
The Numerical Solution of Parabolic
Integro-differential Equations

Lanzhen Xue BSc.

Dublin City University
Dr. John Carroll (Supervisor)

School of Mathematical Sciences

MSc. Thesis by Research

Submitted in partial fulfilment of the requirements

for the degree of Master of Science in Applied Mathematical Sciences

at Dublin City University, May 1993.

DECLARATION

I herby certify that this material, which I now submit for assessment on the programme

of study leading to the award of M.Sc. is entirely my own work and has not been taken

from the work of others save and to the extent that such work has been cited and

acknowledged within the text of my work.

Signed: Date:

Abstract

This thesis is concerned with aspects of the numerical solution of parabolic integro-
differential equations and it consists of two parts. The first part is concerned with project
preliminaries. The second part is concerned with the central theme of this thesis — the
numerical solution of parabolic integro-differential equations.

The first part of the thesis (chapters 2 and 3) deals with aspects of background
knowledge in Numerical Analysis, with emphasis on the numerical solutions of ordinary
differential equations (ODEs for short) and efficient numerical solution techniques for
systems of one-dimensional linear parabolic partial differential equations (PDEs for
short). In particular, we use both comprehensive and sophisticated mathematical software
packages and libraries to get the most reliable, robust and efficient numerical routines for
solving ODEs and PDEs.

In the second part of the thesis, some numerical methods for the solution of integro-
differential equations of parabolic type are discussed, with emphasis on the methods
which use time discretization schemes based on the Backward Euler and the Crank-
Nicolson schemes. The integral term is approximated in each case by a quadrature rule
with relatively high-order truncation error, so that a relatively large time step can be used
for the quadrature so as to limit the storage requirements, without sacrificing the overall
order of convergence.

We describe certain aspects of the numerical algorithms proposed in Le Roux and
Thomee [15] and Zhang [20] and, in particular, we examine ways in which the
algorithms can be implemented efficiently. The solution algorithm proposed in Zhang
[20], referred to in what follows as Modified Method I, is implemented and applied to
solve a number of test problems. Based closely on the ideas of Le Roux and Thomee
[15] , we construct a second package, referred to in what follows as Modified Method
II, which implements a collection of 6 quadrature schemes (the Rectangular Rule,
Trapezoidal Rules A, B and I, and Simpson’s Rules A and B).

We then test the effectiveness of both packages in terms of improvements in accuracy,
storage requirements and execution times by solving some integro-differential equations
of parabolic type and analyzing the results.

The improved methods reduce greatly both the memory and computational expense
involved in solving integro-differential equations of parabolic type. Modified Method
I is shown to be very robust and efficient when solving the standard test problems.
Modified Method II is more efficient than Modified Method I when solving the same
type of problems.

Acknowledgements

I wish to thank all of those who have contributed in various ways towards the completion

of this thesis.

I would like to express my appreciation to my research advisor, Dr. John Carroll, for all

the guidance and support that he gave to me during my graduate studies in Dublin City

University. Also I am grateful to my external supervisor, Professor Vidar Thomèe, for

many suggestion on my work.

I would also like to thank my own family, for their support and encouragement during

the period of my research.

Lastly, thanks to my special friends - my former tutor, Dr. F. W. Liu, for his valuable

assistance and many suggestions, Dr. N. Y. Zhang, G. Wen. and G. F. Sun, X. Lin for

numerous stimulating discussions on my work, Paul Farrell and Kieran Arthur for

carefully reading the manuscript and making a number of English corrections.

Contents

Chapter 1 Introduction... 1
1.1 Opening C om m ents.. 1
1.2 Thesis Outline ... 2

Chapter 2 Ordinary Differential Equations 4
2.1 In tro d u ctio n ... 4
2.2 Basic Approximation Theory of ODEs 4
2.3 Sources of Software ... 8
2.4 Numerical E x p erim en ts ... 10
2.5 S u m m ary ... 18

Chapter 3 Parabolic Partial Differential Equations........................ 19
3.1 In tro d u ctio n 19
3.2 PDE Softw are... 20
3.3 Numerical Experiments ... 24
3.4 S u m m ary 32

Chapter 4 Parabolic Integro-Differential Equations I 33
4.1 In tro d u ctio n .. 33
4.2 Theoretical C onsiderations.. 33
4.3 Time Discretization ... 36
4.4 Quadrature Schemes ... 37

Chapter 5 Parabolic Integro-Differential Equations II 49
5.1 In tro d u ctio n .. 49
5.2 Computer Implementation ... 49
5.3 Test P roblem s.. 58
5.4 Efficiency Considerations... 59
5.5 Numerical Experiments .. 60
5.6 Analysis of R e s u lts ... 66

Chapter 6 Conclusions.. 71

Bibliography .. 74

V

Chapter 1
Introduction

1.1 Opening Comments

This thesis is concerned with aspects of the numerical solution of parabolic integro-
differential equations. The problem may be defined as follows. Let Q be a bounded
domain in Rd with sufficiently smooth boundary dQ., and let 0 < t° < °°. A linear partial
integro-differential equation of parabolic type is

— u(x,t)+Au(x,t)= fB(t,s)u(x,s)ds+f(x,t) (x,f) e Q (0, r°], (1-1)
dt -I

subject to the homogoeneous Dirichlet boundary condition

u(x,t)= 0 (.x,t) e dQ, (0, i°], (1*2)

and the initial condition

u(x,0)=u0(x) x e Q. (1*3)

Here A is an elliptic operator of the form

A = -Y JL- (a..(x) ^)+ aJx) I,
d x t * J d x /

Where the matrix (a'J(x)) iJ=1 is symmetric and uniformly positive definite, and a^x) is
nonnegative on Q. Further

B(t,s) = -J2 - J - (b.(x; r , s) J L + £ b(x\ t,s)JL + b0(x)I
f j l d x t J dXj f j l dXj

1

is a partial differential operator of at most second order. It is assumed that the
coefficients a^x), a^x), bÿ(x;t,s), b0(x;t,s) and /= /(x ,t) are real-valued and sufficiently
smooth functions.

Such problems arise in many applications, including heat conduction in materials with
memory, the compression of poro-viscoelastic media, reactor dynamics, the compartment
model of a double-porosity system and epidemic phenomena in biology.

1.2 Thesis Outline

We now give a brief outline of the main chapters o f the thesis and state the aims and
objectives of each chapter.

Chapters 2 and 3 deal with aspects o f background knowledge in Numerical Analysis, with
emphasis on the numerical solutions of ordinary differential equations (ODEsfor short)
and the efficient numerical solution techniques for systems of one-dimensional linear
parabolic partial differential equations (PDEs for short).

Chapter 2 deals with the numerical solution of ODEs. It also deals with the numerical
procedures used in the approximate integration of systems of ordinary differential
equations. W e close chapter 2 with some numerical experiments which use sophisticated
mathematical software libraries to solve initial value problems (IVPs) for ODEs.

Chapter 3 is devoted to a review of efficient numerical solution techniques for systems
of one-dimensional linear parabolic partial differential equations. We also consider the
application of the numerical software to approximate the solutions of a number of
parabolic equations frequently cited in the literature. We used three effective solvers for
the parabolic PDEs, they are

■ Composite integration scheme (0BDF2) Carroll [13]

■ D 03P G F [2] (in the NAG library)

■ PDECOL [9].

We also present some numerical results to assess the effectiveness of the above solvers.

Chapter 4 and chapter 5 are the central themes of this thesis, in which we are concerned
with aspects of the numerical solution of parabolic integro-differential equations which
were described briefly in section 1.1.

2

In chapter 4 some numerical methods for the solution of integro-differential equations of
parabolic type are discussed. Emphasis is placed on two different time discretizations of
an integro-differential equation of parabolic type. They are based on the Backward Euler
and the Crank-Nicolson schemes. The methods reduce to the backward Euler and the
Crank-Nicolson schemes if the integral term is absent. The integral term is approximated
in each case by a quadrature rule with relatively high-order truncation error so that a
relatively large time step can be used for the quadrature in order to reduce the memory
and computational requirements of the method.

Sloan and Thomee [17], Pani, Thomee and Wahlbin [16], Roux and Thomee [15] and
Zhang [20] proposed some quadrature rules which are more sparse than the standard
methods, that is rules with high orders of accuracy, so that only a part of the time steps
need to be used as quadrature points. They nevertheless retain the order of accuracy of
the standard schemes.

In this chapter we describe certain aspects of the numerical algorithms proposed in Le
Roux and Thomee [15] and Zhang [20] and, in particular, we examine ways in which the
algorithms can be implemented efficiently. The solution algorithm proposed in Zhang
[20], referred to in what follows as Modified Method I, is implemented and applied to
solve a number of test problems. Based closely on the ideas of Le Roux and Thomee
[15] , we construct a second package, referred to in what follows as Modified Method
II, which implements a collection of 6 quadrature schemes (the Rectangular Rule,
Trapezoidal Rules A, B and I, and Simpson’s Rules A and B).

We then test the effectiveness of both packages in terms of improvements in accuracy,
storage requirements and execution times by solving some integro-differential equations
of parabolic type and analyzing the results in the next chapter.

In chapter 5 we give the implementation details for both the modified method, which we
call Modified Method II and modified quadrature schemes proposed by Zhang [20],
which we call Modified Method I. W e present some numerical experiments together
with results analysis to measure the effectiveness of improvements in accuracy, storage
requirements and execution times for both solvers. Numerical experiments employing
finite differences methods demonstrate that Modified Method II not only keeps the
advantages of Modified Method I but also displays more efficiency in terms of storage
requirements and the CPU time.

We close, in chapter 6, with some conclusions and suggestions for future work.

3

Chapter 2
Ordinary Differential Equations

2.1 Introduction

This chapter deals with the numerical solutions of ordinary differential equations (ODEs)
and also with numerical procedures for the approximate integration of systems of ODEs.
We conclude by using sophisticated mathematical software libraries to solve IVPs for
ODEs.

Numerical analysis of ODEs is a vast subject, and the software for solving ODEs has
been highly developed. Numerical methods for ODEs have been studied in many books
such as Lambert [6], Gear [4], Hairer and Wanner [5], Shampine and Gordon [7] and
many references quoted there.

We do not attempt to introduce numerical methods and software for ODEs in detail here,
but focus on using sophisticated mathematical software libraries such as the NAG library
[2]. We discuss how to choose efficient numerical routines for ODE problems. A brief
introduction to the numerical solution of ODEs and characteristics of the mathematical
software libraries are presented.

We show some numerical results to illustrate and compare a variety of performances of
of the state-of-the-art routines which are used in a number of test problems.

2.2 Basic Approximation Theory of ODEs

The most important mathematical model for physical phenomena is the differential
equation. The motion of objects and fluid, heat flow, bending and cracking of materials,
vibration, chemical reactions, and nuclear reactions are all modeled by differential
equations. If a differential equation has one independent variable then it is an ordinary
differential equation. Examples of such equations are

4

(2.1)
y f=x2+y2,
y //+cos(je);y/-3;y = sin(2 x),

The ordinary differential equation problem needs more than a differential equation. To
solve y'"=0 is not a well formulated problem since y(x)=x2+2, y(x)=3x2-2x+4, and
y(x)=l-5x all satisfy this equation. Generally, an equation of order n (that is, the highest
derivative appearing is the nth) requires n additional conditions in order to have a unique
solution. In principle, these conditions can be of any type, for example:

The notation y'=dy/dx is used.

If all the conditions occur at one point, then we have an initial value problem (IYP) for
example:

The problem in (2.2) is called an IVP for ordinary differential equations (ODEs) and it
is one of the main topics in this chapter.

The general form of the IVP for a first-order ODE is

y(3.6)=6.3
y'(2)=2 .2

y(2) +3y/(2)=6, etc.
(2.2)

^ (0) =o
y2(°)=1

^ = - .5 1 ^ 2 y3(0)=l

(2.3)

y\t)=f(t, y(t)) a<t<b, y (a) =y0 (2.4)

while for a system of first-order ODEs it is

yfoWid, yi(0.y2(f)....ys(0) yi(a)=y10
yï(t)=f2(t, yl(t),y2(t),...yn(t)) y2(a)=y20

(2.5)

y'n(t)=fn(t, y1(0 ,;y2(0 ,-..:yn(f)) yn{a>y„o

and for an nth-order ODE it is

5

yw(t)=f(t, y^=yi0, i=0 , 1 , n- 1

0Note: y(n)= i ^) (2'6)
dtn

A higher order ODE can almost always be reduced to the first-order form by introducing
new variables. For example, suppose we have the third-order equation:

z'"+zz"+k(\-z,2)=Q (2.7)

We write y^z, y2=z', y3=z", and the equation (2.7) may then be written as the system

yi=y2

y H (2'8)

thus, the original third-order equation (2.7) can easily be reformulated as a system of 3
first-order equations (2 .8).

It is easy to see that we can use the technique described above to reformulate a
differential equation of order n as a system of n first-order differential equations. The
reformulated problem greatly simplifies the development, use and analysis of methods
for IVPs.

