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ABSTRACT

Forecasting is an essential function in the electricity supply industry. Electricity demand 
forecasting is performed on number of different time-scales depending on the function for 
which they are required. In the short term (hourly) forecasts of electricity demand are 
required for the safe and efficient operation of the power system. Medium term forecasts 
(weekly) are needed for economic planning and long term (yearly) forecasts are required for 
deciding on system generation and transmission expansion plans. In recent years the 
electricity supply industry in some countries has undergone significant changes mainly due to 
a levelling off in the growth of electricity demand and also due to technological advances. 
There has been a move toward the existence of a number of smaller generating companies and 
the emergence of a competitors market has resulted. These changes in the structure of the 
industry have led to new requirements in the area of forecasting, where forecasts are now 
required on a small time-scale over a longer forecasting horizon, for example, the production 
of hourly forecasts over a period of a month.

The thesis presents a novel approach to the solution of the production of short term forecasts 
over a relatively long term forecast horizon. The mathematical formulation of the technique is 
presented and an application procedure is developed. Two applications of the technique are 
given and the issues involved in the implementation investigated. In addition, the production 
of weekly electricity demand forecasts using the optimal form of the available weather 
variables is investigated. The value of using such a variable in cases where it is not a 
dominant influencing factor in the system is assessed. The application of neural networks to 
the problem of weekly electricity demand forecasting is examined. Neural networks are also 
applied to the problem of the production of both aggregate and disaggregate electricity sales 
forecasts for up to five years in advance. Conclusions regarding the methodologies presented 
in the thesis are drawn and directions for future works are considered.
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CHAPTER 1

IN TRO DUC TIO N

1.1 Description of Research Area

Forecasting can be an important function in many areas of science, engineering and 

economics. The focus of this thesis is on forecasting problems in the electricity supply 

industry. Electricity demand forecasting is important for both power system operation and 

planning. Different areas within the power utility will have different forecast requirements 

that may depend on the characteristics of the power system itself, power utility policy and also 

on the market environment in which the power system operates. On the whole, electricity 

demand forecasting can be divided into three ranges depending on the forecast period. Short 

term forecasts arc usually performed on an hourly basis and are intended to be valid for a few 

hours up to a few days in advance. They play an important role in the daily operation of the 

power system and are required for functions such as unit commitment, economic dispatch and 

load management. Medium term forecasts are performed on a weekly or monthly time-scale 

and are valid for up to one to two years in advance. This type of forecast is necessary for 

activities such as planning fuel procurement, scheduling unit maintenance, revenue assessment 

and financial and market planning. Long term forecasts are normally required for a forecast 

horizon of five to twenty years. They are essential for the long term planning of capacity 

requirements (system generation and transmission expansion), market, strategic and financial 

planning and, if in operation, the assessment of demand side management.

An important aspect of electricity demand forecasting on any time-scale is the analysis of the 

relationship between electricity demand and various influencing factors. Electricity demand is 

highly influenced by several variables, such as weather, socio-economic and demographic 

variables. Moreover, different variables are pertinent on different time-scales. For example, 

an economic factor such as GDP is not going to influence short term electricity demand but 

does influence long term electricity demand, whereas in contrast weather is an influencing 

factor on short and medium term demand only. In addition, electricity demand is characterised 

by temporal factors, for example the demand during the day is different to the night-time 

demand and weekday and weekend demand also differ. Public holidays and special events, 

such as industrial disputes, elections and major television events, can also have a significant 

effect on electricity demand on an hourly and daily time-scale. A common practice in this
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case is the use of a ‘standard day profile’, where previous knowledge based on the behaviour 

of such days is employed to cater for the occurrence of such an event. Table 1.1 summarises 

the type of influencing variables relevant on each time-scale.

Table 1.1 Electricity demand influencing variables on different time-scales

Time-Scale Influencing variables

hourly weather and time of day

daily weather, day of week and special events

weekly weather and week of year

yearly socio-economic and demographic

It is often of benefit to break the electricity demand system down into individual sectors, 

where this is usually performed at the yearly time-scale. The most common disaggregation 

involves splitting the system into an industrial sector, a domestic sector and a commercial 

sector. The advantage of performing this disaggregation is that different factors influence the 

different sectors and thus analysis at the disaggregate level can provide a greater understating 

of the system. For example, in some electricity systems the behaviour of the price of 

electricity would be have a significant effect on the behaviour of the industrial and domestic 

sectors but would have a less significant effect on the commercial sector.

There are three main agents in the electricity supply industry: the generators, the distributors 

and the consumers. In some markets there is a middle man between the distributors and the 

consumers. Depending on the characteristics of the market environment in which the power 

system operates there may be a number of distributors in the market, however there is 

traditionally only one generating company. In some cases the same power utility performs 

both the generation and the distribution, where this is often the case in a small isolated island 

network. The main reason for the generators monopoly is caused by increasing returns to 

scale, that is as output increases unit costs fall and there is room for only one producer in the 

market. However, in recent years, the overall structure of the electricity supply industry of 

some countries in the developed world has undergone dramatic changes. Due to the relative 

slowing down of the growth of electricity demand there has been a move away from the 

construction of large generating units that have become uneconomical. Instead there has been 

a move toward smaller installations thus leading to a number of producers and the emergence 

of a competitor's market. In some cases this has led to operation of a power Pool system. In 

this system a number of distributors or large consumers, such as chemical companies or metal
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producers buy, or bid for, electricity from the generators through the medium of a Pool, The 

Pool is often classified as a “day-ahead spot market” where transactors specify supply or 

demand for every half hour of the day 24 hours in advance. In such a market there is an onus 

on the generators to bid their plant in such a manner to provide an economic return and the 

ability of a generating company, or supplier, to accurately forecast the balance between 

potential income and direct energy cost is crucial. To achieve this a forecast of demand and 

of Pool Price are required. These forecasts are required on a half-hourly basis for intervals of 

one-day-ahead so as to participate in bidding and on a half-hourly basis for intervals of one- 

year-ahead for planning annual budgetary requirements. Therefore, in contrast to the short 

term forecasting case described above in this situation a short term forecast of electricity 

demand is required over a long term forecast horizon. In some cases, for example in Norway, 

there is a one-day-ahead spot market and also a weekly bidding market. In the weekly case 

the market participants submit bids for loads covering one week, where these can cover 

weekly periods one year into the future.

1.2 Motivation for Research

A significant motivating factor for the production of accurate electricity demand forecasts on 

any time-scale is to save costs. The ultimate aim of an electricity utility is to supply the 

customer entirely while ensuring economic operation of the power system. On a short time- 

scale (hourly) this involves matching generation supply with customer demand as closely as 

possible. The achievement of such an objective is crucially dependent on the forecast of the 

consumers electricity requirement, where even a moderate degree of forecast variance can be 

costly. A good example is that quoted by Bunn and Farmer (1985), of the U.K. Central 

Electricity Generating Board, where in 1984 an improvement in forecasting accuracy of 1% 

was estimated to yield a saving in operating costs of approximately £10 million per year. On 

a medium and long-time-scale accurate forecasts of electricity demand allows for the optimal 

economic planning of the power system, an example of this would be in the area of fuel 

purchasing policies.

The recent and ongoing changes in the market structures of the electricity supply industry of 

the developed world has resulted in the emergence of new forecasting problems in the area of 

electricity demand forecasting. Specifically, the production of medium and long term 

forecasts have become increasingly critical and while the production of short term forecasts 

are still required they are now needed over a much longer forecast horizon. The focus of 

attention in the past was on the production of accurate short term forecasts and although
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medium and long term forecasting were important functions the substantial bulk of research 

was in the area of short term forecasting. This thesis addresses the problem of medium and 

long term electricity demand forecasting. In addition, it presents a proposal of a novel 

technique for the solution the production of short term forecasts over a long forecast horizon. 

The work is based on the use of linear time series forecasting analysis and also on time series 

neural network analysis, where the latter has received little attention in the area of medium and 

long term forecasting.

1.3 Main Thesis Contributions

The main contributions of this thesis may be summarised as follows:

1. Proposal of a novel multi-time-scale integration technique for the production of long range 

electricity demand forecasts based on a short sampling interval (Chapter 5).

2. Development of an application procedure for the implementation of the multi-time-scale 

integration technique (Chapter 5).

3. Application of neural networks to the weekly electricity demand forecasting problem 

(Chapter 4).

4. Applications of neural networks to forecast yearly aggregate and yearly disaggregate 

electricity sales (Chapter 4).

A portion of the work conducted in the thesis has been published or has been submitted for 

publication, where details of the publications are as follows:

• Murray, F and Ringwood, J., “Improvement of Electricity Demand Forecasts Using 

Temperature Inputs”, Simulation Practice and Theory, 2 (1994), pp. 121- 139.

• Ringwood, J and Murray, F, “Forecasting of Weekly Electricity Demand Using Neural 

Networks”, inProc. IDSPCC, (Dublin, 1996), pp. 349- 356.

• Murray, F. and Ringwood, J., “Integration of Multi-Time-Scale Models in Time Series 

Forecasting”, Journal o f Forecasting, submitted Sept. 1994.

• Murray, F, Ringwood, J., and O’Brien, K. “Yearly Electricity Sales Forecasting Using 

Neural Networks”, Neural Computing and Applications, submitted Jan. 1996.
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1.4 Thesis Structure

Initial development is in the area of weekly electricity demand forecasting using linear models 

with exogenous weather variables. The work then goes on to apply neural networks to the 

problem of weekly electricity demand and yearly electricity sales forecasting. Finally, the 

multi-time-scale integration technique is developed and then applied to a number of 

applications, where both the linear and nonlinear analysis of the previous chapters form a 

basis for these applications.

Chapter 2 provides an overview of the time series forecasting methods relevant to the work 

carried out in the thesis. It also simultaneously reviews the literature available on these 

forecasting techniques, with particular emphasis on works that deal with applications in the 

electricity supply industry. In addition, it examines a number of diverse standard time series, 

taken from the literature, with the objective of exhibiting the various characteristics that a time 

series may posses and discusses the parameters that the properties of a time series may depend 

upon.

The objective of the work carried out in Chapter 3 is twofold. Primarily it assesses the use of 

an exogenous weather variable when forecasting weekly electricity demand and evaluates the 

use an appropriate form of this weather variable. Secondly, it determines a suitable linear 

statistical model to represent weekly electricity demand for use in the multi-time-scale 

integration weekly/yearly application dealt with in Chapter 6 .

The purpose of work conducted in Chapter 4 is to assess the capability of neural networks to 

forecast weekly electricity demand and yearly electricity sales. It involves the development of 

different neural network approaches based on the linear modelling techniques dealt with in 

Chapter 3. One approach involves the use of linear forecasting models to determine the input 

structure to the neural network and the second is a hybrid linear-neural network modelling 

approach. The yearly neural network analysis provides a basis for an analysis conducted in 

the weekly/yearly multi-time-scale integration application presented in Chapter 6 .

Chapter 5 develops the proposed multi-time-scale integration technique. It presents the 

mathematical formulation of the technique and discusses a number of the solution parameters. 

Furthermore, it develops a multi-time-scale integration methodology and applies this 

procedure to a standard time series from the literature. The objective here is to discuss the 

issues involved in the use of the technique and to illustrate its application on an alternative 

time series.

6



Chapter 6 is purely applications based and deals with two multi-time-scale integration 

electricity demand applications. The first of these is a weekly/yearly application and the 

second an hourly/daily application It employs the methodology developed in Chapter 5 and in 

addition relies on work carried out in Chapter 3 and Chapter 4.

Chapter 7, in conclusion, assesses and evaluates the proposed forecasting methodologies.

Guidelines for the practical implementation of the multi-time-scale integration technique are

given and directions for future work in this area are discussed.
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CHAPTER 2

O verview  of Existing Time Series Forecasting M ethodologies

2.1 Introduction

This chapter provides an overview of the principal time series modelling techniques 

specifically employed for the work conducted in this thesis. The main areas of interest are 

statistical linear analysis and neural network analysis. In addition, the chapter provides a 

synopsis of the literature available on time series forecasting methods. There is a vast amount 

of published material on both the theoretical and practical aspects of time series analysis and 

it would be impractical to include a complete survey of the subject here. The main objective is 

to review works which specifically deal with applications in the electricity supply industry, 

and also to review works which employ forecasting techniques that are relevant to the 

electricity demand forecasting methods proposed in the thesis. However, in order to provide 

some form of general overview of time series methods, Section 2.2 reviews some of the works 

which deal with the comparison of a number of forecasting techniques, mainly through the 

realm of forecasting competitions.

2.2 Introduction to Time Series Forecasting Analysis

Forecasting techniques may be divided into two main classes: qualitative and quantitative. 

Qualitative techniques are conjectural in nature and are mainly based on expert judgement. 

Methods include the Dephi technique (Weber, 1990) and the Subjective Curve Fitting 

technique (Bowerman and O’Connell, 1987). Quantitative techniques usually involve the 

analysis of historical data in an attempt to make future predictions of a variable of interest. 

The majority of forecasting techniques are extrapolative in nature and are based on time 

series data. There are many different time series forecasting procedures available, ranging 

from simple techniques, such as moving average or exponential smoothing (Gardner, 1985) 

approaches, to relatively complex methods, such as the Box-Jenkins approach (1976) or the 

Bayesian forecasting approach (Harrison and Stevens, 1971). An extensive amount of 

literature has been published on the subject of time series analysis, however there are few 

works which provide a comprehensive guide to the available forecasting methods. A number 

of forecasting competitions have been carried out in an attempt to collate and assess the 

various time series methods. Fildes et al (1991) compares, contrasts and assesses the impact



time series forecasting of four such competitions which were conducted in the seventies and 

eighties. He concludes that the competition which had the greatest impact on the forecasting 

community appears to be the M-competition conducted by of Makridakis et al (1982). This 

competition distinguished 24 different forecasting procedures which were applied to 1001 

different time series taken from the business, economic, finance and social sciences sectors 

and were based on yearly, quarterly and monthly time scales. These procedures may be 

broadly classified according to the following methods: naive method (Hibon, 1984), the Box- 

Jenkins approach (Box-Jenkins, 1976); adaptive estimation procedures (Carbone et al, 1984); 

Bayesian forecasting (Harrison and Stevens, 1971; Fildes, 1984); variants of exponential 

smoothing (Gardner and McKenzie, 1989); regression methods (Bowerman and O’Connell, 

1987); Lewandowski’s FORSYS method (1982); Parzen ARARMA method (1982) and 

combining forecasts (Winkler, 1983). The main conclusion of the competition is that different 

factors (time scale of data, type of time series, forecasting horizon) affect forecasting accuracy 

and that different methods perform differently under different conditions. Also, combining 

forecasts of a few methods improves overall forecasting accuracy over and above that of the 

individual forecasting methods. A detailed discussion of the M-competition results 

(Makridakis, 1984) examines the forecasting accuracy achieved and looks at the different 

methods individually but do not show how any of the various methods may be related. Harvey 

(1984) aims to address this problem when he presents a unified framework within which the 

different forecasting procedures may be placed. His paper deals with the forecasting 

procedures used within the M-competition and also with the state space structural time series 

models. A very recent competition carried out by Weigend and Gershenfeld (1992) highlights 

the emergence of neural networks as a valuable tool in time series forecasting applications. 

Six time series of varying attributes, such short/long, stationary/nonstationary, 

linear/nonlinear, clean/noisy and natural/synthetic were used in the competition, where the 

majority of contributions, and indeed the best predictions, were obtained using neural 

networks. The contrast between the mainly linear modelling techniques of the M-competition, 

carried out in the eighties, and the nonlinear modelling techniques of the Weigend and 

Gershenfeld competition is notable, where significantly greater computing power was utilised 

in the latter competition. This emphasises the effect of the widespread availability of powerful 

personal computers, for running simulations of neural networks, on time series forecasting 

techniques.
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2.3 Time Series Examples

Before proceeding any further, examples of a variety of time series and the characteristics 

which they may exhibit are presented. The first example given in Figure 2.1 shows a time 

series of reported purse snatching in the Hyde Park area of Chicago (Janecek and Swift, 

1993). The observations are recorded on days 28 days apart and run from January 1968 to 

September 1973. Graphical examination of the profile suggest that the level of purse 

snatching is fluctuating around some constant level.

