the first assignment statement i.e where z is assigned the value of x, 

the state arrived at consists of x  having the value 5, y  having the value 7 and z 

having the value 5. °

An alternative operational semantics is natural semantics which hides even more 

execution details. Using the example of the three assignment statements in 

Figure 2.1, the execution using the same initial state is described in Figure 2.2.
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(z:= x ,s0) - ^ s 1 (x:= y, sx) -> s2

(z:=x; x := y ,s0) -> s2 (y.= z, s2) -> s3 

(z:=x; x = y; y := z ,s0)^> s3

where s0 =[jci-»5)>'(->7,zi->o] 
s, = [x t-> 5,y 1-4 1,21-> 5] 
s2 =[xh> l,y  1-4 1,2 1-4 5] 
s3 = [x i-» 7 ,y i-» 5,21—> 5]

Figure 2.2 Example of natural semantics 

Figure 2.2 can be read as follows:

if the execution of z:=x in state s0 will result in state sl} the execution of x.=y in 

state 5, will result in state s2, then the execution of^y^z in state s2 will result in 

s3. We see that the four states as illustrated in Figure 2 .1 are numbered and we

can also observe that it is possible to say that after execution of the initial two 

assignment statements starting in state s0, we arrive at state s2. Also, after 

execution of the three assignment statements starting in state s0, state s2 is 

reached.

2.3 Axiomatic Semantics

The axiomatic approach is by far the most abstract of all the semantic definition 

methods considered so far, refer to [Meyer, 1991], The principles behind it 

indicate that the semantics of a programming language may be considered to be 

sufficiently defined if the specifications allow true statements to be proven about 

the effect of executing a program or program section. The specifications are 

similar to the axioms and rules of inference of a logical calculus. They prescribe 

a minimal set of constraints that any implementation of the subject language

15



must satisfy. The most useful application of axiomatic semantics is in the 

construction of proofs that programs possess various properties.

There is no standard meta-notation for axiomatic semantics but notational 

conventions have been adopted by different authors e.g. using logical operators 

(a , v , -i,=>, s ,= ) , quantifiers (3,v) and logical constants (true, false). The 

purpose of forming a logical expression in this context is usually to make an 

assertion about the values of one/more program variables or relationships 

between values.

Consider a program is partially correct if with respect to a pre- and post

condition, whenever the initial state satisfies the precondition and the program 

terminates, then the final state is guaranteed to fulfil the postcondition. Now, 

consider the example in Figure 2.3.

{x = n A y  = m} z\=x; x:=y y:=z {y = n / \ x  = m} 
where {x = n a  y  = m} is the pre-condition 
and {y = n a  x = m) is the post-condition.

Figure 2.3 Example of axiomatic semantics

The state [x I—> 5,y  i-> 7,z h-> 0] satisfies the pre-condition by taking n = 5, m =

7 and when the partial correctness property has been proven, it can be deduced

that if the program terminates, it will do so in a state where j.' = 5, x = 7.

2.4 Denotational Semantics

Here the effect of executing programs is concentrated on and this can be 

modelled by mathematical functions, refer to [Schmidt, 1986], Denotational
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semantics was developed in the early 70's by Strachey and Scott. In 

denotational semantics, a meaning is assigned not only to a complete program 

but also to every phrase in a programming language i.e. every command, 

expression, declaration etc. [Watt, 1991], The meaning of every phrase is also 

defined in terms of the meaning of its subphrases so a structure is imposed on 

the semantics. The meaning of a phrase is referred to as its denotation. 

Programming language semantics are specified by functions that map phrases to 

their denotations.

Consider a simple example with denotational semantics used to specify the 

assignment statement in an imperative language, refer to [Schmidt, 1986], The 

semantic algebras are illustrated in Figure 2.4.

I ................

II. Identifiers
Domain i <ald = Identifier

III. Natural Numbers 
Domain n <=Nat = N

IV. Store 
Domain s e  Store = Id  —> Nat 
Operations 
newstore.Store 
new store = Xi.zero 

accessed Store ~^Nat 
access = A i.As.s(i) 

update :Id —»Nat —> Store Store
update = A,i.An.As.\i\-^ri\s

Figure 2.4 Semantic Algebras
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Figure 2.4 presents the semantic algebras necessary for the assignment 

statement in the imperative language. The ‘Store’ domain denotes a mapping 

from the language’s identifiers to their values. The operations on the store 

include an operation for accessing the store and also an operation for updating 

the store. The abstract syntax and the appropriate valuation functions are given 

in Figures 2.5 and 2.6 respectively.

Abstract syntax:

C e  Command
E e  Expression

I e  Identifier
N e  Numeral

C::=C,;C, I ........... 11:=E | ........

E::=..........I l l .........

Figure 2.5 Abstract Syntax
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Valuation functions:

C. Command —» Store1 -> Store
a c i;c2] = u a c 2|(c|c1|»)

CfI:=E] = Xs.updateimElEl^s

E: Expression Store —> Nat

E[I] = X^.acc&ssflls 
E[N] = A-S'.N|N]

N: Numeral —» Nat (omitted)

Figure 2.6 Valuation Functions

The purpose of a command is to produce a new store from an old store 

provided as an argument. However, the command may not terminate its actions 

on the store i.e. it may loop ( not shown in Figure 2.6). Therefore, 

nontermination is a possible outcome. So, in the valuation function ‘C’, the 

store is lifted. On the other hand, the ‘E ’ valuation function needs a store 

argument but does not alter the store in any way. Looking at the clause in the 

‘C’ function dealing with assignment, the identifier I in the current store is 

mapped to the evaluation of the expression E, hence producing the new store.

We now consider the assignment statement - Z:=l. The denotation of this 

command is given in Figure 2.7,
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CflZ:=l ̂ e w  store

= ( Xs. update\Z\\Si 1 Js)s)newstore

= update\ Z \(E[\ltiewstore)newslore

= updatelZ]\(Nl 1 \)ne w store

= update\Z\ one newstore

= [[Z]h->

Figure 2.7 Denotation of Z:=l

2.5 Action Semantics

Action semantics, [Mosses, 1992][Watt, 1991], was developed in an attempt to 

make semantic specifications more intelligible. They are written in an English- 

like notation that can be easily understood. In action semantics, each program 

is viewed as an action. Action semantics provides a particular notation for 

expressing actions. The symbols of action notation are suggestive words which 

makes it possible to get a broad impression of an action semantic description, on 

first reading. Because other formal semantic specifications specify concepts like 

control flow, storage and bindings indirectly, specifications tend to be hard to 

understood and the larger the specification, the more incomprehensible it 

becomes. This makes the use of action semantic specifications more attractive. 

Also, action semantic specifications are modular allowing easy modification and 

they can be reused in specifications of other related languages. Applications 

include the specification of a variety of imperative and functional languages 

including the semantics of the programming languages Pascal and ML .
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The action combinators e.g. or, and, then, are a notable feature of action 

notation and obey algebraic laws that can be used for reasoning about semantic 

equivalence.

2.5.1 Basic Concepts

Usually, programmers are accustomed to thinking of a program in terms of the 

steps (or actions) that will be performed when the program is executed on a 

computer. For example, if we consider a command made up of two consecutive 

commands - C l ; C2, it is executed by first executing C l and then executing C2. 

If we impose a structure on this using the emphatic brackets from denotational 

semantics, the clause can be formalised as follows:

executefC l; C2\ = execute C l and then execute C2

The action execute C l is the action of executing the command Cl. The action 

combinator 'and then' tells us that the commands should be performed in 

sequence. The above is a simple example of action notation. It is clear to see 

that the notation is designed to be convenient and easy to understand. It should 

be noted that because the action notation has been formally specified, a 

programming language specification using action notation is entirely formal.

An action is an entity that can be performed using data passed to it from other 

actions [Watt, 1991], An action can either complete (terminate normally), 

escape (terminate abnormally), fail or diverge (not terminate). An action's 

outcome can also depend on the data that is passed to it. An action can use 

transient data passed to it by other actions and it can supply data if it completes. 

The performance of an action can use or produce bindings which are identifier- 

datum associations. An action can also manipulate storage. Actions can also be 

associated with different facets which will be described in a later section. In 

action notation, a number of action primitives, action combinators and data
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operations are provided. An action primitive represents a single step in the 

computation. Action combinators combine one or more subactions into a 

composite actions. It also dictates the flow of control and flow of data between

subactions.

2.5.2 Facets

When performed, actions process information gradually. The different types of 

information give rise to a set of facets where each facet deals with a particular 

type of information. The main facets are :

• basic: processing independently of information

• functional: processing transient information

• declarative: processing scoped information

• imperative: processing stable information

We deal with the above facets only since they provide an adequate basis for the 

specification of programming languages. However, there are many other facets 

e.g. reflective, communicative.

There are three kinds of semantic entity used in action semantics

• actions

• yielders

• data

The main kind, of course, is actions while yielders and data are considered as 

subsidiary semantic entities. The notation in action semantics for specifying 

actions and the subsidiaiy entities is referred to as action notation. In action 

notation, there are a number of actions, yielders and data associated with each 

facet. The standard action notation can be reduced to a kernel as in [Mosses,
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1992] (the reduction is purely for technical reasons i.e. it reduces the number of 

constructs to be considered in the formal specification of action notation).

2.5.3 Semantic Entities

Actions are essentially computational entities. Performance of an action 

represents information processing behaviour and reflects the stepwise nature of 

computation. Actions represent the semantics of programs i.e. they represent 

possible program behaviour. An action can be nondeterministic with different 

possible performances for the same initial information i.e. transient information, 

scoped information and stable information. Transient information is used by an 

action immediately. Scoped information can usually be referred to throughout 

an entire action although it may be hidden temporarily. Stable information can 

be changed but not hidden in the action, it persists until destroyed. When an 

action is performed, transient information is given only on complete or escape. 

Scoped information is produced only on completion. Changes to stable 

information made during the performance of an action are unaffected by 

subsequent divergence, failure or escape.

Yielders are unevaluated items of data whose value depends on the current 

information i.e. the currently available data, bindings and storage. Yielders can 

be evaluated during action performance. Compound yielders can be formed by 

the application of data operations to yielders. An example is when the sum of 

two yielders is formed.

Data items are mathematical entities representing pieces of information. Data 

includes familiar mathematical entities such as truth values, numbers, maps, lists 

etc. Data can also include cells and tokens.
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The action notation showing the actions and yielders appropriate to each facet 

with an indication of whether that action/yielder is part of the kernel of action 

notation is illustrated in Tables 2.1 - 2.8

Action Kernel Informal Meaning

complete Y Terminates normally.

escape Y Terminates abnormally.

fail Y Fails immediately.

diverge Y Nontermination.

unfold Y Dummy action used with unfolding.
unfolding A Y Performs A iteratively. The action unfold is 

replaced by A whenever it is encountered.
Ax or A^ Y Performs either A] or A2. If the chosen 

subaction i.e. AX,A^ fails, the other subaction is 

chosen.
Aj and A^ Y Performs At and A2 collaterally. Bindings given 

by A],A2 are merged.

A, and then A2 Y A, and A2 are performed sequentially. 
Otherwise, it behaves like ' Ax and A2.

Aj trap A2 Y Ax is performed. If Al escapes, perform A2 .

Table 2.1 Basic Facet - actions

Yielder Kernel Informal Meaning

the d  yielded by

y

Y If d  is a sort of data and y  is a yielder, when y  
yields an individual, it yields that individual 
provided it's in the sort, otherwise it yields 
nothing

data-operation
Oi....y»)

After evaluation of yielders y } y n, the data 

operation is applied to the yielded data.

Table 2.2 Basic Facet - yielders
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Action Kernel Informal Meaning

give y Y Gives the data yielded by j;

escape with y Escapes with the data yielded byy

regive Gives anv given data
choose y Y Gives one datum of the sort yielded by y
checky Where y  is atruth-value yielder, this represents 

a guard checking that the truth value yielded by 
y is true.

Ai then A2 Y A1 and A2 are performed sequentially. 
Transients from are passed onto ̂

Table 2.3 Functional Facet - actions

Yielder Kernel Informal Meaning

given d A data yielder which yields the transient data 
given to its evaluation provided the data is of 
s o r tJ

given d#p Where d  is a sort of datum and p  is a positive 
integer, it yields the pt\\ component of the 
transient data given to its evaluation provided 
the datum is of sort d

it A datum yielder that yields a single datum 
given to its evaluation

them Y A data yielder which yields all the data given to 
its evaluation as transients

Table 2.4 Functional Facet - yielders
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Action Kernel Informal Meaning

bind T  to Y Y Where T is a token and Y  is a yielder of 
bindable data, it produces the bindings of the 
token T to the bindable data

unbind T Y Where T  is a token, it produces the bindings of 
the token T  to the datum 'unknown'

rebind Produces all the received bindings

produce Y Y Produces the bindings yielded by Y
furthermore A Y Represents propagating the received bindings 

but letting bindings produced by A take 
precedence when there is conflict

Ax moreover Y Like ' Ax and AJ but gives priority to bindings 
produced by A2

Ax hence A2 Y Ax and A^ are performed sequentially. Bindings 
produced by A, are passed to A2.

A, before A2 Y A, and A2 are performed sequentially. A2 

receives initial bindings overlaid by bindings 
produced by Ax.

