Improving Integration and Consistency
In the OMT Methodology

Sinead Masterson B.Sc.

Submitted for the Award of
Master of Science

Dublin City University
School of Computer Applications
Professor J. A. Moynihan

January 1996

Declaration

I hereby certify that this material, which | now submit for assessment on the
programme ofstudy leading to the award of Master of Science, is entirely my own
work arid has not been takenfrom the work ofothers sa\>e and to the extent that such

work has been cited and acknowledged within the text o fmy work.

Sinead Masterson.
10th January 1996.

Dedicated to my
beloved sister

Karen

(1969 - 1995)

"l balanced all, brought all to mind,
Theyears to come seemed waste o f breath,
A waste ofbreath theyears behind
In balance with this life, this death."

W.B. Yeats

Acknowledgements

Acknowledgements

Special thanks to my supervisor Professor Tony Moynihan for Ms invaluable ideas,
suggestions and encouragement throughout my research, and for his benevolent
supply of orange juice on our “coffee mornings”.

Thanks also to Dr. David Sinclair for his sincere interest in my research, and for his
constructive comments and helpful suggestions.

Endless thanks to my family for their support and encouragement during my poverty-
stricken student days, and for their masterfully feigned understanding of OMT.
Sincere apologies for boring you all to tears.

Thanks indeed to my “rich” friends who bought me drinks, and insisted | didn’t return
the favour. Pay back time is nigh !

And finally, extra special thanks to my partner in crime, Derek Doran, a truly
exceptional friend and colleague. Someone who equals my noble appetite for truth,
knowledge and ... cinema !!!, co-crusader in the quest for “The Ultimate Movie”, and
acclaimed inventor ofthe immortal phrase “Triday, 2:00 p.m., Savoy 1”.

Table of Contents

Table of Contents

1.0 INErodUuCtioN 10 O M T oottt e et e e e e e e et e e e e r e e e reeeees

1.1 Overview

1.2 The ODJECE MOUEL.. ..o
1.2.1 ObBJECE DIAGIaMS...cciiiiieiieeiieie sttt ettt ettt saesee e eeeneenneas
1.2.2 Classes and ODjJECTS.......cciiriiiieieiee e
1.2.3 1inks and ASSOCIAtIONS.........c.ccoerieiririieiceseee e

1.2.3.1 Multiplicity...............
1.2.3.2 Link Attributes........cccooviviieiiiec e
1.2.3.3 Ass0Ciations as ClasSesS.....ccuviriiiiiiee e
1.2.3.4 ROIENGMES .ot
1.2.3.5 OFdEIING..ciiiiiiiieiece st
1.2.3.6 QuUAlifiCatioN.......ccooviieiiceceee e
I8¢ T A Ao o f=T o T 1 f [o] o 1SS
1.2.4 Generalization and Inheritance............c.cccceovvninenne
1.2.5 Constructing the Object MOdel......ccceveiiiii e
1.2.5.1 Identify ODJECt ClasSeS.......cocimviiieiiiiierierieeee e
1.2.5.2 1dentify ASSOCIAtIONS......ccveiiiieiiiiieee e
1.2.5.3 Identify ATEriDULES........cooviiiieccc e
1.2.5.4 1dentify OperationsS.......cccooiiiiiiniiieneneesesese e
1.2.5.5 Build the Object Diagram.........cccocoooveiiiiiiieninie e

1.3 The Dynamic Model ...t
1.3.1 STALE DIAGIAMIS..cueiiitiiieieieiese ettt
1.3.2 EVENTS @Nd STAES.....ociiiiieeee et
1.3.3 CONAITIONS ...ttt st et neenne s
G @ o 1T =Y 1 [1SS

1341 ACTIONS ot
1.3.4.1.1 Entry and EXit ACtiONS....ccccceviviviviiircireie e
1.3.4.1.2 Internal ACtiONS.......cccveveiiiiiiie e

1.3.4.1.3 Actions Sending EVENtS........cccoceoviiinennieninees

0 N N N o oo oA ®WNN R

10

1
11
12
12

Table of Contents

1.3.4.2 ACHIVITIES. ..o iieie e 18
1.3.4.2.1 Sequential ACtIVITIES.......coovvireiiiiiiecsere s 19

1.3.4.2.2 Continuous Activities.........ccoervrvrrnnen. 19

1.3.4.2.3 Automatic Transitions.........cc.ccecevvrevrvirveresnnnnn 20

1.3.5 GeNEraliZatioN.......c.cccooeiieieie et 20
G T T AN o o ¢ =To =1 A o] o 21
1.3.7 Constructing the Dynamic Model.........cccccoeoiiiiniiciinecce e 24
1.3.7.1 Prepare SCENAII0S.....ccccoeiieerieeiieeseeseeteeseesteesteeseesraesseesreeseeens 25
1.3.7.2 ldentify Events from SCENArios.........cccoceieriiriiieniieieisees 27

1.3.7.3 Build Event Trace Diagram foreach Scenario..................... 28

1.3.7.4 Build Event Flow Diagram.......c.cccccoveiivevinenneineieeneere e 30

1.3.7.5 Build State Diagram for each Class.........cccocoonviviiiniinennns 31

1.4 The Functional Model........c.ccooviiiiiiieiiicese e 37
1.4.1 Data FIOW DIiagramsS.......cccooeieiieiiiinie e 37
1411 Data FIOWS. .o 38

L1402 PrOCESSES ittt ettt sttt ettt sttt snb e e e eene e 38

L4103 ACTOIS e 38
1.4.1.4 Data STOIES. oottt 39

142 OPEIATIONS. ..ot 39
1.4.2.1 ACCESS OPEIatiONS......cccveiieiie e s sre e 39
1.4.2.2 QUEKIBS.ccicii e eceeceere e se et 40

1.4.2.3 ACTIONS ittt 40
1424 ACTIVITIES. ..ot 40

1.4.3 Constructing the Functional Model...........ccccoovniiiiiinns 40
1.4.3.1 Ildentify Input and Output Values.........ccoevvrvieeinncnnnnieine 41

1.4.3.2 Build the Data FIow Diagram.........cccccoovriniieinniineneseneene 41

1.4.3.3 DesCribe FUNCLIONS.......cccvvieiiri e 43

1.5 Chapter SUMMAIYcocooiiiiiiiiiieie bbb 44

2.0

2.1

2.2

2.3

2.4

3.0

3.1

3.2

Tableo f Contents

The Problems Associated with OMT Integration andConsistency 45
L@ RV LT V=T SR 45
Weak Functional Model..........coi e 46
2.2.1 DecompoSition....cccccviiiiiiiiie e 47
2.2.2 GraANUIAITTY.....coiiiiiie s 48
2.2.3 DALA A CCESS ittt bbb ne e 49
p R 1 01 1= - T 1 [o USSP 49
2.2.5 IMAPPING ittt 50
2.2.5.1 DFD representation of a function-oriented environment.... 51
2.2.5.1.1 SErUCTUIES...c.eiiii ittt 52

2.2.5.1.2 FUNCLIONS. ..ottt 53

2.2.5.2 DFD representation of an object-oriented environment 56
2.2.5.2.1 StrUCTUIES.....ccoiiiiiiie e 57

2.2.5.2.2 FUNCHIONS ..ottt 60

Inadequate Inter-Model Relationships.......cocooiiiiiicicic e 67
2.3.1 Poorly Defined RelationShips......ccccociveiii i 68
2.3.2 Poorly Supported Relationships........cccooviiiiiiiiciiiecee e 70
2.3.3 Poorly Reconciled Relationships........ccccoeieiiiiniiiieeieee s 70
2.3.4 Poorly Hlustrated RelationShips.......ccccovvviiiiiiicnincec e 71
Chapter SUMMIATYc..oiiiiiieiee e 74
Proposed Solutions to Improve OMT Integration andConsistency 75
L@ N LT V= RS 75
Proposed Functional Model. ... 76
3.2.1 Operation MOUel... ..o 77
3.2.2 Interaction M Odel.......cco i 79
3.2.3 Constructing the Proposed Functional Model..........c.ccooiiiiiiinenns 81
3.2.3.1 ldentify Input and Output Values........c.cccocoeiveiivninniincinenens 83

3.2.3.2 ldentify System Operations........c.cccceviereevieerievieesee e 83

3.2.3.3 Build the Operation Model........................ 87

3.2.3.4 Build the Interaction MoOdeL.........coovoviiveiiiieee e 90

Table of Contents

3.2.4 Proposed Functional Model vs Rumbaugh's Functional M odel 97
3.2.4.1 DeCOMPOSITION ...ttt 98

3.2.4.2 GranUIATITY........ccooiiiieieeeee s 98

3.2.4.3 Data ACCESS..cccceieirrrirrrerirerrrrrrrrererenenns ettt ——— 99

3.2.4.4 INTEIACTION...c.oiiiiiiceee s 99

3245 IMAPPING ittt 100

3.3 Proposed Inter-Model RelationShips........cccoviiiiiiiiiiiccceeeee e 100
3.3.1 New Inter-Model DefinitionsS........ccoocoiiiiieiiereeee e 100
3.3.1.1 Relationship between the Object and Dynamic Models 101

3.3.1.2 Relationship between the Dynamic and Functional Models 102

3.3.1.3 Relationship between the Object and Functional Models.... 102

3.3.1.4 Overall OMT Inter-Model Relationship.........cccccovvnininnnnn. 103

3.3.2 Integration GUIEIINES........cccceiiiiiiiiece e 104
3.3.2.1 Integrating the Object and Dynamic Models............c.ccouun.e. 105

3.3.2.2 Integrating the Dynamic and Functional M odels.................. 107

3.3.2.3 Integrating the Object and Functional Models....................... 108

3.3.3 Consistency GUITEIINES........ccoveiiiiieic e 112
3.3.4 Comprehensive Hlustrated EXample..........ccocooiiiiiiininniccccse, 113

3.4 ChaPer SUMIMAIYcoiieiiieieeiie st eeeeee et e e steeeeeeeseeseeeteeseeneesseeeestesneaeeseeseeeees 114
O O T U o Y R 115
R O N LT V-1 SRS 115
4.2 Constructing the Object MOdel ... 116
4.2.1 1dentify ODjJEct ClaSSES....cciuiiiiiiiieiiiiie e eiee e s e e e re e nee e sae e 116
4.2.2 1dentify ASSOCIATIONS.cc.iiiiiiiiiiieie e 117
4.2.3 1dentify AtEFIDUTES. ..o 117
4.2.4 1dentify OPeratioNnS........ocoiiiiieiiiiieie sttt sreeree e 119
4.2.5 Build the ODject Diagram..........cccoeiiiriniiieiieine e e 122

4.3

4.4

4.5

4.6

4.7

5.0

5.1

5.2

5.3

5.4

5.5

Table of Contents

Constructing the Dynamic Model ... 123
4.3.1 Prepare SCENATIOS. ...ttt 123
4.3.2 ldentify EVents from SCENATIOS.......ccccoieireriiiiiieseesesies e 128
4.3.3 Build Event Trace Diagram for each Scenario.........c.cccoccevvevievinnnnnns 130
4.3.4 Build Event FIOW Diagram........ccccccviiiiiiinieeie e see e sne e sne e 135
4.3.5 Build State Diagram for each Class..........cccceoviiniiiniiniicccsees 136
Constructing the Functional Model.........ccoooiiiiiieiii e 141
4.4.1 Identify Input and OULPUL ValUesS.......ccccoeiiiiiiiniiiesceee e 142
4.4.2 ldentify System OpPerationsS.......ccocoiiieiiiiiieee e 142
4.4.3 Build the Operation Model..........ccocoiiiiiiiiiiee 147
4.4.4 Build the Interaction Model........cccoovovieiiiiiieiecee e 157
Ensuring Integration in the OMT Models..........cccooviiiiiniinnie 175
4.5.1 Integrating the Object and Dynamic Models.........ccccooeveiiinincnennnn. 175
4.5.2 Integrating the Dynamic and Functional Models..........ccceceevviinnnnnnne. 178
4.5.3 Integrating the Object and Functional Models..........ccccccvvviiniincnnnn 179
Ensuring Consistency in the OMT MoOdelS........ccooooiiiiiiniiiineceeeae 182
Chapter SUMIMATY ..ottt ettt see e e seeeeas 183
CONCIUSTONS. ..ot 184
L@ N 1T QY= ST 184
My Research in the OMT Methodology ..o 185
5.2.1 Strengths ofthe Revised OMT ApProach........cccoccoivvieniciiesccsinnsnenn, 186
5.2.2 Weaknesses ofthe Revised OMT Approach.................... 189
Current Research in the OMT Methodology.......ccccoiiiiiiiiiiicce 190
Future Research in the OMT Methodology.......cccoeiiriiiiniiineiseeias 191
5.4.1 Formal Consistency ChecKing.......cccccooiiiiiiiniinini e 192
5.4.2 Improved TOOl SUPPOTT. ..ot 192
ChapLer SUMMIATYccoii o st ste e eeeree e see e 192

Table o f Contents

o] o] oo =1 o1 41 S 193
L Fo 1T T 1 RS SSSUS 198
AN o7 o 1= o 1) ST Al

IO 0] 5 1] 0 = 1 V28 o SR A5

T COMPANY.CPP .. e e e sre e st e e te e ente e e an e e aneeenneees A7

O =T 0 8 o RS SSS R Al5
O 11T 0 0 = = SRR Al6
T AGENT H e Al9
TAGENTCPP e A20
LI 01 110V = SRS RPS A23
TPOECY. CPP ..ottt ettt e bttt et ne st e et nesnene e A25
LI O= Y g USRS A32
LI O = = TSSO A33
THOUSE. H ettt bbbt st e ettt esnne e A35
THOUSE.CPP ...ttt ettt ettt a et et e nene st eneneens A36
LR 124 SRS A38
LI 151 O 2 SRS A39
O - U 1 SRS A4l

TCIAIM.CPP ...t A42

Table ofFigures

Table of Figures

1.0 INtroduction 10 O M T et 1
11 ClaSS DIAGIAM.....eiiiiitiieeeee ettt 2
A 1 g TS = L (oL D T =T | =T o SRS 2
1.3 BiNary ASSOCIATION......ccceiiiiiiiiiees e 3
14 Temary ASSOCIATION.......coiiiiicee e 4
1.5 MUltiplicity SYMDBOIS.....ccoiiieiee 4
1.6 Y 1L AT o] o] 1 YR 5
1.7 LiNK ATEFIDULES. ... e 5
18 ASSOCIALION @S @ ClaSS. i 6
19 ROIE NAIM ES ittt et st saesaeere e beseeeneas 6
K @ o (=]] o o FO TSP TSP U PP PUSPRURUTPPRPRORN 7
I R @ T U T L) [U o o SR 7
IO Ao To] f=To =1 o o S 8
1.13 Multilevel AQQregation. ...
1.14 Generalization and INNeritanCe........cocoooeieieiiene e 9
1.15 MUltiple INNEFITANCE. ...t e 9
1.16 ODBJECE M OB s 13
1.17 State Diagram for a Chess Game.........cccoveiiininineeesee e 15
1.18 Conditions on Transitions.........c.ccceeevinenienns 15
1.19 ACLIONS 0N TranSITIONS...cciiiiicie ettt 16
1.20 ENtry and EXIit ACTIONS....ccooiiiiiiiiieeeese e 17
O R [0 =] = LN o] 1o 1SS 17
1.22 Actions Sending Events (First NOtation).......ccocoovviieniieiiiii e 18
1.23 Actions Sending Events (Second NOtation)........c.ccoceeevieinineneiciseseseene 18
1.24 Sequential ACTIVITIES.cccoii et 19
1.25 Continuous ACtiVItIeS......ccoooevviiieeiire e 19
1.26 AULOMALIC TranSItIONS.cccciiieeieeeeee et 20
1.27 GeNEIraliZAtION......ccveie et 21
1.28 Aggregation (CaAS #1) .. i e e te e ae e e et rea 22
1.29 AQQregation (CaS #2) ..ottt 22
1.29(a) Cooker ObjJect MOdel.......coooiiiiiiieee e 22

1.29(b) Oven State Diagram.......cccccoeiiieieini e 23

Table ofFigures

1.29(C) HOD State DIagram......ccoccoeieiriireieieseee s 23

1.29(d) Grill State Diagramcccoereieiiiiieie e 24
1.30 Event Trace Diagram - SCENANIO #1......ccccviiireiiiiniienees e 28
1.31 Event Trace Diagram - SCENAII0 #2........ccccvieiriieiiiiinieece e 29
1.32 Event Trace Diagram - SCENArio #3.......ccccciviiiiiie e 30
1.33 EVENT FIOW DIagram. ...ttt e 31
1.34 Dynamic Model (State Diagram for o s « o) e 32
1.35 Dynamic Model (State Diagram for Stockltem)ccccovviviiiiinnne. 33
1.36 Dynamic Model (State Diagram for INVOICe)....ccovveveviivniierece 34
1.37 Dynamic Model (State Diagram fOor ¢ o o 5« 0y) evveniiereeee s 35
1.38 DFD EIBMENTS....ooiiiiiiiecee e 37
1.39 FUNCtional MOdel. ..o 42

2.0 The Problems Associated withOMT Integration and Consistency 45

2.1 FUunction-Oriented DFDooo i 51
2.2 ODbject-Oriented DFD.......coooi ottt 57
2.3 Computer Animation Object Model........cccccovciiiiiiiiiic e, 72
2.4 Computer Animation Dynamic Model (SCENE)....cccccvcvciiiiiciiiccece e 73
2.5 Computer Animation Dynamic Model (¢ v «) oo 73
2.6 Computer Animation Functional Model..........c..cccooieiiiieiii e 73

3.0 Proposed Solutions to Improve OMT Integration and Consistency.... 75

3.1 Interaction Diagram (Tabular).........cccccooriiiiiiiiiiini e 80
3.2 Interaction Diagram (Graphical)..........cccooiriiiiiiiniiccee s 80
KRG B © o] [T 1Y/ o T K- USSP 82
3.4 Dynamic Model (Event HOW Diagram).......cccoeveierininenennenineseeeeenennes 84
3.5 Interaction Diagram for take _order()......cccoooviiimieciiniin i 91
3.6 Interaction Diagram for authorize&deplete_stock_levelsQ........ccccoovenne.e. 91
3.7 Interaction Diagram for prepare&dispatch_order()......cceorneieneinicneenn 93
3.8 Interaction Diagram for ..vcinvo e 0 erteerreere e s se e e e e enreen 94
3.9 Interaction Diagram for accept_paymentQ.........cccooeveriiiieenenencesnee e 96

3.10 Interaction Diagram for replenish_stock_levelsQ........ccccoovvviiiivinnnieinne. 97

Table o fFigures

4.0 CASE STUY ittt st sttt ba e e e sr e beere e saesbeereenes 115
4.1 (@] o] 1=Tod 81V, o T - BRSPS 122
4.2 Event Trace Diagram - SCENANI0 #1.......ccccievieiiiieiiie i s se e s see e 130
4.3 Event Trace Diagram - SCENAKIO #2......cccccovviviiieie e eie e eee e s 131
4.4 Event Trace Diagram - SCENAII0 #3.......cccoeiiiiiriiirieie st 131
4.5 Event Trace Diagram - SCENAIIO #4........ccceoviiiiiiiieieeise e 132
4.6 Event Trace Diagram - Scenario #5............. 132
4.7 Event Trace Diagram - Scenario #6..........c.cccceevrivrennen. 133
4.8 Event Trace Diagram - SCENAII0 #7ccccccveveiiieiie e e se e sre e 133
4.9 Event Trace Diagram - SCENANI0 #8.......cccciviviiiiie i 133
4.10 Event Trace Diagram - SCENArio #9.......ccccceeveiiiiciiee et 134
4.11 Event Trace Diagram - SCENArio #10.......cccceviieeiieie e 134
4.12 EVENt FIOW Digram......ccccooiiiieeiere ettt ene 135
4.13 Dynamic Model (State Diagram fOr ¢ iic o o) covvereerene e 136
4.14 Dynamic Model (State Diagram for 1 » o iic v) covvrniiin e 137
4.15 Dynamic Model (State Diagram for x s c v 1) vorvievievinvie e 138
4.16 Dynamic Model (State Diagramfor + ¢ i« in) ceeveevvrierienen. 139
4.17 Dynamic Model (State Diagram fOr « ¢ o n 5 a0y) cevvreiinienir e see s 140
4.18 Interaction Diagram fOr. ¢ s c e 1 10 viriereiiiiie e e e 158
4.19 Interaction Diagram TOF o « e e ¢ iie 1 (0 werreererieerieresesesreeree e see e seesreeneeseesneas 159
4.20 Interaction Diagram fOr u s s « te ¢ tie 1 10 reerieerieeriessieesieeseeseesereseeseesreesseesenens 160
4.21 Interaction Diagram fOr ¢ « ¢ iie v 10 correriierirerie s 161
4.22 Interaction Diagram fOrs s s v o iicy 0 covrererisieie e 162
4.23 Interaction DIiagram fOr o « e e v o 1ic v 0 cereerrereeieeieeie e sre e sre e 163
4.24 Interaction DIagram TOF o , o s te v o ticy 0 seerreerererienie e sesieeeesee e e enee e eeeees 165
4.25 Interaction DIagram fOr ¢ ¢ v o 1icy 0 vevveveereie s e 166
4.26 Interaction Diagram fOF s « s & s ¢ 1 (0 wrreerieeriesiiensiesseesee e e e e e e e sreesreesreesree e 166
4.27 Interaction Diagram fOro « e te 4 s e 1 10 virerieevieniieeiiee e e e sre e e e e 167
4.28 Interaction Diagram for v ; aa e s s e 1 10 werrvererenniennnns 168
4.29 Interaction DIiagram fOr ¢ « s o e n 10 wovvrvimniinir e s 169
4.30 Interaction Diagram TOr s o s ¢ 12 in 0 eevrererreniereiereeen e s 170
4.31 Interaction Diagram fOr o « ic te ¢ 1a in 0 eevrerrriesieesiesir e see e 171
4.32 Interaction Diagram fOr v ; s e c 1ain 0 o evieerie s 172
4.33 Interaction Diagram fOr ¢ ¢ cc 1a im 0 eovceereeieeierieee e 173
4.34 Interaction DIiagram fOr . o s & ic ko covveerieerisiieeieereeseese e e see e esee e e snnesneens 173
4.35 Interaction Diagram fOr o « e te & is k0 vevrveresiesiesieeine e ere e e e e seeeree e enees 174

Table ofFigures

5.0 CONCIUSIONS . ..veiee et ee e

T o] N0 =Y 01 o1 193
L Lo 1T U Y/ 198
F AN 0] 01T 0o 1 PR Al
F AN R |V, - 11 ST o] (=T=] o DT TSRS Al
YN O 1T=T oY (RS of =11 o FETTT OO RR T TRUTRRRPRRRI Al
F N B N o =] o KSR Yof =T o OSSR A2
YA o] T oA (=Y Yo =T=] PRI A2
Y T = Y SR T o1 =11 o PP A3
F AN S T O F- 11 0 TSRS Yo =T 0 F P T T T U TR A3

Y N A AN ol oo 101 g £ T o W=1=1 o A4

Abstract

Abstract

Object Modeling Technique (OMT) by Rumbaugh et al, is a methodology for the
analysis and design of object-oriented systems. The primary strength of the OMT
methodology is that it allows a complete specification of a system, covering it's static
structure, dynamic behaviour and functionality. It models each system from three
related but different viewpoints - the functional model specifies what happens, the
dynamic model specifies when it happens and the object model describes what it
happens to. Each model uses a concise and understandable notation, and thus all three
models can be appreciated to alarge extent on their own.

However, as each of these models represents a different view ofthe system, they need
to be integrated together in order to get the overall picture. Herein lies the crux ofthe
problem as the diversity present in the OMT methodology is also paradoxically it's
major weakness. Each model is developed more or less independently, and the inter-
relationships between the three models are not explicit, resulting in a lack of
integration, and subsequent lack of consistency between the object, dynamic and
functional models.

The purpose of my research is two-fold. Firstly to discover and document the cause
of this lack of integration and consistency, namely the apparent weakness of the
functional model, caused by the unsuitability ofusing data flow diagrams to model the
functionality of an object-oriented system; and the inadequate inter-model
relationships, which are poorly defined and are neither supported by formal steps in
the methodology nor a comprehensive illustrated example.

The second part of my research involves developing solutions to alleviate this lack of
integration and consistency, in the form of a somewhat revised functional model
which embraces the object-oriented paradigm; and improved inter-model relationships
which extend the OMT methodology, to incorporate guidelines for constructing an
integrated analysis model, as well as guidelines for checking the completed model for
consistency.

Abstract

The layout of the thesis is as follows. The first chapter introduces the OMT
methodology by describing the object, dynamic and functional models as proposed by
Rumbaugh. The second chapter documents the two major factors which are
responsible for the unsatisfactory level of integration and consistency within OMT,
while the third chapter proposes detailed solutions to each of these identified
problems in the form of a revised functional model and inter-model relationships. The
fourth chapter comprises a case study detailing how to construct the revised
functional model, and how to integrate the three OMT models. And finally, the fifth
chapter concludes the thesis by discussing the strengths and weaknesses ofthe revised
OMT approach, as well as reviewing current research in OMT, and identifying some
areas of potential future research for the methodology.

Chapter 1 : Introduction to OMT

Chapter 1

Introduction to OMT

1.1 Overview

The Object Modeling Technique (OMT) by Rumbaugh, models a system from three
related but different viewpoints, each of which captures important aspects of the
system. The~ .« . Fepresents the static, structural aspects, the «, v i« n o6
represents the temporal, behavioural aspects, and the.. . « .iv . 1 n + s . Fepresents the
transformational aspects, of a system

The three models separate a system into orthogonal views, and although each model
can be understood by itself to a large extent, the models are not completely
independent, as each model describes one aspect of the system but contains
references to the other models. The object model describes data structures that the
dynamic and functional models operate on, and operations in the object model
correspond to events in the dynamic model and functions in the functional model.

All three models are necessary for a full understanding of a problem, although
different problems place different emphasis on the three kinds of models. The balance
of importance among the models varies according to the kind of application, for
example, non-interactive programs have a trivial dynamic model and a large
functional model, whereas databases often have a trivial functional model, since their
purpose is to store and organize data, not to transform it.

1.2 The Object Model

The object model forms the backbone of the OMT methodology as it is responsible
for capturing the static structure of objects, and their attributes, operations, and inter-
relationships.

Chapter 1 : Introduction to OMT

1.2.1 Object Diagrams

The object model is represented graphically using ...« « Which provide a
formal graphic notation for modeling objects, classes and their relationships to one
another. It is often said that a picture speaks a thousand words. Object diagrams do
not deviate from this rule, as they are concise, precise diagrams, which are as easy to
formulate as they are to understand. There are two types of object diagrams :
<2002 n s Which describe classes, and ..o .. «.5:. 0 - Which describe objects.

1.2.2 Classes and Objects

Classes are represented on class diagrams. A class diagram is a template. It provides a
schema of attributes and operations, which each object instance of that class must
conform to. The OMT symbol for a class is a box with up to three sections. The first
section contains the name of the class in boldface, the second section contains the
attributes of that class, (the type and default value are optional), and the third section
contains the operation of that class, (the argument list and result type are also
optional).

Person

name

address

change_address

Fig 1.1 Class Diagram

Objects are represented on instance diagrams. An instance diagram describes a single
instance of a particular class, by assigning values to the attributes of the class. The
OMT symbol for an object instance is a rounded box with the class name in
parenthesis and boldface at the top of the box, and the values assigned to the
attributes ofthe class listed beneath it.

(Person)

John Smith

12 Main Street
V

Fig 1.2 Instance Diagram

Chapter 1 : Introduction to OMT

1.2.3 Links and Associations

Links and associations are the means for establishing relationships among objects and
classes respectively. An association describes the relationship between two or more
classes and a link is the instance of that association. Thus an association describes a
set of potential links in the same way as a class describes a set of potential objects. All
the links in an association connect objects from the same class, but the link is not part
of either object by itself but depends on both objects together. Using OMT an
association is represented by a line between classes, and a link is represented by a line
between objects, with the association name written in italics above the line.

Fig 1.3 Binary Association

In addition to binary associations, ternary associations can also exist. These
associations cannot be expressed as binary associations without the loss of
information. For example, a lecturer may teach many classes of students in the same
room, a lecturer may also teach the same class in many different rooms, and each
class of students may have many lecturers. The OMT symbol for aternary association
and n-ary associations is a diamond with lines connecting the related classes. The
name of the association is written next to the diamond, but can be left unnamed if it
can be easily deduced from the classes it connects.

Chapter 1 : Introduction to OMT

Lecturer Class Room
John Smith CA3 TGO1
John Smith CA3 CG04
John Smith CA4 CG04
Sarah Miles CA4 CG12
Sarah Miles CA3 TGO01

Fig 1.4 Ternary Association

1.2.3.1 Multiplicity

Multiplicity specifies how many instances of one class may relate to a single instance
of an associated class. OMT has many symbols which denote different kinds of
multiplicity, but all symbols are placed at the end of the association line. A line
without multiplicity symbols indicates a one-to-one association. A solid hall denotes
many (ie zero or more), a hollow ball denotes optional (i.e. zero or one), but in
general multiplicity is specified with a number or a set of intervals, such as 1 (exactly
1), 1+ (one or more), 3-5 (three to five inclusive), and 2,4,5 (two, four or five only).

Class Exactly one
Class Many (zero or more)

Class Optional (zero or one)

I+ lass One or more

124 Class Numerically specified

Fig 1.5 Multiplicity Symbols

For example, each athlete can run in more than one race, and each race can have
many athletes participating in it.

Chapter 1 : Introduction to OMT

Athlete T Race
name distance
Athlete Race
Jane White 100m
Jane White 200m

Greta Halpin 200m
Greta Halpin 400m
Deirdre Sinclair 100m
Karen Smith 400m

Fig 1.6 Multiplicity

1.2.3.2 Link Attributes

In the same way that an attribute is a property of all objects in a class, a link attribute
is aproperty of all links in an association. Remember that the link is not part of either
object, but depends on both objects together, hence the link attribute is a property of
the link and cannot be attached to either object. The OMT notation for a link attribute
is a box attached to the association by a loop, with one or more link attributes in the
second region of the box. Associations with many-to-many multiplicity often have
link attributes. For example, each company employs many people, and each person
can work for many companies. As a result of being employed by a company each
person receives a salaiy and a job title, thus salary and job title are invariably
attributes of the link. . .« .o

Fig 1.7 Link Attributes

Chapter 1 : Introduction to OMT

1.2.3.3 Associations as Classes

The notation for a link attribute is a special case of an association which was modeled
as a class. The association class can have a name and operations in addition to
attributes. Each link in the association is an instance ofthe class, thus emphasising the
similarités between links and objects, associations and classes.

Fig 1.8 Association as a Class

1.2.3.4 Role Names

A role name is a name that uniquely identifies one end of an association. For example,
using the, . association between the Person and Company classes, the person
assumes the role of .. ,.,.., and the company assumes the role of .. , .,... In
OMT arole name is written next to the class which plays the role on the association.
Role names are necessary between two objects of the same class. For example, ...
and, are both part of the association, which links two instances of
the person class.

Works-for
Person 'emulovee emolover Company
name name
address b_g_s__s: address
social security no
- Workera
Manages

Fig 1.9 Role Names

Chapter 1 : Introduction to OMT

1.2.3.5 Ordering

When dealing with associations which have one-to-many, or many-to-many
multiplicity, there exists a set of objects on the many end of the association. It may be
necessary to explicitly order this set of objects, for example, each football team
consists of many players, each with their own numbered shirt. The OMT notation for
ordering consists ofputting “{ordered}” next to the multiplicity dot.

Fig 1.10 Ordering

1.2.3.6 Qualification

One-to-many and many-to-many associations may be qualified by using a ... e .
which distinguishes among a set of objects on the many end of the association. For
example, a directory has many files, but a file can only belong to one directory.
However a directory and a file name can be combined to specify a unique file, thus
rie aan o 1S the qualifier. Qualification usually reduces multiplicity form many to one,
but not always. The OMT symbol for a qualifier is a small box identifying the
qualifier, at the end ofthe association line beside the class it qualifies.

Fig 1.11 Qualification

1.2.3.7 Aggregration

Aggregation is a special form of association, representing the . , relationship
between objects, and reduces complexity by treating many objects as one object
[Odell, '94], The OMT notation for aggregation consists of an association line, with a
small diamond drawn at the end ofthe line, near the aggregate object. For example, a
book consists o fmany chapters.

Chapter 1 : Introduction to OAdT

nnnnnnn

Book 1O 1 Chapter

Fig 1.12 Aggregation

Aggregation possesses properties of transitivity (Le. if A is part of B and B is part of
C, then A is part of C) and anti-symmetry (i.e. if A is part of B, then B is not part of
A) [Blaha, '93], Aggregation can have an arbitrary number of levels, in which case it
is often easier to draw multilevel aggregation as a tree structure.

Oven

Fig 1.13 Multilevel Aggregation

1.2.4 Generalization and Inheritance

Generalization represents the .. . relationship between classes. Classes at the bottom
of the generalization tree, are called subclasses and are more specific than classes at
the top of the tree, which are called superclasses. Each instance of a subclass is an
instance of its superclass as well. A subclass inherits attributes and operations from at
least one superclass, and then adds its own specific attributes and operations, or
overrides the superclasses' operations with versions ofits own. The OMT notation for
generalization is a triangle connecting the superclass to its subclasses, optionally the
«iscim s 1e o, Which is the property of the object which is being abstracted, can be

written next to the triangle.

Chapter 1 : Introduction to OMT

Fig 1.14 Generalisation and Inheritance

wowe e ne e n o PEFMIts a class to have more than one superclass, and thus the
subclass inherits attributes and operations from all its superclasses. The OMT
notation for multiple inheritance is the same as for single inheritance.

Fig 1.15 Multiple Inheritance

Chapter 1 : Introduction to OMT

1.2.5 Constructing the Object Model

To construct the object model it is necessary to study the problem statement and to
extract the object classes embedded within the statement; then to recognise the
associations between the selected classes; then to identify the attributes of an object
belonging to each particular class; then to organize the classes using inheritance (if
necessary); then to provide operations to access and update each of the attributes;
and finally to build the object diagram which illustrates the identified classes,
associations, attributes and operations.

P roblem S tatem ent: S im ple O rder P rocessing System

The company takes orders from customers, and attempts to fill those orders with on-
hand stock. Before the order can be filled, an order authorization request is sent to
the stores giving details of the current order. If sufficient stock exists to fill the order,
authorization to prepare the order is granted, the stock is removed from the stores
and used to fill the order, the company's stock levels are updated to reflect this
depletion, the order is shipped, and an invoice is issued to the customer. The
customer either part-pays the invoice in instalments, or pays the balance in full.

However, if there is insufficient stock to fill the order, authorization to prepare the
order is refused, and a standard quantity of the out-of-stock item is reorderd from the
supplier. A standard quantity would be a multiple of the safety stock level of that
particular item, and it is assumed that it would always be sufficient to fill any
outstanding order. In addition, if the stock level of a particular item falls below the
safety stock level for that item, then a standard quantity of that item is reordered.
When a delivery is received from the supplier, the company’s stock levels are updated
to reflect this replenishment.

This problem statement is refered to further on in the chapter for both the dynamic
model example and the functional model example.

1.2.5.1 Identify Object Classes
Using Rumbaugh's guidelines for choosing object classes from the problem statement

and for selectively retaining appropriate classes and discarding unnecessary ones, four
distinct classes emerge.

10

Chapter 1 : Introduction to OMT

Obviously there is an order class and an invoice class, however, stockitem is also a
class, which contains both stock level and safety level data, as well as pricing
information for each item of stock. A more subtle class is the company itself whose
data is the orders, invoices and stock. It may seem that both customer and supplier
should also be classes, but they merely provide the input and output of the system,
and within the context of this example, they do not process any data they provide.

1.2.5.2 Identify Associations

Associations are references from one class to another, or any dependency between
two or more classes. Thus, associations exist between the company class and the
order class as the company takes orders and places them in the orders file, between
the company class and the invoice class as the company issues an invoice for each
order taken, and between the company class and the stockitem class as the company
manages the stock levels, the safety stock levels and the pricing of each particular
item. In addition there is also an association between the order class and the invoice
class, as each order has one and only one invoice associated with it, and similarity,
each invoice has one and only one order associated with it. This is due to the fact that
the order number is identical to the invoice number on the invoice that relates to the
order, and vice versa.

1.2.5.3 Identify Attributes

Each order has an order number (order no), a customer name (custjmme) and
address (cust_addr), the item ordered (item) and the quantity of that item ordered
(gty,. and some status variables; authorized which indicates whether the order has
been authorized for preparation and status which reflects the current status of the
order (i.e. pending, outstanding or shipping).

Each invoice has an invoice number (invoicejio) which is identical to the order
number on the order that it relates to, a customer name (cust_name) and address
(cust_addr), the item (item) and quantity (qty) on the invoice, the balance due
(balance), and an invoice status variable (status) which indicates whether the invoice
is unpaid, paid or part-paid.

Chapter 1 : Introduction to OMT

Each stockitem has a stock level (...« .., which indicates the quantity of that
item on-hand, a safety stock level (....., ... which indicates the minimum stock

level per item and below which the item must be reordered, and aprice ¢, . .

Each company has a file of orders . .s., afile ofinvoices (.voic.s_ .. and
a file of stockitems (.. .«, . ,. As each of these files contain many orders, invoices
and stockitems, a company also has a means of accessing each individual order
(curi_orae), INVOICE (¢ v ijnvoice , and stockitem c. . s o e

1.2.5.4 Identify Operations

The task of identifying operations at this early stage of analysis is limited to those
obvious operations required to access and update the attributes of each individual
object of each given class.

The order class has an operation to access each attribute, and an operation to update
the authorization and status of the order. It is assumed that once an order is placed,
the order number, customer name and address, item and quantity is not changed.

TTiis order information is copied to the invoice relating to the order, and as there is a
one-to-one relationship between the order and the invoice relating to the order, there
is no need to replicate these operations for the invoice class. The invoice class hence

only has operations to access and update the balance on the invoice and the status of
the invoice.

The stock class has an operation to access and update each of its attributes, and two
operations to update the stock level (one to decrease the stock level by the quantity
ofthe current order, and one to increase the stock level by the quantity of the current

delivery).

The company class has operations to access and update each ofits files.

1.2.5.5 Build the Object Diagram

With the object classes, associations between classes, attributes and trivial operations
identified thus far, an initial object model can be constructed from this information.

Order

order_no :integer
cust_name : string
cust_addr: stnng
item : integer
gty:integer

status : string
authorized :integer

get_order_no :integer
get_cust_name : string
get cust_addr: string
get_item;integer
get_qty :integer
get_status ; string
get_authonzed: integer
change_status
(new_status : stnng)
change_authonzation

(new_authorization: integer)

Stockltem

stockitem no ;integer
stock_level : integer
safety level :integer
price HQoat

get_stockitem noO :integer
get_stock_levelQ minteger
get_safety levelfj :integer
get_pnce(7: float
mc_stock_level(qty: integer)
dec_stock level(qty :integer)
change_salety_level
(new_safety_level: integer)
change_pnce(new_price : float)

T

Chapter] : Introduction to OMT

Invoice

relates to

takes

invoice_no :integer
cust_name : string
cust_addr : stnng
item :integer

gty :integer
balance :float
status : sthng

get_balanceO :integer
get_statusQ : string
change_balance
(amount:integer)
change_status
(new_status : string)

issues

Comp»any

stockjEle[l : stock
orders_file[] : order
invoices_file[] :invoice
+curr_order : order
+curr_invoice :invoice
+curr_stockitem : stock

get_stockiteiri(stockitem no
sinteger) :int<ger
get_order(or<ler no
integer) :intager
get_invoice (invoice_no
:integer) : intelger

put stockiten

(curr stockit;m : stockitem)
put order

(curr_order : order)

put invoice

(currjnvoice :invoice)

manages

Fig 1.16 Object Model

Note : The eternal visibility of an attribute or operation can be private (-), public (+)
or protected (#), according to the second-generation OMT method, briefly outlined
by Rumbaugh [Rumbaugh, '95-1], In this example, all attributes are private, except
for the three public attributes ofthe company class, (identified by the "*+'* sign), and
all operations are public.

13

Chapter J : Introduction to OMT

1.3 The Dynamic Model

The dynamic model is responsible for representing control information, such as
sequences of events, states, and operations that occur within a system of objects.
While the object model describes the structure of the objects and the nature of their
inter-relationships, the dynamic model is concerned with changes to the objects and
their relationships over time.

1.3.1 State Diagrams

The dynamic model is represented graphically using multiple state diagrams, one for
each class with non-trivial dynamic behaviour. State diagrams are based on Harel's
statecharts [Harel, *87], which extend basic state transition diagrams by the addition
of depth ..., orthogonality, and broadcast communication
(- v« s, Each state diagram shows the pattern of events, states, and state transitions
permitted in a system for one class of objects. A state diagram is a template which
describes a set of sequences, in the same way that a class is a template which
describes a set of objects. The state diagrams for the various classes interact with
each other via shared events.

1.3.2 Events and States

Events are stimuli from one object to another while states are abstractions of the
attribute values and links of an object. Events represent points in time, they are
instantaneous, whereas states represent intervals oftime. The time duration which an
object spends in a state, depends on the time interval between the event which placed
the object in that state and the event which removed the object from the state. The
response of an object to an event depends on the state of the receiving object, and
may include a change of state, or the sending of another event.

State diagrams relate events and states in a graph whose nodes are states, and whose
arcs are transitions between states, caused by events. A state is drawn as a rounded
box, and a transition as an arc between two states, labelled by the event causing the
transition. Thus if an object is in a state, and the event on one ofits transitions occurs,
the transition fires, and the object enters the new state. An event can also carry data
values called attributes, which are shown in parenthesis after the event name.

14

Chapter | : Introduction to OMT

Start
Black mwins

Draw

White wins

Fig 1.17 State diagram for a Chess Game

1.3.3 Conditions

A condition is a boolean function and can be used as a, ..., on atransition. Thus a
guarded transition will fire only if the event on the transition occurs, and the condition
is true. Unlike an event, which has no time duration, a condition is valid over an
interval of time. For example, in the diagram below, a system can be in one of two
stateSs «w - o 1 OF» ow .. o .. butit can only enter the. o . state provided the

system has been offfor at least a minute.
Start
[1 min since last ;w)o"wer off]

Power Off * " Power On J

Fig 1.18 Conditions on Transitions

1.3.4 Operations

Operations are triggered by events. There are two types of operation : actions and
activities. Actions are attached to transitions and are performed in response to the
corresponding event, while activities are attached to states and are performed in

response to being in a state.

15

Chapter J : Introduction to OMT

1.3.4.1 Actions

An action is associated with an event. It is an instantaneous operation, or an
operation whose duration is insignificant with respect to the granularity of real events
under consideration, and thus it may as well be instantaneous. The OMT notation for
an action is a forward slash "/"* followed by the action name, placed after the event
name on atransition between states.

Start

cursor moved / highlight menu item

Fig 1.19 Actions on Transitions

1.3.4.1.1 Entry and EXxit Actions

Entry actions are the first operation performed after a state is entered, and exit
actions are the last operation performed before a state is exited. Associating an action
with entry to a state, is equivalent to placing that action on each transition to that
state. This form of notation for actions is particularly useful when several transitions
enter a state, each one with the same action, thus the action can be removed from
each transition and placed within the state as an entry action. The order of execution
of actions is as follows : actions on the incoming transition, entry actions, exit actions,
actions on the outgoing transition. The OMT notation for entry and exit actions is the
word, or... within the state box respectively, followed by a forward slash and
the action name.

16

Chapter 1 : Introduction to OMT

Start

Fig 1.20 Entry and Exit Actions

1.3.4.1.2 Internal Actions

It is also possible for an event to occur which does not cause a transition from the

current state. Such an event is listed inside the state box followed by a forward slash

and the name ofthe action to be performed in response to this event. This action is an

internal action. When the event associated with this action occurs, the action is

executed, but not the entry and exit actions for the state. For example, ,.... and
s a0 s areinternal actions.