In contrast, Figure 2.2 shows the time series of the population of the USA, at ten-year 

intervals, from 1790 to 1980 (Brockweil and Davies, 1987).

It can be seen that this time series has a rising trend. To understand what is meant by the term 

trend of a time series consider the profile given in Figure 2.3 which shows monthly 

international airline passenger data, 1949 - 1960 (Box-Jenkins, 1976).
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This series has a rising trend and seasonality, with a seasonal length equal to 12 

(corresponding to 12 months). The trend of the time series may be defined as the low 

frequency behaviour, or long term movement, of the series which changes relatively slowly 

over time. Conversely, the seasonal component may be defined as the relatively high 

frequency behaviour of the series which repeats every seasonal period s. The seasonal 

component may be examined further by over-plotting each year on the same graph as shown in 

Figure 2.4.

Figure 2.4 Over-plot of passenger air miles flown

This figure shows that the pattern of repetition is consistent and also that the amplitude of the 

seasonal pattern is steadily increasing each year along with the average level of the series 

determined by the trend. Many time series have cyclical patterns that do not repeat within a 

year; the series in Figure 2.5, which shows the Wolfer Annual Sunspot Number 1770 - 1869 

(Box-Jenkins, 1976), is an example of this. The sunspot series has a strong cyclical 

component with a period of approximately equal to 11 years.
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Each of the above time series exhibit different characteristics in response to the vastly 

different environments in which they exist. Different factors within the environment may 

influence the short and long term behaviour of the time series. An example of a short term 

effect on a series is the seasonal effect on the airline data (Figure 2.3), where the number of 

passenger miles flown increases during the summer months in each year, largely related to the 

seasonal holiday effect. In contrast, the long term effect of technological advances and 

changing social attitudes increases the number of people travelling abroad each year which 

results in a rising trend over time. Therefore, various factors, such as temporal, demographic 

economic and social, may affect how a series will evolve over time, where these factors are 

referred to as exogenous variables.

Mathematical models may be constructed to represent the series where the current value of the 

time series is based solely on past observations of the series; this is termed a univariate model.

Therefore, the current value of the time series y(k) may be represented by the following

equation

y ( k )  = f{ y (k  - 1), y(k -  2) .y (k -n a ))  (2.1)

w here/is some function describing the time series and na is the number of past values of the 

time series that y(k') depends upon. However, this type of model may be restrictive because of 

the exclusion of exogenous variables which have a significant influence on the time series of 

interest. A more appropriate model may be of the following form:

y ( k )  = g { y (k - l ) ,y (k  -  2)........ , y(k  -  na),ul(k) ........ u ^ k -n b ^ ,
. (2.2)

u2(k ) ....... u2(k -n b 2) .............unu(k ) ....... unu( k - n b j )
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where g is some function describing the time series and uu u.2 ,....um are exogenous variables

that have an effect on the time series of interest y(k), with nbi, nb2  nb„u the number of past

values of the exogenous variables ui, U2  unu affecting y(k ) respectively. For example,

Figure 2.6 show a plot of the seasonally adjusted quarterly UK employment figures from 1963 

to 1979 with the corresponding output index (1980 = 100) in UK manufacturing from 1963 to 

1979 also given on the same graph. It is suggested that employment can be regarded as being 

dependent on manufacturing firms’ output expectations (Harvey, 1989).

Figure 2.6 No. Employed in UK and output in UK manufacturing

Comparison of the short term movements (1 to 5 years) of the two series show that they are 

correlated. For example, the behaviour of the series from Quarter 1 in 1963 to Quarter 4 in 

1966 is such that an increase in manufacturing output yields a corresponding increase in 

employment. A similar pattern can be seen from Quarter 1 in 1967 to Quarter 4 in 1971 and 

again from Quarter 1 in 1972 to Quarter 2 in 1976. From Quarter 3 in 1976 to the end of the 

series there appears to be a levelling off in the manufacturing output. However, overall the 

level of the manufacturing output does not account for the long term downward decrease in 

employment. This downward trend is in response to a dramatic improvement in technical 

progress over the period in question which resulted in a decrease in manpower requirements. 

A mathematical model used to represent the employment series could be based solely on 

previous observations of employment but could also include the effect of the manufacturing 

output and the rate of change of technology. The latter is difficult to measure and alternative 

methods are required to account for this (Harvey, 1989), however the short term movements 

may be accounted for by inclusion of the manufacturing output variable in the mathematical 

model.
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The primary objective of the work conducted in the thesis is the construction of mathematical 

models to represent electricity demand time series, with the ultimate aim of producing a 

forecast of future values of the series. Analysis which is based solely on the electricity 

demand time series whose forecast is required is referred to as a univariate analysis, whereas 

a multivariate analysis refers to the construction of mathematical models based on the 

electricity demand times series of interest but also on associated exogenous variable time 

series. A bivariate analysis refers to the case where only a single exogenous variable is 

employed in the forecasting model.

The attributes which a time series possess may also depend on the time-scale on which it is 

based. For example, a variable which is based on a weekly or monthly time-scale may exhibit 

a trend and a seasonal component (due to repetitive behaviour), however the same variable 

based on a yearly time-scale may only exhibit the trend characteristic. It is possible to deal 

with the same time series variable on a number of different time scales, however, for practical 

reasons certain time series variables are only dealt with on particular time-scales, possibly due 

to measurement constraints. For example, economic variables, such as gross domestic 

product (GDP) or gross national product (GNP) tend to be based on a quarterly or yearly 

basis, whereas the share index is recorded on a daily basis. Analysis developed in Chapter 5 

and Chapter 6 examine electricity demand time series which are based on different time scales 

and this analysis is referred to as multi-time-scale analysis.

2.4 Classical Linear Time Series Analysis

2.4.1 Background

The classical methods of linear time series analysis are based on two crucial assumptions 

(Priestly, 1981):

(i) all series are stationary, or can be reduced to stationarity by some simple 

transformation, such as detrending or differencing.

(ii) all models are linear, that is the observed series can be represented as a linear function 

of present and past values of an independent “white noise” process (linear stochastic 

process).

Before proceeding any further a number of terms, such as linear stochastic process, stationary 

and stationarity transformations, used in the above assumptions are now defined.
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2.4.1.1 Stationary Time Series

A stochastic process is a family of random variables {y(k): k e  K] defined on a probability 

space (Q, F, P). In time series analysis the index set K  is a set of time points, usually equal to

the set Q and for each fixed co e Cl, y(k,co) is a function on K. The functions {y(k,co),co e Q} 

on the index set K  are known as realisations or a sample-paths of the process {y(k): k e K).

The collection of all realisations is called the ensemble of realisations. The process {y(k)_k e __

z } with index se tz  = {0 , ± 1 , ± 2  }is strictly stationary if the joint distributions of

are the same for all positive integers N  and x. Thus, it is required that the distributions over 

the ensemble are identical. Intuitively, strict stationarity means that the graphs over two equal 

lengths of a realisation of a time series should exhibit similar statistical characteristics. In 

most applications the form of the distribution on which the time series is defined is not known 

and thus it is common practice to deal with only the first two moments of the series. Based on 

this a time series may be defined to be weakly stationary if the following conditions are 

satisfied:

(i) E(y(fc)) = j.L is independent of k.

(iii) E| (y(k) - /u)(y(k - r) - /J) ] = R(x) depends only on x.

where R(j) is the autocovariance function defined as follows:

R(t) = coiv(y(k), y(k - x)) = E[ (y(k) - /j) (y(k - t)-f.i) ] r= ...,-2,-1,0,1,2,... (2.4)

R(r) measures the covariance between pairs of values of the process separated by an interval 

r, where x is usually termed the lag. The terms stationary in the wide sense, covariance 

stationary, second order stationary and stationary are also used to describe a weakly 

stationary time series (2.3), where the term “stationary” is used throughout the thesis. The 

fact that for a stationary process the mean, variance and covariance do not depend on r  means 

that they may be estimated from a single realisation as follows (Harvey, 1989):

{0, ±1, ±2..... }, {1, 2, 3,......}, [0,oo] or (-oo, oo). For each fixed k e  K, y(k) is a function on

Cy(l), y(2)...... ,y(N))T and (y(l+r), y(2+x).......y(N+x)f

(ii) E[ (y(k) - ju f \  = var(y(fc)) is independent of k. (2.3)

(2.5)
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var(y(k)) = R(0) = 7 ~ Z ( y (k )~  ( i)2 
N  t=i

(2.6)

% )  = —  L ( y ( k ) - f i X y ( k - T ) - f i )  t  =...-2 ,-1,0 ,1 ,2 .... (2.7)
N *=T+i

Equations (2.5), (2.6) and (2.7) are referred to as the sample mean, sample variance and 

sample autocovariance function respectively. The sample autocovariance function (2.7) can 

be used to describe the dynamic properties of a time series and it is a well employed tool in 

classical linear time series analysis. However, the normalised sample autocovariance function 

is usually used, where this is called the sample autocorrelation function (SACF) and is 

defined as follows:

pCc) = 5 ^  x = .... - 2, - 1,0,1,2.... (2.8)
R( 0)

Intuitively, pit)  may be thought of as a measure of the “similarity” between a realisation of 

y(k) and the same realisation shifted by r  units. For a real series pit) = p(-r) and thus the plot

of the SACF as a function of r  is generally examined for positive values of r=  1 , 2,...... The

SACF (2.8) may be used to calculate the sample partial autocorrelation function (SPACF) 

which represents the sample autocorrelations of the time series observations separated by a lag 

of z  with the effects of the intervening observations eliminated. The SPACF is defined as 

follows (Bowerman and O’Connell, 1987):

a ( T , r )  =  p ( t )  i f  t  =  1

(2.9)

a ( T , T )  =  p(T) - % a ( T  - l, j)oc(T -  j )  i f r  = 2, 3,.. .
j=i

where

a (T ,j)  = oc(t - l , j ) - a ( T , T ) a ( T - l , T - j )  j  = 1, 2 r - l

The autocorrelation function defines the correlation structure within a process. However, 

when dealing with an exogenous variable time series that has an influence on the time series of 

interest it is useful to measure the correlation between two processes. Consider two stochastic 

processes, y(k) and u(k), k= 1, ...,iV, the two processes are a stationary bivariate process (or 

that y(k) and u(k) are jointly stationary) if the following hold:

16



(i) y(k) and u(k) are each stationary as defined in (2 .1)

(ii) E[ (y(k) - / ii)(u(k-7) - jj2) ] = Ruy(r) depends only on r, with (j,i the mean of y(k) and / /2 

the mean of u(k)

where Ruy(r) is the cross covariance function which describes the correlation structure 

between the two processes and is defined as follows:

Ruy(.t) = cov(y(k),u(k-T)) = E[ (y(k) - jui) (u(k-t) -/i2) ] t= .„ ,-2,-1,0,1,2,... (2.10)

The normalised version of (2.11) is called the sample cross correlation function (SCCF) 

given by:

2.4.1.2 Time Series Stationarity Transformations

Stationarity transformations that convert a nonstationary time series to an approximately 

stationary time series play an important role in classical linear time series analysis. The 

purpose of the transformation is to produce a new series which is more compatible with the 

assumption of stationarity. If the time series exhibits a trend or seasonal characteristic then 

these components are usually removed from the time series using an appropriate 

transformation.

There are a number of different approaches to the transformation of time series, where one 

approach is that followed by (Ljung, 1987) which involves the removal of the linear trend and 

bias from the series, that is the removal of the best straight-line fit. This may be described as

follows:

The sample cross covariance function may be calculated as follows:

(2 .11)

t =..... - 2 ,-1,0,1,2.... (2.12)

y*(k) = a 0 + a  

d(k) = y (k )-y * (k )
(2.13)
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where ao and aj are the coefficients of the linear equation and d(k) is the detrended time 

series.

Alternatively the trend of a time series may be removed using the following differencing 

transformation (Box and Jenkins, 1976):

z(k) = a~q~l)dy(k) (2.14)

where d represents the order of differencing. The transformation in (2.14) may be extended to 

the case where both trend and seasonality are removed from the time series through the 

following:

z(Jc) = ( l - q - 1)d(l-q -* )Dy(k) (2.15)

where

• d is the order of nonseasonal differencing

• D is the order of seasonal differencing.

• s is the seasonal length.

The application of the differencing transformations given by (2.14) and (2.15) require the 

determination of appropriate orders of d and D. The approach adopted in the thesis is the one 

suggested by Box and Jenkins (1976) that involves the application of the transformation and 

the subsequent examination of the SACF (2.8) of the differenced time series to check for the 

presence of nonstationarity. They consider the time series to be nonstationary if the SACF 

dies down extremely slowly, where the precise meaning of the term “dies down extremely 

slowly” is somewhat arbitrary and is best determined through experience. To illustrate what 

is meant by this term an example of the SACF of a time series that exhibits a trend and 

seasonal component, that is a weekly electricity demand time series, is shown in Figure 2.7, 

where a plot of the original series is given in Figure 2.8, note that this data is scaled for 

confidentiality reasons.
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Figure 2.7 SACF of original time series

The SACF exhibits a sinusoidal pattern due to the presence of the seasonal component in the 

data. Now consider the SACF of the transformed time series using (2.15), with d = 1 and D = 

1. The SACF of the differenced data is given in Figure 2.9 and the differenced time series is 

shown in Figure 2.10.

8 0  1 0 0  120

Figure 2.9 SACF of differenced time series

Comparing the SACF of the original (Figure 2.7) and differenced time series (Figure 2.9) 

shows that the SACF of the differenced series is not dying down slowly and therefore the 

series is considered to be stationary and thus the differencing transformation with d = 1 and D 

= 1 is considered to be suitable transformation for the weekly electricity demand time series.

2.4.2 Classical Time Series M odels

The classical time series models that are dealt with in this thesis may be derived from the 

following general model structure:
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(2.16)

where

• y(k), t= 1, 2, ...N is the univariate time series.

• u(k), t=  1,2, ...N is an exogenous variable time series.

• b is the delay between the exogenous variable and univariate time series.

• dk) is a zero mean white noise disturbance term with variance a,;2.

• A, B, C, D, F  are polynomials in the delay operator q 1.

2.4.2.1 Classical Univariate Models

The simplest univariate model is the Autoregressive (AR) model; derived from (2.16) and is 

given as follows:

where A{q~l) = \+ a lq~x+ +amq~na. This models represents the current value of the time

series y(k) as past values of the time series y(k), ,...y(k-na). The AR model may be extended 

to include a moving average term, where this model is referred to as an Autoregressive 

Moving Average (ARMA) model and is given as:

If the ARMA model is used to represent a series that has been differenced using (2.14) then it 

is referred to as an Autoregressive Integrated Moving Average (ARIMA) model (Box and 

Jenkins, 1976). Box and Jenkins (1976) also developed a model to represent a series with 

both trend and seasonal characteristics, where the series is transformed using (2.15) and the 

autoregressive and moving average operators are split up into separate trend and seasonal 

component parts. The model is called a Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model and is given as follows:

A (q )y (k )  = e (k ) (2.17)

M q)y(k) = C(q)e(k) (2.18)

where

• A(q) = l + arq 1 +........+o.naq na is the autoregressive operator.

• C(q) = 1 + cxq 1 + ........+C„cq 'ic is the moving average operator.

A {q)z{k) = C (q )e(k ) (2.19)

20



z(k) is the differenced time series (2.15)

A(q) = ( l - a lq-i-  -a pq ^ ) { \ -a ^ q u -a^q~2s.... .+arj * ) ,  with/? the order

of the nonseasonal autoregressor and P  the order of the seasonal

autoregressors.

