
REAL-TIME IMPLEMENTATION OF
AN OBJECT-BASED CODEC

by

Fergal Connor B.Eng.

A thesis submitted in partial fulfilment of
the requirements for the degree of
Masters in Electronic Engineering

Supervisor: Dr. Thomas Curran

School of Electronic Engineering

Dublin City University

September 1997

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Masters in Electronic Engineering

is entirely my own work and has not been taken from the work of others save

and to the extent that such work has been cited and acknowledged within the

text of my own work.

TABLE OF CONTENTS

TABLE OF CONTENTS... iii

LIST OF FIGURES... v

LIST OF TABLES.. vi

ABSTRACT... viii

ACKNOWLEDGMENTS.. ix

Chapter 1 INTRODUCTION...1

1.1 Background...1

1.2 Objectives of Research..3

1.3 Structure of Thesis..4

Chapter 2 VERY LOW BITRATE VIDEO CODING.. 5

2.1 Introduction.. 5

2.2 Object-Based Analysis-Synthesis Coding............................. 8

2.3 The DCU Object-Based Codec...12

2.4 Profiling of the DCU Object-Based Analysis-Synthesis Coder 21

2.4.1 Execution Time Estimation...21
2.4.2 Other Properties................................. 29

Chapter 3 REAL TIME IMPLEMENTATION...32

3.1 Introduction..32

3.2 Detection of Parallelism... 34

3.2.1 Inter-Function Parallelism... 35
3.2.2 Function-Level Parallelism..39

3.3 Proposed Parallel Algorithm......................... 41

3.4 Hardware Structure 48

Chapter 4 SOFTWARE DEVELOPMENT..51

4.1 Introduction.. 51

4.2 The TMS320C30.. 52

4.2.1 Main Architectural Features..53
4.2.2 Programming the TMS320C30.. 55
4.2.3 Pipeline Operation.. 60

4.3 Software Implementation... 65

4.3.1 Change Detection..67
4.3.2 Motion Analysis...75
4.3.3 Shape Approximation... 93
4.3.4 Motion Synthesis.. 95
4.3.5 Model Failure Detection...97
4.3.6 The Decoder... 99

Chapter 5 PERFORMANCE ANALYSIS... 100

5.1 Introduction.. 100

5.2 Execution Time Requirements.. 101

5.2.1 Sequential Execution...101
5.2.2 Parallel Execution...110

5.3 Discussion...115

Chapter 6 CONCLUSION... 119

Appendix A ..A-l

Appendix B .. B-l

REFERENCES

IV

LIST OF FIGURES

N umber Page

Figure 2.1 A typical videophone scene... 6

Figure 2.2 Block diagram of an object-based analysis-synthesis coder............. 9

Figure 2.3 Output of various stages of SIMOC coding scheme.......................13

Figure 2.4 An example of coarse polygon approximation................................ 16

Figure 2.5 Bilinear interpolation scheme.. 26

Figure 3.1 Amdahl Fraction graphs... 42

Figure 3.2 Motion estimation pipeline configuration.. 44

Figure 3.3 Four-processor geometric implementation.......................................45

Figure 3.4 Basic structure of multiprocessor system...49

Figure 4.1 Block Diagram of TMS320C30 Architecture...................................53

Figure 4.2 Operation of TMS320C30 pipeline..61

Figure 4.3 Contour direction codes.. 74

Figure 4.4 Mean-value filter structure.. 76

Figure 4.5 The two possible measurement window cases.................................79

Figure 4.6 Pel-subsampling pattern... 85

Figure 4.7 Interpolation block showing location of grid positions................89

Figure 5.1 Amdahl Fraction value graphs... 115

LIST OF TABLES

Table 2.1 Summary of three-level hierarchical block-matching algorithm...15

Table 2.2 Simulation results for DCU coder - average bitrates........................20

Table 2.3 Simulation results for DCU coder - average PSNR (Peak SNR). .21

Table 2.4 Summary of processing requirements for change detection 24

Table 2.5 Summary of processing requirements for motion analysis 27

Table 2.6 Summary of processing requirements for model failure detection28

Table 3.1 List of functions with input and output requirements.....................36

Table 3.2 Flow of grid positions through pipeline.. 44

Table 4.1 Cycle count for implementation of methods A & B........................83

Table 4.2 Summary of sub-optimal motion estimation simulation results ...86

Table 5.1 Computation costs for fixed steps of change detection.................102

Table 5.2 Cycle counts for non-fixed steps of change detection.....................102

Table 5.3 Computation costs for different motion estimation methods. ...104

Table 5.4 Computation costs for some motion analysis functions................104

Table 5.5 Summary of computation costs for shape approximation 106

Table 5.6 Summary of computation costs for motion synthesis....................106

Table 5.7 Cycle counts for non-fixed steps of model failure detection.........107

Table 5.8 Summary of cycle counts for the encoding of a single frame......109

Table 5.9 Cycle counts for sub-optimal motion estimation methods...........109

Table 5.10 Summary of cycle counts for the decoding of a single frame. ...109

Vll

Abstract

REAL-TIME IMPLEMENTATION
OF AN OBJECT-BASED CODEC

Fergal Connor

Modern video coding algorithms are becoming increasingly complex with the
result that single general purpose processors are incapable of meeting the
computational power required for real time implementation. The coding
algorithms are continuously evolving therefore, any multiprocessor solution
must not only possess the necessary computational power but must also be
flexible enough to adapt to any modifications in the algorithms.

This report presents a possible multiprocessor solution with specific reference to
the DCU object-based analysis-synthesis coder. Firstly, an abstract model of the
multiprocessor system is defined. The model is based on the dual requirements
of computational power and flexibility. An analysis of the DCU coding
algorithm is performed in order to refine the basic model by identifying
potential realisation options that optimise coder performance. A reciprocal
relationship exists whereby hardware constraints require modification of the
algorithm. Any modifications are outlined and their effect on overall coder
performance is investigated. Computational power costs are given for an
implementation based on TMS320C30 DSPs.

From experimental results it is shown that, despite the complexity of the coding
algorithm, real time operation is possible. A decoder based on a single
TMS320C30 has been developed that is capable of operating at up to 8 Hz.

ACKNOWLEDGMENTS

Firstly, I would like to thank m y supervisor, Dr. Thomas Curran, for giving me

the opportunity to work in a very interesting area. I would also like to thank

the guys in the Video Coding Group at Teltec DCU who always had an answer.

M y thanks to Cathriona for her encouragement and word skills. Finally, to my

parents for their patience and support throughout my academic life.

C h a p t e r 1

INTRODUCTION

1.1 Background

Recent years have seen the ratification of a number of compression standards for

the storage and transmission of video, notably MPEG-1 & 2 [1] [2] from the

ISO and H.261, H.263 [3][4] from the ITU-T. MPEG-1 is optimised for the

storage of audio-visual data at 1.5Mbit/s - basically the data transfer rate

available from a double speed CD-ROM - while MPEG-2 is aimed at higher

quality, higher bitrate (4-9Mbit/s) for use in digital transmission of broadcast

TV. H.261 is the video coding section of the H.320 standard that targets real

time audio-visual communication over ISDN lines. The H.320 standard is

designed to work at bitrates available from a single ISDN channel (64kbit/s) to

the entire capacity of 2Mbit/s. H.263 is based on H.261 but was developed for

video coding over narrowband communication channels (<64kbit/s). All these

standards use the same fundamental techniques to achieve video compression.

Block-based motion compensation prediction exploits temporal redundancy and

DCT is used to remove spatial redundancy.

These standards have found use in many applications that have facilitated the

breakdown of traditional boundaries between the telecommunications,

computer, and TV/film industries. Audio-visual and communication

capabilities are being incorporated into computers, interactive television is being

developed, and video and interactivity are being added to telecommunications.

The Moving Pictures Expert Group (MPEG) have identified this convergence of

industries along with three other major trends - the trend towards wireless

communication, the trend towards interactive computer applications, and the

1

increased use of audio-visual data in applications. To address these new

expectations and requirements, MPEG have proposed the development of a new

standard, known as MPEG-4, that supports new methods for communications,

access and manipulation of digital audio-visual data. The focus, the

functionalities to be supported, the structure and some of the potential

applications of this new standard are described in the MPEG-4 Proposal Package

Description (PPD) [5].

MPEG-4 specifies several functionalities that support the envisioned audio-visual

applications. In particular, eight key functionalities are distinguished as not

being well supported by existing or emerging standards, one of which is to

make substantial improvements in coding efficiency, in order to provide

subjectively better audio-visual quality at comparable bitrates. Many of the

functionalities are content-based, i.e. they require the ability to extract

information from an audio-visual scene. These content-based functionalities

would, for example, allow interactive or automatic selection of the decoded

quality of any particular object(s) in a scene.

The implementation of these functionalities requires fundamentally new

algorithmic techniques. In the area of video coding, many new algorithms,

commonly referred to as second generation video coding techniques, that

address the requirements of MPEG-4 are currently under development. These

algorithms are typically more computationally intensive than any existing

standard. MPEG-4 is not due for ratification until 1998 and it is expected that

technology will have progressed enough to be capable of providing the

necessary computational power. However, there remains a shorter term need

for hardware systems that can assist in the development and facilitate the trial of

the new algorithms. Since the algorithms are continuously evolving, they also

have the added requirement that any hardware implementation must be

programmable in order to adapt to any necessary changes. Hardware systems

2

for the real-time implementation of existing standards achieve the necessary

computational power through the use of specialised hardware and VLSI.

However, such solutions are not very programmable and restrict the

modification of the algorithms and their parameters. Therefore, these specialised

architectures are unsuitable for testing, evaluating or comparing second

generation algorithms.

1.2 Objectives of Research

The main objective of the research was to develop a possible hardware system

capable of real-time implementation of the DCU Object-Based Analysis-

Synthesis Codec. The DCU coder is an example of a second generation video

coding algorithm and is aimed at very low bitrate videophone applications. The

DCU algorithm is fairly indicative of many second generation video coding

techniques in terms of its computational complexity and the basic tools that

comprise the algorithm. Execution of the DCU algorithm is asymmetric -

coding requires more processing power than decoding - therefore most of the

research effort was spent on the coder. For videophone applications, a frame

rate of 8-10 Hz is considered to provide acceptable quality and as such this was

taken as the target for real-time operation. The proposed solution achieves this

through the use of a multiprocessor system and the modification of the DCU

algorithm. The construction of the system was considered beyond the scope of

the research. However, a demonstration decoder based on a single processor was

produced.

Although the system was directed towards the DCU object-based analysis-

synthesis codec, it is anticipated that the structure would be suitable for the

implementation of other video coding algorithms.

3

1.3 Structure of Thesis

Chapter 2 begins with a general introduction to second generation video coding

methods and then leads on to an explanation of the theory behind object-based

analysis-coding. The remainder of the chapter describes the DCU coding

algorithm and includes an implementation-independent profiling of the

algorithm.

In Chapter 3 the iterative design methodology used for the development of the

real-time implementation of the DCU coder is described. This is followed by an

analysis of the DCU coding scheme to detect any exploitable parallelism, which

leads to a proposed parallel implementation of the algorithm. The hardware

structure necessary to support this parallel algorithm is also briefly discussed.

In Chapter 4 the software development process is described. This begins with an

introduction to the target processor (the TMS320C30 DSP), the software

development tools and testing methods employed. Also included is a number of

programming guidelines for producing efficient software on the TMS320C30.

The remainder of Chapter 4 details the implementation of major elements of

the DCU algorithm.

The performance of this software is analysed in Chapter 5, firstly for a

sequential execution on a single DSP and, secondly, for the parallel algorithm

proposed in Chapter 3.

The concluding chapter, Chapter 6, includes recommendations for further

enhancements of the software, based on experience in developing the software

to its current state and the analysis of Chapter 5.Finally, a number of appendices

are included which contain, in more detail, results summarised in the main

body of the thesis.

4

C h a p t e r 2

VERY LOW BITRATE VIDEO CODING

2.1 Introduction

Most video coding techniques exploit the fact that in successive frames of a

video sequence there will exist some temporal redundancy. Existing video

coding standards such as H.261 use a block-based scheme where images are

subdivided into square blocks of NxN pels. The basic scheme is to use motion

compensation to make a prediction of the current frame from the previous

frame, based on the estimated motion of each block. Motion compensation is

aimed at removing temporal redundancy. A DCT is applied to the prediction

error of each block to exploit any redundancy in the spatial domain. The DCT

coefficients are then subject to quantisation, the objective being to set many of

them to zero. The results of the whole process - the DCT coefficients, the

motion vectors from motion estimation and the quantisation parameters - are

processed using entropy coding before transmission.

The H.263 standard is similar in operation to H.261 with some variations,

notably in motion compensation, to adapt it for low bitrates (<64kbit/s).

However, at very low bitrates, such as those required for videophone

applications over PSTN networks, visible distortions, known as blocking and

mosquito effects, become accentuated. The motivation for many second

generation video coding techniques is to improve image quality at very low

bitrates and possibly allow higher compression.

5

Figure 2.1 A typical videophone scene.

Model-based coding schemes have been developed to exploit certain

characteristics of common scenes in videophone applications. A typical

videophone scene (Figure 2.1) consists of a person's head and shoulders against a

static background. As this information is known a p rior i, e.g., the 3-D shape of

the face, it can be incorporated into the coding scheme [6]. Intra-frame motion is

limited and mainly due to the global movement of the person's head and

shoulders, and the local motion produced by changes in facial expressions. The

camera is generally fixed, but even for the cases where this is not valid, e.g., pan,

zoom and vibration, motion descriptions can be produced. Videophone

communication does not require the same degree of resolution that is provided

by, for example, MPEG-1 video. It is sufficient to use the QCIF1 format with a

reduced frame rate of 8 to 10 Hz. The combination of knowledge of the scene,

the limited motion and the lower resolution makes it possible to extract more

redundancy from a sequence of images, and therefore achieve a higher

compression ratio, than traditional block-based schemes.

In model-based coding an input image is considered to be a 2-D projection of a

3-D scene. Coding is performed by modelling the 3-D scene, based on advance

'QCIF: Luminance (Y) 176x144 pels
Chrominance (U & V) 88x72 pels

6

knowledge of the scene content, and producing model parameters that are

transmitted to the decoder where synthesis is used to reconstruct the image.

Model-based coding schemes can be divided into two categories [7] - those

schemes that use an explicit model and those that do not. In the former

category, common schemes use a 3-D wireframe model that is adapted to match

the dimensions of a person's head and shoulders. At the initation of

communication the adaptation parameters and a number of images of the

person are transmitted to the decoder where a model of the person is

constructed by texture mapping the images onto the adjusted wireframe. For

subsequent images the encoder only transmits motion parameters produced by a

recognition algorithm that detects and tracks the movement of facial features

and global head and shoulder motion. The decoder displays a sequence of

synthetic images produced by using the motion parameters to animate the

model.

Musmann et al. [8] introduced an object-based analysis-synthesis coding scheme

in which no explicit model is used. This scheme is not restricted to any one

special object and can be applied to a more general class of scene. In this scheme,

each image in a sequence is segmented into moving objects and each object is

defined in terms of motion, shape and colour (colour denotes luminance and

chrominance). These parameters depend on the source model being used. At an

abstract level, a source model is a means of describing the type of objects (e.g.

rigid, flexible) and their motion (e.g. static, moving in 2-D or 3-D). Therefore,

an assumption is made about the contents of the scene to be coded. The

parameters are encoded by predictive or transform coding techniques. As in

block-based schemes, motion compensated prediction is applied to exploit any

temporal redundancy. The receiver uses image synthesis to reconstruct the

image from decoded parameters. The same source model used in image analysis

applies to image synthesis. Object-based analysis-synthesis coding introduces

geometrical distortions in the synthesised image that are less annoying to the

7

human eye than the quantisation error distortions associated with block-based

coding schemes.

The following section explains the concept of object-based analysis-synthesis

coding. Section 2.3 describes the DCU object-based analysis-synthesis codec.

2.2 Object-Based Analysis-Synthesis Coding

A block diagram of an object-based analysis-synthesis coder is shown in Figure

2.2. Image analysis segments each image of the input sequence into arbitrarily

shaped moving objects and describes each object in terms of motion, shape and

colour. These three parameter sets are encoded and transmitted. The parameter

memory in both the coder and decoder stores the decoded parameter sets. The

transmitted image is reconstructed by image synthesis using the decoded

parameters. The reconstructed image is displayed at the decoder and is used by

the coder for image analysis of the next image in the sequence. Parameter

decoding and image synthesis are identical for the coder and decoder. The stored

parameters can be used in the predictive coding of the parameters of the next

image in the input sequence.

Image analysis consists of three levels - the estimation of object parameters,

internal image synthesis and a verification test. The estimation of object

parameters depends on the source model being used. Image analysis is based on

the assumption that any temporal changes in the input sequence of images can

be described by the source model. This assumption is tested using the

verification algorithm which compares the original image and the image

reconstructed by synthesis from the estimated object parameters. Areas where

the assumption holds are known as model compliance (MC) objects. Image

analysis fails in areas of the image that cannot be described by the source model.

8

These model failure (MF) objects typically require more bits to encode. The size

of the model failure area depends on the source model. Additionally, different

source models w ill produce parameter sets with different information content

and hence different bitrates. Therefore, it is important to use source models and

corresponding image analysis algorithms that minimise model failure areas and

produce parameter sets that can be efficiently encoded.

SOURCEMODEL

Figure 2.2 Block diagram of an object-based analysis-synthesis coder [8].

The three parameter sets are available to parameter coding in uncompressed

form. To further improve the compression ratio, parameter coding techniques

are applied individually to the parameter sets. In block-based coding, only two

parameters (motion and colour) are transmitted for each block. For object-based

coding to be equally or more efficient than block-based coding, there has to be a

reduction in the bitrate required to transmit the motion and colour parameters

to compensate for the additional bits needed to transmit the shape information.

Several properties of object-based coding ensure that this is achieved.

If the shape coding algorithm is efficient, the bitrate required for shape

information will be low. For example, a source model that produces smoothly

9

varying shape parameters can be efficiently coded using predictive coding. Also,

the transmission of shape information of an object is suppressed if no significant

change in the object shape has occurred. For model compliance objects, where

the assumption holds that any temporal change of an object can be sufficiently

described by the source model, there is no need to transmit the colour

information. Similarly, for model failure objects, since the assumption fails, the

motion information is not transmitted as it cannot be used to describe the

object. Only one motion parameter set is transmitted per model compliance

object that can typically cover the area of several blocks which in block-based

coding require a motion parameter per block. Image analysis identifies model

failure areas that are caused by small position and shape errors. As these

geometrical distortions are not annoying to the human eye the update

information can be suppressed. The distortions are not annoying because a

human observer pays more attention to how natural the image looks rather

than its exact position.

Since the transmission of colour information can be suppressed for model

compliance objects a good source model is one that maximises the area covered

by MC objects (and hence minimise model failure area). The use of a good

source model typically results in a decrease over block-based coding in the image

area to be updated by colour coding. Through the use of shape information the

prediction of colour can be significantly improved at object boundaries. In

block-based coding, blocks that contain an object boundary require a higher

bitrate to code as motion compensation prediction often results in a large

prediction error.

Parameter coding can be controlled from the object information produced by

image analysis. Image analysis labels an object according to whether it is model

compliance or model failure. For objects marked as model compliance, only

motion parameter and shape parameter coding needs to be performed. In the

10

case of model failure objects the motion parameter is omitted and shape and

colour parameter coding is performed. Objects can be assigned a priority

depending on factors such as size and the amount of update information

contained in the parameter sets. Transmission commences with the object of

highest priority and continues in decreasing order. The transmission process is

halted when the bitrate becomes exhausted (or all objects have been

transmitted). Priority control ensures that the most important objects are

always transmitted.

To achieve the high compression ratio needed for low bitrate transmission

irreversible coding techniques have to be used. Both object-based and block-

based coding are irreversible. The irreversible process in block-based coding is

the quantisation of the DCT-transformed motion compensation prediction

error. Any transformed prediction errors below a threshold are set to zero and

those above are set to the nearest multiple of the threshold. At lower bitrates

the quantiser threshold is very coarse leading to an overall degradation in the

subjective quality of the image. Annoying coding errors known as mosquito and

blocking artefacts become accentuated. Mosquito artefacts occur at object

boundaries and are due to the fact that in block-based coding only one motion

vector is calculated per block. This produces large motion compensation

prediction errors if a block contains several objects moving in different

directions. These errors require a high bit count to code, which at low bitrates is

not available.

Object-based analysis-synthesis coding is able to produce images of higher

subjective quality, i.e. more natural looking, than block-based coding at the

same bitrate. It also allows higher compression ratios with acceptable image

quality to be achieved. Mosquito effects at object boundaries are eliminated by

the use of shape information. Small position and shape errors caused by the

irreversible process result in geometrical distortions that are less annoying to the

11

human eye than the quantisation errors introduced in block-based coding.

Using the object information produced by image analysis to prioritise objects

allows the coding of important objects to be improved. For example, it is

possible to code small objects, such as the eyes (normally model failure areas)

which are important to the subjective quality of the image, with greater

accuracy than objects which contribute little to image quality such as the

background. Through efficient coding of the motion and shape parameters a

higher proportion of the bitrate is available for the colour parameters.

2.3 The DCU Object-Based Codec

The DCU codec was developed in conjunction with work carried out in

SIMOC (Simulation model for object based coding), a subgroup of COST

2lite r - the video coding section of the pan-European COST (Scientific and

Technical Co-operation) organisation. The aim of the SIMOC group is to

provide a framework within which a reference model for an object-based

analysis-synthesis codec can be developed [9], The object-based algorithm

developed by this group is applicable to videophone sequences containing a

static background. The source model used is that of "planar flexible objects that

move translationally in the image plane". This section gives an overview of the

operation of the DCU codec. A more detailed examination of the algorithm is

given in Section 2.4.

The image analysis algorithm is specific to this source model. According to the

source model assumption any temporal change in luminance will be due to 2D-

object deformation (flexible) and 2D-motion (translational). Image analysis

requires the current image and the previous synthesised image. The first step of

image analysis is to segment the current image into temporally unchanged

(static) and changed areas. This is achieved by comparing the two input images

for differences in luminance.

12

V
(e) (f)

13

Thresholding is used to distinguish between nonzero differences that are due to

noise and those that are due to a scene change. Median filtering and

morphological filtering are applied to the binary segmentation mask (change

detection mask) in order to eliminate small regions. Each disjunct area is

interpreted as a separate object and the binary mask defines the shape of each

object. SIMOC refers to this first step as 'Change Detection'.

The various stages of the SIMOC coding scheme shown in Figure 2.3 are

a) previous reconstructed frame

b) current frame

c) grid position motion vectors

d) SMU mask

e) motion synthesised current frame

f) model failure mask

g) decoded frame.

In the second step of image analysis (motion analysis), a set of motion

parameters are calculated for each disjunct region. As the source model assumes

that any object motion will be in the 2D plane, the motion parameters consist

of a displacement vector field. A three-level hierarchical block-matching

algorithm based on Bierling's [10] work is used to estimate the motion vectors.

Bierling's algorithm estimates true motion rather than calculating the motion

vector that minimises the mean absolute displaced frame difference, as is the case

in block-based algorithms. Efficient differential coding of the motion parameters

can be achieved as the displacement vector field is also homogeneous. Motion

vectors are estimated at predetermined grid positions within the changed areas

by recursively using the result from a level in the hierarchy as an initial guess in

the next lower level. In the first level of the hierarchy a large search window is

applied to low-pass filtered versions of the current image and the reconstructed

previous image. This provides a rough, but reliable, estimate with respect to the

14

true motion, by reducing the number of false estimates that can be caused by

high frequency image components. The second and third levels of the hierarchy

locally refine the estimate by using a smaller search window and a maximum

update displacement. A summary of the three levels is contained in Table 2.1.

The maximum displacement is ±4.5 pels, which is sufficient for the limited

motion in videophone applications [11].

Hierarchy Level 1 2 3
Max. update displacement ±3 ±1 ±0.5

Measurement window size 32x32 16x16 16x16

Table 2.1 Summary of three-level hierarchical block-matching algorithm.

Once the grid motion vectors have been evaluated interpolation is used to

generate a full resolution motion vector field with half-pel accuracy. It may

happen that one or more of the grid motion vectors required for the

interpolation falls outside the changed region. In this case grid motion vectors

have to be temporally extrapolated to outside the changed region. When the

motion vectors have been interpolated for all pels within the changed region, all

vectors in the unchanged region are set to zero.

The motion vector field is used to divide the changed region into a moving

region and uncovered background. All pels in the current change detection

mask are traced backwards, using their motion vectors. If the inverse motion

vector points to a pel that is within the changed region of the previous change

detection mask then the current pel is classified as moving, otherwise it is

classified as uncovered background.

Shape analysis uses the model compliance (moving area) mask produced by the

first steps in image analysis. The shape of an object is considered to be the

contour of that object in the binary mask. Object shape is approximated by a

15

polygon representation whereby the object contour is described by a number of

vertices connected by straight line segments. The general principle of shape

approximation is shown in Figure 2.4. The number of vertices depends on the

desired quality of the shape approximation. The quality is controlled by the

absolute difference between the actual object contour and the approximated

polygon representation. The shape approximation becomes coarser with an

increase in the maximum allowable absolute difference and fewer vertices

(therefore less bitrate) are required. However, low accuracy leads to synthesis

errors near object boundaries and therefore increases the bitrate for the colour

parameters. In the DCU coder the maximum allowable absolute distance has

been fixed at a value that achieves a balance between the number of vertices

produced and the quality of the image synthesis.

For shape approximation, objects are split into two categories - those objects

with a reference in the previous frame and those without. To determine if an

object existed in the previous frame, vertices from the previous frame are

motion compensated by applying the vertices' motion vectors stored from the

previous frame (the source model assumes that the motion is linear, i.e., if the

current frame occurs at k+ 1, then the motion vectors from k-1 to k are applied

to the vertices from k). This motion compensated object shape is used as an

16

initial estimate of the object shape in the current frame. The validity of the

estimate is then tested by a verification algorithm. The distance of each displaced

vertex to the actual contour is calculated. If the distance is within the maximum

allowable absolute distance then the vertex is marked as 'maintained', otherwise

it is marked as 'rejected'. Only maintained vertices are used in the shape

approximation. Additional vertices may have to be inserted to ensure that the

quality of the shape approximation obeys the maximum allowable absolute

distance criterion.

If the source model holds, then any changes in object shape w ill be due to

motion alone. Where this is the case, the motion compensated vertices are

identical to the actual object and no extra update information, such as inserted

vertices, is needed thus reducing the shape parameter bitrate. In the case where

vertices are rejected and inserted, i.e., where the source model only partly holds,

the indices of the maintained, rejected and inserted vertices as well as the

position of each inserted vertices needs to be transmitted.

For objects with no reference in the previous frame, the vertices must be

calculated from the actual object contour. First, an initial polygon with four

vertices is calculated. Then, the approximation is progressively refined by

inserting vertices until the quality criterion is matched everywhere.