Start

Fig 1.21 Internal Actions

17

Chapter 1 : Introduction to OMT

1.3.4.1.3 Actions Sending Events

A system of objects interacts by sending and receiving events. An object can perform

the action of sending an event to another object or even a set of objects. The action
va e e e sy SeNds the event . with given attributes to a set of objects, and

thus any object with a transition on the event. can accept the event concurrently.

Fig 1.22 Actions Sending Events
(First Notation)

Another notation for sending an event from one object to another is a dotted line
from atransition to an object, labelled with the event name. Thus, when the transition
fires the event is sent to the object.

Fig 1.23 Actions Sending Events
(Second Notation)

1.3.4.2 Activities

An activity is associated with a state. Unlike an action it is not instaneous, but it takes
time to complete. Activities include both sequential activities and continuous
activities. The same state diagram notation is used for both types of activity, -+, . -
within a state box indicates that the activity . starts on entry to the state and stops on
exit from the state.

18

Chapter 1 : Introduction to OMT

1.3.4.2.1 Sequential Activities

Sequential activities progress until completed, or interrupted and terminated
prematurely by an event, thus causing a transition from the state. A sequential activity
starts once the state is entered and stops on exit, or when completed if is not
interrupted by an event. In the diagram below, which depicts an application program,

"« s 0 s e n IS @ Sequential activity which runs to completion, or until it is terminated
prematurely by an interrupt.

Start

! run Active
iv
Idle

do :run program

interrupt End

Fig 1.24 Sequential Activities

1.3.4.2.2 Continuous Activities

Unlike sequential activities, continuous activities do not complete, instead they persist
until they are terminated by an event, thus causing a transition from the state. A
continuous activity starts once the state is entered and stops on exit. In the diagram
below, which depicts an alarm clock, both .., ., vn. and .o.os 1.0 are
continuous activities, but.... IS asequential activity which completes when
the hours and minutes ofthe alarmtime have been set.

Start

Fig 1.25 Continuous Activities

19

Chapter 1 : Introduction to OMT

1.3.4.2.3 Automatic Transitions

A transition without an event name is an automatic transition, which fires as soon as
the sequential activity associated with the state has completed. If there is no activity
associated with the state, then the transition fires as soon as the state is entered, but
the entry and exit actions (if any) are always performed. A state can have more than
one automatic transition, but each such transition should have a guard condition, such
that only one of the transitions can have a valid guard condition at any one time. In
the example below, when the sequential activity s cocnce 1ien 20 cnans. CcOmpletes,
if the vending machine is not empty, the ..., state is entered, otherwise the vending
machine is empty and the., Stateis entered.

insert coin (value)

insert coin (value)
Ready Accept coin

entry 1 reset .
entry | sum coins

add items select (item)
(item, #) [total coins >= price (item)
l & #item >0]
Dispense item
do :dispense item

[(item,#) = 0 and change
for all items]

Fig 1.26 Automatic Transitions

1.3.5 Generalization

In the same way that classes can have sub-classes which inherit the attributes and
operations oftheir superclasses, states can have substates which inherit the transitions
of their superstates. Generalization represents the .. relationship, thus within a
superstate, the object must be in one and only one of the substates within that
superstate. So for example, if the superstate has three substates, the object can be in
the first substate . . the second substate . . the third substate.

20

Chapter 1 : Introduction to OMT

Figure 1.27 is a state diagram representing an automatic transmission for a car. The
cansmossi0 0 State is a superstate which has three substates, thus the transmission can
bein....... «..... Or,.v ..« Theforward state in turn is also a superstate which
has three substates, thus when moving forward, the transmission can be in.... .
<econa OF v o gear. The transitions of a superstate are inherited by each of its
substates, thus the event,... . causes a transition from:..... ..c..s OF ., s Qear
within the.., state, to the state. Similarily the event ..., causes a
transition from any forward gear to.... . gear.

Transmission
'V push H s V

Neutral

push N

push F push N

Forward

Stop N up s hift / V v smin | mmmmm————— n.
First V Second . Third |

d ow nshift d o w n s h ift

Fig 1.27 Generalization

1.3.6 Aggregation

Aggregation represents the . . . relationship, thus within a superstate, the object can
be in more than one of the substates. So for example, if the superstate has two
substates, the object can be in the first substate . . . the second substate.

Figure 1.28 is a state diagram representing a course which is taken by a student. The
oo m s e State is a superstate with three concurrent substates relatingto .. .

e 2. theen o oieccandthe. Thecourseis ... ,:. .. untilthe two
laboratory sessions, the term project and the final test have all been done. Only then
can the transition to the ... , State be made. Ifthe laboratory sessions, term
project and final test have all been successfully completed, then the course has been
passed, however if the final test is failed, then the course has been failed, regardless of

the outcome in the other concurrent states.

21

Chapter 1 : Introduction to OMT

Incomplete

(qlab done (lab done. _
—H a1l J Lab 2 J-—

Complete

\
P'I;g;;r::t project done . Passed ~

Fig 1.28 Aggregation (Case #1)

In addition, where one object is an aggregation of a number of components. The

aggregate state of the object corresponds to the combined states of all the state

diagrams of the components. Hence the aggregate state is one state from the first

component state diagram ... one state from the second component state diagram,
» « one state from each other component state diagram

A cooker is an aggregate object, comprising one of more ovens, a grill, and two or
four hobs. [Figure 1.29(a)] The composite state of the cooker cannot be represented
by a single state in a single object, hence the state of the cooker includes one state
from oven state diagram, one state from the hob state diagram and one state from the
grill state diagram [Figures 1.29(b), 1.29(c), 1.29(d)]

Fig 1.29(a) Aggregation (Case #2) Cooker Object Model

22

Chapter 1 : Introduction to OMT

o @

On

100 ¢ 2(150 C)
- ® OVe« ., , . crey e
f 250 . J 20QC,

Fig 1.29(b) Aggregation (Case #2) Oven State Diagram

The oven can be turned . .. or turned. ... Withinthe .. state there are five substates,

and the temperature ofthe oven can be regulated between five temperature settings,
by adjusting the heat ofthe oven either up or down.

Hob
off
On
| mmmmm—m——m——— \ hob up s Vv
Heat1l |1 1 Heat?2
V oo y hobdownV— — — s
CHeat4~Y N Heat3

Fig 1.29(c) Aggregation (Case #2) Hob State Diagram
The hob can be turned . . or turned. . Withinthe .. state there are four substates,

and the heat ofthe hob can be regulated between four heat settings, by adjusting the
heat ofthe hob either up or down.

23

Chapter 1 : Introduction to OMT

Gral Off
double grill on single grill on
off
On
Double Single
1 1
r Settingl J N Settingl N
>x" .
doutIJIIe' double single’ single
gri rill u nll
aown S P dogwn
N Setting2 » I Setting2
— %
dou_ﬂle double single single
ri i i
dogwn grill up dog\/\r)rI]I grill up
N Setting 3 © N Setting 3/
dou_lIJIIe double singie single
ri i i
dc?wn grill up gk grill up
N Setting4 N N Setting4 N

\

Fig 1.29(d) Aggregation (Case #2) Grill State Diagram

The grill can be turned on, and turned off. Within the double andsingle substates of
the on state, there are four substates, and the heat ofthe grill regulated between four
heat settings, by adjusting the heat ofthe grill either up or down.

1.3.7 Constructing the Dynamic Model

The dynamic model consists of a state diagram for each class with non-trivial dynamic
behaviour. To construct the dynamic model it is necessary to prepare scenarios of
typical interaction sequences, to show expected system behaviour; then to identify the
events between the objects in the system; then to build an event trace diagram for
each identified scenario; then to build an event flow diagram which summarises events
between classes; and finally to construct a state diagram for each non-trivial class.

24

Chapter 1 : Introduction to OMT

The dynamic model example is based on the problem statement for the order
processing system, as outlined in section 1.2.5. Hence the dynamic model will refer to
the classes, associations, attributes and operations which were identified when
constructing the object model example.

1.3.7.1 Prepare Scenarios

A scenario is a sequence of events that occurs during one particular execution of a
system. Scenarios relate to use cases [Jacobson, '94], in the same way as objects
relate to a classes, in that a use case is not a single scenario, but rather a description
of a set of potential scenarios. Hence there can be an infinite number of possible
scenarios [Rumbaugh, '94], just like there can be an infinite number of possible
objects, and a scenario is an instance of a use case, in the same way as an object is an
instance of a class [Rumbaugh, '95-2].

Within the order processing system, three distinct scenarios can be identified : firstly,
the normal sequence of events where on-hand stock is available to fill the customer's
order; secondly, the abnormal sequence of events where on-hand stock is not
available to fill the customer's order, and a delivery of stock from the supplier is
required before the order can be shipped; and finally special circumstances whereby
the customer need not pay the balance on the invoice in full, but may instead choose
to pay in installments.

A customer places an order.

The company creates the order and stores it in the orders file.

The company requests authorization to fill the order from on-hand stock.
Authorization is granted for the stock request.

The authorization on the order is updated accordingly.

The stock level is depleted by the amount on the order.

The status ofthe order is updated to shipping.

The company creates an invoice and stores it in the invoices file.
The invoice is issued to the customer.

Full payment is received from the customer.

The balance on the invoice is reduced by the amount of the payment.
The status ofthe invoice is updated to paid.

25

Chapter 1 : Introduction to OMT

A customer places an order.

The company creates the order and stores it in the orders file.

The company requests authorization to fill the order from on-hand stock.
Authorization is denied for the stock request.

The authorization on the order is updated accordingly.

The outstanding stockitem is reordered.

The status of the order is updated to outstanding.

A delivery ofthe outstanding stockitem is received from the supplier.
The company requests authorization to fill the order from on-hand stock.
Authorization is granted for the stock request.

The authorization on the order is updated accordingly.

The stock level is depleted by the amount on the order.

The status ofthe order is updated to shipping.

The company creates an invoice and stores it in the invoices file.

The invoice is issued to the customer.

Payment is received from the customer.

The balance on the invoice is reduced by the amount of the payment.
The status ofthe invoice is updated to paid.

» customer places an order.

The company creates the order and stores it in the orders file.

The company requests authorization to fill the order from on-hand stock.
Authorization is granted for the stock request.

The authorization on the order is updated accordingly.

The stock level is depleted by the amount on the order.

The status ofthe order is updated to shipping.

The company creates an invoice and stores it in the invoices file.
The invoice is issued to the customer.

Part payment is received from the customer.

The balance on the invoice is reduced by the amount ofthe payment.
The status ofthe invoice is updated to part-paid.

Final payment is received from the customer.

The balance on the invoice is reduced by the amount ofthe payment.
The status ofthe invoice is updated to paid.

26

Chapter | : Introduction to OMT

1.3.7.2 Identify Events from Scenarios

The purpose of identifying the events within the system, is to enable each event to be
allocated to the object classes that send and receive it. As each event can cause a
transition between states, and hence alter the current state of an object, it follows that
each event will be associated with an operation on the receiving object.

Within the order processing system there are five external events, which provide the
input and output of the system : which is sent from the customer to the
company and contains the order details as parameters; which is sent from the
company to the customer and contains the invoice details pertaining to the order;
» 2y oo Which is sent from the customer to the company and contains the invoice
number and the amount of the payment as parameters; which is sent from the
company to the supplier as contains the details of the reorder as parameters; and
finally,, which is sent from the supplier to the company and contains the
delivery details as parameters.

The remainder of the events are internal to the system in the sense that they are sent
and received by the four object classes within the system : order; invoice; stockitem
and company. These events are as follows : which is sent from the
company to the order, and which causes a hew order to be created and stored in the
orders file; ¢ sc «vivoiiiation _eoues Which is sent from the company to the
stockitem, and which requests a particular quantity of a particular stockitem to be
made available to fill an order; . .« c « «v o iiaiion_ e sp 005 Which is sent from the
stockitem to the company, and which either grants or denies the previous request
depending on whether or not sufficient on-hand stock exists to fill the order;
cnange avimorizaien @Nd cvanse <. Which are sent from the company to the
order, and which cause the order to be altered accordingly; whichis
sent from the company to the invoice, and which causes a new invoice to be created
and stored in the invoices file; cv.vscovaience @and cvavse_ s Which are sent
from the company to the invoice, and which cause the invoice to be altered
accordingly; and finally .« c.cc coc @Nd s cienee i« o .« Which are sent from the
company to the stockitem, and which cause the stockitem to be altered accordingly.

These internal events are similar to messages, however their major discriminating

factor from other messages in the system is that they cause a change of state within
the system, and hence deserve the status of an event.

27

Chapter 1 : Introduction to OMT

For example, s« . v ivovivaens @ erange avmnoaoqo areboth operations on
an object of type order. There existS @ :v.vsc «vmmorizaion €vent which is
associated with the «v..,c v v o 22 10 0 o action, causing a transition to either a
state of authorization, or to a state of non-authorization, but there does not exist a
oo um o iza e o €VENE, because retrieving the current authorization status does not
have any effect on the state ofthe order object.

Section 3.3.3.4, details how these identified events are mapped into operations.

1.3.7.3 Build Event Trace Diagram for each Scenario

An event trace diagram is an ordered list of events between different objects assigned
to columns in atable. By scanning a particular column in the trace, it is possible to see
the events that directly affect a particular object. An event trace diagram for each
identified scenario is illustrated below :

Custlomer Comlpany Order Stockltem Invoice
craer
Icveate o rd e r\
ord e r a u th oriza tion
ord er a u th orization

decrease s to ¢ k

change

J s ta tu s I
I cresie]

invoice

paym ent

changeg¢balance

change '[*status

Fig 1.30 Event Trace Diagram - Scenario #1

28

Customer Company Orfler

order
create orders

order audéhonzation
—redpiest

I order autht}orization
Zresftvonse

i change_
authorization

change
status

increase stock
order amhonzation
_req uest
order, authorization
response
change_

authorization

decrease. stock

change_
status ~

invoice

payment

Stockltem

B =t — 1 —MA

Chapter 1 : Introduction to OMT

Invoice Supplier

reorder

delivery

createl invoice

change\balance
changejstatus

Fig 1.31 Event Trace Diagram - Scenario #2

29

Chapter 1 : Introduction to OMT

Customer Company Or%ier Stockltem Invoice

lcre ate ord e r\

order awuthorization

jre cjue st

o rd er authorization

?o0nse
1 resi

change_

a uth orization
decrease s to ¢ k

change

s ta tu s
create ARVOT B

|

change_ balance

changelstatus

i
1,00 0

change_ balance

change s ta tus

Fig 1.32 Event Trace Diagram - Scenario #3

1.3.7.4 Build Event Flow Diagram

An event flow diagram summarises events between classes, without regard for the
sequence in which the events are to be performed. The event flow diagram is a
dynamic counterpart to the object diagram, as paths in the object diagram show
possible information flows and paths in the event flow diagram show possible control
flows.

To build the event flow diagram, simply list the events which can be sent and received
by each class, and place these events on the flows between the classes. Only those
events listed on the event flow diagram for each respective class, can appear on the
state diagram for that particular class.

30

Chapter 1 : Introduction to OMT

create™invoice® *
change_balance(amt
change_status(staius

createj>rder* .
change . authorizaiion Increase_slockiatyg
auth%ri‘zation) _ decrease_stock(qty
hange_status(siatus) order_authorization
—request
) Oédr%re*nt order_authorization
(mvglc%_no, amt) _response

delivery(item, qty)

reorder
(item, qty)

= order (order_no,cust_name,cust_addr,item,qty)
*create_order(order_no,cust_name,cust_adar,item,qty)

=~ invoice (invoice no,cust_name,ciist_addr,item,qty,price,balance)
=~ createJmoice (invoiceJ”o, cust_name,cust_addr, item, qty,price,balance)

Fig 1.33 Event Flow Diagram

1.3.7.5 Build State Diagram for each Class

By examining the event flow diagram, it is easy to recognise the events pertaining to
each class of objects. Each event can cause a transition between states of an object of
that particular class, provided the guard on the transition (if any) evaluates to true. In
response to a transition firing, an action may be performed, which can change the
attribute values and links ofthe object, and hence the object moves into a new state.

Each state with more than one exit transition represents a branch in the flow of

control

31

Chapter 1 : Introduction to OMT

create order’

change_authorization(authonzation)
/ change_authonzation
(authorization)

change_status(slatus)
[authorized = N O]
/ change status

. ("Outstanding")
change_siatus(status)

[authorized = YES]
lchange status
("Shipping")

change_authohzation(authonzation)
| change_authorization (authorization)

'create_order (order_noJcust_namedJcust_addr,item,qiy)

Fig 1.34 Dynamic Model (State Diagram for o)

As aresult ofthe event, the order is placed in the,, state, and
remains in this state until a .+ ..o« v o izaonav o izauen) €VENt is received,
which then moves the order to the, state, and depending on whether
sufficient stock is on-hand to fill the order or not, updates the authorization of the
order to YES or NO respectively. The cv..s._ «ovssews) €vent moves an order
which, is not authorized, i.e. satisfying the condition [authorization = NO] into the
«v e a e State, and an order which is authorized, i.e. satisfying the condition
[authorization = YES] into the .., , ., State, and updates the status of the order
accordingly. Orders can move from being nvs s 0 «v v o in s AS SOON as a
chenoe _auihorieaion (aunorieaion) €Ventisreceived. Once orders are. ., , ., the
cycle is complete.

32

Chapter 1 : Introduction to OMT

ord e r_
a uth oriza tion

request

[stock level - gty
>= safety_level] Query
Stock
Level [stockjevel - gt
. safety_level
stock_level - gty > 0]

[stockjevel - qty <= Q]

decrease _stock (qgty)

[stock level - gty
>= safety level] Below Safety Level

/ dec_stock_level(oty) e« «oeave wioer oy .+ vy [reorder()
[stock_level -
Be

< safety leve In Stock
stock_level - t?/
Above (dec stock |eve(qty) e ntry Jsend order._
Safety a uth orization _
L8V6| decrease _stock (gty) e ES)
[stockjevel - qty<=0] - \
Trtreng et / dec_stock_level(qty) Out of Stock
tesponse E S) entry 1 send order_
A - a u th o riza tion
increase _ stock ty response N O)
[stock_level+ gty >= safely level]
"] inc_stock_level(qty)
Fig 1.35 Dynamic Model (State Diagram fors . e n)
The stockitem object receives au . v« 2w mnorizaion_reau.s: €vVent, which places it
into the, ..« ... State, and seeks to determine whether or not sufficient

stock exists to fill a particular order. A transition is made to eitherthe ¢

... State orthe¢, ..., depending on the current quantity status of the
stockitem in question. If the quantity of the stockitem is sufficient to satisfy the
current order and still remain greater than or equal to the safety level, then a
transition is made to the, ..., state, and a favourable

sumonzaon essonse Will be sent. If the quantity of the stockitem is sufficient to
satisfy the current order but it falls below the safety level, then a transition is made to
the state, within the, .. state, and a favourable
vioe_aumoriaon_respouse. WillDe sent, since the order can be satisfied. However,

if the quantity of the stockitem is insufficient to satisfy the current order, then a

transition is madetothe« State, withinthe.,., ... State, and an
unfavourable . v s oo s WIill be sent, since the order cannot be
satisfied.

AN ciease ooy event will cause a transition between the o ov 2 e v 1o e
and..... .. ¢, .. Statesprovided that the quantity delivered is sufficient to push

the current quantity status ofthe stockitem above the safety level.

33

Chapter 1 : Introduction to OMT

Ifthe stockitem iS .o ove o vy tever @Becerease s0orey) event will decrease the
stock level by the given quantity, and may remaininthe ¢, .. State, or
movetothes., ... State, depending on the current quantity status of the
stockitem after the decrease of stock. A transition between the ¢y ove
state and the state depends on the quantity ofthe stockitem falling below the
safety level but still remaining positive, while a transition between the ... <. .,
ever s andthe..« State depends on the quantity of the stockitem falling
to zero or below.

Note : The action first calculates the quantity of that particular stockitem to
be reordered (usually a multiple of the safety level of that particular stockitem), and

then sendstheevent... s (..n .y, to the supplier.
— <
nhange,sta‘usv
[balance = 0]

/change_status(*"Paid")

cre ate invoice

change_balance (amt)

/ change_balance(amt)
Unpaid Pay

[balance > 0]
/ change_status(*'Part-Paid"")

r
Part-Paid

change _balance (amt)

/ change_balanee(amt)

IcreateJnvoice (invoice_no, cust_name,cust_addr, item,qty,price, balonce)

Fig 1.36 Dynamic Model (State Diagram for

As aresult ofthe.......... .. event the invoice is placed in the. ., ... state, and
remains in this state until acv.vs: v2ncc 0 » , €vent is received, which causes a
transition to the , ., state, and updates the balance of the invoice accordingly.
Depending on whether the balance on the invoice was cleared or not, the
chanse stans (st €VENt causes a transition to either the, . » or,....,. .. State
respectively. Once inthe,, . state, many .n..scs02m0cc.n o €VENts can be
accommodated until the balance has been cleared, and the invoice is, . s

34

Chapter 1 : Introduction to OMT

ord e r

order jm th o riz a tio n

response

[curr_order. gty <=

Sales curr_stockitem. Goods Outwards
stocklevel]
e n try / e n try /
send create _order send chamngejiuth o riza tio n
put_order(curr_order) (awinorization)
get_order(order_no) send decrease stock(qty)
send orderautheoc rization send c¢chamnge _status(stdtus)
_request send createjn voice **
putJnvoice(curr_invoice)
ord e r
fm thoo riza tion payment
Sresponse delivery (item qa) (invoice_no?amt)
[curr_ordergty > get_stockitem(item)
cun_stockitem. Send increase s tock(qiy)
stocklevel] put_stockitem(curr Accounts

................ v stockitem)

get_invoice(invoice_no)

send change _status(status)

Goods Inwards

/ send changedbalance (am t)
e n try

e L mnrt o put_invoice(curr_invoice)
send changejm th o riza tio n - . * %

send invoice
(a uth orization)

send change _status (status)

*order(order_no,custjiame,custjiddr, item,qty)
=~ invoice(invoice_no,custjiame, custjiddr, item,qty,price, balance)
**create_invoice(invoicejio,citst_name,cu5tjiddr,item,qty,price,balance)

Fig 1.37 Dynamic Model (State Diagram for ¢ c» ;.0)

As aresult ofan..... event, the company enters the state, and the procedure
for processing an order is initiated, which involves executing the following set of
actions : sending a...... ..«.. eventto the order class, which creates a new order;
updating the orders file with this new order; accessing the orders file to retrieve the
next order to be dispatched; and sending an. .« . in v o iz 4 o0 eou. s EVENt to the
stockitem class, seeking authorization to dispatch the current order.

When an . cc v v riza o esrons. event is received form the stockitem class,
and the quantity required to fill the current order is greater than the stock level ofthe
stockitem on the current order, then a transition is made to the,.... . . .« . State,
an a procedure for awaiting delivery of the stock to fill an order is initiated, which
involves executing the following set of actions : sending @ «vavoeiiv tho iz tion
(aumoiza o €vent to the order class, updating the authorization on the current
order to denied; and sending @.v..s: s (sa 05y €vent to the order class, which

updates the status ofthe current order to outstanding.

35

Chapter 1 : Introduction to OMT

However, when an . .sc: «vmnorizationriessonse event is received form the
stockitem class, and the quantity required to fill the current order is less than the
stock level of the stockitem on the order, then a transition is made to the , ...
»u o« e . State, an a procedure for shipping an order is initiated, which involves
executing the following set of actions : sending a :v.voe auwinorizaion
(e iza e €vent to the order class, updating the authorization on the current
order to granted; sending a:...e.:. .« « s, €vent to the stockitem class, which
decreases the stock level of the stockitem on the current order by the quantity on the
current order; sending a.». .5 s 05 :12 005y €VENt to the order class, which updates
the status of the current order to shipping; sending a ... » v o .. event to the
invoice class, which creates a new invoice; updating the invoices file with this new
invoice; and sending an event to the customer.

A transition from the goods inwards stateto the,« . State can be made as
soon as a.. .y nen a1y eventis received from the supplier, and a procedure for
accepting a delivery of stock is initiated, which involves executing the following set of
actions : accessing the stock file to retrieve the stockitem relating to the delivery;
sending ani.....:. swcv o) €Vent to the stockitem class, which increase the stock
level of the current stockitem by the quantity of the delivery; and updating the stock
file with the updated current stockitem

As aresult ofa,.yn cninvoice no.an o €vent, the company enters the
state, and the procedure for accepting invoice payments is initiated, which involves
executing the following set of actions : accessing the invoices file to retrieve the
invoice relating to the payment; sending @ v ... _ .20 sy €vent to the invoice
class, which updates the status of the current invoice to paid or part-paid depending
on the relationship between the amount of the payment and the balance due on the
current invoice; sending a cvanscav.1:0ccam o €vent to the invoice class, which
updates the balance on the current invoice to reflect the amount of the payment; and
updating the invoices file with the updated current invoice.

If the balance on the current invoice has not been cleared, then subsequent
paym entnvoice _no.an o €VENtS, can be sent to the company for that particular
invoice, until the status of the current invoice is updated to paid, and the balance on
the current invoice has been updated to zero.

36

Chapter 1 : Introduction to OMT

1.4 The Functional Model

The functional model is responsible for capturing the relationship between input and
output values in a system. It is a data oriented view of the system, and shows how
external inputs are transformed through operations into external outputs.

1.4.1 Data Flow Diagrams (DFD)

The functional model is represented graphically using multiple data flow diagrams. A
data flow diagram is a graphical representation which shows the flow of data values
through a system, from their sources in objects, via transformations, to their
destinations in other objects. A data flow diagram contains four basic elements : data
flows, processes, actors, and data stores.

The diagram below shows the operation of these four basic elements. Actor A#l
produces jc's, which are transformed by process P#1 into j's (accessing data store

D#1 to do its work), which are subsequently transformed by process P#2 into ..
(updating data store D#2 to do its work), before being consumed by actor A#2.

D#2

D#1

Fig 1.38 Data Flow Diagram Elements

Each ofthese data flow diagram elements is discussed below :

37

Chapter 1 : Introduction to OMT

1.4.1.1 Data Plows

Data flows move data, they are pipelines through which packets of information flow
[Demarco, 79], Data can be moved from processes, actors, or data stores to other
processes, actors or data stores. A data flow is drawn as a named vector connecting
the source and destination of the data, with the arrowhead showing the direction of
flow. The name of the data flow should embody a meaningful description of its
contents. Often the data being carried on the data flow is an intermediate value within
a computation, except on the boundary of the data flow diagram, where the data
flows are inputs and outputs.

1.4.1.2 Processes

Process transform data, they are transformations of incoming data flows into
outgoing data flows. [Demarco, '79], The name of the process indicates the type of
work which is being performed on the data. Processes can be nested to an arbitrary
depth, depending on the complexity ofthe system being modeled. For example, a high
level process will often be expanded into an entire data flow diagram, and each
process in that data flow diagram subsequently expanded also, until each high level
process has been decomposed into a number of atomic processes, each of which
cannot be further decomposed. A process is drawn as an ellipse, with the name of the
process contained within the boundaries of the ellipse.

1.4.1.3 Actors

Actor objects produce and consume data, as they are the net originators and receivers
of system data [Demarco, *79], They he on the boundary ofthe data flow diagram and
are attached to the inputs and outputs of the system, thus they are responsible for
driving the data flow diagram However, actors he outside the context of the system,
by designating an entity as an actor, it is implicitly external to the system under
consideration [Gane, 78], it is merely a source or sink for system data, it does not
perform any processing on this data. An actor is drawn as a rectangle as it is an
object.

38

Chapter 1 : Introduction to OMT

1.4.1.4 Bata Stores

Data stores store data passively, they are temporary repositories of data [Demarco,
'79], A data store is drawn as a pair of parallel lines, with the name of the data store
contained between the lines. The direction of arrows leading to or from a data store is
significant. An input arrow to the data store indicates a modification to the store, e.g.
an insertion, deletion or update, while an output arrow from the store indicates a
retrieval of information from the store.

1.4.2 Operations

Each atomic process, is implemented as an operation on an object. Each operation
can be specified in a number of ways such as natural language or pseudocode, or
more formally as pre-conditions and post-conditions or decision tables. Specification
of an operation includes a signature and a transformation. The signature defines the
interface to the operation, in the form of the arguments it requires and the values it
returns, whereas the transformation defines the effect of an operation, in the form of
the output values as functions ofthe input values, and the side effects ofthe operation
on the other objects in the system. There are four categories of operation; access
operations; queries; actions; and activities; and each is discussed below.

1.4.2.1 Access Operations

Access operations are operations that read or write attributes or links of an object,
and are derived directly from the attributes and associations of a class in the object
modeL As access operations can be deduced from the mere presence of an attribute
or link, it is not necessary to list or specify these operations during analysis since they
are trivial. However, during design, it is necessary to note which access operations
will be private, protected, or public to the class.

The remaining three categories of operation : queries; actions; and activities are non-

trivial, and must be listed in the object model, and fully specified in the functional
model.

39

Chapter 1 : Introduction to OMT

1.4.2.2 Queries

A query is an operation which is instantaneous, and which has no side effects on other
objects in the system. A query with no parameters is a derived attribute, and can be
grouped with attributes in the object model, but their derived status should be
indicated since they do not contribute additional information to the model. For
example, if apoint is specified in Cartesian co-ordinates, then the radius and angle are
derived attributes.

1.4.2.3 Actions

An action is a transformation which is instantaneous, but which has side effects on
other objects in the system, and hence can cause a change of state within the system.
As the state of a object is an abstraction of its attribute values and links, all actions
must be definable in terms ofupdates to attribute values and links of objects, and thus
each action can be defined in terms of the state of the system before and after the
action was performed.

1.4.2.4 Activities

Unlike queries and actions which are considered instantaneous, an activity is an
operation to an object, or by an object, that has duration in time. Thus an activity will
have side effects on other objects in the system due to its time extended nature.
Activities only make sense for actor objects, because passive objects are mere data
repositories.

1.4.3 Constructing the Functional Model

The functional model transforms input values into output values, hence to construct
the functional model it is necessary to identify the input values and output values of
the system; then to build the data flow diagram which illustrates the transformations
that the input values undergo, until the output values are achieved; and finally to
describe the functions which effect the transformation from input values to output
values.

40

Chapter 1 : Introduction to OMT

The functional model example is based on the problem statement for the order
processing system, as outlined in section 1.2.5. Hence the functional model will refer
to the classes, associations, attributes and operations which were identified when
constructing the object model example, and the events, states, conditions and actions
which were identified when constructing the dynamic model example.

1.4.3.1 Identify Input and Output Values

The input and output values of a system can be identified from the problem statement.
In addition, since input and output values are parameters of the events between the
system and the outside world [Rumbaugh, '91], the input and output values can be
also be identified from the external events in the dynamic model of the system.

The list of input values is as follows : order details comprising the order number, the
customer's name, the customer's address, the item ordered, and the quantity ordered;
payment details comprising the invoice number, and the amount of the payment; and
delivery details comprising the item being delivered and the quantity being delivered.

The list of output values is as follows : invoice details comprising the invoice number,
the customer's name, the customer's address, the item ordered, the quantity ordered,
tibe price of the item, and the balance due; stock reorder details comprising the item
being reordered, and the quantity being reordered.

1.4.3.2 Build the Data Flow Diagram

The data flow diagram shows how each output value is computed from input values.
These input and output values cross the boundary of the data flow diagram, as the
input values originate with external actors, and the output values are consumed by
external actors. Thus for the simple order processing system, there are two external
actors, the customer and the supplier, as they are the net originators and receivers of
system data, and are responsible for driving the data flow diagram

The body ofthe data flow diagram s filled in by tracing the input values forward from
the external sources, and determining the transformations that the data must undergo
before it is consumed by external sinks. In the order processing system, six important
transformations of data can be identified :

41

Chapter J : Introduction to OMT

Fig 1.39 Functional Model

Dataflow key :

order - order no, customer's name and address, item and quantity ordered.
order_authorization_request - item and quantity ordered.
order_authorization_response -yes or no, dependent on stock availability.
shipment_confirmation - order no, name, address, item and quantity.
stock_reorder - item and quantity requiredfrom supplier.

delivery_advice - item and quantity receivedfrom supplier,

invoice - invoice no, name, address, item, quantity, price, balance,
payment - invoice no and amount tendered.

The processes in the (Level 1) data flow diagram are not atomic processes, and hence
each ofthese processes can be further refined as a (Level 2) data flow diagram.
However since the processes in this example are not complex, the refinement of each
process can be performed as part of the next step in the construction ofthe functional
model.

42

Chapter 1 : Introduction to OMT

1.4.3.3 Describe Functions

Six important functions have been identified from the data flow diagram, and each of
these is described below. Each ofthese functions wilU map into methods of the
company class in the object model, and each in turn will invoke methods of the order,
invoice and stockitem classes.

* The take_order process reads in the details of the order from the customer,
creates a new order using the order::order() method, and updates the orders file
with the new order using the company::put_orderQ method.

* The authorize&deplete_stock_levels process reads the ordered stockitem from
the stock file using the company::getjtockitemO method and then reads the
stock level of this stockitem using the stockitem::get stock_levelQ method. If
sufficient stock exists to fill the quantity of the current order, read using the
order::get_gtyO method, it updates the authorization ofthe order (granted) in the
orders file using the order::change_authorization() method, and decreases the
stock level of that stockitem in the stock file, by the quantity on the order, using
the stockitem::dec_stockJevel(Q method. If this depletion of stock caused the
stock level to fall below the safety stock level, read using the
stockitem:;get_safetyJevelQ method, then the stockitem is reordered using the
stockitem::reorder0 method. Ifinsufficient stock exists to fill the order, it updates
the authorization of the order (denied) in the orders file using the
order:. change authorizationO method, and issues a stock reorder to the supplier
using the stockitem: -.reorder0 method.

» Theprepare&dispatch_order process reads the authorization of the current order
using the order: :getjmthorizationQ method. Ifthe order has been authorized, it
updates the status of the order to shipping using the order::change_statusQ)
method, otherwise it updates the status of the order to outstanding also using the
order::change_status() method, and finally replaces the updated order in the
orders file using the company::put_orderQ method.

* The issue_invoice process reads the details of the current order using the
order::get_order_noQ, order::get custjiameQ, order::get_cust_addrQ, order::
getJtemQ, order::get_qtyO methods. It then reads the stockitem on the order
from the stock file using the company::get_stockitemQ method, and reads the
price of this stockitem using the stockitem::get_priceQ method.

43

Chapter 1 : Introduction to OMT

It then creates an invoice for the order using the invoice::invoiceQ method, stores
this new invoice in the invoice file using the company::putJnvoiceQ) method, and
finally the invoice is sent to the customer.

» The accept_payment process reads in the number of the invoice being paid, and
the amount of the payment from the customer, then reads the corresponding
invoice from the invoices file using the company::getJnvoiceQ method. It then
reads the balance due on the invoice using the invoice:get balanceQ method,
determines the new status of the invoice (paid or part-paid), and updates the
status of the invoice using the invoice::change_statusQ method, and the balance
of the invoice using the invoice::change_balance() method. Finally it replaces the
updates invoice in the invoices file using the company::putJnvoiceQ method.

» The replenish_stockJevels process reads in the stocldtem being delivered and the
guantity of that stocldtem being delivered, then reads the corresponding stocldtem
from the stock file using the company::get stockitemQ method. It the updates the
stock level of the corresponding stocldtem using the stockitem: :inc_stockJevelQ
method, and finally replaces the updated stockitem in the stock file using the
company:put stockitemQ method.

1.5 Chapter Summary

This chapter has introduced Rumbaugh’s Object Modeling Technique (OMT), by
describing each of the different models : object; dynamic; and functional; in terms of
their purpose, and the notation which is used to construct each of them A simple
illustrated example was used to show how each of these separate models is
constructed in a step-by-step manner.

44

Chapter 2 : The Problems Associated with OMT Integration and Consistency

Chapter 2

The Problems Associated with OMT
Integration and Consistency

2.1 Overview

The primary strength of the OMT methodology is that it allows a complete
specification of a system, covering it's static structure, dynamic behaviour and
functionality. Each of the three models employed to abstract a specific view of the
system, uses a concise and understandable notation, and thus each model can be
appreciated to alarge extent on its own merit.

However, the diversity present in the OMT methodology is also paradoxically it's
major weakness. Each model is developed more or less independently, and the inter-
relationships between the three models are not explicit, resulting in a lack of
integration, and subsequent lack of consistency between the object, dynamic and
functional models, thus making it difficult to get the overall picture.

The two primary reasons for the unsatisfactory level of integration and consistency
are significantly inter-related to each other. To considerably improve to the
completeness of the OMT models, both of these problems need to be understood and
redressed :

« Weakfunctional model

The functional model is ostensibly the weakest of the three models, to the extent
that some users of OMT prefer to omit the model entirely [Coleman, '94], This
weakness is a direct result of the mismatch caused by using data flow diagrams to
model object-oriented functionality. In addition, this mismatch results in tenuous
links from the functional model to the other two models, and hence difficulties
arise with the integration ofthe three OMT models.

45

Chapter 2 : The Problems Associated with OMT Integration and Consistency

* Inadequate inter-model relationships

The relationship between the three OMT models is not well-defined, and is not
supported by concrete steps in the methodology. It is thus difficult to recognise
how the separate models integrate together, and furthermore it is not easy to
check the models for consistency with one another. There is little doubt that the
weakness ofthe functional model contributes to this problem.

Both ofthese points are discussed in detail below

2.2 Weak Functional Model

The functional model is primarily concerned with the transformational aspects of a
system. It's purpose is to show how the input values of a system are transformed via
operations, into the output values of a system, and to describe these operations which
transform the system, in terms of what each operation does and how each operation
works.

Published researchers in the area of object-oriented analysis and design, such as
D'Souza [D’Souza, ’93, ‘94-1, 94-2, ‘95], Coleman [Coleman, ‘94], and Monarchi
[Monarchi, ‘92], whose work is presented in the following sections, agree that the
functional model has failed in it's purpose, since a DFD is a poor medium to illustrate
the transformations of an object-oriented system. Even Rumbaugh himselfis currently
working on a second generation OMT methodology, where the approach to the
functional model is a major departure from the conventional use of DFDs
[Rumbaugh, "95-3],

There is little doubt that the weakness of the functional model lies in the unsuitability
of using DFDs for designing systems of interacting objects [D'Souza, '93], since
DFDs are organized around processes and not around objects. DFDs primarily detail
the behaviour of processes and the flow of information between these processes. As
such these diagrams are best suited to the modeling of systems which have strong
functional emphasis, and which will subsequently be implemented using functional
languages (3GLs) such as C, Pascal etc.

46

Chapter 2 : The Problems Associated with OMT Integration and Consistency

These traditional functional languages were found to be inadequate for implementing
complex systems, so a revolutionary object-oriented approach was developed which
was very different in implementation from its 3GL predecessor. Since the functional
paradigm and the object-oriented paradigm are intrinsically different, should it not
follow that the analysis and design tools for these distinct paradigms should also be as
different to each other as the programming languages which implement them ? Why
use afunction-oriented DFD to model an object-oriented system ?

Obviously DFDs are well-suited to modeling function-oriented systems, however a
large gap exists between the functional paradigm and the object-oriented paradigm,
which means that DFDs cannot adequately model an object-oriented system This
point is discussed below by highlighting the contrast between the functional paradigm
and the object-oriented paradigm in terms of decomposition; granularity; data access;
interaction and mapping, and the failure of DFDs to adequately represent an object-
oriented system in each of these categories.

2.2.1 Decomposition

Decomposition refers to the criteria used to abstract the fundamental aspects from a
problem Object-oriented decomposition breaks the system down into objects, where
each object encapsulates both data and methods, whereas functional decomposition
breaks the system down into functions and sub functions.

Although the data flow approach and the object-oriented approach both concentrate
on the data within a system, the data flow approach has more in common with
functional decomposition than object-oriented decomposition, and thus is not suited
to the latter methodology.

There are three points which illustrate this unsuitability :

e A DFD is most commonly used as a systems-modeling tool for operational
systems, in which the functions of the system are of paramount importance and
more complex than the data that the system manipulates [Yourdon, ’89], Within
an object-oriented system the data is of prime importance. Abstraction of the
fundamental data items reduces the complexity of the system, and hence the
functions can often be trivial, merely accessing and updating this fundamental
data.

47

Chapter 2 : The Problems Associated with OMT Integration and Consistency

 The DFD gives weak emphasis to the data store. DFDs are not very helpful for
systems that primarily update and retrieve data [Coad. '90], However there is
heavy updating and retrieval of data in an object-oriented system, because each
object operates like a data store, as it has it's own data, and methods to access
that data. Thus if data flow diagrams are inadequate for systems with heavy data
access, it follows that they are more inadequate for object-oriented ones.

 DFDs still have strong functional emphasis [Coad, '90], These diagrams are
constructed by first thinking about inputs and outputs, and then putting input data
through a sequence of transformations, until output data is achieved, and as such
are more applicable to a functional decomposition methodology, than an object-
oriented one.

2.2.2 Granularity

Granularity refers to the level of abstraction of the model. The functional paradigm
adopts a top-down approach to abstracting the fundamental aspects of a system It
focuses on the overall function of the system, expanding and refining this function
step-by-step, thus moving from the general to the specific.

The object-oriented paradigm is a bottom-up approach, where the details of each
object class are defined first, and only then are these classes organized into a
hierarchy by using inheritance and association, thus moving from the specific to the
general.

DFDs use the top-down approach, beginning with a very general context diagram,
which is expanded level by level until functional primitives are achieved in each level
of the diagram The main problem with using DFDs is that it makes it difficult to
place the functional model in the same granularity context as the existing object and
dynamic models, as it is not developed bottom-up on a class-by-class basis. Thus the
three models represent different abstraction levels : the object model depicts micro-
level structure; the dynamic model portrays micro-level states and transitions; but the
functional model describes macro-level functionality. The diverse levels of granularity
make it difficult to integrate or synthesize the separate models [Monarchi, 92],

48

Chapter 2 : The ProblemsAssociated with OMT Integration and Consistency

2.2.3 Data Access

Data access refers to what parts of the system can read or write the data, and the
restrictions (if any) imposed on the access of that data. The main principle behind
functional programming is to declare variables locally within a function, and to pass
them either by value or by reference to other functions. As such data access is
unrestricted because it can be passed into functions throughout the program, and
furthermore it can be somehow transformed by these functions.

However the main principle behind object-oriented programming is to encapsulate
data and the functions which operate on that data (methods), within an object. Data
access is restricted in an object-oriented environment as only those methods
contained within an object, are allowed to access the data contained within the object.

As DFDs are organized around processes and not around objects, it becomes difficult
to determine which data belongs to which objects, because what the system does is
divorced from what objects it does it to. Therefore DFDs are an acceptable medium
to illustrate the unrestricted data access of functional programming, but an

unsatisfactory one to portray the restricted data access of object-oriented
programming

2.2.4 Interaction

Interaction refers to the mechanism by which the constituent parts of a system
communicate with each other to make the system work. In a functional environment,
it is the functions which interact, by means of a function-invoking mechanism
whereby functions call other functions and pass data to one another. However in an
object-oriented environment, it is the objects and not the methods (functions which
operate on data) which interact.

Objects interact by means of a messaging mechanism, the requesting object must send
amessage to the object whose data it requires, the receiving object invokes a method
which retrieves the requested data and passes it to the requesting object. But this is
only a copy of the data (similar to call-by-value), to change the value of the data
(similar to call-by-reference), the requesting object must send a message to the object
whose data it requires to change, and the receiving object invokes a method which
changes the value ofthe requested data [Wirfs-Brock, "90],

49

Chapter 2 : The Problems Associated with OMT Integration and Consistency

Furthermore data does not need to be passed between methods of the same object,
rather it moves seamlessly between methods, because all methods have access to their
object’s data.