C(q) = ( l - Clq-1-  .-cmq m)( l-c uq 11 - c 2X 1J..... +cM„q “’), with m the order

of the nonseasonal moving average regressor and M  the order of the seasonal 

moving average regressor.

2A.22  Classical Multivariate Models

The simplest multivariate model structure based on y(k) and on an exogenous variable time 

series u(k) is derived from (2.16) and is called an Autoregressive with Exogenous variable 

(ARX) model, where this is given as follows:

A (q )y (k )  = B (q )u (k -b )  + e (k )  (2 .2 0 )

where

where
• A { q ) - \  + axq~l+ +anaq~na

• B (q )= b0+b1q~'+......+bniq 'nb

• b is the delay between u(k) and y(k)

The Autoregressive Moving Average with Exogenous variable (ARMAX) model derived from 

(2.16) is given as:

A (q )y (k )  = B ( q ) u ( k - b ) + C (q)e(k)  (2.21)

where

• A(q) = l+ a 1q 1+...... .+an̂ q~na

• B(q) = b0+b1q~1+......+bnbq~nb

• C(q) = 1 + 0,5  1+...... +Cnc? n°

• b is the delay between u(k) and y(k)

Box and Jenkins (1976) developed a transfer function model that includes an explicit model to 

represent the noise or residuals of the system. The model is referred to as the Box-Jenkins 

Transfer Function (BJTF) model and is given as follows:
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y( k ) = ~ b')+ N  (fc)F(q)
(2 .22)

where

• B(q) = b0 +b1q~l+....... +bnbq~nb

.  F (q) = l  + f ^ + .......+ fnfq~nf

• b is the delay between u(k) and y(k)

• N(k) = C(q)/D(q) is represented by an ARMA model

The above models deal with a single exogenous variable, where it is straightforward to extend 

each model to the multivariate case. For example, the structure of the BJTF model (2.22) 

with nu exogenous variables is as follows:

y(k) = ̂ - u l( k - b 1)+........ .+^ M Unu( k - b nu) + N (k)  (2.23)
Fy (?) F„M)

where Bj(q) and Fj(q), j  = 1 ,...nu each have a similar polynomial structure to the B(q) and F(q)

polynomials in the BJTF model given by equation (2.22) and bj, j  = 1 ,...nu are the

corresponding delay parameters. The ARX and ARM AX model structures may be expanded 

in a similar manner (Ljung, 1987).

2.4.3 Classical Time Series M odelling M ethodology

The first step involved in any time series analysis is the examination of the plot of the series to 

identify the characteristics of the profile and also to check for the presence of outliers in the 

data. In classical linear analysis it is necessary to determine if a transformation is required to 

convert the time series to a stationary series. The presence of trend or seasonal characteristics 

may require the use of a stationarity transformation, where the application of such 

transformations have already been discussed in Section 2.4.1.2. Given a stationary time series 

the development of a model to represent the time series generally requires the following three 

basic steps:

• model structure identification

• parameter estimation

• model adequacy checking

The identification of the model structure involves the selection of suitable orders of the 

polynomials operators. It is desirable to identify a parsimonious model, that is a model with
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the smallest possible number of parameters required for an adequate representation of the time 

series. Once a suitable model structure has been identified it is necessary to estimate the 

coefficients of the polynomial operators. Finally, the estimated model is checked to determine 

if it can adequately represent the time series. There are two main approaches to the selection 

of the model structure for the models given by equations (2.17) to (2.23).

The first approach was developed by Box and Jenkins (1976), where the main tools employed 

are the SACF (2.8), SPACF (2.9) and SCCF (2.12). This approach involves identifying a 

model structure using the autocorrelation and cross correlations functions, estimating the 

parameters of this model structure and testing the adequacy of the model. If the model is 

found to be inadequate then a new model structure is identified, the parameters estimated and 

the model checked, where the process is repeated until a parsimonious model is determined.

The alternative approach is to estimate the parameters of a variety of different model 

structures and compare them according to some chosen criterion, such as Akaike’s 

Information Theoretic Criterion (AIC) (Akaike, 1973) or Rissanen’s Minimum Description 

Length (MDL) criterion (Rissanen, 1983). The adequacy of the selected model structure is 

then checked, where if this model is found to be inadequate a new set of model structures are 

estimated and compared.

The difference between the two approaches is that the Box-Jenkins method requires a 

considerable amount of user interaction, where it may be necessary to repeat the three 

modelling steps a number of times before a suitable model structure is found. Each of the two 

approaches for identifying the model structure were employed in the work conducted in the 

thesis and they are now discussed. The parameter estimation techniques and model adequacy 

checking are dealt with in Section 2.4.3.3 and Section 2.4.3.4 respectively.

2.4.3.1 Model Structure Identification Using Box-Jenkins Methods

In the case of the univariate models Box and Jenkins (1976) suggest the examination of the 

SACF (2.8) and SPACF (2.9) to tentatively identify the orders of the moving average and 

autoregressive polynomials respectively. Here “tentative” refers to the use of the functions to 

aid in the selection of the model structure as part of the iterative modelling procedure 

described above, where this procedure may have to be repeated a number of times to 

determine a final parsimonious model. The SACF and SPACF functions are said to cut off at 

the appropriate orders of the polynomials. For example, in the case of the AR model (2.17) 

the SPACF is said to cut off at lag na. In the case of the ARMA model (2.18) the SPACF
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cuts off at lag na and the SACF at lag nc. In the case of the SARIMA model (2.19) it is 

necessary to examine the function at the nonseasonal ( r  = 1, ... r-3) and also at the seasonal

level (t = Is, 2s ) to determine the orders of the polynomials. The SACF is said to cut offs

at the following lags:

• m at the nonseasonal level

• M  at the seasonal level

and the SPACF at lags

• p  at the nonseasonal level

• P at the seasonal level

The precise meaning of the term ‘cut off ‘ is somewhat arbitrary, however it is possible to 

calculate a test statistic for p(r) at each lag in the SACF and for a(r, t) at each lag of the

SPACF. This test statistic for p{r) at lags r=\, 2 (Bowerman and O’Connell, 1987) is

given as follows:

where N  is the number of sample points in the time series for which the SACF was calculated. 

Bowerman and O’Connell (1987) provide the guideline that if the absolute value of the t- 

statistic (2.24) is greater than 1.6 at the nonseasonal level and greater than 2 at the seasonal 

level then the p(t) is statistically different from zero and thus there is a cut off at lag r. In the 

case of the SPACF the test statistic for a(r, r) is given as:

where the same guideline used for the SACF is also used for

The identification of the BJTF model (2.23) involves the determination of nb, n f and b through 

the use of the SCCF (2.12) and the determination of N(k) using the univariate model 

identification techniques discussed above. The procedure to determine the BJTF model 

structure may be split into the following two steps:

i. Use the SCCF to identify b, nb and n f to obtain a preliminary transfer function 

model.

~ (
N*p(T) (2.24)

V

toctc,.) = N *<X(T,T) (2.25)
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ii, Identify N(k) by examining the SACF and SPACF of the residuals of the 

estimated preliminary transfer function determined in (i).

Step (i)

The SCCF is calculated between the time series of interest and each of exogenous variable 

time series. However, since there may be autocorrelation in the time series the true 

relationship between the two series may not be reflected in the SCCF and it is thus necessary 

to account for the possible presence of this autocorrelation. This is achieved through 

‘prewhitening’ which involves constructing a univariate SARIMA (2.19) for the exogenous 

variable time series and using this to filter (or prewhiten) the time series y(k). The behaviour 

of the SCCF is examined, where the following guidelines may be used to determine the model 

structure (Bowerman and O’Connell, 1987):

1. The lag at which the first cut off appears is equal to the parameter b.

2. The first cut off in the SCCF will be followed by a dying down pattern, where nb is set 

equal to the number of lags that reside between lag b and the lags at which this decay 

begins.

3. If the SCCF decays in a damped exponential fashion, then nf = 1 or if it decays in a 

damped sine wave fashion then n f = 2 .

Step (ii)

The preliminary transfer function model identified in Step (i) is estimated and the SACF and 

SPACF of the residuals of this model are examined in order to identify a SARIMA model for

N(k).

In the applications dealt with in the thesis it was found that the guidelines to determine the nb 

and n f  orders for the preliminary transfer function models were difficult to apply in practice 

and it was necessary to test a number of different model structures before appropriate orders 

could be found. This involved a significant amount of development effort as it was necessary 

to determine a suitable noise model N(k) for each preliminary transfer function model 

structure.

Although it is possible to use the SCCF to determine the delay parameter b in the ARX (2.20) 

and ARMAX (2.21) model structures, there arc no equivalent guidelines available for the use 

of the function to determine the order of the A(q), B(q) and C(q) in these models. The model
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structure selection technique described in the next section is usually employed for such models 

(Ljung, 1987; Soderstrom and Stocia, 1989).

2.4.3.2 Model Structure Identification Using Criterion Functions

This approach involves comparing different model structure performances according to a 

suitable criterion function. One such criterion function, referred to as the loss function is 

given as follows (Soderstrom and Stocia, 1989):

V = - ^ t { e ( k ) T  (2.26)
N  k=i

where e(k)= y(k)-y(k) and N  is the number of sample points over which the loss function is 

calculated. The procedure involves selecting a data set on which to estimate the parameters of 

the model and a different data set on which to compute the loss function. The model structure 

that yields the minimum value of the loss function is selected. It is possible to calculate 

alternative criterion based on the loss function value given by (2.26). The AIC (Akaike’s, 

1973) is a criterion that penalises high order (in terms of parsimony) model structures, where 

this is calculated as follows:

AIC = V *
r 2np  ̂

1 + —  
v N

(2.27)

where Y is the loss function (2.26), N  is the number of sample points over which the AIC is 

calculated and np is the number of parameters estimated in the model. The model structure 

that yields the smallest AIC is selected. Alternatively the MDL (Rissanen, 1983) may be 

calculated as follows:

MDL = V *
! np ^
\+log(N)~rr 

N  j
(2.28)

where V is the loss function (2.26), N  is the number of sample points over which the MDL is 

calculated and np is the number of parameters estimated in the model. The MDL also 

penalises model complexity.
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2.4.3.3 Parameter Estimation

Once a structure has been selected for the model it is necessary to estimate the coefficients of 

the polynomial operators in the model. Consider the AR model given by equation (2.17); y(k) 

may be rewritten as follows:

y(k) = q 1 (k)Q + z(k) (2.29)

where <pT(k) = (-y(k-l)......... ,-y(k-na)) and 6 =  (cii...........a„a)T. The ordinary least squares

estimator of (9is given as follows (Soderstrom and Stoicia, 1989; Fuller, 1996):

0 = -J- X<p(fc)cpr (*:) 
L N k=i

7 7 X 9  (k)y(k)  
I N  k=l

(2.30)

The error in this estimator is given as:

e-e0 = 7 7 X 9  (k )yr (k)
. N  k=l

7 7  S(p (k)v(k) 
. N  k=l

(2.31)

where 00 represents the true parameter vector and y(k) = q>(fc)0o +v(k).

Similarly in the ARX model given by (2.20) y(k) may be rewritten as:

y(k) = (pT(k)d + e(k)  (2.32)

T  \ Twhere <p (k) = (-y(fc-l)  -y(k-na) u(k-1)....... u(k-nc)) and 0  = (ai ana bj b„b)

and the ordinary least squares estimator of 0 is given by (2.30), with the error in the estimator 

given by (2.31).

Ordinary least squares is a simple method that can be used to obtain efficient estimators of an 

autoregressive time series. However, the estimation of a model with a moving average 

component is less straightforward, where the most common approach used is maximum 

likelihood estimation (Box and Jenkins, 1976; Brockwell and Davies, 1987; Fuller, 1996). A 

description of maximum likelihood estimation for time series is given in Appendix A and 

details pertaining to the use of the technique in relation to the classical linear models are now 

given.

Consider the ARMA model given by (2.18), if y(k) is a stationary normal series then the log of 

the likelihood is given by the following (Fuller, 1996)
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logL(yO = —ylog27r -  ^|log Eyy ( v̂ )| -  ^  7 rSyy ( i/)7  (2.33)

where y  = (0, a £2 ), 0 = (aj am Ci cnc)T, YT = 0(1), y(2).......y(N)) and 2yy =

ZYy(v|/) = E{YYt }. The maximum likelihood estimator of 0 can be found by minimising the 

following:

where IMYy(0)I = cr£'2 Xyy(0).

Maximum likelihood estimation may be also be used to estimate the parameters of a SARIMA 

model (2.19), where the differences z(k) = ( \-q ~ l )d ( \-q ~ s)D yik) constitute an ARMA 

process of order na = p+sP and nc = m+sM in which some of the coefficients are zero and the

rest are functions of the (p+P+m+M)-dimensional vector p = (ai ap ai,s apiS ci cm

ci,s cm.s)1 . The likelihood of l(P) of the differences of y(k), that is z(k), can be computed

using (2.34) and the maximum likelihood estimator of p is the value that minimises /(P). In 

the case of an ARMAX model (2.21) equation (2.34) can be used to compute the likelihood

1(a) for the vector of unknown parameters a  = (ai a„a bi b„b ci cnc) , where

the maximum likelihood estimator of a  is the value that minimises 1(a). Similarly, maximum 

likelihood estimation can he used to estimate the unknown parameters of the BJTF model 

(2.23), where the vector of unknown parameters in this case also contains the parameters of 

the ARMA noise model.

2.4.3.4 Model Adequacy Checking

The model adequacy of the univariate and multivariate classical models may be tested through 

the examination of the residuals of the model. In a well specified model, the residuals should 

be approximately random. The simplest way to test the randomness of the residuals is to 

examine them graphically. To illustrate this Figure 2.11 shows a plot of the residuals for the 

USA population data shown in Figure 2.2, where an AR(2) model was fitted to the detrended 

data.

(2.34)
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The plot shows that the residuals fluctuate around a constant mean and have no recognisable 

or repeating pattern and they are thus assumed to be random. If the residuals are random then 

there should be no serial correlation between them, where the SACF (2.8) of the residuals can 

be used to check for correlation. A method of testing the overall adequacy of a model is to 

examine a statistic that determines whether the first T  sample autocorrelation, considered 

together, indicate adequacy of the model. This statistic is called the Ljung-Box test statistic 

and is given as (Bowerman and O’Connell, 1987)

<2(T) = - ^ X ( W - ; r V O ' )  (2.35)
A1 + 2 i

where N  is the number of samples in the time series and p(j) is the SACF (2.8) at lag j. The 

number of lags for which Q is calculated is T  -  {N)V1. If the model accounts adequately for 

the time series observations then the residuals should be unrelated and the autocorrelations of 

the residuals should be small. Thus, Q(T )  (2.35) should be small. The larger Q(T )  is, the 

larger are the autocorrelations of the residuals and the more related are the residuals. The 

distribution of Q (T)  is assumed to be approximately chi-squared (Morrison, 1976) with (T  - 

np) degrees of freedom, where np is the number of parameters estimated in the model under 

consideration. The adequacy of the model is therefore rejected at level a  if

Q ( T ) > x l ( rr - n p )  (2.36)

For a multivariate model there should be no serial correlation in the residuals of the model and 

in addition there should be independence between the residuals and past values of the 

exogenous variable time series. This may be checked by examining a plot of the SCCF (2.12)
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calculated between the residuals and the exogenous variables, where if there are no cut offs in 

the SCCF then independence is assumed and thus the model is deemed adequate.

2.4.5 Literature Overview

2.4.5.1 Univariate Models

In the literature the ARMA and ARIMA modelling approach has been applied to a wide 

variety of time series, including forecasting hospital patient movements (Lin, 1989) to 

forecasting personnel computer product sales (Wu et al, 1991). Many books deal with both 

the theory and implementation of the univariate classical modelling procedure (Pankratz, 

1983; Abraham and Ledolter, 1983; Janecek and Swift, 1993).