Finding accurate and efficient solution procedures for solving differential equations has
long been a problem of importance. However, in many practical situations, an analytical
solution is either impossible to find or extremely difficult to evaluate. In recent years,
numerical solution procedures for approximating solutions have become increasingly
popular, thanks in large part to the power of modem, high-speed computers.

The numerical methods for ODEs have been studied in many books such as Lambert [6],
Gear [4], Hairer and Wanner [5], Shampine and Gordon [7] and many references quoted
there. The software for solving ODEs using numerical methods has been highly
developed. We will outline basic concepts of the numerical analysis and discuss some
commonly used routines.

Some authors, such as Rice [1], classify the numerical methods for ODEs in the
following:

6

■ The first class consists of simple methods that are reasonably easy to understand
and analyze.

■ The second class includes the first class. It obtains greater accuracy and
efficiency. Also, it is the starting point for the third class.

■ The third class combines integration formulas of the second class with error
control, starting procedures, printing control, etc..

In this section we briefly present here several of the more common, basic and important
numerical methods for IVPs only. Some well know third class numerical methods for
IVPs will be mentioned in the next section.

Before considering the methods, we write the equation for a single first-order IVP as :

y \t) = f(t, y) t>a (2 .9)
y(a) = ri

where / is some known function and Tj defines an initial condition. Each method we
describe for the numerical solution of (2.9) attempts to find an approximation y,- to the
true solution y(tj at a set of discrete points {ti | i=0, 1, ...} where a = t0 < tx <.... This
is done in a step-by-step fashion; that is starting with the initial value y0=ri we compute
yl5 then y2, and so on until some appropriate criterion is satisfied (say, we have obtained
an approximation at t=T). For the moment we shall assume that the distance between
successive discretization points, called mesh points is a constant, h, called the integration
step size that is ti+1-ti=h for i=0 , 1 _

The Taylor series expansion for y(tj+h) about t=t; may be written

h2 ///#x h— y (r.)+...+—
2 ! ‘ y
h2 h'i

y(t+h) =y(ti) +hy'{t.) +— y"(ti) +... +— y (i>(t) +Ry (2>10)
ijY+1

where R=— ___y(Y+1)£) (f, t .X
y (y+1)!

If we have available approximations to y and its first y derivatives (assuming they exist)
at t=ti, the Taylor series (2.10) may be truncated at the remainder term Ry. If we denote
these approximations by yj, y ', y { \ etc., we have the scheme

, / h2 // hy (y) (2 .1 1)yi+1 = y-t + hy> + — y,- + ... + — y,TJ

The local truncation error (LTE) of any numerical scheme is defined to be the difference
between y(tj+1) and yi+1 under the assumption that all values used in the calculation of yi+1

7

are exact. (This definition assumes the absence of rounding error). Further, the scheme
is said to be of order y if the LTE is 0(hT+1). For the Taylor series scheme just outlined
this means that if y/=y"(tj), etc., the LTE is just R̂ , and the method is of order y.

The simplest form of a Taylor series method is derived by setting y=l. In (2.11) we
obtain the one step Euler method:

(2.12)yl+l=yl+hy!=yt+hft
where y;). Assuming that an analytic form for f is available, we may easily
compute y1; y2, ...in turn. Obviously, the equation (2.12) is a first-order method.

We can use the 0 scheme, O<0<1, to provide a general formula for one-step methods as
follows :

yM = y, + Mfl-e)/,+ V J & o

with y0=y(a), and the following are three well-known examples:

(a) the explicit Euler method (0=0) given by formula (2.12).

(b) the implicit Trapezoidal rule (0=1/2) given by

(2.13)

h (f . . (2.14)
?i+i = ^ + 2 (f i +

(c) the implicit Backward Euler scheme (0=1) given by

x-+i = y-t + hA+1
(2.15)

2.3 S o u rc e s o f S o ftw a re

Software for solving ODEs has developed rapidly owing to the nature of the inherently
more complicated problems.

We restrict our discussions to the following two aspects:

■ We briefly describe the characteristics of the comprehensive numerical software,
in particular, the NAG Library.

■ We briefly introduce several popular numerical methods for IVPs in the Library
which are to be used in the next section of this chapter.

As we mentioned in above, there are a lot of programs for solving ODEs. Generally, they
are included in several software sources, such as:

Individual programs (perhaps with a few subprograms) The programs carry out one
specific computation.

A software package It is a set of programs for a particular problem area and is usually
narrowly focused.

A software library It is a much larger set of programs to support general numerical
computation and has well-organized documentation with on-line information.

Hence, we selected the software library as the main sources of software for the
numerical experiments for ODEs in this thesis for the following reasons:

■ It is especially helpful to students of numerical analysis.

■ Provides a broad range of reliable, robust and efficient numerical routines.

■ For an intelligent user, routines of a library should allow quite difficult
problems to be solved with a minimum of programming effort.

It was recognized early as 1951 that software libraries are important in computing [1],
The motivation for using a library program is simple: one avoids writing and debugging
a new program. A numerical software library is a much larger set of programs to support
general numerical computation. About 500 programs are required for good support and
the library must have well-organized documentation and on-line information. The
programs are convenient and reliable. Presently, there are three general comprehensive
libraries for numerical computation that are widely used in scientific and engineering
fields.They are:

• IMSL—IMSL.Inc.
• NAG — Numerical Algorithms Group. Oxford University.
• SL/MATH— IBM Corporation.

9

As the ideal software library selected, the NAG Library includes many routines for the
numerical solution of ODEs. The majority of the routines available can be classified as:

Merson’s method routines The routines make use of the Runge-Kutta-Merson error
control technique and are named D02BxF (where x is A, N, D, G and H) [2]. They are
the best routines for simple problems with low accuracy requirements, that is problems
on a short range of integration, with derivative functions f which are inexpensive to
calculate and where only a few correct figures are required.

Adams’ method routines The routines make use of Adams-Moulton and Adams-
Bashforth formula and are named D02CxF (where x is A, B, G and H) in the Library.
For larger problems, over long ranges or with high accuracy requirements the variable-
order, variable-step routines should usually be preferred.

BDF (or Gear) routines The routines make use of Gear’s Backward Differentiation
Formula (BDF) and are named D02ExF (where x is A, B, G, and H). In describing the
purpose of D02Exf we briefly introduce a term, namely, stiffness. A stable differential
equation is called stiff when it has a decaying exponential particular solution with a time
constant which is very small relative to the interval over which it is being solved. When
stiffness is present in an ODE system, standard methods may fail to compute an accurate
solution, or may require excessive amounts of computation because they need small step-
lengths to avoid numerical instability. Gear’s variable-order variable-step routines should
be used as special purpose algorithms for solving stiff systems.

In order to test the performance of various solvers described above and to show how
suitable selections of various routines enable us to obtain an accurate solution for ODEs,
several numerical experiments for IVPs are given in the next section.

2.4 Numerical Experiments

In this section three routines for three algorithms (Runge-Kutta-Merson’s method,
Adams’ method and Gear’s method) contained in the NAG Library will be applied to
the solution of example IVPs and the performance of the three routines will be compared.

ODE Example 1

Bessel’s equation of order 1/2 with the origin shifted one unit to left, written as a first-

10

y[=y2 jcs [0, 10] ^(0)=.6713967071418030

y'= (---- !----- -l)y . -_Zl- y2(0)=.09540051444747446
4(x+l)2 x+l

An accurate numerical solution is used as a reference solution.

Source: Taken from [4A]

ODE Example 2

Euler’s equations of motion for a rigid body without external forces:

y(=y2y3)\(0)=0
y i - - y ^3 ^ (o w to, io]
ys=-5 l y ^ y3(0)=l

An accurate numerical solution is used as a reference solution.

Source: Taken from [4A]

ODE Example 3

A radioactive decay chain problem:

y[=-yx yj(0)=l [0 , 1 0]
y'=(i-i)yi.riyi >\-(0)=0 i=2,3,4,. ..,9
yio=9yg yw(0)=0

An accurate numerical solution is used as a reference solution.

Source: Taken from [4A]

ODE Example 4

The Robertson chemical kinetics problem:

order system:

(2.16)

(2.17)

(2.18)

11

+.0 1 ^ }’1(0) = 1

y '=40 Oy1 -100yy3 -300Oy22 y2(0) =0
y'=30y\ x e [0, 10] y3(0)=0

(2.19)

An accurate numerical solution is used as a reference solution.

Source: Taken from [4A]

ODE Example 5

/ '= - . 5 - / - (COs(*)+y-), *e [-.43, 0], (2<20)

y(0)= /(0)=l

An accurate numerical solution is used as a reference solution.

ODE Example 6

, 2x3-2x m
y * ---------------- 2]> (2 .2 1)

J(0)=1

An accurate numerical solution is used as a reference solution.

The following tables show the numerical results for the three methods, Runge-Kutta-
Merson, Adams and Gear methods, applied to the solution of the six example ODE
problems above. For each problem the performances of the three methods are compared
in terms of accuracy and efficiency. The accuracy of each algorithm is illustrated by the
global error at the endpoint of each example. The efficiency of each method is expressed
using, NFE, the number of function evaluations used and the CPU-seconds taken
throughout the integration. The notation used and statistics collected include:

TOL a scalar value for error tolerance used in time integration. The value TOL is
supplied by the user to the NAG D02 routines, it specifies a local error request
and is not a global error bound. The idea of tolerance proportionality is used here,
i.e., for some problems, the global error is roughly proportional to TOL. However,
the relation between TOL and the accuracy is not guaranteed. The user is
recommended to call D02 with more than one value for TOL and to compare the

12

results obtained to estimate their accuracy.

Erx (where x is the number of equations in the system of ODEs) the global error at
the endpoint for each problem.

NFE the number of function evaluations.

CPU the execution time in seconds on a DEC VAX/6230.

Examples 1 and 2 are non-stiff systems. Accurate reference solutions obtained by solving
the problem with the stringent tolerance of TOL= 10"12 are used as reference solutions
for comparison with the computed solution which have different values of TC)L=10'4,
10'5,...,10"9. Tables 2.1 and 2.2 show several integration statistics for solutions obtained
for Examples 1 and 2 using the three methods respectively and it is easy to see that:

The Runge-Kutta method exhibits a higher degree of tolerance proportionality than the
others. If parameter TOL > 10'6 for ODE problem 1 and TOL > 10"7 for ODE problem
2 the solution cannot be computed using this method.

Gear’s method is more expensive than the others because it makes more function calls.

The Adams routine makes less function calls but the overall time is more than that for
the Runge-Kutta method.

Comparing the accuracy of the three methods in terms of global error measurements, the
Runge-Kutta method is the best one.

13

Table 2.1

ODE Example 1

METHODS Adams Gear Runge-Kutta

TOL Erl Er2 NFE CPU Erl Er2 NFE CPU Erl Er2 NFE CPU

.ID-3 .4D-4 .ID-3 29 0.2 .3D-4 .ID-4 50 0.4

.ID-4 .ID-4 .5D-5 36 0.3 .6D-5 .ID-5 68 0.5

.ID-5 .2D-5 .ID-5 54 0.3 .3D-6 .5D-6 80 0.6 .5D-6 .ID-5 37 0.1

.ID-6 .3D-6 .ID-6 62 0.4 .6D-8 .3D-7 98 0.7 .9D-7 .2D-6 52 0.2

.ID-7 .4D-7 .ID-7 72 0.4 .3D-8 .2D-9 105 0.8 .ID-7 .3D-7 71 0.2

.ID-8 .6D-8 .3D-8 80 0.5 ,lD-8 .4D-9 130 1 .2D-8 .6D-8 101 0.3

Table 2.2

ODE Example 2

METH Adams Gear Runge-Kutta

TOL E r l Er2 Er3 NFE CPU E rl Er2 Er3 NFE CPU E rl Er2 Er3 NFE CPU

.ID-3 .5D-3 .3D-3 .9D-4 39 .4 •3D-3 .3D-3 .3D-3 60 0.6

.ID-4 ■5D-4 .6D-4 .6D-4 47 .4 .8D-6 .ID-4 .ID-4 68 0.7

.ID-5 .2D-5 .2D-5 .9D-6 60 .5 .ID-5 .4D-5 .3D-5 84 0.8

.ID-6 •9D-7 .5D-7 .2D-6 70 .6 •2D-6 .ID-6 .9D-7 99 1 .2D-7 .3D-7 .ID-7 83 .4

.ID-7 ■ 2D-7 .ID-7 .3D-7 74 .7 .4D-7 .2D-7 .2D-7 123 1.2 .2D-8 .3D-8 .ID-8 138 .5

.ID-8 •7D-9 .4D-8 .4D-8 86 .8 .9D-8 .ID-8 .2D-8 148 1.4 .2D-9 .3D-9 .ID-9 233 .6

14

Example 3 is a mildly stiff system. The comparison of the performances in Table 2.3 is
similar to those for Examples 1 and 2.