The success of image analysis is checked using a verification test (model failure

detection). The verification test compares the current image to an image

synthesised from the shape, motion and colour parameters produced by image

analysis in order to determine if there are any areas where the temporal change

cannot be sufficiently described by the source model. Model failure areas can be

caused by motion that is more complex than translational motion, or changes

that cannot be described by motion at all, e.g., by the introduction of a new

object into the scene. Additionally, using the DCU source model it is not

17

possible to detect moving objects in front of moving objects, e.g., eyes/mouth in

front of a face.

The synthesised image is reconstructed using a special colour memory, the

motion vector field and the SMU mask (Static, Moving, Uncovered). To ensure

the encoder synthesis process matches that of the decoder the shape

approximated moving area mask is used. The uncovered area and the motion

vector field are updated to reflect and changes from the actual mask. The colour

memory is used instead of the previous reconstructed frame as it eliminates the

effects of repeated filtering due to half-pel motion compensation. The memory

is maintained at twice the spatial resolution of the input image, and is initialised

by bilinear interpolation of the first image in the input sequence. For image

synthesis, a new colour memory is generated by mapping into it pels from the

old colour memory according to their classification in the SMU mask. A

priority based is used to determine the classification of half-pel positions. If a pel

belongs to the static area then it retains its value from the old colour memory.

Model Compliance pels (pels belonging to the moving area) are synthesised

through motion compensation prediction - each pel is assigned the value of the

pel in the old colour memory pointed to by its motion vector.

For each pel in the uncovered area, a prediction can be made in two ways -

either by a spatial prediction from neighbouring static pels or by temporal

prediction from a special background memory. If it is ascertained, through the

use of a special 'already seen' mask, that a part of the background appears in a

sequence for the first time, spatial prediction is performed. The background's

decoded colour parameters are then added to the background memory to be

used for prediction in any subsequent appearance of the same part. The

background is also marked as 'already seen' in the mask. Both the coder and

decoder maintain identical background memories and 'already seen1 masks. The

18

quality of the prediction is evaluated and the prediction error is coded, as per

model failure objects, and transmitted.

All full-pel positions within the new colour memory are used to form the image

employed in model failure detection.

The shape parameters that are coded consist of the co-ordinates of the vertices

from the shape approximation. For MC-objects with a reference in the previous

frame a list of maintained, rejected and inserted vertices for is run-length coded,

and only the co-ordinates of the inserted vertices must be coded. The x and y

components of an inserted vertex are coded relative to its nearest counter

clockwise neighbour. In the case of MC-objects with no reference in the

previous frame and MF-objects all vertices are classified as inserted vertices and

coded accordingly. Adaptive arithmetic coding is applied to the shape

parameters before transmission. No shape or motion information is required for

uncovered background as it is determined from the shape and motion

parameters of MC-objects.

Motion parameters (the grid motion vectors) are coded using predictive coding

in order from top left to bottom right. The left neighbour is used as the

prediction vector, if available, otherwise (0,0) is taken. The prediction errors are

merged into a single stream and undergo adaptive arithmetic coding before

being transmitted.

The colour parameters of model failure regions are coded using spatial vector

quantisation on the motion compensated prediction error. Each model failure

object is coded separately using one of a set of six vector codebooks which

increase in size from 32 to 1024 vector entries. The model failure object is

divided into 2x2 blocks of luminance pels and their two corresponding

chrominance pels, giving a total of six components per vector. The codebook

vectors are used as an approximation (quantisation) of the actual prediction

19

error. Each 2x2 block is assigned the vector that yields the lowest average square

difference calculated over the six prediction errors. Vectors are chosen from the

codebook that gives the best approximation over the whole object. A

representative vector is allocated to each vector to be coded from the chosen

codebook applicable to the object. The indices of the representative vectors are

further processed using adaptive arithmetic coding.

To date, no bit-stream syntax and control has been defined and no buffer

regulation is included. The coder works in open loop mode with the generated

bitrate controlled by a quality criterion for model failure regions (31 dB PSNR).

Table 2.1 and Table 2.3 give some performance statistics for the DCU coder

from simulations on the standard test sequences 'Miss America' and 'Claire'

[12]. For QCIF resolution at 8 frames per second, the bitrates achieved represent

a compression ratio of 116:1 for the 'Miss America' sequence and 82:1 for the

'Claire' sequence. It is generally accepted that this object-based analysis-synthesis

coding algorithm has many limitations, mainly due to the underlying source

model. The coder performance is dependent on the source scene content, hence

the variation in the compression ratios for the two sequences. However, the

DCU algorithm is fairly indicative of many second generation video coding

techniques in terms of computational complexity and the basic tools that

comprise the algorithm.

SEQUENCE SHAPE MOTION COLOUR
kbit/s kbit/s kbit/s

Miss America 7.5 2.4 12.2
Claire 5.6 4.3 19.1

Table 2.2 Simulation results for DCU coder - average bitrates.
Simulation: QCIF 8 fps - Miss America 50 frames, Claire 50 frames.

20

SEQUENCE Y - PSNR
dB

U - PSNR
dB

V - PSNR
dB

Miss America 36.39 38.74 36.97
Claire 33.84 29.89 32.23

Table 2.3 Simulation results for DCU coder - average PSNR (Peak SNR).

Simulation: QCIF 8 fps - Miss America 50 frames, Claire 50 frames.

2.4 Profiling of the DCU Object-Based Analysis-

Synthesis Coder2

2.4.1 Execution Time Estimation.

Given the complete description of the DCU algorithm in [9], it is possible to

derive some estimate of the processing power required for its implementation,

at least for the major functions. Although the estimates are based on a number

of reasonable assumptions, at this stage it is not possible to derive any

meaningful estimate for the implementation complexity. Such an estimate only

has meaning when a target processor has been selected and the algorithm has

been optimised in that processor’s native language. The estimates assume that an

operation (op.) equates to a multiply, arithmetic/logic, or data move that

executes in a single clock cycle, and that there exists sufficient input and output

facilities to keep the CPU loaded with data. Also, no account is made for

control overheads that would invariably be required. Even given these

assumptions, it is difficult to arrive at an exact figure since many of the

component parts of the algorithm only operate on the detected moving area,

and therefore execution time will vary with the amount of motion in the image.

The estimate derived in this section is based on the worst case condition where

2 111 the rest of this chapter only the encoder is considered. It is assumed that, as the encoder contains a
decoding loop, any realtime encoder solution will automatically result in a realtime decoder.

21

the entire image is classified as moving. The figure is only intended to give the

order of magnitude of the complexity that could be expected for the sequential

execution of the algorithm.

The input image is assumed to be available in QCIF format, i.e., no format

conversion is necessary. The dimensions of QCIF are:

Luminance (Y): 176x144 pels
Chrominance (Cr & Cb): 88x72 pels.

2.4.1.1 Change D etection

Only luminance data is used to calculate the change detection mask. There are

seven steps involved in the calculation.

a) Compute the absolute difference between the current frame and the

previous reconstructed frame.

This involves 3 operations per pel - subtract, absolute and store, giving

a total of 76,032 ops. per frame.

b) For each pel, sum its value and that of its neighbours in a 3x3 mask.

Any pel whose neighbourhood sum is greater that 18 should be

mapped to a single pel value representing CHANGED regions; all

other pels should be set to a pel value representing UNCHANGED

regions.

This requires 10 ops. per pel - 8 additions, 1 compare, 1 store giving

253,440 ops. per frame.

c) Apply a 5x5 binary median filter to the resulting CHANGED and

UNCHANGED regions.

In the binary median filter a pel takes on the binary level that is

dominant in a 5x5 mask centred on that pel. This can be done by

summing all the pels and if the result is > 12 then the CHANGED

22

level is dominant (assuming CHANGED = 1, and

UNCHANGED = 0). This requires 26 ops. per pel - 24 additions, 1

compare, 1 store giving a total of 658,944 ops. per frame.

d) Add all MOVING areas from the previous SMU mask to the mask

resulting from step c).

An addition and store will be required for this step, totalling 50,688

ops. per frame.

e) Blow (dilate) the CHANGED region three times, using a 3x3

structuring element.

Dilation is a morphological operation that involves the translation of a

structuring element throughout an image, setting a pel to ' 1', in this

case CHANGED, where the structuring element has a non-empty

intersection with the pels in the neighbourhood. In this case, a pel is set

to CHANGED if it or any of its neighbouring pels in a 3x3 mask are

CHANGED. This has the effect of expanding (blowing) objects.

Dilation can be achieved by ORing a pel with its 3x3 neighbours,

requiring 8 ORs and 1 store giving a total of 228,096 ops. per dilation

per frame.

f) Shrink (erode) the CHANGED area three times, using a 3x3

structuring element.

Erosion is another morphological operation and is the opposite to

dilation. A pel is set to 'O', in this case UNCHANGED, if the

structuring element does not match all the data surrounding the pel,

i.e., in this case a pel is set to UNCHANGED if it or any of its

neighbouring pels in a 3x3 mask are UNCHANGED. This has the

effect of expanding shrinking objects. Erosion can be achieved by

ANDing a pel with its 3x3 neighbours, requiring 8 ANDs and 1 store

giving a total of 228,096 ops. per erosion per frame.

23

g) Eliminate all CHANGED regions whose size is less than the average

size of all CHANGED regions.

h) Eliminate all UNCHANGED regions whose size is less than the

average size of all UNCHANGED regions.

The processes involved in these two steps are complex and are not

readily translatable into simple operations such as add, subtract, etc.

Therefore, a figure cannot be calculated for these steps.

The estimates for change detection are summarised in Table 2.4. The total of

approximately 2.5MOPs is independent of the size of the CHANGED area, as

it is these steps that actually produce the regions.

STEP # of Operations

a) 76,032

b) 253,440

c) 658,944

d) 50,688
e) (3x228,096) 684,288
f) (3x228,096) 684,288

g) N/A

h) N/A

Total 2,407,688

Table 2.4 Summary of processing requirements for change detection.

2.4.1.2 M otion A nalysis

A 3-level hierarchical block-matching algorithm is used for motion estimation.

24

L evel 1

A two-step search is performed on 3x3 mean-value filtered versions of the

current frame and the previous reconstructed frame. The measurement window

is 32x32 pels. The search is performed at every 16th pel in every 16th line in all

directions, with a step-size of ±2 pels in the first step and ±1 pel in the second

step. The first grid position is positioned at (8,8). The displacement that leads to

the lowest mean absolute displaced frame difference (MAD) is taken. Only pels

within the CHANGED region are used for MAD calculation.

Firstly, the mean-value filtering must be performed. This requires 10 ops. per

pel - 8 additions, 1 divide, 1 store - giving a total of 506,880 ops. for both frames.

Step 1:

of searches:99

of search positions:9

window size:32x32

of ops. per pel: 4 (1 subtract, 1 absolute, 1 multiply3, 1 add to MAD

total)

= 3,649,536 ops. per frame.

Step 2:

same as step 1.

L evel 2

A one-step search is performed on non-filtered versions of the current frame and

the previous reconstructed frame. The measurement window is 16x16 pels. The

■‘Assumes CHANGED = 1 and UNCHANGED = 0 - by multiplying the absolute difference by a pel’s
mask value, it will either remain the same or be set to 0 and thus only CHANGED pels contribute to the
SAD.

25

search is performed at every 16th pel in every 16th line in all directions with a

step size of ±1 pel.

of searches: 99

of search positions: 9

window size: 16x16

of ops. per pel: 4

= 912,384 ops. per frame.

L evel 3

For this level the current frame and the previous reconstructed frame are

bilinearly interpolated so that images are obtained with twice the number of

pels and lines. A one step search is performed on these images at every 32nd pel

in every 32nd line in all directions with a step size of ±1 pel (i.e., ±0.5 pel in the

original resolution). The measurement window is 32x32 pels.

a b
+ integer-pel position

o o
c d O half-pel position

Figure 2.5 Bilinear interpolation scheme

a = A Equation 2.1

b = (A+B)//2 Equation 2.2

c = (A+C)//2 Equation 2.3

d = (A+B+C+D)//4 Equation 2.4

Each pel in the frame to be interpolated has four output pels associated with it

(see Figure 2.5). Interpolation requires 12 ops. per pel - 5 adds, 3 divisions and 4

26

stores. This gives a total of 608,256 ops. for the two frames. Additionally, the

change detection mask must be upsampled to the same dimensions as the

bilinearly interpolated images. This is achieved by using a biased median value

filter that has the following rules (positions are the same as per Figure 2.5):

a is set if A is set (requires 1 store);

b is set if both A and B are set, i.e., b = A.B (requires 1 AND, 1 store);

c is set if both A and C are set, i.e., c = A.C (requires 1 AND, 1 store);

d is set if any three of A,B,C,D are set (requires 3 adds, 1 compare, 1

store).

The upsampling requires 10 ops. per pel, i.e., 253,440 ops. per frame.

The search requires the same number of operations as step 1 of level 1.

LEVEL # of Operations
Level 1: Filtering 506,880

Step 1 3,649,536
Step 2 3,649,536

Level 2 912,384
Level 3: Search 3,649,536

Interpolation 608,256
Upsampling 253,440

Total 13,229,568

Table 2.5 Summary of processing requirements for motion analysis.

2.4.1.3 M odel Failure D etection

Determining the model failure regions requires, firstly, the calculation of the

MF threshold, TMF, as follows:

a) Set TMF = 1.

27

b) Calculate the synthesis error variance, MSEsyn, for all CHANGED

pels whose synthesis error is less than TMF.

c) If MSEsyn < 6 set TMF = TMF +1 and goto step b), otherwise set

TMF = TMF -1 and finish.

The conditional statement in c) means that the processing power required to

calculate the TMF will vary from image to image. Once the TMF has been

calculated, a binary mask can be generated that indicates those pels where the

synthesis is greater than or equal to the TMF, i.e., model failure pels. This

would require 3 ops. per pel - 1 compare to TMF, 1 loading of appropriate

binary value and 1 store of value in mask. The remaining five steps of model

failure detection are identical to steps c), e), 1), g) and h) of change detection. The

estimates for model failure detection are summarised in Table 2.6.

STEP # of Operations
Calculation of

TMF
N/A

Generation of
Binary Mask

76,032

5x5 median filter 658,944
3 x dilation 684,288
3 x erosion 684,288

Elimination of
regions

N/A

Total 2,103,552

Table 2.6 Summary of processing requirements for model failure detection

2.4.1.4 Sum m ary

The estimates derived cover the three encoder functions that require the greatest

processing power [13]. The remaining encoder functions are algorithmically

complex and are not readily translated into simple operations. Therefore it is

28

difficult to produce estimates for their processing power requirements. The

figures derived above indicate that the DCU encoder has a processing power

requirement in the order of 140 MOPs (million of operations per second) even

for a modest frame rate of 8Hz. Benchmarks for the processing power of

uniprocessors vary by manufacturer. Some uniprocessors are capable, under

certain conditions, of completing multiple operations in a single clock cycle,

e.g., a multiply, an add and a data move. Thus a device with an instruction cycle

of 100ns is termed a 30MOPS device. Even taking this into account, the

processing power required for the encoder is above that which is achievable by

uniprocessors, typically a few tens of MOPs. Therefore it is necessary to seek a

parallel implementation if real-time operation of the DCU object-based

algorithm is to be achieved.

2.4.2 Other Properties

In many block-based codec implementations real-time operation is achieved

through geometrical image subdivision and distribution of the resulting image

segments between parallel processors. This method relies upon each image

segment having fixed and (nearly) identical execution times. This condition

exists as most block-based coding algorithms are image content independent,

i.e., they have a fixed, and predictable execution time regardless of the amount

of motion in an image. In contrast, it is a property of the DCU algorithm that

execution time depends significantly upon image content. This is due to the fact

that much of the analysis and synthesis is concentrated upon areas of the image

where motion is detected, therefore the more motion that occurs between

frames the greater the execution time required to process the frames. This

variation in execution time occurs not only between different image sequences,

but also between different frames of the same sequence.

29

As is evident from the estimates derived in Section 2.4.1, the component of the

DCU algorithm that dominates the execution time is motion estimation and its

associated functions. This is also the case in many block-based schemes where

the full search block-matching algorithm is used for motion estimation. The

most common technique used to save processing power in block-based

implementations is to reduce the amount of search positions evaluated in the

search window, thus decreasing the amount of computationally expensive

matching operations. While this method works well for block-based schemes,

resulting in only a small degradation in picture quality, it is unsuitable for the

motion estimation used in the DCU algorithm. The hierarchical search already

has a reduced number of search positions (36 per grid position, compared to 256

per macroblock in H.261). The motion parameters produced by motion

estimation are intrinsic to the operation of the DCU algorithm and, as such, the

motion estimation scheme outlined in Section 2.4.1 has been optimised with

respect to coding efficiency and image quality. Therefore, the use of any other

scheme may have adverse effects on the operation of the DCU algorithm.

Nevertheless, a more efficient implementation of the motion algorithm may

have to be sought if real-time implementation is to be achieved, even if this

means sacrificing image quality and/or larger bitrates.

The data memory required by the DCU algorithm can separated into two

categories - memory size requirements that are fixed from frame to frame, and

memory that is allocated and subsequently de-allocated during the processing of

a frame. The first type of data must be available throughout all the stages in the

processing of a frame, and are updated during the process for use in the analysis

and synthesis of subsequent frames. Examples of this type of data are the current

frame, the previous reconstructed frame and the colour memory. This type of

data requires over 250kB of memory. The second data group consists of

temporary results generated by a component part of the DCU algorithm that is

required in subsequent processing of the same frame, e.g., motion estimation

30

requires bilinearly interpolated versions of the current frame and previous

reconstructed frame. These temporary results can be discarded when they are no

longer required. The memory space required for temporary storage varies

during the processing of a frame, but reaches a peak for motion estimation,

where over 300kB is required.

31

C h a p t e r 3

REAL TIME IMPLEMENTATION

3.1 Introduction

In the development of application-specific systems, such as for second

generation video coding, there are two main factors that must be taken into

account when choosing an architecture - the algorithms that must be supported

and the hardware that will be used to construct the system. Algorithms are a

decisive factor as they determine the minimum processing power requirements

and the cost of software development, while the hardware not only imposes

constraints on the cost, size and complexity of the technology, it also limits it in

terms of maximum clock rates, memory access times, etc.

In order to define an algorithm fully, a knowledge of the target system is

required, e.g., its processor type, number of processors and input/output

capabilities. An algorithm that performs a task on an uniprocessor system will

be somewhat different to an algorithm that performs the same task on a

massively parallel system. However, for application-specific systems, the

algorithms must be defined first in order to develop a specialised architecture.

This creates a “vicious circle” situation - a knowledge of the target system is

required to define the algorithm, but the algorithm must first be defined to

allow the architecture to be developed. One way to deal with this problem is to

decide on a hardware architecture first and then adapt the algorithm to suit.

This approach has the disadvantage of creating either unoptimised systems that

32

are wasteful of resources or systems that are incapable of supporting the

algorithm.

The solution suggested here to the vicious circle problem is an iterative

approach that begins with an implementation-independent statement of the

algorithms, from which the basic hardware requirements are identified and a

primary model is defined. Any general hardware constraints are considered in

this primary model. The next step involves translating the algorithms for

implementation on the basic hardware. In the final step, the model is refined

based on any algorithmic needs identified during the translation process. These

last two steps can be repeated a number of times to progressively refine both the

algorithm and the hardware and produce a final design that is optimised for

both the software requirements and hardware constraints.

The implementation-independent profiling of the DCU algorithm in Section

2.4.1 suggests that the computational requirements of the algorithm are greater

than that which is achievable by a uniprocessor, and so a parallel system is

required. This is the first architectural decision and is the foundation for the

basic hardware model. Another requirement of the system is the ability to adapt

to any changes that may be necessary as the DCU algorithm evolves, i.e., the

system must be programmable. Using programmable elements in the system has

other important advantages. Firstly, the complexity of the system lies in the

software rather than the hardware and, if the cost of software development is

low, then the cost of modifying the algorithm will also be low. Secondly, if a

sufficient degree of programmability exists, then not only can the algorithm be

modified but the system could also be used to implement other algorithms and

finally, the use of standard programmable devices rather than application-

specific devices can reduce system cost.

33

The basic hardware model can be simply defined as a system that is parallel and

programmable. The next step in the iterative design process is to adapt the

sequentially organised DCU algorithm for implementation on a parallel system.

Parallel systems achieve greater processing power over uniprocessor systems by

executing concurrent (parallel) tasks simultaneously. A prerequisite of an

algorithm for parallel implementation is that the algorithm contains several

concurrent elements. Therefore, any concurrent elements of the DCU

algorithm must be identified in order to assess its suitability for parallel

implementation.

3.2 Detection of Parallelism

Parallelism can exist at various hierarchical levels within an application. At the

highest level in the hierarchy, the application can be separated into concurrent

jobs or programs. Any functions called by these programs form the second

level. If these functions then call further functions, then the latter functions

would form the third level, etc. The lower levels of the hierarchy occur after the

fundamental functions (functions that do not call other functions). Concurrency

can exist between individual instructions of a function, and at the most basic

level, it may be possible to have concurrent operations within an instruction.

Generally, the higher levels of parallelism are performed algorithmically, while

the lower levels are achieved in hardware. However, there is no distinct

boundary between the two.

A typical videophone application would consist of video, audio, control and

multiplex components. The first level of parallelism would be to separate the

application into these parts. In the DCU algorithm, there exists only one

program at the highest level and, therefore, detection of parallelism must begin

at the second level.

34

3.2.1 Inter-Function Parallelism

In order for sequentially organised processes in an algorithm to be executed in

parallel, the processes must satisfy Bernstein’s condition. This basically states

that two processes can be executed as two independent and concurrent processes

if the input to one process is not dependent on the output of the other, and vice

versa, i.e., if I; represents the input to a process, and 0 ; represents the output,

then Bernstein’s condition can be expressed as:

I, n 0 2 = f) and I2 n O, = (j>

This data dependency is the key to the detection of concurrency within an

algorithm. To determine the data dependency within the DCU algorithm, it is

useful to list all the functions involved together with their required inputs and

outputs. This is done in Table 3.1.

The dependency of functions on the output of others, as can be seen in Table

3.1, illustrates the highly sequential in nature of the DCU algorithm. This

sequential nature is inherent in analysis-synthesis coding, i.e., analysis must be

completed before synthesis can be performed. Within analysis, the motion

vector field is integral to the production of the parameter sets, with the result

that most analysis functions require that motion estimation be performed first.

Motion estimation in turn requires that the change detection mask has been

calculated. Only when analysis and, subsequently, synthesis are completed can

the verification test and, finally, parameter coding be performed. The order in

which the functions must be executed has been reflected in the construction of

Table 3.1.

35

Function Input Output
Change Detection current frame, previous

reconstructed frame
change detection mask

Motion Analysis current frame, previous
reconstructed frame,
interpolated and filtered
versions of same, change
detection mask, upsampled
change detection mask

grid vectors

Moving area
detection

change detection mask, grid
vectors

SMU mask, interpolated
motion vector field

Shape
Approximation

SMU mask, interpolated
motion vector field

shape approximated mask,
shape parameters

Uncovered
background
prediction

shape approximated mask,
background memory and
mask, current frame

updated background
memory and mask, colour
parameters

Motion Synthesis current frame, colour
memory, interpolated
motion vector field,
background memory

motion synthesised frame,
updated colour memory

Model Failure
Detection

current frame, motion
synthesised frame

model failure mask

MF Shape
Approx.

model failure mask approx. mask, shape
parameters

MF Colour
Synthesis

shape approximated model
failure mask, colour memory

updated colour memory,
colour parameters

Previous
Reconstructed
frame generation

colour memory previous reconstructed
frame (for use in
processing of next frame)

Parameter Coding shape parameters, grid
vectors, colour parameters

output bit stream

Table 3.1 List of functions with input and output requirements.

36

The first major constraint on potential parallelism is the required input of the

previous reconstructed frame into some functions, starting with change

detection, during the processing of the current frame. The generation of the

previous reconstructed frame is the second last step in the processing of a frame.

Therefore, full temporal parallelism (the concurrent processing of several frames

independently) is not possible with the DCU algorithm. The generation of the

previous reconstructed frame at a late stage in the processing of a frame also

precludes any practical partial temporal (pipeline) parallelism. In a pipeline

structure, the output of a stage (function) is the input to the next stage of the

pipeline (the input to the first stage and the output of the last stage are the input

and output of the algorithm). Once a stage has passed its results onto the next

stage, it can begin processing the next set of data at its input. Speedup is achieved

when the pipeline is full, all the stages are operating concurrently on different

parts of the algorithm. The successful operation of the pipeline is dependent

upon no stage in the pipeline requiring input from a stage further down the

pipeline. Clearly, the feedback of the previous reconstructed frame from the

second last stage to the first (change detection) violates this condition and

therefore, at this level, the DCU algorithm is not suited to pipeline parallelism.

Another possible parallel method is to have several processors concurrently

executing the same algorithm on a subset of the total data. The sub-results are

then combined to form the complete solution. This is known as geometric

parallelism. Whereas pipeline parallelism is a form of temporal parallelism,

geometric parallelism is a form of spatial parallelism. Bernstein’s condition is

satisfied when a function can calculate results for the subdivided image area

based on data contained in that image area and is independent of any results that

are generated by another function that is executed on a separate processor.

Block-based coding schemes are well suited to geometric parallelism as an image

is described by a number of independently moving blocks. In the DCU

algorithm, an image is described by independently moving objects that may

37

cover several geometrically divided areas. There are several instances where the

complete set of object data is required as input to a function. In shape

approximation, for example, an entire object, is needed to produce its contour

description. There are other problems with using geometric parallelism at this

level. One that cannot be avoided is the image content dependent execution

time outlined in Section 2.4.2. Any geometric subdivision of the image will

inevitably produce areas that contain different amounts of motion, resulting in

varying execution times between areas. This would leave some processors idle

while others are still processing their associated areas, which is an inefficient use

of system resources. A situation could conceivably occur where all the motion

within an image is contained within one geometrically subdivided area, with the

result that once the changed area has been detected, only one processor is

operating and the others are idle - in effect a uniprocessor system.

There are some functions in the DCU algorithm that are truly independent. For

example, the mean-value filtered and interpolated versions of the current frame

and the previous reconstructed frame required for motion analysis can be

calculated in parallel with change detection. Also, once the moving objects have

been identified, each object can be processed independently, and hence

concurrently. The degree of speedup that is achievable is dependent on the

number of detected objects, but as this is a dynamically varying parameter that

is impossible to pre-determine, no theoretical estimate of the speedup is

obtainable. In any case, the bulk of the processing has been used to identify the

objects and therefore any gain in overall performance would be minimal.