Table 2.5 Declarative Facet - actions

Yielder Kernel Informal Meaning

current bindings Y Yields the collection of bindings received by 
the evaluation

the Abound to T Yields the data of sort d  to which T is bound by 
the received bindings

Yx receiving Y2 Y Where Y2 is a yielder of bindings maps, it 
represents evaluation of Yx using bindings 
yielded by Y2

Table 2.6 Declarative Facet - yielders
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Action Kernel Informal Meaning
store Y1 in Y2 Y Stores the storable yielded by Yx in the cell 

yielded by Y2

unstore Y Y Represents destroying a piece of stable 
information where Y is a yielder of a cell.

reserve Y Y Extends stable information with an extra 
uninitialised piece where 7  is a yielder of a cell.

unreserve Y Y Represents the destruction of stable 
information where Y is a yielder of a cell.

Table 2.7 Imperative Facet - actions

Yielder Kernel Informal Meaning

current storage Y Yields the current state of storage

the d  stored in Y Yields the data of sort d  stored in the cell 

yielded by Y according to current storage

Table 2.8 Imperative Facet - yielders

2.5.4 Action Semantic Descriptions

A semantic description comprises three main parts

• abstract syntax

• semantic functions/equations

• semantic entities

2.5.4.1 Abstract Syntax

Generally, formal context-free grammars augmented with some form of regular 

expressions are used to specify concrete syntax. A formal grammar is made up 

of a set of production rules, which are made up of terminal and non-terminal 

symbols. The terminal symbols can be characters or strings. We can adapt
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these formal grammars to represent abstract syntax as in [Mosses, 1992], I f  we 

take an example, we can illustrate this formal notation. Consider a simple 

language which includes an assignment statement. The abstract syntax is shown 

in Figure 2.8.

Abstract Syntax:

grammar:

(1) Statement = [Identifier “:=“ Expression]

1 II Statement Statement],

(2) Identifier = [letter (letter | digit)* ].

(3) Expression = Numeral.

(4) Numeral = [digit + ].

Figure 2.8 Abstract Syntax

The module in Figure 2.8 is made up of a set of numbered equations. Terminal 

symbols are written as strings of characters in quotes. Nonterminal symbols are 

not enclosed in quotes e.g. Expression. There are usually a number of 

alternatives for each nonterminal which are separated by ' | '. Some equations 

involve a type of regular expression e.g. an optional repeatable part R* and an 

obligatoiy repeatable part R +. One other point to note is that we can say that 

the nonterminal symbol 'Statement' is recursive both to the left and right.

2.5.4.2 Semantic Functions

In action semantics, semantic functions are specified with semantic equations. 

Each equation defines the semantics of a particular type of phrase in terms of 

the semantics of its components. The equation may use constants and
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operations for constructing semantic entities. A set o f semantic equations can 

be considered as an inductive definition mapping syntactic entities to semantic 

entities. So, it is basically a translation from programming language syntax to 

notation for semantic entities. Programmers may regard semantic equations as a 

definition of mutually recursive functions by cases. Let us consider the semantic 

functions/equations of our simple language in Figure 2.9. We can see that the 

semantic function takes a single, syntactic argument and gives a semantic entity. 

The placeholder in each semantic function indicates where the argument is 

placed. In Figure 2.9, the functionality of each semantic function is given e.g. 

the semantic function 'evaluate' indicates that when performed, it may give a 

value. The right hand sides of the semantic equations are expressed in the 

standard notation for actions and data given by action semantics. It should be 

noted that the notation is completely formal despite the fact that it possible to 

read it informally. Each semantic equation defines how a particular semantic 

function is applied to any abstract syntax tree with a root node whose form is 

one of the syntactic constructs. It does this by applying semantic functions to 

the branches of the node. For example, if we consider equation 1 in the 

semantic equations, it defines the application of the semantic function 'execute' 

to nodes with three branches, where the first branch is the identifier 7, the 

second branch is and the third is an expression E.
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introduces: execute , evaluate _ ,  the value of _ .

• execute :: Statement —» action
[completing | storing]

(1) execute! /Identifier " :=" ^Expression ]=

(give the cell bound to I  and evaluate E)
then store the given number#2 in the given cell# 1.

(2) executed .S',: Statement S2: Statement^
execute and then execute S2.

• evaluate _ :: Expression —» action
[giving a value]

(3) evaluate[jY:Numeral]=

give the value of N.

• the value of :: Numeral —> value

(4) the value of id : digit+J =

d.

Figure 2.9 Semantic Functions/Equations

2.5.4.3 Semantic Entities

To complete the semantic description, the notation used in the semantic

equations for specifying semantic entities has to be specified. The standard

action notation already includes all the notation required for specifying actions. 

It includes notation for action primitives and combinators. Each action 

primitive is associated with one facet i.e. one kind of information flow whereas 

each combinator deals with different types of information flow. The notation
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possesses enough action primitives and combinators to express most common 

patterns of information processing in a straightforward manner. It also has a 

basic notation for data e.g. truth-values, lists etc. The semantic entities required 

for our simple example are illustrated in Figure 2.10. We must bear in mind, 

however, that our example is rather unlikely since it assumes that identifiers are 

already bound to cells in storage. Obviously, we cannot assign a value to an 

identifier that does not exist.

token = string of (letter,(letter | digit)*) 

value = number | truth-value 

number < integer 

cell = number

Figure 2.10 Semantic Entities 

We must bear in mind, however, that our example is rather unlikely since it 

assumes that identifiers are already bound to cells in storage. Obviously, we 

cannot assign a value to an identifier that does not exist.

2.5.5 Action Laws

The primitive actions and action combinators satisfy a series of algebraic laws. 

It may then be possible to prove semantic equivalences exist between programs, 

commands, expressions etc. using these laws. This is done by showing their 

denotations i.e. their resulting actions are equivalent. A sample of these laws is 

given in Figure 2.11

31



(1) check true = complete

(2) check false = fail

(3) complete and then A = A and then complete = A

(4) escape and then A = escape

(5) escape trap A = A  trap escape = A

(6) complete trap A =  complete

(V) fail trap A = fail

00 fail or A = A  or fail = A

(9) Aj or A2 =  A, or Ax

Figure 2.11 Action Laws

2.6 Summary

In this chapter, we looked at the different types of formal semantics. We related 

the reasons for choosing action semantics over the other types of semantics e.g, 

its English-like notation, its comprehensibility. As we were particularly 

interested in action semantics, we took a closer look at the standard action 

notation. We then showed the component parts of an action semantic 

specification. Finally, a subset of the algebraic properties of the primitive 

actions and combinators was observed.
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CHAPTER 3

Formal Description of Action Notation
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3.1 Introduction

This chapter looks at the translation from standard action notation to the kernel 

of action notation. It then observes the formal description of the kernel and 

finally illustrates, using an example, that the formal description is indeed a true 

representation of the kernel.

3.2 Translation to the Kernel

We know that it is possible to reduce the standard action notation to a kernel. 

Examples of kernel actions and yielders have been given in Tables 2.1 - 2.8 in 

section 2.5.3. The algebraic properties of action notation given in [Mosses, 

1992] (Appendix B) are sufficient to make that translation to the kernel. If we 

consider our previous example in section 2.5.4, it is possible using the algebraic 

properties outlined in [Mosses, 1992] (Appendix B) to translate the action 

notation of the assignment statement to the kernel. Note, however, that we 

assume the identifier I  is already bound to a cell in storage. To illustrate this 

translation, refer to Figure 3.1. We should note that we have made appropriate 

substitutions for identifier /  and Expression E  .
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(i) execute!"/" identifier "2":Expression] =

(give the cell bound to “/ ’ and evaluate “2”) 
then store the given number#2 in the given cell# 1.

(ii) execute!"/" identifier "2":Expression] =

(give the cell bound to “7” and give 2)
then store the given number#2 in the given cell# 1.

(by equations (3), (4))

(iii) execute!"/"identifier "2".Expression] =

(give the cell yielded by
current bindings at the token yielded by 

and give 2) 
then store the number yielded by

component#2 of them in the cell yielded by 
component# 1 of them 

(by algebraic properties laid down in [Mosses, Appendix B]

Figure 3.1 Translation to the kernel - assignment statement

3.3 Formal Description of the Kernel

If we consider that the standard action notation and the kernel are languages in 

their own right, it must be possible to provide a semantic description of these 

languages too. This has been illustrated by Peter Mosses in [Mosses, 1992] 

(Appendix C) which gives the complete formal description of the kernel using 

structural operational semantics. As we know, it is possible to translate the 

standard action notation to the kernel and therefore, the formal description 

written down is sufficient to describe standard action notation. The structural 

operational semantics (SOS) in [Mosses, 1992] (Appendix C) is written using 

an algebraic specification framework. The idea behind the specification is to use
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a transition function to map individual configurations to arbitrary sorts1 of 

configurations hence coping with nondeterminism of actions. Also, the result 

can be a single configuration when the transition from a particular configuration 

is deterministic. As well as this, the configuration may be blocked and this may 

be represented by the vacuous sort “nothing”. Note that the kernel is 

syntactically of moderate size which is illustrated by its grammar.

3.3.1 Abstract Syntax

The grammar specifies the abstract syntax of the kernel while the algebraic laws 

in [Mosses, 1992] (Appendix B) give the remaining notation for actions and 

yielders in terms of the kernel notation. The abstract syntax for data has been 

left open to allow the user of action notation to add extra notation. A section of 

the abstract syntax is shown in Figure 3 .2,

grammar:
• Action = Simple-Action | ...... | [[Action Action-Infix Action] .
• Simple-Action = Constant-Action | [Simple-Prefix Yielder] |

[To-Prefix Yielder "to" Yielder]|....

• Simple-Prefix = "give" | .....
.  To-Prefix = "bind" | .....
.  Action-Infix = "or" | "and" | "and then" | "then" | .......

Figure 3.2 Abstract Syntax of the kernel

3.3.2 Semantic Entities

The semantic entities in the operational semantics are made up of some syntactic 

components which indicate what remains to be performed. This is quite distinct

1 A  sort classifies the ind iv idua l values o f a universe according to some common attributes
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from action semantic descriptions. The specification of the semantic entities use 

standard data notation for maps etc. They also use data sorts like data and 

bindings. Note that data and bindings have been specified in [Mosses, 1992] 

(Appendix B). There are two main kinds of semantic entity - actings and states, 

described below.

3.3.2.1 Actings

An Acting is a generalisation of an action. The acting supports the 

representation of the state of an action i.e. an acting can either be terminated or 

intermediate. An acting which is intermediate contains information about the 

remaining actions to be executed. An acting which is terminated holds details 

about the type of termination i.e. escaped, failed or completed. An acting can 

exist as an action with associated data, bindings or both. The action 

combinators (or action infixes as they are called here) are classified into three 

categories - sequencing, interleaving and normal. This is purely for 

convenience. The specification for actings are given in Figure 3.3.

grammar:
• Acting = Terminated | Intermediate.
• Terminated = Completed | Escaped | Failed.
• Completed = ( "completed" data bindings }.

• Intermediate = Simple-Action | ..... | [Acting Action-Infix Acting]|
( Action data ) | ( Action bindings ) | ( Action data bindings )

Figure 3.3 Actings
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3.3.2.2 States

A state represents a point in performance of an action. It consists of an acting 

and local information. Local information corresponds to the current stable 

information (storage). The transient data and bindings are incorporated in the 

acting component of the state. Therefore, a state can also be represented as an 

action, transient data and bindings and local information. The type of acting 

involved in the state dictates the type of state. The definitions of the semantic 

entity "state" and the subsidiary entities - local info and info - are given in Figure 

3.4.

introduces: state, local-info, info.
(1) state = (Acting, local-info).
(2) local-info = (storage).
(3) info = (data, bindings, local-info).

Figure 3.4 States

3.3.3 Semantic Functions

The semantic functions are categorised by actions, yielders and data.

3.3.3.1 Actions

The main semantic functions are called "run" and "stepped". The function "run" 

is responsible for taking an intermediate state and advancing it to a terminated 

state using successive applications o f the function "stepped" as seen later. The 

semantic function is give by:

• run _ :: state -> (Terminated, local-info)
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where "Terminated" relates to the type of acting involved in the state arrived at 

after "run" is applied.

The semantic function "stepped", when applied, gives the sort of states obtained 

from performing the first transition from an intermediate state. Both the above 

functions are not defined on terminated states. The function type is illustrated

• stepped _  :: state —> state 

The definition of the function “run” is given in Figure 3.5.

(1) stepped (A,/) > ( A ':Intermediate, Z'.local-info); 
run (A ’, / ’)>  (A":Terminated, I" :local-info) => 
run (A:Acting, /:local-info) > (A ", /").

(2) stepped (A,I) > (A' :Terminated, /':local-info) => 
run (A:Acting, /:local-info) > (A', /').

Figure 3.5 Definition of semantic function "run"

In figure 3.5, we can explain (1) by saying that if we advance the state (A, J) by 

one transition to a state (A ',/' ) and apply "run" to advance this state to the 

terminated state (A", I”), it is the same as applying "run" to the state (A, I) to 

give the terminated state (A", /").

(2) says that if it only takes one transition using "stepped" to reach a terminated 

state, then it is the same as applying "run" to the original state to reach that 

terminated state.

Take an example of a state containing a composite acting - Al "then" A2 "then" 

A3 where A}, A2, A3 are primitive. If we apply "run" to this state, it will
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essentially involve applying "stepped" three times to advance this state to a 

terminated state. Therefore, the number of primitive actions denotes the 

number of times "stepped" will be applied to advance to a terminated state.