There are numerous examples of the use of the classical forecasting models for electricity 

demand time series forecasting (Di Caprio, 1983; Schneider et al, 1985; Ackerman, 1985; 

Demirovic, 1988; Moghrqm and Rahman, 1989; Bakarat et al, 1990; Komprej and Dipling, 

1990; McCafferty et al, 1990; Mbamalu and El-Hawary, 1993). An advantage of the 

ARIMA modelling approach is its capability of handling seasonal time series through the use 

of the SARIMA model (2.19). As an example, Komprej and Dipling (1991) show that a 

SARIMA model produces forecasting results which are 25% more accurate than an 

exponential smoothing model when predicting the one o’clock peak load of the day in 

Slovenia. On weekly and monthly time scales seasonal factors have a significant effect on the 

characteristics of the electricity demand time series. These may he due to weather effects or 

due to other cyclic events such as heightened industrial activity or regular holidays. Barakat 

et al (1990) use a SARIMA model to predict a two-monthly forecast of peak electricity 

demand. This time series is interesting in that it is partially influenced by weather factors, 

mainly through air conditioning, hut there are other cyclic and dynamic events that contribute 

significantly to the peak demand. These cyclic variable loads are due to major religious 

events, Ramadem, Eid and Hajj, which are related to the lunar calendar and thus move in 

cycles every Gregorian calendar year. The forecasting accuracy of the results produced by the 

SARIMA model are significantly improved through the adjustment of the original series to 

allow for these cyclic events. In this thesis SARI models are applied to two different seasonal 

weekly electricity demand time series. The main seasonal effects are attributable to different 

factors, where in one case the effects are due to the weather and in the other case the effects 

are due weather and also to the cyclical nature of the dairy industry.
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2A.5.2 Multivariate Modelling of Electricity Demand Systems

In the case of electricity demand there are a number of exogenous variables which have an 

external influence on demand, where different variables are pertinent on different time-scales 

(see Section 1.1). For electricity demand modelling the most common multivariate methods 

are based on classical regression models (Train et al, 1984; Baker, 1985; Demovric, 1988; 

Stetson and Stark, 1988; Engle et al, 1988, 1992; Haido and Muto, 1994; Al-Zayer, 1996). 

Examples of the application of BJTF models (2.23) can also be found (Pigott, 1985; 

McCafferty et al; 1990; Harris and Liu, 1993). The availability of significant exogenous 

variable data is a crucial factor in the development of the multivariate analysis. Another 

factor is that predictions of future values of the exogenous variables may be required and if 

this is the case then the accuracy of the forecast of the dependent variable will depend on the 

accuracy of these forecasts.

The external influences most commonly accounted for in electricity demand modelling are 

weather factors, particularly in hourly, weekly and monthly applications due to temporal (e.g. 

time of day) and seasonal cffects respectively. Typical temporal factors are time of day, day 

of week and week of year Some of the more commonly used weather variables are:

• average temperature (Baker, 1985; Schneider et al, 1985; Ramanthan et al, 1985; 

Demirovic, 1988).

• humidity (Haida, 1994; Ramanthan et a l , 1985; Hyde and Hodnett, 1991).

• effective temperature (Baker, 1985; Schneider, 1985).

• wind chill factor (Baker, 1985, Ramanthan, 1985, Hyde and Hodnett, 1991).

Two widely utilised weather variables arc heating degree day (HDD) and cooling degree day 

(CDD) variables which take account of the effect of weather on electricity demand at selected 

points of the relevant temperature range (Train et al, 1984; Engle et a l , 1992, 1988; Harris 

and Liu, 1993; Al-Zayer, 1996). Economic and demographic variables such as price of 

electricity; average income or number of customers (Ramanthan et al, 1985; Engel et al, 

1988; Harris and Liu, 1993) may also be relevant, especially in the case of domestic demand 

forecasting. If future values of the exogenous variables are required then forecasting models 

may be built to predict these values or in the case of weather forecasts they are often obtained 

from meteorological stations and economic forecasts from government agencies.

A problem may exist in that the required exogenous variables may be unavailable on the time 

scale under consideration. McCafferty et al (1990) consider the use of mean monthly average
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temperature when developing models to forecast disaggregate monthly industrial electricity 

demand for the Northern Ireland power system. They compare univariate (ARIMA) and 

multivariate models (BJTF) where they found that the effect of temperature on industrial 

monthly demand was negligible. They propose that economic factors are more likely to be 

relevant but since they are usually only available on a quarterly basis data for these variables 

are unobtainable on a monthly time scale.

The use of the external variables may not only provide more accurate forecast than the 

univariate case but also provide a greater understanding of the system. Harris and Liu (1993) 

provide an in-depth analysis of modelling monthly residential (domestic) electricity demand in 

the Southeast of the United States, where weather, economic and demographic influences are 

taken into account through the use of BJTF (2.23) models. They compare the forecasting 

results produced by a univariate (ARIMA) and to those produced by the BJTF model, with 

cooling degree day (CDD), heating degree day (HDD) and average price of electricity 

exogenous variables. The transfer function model produced more accurate results with the 

added advantage of providing a greater understanding of consumer behaviour in this 

residential sector. They found that residential electricity consumption is substantially 

influenced by price and weather factors, where weather is particularly influential in winter. 

Also, contrary to the economic reasoning average disposable income did not have a 

statistically significant effect on consumption The most interesting revelation was the 

existence of a conservation effect among consumers, which was manifested in the time series 

through the presence of a downward trend from 1974 to 1989. This downward trend was 

exposed through the examination of temperature (CDD and HDD) adjusted data and also 

seasonally adjusted data. Two theories were considered to account for the conservation effect: 

the first postulates a heightened energy awareness following the world-wide energy demand 

crisis in 1973-1974; the second postulates that the effect reflects traditional consumer 

economics, where with rising inflation, the cost of electricity is trending upwards over time. 

They showed that the latter theory explained the effect better and that there was a damping out 

of this behaviour in the late 1980s.

Weather is a significant modelling factor in the area of short term load forecasting (STLF), for 

example, in daily peak or hourly electricity demand forecasting. Bunn and Farmer (1985) 

provide a review of STLF methods used in the electricity supply industry. A widespread 

approach is to split the load up into separate components, such as, a base load component and 

a weather sensitive load component, where a separate model is then used to represent each
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component (Ackerman, 1985; Baker, 1985; Gupta, 1985; Schneidor at al\ Demirovic, 1988; 

Hyde and Hodnett, 1991).

2.4.6 Drawbacks of Classical Linear Analysis

A main assumption in classical linear analysis is that all time series can be rcduced to 

stationarity by a simple transformation such as detrending or differencing. This is a very well 

discussed and somewhat disputed topic in the literature. For example, Harvey (1989) accepts 

that some economic and social time series may be made approximately stationary through 

differencing but warns that if nonstationarity arises through a structural change in the series 

the model will be likely to break down in forecasting. In the case of the ARIMA model, he 

highlights the problem associated with the identification of the order of the autoregressive and 

moving average components of the model. The problem is that if the time series has a linear 

trend component, then differencing will yield a stationary time series but the invertibility 

conditions required for the ARIMA representation (Box and Jenkins, 1976) will be broken. 

To address the problem of the presence of a linear trend in the time series two different types 

of stationarity were defined by Kang (1990): a time scries may be trend stationary, where the 

trend is modelled as a deterministic function of time, or difference stationary, where the trend 

component is modelled as stochastic in nature. He also suggests the use of a composite 

transfer function model which accounts for the theoretical possibility of the presence of both 

deterministic and stochastic trends. Both Morrison (1976) and Dickey and Fuller (1979) 

develop techniques that employ statistical hypothesis testing to determine if a time series is 

trend or difference stationary. The null hypothesis that a time series is difference stationary 

versus trend stationary is tested. In contrast Arellano and Pantulla (1995) test the null 

hypothesis that a time series is trend versus difference stationary.

The question over the stationarity transformations led some forecasters to develop modelling 

techniques that could handle nonstationary time series but that did not require the prior 

conversion to a stationary time series (Kitagawa and Gersch, 1984; Harvey and Durbin, 

1986). These models are called structural time series models, also referred to as unobserved 

components models (Young, 1994), and the development of these models is dealt in Section

2.5.2. Alternatively, other forecasters rather than criticising the application of the 

transformation acknowledge the ambiguity associated with the selection of an appropriate 

differencing order and present techniques for its determination. For example, Chen and Jarrett 

(1991) present a hypothesis based technique that involves checking for the presence of unit 

roots to check the order of differencing. Their test also indicates if a Unear trend should be
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included in the model, thus addressing the problem that Harvey (1989) and Kang (1990) 

highlighted. Alternatively, Chang and Dickey (1994) develop a technique to recognise when 

overdifferencing has occurred, where this method is based on the examination of the inverted 

autocorrelation function (IACF). Frances (1991) also examines the problem of 

overdifferencing in the case of a seasonal monthly time series. He presents a test to check for 

seasonal unit roots and proposes an alternative to the SARIMA model (2.19) which uses first 

order differencing with the seasonality modelled with a constant and 11 seasonal dummy 

variables.

In Chapter 3 of this thesis a nonstationary seasonal weekly electricity demand time series is 

examined where, rather than using statistical tests to check for the type of stationary, three 

different types of modelling techniques were employed to handle the nonstationary. In the first 

case the trend component is removed from the time series , through detrending (Ljung, 1987), 

and a high order (to account for seasonality) AR (2.17) and ARMA (2.18) model is then fitted 

to the data. The second case uses the traditional Box-Jenkins methodology to model the 

scries, where differencing is applied at the nonseasonal and seasonal level of the series to 

convert it to a stationary one and then a relatively low order SARI model is fitted to data. The 

third approach does not involve the use of transformations to induce stationary but uses a 

structural model in which the trend and seasonal components are allowed to slowly vary over 

time.

2.5 State Space Time Series Methods

2.5.1 Background

The motivation for the development of the structural time series models has been discussed in 

Section 2.4.6. The Box-Jenkins SARIMA model represents the differenced observed time 

series as a stationary stochastic process, whereas in contrast, the structural model does not 

attempt to represent the underlying data generation process but uses individual models to 

represent salient features within the time series, such as trend, seasonal or cyclical 

characteristics. Therefore, both the SARIMA and structural models deal with the presence of 

trend and seasonality in a time series but do so in a different manner. The SARIMA model 

removes the trend and seasonality through differencing, whereas the structural model uses a 

separate model to estimate the trend and seasonality. Harvey (1989) shows that the simplest 

form of structural model (linear and time-invariant) has a corresponding SARIMA model 

representation, where they are equivalent in that the SARIMA model will produce identical
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forecasts to the structural form. Box et al (1987) present an SARIMA model based approach 

for estimating the trend of a seasonal time series, where they derive an equivalence 

relationship between this trend estimate and that of the trend component in the structural 

model. Espasa and Pena (1995) also carry out similar work to Box et al in which the forecast 

function of the SARIMA model is broken down into a permanent term (produced by the 

model’s nonstationary operators) and a transitory term (produced by the model’s stationary 

operators). The permanent (nonstationary) term can be further broken down into trend and 

seasonal components and the transitory (stationary) term into a seasonal and nonseasonal 

term.

The key to handling the structural time series models is their formulation in state space form, 

where the state of the system represents the various characteristics of the time series. The 

Kalman filter (1960) is used to estimate the states, with future predictions obtained through 

the extrapolation of the components into the future. It also possible to formulate the SARIMA 

model in state space form (Annsley and Kohn, 1985) but the classical representation is that of 

a stochastic difference equation. Before going on to describe the structural state space models 

the equations for the general state space model for a univariate time series are given.

The observation equation of the general state space model for a time series y(k), k= 1, ,N is

given by

y(k)  = Hx(fc) + e(k)  (2.37)

where H  is an 7 x n  matrix and die) is a serially uncorrelated disturbance term with zero mean 

and variance crE2. In general the elements of x(k), the state vector, are not observable but are 

known to be generated by a first order Markov process (Harvey, 1989) and are described by 

the state equation which is given by:

x( k )  -  Fx(k  -  1) + Gri(fe) (2.38)

where

• F  e R'an and is called the state transition matrix.

• G e i T *

• ?/(/:) g Rsxl is a vector of serially uncorrelated disturbances with a mean

of zero and a covariance matrix Q, that is, vd£(r}(k)) = Q.
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The matrices H, F, G and Q are called the system matrices which are assumed to be non­

stochastic and if they do change with time it is assumed that they do so in a deterministic way. 

If they do not change with time the model is said to be time-invariant. Two assumptions are 

made regarding the state space system. The first is that the disturbances and the initial state 

vector are normally distributed, thus ensuring that the model is linear. Therefore, based on 

this assumption the initial state vector x(0) has a mean Xo and a covariance matrix P0, that is 

£ ( x (()))=X q and Var(x(0))=P0. The second assumption is that the disturbances s(k) and r\(k) 

are uncorrelated with each other for all k and are uncorrelated with the initial state. The 

Kalman filter is a recursive algorithm which may be used to compute the optimal estimate of 

the state vector at time k, based on observations up to and including y(k). The system 

matrices and x« and P0. are assumed to be known at all k. The Kalman filter equations for a 

time-invariant model are presented in Appendix 1 and derivations of the algorithm can be 

found in numerous works such as Gelb (1974), Anderson and Moore (1979) and in Kalman’s 

(1960) first paper on the subject.

Given the optimal estimate of x(k)  at sample k, an /-step-ahead forecast of the series may be 

obtained through the following:

• k represents the forecasting origin

• I represents the forecasting lead time

• \(k  + l / k ) is the estimate of the state vector at sample k+l given the state

estimate at sample k

• y(k + 1 / k) represents the forecast of the time series at sample k+l.

2.5.2 State Space Structural Time Series M odels

2.5.2.1 Univariate Structural Models

The univariate structural model (Harvey and Durbin, 1986; Harvey, 1989; Harvey, 1984) 

employed for the work carried out in this thesis is given by the following equation:

x (k  + l f k ) =  F'x(fc) 

y(k +1 / k) = Hx(fc + 1 / k)

(2.39)

(2.40)

where

y (fc ) =  H-(fc) +  Y (fc ) +  £ (fc ) (2.41)
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where

• jj(k) represents trend component

• y(k) represents the seasonal component

• e(k) is a zero mean random disturbance term with variance cre2.

The disturbance term may be interpreted as an irregular component in the time series or as a 

forecast error.

The trend component may be modelled by the following random walk model:

where rj(k) and £(k) are mutually uncorrelated white-noise disturbance terms with zero mean 

and variances given by a ,,2 and c>2 respectively. The variances affect the stochastic 

movement of the trend component, where the larger the variance the greater the stochastic 

movement. The disturbance term rj(k) allows the level of the trend to move up and down, 

whereas £(k) allows the slope of the trend component to change. In formulating a model for 

the seasonal component the assumption is made that the sum of the seasonal effects is zero, 

this may be achieved using the following model which is referred to as a dummy seasonal 

model:

where co{k) is a zero mean random disturbance term which allows the seasonal effects to 

change over time, with the variance of coik) given by a,j52. The larger the value of a ro2 relative 

to ctk2 the greater the discounting of past observations in the construction of the seasonal 

pattern for the model. The equations given by (2.42) and (2.43) may be combined and 

formulated in state space form to yield the Basic Structural Model (BSM) with a dummy 

seasonal component given by:

H(Jt) =  H, (k - 1) +  P(jfc - 1 )  +  r |( k )  
P(*) = P(*-1) + C(*)

(2.42)

Y(k) = ~ Y ,y ( k -  j) + m(k) (2.43)
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H(k) 1 1 0 0 . . 0 l i ( k - 1) rj(k)

P ( k ) 0  1 0 0 . . 0 j3 (fc - 1) C(k)

Y(k) 0  0 - 1 - 1 . . - 1 Y ( k - 1)
1

co(k)

Y ( k ~  1) 0  0 1 0 . . 0 Y ( k -  2)
T

0

• • • . . 0 • •

Y ( k - ( s - 1)). _0 0 0 0 . 1  0 . , Y ( k - ( s -  2)). 0

y(k) = [1  0 1 0 . 0  0  0]x(A:) + e(fc)

(2.44)

Alternatively, the seasonal component may be represented by a set of trigonometric terms at 

seasonal frequencies = 27r̂ / ,  j  = 1,......y2, defined as:

M
y ( k ) = 2 ^ y j ( k )

i =1

(2.45)

Yj (k) = Y j ( k ~  1)  cos A,- +  y*j (k - 1) s in  +coj (k) 

Y*j(k) = Y j ( k  ~ 1)  s in  A,- +  y*(k  -  l)c o s /ty  +  co* (k)
7 = 1........ ,l/i] (2.46)

where co(k) and coj (k) are zero mean white-noise disturbance terms which are uncorrelated. 