The conclusion that can be drawn from the detection of parallelism at this level

is that pipeline parallelism is not an option, and that there is no practical benefit

to be gained from geometric parallelism. Also, the true parallelism that does

exist at this level forms such a small fraction (relative to the required speedup) of

the total execution time, that any exploitation would lead to a minimal speedup

38

of the algorithm. Therefore, it is necessary to examine the next level of

parallelism, i.e., within individual functions, and in particular the three

functions - change detection, motion analysis and model failure detection - that

comprise the bulk of the processing power requirements.

3.2.2 Function-Level Parallelism

The component functions of motion analysis, change detection and model

failure detection are listed in Section 2.4.1. Motion estimation, the largest

component of motion analysis, does not alter any of the input data - the data is

only used to produce the motion vectors for the 99 possible grid positions.

These motion vectors are not inter-related in any computational manner, and

are calculated from data in a restricted search area surrounding their respective

grid positions. This computational independence and limited input data lends

itself well to geometric parallelism. The remaining support functions of motion

analysis - mean-value filtering, interpolation and upsampling - are all

neighbourhood operations. In this class of image processing operations, the

output for a given pel is a function of itself and a limited number of pels in its

immediate neighbourhood. Neighbourhood operations are well suited to

geometric parallelism. Motion estimation execution time is image content

dependent, so the same problem of idle processors arises as in the examination

of previous level of parallelism. Alternatively, the hierarchical structure of the

block-matching algorithm used in motion estimation is suited to pipeline

parallelism. Each stage in the pipeline could execute a separate hierarchical step,

with each stage in the pipeline calculating an intermediate motion vector that is

then passed to the next stage in the pipeline, where it is used as the starting point

for the next search level. When the input data from a grid position’s search area

is available, the pipeline can start calculating the motion vector. Assuming that

the support functions can produce this data fast enough, parallel execution with

the pipeline should be possible.

39

The first six steps of change detection are all neighbourhood operations and

therefore can be adapted for geometric parallelism. Unlike motion estimation,

however, execution for these six steps is fixed regardless of image content. The

last two steps, elimination of regions, require the whole image in order to

determine the average size of all the regions. Therefore, geometric parallelism

cannot be applied. When several neighbourhood operations are cascaded, as is

the case here, pipeline parallelism can be applied. When a pipeline stage receives

enough input data to perform a neighbourhood operation on a pel, an output is

produced that is passed to the next stage in the pipeline. The same sequential

order of neighbourhood operations can be maintained, but by reducing the

delay of a pel through a pipeline stage, speedup can be achieved through partial

temporal parallelism - a step no longer has to wait for the previous step to

process the complete frame before it can start. As in the geometric case, the last

two steps cause a problem as they do require the previous step to be fully

completed before they can be started.

For the large part, model failure detection is the same as change detection, and

the same analysis applies. The calculation of the model failure threshold, which

is the first step, remains a sequential process due to the conditional loop that is

based on the synthesis error variance for the entire frame. It may be possible to

exploit some parallelism in the calculation of the synthesis error, but this

requires going to the next level of parallelism.

The remaining functions of the DCU algorithm comprise a lesser bulk of the

processing power requirements. Any parallelism that may be exploitable would

result in a minimal gain in comparison to the three functions analysed above.

Although it is possible to examine the algorithm for lower levels of parallelism,

it would lead to diminishing gains, since the bulk of the speedup will already

have been achieved.

3.3 Proposed Parallel Algorithm

In assessing the quality of a parallel algorithm there are two important measures

- its speedup and efficiency. If Ts is the execution time for the best serial

algorithm on a single processor, and Tp is the execution time for the parallel

algorithm on n processors then speedup can be defined as:

TC = —L
11 -T*

P

and efficiency is given by:

E = —
n

The maximum speedup that can be achieved by a parallel system with n

processors is at most n times faster than a single processor (i.e., Tp = Ts/n). In

practice, the figure for speedup can be much lower due to, for example,

communication overheads, inefficient algorithms or idle processors. A much

more realistic measure of speedup can be determined from Amdahl’s law, which

states that the speedup of a parallel algorithm over a corresponding sequential

algorithm is limited by the number of operations that cannot be executed

concurrently, i.e., its serial (Amdahl) fraction. The parallel processing time can

be written as:

(1 - f)T,T = fT + —
p s n

where f is the Amdahl fraction. Therefore speedup becomes:

S„ = t:—7T Amdhal'sLaw
f +

n

41

Thus, for example, if 10% (f=0.1) of an algorithm has to be executed

sequentially, then the maximum speedup is 10 regardless of the number of

processors. Figure 3.1 (a) and (b) show the predicted speedup and efficiency for

increasing numbers of processors and different Amdahl fractions.

Number of Processors

(a)

Number of Processors
(b)

Figure 3.1(a) speedup vs. number of processors for various values of Amdahl fraction,
(b) efficiency vs. number of processors for various values of Amdahl fraction

42

From the analysis on the level of parallelism of the DCU algorithm in the

previous section, it appears that sufficient parallelism exists to be exploited,

especially in the tasks that make up the bulk of the processing, and real-time

performance can be achieved. Parts of the algorithm still require sequential

execution, and therefore the proposed adaptation of the algorithm will be a

combination of sequential and parallel elements. For the parallel tasks, it has to

be decided which of the two possible methods - pipeline and geometric - offers

the best speedup and efficiency.

For a task such as motion estimation, it is straightforward to make a

comparison between the two parallel methods in terms of the speedup in

execution times. In Section 2.4.1, the following figures were estimated for the

calculation of a motion vector for one grid position at each level in the block-

matching hierarchy:

Level 1, Step 1: 36,864 ops.

Level 1, Step 2: 36,864 ops.

Level 2: 9,216 ops.

Level 3: 36,864 ops.

This gives a total of 119,808 ops. per motion vector (11,860,992 per frame) for

sequential calculation. For a pipeline implementation, the natural

decomposition of motion estimation is into four stages, each performing a

separate level or step (see Figure 3.2). The grid positions flow through the

pipeline and are operated on by each processor in succession, eventually

producing a complete motion vector at the output of the pipeline.

43

gpi gp2,gpi mvi, mv2,mv1

gp = grid position
mv = motion vector

Figure 3.2 Motion estimation pipeline configuration.

Table 3.2 illustrates this flow of grid positions through the pipeline. When the

pipeline is full all four processors are executing their relative searches

concurrently on different grid positions.

TIME Stage 1 Stage 2 Stage 3 Stage 4 Output
n gPi - - - -
2n gPl gPi - - -
3n gP3 gP2 gpi - -
4n gp4 gp3 gP2 gPi -
5n gPs gP4 gP3 gP2 mvj

: : : ; « :

n = 36,864 ops

Table 3.2 Flow of grid positions through pipeline.

This pipeline configuration results in the first motion vector being produced in

the same time as the sequential execution, but subsequent motion vectors are

produced at an interval equal to the stage with the longest processing time.

Therefore the processing time for a complete frame (all 99 motion vectors) is:

(lx) 119,808 + (98 x36,864) = 3,732,480 ops.

This figure represents a speedup factor of 3.17 over the sequential

implementation.

44

g p1 ,g p5 gpi gp2, gp6,...,gpi+1 gp3, gp7,...,gpi+2 gp4, gp7,...,gpi+3

m v1, m v 5 m v i m v2 , m v 6 m v i+2 m v3 , m v7 m v i+ 2 m v4 , m v 7 m v i+3

Figure 3.3 Four-processor geometric implementation.

In a geometric system with four processors, a quarter of the grid positions are

assigned to each processor for full processing (see Figure 3.3). Now four motion

vectors are calculated in the same time as one motion vector in the sequential

implementation. Therefore, the speedup factor is 4 (i.e., 2,965,248 ops. per

frame) for geometric parallelism with four processors. Clearly, the best

improvement in execution time is achieved by the geometric implementation.

However, there are other factors that need to be taken into account when

making the decision between geometric and pipeline, that both reinforce and

weaken the conclusion from this speedup analysis.

In pipeline parallelism, there is generally a limited number of stages into which

an algorithm can be practically divided, e.g., four stages in the case of motion

estimation. In contrast, with geometric parallelism, the number of processors

can be much greater if the data set is large enough and there exists a high degree

of data independence. For example, in motion estimation, it could be possible to

have 99 processors, each calculating the motion vector for a grid position

resulting in 99 motion vectors being calculated in the equivalent time to one

motion vector in a sequential implementation. However, there are many parts

of the DCU algorithm that have to be executed sequentially. This means that it

is not desirable to have a large number of processors as only one processor

would be active for the sequential elements while the others were idle, i.e., there

would be a high degree of inefficiency.

45

In geometric parallelism, each processor executes the entire algorithm, as in a

sequential system, but only on a subset of the data, and therefore does not

require a large restructuring of the algorithm. In contrast, implementing

pipeline parallelism can result in an algorithmic structure that is quite different

from the original sequential version, and depending on software development

costs, can be more expensive to implement. For hardware implementation, a

copy of the entire algorithm must be stored at each processor in geometric

parallelism, whereas in pipeline parallelism, only a section of the code has to be

stored at each processor. This may be a problem depending on the type of

processor used. For example, a processor may have a maximum executable

program size, or could require expensive program memory. Many processors

have an on-chip cache that is used to store executed program code. When an

instruction is to be fetched, the cache is first checked for the instruction, and if

it is not stored there, the external program memory must be accessed. This can

cause bus contention with data accesses, resulting in slower processor

performance. It may be possible to store small programs (as in the pipeline case)

completely within the cache, thus avoiding any bus contention. With larger

programs (the geometric case) this is less likely to occur.

In pipeline parallelism, the algorithm is distributed among the processors, and in

geometric parallelism, the data is distributed among the processors. This means

that for a pipeline implementation, the program code can be statically divided at

startup, whereas for the geometric case, a larger amount of data memory has to

be divided dynamically. Also, although in geometric parallelism the results are

calculated independently, the calculations may share some common input data.

Therefore, many processors could require simultaneous access to the same piece

of data, leading to memory conflicts that reduce system performance. In

pipeline parallelism, several computations are at different stages of execution and

are less likely to require the same input data. These problems can be solved in

46

either software or hardware, but in both cases there is added complexity for

geometric parallelism.

Overall, the greater speedup achievable through geometric parallelism and the

option to add more processors if further speedup is required is a realistic trade

off against the added complexity that has been identified. These implementation

issues can be incorporated into the next step of hardware model refinement as a

further hardware-software trade-off. Although geometric parallelism offers the

best speedup here, the problem of idle processors caused by the execution time

variations for motion estimation has to be solved if geometric parallelism is to

be efficient. For algorithm execution on a uniprocessor system, the processor is

in use constantly and is therefore 100% efficient. When algorithm execution is

on a parallel system, the possibility of processor idleness occurs that reduces

overall system efficiency. The solution adopted here (based on [13]) to improve

efficiency and retain the same speedup, is to ensure that there are more work-

packets (geometrical subdivisions) than processors. A control processor

dynamically allocates the work-packets to each processor. When a processor has

completed the calculations for a work-packet, it reports the result(s) back to the

control processor and is issued with another work-packet. Thus every processor

operates continuously irrespective of the work-packet execution time, only

becoming idle when the supply of work-packets is exhausted. In the case of

motion estimation, the work-packets can be the grid positions.

There are other means of achieving algorithm execution speedup that are not

necessarily related to parallelism. The DCU algorithm software was written for

simulation purposes, to facilitate algorithm development and evaluate its

performance. Realtime execution was not required and, as such, may not have

been considered during software development. Therefore, there may be parts of

the algorithm for which faster implementations exist. It may also be possible to

modify the algorithm and sacrifice image quality for speedup. However, due to

47

the inter-relationships between the elements of the algorithm, any modification

of one part may have undesirable consequences for other parts. For example, a

faster shape approximation function that produces a less accurate approximation

could lead to a larger model failure area and hence larger execution time for the

model failure detection process. Whether any overall gain is achieved can only

be determined through experimentation. Any such modifications can only be

properly evaluated after the algorithm as it stands is implemented.

To determine the number of processors required for real-time execution, it is

first necessary to calculate more exact figures for the execution time of the

algorithm. This can only be achieved when the algorithm has been optimised

for a particular hardware structure. The definition of the hardware structure is

Step 3 of the iterative design process.

3.4 Hardware Structure

In the algorithm proposed in Section 3.3, processors are required to co-operate

in the execution of a single task, e.g., motion estimation, or operate on separate

tasks in parallel, e.g., filtering frames for motion analysis concurrently with

change detection. In both cases the execution time is unknown for each

processor, and this means that the processors must, preferably, operate

asynchronously. At any instance in time there are multiple instructions being

executed on multiple pieces of data. The only parallel architecture suitable to

operating in this manner are multiprocessors.

A basic multiprocessor system consists of a number of more or less

conventional processing elements, each with access to a shared memory and

input-output devices (see Figure 3.4). The entire system is controlled by a single

operating system that handles the interaction between processors. Access to the

common memory is via an interconnection system and each processor can have

48

access to its own private local memory. Inter-processor communication can be

performed through the shared memory or through a separate interrupt

network.

Figure 3.4 Basic structure of multiprocessor system.

In multiprocessor systems inter-processor synchronisation and communication

is essential for efficient and correct execution of tasks. When separate processes

of a task can be allocated to different processors, the ordering of these processes

is a constraint on their execution. The ordering must be followed to ensure the

correct outcome of tasks. Also, if the processors have access to the same process

queue, the selection of the same process by two or more processors or the

omission of a process must be avoided through proper synchronisation.

Another situation that requires synchronisation occurs at the inter-process level.

Often, processors co-operating in the execution of a task have to exchange data.

Since processes may execute with unpredictable speed, this interaction between

49

the processors can result in some processors waiting to be synchronised with the

slowest executing process before they can resume execution.

The interconnection network connects the processors to the shared memory

(and the 1/O devices, if required) and can facilitate the synchronisation process.

There are several possible configurations for the interconnection network, most

of which are derived from four basic structures - time shared or common bus,

crossbar switch, multi-port memory and multistage network. In the time shared

arrangement all of the processors, memory modules and I/O devices are

connected to a single, passive bus. This is the easiest and least costly arrangement

to implement but, since only one processor can use the bus at any time, it is also

the most inefficient. The other three structures are multi-bus systems that allow

concurrent accesses to memory and I/O devices. Their complexity varies

according to the positioning of the control and switching circuitry, and the

amount of physical interconnection lines needed.

50

C h a p t e r 4

SOFTWARE DEVELOPMENT

4.1 Introduction

The task of developing software for the real-time object-based analysis-synthesis

coder can be divided into two phases. In the first phase, efficient algorithms are

found for the component parts of the overall coding scheme. In doing this,

effort spent in the second phase, the actual writing of software, can be

concentrated on tweaking the software for optimum performance rather than

attempting to enhance the performance of an inferior program. The definition

of an ‘efficient’ algorithm is target platform specific, i.e., it is the algorithm that

best exploits the architectural features of the target. The target processor for the

real-time implementation is the Texas Instruments’ TMS320C30 DSP. The

main architectural features of the TMS320C30 are outlined in Section 4.2.

Texas Instruments provide a software development tool-kit that is used to

produce executable machine code for the TMS320C30. In addition to an

assembler and a linker, these tools include support for high level languages. The

ANSI C compiler can produce native code that will run in real-time, with the

exception of time-critical applications when the load on the CPU is likely to be

high [14]. Where required, speed of execution can be improved by

implementing these time-critical sections in assembly language. Typically, the

image processing techniques used in object-based analysis-synthesis coding fall

into this category - most time is spent on a small section of code that is

repeatedly executed. The C compiler provides for a number of methods of

including assembly language in a program. Firstly, inline assembly language

instructions are supported through the use of the “asm” directive. The second

51

method is based on the fact that the output of the compiler is an assembly

language program that is passed to the assembler. This program can be edited to

introduce optimisations. Alternatively, separate assembly language modules can

be linked with compiled C code. If these assembly modules conform to a well

defined C function interface, they can call, or be called by, the C modules.

To best exploit the processing capabilities of the TMS320C30 when using

assembly language, a knowledge of the instruction set and operation of the

device is required. These are also outlined in Section 4.2. The remainder of the

chapter details the actual implementation of the software.

4.2 The TMS320C30

The Texas Instruments’ TMS320C30 is a 32-bit digital signal processor, capable

of performing floating-point, integer and logical operations. The TMS320C30-

40 has a 50ns clock cycle time, and with most instructions only requiring one

cycle, this gives a total of 20 million instructions per second (MIPS).

Furthermore, the TMS320C30 allows two instructions to be executed in

parallel, such as a load with a store, or a multiply with an ALU operations, thus

giving a peak performance of 40 MOPS. The instruction set also supports block

repeats with zero-overhead looping and single cycle branching.

The block diagram in Figure 4.1 illustrates the key architectural features of the

TMS320C30. Of much importance to the programming of the device are the

memory interface and the pipeline which comprises the CPU and DMA.

Maximising the processing throughput depends on the efficient utilisation of

these units.

52

program RAM RAM ROM
cache block 0 b lock 1 b lock 0

(64 x 32) (1k x 32) (1k x 32) (4k x 32)

CPU
in teger/

floa ting-po in t
m ultip lie r

in teger/
floa ting -po in t

ALU

extended-prec is ion registers
address

genera tor 0
address

genera to r 1

auxilia ry registers
contro l registers

DMA

address
genera tors

contro l registers

Figure 4.1 Block Diagram of TMS320C30 Architecture.

4.2.1 Main Architectural Features

4.2.1.1 M em ory In terfa ce

The TMS320C30 possesses an on-chip Direct Memory Access (DMA) controller

that can read from or write to any location in the memory map without

interfering with the operation of the CPU. Therefore, it is possible to interface

the TMS320C30 to slow external memories and peripherals without reducing

the computational throughput of the CPU. The DMA controller contains its

own address generator, source and destination registers, and transfer counter.

Dedicated DMA address and data buses minimise conflicts between the CPU

and the DMA controller. A DMA operation consists of a block or single-word

transfer to or from memory. For zero wait-state external memory, a read can be

completed in 3 cycles resulting in a maximum transfer rate of 5.56Mwords/s. A

write requires 2 cycles (8.33Mwords/s).

53

On-chip, the TMS320C30 has 2k x 32-bit RAM, equally divided into two

blocks, RAMO and RAMI. In addition, there is a ROM block of 4k x 32-bit.

Each RAM block and the ROM block is capable of supporting two data accesses

in a single instruction cycle. The separate program, data and DMA buses of the

TMS320C30 can provide parallel program fetches, data reads and writes, and

DMA operations. For example, a program fetch from the on-chip instruction

cache, two data accesses from a RAM block in parallel with the DMA loading

the other RAM block can be performed in a single cycle with no effect on the

throughput of the CPU.

A 64 word (32-bit) on-chip instruction cache is available to store frequently-

repeated sections of code. This code may then be re-fetched from the cache

when required, thus reducing the number of necessary off-chip accesses. This

frees the external buses for use by the DMA, external memory fetches, or other

devices in the system.

4.2.1.2 P ip elin e

The TMS320C30 pipeline includes five functional units. Of these, only the

DMA does not operate on the instruction. The other units, all of which are in

the CPU, form an instruction pipeline that provide the TMS320C30 with the

bulk of its processing power. The instruction pipeline allows an overlap in the

execution of instructions by dividing each instruction into a number of distinct

stages and allocating a separate processing unit to each stage. The execution of an

instruction on the TMS320C30 involves four stages (units). These are:

Fetch un it - fetches the instruction from memory and updates the program

counter

D ecode un it - decodes the instruction word and performs address generation.

This unit also controls any changes to the TMS320C30’s auxiliary registers and

the stack pointer

R ead un it - performs any necessary reads of operands from memory

Execution un it - if required, reads operands from registers, performs the

necessary operation and writes the generated result to either a register or to

memory

In a non-pipeline computer, each of these four steps must be completed fully

before the next instruction is started. By cascading the four stages in a pipeline,

successive instructions can be executed in an overlapped manner. Once the

pipeline is full, an instruction can be completed every instruction cycle whereas

a non-pipeline computer would take the equivalent of four cycles. The

operation of the pipeline is internally managed on the TMS320C30 with the

result that the pipeline is transparent to the user.

4.2.2 Program ming the TMS320C30

4.2.2.1 In stru ction Set

The TMS320C30 assembly language instruction set supports numeric intensive,

digital signal processing and general purpose applications. The instruction set

can be organised into the following functional groups:

Load and store instructions

Two-operand arithmetic/logical instructions

Three-operand arithmetic/logical instructions

Program control instructions

Parallel instructions

Interlocked instructions

55

The load and store instructions perform the movement of a single word to and

from the registers and memory. Additionally, the conditional load of a register

is supported. Instructions that can manipulate data on the system stack are

included in this group.

The two-operand instructions consist of 35 arithmetic/logical instructions. The

two operands are the source and destination. The source operand may come

from memory, a register or be a part of the instruction word, and the

destination is always a register. This group of instructions includes integer,

floating-point, and logical operations, and also supports 32-bit or multiprecision

arithmetic and logical shifts.

The three-operand arithmetic/logical instructions are a subset of the two-

operand group. These 17 instructions allow the reading of two operands from

memory and/or the register file in a single cycle and stores the result in a

register.

A ll instructions that affect program flow are included in the program control

function group, and can be divided into two main types - repeat modes and

branching. Several of the program control instructions are capable of

conditional operation based on the contents of the status register after the

previous instruction has been completed. The repeat modes can implement

zero-overhead looping. RPTS (repeat a single instruction) reduces bus accesses as

it requires only one fetch of the instruction that is to be repeated, while similar

efficiency can be achieved for several instructions using RPTB (repeat a block of

instructions) and the instruction cache. Through the use of stack, block repeats

may be nested. The TMS320C30 has two types of branching - standard and

delayed. Standard branches empty the pipeline before performing the branch

and thus require four instruction clock cycles. Included in this type are calls,

returns and traps. Delayed branches do not empty the pipeline and allow the

56

subsequent three instructions to be fetched before the program counter is

modified, effectively resulting in a single cycle branch.

The parallel-operations instructions provide the TMS320C30-40 with the

capability of achieving 40 MOPs. They include parallel floating-point and

integer multiplication with an addition, arithmetic/logical operations in parallel

with a store instruction. Parallel loads and stores are also possible.

The interlocked instructions support multiprocessor communication. They use

two external flag pins, XFO and XF1. XFO signals an interlocked instruction

request and XF1 acts as an acknowledge signal for the requested interlocked

instruction. Through the use of these external signals, the interlocked

instructions can be used to implement busy-waiting loops, to manipulate a

multiprocessor counter, to implement a simple semaphore mechanism, or to

perform synchronisation between two TMS320C30s.

4.2.2.2 A ddressing

The TMS320C30 supports a number of addressing modes which allow access of

data from memory, registers, and the instruction word. However, not all

instructions support all modes of addressing. In register addressing, a CPU

register contains the operand. D irect addressing allows a data value at a specific

memory location to be accessed by explicitly stating that memory address in the

instruction. An operand can be explicitly included in the instruction word using

im m edia te addressing. The value can be 16-bit (short-immediate) or 24-bit (long-

immediate). Ind irect addressing is used to specify the address of an operand in

memory through the contents of an auxiliary register, optional displacements

and index registers. Two auxiliary register arithmetic units (ARAUs) can

generate two addresses in a single cycle, working in parallel with the CPU.

With an ARAU it is possible to pre- or post-increment/decrement the contents

of an auxiliary register with optional modification based on the contents of the

57

index registers or a specified displacement. There are two special types of

indirect addressing - circular and bit-reversed, which are particularly useful for

efficient implementations of convolutions and Fast Fourier Transforms. PC-

rela tive addressing is used for branching. The assembler takes a specified label or

address and generates a displacement value relative to the program counter (PC).

Upon execution of the instruction this displacement is added to the program

counter if the branch condition is true.

4.2.2.3 E fficient A ssembly Code

In order to obtain the best possible performance for a program, the assembly

code must reflect the architectural features of the TMS320C30 that provide it

with its processing power. Each program will have particular requirements and

it may not be possible to use each feature in every case.

The use of delayed branches instead of standard branches can save instruction

cycles. The following three instructions after a delayed branch instruction are

executed whether the branch is taken or not. If fewer than three instructions

can be placed after the branch instruction due to program flow constraint, a

delayed branch can still be used by filling the empty instruction slots with null

instructions (NOP). For many algorithms, such as convolutions, there is an

inner kernel of code where most of the execution time is spent. Using repeat

modes allows these sections of code to be executed in the shortest possible time.

For optimum efficiency, the instruction cache should be enabled to free the

external busses for operand fetching.

Parallel instructions increase the number of operations executed in a single

cycle. By combining a multiplication with and addition/subtraction,

arithmetic/logic with a store, or load/store operations, the throughput of the

TMS320C30 will be increased. It may be necessary to reorder the program flow

so as to achieve these combinations. There is a restricted number of addressing

58

modes that can be used with parallel instructions, so it is important that they are

taken into account when assigning registers to operands etc. The TMS320C30

has 28 registers in the CPU register file. These registers have some special

functions for which they are particularly appropriate. Additionally, all of these

registers can be operated upon by the multiplier and ALU, and can be used as

general-purpose 32-bit registers. Extensive use of the register file as scratch-pad

memory can avoid potential memory access conflicts that reduce processor

efficiency. The on-chip memory is considerably faster to access than external

memory and can support two accesses per instruction cycle. By using the DMA

to transfer operands to/from the internal memory, system performance can be

increased.

The main architectural feature of the TMS320C30 that provides it with its

processing power is the instruction pipeline. For time-critical programs, it is

essential that instruction cycles are not missed due to blockage of the pipeline.

The net result of such pipeline conflicts is a reduction in the effective instruction

throughput of the TMS320C30 to less than one instruction per cycle. Under

worse case conditions the throughput could be a little as one instruction every

four clock cycles. The simulator tools available from Texas Instruments allow

the pipeline state to be monitored in order to identify any conflicts. These can

usually be removed by a re-ordering of the instructions, or can require a re

writing of the code. The following section describes in more detail the operation

of the pipeline, the identification and removal of pipeline conflicts. Throughout

the software development process particular attention was paid to the

elimination or minimisation of pipeline conflicts, which is reflected in the next

section.

59

4.2.3 Pipeline Operation

4.2.3.1 P ip elin e C onflicts

Maximum computational throughput is achieved on the TMS320C30 when

there is a perfect overlap in the operation of all four pipeline units involved in

the processing of an instruction, producing an effective rate of one instruction

execution per cycle. However, there are conditions under which a stall in the

pipeline can occur, resulting in a reduction in its efficiency, i.e., the effective

throughput of the CPU is no longer one instruction per cycle. These stall

conditions are known as pipeline conflicts.

Each pipeline unit has been assigned a priority as follows:

Execute (highest)

Read

Decode

Fetch

DMA

When a pipeline unit has completed its operation on an instruction, it passes the

instruction onto the next highest pipeline level. If that level is not ready to

accept a new instruction a pipeline conflict occurs. When this happens, the

lower priority unit waits until the higher priority unit completes its current

operation. Figure 4.2 (a) shows correct operation of the pipeline (perfect

overlap) while (b) illustrates a stall in the pipeline.