Table 2.2

ODE Example 3

Runge-Kutta Method

TOL NFE CPU E rl Er2 Er3 Er4 ErS Er6 Er7 ErS Er9 ErlO

.ID-7 29 03 .5D-9 .5D-9 .5D-9 .5D-9 iD -9 .5D-9 .5D-9 .5D-9 .5D-9 .4D-8

.ID-8 38 0.4 .ID-9 .ID-9 .ID-9 .ID-9 .ID-9 .ID-9 .ID-9 .ID-9 .ID-9 .9D-9

Adams' Method

TOL NFE CPU E rl Er2 Er3 Er4 Er5 Er6 Er7 Er8 Er9 ErlO

.ID-3 38 0.5 .7D-7 .7D-7 .7D-7 .7D-7 .7D-7 .7D-7 .7D-7 .7D-7 .8D-5 .7D-5

.ID-4 28 0.4 .3D-6 .3D-6 .3D-6 .3D-6 .3D-6 .3D-6 .3D-6 .4D-6 .5D-6 .2D-5

.ID-5 33 0.5 .ID-6 .ID-6 .ID-6 .ID-6 .ID-6 .ID-6 .ID-6 .ID-6 .ID-6 .ID-5

.ID-6 36 0.6 .ID-7 .ID-7 •ID-7 .ID-7 .ID-7 .ID-7 .ID-7 .ID-7 .ID-7 .ID-6

.ID-7 36 0.8 .3D-10 .3D-10 3D-10 .3D-10 .3D-10 •3D-10 .3D-10 3D-10 .3D-10 3D-9

.ID-8 55 1 .9D-10 .9D-10 .9D-10 .9D-10 .9D-10 .9D-10 .9D-10 .9D-10 .9D-10 .8D-9

Gear’s Method

TOL NEF CPU E rl Er2 Er3 Er4 ErS Er6 Er7 ErS Er9 ErlO

.ID-3 69 0.9 .ID-5 .ID-5 .ID-5 .ID-5 .ID-5 .ID-5 .ID-5 .ID-5 .ID-5 .ID-4

.ID-4 85 1.1 .5D-6 JD-6 .5D-6 .5D-6 .5D-6 .5D-6 .5D-6 .5D-6 .5D-6 .5D-5

.ID-5 100 1.4 .4D-7 .4D-7 .4D-7 .4D-7 .4D-7 .4D-7 .4D-7 .4D-7 .4D-7 .3D-6

.ID-6 111 1.7 .ID-7 .ID-7 .ID-7 .ID-7 .ID-7 .ID-7 .ID-7 .ID-7 .ID-7 .ID-6

.ID-7 130 2 .4D-9 .4D-9 .4D-9 .4D-9 .4D-9 .4D-9 .4D-9 .4D-9 .4D-9 .4D-8

.ID-8 161 2.5 .2D-9 ,2D-9 .2D-9 .2D-9 .2D-9 .2D-9 .2D-9 .2D-9 .2D-9 .2D-8

Problem 4 is quite a stiff system. For the problem, the performances of the three routines
are:
Runge-Kutta method requires excessive amounts of computation because of the need
for small step-lengths which causes more expense because of the resulting high NFE calls
and CPU time.

Gear’s method is the most efficient for the stiff system.

The Adams routine requires excessive amounts of computation because of the need for
small step-lengths which causes more expense because of the resulting high NFE calls

15

and CPU time.

Table 2.4

ODE Example 4

Meth Adams Gear Runge-Kutta

TOL E rl Er2 Er3 NFE C Erl Er2 Er3 NFE C Erl Er2 Er3 NFE C
P P P
U U u

.ID-3 .ID-6 .3D-4 .ID-4 5419 33 .5D-5 .4D-5 .5D-3 35 1.4

.ID-4 .ID-6 .ID-4 .ID-4 5778 34 .2D-5 .ID-5 .2D-3 43 1.5

.ID-5 .ID-6 .ID-6 .ID-4 5565 34 .ID-6 .ID-6 .ID-4 56 1.6

.ID-6 .2D-6 .2D-6 .2D-4 5080 35 .ID-7 .8D-8 .ID-5 55 1.7 .2D-11 .4D-7 .2D-9 3978 7.8

.ID-7 .ID-6 .ID-6 .ID-4 6222 39 .8D-9 .6D-9 .8D-7 83 2 .4D-11 .6D-7 .2D-9 3989 7.8

.ID-8 .2D-7 .2D-7 .2D-5 6201 39 .2D-9 .ID-9 .2D-7 79 2.1 .2D-12 .3D-8 .ID-10 3992 8.4

16

Example 5 is solved on the interval [-.43, 0]. For this example, the comparison of the
performances of the three routines is similar to that for Examples 1 and 2.

Table 2.5

ODE Example 5

METHOD Adams Gear Runge-Kutta

TOL Erl Er2 NFE CPU Erl Er2 NFE CPU E rl Er2 NFE CPU

.ID-2 .ID-3 .2D-3 18 .3 ,lD-3 .2D-3 31 .3

.ID-3 .3D-4 .6D-4 21 ,3 .4D-4 .8D-4 35 .4

.ID-4 .5D-5 .8D-5 38 .3 .6D-5 .ID-4 41 .4

.ID-5 .9D-6 .2D-5 43 .4 .5D-6 .ID-5 57 .4

.ID-6 .9D-7 .2D-6 48 .4 ■ 7D-8 .7D-7 60 .5

.ID-7 .8D-8 .ID-7 52 .4 .4D-8 .8D-8 69 .5

.ID-8 .8D-9 .ID-8 58 .4 •9D-9 .3D-8 83 .5 • ID-09 .2D-9 47 .3

.ID-9 .8D-10 .ID-9 65 .4 .5D-10 .2D-9 88 .6 .ID-10 .2D-10 71 .3

Example 6 is solved on the interval [0, 2], For this example, the three methods need a
higher degree of tolerance proportionality, TOL= 10"9, 10' 10 and 10'11.

Table 2.6

ODE Example 6

METHOD Runge-Kutta Gear Adams

TOL Erl NFE CPU Erl NFE CPU Erl NFE CPU

.ID-08 .6D-08 51 2 .ID-11 77 1.3

.ID-09 .5D-09 57 2.2 .6D-13 122 1.5 .3D-09 43 1.5

.ID-10 .2D-10 44 2.5 .3D-14 206 1.7 .2D-10 50 1.5

17

2.5 Sum m ary

In this chapter of the thesis we have considered a number o f routines from the NAG D02
chapter of the library for ODEs. We are concerned only with methods for initial value
problems, although some of the codes to solve boundary value problems make use of
similar techniques. Three basic methods are employed; a fixed-order Runge-Kutta-Merson
method, a variable-order Adams method and a variable-order BDF method.

The comparison of the performances of the three solvers is described in section 2.4 and
demonstrated the more useful experiences for determining a best approximation. For
example, the BDF routines are particularly well suited to the solution of stiff problems.
For non-stiff problems the choice between the Merson and Adams methods will largely
be governed by the cost evaluations of the functions appearing in the differential
equation. If these are relatively cheap, the use of a Merson routine is likely to prove the
more efficient.

In the next chapter, we address the problem of partial differential equations (PDE). It will
be shown that systems of ODEs occur naturally in the application of approximation
techniques to more complex problems. For example, the parabolic PDE,

3a (* , t) = 3 V * ,<) 0 < l < 1 _ ^ (222)
dt d2x

with appropriate initial and boundary conditions which ensure a unique solution, may be
approximated using the method of lines (see Carroll [13] and the references quoted
therein), which will be mentioned in the next chapter, to yield the system

u ’(t) = Au(t) + b(t),

where A is a tridiagonal matrix, uT = (uj(t), u1(t),...,un(t)), and U ;(t) represents an
approximation to u(xi5t) for some X; e [0,1] and t > 0.

18

Chapter 3
Parabolic Partial Differential Equations

3.1 Introduction

In this, the second phase of the project, we review efficient numerical solution techniques

for systems of one-dimensional linear parabolic partial differential equations (PDEs for

short). We also consider the application of the numerical PDE software to approximate

the solutions of a number of test problems frequently cited in the literature.

Partial differential equations (PDEs) occur widely in science and engineering and have

led to the development of a large body of numerical methods. The most successful PDE

computer codes, for example PDECOL [9], and D03PxF (where x is A, B or G) [2]

(NAG library) have involved the discretisation of the problem in the space dimension

(semidiscretisation) and its reduction to a system of ODEs which can be routinely solved

using available high quality ODE integrators. When semidiscretisation is performed using

Finite Differences the procedure is known as the "Method of Lines" (MOL).

We briefly outline a numerical solution procedure for the approximate integration of

systems of one-dimensional parabolic PDEs using the composite integration scheme
(QBDF2). This applies the numerical method of lines to approximate the solution of

parabolic PDEs in one space dimension. More generally, we approximate the spatial

derivatives by discrete values of the solution at a set of mesh points in space. We can use

these approximations to represent the partial differential equations at each mesh point,

giving a semidiscrete system of ODEs in the time direction. The resulting ODE system

is integrated numerically using a second-order L-stable composite integration scheme [8]

using variable stepsize sequences, Carroll [13],

We present some numerical experiments to evaluate the performance and effectiveness

of three software sources, D03PGF [2], PDECOL [9] and 0BDF2 [13].

19

3.2 PDE Software

Partial differential equations (PDEs) occur widely in science and engineering and have
led to the development of a large body of numerical methods. One of the most popular
approaches in the numerical solution of PDEs is the Method of Lines (MOL). The MOL
approach involves semidiscretizing the PDE system — replacing the spatial derivative
terms with finite difference approximations to yield a system of time dependent ODEs.

In this section, we are interested in applying basic solution techniques to systems of one
dimensional parabolic PDEs, using PDE software such as PDECOL [9], 0-BDF2 [13] and
NAG Routine D03PGF [2].

NAG D03PGF: This routine is designed to solve a general system of N parabolic
equations of the form

du. JL 3 dU.
C 1 = Y — (g____ 1) + /. i=l,2,...,N (3-1)

* dt & J &

subject to the general boundary conditions

P i W i + <7 , (i) 5 = r (j u i t f) i=l,2,..,N (3.2)
ox

in either Cartesian, polar or spherical polar coordinates.

The method of lines approach is used in which the spatial terms are discretised using
second order centred Finite Differences. If the boundary conditions are such that q is
non-zero then the accuracy at the boundaries is of order one. Discontinuities are
permitted between the initial and boundary values and the user may choose from a
limited number of fixed non-uniform grids. The ODE integrator for this package is the
GEARIB variable order/variable step code. The initial time step is automatically chosen
by the program and subsequent steps are chosen so that a user specified accuracy in the
time integration is maintained. The code is robust and allows automatic resetting of the
integration in the case of rejected time steps.

PDECOL: This routine by Madsen and Sincovec [9] solves the general system of N

20

dui f* ™— l = f i(t,x,U,Ux,U J i = 1,2,...,N (3.3)
at

Since the system incorporates ODEs and the three standard types of PDEs then for each
equation of the system zero, one or two boundary conditions may be needed. They must
be of the form

b.{U,U) = zff) (3.4)

and most be consistent with the initial conditions. The program semidiscretises in space
using a Finite Element collocation procedure with piecewise polynomial test functions.
The degree of these polynomials is required to be higher than the degree of the PDE(s)
being solved. The user specifies the numerical grid and the result of the automatic
semidiscretisation is the ODE system

A ^ L = g(t,U) (3.5)
dt

The main restrictions in PDECOL are the requirements for continuity between the initial

and boundary conditions which limits its applicability. Also, the nonconservative nature
of collocation methods in general makes them inappropriate for problems where a
conservation law must be satisfied.

partial differential equations

0BDF2: This routine by Carroll [13] solves the general numerical integration of systems
of PDEs of size NPDE

TJt = [A(x,t,u)Ux\x + g(x,t,u,Ux) (3.6)

for (x, t) e [a, b] * [0 , t°], subject to appropriate initial and boundary conditions, where
U=[ul5 u2, ..., Unpqe] 7 , A is an NPDE * NPDE uniformly positive definite matrix whose
coefficients {â } are uniformly Lipschitz continuous as functions of u, x, and t. We
assume that g, together with the prescribed initial conditions, U(x,0) = U0(t), are
uniformly Lipschitz continuous on [0, 1] * [0,T] and [0,1] respectively.