The function "simplified" , see [Mosses, 1992] (Appendix C, C.3.3.2.2), is only 

applied to an intermediate compound acting in the form - 1 Ax Action-Infix A2] 

where the intermediate component of Action-Infix A2 [] is the acting part of 

the result of applying “stepped”. The function is responsible for simplifying a 

composite acting. For example, take a composite acting - (A l:Completed "and" 

A2:Completed). An application of "simplified" would convert this composite 

acting to a simple acting - (A:Completed) where the tupled data from Ax, A1 

and the disjoint union of bindings from Ax and A2 are associated with the acting 

A. The function's type is given by:

• simplified _ :: Acting —» Acting

The functions "given" and "received", see [Mosses, 1992] (Appendix C, 

C.3.3.2.4, C.3.3.2.5), are responsible for the flow of data and bindings into 

actions. The behaviour of these functions is governed by the various action 

combinators. If we take for example the application of "given" to (A ,d) where 

A is an acting and d  is data, the function would freeze the initial transient data 

given to A. Similarly for the application of "received" to (A,b) where A is an 

acting and b is bindings, the function would freeze the initial bindings given to 

A. The functions'types are given as:

• given _ :: (Acting, data)—> Acting

• received _ :: (Acting, bindings) —» Acting

The application of the "unfolded" function , see [Mosses, 1992] (Appendix C, 

C.3.3.2.3), to (A, ["unfolding" A] ) is used to replace occurrences of "unfold" in 

A with ["unfolding" A j before performing A. So, we can say that performing
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["unfolding" “unfold”] takes infinitely many steps. Note that the prefix 

"unfolding" would only be associated with the definition of loops in 

programming languages. The function "unfolded" is given by:

• unfolded _ :: (Action, Action) —> Action

3.3.3.2 Yielders

The semantic function used with yielders is called "evaluated". It is given by

• evaluated _ :: (Yielder, Info) —> data

As we have already seen, a yielder is an unevaluated item of data and therefore, 

"evaluated" is responsible for converting that yielder to data. The evaluation 

may depend on the current information available i.e. data, bindings and storage.

3.3.3.3 Data

The semantic function "entity" is merely an identity function. It is given as

• entity _ :: Data —> data

So, for any data term d  with abstract syntax D, (entity D) = d.

3.4 Illustration using the SOS

To demonstrate how the operational semantics is a true formal representation of 

action notation, we take out previous example of an assignment statement 

through the necessary steps. As the operational semantics represents only the 

kernel of action notation, we start with the translated version of the declaration 

as shown in Figure 3.6.

41



Figure 3.6 Kernel action notation of an assignment statement

execute H"I" identifier "2" Expression] =

(give the cell yielded by
current bindings at the token yielded by 

“I” and give 2) 
then store the number yielded by

component#2 of them in the cell yielded by 
component#! of them.

Note the substitution of "I" for the identifier /  and the numeral “2” for the 

expression E. The transformation will be illustrated in detail in Appendix A. A 

introduction to these steps will be given below.

1. The initial intermediate compound state looks as follows:

(((action 1, b) “then” (action 2, b)), I)

where action 1 is 

(give the cell yielded by

current bindings at the token yielded by “I” 

and give 2) 

and action 2 is

(store the number yielded by component #2 of them

in the cell yielded by component #1 of them)

and b consists of the binding of “I” to cell 1 (see Appendix A)

and / is empty.

2. We then apply the semantic function “run” to the above state which 

tells us to apply “stepped” to the same state, see [Mosses, 1992] 

(Appendix C, C.3.3) and check if the resulting state is terminated or 

intermediate. As the state in step 1 is compound, we apply “stepped” 

for compound states, see [Mosses, 1992] (Appendix C, 3.3.2.1. (5)).
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This instance of “stepped” tells us to firstly apply “stepped” to 

((action 1, b),l).

3 As the state ((action 1, b),l) is also a compound state, we must apply 

“stepped” for compound states, as before. If we break action 1 into its 

constituent actions and label these actions - action la and action lb, 

they would look as follows: 

action la  - (give the cell yielded by

current bindings at the token yielded by “I”) 

and action lb - (give 2).

The function “stepped” tells us to then apply “stepped” to action la.

As we can see, compound actions are breaking down into their 

constituent primitive actions. When we apply “stepped” to a state 

consisting of a primitive action, the result is a terminated state. For the 

above example, three applications of “run” is required to reach a 

terminated state for our initial compound state i.e. one application of 

“run” for each primitive action. Note that after two applications of 

“run”, we still arrive at an intermediate state. All the steps involved in 

advancing our initial compound state to a terminated state are detailed 

in Appendix A.

3.5 Action Laws with the SOS

We have introduced in chapter 2 the notion of action laws. Here, we will look 

at one of these algebraic properties in conjunction with the SOS. We should 

note that the primitive actions and action combinators were designed to satisfy 

these algebraic properties. We can use these laws to apply equational reasoning 

to actions and we already know, this can lead to proofs of semantic equivalence 

between equivalent actions. If we take the basic action law, 

unfolding fail = fail
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we can prove that both actions are equivalent by taking them through the 

necessary steps as dictated by the SOS.

Firstly, we must convert the above action law to the representation required by 

the SOS, therefore we must convert the action "unfolding fail" to an acting. 

The appropriate acting is the acting - "("unfolding" "fail" d  b,l)" where d  refers 

to transient data, b refers to bindings and I is local info, all collectively known as 

info. We then translate "fail" to the acting - "("fail" d  b,l)". So, the theorem to 

be proved looks as follows:

("unfolding" "fail" d b  ,t) = ("fail" db,l)

If we apply the function "run" to the left hand side, we see that we then apply 

"stepped" as dictated by "run" which gives

(given (received (unfolded ("fail", ["unfolding" "fail"] ,b),d),l))

Applying the function "unfolded", firstly, gives the following result:

"fail"

The overall result after applying "received" and "given" is as follows:

("fail" d  b,l)

We can now see that after applying one instance of "stepped" to the left hand 

side, the two sides of the equation are identical. If we look again at "run", it 

tells us that if we have applied "stepped" once and this has resulted in an 

intermediate state, then reapply "run". Since this is the appropriate case, it 

means that we must reapply "run" to 

("fail" db,l)

We know that we must also apply "run" to the right hand side and therefore, 

this proves the action law "unfolding""fail" = "fail" by the SOS.
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3.6 Summary

In this chapter, we have taken a look at the structural operational semantics of 

the kernel of action notation. We have also observed the translation from 

standard action notation to the kernel. A verification of the correctness of the 

SOS was given by taking an example i.e. a constant declaration and bringing it 

through the operational semantics to check its correctness. Finally, we looked 

again at action laws in conjunction with the SOS and illustrated a proof of an 

action law using the SOS.
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CHAPTER 4

Implementation of Action Notation in CAML
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4.1 Introduction

We have seen in the previous chapter that it is possible to formally represent 

action notation in the SOS [Mosses, 1992] (Appendix C). We then looked at 

formalising action notation computationally. It was sensible to consider using a 

functional language so the semantic functions could be represented 

appropriately. Also, it is a fact that in a functional language, functions and 

values are treated as mathematical items obeying well-established mathematical 

rules and are therefore, suited to formal reasoning [Myers et al., 1993], It was 

decided that the functional language CAML would be ideal for these purposes. 

The following chapter gives a description of functional languages with CAML 

and the conversion process with its associated difficulties.

4.2 Functional Languages and CAML

The following sections discuss functional languages in general and then CAML 

as a functional language.

4.2.1 Functional Languages

Programming languages are said to be functional if their basic component is the 

notion of the "function" and their essential control structure is the "function 

application". The Lisp language can be referred to as a functional language as it 

possesses these two properties. However, we want the programming notion of 

function to be as close as possible to the mathematical notion of function.

In mathematics, we would present the successor function as: 

successor: N —» N

n I—> n +  1
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We also note the importance of:

• The notion of a "type". A mathematical function always has a domain and 

co-domain. They correspond to the notion of "type".

• Lexical binding. When we wrote "successor", we assume that the addition 

function "+" has been previously defined.

• The notion of "function abstraction". The name "successor" represents the 

functional value mapping any natural number n to n+1.

ML dialects adhere to the above notions. However, they do allow non

functional styles and so, are not purely functional. ML dialects, see [Myers et 

al., 1993] [Mauny, 1991], are based on a sugared version of lambda calculus. 

The evaluation regime is call-by-value i.e. the argument is evaluated before it is 

passed to the function and they use Milner's2 type system. Since 1984, the 

CAML language has been under design between INRIA and LIENS3. The first 

release appeared in 1987 and the main implementors were Svarez, Weis and 

Mauny.

4.2.2 CAML

CAML is a powerful programming language that is easy to learn, easy to use 

and yet amazingly powerful, see [Mauny, 1991], The features of CAML are as 

follows:

• Types: It is statically type checked but there is no need to give type 

information in programs (as in Ada, Pascal and C).

2M ilne r proposed the language M L in  1978.
3Laboratoire d'lnform atique de 1'Ecole Normale Superieure.
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• Functions: There are no restrictions in the definition and usage of functions. 

They can be passed as arguments or returned as values.

• Automatic memory management and incremental garbage collection: CAML 

features automatic memory management i.e. allocation and deallocation of 

data structures is kept implicit and is handled by the run-time system. This 

means that programs are much safer and spurious memory corruptions can 

never occur. The memory manager works in parallel with the application so 

there is no noticeable stop of the CAML program when the garbage 

collector is running.

• Imperative: Full implementation capabilities including updatable

arrays, imperative variables etc.

• Modules: Batch compilation or separate compilation via a module system. 

The CAML Light compiler generates object programs that are small and 

portable.

• Interactivity: Interactive top-level 'read-eval-print' loop which is good

for debugging and learning i.e. there is no need for files or printouts to get 

results.

• Error recovery: There is a general exception mechanism to handle or

recover from errors or exceptional situations.

• Polymorphism: CAML features polymorphic typing. Functions and

procedures can be applied to any kind of data regardless of type.

• Evaluation regime: CAML is a strict language but first order 

functions allow the manipulation of delayed expressions.

• Powerful libraries: There are lots of libraries available including portable 

graphics and various interfaces with well-known technology.

• Applications: CAML is used for complex systems e.g. theorem provers

and compilers e.g. CAML Light compiler, Coq theorem prover.
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Also, just to note that CAML allows the user to define his/her own data 

structures and also allows the manipulation of these data structures with the 

security provided by strict type verification.

4.3 CAML Representation of Action Notation

We firstly note again that only syntactic entities, semantic entities and semantic 

functions associated with the basic, functional, declarative and imperative facets 

were represented in CAML. We also aimed to preserve the structure as in the 

operational semantics [Mosses, 1992] (Appendix C). Refer to the Appendix 

for the mappings from the SOS into CAML.

The structure defined was as follows:

• Most syntactic and semantic entities were defined as new types.

• The following semantic functions were defined

run, stepped, given, received, unfolded, evaluated, entity.

• Auxiliary functions were defined e.g.

overlay (to overlay bindings), access (to access bindings / access storage), 

alter (to alter storage) for use in the semantic equations.

• The various collections of action combinators were defined i.e. Normal, 

Sequencing and Interleaving.

The structure of the syntax, semantic entities and semantic functions will be 

observed below.
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4.3.1 Syntax

Some examples of the CAML definition of the syntactic entities with the SOS 

explanation, see [Mosses, 1992] (Appendix C, section C.1.2), are given in 

Figures 4.1, 4.2.

type Yielder = Data Con of Data 
(* Data-Constant *)

| Unary op of (un op * Yielder)
(* Data-Unary *)
Binary op of (b inop * Yielder * Yielder)
(* Data-Binary *)

| Selected of (Yielder * Yielder * Yielder)
(*"if' Yielder "then" Yielder "else" Yielder *) 

| Yieldjby of (Data * Yielder)
(* "the" Data "yielded by" Yielder)

| Received of (Yielder * Yielder)
(* Yielder "receiving" Yielder *)

| them
(* "them" *) 
current_bindings 
(* "current bindings" *) 
current_storage 
(* "current storage" *)

| At of (Yielder * Yielder)
| Comp of (int * Yielder)

Next cell;;

Figure 4.1 CAML definition of Yielders

Figure 4.1 gives the definition of yielders. We should note that the types 

“un op” and “bin op” have been previously defined. If we compare this 

definition to the SOS, it can be seen that three additional yielders have been
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defined. This will be discussed in a section 4.4.2. The yielder is referred to as a 

syntactic entity. However, Data as defined in Figure 4.2 is referred to as a 

syntactic and semantic entity.

and Data = incell of cell (* cell *)
inval of val (* value *)

| intoken of token (* token / identifier *)
inbool of bool (* boolean *)
inBind of Bindings (* bindings *)

| inStore of Store (* storage *)
| Err (* “nothing” (SOS) *)

D atalist of Data list (* list of data *)
| bbool (* domain of boolean *)
| vval (* domain of value *)
| ccell (* domain of cell *)
| ttoken;; (* domain of token *)

Figure 4.2 CAML definition of Data

Note in Figure 4.2, the existence of “Err” in the definition. This corresponds to 

the "nothing" data type in the structural operational semantics. Note also that 

we have specified a number of data components as a list. This corresponds to 

the tupling of data in the operational semantics e.g. in the "simplified" function.