60

perfect
overlap

decode unit
not ready to
accept new
input -
conflict

(nop) - no operation performed

(b)
Figure 4.2 (a) perfect operation of pipeline, (b) pipeline conflict resulting in loss of

throughput.

Pipeline conflicts can be organised into three main groups:

a) branch conflicts

b) register conflicts

c) memory conflicts

a) Branch Conflicts

This group of conflicts involves program flow instructions that read and/or

modify the program counter. A program flow instruction causes a conflict as

the pipeline is only used for the execution of the instruction and any

CYCLE FETCH DECODE READ EXECUTE

n instr. 1 - - -
n+1 instr. 2 instr. 1 - -
n + 2 instr. 3 instr. 2 instr. 1 -
n + 3 instr. 4 instr. 3 instr. 2 instr. 1
n+4 instr. 5 instr 4 instr. 3 instr 2
n+5 instr. 6 instr. 5 instr. 4 instr. 3
n + 6 instr. 7 instr. 6 instr 5 instr 4

(a)

CYCLE FETCH DECODE READ EXECUTE

n instr. 1 _ . .

n+1 instr. 2 instr. 1 - -
n+2 instr. 3 instr. 2 i p / i -
n + 3 instr. 4 instr. 3 / instr. 2 instr. 1
n+4 instr. 4 instr. 3 (nop) instr 2
n + 5 instr. 5 instr. 4 instr. 3 (nop)
n + 6 instr. 6 instr. 5 instr. 4 instr. 3

instructions that enter the pipeline after the program flow instruction are

discarded. This is known as flushing the pipeline, and is essential if proper

program flow is to be maintained. Flushing the pipeline guarantees that the

instructions succeeding the program flow instruction are not incorrectly (with

respect to the program flow) partially executed. The following section of code

shows a branch instruction (BR):

BR SUB_LOOP
ADDI3 *AR0++,R3,R1
MPYI R1,R2
FLOAT R2

; unconditional branch
; not executed
; not executed
; not executed

SUB_LOOP:
STI R1,*AR3 ; fetched after BR is

; executed (a delay of
; 3 cycles)

Delayed branches avoid this type of conflict as they do not flush the pipeline

and ensure that the subsequent three instructions are fetched before the program

counter is modified.

b) R egister Conflicts

Register conflicts can occur when reading or writing any of the registers

associated with address generation.

These registers are divided into three groups:

Group 1 - auxiliary registers (AR0-AR7), index
registers (IR0,IR1) and the block size
register (BK);

62

Group 2 - data-page pointer (DP);
Group 3 - stack pointer (SP)

In the case of a write to a register in these groups, the decode unit of the pipeline

cannot use any register within the same group until the write operation is

complete (this occurs at the end of the execute operation). In the following lines

of code, a register conflict occurs between the first and second instruction. A

register from group 1 (IRO) is written to in the first instruction. The decode unit

has to wait two cycles until this instruction is completed before it can read the

register from the same group (ARO) specified in the second instruction.

ADDI Rl,IRO
MPYF3 *AR0,R3,R4
LDF R3,R5
STF R4,*AR2++

The result is a two cycle delay in the execution of the second instruction. This is

the equivalent of inserting two NOP (no operation) instructions into the

program, as follows:

ADDI Rl,IRO
NOP
NOP
MPYF3 *AR0,R3,R4

If an instruction reads a register from any group, then the decode unit cannot

operate on an instruction that uses a register from the same group until the read

is complete. The execute unit reads registers at the beginning of a cycle, and

therefore a delay of one cycle is incurred. In the case of four registers (IRO, IR1,

BK and DP), register-read conflicts do not occur.

c) M emory Conflicts

The TMS320C30’s internal RAM and ROM blocks can support two accesses

per clock cycle. In addition, the external interface can provide one access per

cycle. If instruction fetches and data accesses are specified in a way that exceeds

this bandwidth, memory conflicts occur. There are four types of memory

conflicts:

Program Wait an instruction fetch is prevented from

beginning;

Program Fetch Incomplete occurs when an instruction fetch takes more

than one cycle due to memory wait states;

Execute Only occurs when a sequence of instructions

requires three CPU data accesses in a single

cycle, or during an interlocked load;

Hold Everything occurs when an access is made to either the

primary or expansion bus and the bus is

already in use.

If slower external memory is used, then the bandwidth is reduced and memory

conflicts are more likely to occur. Therefore, for time critical applications, it is

essential that the data is stored in single-cycle access memory.

4.2.3.2 R em ov in g C on flicts

Once a pipeline conflict has been identified, it is normally possible to remove it

by rearranging the instructions in the program. However, there w ill inevitably

be cases where the program flow is not flexible enough and conflicts are

unavoidable. Branch conflicts can only be removed by replacing the standard

branch with the delayed equivalent. Again, this requires a re-ordering of

instructions so that the delay slots following a delayed branch instruction can be

filled. One method of avoiding register conflicts is to ensure that the relevant

registers are not used for any purpose other than address generation. In cases

where this is not possible, the instructions that cause the conflict should be

separated by instructions that do not use any registers in the appropriate group.

Memory conflicts are more difficult to avoid. Using the DMA to transfer data

into the higher bandwidth on-chip memory and extensive use of the register file

can help minimise memory conflicts.

4.3 Software Implementation

A C implementation of the SIMOC coding algorithm has been developed by

the Video Coding Group at DCU for the purpose of simulation and evaluation

of the coding scheme (this will be referred to hereafter as the VCG C

im plem entation). This implementation served as both a starting point and

reference codec for the real-time software implementation.

As a starting point, the VCG C implementation provides two benefits - it

establishes program architecture and flow, and each DSP software module can

be integrated into a complete codec upon implementation. Any components of

the algorithm that do not require optimisation can be compiled using the

TMS320C30 ANSI C compiler. At any stage, the operation of the real-time

implementation can be verified against the VCG C reference codec.

Along with the TMS320C30 code generation tools (ANSI C compiler,

assembler and linker) TI provide a C source debugger/simulator. This a

software package that simulates the non-real time operation of the entire

instruction set and key peripheral features such as the DMA. Debugging of both

C and assembly language is supported, as is the monitoring of the entire register

65

set and memory space. The simulator has two features that are useful in the

development of time-critical code. Firstly, the number of instruction cycles

consumed by a section of code can be determined through the benchmarking

facility. Secondly, each unit in the instruction pipeline can be monitored in

order to identify any conflicts.

Loughborough Sound Images’ TMS320C30 System Board also provides

program debugging capabilities. However, unlike the simulator, program

execution is performed in real-time on an actual TMS320C30. This board is a

PC-AT ISA card that incorporates a single DSP, with up to 256Kwords of zero-

wait state memory, 64K of which is dual-ported RAM and accessible to the host

PC. A host interface library is provided that allows the loading of TMS320C30

object code (from a disk file) to the board, to start execution of that code, and to

pass data back and forth between the program running on the TMS320C30 and

on the PC. This allows a program on the host to off-load processing intensive

tasks onto the DSP.

In the development of the software for the real-time implementation, correct

operation of the various optimised modules was verified through testing using

both the simulator and the LSI System Board. Due to its superior debugging

capabilities, initial testing of modules was performed using the simulator.

However, it was found that the simulator could not efficiently handle large

amounts of test data, so small sets of randomly generated test data were used in

this process. After the elimination of any identified coding errors, the modules

were then executed on the LSI System Board using actual test data generated by

the VCG C implementation from the ‘Miss America’ and ‘Claire’ sequences.

The output from individual modules was compared for correctness against the

output of the equivalent module in the VCG C implementation.

6 6

4.3.1 Change Detection

Change detection is the first step in the image analysis process. The current

frame is compared with the previous reconstructed frame in order to segment

the current image based on significant changes in intensity. This segmentation is

represented by a binary mask, called the change detection mask, indicating

object (CHANGED) and static (UNCHANGED) regions. The eight stages of

change detection are outlined in Section 2.4.1.

In the first stage of the segmentation process the inter-frame difference is

evaluated on a pel-by-pel basis, by calculating the absolute difference between

each pel in the current frame and the corresponding pel in the previous

reconstructed frame. These pel differences are transformed into a binary mask

by thresholding at each pel position, based on the result of the summation of

the pel and its neighbours in a 3x3 mask. This is a form of mean-value filtering

and eliminates any non-zero differences that are due to camera noise, while

retaining the differences of interest, i.e., those that are due to motion. Further

noise filtering is achieved by applying a binary median filter to the binary mask.

To ensure temporal coherency in the segmentation, the binary mask is

combined with the output segmentation mask of the previous processed frame.

The remaining stages of change detection ensure that over-segmentation of the

image is avoided.

In dilation, a structuring element is translated through the image, setting a pel to

‘1’ (CHANGED), where at least one of the pel’s neighbours matches the

corresponding element in the structuring element. Here the structuring element

is 3x3 pels in size with all elements set to CHANGED. This has the effect that,

in each iteration of the dilation, any pel with an object pel in its 3x3

neighbourhood in the previous iteration is added to the object. Dilation results

in an increase in the size of an object.

67

In erosion, a pel is set to ‘0’ (UNCHANGED) where the neighbourhood pels

are not identical to the structuring element. The same structuring element as for

dilation is applied, with the result that, in each iteration object pels are removed

that were connected to at least one UNCHANGED pel in the previous

iteration.

Combining dilation and erosion in this order produces another morphological

operation called closing. Closing connects objects that are near to each other,

smoothes object contours by filling up narrow channels, and fills in small holes

(UNCHANGED regions) within objects. Any remaining small objects and

holes are eliminated by applying an average size criterion. The stages in change

detection can be divided into three groups. Steps a) and d) are point operations,

while binarisation, median filtering, dilation and erosion are neighbourhood

operations. The remaining steps are implemented using contour-based

techniques.

4.3.1.1 P oin t O perations

In point operations, the output pel is a function of the pel in the corresponding

position in the input image only. The point operations in change detection are

relatively straightforward to implement as they involve simple arithmetic/logic

instructions that are repeated for every pel. However, a problem arises with the

number of memory accesses that are required over a small number of

instructions. In the computation of the absolute difference, for example, two

operands have to be read from memory and the result stored in three

instructions, leading to a high probability of pipeline stalls due to memory

conflicts. The minimisation of the number of memory conflicts requires the re

ordering of instructions and the use of DMA. In Listing 4.1, the logical ordering

of instructions (subtract, absolute, store) was changed to avoid an execute on ly

memory conflict.

68

SUBI3 *ARO++(1),*AR1++(1) , R1 ;setup first result
ABSI Rl,R2

LDI NUM OF LOOPS,RC
RPTB
SUBI3
STI

END_ABSDIFF:
ABSI

END_ABSDIFF
*AR0++(1),*AR1++(1),R1
R2,*AR2++(1)

R1,R2

;number of loops
/main loop
;subtract pels
;store last result

/absolute result

STI R2,*AR2 /store final result
Listing 4.1 Main loop of absolute difference function.

Over a small number of instructions, as in this case, it is only possible to

perform one DMA transfer and therefore only one of the operands or the result

can be stored in internal memory. If an operand is located on-chip then the

SUBI instruction w ill only require a single cycle (with both operands in

external memory this instruction is executed in two cycles). However, requiring

the result to be written to external memory leads to a hold ev ery th in g memory

conflict. In the instruction pipeline, memory writes are initiated in the execute

phase, whereas memory reads are performed in the read phase. In Listing 4.1,

the STI instruction begins its memory write during the execute phase. Writes to

off-chip memory require two external bus cycles (equivalent to two instruction

cycles under most conditions). On the next instruction cycle the SUBI

instruction enters its read phase and attempts to read the operands, but the

external bus is busy servicing the write and a pipeline stall occurs. Under these

conditions the main loop in Listing 4.1 requires 4 cycles to complete. The same

cycle count is achieved if the result is stored in internal memory and transferred

off-chip by the DMA. For addressing purposes this was the configuration

chosen.

For correct operation a result cannot be written to an address that has not been

serviced by the DMA. To avoid this, two buffers of equal length are set up in

internal memory. While results are stored to one buffer, the DMA can transfer

69

the contents of the other off-chip. When the CPU fills a buffer, it switches

buffers with the DMA.

4.3.1.2 N eighbourhood O perations

The neighbourhood operations used in change detection are 2-D transforms

where the output for a given pel is a function of itself and its surrounding pels in

either a 3x3 or 5x5 kernel. In common with point operations, the same sequence

of instructions can be repeated for each pel. The generation of the binary mask

is a straightforward process as it only involves a number of additions followed

by a comparison to a given threshold for each pel. It can be expressed

mathematically (for a frame size of Mt x M2) as:

N//2 N//2

sum(x,y) = ^ i (x +k, y + j) V 0 < x < M, , 0 < y < M2
j=-N//2 k=-N//2

o(x,y) =
f 1 if sum(x, y) > threshold
|0 o / w

Equation 4.1

where:

i(x,y) - input

o(x,y) - output

NxN - size of kernel

// - rounded division

Binary median value filtering can be achieved using the same mechanism - the

dominant binary value can be determined by adding all the binary values in the

5x5 neighbourhood, and if the sum is greater than 12, then level ‘1’ is the result,

otherwise it is level ‘O’. Dilation and erosion can be implemented in this manner

70

also. In dilation, if the sum is greater than zero, then at least one pel is an object

pel. Similarly, in erosion, if the sum is not 9, then at least one pel is not an

object pel. However, the structuring element used has properties that allows for

an implementation that uses only logical operations.

A common, and important, characteristic of the neighbourhood operations used

in change detection is that they are separable, i.e., the 2-D operation can be

implemented as two 1-D operations. Separation can reduce the amount of

necessary calculations for processing a frame. For example, calculating the sum

of a pel and its neighbours, as expressed in Error! Reference source not found.,

requires (Mj x M2)N2-1 additions. The equivalent separated function can be

expressed as:

N//2

sum' (x,y) = ^ i(x + k,y) V 0 < x < M, , 0 < y < M 2
k=-N//2

Equation 4.2 (a)

N //2

sum(x,y) = ^ su m '(x ,y + j) V 0 < x < M, , 0 < y <M 2
j=-N//2

Equation 4.2(b)

Equation 4.2(a) represents the horizontal component of the summation and

requires (M2 x M2)N-1 additions, as does the vertical component (Equation

4.2(b)). This represents a reduction of 50% and 66% in the number of

calculations for a 3x3 kernel and 5x5 kernel, respectively. This gain is achievable

due to the data-recurrence inherent in these neighbourhood operations, i.e.,

some calculations are repeated a number of times. For example, the

computation of the 3x3 sum for pel i(x,y) requires, in part, the evaluation of i(x-

l,y) + i(x,y) + (x+ l,y). This calculation is also required in the computation of the

output for pels i(x,y-l) and i(x,y+ l). By performing this calculation only once,

71

i.e., as in the separated case, less calculations are required than in the case

represented by Equation 4.1.

In the processing of a 1-D summation, N pel values are combined to produce

one output. For the calculation centred on pel position i(x) this involves the pels

in the window [i(x-N//2), ..., i(x), ..., i(x+N//2)]. At the next pel position,

i(x+1), this window is moved one place to the right, i.e., pel i(x-N//2) leaves the

window and pel i(x+N//2 + l) enters it. Therefore, the output for pel i(x+ l)

can be calculated from the output for pel i(x) by subtracting the value of the pel

that leaves the window and adding the value of the pel that enters it. For N = 3

this maintaining of a running sum achieves no overall gain (1 add and 1 subtract

as opposed to 2 adds). However, for N = 5 there is a saving of 50% in the

number of required calculations (1 add and 1 subtract as opposed to 4 adds). The

running sum can be implemented for both the horizontal and vertical

operations.

With the structuring element used in this algorithm it is also possible to separate

the 2-D dilation and erosion. Here the dilation can be implemented as a logical

OR of all the binary pels in a 3x3 kernel (separated into three 3x1 1-D

components), while the erosion process is equivalent to a logical AND of the

pels in the kernel.

It is possible to implement both separated 1-D components as two successive

zero-overhead loops. However, for relatively large geometric divided image

areas (> 2k pels), the results of the first loop cannot be stored in internal

memory. This increases the possibility of encountering memory conflicts in

accessing external memory for the second loop. To avoid unnecessary storing

and subsequent re-loading of data, operands required for the vertical component

should be processed as soon as they are produced by the horizontal component.

This involves combining both components in a single loop. Since a horizontal

72

result is required in N vertical calculations, it has to be stored until all these

calculations are complete. This storage requirement amounts to (N-l)lines, and

is much less than it would be in a two separate loop implementation. This

storage area is implemented as a circular buffer, using the TMS322C30’s circular

addressing mode, where it the oldest data in the buffer is overwritten as new

data is added. A circular buffer is also used in the 3x3 sum and binary median

value filter implementations, to store the running sum of each column for the

vertical component. Both circular buffers are located in internal memory.

In the generation of the binary mask and binary mean value filtering there is

sufficient memory bandwidth to avoid any pipeline conflicts. However, in

dilation and erosion there are almost as many memory accesses over fewer

instruction, so DMA has to be used to transfer the result to external memory.

4.3.1.3 C on tou r Based Techniques

The final two steps of change detection use shape representation techniques to

calculate the area of CHANGED/UNCHANGED objects, and for the

elimination of objects that do not meet the size criterion. Central to these

techniques is the detection of object boundaries. The boundary, or contour of

an object, is the set of all pels that have at least one 4-connected neighbour4 that

is not an object pel. These pels can be found by contour following. This process

starts with a pel previously found to be on the boundary, and then adding a

neighbourhood pel that is also a boundary pel to the set. This addition of pels to

the set is repeated, with each new added pel serving as the starting point in the

next iteration. The following process stops when some termination condition is

met. In the DCU algorithm a chain code are used to describe the set of contour

pels. Instead of storing the co-ordinates of all the contour pels, only the co

ordinates of the starting point and a sequence (chain) of integer codes,

4 the pels to the left, right, above and below

73

corresponding to the direction of the next pel on the contour, are stored. There

are eight possible directions, one for each of the eight pels in a 3x3

neighbourhood (see Figure 4.3)

3 2 1

4 P O

5 6 7

Figure 4.3 Contour direction codes.

The chain code is constructed by a contour following algorithm [15] where the

starting pel is found by a top-to-bottom, left-to-right scan of the image. This pel

also represents the terminating point of the algorithm, which occurs when the

pel is encountered for a second time. In addition to the external contour of an

object, the contours of any holes within the object have to be determined. This

is done using the chain codes of the external contour to determine if the contour

point is located on a downward arc. If this is the case then the object is scanned

horizontally until either a hole pel is found or the opposite edge of the object is

reached. The first hole pel found is the starting point for the contour following

of the hole.

Since the chain code is a complete representation of an object’s shape, the area of

an object (or hole) calculated from this information, in a method similar to

numerical integration [16]. This is much faster, for sizeable objects, than

counting pels since the contour contains only a small number of the object’s

pels. For objects with holes, the hole area must be subtracted from the object

area. Finally, the area of the UNCHANGED background is calculated by

subtracting the total area of all objects and holes from the area of the image.

Those regions that do not meet the average size criterion are marked for

elimination.

4.3.2 M otion Analysis

In motion analysis a full resolution half-pel motion vector field is produced that

represents the translational motion of the CHANGED objects identified by

change detection. Motion vectors are calculated at predetermined grid positions

within the CHANGED area using Bierling’s motion estimation algorithm.

These motion vectors are subsequently interpolated to provide a motion vector

for each CHANGED pel. The first level in Bierling’s algorithm (see Section

2.4.1.2) requires the low-pass filtering of the input images to reduce the number

of erroneous estimates that can be produced by high frequency image

components. For half-pel accuracy, the final level of the motion estimation is

performed on bilinearly interpolated versions of the input images. The change

detection mask must also be upsampled to the same dimensions. Low-pass

filtering, bilinear interpolation, and upsampling constitute the motion

estimation support functions.

In addition to the motion vector field, motion analysis produces a ternary mask

that is derived from the change detection mask and the motion vector field. In

this mask, called the SMU mask, each pel is classified as either part of the

background (Static), part of a model complaint object (Moving), or a pel that

was previously occluded (Uncovered).

4.3.2.1 M otion E stimation Support Functions

The low-pass filter is realised by replacing each pel in the input images by the

mean value of itself and its neighbours in a 3x3 kernel. Although a mean value

filter is not an accurate approximation of a low-pass filter, it was chosen by

Bierling due to its lower computational complexity. The mean value filter has

75

the same separable characteristic as the neighbourhood operations described in

Section 4.3.1.2. Figure 4.4 shows the filter structure used in the implementation.

output

Figure 4.4 Mean-value filter structure.

Delay D1 is implemented using two pointers to the input, one for the current

pel and the other for the previous pel. D2 uses a register to store the result of

addition A1 for one loop iteration. D3 & D4 are FIFO buffers, equal in length

to one row of the input data. Each buffer has two associated pointers, one for

either end of the buffer. Circular addressing is used to redirect a pointer to the

physical start of the buffer in memory when the pointer has reached the

physical end. The division by nine uses the floating point capabilities of the

TMS320C30. The result of A4 is converted to floating point representation and

then multiplied by 1/9 before being converted back to fixed point.

The general equation for bilinear interpolation is:

f(p,q) = A + (C-A)p + (B-A)q + (D+A-C-B)pq

Equation 4.3

Equations 2.1 to 2.4 are obtained by substituting the following known values

for p and q:

a = f(0,0)

b = f(0,0.5)

c = f(0.5,0)

d = f(0.5,0.5)

Although the operations used in bilinear interpolation are straightforward,

there is a large overhead in the number of memory accesses required to support

the calculations. Each pel in the input frame has four associated output pels that

require up to four operands in their calculation. The number of stores is fixed,

but it is possible to reduce the number of operand reads. Equation 2.3 can be

written as (for pel(x,y)):

pel(x,y) + pel(x ,y+ 1)

Equation 4.4

77

Similarly for Equation 2.4:

pel(x,y) + pel(x,y + l) + pel(x + l,y) +pel(x + l ,y + l)
x.y ' 4

Equation 4.5

It can be seen that an addition required in the evaluation of Equation 4.5 has

already been performed in the calculation of Equation 4.4. Furthermore,

another addition is duplicated in the processing of pel(x+ l,y):

pel(x + l,y) + pel(x + l ,y + l)
^ x+ l,y _ 2

Therefore, the three additions in Equation 4.5 can be replaced by a single

addition of two results generated in other calculations. As all divisions required

in the bilinear interpolation are by a power of 2, they can be implemented by

logical right shifts.

It is possible to logically express the rules for upsampling the change detection

mask given in Section 2.4.1.2 as:

a = A

b = A.B

c = A.C

d = A.C.(B+D) + B.D.(A+C)

As with bilinear interpolation, there is an overlap in the calculations performed,

in particular for half-pel position d, which can be expressed as (for pel(x,y)):

dx.y C-<,ya x l.y ^x+l,y^'x,y

where:

a = A+C

78

Due to the high number of data transfers that have to be made, DMA is used in

both bilinear interpolation and upsampling to transfer the results from on-chip

to off-chip memory.

4.3.2.2 M otion Estimation

In motion estimation there are a number of equally spaced grid positions

defined, for which motion vectors may have to be calculated. The first position

is located at (8,8) with the remaining positions at separations of (16,16).

Bierling’s algorithm estimates the motion using different sized measurement

windows centred on these grid positions. Motion vectors are only calculated for

those grid positions within the CHANGED area. This leads to two possible

conditions - the measurement window is either entirely within the CHANGED

area or straddles the object boundary. This is illustrated in Figure 4.5.

measurement
window

completely
inside object

measurement
window’on

object boundary

Figure 4.5 The two possible measurement window cases.

In the first case, the formula for the block-matching MAD can be written as:

j N-l N-l

MAD(x,y) = —j Y j 2> urr(k + U + j) - prev(k + i + x ,l + j + y)|
-N i=0 j=0

Equation 4.6

79

where:

N2 is the size of the measurement window

(k,l) is the upper left corner of the measurement window

(x,y) is the motion vector under evaluation

For the second case, Equation 4.5 must be modified to exclude those pels

outside the CHANGED area from contributing to the MAD calculation. This

can be expressed as:

] N-l N-I

MAD(x,y) = —]T £|curr(k+ i,l + j)-p rev (k + i + x ,l + j + y)|
clmg i=0 j=0

* (l(mask(k + i ,l + j) == 0))

Equation 4.7

where:

Nchng is the number of CHANGED pels in the measurement window.

Equation 4.7 is equivalent to Equation 4.6 when all pels are CHANGED, i.e.,

Nchng = N2 and (!(mask(k+i,l+j)= =0) is always 1.

In determining the motion vector that yields the lowest MAD, the magnitude of

all the calculated MADs are compared. The same result can be achieved by

comparing the magnitudes of the sum of absolute difference (SAD) of each

motion vector. This removes the need for the division by Nchng and

consequently the counting of this value. By choosing to represent CHANGED

pels as Oxff (255) and UNCHANGED as 0x0, Equation 4.7 can be rewritten as:

N-l N-l

SAD(x,y) = ^ ^|curr(k + i,l + j)-p rev (k + i + x ,l + j + y)|.mask(k + i,l + j)
i=0 j=0

Equation 4.8

80

The most efficient representation of Equation 4.8 in assembly language is given

in Listing 4.2, and requires 4 cycles per pel. From this it is possible to determine

the number of cycles required at each level in Bierling’s hierarchical algorithm,

and can be expressed mathematically as5:

4StepSP(GP chngN2)

Equation 4.9

where:

Step is the number of steps in the level

SP is the number of search positions (9)

GPchng is the number of grid positions within the CHANGED area

RPTB END _SAD_LOOP

SUBI3 *AR0++(1),*AR1++(1),R1 ; subtract pels
ABSI R1 ; absolute result
AND *AR2++,Rl ; apply mask

END_SAD_LOOP:
ADDI Rl, R7 ; add result to

; cumulative total
Listing 4.2 Efficient implementation of Equation 4.8.

As an alternative to this implementation it is possible to predetermine, before

block-matching is performed, those pels that w ill contribute to the SAD, and

eliminate those that do not from all calculations - effectively removing the

testing of the mask in Equation 4.8. Also, in doing this, those grid positions

whose measurement window is completely within the CHANGED area can be

identified, for which a more efficient implementation than Listing 4.2 can be

used. It has to be ascertained whether the extra overhead in eliminating the

UNCHANGED pels can be offset by the reduction in both the number of

5 This assumes that loop overhead is negligible compared to the cost of evaluating Equation 4.8 for each pel.

81

SAD calculations and the complexity of these calculations, i.e., is this method

(‘Method B’) more efficient than that represented by Equation 4.8 (‘Method A ’).