The numerical method of lines is used to solve a system of PDEs in one space

dimension. By approximationg the spatial derivatives by discrete values of the solution
at a set of mesh points in space, then using these approximations to represent the PDEs

21

at each mesh point, gives a semidiscreste system of ODEs in the time direction. The
resulting ODE system is integrated numerically using a second-order L-stable composite
integration scheme [8] using variable stepsize integration. The main numerical solution

procedures in routine 0BDF2 is:

Numerical Method of Lines [13]. We consider the application of the MOL when applied
to approximate the solution of the single parabolic equation

u t = k u ^ +g(x, t, u, ux) x e [0,1], k > 0 (3.7)

subject to the boundary conditions

a0(t)u + b0(t)ux = c0(t) at x = 0 ,

aj(t)u + b!(t)ux = cx(t) at x = 1 ,

and the initial condition
u(x,0) = u0(t) 0 < x < 1 ,

It gives a boundary value problem in x and an initial value problem in t. We represent
the partial derivatives on the right-hand side of (3.7) by appropriate difference
approximations using a fixed uniform or non-uniform mesh on the interval [0,1]. Using
these approximations at each mesh point reduces the problem to solving a system of
ODEs in time which we subsequently solve using a temporal integration scheme. By
generating the mesh

{xj}, i = 1,2,...,N, xi+1=xj + hi, 1 < i < N-l,

with Xj = 0 and xN= 1, a possible semidiscretization of (3.7) is

u[- k D ^ D u i + g(x, t, u,D qu) 2<i<N-l, (3*8)

where D , D0 and D+ are respectively the backward, central and forward difference
operators:

22

u -u . , U. ,+U. , U. ,~U-
D u.=— — -, Dm. - 1+1 ‘~x D+u = - ‘, (3.9)

‘ ‘ A. . 0 ‘ h. ,+h. + ‘ /i.i-1 l-l I I

so that the standard three point difference approximation to the second derivative is give

by

û D p _ u i=— J — — [hui_1 -0 V L +h)u.+h._1uM] (3.10)

The case i= l and i=N are treated separately and their forms depend on the type of

boundary conditions (see Carroll [13]).

Temporal Integration: The semidiscretization employed in the numerical method of

lines leads to the system of ODEs

u'=f(t, u) w(0)=u0 (3.11)

where u=[ul5 u2,...uM] where M = N * NPDE. To solve the system (3.11) numerically, we

step from t„ to ^ + At by the application of a composite integration formula [13]. For

some 0 <y< 1 we approximate u(x, tn +yAt) using the 0-scheme

un+y = un + y A i[(l-0) /n + 0 /n+y] O<0<1 (3.12)

and the solution is used in a 2-step backward differentiation type formula to approximate

u(x, tn+1) as follows:

+ « i Mnn + a 2Un,i = A C i (3'13)

The coefficients y, <Xq, and which were presented in [8, 13] are generated by

requiring that the overall scheme is second-order accurate in time and also that both

formulae share a common iteration matrix:

B=I-QyAtJ, J=M. , (3.14)
du

in a modified Newton iteration scheme which was described in [13]. An estimation of

local truncation error (LTE) at each time step was considered in [8],

23

3.3 N u m erica l E xp erim ents

In this section, we consider the application of the three solvers that were mentioned in
the last section to approximate the solutions of a number of parabolic equations
frequently cited in the literature. We present a comparison of the results of the numerical
experiments for the three solvers, 0BDF2 [13], D03PGF [2] and PDECOL [9].

The notation used and the statistics collected for the experiments include :

NSTEP the number of the number of integration steps.
NFE the number of function evaluations.
NJE the number of Jacobian evaluations.

NFCALLS the number of calls to the function [A(x,t,u)ujx + g(x,t,u,ux)~
ERRGLO the maximum absolute component of error over the integration interval.

CPU the execution time in seconds on a DEC VAX/6230.
TOL a scalar value of ATOL.

24

PDE Problem 1

PI: This is the first example taken from [13]:

U^U^+nhininx),

m(0 , t)=u(1 , i)=l; t>0, u(x, 0)=1 , 0 <x<l,<l, (3 .1 5)

whose exact solution is
u(x, i)=l +[1 ~e _7tV| sin(7tjc).

Table 2.11

The results for P I using 0BDF2
the TOL between 10'2 and 10 s with a uniform mesh (N=21)

TOL 0.1D-01 0.1D-02 0.1D-03 0.1D-04

NSTEP 11 2 0 35 64
NFE 34 69 150 301
NJE 4 5 7 8

ERRGLO .95D-2 .36D-2 .23D-2 .21D-2
NfCALLS 646 1311 2850 5719

CPU 0.32 0.60 1.29 2.58

25

Table 2.12

The results for PI using 0BDF2

the mesh points between N=21 and 81 with a fixed TOL = (10'3)

N 2 1 41 61 81

NSTEP 2 0 2 0 2 0 2 0

NFE 69 69 69 69
NJE 5 5 5 5

ERRGLO .36D-2 .27D-2 .23D-2 .23D-2

NfCALLS 1311 2691 4071 5451
CPU 0.62 1.17 1.74 2.3

Table 2.13

The results for P I using D03PGF (NAG Routine)
the mesh points between N=21 and 81 with a fixed TOL = (103)

N 2 1 41 61 81

NSTEP 44 46 45 45
NFE 135 259 296 376
NJE 4 5 4 4

ERRGLO 0.5D-02 0.41D-02 0.4D-02 0.4D-02

NfCALLS 1344 2870 3965 5265
CPU 0.83 1 .6 6 2.32 3.06

26

Table 2.14

The results for PI using PDECOL Routine

the mesh points between N=21 and 81 with a fixed TOL = (103)

N 2 1 41 61 81

STEPS 31 30 31 32

NFE 41 41 47 46
NJE 7 8 8 8

NfCALLS 1764 3444 5856 7614

CPU 0.77 1.50 2.34 3.18

We first apply the composite scheme, 0BDF2, to solve P I over a range of tolerance
values between 10'2 and 10'5 using a fixed uniform mesh of width 1/20. The results are
presented in Table 2.11.

As a contrast, we also apply the scheme to solve the problem over a range of spatial
mesh densities using a fixed tolerance of integration (1 0 3) and we compare the results
of 0BDF2 with the corresponding statistics for NAG routine D03PGF and PDECOL. The

details for these are given in Tables 2.12, 2.13 and 2.14 respectively. It is clear that the
0BDF2 routine is the most efficient of the three routines in terms of the CPU time used,
D03PGF is more efficient (in terms of computation overhead) and PDECOL takes the
largest CPU time.

27

PDE Problem 2

u rOlJxx+ f (x, t) 0<x<l, 0<r<l, (3.16)

where the function /(x, t), the Dirichlet boundary conditions and initial conditions are
chosen so that the exact solution is

u(x,t) = tanh[5(x+t-l)] = 10

Table 2.15

The results for P2 using 0BDF2
the TOL between 10‘2 and 10 s with a uniform mesh (N= 41)

P2: This is the second example taken from [13]:

TOL 0.1D-01 0.1D-02 0.1D-03 0.1D-04

NSTEP 13 25 52 92

NFE 65 123 254 474
NJE 3 4 8 10

ERRGLO .31D-1 .72D-2 .18D-2 .48D-3

NfCALLS 2535 4797 9906 18486

CPU 1.17 2.16 4.44 8.26

28

Table 2.16

The results for P2 using 0BDF2

the mesh points between N=21 and 81 with a fixed TOL = (103)

N 2 1 41 61 81

NSTEP 25 25 25 26

NFE 115 123 123 1 2 2

NJE 4 5 5 5

NfCALLS 2185 4797 7257 9638

ERRGLO .73D-2 .72D-2 .72D-2 .72D-2

CPU 1.05 2.16 3.23 4.25

Table 2.17

The results for P2 using D03PGF(NAG)
the mesh points between N=21 and 81 with a fixed TOL = (10'3)

N 2 1 41 61 81

NSTEP 54 54 48 48
NFE 146 142 240 296

NJE 4 2 3 3

NfCALLS 1575 2747 4087 5103

ERRGLO 0.11D-01 0.95D-02 0.90D-02 0.87D-02

CPU 0.93 1.61 2.29 2.89

29

We take o = 10"2. On a uniform mesh of width 1/40, we solve this equation using 0BDF2
for four tolerance values and the results are given in Table 2.15. As before, we also apply
0BDF2 to solve the problem over a range of spatial mesh densities between N=21 and
N=81 using a fixed tolerance of integration (10'3)and compare the results with the
corresponding statistics for NAG Routine D03PGF. The details are presented in Tables
2.16 and 2.17 respectively. The composite integration scheme 0BDF2 compares
favourably with NAG Routine D03PGF in terms of accuracy, but it is less efficient in
terms of NfCALLS (and hence CPU).

P3: We take our third example from [13] and it is a coupled system of two equations.

PDE Problem 3

u=[v2u] - m v - m 2 + 10
t L X J X

v, = [w V] + U +UV-V2
t L X J X X X

(3.17)

where 0 < x < 1 and 0 < t < 1 , the boundary conditions are

u(0 , t)=l/2 , v (0 , t)=7C,

ux(l, t)=l/2 -sin(uv), vx(l, t)=l+cos(uv),

and the initial conditions are

u(x, 0)=l/2 (x+l), v(x, 0)=I1 0 < x < 1 .

30

Table 2.18

The results for P3 using 0BDF2

the TOL between 10'2 and 10 s with a uniform mesh (N=31)

T OL 0.1D -01 0.1D -02 0.1D -03 0.1D -04

STEPS 29 37 69 116

NFE 132 192 444 835

NJE 10 13 16 19

NfCALLS 3960 5760 13320 25050

CPU 2.14 3.05 6.71 12.48

T able 2.19

T he resu lts for P3 using N A G routine D 03P G F

the T O L betw een 10‘2 and 10 s w ith a un iform m esh (N=31)

TO L 0.1D -01 0.1D -02 0.1D -03 0.1D -04

STEPS 8 6 83 1 2 0 180

NFE 468 588 951 1 2 0 1

NJE 6 8 13 16

NfCALLS 4309 4619 7347 9982

CPU 2.97 3.14 4.98 6.98

31

Table 2.20

The results for P3 using PDECOL routine

the TOL between 10'2 and 10‘5 with a uniform mesh (N=31)

TO L 0.1D -01 0.1D -02 0.1D -03 0.1D -04

steps 28 47 76 115

NFE 43 6 8 108 159

NJE 1 2 1 2 15 2 2

NfCALLS 2728 4278 6758 9920

CPU 2.19 2.89 4.34 6.40

We compare the three routines, 0BDF2, D03PGF and PDECOL by applying them to
approximate the solution of the problem over a range of tolerance values on a fixed
uniform mesh of size 1/30. The results for the three methods are presented in Tables
2.18, 2.19 and 2.20.

Of the three approaches, PDECOL appears to be slightly faster than D03PGF both having
comparable CPU times. The 0BDF2 scheme is the least competitive for this problem and
is particularly inefficient for the smaller tolerance values.

3.4 Summary

In this chapter we have discussed three sources of PDEs, PDECOL, D03PGF and 0BDF2,
including the main solution procedures. We introduced some solution methods for PDEs
such as a discretization in both space and or time, using finite differences and forming
an approximation using the 0-scheme. The above methods have been incorporated into
the numerical procedure for the approximate solution of integro-differential equations. It
is this which will be addressed in the following chapters. The use of such state-of-the-art
routines provides a foundation and model for the main goal of this thesis, i.e., to

implement an efficient solver to approximate the solution of integro-differential equations.

32

Chapter 4

Parabolic Integra-Differential Equations I

4.1 Introduction

In this chapter we shall turn to the main subject of the thesis: the numerical methods for
the solution of integro-differential equations of parabolic type.

We consider two different time discretizations of an integro-differential equation of
parabolic type based on the Backward Euler and the Crank-Nicolson schemes,

respectively, namely, the methods reduce to the backward Euler and the Crank-Nicolson
schemes if the integral term is absent. The integral term is approximated in each case by
a quadrature rule with relatively high-order truncation error, so that a relatively large time

step can be used for the quadrature, in order to reduce the memory and computational
requirements of the method (see Sloan and Thomee [17]).

Many authors suggested some quadrature rules which are more sparse than the standard
methods, but nevertheless retain the order of accuracy of these time discretization
schemes. Roux and Thomee [15], Sloan and Thomee [17] and Zhang [20] suggested such
kinds of methods which we collect and implement. In this chapter we describe certain
aspects of the numerical algorithms which were suggested by the above authors. We give
a more detailed description of the collected methods and present the quadrature schemes.

4.2 Theoretical Considerations

In this section we give a brief introduction to the theoretical background, fields of
applications and recent developments of methods in the numerical solution of integro-

differential equations.

33

We shall consider equations of the form

t

— u(x,t)+Au(x,t)= fB(t,s)u(x,s)ds+f(x,t) (x,t) e Q (0, f°], (4*1)
dt {

subject to the homogeneous Dirichlet boundary condition

u(x,t)= 0 (x,t) e 3Q (0 , f°],

and the initial condition

u(x,0)=uQ(x) x e Q.

Here A is an elliptic operator of the form

A = -Y — (a.(x)—)+ a (x) I,
¿Z dx. d x / oK

Where the matrix (alj(x)) iJ=1 is symmetric and uniformly positive definite, and a,,(x) is
nonnegative on Q. Further

B(t,s) = ~Y^ (Pipr,tj)JL)+J2 bfi;t,s)JL +b0(x)I (4.5)
ij=l uXi OX- ij=1 ox.

is a partial differential operator of at most second order. It is assumed that the
coefficients a^x), a^x), b^x; t, s), bj(x; t, s), b0(x; t, s) and /=/(x,t), u=u(x,t) are
sufficiently smooth functions and real-valued.