Equations (2.45) and (2.46) make the trigonometric seasonal model. Note that y*(k) appears 

as a matter of construction in order to form y/k) and therefore does not have any real physical 

meaning. In addition, when s is even the j  = s/2 component of A,- becomes n  and y*(k) is not 

required for this frequency. It is possible to assign different variances to co(k) and co/(k) 

which would allow each harmonic to evolve at varying rates. However, in practice, the 

number of parameters can be greatly reduced without affecting the goodness of fit of the 

model if all the variances are assumed to be equal; that is

var(cc>j(k))=var(a>j (k))=am h i ,  As/2] (2.47)

As in the case of the dummy seasonal component the larger the value of o(a the more past 

values are discounted in constructing the seasonal pattern. Equations (2.42), (2.45) and 

(2.46) may be combined and formulated in state space form to yield the BSM with a 

trigonometric seasonal component. The full state space is given as follows:
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H ( k ) " i 1 0 0 0 ■ • 0 H i k - 1) r ] ( k )

m 0 1 0 0 0 • • • 0 P ( k - 1) m

7 i ( * ) 0 0 COS 4 s in  .3, 0 „ , 0 r i ( * - D o \ ( k )

r i  ( * ) 0 0 - s i n  4 COS/I, 0 . . . 0 y * ( f c - 1) o \ ( k )

.
•

0 0 ♦ . . .
+

0 0 0 0
C0 S V 1) s i n V D

0 0
W * - ! ) % ■ » ( * )

r ^ c * ) 0 0 0 0
- s i n v 2- l ) C0 S V i )

0 0

y  , ( k ) o o o o o COS Ay s i n  A , 6) % ( k )
n

r i w 0 0 0 0 • 0 - s i n ^ C O S ^ / .  # * >  .

X*) = [l 0 1 0 . . .  1 o] x ( k ) + E ( k )  (2.48)

2.52.2 Multivariate Structural Model

The structural model of (2.41) may he expanded to include exogenous variables, referred to as 

a Basic Structural Model with Exogenous input (BSMX) model, where this model is written 

as follows (Harvey, 1989):

y(k)= n(k)  + y(k)  + u T(k)g+£(k) (2.49)

where the vcctor u(fc) is an na x 1 vector containing the exogenous variables, while the nu x 1 

vector g contains the unknown parameters associated with them. Thus a linear combination of 

uT(fc)g has been added to the model. The assumption is made that the relationship between 

y(k) and u(k) is a linear one. The trend and seasonal component may be represented by (2.44) 

or (2.48). The state equation given by (2.37) may be rewritten in terms of (2.49) as

y(k) = Hx(fc) + u r (k)  g + e(k) (2.50)

for k = 1,.....,N. If g were known, the addition of u (k)g would make no real difference to the

operation of the Kalman filter. However, in the majority of cases g will be unknown and for 

the purposes of estimating it g is augmented into the state vector x(k). Therefore, the state 

space form is given by:

y(k) = [ h 3 ur ]
x(fc)

,g (*)J
+ e(k) (2.51)

x(k) F o" x(fe -  1)
—

_g(* -  !).
+ G

_g(*)_ . 0 I . 0
(2.52)
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where k = 1, ,N  and F, G and H are of the form given in (2.44) or (2.48) depending on

which model is being employed to represent the trend and seasonal component. The vector

r\(k) = [r|(fc) C,(k) co(k) 0 0 .... 0]T if (2.44) is used to represent the trend and seasonal

component and r\(k) = |r|(/;) Cfjc) co^) « i*(k)....  ffls/2(fc)]T if (2.48) is used to represent the

trend and seasonal component. Lagged exogenous variables can be introduced, where the 

state equation given by (2.50) becomes

y(k)  = n( k )  + y( k )  + ^ u T( k - b ) g b +e(k)  (2.53)
b=0

where b is the lag between the y(k) and the variables in u(fc) and g* represents the unknown 

parameter vector associated with u(fc - b).

2.5.3 Structural M odel Estimation

The estimation of the state space structural model given by (2.44), (2.48) and (2.50) involve 

the estimation of the variances of each of the stochastic disturbance terms in the vector = 

{(T02, Grp2, Ofy, crm2}, where the parameters in v|/ are referred to as the hyperparameters of the 

model. The estimation of the hyperparameters may be carried out using maximum likelihood 

estimation via the prediction error decomposition. The prediction errors are computed using 

the Kalman filter which is run as a function of \\r and then the likelihood function is maximised 

with respect to y , where this is usually carried out using a suitable numerical optimisation 

routine, such as the Gill-Murray-Pithfield quasi newton algorithm (Harvey, 1981). The 

estimation procedure is an iterative procedure which may be described by the following steps:

1. Run the Kalman filter as a function of = {cr02, cr02, a02, cr02} and 

compute prediction errors required to compute the likelihood function.

2. Compute the likelihood function, L(\|/).

3. Maximise the likelihood function L(\|/) with respect to \y.

Steps 1 to Step 3 are iterated upon until the optimal values of v|/ = {crj, cr02, crj2, a 2) are 

determined. Appendix A presents the Kalman filter equations for a general state space model 

and also describes the maximum likelihood estimation and the prediction error decomposition 

methods.
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2.5.4 Literature Overview

There are a number of indicative examples in the literature of the application of structural 

state space models. An early example is that of Harvey and Durbin (1986), in which they 

present a case study of structural time series modelling applied to monthly road casualty rates 

in Great Britain. The paper deals with the full formulation of their proposed structural time 

series model with a trend, seasonal and irregular component. The Kalman filter is employed 

to compute the maximum likelihood estimates of the hyperparameters of the model. Only 

brief details of the estimation procedure are given. The multivariate case is dealt with where 

the BSM model is extended to include explanatory variables. For comparative purposes they 

also develop ARIMA models and obtain comparable results in terms of forecasting accuracy. 

However, they argue that the structural time series modelling procedure offers a more direct 

and transparent approach than the Box-Jenkins methodology and question the Box-Jenkins 

assertion that a nonstationary time series can be made stationary through differencing. In 

addition, they suggest that in contrast to the majority of cases the use of an ARIMA model in 

this particular application was relatively straightforward to deal with since an “Airline” model 

(Box-Jenkins, 1976) was fitted to data, where the identification of this model is considered a 

less complex procedure that alternative models.

In the work carried out in the thesis a SARI model (2.19) and a structural model were fitted to 

weekly electricity demand data. The structural model produced more accurate forecasting 

accuracy results, with the added advantage that the development effort involved was less 

complex in comparison with the development of the SARI model. However, the Box-Jenkins 

and structural models developed in the weekly electricity demand application were also 

employed in the work involving a neural network analysis. The results showed that the neural 

networks based on the SARI (2.19) and BJTF (2.22) models produced considerably more 

accurate results than those based on the structural models. It is the opinion of the author that 

the development effort required to identify a linear Box-Jenkins model is worthwhile if the 

model is used in conjunction with a nonlinear modelling tool such as neural networks.

The paper by Harvey and Durbin (1986) does not include details of the estimation techniques 

for the structural models. Harvey (1989), however, provides full details of the estimation 

methods in both the time and frequency domain. In this book he also deals with the 

development of the BSM models for the univariate time series; the extension of the BSM 

model to the multivariate case and model adequacy testing. Harvey and Peters (1990) discuss 

different estimation techniques for the structural time series models in the both the time
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domain and the frequency domain. They compare the estimation procedures using six 

macroeconomic time series and also using the well known airline data series (Box-Jenkins, 

1976). The procedures are compared according to forecasting accuracy results; computation 

time and reproducibility of estimates. They conclude that the results obtained by the time 

domain and the frequency domain methods are comparable, however the frequency domain 

methods appear computationally faster.

An even earlier example of the structural state space modelling approach was developed by 

Kitagawa and Gersch (1984), where the origins of this work can he found in Kitagawa 

(1981). In the approach given in this paper they decompose the observed time series into the 

following components:

• Additive local polynomial trend component.

• Seasonal component.

• Globally stationary autoregressive component.

• Observation error component.

Each component is characterised by a stochastic perturbed difference equation constraint. 

Prior knowledge of the time series is used to construct the constraint equation which is 

formulated in state space form,. A number of different models, characterised by alternative 

constraint equations, are constructed and the Kalman filter is used to compute the likelihood 

for each of the different models. Akaike’s (1973, 1974) minimum AIC (Akaike Information 

Theoretic Criterion) procedure is used to determine the best of the alternative models fitted to 

the data. A fixed interval smoothing algorithm is applied to obtain smoothed estimates of the 

components and an /-step ahead forecast is obtained by repeated application of the Kalman 

filter recursion equations I times. The authors compare their approach to the Box-Jenkins 

modelling procedure and argue that their approach is semiautomatic whereas the Box-Jenkins 

approach requires extensive human intervention to achieve satisfactory modelling. It has also 

been the experience of the author that in comparison to the structural modelling approach that 

the Box-Jenkins modelling procedure requires a considerable amount of user interaction in 

order to develop a parsimonious forecasting model.

Ng and Young (1990) in their approach to structural time series modelling use similar models 

to those developed by Harvey (1986, 1989), however they use a different method of 

identification and estimation of the models. The method involves a spectral decomposition 

procedure which is based on the exploitation of recursive smoothing algorithms. The
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technique involves the decomposition of the time series into various quasi-orthogonal 

components, where typical components are trend, signal, stochastic perturbation, seasonal and 

irregular. Subsequently, it appears to be straightforward to identify and estimate models for 

these components using recursive time-variable parameter estimation (Young, 1984, 1989; Ng 

et al, 1988). Examples of the models used include:

• IRW (integrated random walk) for the trend component.

• GTF (general transfer function) model for the stochastic component.

• PRW (periodic random walk), DPRW (differenced periodic random walk) 

or DHR (dynamic harmonic regression) model for the seasonal 

component.

The papers by Young and his co-workers (1984, 1988, 1989) present the full spectral 

decomposition technique and illustrates the use of the technique on a number of examples. A 

UK electricity demand (quarterly 1960 - 1985) example with outliers is given, where it is 

shown that the model performs well in the presence of the outlier. This technique is also dealt 

with in Young (1988); Young (1994); Young et al (1989); Young et al (1991). It has been 

the experience of the author that although the structural models developed by Young et al 

produce comparable results to those developed by Harvey, the estimation of the model using 

spectral decomposition techniques is computationally less demanding but requires more user 

interaction and development effort. Therefore, the Harvey structural models (2.44, 2.48, 

2.50) were employed for the applications dealt with in the thesis since they required a 

reasonable amount of computation effort and were less complex to develop.

2.5.5 State Space ARM A and ARIM A M odels

It is also possible to formulate the ARMA (2.18) and SARIMA (2.19) models in state space 

form. Jones (1990) presents the formulation of an ARMA process in state space form. The 

full procedure for evaluating the likelihood function using the Kalman filter recursion 

equations is given. The likelihood function can be used to obtain maximum likelihood 

estimates of the autoregressive and moving average coefficients. The variance of the 

observation error and random input process can also be computed from the likelihood 

function. Annsley and Kohn (1985a, 1985b); Kohn and Annsley (1986, 1989) also develop 

the state space formulation of the SARIMA model. They develop efficient modified Kalman 

filtering and smoothing algorithms which take advantage of the SARIMA state space form. 

The modified filtering and smoothing algorithms may be used to calculate the likelihood
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function for a state space model with incompletely specified initial conditions, for example, 

when the time series is subject to missing observations. Harvey and Pierce (1984) obtain a 

state space representation for an SARIMA model and show how to obtain the maximum 

likelihood estimates of the parameters of the model.

2.6 Neural Networks

2.6.1 Background

The study of neural networks originates from work in the area of artificial intelligence where 

attempts were made to define a computational model to simulate the brains thinking process 

(Roseriblat, 1962). A neural network consists of a number of simple node (neuron) elements 

that are connected together to form either a single or multiple layers. The basic node element 

employed in a neural network differ according to network type. However a commonly used 

model is the form of the McCulloch and Pitts neuron (Aleksander, 1991) shown in Figure 

2.12.

Figure 2.12 Outline of a basic McCulloch Pitts neuron

Associated with each of the interconnecting input links in a neuron is a weight value w,. Each 

neuron computes the weighted sum of its inputs and adds a bias value, b, where inputs come 

in the form of data either from outside of the network, for example a representation of what 

the network is required to model, or from other network elements, possibly from outputs of 

neurons in previous layers. This sum is then passed through a nonlinear function called an 

activation function /(.) to yield the output of the neuron Uj. The strengths of the weights 

between the nodes and the bias value are determined through network learning. The learning 

procedure can make use of an individual data set, after which the network weights are fixed, 

or learning can continue through the network’s lifetime. In certain types of networks learning 

is directed, referred to as supervised learning, whereas other networks learn in an 

unsupervised manner. There are many different types of neural network that vary according
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to factors such as: type of input, network structure and the type of learning procedure adopted. 

Some examples are the Hopfield network (Hertz et al, 1991); the Hamming network 

(Lippmann, 1987), the Multi-Layer-Perceptron (MLP) (Hecht-Neilsen, 1990), the Radial 

Basis Function (RBF), (Hush and Horne, 1993) and Kohonen Self Organising Feature Maps 

(Anderson and Rosenfeld, 1988).

2.6.2 Neural Networks for Time Series Forecasting

For time series forecasting purposes a neural network may be considered as a data processing 

technique that maps some type of input stream of information to an output stream of data 

(Azoff, 1994). In linear time series forecasting a linear relationship is formed between past 

and future values of the time series. Nonlinear time series forecasting usually involves 

forming a constrained nonlinear relationship (Chen and Billings, 1989; Gooijer and Kumar, 

1992). Neural networks provide an unconstrained nonlinear modelling technique where a 

general nonlinear mapping is formed between some subset of past time series values and a 

future time series value. Temporal information may be presented to the network by a time- 

lagged vector of time series data at the input, often referred to as a tapped delay line, with the 

current value of the time series at the output as shown in Figure 2.13.

y( k)

N e u r a l  N etw ork

y ( k - 1 )

i J

y ( k - 2 ) y ( k - 3 ) • • • • y ( k - n )

T a p p e d  D e l a y  L i n e

Figure 2.13 Time series neural network

The diagram in Figure 2.13 describes the univariate case; it is straightforward to extend this to 

the multivariate case. In the multivariate case the input is made up of past values of the time 

series of which the forecast is required but also on present and past values of the other 

exogenous variable time series. In contrast to the linear case where significant development 

effort is required at the identification stage, particularly in the case of the BJTF models (2.22), 

it is the relative ease at which the multivariate case may be dealt with using neural networks 

that makes them an attractive modelling tool for time series forecasting. It is also possible to 

introduce feedback into the network (Hush and Horne, 1993) by including a second tapped 

delay line through which the output of the network is fed, where this is shown in Figure 2.14.
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Figure 2.14 Time series neural network with output feedback

A widely applied neural network structure in the area of time series forecasting is the MLP, 

where the configuration given in Figure 2.13 is the most common approach (Park et al, 1991; 

Tang et al, 1991; Wong, 1991; Chakraborty et al, 1992; Chen et al, 1992; Weigend and 

Gershenfeld, 1992; Lu et al, 1993; Rogers and Vemuri, 1994; Papalexopoulos et al, 1994; 

Azoff, 1994; Lachtermacher and Fuller, 1995; Beltratti et al, 1996). An MLP is a network 

that consists of a layer input nodes; a layer of output neurons and one or more layers of hidden 

neurons sandwiched in between, with a description given in Figure 2.15

Figure 2.15 Structure of an MLP with two hidden layers

The type of neurons used in the MLP are of the form described in Figure 2.12. The MLP is 

known as a feedforward network, where a set of data is presented at the input layer; the 

outputs from this layer are fed to the first hidden layer and subsequently the outputs from the 

first hidden layer are fed to the second hidden layer, where this process continues until the 

output layer is reached. Rummelhart et al (1986) developed a learning algorithm for MLP’s, 

called the backpropagation algorithm, to determine the weights and biases of the network. 