The number of cycles for Method B can be calculated as follows:

C,N2GPchnga)

+ C2StepSPN2GPfun b)

+ C3StepSPChng c)

Equation 4.10

where:

C l5 C2, C3 are the cycle counts for each stage

GPfyj, is the number of grid positions whose search window lies within the

CHANGED area

Chng is the number of CHANGED pels in boundary search windows

Listing 4.3 gives the implementation of these three stages, yielding cycle counts
of Cj = 4, C2 = 3 and C3 = 5.

a)
RPTB END_GET_CHANGED_PELS
AND3 *++AR0(1),Rl,IRl

I
i

SUBI3 R6,ARO,R5
I

END_GET_CHANGED_PELS:
STI R5,*ARl++(IRl)

b)
RPTB END_CHANGED_SEARCH

SUBI3 *AR0++(1),*AR1++(1),Rl
ABSI Rl ; calculate abs. difference

END _CHANGED_SEARCH:
ADDI Rl,R7 ; add abs. difference to

; cumulative total

mask off LSB: IRl = 1 if
CHANGED and list will be
incremented
get offset relative to
search origin

store result

82

c)
RPTB END_SEARCH

SUBI3 *+ARO(IRO),*+AR2(IRO),Rl
LDI *++AR3(1),IRO ; load next CHANGED pel

; offset
ABSI Rl

END_SEARCH:
ADDI Rl,R7 ; add abs difference to

; cumulative total
Listing 4.3 Code extracts from implementation of Method B.

In Listing 4.3 a), a list of offsets, relative to the grid position, of all CHANGED

pels is produced. If the size of this list is equal to the search window size, then

all pels are CHANGED and Listing 4.3 b) can be used to determine the SAD,

otherwise Listing 4.3 c) has to be used.

From simulation, using the VCG implementation and test sequences ‘Miss

America’ and ‘Claire’ it has been found that Method B is the more efficient of

the two methods. The results of this simulation are summarised in Table 4.1.

Sequence Method A Method B
Level

1
Level

2
Level

3
Total Level

1
Level

2
Level

3
Total

Miss
America

3.78 0.48 1.89 6.15 3.4 0.44 1.75 5.59

Claire 4.94 0.62 2.47 8.03 4.45 0.55 2.22 7.22

All values have been averaged over 50 frames and are rounded to the nearest higher 10000 cycles.

Table 4.1 Cycle count (in millions of cycles) for implementation of methods A & B.

Although Method B represents an improvement in performance over Method

A, the processing power requirements are still high - approximately 35% of a

single TMS320C30 per frame. To reduce this figure, sub-optimal block-

matching techniques have to be used where the reduction is achieved by

sacrificing some image quality. Equation 4.10 gives the cycle count for a level,

and for it to be decreased the value of one or more parameters must be reduced.

83

The number of grid positions (GPchnB) is a fixed figure determined by the change

detection mask. Also the number of search positions (SP) and steps is fixed

according to Bierling’s algorithm. The only parameter that can be changed is the

number of pels over which the SAD is calculated. This can be achieved by two

methods:

a) reduce measurement window size

b) pel subsampling within the measurement window

A third option exists that involves the elimination of a level in the hierarchy.

Each level successively refines the motion vectors. In Level 3, the refinement is

the smallest (±0.5 of a pel), making it the obvious choice for dropping. This also

has the added benefit of removing the need for bilinear interpolation of the

motion estimation frames (upsampling of the change detection mask is still

required for the moving area detection discussed in Section 4.3.2.4).

Pel subsampling within the measurement window is based on the pixel

decimation technique described by Liu and Zaccarin in [17] where a 4:1

subsampling ratio is used. The measurement window is divided into 2x2 blocks,

with each pel assigned a label a, b, c, or d (see Figure 4.6). Four subsampling

patterns, A, B, C, and D, are defined consisting of all the pels labelled a, b, c, d

respectively. The subsampling pattern alternates with each search position. This

means that only V4 of the pels in the measurement window are used in the SAD

calculations for a search position.

Finding the motion vector is a two-step process. Firstly, for each of the

subsampling patterns a motion vector is obtained that produces the minimum

SAD over all the search positions where the pattern was used. This results in

four motion vectors for which a SAD is then calculated over all the pels in the

measurement window in the second step. The motion vector that then has the

smallest SAD is chosen as the motion vector for the grid position.

84

Figure 4.6 Pel-subsampling pattern.

Computationally this requires K(Nchng/4) cycles per search position for the first

step (K is the number of cycles per SAD calculation, Nchng is the number of

CHANGED pels in the measurement window). A further 3KNchng are needed

in the second step to complete the SAD calculation for the four candidate

motion vectors (the SAD only has to be calculated over the 3A pels not included

in the original computation). Equation 4.10 can be updated to give the cycle

count for this sub-optimal method, which is given by:

C,N2GPcllIlg

+ C2StepSP(N2GPfull / 4) + 3C2N2GPfllll

+ C3StepSP(Chng / 4) + 3C3Chng

Equation 4.11

The search strategy and measurement window size of the modified Bierling

algorithm specified by SIMOC were determined through experiment to provide

optimal algorithm performance over a number of statistical values [11]. These

included PSNR, area of the model failure region and the output bitrate.

Accordingly, each sub-optimal option was evaluated against the optimal method

under these values. The results of these simulations are shown graphically in

Appendix A, and are summarised in Table 4.2 (a) and (b). The corresponding

complexities are also given. The quality/bitrate versus complexity trade-off is

discussed in Chapter 5. In the simulation for the pel subsampling method the

following search position / subsampling pattern was used:

search position subsampling pattern
(0.0) A

(-step, step) A
(0,step) B

(step, step) C
(-step,0) D
(step,0) A

(-step,-step) B
(0,-step) C

(step,-step) D

For the reduced measurement window method, a window size of 20x20 was

used for Levels 2 & 3, while a 10x10 window was used for Level 2.

Optimal Pel
subsampling

Reduced
Window Size

No Level 3

Y-PSNR (dB) 36.39 36.44 36.06 36.28
Model Failure

Area
4.4% 4.2% 5% 5.3%

Bitrate (kbit/s) 22.1 22.2 24.9 24.9
(a)

Optimal Pel
subsampling

Reduced
Window Size

No Level 3

Y-PSNR (dB) 33.84 34.34 33.29 34.27
Model Failure

Area
4.5% 5.2% 5.5% 5.9%

Bitrate (kbit/s) 29 29.6 33.6 31
(b)

Table 4.2 Summary of sub-optimal motion estimation method simulation results, (a)
Miss America, (b) Claire

86

4.3.2.3 M otion F ield In terpola tion

Once the grid position motion vectors have been calculated, the next step is to

perform interpolation to produce a motion vector for each CHANGED pel. A

motion vector field of QCIF dimension is constructed, which is divided into

16x16 interpolation blocks with the grid positions at the corners (see Figure

4.7). For any pel with horizontal and vertical indices x and y respectively into

its associated interpolation block, its motion vector is given by:

(16-x)(16-y)A + x(16-y)B + (16-x)yC + xyD
mv(x,y) = — -------------------------------

Equation 4.12

This expression is evaluated for both the horizontal and vertical components of

the motion vector. If any of the grid positions A, B, C, or D lie outside the

CHANGED area, their motion vectors must be extrapolated from those within

the area. This extrapolation is achieved by setting the external motion vector to

the value of that of its nearest grid position inside the area. If there is more than

one nearest grid position then an average value is taken.

A straightforward implementation of Equation 4.12 would require at least 8

additions/subtractions, 8 multiplications plus a logical shift right for the

division by 256. However, a much more efficient implementation can be

achieved by exploiting some regularity that occurs in successive evaluations of

the expression. Firstly, a horizontal and a vertical difference are defined as:

-(16 -y)A + (16-y)B - yC + yD hd,n(y) = mv(x+l,y) - mv(x,y) = -------------------- — --------------------

(16-y)A -xB + (16-x)C + xD
vdi„(x) = mv(x,y+l) - mv(x,y) = 256

87

then any position can be evaluated in either of two ways:

mv(x,y) = mv(0,y) + xhimj{y)

mv(x,y) = mv(x,0) + yvdin(x)

now:

mv(0,y) = mv(0,0) + yvdin(0)

Therefore:

mv(x,y) = mv(0,0) + y v(lin<0) + xhdin{y)

Another difference can be defined as:

A -B -C + Dvhdiff- hdif/y+l) - K U y) = — ^ —
Equation 4.12 can now be rewritten as:

mv(x,y) = tnv(0,0) + yvllifl(0) + x(hdifl(0) + yvhdifr)

Equation 4.13

where:

mv(0,0) = A

-16A + 16C
256

-16A + 16B
256

For any horizontal line in the interpolation block Equation 4.13 can be

evaluated using a single addition using iterative calculations within a loop as

follows:

mv(x+l,y) = mv(x,y) + hllin(0) + yvh,din-

88

The last two terms represent an additive factor that can be calculated outside of

the loop.

Ao o o o o o o o o o o o o o o B
Oo o o o o o o o o o o o o o o
Oo o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o
o 0 o o o o o 0 o o o o 0 o o o
o o o o o o o o o o o o 0 o o o
o o o o o o o o o o o o o o o o
o o o o o o 0 o o o o o o o o o
o o o o o o o o o o o o o o o o
o o o o o o o o o o 0 o o o o o
o o o o o o o 0 o o o o 0 o o o
o o o o o o o o o o o o o o o o
o o o o o o 0 o o o o o o o o o
o o o o o o o o o o o o o o o o
o
c

o o o o o 0 o o o o o o o o o
D

Figure 4.7 Interpolation block showing location of grid positions

4.3.2.4 M ovin g A rea D etection

In this process, a new binary mask, called the moving area mask, is generated

using the change detection mask and the motion vector field. For each

CHANGED pel, its motion is undone (using its motion vector). If the pel

pointed to is also within the CHANGED area, then the current pel is deemed

to be MOVING and is represented as such in the new mask.

There are two methods of implementing moving area detection. In the first

method, all pels in the change detection mask are tested for their state and only

those that are CHANGED are passed to a sub-routine for further processing of

their motion vectors. In the second method, the same process is repeated for

each pel irrespective of state. This is possible as all UNCHANGED pels have

89

zero motion vectors, and therefore on undoing their motion, they point to

themselves, i.e., the become non-MOVING (STATIC). Extracts from the code

used to implement each method is given in Listing 4.4. Due to half-pel accurate

motion vectors, the testing of the pointed to pel state is done on the upsampled

change detection mask.

a)
LDI *AR3++,R7

RPTB END_MOVING DET
BNZD SUB_ROUTINE
LDF *AR0++(1),R2
MPYF 2.0,R2
NOP *AR2++(2)

END_MOVING_DET:
LDI *AR3++,R7

; load mask pel

branch if no-zero pel
load horizontal mv offset
convert to in H pel value
increment position

load next mask pel

SUB_ROUTINE:
LDF *AR1++(1),R3
MPYF R5,R3
ADDF R2,R3
BD END_MOVING_DET
FIX R3,IR1

LDI *+AR2(IRl),R4
STI R4,*AR2++

load vertical mv offset
convert to H pel value
add horiz. value
delayed return
IRl = offset in absolute
co-ordinates
load pointed-to mask pel
if mask pel = CHANGED
then result = MOVING
else result = STATIC

b)
RPTB END_MOVING_DET
LDF *AR0++(1) , R2
LDF *ARl++(1) , R3
FIX R6,IRl

MPYF
MPYF
LDI
STI
ADDF3

END_MOVING_DET:
NOP *AR2++(2)

2 . 0 , R2
R5, R3
*+AR2(IRl),R4
R4,*AR3++
R2,R3,R6

load horizontal mv offset
load vertical mv offset
IRl = previous offset in
absolute co-ordinates
convert to ^ pel value
convert to ^ pel value
load pointed-to mask pel
store result
combine offsets

; increment position
Listing 4.4 Moving Area Detection implementations a) sub-routine method, b)

processing all pels.

90

In the first method, the sub-routine is called (and exited) using a delayed branch

rather than a CALL instruction, as a condition call requires 5 cycles and the

delay slots after the instruction cannot be used (the same applies to the return

from sub-routine instruction RETS). In this implementation, all pels are

processed at a cost of 5 cycles per pel, with a further 10 cycles for each

CHANGED pel. In the implementation of the second method, 9 cycles per pel

are required and all pels are processed. The total cost of the first method, and

whether this it is faster than the second method is solely dependent upon the

size of the CHANGED area, i.e., the following must hold:

5(176x144) + lOxCHANGED < 9(176x144)

Therefore, the number of CHANGED pels must be less than 10,138 for the

first method to be fastest. From simulation with the test sequences this

condition is never satisfied.

4.3.2.5 U ncovered Background D etection

Inter-frame motion of objects can result in regions that were occluded in a

previous frame appearing in the current frame. These uncovered background

regions are usually long narrow areas at object boundaries. In SIMOC these

regions are processed differently to MOVING and STATIC areas. The

detection of uncovered background is a four step process involving the motion

vector field and the shape-approximated moving area mask.

The first step in uncovered background detection is similar to moving area

detection - for each MOVING pel its motion is undone and the pel pointed to

by the motion vector is deemed to belong to the UNCOVERED region

provided it is not within the MOVING area. If this is the case, then in step 2

the motion vector is traversed in single pel distances setting the nearest full-pel

positions to UNCOVERED provided they do not belong to the MOVING

91

area. In the implementation of uncovered background detection, these steps

have been combined in order to avoid a duplication in the scanning of the

shape-approximated moving area mask. Unlike moving area detection, however,

these two steps are sufficiently complex so as to preclude the processing of a

complete frame and, therefore, the sub-routine structure is used.

In the third step, a 3x3 binary median filter is applied for noise filtering

purposes. Finally, any pels that belonged to a MOVING area in the previous

SMU mask, but are part of the STATIC region in the current moving area

mask, are also considered to belong to the UNCOVERED region. This end

result is combined with the moving area mask to produce the current ternary

SMU mask. The following listing, taken from the VCG implementation,

performs these last two tasks.

/* Step 4 */
for(y=0;y<dimY;y++)
for(x=0;x<dimX;x++)

if((prev_object_mask.hY[y][x] == MOVING) &&
(approx_mask.hY[y][x] == UNCHANGED))

bbu_mask.hY[y][x]=
UNCOVERED BACKGROUND;

/* Add detected uncovered background to seg mask */
for(y=0;y<dimY;y++)
for(x=0;x<dimX;x++)

if(bbu_mask.hY[y][x]==UNCOVERED_BACKGROUND) {
approx_mask.hY[y][x]=UNCOVERED_BACKGROUND;
pel_count++;

}
Listing 4.5 VCG C implementation of final steps in uncovered background detection.

This implementation includes two conditional statements, which are relatively

costly to execute on the TMS320C30. However, it is possible to avoid these

conditionals and to combine the two loops if logical operations are used, thus

leading to a much more efficient implementation, as shown in Listing 4.6.

LDI 0UNCOVERED,R7
RPTB END_ LOOP
AND3 *AR2++(1),R7,RO

S T I RO,*AR3++(1)

OR *AR0++(1),R0

CMP I *AR1++(1),R7

END_LOOP:
LDIEQ R7,RO

;R7 = UNCOVERED (0x80)

;if previous SMU mask =
;MOVING (Oxf f)then RO =
;UNCOVERED else RO = STATIC
;store last result to
;current SMU
/if moving area mask =
;MOVING then RO = MOVING,
;else if previous SMU mask
;= MOVING and moving area
;mask = STATIC then RO =
;UNCOVERED otherwise RO =
;STATIC
;if background mask =
;UNCOVERED

;then RO = UNCOVERED
Listing 4.6 Real-time implementation of final steps in uncovered background

detection.

4.3.3 Shape Approximation

The contour of a MOVING object in the moving area mask is approximated as

a polygon, represented by a number of vertices connected with straight line

segments.

SIMOC classifies two types of MOVING objects - those with a reference in the

previous frame (called MCI) and those with no reference (MC2). Before shape

approximation it has to be ascertained to which class the current MOVING

object belongs. To do this, the object vertices from the previous frame are first

of all motion compensated. If a displaced vertex is within a threshold distance

from the current object contour, then it is maintained as a vertex for the current

object. An object is deemed to be MCI if there is more than four such

maintained vertices, otherwise the object is MC2.

For a MCI object, the maintained vertices are used as the initial vertices for the

polygon approximation. The initial vertices for a MC2 object are determined by

first finding the two pels on the object contour that have the maximum

93

separation. If a contour has N pels then the number of possible pairs is given by

binomial expansion as:

N!
2.(N -2)!

For a contour with, say 500 pels, this equates to approximately 125,000 pairs.

To reduce the number of distance calculations, those pairs whose perimeter

distance is less than the current maximum distance are not evaluated (the

perimeter distance between two points on a contour is at a minimum equal to

the Euclidian distance). The remaining initial vertices are the contour pels that

are the maximum distance left and right of the line joining the first two pels.

Starting with the initial vertices, the polygon approximation is completed by

inserting vertices where required to ensure the approximation satisfies a

minimum distance criterion. A new vertex is inserted between two adjacent

vertices if the distance from any contour pel between to the straight line joining

the vertices is above a given threshold.

Shape approximation uses co-ordinate geometry that can involve division or the

calculation of a square root. Neither of these are readily implemented on a

TMS320C30 in a efficient way. They are usually implemented by iteratively

evaluating their Taylor expansions. Both the accuracy and the speed of

calculation depend upon the number of iterations. Acceptable accuracy can be

obtained at an approximate cost of 30 cycles for a division and 50 cycles for a

square root. Fortunately, the calculations in shape approximation are mostly

used in comparative tests and the need for division or square roots can be

avoided. For example, the distance of a point (j,k) from a line ax+by+c=0 is

given by:

|aj + bk + c|
distance = — , —

Va2 + b2

However, when comparing two points (h,k) & (m,n) to determine which is the

furthest from the line, it is sufficient to evaluate the following equality:

|aj + bk + c | < |am + bn + c |

The remaining encoder functions use the shape approximated moving area

mask, which is reconstructed from the list of vertices. Bresenham’s Line

Drawing Algorithm is used to draw the straight line segments between the

vertices, thereby reconstructing the object contour. The contour is then filled

using the same filling algorithm as in change detection. This algorithm requires

the chain code of the contour so Bresenham’s algorithm is modified to produce

a chain code as well as drawing the contour pels.

4.3.4 M otion Synthesis

Motion synthesis is the process whereby the current frame is reconstructed

from the shape, motion and colour parameters produced by the analysis

sections. This reconstructed frame is used in model failure detection (Section

4.3.5) to verify the success of the analysis. To eliminate filtering effects that can

occur due to the half-pel motion compensation used in motion synthesis, a

special colour memory is maintained at twice the spatial resolution of the

previous reconstructed frame. All synthesis operations are based on this

memory and not on the previous reconstructed frame.

In motion synthesis the colour memory is updated based on the contents of the

SMU mask and the motion vector field. As the SMU mask is only available in

QCIF resolution a priority based rule is used which states that a half-pel

position is given the same classification as that of its full-pel neighbour with the

95

highest priority. The priority is, in descending order, STATIC,

UNCOVERED, MOVING.

If a pel in the colour memory is deemed to be STATIC then no updating is

necessary. For a pel in the MOVING area, it is updated by motion

compensation - it is given the value of the- pel pointed to its motion vector. As

with the SMU mask the motion vector field is only QCIF resolution.

Therefore, for half-pel positions, bilinear interpolation of the motion vectors at

the full-pel positions gives the required displacement. Synthesis of pels in the

UNCOVERED area is achieved using a special prediction scheme that

adaptively selects between spatial prediction from neighbouring STATIC pels

and a temporal prediction from a ‘background memory’ that contains all

background pels revealed in previous frames.

The method used for implementing motion synthesis involves separating the

process into four steps - one for the full-pel positions, and one each for the three

half-pel positions. This has two key benefits. The priority base rule does not

have to be applied to full-pel positions which leads to faster processing of these

positions. Also, only full-pel positions in the colour memory are used to

reconstruct the current frame. By processing the full-pel positions first, model

failure detection can be performed in parallel to motion synthesis of the half-pel

positions.

For the half-pel positions, the priority rule can be implemented as an ANDing

of the full-pel positions, assuming the following representations in the SMU

mask:

STATIC = 0x0

UNCOVERED = 0x80

MOVING = Oxff

4.3.5 Model Failure Detection

In model failure detection the motion synthesised image is compared to the

original in order to identify any regions where there is significant luminance

differences. The output of model failure detection is a binary mask indicating

these model failure (MF) regions. The remaining area is considered to be model

compliant (MC). Pels in this mask are set by applying a threshold to the

synthesis error between the motion synthesised and current frames. This

threshold is determined globally from the synthesis error variance before being

applied locally to each pel. This process is given in Section 2.4.1.3.

The production of the binary mask is an iterative process in which the

threshold is varied until a desired synthesis error variance for the MC pels is

attained. Although STATIC regions are deemed to be MC, they do not

contribute to the synthesis error variance calculations. The MF region is

initialised to be the MOVING area in the SMU mask. At each iteration of the

process, pels are eliminates from the MF area if the synthesis error is less than

the threshold for that step. Once this process is completed, the mask is then

subject to the same noise reduction and elimination of over-segmentation that is

applied in the change detection process.

RPTB ENDLOOP

SUBI3 *AR0++,*AR1++,Rl ; subtract pels
STI R2,*AR2++ ; store previous result

ENDLOOP:
MPYI3 Rl,Rl,R2 ; square th e d if f e r e n c e

Listing 4.7 Main loop of squared error function.

The main component in MF detection is the calculation of the synthesis error

variance, which in SIMOC is given by the mean-squared error. This involves

the calculation of the squared error for each MOVING pel at each iteration. To

avoid the repetition of these calculations in each iteration, they can be

97

performed once before the iterative process begins. Listing 4.7 shows the main

loop that is used to generate a new frame containing the squared error between

each pair of pels.

RPTB ENDLOOP

LDI *AR0++(1) ,R0 ; load squared error
CMPI R7, R0 ; compare to squared TMF
LDIGT 0, R0 ; greater than => error does not
LDIGT 0, R2 ; contribute to variance
LDIGT 0x0,Rl ; also output is MODEL FAILURE
LDILE Oxff,Rl ; o/w output is MODEL_COMPLIANCE
LDILE 1, R2 ; and contributes to variance
AND3 *AR1++(1),R4,R3 ; test seg. mask
LDIZ 0, R0 ; if=0 then pel is MODEL_FAILURE
LDI Z 0, R2 ; and does not contribute to
LDIZ 0x0,Rl ; ; variance

STI R1,*AR2++(1) ; store output pel
ADDI R0,R6 ; add error to cumulative total

ENDLOOP:
ADDI R2,R5 ; add contribution to cumulative

; total of MODEL_COMPLIANCE pels
Listing 4.8 Main loop of model failure detection function.

In the implementation of the second part of the model failure detection (Listing

4.8), two tests are made on each pel. A pel is MODEL_COMPLIANCE if the

SMU mask = = MOVING (OFFh) and the squared error < = TMF (or if

mask == STATIC), otherwise the pel is MODEL FAILURE. Only pels that

are MODEL_COMPLIANCE in the model failure mask and MOVING in the

SMU mask contribute to the variance calculations. For these pels ERROR is

added to TOTAL_E and COUNT is incremented by setting R2 to 1. For

MODEL FAILURE and STATIC pels both ERROR and R2 are set to 0.

The MF mask is shape approximated to produce shape parameters for

transmission to the decoder. The colour parameters of the MF region are coded

using the spatial vector quantisation method outlined in Section 2.3. Finally, the

98

special colour memory used in motion synthesis must be updated with these

new colour values.

4.3.6 The Decoder

Apart from parameter decoding, the SIMOC decoder is equivalent to the

synthesis elements of the encoder. The moving area and model failure masks are

reconstructed from the shape parameters in the same manner as they are

reconstructed in the encoder after shape approximation (see Section 4.3.3). The

motion vector field is interpolated from the decoded grid vectors as per motion

field interpolation in the encoder (Section 4.3.2.3). With the moving area mask

and the motion vector field, the decoder has enough information to perform

uncovered background detection. Motion synthesis is then performed using the

resultant SMU mask and any decoded uncovered background prediction error.

Finally, the model failure areas are updated with the decoded colour

information.

99

C h a p t e r 5

PERFORMANCE ANALYSIS

5.1 Introduction

With the TMS320C30 software implementation of the DCU coder, it is now

possible to determine the number of processors that are required for the multi

processor structure described in Section 3.4, to attain real-time execution. Using

the TMS320C30 Code Debugger, an estimate of the computational cost of each

algorithm part can be obtained without the need for an actual hardware system.

Test data for the estimation of costs is provided by the standard test sequences

‘Miss America’ and ‘Claire’. The key to attainable speedup, and hence real-time

execution, is the Amdhal Fraction, i.e., that time spent executing parts of the

algorithm that cannot be parallelised can be derived from these estimated costs.

From a computational requirements perspective, the various algorithm

functions described in Section 4.3 can be divided into three categories:

a) those with fixed costs, irrespective of image content

b) those whose costs vary with image content, but can be determined

before without simulation from knowledge of the image parameters,

e.g., the size of the change detection mask

c) those whose costs also vary with image content but whose behaviour is

sufficiently complex as to prevent estimation without simulation

In the first group, the computation cost can be determined from benchmarking

the relevant sections of code, and can often be reduced to a simple ‘cycles per

pel’ figure. For the second group, the costs can only be estimated through a

100

combination of benchmarking and simulation of algorithm behaviour. The

costs are usually only dependent on a few parameters and it is possible to

conclude heuristic ‘rules-of-thumb’ for their requirements. In the first two

groups, benchmarking can be performed without the need for actual input data.

However, in the last group, the costs are dependent on several parameters and

requires actual data to perform the benchmarking, provided from simulation

using the VCG C implementation.

In Section 5.2 the computation cost for a single frame are estimated based on

simulation over 50 frames of the test sequences. This is done first for sequential

execution, whose figures are then used as a basis for determining the achievable

speedup of a parallel implementation using the proposed parallel algorithm

described in Section 3.3. In the final section these results are discussed from

which conclusions and recommendations are drawn.

5.2 Execution Time Requirements

5.2.1 Sequential Execution

Although real-time sequential execution will not be possible, it is useful to

derive the execution time in order to determine the speed-up factor that the

parallel implementation must obtain. Also, for the most part, the cycle counts

estimated for the sequential execution of algorithm functions will apply to the

parallel execution as well. As the parallel execution w ill be operating on smaller

data sets, it is beneficial to express the computation costs independently of the

size of the input data set. Therefore, where possible, all costs are given in terms

of ‘cycles per pel’. The following sections contain tables that summarise the

various costs involved. A complete list of all costs can be found in Appendix B.

101

5.2.1.1 Change D etection

The first six steps of change detection have fixed computation costs. These are

summarised in Table 5.1. For an input data set of QCIF dimension this equates

to 1,317,888 cycles. The remaining steps of change detection fall into the third

category of functions. Table 5.2 gives a summary of the costs based on

simulation of 50 frames of the ‘Miss America’ and ‘Claire’ test sequences.