Such problems and variants of them arise in many applications, such as in heat
conduction in materials with memory, compression of poro-viscoelastic media, nuclear
reactor dynamics, etc., and have been extensively investigated in the mathematical
literature, see, e.g., the references quoted in Thomee [18] and Zhang [20].

The numerical solution of problems like that in (4.1) by means of finite differences has
been studied by many authors such as Douglas and Jones (1962), Habetler and Shciffman
(1970), Pavlov (1968), Rektorys (1963), Tavernini (1977) and Thompson (1973).
Recently finite element methods have been studied by Greenwell, Yanik and Fairweather
(1986), Roux and Thomee (1986), Thomee and Zhang (1989), Cannon and Lin (1987)
and etc. Howevere, special attention to the time stepping has been studied by Sloan and

34

Thomee [17], Zhang [20], Thomee [18], [19], and Le Roux and Thomee [15]. The
present work is based on implementing and extending some of the methods mentioned
by the above authors.

Zhang [20] considered the time discretization of the equation (4.1)

u.'+Au= JB(t , s)u(s)ds +f(t)=Bu(t)+f(t) 0 < t < t°
o

u (0) = uQ

In applications, A will often be a second order elliptic operator, and B(t,s) an arbitrary
second order partial differential operator of order p < 2. Let k > 0 be the step-size and
t„=nk, let an((J)) be a quadrature rule with weight, {conj}, such that, for (|) e C([0, t0]) and
< |)j= <])(tj), we have

n- 1

(4,7)
>o i

The time discrete versions of (4.1) we shall study are of the form

dtU +AU = y (ù B(t ,t.)U.+fi n n y nj x n5 / ' j J n
>=0

=cn(B(tn)U)+f n (4.8)
=cn(BU)+f n, 0 < tn < t°

Uo = uo

For an example, we approximate (4.6) by a Backward Euler (B.E.) type scheme defined
by

Un~Un-\+AU=Gn(B(tn)U)+f(tn) 0 < tn < t° (4.9)
K

It is easy to see that the simplest quadrature rule that is consistent with the O(k) accuracy
of the Backward-Euler scheme is the rectangular rule, that is the rule with weights

œnj = k for 0 < j < n-1.

35

However, to calculate un by this scheme using the standard rectangular rule, we have to

use, and thus store, all the previous values of the solution u0, ..., u ^ , and hence, a huge

amount of memory will be occupied for the calculation. In particular, to compute un,

0<tn<t°, the solution needs to be stored at t°/k time levels. Obviously, this is undesirable

in practice. Thus the number of time levels used in the quadrature will be one of the key

criteria in choosing quadrature rules, this will be the main topic in our later discussion.

In order to reduce the storage requirement, Sloan and Thomee [17], Pani, Thomee and

Wahlbin [16], Le Roux, Thomee [15] and Zhang [20]. proposed some quadrature rules

which are more sparse than the standard methods, but nevertheless retain the order of

accuracy of these time discretization schemes.

The present work is based on some proposed methods which were suggested by Le Roux

and Thomee [15] and Zhang [20], and may be considered as an implementation of

existing solvers. A detailed discussion of the methods shall be presented in the rest of

this thesis.

4.3 Time Discretization

This section deals with the time discretization of integro-differential equations of

parabolic type (4.1), based on the Backward-Euler and Crank-Nicolson discretization

schemes [17].

Firstly, we briefly consider the concrete situation of a partial integro-differential equation

of parabolic type in space and time.

Subdivide the x-t plane into sets of equal rectangles of side Ax = h, At = k, and let the

co-ordinates (xj5 tj) of the representative mesh point be

x—ih, tj=jk, i=0,l,...,M ; j=0,l,...,N ,

where i, j, M and N are integers, h= l/M and k=t°/N.

In this work we restrict our attention to the time discretization and less attention will be

36

paid to the problem of space discretization. However, in practice the space and time

discretization must be carried out simultaneously.

More generally, we consider a time discretization based on the "0-scheme", where 0 is

some value between 0 and 1. We discretize the parabolic integro-differential equation

using the "0-scheme" and replace the integral term by a quadrature formula, o”. The

result is the scheme,

and the quadrature weight {conj} are chosen so that for cp e c[0, t°] and cpj = cp(tj) we have

The backward Euler scheme and the Crank-Nicolson scheme, which were defined in

Zhang [20], are the special cases of this 0-scheme when we choose 0=1 and 0=1/2,

respectively. The precise choice of the quadrature formulas will be explained in the next

section.

4.4 Quadrature Schemes

We consider some effective methods for the numerical solution of problem (4.1) and our

particular concern in this work will be a class of quadrature rules whose quadrature

weights {conj} are defied by,

where

ef„+(i-e)i„_,

(4.12)

(4.13)

37

This class contains not only the natural rectangular rule, whose quadrature weights are

Cflnj= k , but also other rules with relatively high-order truncation error, so that a relatively

large time step can be used for the quadrature, in order to reduce the memory and

computational requirements of the methods.

In this section we shall focus our attention on the discussion of quadrature schemes

based on the trapezoidal and Simpson’s rules that have, as far as possible, the maximum

time step or minimum number of quadrature points, without losing the order of accuracy

of the whole scheme for problem (4.1) and present the amended quadrature schemes

respectively based on the proposed methods developed by Sloan, Thomee [17] and Zhang

[20],

Before considering further details of various quadrature schemes, we introduce in
more detail one of the methods called, Modified Trapezoidal Rule I, proposed by
Zhang [20]:

Using the trapezoidal rule based on larger subintervals, but with second order truncation

error, we may then approximate the integral employing relatively fewer, 0 (k 1/2), nodal

points, while retaining the 0(k) convergence rate so that is consistent with the O(k)

accuracy of the backward-Euler scheme.

More precisely, we use a trapezoidal quadrature rule with second-order truncation error,

but applied on larger intervals of length kj =mjk, where m1=[k‘1/2]. ([.] denoting integral

part), so that k!=0(k1/2), ie., k t2 =0(k). We set tj=jkx and define jn to be the largest integer

such that tjn < tn, (0 < j < n , 0 < t,, < t°). Thus we can also divide the integration interval

[0, y as

(0. 'J'Ui-.. 'jUJi. 'J (4'I4)
y=i

We shall apply the trapezoidal rule with stepsize k, on [0, tjn] and then use the

rectangular rule with steplength k for the second subinterval [tjn, t j .

The quadrature approximation was defined by

38

f ty(s)ds~on(ty)=!!iy^ (ty i tp+ tyd j^+k <))(r.)=a2+ai (4-15)
J 2 >=1 V"i

Denote Smax as an upper bound for the maximal number of time levels of the solution

stored during the calculation. The upper bound of the storage for this rule is given by

[20]

s m̂ - r ^ r +miCmJc)
(4.16)

since m1=0(k ')

Smia=0(k-'12)

We next give a description of the slight differences in ideas between the methods of
[15] and those proposed by [20], as follows:

In practice, based on the above method, one can consider a slight modification for the

previous rule to make it more computationally effective. Following the ideas of [15], we

can suggest

mt= n - m jn- 1 , k1 = injc (4.17)

on the remaining subinterval [tjn, t j , whose length is at most we apply once again the

trapezoidal rule with stepsize kx on [tjn, tn_1] and the rectangular rule with step size k on

[tn_i, t j . The most obvious advantage of such an amended method is that it is similar to

the earlier proposed method and has the same accuracy for the quadrature formulas but

requires the minimum number of quadrature points to be stored on the remaining

subinterval [tjn, t j .

For a contrast, we also write the interval of integration as

[o. ‘j-u &H. u i<i.«. j u 'j (4-18)
y'=i

We thus define the quadrature approximation by

39

Following (4.16), an upper bound of the storage for this amended rule is given by

Smax < t7(mxk) + 2

since 2 < ml9 we have

Smax = 0(k-l/2)

Since we apply the trapezoidal and rectangular rules only once on [tjn, t^] with as the

node, ie. there are exactly 2 nodes on subinterval [tjn, t j , we get the above formula for

Based on the ideas presented above, we shall discuss further methods for seeking
more quadrature schemes based on the trapezoidal and Simpson’s rules that have,
as far as possible, the maximum time step or minimum number of quadrature points,
without losing the order of accuracy of the whole scheme for problem (4.1).

Considering two special cases of (4.10) 0=1 and 0=1/2, we have following two schemes,

1) The Backward Euler scheme with the time step k for approximating (4.1) is

S,max*

u -un
n-1

k (4.20)

where

(4.21)

2) In the Crank-Nicolson scheme the time-discretized version o f (4.1) is

U n ~ Un - l +A.U n + U n - 1
n-1

>=o
o (4.22)

m =m(0)

where

»-i (,-+'-*)/2

I (4 ,2 3)>=0 0

We consider different quadrature formulas for approximating (4.21) and (4.23).

In the following we consider four different quadrature formulas for first-order type

schemes:

• The Rectangular Rule:

As mentioned in the previous section, the simplest quadrature rule that is consistent with

the O(k) accuracy of the Backward-Euler scheme is the rectangular rule. We show the

rule which is due to Zhang [20] here. In this case the quadrature weights are conj=k, 0 <

T-j < tn < t°. Here we define C0j = k .

y ; 03 = nk < t° (4.24)
7=0 1

We may write the quadrature rule in the form

(4-25)
>=o

For the rectangular rule, an upper bound on the storage is given by

Sm„ < t°/k = 0(kf‘)

41

• The Trapezoidal Rule A:

As mentioned before, this quadrature rule which is due to Le Roux and Thomee [15]. It

is based on the second-order trapezoidal rule but applied on intervals of length kj =m1k,

where m ^Ofk'172]. ([.] denoting integral part), so that k^O fk172). We set tpjkj and define

jn to be the largest integer such that tjn < t„. We first write the interval of integration as

More precisely, we shall apply the trapezoidal rule with stepsize kx on [0, tjn]. Then, on

the remaining subinterval [tjn, tj, whose length is at most kl5 let

We apply once again the trapezoidal rule with stepsize kt on [tjn, tn_j] and the rectangular

rule with step size k on [t^, t j. So we use for the approximation of the integral the

trapezoidal rule on each of the subintervals except the last, where we use the rectangular

rule, with t^ as the node.

Using the above trapezoidal formula we then write an approximation to the integral term

in (4.1) in the form

We call this method the Trapezoidal Rule A. The corresponding quadrature weights are

mj= n -m jn- 1 , kl = mjc (4.27)

K
2 j=0

j-mj 1 < i < jn~l

otherwise

(4.29)

42

The upper bound of the storage for this amended rule is given by

Smax < t°/(mik) + 2 = 0(k '1/2)

since we apply the trapezoidal and rectangular rules only once on [tjn, tn4] with t,̂ as the

node, ie., there are exactly 2 nodes on subinterval [tjn, t j so we get a fixed number 2 in

the above formula.

• The Trapezoidal Rule B:

We consider this alternative quadrature rule based above Rule A. It behaves better for

non-smooth data (see Thomée and Zhang [21]). This quadrature rule is also based on

the second-order trapezoidal rule. Let tj = j2k and jn be the largest integer such that tjn <

tn. We now write the interval of integration as

to. g=U ÿ U il. u U tv, g '/ m (4-3#)
>i

We shall apply the trapezoidal rule with variable stepsize (*j+i - tj) on intervals [0, tjrJ.

Next, on the remaining subinterval [tjn, y let

m ^ n - jf -1 , kl =m1k (4.31)

In a similar manner to the discussion for rule A above, we apply once again the

trapezoidal rule with stepsize lq on [tjn, t^J and the rectangular rule with step size k on

[t ĵ, t j. So we use the trapezoidal rule for the approximation of the integral on each of

the subintervals except the last, where we use the rectangular rule, with t^j as the node.

We call the method The Trapezoidal Rule B and the quadrature approximation is written

by

< A < I>)= ^ Ê <tj ~ V i) (W j) +W j - ,)) +^ - (§ Ü jn) +<t>(^-i)) (4.33)

The corresponding quadrature weights are

43

2

_ 2
(t j - t jJ ̂ k,

2 2
k.
— + k
2

0

;=o

j =i ^ 7n" l

. .2
7=A

./*+/»! = (/ i- l)

otherwise

(4.34)

The upper bound of the storage for this rule is

Smax< jn + 2 = 0(k-1/2)

• The Simpson’s Rule A:

This rule is based on the fourth-order Simpson’s rule, which reduces the number of

quadrature points even further so that the method requires only 0 (k '1/4) values of un to

be stored while the 0(k) convergence rate is retained. Let mx =[k"3/4], now with k^ir^k

so that kj=0(k1/4). We denote tpjkj, j = 0, 1, 2.... For n = 1, 2 we choose the rectangular

rule a 1 = k<])(0), and o2 = k[<])(0)+<))(k)]. When n > 3, let jn be the largest integer such that

2jnkj < t̂ , and write

[o, y=U Vy-i, r2,J U[?2j, K-J UiX-i, U i f n>2m (4.35)
>=i

Obviously, the length of the remaining interval t j is at most 2kj and, like the earlier

idea, we let

n - l - jm - _ (a ai\\
mx- [------------], k^m jc ([.] denoting integral part)

Based on ideas given in Le Roux and Thomee [15] we propose minor changes as

follows: We shall use Simpson’s formula of order 4, on each of the first subintervals, on

the second subintervals [t2jn, t^J we still use Simpson’s formula except for the last, where

we use the rectangular rule, with t^, t^ as the nodes if n is even, otherwise the

rectangular rule with t^ as the node.