As DFDs only show the movement of data within a system, they cannot fully illustrate
the interaction which takes place within an object-oriented system, because object
interaction by means of the messaging mechanism does not always involve an
exchange of data. This point is further illustrated by the variance between the
function-oriented DFD in figure 2.2.5.1 and the object-oriented DFD in figure 2.2.5.2

2.2.5 Mapping

Mapping refers to the ease or difficulty of the transition from analysis to design and
implementation, it's a measure ofhow appropriate the model was for the design ofthe
system Although a model should be free from implementation detail, it should lend
itselfwell to it's implementation. For example, when designing a real-time system, a
petri-net would be more appropriate than a structure chart. There is growing evidence
in literature and from a recent panel discussion at the OOPSLA/ECOOP '90
conference that structured analysis cannot be used effectively when subsequent design
and implementation is to be done in an object-oriented manner [de Champeaux, 92].
This is largely due to the incompatibility between the functional and object-oriented
paradigms, as the movement from DFDs to object-oriented representation is not only
radical, but abrupt and disjoint [Coad, 91-2], thus causing transitional difficulties
from functional analysis to object-oriented design. With this in mind, it seems
incongruent that one third of the OMT methodology is modeled using structured
analysis techniques. Although it is possible to model an object-oriented system using a
DFD, the resulting DFD lacks the expressive power of a DFD modeling the same
system but from a function-oriented point ofview. This is because DFDs cannot fully
represent the object-oriented paradigm, in the same way as they can frilly represent
the functional paradigm

Furthermore, when DFDs are applied as tools for functional modeling, they lend
themselves well to almost trivial mapping from the model to the code in the case of
3GL's like C. For example, each process in the DFD will map into a function, each
data flow will map into a parameter list to a function or a return value from a
function, each data store will map into a file, and each actor will map into a source of
input and output. Thus, the DFD is a very useful model for a function-oriented

50

Chapter 2 : The Problems Associated with OMT Integration and Consistency

system, since the potential run-time behaviour of the system is easily visible, which is
an aid for eventual design and implementation. However when DFDs are applied as
tools for object-oriented modeling, there is no such trivial mapping from the model to
the code in the case of object-oriented langauges such as C++, primarily because the
DFD is not organized around objects. Thus, the DFD is not a useful model for an
object-oriented system, since there is a lack of visibility of the potential run-time
behaviour of the system, and hence it does not greatly aid eventual design and
implementation of the system An appropriate model is particularly relevant to OMT
because there are no design models in OMT. Hence design is essentially a process of
coding the analysis models, and the large gap between analysis and code can make
this a daunting task [Coleman, 94],

To illustrate these points, outlined below is a simple DFD for an order processing
system Figure 2.1 details the flow of data in a function-oriented environment, and
proposes a mapping to it's implementation in the form of sample code for C, while

Figure 2.2 details the flow of data in an object-oriented environment, and proposes a
mapping to it's implementation in the form of sample code for C++.

2.2.5.1 DFD representation of a function-oriented system

Fig 2.1 Function-Oriented DFD

51

Chapter 2 : The Problems Associated with OMTIntegration and Consistency

Dataflow key:

order - order no, customer's name and address, item and quantity ordered.
order_authorization_request - item and quantity ordered
order_authorization_response -yes or no, dependent on stock availability.
shipment_confirmation - order no, name, address, item and quantity.
stock_reorder - item and quantity requiredfrom supplier.

delivery_advice - item and quantity receivedfrom supplier,

invoice - invoice no, name, address, item, quantity, price, balance,
payment - invoice no and amount tendered.

2.2.5.1.1 Structures

In order to implement the above DFD in C, two structures need to be declared - an
order structure to hold details of the order, and an invoice structure to hold details of

the invoice.
struct order { struct invoice {
int order_no; int invoice_no;
char cust_name[20]; char cust_name[20];
char cust_addr[20]; char cust_addr[20];
char status[15]; char status[10];
int item; int item;
int qty; int qty;
} float balance;

}

In addition there are three arrays - stock_level[20], which holds the on-hand stock
quantity of each of the 20 stock items that this company supplies; safety level[20]
which holds the safety stock quantity of each of the 20 stock items, once the stock
level of any item falls below its pre-defined safety level, it is re-ordered; and price[20]
which holds the price of each of the 20 stock items.

int stock_level[20];

int safety_level[20];
float price[20];

52

Chapter 2 : The Problems Associated with OMT Integration and Consistency

The orders file and the invoices file are implemented as arrays : orders_file[100] and
invoices_file[100], each holding 100 items numbered from 0 to 99 and in direct
correspondence with each other (i.e. invoice #50 belongs to order #50).

struct order *orders_file[100];
struct invoice *invoices_file[100];

2.2.5.1.2 Functions

* The take_order process reads in the details of the order from the customer,
assigns the order an order number, and updates the orders file with the new order.

void take_order()

{
struct order *new_order;

new_order = new(order);
scanf(*'%d",order->order_no);
gets(order->cust_name);
gets(order->cust_addr);
strcpy(order->status, *'Pending™);
scanf(*'%d"",order->item);
scanf(*'%d"" ,order->qty);

orders_file[order->order_no] = new_order;

» The prepare&dispatchorder process reads the next order which has yet to be
shipped from the orders file, and looks for authorization to prepare the order by
sending an order authorization request to the stores. This request consists of the
item on the order and the quantity ofthat item required to fill the order. If stock is
available to fill the order, authorization is granted, the order status is updated to
shipping and an invoice is issued. If stock is not available to fill the order,
authorization is refused, and the order status is updated to outstanding, until the
required stock is received from the supplier. The new status of the order is
rewritten back to the orders file.

53

Chapter 2 : The ProblemsAssociated with OMT Integration and Consistency

(It is assumed that there will always exist at least one order which has yet to be
shipped, and that the delivery time for an out-of-stock item to arrive from the
supplier is insubstantial, hence if the status of an order is updated to outstanding
due to insufficient on-hand stock, then the stock will have arrived from the
supplier by the next time this order is designated as the current order.)

void prepare&dispatch_order(struct order *curr_order)
{
int authorized,;
authorized = authorize&deplete_stock_levels(curr_order->item, curr_order->qty);

if (authorized = YES)
{
strepy(curr_order->status,"*Shipping™);
issue_invoice(curr_order);
}

else
strepy(curr_order->status,Outstanding™);

orders_file[curr_order->order_no] = curr_order;

* The authorize&deplete_stock_levels process checks the stock level of the item
requested to see if the required quantity is available. 1f so, the stock level for that
item is reduced by that quantity, and if the resulting stock level is below the safety
level then a standard quantity is reordered, and finally authorization is granted. If
the required quantity is not available, a standard quantity is reordered and
authorization is refused. (It is assumed that the standard quantity reordered is
large enough to fill any outstanding order).

int authorize&deplete_stock_levels(int item, int qty)

{
if (stock_level[item] >= qty)

{

stock_level[item] = stock_level[item] - qty;

if (stock_level[item] < safety level[item])
reorder(item);

54

Chapter 2 : The ProblemsAssociated with OMT Integration and Consistency

return YES;

}
else

{
reorder(item);

return NO;
}

* The issue invoice process takes in the order details in the form of a shipment
confirmation, and creates an invoice for the order, and stores this new invoice in
the invoice file.

void issue_invoice(struct order *curr_order)

{
struct invoice *new_invoice;
new_invoice - new(invoice);
strcpy(new_invoice->invoice_no,curr_order->order_no);
strcpy(new_invoice->cust_name, curr_order->cust_name);
strcpy(new_invoice->cust_addr,curr_order->cust_addr);
strcpy(new_invoice->status, "'Unpaid™);
new_invoice->item = curr_order->item;
new_invoice->qty = curr_order->qty;
new_invoice->balance = price[new_invoice->item] * new_invoice->qty;
invoices_file[new_invoice->invoice_no] = newinvoice;

}

» The accept_payment process takes in the order number of the invoice being paid
and extracts the appropriate invoice from the invoice file. 1fthe amount being paid
is equal to the balance on the invoice then the invoice is marked as paid and the
balance is cleared. Ifthe amount being paid is less than the balance on the invoice
then the balance is reduced by that amount, and the status of the invoice remains
as unpaid. (It is assumed that no customer will pay more than the balance on the
invoice).

55

Chapter 2 : The Problems Associated with OMT Integration and Consistency

void acceptjpayment(int invoice_no, float amount)
{

struct invoice *curr_invoice;

curr_invoice = invoices_file[invoice_no];

if (amount = curr_invoice->balance)
strcpy(curr_invoice->status, ""Paid™);
curr_invoice->balance = curr invoice->balance - amount;

invoices_file[invoice_no] = currinvoice;

» The replenish_stock_levels process is invoked when a delivery is received from
the supplier. The delivery advice consists of the item being delivered and the
guantity of that item being delivered. The stock level for the relevant item is
increased by the relevant quantity.

void replenish_stock_levels(int item, int qty)

{
stock_level[item] = stock_level[item] + qty;

2.1.5.2 DFD representation of an object-oriented system

The flow of data on the object-oriented DFD [Figure 2.1] is different from the flow of
data on the function-oriented DFD [Figure 2.2], for example, the flow of data to the
orders file and the flow of data from the orders file has changed, as well as the flow of
data between the four processes which access the orders file.

In addition the mapping from the object-oriented DFD to its implementation, is not as
smooth as the mapping from the function-oriented DFD to its implementation. This is
because data flow diagrams cannot represent the object-oriented paradigm as
completely as they can represent the functional paradigm

56

Chapter 2 : The ProblemsAssociated with OMT Integration and Consistency

The differences between the object-oriented DFD and the function-oriented DFD are
discussed below in terms of the structures and functions required to implement this
system using an object-oriented language (C++) as opposed to the previous C
implementation, and furthermore, the inadequacy of the DFD is also discussed in
terms of its inability to sufficiently represent these structures, functions and the
interaction between them beyond atrivial level.

Fig 2.2 Object-Oriented DFD

2.2.5.2.1 Structures

Firstly, the classes of the system are not abundantly clear from the DFD. Obviously
there is an order class and an invoice class, which coincides with the structures in the
C implementation. However, stockitem is also a class, as it contains the stock level,
safety stock level, and price of the stockitem along with methods to access this data.
Therefore in this C++ implementation there will be a uniform interface when updating
stock levels, in contrast to the C implementation where the stocklevel, safetylevel and
price arrays could be updated by many processes.

57

Chapter 2 : The ProblemsAssociated with OMT Integration and Consistency

A more subtle class is the company itself® whose data is the orders, invoices and
stock, and whose methods are the DFD processes, which in turn call methods of the
other sub-ordinate classes, as well as methods for accessing and updating the orders
file, invoices file and stock file.

There is also the problem of phantom classes. It would appear from the DFD that
both customer and supplier should also be classes, but they merely provide the input
and output of the system, and within the context of this example, they do not process
any data they provide.

The classes are as follows :

class order {
private :
int orderno;
char cust_name[20];
char cust_addr[20];
int item;
intqty;
char status[15];
int authorized,;
public :
order(int new order no, char *new_cust_name, char *new_cust addr,
int item, int qty);
int get_order_no();
char *get_cust_name();
char *get_cust_addr();
int get_item();
int get_qty();
char *get_status();
int get_authorization();
void change_status(char *new_status);
void change_authorization(int new_authorization);

b

58

Chapter 2 : The Problems Associated with OMT Integration and Consistency

class invoice {
private :
int invoice no;
char cust_name[20];
char cust_addr[20];
int item;
int gty;
float balance;
char status[10];
public :
invoice(int new_invoice_no, char *new_cust_name, char *new_cust_addr,
int item, int gty);
float get_balance();
char *get_status();
void change_balance(float amount);
void change_status(char *new_status);

b

class stockitem {
private :
int stockitem_no;
int stock_level;
int safety level;
float price;
public :
stockitem(int new stockitem_no, int new_stock_level, int new_safety level,
float new_price);
int get_stockitem_no();
int get_stock_level();
int get_safety level();
float get_price();
void inc_stock_level(int qty);
void dec_stock_level(int qgty);
void change_safety level(int new safety level);
void change_price(float new_price);
void reorder();

b

59

Chapter 2 : The Problems Associated with OMT Integration and Consistency

class company {
private :
order *orders_file[100];
invoice *invoices_file[100];
stockitem *stock_file[20];
public :
order *curr_order;
invoice *curr_invoice;
stockitem *curr_stockitem;
company();
order *get_order(order_no);
invoice *get_invoice(invoice_no);
stockitem *get_stockitem(stockitem_no);
void put_order(order *curr_order);
void put_invoice(invoice *curr_invoice);
void put_stockitem(stockitem *curr_stockitem);
void take_order();
void prepare&dispatch_order();
void authorize&depletestocklevelsQ;
void issue_invoice();
void accept_payment(int invoice_no, float amount);
void replenish_stock_levels(int item, int qty);

b

2.2.5.2.2 Functions

Secondly, not only are there more structures identified by using the object-oriented
approach, but there are also more functions. This is because each piece of data within
an object must have a method to access it. More noticeable than the increased number
of functions is that the interfaces to the processes in the DFD have changed
dramatically. This is due to the fact that these processes are methods of the company
object, and a such each of these methods has access to the company’s data, and hence
this data needs no longer to be passed between the processes. This is particularly
noticeable between the four processes : take order, prepare&dispatchorder,
authorize&deplete_stock,Jevels and issue invoice, which all access the data of the
order object.

60

Chapter 2 : The Problems Associated with OMT Integration and Consistency

The resulting sample C++ code is quite different from the sample C code outlined
earlier, and these differences are outlined in points underneath each process. Due to
the variance between the C and C++ implementations, and in particular the variance
between the nature of the data flows in both cases, it is clear that the DFD is more
than adequate for a function-oriented C implementation, but is less than ideal for an
object-oriented C++ implementation.

Each of the objects described above has a constructor method which creates an
instance ofthe object. The constructors for the above objects are as follows :

order::order(int new_order_no, char *new_cust_name, char *new_cust_addr,
int newitem, int newqty)

orderno = new_order_no;
strcpy(cust_name, new cust name);
strcpy(cust_addr, new_cust_addr);
strcpy(status, *"Pending™);

item = new_item;

gty = new_qty;

authorized = NO;

invoice::invoice(int new_invoice_no, char *new_cust_name,
char* newcustaddr, int new item, int new_qty,
float new_price)

invoiceno = new invoice no;
strcpy(cust_name,new_cust_name);
strcpy(cust_addr,new_cust_addr);
strcpy(status, "'Unpaid™);

item = new_item;

qty = new_qty,

price = new_price;

balance = price * qty;

61

Chapter 2 : The Problems Associated with OMT Integration and Consistency

stockitem::stockitem(int new_stockitem_no, int new_stock_level,
int new_safety_level, float new_price)

stoddtem no - new_stockitem_no;
stock_level = new_stock_level;
safety_level = new_safety_level;
price = new_price;

company: :companyQ
{
for(int i=0; i<100; i++)
orders_file[i] = (orders *) NULL,;

for(i=0; i<100; i++)
iavoices_file[i] = (invoices *) NULL;

for(inti =0; i<20; i++)
stock_file[i] = new stockitem(i, 1000, 100, 10.00);

Each of the processes still has the same functionality and purpose, but the way in
which the process is implemented has changed :

void company: :take_orderQ
{
int new_order_no, new_item, new_qty;
char new_cust_name[20], new_cust_addr[20];

cin.get(neworderno);
cin.get(new_cust_name);
cin.get(new_cust_addr);
cin.get(new_item);
cin.get(new_qty);

62

Chapter 2 : The Problems Associated with OAFT Integration and Consistency

currorder = new order(new_order_no, new_cust_name, new_cust_addr,
new_item, new_qty);
put_order(curr_order);

The differences between the C and C++ implementations of the take_order process
are as follows :

* A new object oftype order is created instead of a structure oftype order.

» The orders file is no longer directly accessible to this process, instead the new
order must be inserted into the orders file using theput_orderQ method.

void company: :prepare&dispatch_order()

{
authorize&deplete_stock_levels();

if (curr_order->get_authorization() = YES)
{
cmr_order->change_status(”’Shipping™);
issue_invoice();
}

else
curr_order->change_status("‘Outstanding™);

put_order(curr_order);
The differences between the implementations of the prepare&dispatch_order process
are as follows :

* This process has direct access to the current order, thus it is no longer necessary
to pass the order as a parameter to this process.

* The order authorization request which consisted of the item and quantity on the

current order, no longer needs to be passed to the authorizeg¢deplete
stockJevelsQ process, because the process has direct access the current order.

63

Chapter 2 : The Problems Associated with OMT Integration and Consistency

Authorization has been implemented as a data item within the order object, thus
to check the authorization for a particular order, the get_authorization() method
must be invoked.

Also, the status of the order can no longer be updated directly, instead the
change_status() method must be invoked to alter the status of the order.

Similarly this process no longer has direct access to the orders file, instead the
current order must be updated in the orders file using theput_orderQ method.

void company::authorize&deplete_stock_levels()

{

curr_stockitem = get_stockitem(curr_order->get_item());

if (curr_stockitem->get_stock level() >= curr_order->get_qty())
{
curr_order->change_authorization(YES);
curr_stockitem->dec_stock_level(curr_order->get_qty());
if (curr_stockitem->get_stock_level() < curr_stockitem->get_safety level())
curr_stockitem->reorder();

}
else

{
curr_order->change_authorization(NO);

curr_stockitem->reorder();

}

put_stockitem(curr_stockitem);

Differences between the implementations of the authorize &deplete_stock levels
process are as follows :

This process has direct access to the current order, thus it is no longer necessary
to pass the order authorization request consisting of the item and quantity on the
order as parameters to this process.

64

Chapter 2 : The Problems Associated with OMT Integration and Consistency

» The stock levels and safety levels of the various stock items can no longer be
accessed or updated directly, instead methods to perform these actions are
invoked.

» Similarly the stock file is no longer directly accessible to this process, instead the
stockitem on the current order must be retrieved using the get_stockitemQ
method, and updated using the put_stockitemQ method.

* Due to the fact that the authorization is now a part of the order object, it can be
updated within this process by invoking the change_authorizationQ method, and
hence an order authorization response is no longer returned from this process.

void company::issue_invoice()

{
int new order no, newitem, new_qty, new_price;
char new_cust_name[20], char new_cust_addr[20];

newinvoiceno = curr_order->get_order_no();
new_cust_name = curr_order->get_cust_name();
new_cust_addr = curr_order->get_cust_addr();
newitem = curr_order->get_item();

new_qty = curr_order->get_qty();

curr_stockitem = get_stockitem(curr_order->get_item());
new_price = curr_stockitem->get_price();

curr invoice =new invoice(new_invoice_no, new_cust_name, new_cust_addr,
new item, new qty, new_price);
put_invoice(curr_invoice);

Differences between the implementations of the issue invoice process are as follows :

» This process has direct access to the current order, and so the details of the order
as per shipment confirmation need no longer be passed into this process.

65

Chapter 2 : The Problems Associated with OMT Integration and Consistency

* Invoice details are read directly from the current order as in the previous
implementation, but a new invoice object is created instead of a invoice structure.

» The invoices file is no longer directly accessible by this process, instead the new
invoice must be inserted into the invoices file using the putjnvoiceQ method.

void company::accept_payment(mt invoicejao, float amount)

{
currinvoice = getinvoice(invoiceno);

if (amount = curr_invoice->get_balance())
curr_invoice->change_status(*'Paid™);
else
cuTT _invoice->change_status(,Part-Paid™);
curr_invoice->change_balance(amount);
put_invoice(curr_invoice);

Differences between the implementations ofthe accept_payment process are
as follows :

» The invoices file is no longer directly accessible, instead it must be accessed
through the get_invoice() method and updated through the putjnvoiceQ) method.

» The balance on the invoice can no longer be accessed or updated directly, instead
the getjbalanceQ and changeJbalanceQ methods must be invoked, and passed

the appropriate information (if any).

» Similarly, the status of the invoice can't be updated directly. The new status is
passed as a parameter to the change_statusQ method ofthe invoice object.

66

Chapter 2 : The Problems Associated with OMT Integration and Consistency

void company::replenish_stock_levels(int item, int qty)
{
curr_stockitem = get_stockitem(item);
curr_stockitem->inc_stock_level(qty);
put_stockitem(curr_stockitem);

Differences between the implementations ofthe replenish_stock_levels process are
as follows :

» Firstly the stock file is no longer directly accessible, instead it must be accessed
using the get_stockitem() method and updated using theput_stockitem() method.

» Similarly the stock levels cannot be increased directly, instead the quantity of the
stock item delivered as per delivery advice, is passed to the inc_stock levelQ
method, which then increases the stock level of the item by the appropriate
amount.

2.3 Inadequate Inter-Model Relationships

As each of the three models; object, dynamic and functional, is developed more or
less independently, explicit well-defined instructions are incorporated into the
methodology to guide the developer in this task, and comprehensive examples
detailing how to build each of the individual models are available. However, as each
ofthese models represents a different view of the system, they need to be integrated
together in order to get the overall picture.

Unfortunately the integration of the models is not as straight-forward as the
compilation of the models. A major problem is mapping the data flow processes from
the functional model, and the events and activities from the dynamic model into
behaviour of particular objects in the object model [Monarchi, '92]. There are a
number of reasons for the difficulty of the integration process, each of which stems
from the inadequacy of the inter-model relationships as defined by Rumbaugh. In my
opinion these relationships are poorly defined, supported, reconciled, and illustrated,
and each of these points is discussed below.

67

Chapter 2 : The ProblemsAssociated with OMT Integration and Consistency

2.3.1 Poorly Defined Relationships

The relationship between the three models as published by Rumbaugh in the book
""Object-Oriented Modeling and Design', is not well-defined [D'Souza, '93], A terse
description of the inter-model relationships is briefly explained at various points in the
book but the relationship is never fully expanded and developed. This results in the
relationships between the models being open to various interpretations, particularly in
the case ofthe poorer links from the functional model to the other two models.

The basic relationship as outlined by Rumbaugh consists of three couplings between
the object, dynamic and functional models, detailing three bi-directional integrations.
The couplings are as follows :

» Relationship between the Object & Dynamic Models

The object model describes the structure of objects in a system - their attributes,
operations and relationships to other objects. Objects with common structure and
behaviour are organized into classes, which are then associated with other classes.
Each class in the object model which has non-trivial dynamic behaviour, is
represented in the dynamic model by a state diagram, which shows the state and
event sequences permitted in a system for that class of objects. In this way each
state diagram describes the life history of an object.

While the object model describes the structure of the objects and the nature of
their inter-relationships, the dynamic model is concerned with changes to the
objects and their relationships over time. States in the state diagram are
abstractions of the attribute values and links of an object. Transitions between
states, caused by events, involve a change in the state of the object, thus each
event received by an object can be associated with an operation on that object.
Similarly, an event sent by an object is represented by an operation on another
object.

68

Chapter 2 : The Problems Associated with OMT Integration and Consistency

* Relationship between the Dynamic & Functional Models

In the dynamic model, actions are associated with events and activities are
associated with states. Actions and activities in state diagrams correspond to
functions in the functional model, where a function can be thought of as logical
group of processes, and hence each action or activity in the dynamic model may
expand into an entire data flow diagram.

* Relationship between the Object & Functional Models

In the functional model, the network of processes within the data flow diagram
represents the body of an operation. The flows in the diagram are intermediate
values in the operation, and the processes in the data flow diagram constitute sub-
operations. Often there is a direct correspondence at each level of nesting. A top-
level process corresponds to an operation on a complex object, and lower level
processes correspond to operations on more basic objects that are part of the
complex object or that implement it. [See Figure 2.2] Sometimes one process
corresponds to several operations, and sometimes one operation corresponds to
several processes.

A fairly strong integration link exists between the object and dynamic models, as there
exists a separate state diagram for each class with non-trivial dynamic behaviour, thus
both models co-exist on the same level of granularity. However, it is obvious that the
integration links between the object and functional models, and the dynamic and
functional models, are not as clear. A major reason for the tenuosity of the links to
the functional model is the difficulty of mapping concepts between a network of
processes, and objects existing in a real world system There are at least three reasons
for this difficulty : firstly, since a processes’ main connection to a real-world system is
through a process name describing a system operation, it is not obvious how the
processes relate to real world objects; secondly, most processes associate with
multiple system objects; and thirdly, states of system objects, and relationships among
objects, are buried within the process network and scattered among the processing
details [Embley 92],

69

Chapter 2 : The Problems Associated with OMT Integration and Consistency

Rumbaugh maintains that operations in the object model and actions in the dynamic
model correspond to functions in the functional model. However since a function can
embody many processes and data flows, and each process can reference many objects,
there is no direct coherent link between the three models at the same level of
granularity. There is little doubt that the incongruency of the functional model (as
detailed in the first section of this chapter) is a major factor leading to the poor
integration between the functional model and the other two models. This point is
further illustrated by the example outlined in the diagram of section 2.3.4.

2.3.2 Poorly Supported Relationships

More damaging than badly defined relationships is that the integration of the models,
as outlined by the basic description, is not supported by concrete steps in the
methodology. Detailed instructions are supplied for constructing each of the
individual models, but integrating the models almost appears to be an afterthought,
implemented by a hap-hazard process of converting actions from the dynamic model
and functions from the functional model into operations in the object model

This absence of formal procedures for inter-relating the models makes it difficult to
recognise how an object, attribute or operation in the object model relates to a data
flow or process in the functional model, or to an event or state in the dynamic modeL
[Monarchi, 92], Furthermore OMT does not pay much attention to the final
reconciliation of these operations, [livari, *95] leading to the operations not being very
consistently integrated into the static model [Eckert, '94], This point is only
mentioned here for completeness, but is further elaborated in the next section.

2.3.3 Poorly Reconciled Relationships

A major problem with OMT s that it does not provide concrete guidelines for
checking the models for consistency with one another [D'Souza, '94-2], Aspects of
functionality are identified in all modeling perspectives, operations in object modeling,
actions and activities in dynamic modeling and functions in functional modeling. Even
though Rumbaugh outlines how to extract operations from the object models, state
diagrams and data flow diagrams, the process pays only minimal attention to possible
inconsistencies between the models and to their reconciliation. [livari, 95].

70

Chapter 2 : The Problems Associated with OMT Integration and Consistency

Integration and consistency are very closely related. It follows that if the object,
dynamic and functional models are not integrated through common structure and
behaviour, then there exists no basis by which to test the models for consistency with
each other. Obviously similar criteria must be used, both to incorporate integration
into the models and to test the models for consistency. Achieving consistency across
the models involves testing the models for anomalies. 1fno such anomalies exist then
consistency is achieved, if not, the anomalies need to be redressed.

2.3.4 Poorly Illustrated Relationships

To further compound the lack of support for the inter-model relationships there is no
fully documented and illustrated example in the book which explicitly shows how to
integrate and reconcile the models to each other. The case studies given seem to
adopt a fait-accompli approach, never explaining the intermediary steps on the road
to integration. Furthermore, these examples of so-called integrated object, dynamic
and functional models neither appear to be complete nor consistently integrated.

To illustrate this point, outlined below is the computer animation case study from the
""Object-Oriented Modeling and Design' book by Rumbaugh [Rumbaugh, '91], This
example is typical of the other case studies detailed in the book, in that there exists a
close coupling between the object and dynamic models, but the functional model
bears little resemblance to either ofthe other two models.

By examining the three models illustrated below [Figure 2.3 - Object Model, Figure
2.4 - Dynamic Model (Scene), Figure 2.5 - Dynamic Model (Cue), Figure 2.6 -
Functional Model], it is clear that the object and dynamic models have some
appropriate points of integration. However it is also clear that the inappropriate level
of granularity of the functional model, makes it very difficult to see how the processes
and data flows of the functional model are reconciled to the operations of the object
model, or to the actions and activities of the dynamic modeL

71

Chapter 2 : The ProblemsAssociated with OMT Integration and Consistency

stari action
Sequencer _
tick action
start time)
end time end action
Scene 0- « Cue
current time
time resolution tick
start
tick
Renderer

time resolution
background color
frame counter
viewport

render

do lights
do actors
do cameras
expose

Fhigs

update actor
update camera
update light
start

frame

X

Movie byu

update actor
update camera
update light
start

frame

Transformable

object
position
orientation
scaling
translate
rotate x
rotate y
rotate z
scale
Light Camera
color focal point
intensity view up
on view angle Actor
ff clipping range
© PpINg fang visibility
on color
off on
off
Surface Geometric
property model
ambient representation
diffuse interpolation
specular open
transparenc
P y load
close
Fhigs model Movie byu model
geometry geometry

Fig 2.3 Computer Animation Object Model

72

Chapter 2 : The ProblemsAssociated with OMT Integration and Consistency

Fig 2.4 Computer Animation Dynamic Model
(State Diagram for Scene)

tick
tick [start > start time] [time > end time]
Start Tick End
.) . —5
do : start actions do :tick actions do : end actions

Fig 2.5 Computer Animation Dynamic Model
(State Diagram for Cue)

viewpoint
camera polygons
parameters transform hidden
polygons surface
to viewpoint removal
ft ool _quar|1tize ontoI
polygons |nol visible viewplane pixels
to surfaces polygons polygon
_ shaded .
lighted .polygons pixels
trace -
. parameters J= "2 \ surface shading >
Lights iehts to i
g V' polygons \ and smoothing)

Fig 2.6 Computer Animation Functional Model

73

Chapter 2 : The ProblemsAssociated with OMT Integration and Consistency

2.4 Chapter Summary

This chapter discussed a detail the two major factors which are responsible for the
unsatisfactory level of integration and consistency within the OMT methodology,
namely the weak functional model and the inadequate inter-model relationships.
These two factors are significantly related to one another since the weakness of the
functional model contributes to difficulties with the integration of the three OMT
models.

Firstly, the weakness of the functional model is a direct result of the inability of data
flow diagrams to adequately represent a system of interacting objects. It was stressed
that data flow diagrams are excellent tools for modeling systems with a strong
functional emphasis, because these diagrams can fully represent the functional
paradigm However, data flow diagrams cannot fully embrace the object-oriented
paradigm, and hence difficulties arise when modeling object-oriented systems. The
areas in which those difficulties are most noticeable, are the areas where the
functional paradigm and the object-oriented paradigm diverge, namely
decomposition; granularity; ordering; data access; interaction; control flow; and

mapping.

Secondly, the inadequacy of the inter-model relationships is due to these relationships
being poorly defined, poorly supported, poorly reconciled and poorly illustrated.
These relationships are poorly defined since they are never fully expanded and
developed; poorly supported since no procedures for integrating the models are
present in the methodology; poorly reconciled since no guidelines exist for checking
the models for consistency with each other; and poorly illustrated since there is no
fully documented and illustrated example in the book which explicitly shows how to
consistently integrate the models.

74

Chapter 3 : Proposed Solutions to Improve OMTIntegration and Consistency

Chapter 3

Proposed Solutions to Improve OMT
Integration and Consistency

3.1 Overview

The root of the unsatisfactory level of integration and consistency within the OMT
methodology has been identified as : aweak functional model, caused directly by the
unsuitability of using data flow diagrams to model the functionality of an object-
oriented system; and inadequate inter-model relationships, which are both badly
defined and unsupported by either formal steps within the methodology, or a
comprehensive illustrated example. Both ofthese shortcomings are significantly inter-
related. The weakness of the functional model results in tenuous links from the
functional model to the other two models, and causes difficulties with the integration
of the three OMT models. In addition, because it is difficult to recognise how the
separate models integrate together, it is not easy to check the three models for
consistency with one another.

Therefore, a suitable solution would be to improve the level of integration and
consistency within the OMT methodology, by redressing the weak functional model
and inadequate inter-model relationships, and by extending the methodology to
incorporate guidelines for constructing an integrated analysis model, as well as
guidelines for checking the completed model for consistency.

To this end, in the next two sections | have outlined my proposed functional model
[Section 3.2] and my proposed inter-model relationships [Section 3.3], Since both the
weak functional model and inadequate inter-model relationships are significantly
inter-related, it thus became necessary during the development of the proposed
functional model, to consider exactly how this model would integrate into
Rumbaugh's existing object and dynamic models, in order to achieve consistency
across the three OMT models. Thus, there exists a trade-off between the total
independence of the proposed functional model and a high level of integration and
consistency within the methodology.

75

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

3.2 Proposed Functional Model

The purpose of the functional model is to show how the input values of a system are
transformed via operations, into the output values of a system, and to describe these
operations which transform the system, in terms of what each operation does, and
how each operation interacts with other operations to make the system work, where
an interaction comprises any communication between operations, such as one
operation calling another operation.

As demonstrated in the previous chapter, although data flow diagrams work well in a
function-oriented environment, they are severely mismatched to an object-oriented
one, and thus are poor medium to either describe operations or to illustrate their
interaction. DFDs do not adequately describe operations since they deal with
processes not objects, and hence operations are often buried within the process
network. Furthermore DFDs do not adequately illustrate how operations interact
since they are incapable of illustrating the potential run-time behaviour of objects, and
thus the interaction between the objects within the system is never easily visible.

Therefore, it appears that a new functional model is required, which can adequately
fulfil its purpose, and which can be easily integrated into the existing object and
dynamic models. However, in my opinion, it is impossible for the functional model to
be encompassed in a single diagram This is because operations can be viewed on two
completely different levels, namely, what they do and how they work. Each viewpoint
is equally as important as the other, since both viewpoints are required to adequately
describe each operation within a system What each operation does is a black-box
viewpoint which looks at how the execution of an operation affects the values of the
objects in the system, and can be represented by describing the state of the system
before and after the execution ofthe operation, whereas how each operation works is
awhite-box viewpoint which looks at how the operation works internally, and can be
represented by describing the flow of control among sub-ordinate operations in
various objects effecting the change of state.

For these reasons, | have transformed the existing functional model from a DFD
representation, into two sub-ordinate models :

» an operation model, adapted from Coleman [Coleman, "94], which is a black-box

viewpoint describing the operations in terms of the state of the system before and
after the execution of each operation;

76

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

* an interaction model adapted from Booch [Booch, '94], which is a white box
viewpoint illustrating how the operations work internally as well as the flow of
control between operations.

3.2.1 Operation Model

The operation model introduces the concept of a system operation, which is
analogous to a process on a Level 1 DFD. System operations are top-level
operations, which either correspond to interactions between the system and the
outside world, or correspond to complex transformations of input values to output
values. Each system operation is a non-atomic operation on a complex object, which
in turn invokes other non-atomic and atomic operations on other more basic objects
which are part of the complex object, where a complex object is an object which
comprises other objects.

The operation model specifies the behaviour of system operations declaratively by
defining their effect in terms of the change of state of the system, where the state of
the system is an abstraction of the values of the objects in the system Thus an
operation can be specified by giving pre-conditions and post-conditions on its
execution. A pre-condition states assumptions on the state of the system at the
beginning of the operation, characterizing the conditions under which the operation
may be invoked. A post-condition is a description of the state of a system at the
completion of operation execution, in terms ofthe state of the system at the beginning
of operation execution. [Rumbaugh, "95-3],

The operation model is represented as a series of schemata, with each system
operation detailed on one schema. The syntax of a schema is as follows :

Operation : ClassName::OperationName
Description: Text

Reads: Items

Updates: Items

Pre-conditions: Condition

Post-conditions: Condition

The meaning of each ofthese clauses is explained below :

77

Chapter 3 : Proposed Solutions to Improve OMTIntegration and Consistency

Operation : ClassName: :OperationName

ClassName is an identifier for the class which owns the specified system operation
and OperationName is an identifier for the system operation.

Description : Text

Text is an informal and concise description ofthe operation.

Reads : Items

Items is a list of all the values that the operation may access but does not change.
Each item is the typed identifier of an object, attribute or relationship of the
system state. The keyword supplied preceding an item indicates that the identifier
is aparameter ofthe operation.

Updates : Items

Items is a list of all the values that the operation may access and change. Each
item is the typed identifier of an object, attribute or relationship of the system
state. The keyword new preceding an object identifier indicates that the system
operation creates a new object.

Pre-conditions : Condition

Condition is a predicate defining the pre-conditions which must be satisfied before
the operation can be legally invoked. The Condition can only reference parts of
the system state defined previously in Reads and Updates. The pre-condition
clause may be omitted if the operation can be legally invoked from any state.
Post-conditions : Condition

Condition is a predicate defining the post-conditions which will be satisfied after

the operation has completed. The Condition can only reference parts of the
system state defined previously in Reads and Updates.

78

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

3.2.2 Interaction Model

One object may interact with another object in a number of ways; an object may send
information to another object; an object may request information from another object;
an object may alter another object, and an object may cause another object to do
some action [de Champeaux, '93]. Objects interact with each other via messages,
where the name of the message is the name of the operation to be invoked, and like
an operation, the message may have parameters and may return a result. One object,
the client, sends a message to another object, the server, which takes control when it
receives the message, processes it, and then allows control to return to the client
[Cook, 94]. A client may send a message to many server objects, and a server may
receive a message from many clients. Thus each interaction is a triple comprising the
object which generated the message, the name of the message with any input or
output arguments, and the object which received the message [Bear, ’90], An
interaction diagram is used to illustrate the interactions between objects, which take
place within a system operation, hence the interaction model consists of an interaction
diagram for each system operation.

An interaction diagram [Booch, '94] is essentially an object diagram that shows the
sequence of messages that implement an operation. It is similar in form to an event
trace diagram, with the exception that messages are sent between objects of a
particular class instead of events. [Note : The major discriminating factor between
events and messages is that events always cause a change of state in the object to
which they are sent, whereas messages do not always cause a change of state within
the object. Hence an interaction diagram is more detailed than an event trace diagram
since it lists all messages sent between objects, and not just those messages which
cause a change of state.]

The object classes are written horizontally across the top of the diagram, and a
dashed vertical line is drawn below each class. Messages, which denote the invocation
of operations, are shown horizontally, and contain any parameters of the message.
The endpoints of the message connect with the vertical lines, thus showing the client
and server of the operation, with the direction of the arrow signifying which class is
the client and which is the server. Ordering is indicated by the vertical position, with
the first message shown at the top of the diagram, and the last message show at the
bottom, thus it is unnecessary to use sequence numbers.

79

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

Class Class Class Class
A B C D
I messagel £
| (paramsl)

* message?2
(paramsl)
messaged \
(paramsl) j
\ message 4
\ (paramsA)
B message5 !
t (paramsb) |
1 message6
\ (paramsoy 4
message’ !
(parar%,?) %
! message 8 S
(paramsS) |

Fig 3.1 Interaction Diagram (Tabular)

Instead of being drawn in tabular form, interaction diagrams can also be drawn as
directed graphs with classes as nodes and interaction connections as vertices [de
Champeaux, 93]. A connection from class A to class B, labelled with the name of a
message, means that instances of class A may communicate in the indicated fashion,
with instances of class B. However, as sequencing is no longer by vertical position, it
becomes necessary to use sequence numbers to indicate the order in which the
various messages are sent and received by the objects.

message4
(params4)

Fig 3.2 Interaction Diagram (Graphical)

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

Interaction diagrams describe the nature of interaction among instances of different
classes, but they do not indicate the precise identities of the partners of any given
interaction [de Champeaux, 93], mainly because this knowledge is not available when
a class is defined and furthermore it is normal to define a class in a generic fashion so
that it can be used in multiple contexts.

3.2.3 Constructing the Proposed Functional Model

The clearest way to document how to construct the proposed functional model for a
given system is by means of an example. The example to be used is the order
processing system initially outlined in the first chapter. The object and dynamic
models as illustrated in the first chapter remain unchanged, and the proposed
functional model will be constructed by referring to these existing models.

Problem Statement: Simple Order Processing System

The company takes orders from customers, and attempts to fill those orders with on-
hand stock. Before the order can be filled, an order authorization request is sent to
the stores giving details ofthe current order. If sufficient stock exists to fill the order,
authorization to prepare the order is granted, the stock is removed from the stores
and used to fill the order, the company’ stock levels are updated to reflect this
depletion, the order is shipped, and an invoice is issued to the customer. The
customer either part-pays the invoice in instalments, or pays the balance in full

However, if there is insufficient stock to fill the order, authorization to prepare the
order is refused, and a standard quantity of the out-of-stock item is reorderd from the
supplier. A standard quantity would be a multiple of the safety stock level of that
particular item, and it is assumed that it would always be sufficient to fill any
outstanding order. In addition, if the stock level of a particular item fells below the
safety stock level for that item, then a standard quantity of that item is reordered.
When a delivery is received from the supplier, the company's stock levels are updated
to reflect this replenishment.

The object model [Figure 3.3] and the event flow diagram of the dynamic model
[Figure 3.4] as previously illustrated in Chapter 1, are reproduced in this chapter as a
reminder of the classes, associations, attributes, operations and events within the
system, for which the new functional model will now be compiled.

81

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

Order

order_no :integer
cust_name : string
cust_addr : string
item : integer

gty : integer

status : string
authorized : integer

get_order_no :integer
get_cust_name : string
get cust_addr: string
get_item: integer
get_qty :integer
get_status : string
get_authonzed: integer
change_status
(new_status: string)
change_authonzation
(new_authonzation: integer)

Stockitem

stockitem no : integer
stock_level :integer
safety level : integer
price "Boat

get_stockitem no() :integer
get_stock_levilQ :integer
get_safety levelQ : integer
get_price(5~: float
inc_stock_level(qty : integer)
dec_stock level(qgty : integer)
change_safety level
(new_safety level : integer)
change_pnce(new_pnce : float)

Invoice

relates to

takes

invoice_no : integer
cust_name : stnng
cust_addr: string
item : integer

qty: integer
balance : float
status ; string

get_balaneeO :integer
get_statusQ : string
change_bstance
(amount : integer)
change_status
(new_status : string)

issues

Comp=any

stock_file[* : stock
orders file] : order
invoices fi e[] : invoice
+curr_prder : order
+curr_inverice : invoice
+curr_stoc:kitem : stock

get_stocluterri(stockitem_no
rinteger) :inti:ger
get_order(or<ler_no
rinteger) :intiiger
get_mvoice (unvoice_no
:integer) : inteiger

put srockite.n

(curr stockit:m : stockitem)
put order

(curr_order : order)

put invoice

(curr invoice :invoice)

manages

Fig 3.3 Object Model

The entire functional model will consist of an operation model and an interaction
model for each system operation. Hence the construction of the new functional model
comprises the following steps : identifying the input and output values; identifying the
system operations; building an operation model for each identified system operation;
and finally building an interaction model for each identified system operation.

82

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

3.2.3.1 Identify Input and Output Values

The input and output values of a system can be identified from the problem statement.
In addition, since input and output values are parameters of the events between the
system and the outside world [Rumbaugh, '91], the input and output values can be
also be identified from the external events in the dynamic model of the system.

The list of input values is as follows : order details comprising the order number, the
customer's name, the customer's address, the item ordered, and the quantity ordered,;
payment details comprising the invoice number, and the amount of the payment; and
delivery details comprising the item being delivered and the quantity being delivered.

The list of output values is as follows : invoice details comprising the invoice number,
the customer's name, the customer's address, the item ordered, the quantity ordered,
the price of the item, and the balance due; stock reorder details comprising the item
being reordered, and the quantity being reordered.

3.2.3.2 Identify System Operations

As stated earlier in the chapter system operations are top-level operations (analogous
to the processes on a Level 1 DFD), which either correspond to interactions between
the system and the outside world, or correspond to complex transformations of input
values to output values, where these transformations are non-atomic operations.

Firstly dealing with the interactions between the system and the outside world. The
identified list of input and output values, derived from the problem statement and the
external events in the event flow diagram, will form the basis for the this first set of
system operations. Thus the order, invoice, payment, delivery and reorder events will
each be mapped into a system operation.

Secondly dealing with the complex transformations of input values to output values.
The internal events in the event flow diagram which do not correspond to atomic
operations will form the basis for this second set of system operations. Thus
order_authorization_request and order_authorization_response will each be mapped
into a system operation.