Function Cycles/pel
Absolute Difference 4
Binansation 7
Median Value Filter 7
Combining with Previous 4
Dilation 5
Erosion 5

Table 5.1 Computation costs for fixed steps of change detection.

Function Miss America Claire
min max avg min max avg

Calculate Chain
Codes

170,300 202,500 181,800 174,600 228,400 202,100

Calculate Area 4,700 9,200 5,200 4,000 13,100 8,600
Redraw Objects 71,800 113,500 101,600 36,800 172,600 146,500

Table 5.2 Summary of cycle counts for non-fixed steps of change detection.

From the simulation results it is difficult to determine any useful relationship

between the cost of calculating the chain codes and any properties of the change

detection mask. Apart from the number of contours, the chain code algorithm

varies with the length of the contours and the number of direction changes the

contour makes, i.e., the size of the object and the complexity of its shape. Shape

complexity is an abstract parameter that is not readily measurable [18] and,

therefore, no estimation of computation cost can be drawn from the object.

However, there is a high degree of correlation in the computation costs between

102

successive frames. This reflects the temporal coherency in the change detection

process achieved by combining the MOVING areas of the previous mask with

the current mask. Therefore, at run-time, a good estimate of the computation

cost for calculating the chain codes can be obtained from the previous frame.

The calculation of area is completely dependent on the length of the contour

and is sufficiently small to ignore. There does, however, appear to be a direct

relationship between the cost of redrawing the maintained object(s) and the size

of the change detection mask. For both sequences the cost of this process was

approximately 8 times the size of the mask. An estimate of the order of

magnitude can be determined before execution from the results of the area

calculations.

5.2.1.2 M otion Analysis

The motion estimation support functions, given in Section 4.3.2.1, have all got

fixed computation costs. These are:

Mean-value filtering 7 cycles/pel

Bilinear Interpolation 14 cycles/pel

Upsampling 14 cycles/pel

Applying the filtering and interpolation to the two input frames and the

upsampling of the change detection mask requires 1,419,264 cycles.

The relationship between the change detection mask and the cost of motion

estimation has already been established in Section 4.3.2.2, and is given by

Equation 4.10 for the optimal, small search window, and no level 3 sub-optimal

methods, and by Equation 4.11 for the pel subsampling method. The simulation

results are summarised in Table 5.3. Before motion estimation proper, the grid

positions within the CHANGED area are separated into two groups at a fixed

cost given by the first term in both Equation 4.10 and Equation 4.11. The cost

of motion estimation for grid positions whose search window is completely

103

inside the CHANGED area is fixed and is given by the second term in those

equations. The remaining grid positions have a variable cost based on the

number of CHANGED pels in the search window. However, this cost can be

calculated before execution from the third term in the same equations.

Method Miss America Claire
min max avg min max avg

Optimal 3.84 6.29 5.58 1.55 9.2 7.23
Pel Subsampling 2.38 3.89 3.45 0.96 5.71 4.48
Small Search Window 1.52 2.4 2.16 0.63 3.46 2.85
No Level 3 2.61 4.35 3.84 1.05 6.36 5.01

All values have been rounded up to the nearest 10000 cycles

Table 5.3 Summary of computation costs (in millions of cycles) for different motion
estimation methods.

Motion field interpolation costs depend on the number of interpolation blocks

that need to be evaluated. The cost per block is 3072 cycles (12 cycles/pel). The

number of blocks, in turn, is dependant upon the shape and size of the

CHANGED area. As in change detection, there is no available measure for this,

but again, like change detection, there is a degree of similarity of cost between

successive frames. A summary of the computation costs are give in Table 5.4.

Function Miss America Claire
min max avg min max avg

Motion Field
Interpolation

301,100 362,500 339,800 159,800 491,600 449,900

First steps of
Uncovered
Background

255,500 335,600 308,000 184,800 444,700 381,000

Table 5.4 Summary of computation costs for some motion analysis functions.

104

Moving area detection has a fixed cost of 9 cycles/pel, i.e., 228,096 cycles per

frame.

Uncovered background detection, is composed of both fixed and variable parts.

The first two steps comprise the variable element, for which the computational

cost can be expressed as:

5*all input pels
+ 14*MOVING pels

+ 102*BBU pels

Equation 5.1

The first term in Equation 5.1 represents the cost of a complete scan of the

input data that is required to determine any MOVING pels. This is performed

at a cost of 5 cycles/pel. The second term is the cost of processing any

MOVING pels (14 cycles each). The final term gives the cost of traversing the

motion vector of any MOVING pel that points outside the MOVING area. A

summary of the computation costs determined from simulation is given in

Table 5.4. The last steps of uncovered background, the median filter and

combining with the previous SMU mask, are fixed at a cost of 7 cycles/pel and 4

cycles/pel respectively.

5.2.1.3 Shape A pproximation

As with the elimination of regions in change detection, the execution time of

shape approximation is completely dependent on the complexity of shape and

size of the object(s). A more complex shape requires more vertices to

approximate it, and a larger size means more area to fill when reconstructing the

approximated object. Again, a temporal coherency exists in the computation

costs of successive frames. Table 5.5 summarises the costs from simulation.

105

Function Miss America Claire
min max avg min max avg

Shape Approx. of
Moving Area

173,500 236,200 187,400 110,700 274,400 243,600

Table 5.5 Summary of computation costs for shape approximation.

Function Miss America Claire
min max avg min max avg

Position a 225,200 294,000 276,300 171,000 379,800 336,300
Position b 248,200 317,700 299,900 194,700 403,000 359,900
Position c 248,900 317,000 299,500 195,400 401,000 358,100
Position d 297,300 366,100 348,600 244,500 449,600 406,800

Table 5.6 Summary of computation costs for motion synthesis.

5.2.1.4 M otion Synthesis

The execution time of motion synthesis is dependent on the SMU mask

produced by motion analysis. The total cost, summarised in Table 5.6, is

comprised of two factors - the cost of a scan of all pels to determine their status,

and the extra processing cost for MOVING and UNCOVERED pels. The

following are the costs for each pel position (positions are Figure 2.5):

Full pel position a:
5’"all input pels

+ 12 ̂ MOVING pels
+ ^UN CO VERED pels

Half pel position b:
6 "'all input pels

+ 12*MOVING pels
+ 16sfUNCOVERED pels

Half pel position c:
6*all input pels

+ 12*MOVING pels
+ 16*UNCOVERED pels

106

Half pel position d:
8 "'all input pels

+ 12 ̂ MOVING pels
+ 16:; UNCOVERED pels

5.2.1.5 M odel Failure D etection

For the most part, the steps in model failure detection have fixed costs. As

described in Section 4.3.5, the first step of producing the initial model failure

mask is split into two stages. The first stage, calculation of the squared error, has

a fixed cost of 4 cycles/pel. Each iteration of the second stage has a fixed cost of

13 cycles/pel. However, the number of iterations is unknown at the time of

execution. The average number of iterations is 7.06 for ‘Miss America’ and 7.86

for ‘Claire’. A summary of the computation costs for this stage is given in Table

5.7. Also summarised in Table 5.7 are the costs for elimination of regions. This

is the same process as used in change detection. However, the temporal

coherency present in change detection is absent from model failure detection,

leading to a high degree of fluctuation in the computation cost of successive

frames. Not shown in Table 5.7 are the costs for the other steps in the process,

namely, binary median filtering, dilation and erosion. The cost of these has

already been given in Table 5.1.

Function Miss America Claire
min max avg min max avg

Find
TMF

1,977,000 2,636,000 2,327,000 1,977,000 2,966,000 2,589,000

Chain
Codes

159,700 220,400 184,000 151,100 184,500 176,500

Calculate
Area

1800 12,800 6,400 2,500 7,000 5,100

Redraw
Objects

3400 44,300 17,300 5,800 31,400 16,500

Table 5.7 Summary of cycle counts for non-fixed steps of model failure detection.

107

Table 5.8 summarises the various computation costs for the encoding of a single

frame over the simulation of 50 frames. Given that the processing power of a

TMS320C30 is 20 million cycles, real-time execution is, as expected, beyond the

capability of a single device. The effect of image content on execution time can

clearly be seen, not only between the to sequences, but also between the

maximum and minimum values for the same sequence. The higher costs for the

‘Claire’ sequence reflect known problems with the source model used in the

SIMOC algorithm [12]. In this sequence there exists subtle, but continuous,

variations in the scene illumination that are interpreted by change detection as

areas of motion. This leads to a change detection mask (and subsequently a

moving area mask) that is larger than it should be. As most of the processing, in

particular motion estimation, is concentrated on this area, higher than normal

computation costs are incurred. It is likely that the overall computation cost for

the ‘Claire’ sequence represents a worst-case scenario, whereas the figure ‘Miss

America’ is closer to what would be expected under normal circumstances.

A summary of the cycle counts for the encoding of a frame using the sub-

optimal motion estimation methods is given in Table 5.9. It is worth noting that

due to the inter-relationship between the motion vector field and, for example,

the size of the moving area mask (and, therefore, the next change detection

mask), that the computation costs for functions other than motion estimation

w ill also change. However, this will be to a much less extent and, in the

construction of Table 5.9, the values from the optimal motion estimation

implementation have been taken as indicative.

From the summary of the computation costs of the decoder in Table 5.10, it can

be seen that a single TMS320C30 is capable of decoding the ‘Miss America’

sequence at 8 frames per second under average conditions.

5.2.1.6 Summary

108

Function Miss America Claire
min max avg min max avg

Change
Detection

1.57 1.65 1.61 1.54 1.74 1.68

Motion Analysis 6.32 8.91 8.15 3.82 12.06 9.98
MC Shape
Approx.

0.18 0.24 0.19 0.11 0.28 0.25

Motion Synthesis 1.02 1.3 1.23 0.81 1.64 1.47
MF Detection 3.19 3.96 3.58 3.18 4.23 3.83
MF Shape
Approx.

0.1 0.33 0.19 0.1 0.33 0.2

Total 12.38 16.39 14.95 9.56 20.28 17.41

Table 5.8 Summary of cycle counts (in millions of cycles) for the encoding of a single
frame.

Method Miss America Claire
min max avg min max

Pel Subsampling 10.92 13.99 12.82 8.97 16.78 14.65
Small Search
Window

10.05 12.5 11.53 8.64 14.54 13.03

No Level 3 10.43 13.57 12.49 8.35 16.72 14.47

Table 5.9 Summary of cycle counts (in millions of cycles) for the encoding of a single
frame using sub-optimal motion estimation method.

Function Miss America Claire
min max avg min max avg

Reconstruct Moving
Area Mask

0.12 0.18 0.13 0.04 0.27 0.14

Interpolate Motion 0.3 0.36 0.34 0.16 0.48 0.44
Uncovered
Background Detection

0.54 0.62 0.59 0.47 0.73 0.66

Reconstruct MF Mask 0.03 0.27 0.13 0.04 0.27 0.14
Motion Synthesis 1.02 1.3 1.23 0.81 1.64 1.47
Total 2.01 2.73 2.42 1.52 3.39 2.85

Table 5.10 Summary of cycle counts (in millions of cycles) for the decoding of a single
frame.

109

5.2.2 Parallel Execution

Given a TMS320C30 instruction cycle time of 50ns, the average figure for the

computation costs of a single frame of the ‘Miss America’ sequence (14.95

million cycles) translates to about 0.75ms execution time. For a frame rate of

8Hz, a frame can only have, on average, an encoding execution time of 0.125ms.

Therefore, a speedup of approximately 6 must be achieved if real-time encoding

is to be possible. The maximum speedup attainable by a parallel implementation

over a sequential one has been shown in Section 3.3 to be limited according to

Amdahl’s Law, i.e.,

1
S.. = -

n

To determine the number of processors (n) required to achieve the desirable

speedup (Sn) it is first necessary to calculate the Amdahl Fraction (f), which is

given by:

f = T"
T1 Total

Equation 5.2

i.e., the ratio of the execution time of those parts of the algorithm that cannot

be parallelised (T) to the overall execution time (TTota|). Several possibilities for

exploiting parallelism in the algorithm have been identified in Section 3.2. From

the complete TMS320C30 software implementation it is now possible to refine

these possibilities and to determine a figure for the Amdahl Fraction. In Section

3.2 is was shown that most exploitable parallelism exists at the function level,

e.g., within change detection, motion analysis, etc., and that some also existed at

the inter-function level.

110

5.2.2.1 Function L evel Parallelism

Within change detection, geometric parallelism can be applied to the steps

involving point and neighbourhood operations. For the elimination of regions

each object can be processed independently. However, the identification of these

objects (the calculation of their chain codes) is a single step procedure involving

a scan of the complete mask that cannot be parallelised. Also, for the test

sequences, only one object remains after the elimination decision. The process

of reconstructing this object from its chain code, by the nature of the filling

algorithm, can only be performed on a single processor. The only part of

elimination of regions that can be parallelised is the calculation of the objects’

areas, but this is a sufficiently small overhead that can be neglected. Therefore,

for change detection, the elimination of regions remains a sequential process.

In motion analysis, the support functions for motion estimation are all

neighbourhood operations, and therefore geometric parallelism can be applied.

A parallel solution for motion estimation has been given in Section 3.3. A

geometric division of the input data is inherent in the interpolation of the

motion vector field. The field is divided into a number of 16x16 blocks, which

can be distributed between the parallel processors. The remaining sections of

motion analysis, moving area detection and uncovered background detection

can be considered to be point operations and, hence, can be subject to geometric

parallelism. Therefore, all the component parts of motion analysis can be

parallelised.

Shape approximation shares many properties with the elimination of regions

process in change detection, the most important of which is the need for a scan

of the complete mask to identify the objects for approximation. In the

simulation on the test sequences, only one object needed to be approximated in

each frame. Thus the only possible parallelism left would be to divide the initial

vertices between the processors to determine if any more vertices needed to be

111

inserted. However, as the bulk of the computation cost of shape approximation

lies in the reconstruction of the object, this parallelism would have a relatively

negligible effect. With no practicable parallelism, shape approximation must be

executed as a sequential process.

All the constituent parts of motion synthesis can be considered to be point

operations and geometric parallelism can be applied.

As described in Section 4.3.5, the calculation of the initial model failure mask is

an iterative process, with the number of iterations depending on a synthesis

error variance of the complete frame. Fortunately, this global parameter can be

calculated by combining the synthesis error variance of the regions resulting

from sub-division of the frame when using geometric parallelism. The

remainder of model failure detection is similar to change detection. The median

filer, dilation and erosion can use geometric parallelism. Although more objects

are maintained after elimination of regions than in change detection, the low

cost of redrawing the objects means that there is no significant gain achievable

through processing each object on a separate processor. The same is true for the

shape approximation of the model failure regions, so this also remains a

sequential process.

5.2.2.2 In ter-fun ction Parallelism

In Section 3.2.1 it was shown that the mean-value filtering and bilinear

interpolation required for motion estimation could be performed in parallel to

change detection. There is no benefit to be gained from performing these

operations in parallel to the parallelisable steps of change detection as all

processors will be 100% busy. However, during the elimination of regions, only

one processor is in use and, therefore, it is possible, and beneficial, to perform

the filtering and interpolation on the idle processors. In doing this, the

contribution of elimination of regions to the Amdahl Fraction is reduced, to a

112

limit defined by the outstanding processing to be done on the elimination

process when the filtering and interpolation is complete. The remaining

execution time can be calculated from Equation 5.3. This w ill depend on the

execution time for the elimination of regions (Telim), mean-value filtering (Tfilter),

bilinear interpolation (Tinter), and the number of idle processors (n-l).

T +T
rp.' r p filter________ inter

elim elira ” H 1

Equation 5.3

If this figure is negative, then elimination of regions does not contribute to the

Amdahl Fraction.

The motion synthesis implementation strategy, described in Section 4.3.4,

allows for a degree of inter-function parallelism between motion synthesis and

model failure detection. Motion synthesis of the half-pel positions can be

performed on the idle processors during the elimination of regions step in

model failure detection and the subsequent shape approximation of the

maintained regions. Again, the reduction in the contribution to the Amdahl

Fraction is bounded by the amount of time taken to complete the

elimination/shape approximation process after motion synthesis is finished.

This figure is given by:

T = T + T - '̂ synthmfremain mf_eiim mf_shape ^ j

Equation 5.4

113

Apart from the two factors represented by Equation 5.3 and Equation 5.4, the

serial part of the total execution time also includes the time for the shape

approximation of the moving area mask, i.e.:

T = T' + T + T
s eli.ui iiif^raiTiitti ' sltnpe

Taking the average figures for the ‘Miss America’ simulation from Section 5.2.1,

the Amdahl Fraction equates to:

max^0,^0,29 — — + max^0, j^0,4- — +0. 19
f = -------------------- —---------------------------- —---------------

14.95

Figure 5.1(a) shows the variation of the Amdahl Fraction with the number of

processors, while Figure 5.1(b) shows the speedup versus the number of

processors for the corresponding Amdahl Fraction. The target speedup factor of

6 is achieved with 8 processors. The actual speedup achieved with 8 processors is

6.28, leaving some spare capacity for extra processing.

5.2.2.3 Summary

Number o f Processors

(a)

114

6 7 8 9 10 11 12 13 14 15 16

Number of Processors

(b)
Figure 5.1 (a) Amdahl Fraction vs. number of processors, (b) speedup vs. number of

processors

5.3 Discussion

Although real-time execution of the DCU algorithm can be achieved, it is

questionable whether the cost of achieving it, i.e., 8 processors for the encoder

plus one for the decoder, represents a practical solution. Therefore, there

remains a gap in performance to be bridged if the ultimate goal of this research

is to be achieved. It is possible that some of the shortfall can be made up

through the development of faster processors, such as the planned 25MHz

version of the TMS320C30 [19]. An increase in processing power of this order

would reduce the processor count by two. Alternatively, the latest device in the

TMS320 series - the TMS320C80 multimedia processor [20]- which combines

four parallel advanced DSPs with a RISC master processor on a single chip may

provide a suitable platform for the proposed parallel algorithm. However,

further improvement of the proposed parallel algorithm would, more than

likely, be required. From the development of the algorithm and software to date

115

some possibilities for improvements have been identified and are outlined

below.

A main factor in all of the synthesis functions and model failure detection is the

moving area mask and its derivative, the SMU mask. In the current software

implementation of the synthesis functions and model failure detection, each pel

in the mask is tested for its status (STATIC, MOVING, UNCOVERED) in

order to determine what action needs to be taken. With geometric division of

the mask data it is possible that a subdivision will contain only one type of data

(the smaller the divisions the more likely this w ill be the case). If subdivisions

that were all STATIC or all MOVING were identified at an early stage, it

would obviate the repeated status testing of the pels in the subdivisions. Indeed,

for many functions, subdivisions that are all STATIC need not be processed at

all. Pel status testing would be retained for those subdivisions that contain a

combination of pel types, i.e., those subdivisions that contain the object

boundary.

The shape approximation of the moving area mask contributes a value 0.19 to

the Amdahl Fraction, of which approximately 65% is spent on reconstruction

the mask from the estimated shape parameters. It may be possible to develop a

parallel polygon filling algorithm based on the method proposed in [21]. In this

method a polygon is divided into a number of trapezoids that can be filled in

parallel. Using a parallel filling algorithm like this would reduce the effect of

shape approximation on the Amdahl Fraction and, therefore, result in a speedup

of the parallel algorithm.

The above two possibilities for improvement do not affect the operation of the

DCU algorithm. In addition, it has been shown that, through the use of sub-

optimal motion estimation techniques, there exists scope to reduce the

complexity of the algorithm by directly altering the operation of the algorithm.

116

The remaining possibilities for improving the execution time performance of

the proposed parallel algorithm all modify the operation of the DCU algorithm.

The DCU algorithm has been optimised to operate at a frame rate of 8Hz, but

according to [22] the absolute lowest acceptable frame rate for very low bitrate

video coding schemes is 5Hz. Therefore, it is worth investigating if the

algorithm can be tuned to optimally work at a lower frame rate than it does at

present. Even a small reduction to 7Hz would decrease the required speedup in

Section 5.2.2 to 5.25, a figure that is almost achievable with 6 processors.

As already shown in Section 4.3.2.2 and subsequently Section 5.2.1.2, sub-

optimal motion estimation methods can provide a considerable reduction in the

computational complexity of the DCU algorithm while maintaining an overall

algorithm performance that is close to the optimum, especially in the pel

subsampling case. The results would indicate that further examination into the

use of sub-optimal motion estimation methods is worthwhile. By studying the

effects on the remainder of the algorithm of the changes introduced in the

motion vector field, it may be possible to alter the other elements in order to

achieve better overall performance.

Another possible area in which the processing cost of the algorithm may be

reduced is in the open loop control. Currently, the generated bitstream is

controlled by a quality criterion that requires the model failure regions to have a

PSNR of 31dB. Reducing this value, i.e., by reducing the target synthesis error

variance in model failure detection, would decrease the number of iterations in

the calculation of the motion failure threshold and, possibly, the size of the

model failure area. The overall effect of this would be to lessen the cost of model

failure detection and shape approximation of the model failure area.

At this stage two cycles of the iterative design method described in Section 3.1

have been completed. Starting with the basic description that the hardware

117

I

system must be parallel and programmable, the first cycle refined this to a

multiprocessor architecture. This was as a result of an analysis of the DCU

algorithm that realised a parallel algorithm structure which could only be

supported by such an architecture. In the second cycle software was developed

for the target processor, the TMS320C30. The cycle was completed by

concluding that 8 processors would be required in the multiprocessor system if

real-time encoding is to be achieved.

118

C h a p t e r 6

CONCLUSION

This thesis presented the results of research into the development of a real-time

object-based analysis-synthesis coder. The thesis began with a general

introduction to second generation video coding and then, specifically, the DCU

algorithm which is an implementation of the COST 21 Iter SIMOC Reference

Model. An implementation-independent complexity analysis of the DCU

algorithm indicated that its processing power requirements were beyond the

capability of a single processor. Therefore, a parallel implementation of the

algorithm was sought.

In Chapter 3 an iterative design model was proposed with the aim of

maximising the performance of the parallel algorithm software within any

hardware constraints. Having identified that a parallel system was required, the

DCU algorithm was examined for any inherent parallelism. The outcome of

this was a proposed solution that combined parallel elements with parts of the

algorithm that could only be executed sequentially. This exercise also identified

a significant problem which was the dependence of the algorithm execution

time on scene content, especially the amount of motion. The proposed solution

was based on ‘excess parallelism’ where the input data is divided into a greater

number of geometric subdivisions than the number of processors in the system.

Another conclusion from this chapter was that the only type of hardware

architecture onto which the parallel algorithm could be mapped was a

multiprocessor system.

In Chapter 4 the largest part of the research was presented, namely the writing

and optimising of the algorithm software for the chosen target processor, the

119

TMS320C30. Alterations to the DCU algorithm were proposed that reduced

the computational complexity. However, these changes resulted in a

degradation in the output quality of the algorithm. From the software it was

possible, in Chapter 5, to determine relatively accurately the processing power

requirements of the algorithm. The conclusion of this was that a multiprocessor

system with 8 processors would be required for real-time encoding. This could

be reduced by 2 if the planned 25MHz version of the TMS320C30 was used.

Real-time decoding at 8Hz can be achieved with a single TMS320C30.

At this stage two cycles of the iterative design model had been completed and

no further research work was carried out. The main conclusion drawn from the

work was that, although it was shown that real-time operation was possible, it

was felt that the number of processors required made the hardware system

somewhat impractical. A number of recommendations were given, based on the

knowledge of the algorithm gained through developing the software. These

recommendations could provide the start to another cycle of the iterative design

model. The recommendations can be divided into two categories, those which

do not affect the operation of the algorithm, and those that change the

parameters of the algorithm and consequently, affect its output.

In the first category the following two recommendations were made:

- The introduction of a classification scheme for the geometric subdivisions of

the moving area mask and SMU mask. This would reduce the costly repeated

status testing of pels in those masks during synthesis and model failure

detection.

- Development of a parallel polygon filling algorithm. This would reduce the

contribution of shape approximation to the Amdahl fraction of the proposed

120

parallel algorithm. The Amdahl fraction is the limitation factor on the overall

achievable speedup.

Falling into the second category are the following:

- A reduction in the frame rate. The DCU algorithm has been designed to work

optimally at 8Hz, and reducing this rate may require re-optimising the

algorithm performance.

- The use of sub-optimal motion estimation methods. Motion estimation

requires the most processing power and large reductions in this requirement can

be gained by using a sub-optimal method. The motion vectors produced by

motion estimation are intrinsic to the operation of the algorithm. Therefore, the

effect on the motion vector field introduced by a sub-optimal method, and the

subsequent effects this has on the rest of the algorithm need to be examined.

- A reduction of the quality criterion. This would lead to a decrease in the

complexity of model failure detection and a reduction in the size of the model

failure area.

The ultimate goal of this research was to determine whether the complexity of

the coding techniques used in this type of scheme would prevent real-time

operation being achieved, and to eventually provide a platform on which the

techniques could be developed and tested. The first part of this goal has been

accomplished and the foundation has been laid for future work. In the past, the

development of hardware systems for video coding has been done as a reaction

to the standardisation of algorithms. Only now are systems for MPEG-1 and

H.261 commonplace even though the standards are several years old. Similarly,

systems that implement MPEG-2 and H.263 are only beginning to reach the

market. By developing hardware in parallel, or in this case at an earlier stage, to

the standardisation process, not only will systems be available at an early stage

121

after standardisation, but valuable information can also be gained that can

influence the process. Although the SIMOC algorithm will not become a

standard, several of techniques used are being applied to the development of the

MPEG-4 video coding standard. It is possible that the iterative design model

used in this research could be applied to the development of a real-time MPEG-4

video coder.

122

A p p e n d i x A

PERFORMANCE COMPARISON OF SUB-OPTIMAL MOTION
ESTIMATION METHODS

A - 1

MF

Ar
ea

(%

)
MF

Ar

ea

(%
)

MF

Ar
ea

(%

)

Frame#

Frame #

Frame #

Figure A .l Comparison of Model Failure Area sizes for ‘Miss America’ sequence.

MF

Ar
ea

(%

)
MF

Ar

ea

(%
)

MF

Ar
ea

(%

)

14

Frame #

Frame #

Frame #

Figure A.2 Comparison of Model Failure Area sizes for ‘Claire’ sequence.

Frame#

Frame #

Frame#

Figure A.3 Comparison of generated bit counts for ‘Miss America’ sequence.

A-4

Frame #

Frame#

.*?!5
c3oo
CO

f Optimal
' - B - Small Search Window

8000

6000

5000

4000

3000

2000

1000

Frame#

Figure A.4 Comparison of generated bit counts for ‘Claire’ sequence.

A-5

Frame#

O ptim al
No Level 3

Frame #

Frame #

Figure A.5 Comparison of luminance PSNRs for ‘Miss America’ sequence.

A - 6

O ptim al
Pe l Sub sam p ling

Frame #

m 3
a.
z
CO0.