44

We call the method The Simpson’s Rule A. The quadrature approximation is written by

= - ^ E m 2j-2) +4<k v «

+^ (m 2j) +4(t,(^ „ +ml) +<t)(?n- l)) + * < K V l)

 n n n

(4.41)

The corresponding quadrature weights are

%

3 1

3 1
i / 1 r
3 ki+J k>

h :
3 1
—fc.+k
3 1

0

J= o

j=iml i=odd, 1 < i < 2jn- l

j=im1 i=even 1 < i < 2jn- \

j =2Jnm 1

j = 2jnm i +™l

j=2jnm1+in1 (= n - 1) may (J=n-2)

otherwis

(4.42)

The storage requirement for this rule is

s„„ s 2j„ + 4 = 0(k-«)

In the following we consider two different quadrature formulas for second-order
type schemes:

• The Trapezoidal Rule I :

For a second-order type scheme the standard trapezoidal rule is the simplest quadrature

rule that is consistent with the 0(k2) accuracy of the Crank-Nicolson scheme. We write

an interval of integration as

45

n - ì

[0> U U tf/--1, ^ U ^n-l,
j =1

(4.43)

We shall apply the standard trapezoidal rule with mesh-size k on [0, t^] and rectangular

rule with mesh-size k/2 on [t^, tn_1/2]. The Trapezoidal Rule I which is due to Zhang [20]

is defined by

2 j-i 2

The corresponding quadrature weights are

(4.44)

k
2
k
0

j =0

1< j = n- 1
otherwise

(4.45)

The storage requirement for this rule is

Smax < t°/k = Oik’1)

• The Simpson’s Rule B:

The storage requirement for the Trapezoidal Rule I is O (k 1). As considered previously

for the backward Euler type scheme, we may use a quadrature rule with higher order

truncation error on fewer quadrature points to reduce the memory requirement without

sacrificing the accuracy. We consider such a quadrature formula based on Simpson’s rule.

More precisely, let m ^fk'172] and k^rrijk. Setting tj =jkx , j=0,l,2,..., we let jn to be the

largest nonnegative integer such that 2tjn = 2jnkj < t̂ . We also write the interval of

integration as

[0. IV* U U [<* -2. «„ J U ■] if n>2ml i“-4«
M ^

Following our approach for the Simpson’s rule A we let

46

n - l - jm . - _
mj= [------------], ([.] denoting integral part) (4.47)

On each of the first intervals we shall use Simpson’s formula, which is of order 4, on the

second fejn» t jJ we use once again Simpson’s formula except in the last, where we use

a composite of the trapezoidal and rectangular rules, with tn_2, t^ as the nodes if n is

even, otherwise the rectangular rule with t^ as the node.

We call method The Simpson’s Rule B and the quadrature approximation is written by

o"(40 ^ 2,-2) +4<t>02;-i +<K* */»
±j=i

(4.48)

The corresponding quadrature weights are

co . =nj

3 1

- k x
3 1

- K 3 1

—,k, +k
3 1

0

The storage requirement for this rule is

j=0

j=iml i=odd, 1 < i < 2jn- l

j=im1 i=even 1 < i < 2jn- l

J=2Jnmi

j=2jnml +m1

Ijjn^rhi < j< n - l

otherwise

(4.49)

Smax^jn + 4 = 0(k-1/2)

So far we have considered six kind of quadrature rules which suit problem (4.1). We

obviously need to consider also an algorithmic implementation of the solution methods

47

and we examine them using some test problems in the next chapter.

48

Chapter 5
Parabolic Integra-Differential Equations II

5.1 Introduction

In this chapter we give some implementation details for those modified solution methods

which were described previously. The numerical experiments together with some results

analysis are also given.

We discuss the algorithmic implementation of Modified Method I I (routine PIDECX),

giving its essential details. For comparison purposes we also implement Modified

Method I described in Zhang [20] (routine PIDETZ). We measure the efficiency of both

solvers in terms of accuracy, storage requirement and CPU time.

5.2 Computer Implementation

We discuss some algorithmic implementation aspects for our solver, which was written

in the FORTRAN 77 programming language, together with a main structure chart of the

code and the structure charts of the principal improved quadrature rules.

As described before, we subdivide the x-t plane into sets of equal rectangles of side Ax

= h, At = k, and let the co-ordinates (Xj, tj) of the representative mesh point be

x—ih, tpjk, i=0,l,...,M; n=0,l,...,N,

where i, n, M and N are integers, h=l/M and k=t°/N.

49

We are concerned with a semidiscretization method for approximating the numerical

solution U” of problem (4.1) based on the 0-scheme,

(5.1)
(/ - 0 r 8,) un = (/ + (1 -Q)r§2x)un_x +¿[(*„(5(0^ +(1 -0)/(I_1)m)+/(0í(1 + (1 -0)/„.,)]

where I is the identity operator, and 8X2 is the second order central difference operator

with respect to the space variable x, and

%u¡=ui - r 2ui+ui*v

r - k
(5.2)

(O í.+(1 - 0)^.,)») - £ < 0 ^ (6 í. -H (1 -0)) «
7-0

The quadrature weights {conj} are chosen so that for (p e C[0, t°] and cpj = cp(tj) we have

7*0 o

The approximation leads to

e»*o-e)v,

CTn (<P) = 53 “ ny ‘P/ “ | <P(*)*- (5'3)

C0U n-=DeUn~l +Fq (5-4)

where

50

cu n =

1 +20r -Or

-Or 1 +20r -Or
-dr 1 +2Qr -0 r

-Or 1 +20r -Or

-Or 1+20r

« 2

n

wM-2

MM-1

(5.5)

1 -2(1 -0)r

(l-0)r

(i-ey
l- 2 (l- 0)r (l- 0)r

n-l
Ul

n-l
“2

DUn~l =
n-lW3

l- 2 (l- 0)r (i-ey
1 -2(1 -0)r

n-l
UM-1

It is easier to see that the following two well-known schemes can be obtained when we

take the particular value 0 in (5.1).

(a) the Crank-Nicolson scheme (0 = 1/2)

(b) the Backward-Euler scheme (0 = 1)

We therefore may write the main ingredients of implementation for the solution methods

described in chapter 4 as follows:

■ A set of initial parameters, such as a numerical method flag, initial value and

51

boundary value, a step size, an error estimate etc..

■ A main program is used to set the initial parameters mentioned above and to call the

subroutines needed to form the coefficient matrix C, and evaluate the right-hand side

DU71'1 and / which are necessary to generate the finite difference approximations for

problem (4.1) (based on the B.E. and C.N. schemes with a suitable quadrature rule).

■ The set of subroutines which prepare the main strategies to accept the approximation

1) the MAXA subroutine with D EC subroutine which generates the elements of the

coefficient matrix C in (5.4) and forms its LU decomposition.

2) The driver subroutine, XINTEG, which makes calls to the main subroutines,

TINT, FORM B and SOL. TINT implements the various quadrature formulas.

FORMB defines and evaluates the right-hand side of (5.7). The SOL subroutine

performs back-substitution on the right hand side (RHS) vector to obtain the

numerical solution.

The overall structure of our solver is illustrated in the main structure chart of Figure 1.

To give more detail for the code we present several structure charts of the principal

modified quadrature rules in Figures 2, 3, 4 and 5, respectively.

52

DEC

MAXA

MAIN PROGRAM

Initialize
Call MAXA subroutine: Generate the elements of coefficient matrix A
Call DEC subroutine: Obtain an LU decomposition for matrix A
Call XINTEG subroutine: A driver subroutine
Call SOL subroutine: Back-substitute on vector -RHS- to obtain solution

E s t im a te error in the computed solution
Output results

TINT SUBROUTINE
This routine contains six modified quadrature rules for approximating
the integral term:

Rectangu la r

S im p so n ' A

Trapezo ida l A

Trapezo ida l I

T rapezo ida l B -

S im p so n ' B

DRIVER SUBROUTINE
A driver routine for checking the parameters which are inputed by
the user, such as parameters for a time discretization scheme or
quadrature rule etc.

FORMB SUBROUTINE
It generates the right hand side vector for a Parabolic Integra-
Differential Equation.

SOL SUBROUTINE

A routine for doing
Back-substitution on
vector (RHS) to obtain
computer solution

lsn^N
givek > hete nk=t„ N=T/k

TRAPZOIDAL RULE A
O(K)

 i ______
RETURN

0(k)
TRAPZOIDAL RULE B

▼

56

Figure
5

give k bere n k ^ N = T /k
►

g.IàiIIr —i

kpn^xk

of=o

1

02=02n+ki/3 T, {4>(t n)+4<t>(t j)+4>(t m)}
j-l (jtodJ)

t j - j x k i ____________________

cf=o

0(k2)
SIMPSON'S RULE
B

n=n-j]i xnij

n = 1 n = 2

1r 1 r
° i = k /2 x 4>(tB.,) o tf=k/24>(t t-2)+ k i j) (t o-i)

£
k =mi xk

a'=kJ3 { 4) ^)+4<J)(t̂ !aiil+J+<|>(t }
+k/2{ 4>(t-i)}

Gl kl/3 { jnxml+2ml) }
+k/2(|)(t11.2)+k4)(tn_1)

£
0n=02n+ oi1! RETURN

In order to examine our solver we consider two initial-boundary value problems. We take

the two examples below as test problems for the numerical experiments.

Problem 1

We consider the initial boundary value problem

5.3 T est P rob lem s

o
m(0, i)= 0 te (0, /°],
u(x, 0)=m0(x), x e [0, 1].

where (5.8)

fix , r) = -f£ sinTcx

u0(x) = sinnx.

B(x; t, s) = e-*‘°-*\
Y v A — 1 1> oi n r r -

The exact solution is
u(x, i) = sin nx

Source: N.Y. Zhang [20]

58

Problem 2

ut-=uxx+ j B(x, t, s)u(x,s)ds+f(x, t)
o

u(0, t)=u(1, t)= 0

u(x, 0) =0
where

B(x\ t, s)=e~ie(t~s)

I

1
fix , 0 = sin(7t;t)(7C2- — +------+te~*‘t)

n2 K2

The exact solution is

u(x, r)=sin (7i^)(l-e ',c:!i)

(5.9)

Source: constructed example

5.4 Efficiency Considerations

In the previous chapter, we described some schemes for partial integro-differential

equations of parabolic type, with emphasis on quadrature rules for the integral term. The

computer implementation was introduced in the last section. Furthermore, the

effectiveness of the improved algorithms Modified Method II and I will be examined and

assessed in the routine PIDECX and PIDETZ.

In the following experiments, effectiveness is measured in terms of accuracy and

efficiency.

The accuracy of each algorithm is illustrated in two ways. Firstly, the maximum absolute

59

component of error between the numerical and the exact solutions over the integration

interval, ie., the error Un-uiX), is measured with respect to the L norm. Secondly, the

numerical estimation of the order of convergence based on the error bound of the form

\u -u h\ < C (hp+kq) (5*10)

is included in the tables. We use the double-mesh technique to calculate the order of

convergence. To summarize the possibilities briefly, the calculation of the convergence

rate is in time only, ie., to estimate q.

The efficiency of each algorithm may also be expressed in two ways. The first is the

CPU time consumption which provides an excellent means of determining the relative

efficiency of several algorithms carried out on the same platform, a VAX 11/6230. The

CPU time consumption, measured in seconds, was presented for each implementation.

The second is Smax, which is the maximal number of time levels of the solution stored

during the calculation. These are particularly useful since they are important features of

the proposed methods that reduce greatly both the memory requirements and

computational effort.

5.5 Numerical Experiments

In this section we present some numerical experiments to illustrate the application aspects

of the proposed numerical methods to approximate the solutions of partial integro-

differential equations of parabolic type.

We classified the numerical experiments into two groups according to different strategies

in choosing the stepsize.

• The first group of numerical experiments: For the B.E. scheme with error of order

0(h2+k), the stepsize of spatial discretizations and the time discretization will be chosen

so as to maintain k=h2 to display a convergence rate of 0(k2). For the C.N. scheme with

error of order Ofrf+k?), the stepsize will be k=h for the same reason.

60

• The second group of numerical experiments: The spatial stepsize h will be chosen

such that h<k, in order to estimate the temporal rate of convergence by only changing

the time stepsize k.

Following the analysis of Sloan and Thomee [17], we take two particular cases: B.E.

scheme (0=1) and C.N. scheme (0=0.5) in (5.1). For each example in these two groups

of experiments, we display the error Un - u (0 with respect to the L norms, the storage

requirement in terms of an upper bound Smax, the maximal number of time levels of the

solution stored during the calculation, the rate of convergence and the CPU time needed

for the calculation. In a similar way, the results of numerical experiments presented for

the comparison routine PIDETZ make use of Modified Method I. The two test problems

were mentioned in section 5.3 where the exact solution is available.