4.3.2 Semantic Entities

The definition of the semantic entity "Acting" is given in Figure 4.3. Also, the 

subsidiary entities are given in Figure 4.4.
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type Acting =
Stopped of Terminated 
(* Terminated *)

| Inter of Intermediate
(* Intermediate *) 

and Terminated =
Compl of (Data * Bindings)
(* (“completed” data bindings > *)

| Escape of Data
(* (“escaped” data) *)

| failed
(* “failed” *) 

and Intermediate =
APA of (ActionPrefix * Acting)
(* [ Action-Prefix Acting ] *)

| AIA of (Acting * Actionlnfix * Acting)
(* [ Acting Action-Infix Acting ] *)

| Adb of (Action * opdb)
(* ( Action data bindings ) *)

| AbA of (Acting * Action _Infix * Acting *
Bindings)
(* [ Acting (“before” | “then before”) Acting bindings] *)

and opdb =
nojdb 

| is_d ofData
| is_b of Bindings
1 is _db of (Data * Bindings) ;;

Figure 4.3 Definition of Acting

In Figure 4.3, we can see that some of the hierarchy for the definition of 

"Acting" has been eliminated. Also, we have reduced the size of the definition
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of "Intermediate" by introducing the new data type "opdb". This allows us to 

define once only the following instances of "Intermediate":

• ( Action data >

• < Action bindings )

• < Action data bindings ) (SOS [1, Appendix C])

type cell = = int 
and val = = int 
and token = = string ;;

type
and Bindings = = (token * Data) list 
and Store = = (cell * Data) lis t;;

Figure 4.4 Definition of subsidiary entities

In Figure 4.4, we represent cells as integers and values are restricted to integer 

values. Also, tokens are strings of characters. Bindings are represented as a list 

of token, Data tuples and Storage is represented as a list of cell, Data tuples. 

Lists were used to facilitate debugging.

4.3.3 Semantic Functions

The semantic functions that have been defined in the CAML representation are 

illustrated in Figure 4.5. We now illustrate the differences between the 

definition of semantic functions in the SOS and our definition in CAML with the 

examples in Figure 4.6, 4.7, 4.8. In Figure 4.6, it can be seen that the CAML 

version does not deal with subsorts i.e. x > y  shows that the value of the term y  

is a subsort of that of the term x. We should emphasis, at this point, that the 

CAML implementation is deterministic and does not deal with the
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nondeterminism of actions. If we consider Figure 4.6, the idea behind the 

definition of the function “run” is that an individual configuration s (or state) is 

mapped to another configuration. However, besides the determinism of actions 

illustrated in the representation, the CAML representation remains faithful to 

the SOS.

entity: Data —> Data
evaluated: Yielder —> opdb —> Local_info —> Data
unfolded: Action —> Action —» Action
given: Acting —> Data —> Acting
received: Acting —> Bindings -> Acting
simplified: Acting —> Acting
run: State —> State
stepped: State —> State

Figure 4.5 Semantic functions defined in CAML

operational semantics: (1) stepped {A,I) > (A ̂ Intermediate, /'.local-info);
run (A',/') > (A": Terminated, /":local-info) => 
run(v4:Acting, /:local-info) > (A",I").

(2) stepped (A,I) > (A ': Terminated, /':local-info) => 
run(v4: Acting, /:local-info) > (A',/').

CAML: let rec run ((A: Acting),(/:Local_info)) = 
(match stepped(v4,/) with

(Inter (/), I') —> run(Inter (z), /')
| (Stopped (t), I0 (Stopped (0, I J ) ;;

Figure 4.6 SOS and CAML versions of the "run" function
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Figure 4.7 illustrates how "stepped" is applied to a primitive action. In the 

CAML version, we check to see what kind of Acting A is. If the action 

involved is a constant action, the function "step_basic" is invoked. We then test 

the kind of the constant action and apply the appropriate instance. Note that in 

Figure 4.7, in the CAML version of the function "stepped", ca is of type 

"Constant_Action" and in f is of type "opdb". Also, the function "get_data" is 

responsible for extracting data from inf, if data exists. Note that “Err” 

corresponds to the error value for data or the “nothing” data type in the SOS. 

Finally, observe the exception handler provided by CAML for dealing with 

errors. In Figure 4.8, the CAML version of "stepped" checks the kind of 

Acting in question. If it is a compound Acting, the function "step_infix" is 

called. The kind of Actings involved are checked. If  the composite Acting is of 

kind "Intermediate Sequencing Intermediate", then we apply the function 

"simplified" with the newly stepped A l,
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Operational semantics:
(1) stepped ("complete", d:data, ^bindings, /:local-info) = 

("completed", ( ) , empty-map, I ).
(2) stepped ("escape", d.data, &:bindings, /:local-info) = 

("escaped", d, I ).
(3) stepped ("fail", d\data, Z>:bindings, /:local-info) = 

("failed", I).
(4) stepped ("unfold", J:data, bindings, /:local-info) = 

nothing.

CAML:

and stepped^,/) = 
match A with

Inter (Adb (Body (ConsAction {ca)), inf)) —» (step_basic ca in f I)

and step basic (ca.Constant_Action) (m/:opdb) (/:Local_info) = 
(match ca with

complete —> (Stopped (Compl (Err, [ ] ) ) , / )
| escape —> (Stopped (Escape (get data inf)), I)
| fail —> (Stopped (failed), 1)

unfold —> raise failure "Cannot step 'unfold'")

Figure 4.7 SOS and CAML versions of "stepped" applied to primitive 

actions
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Operational Semantics:
stepped(A, I) > ( 4 ': Acting, /':local-info);
M, O AJ: [Intermediate Sequencing Intermediate] => 
stepped ([4 O A2 |,/:local-info) > (simplified M / O A2\  /')

CAML:

and stepped(/4,/) = 
match A with

| Inter (AIA (Al, O, A2)) —> (step_infix A l O A 2 t)

and step_infix (/4/: Acting) (<9:Action_Infix) (^2: Acting) (/:Local_info) = 
(match A1,A2 with

(Inter (/), (Inter (/')) —> 
let (Al', I') = stepped (A 1,1) in 

if (Sequencing O) then 
(simplified (Inter (AIA (AT, O, A2))), I')

Figure 4.8 Operational Semantics and CAML version of "stepped" (2)

4.4 Issues with Implementation

During the conversion to CAML, some difficulties and problems were 

encountered. Various compromises had to be made to give a complete 

representation. These problems and compromises are shown below.

4.4.1 Yielders

Looking at the yielders available, we found that yielders could not be 

represented properly without the definition of an "At" function corresponding 

to the “At” data operation which takes a map, depending on the current
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information, an element and returns the range. The “At” data operation is used 

as a look-up for bindings and storage. Consider the following compound 

yielder (assuming it is a component part of an overall program) 

the cell yielded by

current bindings at

the token yielded by “I”

To evaluate this yielder, we could introduce an “At” auxiliary function. 

However, each time the function is invoked, we must provide the current 

information i.e. the current transient data, bindings and storage. As it is not 

possible to provide this information dynamically (as the program executes) and 

it is only possible to provide the current information initially, the interpretation 

of the whole program would be incorrect. Therefore, we found it was necessary 

to introduce an extra yielder referred to as the “At” yielder as the evaluation of 

a yielder always has access to the current information. The yielder in CAML 

looks as follows:

which is translated into CAML as 

Y ieldby (ccell,

At (currentbindings, Yield by (ttoken, Data Con (intoken “/ ’))))

Also, a “Component” yielder was required which would extract individual items 

from a Data list.

4.4.2 Error values and Exceptions

A value was required corresponding to the “nothing” data type, see [Mosses,

1992] (Appendix C, C.3.3.1) which allows the enclosing action to fail. For 

debugging purposes, exception handling was also needed. This was due to the 

fact that most semantic functions were partial. These exceptions would be
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expected to provide suitable error messages. So, the value “Err” was added to 

the definition of Data. CAML also provided a facility for exception handling.

4.4.3 Inconsistency

An inconsistency was encountered in the SOS in the application of stepped to 

the state

(["unfolding" ^.’Action 1, d.data, 6:bindings, /:local-info).

After application, the following state was returned

(given (received (unfolded (A, ["unfolding" A ]), b), d), I)

We must note that the type of the semantic functions for "unfolded" and 

"received" are

• unfolded _ :: (Action, Action) —> Action

• received _ :: (Acting, bindings) -»  Acting

We see that the application of "unfolded" to the actions - A,["unfolding" A] 

returns an action, say ac. So, the application of "received" to (ac,b) cannot take 

place.

In our CAML representation, the function "stepped" calls a function 

"step unfold" for this particular kind of state. This function, in turn, invokes 

the function "act_out" which converts the action after application of "unfolded" 

to an appropriate Acting. Appropriate calls to "given" and "received" take 

place. The function "stepped", "step unfold" and "act out" are illustrated in 

Figure 4.9
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and stepped (A, I) = 
match A with

(Inter (Adb (PreAction (unfolding, a) inf)) —»
(step unfold a in f I)

and step_unfold (a: Action) (;'«/:opdb) (/:Local_info) =
let (ac: Action) = (unfolded (a, (Pre Action (unfolding, a)))) in
(match in f with

no_db —> ((ac tou t ac), I)
| is_d(t/) —» (given (act_out ac, d), I)
I is_b(6) —> (received (act_out ac, b), I)

is db (d,b) (given (received (act out ac, b), d), I))

and act out (A \ Action) =
(match A with

Body (so) —> Inter (Adb (Body (sa), no_db))
Pre Action (ap,a) —> Inter (Adb (Pre_Action (ap,a), no db)) 
In_Action(a7, ai, a 2 ) ^  Inter(AIA((act_out al),ai,(act_out a2))))

Figure 4.9 The CAML functions "stepped", "step unfold" and "act_out"

4.4.4 Additions to "simplified"

There was no instance of "simplified" to deal with:

Mi O A2 U: [Completed Interleaving Intermediate]

So, "simplified" was updated with an instance dealing with 

Mi O A2]\: [Completed Interleaving Intermediate] 

to avoid a failure in pattern matching. This instance returned the Acting 

provided to "simplified".
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4.4.5 Storage Yielder

There was no yielder to return the next available cell in storage. If we consider 

the "choose a cell" simple action, a "Next cell" yielder was defined to facilitate 

this. We must note again that our implementation is deterministic and therefore, 

the above yielder will have an individual outcome.

4.4.6 Additions to ’’stepped"

There was no instance of "stepped" dealing with the Intermediate Acting 

[Acting ("before"| "then before") Acting bindings]

A function "step dec" was created to deal with this scenario illustrated in Figure

4,10.

and stepped (A, I) = 
match A with

| Inter (AbA (Al, O, A2, b)) —» (step_dec A1 O A2 b 1)

and step_dec (Al:Acting) (0:Action_Infix) (A2:Acting) (b:Bindings) 
(l:Local_info) =

(match (A1,A2) with
(Inter (i), Inter (i')) —>
let (A l1, 1') = stepped (received (Al,b), 1) in
(simplified (Inter (AbA (A l1, O, A2, b))), I1)
_ —» raise failure "Not appropriate")

Figure 4.10 Definition of the functions" stepped" and "step_dec"
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4.5 Verifying the Correctness of the CAML
Representation

Some examples of action notation have been used to test the correctness of the 

CAML representation. These are as follows:

• Variable declaration

• Variable declaration followed by an assignment statement

• Two consecutive declarations i.e. a variable declaration followed by a 

constant declaration

• Two consecutive declarations (as above) followed by an assignment 

statement

• An "if1 statement

• A "while" loop

However, we must emphasise that these tests fall short of thoroughly testing the 

CAML implementation. More extensive testing could not be carried out due to 

time constraints. The above examples were translated into kernel notation. 

This was then converted to an appropriate CAML representation which was 

executed alongside the existing functions to give appropriate CAML output 

states. The CAML representations of these examples are rather lengthy so a 

very simple example will be given in Figure 4.11. Note that “choose” is a 

simple action which chooses the next available cell in storage. “Next_cell” is 

the yielder used with the “choose” simple action. “no_db” is of type “opdb” and 

corresponds to empty data and bindings.

63



kernel notation: choose a cell
then reserve the cell yielded by them

CAML version:
run (Inter (AIA

(Inter (Adb
(Body (Simp Pre_Action(choose,Next_cell)),no_db)),

inthen,
Inter (Adb

(Body(Simp_Pre_Action(reserve,
Yield by(ccell, them))),no_db)))), [ ]);;

State output by CAML:
((Stopped (Compl (Err, [ ]))), [(1,Err)]):State

Figure 4.11 Example to reserve the next cell in storage

4.6 Summary

In this chapter, we have taken a look at functional languages and in particular, 

the functional language "CAML". We then illustrated the translation from the 

SOS to CAML along with the difficulties encountered during the translation. 

The various solutions to these difficulties were also described. Finally, we 

looked at the various examples created to test our CAML representation.
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CHAPTER 5

Implementation of Action Notation in Coq
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5.1 Introduction

Since we are satisfied that the CAML version adequately represents certain 

facets of action notation, we propose to translate this to a version written in the 

specification language of the Coq development system. Since the primitive 

actions and action combinators of action notation satisfy a variety of algebraic 

laws, this can lead to the proof that semantic equivalences exist between pairs of 

constructs, expressions etc. of a programming language. Therefore, since Coq 

is a proof assistant, it should be possible to prove the existence of the algebraic 

laws and possibly, at a later date, look at the notion of semantic equivalence 

using these proofs. In this chapter, we give a description of Coq, the translation 

to Coq compared with CAML and also, various proofs of the action laws. We 

should emphasise, at this point, that Coq is suitable for the implementation of 

the nondeterminism of action notation whereas the CAML implementation is 

purely deterministic.