— ♦— Optimal
— - o - ■ No Level 3

Frame #

CQ■o

Wa.

Frame #

Figure A.6 Comparison of luminance PSNRs for ‘Claire’ sequence.

—♦—Optimal
Small Search Window

A-7

A p p e n d i x B

CYCLE COUNTS OF INDIVIDUAL FUNCTIONS FROM
SIMULATION

B-1

Frame Change D Motion An MC Shape Motion Sy MF Detect MF Shape Total
2 1601296 6320805 236135 1019460 3839557 165056 13182309
3 1598896 6936723 173461 1104228 3856972 172270 13842550
4 1599268 7116013 173823 1116060 3851768 218317 14075249
5 1596745 7328423 177666 1144068 3854591 148569 14250062
6 1601281 7599435 176608 1162492 3854810 237989 14632615
7 1597714 7621594 178107 1176188 3541528 236304 14351435
8 1598280 7626566 178297 1179996 3547454 246423 14377016
9 1598877 7634904 177632 1179396 3851746 204597 14647152

10 1598338 7685174 178087 1176972 3545715 187534 14371820
11 1598555 7711638 189933 1181796 3540097 137129 14359148
12 1598737 7741900 177675 1183208 3540686 215038 14457244
13 1598060 7745776 178267 1183380 3535571 147960 14389014
14 1600988 7773710 177740 1188540 3537544 214655 14493177
15 1602578 7873776 178030 1209148 3549725 149187 14562444
16 1597813 7747293 178231 1207812 3528850 96164 14356163
17 1589081 7827340 178373 1207428 3531308 196164 14529694
18 1598180 7832579 178588 1205916 3556989 254286 14626538
19 1598722 7830361 178797 1204308 3551283 171191 14534662
20 1599840 7926708 178597 1205892 3557353 145430 14613820
21 1600756 7896712 179488 1203500 3540433 228227 14649116
22 1600989 7900043 178392 1217784 3568215 280645 14746068
23 1602344 7974821 179065 1219124 3599233 297486 14872073
24 1601531 7999723 179674 1213764 3215044 231444 14441180
25 1600548 8047640 178876 1211220 3547974 249419 14835677
26 1602676 8201275 180243 1220588 3554929 95495 14855206
27 1607870 8119666 181240 1232260 3277042 164892 14582970
28 1613411 8760100 191223 1277884 3551500 162690 15556808
29 1613657 8749094 193059 1279628 3563221 172698 15571357
30 1616270 8746568 195917 1290064 3293293 134377 15276489
31 1616578 8843637 196752 1287900 3559745 255733 15760345
32 1617030 8901260 197072 1290732 3568417 158017 15732528
33 1615385 8819978 197348 1294492 3565642 145896 15638741
34 1616482 8763479 196098 1289756 3552006 90750 15508571
35 1614175 8753897 195307 1276252 3560230 240384 15640245
36 1613287 8747578 194580 1271932 3556057 207881 15591315
37 1612611 8682978 194238 1270708 3557819 157318 15475672
38 1612524 8631653 193813 1271220 3568105 109079 15386394
39 1611673 8577249 194143 1268028 3558668 320678 15530439
40 1611734 8546974 192531 1260952 3566369 241730 15420290
41 1611957 8493363 193031 1261364 3564473 286808 15410996
42 1611390 8559576 193439 1257756 3569998 192677 15384836
43 1613294 8564581 193737 1263604 3569511 148477 15353204
44 1614219 8567798 194432 1262428 3556899 161735 15357511
45 1614254 8575486 195102 1258164 3556108 183157 15382271
46 1613616 8542527 194457 1259172 3560123 131022 15300917
47 1614377 8608772 195774 1262268 3558460 127889 15367540
48 1616616 8707571 197500 1259604 3555820 98489 15435600
49 1615932 8611277 195086 1257660 3542220 140421 15362596
50 1615732 8601167 194889 1261716 3553652 205215 15432371

Min. 1564520 6320805 173461 1019460 3180613 90750 12349609
Max. 1642980 8917935 236135 1294492 3952237 320678 16364457
Average 1606452 8150554 187358.2 1224241 3573158 187040.7 14928805

Table B.l Cycle count of main functions for ‘Miss America’ sequence.

B-2

Frame Abs. Differ Binarisatio Median Va Combining Dilation Erosion Eliminatio Total
2 101376 177408 177408 101376 380160 380160 283408 1601296
3 101376 177408 177408 101376 380160 380160 281008 1598896
4 101376 177408 177408 101376 380160 380160 281380 1599268
5 101376 177408 177408 101376 380160 380160 278857 1596745
6 101376 177408 177408 101376 380160 380160 283393 1601281
7 101376 177408 177408 101376 380160 380160 279826 1597714
8 101376 177408 177408 101376 380160 380160 280392 1598280
9 101376 177408 177408 101376 380160 380160 280989 1598877

10 101376 177408 177408 101376 380160 380160 280450 1598338
11 101376 177408 177408 101376 380160 380160 280667 1598555
12 101376 177408 177408 101376 380160 380160 280849 1598737
13 101376 177408 177408 101376 380160 380160 280172 1598060
14 101376 177408 177408 101376 380160 380160 283100 1600988
15 101376 177408 177408 101376 380160 380160 284690 1602578
16 101376 177408 177408 101376 380160 380160 279925 1597813
17 101376 177408 177408 101376 380160 380160 271193 1589081
18 101376 177408 177408 101376 380160 380160 280292 1598180
19 101376 177408 177408 101376 380160 380160 280834 1598722
20 101376 177408 177408 101376 380160 380160 281952 1599840
21 101376 177408 177408 101376 380160 380160 282868 1600756
22 101376 177408 177408 101376 380160 380160 283101 1600989
23 101376 177408 177408 101376 380160 380160 284456 1602344
24 101376 177408 177408 101376 380160 380160 283643 1601531
25 101376 177408 177408 101376 380160 380160 282660 1600548
26 101376 177408 177408 101376 380160 380160 284788 1602676
27 101376 177408 177408 101376 380160 380160 289982 1607870
28 101376 177408 177408 101376 380160 380160 295523 1613411
29 101376 177408 177408 101376 380160 380160 295769 1613657
30 101376 177408 177408 101376 380160 380160 298382 1616270
31 101376 177408 177408 101376 380160 380160 298690 1616578
32 101376 177408 177408 101376 380160 380160 299142 1617030
33 101376 177408 177408 101376 380160 380160 297497 1615385
34 101376 177408 177408 101376 380160 380160 298594 1616482
35 101376 177408 177408 101376 380160 380160 296287 1614175
36 101376 177408 177408 101376 380160 380160 295399 1613287
37 101376 177408 177408 101376 380160 380160 294723 1612611
38 101376 177408 177408 101376 380160 380160 294636 1612524
39 101376 177408 177408 101376 380160 380160 293785 1611673
40 101376 177408 177408 101376 380160 380160 293846 1611734
41 101376 177408 177408 101376 380160 380160 294069 1611957
42 101376 177408 177408 101376 380160 380160 293502 1611390
43 101376 177408 177408 101376 380160 380160 295406 1613294
44 101376 177408 177408 101376 380160 380160 296331 1614219
45 101376 177408 177408 101376 380160 380160 296366 1614254
46 101376 177408 177408 101376 380160 380160 295728 1613616
47 101376 177408 177408 101376 380160 380160 296489 1614377
48 101376 177408 177408 101376 380160 380160 298728 1616616
49 101376 177408 177408 101376 380160 380160 298044 1615932
50 101376 177408 177408 101376 380160 380160 297844 1615732

Min. 101376 177408 177408 101376 380160 380160 246632 1564520
Max 101376 177408 177408 101376 380160 380160 325092 1642980
Average 101376 177408 177408 101376 380160 380160 288564.4 1606452

Table B.2 Cycle counts of change detection functions for ‘Miss America’ Sequence.

B-3

Frame Chain Cod Area Fill Total
2 202499 9150 71759 283408
3 191669 6872 82467 281008
4 188220 6393 86767 281380
5 185663 5846 87348 278857
6 185454 5837 92102 283393
7 181830 5154 92842 279826
8 181936 5172 93284 280392
9 182271 5270 93448 280989

10 181830 5254 93366 280450
11 181794 5189 93684 280667
12 181688 5171 93990 280849
13 181394 5082 93696 280172
14 182891 5484 94725 283100
15 182327 5302 97061 284690
16 179286 4722 95917 279925
17 170236 4901 96056 271193
18 179339 4731 96222 280292
19 179604 4776 96454 280834
20 180675 4637 96640 281952
21 180739 5009 97120 282868
22 180616 4904 97581 283101
23 180840 5027 98589 284456
24 180469 4964 98210 283643
25 179816 4812 98032 282660
26 180187 4875 99726 284788
27 182059 5234 102689 289982
28 182714 5263 107546 295523
29 179905 4786 111078 295769
30 180741 4930 112711 298382
31 180541 4894 113255 298690
32 180832 4867 113443 299142
33 180170 4831 112496 297497
34 181093 5031 112470 298594
35 180435 4876 110976 296287
36 180329 4858 110212 295399
37 180276 4849 109598 294723
38 180170 4831 109635 294636
39 180117 4822 108846 293785
40 179958 4795 109093 293846
41 180211 4881 108977 294069
42 180273 4840 108389 293502
43 181177 5002 109227 295406
44 181442 5047 109842 296331
45 181495 5056 109815 296366
46 180975 5103 109650 295728
47 181548 5065 109876 296489
48 182755 5272 110701 298728
49 182649 5254 110141 298044
50 182449 5218 110177 297844

Min. 170236 4637 71759 246632
Max. 202499 9150 113443 325092
Average 181787.5 5186.51 101590.4 288564.4

Table B.3 Cycle counts from elimination of regions for ‘Miss America’ sequence.

B-4

Frame Mean Valu Bilinear Int Upsamplin Motion Est Motion Fie Moving Ar Un cove re Total
2 354816 709632 354816 3838185 301056 228096 534204 6320805
3 354816 709632 354816 4417065 319488 228096 552810 6936723
4 354816 709632 354816 4605597 313344 228096 549712 7116013
5 354816 709632 354816 4808745 313344 228096 558974 7328423
6 354816 709632 354816 5064633 319488 228096 567954 7599435
7 354816 709632 354816 5076486 325632 228096 572116 7621594
8 354816 709632 354816 5086566 325632 228096 567008 7626566
9 354816 709632 354816 5094486 325632 228096 567426 7634904

10 354816 709632 354816 5144598 325632 228096 567584 7685174
11 354816 709632 354816 5171148 325632 228096 567498 7711638
12 354816 709632 354816 5193378 325632 228096 575530 7741900
13 354816 709632 354816 5202738 325632 228096 570046 7745776
14 354816 709632 354816 5227344 325632 228096 573374 7773710
15 354816 709632 354816 5310576 331776 228096 584064 7873776
16 354816 709632 354816 5198355 325632 228096 575946 7747293
17 354816 709632 354816 5272956 331776 228096 575248 7827340
18 354816 709632 354816 5276601 331776 228096 576842 7832579
19 354816 709632 354816 5281731 325632 228096 575638 7830361
20 354816 709632 354816 5376888 325632 228096 576828 7926708
21 354816 709632 354816 5345118 325632 228096 578602 7896712
22 354816 709632 354816 5329809 331776 228096 591098 7900043
23 354816 709632 354816 5407335 331776 228096 588350 7974821
24 354816 709632 354816 5415777 350208 228096 586378 7999723
25 354816 709632 354816 5466294 344064 228096 589922 8047640
26 354816 709632 354816 5619537 344064 228096 590314 8201275
27 354816 709632 354816 5529978 344064 228096 598264 8119666
28 354816 709632 354816 6146460 356352 228096 609928 8760100
29 354816 709632 354816 6128604 362496 228096 610634 8749094
30 354816 709632 354816 6132096 362496 228096 604616 8746568
31 354816 709632 354816 6229035 362496 228096 604746 8843637
32 354816 709632 354816 6280074 362496 228096 611330 8901260
33 354816 709632 354816 6195816 362496 228096 614306 8819978
34 354816 709632 354816 6146811 356352 228096 612956 8763479
35 354816 709632 354816 6144903 356352 228096 605282 8753897
36 354816 709632 354816 6137208 356352 228096 606658 8747578
37 354816 709632 354816 6080706 350208 228096 604704 8682978
38 354816 709632 354816 6031017 350208 228096 603068 8631653
39 354816 709632 354816 5986053 344064 228096 599772 8577249
40 354816 709632 354816 5949918 344064 228096 605632 8546974
41 354816 709632 354816 5904639 344064 228096 597300 8493363
42 354816 709632 354816 5976252 344064 228096 591900 8559576
43 354816 709632 354816 5964687 356352 228096 596182 8564581
44 354816 709632 354816 5970168 356352 228096 593918 8567798
45 354816 709632 354816 5986350 344064 228096 597712 8575486
46 354816 709632 354816 5957253 344064 228096 593850 8542527
47 354816 709632 354816 6025932 344064 228096 591416 8608772
48 354816 709632 354816 6107085 356352 228096 596774 8707571
49 354816 709632 354816 6015537 356352 228096 592028 8611277
50 354816 709632 354816 5995647 362496 228096 595664 8601167

Min. 354816 709632 354816 3838185 301056 228096 534204 6320805
Max. 354816 709632 354816 6293773 362496 228096 614306 8917935
Average 354816 709632 354816 5576616 339800.8 228096 586777.7 8150554

Table B.4 Cycle counts of motion analysis functions for ‘Miss America’ sequence.

B-5

Frame Level 1 Level 2 Level 3 Total
2 2292390 311193 1234602 3838185
3 2666120 351584 1399361 4417065
4 2790592 364684 1450321 4605597
5 2936618 371576 1500551 4808745
6 3077326 394486 1592821 5064633
7 3112966 393433 1570087 5076486
8 3121066 393883 1571617 5086566
9 3125296 394603 1574587 5094486

10 3148508 400037 1596053 5144598
11 3162818 402332 1605998 5171148
12 3171998 404942 1616438 5193378
13 3165968 408020 1628750 5202738
14 3174284 411152 1641908 5227344
15 3272196 408144 1630236 5310576
16 3194570 401018 1602767 5198355
17 3251136 404814 1617006 5272956
18 3253836 404994 1617771 5276601
19 3256986 405399 1619346 5281731
20 3267328 422299 1687261 5376888
21 3276328 414163 1654627 5345118
22 3253504 415648 1660657 5329809
23 3284150 425240 1697945 5407335
24 3295130 421037 1699610 5415777
25 3334244 427175 1704875 5466294
26 3432750 434706 1752081 5619537
27 3363378 433968 1732632 5529978
28 3764530 476863 1905067 6146460
29 3749924 476123 1902557 6128604
30 3757844 471695 1902557 6132096
31 3798598 482905 1947532 6229035
32 3862434 483807 1933833 6280074
33 3786186 482124 1927506 6195816
34 3764946 476346 1905519 6146811
35 3734436 478659 1931808 6144903
36 3716436 480882 1939890 6137208
37 3680084 476591 1924031 6080706
38 3663712 473785 1893520 6031017
39 3623698 472840 1889515 5986053
40 3630178 464029 1855711 5949918
41 3575944 465892 1862803 5904639
42 3651472 465217 1859563 5976252
43 3620450 465503 1878734 5964687
44 3597086 471281 1901801 5970168
45 3633860 470831 1881659 5986350
46 3592136 469706 1895411 5957253
47 3640512 477615 1907805 6025932
48 3682506 478155 1946424 6107085
49 3630448 469960 1915129 6015537
50 3631070 469571 1895006 5995647

Min. 2292390 311193 1234602 3838185
Max. 3862434 483807 1947532 6293773
Average 3397346 435120.6 1744149 5576616

Table B.5 Cycle counts of each level in motion estimation for ‘Miss America’
sequence.

B -6

Frame First Steps Median Fil Combine Total
2 255420 177408 101376 534204
3 274026 177408 101376 552810
4 270928 177408 101376 549712
5 280190 177408 101376 558974
6 289170 177408 101376 567954
7 293332 177408 101376 572116
8 288224 177408 101376 567008
9 288642 177408 101376 567426

10 288800 177408 101376 567584
11 288714 177408 101376 567498
12 296746 177408 101376 575530
13 291262 177408 101376 570046
14 294590 177408 101376 573374
15 305280 177408 101376 584064
16 297162 177408 101376 575946
17 296464 177408 101376 575248
18 298058 177408 101376 576842
19 296854 177408 101376 575638
20 298044 177408 101376 576828
21 299818 177408 101376 578602
22 312314 177408 101376 591098
23 309566 177408 101376 588350
24 307594 177408 101376 586378
25 311138 177408 101376 589922
26 311530 177408 101376 590314
27 319480 177408 101376 598264
28 331144 177408 101376 609928
29 331850 177408 101376 610634
30 325832 177408 101376 604616
31 325962 177408 101376 604746
32 332546 177408 101376 611330
33 335522 177408 101376 614306
34 334172 177408 101376 612956
35 326498 177408 101376 605282
36 327874 177408 101376 606658
37 325920 177408 101376 604704
38 324284 177408 101376 603068
39 320988 177408 101376 599772
40 326848 177408 101376 605632
41 318516 177408 101376 597300
42 313116 177408 101376 591900
43 317398 177408 101376 596182
44 315134 177408 101376 593918
45 318928 177408 101376 597712
46 315066 177408 101376 593850
47 312632 177408 101376 591416
48 317990 177408 101376 596774
49 313244 177408 101376 592028
50 316880 177408 101376 595664

Min. 255420 177408 101376 534204
Max. 335522 177408 101376 614306
Average 307993.7 177408 101376 586777.7

Table B.6 Cycle counts of uncovered background functions for ‘Miss America’
sequence.

B-7

Frame Position A Position B Position C Position D Total
2 225120 248220 248832 297288 1019460
3 246468 269700 269736 318324 1104228
4 249384 272712 272640 321324 1116060
5 256380 279768 279588 328332 1144068
6 260836 284484 284076 333096 1162492
7 264272 287928 287496 336492 1176188
8 265152 288864 288456 337524 1179996
9 264996 288708 288312 337380 1179396

10 264392 288124 287684 336772 1176972
11 265572 289332 288888 338004 1181796
12 265940 289688 289232 338348 1183208
13 265956 289704 289308 338412 1183380
14 267180 290952 290640 339768 1188540
15 272296 296056 295840 344956 1209148
16 271956 295716 295512 344628 1207812
17 271872 295632 295404 344520 1207428
18 271524 295284 294996 344112 1205916
19 271092 294852 294624 343740 1204308
20 271512 295260 295008 344112 1205892
21 270948 294696 294376 343480 1203500
22 274556 298288 297928 347012 1217784
23 274836 298580 298304 347404 1219124
24 273508 297236 296976 346044 1213764
25 272860 296604 296328 345428 1211220
26 275276 299000 298624 347688 1220588
27 278192 301912 301548 350608 1232260
28 289888 313500 312780 361716 1277884
29 290252 313956 313196 362224 1279628
30 292864 316564 315808 364828 1290064
31 292364 316056 315224 364256 1287900
32 293060 316680 316008 364984 1290732
33 293916 317660 316908 366008 1294492
34 292832 316412 315784 364728 1289756
35 289412 313036 312420 361384 1276252
36 288308 311968 311312 360344 1271932
37 287912 311696 310980 360120 1270708
36 288096 311864 311068 360192 1271220
39 287352 311048 310288 359340 1268028
40 285528 309252 308540 357632 1260952
41 285592 309360 308644 357768 1261364
42 284688 308460 307740 356868 1257756
43 286236 309968 309156 358244 1263604
44 285892 309652 308884 358000 1262428
45 284784 308568 307836 356976 1258164
46 285100 308828 308080 357164 1259172
47 285816 309588 308868 357996 1262268
48 285180 308964 308160 357300 1259604
49 284712 308460 307692 356796 1257660
50 285848 309572 308624 357672 1261716

Min. 225120 248220 248832 297288 1019460
Max. 293916 317660 316908 366008 1294492
Average 276279.8 299967.6 299476.7 348517.1 1224241

Table B.7 Cycle counts of motion synthesis functions for ‘Miss America’ sequence.

B-8

Frame Square Dif Find TMF Median Va Dilation Erosion Eliminatio Total
2 101376 2635776 177408 380160 380160 164677 3839557
3 101376 2635776 177408 380160 380160 182092 3856972
4 101376 2635776 177408 380160 380160 176888 3851768
5 101376 2635776 177408 380160 380160 179711 3854591
6 101376 2635776 177408 380160 380160 179930 3854810
7 101376 2306304 177408 380160 380160 196120 3541528
8 101376 2306304 177408 380160 380160 202046 3547454
9 101376 2635776 177408 380160 380160 176866 3851746

10 101376 2306304 177408 380160 380160 200307 3545715
11 101376 2306304 177408 380160 380160 194689 3540097
12 101376 2306304 177408 380160 380160 195278 3540686
13 101376 2306304 177408 380160 380160 190163 3535571
14 101376 2306304 177408 380160 380160 192136 3537544
15 101376 2306304 177408 380160 380160 204317 3549725
16 101376 2306304 177408 380160 380160 183442 3528850
17 101376 2306304 177408 380160 380160 185900 3531308
18 101376 2306304 177408 380160 380160 211581 3556989
19 101376 2306304 177408 380160 380160 205875 3551283
20 101376 2306304 177408 380160 380160 211945 3557353
21 101376 2306304 177408 380160 380160 195025 3540433
22 101376 2306304 177408 380160 380160 222807 3568215
23 101376 2306304 177408 380160 380160 253825 3599233
24 101376 1976832 177408 380160 380160 199108 3215044
25 101376 2306304 177408 380160 380160 202566 3547974
26 101376 2306304 177408 380160 380160 209521 3554929
27 101376 1976832 177408 380160 380160 261106 3277042
28 101376 2306304 177408 380160 380160 206092 3551500
29 101376 2306304 177408 380160 380160 217813 3563221
30 101376 1976832 177408 380160 380160 277357 3293293
31 101376 2306304 177408 380160 380160 214337 3559745
32 101376 2306304 177408 380160 380160 223009 3568417
33 101376 2306304 177408 380160 380160 220234 3565642
34 101376 2306304 177408 380160 380160 206598 3552006
35 101376 2306304 177408 380160 380160 214822 3560230
36 101376 2306304 177408 380160 380160 210649 3556057
37 101376 2306304 177408 380160 380160 212411 3557819
38 101376 2306304 177408 380160 380160 222697 3568105
39 101376 2306304 177408 380160 380160 213260 3558668
40 101376 2306304 177408 380160 380160 220961 3566369
41 101376 2306304 177408 380160 380160 219065 3564473
42 101376 2306304 177408 380160 380160 224590 3569998
43 101376 2306304 177408 380160 380160 224103 3569511
44 101376 2306304 177408 380160 380160 211491 3556899
45 101376 2306304 177408 380160 380160 210700 3556108
46 101376 2306304 177408 380160 380160 214715 3560123
47 101376 2306304 177408 380160 380160 213052 3558460
48 101376 2306304 177408 380160 380160 210412 3555820
49 101376 2306304 177408 380160 380160 196812 3542220
50 101376 2306304 177408 380160 380160 208244 3553652

Min. 101376 1976832 177408 380160 380160 164677 3180613
Max. 101376 2635776 177408 380160 380160 277357 3952237
Average 101376 2326476 177408 380160 380160 207578.5 3573158

Table B.8 Cycle count of MF detection functions for ‘Miss America’ sequence.

B-9

Frame Chain Cod Area Fill Total
2 159633 1708 3336 164677
3 166562 2773 12757 182092
4 166281 3058 7549 176888
5 167836 3208 8667 179711
6 168964 3521 7445 179930
7 175657 4488 15975 196120
8 179461 5233 17352 202046
9 166677 3184 7005 176866

10 180124 5495 14688 200307
11 176728 5096 12865 194689
12 177004 4924 13350 195278
13 173575 4648 11940 190163
14 175952 4867 11317 192136
15 179401 5294 19622 204317
16 169812 3569 10061 183442
17 171063 3917 10920 185900
18 184358 6296 20927 211581
19 182270 6019 17586 205875
20 185073 6508 20364 211945
21 178300 5423 11302 195025
22 190706 7737 24364 222807
23 202986 9482 41357 253825
24 179146 5368 14594 199108
25 180957 5578 16031 202566
26 186265 6835 16421 209521
27 211183 11202 38721 261106
28 183637 6459 15996 206092
29 190962 8879 17972 217813
30 220361 12729 44267 277357
31 187793 7214 19330 214337
32 193441 8072 21496 223009
33 194010 8514 17710 220234
34 184953 6862 14783 206598
35 186617 7173 21032 214822
36 186244 6904 17501 210649
37 187194 7410 17807 212411
38 187988 7185 27524 222697
39 188091 7176 17993 213260
40 193542 8464 18955 220961
41 195622 7982 15461 219065
42 195804 8665 20121 224590
43 196212 8864 19027 224103
44 186970 7158 17363 211491
45 187155 7005 16540 210700
46 190831 7617 16267 214715
47 187614 7452 17986 213052
48 184744 6877 18791 210412
49 179716 6062 11034 196812
50 186921 6922 14401 208244

Min. 159633 1708 3336 164677
Max. 220361 12729 44267 277357
Average 183926.4 6389.306 17262.71 207578.5

Table B.9 Cycle counts of MF elimination of regions functions for ‘Miss America’
sequence.