83

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

Only two internal events were selected since the create order, change authorization
and change_status events, correspond to the order constructor, change_
authorizationQ and change_statusQ atomic operations of the order class in the
object model. Similarly, the corresponding operations for the createjnvoice,
changeJbalance and change_status events, are the invoice constructor, change_
statusQ and change_balanceQ atomic operations of the invoice class in the object
model Finally, the corresponding operations for the decrease_stock and
increase_stock events, are the dec_stock levelQ and inc_stock levelQ atomic
operations of the stockitem class in the object model. Only the
order_authorization_request and order_authorization_response events have no such
corresponding atomic operations in the object model. Hence they are non-atomic
operations of the complex company object, and each will in turn invoke other non-
atomic and atomic operations of other more basic objects (order, invoice, stockitem)
which are part ofthe company object.

createjnvoice™™*
changejbalance (amt
change_status(status

create_order*

changé_authorization increase_stock%qty;
(auth%rTzation) decrease_stock(qty
change_status(status) order_authorization
~request
order* o
. payment order_authorization
(mvglcye_no, amt) _response

deliveryfitem, gty)

reorder
(item, qty)

= order (order_no,ciist_name, cust_addr, item,gh>)
~ create_order (order_no,cust_name, cust_addr,item,qty)

== invoice (invoice no,cust_name,cust_addr,item,qiy,price,balance)
== createJnvoice(mvoice_no,cust_namz,cust_Qdar,item,qty,price,balance)

Fig 3.4 Dynamic Model (Event Flow Diagram)

84

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

Outlined below are the mappings from the external and internal events in the event

flow diagram ofthe dynamic model, to the system operations ofthe functional model

order — company: :take_order()

The order event is sent from the customer to the company and contains the details
of the order, i.e. order number, customer name, customer address, item and
quantity. This event is mapped into an operation on the company class -
take_orderQ - which reads in the order details, creates a new order, and stores it
in the orders file of the company.

invoice —> company::issue_invoice()

The invoice event is sent from the company to the customer and contains the
details of the invoice, i.e. invoice number, customer name, customer address,
item, quantity, price and balance. This event is mapped into an operation on the
company class - issueJnvoiceQ - which reads the order details, adds invoice
details such as price and balance, creates a new invoice, and stores it in the
invoices file ofthe company.

payment —> company::accept_payment(int invoice_no, float amount)

The payment event is sent from the customer to the company and contains the
number of the invoice to be paid, and the amount ofthe payment to be made. This
event is mapped into an operation on the company class - accept_payment(int
invoice_no, float amount) - which updates the balance of the invoice (identified
by the invoice number) in the invoices file of the company.

delivery —> company: :replenish_stock_levels(int item, int qty)

The delivery event is sent from the supplier to the company and contains the
identifier and quantity of the stockitem being delivered. This event is mapped into
an operation on the company class - replenish_stock_levels(int item, int qty) -
which updates the quantity of the identified stockitem in the stock file of the
company.

85

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

reorder --> stockitem::reorder()

The reorder event is sent from the stockitem to the supplier and contains the
identifier and quantity ofthe stockitem being reordered. This event is mapped into
an operation on the stockitem class - reorderQ - which merely sends the reorder
to the supplier.

Note : Unlike the invoice event (the only other event sent to an external actor),
which causes an invoice to be created and stored, no reorder is created, and no
reorder is stored, hence there is no visible data to be processed. As such, thisis a
trivial operation, which should be added to the stockitem class, but not awarded
the status of a system operation even though it is an external event, due to the
triviality ofthe operation it represents. Thus, this operation will not be included in
the operation model or the interaction model.

The internal events which qualify as system operations are as follows :

order_authorization_request — company::authorize&deplete_stock_levels()

The order_authorization_request event is sent from the company to the
stockitem, requesting authorization to deplete the stock level of the stockitem by
the quantity on the current order. This event is mapped into an operation on the
company class - authorize&deplete stock levelsQ - which updates the
authorization on the current order to granted, and updates the stock level of the
stockitem to reflect its depletion by the quantity of the current order, when the
stock level of the stockitem is sufficient to satisfy the quantity on the current
order; or updates the authorization on the current order to denied, when the stock
level of the stockitem is insufficient to satisfy the quantity on the current order.
This operation also initiates a reorder when the stock level of any stockitem falls
below its safety leveL

86

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

» order_authorization_response — company::prepare&dispatch_order()

The order authorization_response event is sent from the stockitem to the
company, responding to the authorization request for the current order. This
event is mapped into an operation on the company class - prepare&dispatch
_orderQ - which updates the status of the order to shipping and issues an invoice
to the customer, when the response is favourable; or updates the status of the
order to outstanding, when the response is unfavourable.

3.2.3.3 Build the Operation Model

Construct a schema for each of the identified system operations. Firstly, concisely
describe the purpose of the operation; secondly, list the data items which must be
read and/or updated, and thirdly, describe the state ofthe system before the operation
is executed and after the operation is executed.

Operation : company::take order
Description : Creates anew order for a customer and stores this new
order in the orders file ofthe company.

Reads:

Updates : new curr_order, orders_file

Pre-conditions:

Post-conditions : curr order.order no has been assigned a unique value.
curr_order.cust_name has been set to new_cust_name.
curr_order.cust_addr has been set to new_cust_addr.
curr_order.itemhas been set to new item
curr_order.qty has been set to new qty.
curr_order.status has been set to pending.
curr_order.authorized has been set to NO.
curr order has been added to the orders file.

87

Operation :
Description :

Reads :
Updates :

Pre-conditions :
Post-conditions :

Operation :
Description :

Reads :
Updates :

Pre-conditions :
Post-conditions :

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

company: :prepare&dispatch_order
Requests authorization to prepare the current order, and
if granted, dispatches the order and issues an invoice.

curr_order.authorized

curr_order. status, orders_file

currorder is not null

If (currorder.authorized = YES) then
currorder.status is set to shipping, and an invoice is
issued to the corresponding customer.

Otherwise curr_order.status is set to outstanding.

The corresponding order in the orders file ofthe
company is updated with the new status of curr order.

company::authorize&deplete_stock_levels

Grants or refuses authorization to prepare the current order.
Also depletes the stock level ofthe ordered item by the
ordered quantity (if granted) and reorders stock if necessary.

curr_order.item, currorder.qty, curr_stockitemsafety level
curr_order.authorization,

curr_stockitemstock_level, stock_file

curr order is not null

If (curr_stockitemstock_level >= currorder.qty) then

curr order.authorized is set to YES and
curr_stockitemstock_levelis depleted by curr order.qty and
curr_stockitem is reordered when this depletion causes
curr_stockitemstock_level < curr_stockitemsafety level.
Otherwise curr_order.authorized is set to NO and
curr_stockitem is reordered.

The corresponding stockitem in the stock file ofthe company
is updated with the new stock level of curr_stockitem

Operation :
Description :

Reads :

Updates :

Pre-conditions :
Post-conditions :

Operation :
Description ;

Reads :
Updates :

Pre-conditions :

Post-conditions :

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

company: :issue_invoice
Creates anew invoice for a customer and stores this new
invoice in the invoices file ofthe company.

curr_order.order_no, curr_order.item, curr_order.qty,
curr_order.cust_name, curr_order.cust_addr,
curr_stockitemprice

new curr_invoice, invoices_file

curr_order is not null

curr_invoice.invoice_no has been set to curr_order. order_no.
curr_invoice.cust_name has been set to curr order.cust_name.
curr invoice, cust addr has been set to curr order.cust addr.
curr_invoice.item has been set to curr order.item
cun_invoice.qty has been set to curr order.qty.
curr_invoice.price has been set to curr_stockitemprice.
curr_invoice.balafice has been set to curr invoice.qty *
curr_invoice.price.

curr_invoice. status has been set to unpaid,

curr invoice has been added to the invoices file.

company: :accept_payment
Reduces the balance on the invoice by the amount ofthe
payment, and adjusts the payment status ofthe invoice.

supplied invoiceno :integer, supplied amount: float

curr invoice.balance, curr_invoice. status, invoices file
invoice_no is avalid invoice number

amount > zero and amount <= balance

If (amount = curr_invoice.balance) then

curr_invoice.status is set to paid.

Otherwise curr_invoice. status is set to part-paid.
curr_invoice.balance is reduced by the amount.

The corresponding invoice in the invoices file ofthe company
is updated with the new status and balance of curr_invoice.

89

Chapter 3 : Proposed Solutions to Improve OMTIntegration and Consistency

Operation : company::replenish_stock_leveis

Description : Increases the stock level of the given stockitem by the given
quantity.

Reads : supplied item: integer, supplied qty : integer

Updates : currstockitemstock_level, stock file

Pre-conditions : item is avalid stockitem and qty > zero

Post-conditions : curr_stockitemstock_level is increased by qty.

The corresponding stockitem in the stock file ofthe company
is updated with the new stock level of curr_stockitem.

3.2.3.4 Build the Interaction Model

Where the operation model specifies what an system operation does, the interaction
model describes how the operation works by illustrating the internal workings of the
operation in terms of its sub-ordinate operations. Each interaction diagram is
constructed essentially from the operation modeL By examining the reads and
updates clauses of this model, it becomes obvious which sub-ordinate operations are
required, in order to read and update the necessary information relating to this system
operation. These sub-ordinate operations are then listed in descending order, between
the appropriate classes on the tabular diagram The order of these operations is
determined by the function of the operation, as outlined in the description clause and
is re-inforced by the order of the post-conditions which relate to the information in
both the reads and updates clauses.

e void company: :take_orderO

The take_orderQ operation reads in the order details, constructs a new order
object from this information, then stores this order object in the orders file of the
company. Hence the sub-ordinate operations are order::orderO, which creates the
new order, and company::put_orderQ which updates the orders file with the new
order.

90

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

Company Order

order*

put_order(order)

R e

putjprder (order)

*order (order_no,cust_name,cu5t_addr,item,qty)

Fig 3.5 Interaction Diagram for take_orderQ

void company: :prepare&dispatch_order()

The prepare&dispatch_orderQ operation requests authorization to prepare the
current order by calling the authorize&deplete stock levels(Q operation (see
below), then it reads the authorization of the current order, [updated by
authorize&deplete_stock_levels(j] updates the status of the order accordingly,
and updates the orders file with the updated order. Hence the sub-ordinate
operations are order::get_authorizationQ, which reads the authorization of the
current order, order::change_ statusQ which updates the status of the current
order, and company::put_order(), which updates the orders file.

Company Order
get_authorization{)
change_status(status)

put_order(order)

91

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

getjmthorizationO

Company Order
)s change status(status)

put_ordsr(order)

Fig 3.6 Interaction Diagram for prepare&dispatch_orderQ

void company: :authorize&deplete_stock_levelsO

The authorize&deplete_stock_levelsO operation grants or denies authorization for
the current order. It reads the item on the current order from the stock file and
determines whether the stock level of the item, is above or below the quantity on
the current order; if above, it grants authorization for the current order, and
decreases the stock level of the item by the quantity; if below, it denies
authorization on the current order. Also, it determines if the stock level of the
item is below the safety level of the item, and if so, reorders the item It then
updates the stock file with the updated item

Hence the sub-ordinate operations are company::get_stockitem(), which reads
the item on the current order from the stock file, stockitem::get_stock_levelQ,
which reads the stock level ofthe item, order::get_qtyQ, which reads the quantity
of the current order, order:: change_authorizationQ, which updates the
authorization of the current order, stockitem::dec_stock levelQ, which updates
the stock level of the item by decreasing it by the quantity of the order,
stockitem::get_safety level0, which reads the safety level of the item,
stockitem::reorder(), which reorders the item, and company::put_stockitemQ,
which updates the stock file.

92

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

Company Stockltem Order

get siockitem
(siockitem_no)

get_stock levelO
getJtemO
get_qtyO

| ..
chanﬁeauth_orlzatlon j
1 (authorization)

1dec stock Ievel(qty)‘I
j getjsqfetyJevelO
reordsrQ

put_stockitem
{ (siockitem)

et_stockilem
?smckltem_no)

Fig 3.7 Interaction Diagram for authorize&deplete_stock_levelsQ

93

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

void company: :issue_invoice()

The issue_invoiceQ operation reads the order details from the current order, and
the price details from the current stockitem It then constructs a new invoice
object from this information, and stores this invoice object in the invoices file of
the company. Hence the sub-ordinate operations are order::get_order_noQ,
which reads the order number of the current order, order::get_cust_nameQ,
which reads the customer name of the current order, order::get_cust_addrQ,
which reads the customer address of the current order, order::get_itemQ, which
reads the item of the current order, order::get_qtyQ, which reads the quantity of
the current order, company::get_stockitemQ, Which reads the item on the current
order from the stock file, stockitem::get_priceQ, which reads the price of the
current stockitem, invoice::invoiceQ, which creates the new invoice, and
company::put_invoiceQ Which updates the invoices file with the new invoice.

Company Order Stockitem Invoice
j get_order_no()
i get_cust_name0
\ get_cust_addr0
j gstjitemQ
get_qty()

5 J

\ get_stockitem
J (stockitem_no)

get_priceQ
invoice*

1 put invoice
(invoice)

94

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

putjnvoice
(invoice)

- invoice (invoice_no,cust_yiame, cust_addr,item, qty,price, balance)

Fig 3.8 Interaction Diagram for issue_invoiceQ

void company: :accept_payment(int invoice_no, float amount)

The accept_paymentQ operation reads the specified invoice from the invoices file,
determines whether the specified amount satisfies the balance, updates the status
of the invoice to paid or part-paid, updates the balance by the specified amount,
and updates the invoices file with the updated invoice. Hence the sub-ordinate
operations are company::get_invoiceQ, Which reads the specified invoice,
invoice::get_balance, which reads the balance on the invoice, invoice::change_
statusQ, Which updates the status of the invoice, invoice::change_balanceQ,
which updates the balance on the invoice, and company::put_invoiceQ, which
updates the invoices file.

95

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

Company Invoice
I get_invoice
(invoice_no)
gei_balance()
change_status(status)

\ change_balance(amt)

I putjnvoice
I~ (invoice)

get_invoice
linvoice_no)

putjnvoice
(invoice)

Fig 3.9 Interaction Diagram for accept_paymentQ

void company: :replenish_stock_levels(int item, int qty)

The replenish_stock_levels() operation reads the specified stockitem from the
stock file, updates this stockitem with the amount of the delivery, and then
updates the stock file with the updated stockitem Hence the sub-ordinate
operations are company::get_stockitemQ, which reads the stockitem from the
stock file, stockitem::inc_stock_levelQ, which updates the stock level of the
stockitem, and company::put_stockitemQ which updates the stock file.

96

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

Compare Stockltem

{ get_stockitem
\ (stockitem_no)

<

< 1 .
I inc_stock_levei(qty)

| put_sLockitem
i (stockilem)

get_stockitem
(stockitem_no)

put_siockiiem
(stockitem)

Fig 3.10 Interaction Diagram for replenishjstockJlevelsQ

3.2.4 Proposed Functional Model vs. Rumbaugh's Functional Model

The primary problem with Rumbaugh's functional model, is that DFD's cannot
represent the functionality of an object-oriented system as completely as they can
represent the functionality of a function-oriented system, and hence when compiling
the model, difficulties arise in areas where the functional paradigm and the object-
oriented paradigm diverge.

These areas of difficulty were identified in the previous chapter as : decomposition;
granularity; data access; interaction and mapping. However, the proposed functional

model embraces the object-oriented paradigm, and hence major improvements can be
seen in all ofthe previously identified areas of difficulty.

3.2.4.1 Decomposition

97

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

Decomposition refers to the criteria used to abstract the fundamental aspects from a
problem The DFD of Rumbaugh's functional model adopts a process of functional
decomposition, which breaks the system down into functions and sub functions. This
method of decomposition is most suited to systems where the functions are more
complex than the data that the system manipulates. Hence this is not suited to object-
oriented systems where the data is of prime importance, and the functions are often
trivial, merely accessing and updating this fundamental data.

The proposed functional model decomposes the system in terms of objects and not in
tenns of functions. Each of the identified system operations in the operation model, is
a non-atomic operation on a complex object within the system, and each of these
system operations is subsequently illustrated in the interaction model, as a compilation
ofthe data and methods of other objects within the system

3.2.4.2 Granularity

Granularity refers to the level of abstraction of the model. The DFD of Rumbaugh's
functional model adopts a top-down functional approach to abstracting the
fundamentals aspects of a system, by beginning with a very general context diagram
and expanding this diagram level by level until functional primitives are achieved.
However, the object model and the dynamic model are both developed using a
bottom-up class-by-class approach, hence the old functional model exists on a
different level of granularity to the other two models.

The proposed functional model is developed using a bottom-up approach, where
what each system operation does is defined in the operation model, and how each
system operation works is defined in the interaction model. Each such system
operation maps into a method of a complex class within the system, and subsequently
invokes methods of the sub-ordinate classes which comprise the complex class. As
the new functional model embraces the bottom-up object-oriented paradigm based on
classes, instead of the top-down functional paradigm based on functions, there exists
a direct coherent link between the three OMT models which was previously lacking,
and hence each ofthe models can now co-exist on the same level of granularity.

3.2.4.3 Data Access

98

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

Data access refers to what parts of the system can read or write the data, and the
restrictions (if any) imposed on the access of that data. The DFD of the Rumbaugh's
functional model is unable to show the restricted data access of an object-oriented
system since it is not obvious how processes relate to objects, and furthermore most
processes associate with multiple system objects, hence the data and relationships
among objects is buried within the process network.

In the operation model of the proposed functional model, the data items of each
object which are either read or updated is clearly listed, as too are the changes that
each of these items undergoes as a result of the operation being performed. In
addition, the interaction model lists the methods of each object that are invoked, in
order to read or update the data ofthe object. In this way the restricted data access of
the object-oriented paradigm can be fully illustrated.

3.2.4.4 Interaction

Interaction refers to the mechanism by which the constituent parts of a system
communicate with each other to make the system work. The DFD of Rumbaugh's
functional model uses a function-invoking mechanism” where a process in the DFD
interacts with another process in the DFD, and passes it some data, which is identified
by the data flow between the processes. However, a DFD only shows the movement
of data within a system, and cannot illustrate the interaction between objects, since
the messaging mechanism which objects use to communicate with each other, need
not always involve an exchange of data between objects.

The interaction model of the proposed functional model can fully illustrate how the
various objects within the system interact. For each system operation it illustrates the
objects which need to communicate, and the messages they need to send each other,
in order to make the operation work. The messages consist of the name of the
method which needs to be invoked and the parameters (if any) of the method, hence
the interaction of objects is visible regardless of whether there is an exchange of data
or not.

3.2.4.5 Mapping

99

Chapter 3 : Proposed Solutions to Improve OMTIntegration and Consistency

Mapping refers to the ease or difficulty of the transition from analysis to design and
implementation. The DFD of Rumbaugh’s functional model lacks the expressive
power to adequately model an object-oriented system, hence if the objects cannot be
easily modeled, then the transition to design and implementation of these objects will
be non-trivial.

The operation model of proposed functional model fully describes what each system
operation does, in terms of the data that it reads and updates, as well as the pre-
conditions and post-conditions associated with each system operation, indicating the
required state of affairs before the operation can be invoked, and the resulting state of
affairs after the operation has completed. In addition, the interaction model lists the
messages exchanged between the objects, thus showing how the various objects
interact with each other, and hence provides a better illustration of the potential run-
time behaviour of the objects in the system The increased detail in the proposed
functional model should facilitate the implementation of the analysis model

3.3 Proposed Inter-Model Relationships

As detailed in the previous chapter, the existing inter-model relationships as defined
by Rumbaugh are inadequate in four distinct categories, each of which needs to be
redressed individually. Thus the poorly defined inter-model relationships are redressed
by new and improved inter-model definitions; the poorly supported relationships are
redressed by integration guidelines, detailing how to integrate the three OMT models;
the poorly reconciled relationships are redressed by consistency guidelines, detailing
how to check the three OMT models for consistency with each other; and the poorly
illustrated relationships are redressed by providing a comprehensive illustrated
example.

3.3.1 New Inter-Model Definitions

Inter-model definitions define the relationships between the object, dynamic and
functional models. Rumbaugh's inter-model definitions are not rigorously defined, and
thus are open to various interpretations, particularly the tenuous relationships from
the weaker functional model to the other two OMT models.

100

Chapter 3 : Proposed Solutions to Improve OMTIntegration and Consistency

In particular, it is worth mentioning that CASE tools supporting the OMT
methodology (e.g SelectOMT, OMTool) do not provide any form of inter-model
integration or inter-model consistency within their tools. One possible theory for this
omission is that Rumbaugh's inter-model definitions are not well-defined enough to
enable cross-model integration and consitency to be implemented.

The inadequacies of the existing inter-model definitions need to be redressed by
providing more rigorous set of inter-model definitions, which are not open to
interpretations, and are well-defined enough to potentially enable inter-model cross-
checking facilities in OMT CASE tools, which would greatly improve integration and
consistency in models developed using these tools.

3.3.1.1 Relationship between the Object and Dynamic Models

Between the object and dynamic models there are three common points of
integration, namely : conditions in the dynamic model relate to attributes and
operations in the object model; events in the dynamic model relate to operations in
the object model; and actions in the dynamic model also relate to operations in the
object model. The definition of the relationship between the object and dynamic
models in terms ofthese integration points is explained below.

» Each condition in the state diagram, is defined only in terms of the attributes,
operations and associations, listed in the class diagram of the class, which is
represented in the state diagram [Note : Each condition in the state diagram can
be defined in terms of the attributes and operations of any class in the object
model, provided that the chosen class has an association with the class
represented in the state diagram, and the class name of the chosen class preceeds
each attribute or operation ofthe chosen class].

» Each event in the state diagram, is mapped into an operation, and listed in the
class diagram ofthe class, which is represented in the state diagram

» Each action in the state diagram, is mapped into an operation, and listed in the
class diagram ofthe class, which is represented in the state diagram

101

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

3.3.1.2 Relationship between the Dynamic and Functional Models

Between the dynamic and functional models there are two common points of
integration, namely : each operation schema in the operation model relates to external
events and "complex" internal events in the dynamic model; and each interaction
diagram in the interaction model also relates to external events and "complex™ internal
events in the dynamic model, where a "complex™ internal event is an event which does
not have a corresponding atomic operation in the object model. [See Page 84], The
definition of the relationship between the dynamic and functional models in terms of
these integration points is explained below.

» Each external event and complex internal event (which relates to a particular
class) in the event flow diagram is mapped into a system operation (relating to the
same particular class) and listed as an operation schema in the operation model.

» Each external event and complex internal event (which relates to a particular
class) in the event flow diagram is mapped into a system operation (relating to the
same particular class) and listed as an interaction diagram in the interaction
model.

3.3.1.3 Relationship between the Object and Functional Models

Between the object and functional models there are three common points of
integration, namely : operations in the operation model relate to attributes in the class
diagram; operations in the operation model relate to operations in the class diagram;
and individual object interactions in the interaction model also relate to operations in
the class diagram. The definition ofthe relationship between the object and functional
models in terms ofthese integration points is explained below.

» Each system operation in the operation model, is defined only in terms of the
attributes and associations listed in the class diagram of the particular class, to
which it belongs. [Note : Each system operation in the operation model can be
defined in terms of the attributes of any class in the object model, provided that
the chosen class has an association with the class the class to which the system
operation belongs, and the class name ofthe chosen class preceeds each attribute
ofthe chosen class].

102

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

» Each system operation is represented by an operation schema in the operation
model, and is mapped into an operation and listed in the class diagram of the
particular class to which it belongs.

» Each system operation is represented by an interaction diagram in the interaction
model, which illustrates the individual object interactions within each system
operation. Each individual object interaction is mapped into an operation and
listed in the class diagram ofthe particular class to which it belongs.

3.3.1.4 Overall OMT Inter-Model Relationship

Rumbaugh's poorly-defined inter-model relationships consist ofnon-rigorous informal
couplings between the object and dynamic models, dynamic and functional models,
and object and functional models. Furthermore, little effort is spent on the integration
of the three models other than a hap-hazard attempt to reconcile the operations
existing in all three models. In addition, this reconciliation process is not supported by
steps in the methodology, and pays only minimal attention to possible inconsistencies
between the models [Bvari, 95],

The new inter-model definitions also consist of three (although somewhat different)
bi-directional couplings between the object, dynamic and functional models, however
the individual OMT models are more closely integrated together through common
attributes, common operations, common associations and common events, relating to
common classes which exist in each ofthe three OMT models.

Firstly examining the attributes within the OMT models. In terms of the object model,
the class diagram defines all the attributes of that particular class. In terms of the
dynamic model, each condition in the state diagram representing a particular class, is
defined only in terms of the attributes, operations and associations listed in the class
diagram of that particular class. In terms of the functional model, each system
operation in the operation model, is defined only in terms of the attributes and
associations listed in the class diagram of that particular class, by using the Reads,
Updates, Pre-conditions, and Post-conditions clauses.

103

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

Secondly examining the operations within the OMT models. In terms of the object
model, the class diagram defines the signature of all the operations of that particular
class. In terms of the dynamic model, each event in the state diagram representing a
particular class, is mapped into an operation, and listed in the class diagram of that
particular class. In terms of the functional model, each system operation is listed in
the class diagram ofthe particular class to which it belongs.

Thirdly, examining the events within the OMT models. In terms of the dynamic
model, the state diagram representing a particular class, defines all the events of that
particular class. In terms of the object model, each event in the state diagram
representing a particular class is mapped into an operation, and listed in the class
diagram of that particular class. In terms ofthe functional model, each external event
and each complex internal event, is mapped into a operation schema in the operation
model, and is mapped into an interaction diagram in the interaction model.

3.3.2 Integration Guidelines

Introduced in this section are a set of integration guidelines which relate directly to
the new inter-model definitions which were described in the previous section. These
integration guidelines should be applied when constructing the three OMT models,
because integration is a incremental process which should be practiced throughout the
development phase ofthe models.

Once the object model has been constructed, the integration guidelines can be used
when constructing the dynamic model, since the dynamic model will draw on
information contained in the object model. Similiarly, the integration guidelines can be
used when constructing the functional model, since the functional model will draw on
information contained in both the object model and the dynamic modeL Finally, the
integration guidelines can be used in the iterative process of refining the models,
where any new information introduced by the dynamic and functional models is
integrated into the object model.

The next three sections summarise the inter-model definitions as short guidelines, and
provide an example of the integration process between the three OMT models, by
refering to the simple order processing system previously defined, and the object,
dynamic and functional models which have previously been illustrated.

104

Chapter 3 : Proposed Solutions to Improve OMTIntegration and Consistency

3.3.2.1 Integrating the Object and Dynamic Models

There are three important guidelines to note when integrating the object model with
the dynamic model, which embody the common points of integration outlined in their
inter-model definition.

« Each condition in the state diagram, should be defined only in terms of the
attributes, operations, and associations listed in the class diagram o f the class,
which is represented in the state diagram.

For example, in the state diagram for the order class, there are two conditions :
[authorized = YES] and [authorized = NO], which guard the transitions from the
authorizing state, to the shipping and outstanding states respectively. Both of these
conditions are defined only in terms of the attributes of the order class, since
authorized is an attribute ofthis class.

In the state diagram for the invoice class, there are two conditions : [balance = 0] and
[balance > 0], which guard the transitions from the pay state, to the paid and part-
paid states respectively. Both of these conditions are defined only in terms of the
attributes ofthe invoice class, since balance is an attribute ofthis class.

In the state diagram for the stockitem class, there are four conditions : [stocklevel -
qty > safety level], [stock level - gty < safety level && stock_level -qty > 0],
[stock level -qty = 0] and [stock level + qty > safety level], which guard the
transitions from the above safety level state, to itself], and the below safety level state
respectively. All of these conditions are defined only in terms ofthe attributes of the
stockitem class, since stock_level and safetyJevel are attributes of this class, and qty
is a parameter ofthe dec_stock_level() operation ofthis class.

In the state diagram for the company class, there are two conditions : [curr order.qty
> curr_stockitemstocklevel] and [curr_order.qty <= curr_stockitemstock level],
which guard the transitions from the sales state, to the goods inwards and goods
outwards states. Both ofthese conditions are defined only in terms ofthe attributes of
the company class, since curr_order and curr stockitem are attributes of this class.

105

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

e Each event in the state diagram should be mapped into an operation, and
listed in the class diagram of the class, which is represented in the state

diagram.

For example, in the state diagram for the order class, there are two events :
change authorization(authorization) and change_status(status), which are mapped
into the changeauthorization(authorization) and change_status(status) operations in
the order class diagram

In the state diagram for the invoice class, there are two events : change_status(status)
and change_balance(amt), which are mapped into the change_status(status) and
change_balance(balance) operations in the invoice class diagram

In the state diagram for the stockitem class, there are two events : decrease_stock
(gty) and increase_stock(qty), which are mapped into the dec_stock_level(qty) and
inc_stock_level(qty) operations in the stockitem class diagram

In the state diagram for the company class, all of the events are external events or
complex internal events, and hence are mapped into system operations and illustrated
as operation schemas in the operation model, and interaction diagrams in the
interaction modeL [See Section 3.3.2.2]

* Each action in the state diagram should be mapped into an operation, and
listed in the class diagram of the class, which is represented in the state
diagram.

The events and actions in the state diagrams of the order, invoice and stockitem
classes, have very close relationships to each other, and are mapped into the same
operations. Hence, in the state diagram for the order, the actions
change_authorization(authorization) and change_status(status) are mapped into
corresponding operations and listed in the order class diagram Similarly, in the state
diagram for the invoice, the actions change_status(status) and change_balance(amt)
are mapped into corresponding operations and listed in the invoice class diagram
And finally, in the state diagram for the stockitem, the actions dec_stock_level(qgty)
and inc_stock_ level(qty) are mapped into related operations and listed in the
stockitem class diagram

106

Chapter 3 : Proposed Solutions to Improve OMTIntegration and Consistency

In the state diagram for the company class, (excluding actions which merely send
events to sub-ordinate objects, and hence have been already covered), there are six
other actions namely, get_order(), get_invoice(), get_stockitem(), put_order(order),
put invoice(invoice), and put_stockitem(stockitem), which are mapped into
corresponding operations and listed in the company class diagram

3.3.2.2 Integrating the Dynamic and Functional Models

There are two important guidelines to note when integrating the dynamic model with
the functional model, which embody the common points of integration as outlined in
their inter-model definition.

e Each external event and complex internal event, in the eventflow diagram,
should be mapped into a system operation and illustrated as an operation
schema in the operation model

e Each external event and complex internal event, in the eventflow diagram,
should be mapped into a system operation and illustrated as an interaction
diagram in the interaction model

For example, in the event flow diagram there are five external events : order, which is
mapped into the system operation company::take_order(); invoice, which is mapped
into the system operation company: :issue_invoice(); payment, which is mapped into
the system operation company: :accept_payment(); delivery, which is mapped into the
system operation company: :replenish_stock levels(); and re-order, which is not
mapped into a system operation due to its triviality, but is mapped into
stocldtem::reorder() instead.

In addition, there are two complex internal events : order_authorization_request,
which is mapped into the system operation company::authorize&deplete stock
levels(); and finally order_authorization_response, which is mapped into the system
operation company: :prepare& dispatch_order().

Each ofthese system operations is illustrated as an operation schema in the operation
model and illustrated as an interaction diagram in the interaction model.

107

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

3.3.2.3 Integrating the Object and Functional Models

There are three important guidelines to note when integrating the object model with
the functional model, which embody the common points of integration as outlined in
their inter-model definition.

e Each system operation in the operation model, should be defined only in terms
ofthe attributes and associations listed in the class diagram o f the particular

class, to which it belongs.

Thus, each of the system operations in the operation model should be defined only in
terms of the attributes and associations of the company class. The definition of an
operation involves listing the data items it reads, the data items it updates, the pre-
conditions ofthe operation, and the post-conditions ofthe operation.

As it is a requirement of the operation model that the pre-conditions and post-
conditions be defined only in terms of the items listed in the reads and updates
clauses, it can be assumed that once the reads and updates clauses are defined in
terms of the attributes and associations of a particular class, then the pre-conditions
and post-conditions, are also defined in terms ofthe attributes and associations of that
particular class.

For example, the company::take order() operation creates a new order, updates
currorder with the details of this new order, and then updates the orders_file with
updated curr order. This operation is defined solely in terms of the attributes of the
company class since both curr_order and ordersJile are attributes of the company
class.

The company::prepare&dispatch_order() operation reads curr order.authorized in
order to determine the authorization status of the current order, and then updates
curr order.status to shipping if the current order is authorized, or updates
curr order,status to outstanding ifthe current order is not authorized. It then updates
the ordersJile with the updated curr_order. This operation is defined solely in terms
of the attributes of the company class since both curr_order and ordersJile are
attributes ofthe company class.

108

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

The company: :authorize&deplete_stock_levels() operation reads curr_order.item and
curr_order.qty in order to determine the item and quantity on the order, and then
reads stockitem.stocklevel to determine whether the item and quantity on the current
order can be satisfied. If sufficient stock is available, it then updates currorder
.authorization to YES, and updates curr stockitem.stocklevel by reducing it by the
quantity of the order. If insufficient stock is available, it then updates curr_order
.authorization to NO. It then updates the stockJile with the updated curr_stockitem.
This operation also reads curr_stockitem.safetyJevel, and re-orders a stockitem
when the stock level of that stockitem falls below it's safety level. This operation is
defined solely in terms of the attributes of the company class since curr_order,
curr_stockitem and stockpile are all attributes ofthe company class.

The company: :issue_invoice() operation reads curr order.order no, curr order, item,
curr_order.qty, curr_order.cust_name, curr order.cust_addr, and curr_stockitem
.price, creates anew invoice from these details, updates currjnvoice with the details
of this new invoice, and then updates the invoicesJile with currjnvoice. This
operation is defined solely in terms of the attributes of the company class since
curr_order, curr_stockitem and invoicesJile are all attributes ofthe company class.

The company: :accept_payment() operation accesses the details of the invoice being
paid from the invoicesJile, and updates currjnvoice with the details of this invoice.
It then updates curr invoice.balance by reducing it by the amount of the payment,
and also updates curr invoice.status to either paid or part-paid. Finally it updates the
invoicesJile with the updated currjnvoice. This operation is defined solely in terms
of the attributes of the company class since both currjnvoice and invoicesJle are
attributes ofthe company class.

The company: :replenish_stock_levels() operation accesses the details ofthe stockitem
being delivered, from the stockJle, and updates curr_stockitem with the details of
this stockitem It then updates curr_stockitem.stockJevel by increasing it by the
quantity ofthe delivery, and updates the stockJile with the updated curr_stockitem.
This operation is defined solely in terms of the attributes of the company class since
both curr_stockitem and stockJ le are attributes of the company class.

109

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

e Each system operation represented by an operation schema in the operation
model, should mapped into an operation, and listed in the class diagram ofthe

particular class, to which it belongs.

Each system operation belongs to the company class, and hence, should be listed in
the class diagram ofthe company :

company: :take_order();

company: :prepare&dispatch_order();
company::authorize&depletestock_levels();
company: :issue_invoice();

company: :accept_payment(int invoiceno, float amt);
company::replenish_stock_levels(int item, int qty).

e Each individual object interaction, within each system operation represented
by an interaction diagram in the interaction model, should be mapped into an
operation, and listed in the class diagram of the particular class, to which it
belongs.

For example, the take_order() system operation has 2 individual interactions

Individual Interaction Class Operation
order order order::orderQ
put order(order) company company::put order(order)

The prepare&dispatch_order() system operation has 3 individual interactions

Individual Interaction Class Operation

get authorization order orderr.get authorizationQ
change status(status) order order: :change status(status)
put order(order) company company::put order(order)

110

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

The authorize&deplete_stock_levels() system operation has 8 individual interactions

Individual Interaction Class Operation
get stockitem(stockitem no) company company:.get stockitem(stockitem no)

get stock level0 stockitem stockitem::get stock levelQ

get qtyO order order::get qtyQ

change auihorization(auth) order order:.-change authorization(auth)
dec stock level(qty) stockitem stockitem::dec stock level(qty)
get safety levelO stockitem stockitem:.get safety levelQ
reorderO stockitem stockitem::reorder()

put stockitem(stockitem) company company::put stockitem (stockitem)

The issue_invoice() system operation has 9 individual interactions :

Individual Interaction Class Operation

get order no(j order order::get order noQ

get cust nameQ order order::get cust nameO

get cust addrQ order order::get cust addrQ

get itemQ order order::get itemO

get qtyO order order::get qtyO

get stockitemO company company::get stockitem(stockitem no)
get price0 stockitem stockitem::get priceQ

invoice invoice invoice: .invoice Q

put invoice (invoice) company company: :put invoice(invoice)

The accept_payment() system operation has 5 individual interactions :

Individual Interaction Class Operation

get invoice(invoice no) company company::get invoice (invoice no)
get balance0 invoice invoice::get balanceQ

change status(status) invoice invoice::change status(status)
change balance (amt) invoice invoice::change balance(amt)
put invoice (invoice) company company: :put invoice (invoice)

111

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

The replenish_stock_levels() system operation has 3 individual interactions :

Individual Interaction Class Operation

get stockitem(stockitem no) company company::get stockitem(stockitem no)
ine stock levelO stockitem invoicer.get balance()

put stockitem(stockitem) company company: :put stockitem (stockitem)

Note : For the existing object, dynamic and functional models to be fully integrated, it
is necessary only to add the following operations to the class diagrams of the
respective classes :

company: :take_order()

company: :prepare&dispatch_order()
company::authorize&deplete_stock_levels()

company: :issue_invoice()

company::acceptj>ayment(int invoice_no, float amount)
company: :replenish_stock_levels(int item, int qty)
stockitem: :reorder()

3.3.3 Consistency Guidelines

Introduced in this section are a set of consistency guidelines which relate directly to
the new inter-model definitions and integration guidelines which were described
previously. Integration and consistency are very closely related, thus it follows that
the criteria used to integrate the three OMT models, must also be used to check the
models for consistency with each other. Hence the consistency guidelines act as a
checklist when the models are thought to be complete. If any of the consistency
checks fail, then an anomaly exists in one of the models which needs to be redressed.
Ifnone ofthe consistency checks fail, then the OMT models are consistent.

The consistency guidelines are as follows :
» Check that each condition in each state diagram ofthe dynamic model, is defined

only in terms of the attributes, operations and associations listed in the class
diagram of the class, which is represented in the state diagram

112

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

» Check that each event in each state diagram ofthe dynamic model, is mapped into
an operation, and listed in the class diagram of the class, which is represented in
the state diagram

» Check that each action in each state diagram of the dynamic model, is mapped
into an operation, and listed in the class diagram ofthe class, which is represented
in the state diagram

* Check that each external event and complex internal event, in the event flow
diagram of the dynamic model, is mapped into a system operation and illustrated
as an operation schema in the operation model ofthe functional model.

» Check that each external event and complex internal event, in the event flow
diagram ofthe dynamic model, is mapped into a system operation and illustrated
as an interaction diagram in the interaction model ofthe functional model.

» Check that each system operation in the operation model, is defined only in terms
ofthe attributes and associations listed in the class diagram of the particular class,
to which it belongs.

» Check that each system operation represented by an operation schema in the
operation model, is mapped into an operation, and listed in the class diagram of
the particular class, to which it belongs

e Check that each individual object interaction, within each system operation
represented by an interaction diagram in the interaction model, is mapped into an
operation, and listed in the class diagram of the particular class, to which it
belongs.

3.3.4 Comprehensive lllustrated Example

A more challenging example than the simple order processing system is necessary in
order to fLdly illustrate the effect of the new functional model, and the new inter-
model relationships, beyond a trivial level. Chapter 4 details a such a comprehensive
case study, which documents and illustrates the object, dynamic and functional
models for an insurance company which deals with clients, agents, policies, risks and
claims.

113

Chapter 3 : Proposed Solutions to Improve OMT Integration and Consistency

3.4 Chapter Summary

This chapter proposed a detailed solution to each of the problems of the OMT
methodology that were identified and discussed in the previous chapter. The first
problem, namely the weakness of the functional model, was redressed by
transforming the functional model from a DFD representation, into two separate
models : an operation model which describes what each system operation does; and
an interaction model which describes how each system operation works. The second
problem, namely the inadequacy of the inter-model relationships was redressed by
providing new inter-model definitions; integration guidelines; consistency guidelines;
and a comprehensive illustrated example in the form ofthe Chapter 4 case study.

114

Chapter 4 : Case Study

Chapter 4

Case Study

4.1 Overview

The purpose of documenting a case study is to provide a more comprehensive
example than the simple order processing system, in which to illustrate the improved
integration and consistency in the OMT methodology. In this chapter, the object and
dynamic models are constructed according to Rumbaugh's specifications, the
functional model is constructed according to my proposed specifications, and finally
the three OMT models are inter-related and reconciled using my proposed integration
guidelines and consistency guidelines.

Problem Statement: Insurance Company Processing System

A company insures clients by providing two types of policies, a car insurance policy
and a house insurance policy. Each policy consists of a number of risks (e.g. fire,
theft, etc.), and each of these risks has a risk premium, hence the total premium on
each policy is calculated by summing the risk premiums for all the risks on the policy.
The premium on each policy is paid in instalments, where the amount due at each
instalment is calculated by dividing the total premium by the number of instalments
(usually 12 monthly instalments), and where the due date of the instalment is
calculated by incrementing the start date of the policy by one month each time a
payment is made, until the end date of the policy is reached. Thus if the due date
precedes the current date, then the status of the policy is unpaid, whereas if the
current date precedes the due date then the status ofthe policy is paid.

Each policy is sold by an agent (e.g. an insurance broker) who is licensed by the
company to sell policies on its behalf. Each agent receives commission for his sales,
which is calculated by multiplying the premium on each ofthe policies that have been
sold by him by his commission rate.

115

Chapter 4 : Case Study

Each policy can suffer many claims which are settled by the company. A settlement
results in either the claim being awarded or the claim being disallowed. If the claim
date is between the start and end dates ofthe policy suffering the claim, and the status
of this policy is paid, then the claim is awarded, if however the claim date is not
between the start and end dates of the policy suffering the claim, or the status ofthe
policy is unpaid, then the claimis disallowed.

4.2 Constructing the Object Model

Using Rumbaugh's standard OMT approach, the object model consists of an object
diagram which illustrates each object class in terms of its attributes, operations and
relationships to other classes. Hence there are 5 steps in the construction ofthe object
model, namely:

» ldentify object classes

» ldentify associations

* ldentify attributes

» Identify operations

e Build the object diagram

4.2.1 ldentify Object Classes

By examining the problem statement, 8 distinct classes emerge. Obviously, there is a
client class, apolicy class, an agent class, and a claim class. Furthermore, there is a
car policy class and a house policy class, derived from the policy class. Hence the
policy class will hold the general policy details of each policy (e.g. start date, end
date, etc.), while the car policy and house policy classes will hold details specific to
car policies (e.g. manufacturer, model, etc.) and house policies (e.g. house value,
contents value, etc.) respectively. Each policy holds a number of risks, thus risk is
also a class, which is part ofthe policy class. And finally, each company holds a list of
clients, policies, agents, and claims, thus company is also a class.

116

Chapter 4 : Case Study

4.2.2 ldentify Associations

Associations exist between the company class and the client class because the
company insures a list of clients, between the company class and the policy class
because the company manages a list of policies, between the company class and the
agent class because the company licences a list of agents, and between the company
class and the claims class because a company settles a list of claims.

In addition, associations exist between the client class and the policy class because a
client holds policies, between the agent class and the policy class because an agent
sells policies, between the policy class and the risk class because a policy consists of a
number of risks, and between the policy class and the claim class because a policy
suffers claims. Finally, an inheritance association exists between the policy class and
the carpolicy class because a car policy is a specific type of policy, and an inheritance
association also exists between the policy class and the house policy class because a
house policy is also a specific type of policy.

4.2.3 Identify Attributes

Each client has a client number (ClientNo), a surname (Surname), a first name
(Firstname), an address (Address), a phone number (Phone), an occupation
(Occupation), a date of birth (Birthdate), and a sex [e.g. male or female M/F] (Sex).
In addition, each client also has a list of the policy numbers on the policies that they
hold (PolicyNoListQ"), and a counter indicating the total number of policies that they
hold (PolicyCount).

Each agent has an agent number (AgentNo), a surname (Surname), a first name
(Firstname), a name ofthe company for whom they work (Company), an address of
the company for whom they work (Address), a phone number of the company for
whom they work (Phone), and a commission rate (CommRate). In addition, each
agent also has a list of the policy numbers on the policies that they've sold
(PolicyNoListQ), a counter indicating the total number of policies that they've sold
(PolicyCount), and a numerical figure indicating the commission due to them
(TotalAmtDue), [which is a derived attribute, since it is obtained by multiplying the
commission rate ofthe agent by the sum of the premiums on all the policies sold by
the agent].