5.2 Description of Coq

Coq is a proof assistant for higher order logic which is constructive allowing 

powerful axiomisations and inductive definitions, refer to [Cornes et al., 1995] 

[Dowek et al., 1993], Coq is an implementation of the Calculus of Inductive 

Constructions (CIC) which is a variety of type theory where theorems to be 

proved are represented as types. Coq allows the interactive construction of 

formal proofs. It is the result of about ten years of research of the Formel 

project and has three main attributes - the logical language in which 

axiomatisations and specifications are written referred to as "Gallina", a proof 

assistant which allows the development of mathematical proofs and a program 

extractor which can create a program matching its formal specification.
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There are two basic sorts in Coq - a Set allowing the definition of objects and a 

Proposition which allows the definition of predicates and relations about these 

objects as well as the definition of propositions to be proved.

5.2.1 Sets

Objects can be defined and axioms can be declared. The type of natural 

numbers with its constructors O and S can be introduced as shown in Figure 

5.1.

Parameter nat:Set.
Parameter 0:nat.
Parameter S:nat -> nat.

Figure 5.1 Definition of natural numbers

So, according to Figure 5.1, "nat" is introduced as a type with its constructors 

O and S introduced as types "nat" and "nat -> nat" respectively. The main 

constructions allowed have the form: 

x, (MN), [x:T]M, (x:T)P 

V  denotes variables or constants. (M N) denotes the applications of a 

functional object M to object N e.g. (S O). [x:T]M denotes ^-abstraction with x 

as the bound variable of type T and M is the body e.g. [x:nat](S (S *)) is a 

function mapping x  to the successor of its successor. (x:T)P denotes a product 

type. A definition allows terms to be related to names e.g.

Definition p lustw o = [x:nat](S (S x)):nat —» nat.

In Coq, a name can be replaced by its definition e.g.

(plus two (S O))
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(([*:nat](S (S x))) (S O))

(S (S (S O))) (obtained by J3-reduction)

Inductive sets can also be defined. The new type is added with its constructors 

as is an induction principle for propositions, a recursion principle for sets and a 

destructor operator "Match" for defining recursive functions over the type.

The Set of natural numberscould be re-defined as an inductive Set as follows: 

Inductive Set nat = 0:nat | S:nat —> nat 

The following principles are added by the system:

natind: (P:nat —> Prop)(P O)—»((x:nat)(P x)~MP (S jr)))-»(w:nat)(P n) 

nat rec: (P:nat —> Set)(P O)—»((x:nat)(P x)->(P (S x)))—»(«:nat)(P n)

An inductive set can be defined with parameters:

Inductive Set list[^:Set] = nil:(list A) | cons:(/4^(list ̂ 4)—>(list A).

Pattern matching on inductive types is done using "Match" e.g. Match t with e l

e2 en. An example follows:

Definition plus: nat —> nat —> nat =

[n,m:nat] «nat)Match n with 

(* O *) m

(* S p *) [p:nat] [pluspm:nat] (S pluspm)).

In this example, (plus m O) is convertivle with m (the first argument of the 

match operation) and (plus (S p) m) is convertible with (S (plus p m)) (the 

second argument [p:nat] [pluspnrnat] (S pluspm) applied to p and to the 

recursive call (plus p m)). There is one clause corresponding for each 

constructor of natural numbers. In the clause for “S” (successor), there is one 

argument corresponding to the argument of “S” .
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5.2.2 Propositions

The type "Prop" is used for defining propositions, statements that may be 

proved. Predicates and relations are defined as functional terms from sets to 

propositions. A predicate over the natural numbers could have type "nat —> 

Prop". In Coq, various logical connectives are primitive while others are 

defined. These definitions and inference rules are loaded when the system is 

started. Some examples are given in Figure 5.2.

• True Tautological Proposition

• False Absurd Proposition

• P—»Q P implies Q

• (x:T)P If P is proposition where a free variable 

of type T may occur then (x:T)P is the 

proposition (“for all x  in T, P”)

• ~P not P

• P a Q P and Q

• PvQ P or Q

m <T>Ex([x:T]P) If P is a proposition where a free 

variable of type T may occur, then 

<T>Ex([x:T]P) is the proposition (“there 

exists an x  in T such that P”)

Figure 5.2 Examples of Propositions
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As well as composing propositions from the above connectives, predicates and 

relations can be inductively defined with types as described above e.g. consider 

the following predicate that defines when a natural number is even:

Inductive Definition Even:nat —» Prop =

Even_0:(Even O)

| Even_SSn:(«:nat)(Even «)—>(Even (S (S «))).

The new predicate "Even" is defined as type "nat —» Prop". The new 

constructors (or labels) "Even O" and "Even_SSn" can be used in the proof of 

propositions. The clause labelled “Even O” defines that the natural number O 

is even and the clause labelled “EvenJSSn” defines that if a given natural 

number is even, then the successor of the successor of that number is also even.

5.2.3 The Proof Engine

This is the goal-directed theorem prover. To prove a proposition, it is entered 

at the Coq prompt after the command "Goal". Then, tactics can be entered 

which apply backward proof steps to the goal in an attempt to prove the 

proposition. The tactics can be outlined as follows as in [Seaman & Felty,

1993]:

1. The introduction tactics discharge universally quantified variables and 

hypotheses into the local context4 e.g. if A —» B is a goal, "Intro" introduces A 

into the local context and the goal changes to B. A name can be assigned to the 

term using "Intro n". "Intros" repeats "Intro" until the goal is no longer a 

product.

2. "Exact H" proves the goal if the goal is a hypothesis in the local context 

and is labelled “H”. In the case of “Assumption”, this tactic looks for a proof by

4 current set o f hypotheses fo r the current goal
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an assumption in the local context. If there is no hypothesis in the local context 

which proves the goal, it fails.

3. "Apply H" applies a theorem or hypothesis H to the goal. If the goal is 

B, and hypothesis H is A —> B, "Apply H" eliminates B as the goal. However, 

A then becomes the goal.

4. "Elim H" when H is a hypothesis, axiom or proved theorem. For 

example, if H is “A a  B”, the goal “C” is transformed into “A->B—»C“. The 

tactic "Induction n" is equivalent to performing "Intro" until n is reached 

following by "Elim n" if n is a quantified variable in the goal.

5. Tactics dealing with connectives like v ,a ,= are for example, "Left" 

which applies or-introduction-left if the goal is AvB changing the goal to A and 

similarly for "Right".

There are three tactics working with equality - if the goal is a reflexive equation, 

it is solved with the tactic "Reflexivity". "Symmetry" changes a goal a=b to 

b=a, "Transitivity c" gives two subgoals a=c and c=b. Also, assume H:a=b is a 

hypothesis or theorem, "Rewrite ->H" replaces occurrences of a in the goal with 

b and "Rewrite <-H" replaces occurrences of b with a. "Replace a with b" 

replaces a in the goal with b and adds a=b as a new subgoal unless it is one of 

the hypotheses in the local context.

6. "Absurd H" allows proofs by contradiction. The current goal is proved 

by elimination of “False” and “False” comes from proofs of both H and ~H. 

Therefore, the tactic generates two subgoals H and ~H.
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7. "Unfold f ' replaces occurrences of f  in the goal with its definition. 

"Change A" replaces the goal with A as long as the goal is convertible 

(following the (i rule, 8  rule and elimination rules for inductive terms) with A.

"Red" replaces only the head constant of the conclusion with its definition e.g. 

~A becomes A—>False. "Simpl" simplifies the goal by unfolding constants with 

their definitions and performing ^-reduction.

5.3 Coq Representation of Action Notation

We should note that only the semantic/syntactic entities and semantic functions 

for the functional, basic, declarative and imperative facets have been defined. 

We should emphasise that the translation to the Coq specification language was 

made using the SOS as the source document and not the CAML 

implementation.

The structure defined in the Coq representation was as follows:

• Most syntactic and semantic entities were inductively defined with 

appropriate constructor names and types. The definitions were very similar 

to the CAML definitions.

• The semantic functions that were represented in the CAML version were 

defined i.e. run, stepped, given, received, unfolded, evaluated, entity. 

However, they were defined relationally to facilitate theorem proving at a 

later date. This was made possible using inductive definitions. We should 

note that since it was possible to define the semantic functions relationally, it 

was possible to implement the nondeterminism of actions. So, we 

endeavour to show in a later section that the Coq implementation is indeed 

faithful to the SOS , see [Mosses, 1992] (Appendix C) using proofs of the 

various action laws.
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• The auxiliary functions were defined as functions and relations where 

appropriate. It was sometimes the case that types and commands which 

were built into CAML needed to be defined in Coq e.g. the "bool" type, the 

"if' operator. This shall be discussed in a later section.

• The action combinator collections were defined i.e. Normal, Sequencing and 

Interleaving.

The structure of the syntax, semantic entities, auxiliary functions and semantic 

functions in our Coq representation will be illustrated below. Note that the 

structure of the sections in chapter 4 will remain in this chapter to allow the 

comparison between the Coq and CAML versions. Refer to the Appendix for 

the mappings from the SOS into Coq.

5.3.1 Syntax

Some examples of the Coq definitions of syntactic entities with the associated 

SOS explanations are given below in Figures 5.3, 5.4. Note the similarities with 

the CAML definitions. Note in Figure 5.3 that the sets "bin_op" and "un_op" 

were used before defined. When using a basic inductive definition, this is not 

permitted. However, this was overridden by the use of a mutual inductive 

definition.
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Mutual Inductive Yielder: Set: = Data Con: Data —> Yielder 
(* Data-Constant *)
| UnaryOp: un op —> Yielder —» Yielder
(* Data-Unary *)

Binary Op: bin op -> Yielder —» Yielder —> Yielder 
(* Data-Binary *)
| Selected: Yielder —> Yielder —» Yielder —» Yielder
(* "if' Yielder "then" Yielder "else" Yielder *)
| Yield by: Datum —> Yielder —> Yielder
(* "the" Data "yielded by" Yielder *)
| Received: Yielder —> Yielder —» Yielder
(* Yielder "receiving" Yielder *)
| them: Yielder
(* "them" *)

current bindings: Yielder 
(* "current bindings " *)
| current_storage:Yielder
(* "current storage" *)
| At: Yielder —» Yielder —> Yielder
| Comp: nat —» Yielder Yielder
| Next_cell: Yielder

with bin_op:Set:=
oplus:bin_op 

| ominus:bin_op
oeq:bin_op

with un_op:Set-
bool_not:un_op.

Figure 5.3 Coq definition of Yielders
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Mutual Inductive Datum: Set:=
incell:cell —> Datum (* cell *)
inval:val —> Datum (* value *)

| intoken :token —» Datum (* token *)
inbookbool —» Datum (* boolean *)
inBind:Bindings —»Datum (* bindings *)
inStore: Store —> Datum (* storage *)

| Datajist:(list Datum) —» Datum (* list of data *)
| wakDatum (* domain of value *)

ccell: Datum (* domain of cell *)
| ttoken:Datum (* domain of token *)

boolean:Datum (* domain of boolean *)
| ErrDatum (* “nothing” *)

with
Bindings: Set:=
Bind: ((token —> Datum) —> Bindings)

with
Store: Set:=
Storage: (((cell -> Datum) * current) —»Store),

Figure 5.4 Definition of Data

Note that in Figure 5.4, that bindings and storage are represented using 

functions. Therefore, because we are not representing storage using lists, this 

can cause difficulties when trying to calculate the next cell in storage. This 

problem was overcome by introducing the type "current" which retains 

information about the current state of storage. This was tupled with the storage 

map. Note also the existence of Err for Data corresponding to the "nothing" 

data type in the operational semantics.
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5.3.2 Semantic Entities

The definition of "Acting" is given in Figure 5.5 with the subsidiary entities 

given in Figure 5.6. Also, the definition for "Stat" (State) is given in Figure 5.7.

Mutual Inductive Acting: Set:=
Stopped:Terminated —» Acting 

| Inter: Intermediate Acting
with

Intermediate: S et:=
APA: Action Prefix —> Acting —> Intermediate 
Adb: Action —» opdb —> Intermediate 

| AIA: Acting —> Action lnfix —» Acting —» Intermediate
| AbA: Acting —> Action_Infix —> Acting -> Bindings ->

Intermediate
with

Terminated :Set:=
Compl: Datum —» Bindings —> Terminated 
Escape: Datum —> Terminated 

| failed: Terminated
with

opdb:Set:= 
no_db:opdb 

| is_d: Datum —» opdb
is_b: Bindings —> opdb 
is db: Datum -> Bindings —> opdb

Figure 5.5 Definition of Acting

As explained in section 4.3.2, the size of the definition of "Intermediate" has 

been reduced and some of the hierarchy for the definition of "Acting" has been 

eliminated.
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Definition token ;= nat. 
Definition cell := nat. 
Definition val := nat. 
Definition current := cell.

Figure 5.6 Definition of subsidiary entities

We can see from Figure 5.6, that we chose to represent tokens as natural 

numbers. This is due to the fact that there are no character" or "string" types 

available in Coq. Figure 5.7 gives the definition of a state. The error state was 

included to facilitate theorem proving. This is somewhat different from the 

CAML version where an error state is not required. This will be discussed in 

more detail in section 5.3.4.