B-10

Frame Change D Motion An MC Shape Motion Sy MF Detect MF Shape Total
2 1537980 3814801 110696 805332 3216376 252447 9737632
3 1549342 4261880 114007 843420 3224037 181911 10174597
4 1553307 5157987 129569 925980 3549313 269125 11585281
5 1550189 5174782 130805 929820 3557251 271032 11613879
6 1552067 5195951 131842 935364 3548501 217343 11581068
7 1588580 5414610 156976 951396 3563982 255009 11930553
8 1608189 5954401 163921 1035588 3552619 177976 12492694
9 166485B 6509073 215171 1114312 3541047 227810 13272271

10 1673564 7043672 228858 1173348 3215627 179364 13514433
11 1671153 7203261 222258 1175552 3555616 94077 13921917
12 1672013 7446237 223308 1201468 3550727 209153 14302906
13 1675086 7828857 203766 1265104 3518246 150242 14641301
14 1685002 8364778 237291 1338740 3875122 157850 15658783
15 1684315 10862249 240343 1568356 4203788 148280 18707331
16 1694563 10875104 261824 1576476 4188175 116229 18712371
17 1694461 10806000 262148 1576020 4175522 146333 18660484
18 1700882 10893793 263611 1579380 4180536 211811 18830013
19 1701681 11153418 267235 1607020 4191491 203887 19124732
20 1700353 11147045 264403 1606616 4201143 211017 19130577
21 1701140 11155656 265777 1610052 3873959 105991 18712575
22 1697282 11149019 265305 1613604 3872724 181779 18779713
23 1700870 11153202 264972 1622632 3867926 94990 18704592
24 1700725 11154869 266751 1627468 3853089 212191 18815093
25 1701737 11145612 268241 1624420 4210181 238390 19188581
26 1698876 11127150 268621 1627684 3842312 149187 18713830
27 1700164 11164056 266889 1627088 4205638 101792 19065627
28 1699389 11151738 271332 1632212 3864516 170270 18789457
29 1699849 11171271 269600 1633152 3881695 210571 18866138
30 1700594 11168553 267233 1620764 3845081 112870 18715095
31 1700212 11187289 267354 1618040 3882622 205417 18860934
32 1700277 11221043 268713 1626540 3882346 276870 18975789
33 1700098 11282946 269177 1615912 3868191 240170 18976494
34 1699805 11271363 268514 1617068 3898507 156750 18912007
35 1699701 11354058 270955 1605396 3890193 182493 19002796
36 1699723 11326079 269879 1600572 3884226 290103 19070582
37 1700044 11513174 272180 1609140 3894684 259499 19248721
38 1700678 11536836 274337 1606804 3888721 248025 19255401
39 1700206 11533088 273139 1604036 3895176 186461 19192106
40 1701014 11527934 273913 1605240 3884723 259752 19252576
41 1700786 11863373 270983 1606924 3880123 171344 19493533
42 1689091 11882996 271463 1607100 3870035 198695 19519380
43 1689347 12035629 273973 1605504 3884664 94355 19583472
44 1689389 11903495 268916 1610836 3849874 205361 19527871
45 1688767 11854487 273632 1603380 3857729 206474 19484469
46 1690276 11930834 272287 1606948 3860074 99475 19459894
47 1689778 11889237 272677 1600196 3870719 329472 19652079
48 1692424 11807001 273514 1605972 3875891 222545 19477347
49 1692620 11805338 273765 1601132 3856277 239651 19468783
50 1692511 11699587 274309 1597092 3861803 155162 19280464

Min. 1533171 3814801 110696 805332 3183368 94077 9541445
Max. 1731869 12059055 274337 1633152 4227979 329472 20255864
Average 1674999 9981119 243600.7 1461269 3825772 193612.3 17380372

Table B.10 Cycle counts of main functions for ‘Claire’ sequence.

B-11

Frame Abs. Differ Binarisatio Median Va Combining Dilation Erosion Eliminatio Total
2 101376 177408 177408 101376 380160 380160 220092 1537980
3 101376 177408 177408 101376 380160 380160 231454 1549342
4 101376 177408 177408 101376 380160 380160 235419 1553307
5 101376 177408 177408 101376 380160 380160 232301 1550189
6 101376 177408 177408 101376 380160 380160 234179 1552067
7 101376 177408 177408 101376 380160 380160 270692 1588580
8 101376 177408 177408 101376 380160 380160 290301 1608189
9 101376 177408 177408 101376 380160 380160 346970 1664858

10 101376 177408 177408 101376 380160 380160 355676 1673564
11 101376 177408 177408 101376 380160 380160 353265 1671153
12 101376 177408 177408 101376 380160 380160 354125 1672013
13 101376 177408 177408 101376 380160 380160 357198 1675086
14 101376 177408 177408 101376 380160 380160 367114 1685002
15 101376 177408 177408 101376 380160 380160 366427 1684315
16 101376 177408 177408 101376 380160 380160 376675 1694563
17 101376 177408 177408 101376 380160 380160 376573 1694461
18 101376 177408 177408 101376 380160 380160 382994 1700882
19 101376 177408 177408 101376 380160 380160 383793 1701681
20 101376 177408 177408 101376 380160 380160 382465 1700353
21 101376 177408 177408 101376 380160 380160 383252 1701140
22 101376 177408 177408 101376 380160 380160 379394 1697282
23 101376 177408 177408 101376 380160 380160 382982 1700870
24 101376 177408 177408 101376 380160 380160 382837 1700725
25 101376 177408 177408 101376 380160 380160 383849 1701737
26 101376 177408 177408 101376 380160 380160 380988 1698876
27 101376 177408 177408 101376 380160 380160 382276 1700164
28 101376 177408 177408 101376 380160 380160 381501 1699389
29 101376 177408 177408 101376 380160 380160 381961 1699849
30 101376 177408 177408 101376 380160 380160 382706 1700594
31 101376 177408 177408 101376 380160 380160 382324 1700212
32 101376 177408 177408 101376 380160 380160 382389 1700277
33 101376 177408 177408 101376 380160 380160 382210 1700098
34 101376 177408 177408 101376 380160 380160 381917 1699805
35 101376 177408 177408 101376 380160 380160 381813 1699701
36 101376 177408 177408 101376 380160 380160 381835 1699723
37 101376 177408 177408 101376 380160 380160 382156 1700044
38 101376 177408 177408 101376 380160 380160 382790 1700678
39 101376 177408 177408 101376 380160 380160 382318 1700206
40 101376 177408 177408 101376 380160 380160 383126 1701014
41 101376 177408 177408 101376 380160 380160 382898 1700786
42 101376 177408 177408 101376 380160 380160 371203 1689091
43 101376 177408 177408 101376 380160 380160 371459 1689347
44 101376 177408 177408 101376 380160 380160 371501 1689389
45 101376 177408 177408 101376 380160 380160 370879 1688767
46 101376 177408 177408 101376 380160 380160 372388 1690276
47 101376 177408 177408 101376 380160 380160 371890 1689778
48 101376 177408 177408 101376 380160 380160 374536 1692424
49 101376 177408 177408 101376 380160 380160 374732 1692620
50 101376 177408 177408 101376 380160 380160 374623 1692511

Min. 101376 177408 177408 101376 380160 380160 215283 1533171
Max. 101376 177408 177408 101376 380160 380160 413981 1731869
Average 101376 177408 177408 101376 380160 380160 357111.1 1674999

Table B .ll Cycle counts of change detection functions for ‘Claire’ sequence.

B-12

Frame Chain Cod Area Fill Total
2 178561 4799 36732 220092
3 185218 5995 40241 231454
4 181228 5134 49057 235419
5 174586 3965 53750 232301
6 175410 4109 54660 234179
7 195254 7686 67752 270692
8 205362 9573 75366 290301
9 225362 12998 108610 346970

10 228320 13091 114265 355676
11 225081 12665 115519 353265
12 223058 12350 118717 354125
13 221542 12062 123594 357198
14 224867 12612 129635 367114
15 220759 11892 133776 366427
16 204759 8979 162937 376675
17 205316 9185 162072 376573
18 206996 9456 166542 382994
19 207078 9509 167206 383793
20 205398 9115 167952 382465
21 205122 9119 169011 383252
22 202341 8537 168516 379394
23 203808 8845 170329 382982
24 203596 8809 170432 382837
25 204567 9015 170267 383849
26 202430 8611 169947 380988
27 203030 8751 170495 382276
28 202583 8516 170402 381501
29 202536 8629 170796 381961
30 202748 8665 171293 382706
31 202734 8629 170961 382324
32 202801 8674 170914 382389
33 203066 8719 170425 382210
34 202960 8701 170256 381917
35 202589 8638 170586 381813
36 202900 8736 170199 381835
37 202801 8674 170681 382156
38 203278 8755 170757 382790
39 203013 8710 170595 382318
40 203437 8783 170906 383126
41 204219 7113 171566 382898
42 191883 6820 172500 371203
43 192042 6847 172570 371459
44 192253 6883 172365 371501
45 192360 6901 171618 370879
46 193208 7045 172135 372388
47 193155 7036 171699 371890
48 194798 7315 172423 374536
49 195169 7378 172185 374732
50 195116 7309 172198 374623

Min. 174586 3965 36732 215283
Max. 228320 13091 172570 413981
Average 202055.1 8578.327 146477.8 357111.1

Table B.12 Cycle counts of elimination of regions for ‘Claire’ sequence.

B-13

Frame Mean Valu Bilinear Int Upsamplin Motion Est Motion Fie Moving Ar Uncovere Total
2 354816 709632 354816 1544211 159744 228096 463486 3814801
3 354816 709632 354816 1977876 165888 228096 470756 4261880
4 354816 709632 354816 2813229 202752 228096 494646 5157987
5 354816 709632 354816 2830104 202752 228096 494566 5174782
6 354816 709632 354816 2843649 208896 228096 496046 5195951
7 354816 709632 354816 2964870 294912 228096 507468 5414610
8 354816 709632 354816 3480183 301056 228096 525802 5954401
9 354816 709632 354816 3823839 473088 228096 564786 6509073

10 354816 709632 354816 4343814 479232 228096 573266 7043672
11 354816 709632 354816 4494123 479232 228096 582546 7203261
12 354816 709632 354816 4700907 491520 228096 606450 7446237
13 354816 709632 354816 5070825 491520 228096 619152 7828857
14 354816 709632 354816 5593086 491520 228096 632812 8364778
15 354816 709632 354816 8033139 491520 228096 690230 10862249
16 354816 709632 354816 8050086 491520 228096 686138 10875104
17 354816 709632 354816 7977510 491520 228096 689610 10806000
18 354816 709632 354816 8062281 491520 228096 692632 10893793
19 354816 709632 354816 8301222 491520 228096 713316 11153418
20 354816 709632 354816 8297055 491520 228096 711110 11147045
21 354816 709632 354816 8315100 491520 228096 701676 11155656
22 354816 709632 354816 8300943 491520 228096 709196 11149019
23 354816 709632 354816 8305056 491520 228096 709266 11153202
24 354816 709632 354816 8311041 491520 228096 704948 11154869
25 354816 709632 354816 8298126 485376 228096 714750 11145612
26 354816 709632 354816 8287776 485376 228096 706638 11127150
27 354816 709632 354816 8310816 485376 228096 720504 11164056
28 354816 709632 354816 8315586 485376 228096 703416 11151738
29 354816 709632 354816 8315091 485376 228096 723444 11171271
30 354816 709632 354816 8332443 485376 228096 703374 11168553
31 354816 709632 354816 8344413 485376 228096 710140 11187289
32 354816 709632 354816 8378865 485376 228096 709442 11221043
33 354816 709632 354816 8440326 485376 228096 709884 11282946
34 354816 709632 354816 8435061 485376 228096 703566 11271363
35 354816 709632 354816 8521632 485376 228096 699690 11354058
36 354816 709632 354816 8499447 485376 228096 693896 11326079
37 354816 709632 354816 8685954 485376 228096 694484 11513174
38 354816 709632 354816 8705412 485376 228096 698688 11536836
39 354816 709632 354816 8697402 491520 228096 696806 11533088
40 354816 709632 354816 8690022 491520 228096 699032 11527934
41 354816 709632 354816 9024471 491520 228096 700022 11863373
42 354816 709632 354816 9041094 491520 228096 703022 11882996
43 354816 709632 354816 9196731 491520 228096 700018 12035629
44 354816 709632 354816 9065205 491520 228096 699410 11903495
45 354816 709632 354816 9016911 491520 228096 698696 11854487
46 354816 709632 354816 9088182 491520 228096 703772 11930834
47 354816 709632 354816 9055989 491520 228096 694368 11889237
48 354816 709632 354816 8973189 491520 228096 694932 11807001
49 354816 709632 354816 8961642 491520 228096 704816 11805338
50 354816 709632 354816 8867277 485376 228096 699574 11699587

Min. 354816 709632 354816 1544211 159744 228096 463486 3814801
Max. 354816 709632 354816 9196731 491520 228096 723444 12059055
Average 354816 709632 354816 7224147 449891.3 228096 659720.2 9981119

Table B.13 Cycle counts of motion analysis functions for ‘Claire’ sequence.

B-14

Frame Level 1 Level 2 Level 3 Total
2 917456 126908 499847 1544211
3 1179044 157799 641033 1977876
4 1725072 215574 872583 2813229
5 1739472 216069 874563 2830104
6 1748652 216924 878073 2843649
7 1803770 234092 927008 2964870
8 2135802 258897 1085484 3480183
9 2389650 280635 1153554 3823839

10 2694332 327731 1321751 4343814
11 2779384 337348 1377391 4494123
12 2933060 351656 1416191 4700907
13 3133764 378963 1558098 5070825
14 3438958 419194 1734934 5593086
15 4911780 619104 2502255 8033139
16 4927980 615486 2506620 8050086
17 4893734 607487 2476289 7977510
18 4935972 619536 2506773 8062281
19 5080784 631403 2589035 8301222
20 5077184 635021 2584850 8297055
21 5108414 631988 2574698 8315100
22 5141174 625922 2533847 8300943
23 5131904 632285 2540867 8305056
24 5136224 632645 2542172 8311041
25 5128484 631610 2538032 8298126
26 5138474 627137 2522165 8287776
27 5151074 629252 2530490 8310816
28 5152874 629837 2532875 8315586
29 5155214 629297 2530580 8315091
30 5157014 628892 2546537 8332443
31 5153774 632195 2558444 8344413
32 5149814 636263 2592788 8378865
33 5181360 642507 2616459 8440326
34 5181360 641472 2612229 8435061
35 5246926 645376 2629330 8521632
36 5226766 645421 2627260 8499447
37 5345658 658944 2681352 8685954
38 5342778 667260 2695374 8705412
39 5338548 666540 2692314 8697402
40 5337468 665325 2687229 8690022
41 5544194 693773 2786504 9024471
42 5549594 699686 2791814 9041094
43 5640676 713299 2842756 9196731
44 5556210 703500 2805495 9065205
45 5565326 691991 2759594 9016911
46 5605512 698595 2784075 9088182
47 5610974 691181 2753834 9055989
48 5561842 680707 2730640 8973189
49 5549872 684595 2727175 8961642
50 5487590 673817 2705870 8867277

Min. 917456 126908 499847 1544211
Max. 5640676 713299 2842756 9196731
Average 4449448 550635.5 2224064 7224147

Table B.14 Cycle count of each level in motion estimation for ‘Claire’ sequence.

B-15

Frame First Steps Median Fil Combine Total
2 184702 177408 101376 463486
3 191972 177408 101376 470756
4 215862 177408 101376 494646
5 215782 177408 101376 494566
6 217262 177408 101376 496046
7 228684 177408 101376 507468
8 247018 177408 101376 525802
9 286002 177408 101376 564786

10 294482 177408 101376 573266
11 303762 177408 101376 582546
12 327666 177408 101376 606450
13 340368 177408 101376 619152
14 354028 177408 101376 632812
15 411446 177408 101376 690230
16 407354 177408 101376 686138
17 410826 177408 101376 689610
18 413848 177408 101376 692632
19 434532 177408 101376 713316
20 432326 177408 101376 711110
21 422892 177408 101376 701676
22 430412 177408 101376 709196
23 430482 177408 101376 709266
24 426164 177408 101376 704948
25 435966 177408 101376 714750
26 427854 177408 101376 706638
27 441720 177408 101376 720504
28 424632 177408 101376 703416
29 444660 177408 101376 723444
30 424590 177408 101376 703374
31 431356 177408 101376 710140
32 430658 177408 101376 709442
33 431100 177408 101376 709884
34 424782 177408 101376 703566
35 420906 177408 101376 699690
36 415112 177408 101376 693896
37 415700 177408 101376 694484
38 419904 177408 101376 698688
39 418022 177408 101376 696806
40 420248 177408 101376 699032
41 421238 177408 101376 700022
42 424238 177408 101376 703022
43 421234 177408 101376 700018
44 420626 177408 101376 699410
45 419912 177408 101376 698696
46 424988 177408 101376 703772
47 415584 177408 101376 694368
48 416148 177408 101376 694932
49 426032 177408 101376 704816
50 420790 177408 101376 699574

Min. 184702 177408 101376 463486
Max. 444660 177408 101376 723444
Average 380936.2 177408 101376 659720.2

Table B.15 Cycle counts of uncovered background detection functions for ‘Claire’
sequence.

B-16

Frame Position A Position B Position C Position D Total
2 170916 194632 195356 244428 805332
3 180336 204180 204852 254052 843420
4 201156 224988 225324 274512 925980
5 202116 225936 226296 275472 929820
6 203556 227388 227616 276804 935364
7 208632 231972 231048 279744 951396
8 229404 253152 251964 301068 1035588
9 250876 274036 270428 318972 1114312

10 265628 289120 284872 333728 1173348
11 266276 289580 285516 334180 1175552
12 272548 295760 292288 340872 1201468
13 288728 311876 307996 356504 1265104
14 306800 330116 326568 375256 1338740
15 363404 386864 384632 433456 1568356
16 365292 388848 386712 435624 1576476
17 365244 388724 386608 435444 1576020
18 366288 389792 387220 436080 1579380
19 373296 396616 394212 442896 1607020
20 373212 396572 394068 442764 1606616
21 373896 397320 395028 443808 1610052
22 374816 398176 395948 444664 1613604
23 377172 400496 398144 446820 1622632
24 378280 401656 399400 448132 1627468
25 377540 400724 398808 447348 1624420
26 378388 401584 399580 448132 1627684
27 378144 401444 399416 448084 1627088
28 379504 402748 400680 449280 1632212
29 379728 402960 400932 449532 1633152
30 376308 399616 398096 446744 1620764
31 375736 398944 397408 445952 1618040
32 378132 401360 399240 447808 1626540
33 375304 398588 396692 445328 1615912
34 375564 398840 397016 445648 1617068
35 372620 395956 394064 442756 1605396
36 371256 394596 393012 441708 1600572
37 373560 396888 395004 443688 1609140
38 372808 396136 394588 443272 1606804
39 372100 395460 393880 442596 1604036
40 372424 395800 394136 442880 1605240
41 372924 396200 394608 443192 1606924
42 372940 396224 394648 443288 1607100
43 372588 395740 394316 442860 1605504
44 373932 397060 395672 444172 1610836
45 372032 395224 393788 442336 1603380
46 373056 396148 394628 443116 1606948
47 371296 394488 392932 441480 1600196
48 372744 395880 394428 442920 1605972
49 371736 394616 393284 441496 1601132
50 370580 393632 392236 440644 1597092

Min. 170916 194632 195356 244428 805332
Max. 379728 402960 400932 449532 1633152
Average 336547.3 359890.9 358065.1 406766.1 1461269

Table B.16 Cycle counts of motion synthesis functions for ‘Claire’ sequence.

B-17

Frame Square Dif Find TMF Median Va Dilation Erosion Eliminatio Total
2 101376 1976832 177408 380160 380160 200440 3216376
3 101376 1976832 177408 380160 380160 208101 3224037
4 101376 2306304 177408 380160 380160 203905 3549313
5 101376 2306304 177408 380160 380160 211843 3557251
6 101376 2306304 177408 380160 380160 203093 3548501
7 101376 2306304 177408 380160 380160 218574 3563982
8 101376 2306304 177408 380160 380160 207211 3552619
9 101376 2306304 177408 380160 380160 195639 3541047

10 101376 1976832 177408 380160 380160 199691 3215627
11 101376 2306304 177408 380160 380160 210208 3555616
12 101376 2306304 177406 380160 380160 205319 3550727
13 101376 2306304 177408 380160 380160 172838 3518246
14 101376 2635776 177408 380160 380160 200242 3875122
15 101376 2965248 177408 380160 380160 199436 4203788
16 101376 2965248 177408 380160 380160 183823 4188175
17 101376 2965248 177408 380160 380160 171170 4175522
18 101376 2965248 177408 380160 380160 176184 4180536
19 101376 2965248 177408 380160 380160 187139 4191491
20 101376 2965248 177408 380160 380160 196791 4201143
21 101376 2635776 177408 380160 380160 199079 3873959
22 101376 2635776 177408 380160 380160 197844 3872724
23 101376 2635776 177408 380160 380160 193046 3867926
24 101376 2635776 177408 380160 380160 178209 3853089
25 101376 2965248 177408 380160 380160 205829 4210181
26 101376 2635776 177408 380160 380160 167432 3842312
27 101376 2965248 177408 380160 380160 201286 4205638
28 101376 2635776 177408 380160 380160 189636 3864516
29 101376 2635776 177408 380160 380160 206815 3881695
30 101376 2635776 177408 380160 380160 170201 3845081
31 101376 2635776 177408 380160 380160 207742 3882622
32 101376 2635776 177408 380160 380160 207466 3882346
33 101376 2635776 177408 380160 380160 193311 3868191
34 101376 2635776 177408 380160 380160 223627 3898507
35 101376 2635776 177408 380160 380160 215313 3890193
36 101376 2635776 177408 380160 380160 209346 3884226
37 101376 2635776 177408 380160 380160 219804 3894684
38 101376 2635776 177408 380160 380160 213841 3888721
39 101376 2635776 177408 380160 380160 220296 3895176
40 101376 2635776 177408 380160 380160 209843 3884723
41 101376 2635776 177408 380160 380160 205243 3880123
42 101376 2635776 177408 380160 380160 195155 3870035
43 101376 2635776 177408 380160 380160 209784 3884664
44 101376 2635776 177408 380160 380160 174994 3849874
45 101376 2635776 177408 380160 380160 182849 3857729
46 101376 2635776 177408 380160 380160 185194 3860074
47 101376 2635776 177408 380160 380160 195839 3870719
48 101376 2635776 177408 380160 380160 201011 3875891
49 101376 2635776 177408 380160 380160 181397 3856277
50 101376 2635776 177408 380160 380160 186923 3861803

Min. 101376 1976832 177408 380160 380160 167432 3183368
Max. 101376 2965248 177408 380160 380160 223627 4227979
Average 101376 2588709 177408 380160 380160 197959.2 3825772

Table B.17 Cycle counts of MF detection functions for ‘Claire’ sequence.

B-18

Frame Chain Cod Area Fill Total
2 169769 3200 27471 200440
3 175826 4258 28017 208101
4 174618 4330 24957 203905
5 181651 5304 24888 211843
6 177969 4708 20416 203093
7 181654 5614 31306 218574
8 179343 5027 22841 207211
9 176625 4611 14403 195639

10 180062 5055 14574 199691
11 179151 4943 26114 210208
12 182420 5597 17302 205319
13 152063 5098 15677 172838
14 178950 5086 16206 200242
15 178585 4975 15876 199436
16 170137 3579 10107 183823
17 162891 2478 5801 171170
18 166232 3168 6784 176184
19 173157 4316 9666 187139
20 177320 4943 14528 196791
21 180960 5639 12480 199079
22 178370 5356 14118 197844
23 176037 5185 11824 193046
24 168264 3682 6263 178209
25 183854 6182 15793 205829
26 151063 4557 11812 167432
27 181262 5831 14193 201286
28 173177 4562 11897 189636
29 186287 5514 15014 206815
30 152063 5094 13044 170201
31 183803 6372 17567 207742
32 182987 6163 18316 207466
33 176183 4789 12339 193311
34 186488 6259 30880 223627
35 184566 5939 24808 215313
36 183190 5757 20399 209346
37 187956 6505 25343 219804
38 186513 6584 20744 213841
39 189442 6991 23863 220296
40 182443 5975 21425 209843
41 184134 5476 15633 205243
42 175941 4740 14474 195155
43 182443 5808 21533 209784
44 165920 3083 5991 174994
45 170144 3930 8775 182849
46 171976 4140 9078 185194
47 177424 5084 13331 195839
48 182336 5961 12714 201011
49 169197 3773 8427 181397
50 172760 5376 8787 186923

Min. 151063 2478 5801 167432
Max. 189442 6991 31306 223627
Average 176440.9 5032.592 16485.69 197959.2

Table B.18 Cycle count of MF elimination of regions functions for ‘Claire’ sequence.

B-19

REFERENCES

[1] ISO/IEC JTC1/SC29/WG11, “Coding of Moving Pictures and Associated
Audio for Digital Storage Media up to about 1.5 Mbit/s - Part 2: Video”,
ISO/IEC 11172-2, 1993

[2] ISO/IEC JTC1/SC29/WG11, “Generic Coding of Moving Pictures and
Associated Audio Information: Video”, ISO/IEC 13818-2, 1995

[3] CCITT Recommendation H.261, “Video Codec for Audio-Visual Services
at p*64 kbits/s”, CDM XV-R37-E

[4] ITU-T Draft Recommendation H.263, “Video Coding for Low Bitrate
Communications”, November 1995

[5] ISO/IEC JTC1/SC29/WG11 MPEG4 AOE Group, “Proposal Package
Description (PPD) - Revision 3”, Tokyo, Ju ly 1995

[6] B. Welsh, “Model-Based Coding of Images’, Ph.D. Thesis Essex University,
January 1991

[7] K. Li, A. Lundmark, and R. Forchheimer, “Image Sequence at Very Low
Bitrates: A review”, IEEE Trans. Im age Processing, vol.3, no.5, pp 589 - 606,
Sept 1994

[8] H. C. Musmann, M. Hotter, J. Osterman, “Object-Oriented Analysis -
Synthesis Coing of Moving Images”, Signal P rocessing: Image
C om m unica tion , vol. 1, no. 4, pp. 117 -138, Oct. 1989

[9] “SIMOC 1”, Cost 211-ter, Simulation Subgroup Document No. SIM(94)61

[10] M. Bierling, “Displacement Estimation by Hierarchical Block Matching”,
Vis. Commun. Image Proc. ’88, Proc. SPIE 1001, Cambridge, MA, pp. 942
- 951, Nov. 1988

[11] P. Gerken, “Object-Based Analysis-Synthesis Coding of Image Sequencies
at Very Low Bit Rates”, IEEE Trans. C ircuits Systems f o r Video Technology,
vol.4, no. 3, pp. 228 - 235, June 1994

[12] L. Ward, N. Brady, N. O’Connor, “Desire 3.0 Implementation Test
Results”, Video Coding Group, Dublin C ity University.

[13] A. C. Downton, “Performance Profiling of the Dublin City University
Object-Oriented Coder”, AICR Project Document 5825-
00/TECH/END/005

[14] Texas Instruments, “Digital Signal Processing Applications with the
TMS320 Family: Theory, Algorithms, and Implementations - Vol. 3”, pp.
33-48, Literature No. SPRA017, March 1990

[15] T. Pavildis, “Algorithms for Graphics and Image Processing”, pp. 108-110,
Computer Science Press, 1982

[16] B. Jahne, “Digital Image Processing - Concepts, Algorithms, and Scientific
Applications”, pp.212-213, Springer-Verlag, 1991

[17] B. Liu and A. Zacharrin, “New Fasr Algorithms for the Estimation of
Block Motion Vectors”, IEEE Trans. C ircuits Systems f o r Video T echnology ,
vol. 3, no. 2, pp. 148-157, April 1993

[18] D. Vernon, “Machine Vision - Automated Visual Inspection and Robot
Vision”, pp. 85-86, Prentice Hall, 1991

[19] Texas Instruments, “TMS320C8x System-Level Synopsis”, Literature
No.SPRU113B, Sept. 1995

[20] http://www.ti.com/

[21] Texas Instruments, “TMS320C80 Multimedia Video Processor Technical
Brief”, Literature N0 .SPRUIO6A, June 1994

[22] F. Seytter, “Delay in Very Low Bit-Rate Coding Algorithms”, Proceedings
VLBV94, April 1994

http://www.ti.com/