117

Chapter 4 : Case Study

Each policy has a client number (ClientNo), identifying the client who holds the
policy, an agent number (AgentNo), identifying the agent who sold the policy, a policy
number (PolicyNo), the start date ofthe policy (StartDate), the end date ofthe policy
(EndDate), the original date on which the policy was created (OriginalDate), [which
is a derived attribute, since it is the same as the start date on the policy when it was
created, but unlike the start and end dates of the policy which will be updated if the
policy is renewed, the original date will always remain the same]. In addition, each
policy also has a list of the risks on the policy (RiskListf]), a counter indicating the
total number of risks on the policy (TotalRisks), the total premium of the policy
(TotalPremium), [which is a derived attribute, since it is obtained by summing the
premiums on all the risks on the policy], the number of payment instalments to be
made over the period of the policy (Instalments) [e.g. 12 monthly instalments per
year], the number of payments made so far over the period ofthe policy (Payments),
the amount of the payment due at each instalment (AmtDue) [which is a derived
attribute, sine it is obtained by dividing the total premium by the number of
instalments], the due date of the next payment (DueDate) [which is a derived
attribute, since it is obtained by incrementing the start date ofthe policy by one month
each time a payment is received], the status ofthe policy (Status) [which is a derived
attribute, since it is obtained by comparing the due date of the policy to the current
date, ifthe due date precedes the current date, then the policy is "unpaid”, and if the
current date precedes the due date, then the policy is "paid"]. Each policy also has a
list ofthe claim numbers on the claims suffered by the policy (ClaimNoList[]J, and a
counter indicting the total number of claims suffered by the policy (ClaimNoCount).

Each car policy has the additional attributes of the manufacturer of the car
(Manufacturer) [e.g. Toyota], the model of the car (Model) [e.g. Carina E], the
registration ofthe car (Registration), the engine size ofthe car (EngineSize) [e.g. 1.6
Litres], the value of the car (CarValue) [e.g. £14,000], and the full licence status of
the driver of the car (FullLicenceStatus) [e.g. O if the driver does not have a hill
drivers licence, and 1ifthe driver does have a full drivers licence].

Each house policy has the additional attributes of the type of the house (HouseType)
[e.g. semi, detached, etc.], the number of rooms in the house (Rooms) [e.g. 3-
bedrooms], the area code of the area in which the house is located (AreaCode) [e.g.
Al - A9], the value of the house (HouseValue) [e.g. £80,000], the value of the
contents of the house (ContentsValue) [e.g. £25,000], and the house alarm status of
the house (HcruseAlarmsStatus) [e.g. O if the house does not have an alarm, and 1 if
the house does have an alarm].

118

Chapter 4 : Case Study

Each risk has a risk number (Risk.No) [e.g. fire, theft, etc.], a risk type (RiskType)
[e.g. car policy risk or bouse policy risk], a risk value (RiskValue) [e.g. the value of
the car or the house], a risk status (RiskStatus) [e.g. whether the driver ofthe car has
a ftdl licence, or whether the house has an alarm], and a risk premium (RiskPremium)
[which is a derived attribute, since it is obtained by combining the risk type, risk value
and risk status into a formula which yields a numerical figure].

Each claim has a claim number (ClaimNo), a claim date (ClaimDate), a claim value
(ClaimValue), a description of the details of the claim (ClaimDetails), a description
of the status of the claim (ClaimStatus), [which is a derived attribute, since it is
obtained by comparing the claim date to the start and end dates of the policy suffering
the claim, and by examining the status of the policy suffering the claim, so if the claim
date is between the start and end dates of the policy and the status of the policy is
"paid" then the claim is "awarded", and if the claim date is not between the start and
end dates of the policy or the status of the policy is "unpaid” then the claim is
"disallowed"]. Thus each claim has the additional attributes of the number of the
policy suffering the claim (PolicyNo), the start date of the policy (PolicyStart), the
end date ofthe policy (PolicyEnd), and the status ofthe policy (PolicyStatus).

Each company has a name (CompanyName), an address (Address), a phone number
(Phone), a list of clients (ClientListfJ), a list of policies (PolicyListQ"), a list of agents
(AgentList[J), a list of claims (ClaimList[j), a counter for the total number of clients
(TotalClients), a counter for the total number of policies (TotalPolicies), a counter
for the total number of agents (TotalAgents), a counter for the total number of claims
(TotalClaims), and access attributes for accessing each of the respective lists [e.g.
Client accesses the ClientList[], Policy accesses the PolicyListf], Agent accesses the
AgentListf], and Claim access the ClaimList[J\.

4.2.4 ldentify Operations

Each class must have an operation to access each attribute, and an operation to
update each attribute which is permitted to be updated. The access operation merely
returns the value of the attribute, while the update operation sets the value of the
attribute to a new value which is passed as a parameter to the operation. In the case
of derived attributes, the update operation calculates the new value of the attribute
from the values of the other attributes in the class from which it is derived, hence the
new value ofthe attribute is not passed as a parameter.

119

Chapter 4 : Case Study

The client class has an operation to access ClientNo (GetClientNo), Surname
(GetSurname), Firstname (GetFirstname), Address (GetAddress), Phone (GetPhone),
Occupation (GetOccupation), Birthdate (GetBirthdate), Sex (GetSex),
PolicyNoListQ (GetPolicyNo), and PolicyCount (GetPolicyCount). The ClientNo is
not updateable, however the client class has an operation to update Surname
(PutSurname), Firstname (PutFirstname), Address (PutAddress), Phone (PutPhone),
Occupation (PutOccupation), Birthdate (PutBirthdate), Sex (PutSex), PolicyNoList[]
(PutPolicyNo) and PolicyCount (IncPolicyCount and DecPolicyCount). In addition,
the client class has an operation to add a policy number to the policy number list
(AddPolicy) [which invokes PutPolicyNo and IncPolicyCount], and an operation to
delete a policy number from the policy number list (DeletePolicy) [which invokes
PutPolicyNo and DecPolicy Count],

The agent class has an operation to access AgentNo (GetAgentNo), Surname
(GetSurname), Firstname (GetFirstname), Company (GetCompany), Address
(GetAddress), Phone (GetPhone), CommRate (GetCommRate), TotalAmtDue
(GetTotalAmtDue), PolicyNoListQ (GetPolicyNo), and PolicyCount (GetPolicy
Count). The AgentNo is not updateable, however the agent class has an operation to
update Surname (PutSurname), Firstname (PutFirstname), Company (PutCompany),
Address (PutAddress), Phone (PutPhone), CommRate (PutCommRate),
TotalAmtDue (CalcTotalAmtDue) [since it is a derived attribute], PolicyNoListQ
(PutPolicyNo) and PolicyCount (IncPolicyCount and DecPolicyCount). In addition,
the agent class has an operation to add a policy number to the policy number list
(AddPolicy) [which invokes PutPolicyNo and IncPolicyCount], and an operation to
delete a policy number from the policy number list (DeletePolicy) [which invokes
PutPolicyNo and DecPolicy Count],

The policy class has an operation to access ChentNo (GetClientNo), AgentNo
(GetAgentNo), PolicyNo (GetPolicyNo), OriginalDate (GetOriginalDate), StartDate
(GetStartDate), EndDate (GetEndDate), TotalPremium (GetTotalPremium),
Instalments (Getlnstalments), Payments (GetPayments), AmtDue (GetAmtDue),
DueDate (GetDueDate), Status (GetStatus), RiskListQ (GetRisk), TotalRisks
(GetTotalRisks), ClaimNoList[] (GetClaimNo) and ClaimCount (GetClaimCount).
The ChentNo, AgentNo or PolicyNo are not updateable, however the policy class has
an operation to update StartDate (PutStartDate), EndDate (PutEndDate),
TotalPremium (CalcTotalPremium) [since it is a derived attribute], Instalments
(Putinstalments), Payments (PutPayments), AmtDue (CalcAmtDue) [since it is a
derived attribute], DueDate (CalcDueDate) [since it is a derived attribute], Status

120

Chapter 4 : Case Study

(CalcStatus) [since it is a derived attribute], RiskList[] (PutRisk), TotalRisks
(IncTotalRisks and DecTotal Risksj, ClaimNoList[] (PutClaimNo) and ClaimCount
(IncClaimCount and DecClaim Count). In addition, the policy class has an operation
to add a risk to the risk list (AddRisk) [which invokes PutRisk and IncTotalRisks],
and to delete a risk from the risk list (DeleteRisk) [which invokes PutRisk and
DecTotalRisks], Similarly, there is an operation to add a claim number to the claim
number list (AddClaim) [which invokes PutClaimNo and IncClaimCount], and an
operation to delete a claim number from the claim number list (DeleteClaim) [which
invokes PutClaimNo and DecClaimCount].

The car policy class has an operation to access Manufacturer (GetManufacturer),
Model (GetModel), Registration (GetRegistration), EngineSize (GetEngineSize),
CarValue (GetCarValue) and FullLicenceStatus (GetFullLicenceStatus). The car
policy class also has an operation to update Manufacturer (PutManufacturer) , Model
(PutModel), Registration (PutRegistration), EngineSize (PutEngineSize), CarValue
(PutCarValue) and FullLicenceStatus (PutFullLicenceStatus).

The house policy class has an operation to access HouseType (GetHouseType),
Rooms (GetRooms), AreaCode (GetAreaCode), HouseValue (GetHouseValue),
ContentsValue (GetContentsValue) and HouseAlarmStatus (GetHouseAlarmStatus).
The house policy class also has an operation to update HouseType (PutHouseType),
Rooms (PutRooms), AreaCode (PutAreaCode), HouseValue (PutHouseValue),
ContentsValue (PutContentsValue) and HouseAlarmStatus (PutHouseStatus).

The risk class has an operation to access RiskNo (GetRiskNo), RiskType
(GetRiskType), RiskValue (GetRiskValue), RiskStatus (GetRiskStatus), RiskPremium
(GetRiskPremium). The RiskNo is not updateable, however the risk class has an
operation to update RiskType (PutRiskType), RiskValue (PutRiskValue), RiskStatus
(PutRiskStatus) and RiskPremium (CalcRiskPremium) [since it is a derived attribute].

The claim class has an operation to access ClaimNo (GetClaimNo), ClaimDate
(GetClaimDate), ClaimValue (GetClaimValue), ClaimDetails (GetClaimDetails),
ClaimStatus (GetClaimStatus), PolicyNo (GetPolicyNo), PolicyStart
(GetPolicyStart) , PolicyEnd (GetPolicyEnd) and PolicyStatus (GetPolicyStatus). The
ClaimNo and PolicyNo are not updateable, however the claim class has an operation
to update ClaimDate (PutClaimDate), ClaimValue (PutClaimValue), ClaimDetails
(PutClaim Details), PolicyStart (PutPolicyStart), PolicyEnd (PutPolicyEnd) and
PolicyStatus (PutPolicy,Status) .

121

Chapter 4 : Case Study

The company class has an operation to access ClientListQ (GetClientNo), PolicyList
(GetPolicyNo), AgentList (GetAgentNo), ClaimList (GetClaimNo), TotalClients (Get
TotalClients), TotalPolicies (GetTotalPolicies), TotalAgents (GetTotalAgents) and
TotalClaims (GetTotalClaims). The company class also has an operation to update
ClientListQ (PutClient), PolicyList[] (PutPolicy), AgentList[] (PutAgent), ClaimList[]
(PutClaim), TotalClients (IncTotalClients and DecTotalClients), TotalPolicies
(IncTotalPolicies and DecTotalPolicies), TotalAgents (IncTotalAgents and DecTotal
Agents) and TotalClaims (IncTotalClaims and DecTotalClaims). In addition there is
an operation to add a client (AddClient), delete a client (DeleteClient), update a client
(UpdateClient), retrieve a client (GetClient), add a policy (AddPolicy), delete a policy
(DeletePolicy), update a policy (UpdatePolicy), retrieve a policy (GetPolicy), add an
agent (AddAgent), delete an agent (DeleteAgent), update an agent (UpdateAgent),
retrieve an agent (GetAgent), add a claim (AddClaim), delete a claim (DeleteClaim),
update a claim (UpdateClaim) and retrieve a claim (GetClaim).

4.2.5 Build the Object Diagram
Due to space restrictions, the attributes and operations of each class cannot be
displayed on the object diagram below. However, the class definitions for each class

are provided in the appendix of the thesis. [For example, the class definition for the
TClient class is listed in TClient.H, etc.]

Fig 4.1 Object Model

122

Chapter 4 : Case Study

4.3 Constructing the Dynamic Model

Using Rumbaugh's standard OMT approach, the dynamic model consists of a set of
scenarios depicting expected system behaviour, a set of event trace diagrams
illustrating each distinct scenario, an event flow diagram summarising the events
between the various classes, and finally, a state diagram for each class with non-trivial
dynamic behaviour. Hence there are 5 steps in the construction ofthe dynamic model,
namely:

* Prepare scenarios
Identify events from scenarios
» Build event trace diagram for each scenario
» Build event flow diagram
» Build state diagram for each class

4.3.1 Prepare Scenarios

Within the insurance apphcation, there exists an infinite number of possible scenarios,
however 10 important scenarios can be identified. These scenarios are important since
each imposes a strict order on the sequence in which a set of events can occur. Hence
these scenarios could be described as core scenarios, which can be used to form part
of other more complex scenarios, however the sequence of events within each of
these scenarios cannot be altered.

e Scenario #1

This scenario illustrates the strict order in which items may be added to the system.
A client and an agent must already exist within the system before a policy can be
added, since when a policy is created, the policy number is added to the policy
number list ofthe client and the policy number list of the agent. Due to thefact that
a risk ispart ofapolicy, apolicy must already exist within the system before a risk
can be added, since when a risk is created, the risk is added to the risk list of the
policy. Similarly, due to thefact that a claim is made against a policy, a policy must
already exist within the system before a claim can be added, since when a claim is
created, the claim number is added to the claim number list o fthe policy.

123

Chapter 4 : Case Study

A user adds a client to the system.

The company creates the client and stores it in the client list ofthe company.
A user adds an agent to the system.

The company creates the agent and stores it in the agent list ofthe company.
A user adds a pohcy to the system.

The company creates the pohcy* and stores it in the pohcy list ofthe company.
The company adds the pohcy number to the pohcy number list of the client.
The company adds the pohcy number to the pohcy number list ofthe agent.
A user adds arisk to a pohcy.

The company creates the risk and stores it in the risk list ofthe pohcy.

A user adds a claim to the system.

The company creates the claim and stores it in the claim list ofthe company.
The company adds the claim number to the claim number list ofthe pohcy.

* (indicates car insurance policy or house insurance policy)

e Scenario #2

This scenario illustrates the strict order in which items may be deleted from the
system. All claims made against a policy must be deleted before the policy can be
deletedfrom the system. All risks existing on a policy must be deleted before the
policy can be deletedfrom the system. All policies belonging to a particular agent
must be deleted before that agent can be deleted from the system. All policies
belonging to a particular client must be deleted before that client can be deleted
from the system.

A user deletes a claim from the system.

The company destroys the claim in the claim list ofthe company.

The company deletes the claim number from the claim number list ofthe pohcy.
A user deletes arisk from a policy.

The company destroys the risk in the risk list ofthe pohcy.

A user deletes a pohcy from the system.

The company destroys the pohcy* in the policy list ofthe company.

The company deletes the pohcy number from the pohcy number list ofthe chent.
The company deletes the pohcy number from the pohcy number list of the agent.
A user deletes an agent from the system.

The company destroys the agent in the agent list ofthe company.

A user deletes a chent from the system.

The company destroys the chent in the chent list ofthe company.

124

Chapter 4 : Case Study

e Scenario #3

This scenario illustrates the strict order in which clients may be updated in the
system. Clients may only be updated after they have been added and before they are
deleted (i.e. a client must exist within the system).

A user adds a client to the system.

The company creates the chent and stores it in the chent list ofthe company.
A user updates a chent in the system.

A user deletes a chent from the system.

The company destroys the chent in the chent list ofthe company.

e Scenario #4

This scenario illustrates the strict order in which agents may be updated in the
system. Agents may only be updated after they have been added and before they are
deleted, (i.e. an agent must exist within the system).

A user adds an agent to the system.

The company creates the agent and stores it in the agent list ofthe company.
A user updates an agent in the system.

A user deletes an agent from the system

The company destroys the agent in the agent list ofthe company.

e Scenario #5

This scenario illustrates the strict order in which policies may be updated in the
system. Policies may only be updated after they have been added and before they are
deleted, (i.e. apolicy must exist within the system).

A user adds a pohcy to the system.

The company creates the pohcy* and stores it in the pohcy list ofthe company.
The company adds the pohcy number to the pohcy number list ofthe chent.
The company adds the pohcy number to the pohcy number list ofthe agent.

A user adds arisk to a pohcy.

The company creates the risk and stores it in the risk list ofthe pohcy.

A user updates a pohcy in the system.

The company updates the status ofthe pohcy.

125

Chapter 4 : Case Study

A user deletes arisk from a policy.

The company destroys the risk in the risk list ofthe pohcy.

A user deletes a pohcy from the system.

The company destroys the pohcy in the pohcy list ofthe company.

The company deletes the pohcy number from the pohcy number list ofthe chent.
The company deletes the pohcy number from the pohcy number list ofthe agent.

e Scenario #6

This scenario illustrates the strict order in which claims ma)> be updated in the
system. Claims may only be updated after they ho\>e been added and before they are
deleted, (i.e. a claim must exist within the system).

A user adds a claim to the system.

The company creates the claim and stores it in the claim list ofthe company.
A user updates a claim in the system.

The company updates the status ofthe claim.

A user deletes a claim from the system.

The company destroys the claim in the claim list ofthe company.

e Scenario #7

This scenario illustrates the strict order in which clients may be retrievedfrom the

system. Clients may only be retrieved after they have been added and before they are
deleted, (i.e. a client must exist within the system).

A user adds a chent to the system.

The company creates the chent and stores it in the chent list of the company,
A user retrieves a chent from the system.

A user deletes a chent from the system.

The company destroys the chent in the chent list ofthe company.

e Scenario #8
This scenario illustrates the strict order in which agents may be retrievedfrom the

system. Agents may only be retrieved after they have been added and before they are
deleted, (i.e. an agent must exist within the system).

126

Chapter 4 : Case Study

A user adds an agent to the system.

The company creates the agent and stores it in the agent list ofthe company.
A user retrieves an agent from the system.

A user deletes an agent from the system.

The company destroys the agent in the agent list ofthe company.

e Scenario #9

This scenario illustrates the strict order in which policies may be retrievedfrom the
system. Policies may only be retrieved after they have been added and before they
are deleted, (i.e. apolicy must exist within the system).

A user adds a pohcy to the system.

The company creates the pohcy* and stores it in the pohcy list ofthe company.
The company adds the pohcy number to the pohcy number list ofthe chent.

The company adds the pohcy number to the pohcy number list ofthe agent.

A user adds arisk to a pohcy.

The company creates the risk and stores it in the risk list ofthe pohcy.

A user retrieves a pohcy from the system.

A user deletes arisk from a pohcy.

The company destroys the risk in the risk list ofthe pohcy.

A user deletes a pohcy from the system.

The company destroys the pohcy inthe pohcy list ofthe company.

The company deletes the pohcy number from the pohcy number list ofthe chent.
The company deletes the pohcy number from the pohcy number list ofthe agent.

e Scenario #10

This scenario illustrates the strict order in which claims may be retrievedfrom the
system. Claims may only be retrieved after they have been added and before they are
deleted, (i.e. a claim must exist within the system).

A user adds a claimto the system.

The company creates the claim and stores it in the claim list ofthe company.
A user retrieves a claim from the system.

A user deletes a claim from the system.

The company destroys the claim in the claim list ofthe company.

127

Chapter 4 : Case Study

4.3.2 ldentify Events from Scenarios

Within the insurance application there are 18 external events, which provide the input
and output ofthe system : add_client which is sent from the user to the company and
contains the client details as parameters; delete client which is sent from the user to
the company and contains the chent number as a parameter; update_client which is
sent from the user to the company and contains the details to be updated on the chent
as parameters; fuid_client which is sent from the user to the company and contains
the chent number as a parameter; add_policy which is sent from the user to the
company and contains the pohcy details as parameters; delete_policy which is sent
from the user to the company and contains the pohcy number as a parameter;
update_policy which is sent from the user to the company and contains the details to
be updated on the pohcy as parameters;,///1"*jpolicy which is sent from the user to the
company and contains the pohcy number as a parameter; add_agent which is sent
from the user to the company and contains the agent details as parameters;
delete agent which is sent from the user to the company and contains the agent
number as a parameter; update agent which is sent from the user to the company and
contains the details to be updated on the agent as parameters; find_agent which is
sent from the user to the company and contains the agent number as a parameter;
add_claim which is sent from the user to the company and contains the claim details
as parameters; delete_claim which is sent from the user to the company and contains
the claim number as a parameter; update claim which is sent from the user to the
company and contains the details to be updated on the claim as parameters;
find_claim which is sent from the user to the company and contains the claim number
as a parameter; add_risk which is sent from the user to the pohcy and contains the
risk details as parameters; and finally, delete_risk which is sent from the user to the
pohcy and contains the risk number as a parameter.

The internal events are as follows : create client which is sent from the company to
the chent, and which causes a new chent to be created and stored in the chent list of
the company; create agent which is sent from the company to the agent, and which
causes a new agent to be created and stored in the agent list of the company;
create_policy which is sent from the company to the pohcy, and which causes a
create_car event to be sent to the car (creating a new car insurance pohcy) or a
create_house event to be sent to the house (creating a new house insurance pohcy),
which is then stored in the pohcy list ofthe company; create_risk which is sent from
the pohcy to the risk, and which causes a new risk to be created and stored in the risk
list of the pohcy; create_claim which is sent from the company to the claim, and
which causes a new claimto be created and stored in the claim list ofthe company.

128

Chapter 4 : Case Study

Also there exist the following events : destroy_client which is sent from the company
to the chent, and which causes an existing client to be destroyed and removed from
the client list of the company; destroy agent which is sent from the company to the
agent, and which causes an existing agent to be destroyed and removed from the
agent list of the company; destroyjpolicy which is sent from the company to the
pohcy, and which causes a destroy car event to be sent to the car (destroying an
existing car insurance pohcy) or a destroyJiouse event to be sent to the house
(destroying an existing house insurance pohcy), which is then removed from the
pohcy list ofthe company; destroy risk which is sent from the pohcy to the risk, and
which causes an existing risk to be destroyed and removed from the risk list of the
pohcy; destroy_claim which is sent from the company to the claim, and which causes
an existing claim to be destroyed and removed from the claim list ofthe company;

Finally, there also exists the following events : add_policy_to_client which is sent
from the company to the chent, and which causes the pohcy number of the newly
created pohcy to be added to the pohcy number list ofthe chent to which that pohcy
belongs; add_policy_to_agent which is sent from the company to the agent, and
which causes the pohcy number ofthe newly created pohcy to be added to the pohcy
number list of the agent to which that pohcy belongs; delete_policyJrom_client
which is sent from the company to the chent, and which causes the pohcy number of
an already existing pohcy to be deleted from the policy number list of the chent to
which that pohcy belongs; delete_policyjrom agent which is sent from the company
to the agent, and which causes the pohcy number of an aheady existing pohcy to be
deleted from the pohcy number list of the agent to which that policy belongs;
change_status which is sent from the company to the pohcy, and which causes the
pohcy status to be updated to paid or unpaid; and change status which is sent from
the company to the claim, and which causes the claim status to be updated to
awarded or disallowed.

These internal events are similar to messages, however there major discriminating
factor from other messages in the system is that they cause a change of state within
the system, and hence deserve the status of an event. For example, the change_status
event associated with the claim class, is the only event resulting from an update to a
claim This is because updating the claim details does not have any effect on the state
ofthe claim object, whereas updating the claim status causes the claim to move to an
"awarded" state or a "disallowed" state. Similarly, the change_status event associated
with the pohcy class, is the only event resulting from an update to a pohcy, and
causes the pohcy to move to a "paid” or an "unpaid” state.

129

Chapter 4 : Case Study

4.3.3 Build Event Trace Diagram for each Scenario

Each scenario is a sequence of events that occurs during one particular execution of a
system, and the event trace diagram illustrates this sequence of events, as well as
illustrating the objects in the system which are directly affected by each event. An
event trace diagram for each identified scenario is illustrated below :

TUser TCompany TClient TAgent TPolicy TRisk TCar THouse TClaim

add
chenl
create
add client "
agent
create
add_ r agent ~
policy | create_
policy
i gg?ate f
a
_ create
p%hcy_ add_ house ~
Y policy
ent, po!
agent
add
risk—
create
add risk
claim
create
claim'

Fig 4.2 Event Trace Diagram - Scenario #1

130

Chapter 4 : Case Study

TUser TCompany TClient TAgent TPolicy TRisk TCar THouse TClaim
! |

dlel_ete_ 1
claim ~
m destroy_\ i
claim® '\ :
delete
risk
|'desktroy
\ deI(Ie_te_ $rs
1 -polley sdestroyJ
policy” \
S destroy
| delete_ | ! car "
firom |
ITOM_— ['holic
I client Hﬁomz
I agent
delete
agent- |
destroy \ \
agent "
| delete_ %
\ client)
destroyj\ !
client *7j ! i
!

Fig 4.3 Event Trace Diagram - Scenario #2

TUser TCompany TClient

add client
create client

update_client

delete client
destroy_client

Fig 4.4 Event Trace Diagram - Scenario #3

131

Chapter 4 : Case Study

TU fer TCompany TAgent
add_agent
) create_agenl j
update_agent * !
delete_agent |
destroy_agent \
!

Fig 4.5 Event Trace Diagram - Scenario #4

TUser TCompany TClient TAgent TPolicy TRisk TCar THouse

add_
policy create
policy
cagete

add_ create

Ft)g“Cy_ add_ house "

= policy_

client . to—t

agen
a_dcki_
ris
crectte
update_ risk
poticy change
statu% :
delﬁte_
ris
"i destroy_

dellete_ ‘I risk
olic
policy dels_troy

policy

! gg§_troy~

dg'ﬁée destroy_\

romy— de||_ete house ~J

o olicy_

client Jprom_

agent

Fig 4.6 Event Trace Diagram - Scenario #5

132

Chapter 4 : Case Study

TUser TCompan)7 TClaim
add_claim
create claim
I update_claim
delete claim
1 . destroy_claim

Fig 4.7 Event Trace Diagram - Scenario #6

TUser TComp any TClient
add client
create_client
find_client
delete_client

destroy_client

Fig 4.8 Event Trace Diagram - Scenario #7

Tulser TCon?pany TAgent

add_agent 1
| create_agent j
find_agenl |
delete_agent j
j destroy_agenl j

Fig 4.9 Event Trace Diagram - Scenario #8

133

TUser TCompany TClient TAgent TPolicy

add_
policy _

add_

risk
find
policy

f delete_
1 risk

1 delete
\ policy "

1

add_

policy_ 444

3- 1_

chent [tJ(())Ilcy
agent

destroy_

policy

delete

r%lr'ﬁy dellete_

S olicy

client Vﬁom_
agent

Chapter 4 : Case Study

TRisk TCar
create
policy
create
car
create_ |
house
Ccreate
risk
change
status ,,
destroy
risk
destroy
car '~
destroy_
house

Fig 4.10 Event Trace Diagram - Scenario #9

TUser TCompany TClaim
add claim
I create claim
find_claim
delete claim

destroy_claim h

Fig 4.11 Event Trace Diagram - Scenario #10

134

THouse

Chapter 4 : Case Study

4.3.4 Build Event Flow Diagram

The event flow diagram summarises events between classes by simply listing the
events which can be sent and received by each class, without regard for the sequence
in which the events are to be performed. Only those events listed on the event flow
diagram for each respective class, can appear on the state diagram for that class.

createJiouse create_ri.sk
destroy_house destroy_risk .
THouse TRisk
create_car
TC destroy_car
ar .
add risk
(r|s|I(< no, rlskn{(pe)
TClaim . risk_yaiue,risk_status
TPolicy delete_risk(risk_no)
create_claim create_policy”
destroy_ciaim destroy_policy

change”status change_status

add_client*
delete_cllentﬂcllent_no)

update_client**
find chentﬁcllent no)

add_policy+
delete_policy(policy_no)

updatejpolicy ++
findjpolicy(policy_no)

nt# TUser

add_agen
delete_agent(agent_no)

add_claim’
delete_claim(claim_no)
update_claim
find_claim (claim_no)

create_client
destroyclient
add_policy_to—client(policy_no) TClient

delete_pohcyjrom_client(policy _no)
createjigent
destroy” agent

addjpolicyJ.o —agent(policy_no)
delete_policyJrom_agent(policy no) TAgent

* add lient(client {no surnamefirstname,address, phone, occupation, birthdate, sex)
e_chent(clientjio, surnamefirstname, actj&ss,’mme, occupation, bi rthdate,)
+ ad jpolicy (clientjio,agentjio”policy r rtqstart date,end_date, car_details)
+ addjpohcy (client noagent nopollcy no,start “date, end_date house details)
++U atejpollcy date,end date,Car_details)
++ update _pollcy pollcyj>o start e, end date, house details)
agentjio, surmnamefirstname ,Company,address, phone,comm rate)

upd_ te a ent(agentjlo sunarrefl r Sirame, conary, address, phone, commijate)

clalm no,claim date,claim value,claim detaHs,

no,pollcy start,policy_end,policy status)

-updatej |alm(clalmj>o clam date,claimjralue,claimjietails)

Fig 4.12 Event Flow Diagram

135

Chapter 4 : Case Study

4.3.5 Build State Diagram for each Class

As aresult ofthe create”client event, the client is placed in the inactive state (a chent
is "inactive”, when he does not hold any policies, and a chent is "active"™ when he
holds at least one pohcy) and remains in this state until an add_policyJo_
client(policyjio) event is received, which moves the chent to the active state. Once in
the active state, subsequent addjpolicyJo_client(policy_no) events will not alter the
state ofthe chent [the AddPolicy(PolicyNo) action will add the pohcy number to the
pohcy number list of the chent, and will increment the value of PolicyCount by 1],
However, a deletejpolicyJrom_client(policy_no) event will only allow the chent to
remain in the active state provided he holds more than one pohcy at the time the
event is received [the DeletePolicy(PolicyNo) action will delete a pohcy from the
pohcy number list of the chent, and will decrement the value of PolicyCount by 1], If
the chent holds only one pohcy at the time the deletejpolicyJrom_client(policy_no)
event is received, then the DeletePolicy(PolicyNo) action will delete this final pohcy
from the pohcy number list ofthe chent, and will decrement the value ofPolicyCount
down to zero, and hence the chent enters the inactive state. Finally as a result of the
destroy_client event, the life cycle ofthe chent is over.

deletejpolicyJrom_client(policyjio)
[PolicyCount > 1]
/ DeletePolicy(PolicyNo)

deletejpolicyjrom_client(policyjio) addjpohcyJo_client
[PolicyCount = 1] (policy_no)
/DeleteP olicy(PolicyNo) /AddPolicyCPolicyNo)

Fig 4.13 Dynamic Model (State Diagram for TClient)

136

Chapter 4 : Case Study

As a result of the create_policy event, the client is placed in the inactive state (a
policy is "inactive", when it does not hold any risks, and a policy is "active™ when it
holds at least one risk) and remains in this state until an add risk event is received,
which moves the policy to the active state. Once in the active state, subsequent
addrisk events will not alter the state ofthe client [the AddRiskQ action will add the
risk to the risk list ofthe policy, and will increment the value of TotalRisks by 1].

However, a deletej-isk event will only allow the policy to remain in the active state
provided it holds more than one risk at the time the event is received [the
DeleteRiskQ action will delete a risk from the risk list of the policy, and will
decrement the value of TotalRisks by 1], Ifthe policy holds only one risk at the time
the deletej-isk event is received, then the DeleteRiskQ action will delete this final risk
from the risk list of the policy, and will decrement the value of TotalRisks down to
zero, and hence the policy enters the inactive state.

<>
createjpolicy destroyj>olicy
R deletejisk(riskjio)
[TotalRisks = 1]
/ DeleteRisk(RiskNo)

deletejisk(riskjio)
[TotalRisks > 1] addjisk*
/ DeleteRisk(RiskNo) /AddRiskO*’

addji.sk*
/AddRiskQ*’
Active
1 change_status
/ CalcStatusO
Unpaid Paid

change_status
[DueDate < DATE]
/ Calc Status0

* add_risk(risk_no,riskjype,risk value,risk_stafus)
**AddRisk (UskNo, Risk Type, RiskValite, RiskStatus)

Note: AddRiskQ contains sendcreatejisk
DeletePdsikQ contains senddeiete risk

Fig 4.14 Dynamic Model (State Diagram for TPolicy)

137

Chapter 4 : Case Study

Within the active state, there are two substates, paid and unpaid. The default state is
the unpaid state, but when a change status event is received, a transition can be
made to the paid state provided the current date precedes the DueDate for payment
on the policy. Similarly, within the paid state, when a change_status event is
received, a transition can be made to the unpaid state provided the DueDate for
payment on the policy precedes the current date. Finally as a result of the
destroy_policy event, the life cycle ofthe policy is over.

As a result of the create_agent event, the agent is placed in the inactive state (an
agent is "inactive", when he does not hold any policies, and an agent is "active" when
he holds at least one policy) and remains in this state until an add_policy_to agent
(policy_no) event is received, which moves the agent to the active state. Once in the
active state, subsequent add_policy_to_agent(policy_no) events will not alter the
state ofthe agent [the AddPolicy(PolicyNo) action will add the policy number to the
policy number list of the agent, and will increment the value of PolicyCount by 1].
However, a delete_policyJrom_agent(policy no) event will only allow the agent to
remain in the active state provided he holds more than one policy at the time the
event is received [the DeletePolicy(PolicyNo) action will delete a policy from the
policy number list ofthe agent, and will decrement the value of PolicyCount by 1]. If
the agent holds only one policy at the time the delete_policyJrom_agent(policy_no)
event is received, then the DeletePolicy(PolicyNo) action will delete this final policy
from the policy number list ofthe agent, and will decrement the value ofPolicyCount
down to zero, and hence the agent enters the inactive state. Finally as a result of the
destroy agent event, the life cycle ofthe agent is over.

deletejp&hcyjrom_agent(policy_no)
[PolicyCount >1]
/ DeletePolicy(PolicyNo)

create_agent destroy_agent

add_policy_to_agent

_ (policy_no)
/ AddP olicy(PolicyNo)

deletejpolicyjromjxgent(policy_no) add_policy to_agent
[PolicyCount = 1] (policy_no)
I DeletePolicy(PolicyNo) / AddP olicy(PolicyNo)

Fig 4.15 Dynamic Model (State Diagram for TAgent)

138

Chapter 4 : Case Study

As aresult of the create claim event, the claim is placed in the pending state, and
remains in this state until a change_status event is received. If the ClaimDate is
between the PolicyStart and the PolicyEnd dates, and the PolicyStatus is "Paid", then
a transition is made to the awarded state. I1f however, the ClaimDate is not between
the PolicyStart and PolicyEnd dates, or the PolicyStatus is "Unpaid", then a
transition is made to the disallowed state. Finally as a result of the destroy_claim
event, the life cycle ofthe claim is over.

Fig 4.16 Dynamic Model (State Diagram for TClaim)

When the company is created, there are no clients, agents, policies or claims, hence
the company enters the adding state where each of these items may be added to the
company. As a result of an add_client event, the AddPolicyQ action creates a new
client, adds it to the client list and increments TotalClients by 1. Similarly, for an
add agent event, the AddAgentQ action creates a new agent, adds it to the agent list
and increments TotalAgents by 1 If an add_policy event is received, there must exist
at least one client and one agent in the company, since the policy number must be
added to the policy number list of the client who holds the policy, and also added to
the policy number list of the agent who sold the policy. The AddPolicyQ action
creates a new policy, adds it to the policy list and increments TotalPolices by 1 If an
add_claim event is received, there must exist at least one policy in the company, since
the details of the policy suffering the claim are required to create the claim The
AddClaimQ action creates the claim, adds it to the claim list and increments
TotalClaims by 1

139

Chapter 4 : Case Study

add client delete client ,delete client
delete_agent
add_agent delete_policy deleteagent
delete claim
add¢policy ~ Adding add client Deleting ‘delete policy
add_agent
add claim add_policy delete claim
add claim
add client delete client
add”agent delete agent
add policy delete_policy
add daim fing client update ciieny ~ OBlete claim
find_agent update_agent
find_policy updatezpolicy
find_plaim update_claim
find_client update_client update_client
updaie_agent Z N
find_agent update_pohcys update_agent
update_claim
find_poiicy Retrieving find_client Updating update_policy
find_agent
find_claim find_policy Cpdate claim
find claim
It
Adding Deleting
add ciient delete _client [TotalClients > 0]

/ A ddClient(ClientN o,Surname,Firsthname,A ddress,

Phone,Occupation,Birthda.te,S ex)

add agent
/ AddAgent(AgentNofSurname,Firstname,
Company,A ddress,Phone,C ommRate)

add_policy [TotalClients > 0 && TotalAgents > (]

/ A ddPolicy(ClientNo,A gentWo,PolicyNo,

StaitD ate,EndD ate,CarDetails|H ouseDetails)

sendadd policy to client;
sendadd _poli%;:to:agem;

jacifi_i:/al?n[TotalPolicies > 0]

/ DeleteClient(ClientNo)

delete_agent[TotalAgents > 0]
I DeleteAgent(AgentNo)
delete_policy]JottIPaiicies > (]
/ DeleteP olicyNolicyN o) .
delete” policy jrom client;
senddelete_policyJrom _agent;

delete_clam [TotalClaims > 0]
/ DeleteClaiin(ClaimN o)

/ AddClaim(ClaiinN o,ClaimDate,ClaiiriV alue,ClaimDetails,

PolicyN o,Policy3tart,P oJicyEnd,PolicyStatus)

* AddClientO contains sendcreate client
* AddAgentO contains sendcreate_agent
* AddPolicy() contains send createjpolicy
* AddClaim() contains sendcreate claim

* DeleteClientO contains senddestroy_client
* DeleteAgentO contains send destroy_agent
* DeletePolicyO contains senddestroy_policy
* DeleteClaimQ contains senddestroy_claim

140

Chapter 4 : Case Study

Retrieving Updating
find_client [TotalClients > 0] update_client [TotalClients > 0]
| GetClient(CHentNo) /' Up dateClient(CHentNo,Surname, Firstname, A ddress,
JIMEI_age«i [TotalAgents > 0] Phone,0 ccupation,Birthdate,Sex)
/ GetAgent(AgentNo) update_agent [TotalAgents > 0]
find_policy [TotalPolicies > 0] / Up dateA gent(AgentN o,Surname,Firstname,
/ GetPolicy”olicyN o) Company,A ddress,Phone,CommRate)
find_claim[TotalClaims > 0] ; .
—C X update_palicy [TotalPolicies > 0]
/ GetClaim(ClaimNo) / UpdatePolicy(PolicyN o,StartDate, EndDate,

CarDetails|HouseDetails)

update_claim [TotalClaims > O]
/U p dateClaim(ClaimN o.ClaimDate,ClaimV alue,ClaimD etails)

Fig 4.17 Dynamic Model (State Diagram for TCompany)

So long as at least one client, agent, policy or claim exists in the company, transitions
can be made from any state to any other state : adding; deleting; updating; or
retrieving. However, ifit arises (through deletion) that these transitions are no longer
viable, a transition can always be made from any state back to the adding state, and
more clients, agents, policies and claims can be created.

Note : The state diagrams for TCar, THouse, and TRisk are trivial.

4.4 Constructing the Functional Model

Using my proposed approach which was fully detailed in the previous chapter, the
proposed functional model consists of an operation model and an interaction model
for each identified system operation.

Hence there are 4 steps in the construction ofthe functional model:
» Identify input and output values
» Identify system operations

* Build the operation model
e Build the interaction model

141

Chapter 4 : Case Study

4.4.1 ldentify Input and Output Values

The input and output values of a system can be identified from the problem statement.
In addition, since input and output values are parameters of the events between the
system and the outside world, the input and output values can be also be identified
from the external events in the dynamic model ofthe system

The list of input and output values is as follows : client details comprising the client
number, the client's surname, the client's firstname, the client's address, the client's
phone number, the client's occupation, the client's birthdate and the sex of the client;
agent details comprising the agent number, the agent's surname, the agent's firstname,
the agent's company, the agent's address, the agent's phone number, and the agent's
commission rate; policy details comprising the client number, the agent number, the
policy number, the policy start date, the policy end date, and car policy details or
house policy details; claim details comprising the claim number, the claim date, the
claim value, the claim description, the policy details of the policy on which the claim
is being made (i.e. policy number, policy start date, policy end date and policy status);
and finally, risk details comprising the risk number, the risk type, the risk value and
the risk status.

4.4.2 ldentify System Operations

As discussed in Chapter 3, system operations are derived from input and output
values, and external and internal events in the event flow diagram ofthe system From
the list of input and output values identified in the previous section, and the external
events in the event flow diagram [Figure 4.12] we can identify 18 interactions
between the system and the outside world : addjclient; delete client, update_client;
find_client; addj>olicy; delete_policy; update_policy; find_policy; add_agent;
delete agent, update agent; find_agent; add_claim; delete claim; update claim;
find claim; add_risk; and delete risk;

Each ofthese will be mapped into a system operation.

[Note : No system operations were identified from the internal events of the event
flow diagram].

142

Chapter 4 : Case Study

e add_client— TCompany::AddClient()

The add_client event is sent from the user to the company and contains the details
of the client, i.e. the client number, surname, firstname, address, phone,
occupation, birthdate, and sex of the client. This event is mapped into an
operation on the TCompany class - AddClientQ, which creates a new client,
stores this new client in the client list of the company, and increments the total
number of clients ofthe company.

o delete_client—> TCompany::DeleteClient()

The delete client event is sent from the user to the company and contains the
client number of the client which is to de deleted. This event is mapped into an
operation on the TCompany class - DeleteClientQ, which searches through the
client list ofthe company, deletes the specified client, decrements the total number
of clients ofthe company, and re-orders the client list.

e update_client — TCompany:lUpdateClientO

The update_client event is sent from the user to the company and contains the
details to be updated on the client. This event is mapped into an operation on the
TCompany class - UpdateClientQ, which searches through the client list of the
company, and updates the specified client with the supplied details.

* findjclient — TCompany::GetClient()
Thefind_client event is sent from the user to the company and contains the client
number ofthe client to be retrieved from the client list. This event is mapped into

an operation on the TCompany class - GetClientQ, which searches through the
client list ofthe company and returns the specified client.

143

Chapter 4 : Case Study

add_policy— TCompany: :AddPolicyO

The add_policy event is sent from the user to the company and contains the
details of the policy, i.e. the client number, policy number, agent number, start
date, and end date of the policy. Furthermore, if the policy is a car insurance
policy, it also contains the manufacturer, model, registration, engine size, and
value ofthe car, and the licence status ofthe driver ofthe car (full or provisional).
Similarily, ifthe policy is a house insurance policy, it also contains the house type
(semi, bungalow, detatched, etc.), the number of rooms, the area code, the value
ofthe house, the value ofthe contents in the house, and whether or not the house
has an alarm. This event is mapped into an operation on the TCompany class -
AddPolicyO, which creates a new policy, stores this new policy in the policy list
ofthe company, and increments the total number ofpolicies of the company.

delete_policy — TCompany: :DeletePolicy()

The delete:jpolicy event is sent from the user to the company and contains the
policy number of the policy which is to de deleted. This event is mapped into an
operation on the TCompany class - DeletePolicyQ, which searches through the
policy list of the company, deletes the specified policy, decrements the total
number ofpolicies ofthe company, and re-orders the policy list.

update_policy — TCompany::UpdatePolicy()

The update_policy event is sent from the user to the company and contains the
details to be updated on the policy. This event is mapped into an operation on the
TCompany class - UpdatePolicyO, which searches through the policy list of the
company, and updates the specified policy with the supplied details.

find"policy — TCompany::GetPolicyO
The find_policy event is sent from the user to the company and contains the
policy number of the policy to be retrieved from the policy list. This event is

mapped into an operation on the TCompany class - GetPolicyO, which searches
through the policy list ofthe company and returns the specified policy.