The following is a summary of the "figures of merit" used in the tables.

METH the six quadrature rules for Modified Method II

M E T H D E S C R I P T I O N

1 R E C T A N G U L A R R u l e

2 T r a p e z o id a l R u l e A

3 T r a p e z o id a l R u l e B

4 S i m p s o n ’s R u l e A

5 T r a p e z o id a l R u l e I

6 S im p s o n ’s R u l e B

0 the value of 0 for the 0 scheme

NPTS the number of spatial mesh points used

Smax the maximal number of time levels of the solution stored during the

calculation

At, k the temporal step-size

ERR (L) the error U^uit,,) with respect to the L norm

RATE the rate of convergence

CPU the CPU time (in seconds) required for the solution. All experiments were

carried out on a VAX 11/6230.

61

Table 1

Problem 1 T h e f i r s t g r o u p o f n u m e r ic a l e x p e r im e n t t#= 0.1 Modified Method I I

METH e NPTS At (k) ERR(L) RATE Smax CPU

1 l 21 .250D-02 .525D-02 . 40 2.04

2 l 21 .250D-02 .525D-02 . 3 0.73

3 l 21 .250D-02 .525D-02 - 8 1.3

4 l 21 .250D-02 .525D-02 - 4 0.81

5 0.5 21 .500D-01 .689D-02 * 2 0.02

6 0.5 21 .500D-01 .689D-02 » 2 0.03

1 1 41 .625D-03 .132D-02 2 160 55.87

2 1 41 .625D-03 .132D-02 2 5 7.61

3 1 41 .625D-03 . 132D-02 2 14 15.67

4 1 41 .625D-03 .132D-02 2 4 6.8

5 0.5 41 .250D-01 .169D-02 2 4 0.17

6 0.5 41 .250D-01 .169D-02 2 4 0.15

1 1 81 .156D-03 .331D-03 2 640 1679.91

2 1 81 .156D-03 .331D-03 2 9 80.05

3 1 81 .156D-03 .331D-03 2 27 214.7

4 1 81 .156D-03 .331D-03 2 4 51.83

5 0.5 81 .125D-01 .421D-03 2 8 0.88

6 0.5 81 .125D-01 .421D-03 2 4 0.63

Problem 1 T h e s e c o n d »roup of numerical experiment t°=l Modified Method I I

METH 0 NPTS Atfk) ERR(U RATE Smax CPU

1 1 501 .250D-01 .412D-01 40 52.2

2 1 501 .250D-01 .413D-01 _ 8 28.2

3 1 501 .250D-01 .413D-01 8 31.8

4 1 501 .250D-01 .413D-01 _ 8 24.5

5 0.5 501 .250D-01 .188D-02 40 90.2

6 0.5 501 .250D-01 .188D-02 10 27.8

1 1 501 .125D-01 .216D-01 0.9 80 185.5

2 1 501 . 125D-01 .216D-01 0.9 11 70.5

3 1 501 .125D-01 .216D-01 0.9 10 78.4

4 1 501 .125D-01 .216D-01 0.9 12 64.3

5 0.5 501 ■ 125D-01 .467D-03 2 80 344.9

6 0.5 501 -125D-01 .467D-03 2 12 66.7

1 1 501 .625D-02 ■ 111D-01 1 160 696

2 1 501 .625D-02 • 111D-01 1 15 169.1

3 1 501 .625D-02 .lllD -01 1 14 197.2

4 1 501 .625D-02 ■ 111D-01 1 8 105.9

5 0.5 501 .625D-02 .116D-03 2 160 1353.3

6 0.5 501 .625D-02 .116D-03 2 16 153.9

62

Table 2

Problem 2 T h e f i r s t g r o u p o f n u m e r ic a l e x p e r im e n t t#= 0.1 Modified Method I I

METH 0 NPTS At(k) ERR0") RATE ' ■ CPU

1 1 21 .250D-02 .403D-02 - 40 2

2 1 21 .250D-02 .398D-02 - 3 0.76

3 1 21 .250D-02 .400D-02 - 8 1.21

4 1 21 .250D-02 .401D-02 4 0.79

5 0.5 21 .500D-01 .807D-02 - 2 0.03

6 0.5 21 .500D-01 .807D-02 - 2 0.03

1 1 41 .625D-03 .102D-02 2 160 54.01

2 1 41 .625D-03 .100D-02 2 5 7.23

3 1 41 .625D-03 .101D-02 2 14 15.45

4 1 41 .625D-03 .101D-02 2 4 6.24

5 0.5 41 .250D-01 .198D-02 2 4 0.15

6 0.5 41 .250D-01 .197D-02 2 4 0.15

1 1 81 .156D-03 .255D-03 2 640 1671.52

2 1 81 .156D-03 .251D-03 2 9 78.91

3 1 81 . 156D-03 .253D-03 2 27 211.46

4 1 81 . 156D-03 .253D-03 2 4 50.95

5 0.5 81 .125D-01 .493D-03 2 8 0.83

6 0.5 81 .125D-01 .490D-03 2 4 0.62

Problem 2 T h e s e c o n d g r o u p o f n u m e r ic a l e x p e r im e n t t°=l Modified Method I I

METH 0 NPTS At ERR" RATE - CPU

1 1 501 .250D-01 .416D-01 . 40 51.9

2 1 501 .250D-01 .414D-01 _ 8 28.2

3 1 501 .250D-01 .414D-01 _ 8 31.8

4 1 501 .250D-01 .415D-01 . 8 24.5

5 0.5 501 .250D-01 .185D-02 _ 40 90.7

6 0.5 501 .250D-01 .184D-02 . 10 27.8

1 1 501 .125D-01 .218D-01 0.9 80 183.8

2 1 501 .125D-01 .216D-01 0.9 11 70.2

3 1 501 .125D-01 .216D-01 0.9 10 78.1

4 1 501 ■ 125D-01 .217D-01 0.9 12 64.1

5 0.5 501 .125D-01 .460D-03 2 80 343.3

6 0.5 501 .125D-01 .458D-03 2 12 67.2

1 1 501 .625D-02 .112D-01 1 160 690.4

2 1 501 .625D-02 • 110D-01 1 15 168.2

3 1 501 .625D-02 ■ 111D-01 1 14 197.6

4 1 501 .625D-02 • 111D-01 1 8 105.3

5 0.5 501 .625D-02 .116D-03 2 160 1341.8

6 0.5 501 .625D-02 .115D-03 2 16 154.8

63

Table 3

T h e s e c o n d g r o u p o f n u m e r i c a l e x p e r im e n t f o r Problem 1 t ° = l

Modified Method II

M ETH e NPTs At(k) ER R (1J RA TE smax CPU

i i 5 0 1 . 2 5 D - 1 . 4 1 2 D - 1 - 4 0 5 2 .2

2 i 5 0 1 . 2 5 D - 1 . 4 1 3 D - 1 - 8 2 8 . 2

3 i 5 0 1 . 2 5 D - 1 . 4 1 3 D - 1 - 8 3 1 .8

4 i 5 0 1 . 2 5 D - 1 . 4 1 3 D - 1 - 8 2 4 . 5

1 i 5 0 1 . 1 2 5 D - 1 . 2 1 6 D - 1 0 .9 8 0 1 8 5 .5

2 i 5 0 1 . 1 2 5 D - 1 . 2 1 6 D - 1 0 .9 11 7 0 .5

3 i 5 0 1 . 1 2 5 D - 1 . 2 1 6 D - 1 0 .9 10 7 8 .4

4 i 5 0 1 . 1 2 5 D - 1 . 2 1 6 D - 1 0 .9 12 6 4 .3

1 i 5 0 1 . 6 2 5 D - 2 . 1 1 1 D - 1 1 1 6 0 6 9 6

2 i 5 0 1 . 6 2 5 D - 2 . 1 1 1 D - 1 1 1 5 1 6 9 .1

3 i 5 0 1 . 6 2 5 D - 2 . 1 1 1 D - 1 1 14 1 9 7 .2

4 i 5 0 1 . 6 2 5 D - 2 . 1 1 1 D - 1 1 8 1 0 5 .9

T h e s e c o n d g r o u p o f n u m e r i c a l e x p e r im e n t f o r Problem 1 t#= l

Modified Method I

M ETH 0 NPTs At(k) ER R (1J RATE S m a x CPU

l 1 5 0 1 . 2 5 D - 1 . 4 1 2 D - 0 1 - 4 0 5 2 .3

2 1 5 0 1 . 2 5 D - 1 . 4 1 2 D - 0 1 - 10 2 9 . 4

3 1 5 0 1 . 2 5 D - 1 . 4 1 3 D - 0 1 - 10 3 4 .6

4 1 5 0 1 . 2 5 D - 1 . 4 1 3 D - 0 1 - 8 3 0 .7

1 1 5 0 1 . 1 2 5 D - 1 . 2 1 6 D - 0 1 0 .9 8 0 1 8 2

2 1 5 0 1 . 1 2 5 D - 1 . 2 1 6 D - 0 1 0 .9 17 7 6

3 1 5 0 1 . 1 2 5 D - 1 . 2 1 6 D - 0 1 0 .9 2 4 9 1 .8

4 1 5 0 1 . 1 2 5 D - 1 . 2 1 6 D - 0 1 0 .9 1 4 7 9

1 1 5 0 1 . 6 2 5 D - 2 . 1 1 1 D - 0 1 1 1 6 0 688.6

2 1 5 0 1 . 6 2 5 D - 2 . 1 1 1 D - 0 1 1 1 7 1 9 7 .9

3 1 5 0 1 . 6 2 5 D - 2 . 1 1 1 D - 0 1 1 2 8 2 4 5 .7

4 1 5 0 1 . 6 2 5 D - 2 . 1 1 1 D - 0 1 1 12 1 6 0 .2

64

Table 4

T h e s e c o n d g r o u p o f n u m e r i c a l e x p e r im e n t f o r Problem 2 t ° = l

Modified Method II
M ETH 0 NPTs At ER R Q J RA TE Smax CPU

i 1 5 0 1 . 2 5 D - 1 . 4 1 6 D - 1 - 4 0 5 1 .9

2 1 5 0 1 . 2 5 D - 1 . 4 1 4 D - 1 - 8 2 8 . 2

3 1 5 0 1 . 2 5 D - 1 . 4 1 4 D - 1 - 8 3 1 .8

4 1 5 0 1 . 2 5 D - 1 . 4 1 5 D - 1 - 8 2 4 . 5

1 1 5 0 1 . 1 2 5 D - 1 . 2 1 8 D - 1 0 .9 8 0 1 8 3 .8

2 1 5 0 1 . 1 2 5 D - 1 . 2 1 6 D - 1 0 .9 11 7 0 . 2

3 1 5 0 1 . 1 2 5 D - 1 . 2 1 6 D - 1 0 .9 10 7 8 .1

4 1 5 0 1 . 1 2 5 D - 1 . 2 1 7 D - 1 0 .9 12 6 4 .1

1 1 5 0 1 . 6 2 5 D - 2 . 1 1 2 D - 1 1 1 6 0 6 9 0 .4

2 1 5 0 1 . 6 2 5 D - 2 . 1 1 0 D - 1 1 1 5 1 6 8 .2

3 1 5 0 1 . 6 2 5 D - 2 . 1 1 1 D - 1 1 1 4 1 9 7 .6

4 1 5 0 1 . 6 2 5 D - 2 . 1 1 1 D - 1 1 8 1 0 5 .3

T h e s e c o n d g r o u p o f n u m e r i c a l e x p e r im e n t f o r Problem 2 t#= l

Modified Method I
M ETH 0 NPTs At E R R (L) RA TE Smax CPU

i 1 5 0 1 . 2 5 D -1 . 4 1 6 D - 0 1 . 4 0 5 1 .7

2 1 5 0 1 . 2 5 D - 1 . 4 1 6 D - 0 1 - 10 2 9 .3

3 1 5 0 1 . 2 5 D - 1 . 4 1 5 D - 0 1 - 10 3 5 .3

4 1 5 0 1 . 2 5 D - 1 . 4 1 5 D - 0 1 - 8 3 0 .6

1 1 5 0 1 . 1 2 5 D - 1 . 2 1 8 D - 0 1 0 .9 8 0 1 8 1 .6

2 1 5 0 1 . 1 2 5 D - 1 . 2 1 8 D - 0 1 0 .9 1 7 7 7 .1

3 1 5 0 1 . 1 2 5 D - 1 . 2 1 7 D - 0 1 0 .9 2 4 9 2 .3

4 1 5 0 1 . 1 2 5 D - 1 . 2 1 7 D - 0 1 0 .9 1 4 7 9 .3

1 1 5 0 1 . 6 2 5 D - 2 . 1 1 2 D - 0 1 1 1 6 0 6 8 8 .7

2 1 5 0 1 . 6 2 5 D - 2 . 1 1 1 D - 0 1 1 1 7 1 9 8 .3

3 1 5 0 1 . 6 2 5 D - 2 . 1 1 1 D - 0 1 1 2 8 2 4 5 .8

4 1 5 0 1 . 6 2 5 D - 2 . 1 1 1 D - 0 1 1 12 1 5 9 .9

65

5.6 A n alysis o f R esu lts

Our work has involved writing two codes, PIDECX and PIDETZ, designed as easy-to

use and robust methods for solving the partial integro-differential equations of parabolic

type. The routine PIDECX makes use of Modified Method II, which includes four

different quadrature rules that are consistent with the O(k) accuracy of the Backward-

Euler scheme and two quadrature rules that are consistent with OCk2) accuracy of the

Crank-Nicolson scheme. The PIDETZ makes use of Modified Method I which includes

four different quadrature rules that are consistent with the O(k) accuracy of the

Backward-Euler scheme. The results of some experiments presented in the section 5.5,

allow us to conclude that the proposed algorithms are competitive, and produce very

significant reduction in both the storage and computation requirements.