Inductive Stat:Set:=
Stat_ok: Acting —» Local lnfo —»Stat 
Stat_err:Stat.

Figure 5.7 Definition of Stat (state)
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5.3.3 Auxiliary Functions

When performing the translation from CAML to Coq, the absence of an "if' 

operator (for Sets) in Coq caused some inconvenience. So, it was appropriate 

to define the "if' operator as it is used frequently in our CAML version. We 

needed to introduce the type "bool" (boolean) to complete the definition. This 

allowed case by case analysis allowing the definition of the "if1 operator. The 

"bool" type is defined as follows:

Inductive bool:Set:= true:bool | false:bool.

It was then appropriate to define our version of the "if1 operator as illustrated in 

Figure 5.8.

Recursive Definition ifset[X:Set]: bool —» X —> X —> X:= 
truexj/ =>x 

| false x y  =>>>.

Figure 5.8 Definition of "if1 operator (strict)

In Figure 5.8, a boolean expression is provided as an argument which evaluates 

to either true or false. If true, x is returned, else y  is returned. The function is 

polymorphic and therefore, can be defined on any Set. Other auxiliary functions 

had to be defined on the type "bool" to allow expressions to be formed e.g. 

"equal nat", which compares two natural numbers. The parameterised type 

"list" was also defined with appropriate operations.

As we chose to define bindings and storage as functions instead of lists in the 

Coq version, the operations on these had to be redefined. Also, note that 

storage not only consists of the storage map but also of the current cell. The 

differences between the manipulation of bindings and storage in CAML and Coq
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are given in Figure 5.9. We use the function "access" and the relation 

"access_env" as examples. Note that we have adopted a relational approach in 

Coq. This was required to facilitate theorem proving. Also, note when we are 

using the relation "access env" on storage, we only provide the storage map as 

an argument.

CAML:
(* access: 'a —» ('a * 'b)list —» 'b *)
let rec access t =
function [] —» raise failure "access error"

| x:.L —> if (fst (jc) = t) then
snd(x)

else
access tL  ;;

Coq version:
(* access_env: nat -> (nat —> Datum) -> Datum —» Prop *)
Inductive access env: nat -> (nat -> Datum) —» Datum —> Prop:^
acc env: (/:nat) (/w/ .̂nat -»  Datum) (access env t mp {nip /)).________________

Figure 5.9 Definition of "access" in both CAML and Coq

5.3.4 Semantic Functions

The types of the semantic functions defined are illustrated in Figure 5.10. As 

we can see, all semantic functions have been defined relationally with the 

exception of “entity” .
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entity: Datum —» Datum
evaluated: Yielder —» opdb —» Locallnfo —» Datum —> Prop
unfolded: Action -»  Action —> Action ->• Prop
given: Acting —> Datum —» Acting —> Prop
received: Acting —» Bindings —> Acting —> Prop
simplified: Acting -> Acting -» Prop
run: Stat —» nat —» Stat —» Prop
stepped: Stat —> Stat —> Prop

Figure 5.10 Semantic functions defined in Coq

We now illustrate the differences between the semantic functions as defined in 

section 4.3.3 (CAML) and in Coq. Consider Figures 5.11 -Figure 5.13. In 

Figure 5.11, we can see that there is many differences between the two versions. 

In the Coq version, we have introduced a natural number n which indicates the 

number of steps it takes to advance an intermediate state to termination. This 

shall be discussed in more detail in section 5.5.1 in relation to theorem proving. 

The first instance of "run" (labelled RStop) deals with the situation where it only 

takes one step for a state to arrive at a terminated state. The second instance 

(labelled RInter) deals with the circumstances where it takes more than one step 

to terminate.
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CAML: let rec run ((.A : Acting),(/:Local_info))=
(match stepped (A,l) with

(Inter (z), I') -> run(Inter (/'), /')
| (Stopped (t), f)  -> (Stopped (t), I))  ;;

Coq: Inductive run: Stat —> nat —» Stat —» Prop:=
RStop: (A : Acting)(/: Local_Info)(/: T ermi nated)(/': Local! nfo) 
(stepped (Stat_ok^ 1) (Stat_ok (Stopped t) /))  ->
(run (Stat ok A 1)0  (Stat ok (Stopped t) V ))

| RJnter: (A; Acting)(/:LocalInfo)(.SV: Stat)
(z:Intermediate)(/':Local_Info)(»:nat)

(gt n O)—»
(stepped (Stat_ok A I) (Stat_ok (Inter;) IJ)
(run (Stat ok (Inter z) I') (pred n) St) —>
(run (Stat_ok A I) n St)

RErr: (A:Acting)(/, /':Local_Info)(zintermediate)
(stepped (Stat_ok A I) (Stat ok (Inter z) /')) -»
(run (Stat_ok A I) O Stat_err).

Figure 5.11 CAML and Coq versions of the "run" function

The third (labelled RErr) explains that if it the state is not terminated after 

taking one step, then it has arrived at an error state. As we can see, only two 

instances of "run" are required in the CAML version as we were not concerned 

with theorem proving at that point.

In the Coq section of Figure 5.13, the function "is inter" is responsible for 

checking whether an Acting is "Intermediate".
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CAML:

and stepped (A, I) = 
match A with

(Inter (Adb (Body (Cons Action (ca)), inf)) —> (step basic ca in f I)

and step basic (ca:Constant_Action) (inf. opdb) (/Local info) = 
(match ca with

complete —> (Stopped (Compl (Err, [ ])), I) 
escape -> (Stopped (Escape (get data inf)), I)

| fail -> (Stopped (failed), 1)
unfold -> raise failure "Cannot step 'unfold'")

Coq:
Mutual Inductive stepped :Stat -»  Stat —>■ Prop:=

St_AdbCA:(ca:Constant_Action)(/>7/:opdb)(/:Local_Info)(5/:Stat) 
(step basic ca in f I si) —>
(stepped (Stat ok (Inter (Adb (Body (Cons_Action ca)) inf)) I) st)

with
step_basic:Constant_Action -> opdb —> Local Info —» Stat —̂ Prop:^ 

Sbcom p: (/:Local_Info)(m/ opdb)
(step basic complete in f I (Stat_ok (Stopped (Compl Err (Bind 
empty bindings))) I))

| Sb_esc:(/:Local Info)(/'«/:opdb)(<i: Datum)
(get data in f d) ->
(step basic escape in f I (Stat_ok (Stopped (Escape d)) I))

| Sb_fail:(/:Local_Info)(/«/: opdb)
(step basic fail in f I (Stat ok (Stopped failed) I))

Figure 5.12 CAML and Coq version of "stepped" applied to primitive actions
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CAML:

and stepped (A, 1) = 
match A with

Inter (AIA (Al, O, A2)) —» (step_infix A l  O A2 I)

and step_infix (/47:Acting)(0:Action_Infix)(,42:Acting)(/:Local_Info) = 
(match Al, A2 with

(Inter (*), (Inter (/')) -» 
let (A l\ V) = stepped (/4, /) in 

if (Sequencing O) then
(simplified (Inter (AIA (A 1\ O, A2))), I')

Coq:

Mutual Inductive stepped: Stat —> Stat —»Prop:=

St_AIA: (,47,^2:Acting)(<9:Action_Infix)(/:Local_Info)(.rt:Stat) 
(stepinfix A l O A2 Ist)—>
(stepped (Stat ok (Inter (AIA A l O A2)) I) si)

with
step infix:Acting —> Actionlnfix —> Acting —> Local_Info -> Stat —» Prop:= 

SiInIn:(/47,/42,,47'^:Acting)(0:Action_Infix)(/,/':Local_Info)
((is inter^47)A((Sequencing 0)V(Interleaving (7)V(0=inor))A 
(is_inter A2))->
(stepped (Stat_ok/i7 I) (Stat_ok^4/ '/ ') ) —>
(simplified (Inter (AIA ,47' O A2)) A)-+
(step infix A 1 O A2 /  (Stat o k ^  /'))

Figure 5.13 CAML and Coq version of "stepped" (2)
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5.4 Issues with Implementation

With reference to the problems encountered when translating the SOS to

CAML, we look at how Coq has dealt with them.

5.4.1 Yielders

The additional three yielders were added to the definition of yielders as shown 

in Figure 5.3.

5.4.2 Error values and Exceptions

Error values were added in the definitions of "Datum" and "Stat". A value 

corresponding to the “nothing” data type was added in the definition of 

“Datum”. Also, the definition of “Stat” (State) includes a value for an error 

State. Exceptions were overridden through the use of inductive definitions 

where only possible situations were defined.

5.4.3 Inconsistency

With regard to the inconsistency discovered in the application of "stepped" to 

the following state:

(["unfolding" v4:Action], G?:data, />:bindings, /:local-info),

the conversion function introduced in the CAML version was also defined in 

Coq i.e. "act_out".

5.4.4 Addition to ’’simplified"

An instance of "simplified" to deal with

84



Mi O AJ: [Completed Interleaving Intermediate] 

was defined.

5.4.5 Addition to ’’stepped”

The "stepped" relation was also expanded to deal with the instance:

[Acting ("before" | "then before") Acting] .

5.5 Proving Action Laws in Coq

As we have seen previously, there is a collection of laws that characterise 

actions. These laws can then be used in semantic equivalence proofs between 

pairs of constructs of a programming language. In this section, we outline the 

possibilities that Coq provides for the proof of equivalence between actions 

along with the verification that equivalences exist between actions. Note that 

we are not discussing equality between actions but equivalence which shall be 

discussed in the following section. The action laws that we endeavoured to 

prove are illustrated in Figure 5.14. These action laws were chosen as they 

encompass all the action combinators.
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(1) unfolding fail = fail

(2) fail hence A = fail

(3) fail and then A = fail

(4) A2 = A2 and then complete

(5) A l  = complete and then A l

(6) escape and then A = escape

(7) A l  or A 2= A 2  or A l

(8) A2 or A l =A1 or A2

(9) escape trap A = A

(10) fail trap A = fail

(11) complete trap A = complete

Figure 5.14 Action laws to be proved

5.5.1 Representing Equivalence between Actions

Firstly, we should define “equivalence between actions”. Consider two states 

SI, S2 containing the two actions A l, A2 repectively and the same local 

information. We say that equivalence between actions exists if given two states 

SI, S2 (as above), if it takes n steps for SI to terminate in state S I’, then there 

exists some natural number m such that it takes m steps for S2 to terminate in 

state S I’. Note that if it takes n steps for SI to terminate and m steps for S2 to 

terminate in equivalent states, if we step SI and S2 and then step the resulting
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states (n-1) and (w-1) times respectively, we should obtain the same result as 

above. However, if we step SI and S2 (w-1) and (m-1) times respectively, the 

resulting states should be undefined as SI and S2 have not been run to 

termination. We have also defined the “undefined state” which denotes the state 

that is not terminated. The state reached after n - 1 steps is always undefined if 

it takes n steps to run to termination. We saw in section 5.3.4 that the above 

notions are represented in the definition of the semantic function “run”. The 

definition of equivalence between actions is defined in the “equiv” relation in 

Figure 5.15. The definition of “state” is given in Figure 5.7.

Inductive equiv: Stat —» Stat —> Prop:=
St_Err:(St2:Stat)(equiv Stat_err St2)

| Err_St:(Stl:Stat)(equiv Stl Stat err)
| St St: (Stl,St2:Stat)(Stl = St2) -> (equiv Stl St2).

Figure 5.15 Definition of the "equiv" relation

5.5.2 Proving Equivalence between Actions

The main aspect of Coq that we are interested in here is the goal directed 

theorem prover. To prove a lemma, it is entered at the Coq prompt and tactics 

are then entered in an attempt to complete the proof. Consider the scenario 

where the specification of the operational semantics of action notation has 

already been loaded into Coq. Our next step is to start proving the properties of 

action notation i.e. the action laws. We have decided to prove a subset of these 

action laws, as illustrated in Figure 5.14. To perform the proofs, the laws were 

translated into a style conforming to our specification i.e. we used the semantic 

function "run" to show that after executing the left-hand side and the right-hand
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side, they arrived at the same state. As an example, consider action law (1) in 

Figure 5.14. The lemma appropriate to this property is shown in Figure 5.16. 

We should note that the "equiv" relation is responsible for determining whether 

two states are equivalent. This relation is much weaker than the equality 

relation. The definition tells us that if either or both of the two states we are 

comparing is an error state, then the two states are automatically equivalent. In 

the case where neither of the two states are error states, we check for equality. 

In Figure 5.16, we construct a state consisting of an Acting appropriate to the

action "unfolding fail" i.e. (Inter (Adb (Pre_Action unfolding ) and also

a state which involves an Acting representing the primitive action "fail". The 

two states are evaluated after application of "run" and are then compared by 

applying "equiv". Obviously, they should evaluate to the same state. Note that 

in Figure 5.16, we run the state containing the action “unfolding fail” for an 

additional step. This is due to the presence of “unfolding”. Note that this is 

not a necessary condition for the law to be valid.
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Lemma unfolding fail:
(n:nat)
(l:Local_Info)
(Stl,St2:Stat)
(run
(S ta to k
(Inter
(Adb (Pre_Action unfolding (Body (Cons_Action fail))) 

nodb)) 1)
(S n) Stl)

->(run
(Stat ok (Inter (Adb (Body (Cons_Action fail)) no db)) 1) 
n St2)

—> (equiv Stl St2).