144

Chapter 4 : Case Study

e addjagent—> TCompany::AddAgent()

The add_agent event is sent from the user to the company and contains the details
ofthe agent, i.e. the agent number, surname, firstname, company, address, phone,
and commission rate of the agent. This event is mapped into an operation on the
TCompany class - AddAgentQ, which creates a new agent, stores this new agent
in the agent list of the company, and increments the total number of agents of the
company.

e delete_agent—> TCompany: :DeleteAgent()

The delete_agent event is sent from the user to the company and contains the
agent number of the agent which is to de deleted. This event is mapped into an
operation on the TCompany class - DeleteAgentQ, which searches through the
agent list of the company, deletes the specified agent, decrements the total
number of agents ofthe company, and re-orders the agent list.

e update agent—> TCompany::UpdateAgent()

The update agent event is sent from the user to the company and contains the
details to be updated on the agent. This event is mapped into an operation on the
TCompany class - UpdateAgentO, which searches through the agent list of the
company, and updates the specified agent with tide supplied details.

 find agent— TCompany::GetAgentO
Thefind_agent event is sent from the user to the company and contains the agent
number ofthe agent to be retrieved from the agent list. This event is mapped into

an operation on the TCompany class - GetAgentO, which searches through the
agent list ofthe company and returns the specified agent.

145

Chapter 4 : Case Study

* addclaim — TCompany::AddClaim()

The addjclaim event is sent from the user to the company and contains the details
ofthe claim, i.e. the claim number, date, value, and details ofthe claim, as well as
the policy number, start date, end date, and status of the policy suffering the
claim. This event is mapped into an operation on the TCompany class -
AddClaimO, which creates a new claim, stores this new claim in the claim list of
the company, and increments the total number of claims ofthe company.

» delete_claim — TCompany: :DeleteClaim()

The delete_claim event is sent from the user to the company and contains the
claim number of the claim which is to de deleted. This event is mapped into an
operation on the TCompany class - DeleteClaimO, which searches through the
claim list ofthe company, deletes the specified claim, decrements the total number
of claims ofthe company, and re-orders the claim list.

» update claim — TCompany::UpdateClaim()

The update_claim event is sent from the user to the company and contains the
details to be updated on the claim This event is mapped into an operation on the
TCompany class - UpdateClaimQ, which searches through the claim list of the
company, and updates the specified claim with the supplied details.

« findjdaim — TCompany: :GetClaimQ
ThQfindjclaim event is sent from the user to the company and contains the claim
number ofthe claim to be retrieved from the claim list. This event is mapped into

an operation on the TCompany class - GetClaimO, which searches through the
claim list ofthe company and returns the specified claim.

146

Chapter 4 : Case Study

* add_risk — TPolicy: :AddRisk()

The add risk event is sent from the user to the policy and contains the details of
the risk, i.e. the risk number (fire, theft, etc.) the risk type (car risk, house risk,
etc.), the value ofthe risk (value of car, value ofhouse, etc.) and the status of the
risk (status of car, status of house), to be added to the policy. This event is
mapped into an operation on the TPolicy class - AddRiskQ, which creates a new
risk, stores this new risk in the risk list of the policy, and increments the total
number ofrisks on the policy.

o delete_risk --> TPolicy: :DeleteRiskQ

The delete_risk event is sent from the user to the policy and contains the risk
number (fire, theft, etc.) of the risk to be deleted from the policy. This event is
mapped into an operation on the TPolicy class - DeleteRiskQ, which searches
through the risk list of the policy, deletes the specified risk, decrements the total
number ofrisks on the policy, and re-orders the risk list.

4.4.3 Build the Operation Model

The operation model specifies the behaviour of system operations declaratively by
defining their effect in terms ofthe change of state of the system, where the state of
the system is an abstraction of the values of the objects in the system Hence, the
operation model consists of a set of operation schema, which define the change of
state, where there exists one operation schema for each of the identified system
operations.

To construct the operation schema for each system operation : firstly, concisely
describe the purpose of the operation; secondly, list the data items which must be
read and/or updated, and thirdly, describe the state ofthe system before the operation
is executed and after the operation is executed, in terms of pre-conditions and post-
conditions respectively.

The operation schemas for each system operation are given below :

147

Operation :
Description :

Reads:

Updates :

Pre-conditions :

Post-conditions :

Operation :
Description :

Reads :
Updates :

Pre-conditions :
Post-conditions :

Chapter 4 : Case Study

TCompany::AddClient
Creates a new client and adds this new client to the client list
ofthe company.

supplied ClientNo : string; supplied Surname : string;
supplied Firstname : string; supplied Address : string;
supplied Phone : string; supplied Occupation : string;
supplied Birthdate : string; supplied Sex : string;
new Client, ClientList, TotalClients

TotalClients < MAXCLIENTS.

ClientNo is a unique value not existing in the ClientList.
Client.ClientNo has been set to ClientNo.

Client. Surname has been setto Surname.
Client.Firstname has been set to Firstname.

Client. Address has been set to Address.

Client.Phone has been set to Phone.

Client.Occupation has been set to Occupation.
Client.Birthdate has been set to Birthdate.

Client. Sex has been set to Sex.

Client has been added to the ClientList.

TotalClients has been incremented by 1

TCompany: :DeleteClient
Deletes an existing client from the client list ofthe company.

supplied ClientNo : string;

ClientList, TotalClients

ClientNo is a unique value existing in the ClientList.

The client with Client.ClientNo = ClientNo has been deleted
from the ClientList.

TotalClients has been decremented by 1.

148

Operation :
Description :

Reads :

Updates :

Pre-conditions :
Post-conditions :

Operation :
Description :

Reads :
Updates :

Pre-conditions :
Post-conditions :

Chapter 4 : Case Study

TCompany::UpdateClient
Updates an existing client in the chent list ofthe company.

supplied ClientNo : string; supplied Surname : string;
supplied Firstname : string; supplied Address : string;
supplied Phone : string; supplied Occupation : string;
supplied Birthdate : string; supplied Sex : string;
Chent, ClientList

ClientNo is a unique value existing in the ClientList.
The chent with Client.ClientNo = ClientNo has been updated
as follows :

Chent. Surname has been set to Surname.
Chent.Firstname has been set to Firstname.

Chent. Address has been set to Address.

Client.Phone has been set to Phone.

Chent.Occupation has been set to Occupation.
Client.Birthdate has been set to Birthdate.

Chent. Sex has been set to Sex.

TCompany::GetClient

Retrieves an existing chent from the chent list ofthe company.
supplied ClientNo : string;

ClientNo is a unique value existing in the ClientList.

The chent with Chent. ClientNo = ClientNo has been retrieved
from the ClientList.

149

Operation :
Description :

Reads:

Updates :

Pre-conditions :

Post-conditions :

Operation :
Description :

Reads :

Updates:

Chapter 4 : Case Study

TCompany::AddPolicy
Creates anew car policy and adds this new car policy to the
pohcy list ofthe company.

supplied ClientNo : string; supplied PohcyNo : string;
supplied AgentNo : string; supplied StartDate : string;
supplied EndDate : string; supplied Manufacturer : string;
supplied Model: string; supplied Registration : string
supplied EngineSize : string; supplied CarValue : long
supplied FullLicenceStatus : integer;

new Pohcy, PolicyList, TotalPohcies

TotalPolicies < MAX POLICIES.

PohcyNo is a unique value not existing in the PolicyList.
Pohcy.ClientNo has been set to ClientNo.
Policy.PolicyNo has been set to PohcyNo.
Pohcy.AgentNo has been setto AgentNo.

Pohcy. StartDate has been set to StartDate.
Policy.EndDate has been set to EndDate.
Policy.Manufacturer has been set to Manufacturer.
Policy.Model has been set to Model.

Policy.Registration has been set to Registration.
Policy.EngineSize has been set to EngineSize.
Pohcy.CarValue has been set to CarValue.
Policy.FuULicenceStatus has been set to FullLicenceStatus.
TotalPohcies has been incremented by 1

TCompany::AddPolicy
Creates a new house pohcy and adds this new house pohcy to
the pohcy list ofthe company.

supplied ClientNo : string; supplied PohcyNo : string;
supplied AgentNo : string; supplied StartDate : string;
supplied EndDate : string; supplied HouseType : string;
supplied Rooms : integer; supplied AreaCode : string
supplied HouseValue : long; supplied ContentsValue : long;
supplied HouseAlarmStatus : integer;

new Pohcy, PolicyList, TotalPohcies

150

Pre-conditions :

Post-conditions :

Operation :
Description :

Reads :
Updates :

Pre-conditions :
Post-conditions :

Operation :
Description :

Reads :

Updates :

Chapter 4 : Case Study

TotalPolicies < MAXPOLICIES.

PolicyNo is aunique value not existing in the PohcyList.
Policy.ClientNo has been set to ClientNo.
Policy.PolicyNo has been set to PolicyNo.
Policy.AgentNo has been setto AgentNo.

Pohcy. StartDate has been set to StartDate.
Pohcy.EndDate has been set to EndDate.
Pohcy.HouseType has been set to HouseType.
Policy.Rooms has been set to Rooms.

Pohcy.AreaCode has been set to AreaCode.
Pohcy.HouseValue has been setto HouseValue.

Pohcy. ContentsValue has been set to ContentsValue.
Pohcy.HouseAlarmStatus has been setto HouseAlarmStatus.
TotalPolicies has been incremented by 1

TCompany::DeletePolicy
Deletes an existing pohcy from the pohcy list ofthe company.

supplied PolicyNo : string;

PohcyL.ist, TotalPolicies

PolicyNo is aunique value existing in the PohcyList.

The pohcy with Policy.PolicyNo = PolicyNo has been deleted
from the PohcyL.ist.

TotalPolicies has been decremented by 1.

TCompany::UpdatePolicy
Updates an existing car pohcy in the pohcy list ofthe company.

supplied PolicyNo : string; supplied StartDate : string;
supplied EndDate : string; supplied Manufacturer : string;
supplied Model : string; supplied Registration : string;
supplied EngineSize : string; supplied CarValue : long;
supplied FulllLicenceStatus : integer;

CarPolicy, PohcyList

151

Pre-conditions :
Post-conditions :

Operation :
Description :

Reads:

Updates :

Pre-conditions :
Post-conditions :

Chapter 4 : Case Study

PolicyNo is a unique value existing in the PolicyList.
The policy with CarPolicy.PolicyNo = PolicyNo

has been updated as follows :

CarPolicy.StartDate has been setto StartDate.
CarPolicy.EndDate has been set to EndDate.
CarPolicy.Manufacturer has been set to Manufacturer.
CarPolicy.Model has been set to Model.
CarPolicy.Registration has been set to Registration.
CarPolicy.EngineSize has been set to EngineSize.
CarPolicy.CarValue has been setto CarValue.
CarPolicy.FullLicenceStatus has been set to FullLicenceStatus.

TCompany::UpdatePolicy
Updates an existing house policy in the policy list oftie
company.

supplied PolicyNo : string; supplied StartDate : string;
supplied EndDate : string; supplied HouseType: string;
supplied Rooms : integer; supplied AreaCode : string;
supplied HouseValue :long; supplied ContentsValue : long;
supplied HouseAlarmStatus : integer;

HousePohcy, PolicyList

PolicyNo is a unique value existing in the PolicyList.

The policy with HousePolicy.PolicyNo = PolicyNo

has been updated as follows :

HousePohcy. StartDate has been set to StartDate.
HousePolicy.EndDate has been setto EndDate.
HousePolicy.HouseType has been set to HouseType.
HousePolicy.Rooms has been setto Rooms.
HousePolicy.AreaCode has been set to AreaCode.
HousePohcy.HouseValue has been setto HouseValue.
HousePohcy.ContentsValue has been set to ContentsValue.
HousePolicy.HouseAlarmStatus has been set to
HouseAlarmStatus.

152

Operation:
Description :

Reads :
Updates :

Pre-conditions :
Post-conditions :

Operation :
Description :

Reads :

Updates :

Pre-conditions :

Post-conditions :

Chapter 4 : Case Study

TCompany::GetPolicy
Retrieves an existing policy from the pohcy list ofthe company

supplied PohcyNo : string;

PolicyNo is a unique value existing in the PohcyL.ist.
The pohcy with Policy.PolicyNo = PohcyNo has been retrieved
from the PohcyList.

TCompany::AddAgent
Creates a new agent and adds this new agent to the agent list
ofthe company.

supplied AgentNo : string; supplied Surname : string;
supplied Firstname : string; supplied Company : string;
supplied Address : string; supplied Phone : string;
new Agent, AgentList, TotalAgents

TotalAgents < MAXAGENTS.

AgentNo is a unique value not existing in the AgentList.
Agent.AgentNo has been set to AgentNo.

Agent. Surname has been set to Surname.
Agent.Firsthame has been set to Firstname.
Agent.Company has been set to Company.

Agent. Address has been set to Address.

Agent.Phone has been set to Phone.

Agent has been added to the AgentList.

TotalAgents has been incremented by 1

153

Operation :
Description :

Reads :
Updates :

Pre-conditions :
Post-conditions :

Operation :
Description :

Reads :

Updates :

Pre-conditions :
Post-conditions :

Operation :
Description :

Reads :
Updates :

Pre-conditions :
Post-conditions :

Chapter 4 : Case Study

TCompany::DeleteAgent
Deletes an existing agent from the agent list ofthe company.

supplied AgentNo : string;

AgentList, TotalAgents

AgentNo is aunique value existing in the AgentList.

The agent with Agent. AgentNo = AgentNo has been deleted
from the AgentList.

TotalAgents has been decremented by 1

TCompany::UpdateAgent
Updates an existing agent in the agent list ofthe company.

supplied AgentNo : string; supplied Surname : string;
supplied Firstname : string; supplied Company : string;
supplied Address : string; supplied Phone : string;
Agent, AgentList

AgentNo is a unique value existing in the AgentList.
The agent with Agent.AgentNo = AgentNo has been updated
as follows :

Agent. Surname has been setto Surname.
Agent.Firstname has been set to Firstname.

Agent. Company has been set to Company.
Agent.Address has been set to Address.

Agent.Phone has been set to Phone.

TCompany::GetAgent

Retrieves an existing agent from the agent list ofthe company.
supplied AgentNo : string;

AgentNo is a unique value existing in the AgentList.

The agent with Agent.AgentNo = AgentNo has been retrieved
from the AgentList.

154

Operation :
Description :

Reads:

Updates :

Pre-conditions :

Post-conditions :

Operation :
Description :

Reads :
Updates :

Pre-conditions :
Post-conditions :

Chapter 4 : Case Study

TCompany::AddClaini
Creates a new claim and adds this new claim to the claim list
ofthe company.

supplied ClaimNo : string; supplied ClaimDate : string;
supplied ClaimValue : long; supplied ClaimDetails : string;
supplied PolicyNo : string; supplied PolicyStart: string;
supplied PolicyEnd : string; supplied PolicyStatus : string;
new Claim, ClaimList, TotalClaims

TotalClaims < MAX CLAIMS.

ClaimNo is a unique value not existing in the ClaimList.
Claim ClaimNo has been set to ClaimNo.

Claim. ClaimDate has been set to ClaimDate.

Claim. ClaimValue has been set to ClaimValue.

Claim. ClaimDetails has been set to ClaimDetails.
Claim.PolicyNo has been set to PolicyNo.
Claim.PolicyStart has been set to PolicyStart.
ClaimPolicyEnd has been set to PolicyEnd.
ClaimPolicyStatus has been set to PolicyStatus.

Claim has been added to the ClaimList.

TotalClaims has been incremented by 1

TCompany: :DeleteClaim
Deletes an existing claim from the claim list ofthe company

supplied ClaimNo : string;

ClaimList, TotalClaims

ClaimNo is a unique value existing in the ClaimList.

The claim with Claim ClaimNo = ClaimNo has been deleted
from the ClaimList.

TotalClaims has been decremented by 1

155

Operation :
Description :

Reads :

Updates :

Pre-conditions :
Post-conditions :

Operation :
Description :

Reads :
Updates :

Pre-conditions :
Post-conditions :

Operation :
Description :

Reads :

Updates :

Pre-conditions :

Post-conditions :

Chapter 4 : Case Study

TCompany::UpdateClaim
Updates an existing claimin the client list ofthe company.

supplied ClaimNo : string; supplied ClaimDate : string;
supplied ClaimValue : string; supplied ClaimDetails : string;
Claim, ClaimList

ClaimNo is a unique value existing in the ClaimList.

The claim with Claim ClaimNo = ClaimNo has been updated
as follows:

Claim ClaimDate has been set to ClaimDate.

Claim ClaimValue has been set to ClaimValue.

Claim ClaimDetails has been set to ClaimDetails.

TCompany::GetClaim
Retrieves an existing claim from the claim list ofthe company.

supplied ClaimNo : string;

ClaimNo is a unique value existing in the ClaimList.
The claimwith Claim ClaimNo = ClaimNo has been retrieved
from the ClaimList.

TPolicy::AddRisk
Creates a new risk and adds this new risk to the risk list
ofthe policy.

supplied RiskNo : string; supplied RiskType : long;
supplied RiskValue : string; supplied RiskStatus : long;
new Risk, RiskList, TotalRisks

TotalRisks < MAXRISKS.

RiskNo is a unique value not existing in the RiskList.
RiskRiskNo has been set to RiskNo.

Risk.RiskType has been set to RiskType.
RiskRiskValue has been set to RiskValue.
Risk.RiskStatus has been set to RiskStatus.

TotalRisks has been incremented by 1.

156

Chapter 4 : Case Study

Operation : TPoiicy: :DeleteRisk

Description : Deletes an existing risk from the risk list ofthe policy.
Reads : supplied RiskNo : string;

Updates : RiskList, TotalRisks

Pre-conditions : RiskNo is a unique value existing in the RiskL.ist.
Post-conditions The risk with Risk.RiskNo = RiskNo has been deleted

from the RiskList.
TotalRisks has been decremented by 1

4.4.4 Build the Interaction Model

Where the operation model specifies what an operation does, the interaction model
specifies how the operation works by illustrating the internal workings of the
operation in terms of its sub-ordinate operations. Hence, the interaction model
consists of a set of interaction diagrams, which illustrate the sub-ordinate operations
comprising each of the identified system operations, where there exists one
interaction diagram for each system operation.

To construct the interaction diagram for each system operation : firstly, examine the
reads and updates clauses of the operation model, to vyield the sub-ordinate
operations required in order to read and update the necessary information relating to
this system operation; secondly, list these sub-ordinate operations in descending order
between the appropriate classes on the tabular diagram, using the same ordering for
these sub-ordinate operations as the ordering in the post-conditions clause (which
relates to the information in both the reads and updates clauses), to achieve the
functionality outlined in the description clause.

The interaction diagrams for each system operation are given below :

157

Chapter 4 : Case Study

void TCompany::AddClient(char *ClientNo, char *Surname,
char *Firstname, char *Address, char *Phone,
char *Occupation, char *Birthdate, char *Sex)

The AddClientQ operation checks whether the total number of chents exceeds the
maximum number of chents, and if not, it creates a new chent, stores this chent in
the chent list of the company, and increments the total number of chents. Hence
the sub-ordinate operations are TCompany::GetTotalClientsQ, which reads the
total number of chents; TClient::TClientQ, which creates the new chent;
TCompany::PutClientQ, which updates the chent list with the new chent; and
TCompany::IncTotalClientsQ, which increments the total number of chents.

TCompany TClient

1
1 Get!btalClientsQ

-.'C TClient*

I PutClient(Client,index) \
i

I IncTotalClientsQ

£

GetTotalClientsQ

IncTotalClientsQ

= TClient(client_no,surnamelirstname,address,phone,occupation,birthdate,sex)

Fig 4.18 Interaction Diagram for AddClientQ

158

Chapter 4 : Case Study

void TCompany::DeleteClient(char *ClientNo)

The DeleteClientQ operation searches through the chent list until the specified
chent is found, the chent is then deleted, the total number of clients is
decremented, and the chent list is re-ordered. Hence the sub-ordinate operations
are TCompany::GetTotalClientsQ, which reads the total number of clients
(required to search the chent list); TCompany::GetClientNoQ, which reads the
chent number at the current position in the chent list, to determine if the current
chent is the specified chent; TClient::~7ClientQ, which deletes the specified
chent from the chent list; TCompany::DecTotalClientsQ, which decrements the
total number of chents; and TCompany::PutClientQ, which is called for each
chent in the list after the deleted chent, thus re-ordering the list, and filling the
empty space caused by the deletion.

TCompany TClient
i
| GetTotalClientsQ

[GetChentNo (index)
I | i
~TClientO

I
I DecTotalClientsQ

I PutClient(Client,index) j

GetTotalClientsO DecTotalClientsQ

GetChentNo(index) PutClient(Client,index)

Fig 4.19 Interaction Diagram for DeleteClientQ

159

Chapter 4 : Case Study

void TCompany::UpdateClient(char *ClientNo, char *Surname,
char *Firstname, char *Address,
char *Phone, char *Occupation,
char *Birthdate, char *Sex)

The UpdateClientO operation retrieves the specified client from the client list and
updates the details of this chent. Hence the sub-ordinate operations are
TCompany::GetClientQ, which retrieves the specified chent from the chent list;
TClient::PutSurnameQ, which updates the surname of the chent; TClient":
PutFirstnameQ, which updates the first name of the chent; TClient::
PutAddressQ, which updates the address of the chent; TClient::PutPhoneQ,
which updates the phone number ofthe chent; TClient::PutOccupationQ, which
updates the occupation of the chent; TClient::PutBirthdate(), which updates the
birthdate ofthe chent; and TClient: :PutSexQ, which updates the sex ofthe chent.

TCompany TClient

GetClient(ClientNo)

PutSurname (Surname)
PutFirstname (Firstname)
PutAddress(Address)
PutPhone(Phone)
| PutOccupation(Occupation)
PutBirthdate (Birthdate)

PutSex(Sex)
GetClient(ClientNc)
1 PutSurname (Surname)
PutFirstname (Firstname)
PutAddress(Address)
PutPhone (Phone
TCompany () TClient

PutOccupation (Occupation)
PutBirthdate (Birthdate)
PutSex(Sex)

Fig 4.20 Interaction Diagram for UpdateClientO

160

Chapter 4 : Case Study

TClient *TCompany::GetClient(char *ClientNo)

The GetClientO operation searches the client list and returns the specified client.
Hence the sub-ordinate operations are TCompany::GetTotalClientsO, which
reads the total number of clients (required to search the client list); and
TCompany::GetClientNoO, which reads the client number at the current position
in the client list, to determine ifthe current client is the specified client.

TCompany GeiTotalClientsO

1
GetTotalClientsQ

GetGhentNo (index)

GetClientNo (index)

Fig 4.21 Interaction Diagram for GetClientO

e void TCompany::AddPolicy(char *ClientNo, char *PolicyNo,
char *AgentNo, char *StartDate,
char *EndDate, char *Manufacturer,
char *Model, char *Registration,
char *EngineSize, long CarValue,
int FullLicenceStatus)

also :

void TCompany: :AddPolicy(char *ClientNo, char *PolicyNo,
char *AgentNo, char *StartDate,
char *EndDate, char *HouseType,
int Rooms, char *AreaCode,
long HouseValue, long ContentsValue,
int FullLicenceStatus)

161

Chapter 4 : Case Study

The AddPolicyO operation checks whether the total number of policies exceeds
the maximum number of pohcies, and if not, it creates a new policy, stores this
policy in the policy list of the company, and increments the total number of
pohcies. Hence the sub-ordinate operations are TCompany::GetTotalPoliciesQ,
which reads the total number of pohcies; TCar::TCarQ, which creates the new
car insurance policy; THouse::THouseQ, which creates the new house insurance
policy; (both the TCar and THouse constructors call the constructor of the
abstract TPolicy class - TPolicy:: TPolicyQ, from which they are both inherited);
TCompany::PutPolicy0, which updates the policy list with the new pohcy; and
TCompany::IncTotalPoliciesQ, which increments the total number ofpohcies.

TCompany THouse TPolicy TCompany TCar TPolicy

1 |

1 GetTotalPoliciesO I GetTotalPolicissQ }

\

THouse* 3 TPolicy* TCar* j TPolicy

I PutPolicy \ PutPolicy

m(Policy,index) I (Pohcy,index)

i

{ IncTotalPoliciesQ lincTotalPoliciesQ

Get TotalPoliciesO

*
----- TCar”. TPolicy *
TCompany TCar
s— 1
- Policy,in
Inc TotalPoliciesO (Policy,index)
Get TotalPoliciesO
L THouse* TPoIicy*
TCompany THouse
I PUtPOIlcy TPOIle

Policy,index
IncTotalPoliciesO (y)

* TCar (client_no,policy_no,agent_no,start_date, end_date,manufacturer, model
regllstratlon en?me size,car _yaluejull(;gtoenoeems}ﬁus
IHouse(mentno icy_no,agent_no,start_date, e ,TOOTB
oodel?%ucs)n/e value,contents value,house alarm stattis
* TPollc,y(cllent_no policy no,agentjio, startjiate, end_date)

Fig 4.22 Interaction Diagram for AddPolicyQ

162

Chapter 4 : Case Study

void TCompany::DeletePolicy(char *PolicyNo)

The DeletePolicyO operation searches through the policy list until the specified
policy is found, the policy is then deleted, the total number of policies is
decremented, and the policy list is re-ordered. Hence the sub-ordinate operations
are TCompany::GetTotalPoliciesO, which reads the total number of policies
(required to search the policy list); TCompany::GetPolicyNoQ, which reads the
policy number at the current position in the policy list, to determine if the current
policy is the specified policy; TPolicy::~TPolicyQ, which deletes the specified
policy from the policy list; TCompany::DecTotalPoliciesO, which decrements
the total number of policies; and TCompany::PutPolicyO, which is called for
each policy in the list after the deleted policy, thus re-ordering the list, and filling
the empty space caused by the deletion.

TCompany TPolicy
GetTotalPoliciesQ

GeiPolicyNo(index)

* - TPohcyQ J
DecTotalPoliciesQ

GetTotalPoliciesQ DecTotalPoliciesQ

GeiPolicyNo(index) PutPolicy(Policy, index)

Fig 4.23 Interaction Diagram for DeletePolicyO

163

Chapter 4 : Case Study

void TCompany::UpdatePolicy(char *PolicyNo, char *StartDate,
char *EndDate, char *Manufacturer,
char *Model, char *Registration,
char *EngineSize, long CarValue,
int FullLicenceStatus)

also :

void TCompany::UpdatePolicy(char *PolicyNo, char *StartDate,
char *EndDate, char *HouseType,
int Rooms, char *AreaCode,
long HouseValue, long ContentsValue,
int HouseAlarmStatus)

The UpdatePolicyO operation retrieves the specified policy from the policy hst
and updates the details of this car insurance pohcy or house insurance policy.
Hence the sub-ordinate operations are TCompany::GetPolicyQ, which retrieves
the specified pohcy from the pohcy hst; TCar::PutStartDate(), which updates the
start date of the car pohcy; TCar::PutEndDateQ, which updates the end date of
the car pohcy; TCar::PutManufacturerQ, which updates the manufactuer of the
car on the car pohcy; TCar::PutModelQ, which updates the model of the car on
the car pohcy; TCar::PutRegistrationQ, which updates the registration number
of the car on the car pohcy; TCar::PutEngineSizeO, which updates the engine
size of the car on the car pohcy; TCar::PutCarValueQ, which updates the value
of the car on the car pohcy; and TCar::PutFullLicenceStatus(), which updates
the licence status of the driver on the car pohcy. Also, THouse::PutStartDate(),
which updates the start date of the house pohcy; THouse::PutEndDateQ, which
updates the end date of the house pohcy; THouse::PutHouseTypeQ, which
updates the house type of the house on the house pohcy; THouse::PutRoomsQ,
which updates the number of rooms in the house on the house pohcy;
THouse::PutAreaCodeQ, which updates the area code ofthe house on the house
pohcy; THouse::PutHouseValueQ, which updates the value of the house on the
house pohcy; THouse::PutContentsValueQ, which updates the value of the
contents of the house on the house pohcy; and THouse::PutHouseAlarm
StatusQ, which updates the house alarm status ofthe house on the house pohcy.

164

Chapter 4 : Case Study

TCqgmpany TCar TCompany THopse

i GetPolicy(PolicyNo) GetPolicy(PolicyNo)

; J
PutStartDate(StartDate) PutStartDate(StartDale)
PutEndDate(EndDate) PutEndDate(EndDate)

I PulManufacturer(Manufacturer)\ PutHouseType(HouseType)

PutModel(Model) PutRooms(Rooms)

Jj PutRegistration (Registration) | PutAreaCode(AreaCode)
PutEngineSize (EngineSize) | PutHouse Value(House Value)
PutCarValue(CarValue) PutContentsValue (Contents Value), j
PutFullLicenceStatus i P}ﬁHousr?AlarH?S}_a_lp_E _________ H

GetPolicy(PolicyNo)

PuiStartDate(StartDate) n
PutEndDate (EndDate)
PutManufacturer(Manufacturer)
PutModel(Model)
PutRsgistration(Registration) TCar
PutEngineSize (EngineSize)
PutCarValue(CarValue)
PutFullLicenceStatus(FullLicenceStatus) t

TCompany

GetPolicy(PolicyNo)

PutStartDate (StartDate)
PutEndDate (EndDate)
PutHouse Type (House Type)
PutRooms(Rooms)
PulAreaCode(AreaCode) THouse
PutHouse Value (House Value)
PutContents Value(Contents Value) K
PutHouseAlarmStatus(HouseAlarmStatus)y

TCompany

Fig 4.24 Interaction Diagram for UpdatePolicyQ

165

Chapter 4 : Case Study

TPolicy *TCompany::GetPolicy(char *PolicyNo)

The GetPolicyO operation searches the policy list and returns the specified pohcy.
Hence the sub-ordinate operations are TCompany::GetTotalPoliciesQ, which
reads the total number of policies (required to search the pohcy list); and
TCompany::GetPolicyNoQ, which reads the pohcy number at the current
position in the pohcy list, to determine ifthe current chent is the specified pohcy.

TCompany GetToiaiPoliciesO

\GeiTotalPoliciesQ

| GetPolicyNo (index)

GetPolicyNo (index)

Fig 4.25 Interaction Diagram for GetPolicyQ

void TCompany::AddAgent(char *AgentNo, char *Surname,
char *Firstname, char *Company,
char *Address, char *Phone, int CommRate)

The AddAgentQ operation checks whether the total number of agents exceeds the
maximum number of agents, and if not, it creates a new agent, stores this agent in
the agent list of the company, and increments the total number of agents. Hence
the sub-ordinate operations are TCompany::GetTotalAgentsQ, which reads the
total number of agents; TAgent::TAgentQ, which creates the new agent;
TCompany::PutAgent(), which updates the agent list with the new agent; and
TCompany::IncTotalAgentsQ, which increments the total number of agents.

TCompany TAgent
l |
I GetTolalAgentsO

| TAgent" \

I PutAgent(Agent,index) i

—I !

I IncTotalAgentsQ

166

Chapter 4 : Case Study

GetToialAgentsQ

IncTotalAgentsQ

* TAgent(agcnt_no,surnamejirstname,company,address,phon&,comm_rate)

Fig 4.26 Interaction Diagram for AddAgentQ

void TCompany::DeleteAgent(char *AgentNo)

The DeleteAgentQ) operation searches through the agent list until the specified
agent is found, the agent is then deleted, the total number of agents is
decremented, and the agent list is re-ordered. Hence the sub-ordinate operations
are TCompany::GetTotalAgentsQ, which reads the total number of agents
(required to search the agent list); TCompany::GetAgentNoQ, which reads the
agent number at the current position in the agent list, to determine if the current
agent is the specified agent; TAgent::~TAgent(), which deletes the specified
agent from the agent list; TCompany::DecTotalAgentsQ, which decrements the
total number of agents; and TCompany::PutAgentQ, which is called for each
agent in the list after the deleted agent, thus re-ordering the list, and filling the
empty space caused by the deletion.

TCompany TAgent
J GetTotalAgentsQ

H
| GetAgentNo (index)

| -TAgentQ J
j DecTotalAgentsQ

\ .
J PutAgenL(Agent,index) !

167

GetTotalAgentsQ

GetAgentNo(index)

DecTotalAgentsQ

PutAgent(Agent,index)

Chapter 4 : Case Study

Fig 4.27 Interaction Diagram for DeleteAgentQ

void TCompany::UpdateAgent(char *AgentNo, char *Surname,
char *Firstname, char *Company,
char *Address, char *Phone, int CommRate)

The UpdateAgentQ operation retrieves the specified agent from the agent list and

updates the details of this agent.

Hence the sub-ordinate operations are

TCompany::GetAgentQ, which retrieves the specified agent from the agent list;

TAgent:
TAgent:
TAgent:
TAgent:
TAgent::

:PutSurnameQ,

which updates

the

surname of the

:PutFirstnameQ, which updates the first name of the
:PutCompanyO, which updates the company name of the
:PutAddress0, which updates the company addressof the
PutPhone0, which updates the company phone number of the

agent;
agent;
agent;
agent;
agent;

and TAgent::PutCommRateQ, which updates the commission rate ofthe agent.

TCompany

GetAgent (AgentNo)

TAgent

PutSurname (Surname)

PutFirstname(Firstname)

PutCompany(Company)

PutAddress(Address)

PuiPhone (Phone) J
PuiCommRate(CommRate) J

168

Chapter 4 : Case Study

GetAgent(AgentNo)

X I PutSurname (Surname)
PutFirstname(Firstname) s
PutCompany(Company)

TCompany PutAddress(Address) TAgent

PutPhone (Phone)

PutCommRate(CommRate) t

Fig 4.28 Interaction Diagram for UpdateAgentQ

TAgent *TCompany::GetAgent(char *AgentNo)

The GetAgentO operation searches the agent list and returns the specified agent.
Hence the sub-ordinate operations are TCompany::GetTotalAgentsQ, which
reads the total number of agents (required to search the agent list); and

TCompany::GetAgentNoQ, which reads the agent number at the current position
in the agent list, to determine ifthe current client is the specified agent.

TCOYT;IO any GetTotalAgentsQ
\ GetTotalAgentsQ

J GetAgentNo (index)

GetAgentNo (index)

Fig 4.29 Interaction Diagram for GetAgentQ

169

Chapter 4 : Case Study

void TCompany::AddClaim(char *ClaimNo, char *ClaimDate,
long ClaimValue, char *ClaimDetails,
char *PolicyNo, char *PolicyStart,
char *PolicyEnd, char *PolicyStatus)

The AddClaimO operation checks whether the total number of claims exceeds the
maximum number of claims, and if not, it creates a new claim, stores this claim in

the claim list of the company, and increments the total number of claims. Hence
the sub-ordinate operations are TCompany::GetTotalClaims(), which reads the
total number of claims; TClaim::TClaimQ, which creates the new claim;
TCompany::PutClaimQ, which updates the claim list with the new claim; and

TCompany::IncTotalClaimsQ, which increments the total number of claims.

TCompany TClaim
i f

f GstTotalClaimsQ |

| TClaim*

oo - %

k PutCIaim(CIaim,index)k

fr------ i

j IncTotalClaimsQ

GetTotalClaimsQ
TClaim* }
TCompany) TClaim

PutClaim(Claim?ndex)

IncTotalClaimsQ

* TClaim(claim_nolc!aiTn_date,claim_value,claim_detailst
policy_no,policy_startpoiicy_end,po!icy_status)

Fig 4.30 Interaction Diagram for AddClaimQ

170

Chapter 4 : Case Study

void TCompany::DeleteClaim(char *ClaimNo)

The DeleteClaimO operation searches through the claim list until the specified
claim is found, the claim is then deleted, the total number of claims is
decremented, and the claim list is re-ordered. Hence the sub-ordinate operations
are TCompany::GetTotalClaims(), which reads the total number of claims
(required to search the claim list); TCompany::GetClaimNoQ, which reads the
claim number at the current position in the claim list, to determine if the current
claim is the specified claim; TClaim::~TClaimQ, which deletes the specified
claim from the claim list; TCompany::DecTotalClaimsQ, which decrements the
total number of claims; and TCompany::PutClaimQ, which is called for each
claim in the list after the deleted claim, thus re-ordering the list, and filling the
empty space caused by the deletion.

TCompany TClaim
GetTotalClaimsQ

__GetClaimNo (index)

| -TClaimQ I
1’ DecTotalClaimsQ

GetTotalClaimsQ DecTotalClaimsQ

GetClaimNo(index) PutClaim(Claim,index)

Fig 4.31 Interaction Diagram for DeleteClaimO

171

Chapter 4 : Case Study

void TCompany::UpdateClaim(char *ClaimNo, char *ClaimDate,
long ClaimValue, char *ClaimDetails)

The UpdateClaimQ operation retrieves the specified claim from the claim list and
updates the details of this claim Hence the sub-ordinate operations are
TCompany::GetClaimQ, which retrieves the specified claim from the claim list;
TClaim::PutClaimDateQ, which updates the claim date of the claim;
TClaim::PutClaimValueQ, which updates the claim value of the claim; and
TClaim::PutClaimDetailsQ, which updates the claim details ofthe claim

TCompany TClaim

I GetClaim(ClaimNo)

(PutClaimDate(ClaimDate) |
I PutCjaim Value(ClaimValue) J
jPutClaimDetails(ClaimDetails) \

GetClaim(ClaimNo)

Fig 4.32 Interaction Diagram for UpdateClaimQ

TClaim *TCompany::GetClaim(char *ClaimNo)

The GetClaimO operation searches the claim list and returns the specified claim
Hence the sub-ordinate operations are TCompany::GetTotalClaimsQ, which
reads the total number of claims (required to search the claim list); and
TCompany::GetClaimNoQ, which reads the claim number at the current position
in the claim list, to determine if the current chent is the specified claim

172

Chapter 4 : Case Study

TCompany Get TotaiCiaimsO

i GetTotalClaimsQ !

GetClaimNo (index)

GetClaimNo (index)

Fig 4.33 Interaction Diagram for GetClaimQ

void TPolicy::AddRisk(char *RiskNo, char *RiskType,
long RiskValue, int RiskStatus)

The AddRiskQ operation checks whether the total number of risks exceeds the
maximum number of risks, and if not, it creates a new risk, stores this risk in the
risk list of the pohcy, and increments the total number of risks. Hence the sub-
ordinate operations are TPolicy::GetTotalRisksQ, which reads the total number
of riskss; TRisk:: TRiskQ, which creates the new risk; TPolicy::PutRiskQ, which
updates the risk list with the new risk; and TPolicy::IncTotalRisksQ, which
increments the total number of risks.

TPolicy TRisk

Get TotalFisksO

TRisk*
PutRisk(Risk7ndex)

GetTotalFisksO

Inc Total FisksO

* TRisk (risk_no,riskjype,risk_value, risk_stafus)

Fig 4.34 Interaction Diagram for AddRiskQ

173

Chapter 4 : Case Study

void TPolicy::DeleteRisk(char *RiskNo)

The DeleteRiskQ operation searches through the risk list of the pohcy until the
specified risk is found, the risk is then deleted, the total number of risks on the
pohcy is decremented, and the risk list is re-ordered. Hence the sub-ordinate
operations are TPolicy::GetTotalRisksQ, which reads the total number of risks
(required to search the risk list); TPolicy::GetRiskTypeQ, which reads the risk
type at the current position in the risk list, to determine if the current risk is the
specified risk; TRisk::~TRiskQ, which deletes the specified risk from the risk list
of the pohcy; TPolicy::DecTotalRisksQ, which decrements the total number of
risks on the pohcy; and TPolicy::PutRiskQ, which is called for each risk in the list
after the deleted risk, thus re-ordering the list, and filling the empty space caused
by the deletion.

TPc1licy TR'isk

i GetTotalBisksO |

H
I GetBiskType(mdex)

k ~TBiskQ
; DecTotalBisksQ

I PutBisk(Bisk,index)

GetTotalBisksO DecTotalBisksQ

GetBiskType (index) PutRi,sk(Bisk,index)

Fig 4.35 Interaction Diagram for DeleteRiskQ

174

Chapter 4 : Case Study

4.5 Ensuring Integration in the OMT Models

Integration in the OMT models can be ensured by adhering to the set of integration
guidelines. These integration guidelines should be applied when constructing the three
OMT models, because integration is a incremental process which should be practiced
throughout the development phase ofthe models.

Hence once the object model has been constructed, the integration guidelines can be
used when constructing the dynamic model, since the dynamic model will draw on
information contained in the object model. Simiharly, the integration guidelines can be
used when constructing the functional model, since the functional model will draw on
information contained in both the object model and the dynamic model. Finally, the
integration guidelines can be used in the iterative process of refining the models,
where any new information introduced by the dynamic and functional models is
integrated into the object model.

The next section provides an example of the integration process between the three
OMT models, by refering to the points of integration between the object, dynamic
and functional models which have previously been illustrated.

4.5.1 Integrating the Object and Dynamic Models

There are three important guidelines to note when integrating the object model with
the dynamic model, which embody the common points ofintegration outlined in their
inter-model definition.

* Each condition in the state diagram, should be defined only in terms of the
attributes operations, and associations listed in the class diagram of the class,
which is represented in the state diagram.

For Example, in the state diagram for the TClient class, both of the conditions

[PolicyCount > 1] and [PolicyCount = 1], are defined only in terms of the attributes
ofthe TClient class, since PolicyCount is an attribute of this class.

175

Chapter 4 : Case Study

In the state diagram for the TPolicy class, the conditions [TotalRisks > 1],
[TotalRisks = 1], [DueDate >= DATE] and [DueDate < DATE] are defined only in
terms of the attributes of the TPolicy class, since TotalRisks and DueDate are
attributes of this class.

In the state diagram for the TAgent class, both of the conditions [PolicyCount >1]
and [PolicyCount = 1], are defined only in terms of the attributes ofthe TAgent class,
since PolicyCount is an attribute ofthis class.

In the state diagram for the TClaim class, the conditions [PolicyStart <= ClaimDate
&& PolicyEnd >= ClaimDate && PolicyStatus = "Paid™] and [PolicyStart >
ClaimDate || PolicyEnd < ClaimDate || PolicyStatus = *‘Unpaid™], are defined only in
terms of the attributes of the TClaim class, since PolicyStart, PolicyEnd, PolicyStatus
and ClaimDate are attributes ofthis class.

In the state diagram for the TCompany class, the conditions [TotalClients > 0 &&
TotalAgents > 0], [TotalClients > 0], [TotalAgents > 0], [TotalPolicies > 0], and
[TotalClaims > Q] are defined only in terms of the attributes of the TCompany class,
since TotalClients, TotalAgents, TotalPolicies and TotalClaims are attributes of this
class.

» Each event in the state diagram should be mapped into an operation, and
listed in the class diagram of the class, which is represented in the state
diagram.

For example, in the state diagram for the TClient class, the events create_client,
destroy_client, addjpolicy_to_client and delete_policyJrom_client are mapped into
the TClient constructor, the TClient destructor, AddPolicyQ and DeletePolicyQ
operations in the TClient class diagram

In the state diagram for the TPolicy class, the events create_policy, destroy_policy,
add_risk, delete risk and change status are mapped into the TPolicy constructor, the
TPolicy destructor, AddRiskO, DeleteRiskQ and ChangeStatus(l operations in the
TPolicy class diagram

176

Chapter 4 : Case Study

In the state diagram for the TAgent class, the events create_agent, destroy agent,
add_policy to_agent and delete_policyJromagent are mapped into the TAgent
constructor, the TAgent destructor, AddPolicyQ and DeletePolicyQ operations in the
TAgent class diagram

In the state diagram for the TClaim class, the events createclaim, destroy claim,
and change_status are mapped into the TClaim constructor, the TClaim destructor,
and ChangeStatusO operations in the TClaim class diagram

In the state diagram for the TCompany class, the events addjclient, delete_client,
update_client, find_client, add_agent, delete_agent, update_agent, find_agent,
addjpolicy, delete_policy, update policy, find_policy, add_claim, delete claim,
update_claim and find_claim are mapped into the AddClientQ, DeleteClientQ,
UpdateClientQ, GetClientO, AddAgentQ, DeleteAgentO, UpdateAgentQ, GetAgent(),
AddPolicyQ, DeletePolicyQ, UpdatePolicyQ, GetPolicyQ, AddClaimQ, Delete
ClaimQ, UpdateClaimQ and GetClaimQ operations in the TCompany class diagram

» Each action in the state diagram should be mapped into an operation, and
listed in the class diagram of the class, which is represented in the state
diagram.