The MLP is a supervised learning network where each output layer value is compared with a 

desired or specific value and the weights and biases of the network are adjusted so as to
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minimise the difference between the two. There are a number of different factors involved in 

the specification of an MLP, where these are as follows:

• the number and type of input nodes.

• the number of output neurons.

• the number of hidden layers.

• the number of neurons in each hidden layer.

• the type of neuron activation functions.

2.6.3 Literature Overview

2.6.3.1 Neural Networks for Time Series Forecasting

There are many works that deal with the specification of MLP networks, one such paper is the 

tutorial paper published by Lippman (1987). In this he discusses the MLP and also several 

other different neural networks, such as, the Hopfield network, the Hamming net and the 

Carpenter/Grossenberg classifier. Regarding the MLP he addresses issues such as the number 

of layers required and the conditions under which good generalisation can be achieved. He 

recommends that MLPs with one hidden layer are sufficient to solve arbitrary complex input- 

output mappings with typically three times as many hidden neurons as input nodes. Hecht- 

Neilsen (1990) also considers the same problem and suggests that a network with one hidden

layer that has 2N+\ hidden neurons, and with continuously increasing nonlinear transfer

functions, can compute any continuous input function with N  input nodes. However, in 

practice it has been found that these rules may not be easily implemented (Hunt and Sbarbaro, 

1992). To date, there is still no firm theory or even a set of heuristic guidelines for the design 

of MLPs and it is very much an area of active research (Hertz et al, 1991; Villiers and 

Barnard, 1992; Hush and Home, 1993; Cottrell et al, 1995).

A number of works suggest the use of Unear statistical techniques to determine the input 

structure to the MLP, examples are Chen et al (1992), Peng et al (1993), Papalexopoulos et 

al (1994), Hegazy and Salama (1994) and Lachtermacher and Fuller (1995). The latter three 

works are appUcations based papers, whereas the former attempt to present a procedure for 

the general case. A similar approach is also used in the work carried out in this thesis, where 

MLP network are used when forecasting weekly and yearly electricity demand. In contrast to 

the work developed here, the work carried out by Hegazy and Salama (1994) and 

Lachtermacher and Fuller (1995) only deal with the use of autoregressive variables of the time
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series in the input structure and do not address the case where exogenous variables are 

employed. Chen el al (1992), Peng et al (1993) and Papalexopoulos et al (1994) do use 

exogenous weather variables in the input structure but unlike the applications in this thesis 

they deal with STLF. Hegazy and Salama (1994) give a brief and somewhat unclear 

description of a procedure to determine the input variables (input nodes) for a neural network. 

It involves the identification and estimation of AR and ARI models, where the minimum AIC 

criterion (Akaike, 1973) is used to choose the model order that determines the number of input 

nodes for the neural network. Lachtermacher and Fuller give a much more detailed 

description of their proposed procedure that involves the following:

Step 1. Exploratory phase
1.1 Plot time series look for trend, seasonalities, outliers, plot SACF (2.8).

1.2 Box-Jenkins modelling.

Step 2. Modelling Phase

2.1 Use Box-Jenkins model to determine the input variables to the network.

2.2 Use heuristic guidelines from literature to set number of units in hidden layer.

2.3 Set weights by backpropagation; stop when forecasting performance is 

achieved.

2.4 Overfitting analysis: repeat 2.3 for networks with slightly different numbers 

of inputs and hidden units.

2.5 Select model from 2.3 and 2.4 having best performance.

The paper discusses the various MLP design criteria that are involved in the modelling phase 

(Step 2), such as: the learning rule; training and validation procedure; network architecture; 

performance criterion (RMSE) and overfitting analysis . They demonstrate the application of 

the procedure on two types of time series: stationary nonseasonal time series and 

nonstationary nonseasonal time series. Similar to the work developed in the current study, the 

nonstationary nonseasonal time series are yearly electricity demand, where four applications 

from different countries are examined, that is United States, Canada, Brazil and Australia. 

They suggest that their future work should involve the analysis of seasonal stationary and 

seasonal nonstationary time series. The work dealt with in this thesis specifically deals with a 

neural network application for modelling a nonstationary seasonal time series.

Network structures other than the MLP are also applied to the area of time series forecasting. 

For example, Peng et al (1993) use a neural network, referred to as a Widrow model, where 

this network is similar to an MLP but has different network architecture and a different
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learning rule. Other networks are the recurrent neural network (Figure 2.10), this is a 

feedforward network with feedback (Connor et al, 1994; Jin et al, 1994) and the radial basis 

function network (Zaknich and Attikiouzel, 1994; Hudson et al, 1994). Note that Giles el al 

(1994) present a summary of the published literature in the area of recurrent neural networks.

The comparison of the accuracy of the forecasting results obtained using statistical Unear 

models with those obtained using neural networks is dealt with in some works (Sharda and 

Patil, 1990; Tang et al, 1994; Blake el al, 1995). Sharda and Patil (1990) present results of a 

comparison between forecasts produced by neural networks and Box-Jenkins models. The 

results from seventy five series, (selected from the M competition data set (Makridakis, 1982)) 

where single-step-ahead forecasting of 8 yearly, 18 quarterly and 49 monthly series is 

conducted, are compared. The neural network used was a three layer peceptron with one 

hidden layer, and the same number of neurons in the hidden layer as input nodes. Using the 

mean absolute percentage error as a criterion the neural networks performed at least as well as 

the Box-Jenkins models. They suggest that as only simple neural network models were 

employed that the case for the use of neural networks in time series forecasting looks 

promising. They plan to carry out a similar analysis but where multi-step-ahead forecasting is 

performed. Note that multi-step-ahead forecasting is carried out using Box-Jenkins analysis 

and neural networks in the work conducted here.

Blake et al (1995) compare the forecasting ability of different neural network models with 

genetically identified univariate SARIMA Box-Jenkins models. The construction of the 

SARIMA models involve the use of a genetic algorithm to carry out the identification stage of 

the Box-Jenkins methodology. Three different neural network designs are used:

1 . traditional feedforward network.

2 . feedforward network with jump connections.

3. recurrent network.

They conduct the analysis using the 7 time series that Box and Jenkins (1976) deal with in 

their book. Short, medium and long term forecasts are compared using the mean square error 

and the average relative variance as a criteria. The analysis shows that the optimal network 

design in terms of forecasting accuracy depends on whether the time series is stationary. 

Preprocessing, although not essential to outperform the Box-Jenkins models, may enhance the 

neural networks performance ability. The neural networks Blake et al (1995) outperform the 

Box-Jenkins models for all forecast horizons and all time series.
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Liu et al (1996) compare neural network, fuzzy logic and AR modelling applied to a STLF 

problem. The performances are evaluated through a simulation study where a 30-minute- 

ahead prediction is carried out. The fuzzy logic (RMS « 0.1 %) and neural network (RMS « 

1.0%) models outperform the AR model (RMS » 7%). The AR model is only accurate for up 

to a few minutes ahead and from then on the forecasting accuracy deteriorates very 

significantly.

Apart from neural networks, other intelligent techniques that have been applied to time series 

forecasting problems are genetic algorithms (Beltratti et a l , 1996; Yang et al , 1996); fuzzy 

logic (O’Sullivan, 1994) and knowledge based systems (Banim and Hodnett, 1991; Raham 

and Hazim, 1993). There are also examples of works that adopt a hybrid approach, for 

example, Jones (1993), Bornholdt and Graudenz (1992) and Beltratti (1996) all apply a 

hybrid genetic algorithms/neural networks approach, where the learning algorithm for the 

neural network is based on a genetic algorithm. Srinivasan et al (1995) apply a hybrid 

fuzzy/neural networks approach; here fuzzy logic is used to model the qualitative and 

quantitative knowledge about the system and its input parameters, where the neural network 

capture the relationship between the fuzzy inputs and outputs.

2.6.3.2 Neural Networks for Electricity Demand Forecasting

In the case of electricity demand prediction the most commonly dealt with applications are in 

the area of STLF. The general practice is the use of the MLP network, where examples of 

this are Bacha and Meyer (1992), Caire et al (1992), Tamura et al (1993) and Lu et al 

(1996). An advantage of neural networks over statistical models is the ability to model a 

multivariate problem without having to make complex dependency assumptions concerning 

the input variables. In the STLF problem it is well known that the load is dependent on 

weather factors (Bunn and Farmer, 1985). The majority of the neural network based works 

include weather and temporal input variables in the MLPs (Park el al, 1991; Chen et al , 

1992; Kermanshahi et al, 1993; Lu et al, 1993; Morioka et al, 1993; Onoda, 1993; Azzam- 

ul-Asar et al , 1994; Bakirtzis et al, 1996). In contrast to the linear analysis some of the 

works employ a relatively large set of weather and temporal influencing variables, examples 

of this are Kieman et al (1994) and Papalexopoulos et al (1994).

The use of neural networks as a modelling tool is a relatively new approach in the STLF 

domain, some of the earlier works are El-Sharkawi el al (1989) and Sobajic and Pao (1989). 

Consequently, a number of practical considerations regarding the design of neural networks
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for this problem need to be addressed and as a result, there are a large number of applications 

based works. In this thesis neural networks are not applied to the STLF problem but to the 

problem of weekly and yearly demand forecasting. To the authors knowledge there are no 

published applications based works in these particular areas, with the exception in the yearly 

case of Lachtermacher and Fuller (1995). It is difficult to ascertain if the specific optimal 

neural network design specifications in the STLF problem are analogous to those in the 

weekly and yearly demand problem. However, it is assumed that some general guidelines 

pertaining to the use of neural networks in the electricity demand forecasting area may be 

acquired from the STLF based works. Some of the contributions relevant to the work carried 

out in this thesis, for example, input data normalisation, input structure and the type of 

exogenous variables employed are now discussed.

Azzam-ul-Asar et al (1994) examine different input data normalisation and input patterns 

when forecasting the peak load of the day. They found that the normalisation procedures 

based on the maximum and minimum values from the given data set yielded forecasts with 

relatively high errors and could be difficult to train. Note that this normalisation approach is 

suggested by Azoff (1994). The network that produced the most accurate forecast used a 

normalisation procedure that involved dividing the data by one number greater than the order 

of magnitude of the largest value. In relation to the different input patterns they find that the 

ratio of free weights to training vectors is high. This ratio represents the extent to which the 

network can generalise from the training set as opposed to fitting the noise. They attribute this 

problem to the fact that a limited data set was available for the work. They propose that a 

larger and more representative data set would alleviate this particular problem. An interesting 

point to note in this work is that the most accurate forecasting result (1.96 % in univariate 

case versus 2.39 % in multivariate case) was achieved with a neural network that did not use 

weather variables in its input structure.

Lu et al (1993) examine if the neural network model that they use is system dependent and/or 

case dependent. They do so by predicting hourly load using data from two notably different 

power boards, one in Asia and the second in the South East region of the United States. The 

main differences between the power hoards are the following:

• the maximum (9875 MWh versus 2043 MWh) and minimum (2893 MWh versus 633 

MWh) values in daily load;

• the maximum (95°F versus 93°F) and minimum (46.4°F versus -23°F) hourly 

temperatures;
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• the typical yearly peak (August versus August and February).

They investigate if the neural network is case dependent by testing its ability to cope with 

weekends and holidays, seasonal changes and outliers. The input variables include weather 

and temporal factors that were selected based on prior knowledge of the system. Correlation 

analysis was used to determine the correlation between temperature and current /  past load 

and the SACF (2.6) is used to determine the correlation between the current load and past 

load. The input data was normalised using the maximum and minimum values of load and 

temperature in the data. Note that this is a technique that Azzam-ul-Asar et al (1994) found 

unsatisfactory. The main conclusions of the work are as follows:

• the criteria used to select suitable network inputs is system dependent;

• once the network is trained it does not need to be modified frequently;

• the network does not depend on the season of the year, except in cases where a change

in the season results in an abrupt change in the weather pattern;

• the neural network does not cope well with weekends and holidays;

• the networks are sensitive to outliers in the data (suggest filtering techniques as a

solution).

In Chapter 4 of this thesis neural networks are applied to weekly time series from two very 

different power boards where it will be shown that the neural networks are case dependent.

An important contribution of the work carried out by Papalexopoulos et al (1994) is the use of 

several nonlinear temperature input variables, such as HDD, CDD, when forecasting peak and 

hourly load system demand for the PG&E (Pacific Gas and Electric) utility. Their 

justification for using these inputs is that when using neural networks with Unear transfer 

functions in the output neuron and given the fact that most hidden neurons operate in the Unear 

state (as opposed to non-activated state and saturated state) the network performance was 

deteriorating at two ends of temperature range. Under these conditions the load changes with 

temperature at a quadratic rate, however the output of the neural network changes with 

temperature at almost a Unear rate. The use of CDD and HDD variables in the input resolved 

this problem. The neural networks used in the weekly demand appUcation, dealt with in 

Chapter 4, also use HDD variables in the input structure. The neural network results were 

compared to those obtained from an existing fully operational model employing complex 

regression based statistical modelling techniques. Extensive testing showed that the neural 

network consistently outperformed the existing system in terms of average error over a long
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period of time and number of larger errors. They also presented a successful neural network 

model that accounted for the holidays periods.

A summary of the main conclusions from the works by Papalexopoulous et al (1994), Lu et al

(1993) and Azzam-ul-Asar et al (1994) are as follows:

• the type of input data normalisation may have an effect on neural network learning 

capabilities,

• the use of exogenous weather variables may not always improve the short term load 

prediction,

• when weather variables are employed it may be advantage to use nonlinear variables 

such as CDD and/or HDD,

• the network structure is system dependent and

• neural network performance may be affected by weekend and holiday effects.

2.7 Multi-Time-Scale Modelling

A multi-time-scale modelling approach is developed in this thesis which may also be thought 

of in terms of the combination o f forecasts. For example, the weekly /yearly multi-time-scale 

application of Chapter 6 may be considered as the combination of forecasts produced by a 

time series model based on weekly observations with forecasts produced by a time series 

model based on a yearly observations. The literature available on the subject of combining 

forecasts may be split into two groups, the substantial bulk of which are based on the first 

approach.

1 . the combination of forecasts produced on the same sampling interval but obtained using 

different forecasting methods - single-time-scale combination of forecasts.

2 . the combination of forecasts produced on different sampling intervals combined on a 

chosen sampling interval - multi-time-scale combination of forecasts.

2.7.1 Com bining Single-Time-Scale Forecasts

The rationale here is that the combined forecast is generally more accurate than any of the 

individual forecasts as the combined forecasts takes more information into consideration 

(Mahmoud, 1984). In addition, it has been shown that the accuracy of the combined forecast 

improves as more methods are included in the combination (Winkler and Makridakis, 1983). 

The general approach is to form a restricted (Mills and Stephenson, 1985; Clemen, 1986;
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Holden and Peel, 1986) or unrestricted (Granger and Ramanathan, 1984; Mills and 

Stephenson, 1985) linear combination of the alternative forecasts. In the former case the 

weights of the linear combination are restricted by some constraint, for example that the sum 

of the weights add up to unity; whereas in the unrestricted case there is no such constraint. 