Table 1 show the results obtained using Modified Method II for test Problem 1. The

upper part of Table 1 gives the statistics for the first group of numerical experiments

choosing k=h2, t° =0.1. The lower part of the table presents solutions obtained for the

second group of numerical experiments, making the spatial stepsize h=l/500 and only

changing the time stepsize k and set t° = 1.

For both cases in Table 1, it is clear that those improved rules show the expected savings

in both storage and execution time with no loss in accuracy. The methods of first order

accurate, METH 1 to 4, display a convergence rate O(k). METH (5-6), of second-order

accuracy, show a convergence rate 0(k2). The standard method, Rectangular Rule,
METH (1), has a storage requirement 0(k_1). Trapezoidal Rules A and B METH (2 and

3) and Simpson’s Rule A, METH (4) have storage requirements which are 0(k'1/2) and

0(k'1/4) respectively. Comparing Trapezoidal Rule I, METH (5), with Simpson’s Rule
B, METH (6), we have found that the storage requirement for METH (5) is 0(k_1) but

the Simpson’s Rule B METH (6) is only 0(k'1/2), without sacrificing the overall order

of convergence. Obviously, this corresponds to significant savings in CPU time

consumption. In a similar way, Table 2 shows the solutions obtained using Modified
Method II for test Problem 2. All results have the same characteristics as those in Table

1.

Table 3 shows the statistics for results obtained using both Modified Method II and I

66

for test Problem 1. The upper part of the table gives the solution obtained with

Modified Method II and the lower part of the table presents solutions with Modified

Method I. To summarize the possibilities briefly, we present only some solutions obtained

for METH (1-4) of first-order accuracy in Tables 3 and 4.

As expected, from the lower part of Table 3, we have found that the comparison solver,

Modified Method I, has been shown to be very robust and efficient in terms of

computational expense. However Modified Method II in the upper table is more efficient

than the previous solver particularly in storage requirements when solving the same test

problem. In a similar way, Table 4 shows the solution obtained using Modified Method

II for test Problem 2. All results have the same characteristics as those in Table 3.

The results obtained using Modified Method II and Modified Method I to solve

Problems 1 and 2 are summarised in terms of storage requirements and CPU time

consumption in Tables 5 and 6 respectively, which are displayed below.

67

Table 5

Problem 1 t°=i

Modified Method II
h=l/500, k=l/40, 1/80 and 1/160 t°=l

M ETH At(k) 6̂
raax CPU

R e c t a n g u la r R u l e

. 2 5 D - 1

4 0 5 2 . 2

T r a p e z o id a l R u l e A 8 2 8 . 2

T r a p e z o id a l R u l e B 8 3 1 .8

S im p s o n ’s R u l e A 8 2 4 . 5

R e c t a n g u la r R u l e

. 1 2 5 D - 1

8 0 1 8 5 .5

T r a p e z o id a l R u l e A 11 7 0 .5

T r a p e z o id a l R u l e B 10 7 8 .4

S im p s o n ’s R u l e A 12 6 4 .3

R e c t a n g u la r R u l e

. 6 2 5 D - 2

1 6 0 6 9 6

T r a p e z o id a l R u l e A 15 1 6 9 .1

T r a p e z o id a l R u l e B 1 4 1 9 7 .2

S im p s o n ’s R u l e A 8 1 0 5 .9

Modified Method I
M ETH At(k) 6̂

max CPU

R e c t a n g u la r R u l e

. 2 5 D - 1

4 0 5 2 .3

M o d i f i e d T r a p e z o id a l I 10 2 9 . 4

M o d i f i e d T r a p e z o id a l I I 10 3 4 .6

M o d i f i e d S im p s o n ’s I 8 3 0 .7

R e c t a n g u la r R u l e

. 1 2 5 D - 1

8 0 1 8 2

M o d i f i e d T r a p e z o id a l I 17 7 6

M o d i f i e d T r a p e z o id a l I I 2 4 9 1 . 8

M o d i f i e d S im p s o n ’s I 14 7 9

R e c t a n g u la r R u l e

. 6 2 5 D - 2

1 6 0 688.6

M o d i f i e d T r a p e z o id a l I 17 1 9 7 .9

M o d i f i e d T r a p e z o id a l I I 2 8 2 4 5 .7

M o d i f i e d S im p s o n ’s I 12 1 6 0 .2

68

Table 6

Problem 2

Modified Method II
h = l / 5 0 0 , k = l / 4 0 , 1/80 a n d 1 / 1 6 0 t#= l

M ETH At Smax CPU

R e c t a n g u la r R u l e 4 0 5 1 .9

T r a p e z o id a l R u l e A 8 2 8 . 2

T r a p e z o id a l R u l e B
. 2 5 D - 1 8 3 1 .8

S im p s o n ’s R u l e A 8 2 4 .5

R e c t a n g u la r R u l e 8 0 1 8 3 .8

T r a p e z o id a l R u l e A 11 7 0 .2

T r a p e z o id a l R u l e B
. 1 2 5 D - 1 10 7 8 .1

S im p s o n ’s R u l e A 12 6 4 .1

R e c t a n g u la r R u l e 1 6 0 6 9 0 .4

T r a p e z o id a l R u l e A 15 1 6 8 .2

T r a p e z o id a l R u l e B
. 6 2 5 D - 2

1 4 1 9 7 .6

S im p s o n ’s R u l e A 8 1 0 5 .3

Modified Method I
M ETH At s mM CPU

R e c t a n g u la r R u l e 4 0 5 1 .7

M o d i f i e d T r a p e z o id a l I 10 2 9 .3

M o d i f i e d T r a p e z o id a l I I
. 2 5 D - 1 10 3 5 .3

M o d i f i e d S im p s o n ’s I 8 3 0 .6

R e c t a n g u la r R u l e 8 0 1 8 1 .6

M o d i f i e d T r a p e z o id a l I 1 7 7 7 .1

M o d i f i e d T r a p e z o id a l I I
. 1 2 5 D - 1

2 4 9 2 .3

M o d i f i e d S im p s o n ’s I 1 4 7 9 .3

R e c t a n g u la r R u l e 1 6 0 6 8 8 .7

M o d i f i e d T r a p e z o id a l I 1 7 1 9 8 .3

M o d i f i e d T r a p e z o id a l I I
. 6 2 5 D - 2

2 8 2 4 5 .8

M o d i f i e d S im p s o n ’s I 12 1 5 9 .9

69

A comparison can be obtained by considering the performances of Modified Method II

and Modified Method I applied to solve test problems 1 and 2. By examining Tables

5 and 6 we see, for the same choice of h and k, there are differences in both storage

requirements and overall execution times. A ll rules of Modified Method II have lower

upper bounds of the storage Smax and CPU time than those rules of Modified Method I,

with the exception of the Rectangular Rule (standard method).

70

Chapter 6
Conclusions

The goal of our project has been to implement and test a number of methods, developed

in Roux and Thomee [15], Sloan and Thomee [17] and Zhang [20], to approximate the

solution of integro-differential equations of parabolic type in a more efficient fashion. We

used the Modified Method I I whose code is called PID ECX. We applied the methods

to solve two test problems of integro-differential equations of parabolic type to measure

the improvements in accuracy, storage requirements and execution times of Modified

Method n . In addition we implemented Modified Method I of Zhang [20], whose solver

is called PEDETZ. We compared it with the Modified Method I I with respect to

accuracy, storage and execution time.

Sloan, Thomee [17] and Zhang [20] proved that it was possible to reduce greatly both

the memory and computational requirements of the method if the integral term of (4.1)

is approximated by a quadrature formula with relatively high-order truncation error so

that a relatively large time step can be used for the quadrature formula. The analysis of

results in section 5.6 demonstrate this conclusion.

As expected, from the results in Tables 3 and 4, (or 5, 6), Modified Method I has been

shown to be very robust and efficient when solving certain test problems. However

Modified Method I I is more efficient than the previous solver when solving the same

test problems in terms of both the storage requirements and execution times of CPU.

Our investigation of the proposed methods suggest several other possibilities for future

work. One project would be to adapt the quadrature scheme to the case where non-

uniform step-sizes of integration would be employed. This is based on some variable

step-size schemes for time integration, such as the second order composite integration

scheme (0BDF2) as proposed in Carroll [13]. Future implementations should be more

effective in terms of computational expense and the composite integration scheme is

71

competitive with alternative approaches, particularly at moderate tolerances. Two other

possible projects would be to conduct some numerical experiments for the problem with

nonsmooth initial data, as have recently been done in Thomee and Zhang [21], and to

consider implementations for the problem on a 2-dimensional domain.

72

Bibliography

[1] J. R. Rice, Numerical methods, software, and Analysis: IMSLR Reference Edition,
McGraw-Hill Inc. 1983.

[2] T. Hopkins, C. Phillips, Numerical Methods in Practice: Using the NAG Library,
Addison-Wesley Publishers Ltd. 1988.

Finite Element Methods

[3] E. B. Becker, G. F. Carey, J. T. Oden, Finite Elements - An Introduction,
Prentice-Hall Inc. 1981.

Initial-Value Problems

[4A] W. H. Enright, T. E. Hull and B. Lindberg, Comparing numerical methods for
stiff systems of ODE’s, BIT 15 (1975) 10-48.

[4] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice Hall, Englewood Cliffs, NJ 1971.

[5] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II - Stiff and
Differential Algebraic Equations, Springer-Verlan 1991.

[6] J. D. Lambert, Computational Methods in Ordinary Differential Equations, John
Wiley & Sons 1973.

[7] L. F. Shampine, M. K. Gordon, Computer Solution o f Ordinary Differential
Equations - The Initial Value Problem, W. H. Freeman & Co., San Francisco
1975.

[8] J. Carroll, A composite integration scheme for the numerical solution o f systems
of ordinary differential equations, J. Comp. Appl. Math. Vol. 25, 1-13, 1989.

Parabolic Differential Equations

[9] N. K. Madsen, R. F. sincovec, Algorithm 540: PDECOL, General collocation
software for partial differential equations, ACM Trans. Math. Software, 5 (1979),
pp. 326-351.

[10] R. F. Sincovec, N. K. Madsen, Software for nonlinear partial differential
equations, ACM Trans. Math, software, 1 (1975), pp. 232-260.

73

[11] R. F. Sincovec, N. K. Madsen, Algorithm 494: PDEONE, solution of systems of
partial differential equations, ACM Trans. Math. Software, 1 (1975), pp. 261-263.

[12] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite
Difference Methods, 3rd Edition, Oxford University Press 1985.

[13] J. Carroll, A composite integration scheme for the numerical solution of systems
of parablic PDEs in one space dimension, to appear in J. Comp. Appl. Math.

Parabolic Integro-Differential Equations

[14] A. J. Jerri, Introduction to Integral Equations with Applications, Marcel Dekker
Inc.,

[15] M. N. Le Roux, V. Thomee, Numerical solution of semilinear integro-differential
equations of parabolic type, SIAM J. Numer. anal. 26 (1989), pp. 1291-1301.

[16] A. K. Pani, V. Thomee, L. R. Wahlbin, Numerical methods for hyperbolic and
parabolic integro-differential equations, Research Report CMA-R39-90, Centre
for Mathematical Analysis, the Australian National University 1990.

[17] I. H. Sloan, V. Thomee, Time discretization of an integro-differential equation of
parabolic type, SIAM J. Numer. Anal., 23 (1986), pp. 1052-1061.

[18] V. Thomee, On the numerical solution of integro-differential equations of
parabolic type, International Series on Numerical Mathematics, Vol. 86,
Birkhauser-Verlag Basel, 1988.

[19] V. Thomee, Numerical solution of integro-differential equations of parabolic type,
Research Report, Chalmers University of Technology, June 1990.

[20] N. Y. Zhang, On the Discretization in Time and Space of Parabolic Integro-
Differential Equations, Ph.D.Thesis, Department of Mathematics, Goteborg 1990.

[21] V. Thomee, N. Y. Zhang, Backward Euler Type Methods for Parabolic Integro-
Differential Equations with Nonsmooth Data, to be published.

74