The events and actions in the state diagrams of the TClient, TPolicy, TAgent, TClaim
and TCompany classes, have very close relationships to each other, and are mapped
into the same operations. Hence, in the state diagram for the TClient class, the actions
AddPolicy() and DeletePolicy() are mapped into corresponding operations and listed
in the TClient class diagram Similarly, in the state diagram for the TPolicy class, the
actions AddRisk(), DeleteRisk() and CalcStatus() are mapped into corresponding
operations and listed in the TPolicy class diagram Inthe state diagram for the TAgent
class, the actions AddPolicy() and DeletePolicy() are mapped into corresponding
operations and listed in the TAgent class diagram In the state diagram for the TClaim
class, the action CalcClaimStatus() is mapped into the corresponding operation and
listed in the TClaim class diagram And finally, in the state diagram for the TCompany
class, the actions AddClient(), DeleteClient(), UpdateClient(), GetClient(), Add
Agent(), DeleteAgent(), UpdateAgent(), GetAgent(), AddPolicy(), DeletePolicy(),
UpdatePolicy(), GetPolicy(), AddClaim(), DeleteClaim(), UpdateClaim() and
GetClaimQ are mapped into corresponding operations and listed in the TCompany
class diagram

177

Chapter 4 : Case Study

4.5.2 Integrating the Dynamic and Functional Models

There are two important guidelines to note when integrating the dynamic model with
the functional model, which embody the common points of integration as outlined in
then inter-model definition.

» Each external event and complex internal event, in the eventflow diagram,
should be mapped into a system operation and illustrated as an operation
schema in the operation model

» Each external event and complex internal event, in the eventflow diagram,
should be mapped into a system operation and illustrated as an interaction
diagram in the interaction model

For example, in the event flow diagramthere are 18 external events :

add_client which is mapped into the system operation TCompany: :AddClient()
delete_clientwhich is mapped into the system operation TCompany: :DeleteClient()
update_client which is mapped into the system operation TCompany: :UpdateClient()
find_client which is mapped into the system operation TCompany: :GetClient()
add_agent which is mapped into the system operation TCompany::AddAgent()
delete_agent which is mapped into the system operation TCompany: :DeleteAgent()
update_agent which is mapped into the system operation TCompany::UpdateAgent()
findjigent which is mapped into the system operation TCompany::GetAgent()
add_policy which is mapped into the system operation TCompany: : AddPolicy()
delete_policy which is mapped into the system operation TCompany: :DeletePohcy()
update_policy which is mapped into the system operation TCompany::UpdatePolicy()
findjpolicy which is mapped into the system operation TCompany::GetPolicy()
addjclaim which is mapped into the system operation TCompany: :AddClaim()
delete_claim which is mapped into the system operation TCompany::DeleteClaim()
update claim which is mapped into the system operation TCompany::UpdateClaim()
find_claim which is mapped into the system operation TCompany: :GetClaim()
addrisk which is mapped into the system operation TPohcy::AddRisk()

delete_risk which is mapped into the system operation TPolicy::DeleteRisk()

Each ofthese system operations is illustrated as an operation schema in the operation
model and illustrated as an interaction diagram in the interaction model.

178

Chapter 4 : Case Study

4.5.3 Integrating the Object and Functional Models

There are three important guidelines to note when integrating the object model with
the functional model, which embody the common points of integration as outlined in
their inter-model definition.

* Each system operation in the operation model, should be defined only in terms
of the attributes and associations listed in the class diagram of the particular
class, to which it belongs.

For example, the TCompany::AddChent(), TCompany: :DeleteChent(), TCompany::
UpdateChent(), and TCompany: :GetClient() system operations are defined only in
terms of the attributes of the TCompany classsince Client, ClientList and
TotalClients are attributes of this class.

Similarily, the TCompany::AddPohcy(), TCompany::DeletePohcy(), TCompany::
UpdatePolicy(), and TCompany: :GetPolicy() system operations are defined only in
terms of the attributes of the TCompany classsince Policy, PolicyList and
TotalPolicies are attributes of this class.

Similarily, the TCompany::AddAgent(), TCompany::DeleteAgent(), TCompany::
UpdateAgent(), and TCompany::GetAgent() system operations are defined only in
terms ofthe attributes ofthe TCompany class since Agent, AgentList and TotalAgents
are attributes of this class.

Similarily, the TCompany::AddClaim(), TCompany::DeleteClaim(), TCompany::
UpdateClaim(), and TCompany::GetClaim() system operations are defined only in
terms ofthe attributes of the TCompany classsince Claim, ClaimList and
TotalClaims are attributes of this class.

Similarily, the TPolicy::AddRisk() and TPolicy::DeleteRisk() system operations are

defined only in terms of the attributes of the TPolicy class since Risk, RiskList and
TotalRisks are attributes of this class.

179

Chapter 4 : Case Study

» Each system operation represented by an operation schema in the operation
model, should mapped into an operation, and listed in the class diagram of the
particular class, to which it belongs.

Each of the following system operations belong to the TCompany class, and hence,
should be listed in the class diagram ofthe TCompany :

TCompany: :AddClient(); TCompany: :AddPolicy();
TCompany: :DeleteClient(); TCompany: :DeletePohcy() ;
TCompany: :UpdateClient(); TCompany: :UpdatePolicy();
TCompany: :GetClient(); TCompany: :GetPohcy();
TCompany: :AddAgent(); TCompany: :AddClaim();
TCompany: :DeleteAgent(); TCompany: :DeleteClaim();
TCompany: :UpdateAgent(); TCompany: :UpdateClaim();
TCompany: :GetAgent(); TCompany: :GetClaim();

Each of the following system operations belong to the TPolicy class, and hence,
should be listed in the class diagram ofthe TPolicy :

TPolicy::AddRiskQ; TPolicy: :DeleteRisk();
Each individual object interaction, within each system operation represented
by an interaction diagram in the interaction model, should be mapped into an
operation, and listed in the class diagram of the particular class, to which it

belongs.

For example, the AddClientQ system operation has 4 individual interactions

Individual Interaction Class Operation

GetTotalClientsO TCompany TCompany:.GetTotalClientsO
TClientO TClient TClient: :TClient0

PutClient(Client, index) TCompany TCompany: :PutClient(Client, index)

IncTotalClientsQ TCompany TCompany::IncTotalClientsQ

180

Chapter 4 : Case Study

The DeleteClientQ system operation has 5 individual interactions

Individual Interaction Class Operation

GetTotalClientsO TCompany TCompany: :GetTotalClientsQ
GetClientNo(index) TCompany TCompany: :GetClientNo(index)
—TIClientQ TClient TClient: :~TClient()
DecTotalClients() TCompany TCompany::DecTotalClientsO
PutClient(Client, index) TCompany TCompany: :PutClient(Client, index)

The UpdateClientQ system operation has 8 individual interactions

Individual Interaction Class Operation

GetClient(ClientNo) TCompany TCompany::GetClient(ClientNo)
PutSurname (Surname) TClient TClient::PutSurname (Surname)
PutFirstname (Firstname) TClient TClient: :PutFirstname (Firstname)
PutAddress(Address) TClient TClient: :PutAddress (Address)
PutPhone (Phone) TClient TClient::PutPhone (Phone)
PutOccupation(Occup) TClient TClient: :PutOccupation (Occup)
PutBirthdate (Birthdate) TClient TClient: :PutBirthdate (Birthdate)
PutSex(Sex) TClient TClient: :PutSex(Sex)

The GetClientQ system operation has 2 individual interactions

Individual Interaction Class Operation
GetTotalClientsO TCompany TCompany::GetTotalClientsO
GetClientNo(index) TCompany TCompany: :GetClientNo(index)

[Note : The individual object interactions for each ofthe system operations relating to
Clients (as detailed above), are very similar to the individual object interactions for
each of the other system operations relating to Agents, Policies, Claims and Risks,
and thus since they can be easily deduced from the above example, they are not
illustrated in detail.]

181

Chapter 4 : Case Study

4.6 Ensuring Consistency in the OMT Models

Consistency in the OMT models can be ensured by adhering to the set of consistency

guidelines. Since no consistency check fails for this particular case study example
(proved by the previous section), the three OMT models are deemed to be consistent.
If any one consistency check, or a number of consistency checks had failed, then an

anomaly would exist in one or more of the OMT models, and such an anomaly would

need to be redressed before consistency could be achieved.

Check that each condition in each state diagram of the dynamic model, is defined
only in terms of the attributes, operations and associations listed in the class
diagram of the class, which is represented in the state diagram.

Check that each event in each state diagram of the dynamic model, is mapped into
an operation, and listed in the class diagram of the class, which is represented in
the state diagram.

Check that each action in each state diagram of the dynamic model, is mapped
into an operation, and listed in the class diagram ofthe class, which is represented
in the state diagram

Check that each external event and complex internal event, in the event flow
diagram of the dynamic model, is mapped into a system operation and illustrated
as an operation schema in the operation model of the functional modeL

Check that each external event and complex internal event, in the event flow
diagram of the dynamic model, is mapped into a system operation and illustrated
as an interaction diagram in the interaction model of the functional modeL

Check that each system operation in the operation model, is defined only in terms
of the attributes and associations listed in the class diagram of the particular class,
to which it belongs.

Check that each system operation represented by an operation schema in the

operation model, is mapped into an operation, and listed in the class diagram of
the particular class, to which it belongs

182

Chapter 4 : Case Study

* Check that each individual object interaction, within each system operation
represented by an interaction diagram in the interaction model, is mapped into an
operation, and listed in the class diagram of the particular class, to which it
belongs.

4.7 Chapter Summary

This chapter documented and illustrated a comprehensive case study which involved
constructing the object, dynamic and functional models for an insurance company
which dealt with chents, agents, pohcies, and claims. Furthermore, this chapter also
documented and illustrated the improved integration and consistency that can be
achieved across the OMT models by adhering to the set of integration guidelines and
the set of consistency guidelines.

Note : The full class listings ofthis case study are available in the appendix.

183

Chapter 5 : Conclusions

Chapter 5

Conclusions

5.1 Overview

OMT by Rumbaugh et aL is a methodology for the analysis and design of object-
oriented systems. It comprises three individual models : an object model which
specifies the structural aspects of a system; a dynamic model which specifies the
behavioural aspects of a system; and a functional model which specifies the
transformational aspects of a system These three distinct models are not completely
independent, since each model describes one aspect of the system but contains
references to the other two models, and hence all three OMT models need to be
consistently integrated together in order to get the overall picture ofthe system

The problem inherent in the OMT methodology is a lack of integration and
consistency between the individual models. This problem has two significantly inter-
connected sources : firstly, each of these diverse models is developed more or less
independently, and the inter-relationships between the models are not well-defined,
and are not supported by explicit steps in the methodology or comprehensive
illustrated examples. Thus it is difficult to recognise how the separate models
integrate together, and furthermore it is not easy to check the models for consistency
with one another. Secondly, the functional model is ostensibly the weakest of the
three models, primarily due to the unsuitability of using function-oriented DFDs to
model the transformational aspects of an object-oriented system This unsuitability
results in tenuous links from the functional model to the other two models, and hence
difficulties arise with the integration of the three OMT models, which further
compounds the problem

The aim of my research was to significantly improve the level of integration and
consistency in the OMT methodology. To this end, it was necessary to address both
the weakness of the functional model and the inadequacy of the inter-model
relationships, since they were significantly inter-connected.

184

Chapter 5 : Conclusions

5.2 My Research in the OMT Methodology

The weakness of the functional model was identified as being directly caused by the
incapability of function-oriented DFDs to adequately represent the transformational
aspects of an object-oriented system, in terms of what the operations do and how the
operations work. Firstly, DFDs cannot adequately describe what the operations do
since they are organized around processes and not around objects, and hence the
operations on the objects of the system are buried within the network of processes.
Secondly, DFDs cannot adequately describe how the operations work, since they
exclusively detail data flow, and interaction between the operations in an object-
oriented system need not always involve an exchange of data, (in the same way that
interaction between the processes in a function-oriented system nearly always
involves an exchange of data). Furthermore, since the functional model is organized
around processes, and the object and dynamic models are organized around objects,
attempting to integrate the functional model with either of these two models is non-
trivial. To remedy these problems, a proposed functional model was compiled which
fully embraced the object-oriented paradigm, and which comprised two sub-ordinate
models : an operation model which described what each system operation does; and
an interaction model which described how each system operation works.

The inadequacy of the inter-model relationships was identified as being directly
caused by these relationships being poorly defined, poorly supported, poorly
reconciled and poorly illustrated. Firstly, the relationships were poorly defined since
they consisted of a very informal definition of how the models should inter-relate,
which was open to various interpretations, particularly the more tenuous relationships
from the functional model to the other two models. Secondly, the relationships were
poorly supported since there were no exphcit steps in the methodology detailing how
to relate an object, attribute or operation in the object model to a data flow or process
in the functional model, or to an event or state in the dynamic modeL Thirdly, the
relationships were poorly reconciled since there were no guidelines for checking the
models for consistency with each other, and only minimal attention was given to
possible inconsistencies and their reconciliation. Finally, the relationships were poorly
illustrated since there was no fully documented example illustrating how to integrate
and reconcile the OMT models. To remedy these problems a more rigorous set of
proposed inter-model relationships was compiled, which was supported by a set of
integration guidelines detailing how to integrate the three OMT models, and a set of
consistency guidelines detailing how to reconcile the three OMT models, and these
proposed inter-model relationships were illustrated using a comprehensive example.

185

Chapter 5 : Conclusions

5.2.1 Strengths of the Revised OMT Approach

Firstly, the transformation of Rumbaugh's functional model from the function-oriented
DFD, to the proposed functional model, consisting of an operation model and an
interaction model, results in a significant improvement in the ability of the functional
model to fully achieve its purpose (of illustrating the transformational aspects of the
system), since the operation model describes what each system operation does, in
terms of its effect on the state of the system, and the interaction model describes how
each system operation works, in terms of how it interacts with other operations in the
system In addition, this transformation also results in improved links between the
functional model and the other two OMT models. These improvements are attributed
to the fact that the proposed functional model fully embraces the object-oriented
paradigm, and hence is more successful at specifying the functionality of an object-
oriented system, and more successftd at integrating an object-oriented functional
model with the object-oriented object model and the object-oriented dynamic model.
The proposed functional model achieved significant improvements over Rumbaugh's
functional model, in each of the following areas :

* Interms of decomposition, Rumbaugh's functional model decomposes the system
in terms of processes and sub processes, whereas the proposed functional model
decomposes the system in terms of objects and operations. The former method of
decomposition is suited to systems where the functions are more complex than the
data they manipulate, which is not true of object-oriented systems, but the latter
method of decomposition is suited to systems where the data is more complex
than the functions, which is true of object-oriented systems, since the functions
are often trivial, merely accessing and updating data attributes of objects.

* In terms of granularity, Rumbaugh's functional model adopts a top-down
approach beginning with a context diagram and expanding this diagram level by
level until atomic processes are achieved. However both the object and dynamic
models are developed using a bottom-up class-by-class approach, hence
Rumbaugh's functional model exists on a different level of granularity to the other
two models, and this leads to problems with integrating the three models. Since
the proposed functional model is developed using a bottom-up approach based on
classes and operations, there exists a direct coherent link between the three
models on the same level of granularity. As all three OMT models are now
organized around classes and objects, this greatly improves the integration
between the models.

186

Chapter 5 : Conclusions

In terms of data access, Rumbaugh's functional model is organized around
processes, and since the objects of the system are buried within the process
network, it is not always possible to determine which data belongs to which
objects, and hence the restricted data access of the object-oriented paradigm
cannot always be illustrated. However in the proposed functional model, the
operation model explicitly lists the data which is either read or updated by each
system operation, and furthermore the interaction model lists the methods of each
object that are invoked, in order to read or update the data of the object. In this
way the restricted data access of the object-oriented paradigm can be illustrated.

In terms of interaction, Rumbaugh's functional model shows communication
within the system in terms of the flow of information between processes. Since
communication is shown exclusively in terms of data flow, the interaction
between objects cannot be completely illustrated, since the messaging mechanism
which objects use to communicate with each other, need not always involve an
exchange of data. However, in the proposed functional model, the interaction
model documents the name and parameters (if any) of the messages sent between
the various objects, hence the interaction of objects can be illustrated regardless of
whether there is an exchange of data or not.

In terms of mapping, Rumbaugh’s functional model lacks the expressive power to
adequately model an object-oriented system, hence if the objects cannot be easily
modeled, then the transition to design and eventual implementation will be non-
triviaL. The proposed functional model, comprising the operation model, which
describes what each system operation does, in terms of the data it reads and
updates, as well as the pre-conditions and post-conditions on its execution; and
the interaction model, which describes how each system operation works, in terms
of the sub-ordinate operations it invokes; provides a more detailed model of the
object-oriented system, which should facilitate the design and eventual
implementation of the system

187

Chapter 5 : Conclusions

Secondly, the compilation of a proposed set of inter-model relationships results in a
significant improvement in the overall level of integration and consistency in the OMT
methodology. There are several reasons for this improvement :

* Rumbaugh’s original relationships were poorly defined, very informal and open to
various interpretations, particularly the more tenuous relationships from the
functional model to the other two OMT models. However, the proposed inter-
model relationships are more rigorously defined, and are fully illustrated in terms
of a comprehensive example, documenting how the various OMT models relate to
each other.

* Rumbaugh's original relationships were not supported by concrete steps in the
methodology detailing how to integrate the three distinct OMT models, whereas
the proposed inter-model relationships contain a set of integration guidelines,
which are based on the definitions of the inter-model relationships, and document
how to integrate the object, dynamic and functional models together.

* Rumbaugh's original relationships were not supported by concrete steps in the
methodology detailing how to check the three distinct OMT models for
consistency with each other, whereas the proposed inter-model relationships
contain a set of consistency guidelines, which are based on the definitions of the
inter-model relationships, and document how to reconcile the object, dynamic and
functional models with each other.

» Furthermore, Rumbaugh's original relationships attempted to achieve a somewhat
dubious level of integration and consistency, by hap-hazardly trying to integrate
the models together through common operations existing in all three models,
without paying any attention to possible inconsistencies and their reconciliation.
However, the proposed inter-model relationships achieve a much higher level of
integration and consistency by integrating the various models together through
common attributes, common operations, common associations, and common
events, relating to common classes existing in each of the three OMT models, and
paying close attention to possible inconsistencies and their reconciliation.

188

Chapter 5 : Conclusions

5.2.2 Weaknesses of the Revised OMT Approach

Firstly, the weakness of the proposed functional model is caused by an initial
dependency on the dynamic modeL. This dependency contradicts the notion that all
three OMT models are independent orthogonal views of a system, which are
subsequently integrated and reconciled. The purpose of my research was to improve
the level of integration and consistency in the OMT methodology. Since both sources
of this problem, namely the weak functional model and the inadequate inter-model
relationships, were significantly inter-related, it was necessary to consider how the
proposed functional model would integrate into Rumbaugh's existing object and
dynamic models, in order to achieve consistency across the three OMT models.
Hence, in trying to ensure integrated and consistent models, it is possible that the
proposed functional model and the existing dynamic model are too tightly coupled.
Thus, trade-off exists between the total independence of the proposed functional
model, and a high level ofintegration and consistency within the OMT methodology.

In particular, the proposed functional model introduces the concept of a system
operation, but the identification of the system operations draws on information
already existing in the event flow diagram of the dynamic modeL These system
operations are top-level operations, which either correspond to interactions between
the system and the outside world (identified by external events in the event flow
diagram), or correspond to complex transformations of input values to output values
(identified by complex internal events in the event flow diagram). Although this initial
identification depends on the dynamic model, the proposed functional model enhances
the overall OMT analysis model with new information, which is not provided by, or
derivable from, any other model in the methodology.

Secondly, the weakness of the proposed inter-model relationships is caused by
consistency being implemented as a set of heuristics, rather than as a very formal set
of equations defined in terms of mathematics or some formal specification language.
Although it is acceptable for the integration guidelines to be described as rules of
thumb, the notion of consistency is a more formal concept than that of integration,
and it implies the verification of more stringent rules and conditions than can be
achieved merely by adhering to heuristics described in natural language, however
unambiguous the definition of such heuristics may be. All the same, the proposed
inter-model relationships significantly improve on Rumbaugh's original relationships,
since they provide a set of consistency guidelines which were not included in
Rumbaugh's original model

189

Chapter 5 : Conclusions

5.3 Current Research in the OMT Methodology

Rumbaugh is currently actively involved in the development of a second generation
OMT methodology, and has published some proposed alterations to the existing
methodology in a set of articles in the Journal of Object-Oriented Programming
[Rumbaugh, 95-1, 95-2, 95-3], In these articles;, Rumbaugh proposes minor
enhancements to both the object and dynamic models, but addresses the vast majority
ofhis modifications to the functional model.

There are a number of points of comparison and contrast between Rumbaugh's
proposed alterations to the OMT methodology, and my proposed alterations detailed
within the text of this thesis.

* Firstly, Rumbaugh has conceded that the functional model is weak, and that this
weakness is caused by the unsuitability of using DFDs to model the
transformational aspects of an object-oriented system. In addition, Rumbaugh
proposes an outline for a transformed functional model, which is a major
departure from the conventional use of DFDs.

» Secondly, Rumbaugh's transformed functional model comprises operation
descriptions, object-oriented data flow diagrams, object interaction diagrams,
pseudocode designs and actual method code. The operation descriptions are
similar though not the same as my proposed operation model, and furthermore
Rumbaugh intends only to describe the top-level operations which are invoked by
interactions with external actors, and makes no reference to the complex
interactions within the system which | deemed important enough to be included in
the operation modeL The object interaction diagrams are also similar to my
proposed interaction model, since they also illustrate the sequence of messages
that implement an operation, however Rumbaugh's diagrams are more detailed,
extending into areas of control flow, which is not addressed in my proposed
interaction model. Furthermore, my interaction diagrams are illustrated in tabular
format (preferred) but also in graphical format, whereas Rumbaugh's object
interaction diagrams are illustrated only in graphical format.

Although Rumbaugh's proposals are merely outlines and not full specifications, it is

still possible to identify potential strengths and weaknesses to his approach. My
opinion of these potential strengths and weaknesses is given below :

190

Chapter 5 : Conclusions

In terms ofpotential strengths...

* Rumbaugh's transformed functional model has dispensed with function-oriented
DFDs, and has been organized around objects and operations, which should
improve the ability of the functional model to specify the transformational aspects
of a system, and should also simplify the process of integrating and reconciling the
functional model to the object and dynamic models.

In terms of potential weaknesses..

» Firstly a question hangs over the impetus behind the transformation of the
functional model, in terms of the pohtical implications of the Rumbaugh-Booch
merger oftheir respective methodologies. Since Booch's methodology includes an
object and dynamic model but not a functional model, it may seem that Rumbaugh
is trying to carve out a new role for his functional model as a link between
analysis and design, instead of an independent view of the system This point is
supported by the inclusion of control flow information in the object interaction
diagram, and the development of actual method code as part of his transformed
functional model.

» Secondly, is it necessary to decompose the functional model into five separate
models, and will the overhead of constructing these additional models clarify or
confuse the functional model? There is not enough information currently available
to address this issue.

» Thirdly, although Rumbaugh has dealt with the weakness of the functional model,
he has yet to concentrate on improving the tenuous relationships from the
functional model to the other two OMT models.

5.4 Future Research in the OMT Methodology

Two important areas of future research which would be of benefit to the OMT
methodology, have been identified as : a need to address the area of formal
consistency checking between the three OMT models; and a need to address the area
of improved tool support for the OMT methodology. Each of these points is
discussed below:

191

Chapter 5 : Conclusions

5.4.1 Formal Consistency Checking

As stated earlier in this chapter, the proposed inter-model relationships attempt to
implement consistency between the various OMT models, as a set of guidelines,
instead of the more favourable option of implementing consistency as a set of
formally verifiable equations. However, this inadequacy is not easily remedied, since a
guarantee of consistency requires that it be possible to semantically check the OMT
models fully, which is not possible without the use of a formal specification language,
such as Vienna Development Method (VDM) or Z. Unfortunately, these techniques
are only practical in safety critical systems where defects must be avoided at all costs.
Hence, there is a need to explore ways of making consistency checking more formal
than a set of heuristics, without the overhead of a full formal specification language.

5.4.2 Improved Tool Support

Currently OMT is supported by several CASE tools (e.g. OMTool, SelectOMT).
Unfortunately, these tools are mainly limited to diagrammatical support and basic
code generation. In addition, none ofthe CASE tools enforce inter-model integration,
or support inter-model consistency, perhaps because Rumbaugh's inter-model
relationships were not well-defined enough to enable cross-model integration and
consistency to be implemented. This points to the need for improved OMT CASE
tools, which provide more complete support for the development of consistently
integrated models.

5.5 Chapter Summary

This chapter summarised the purpose of my research in terms of the problems with
the OMT methodology, and my proposed solutions to these problems. In addition the
strengths and weaknesses of my solutions were discussed, and comparisons were
made between my research and Rumbaugh's current research into OMT, which led to
the potential strengths and weaknesses of his approach also being discussed. Finally
areas of fixture research which would be beneficial to the OMT methodology were
also identified.

192

[Bear, "90]

[Blaha, 93]

[Booch, '86]

[Booch, 94]

[Coad, 90]

[Coad, 91-1]

[Coad, 91-2]

[Coleman '94]

Bibliography

Bibliography

Stephen Bear, Phillip Allen, Derek Coleman, and Fiona Hayes,
"Graphical Specification of Object Oriented Systems"",
ECOOP/OOPSLA Proceedings'90, October 21-25 1990,

pg 28-37.

Michael Blaha, "Aggregation ofparts ofparts ofparts™,
Journal of Object-Oriented Programming, September 1993,
VoL 6 No. 5, pg 14-20.

Grady Booch, "Object-OrientedDevelopment™, IEEE
Transactions on Software Engineering, February 1986,
Vol. SE-12 No. 2, pg 211-221.

Grady Booch, Object-Oriented Analysis and Design with
Applications (SecondEdition), Benjamin/Cummings,
Redwood City, CA, 1994.

Peter Coad, and Edward Y ourdon, "Object-Oriented
Analysis™, System and Software Requirements Engineering,
IEEE Computer Society Press, 1990, pg 272-288.

Peter Coad and Edward Y ourdon, Object-Oriented Analysis,
Yourdon Press/Prentice Hall, Englewood Cliffs, NJ, 1991.

Peter Coad and Edward Yourdon, Object-Oriented Design,
Yourdon Press/Prentice Hall, Englewood Cliffs, NJ, 1991.

Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris
Dollin, Helena Gilchrist, Fiona Hayes, and Paul Jeremaes,
Object-Oriented Development - The Fusion Method,
Prentice Hall, Englewood Cliffs, NJ, 1994.

193

[Cook, '94]

[de Champeaux, "90]

[de Champeaux, '92]

[de Champeaux, "93]

[Demarco, 79]

[D'Souza,

[D'Souza,

[D'Souza,

[D'Souza,

093]

94-1]

94-2]

'95]

Bibliography

Stephen Cook and John Daniels, "Object Communication™,
Journal of Object-Oriented Programming, September 1994,
Vol. 7No. 5, pg 14-22.

Dennis de Champeaux, Larry Constantine, Ivar Jacobson,
Stephen Mellor, Paul Ward, and Edward Yourdon,

"PANEL : Structured Analysis and Object-Oriented
Analysis", ECOOP/ OOPSLA"90 Proceedings, October 21-25
1990, pg 135-139.

Dennis de Champeaux and Penelope Faure, A Comparative
Study of Object-Oriented Analysis Methods™, Journal of
Object-Oriented Programming, March/April 1992, Vol. 5
No. I,pg 21-33.

Dennis de Champeaux, Douglas Lea, and Penelope Faure,
Object-Oriented Systems Development, Addison Wesley,
Reading, MA, 1993.

Tom Demarco, Structured Analysis and System Specification,
Chapters 4-10 : Data Flow Diagrams, pg 47-122, Yourdon
Press/Prentice Hall, Englewood Cliffs,NJ, 1979.

Desmond D'Souza, ""Workingwith OMT"", Journal of Object-
Oriented Programming, October 1993, VoL 6 No. 6, pg 63-68.

Desmond D'Souza, ""Working with OMT, Part 2", Journal of
Obiject-Oriented Programming, February 1994, Vol. 6 No. 9,
pg 68-72.

Desmond D'Souza, ""Working with OMT in the construction of
large systems™, Journal of Object-Oriented Programming,
March/April 1994, Vol. 7 No. 1, pg 54-58.

Desmond D'Souza, ""Working with OMT : Model Integration™,

Journal of Object-Oriented Programming, February 1995,
VoL 7 No. 9, pg 22-29.

194

[Embley, "92]

[Eckert, '94]

[Frost, "95]

[Gane, 78]

[Hard, "87]

[Hard, '88]

[livari '95]

[Jacobson, "94]

[Jacobson, "95]

Bibliography

David W. Embley, B. Kurtz, and S. N. Woodfield, Object-
Oriented Systems Analysis, Yourdon Press/ Prentice Hall,
Englewood Cliffs, NJ, 1992.

Gabriel Eckert and Paul Golder, ""Improving Object-Oriented
Analysis™, Information and Software Technology, 1994,
Vol. 36 No. 2, pg 67-86.

Stuart Frost, ""The Select Perspective - Extending Rumbaugh’s
OMTfor Client Server Systems Development™, Select
Software Tools, 1995, pg 1-13.

Chris Grare and Trish Sarson, Structured Systems Analysis :
Tools and Techniques, Chapter 3 : Drawing Data Flow
Diagrams, pg 25-47, Prentice Hall, Englewood Cliffs, NJ,
1978.

David Hard, "'Statecharts : a visualformalismfor complex
systems™, Science of Computer Programming 8, 1987,
pg 231-274.

David Harel, ""Onvisual formalisms', Communications ofthe
ACM, May 1988, Vol. 31 No. 5, pg 514-530.

Juhani livari, ""Object-orientation as structural, functional arid
behavioural modelling : a comparison ofsix methodsfor
object- oriented analysis™, Information and Software
Technology, 1995, Vol 37 No. 3, pg 155-163.

Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and
Gunnar Overgaard, Object-Oriented Software Engineering -
A Use Case Driven Approach (Fourth Edition), Addison
Wesley, Reading, MA, 1994.

Ivar Jacobson and Magnus Christenson, "Agrowing consensus

on use cases", Journal of Object-Oriented Programming,
March/April 1995, VoL 8 No. 1, pg 15-19.

195

[Martin, '92]

[Meyer, '88]

[Monarchi, '92]

[Nigro, '95]

[Odell, '94]

[Rumbaugh,

[Rumbaugh,

[Rumbaugh,

[Rumbaugh,

[Rumbaugh,

'91]

'94]

'95-1]

'95-2]

'95-3]

Bibliography

James Martin and James J. Odell, Object-Oriented Analysis
and Design, Prentice Hall, Englewood Cliffs, NJ, 1992.

Bertrand Meyer, Object-Oriented Software Construction,
Prentice Hall, Englewood Cliffs, NJ, 1988.

David E. Monarchi and Gretchen I. Puhr, "A Research
Typologyfor Object-Oriented Analysis and Design",
Communications ofthe ACM, September 1992, Vol. 35 No. 9,
pg 35-47.

Libero Nigro, "A real-time architecture based on Shlaer-
Mellor object lifecycles", Journal of Object-Oriented
Programming, March/April 1995, VoL 8 No. 1, pg 20-31.

James J. Odell, "Six different kinds o f composition™, Journal of
Object-Oriented Programming, January 1994, Vol. 6 No. 8,
pg 10-15.

James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, William Lorensen, Object-Oriented Modeling
and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

James Rumbaugh, "Getting Started - Using use cases to
capture requirements", Journal of Object-Oriented
Programming, September 1994, Vol. 7 No. 5, pg 8-23.

James Rumbaugh, "OMT : The Object Model"”, Journal of
Object-Oriented Programming, January 1995, Vol. 7 No. 8,
pg 21-27.

James Rumbaugh, "OMT : The Dynamic Model", Journal of
Object-Oriented Programming, February 1995, Vol. 7 No. 9,
pg 7-12.

James Rumbaugh, "OMT : The Functional Model", Journal of

Object-Oriented Programming, March/April 1995, Vol. 8
No. 1, pg 10-14.

196

[Shlaer, '88]

[Shlaer, '92]

[Tanzer, "95]

[Wirfs-Brock, "89]

[Wirfs-Brock, *90]

[Yourdon, "89]

Bibliography

Sally Shlaer and Stephen J. Mellor, Object-Oriented Systems
Analysis : Modeling the World in Data, Yourdon Press/
Prentice Hall, Englewood Cliffs, NJ, 1988.

Sally Shlaer and Stephen J. Mellor, Object Lifecycles :
Modeling the World in States, Yourdon Press/Prentice Hall,
Englewood Cliffs, NJ, 1992.

Christian Tanzer, ""Remarks on object-oriented modeling of
associations', Journal of Object-Oriented Programming,
February 1995, Vol.7 No. 9, pg 43-46.

Rebecca Wirfs-Brock and Brian Wilkerson, ""Object-Oriented
Design : A Responsibility-Driven Approach™, OOPSLA '89
Proceedings, October 1-6 1989, pg 71-75.

Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Weiner,
Designing Object-Oriented Software, Prentice Hall,
Englewood Cliffs, NJ, 1990.

Yourdon, Edward, Modern Structured Analysis,
Chapter 9 : Data Flow Diagrams, pg 139-175,
Chapter 13 : State-Transition Diagrams, pg 259-274.
Prentice Hall, Englewood Cliffs, NJ, 1989.

197

Action

Activity

Aggregation

Association

Atomic Operation

Attribute

Class

Condition

Data Flow

Data Store

Glossary

Glossary

an instantaneous operation, associated with an event,
in the state diagram of the dynamic model.

a time-consuming operation, associated with a state, in
the state diagram ofthe dynamic model.

a specialform of association, representing the a-part-
ofrelationship between objects in the object model.

a relationship between two or more classes in the object
model.

an operation which cannot be further decomposed into
sub-ordinate operations.

a namedproperty belonging a class, describing a data
value held by each object ofthe class.

a schema of attributes and operations, documenting a
group of objects with similar properties, behaviour and
relationships.

a boolean function, describing a guard on a transition,
in the state diagram of the dynamic model.

a connection between the output of one process, data
store or actor and the input to another process, data
store or actor, in the data flow diagram of the
functional model.

a temporary repository of data in the data flow
diagram ofthefunctional model.

198

Data Flow Diagram

Dynamic Model

Event

Event Flow Diagram

Event Trace Diagram

Functional Model

Generalization

Link

Object

Object Diagram

Object Model

Operation

Glossary

a graphical representation of the functional model,
illustrating the flow of data values through a system
from their sources in actors, via transformations in
processes, to their destinations in other actors.

a description of the temporal, behavioural aspects of a
system.

an instantaneous occurrence at apoint in time.

a diagram that illustrates the sender and receiver of
events, without regardfor the sequence of events, in the
dyriamic model

a diagram that illustrates the sender an receiver of
events, and the sequence of events in the dynamic

model.

a description of the transformational aspects of a
system.

a specialform of association, representing the a-kind-
ofrelationship between objects in the object model.

an instance ofan association.

an instance ofa class.

a graphical representation of the object model,
illustrating attributes, operations and associations.

a description of the static structural aspects of a
system.

a named function belonging to a class, describing a
transformation that may be applied to objects of the
class.

199

Process

Scenario

State

State Diagram

System Operation

Glossary

a transformation of incoming data flows into outgoing
data flows, in the data flow diagram of the functional
model.

a sequence of events which occurs during one
particular execution ofa system.

the values of the attributes and links of an object at a
particular time.

a directed graph where nodes represent states and
whose arcs represent transitions between states caused
by events.

a top level operation, which either co/responds to an
interaction between the system and the outside world,
or to a complex transformation of input values to

output values (analogous to a Level 1process on a data
flow diagram).

200

Appendix

Appendix

Fig A.1 Main Screen

Clients E
Client Details Policy List
i coom
Client No. P0O0O1
Surname Murphy H
P0003
First name Anne
Address 45 Old Road
Phone No. 858 3434
Occupation Teacher o
Policies

Date of Birth 125-10-65

Sex r

Find Add Delete Update X Cancel

Fig A.2 Clients Screen

Appendix

Agents m
Agent Details Policy List
Agent No. A0001 P0001
Surname O' Reilly P0002
First name Tom
Company Ford Insurance Brokers
Address 12 Main Street
Phone leys 8888)
View
Commission rate |12 %
Total Amt Due £525
Find Add Delete Update QK rCancel
Fig A.3 Agents Screen
Policies
Policy Details
Client No. [Ccoo01 J Policy Type <+ Car House
' Anne Murphy
45 Old Road Additional Policy Details :
858 3434
Agent No. A0001 jJ Manufacturer |[Honda 1
Tom O'Reilly Model Civic
12 Main Street . . 94.D-17345
E7B 8888 Registration |94-D -
Policy No. |PODO1 Engine Size 1.2 Litre
Original Date 81-01-96 Car vValue 10000
Start Date 01-01-96 i£| Full Licence !
End Date [01-01-97 Total Premium £1860
Find Add Delete Update
1

Fig A.4 Policies Screen

Appendix

Risks H|
Risk Details

Policy No P0001

Risk walNm

Premium £900

Add Delete

N0 K AnCancel

Fig A.5 Risks Screen

Claims
Claim Details Policy Details
Claim No. CLO01 Policy No. P0002 n

Claim Date 10-01-96
Claim Value 1000 View

Claim Details |Jewelery stolen from house

Claim Status Awarded

Find Add Delete Update |/O K X cancel

Fig A.6 Claims Screen

Appendix

Accounts

m

Account Details Policy List

Client No. |C0001 P0001

P0002

Anne Murphy tam

45 Old Road

858 3434

Policy No. 1P0003

Pay

Original Date 01-01-9G

Start Date 01-01-9G

End Date 01-01-97

Premium £480

Amt Due £40

Due Date 01-01-9G XCanceI

Status Unpaid

Fig A.7 Accounts Screen

A4

Appendix

// File : TCOMPANY.S
#ifndef COMPANY_H
#define COMPANY_H
#include "defines.h"

#includ
#includ

e "tclient.h”
e "tpolicy.h"

#include "tcar.h"
#include "thouse.h"
#include '"tagent.h"

#includ

e "tclaim.h"

class TCompany {
private :

char
char
char

CompanyName[COMPANY]
Address[ADDRESS] ;
Phone[PHONE];

TClient *ClientList[MAX_CLIENTS];
TPolicy *PolicyList[MAX_POLICIES];
TAgent *AgentList[MAX_AGENTS];
TClaim *ClaimList[MAX_CLAIMS];

TClie
TPoli
TAgen
TClai
TCar

nt *Client;
cy *Policy;
t *Agent;
m *Claim, -
*CarPolicy;

THouse *HousePolicy;
int TotalClients;
int TotalPolicies;
int TotalAgents;

int TotalClaims;

public :
TCompany(char *NewCompanyName, char *NewAddress, char *NewPhone);
-TCompanyQ;
void AddClient(char *ClientNo, char *Surname, char *Firstname,

void

void

void

void

char *Address, char *Phone, char *Occupation,
char *Birthdate, char *Sex);

AddPolicy(char *ClientNo, char *PolicyNo, char *AgentNo,
char *StartDate, char *EndDate, char *Manufacturer,
char *Model, char *Registration, char *EngineSize,

long CarValue, int FullLicenceStatus);

AddPolicy(char *ClientNo, char *PolicyNo, char *AgentNo,
char *StartDate, char *EndDate, char *HouseType, int Rooms,
char *AreaCode, long HouseValue, 1long ContentsValue,

int HouseAlarmStatus);

AddAgent(char *AgentNo, char *Surname, char *Firstname,
char *Company, char *Address, char *Phone, int CommRate);

AddClaim(char *ClaimNo, char *ClaimDate, Qlong ClaimVvalue,

char *ClaimbDetails, char *PolicyNo, char *PolicyStart,
char *PolicyEnd, char *PolicyStatus);

A5

Appendix

void DeleteClient(char *ClientNo);
void DeletePolicy (char *PolicyNo) ;
void DeleteAgent(char *AgentNo);
void DeleteClaim(char *ClaimNo);

void UpdateClient(char *ClientNo, char *Surname, char *Firstname,
char *Address, char *Phone, char *Occupation,
char *Birthdate, char *Sex);

void UpdatePolicy(char *PolicyNo, char *StartDate, char *EndDate,
char *Manufacturer, char *Model, char *Registration,
char *EngineSize, long CarValue, int FullLicenceStatus)

void UpdatePolicy(char *PolicyNo, char *StartDate, char *EndDate,
char *HouseType, 1int Rooms, char *AreaCode, long HouseValue,
long ContentsValue, int HouseAlarmStatus);

void UpdateAgent(char *AgentNo, char »Surname, char *Firstname,
char *Company, char »Address, char *Phone, int CommRate);

void UpdateClaim(char *ClaimNo, char *ClaimDate, Qlong ClaimValue,
char *ClaimDetails);

TClient *GetClient(char *ClientNo);
TPolicy *GetPolicy(char *PolicyNo);
TAgent *GetAgent(char *AgentNo);
TClaim *GetClaim(char *ClaimNo) ;

void PutClient(TClient *Client, int index);
void PutPolicy(TPolicy *Policy, int index) ;5
void PutAgent(TAgent *Agent, int index);
void PutClaim(TClaim *Claim, 1int index);

int GetTotalClients(;
int GetTotalPolicies(;
int GetTotalAgents(Q;
int GetTotalClaims(Q;

void IncTotalClients();
void IncTotalPolicies(Q;
void IncTotalAgents(Q;
void IncTotalClaims(Q;

void DecTotalClients(;
void DecTotalPolicies(;
void DecTotalAgents(Q;
void DecTotalClaims Q 5

char *GetClientNo(int index);
char *GetPolicyNo(int index);
char *GetAgentNo(int index);
char *GetClaimNo(int index);

A6

Appendix

/'l File : TCOMPANY. CPP

#include <iostream.h>
#include <string.h>
#include "tcompany.h"

TCompany::TCompany(char »NewCompanyName, char »NewAddress,
char »NewPhone)

strcpy(CompanyName ,NewCompanyName) ;
strcpy(Address,NewAddress) ;
strcpy(Phone,NewPhone) ;
TotalClients = O;

TotalPolicies = 0;

TotalAgents = O0;

TotalClaims

}

TCompany::-TCompany(Q

{

1
L

void TCompany::AddClient(char *ClientNo, char »Surname,
char »Firstname, char »Address,
char »Phone, char »Occupation,
char »Birthdate, char »Sex)

if (GetTotalClients() < MAX_CLIENTS)

/7 Create the new client
Client = new TClient(ClientNo,Surname,Firstname,Address,Phone,
Occupation,Birthdate,Sex) ;

// Add the new client to the client list
PutClient (Client,GetTotalClients Q) >

/7 Increment client counter
IncTotalClients(;

}
}

void TCompany::AddPolicy(char »ClientNo, char »PolicyNo,
char »AgentNo, char »StartDate,
char »EndDate, char »Manufacturer,
char »Model, char »Registration,
char »EngineSize, long CarValue,
int FullLicenceStatus)

if (GetTotalPolicies() < MAX_POLICIES)

/7 Create the new car policy

Policy = (TPolicy *) new TCar
(ClientNo,PolicyNo,AgentNo,StartDate,EndDate,
Manufacturer,Model»Registration,EngineSize,
CarValue,FullLicenceStatus);

/7 Add the new policy to the policy list
PutPolicy(Policy,GetTotalPolicies());

AT

Appendix

/1 Increment policy counter
IncTotalPolicies(Q,-

}
}

void TCompany::AddPolicy(char »ClientNo, char *PolicyNo,
char *AgentNo, char *StartDate,
char »EndDate, char *HouseType,
int Rooms, char *AreaCode, 1long HouseValue,
long ContentsValue, int HouseAlarmStatus)

if (GetTotalPolicies(Q < MAX_POLICIES)

// Create the new house policy
Policy = (TPolicy ») new THouse
(ClientNo,PolicyNo,AgentNo, StartDate,EndDate,
HouseType,Rooms,AreaCode ,HouseValue,
ContentsValue,HouseAlarmStatus);