The weights of the combination are usually determined using least squares regression. 

Bordley (1982, 1986) obtains similar results to the aforementioned authors where he 

approaches the problem from a Bayesian perspective. Batchelor and Dua (1995) substantiate 

the generally proposed theory that combining diverse forecasts yields more accurate results 

than combining forecasts produced by similar methods and they develop a measure for 

assessing the benefits of combining a set of forecasts. Clemen et al (1995) and 

Chandrasekhar an et al, (1994) propose procedures to evaluate the worth of the combination of 

a particular set of forecasts prior to their combination. Donaldson and Kamshra (1996) and 

Shi and Liu (1993) present a neural network based approach to the nonlinear combination of 

forecasts and propose through test cases that the principle of nonlinear combination is 

superior to a linear combination.

2.7.2 Combining M ulti-Time-Scale Forecasts

The motivation here is similar to the single-time-scale case but the advantage of combining 

forecasts produced by models based on different sampling intervals is that one forecast may 

consider information or variables which the other forecast may not consider. In addition, one 

forecast may make different assumptions about the form of the relationships between the 

variables and thus may capture information which the other forecast may not. A limited 

amount of work has been carried out in this particular area of time series forecasting. 

Exceptions are Corrado and Greene (1988); and Fuhrer and Haltmaier (1988) who 

independently address the problem of combining a set of monthly and quarterly US economic 

forecasts for the Federal Reserve Board. Howry et al (1991) deal with a different set of US 

monthly and quarterly economic forecasts.

Corrado and Greene (1988) combine forecasts produced by a monthly econometric model, 

aggregated to a quarterly level, with forecasts produced by a quarterly econometric model. 

The approach extracts innovations from the aggregated monthly forecasts and uses Kalman 

filtering techniques to pass the innovations to the quarterly model forecast. This combined 

forecast can he revised each time actual monthly data becomes available They develop the 

technique and discuss problems which may be encountered during practical implementation, 

such as model nonlinearity and serial correlation between the monthly and quarterly forecast
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error terms. A full application is presented where the data set consists of a large set of 

endogenous and exogenous economic variables. It is shown that the combined forecasts yields 

significantly improved RMSE forecasting accuracy values («25%) over the original quarterly 

forecast. The important difference between this approach and the one presented in the thesis 

is that the forecasts are combined at the lower frequency level (quarterly level). However, 

Fuhrer and Haltmaier (1988) approach the same problem where similar techniques are used to 

produce the combined forecast at the higher frequency level (monthly level). They show 

(theoretically) that the combined forecast at the higher frequency level when aggregated is the 

same as the forecast which would have been obtained had it been combined at the lower 

frequency level.

Howry et al (1991) also combine monthly and quarterly forecasts produced by econometric 

models at the quarterly frequency level. They use the conditional expectation formulae for 

the multivariate normal distribution (Morrison, 1976) and develop an aggregation condition 

through which the quarterly and monthly variables are directly related. The application of the 

technique involves two steps: (i) the adjustment of the predicted monthly and quarterly 

forecasts so that they satisfy the aggregation condition, where this involves the use of the 

standard formulas for the multivariate normal distribution (Morrison, 1976); (ii) monthly 

updates of the combined forecast are performed by conditioning successively on the observed 

monthly values as they become available. They present an application of the technique based 

on economic data, where in general there is reasonable improvement in the RMSE forecasting 

accuracy over the original uncombined quarterly forecast.

2.8 Forecasting Accuracy Measures

A significant factor in the assessment of a time series forecasting methodology is its ability to 

predict future values of the time series with reasonable accuracy. There are many forecasting 

accuracy measures available, for example, Mathews and Diamantopoulos (1994) identify 14 

such measures. Unfortunately, there is an absence of a universally accepted measure of 

accuracy (Mahmoud and Pegels, 1989; Mathews and Diamantopoulos, 1994). Mathews and 

Diamantopoulos (1994) concentrate on the problem of the assessment of forecasting 

performance within a multi-product (multi time series) context, where they find that for this 

case the reliance on a single forecast error measure is dangerous.

This thesis is devoted solely to the prediction of electricity demand, with the exception of a 

UK fuel consumption example in Chapter 5. Consequently, the focus of attention is on the
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comparison of techniques used to produce forecasts of the one time series and considerations 

such as those outlined in Mathews and Diamantopoulos (1994) are not relevant.

For the most part, when comparing multi-step-ahead forecasting results four forecasting 

accuracy measures are employed. These are the Mean Square Error (MSE), one of the most 

commonly used measures in time series forecasting analysis, the Mean Absolute Error 

(MAE), the Mean Absolute Percentage Error (MAPE) and the Mean Percentage Error (MPE). 

Each of these are given as:

where a is actual, e = actual - forecast and n is the number of predictions carried out. The 

MAE and MSE measures are based on absolute errors and are thus scale dependent and the 

larger the value of the forecast the higher the value the measure are likely to be. Note that, in 

contrast to the MAE the MSE penalises large errors since it squares the error. The MAPE 

and MPE combine and average the percentage errors from the different time periods and 

provide an estimate of the forecasting accuracy over time. The MPE also indicates bias, 

where a negative value indicates forecasts that are on average higher than actual and positive 

values indicate forecasts that are on average lower than actual.

In the majority of cases the number of predictions in the forecast horizon will be greater than 

one, however in the case where a single forecast value is produced the percentage error 

associated with this forecast is given.

The neural network analysis conducted in Chapter 4 require the production of a large set of 

forecasting results that must be examined over three separate data sets (training, validation 

and prediction data set). Consequently, for the applications dealt with in this chapter only a

(2.54)

v MMAE = V —
i. n

(2.55)

n
(2.56)

n

n
(2.57)

n
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single forecasting accuracy measure, the MAE, is employed to compare the forecasting results 

over the prediction horizon.

2.9 Conclusion

In the literature time series forecasting techniques have been widely applied to the problem of 

electricity demand forecasting. This is particularly evident in the case of short term 

forecasting, where both statistical and neural network modelling techniques are well 

represented. Relatively speaking, medium and long term electricity demand forecasting 

problems are not dealt with in nearly the same depth. However, at present there is a 

requirement to address the problems associated with medium and long term forecasting in a 

response to changes in the market structures of the electricity supply industry in the developed 

world.

Also in response to the change in the operation of the electricity supply markets the problem of 

the production of electricity demand forecasts on a fine time scale over a long forecast horizon 

has become increasingly important. A solution to this problem is proposed in the thesis, 

where the problem is dealt with in terms of multi-time-scale modelling. It is the authors 

experience that there is little evidence of works that deal with time series forecasting problems 

based on multi-time-scales, with the exception of the papers discussed in Section 2.7.2. The 

proposed multi-time-scale technique requires a model which is in state space form and there 

are numerous examples of the formulation of such models in the literature.
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CHAPTER 3

W eekly Electricity Dem and Forecasting Using Exogenous W eather 

Variables

3.1 Introduction

This chapter investigates the use of exogenous temperature variables to improve the accuracy 

of weekly electricity demand forecasts carried out one year in advance. Depending on the 

climate in which the electricity supply system operates weather is expected to have a significant 

effect on weekly electricity demand due to the seasonal temperature changes throughout a given 

year. However, although temperature may be an important influencing factor it is not always 

the dominant one. It is also the purpose of this chapter to determine (he benefit of including a 

non-dominant temperature variable in a weekly electricity demand forecasting model. In 

addition, it investigates the optimal configuration of such a variable for both the dominant and 

non-dominant cases, where this involves the use of a heating degree day (HDD) variable 

calculated from an average temperature °C (AT) variable. To achieve the objectives, the 

analysis was carried out using data obtained from two notably different power boards 

operating in diverse global regions. The first of these electricity utilities is the Irish national 

power board operating an isolated network with peak load of 2500 MW, this system is referred 

to as System A. The second is a regional power board in Northern New Zealand (System B), 

operating a peak load of 14 MW. The Irish and Northern New Zealand climates are described 

broadly by the same climate region classification i.e. Temperate Oceanic, although due to the 

closer proximity of New Zealand to the equator the temperature here is moderately higher. 

Weather affects electricity demand in each system primarily through heating requirements, 

since cooling requirements (air conditioning etc.) are not a major factor. In the specific area of 

New Zealand in question, weather, although a major influencing factor, is not the dominant 

factor; electricity demand here is driven primarily by the agricultural and forestry industry. In 

Ireland on a national scale weather is the dominant factor. A comparison of the two power 

boards is summarised in Table 3.1;
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Table 3.1 Comparison of System A and System B

System A System B

Temperature dominant input Temperature non-dominant input

Operating in Temperate Oceanic climate Operating in Temperate Oceanic climate

Small Island National Power Board Island Regional Power Board

Ppntf IrvaH 9fV in M W Innrt 14 M W

There are several studies devoted to the use of exogenous variables in forecasting electricity 

demand. Train et al (1984), when forecasting monthly electricity sales using econometric 

models includes both HDD and cooling degree days (CDD) calculated at different base 

temperatures within the same model. For the systems dealt with here, only heating effects are 

significant and HDD calculated at the one base temperature is included in the model. They 

concentrate on finding the best method of calculating the weather variables to associate with 

monthly sales billing data and highlight the importance of finding an appropriate form of an 

input variable from the data available.

Harris and Liu (1993) include weather, demographic and economic variables in the Box- 

Jenkins transfer function models that they use to forecast monthly residential electricity 

consumption in Carolina, USA. The weather variables, HDD and CDD, are adjusted through 

the use of weighting factors for the geographic distribution of the customer. This geographic 

adjustment is due to the varying weather conditions throughout North (temperate) and South 

(sub-tropical) Carolina. In contrast, the small size and geographical conditions, in Ireland and 

in the New Zealand region in question, are such that a single set of temperature measurements 

recorded in one central weather station is sufficient for forecasting purposes, and thus no 

geographical adjustments are required.

Schneider et al (1985) when forecasting 24-hour loads utilise a temperature deviation variable 

which reflects the change in the load due to the weather being different than expected, it is 

calculated as the expected minus the actual (or forecast) temperature. He observed that during 

the heating season there is a base temperature above which a change in temperature had a less 

significant effect on the load than when the temperature falls below this base temperature. A 

similar but opposite effect existed during the cooling season. An effective temperature 

deviation was thus calculated taking this into account; this same effect is catered for here 

through the use of HDD the variable.
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Haida and Muto (1994) use a multivariate regression model to forecast daily peak load for the 

Tokyo Electric Power Company, where peak load depends on daytime temperature and 

humidity. They present a transformation technique (based on translation and reflection 

methods) to deal with the fact that the relationship between peak load and weather variables 

may be assumed to be linear in the summer and winter seasons but is nonlinear in the 

transitional seasons, i.e. spring and autumn. They use the basic forecasting model throughout 

the year and apply the transformation technique in the transitional seasons.

This chapter examines the relationship between electricity demand and HDD at different times 

of the year, specifically during the transitional months from spring to summer and summer to 

autumn and also during the summer months. In contrast to the work conducted in this chapter, 

the common factor in all of the above works is that the weather variables are considered to be 

dominant. However, only average temperature and HDD were considered here, whereas some 

of the above works consider the use of wind and illumination variables which may be 

significant in medium term forecasting, unfortunately this data was not available during the 

time of this study.

3.2. Description of Weekly Electricity Demand and Temperature Data

Weekly electricity demand (MWh) and AT, in degrees Celsius, are available from the from 4th 

April 1982 to 28th December 1991, a total of 508 points and from the 5th April 1980 to 25th 

August 1990, a total of 543 points for the System A and System B data sets respectively. The 

time series data for each system are presented below in Figure 3.1 to Figure 3.4; where the data 

has been scaled for confidentiality reasons. For each system, profiles for a single year only are 

also given to show more clearly the effect of temperature on electricity demand.
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Figure 3.2 One year for System A

Figure 3.3 System B electricity demand and AT

Figure 3.4 One year for System B
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The plots of the electricity demand for System A (Figure 3.1) and System B (Figure 3,3), show 

that each time series exhibits a slowly rising trend coupled with strong seasonality of regular 

amplitude. For both systems, the rising trend is due to the annual growth in electricity 

consumption resulting from social, economic and demographic influences. For System B, the 

seasonal characteristics are due to annual temperature profile variations but are also due to the 

cyclical consumption patterns of the seasonal industries, primarily the dairy industry. Figure

3.4 shows that the temperature decrease in the winter months has the effect of increasing the 

electricity demand, however, demand continues to increase at a rate greater than the 

temperature decrease, which is due to the dominant influence of the dairy industry. The peak 

of electricity demand (August) is not co-incident with the trough in temperature (July), instead 

this peak corresponds to the peak in dairy production which occurs in Spring, i.e. August - 

October. Temperature is therefore a non-dominant exogenous variable in this system. In 

contrast, Figure 3.2 shows that the cyclical variations for System A are attributed to the 

seasonal temperature patterns throughout a given year. For this system, temperature is clearly 

a dominant exogenous variable, where a peak in temperature yields a trough in electricity 

demand.

3.3 System Temperature Exogenous Variables

For each system it is possible to use the AT data to evaluate a heating degree day at a 

particular base temperature (HDDbasetemp). A HDDbasetenp is defined as follows:

If, AT < base temp then

=  J  base temp - AT
day

else

H D D b a s e t e m p  — 0

Figure 3.5 depicts HDDu for a typical summers day (System A) where the following are 

shown:

• AT on an hourly basis given by the solid line profile.

• the base temperature is givenby the solid horizontal line at 18°C.

• HDD is represented by the shaded area.
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3.3.1 Calculation o f HDD

The AT data is available on different time-scales for each systems; hourly AT is available for 

System A and daily AT is available for System B. If HDD is to be used in the electricity 

demand forecasting models then it is required on a weekly basis. There are a number of ways 

in which to calculate weekly HDD depending on the time-scale on which the AT variable is 

based and it is necessary to choose the most appropriate AT time-scale to use in the 

calculation. In addition, the calculation of HDD involved the selection of the base temperature 

appropriate to the system. The appropriate base temperatures may be different in each system 

due basic differences between the systems but also due to the different comfort levels of the 

people in each country. Therefore, there are two factors involved in the calculation of the 

weekly HDD data:

• the AT time-scale

• the base temperature

3.3.1.1 HDD Base Temperature

It was necessary to determine for each system the base temperature that yields the weekly HDD 

values that are the most highly correlated with electricity demand. Therefore, the correlation 

between weekly electricity demand and weekly HDD using different base temperatures were 

compared. The correlation coefficient (Priestly, 1981) of electricity demand with each of the

weekly HDD figures calculated using the base temperatures in the interval 14°C - 21 °C were 

computed, where the objective was to select the base temperature which yielded highest 

correlation coefficient. The correlation coefficient results are given in Table 3.2.

Table 3.2. Correlation coefficients for electricity demand and HDD

System Base Temperature
14°C 15 °C 16°C 17°C 18°C 19°C 20°C 21°C

A 0.85 0 .8 6 0 .8 6 0 .8 6 0.87 0.85 0.85 0.85
B 0.49 0.50 0.50 0.50 0.51 0.50 0.50 0.50
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The results show that the correlation coefficients do not vary greatly across the base 

temperature range. However, using these results it was possible to select the base temperature

that yielded the highest correlation coefficient for each system, that is 18°C. It can also be 

seen that the correlation coefficient values are higher for System A than for System B since 

temperature is a dominant exogenous variable in this system.

3.3.1.2 AT Time-Scale Used in HDD Calculation

Different methods may be used to calculate HDD depending on the AT time-scale available. 