Figure 5.16 Action law "unfolding fail = fail" represented in Coq

5.5.2 Proving Theorems in Coq

The lemma in 5.16 was entered at the Coq prompt. Appropriate tactics were 

then entered. The lemmas appropriate to the action laws in Figure 5.14 were all 

proved by induction on the natural numbers. If we take action law (1) and 

consider the effects after entering an initial tactic i.e. Intro , refer to Figure 5.17. 

We can see that n has been introduced into the local context. We then eliminate 

n as elimination tactics are useful to prove statements by induction i.e they make 

use of the induction principles generated with induction definitions. The effect 

of eliminating n is given in Figure 5.18.
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n:nat

(l:Local_Info)
(Stl :Stat)
(St2:Stat)
(run
(S ta to k
(Inter
(Adb (PreAction unfolding (Body (ConsAction fail))) no db)) 

1)
(S n) Stl)

—>(run (Stat ok (Inter (Adb (Body (Cons_Action fail)) no_db)) 1) 
n St2)

-»(equiv Stl St2)

Figure 5.17 The goal after applying "Intro."

We can then use the various instances of "run" to prove the "O" case. Usually, 

we would use the induction hypothesis to prove the "n+1" case, but in this 

example, the "n+1" case is absurd. The reason for this is that it will never take 

"(S n)" steps to run the primitive action "fail".

Now, we should take a look at the action combinator "or", If we consider the 

action "Al or A2", it chooses either A l  or A2 to be performed. If one sub

action fails, the other sub-action is chosen. However, if neither subaction fails, 

the choice is non-determini stic. We had to deal with this situation when proving 

the actions laws (7) and (8) in Figure 5.14. The solution was to
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n:nat

(l:Local_Info)
(Stl: Stat)
(St2:Stat)
(run

(Stat_ok
(Inter
(Adb (Pre Action unfolding (Body (ConsAction fail))) n o d b ))

1)
(S O) Stl)

—>(run (S ta to k  (Inter (Adb (Body (Cons Action fail)) no_db)) 1) n St2) 
^•(equiv Stl St2)

subgoal 2 is:
(n:nat)
((l:Local_Info)

(Stl: Stat)
(St2:Stat)
(run
(Stat_ok
(Inter
(Adb (Pre Action unfolding (Body (Cons Action fail))) no db)) 1) (S n) 

Stl)
-^•(run (Stat ok (Inter (Adb (Body (Cons Action fail)) no_db)) 1) n St2) 

-^(equiv Stl St2))
—»(l:Local_Info)

(Stl: Stat)
(St2:Stat)
(run
(Stat_ok
(Inter
(Adb (Pre_Action unfolding (Body (Cons Action fail))) no db)) 1)

(S (S n)) Stl)
—»(run

(Stat ok (Inter (Adb (Body (Cons_Action fail)) no db)) 1) (S n) St2) 
->(equiv Stl St2)

Figure 5.18 Goal after eliminating n (Elim n)
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Lemma Al or A2:
(n:nat)(Al,A2:Acting)(l:Local_Info)(Stl:Stat)
(run (Stat_ok (Inter (AIA Al inor A2)) 1) n S tl) —»
(Ex [St2:Stat]
(run (Stat_ok (Inter (AIA A2 inor Al)) 1) n St2) A 
(equiv Stl St2)).

Figure 5.19 Action law "A l  or A2 -  A2 or Al"

to introduce existential quantification on one side of the equations. The lemma 

appropriate to (7) is given in Figure 5.19. By introducing an existential 

quantifier over St2, it was possible to choose the evaluation path of St2 in 

accordance with Stl. The semantic function "stepped" gives two choices for 

the evaluation of the composite Acting "Al inor A2" i.e. either step A l  first or

To prove some of the action laws, two additional lemmas were required. These 

are outlined in Figure 5.20. An axiom "deter" was also defined, see Figure 5.20. 

The axiom “deter” defined the equality of states which was required in the 

invocation of “equiv”. Also, the equality between actions contained in states is 

proven in the lemmas “injstat”,”injstat2”.
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Lemma injstat:(A:Acting)(A':Acting)(l:Local_Info)(r:Local_Info)
(Stat_ok A 1) = (Stat_ok A' 1') —> A = A'.

Lemma inj stat2: (A: Acting)( A': Acting)(l: Local_Info)(l' :Local_Info)
(Stat ok A 1) = (Stat_ok A' 1') 1 = 1'.

Axiom deter: (Al:Acting)(A2:Acting)(A3:Acting)
(11 :Local_Info)(12:Local Info)(13 :Local_Info)

(stepped (Stat ok Al 1) (Stat ok A3 13))
-»  (stepped (Stat_ok Al 11) (Stat_ok A2 12))

—> (Stat ok A3 13) = (Stat ok A2 al2).

Figure 5.20 Lemmas "injstat, injstat2" and axiom "deter"

The lemmas in Figure 5.20 were proved using the "Injection" tactic.

5.6 Summary

We have given an introduction to the Coq development system. Some aspects 

of the specification language and the proof assistant have been explained. We 

then illustrated the translation of the SOS to the specification language of the 

Coq system. The compromises made in this translation along with some 

additional features were given. We then dealt with the proofs of the various 

action laws using the Coq proof assistant. The action laws which were proved 

were outlined as in Figure 5.14. We found one proof in particular to be much 

more difficult than other proofs. The proof of the action law A l  or A2 = A2 or 

A l  could be described as a long and complicated proof. The nondeterminism of 

the “or” action combinator meant all instances had to be proved hence making 

this proof long and complicated.
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CHAPTER 6

Conclusions and Further Work
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6.1 Research Considerations & Conclusions

During the research underlying this thesis, the following results were achieved:

• Representation of action notation in the functional language CAML

• Representation of action notation in the Coq development system

• Proof of various action laws using the Coq theorem prover

Before deciding on action semantics as the chosen semantic specification type, 

many other types of semantics were investigated. It was concluded from these 

investigations that action semantics was one of the more accessible types of 

specification. For example, we found that denotational semantics, in particular, 

was sometimes confusing and difficult to understand due to its purely functional 

representation. Action semantics specifications, on first reading, proved to be 

clear, concise, easy to read and hence more comfortable and understandable. It 

had the added advantage that it combined formality with good pragmatic 

features. After looking at denotational semantics in great detail, it was good to 

discover that there was another type of specification based on denotational 

semantics that was English-like (and hence readable) and comprehensible. 

Therefore,it was natural to become interested in this "new" type of semantic 

specification. We found that much effort was involved in understanding 

denotational semantics without possessing a detailed mathematical background 

and so our alternative became much more attractive.

We then started considering the theory underlying action notation and found 

that the structural operational semantics (SOS) had already been written down 

in [Mosses, 1992] (Appendix C). However, much effort was required to gain a 

thorough understanding of the SOS. Unfortunately, after gaining that 

knowledge, we found that some aspects of the representation were not
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consistent and would require some alterations in the implementation. It was 

worth considering, at this point, whether it would be more advantageous to 

have an SOS which was more suitable for direct implementation. As this was 

not the case, these inconsistencies had to be identified and appropriate solutions 

given.

We decided to use the functional language CAML to implement the SOS. We 

found that CAML was indeed an excellent choice and proved to be a good 

introduction to the area of functional languages which then gave a good basis 

for the implementation in the Coq specification language. This implementation 

required some extra effort in comparison to the translation into CAML. 

Unfortunately, Coq does not have the possibilities required for the tracing of 

data, storage etc. when executing an action semantics specification. This is 

achieved with our CAML implementation. We are able to use the CAML 

implementation to trace transients, bindings and storage during the execution of 

an action semantics specification. After executing a program, statement etc., a 

state is given consisting of the type of state reached and the transient data, 

bindings and storage. We have, after much testing, concluded that the CAML 

representation is a true representation of the basic, functional, declarative and 

imperative facets of action notation. Our subsequent translation into Coq was 

based somewhat on the CAML representation but our indication that it was a 

true representation was not based on testing but on proving the truth of the 

action laws, as detailed below.

We then started looking again at the laws associated with action notation. We 

were now in a position to start writing proofs for these laws. The action 

notation was represented in the specification language of the Coq system and 

provided the foundation for these proofs. We began looking at the Coq 

theorem prover. This was probably the most difficult part of the research.
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After considerable effort, the action laws outlined in Chapter 5 were eventually 

proved. Some proofs were more difficult and complicated than others, in 

particular the commutativity of the "or" action combinator and the proof that 

the combinator "and then" has the action primitive "complete" as a unit.

We should emphasise, at this point, that the learning curve required to complete 

this thesis was quite steep. Considerable effort was required to firstly, 

understand particular types of semantic specification. Secondly, as the 

implementation in CAML and Coq required that the structural operational 

semantics be fully understood, the effort needed for implementation was great. 

We know, at this point, that the structural operational semantics is a rather 

complex document. We also found that the Coq development system is an 

environment which is initially difficult to come to terms with.

6.2 Further Work

6.2.1 Additional Facets for Implementation

There are various paths to follow based on this research. Although, firstly we 

should note that some of the facets in the structural operational semantics have 

not been implemented i.e. the reflective and communicative facets see sections 

4.3, 5.3. Therefore, some of the semantic entities were also not required i.e. 

commitments, processing. Obviously it would be very good if the above 

features were added in the future.

6.2.2 Parser/Translator for Action Notation

Also, using CAML and the Coq specification language, we have defined the 

abstract syntax of the kernel of action notation. Unfortunately, to interpret
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actions using either representation, the action semantic specification must be 

translated into the appropriate abstract syntax depending on the representation 

used. This means that the action semantic specification must be translated to 

the kernel and then represented in the appropriate abstract syntax. This is rather 

a confusing and awkward process and therefore, it would be better to define a 

concrete syntax with rules for the transformation to the abstract syntax. 

Obviously, this would involve defining a translator for the conversion process 

from standard action notation to the kernel. In CAML, this could be achieved 

using its grammar facility. A similar facility is also available in Coq.

6.2.3 Proof of Semantic Equivalences

Based on our proofs of some of the action laws, it may be possible taking the 

action semantic specifications of a programming language to prove that 

semantic equivalence exists between constructs e.g. the semantic equivalence of 

a 'repeat' and 'while' loop. It may be possible, in the Coq environment, to prove 

the existence of semantic equivalences using the Coq proofs of the action laws. 

Therefore, the full set of constructs of a programming language could be 

reduced down to a core set. For example, to prove that in a toy language IMP, 

see [Watt, 1991]

C; skip = C

we must prove that both commands have the same denotation. A subset of the 

semantic equations of the language IMP appears in Figure 6.1.

(1) execute [C ,: Command ";" C2: Command ]
= execute Cx and then execute C2

(2) execute ["skip"] = complete

Figure 6.1 Semantic equations of the language IMP
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The proof is given in Figure 6.2. Note that within the proof we have made use 

of the Action law - A and then complete = A.

execute | [ C " s k i p " ]
= execute C and then execute ["skip"] (by (1)

= execute C and then complete (2)
= execute C (action law)

Figure 6.2 Proof of "C ; skip = C"

Another example looks as follows

while E  do C = if E  then begin C ; while E  do C end else skip

The relevant semantic equations are given in Figure 6.3. The denotations for 

both sides of the equations are given in Figure 6.4, 6.5. Compare the 

denotations in both to see that they are semantically equivalent. Based on the 

proofs of the various action laws already completed, we can see that it should 

be possible to prove, using Coq, that the above semantic equivalences exist e.g. 

in Figure 6.2, we should be able apply the proven theorem corresponding to - A 

and then complete = A.
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(1) executepwhile" -E: Expression "do" C:Commandl =

unfolding
evaluate E

then
check (the given value is true) and then 
execute C and then unfold 

or
check (the given value is false) and then complete

(2) executejp'if' ^Expression "then" C,:Command "else" C2 .’Command!:

evaluate E
then

check (the given value is true) and then execute C, 

or
check (the given value is false) and then execute C2

(3) execute|"begin" C:Command "end"! = execute C

Figure 6.3 Some semantic equations of IMP

6.2.4 SOS suitable for Implementation

We have seen that the SOS required much adaption before it was suitable for 

implementation in CAML. It is possible that implementations of the SOS in 

different languages may have different associated problems. It could therefore 

be imagined that, as more implementations become available, feedback from the 

implementors could result in a restructuring of the SOS.

6.2.6 The End Product

It might be worth considering what remains to be achieved with reference to the 

work carried out to date to make the interpreting of action semantic
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specifications as user-friendly as possible. We know that a parser/translator 

needs to be written. We then need to consider how the interface with the user 

should look. So, it would be nice if a thoroughly user friendly interface was 

constructed to help the user in the creation of action semantic specifications 

which could be interpreted giving the appropriate results.

execute["while" is:Expression "do" C:Command] = 

unfolding
evaluate E

then
check (the given value is true) and then 
execute C and then unfold

(by (1))

or
check (the given value is false) and then complete

= evaluate E  
then

check (the given value is true) and then
execute C and then
unfolding

evaluate E
then

(action law)

........o r .........
or

check (the given value is false) and then complete

evaluate E
then

check (the given value is true) and then 
execute C and then 
execute || "while" E  "do" C ||

(by (l))

or
check (the given value is false) and then complete

Figure 6.4 Denotation of left-hand command
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executed "if" £:Expression "then" "begin" C:Command
"while" £:Expression "do" C:Command "end" "else" "skip"]

= evaluate E  (by (2))
then

check (the given value is true) and then 
execute ["begin" C "while" E  "do" C "end"]

or
check (the given value is false) and then execute["skip"J 

evaluate E  (by (3))
then

check (the given value is true) and then 
execute [ C " w h i l e "  E  "do" f l  

or
check (the given value is false) and then complete

evaluate E  (by Fig 6.1 (1))
then

check (the given value is true) and then 
execute C and then execute ["while" E  "do" C]

or
check (the given value is false) and then complete

Figure 6.5 Denotation of right-hand command
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In this Appendix, the steps involved in bringing the example of the assignment 

statement through the SOS are given. An overview of these steps is given in 

section 3.4. The steps are detailed as follows:

Step 1:

If we breakdown the translated version of the assignment statement into its 

constituent actions, we refer to action 1 as - 

(give the cell yielded by

current bindings at the token yielded by “I” 

and give 2) 

and action 2 as -

(store the number yielded by component #2 of them 

in the cell yielded by component #1 of them).