// Add the new policy to the policy list
PutPolicy(Policy,GetTotalPolicies(Q):;
IncTotalPolicies(Q;

}

void TCompany::AddAgent(char *AgentNo, char »Surname,
char *Firstname, char »Company,
char »Address, char »Phone,
int CommRate)

if (GetTotalAgents(Q < MAX_AGENTS)

// Create the new agent
Agent = new TAgent(AgentNo,Surname,Firstname,Company,Address,
Phone,CommRate);

// Add the new agent to the agent list
PutAgent (Agent,GetTotalAgents Q) »

// Increment agent counter
IncTotalAgents Q 5

}

void TCompany::AddClaim(char »ClaimNo, char »ClaimDate,
long ClaimValue, char »ClaimbDetails,
char »PolicyNo, char »PolicyStart,
char »PolicyEnd, char »PolicyStatus)

if (GetTotalClaims Q < MAX_CLAIMS)

// Create the new claim
Claim = new TClaim(ClaimNo,ClaimDate,ClaimValue,ClaimDetails,
PolicyNo,PolicyStart,PolicyEnd, PolicyStatus);

/7 Add the new claim to the claim list
PutClaim(Claim,GetTotalClaims(Q) ;

A8

Appendix

/] Increment claim counter
IncTotalClaims(;

}
}

void TCompany::DeleteClient(char *ClientNo)

/77 Search all clients until client selected for deletion is found
for (int 1=0; i<GetTotalClients(; i++)
if (strcmp(GetClientNo(i) ,ClientNo)==0)

/7 Delete selected client from the client list
delete (TClient *)ClientList[i];

/77 Decrement client counter
DecTotalClients(Q;

/7 Reorder the client list
for (int j=i; j<GetTotalClients(Q; j++)
PutClient(ClientList[j+1].jJ);

void TCompany::DeletePolicy(char *PolicyNo)

7/ Search all policies until policy selected for deletion is found
for (int 1=0; i<GetTotalPolicies Q 5 i++)
if (strcmp(GetPolicyNo(i),PolicyNo)==0)

/7 Delete selected policy from the policy list
delete (TPolicy *) PolicyList [i]

/77 Decrement policy counter
DecTotalPolicies Q;

/7 Reorder the policy list
for (int j=i; j<GetTotalPolicies(Q; Jj++)
PutPolicy(PolicylList [j+1].));

void TCompany::DeleteAgent(char *AgentNo)

/7 Search all agents until agent selected for deletion is found
for (int i=0; i<GetTotalAgents(Q ; i++)
if (strcmp(GetAgentNo(i),AgentNo)==0)

/7 Delete selected agent from the agent list
delete (TAgent *)AgentList[i];

/7 Decrement agent counter
DecTotalAgents(;

/7 Reorder the agent list

for (int j=i; j<GetTotalAgents(Q; jJ++)
PutAgent(AgentList[j+1] ,j) ;

A9

Appendix

void TCompany::DeleteClaim(char *ClaimNo)

/7 Search all claims until claim selected for deletion is found
for (int i=0; i<GetTotalClaims(Q ; i++)
iT (strcmp(GetClaimNo(i),ClaimNo)==0)

/7 Delete selected claim from the claim list
delete (TClaim *)ClaimList[i];

/7 Decrement claim counter
DecTotalClaims O ;

/7 Reorder the claim list
for (int j=i; j<GetTotalClaims(Q; j++)
PutClaim(ClaimList[j+I1] .)) ;

}

void TCompany::updateClient(char *ClientNo, char »Surname,
char »Firstname, char »Address,
char »Phone, char »Occupation,
char »Birthdate, char »Sex)

// Retrieve specified client
Client = GetClient(ClientNo);

// Update client details
Client->PutSurname(Surname) ;
Client->PutFirstname(Firstname) 5
Client->PutAddress(Address);
Client->PutPhone(Phone);
Client->PutOccupation@ccupation)
Client->PutBirthdate (Birthdate) s
Client->PutSex (Sex) ;>

void TCompany::UpdatePolicy(char »PolicyNo, char »StartDate,
char »EndDate, char »Manufacturer,
char »Model, char »Registration,
char »EngineSize, long CarValue,
int FullLicenceStatus)

// Retrieve specified car insurance policy
CarPolicy = (TCar *)GetPolicy(PolicyNo) ;

/7 Update car insurance policy details
CarPolicy->PutStartDate(StartDate) ;
CarPolicy->PutEndDate (EndDate) 5
CarPolicy->PutManufacturer(Manufacturer);
CarPolicy->PutModel (Model) ;
CarPolicy->PutRegistration(Registration) ;
CarPolicy->PutEngineSize(EngineSize) ;
CarPolicy->PutCarValue(CarValue) ;
CarPolicy->PutFullLicenceStatus(FullLicenceStatus);

A10

Appendix

void TCompany::UpdatePolicy(char *PolicyNo, char *StartDate,
char *EndDate, char »HouseType,
int Rooms, char »AreaCode,
long HouseValue, 1long ContentsValue,
int HouseAlarmStatus)

// Retrieve specified house insurance policy
HousePolicy = (THouse »)GetPolicy(PolicyNo);

// Update house insurance policy details
HousePolicy->PutStartDate(StartDate);
HousePolicy->PutEndDate(EndDate);
HousePolicy->PutHouseType(HouseType);
HousePolicy->PutRooms(Rooms);
HousePolicy->PutAreaCode(AreaCode);
HousePolicy->PutHouseValue(HouseValue);
HousePolicy->PutContentsValue(ContentsValue);
HousePolicy->PutHouseAlarmStatus (HouseAlarmStatus) s

}

void TCompany::UpdateAgent(char »AgentNo, char »Surname,
char »Firstname, char »Company,
char »Address, char »Phone,
int CommRate)

// Retrieve specified agent
Agent = GetAgent(AgentNo);

// Update agent details
Agent->PutSurname (Surname) s
Agent ->PutFirstname(Firstname);
Agent->PutCompany(Company) ;
Agent->PutAddress (Address) ;
Agent->PutPhone(Phone);
Agent->PutCommRate(CommRate) ;

}

void TCompany::UpdateClaim(char »ClaimNo, char »ClaimDate,
long ClaimValue, char »ClaimDetails)

// Retrieve specified claim
Claim = GetClaim(ClaimNo);

/7 Update claim details
Claim->PutClaimbDate (ClaimDate) -
Claim->PutClaimValue(ClaimValue);
Claim->PutClaimDetails(ClaimDetails);

}

TClient »TCompany::GetClient(char »ClientNo)

/77 Search all clients
for (int i=0; i<GetTotalClients(; i++)
ifT (strcmp(GetClientNo(i),ClientNo)==0)
//7 Client is found
return ClientList [i];

All

// Client is not found
return (TClient *)NULL;

}
TPolicy *TCompany::GetPolicy(char *PolicyNo)

{ // Search all policies
for (int i=0; i<GetTotalPolicies(; i++)
it (strcmp(GetPolicyNo(i) ,PolicyNo)==0)
/f Policy is found
return PolicyList[i];

// Policy is not found
return (TPolicy *)NULL;

}

TAgent »TCompany::GetAgent(char »AgentNo)

{ // Search all agents
for (int 1=0; i<GetTotalAgents(; i++)
if (strcmp(GetAgentNo(i),AgentNo)==0)
/f Agent is found
return AgentList[i];

// Agent is not found
return (TAgent *)NULL;

}

TClaim *TCompany::GetClaim(char *ClaimNo)

{ // Search all claims
for (int 1=0; i<GetTotalClaims(; 1i++)
if (strcmp(GetClaimNo(i),ClaimNo)==0)
// Claim is found
return ClaimList[i];

// Claim is not found
return (TClaim *}NULL;

void TCompany::PutClient(TClient »Client, int

ClientList[index] = Client;

}

void TCompany:jPutPolicy(TPolicy »Policy, int

PolicyList[index] = Policy;

}

index)

index)

void TCompany::PutAgent(TAgent »Agent, int index)

AgentList[index] = Agent;

Al12

Appendix

void TCompany::PutClaim(TClaim »Claim, int

{

ClaimList[index] = Claim;

-

int TCompany::GetTotalClients)

return TotalClients;

o~

int TCompany::GetTotalPolicies(

return TotalPolicies;

-~ o~

int TCompany::GetTotalAgents(Q

return TotalAgents;

int TCompany::GetTotalClaimsO

-

return TotalClaims;

}

void TCompany::IncTotalClients(Q

TotalClients ++;

}

void TCompany::IncTotalPolicies(

TotalPolicies ++;

}

void TCompany::IncTotalAgents(Q

TotalAgents ++;

}

void TCompany::IncTotalClaims(

TotalClaims ++;

}

void TCompany::DecTotalClients(Q

TotalClients

}

void TCompany::DecTotalPolicies(

TotalPolicies

Al13

index)

Appendix

void TCompany::DecTotalAgents(Q

TotalAgents

}

void TCompany: :DecTotalClaims(

TotalClaims

}

char *TCompany::GetClientNo(int index)

{
}

char *TCompany::GetPolicyNo(int index)

return ClientList[index]->GetClientNo(Q;

return PolicylList[index]->GetPolicyNo{;

}

char *TCompany::GetAgentNo(int index)

return AgentList[index]->GetAgentNo(Q;

}

char *TCompany::GetClaimNo(int index)

{

return ClaimList[index]->GetClaimNo(Q;

Al4

Appendix

/'l File

#ifndef
#define

#includ

TCLIENT.H

CLIENT_H
CLIENT_H

e '"defines.h"

class TClient {
private:

char
char
char
char
char
char
char
char

ClientNo[CLIENT];
Surname[SURNAME] ;
Firstname[FIRSTNAME];
Address[ADDRESS] ;
Phone[PHONE];
Occupation[OCCUPATION];
Birthdate[DATE];
Sex[SEX];

int PolicyCount;

Char *PolicyNoList[MAX_POLICIES_PER_CLIENT];

public:
TClient(char *NewClientNo, char *NewSurname,

Appendix

char *NewFirstname,

char *NewAddress, char *NewPhone, char *NewOccupation,

char *NewBirthdate, char *NewSex);

-TClient(;

void
void
char
char
char
char
char
char
char
char

AddPolicy(char *PolicyNo);
DeletePolicy(char *PolicyNo);
*GetClientNo Q 5
*GetFirstname();
*GetSurnameO;

*GetAddress(Q;

*GetPhone();
*GetOccupation();
*GetBirthdate Q >

*GetSex();

int GetPolicyCount Q

char
void
void
void
void
void
void
void
void
void
void

}

#endi f

*GetPolicyNo(int index);
PutSurname(char *NewSurname);
PutFirstname(char *NewFirstname);
PutAddress(char *NewAddress);
PutPhone(char *NewPhone);
PutOccupation(char *NewOccupation);
PutBirthdate(char *NewBirthdate);
PutSex(char *NewSex);
IncPolicyCount Q >

DecPolicyCount(Q;

PutPolicyNo(char *PolicyNo, 1int index);

CLIENT H

Al5

/'l File : TCLIENT.CPP

#include <iostream.h>
#include <string.h>
#include "tclient.h"

TClient::TClient(char *NewClientNo, char *NewSurname,
char *NewFirstname, char *NewAddress,
char *NewPhone, char *NewOccupation(
char *NewBirthdate, char *NewSex)

strcpy(ClientNo,NewClientNo) 5
strcpy(Surname,NewSurname) 5
strcpy(Firstname,NewFirstname) ;
strcpy(Address,NewAddress) ;
strcpy(Phone,NewPhone) ;
strcpy(Occupation,NewOccupation);
strcpy(Birthdate ,NewBirthdate) ;
strcpy(Sex,HewSex) ;

PolicyCount = O;

}

TClient::-TClient(

{

void TClient::AddPolicy(char *PolicyNo)
if (GetPolicyCount(Q < MAX_POLICIES_PER_CLIENT)

{
/7 Add the policy to the policy list of the client
PutPolicyNo(PolicyNo,GetPolicyCount());

/7 Increment the policy count of the client
IncPolicyCount(;

}
}

void TClient::DeletePolicy(char *PolicyNo)

for (int i=0; i<GetPolicyCount(); i++)
if (strcmp(GetPolicyNo(i),PolicyNo)==0)

/7 Delete the selected policy from the
/1 policy list of the client
delete [] PolicyNoList[i];

/7 Decrement the policy count of the client
DecPolicyCount(Q;

/77 Reorder the policy list of the client

for (int j=i; j<GetPolicyCount Q s j++)
PutPolicyNo(PolicyNoList[j+1] .,j):;

Al6

Appendix

char *TClient::GetClientNo(Q

{

return ClientNo;

char *TClient::GetSurname(

{
}

char *TClient::GetFirstname(

{
}

char *TClient::GetAddress(

{

return Address;

char *TClient::GetPhone(

{

return Phone ;

}

char *TClient::GetOccupation(

{

return Occupation;

}

char *TClient::GetBirthdate(

{

return Birthdate;

}

char *TClient:jGetSex(

{

return Sex;

}

int TClient::GetPolicyCount (

{

return PolicyCount;

}

char *TClient::GetPolicyNo (int

{

return PolicyNoList[index];

}

return Surname;

return Firstname;

void TClient::PutSurname(char *NewSurname)

strcpy(Surname,NewSurname) ;

index)

Al17

Appendix

void TClient::PutFirsCname(char *NewFirstname)

{

strcpy(Firstname,NewFirstname) ;

void TClient::PutAddress(char *NewAddress)

strcpy(Address ,NewAddress) ;

}

void TClient::PutPhone(char *NewPhone)

strcpy(Phone,NewPhone) ;

}

void TClient::PutOccupation(char *NewOccupation)

strcpy (Occupation, NewOccupation) 5

)

void TClient::PutBirthdate(char *NewBirthdate)

strcpy(Birthdate ,NewBirthdate) ;

}

void TClient::PutSex(char *NewSex)

strcpy(Sex,NewSex) ;

}

void TClient::IncPolicyCount(Q

PolicyCount ++;

}

void TClient::DecPolicyCount(Q

PolicyCount

}

void TClient::PutPolicyNo(char *PolicyNo, 1int index)

PolicyNoList[index] = new char[POLICY];
strcpy(PolicyNoList[index],PolicyNo);

A18

Appendix

Appendix

/'l File : TAGENT.B

#ifndef AGENT_H
#define AGENT_H

~include '"defines.h"

class TAgent {

private:
char AgentNo[AGENT];
char Surname[SURNAME];
char Firstname[FIRSTNAME] ;
char Company[COMPANY];
char Address[ADDRESS];
char Phone[PHONE];
int CommRate;
long TotalAmtDue;
int PolicyCount;
char *PolicyNoList [MAX_ _POLICIES_PER_AGENT]

public:

TAgent(char *NewAgentNo, char “NewSurname, char *NewFirstname,
char *NewCompany, char *NewAddress, char *NewPhone,
int NewCommRate);

-TAgent(Q;

void AddPolicy(char *PolicyNo);

void DeletePolicy(char *PolicyNo);

char *GetAgentNo(Q;

char *GetFirstname();

char *GetSurname(

char *GetCompany(Q

char *GetAddress(

char *GetPhone();

int GetCommRate(;

long GetTotalAmtDue(Q;

int GetPolicyCount(Q;

char *GetPolicyNo(int index);

void PutSurname(char *NewSurname);

void PutFirstname(char *NewFirstname);

void PutCompany(char *NewCompany);

void PutAddress(char *NewAddress) ;

void PutPhone(char *NewPhone);

void PutCommRate (int NewCommRate)

void PutTotalAmtDue(long NewTotalAmtDue);

void IncPolicyCount(Q;

void DecPolicyCount(Q;

void PutPolicyNo (char *PolicyNo, int index)

}

#endif AGENT H

Al9

Appendix

/'l File : TAGENT.CPP

#include <iostream.h>
#include <string.h>
#include '"tagent.h"

TAgent::TAgent(char *NewAgentNo, char *NewSurname,
char *NewFirstname, char *NewCompany,
char *NewAddress, char *NewPhone,
int NewCommRate)

strcpy(AgentNo,NewAgentNo) ;
strcpy(Surname ,NewSurname) ;
strcpy(Firstname,NewFirstname) ;
strcpy(Company,NewCompany) ;
strcpy(Address,NewAddress) ;
strcpy(Phone ,NewPhone) ;
CommRate = NewCommRate;
PolicyCount = O0;

TotalAmtDue = O;

}

TAgent::-TAgent(Q
{
}

void TAgent::AddPolicy(char *PolicyNo)

if (GetPolicyCount() < MAX_POLICIES_PER_AGENT)

{
/7 Add the policy to the policy list of the agent
PutPolicyNo(PolicyNo,GetPolicyCount();

// Increment the policy count of the agent
IncPolicyCount(Q;
}

void TAgent::DeletePolicy(char *PolicyNo)

for (int i=0; 1i<GetPolicyCount Q 5 i++)
if (strcmp(GetPolicyNo(i),PolicyNo)==0)

// Delete the selected policy from the
// policy list of the agent
delete [] PolicyNoList[i];

/77 Decrement the policy count of the agent
DecPolicyCount(Q;

/7 Reorder the policy list of the agent

for (int j=i; j<GetPolicyCount(Q; j++)
PutPolicyNo(PolicyNoList[j+1],j);

A20

char *TAgent::GetAgentNo(Q

{

return AgentNo;

}

char *TAgent::GetSurname(

{

return Surname;

}

char *TAgent::GetFirstname(

{

return Firstname;

}

char *TAgent::GetCompany Q

{

return Company

}

char *TAgent::GetAddress(

{

return Address;

}

char *TAgent::GetPhone{

{

return Phone;

}

int TAgent::GetCommRate()

{

return CommRate;

}

long TAgent::GetTotalAmtDue(

{

return TotalAmtDue;

}

int TAgent::GetPolicyCount (

{

return PolicyCount;

}

char *TAgent::GetPolicyNo (int index)

return PolicyNoList[index]

}

void TAgent::PutSurname(char *NewSurname)

{

strcpy(Surname,NewSurname) ;

A21

Appendix

void TAgent::PutFirstname(char *NewFirstname)

strcpy(Firstname ,NewFirstname);

}

void TAgent::PutCompany(char *NewCompany)

strcpy(Company,NewCompany) ;

}

void TAgent::PutAddress(char »NewAddress)

strcpy(Address,NewAddress) ;

}

void TAgent::PutPhone(char *NewPhone)
I

}

void TAgent::PutCommRate(int NewCommRate)

strcpy(Phone,NewPhone);

CommRate = NewCommRate;

}

void TAgent::PutTotalAmtDue(long NewTotalAmtDue)

TotalAmtDue = NewTotalAmtDue;

}

void TAgent::IncPolicyCount(Q

PolicyCount ++;

}

void TAgent::DecPolicyCount(Q

PolicyCount

}

void TAgent::PutPolicyNo(char *PolicyNo, int

PolicyNoList[index] = new char[POLICY];
strcpy(PolicyNoList[index]-PolicyNo);

All

Appendix

/1

File : TPOLICY.B

#ifndef POLICY_H
#define POLICY_H

#include "defines.h"
#include "trisk.h"

class TPolicy {
private:

char ClientNo[CLIENT];
char AgentNo[AGENT] ;
char PolicyNo[POLICY];
char OriginalDate[DATE];
char StartDate [DATE]
char EndDate[DATE];
int Instalments;

int Payments;

int TotalPremium;

int AmtDue;

char DueDate[DATE];
char Status[STATUS];
int TotalRisks;

TRisk *RiskList[MAX_RISKS_PER_POLICY];

TRisk *Risk;
int ClaimCount;

char *ClaimNoList [MAX_CIiAIMS_PER_POLICY]

public:

TPolicy(char *NewClientNo, char *NewPolicyNo,
char *NewStartDate, char *NewEndDate);

-TPolicyQ;

void AddRisk(char *RiskNo, int RiskType,
long RiskValue, int RiskStatus)

void DeleteRisk(char *RiskNo);

void
void

AddClaim(char *ClaimNo);
DeleteClaim(char *ClaimNo);

char *GetClientNo(Q;

char *GetAgentNoQ;

char *GetPolicyNoO;

char *GetOriginalDate(Q ;

char *GetStartDate(;

char *GetEndDate();

int Getlnstalments Q >

int GetPayments(;

int GetTotalPremiumQ);

int GetAmtDue(Q;

char *GetDueDate();

char *GetStatus(Q;

int GetTotalRisks(Q ;

TRisk *GetRisk(char *RiskNo);
char *GetRiskNo(int index);
int GetClaimCount();

char *GetClaimNo(int index);
virtual int GetPolicyType(Q =

0;

A23

Appendix

*NewAgentNo,

void
void
void
void
void
void
void
void
void
void
void
void
void
void

b

#endif

PutStartDate(char *NewStartDate);
PutEndDate(char *NewEndDate);
Putlnstalments(int Newlnstallments);
PutPayments(int NewPayments);
CalcTotalPremiumQ;

CalcAmtDue(:;

CalcDueDate();

CalcStatus(;

IncTotalRisks(Q;

DecTotalRisksQ ;

PutRisk(TRisk *Risk(int index);
IncClaimCount(;

DecClaimCount(;

PutClaimNo(char *ClaimNo, int index)

POLICY H

A24

Appendix

Appendix

/1 File : TPOLICY.CPP

#include ciostream.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include "tpolicy.h"

TPolicy::TPolicy(char *NewClientNo, char *NewPolicyNo,
char *NewAgentNo, char *NewStartDate,
char *NewEndDate)

strcpy(ClientNo,NewClientNo);
strcpy(PolicyNo,NewPolicyNo);
strcpy(AgentNo,NewAgentNo) ;
strcpy(OriginalDate ,NewStartDate);
strcpy(StartDate,NewStartDate);
strcpy(EndDate ,NewEndDate) ;
strcpy(DueDate ,NewStartDate) ;
Installments = INSTALLMENTS;
TotalRisks = 0;

TotalPremium =
Payments =
AmtDue = O;
ClaimCount

m 0;
0;

= 0;

}

TPolicy::~TPolicy()

{

void TPolicy::AddRisk(char *RiskNo, int RiskType,
long RiskValue, int RiskStatus)

if (GetTotalRisks 0 < MAX_RISKS_JPER__POLICY)

;/ Create the new risk
Risk = new TRisk(RiskNo,RiskType, RiskValue, RiskStatus);

// Add the risk to the risk list of the policy
PutRisk(Risk,GetTotalRisks());

// Increment risk counter
IncTotalRisks(Q;

}
}

void TPolicy::DeleteRisk(char *RiskNo)

for (int i=0; i<GetTotalRisks(Q; i++)
if (strcmp(GetRiskNo(i),RiskNo)==0)

}/ Delete the selected risk from the
/'l risk list of the policy
delete (TRisk *) RiskList[i];

// Decrement risk counter
DecTotalRisks(Q ;

A25

Appendix

/!l Reorder the risk list of the policy

for (int j=i? j<GetTotalRisks(Q ; j+t+)
PutRisk(RiskList [j+1].));

}

}
void TPolicy::AddClaim(char *ClaimNo)
if (GetClaimCount() < MAX_CLAIMS_PER_POLICY)

}/ Add the claim to the claim list of the client
PutClaimNo(ClaimNo,GetClaimCount()) ;

/] Increment the claim count of the policy

IncClaimCount();
i

}

void TPolicy::DeleteClaim(char *ClaimNo)

for (int i=0; i<GetClaimCount(; i+)
it (strcmp(GetClaimNo(i),ClaimNo)==0)

;/ Delete the selected claim from the
[/ claim list of the policy
delete [] ClaimNoList[i];

/] Decrement the claim count of the policy
DecClaimCount{);

/] Reorder the claim list of the policy

for (int j=i; j<GetClaimCount(Q ; j+t)
PutClaimNo(ClaimNoList[j+1] .,j);
}

char »TPolicy: :GetClientNo(
return ClientNo;

char *TPolicy::GetAgentNo(Q

return AgentNo;

char *TPolicy: :GetPolicyNo(Q

return PolicyNo;

char «TPolicy::GetOriginalDateO

return OriginalDate;

A26

Appendix

char *TPolicy::GetStartDate)

return StartDate;

}

char »TPolicy::GetEndDate(

return EndDate;

}

int TPolicy::Getlnstalments(

t return Instalments;

}

nt TPolicy::GetPayments{
return Payments;

i
{
}

int TPolicy::GetTotalPremium(

~—

return TotalPremium;

}

int TPolicy::GetAmtDue()

return AmtDue;

}

char »TPolicy:-.GetDueDate

return DueDate;

}

char »TPolicy: :GetStatus(

return Status;

}

int TPolicy::GetTotalRisks(

return TotalRisks;

}

TRisk »TPolicy::GetRisk(char »RiskNo)

// Search all risks
for (int 1=0; i<GetTotalRisks(; i+t)
it (strcmp(GetRiskNo(i),RiskNo) == 0)
// Risk is found
return RiskListii];

// Risk is not found
return (TRisk *) NULL;

A27

Appendix

char *TPolicy::GetRiskNo(int iIndex)

return RiskList[index]->GetRiskNoQ;

int TPolicy: GetClaimCount()

return ClaimCount;

char *TPolicy::GetClaimNo(int index)

return ClaimNoList[index];

void TPolicy::PutStartDate(char *NewStartDate)

strcpy(StartDate._NewStartDate);

void TPolicy::PutEndDate(char *NewEndDate)

strcpy(EndDate ,NewEndDate) ;

void TPolicy: :Putlnstalments(int Newlnstalments)

Instalments = Newlnstalments;

void TPolicy::PutPayments(int NewPayments)

Payments = NewPayments;

void TPolicy::CalcTotalPremium(

{
/] Reset the total premium
TotalPremium = O;

/] sum all the risk premiums
for (int 1=0; i<GetTotalRisks(Q; i+H)

{
Risk = GetRisk(GetRiskNo(i));
TotalPremium += Risk->GetRiskPremium();

}

void TPolicy::CalcAmtDue(

AmtDue = GetTotalPremiumO / Getlnstallments();

}

A28

Appendix

void TPolicy::CalcDueDate()
{
char Start[DATE];
char Day|[3] , Month [3] , Year [3] ;

// Get the start date of the policy
strcpy (Start,GetStartDate Q) 5

Day[0] = Start [O];
Day[1] = Start[1];
Day[Z] = 1\O";
Month[0] = Start[3];
Month[1] = Start[4];
Month [Z] = °\O" ;
Year[0] = Start [6] 5
Year[1] = Start [7] ;
Year [Z] = "\01;

// Calculate the next unpaid month

int CurrentMonth = atoi(Month);

int NextMonth = CurrentMonth + GetPayments (s
itoa(NextMonth,Month,10);

// Fill iIn the zero
if (NextMonth < 10)

&onthﬁﬂ = "\O0"7;

Month[1] = Month [O];

Month[0] = "0";

}
// Calculate the due date
DueDate[0] = Day|[O]:
DueDate[l] = Day[1];
DueDate[Z] - '-‘'}
DueDate[3] = Month [O] >
DueDate[4] = Month[1];
DueDate[5] - |_|7
DueDate[6] = Year|[Ol;
DueDate[/] = Year [1] ;
DueDate[8] = "\0-;

void TPolicy::CalcStatus(
{ char CurrentDate[DATE], CurrentDueDate[DATE], RevDueDate[DATE];
char CurrentDay[3] , CurrentMonth[3] , CurrentYear [3] ;
time_t t;
struct tm *gmt;
t = time(NULL);
gnt = gmtimei&t);

// Get the current date
itoa(gmt->tm_mday,CurrentDay,10) ;
itoa(gmt->tm_mon+1,CurrentMonth,10);
itoa(gmt->tm_year,CurrentYear,10) ;

A29

Appendix

// Fill in the zero

if (strcmp(CurrentMonth,”™10™) < 0)
{
CurrentMonth[Z] = 1\O";
CurrentMonth[1] = CurrentMonth[O];
CurrentMonth[0] = T"07;
}

// Fill in the zero

if (strcmp(CurrentDay,'10™) < 0
{
CurrentDay[Z] = "\01;
CurrentDay[1] = CurrentDay [O] 5
CurrentDay[0] = =07;

// Reverse the current date

CurrentDate[0] = CurrentYear]O] ;
CurrentDate[1] = CurrentYear[1];
CurrentDate[Z] I_I;
CurrentDate[3] = CurrentMonth[Q] ;
CurrentDate[4] = CurrentMonth[l] ;
CurrentDate[5] I_If
CurrentDate[6] = CurrentDay][O];
CurrentDate[/] = CurrentDay[1];
CurrentDate[8] = "™\0 ";

// Reverse the due date

strcpy(CurrentDueDate ,GetDueDate()

RevDueDate[0O] CurrentDueDate[6]
RevDueDate[1] CurrentDueDate[7]
RevDueDate|[2] CurrentDueDate[5]
RevDueDate[3] CurrentDueDate[3]
RevDueDate[4] CurrentDueDate[4]
RevDueDate[5] CurrentDueDate[Z]
RevDueDate[6] CurrentDueDate[0O]
RevDueDate[7] CurrentDueDate[1]
RevDueDate [8] \O

// Set the status of the policy

if (strcmp(CurrentDate,RevDueDate) < ()
strcpy(Status,”Paid");

else
strcpy (Status ,"'Unpaid')

void TPolicy::IncTotalRisks(

TotalRisks ++;

}

void TPolicy::DecTotalRisks(

TotalRisks

A30

Appendix

void TPolicy::PutRisk(TRisk *Risk, int index)

RiskList[index] = Risk;

}

void TPolicy::IncClaimCount()

ClaimCount ++;

}

void TPolicy::DecClaimCount()

ClaimCount

}

void TPolicy::PutClaimNo(char *ClaimNo, iInt iIndex)

ClaimNoList[index] = new char[CLAIM];
strcpy(ClaimNoList[index],ClaimNo);

A3l

Appendix

/'l File : TCAR.H

tfifndef CAR_H
#define CAR_H

~include "defines.h"
~include tpolicy.h"

class TCar : public TPolicy {
private:
char Manufacturer[MANUFACTURER] ;
char Model [MODEL];
char Registration[REGISTRATION];
char EngineSize[ENGINE];
float CarValue;
int FullLicenceStatus;

public:

TCar(char *NewClientNo, char *NewPolicyNo, char *NewAgentNo,
char *NewStartDate, char *NewEndDate, char *NewManufacturer,
char *NewModel, char *NewRegistration, char *NewEngineSize,
long NewCarValue, int NewFullLicenceStatus);

-TCarQ;

virtual int GetPolicyTypeQ:;

char *GetManufacturer(Q;

char *GetModel();

char *GetRegistration(;

char *GetEngineSize();

long GetCarValue{);

int GetFullLicenceStatus(};

void PutManufacturer (char *NewManufacturer)

void PutModel(char *NewModel);

void PutRegistration(char *NewRegistration);

void PutEngineSize(char *NewEngineSize);

void PutCarValue(long NewCarValue);

void PutFullLicenceStatus(int NewFullLicenceStatus);

}s
#endif CAR H

Appendix

// File : TCAR.CPP
#include <iostream.h>

#include <string.h>
#include '"tcar.h"
TCar::TCar(char *NewClientNo, char *NewPolicyNo, char *NewAgentNo,
char *NewStartDate, char *NewEndDate,
char *NewManufacturer, char *NewModel,
char *NewRegistration, char *NewEngineSize,
long NewCarValue, int NewFullLicenceStatus)
: TPolicy(NewClientNo, NewPolicyNo, NewAgentNo,
NewStartDate, NewEndDate)
strcpy(Manufacturer ,NewManufacturer);
strcpy(Model ,NewModel) ;
strcpy(Registration,NewRegistration);
strcpy(EngineSize ,NewEngineSize) ;
CarValue = NewCarValue;
FullLicenceStatus = NewFullLicenceStatus;

}

TCar::-TCar(

int TCar: :GetPolicyType(

return CAR_POLICY;

char *TCar: :GetManufacturer(

return Manufacturer,-

char *TCar::GetModel(

return Model;

char *TCar::GetRegistration(

return Registration;

char *TCar::GetEngineSize()

return EngineSize;

long TCar::GetCarValue(

return CarValue;

A33

Appendix

int TCar: ::GetFullLicenceStatusO

return FullLicenceStatus;

}

void TCar::PutManufacturer(char *NewManufacturer)

strcpy(Manufacturer NewManufacturer);

}

void TCar::PutModel (char *NewModel)

strcpy(Model ,NewModel) ;

}

void TCar::PutRegistration(char *NewRegistration)

strcpy(Registration,NewRegistration);

}

void TCar::PutEngineSize(char *NewEngineSize)

strcpy(EngineSize NewEngineSize);

}

void TCar::PutCarValue(long NewCarValue)

CarValue = NewCarValue;

}

void TCar::PutFullLicenceStatus(int NewFullLicenceStatus)

FullLicenceStatus = NewFullLicenceStatus;

A34

Appendix

// File : THOUSE.H

#ifndef HOUSE_H
#define HOUSE_H

#include "defines.h"
#include "tpolicy.h"

class THouse : public TPolicy {
private:

char HouseType[HOUSETYPE] ;

int Rooms;

char AreaCode[AREACODE] ;

long HouseValue;

long ContentsValue;

int HouseAlarmStatus;

public:

THouse(char *NewClientNo, char *NewPolicyNo, char *NewAgentNo,
char *NewStartDate, char *NewEndDate, char *NewHouseType,
int NewRooms, char *NewAreaCode, long NewHouseValue,
long NewContentsValue, int HouseAlarmStatus);

-THouseQ;

virtual int GetPolicyTypeQ:;

char *GetHouseType();

int GetRoomsO;

char *GetAreaCode();

long GetHouseValue();

long GetContentsValueO;

int GetHouseAlarmStatus(;

void PutHouseType(char *NewHouseType) ;

void PutRooms(int NewRooms);

void PutAreaCode(char *NewAreaCode);

void PutHouseValue(long NewHouseValue);

void PutContentsValue(long NewContentsValue);

void PutHouseAlarmStatus(int NewHouseAlarmStatus);

}
#endif HOUSE H

A35

Appendix

/'l File : THOUSE.CPP
#include <iostream.h>
ifinclude <string.h>
#include "‘thouse.h"
THouse: :THouse(char *NewClientNo, char *NewPolicyNo,
char *NewAgentNo, char *NewStartDate,
char *NewEndDate, char *NewHouseType,
int NewRooms, char *NewAreaCode, long NewHouseValue,
long NewContentsValue, int NewHouseAlarmStatus)
: TPolicy(NewClientNo, NewPolicyNo, KewAgentNo,
NewStartDate, NewEndDate)
strcpy(HouseType,NewHouseType) ;
strcpy(AreaCode ,NewAreaCode) ;
Rooms = NewRooms;
HouseValue = NewHouseValue;

ContentsValue = NewContentsValue;
HouseAlarmStatus = NewHouseAlarmStatus;

}

THouse: :-THouse()

int THouse::GetPolicyType(

return HOUSE_POLICY;

char *THouse: :GetHouseType(

return HouseType;

int THouse::GetRooms()

return Rooms;

char *THouse::GetAreaCode()

return AreaCode;

long THouse: :GetHouseValue()

return HouseValue;

long THouse: :GetContentsValue()

return ContentsValue;

A36

1m THouse: :GetHouseAlarmStatus(Q

return HouseAlarmStatus;

}

void THouse::PutHouseType(char *NewHouseType)

strcpy(HouseType,NewHouseType) ?

}

void THouse::PutRooms(int NewRooms)

Rooms = NewRooms;

}

void THouse::PutAreaCode(char *NewAreaCode)

strcpy(AreaCode,NewAreaCode) ;

}

void THouse::PutHouseValue(long NewHouseValue)

HouseValue = NewHouseValue;

}

void THouse::PutContentsValue(long NewContentsValue)

ContentsValue = NewContentsValue;

}

void THouse: :PutHouseAlarmStatus(int NewHouseAlarmStatus)

HouseAlarmStatus = NewHouseAlarmStatus;

Appendix

/'l File : TRISK.H

#ifndef RISK_H
#define RISK_H

#include 'defines.h"

class TRisk {
private:
char RiskNo [RISK]
int RiskType;
long RiskValue?
int RiskStatus;
long RiskPremium;

pub lic:

TRisk(char *NewRiskNo, int NewRiskType,
long NewRiskvValue, int NewRiskStatus);

-TRisk Q ;

char *GetRiskNoQ;

int GetRiskType();

long GetRiskValue();

int GetRiskStatus();

long GetRiskPremiumQ);

void PutRiskType(int NewRiskType);

void PutRiskValue(long NewRiskValue);

void PutRiskStatus(int NewStatus);

void CalcRiskPremiura(Q);

¥?
#endi f RISK H

A38

Appendix

/'l File : TRISK.CPP

«include <iostream.h>
#include <string.h>
#include "trisk.h"

TRisk: :TRisk(char *NewRiskNo, int NewRiskType,
long NewRiskValue, int NewRiskStatus)
{

strcpy(RiskNo,NewRiskNo) ;
RiskType = NewRiskType;
RiskValue - NewRiskValue;
RiskStatus = NewRiskStatus;

}
TRisk: :-TRisk(
{

char *TRisk: :GetRiskNo(Q

return RiskNo;

}

int TRisk::GetRiskTypeO

return RiskType;

}

long TRisk: :GetRiskValueO

return RiskValue;

}

int TRisk: :GetRiskStatus(}

return RiskStatus;

}

long TRisk::GetRiskPremium()

return RiskPremium;

}

void TRisk::PutRiskType(int NewRiskType)

RiskType = NewRiskType;

}

void TRisk::PutRiskValue(long NewRiskValue)

RiskValue = NewRiskValue;

}

void TRisk: :PutRiskStatus(int NewRiskStatus)

RiskStatus = NewRiskStatus;

A39

Appendix

Appendix

void TRisk::CalcRiskPremium(Q

{

if (GetRiskType(== CAR_RISK)

if (strcmp (GetRiskNo O, "Fire™) == 0)
RiskPremium = (FIRE_PREMIUM + (GetRiskvalue() * 0.01)
(GetRiskStatus() * CAR_DISCOUNT)) =*
INSTALLMENTS;
if (strcmp(GetRiskNo(),"Theft') == 0)
RiskPremium = (THEFT_PREMIUM + (GetRiskValue(Q) * 0.01)
(GetRiskStatus() * CAR_DISCOUNT)) *
INSTALLMENTS;

}

else

if (strcmp(GetRiskNo(),"Fire™) = 0)
RiskPremium = (FIRE_PREMIUM + (GetRiskValue() * 0.001)
(GetRiskStatus() * HOUSE_DISCOUNT)) *
INSTALLMENTS ;
it (strcmp(GetRiskNo(),"Theft’™) == 0)
RiskPremium = (THEFT_PREMIUM + (GetRiskvValue() * 0.001)

(GetRiskStatus() * HOUSE_DISCOUNT)) *
INSTALLMENTS;

A40

// File

#ifndef
#define

TCLAIM. H

CLAIM_H
CLAIM_H

#include "defines.h"
#include "tpolicy.h"

class T
private
char
char
long
char
char
char
char
char
char

public:

Claim {
ClaimNo[CLAIM];
ClaimDate[DATE] ;
ClaimvValue;

ClaimDetai IS[DETAILS];
ClaimStatus[STATUS];
PolicyNo[POLICY] ;
PolicyStart[DATE];
PolicyEnd[DATE];
PolicyStatus[STATUS];

TClaim(char *NewClaimNo, char *NewClaimDate,

long NewClaimValue, char *NewClaimDetails,
char *NewPolicyNo, char *NewPolicyStart,
char *NewPolicyEnd, char *NewPolicyStatus);

-TClaimQ;

char
char
long
char
char
char
char
char
char
void
void
void
void
void
void
void

h

#endi

*GetClaimNoQ;

*GetClaimDate();

GetClaimValue(Q;

*GetClaimDetailsO;

*GetClaimStatus(;

*GetPolicyNoQ;

*GetPolicyStart();

*GetPolicyEnd Q >

*GetPolicyStatus();

PutClaimDate(char *NewClaimDate);
PutClaimValue(long NewClaimvValue);
PutClaimDetails(char *NewClaimDetails);
CalcClaimStatus();

PutPolicyStart(char *NewPolicyStart);
PutPolicyEnd (char *NewPolicyEnd)
PutPolicyStatus(char *NewPolicyStatus);

CLAIM H

A4l

Appendix

/'l File : TCLAIM. CPP
#include <iostream.h>
«include <string.-h>
«include ™"tclaim.h"
TClaim::TClaim(char *NewClaimNo, char *NewClaimDate,
long NewClaimValue, char *NewClaimDetails,
char *NewPolicyNo, char *NewPolicyStart,
char *NewPolicyEnd, char *NewPolicyStatus)
strcpy(ClaimNo.NewClaimNo) ;
strcpy(ClaimDate ,NewClaimDate) ;
Claimvalue = NewClaimValue;
strcpy (ClaimDetails,NewClairnDetails) ;
strcpy(ClaimStatus, ""Pending™);
strCpy(PolicyNo,NewPolicyNo);
strcpy(PolicyStart NewPolicyStart);

strcpy@PolicyEnd,NewPolicyEnd);
strcpy(PolicyStatus,NewPolicyStatus);

}

TClaim::-TClaim(

char *TClaim::GetClaimNo(Q

return ClaimNo;

char *TClaim: :GetClaimDate()

return ClaimDate;

long TClaim: :GetClaimValue()

return ClaimValue;

char *TClaim::GetClaimDetails(

return ClaimDetails;

char *TClaim::GetClaimStatus(

return ClaimStatus, -

char *TClaim: :GetPolicyNo(Q

return PolicyNo;

A42

Appendix

Appendix

char *TClaim: :GetPolicyStart(

return PolieyStart;

char *TClaim::GetPolicyEnd{)

return PolicyEnd;

char *TClaim: :GetPolicyStatus(

return PolicyStatus;

void TClaim: :PutClaimDate(char *NewClaimDate)

strcpy(ClaimDate,NewClaimDate) ;

void TClaim: :PutClaimValue(long NewClaimValue)

ClaimValue = NewClaimValue;

void TClaim: :PutClaimDetails(char *NewClaimDetails)

strcpy(ClaimDetails ,NewClaimDetails);

void TClaim::CalcClaimStatus()

{

char Start[DATE], End[DATE], Claim[DATE];
char RevStart[DATE], RevEndDATE], RevClaim[DATE];

// Get the start date
strcpy(Start,GetPolicyStart0);

// Get the end date
strcpy (End, GetPolicyEnd Q)

// Get the claim date
strcpy (Claim, GetClaimDate (.);

// Reverse the start date
RevStart [0] = Start [6]
RevStart [1] = Start [7]
RevStart [Z] = Start [9]

RevStart [3] = Start [3]
RevStart [4] - Start [4]
RevStart [5] = Start [Z]
RevStart [6] = Start [0]
RevStart [7] = Start [1]

RevStart [8] A0 *;

A43

/1 Reverse the end date

RevEnd[0] = End][6]
RevEnd[1] = End[7]
RevEnd[2] = End[5]
RevEnd[3] = End[3]
RevEnd[4] = End[4]
RevEnd[5] = End[2]
RevEnd[6] = End[0]
RevEnd[7] = End[l]
RevEnd[8] = "'\0';

// Reverse the claim data
RevClaim[0] = Claim[6];

RsvClaim[1] Claim[7];
RevClaim[Z] = Claim[5];
RevClaim[3] = Claim [3];
RevClaim[4] = Claim[4];
RevClaim[b] = Claim [Z]
RevClaim[e] = Claim[03;
RevClaim[7] = Claim[Il];
RevClaim i8] = "\0*;

if {(strcmp(RevStart,RevClaim) <= 0) &&
(strcmp(RevEnd,RevClaim) >= 0) &&
(strcmp(GetPolicyStacus(),"Paid")==0))
strcpy(ClaimStatus,"Awarded");

else
strcpy(ClaimStatus, " Disallowed™);

void TClaim: :PutPolicyStart(char *NewPolicyStart)

strcpy(PolicyStart NewPolicyStart);

void TClaim: :PutPolicyEnd(char *NewPolicyEnd)

strcpy(PolicyEnd,NewPolicyEnd);

void TClaim: :PutPolicyStatus(char *NewPolicyStatus)

strcpy(PolicyStatus.NewPolicyStatus);

Ad4

Appendix