We identify the action infix as “then”. We must assume, at this point, that the 

identifier “I” is bound to the cell 1. Therefore, the initial intermediate 

compound state looks as follows (according to the declarative behaviour of 

action infixes as dictated by action semantics):

(((action 1, b) “then” (action 2, b)), t) 

where b consists of the binding of identifier “I” to cell 1. Also, / denoting 

storage is empty. Refer to [Mosses, 1992] (Appendix C, section C.2.2) for an 

explanation of how states are formed.

Step 2:

Now that we have identified our inital intermediate state, our next step consists 

of applying the semantic function “run” to this state; refer to [Mosses, 1992] 

(Appendix C, C.3.3) . The “run” function tells us to apply the semantic function 

“stepped” and check if the resulting state is intermediate or terminated. Since, 

the acting component of the initial state is a compound acting, we apply 

“stepped” for compound actings, see [Mosses, 1992] (Appendix C, C.3.3.2.1

(5))-
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Substituting appropriately, we arrive at the following: 

stepped ((action 1, b),l) > (A ^ : Acting, /' :local-info);

[(action 1, b) “then” (action 2, £)] : [Intermediate Sequencing Intermediate]=> 

stepped ([(action 1 ,b) “then”(action 2,b)\ /) >

(simplified [ A ]' “then” (action 2,b )\ V ).

Note that although the application of “stepped” can result in a sort of states, we 

shall only deal with a particular state. We can see, from above, that we must 

apply “stepped” to the state ((action 1, b),l).

Step 3:

We now apply “stepped” to ((action 1, b),l) i.e. 

stepped (((give the cell yielded by

current bindings at the token yielded by “I” 

and give 2), b) ,/)

We can see from above that this acting is also an intermediate compound acting 

which should look as follows: 

stepped (((give the cell yielded by

current bindings at the token yielded by “I”),Z>)

“and”

((give 2), b), I)

Let us label the above two actions, action la  and action lb. Substituting 

accordingly into [Mosses, 1992] (Appendix C, C.3.3.2.1 (5)]: 

stepped (((action 1 a, b),t) > ( Ax" , /");

[(action la, b) and (action lb, &)]:[Intermediate Interleaving Intermediate]=> 

stepped ([(action la, b) “and” (action lb, Z>)J, I) >

(simplified [ A}" “and” (action lb, A)], /").

Step 4:

We now apply “stepped” to ((action la, b), 1) i.e.
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stepped (([give the cell yielded by

current bindings at the token yielded by “I”] , b), I).

Since the action above is indeed a primitive action, we apply [Mosses, 1992] 

(Appendix C, C.3.3.1.2 (1)). After evaluation of the yielders, we arrive at the 

following state:

(“completed”, 1, empty-map, T) where “completed” indicates the kind of the 

terminated state we have arrive at, 1 is the transient data, empty-map indicates 

empty bindings and I is unchanged.

Step 5:

We then substitute the result from step 4 into step 3 for the application of 

“simplified” i.e.

(simplified [(“completed”, 1, empty-map) “and” (action lb, A)], I).

We then apply the function “simplified”, see [Mosses, 1992] (Appendix C, 

C.3.3.2.2). Since no appropriate instance exists, we return the same acting, 

hence returning the same state.

Step 6:

We substitute the above result into step 2 i.e.

(simplified ^ ’’completed”, 1, empty-map) “and” (action lb, A)]

“then” (action 2, Z>)|, /).

We apply “simplified” which returns the same acting and hence the same state. 

We can see that the existing state is still intermediate and therefore, we must 

reapply the function “run”, see [Mosses, 1992] (Appendix C, C.3.3 (1))

Step 7:

We reapply “run” which tells us to apply “stepped”. We apply “stepped” for 

compound actings, see [Mosses, 1992] (Appendix C, C.3.3.2.1 (5)). 

stepped (([(“completed”, 1,empty-map) “and” (action lb ,i) |), 1) >

(A ^:  Acting, /' :local-info);

[fT’completed”, 1, empty-map) “and” (action lb, £)J) “then”
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(action 2,^[[Intermediate Sequencing Intermediate] => 

stepped ([(“completed”, 1, empty-map) “and” (action lb, A)]

“then” (action 2, A)], /) >

simplified || A t ' “then” (action 2, A)], /').

Step 8:

We now “stepped” as follows:

stepped (([(“completed”, “1”, empty-map) “and” (action lb, b) ]), I).

We see, from above, that the acting involved is an intermediate compound 

acting i.e. the acting (action lb, b) is a completed acting. Therefore, we must 

apply “stepped” for compound actings, refer to [Mosses, 1992] (Appendix C, 

C.3.3.2.1 (6)). Substituting accordingly, we arrive at the following: 

stepped ((action lb, b), I) > ( A2':Acting, /' :local-info);

[(“completed”, 1, empty-map) “and” (action lb, b)] :

[Completed Interleaving Intermediate] => 

stepped ([(“completed”, 1, empty-map) “and” (action lb, &)], I) >

(simplified [(“completed”, 1, empty-map) “and” A2'J, /').

Step 9:

So, we next apply “stepped” to 

(give 2, b) i.e. 

stepped (([give 2], b \  I).

Since the above action is primitive, we apply [Mosses, 1992] (Appendix C, 

C.3.3.1.2 (1)). This results in the following state:

(“completed”, 2, empty-map, I).

Step 10:

We next substitute the above result into step 8 i.e. into the application of 

“simplified”. This gives the following:

(simplified [(“completed”, 1, empty-map) “and”
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(“completed”, 2, empty-map) 1 ,1).

After applying “simplified” as in [Mosses, 1992] (Appendix C, C.3.3.2.2 (6)), 

we arrive at the following result:

((“completed”, (1,2), empty-map), /).

Step 11:

We then substitute the result from step 10 into step 7 i.e.

(simplified [(“completed”, (1,2), empty-map) “then” (action 2, b)J, I).

We apply “simplified” i.e. [Mosses, 1992] (Appendix C, C.3.3.2.2 (8)) giving 

the following result:

( [(“completed”, ( ), empty-map) “and” (action 2, (1,2), 6)], I).

The above result incorporates a call to the function “given” which passes the 

transient data i.e. (1,2) to (action 2, b).

Step 12:

We can see in step 11 that the result includes an intermediate acting and 

therefore, we must yet again apply the function “run”. We reapply “run” which 

tells us to reapply “stepped” and check the result, see [Mosses, 1992] 

(Appendix C, C.3.3). Since we are looking at a compound acting, we apply 

“stepped” as in [Mosses, 1992] (Appendix C, C.3.3.2.1 (6)) substituting as 

follows:

stepped((action 2, (1,2), b), 1 )> (A 2\  /');

[(“completed”, ( ), empty-map) “and” (action 2, (1,2), A)]:

[Completed Interleaving Intermediate] => 

stepped ([(“completed”, (), empty-map) “and” (action 2, (1,2), &)J, I) >
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(simplified [(“completed”, ( ) ,  empty-map) “and” A2'J), / ') .

Step 13:

We then apply “stepped” as dictated by step 12 as follows:

stepped([store the number yielded by component #2 of them

in the cell yielded by component #1 of them, (1,2), b \  I).

Since the above action is primitive, we apply [Mosses, 1992] (Appendix C, 

C.3.3.1.4 (1)). We should note that yielder 1 -

the number yielded by component #2 of them

evaluates to 2 (number) and yielder 2 -

the cell yielded by component #1 of them

evaluates to 1 (cell). We arrive at the following state:

(“completed”, ( ), empty-map, map 1 to 2).

The result above illustrates that we have altered the store i.e. we have mapped 

cell 1 to number 2.

Step 14:

We substitute the result in step 13 into step 12 i.e.

(simplified [(“completed”, () , empty-map) “and”

(“completed” , (), empty-map)], map 1 to 2).

We apply “simplified”, see [Mosses, 1992] (Appendix C, C.3.3.2.2 (6)) and 

arrive at the following state:
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We see that the resulting state is a completed state i.e. it is not intermediate, 

therefore, the above state is the final state as dictated by [Mosses, 1992] 

(Appendix C, C.3.3 (2)).

((“completed” , ( ) ,  empty-map>, map 1 to 2).
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Appendix B
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In this appendix, we illustrate the different structures of the semantic entities in 

the structural operational semantics, the implementations in CAML and Coq.

We have chosen to show possible states and action infixes. The following tables 

endeavour to improve the comprehensibility when looking at the 

implementations in CAML and Coq. Note that the constructors' names in both 

implementations are identical e.g. "Inter", "Adb", "Cons_Action". Note also 

that we use a constructor "Stat ok" in the Coq version to show a state consists 

of an Acting and Local Info.

120



Possible States:
SOS CAML Coq
("complete", d, b, I) (Inter (Adb (Body 

(Cons_Action 
(complete)), inf)), 1)

(Stat_ok (Inter (Adb (Body 
(Cons_Action complete)) 
inf)) 1)

("escape", d, b, t) (Inter (Adb (Body 
(Cons Action (escape)), 
inf)), 1)

(Stat_ok (Inter (Adb (Body 
(Cons Action escape)) inf) 1)

("fail", d, b, I) (Inter (Adb (Body 
(Cons_Action (fail)), 
inf)), 1)

(Stat ok (Inter (Adb (Body 
(Cons_Action fail)) inf) 1)

("unfold", d, b, I) (Inter (Adb (Body 
(Cons_Action (unfold)), 
inf)), 1)

(Stat_ok (Inter (Adb (Body 
(Cons_Action unfold)) inf) 1)

(["give" 7], d, b,l) (Inter (Adb (Body 
(Simp Pre Action (give, 
Y)), inf)), 1)

(Stat_ok (Inter (Adb (Body 
(Simp_Pre_Action (give Y))) 
inf)) 1)

(["choose" 7], d, b, 
0

(Inter (Adb (Body 
(Simp_Pre_Action 
(choose, Y)), inf)), 1)

(Stat ok (Inter (Adb (Body 
(Simp Pre Action (choose 
Y))) inf)) 1)

(["bind" y l  "to" 
y2\d , b, I)

(Inter (Adb (Body 
(To_Pre_Action (bind, 
yl, y2)), inf)), 1)

(Stat_ok (Inter (Adb (Body 
(To Pre Action (bind yl 
y2))) inf)) 1)

(["unbind" 7], d, b,
I)

(Inter (Adb (Body 
(Simp_Pre_Action 
(unbind, Y)), inf)), 1)

(Stat_ok (Inter (Adb (Body 
(Simp Pre Action (unbind 
Y))) inf)) 1)

(["store" y l  "in" y 2 \  
d, b, I)

(Inter (Adb (Body 
(Store_Action (yl, y2)), 
inf)), 1)

(Stat ok (Inter (Adb (Body 
(Store_Action yl y2))) inf)) 1)

(["unstore" 7], d, b, 
0

(Inter (Adb (Body 
(Simp_Pre_Action 
(unstore, Y)), inf)), 1)

(Stat_ok (Inter (Adb (Body 
(Simp Pre Action (unstore 
Y))) inf)) 1)

(["reserve" 7], d, b, 
0

(Inter (Adb (Body 
(Simp_Pre_Action 
(reserve, Y)), inf)), 1)

(Stat_ok (Inter (Adb (Body 
(Simp Pre Action (reserve 
Y))) inf)) 1)

(["unreserve" 7j, d, 
b ,l)

(Inter (Adb (Body 
(Simp_Pre_Action 
(unreserve, Y)), inf)), 1)

(Stat ok (Inter (Adb (Body 
(Simp Pre Action (unreserve 
Y))) inf)) 1)

("completed", d, b,
D

(Stopped (Compl (d, b)), 
1)

(Stat ok (Stopped (Compl d
b))l) _

("failed", T) (Stopped (failed), 1) (Stat ok(Stopped failed) 1)
("escaped", d, t) (Stopped (Escape(d)), 1) (Stat ok (Stopped (Escape 

d))l)
(lA l  "or" A 2 \ I) (Inter (AIA (Al, inor, 

A2)), 1)
(Stat ok (Inter (AIA Al inor 
A2))l)

(["unfolding" A], d, 
b ,l)

(Inter (Adb (Pre_Action 
(unfolding, A), inf)), 1)

(S ta tok  (Inter (Adb 
(Pre Action unfolding A) 
inf)) 1)
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Action Infixes:
SOS CAML Coq
"and then" and then and then
"then" inthen inthen
"trap" trap trap
"and then moreover" and then moreover and then moreover
"then moreover" then moreover then moreover
"hence" hence hence
"thence" thence thence
"before" before before
"then before" then before then before
"and" innand innand
"moreover" moreover moreover
"or" inor inor
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