For example, if AT is available on an hourly basis then weekly HDD may be calculated as 

follows:

Method 1: AT time-scale = hourly

I f  fo r  each hour, hourly AT < base temp then

= basetemP - hourly average temp

else

endif

HDDh v = 0hourly contribution

_lTibulion Jdaily  contribution r* * J H D D  hourly contribution

00:00

daW7

HDD = J HDD,.,
weekly contribution *  daily cnfnbuUon

d a y l

(3.2)

If AT is available on a daily sampling period then HDD may calculated as follows:

Method 2: AT time-scale = daily

I f  fo r  each day, daily AT < base temp then

HDDd^wboiio. = basetemp - daily average temp

else
HDD = 0daily contribution

endif
dâ7

HDD = I HDD„ , lrW.weekly *  daily contribtuion

d a y l

(3.3)

Alternatively, using AT on a weekly basis the HDD may be calculated using:
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Method 3: AT time-scale = weekly

I f  fo r  each week, weekly AT < base temp then

H D D ^ = (base temp - weekly average temp) * 7 (3.4)

else

endif

In the case of System A all three methods may be used. The first method may be employed 

directly using the hourly AT; the use of the second method involved the prior calculation of 

daily AT values using the hourly data and the use of Method 3 involved the prior calculation of 

weekly AT using the hourly data. In the case of System B Method 2 and Method 3 can be 

employed. The daily AT can be used directly in Method 2 and Method 3 can be employed 

following the calculation of weekly AT using the daily AT data.

Weekly HDD, using a base temperature of 18°C, was produced using the above methods, (3.2) 

to (3.4) for System A and (3.3) to (3.4) for System B. It was found, however, that the figures 

varied during certain months of the year. Figure 3.6 shows an example of this where weekly 

HDDig for the System B data set calculated using Method 2 and Method 3 are shown, from 

January 1983 to December 1985.

80 — calculated using daily AT 
— calculated using weekly AT

-10,0 50 100 150
Weeks

Figure 3.6 Weekly HDDig 1983 - 1985 - System B

It can be seen from the graph that the weekly HDD18 figures differ during the spring and 

summer months only. Figure 3.7 provides a closer look at graph given in Figure 3.6 from 

October 1983 to April 1985.



This graph indicates that the most significant differences occur during the seasonal transitional 

months at spring (November) and autumn (March), and also during the summer months, 

December - February. Figure 3.8 gives a plot of the magnitude of the differences between the 

HDDis data shown in Figure 3.6 (1983 - 1985) to ascertain if the greatest variance between 

the HDDig calculated using the different methods for these two years does indeed occur during 

the seasonal transitional and summer months.

It is clear from this graph where the main differences occur and it is also seen that the 

maximum variance is as high as 7 degree days. For System A, the weekly HDDi8 figures 

calculated using Methods 1 to 3 exhibited a similar effect. In this case the differences occurred 

during the seasonal transitional months at May and September and also during the summer 

months June - August, where for the remaining months of the year the differences were minor.

66



The variance between weekly HDDig produced using the different methods was calculated over 

the entire data set for each system, where Table 3.3 gives the maximum and minimum values 

of the differences.

Table 3.3 Magnitude of variance between HDDi8 calculated using different methods

Difference 
Between Methods

System A System B
Maximum Minimum Maximum Minimum

1 and 2 8.34 -0.24 N/A N/A
1 and 3 11.04 -0.46 N/A N/A
2 and 3 4.7 -0.3 8.60 -0.03

Since there is a difference between the HDD!8 figures computed by each of the different 

methods, it was necessary to determine the method that yielded the weekly HDD values that are 

the most highly correlated with weekly electricity demand. The correlation coefficient between 

electricity demand and HDD18 calculated using each of the different methods was computed for 

the data points for which the differences in the HDD i8 values occurred. Use of the correlation 

coefficient as a criterion failed to distinguish the most appropriate method to use. Therefore, 

for each system a one-year-ahead prediction was carried out using an BJTF model (2.22) 

driven with weekly HDD]8 produced by the different methods. The accuracy of the predictions 

were compared using the MAE, with the results presented in Table 3.4.

Table 3.4 Forecasting accuracy results using HDD18 calculated using different methods

Method for HDD MAE - System A MAE - System B
1 0.89 x 104 n/a
2 0.93 x 104 2.70 x 105

3 0.94 x 104 2.95 x 10*

Using the MAE as a criterion, the calculation of weekly HDDl8 using AT based on the finest 

time-scale available, hourly AT for System A and daily AT for System B, yielded the most 

accurate forecasting results. Thus, the HDD ,8 data was calculated using Method 1 (3.2) for 

System A and Method 2 (3.3) for System B.

3.4 Linear Forecasting Models

In order to determine if a gain in forecasting accuracy may be achieved through the use of an 

exogenous weather variable when predicting weekly electricity demand both univariate and 

bivariate forecasting models were built and their forecasting accuracy results compared. The 

forecasting accuracy of a bivariate model based on weekly electricity demand and weekly AT 

were compared to those obtained from a model based on weekly electricity demand and weekly 

HDDig in an attempt to assess the advantage of using of HDDi8 over AT in the forecasting
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model. It was also necessary to develop univariate forecasting models to predict future values 

of the temperature variables for use when performing the bivariate model forecast of electricity 

demand.

In each system the weekly time series are nonstationary and exhibit trend and seasonal 

characteristics. In an effort to draw a broad conclusion two different classes of linear 

forecasting model that are suitable for representing a time series possessing the above 

characteristics were employed The first class- are the classical time series models (2.17 to 

2.22) and the second class are the state space structural models (2.44 and 2.50).

For each system the data was divided into an identification and prediction set, where Table 3.5 

described the data sets for each system.

Table 3.5 Data sets for each system

System Identification Data Set Prediction Data Set

A 04/04/1982 - 23/12/1990 30/12/1990 - 22/12/1991

B 30/03/1980 - 20/08/1989 27/08/1989 - 19/08/1990

Different software packages were employed to build the different forecasting models, where 

this software and the hardware used in each case are described in Table 3.6

Table 3.6 Hardware and software used to build time series forecasting models

Models Software Hardware

AR, ARMA, 

ARX and 

ARMAX

System Identification Toolbox for 

Use with MATLAB 

(The MATH WORKS Inc., 1991)

33 MHz IBM Compatible 486 PC 

with 16 MB of RAM.

SARI and 

BJTF

BMDP (BMDP, 1988) DECVAX 6230

Structural NAG Foundation Toolbox for Use 

with MATLAB 

(The MATH WORKS Inc., 1995)

160 MHz Pentium (586) PC with 

16 MB of RAM.

3.4.1 Classical M odels

The basic classical time series modelling methodology of identification, estimation and model 

adequacy checking described in Section 2.4.3 of Chapter 2 was adopted for the classical
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models developed here. Although this is an iterative procedure where each step is dependent on 

the other steps of the procedure, for clarity cach step of the procedure is described separately.

3.4.1.1 Transformation of Weekly Electricity Demand Time Series

Transformations were applied to the weekly electricity demand time series where two different 

approaches were adopted, The first approach involved the removal of the Unear trend and bias 

from the weekly electricity demand time series using (2.13) and the second involved the 

removal of the trend and seasonality from the data through differencing (2.15). Figure 3,9 and 

Figure 3.10 show the detrended data for System A and System B respectively.

In the case of the differenced data it was nccessary to determine an appropriate order for d and 

D in (2.15). The determination of these orders was carried out using the procedure described 

in Section 2.4.1.2. Figure 3.11 shows an example of the SACF, with the corresponding 

significance level (2.24), for the differenced System A electricity demand data with d= 1 and 

D= 1 and s=52.

Figure 3.11 SACF for System A differenced electricity demand
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The difference between the SACF shown in Figure 3.11 and the SACF of the original time 

series shown in Figure 2.7 of Chapter 2 is clear. In the differenced case the SACF does not 

posses a sinusoidal characteristic because the sesonality has been removed from the data. 

Instead the SACF cuts off at lag 1 at the nonseasonal level and at approximately lag s at the 

seasonal level, consequently the transformed time series was to be differenced appropriately. A 

similar analysis was performed on the System B data set, where the order of differencing used 

to diffcrcnce the time series was d=l and D=1 and 5=52. Figurc 2.10 of Chapter 2 shows the 

differenced data for System A and Figure 3.12 shows the differenced electricity demand data 

for System B.

3.4.1.2 Weekly Electricity Demand Univariate Model Identification

It was necessary to determine a suitable univariate model structure to represent the detrended 

and differenced time series. The Box-Jenkins model structure identification techniques 

described in Section 2.4.3.1 were employed, where this involved the examination of the 

SACF(2.8) and SPACF (2.9) of the detrended and differenced data. Plots of these functions 

for the System A and System B time series are given in Figure 3.13 to Figure 3.20, where the 

significance levels (2,24 and 2.25) are shown by the dashed line.
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Figure 3.13 SACF for System A detrended

electricity demand d(k)

Figure 3.14 SPACF for System A detrended 

electricity demand d(k)

lag

Figure 3.15 SACF for System A 

differenced electricity demand z(k)

Figure 3.16 SPACF for System A 

differenced electricity demand z(k)
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Figure 3.18 SPACF for System B 

detrended electricity demand d(k)
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It can be seen that depending on the form of transformation used that the profile of the SACF 

and SPACF differ considerably. This is particularly prominent in the case of the SACF, where 

for the detrended data the function has a sinusoidal profile because the seasonality has not been 

removed from the time series. The sinusoidal pattern is not present in the SPACF of the data 

because this function calculates the correlation between d(k) and d(k+t) but were the effect of 

intervening observations are eliminated. Due to the presence of this sinusoidal pattern it was 

not possible to use the SACF to determine a suitable model structure for the detrended data and 

the identification techniques based on the use of criterion functions described in Section 2.4.3.2 

of Chapter 2 were employed.

Examination of the SACF and SPACF of the System A differenced data, Figure 3.15 and 

Figure 3.16, show that both functions have cut offs and therefore a model with either an 

autoregressive or moving average operator is appropriate. In the case of the SACF there are 

cut offs at lag 1 at the nonseasonal level and approximately at lag 1 s at the seasonal level and 

therefore a seasonal integrated moving average model (SIMA) derived form (2.19), with m = 1 

and M  = 1, was fitted to the differenced data. Examination of the SPACF shows that there are 

cut offs at the nonseasonal level at lag 5 and at the seasonal level at lag 2s, therefore a seasonal 

autoregressive integrated model (SARI) model also derived from equation (2.19), with p  = 5 

and P = 2, was tentatively identified for the series. The SIMA and SARI models were 

estimated using maximum likelihood estimation, see Section 2.4.3.3, and the adequacy of the 

models was checked using the techniques described in Section 2.4.3.4. Hie f-ratio test was 

used to determine the significance of an estimated parameter. This is defined as the ratio of the 

parameter estimate to the standard error of the parameter estimate. The guideline that was
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used was that if the /-ratio was greater than 2  then the parameter was employed in the model 

(Bowerman and O’Connell, 1987). Based on the /-ratio test the SIMA model did not appear to 

be an appropriate model to represent the differenced series, where none of the parameters of the 

model were found to be significant. Consequently, the SARI model was used, where it was 

found using the /-ratio test that autoregressive parameters at lag 6 and at lag 2s were 

significant and thus the final model structure identified for the differenced time series was p  -  6 

and P=  2 .

Similarly, both the SACF and SPACF of the differenced data for System B cut off; see Figure 

3.19 and Figure 3.20. The cut offs at 1 and Is in the SACF suggest an SIMA model with m = 

1 and M = 1 and the cut off at 1 in the SPACF suggest an SARI model with p  = 1. Using a 

similar analysis to that used in the System A case it was determined that a SARI model was the 

appropriate model structure. However, using the /-ratio test the final SARI model structure for 

the System B differenced data was determined to hep  = 3 and P=  2.

This anomaly between the cut offs on the SPACF and the final SARI model structure identified 

highlights the unreliability of the sole use of the SPACF function to determine the model 

structure.

Due to the problem associated with the use of the SACF to identify a model for the detrended 

time series the approach based on criterion functions was employed. Different ARMA and AR 

model structure performances were compared according to the loss function criterion given by 

(2.26). Based on the Box-Jenkins analysis an MA model was not fitted to the data. The 

performance of the models were compared on a different data set to which they were estimated 

on. The identification data set was divided into an estimation data set and a validation data set. 

For both the System A  and System B data sets at least one year of weekly data was used for 

the validation set, where the size of this set this depended on the model order, and the remainder 

of the data was used for the estimation set. In the case of the AR model the following model 

structures were compared:

• na =1  to 60 chosen to span the seasonal length

Figure 3.21 and Figure 3.22 show a plot of the loss function versus na for System A and 

System B respectively
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In the case of the System A data set the model order that yields the minimum loss function is 

equal to 52, with model orders 54, 55 and 56 also yielding low function values. Similarly, in 

the case of System B the minimum loss function was achieved for na = 52. Therefore, AR 

models with na = 52 were fitted to the detrended System A and System B electricity demand 

data.

In the case of the ARMA model the following model structures were compared:

• na = 52 chosen based on AR model analysis.

• nc = 1 to 2 0 , chosen relative to na.

The plots of the loss function for different ARMA model structures for the detrended series 

d(k) for both systems are given in Figure 3.23 and Figure 3.24, where the variation in the order 

of nc is shown on the x-axis.

7
8

Is
c3

L l 
c  4 o ̂
m
'5̂

2

1

*

X  3

*

*  *  # *  *  * . * . .

0 5 10 15
Variation in order nc

20

Figure 3.23 Different ARMA structures for 

System A

7

6

>5co
143
LLc
o 3 ■c ° *
•C
°2

1

0,

---------------- ... .

* *
»

*
............... r

x 3E *

0 5 10 15
Variation in order nc

20

Figure 3.24 Different ARMA structures for 

System B

74



The analysis determined an ARM A model structure with na = 52 and nc = 8 for the System A 

data set and na = 52 and nc = 2 for the System B data set.

3.4.1.3 Temperature Variable Univariate Model Identification

Using a similar analysis to the one used to develop the weekly electricity demand models in 

Section 3.4.1.2 univariate models were developed for AT and HDDig. Since the AT and 

-HDDig—time series do not posses a trend characteristic it was not neccssary to apply a 

detrending or differencing transformation to remove this from the data. An AR model was 

fitted to the original AT data, where the model order was determined using a loss function 

analysis to be na = 48 in the case of System A and na = 41 in the case of System B, In the 

case of the HDDig time series for System A the AR model order was also determined to be 

equal to 48 but in the case System B the model order is na = 49. A SARI model was also fitted 

to the time series after it was differenced to remove the seasonal component from the data, 

however, it was found that this model produced poor forecasting results and thus was discarded 

from the model set.

3.4.1.4 Bivariate Model Structure and Transformation of Data

As in the case of the univariate models two different pre-processing approaches were adopted 

for the bivariate models. The first approach involved modelling the detrended weekly 

electricity demand time series and the original weekly temperature time series, where it was not 

necessary to detrend the AT or HDDig data as these time series do not posses a trend 

characteristic. The second approach involved differencing both the weekly electricity demand 

and temperature time series to remove the trend and seasonal components with the subsequent 

fitting of a BJTF model (2.22) to the data. In Section 3.4.1.1 the order of the differencing 

operator for weekly electricity demand series was determined to be d=l, D= 1 and s=52 for 

both System A and System B. Using a similar analysis the order of the differencing operators 

for the AT and HDDig series for System A and System B were also determined to be d= 1, D= 1 

and s=52.

3.4.1.5 Bivariate Model Identification

A BJTF model (2.22) was fitted to the differenced weekly electricity demand and differenced 

temperature data. The identification of the structure of this model was carried using the 

techniques described in Section 2.4.3.1. This involved the examination of the SCCF (2.12) 

calculated between the electricity demand and exogenous variable time series. Plots of this
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function are Figure 3.25 to Figure 3.28, where the ninety five percent significance levels, given 

as 1.96 ±(N1/2) (Brockwell and Davies, 1987) are shown by the * symbol.

The SCCF was examined using the guidelines outlined in Section 2.4.3.1 of Chapter 2. 

Examination of the graphs show that for each system and for each exogenous variable that the 

order of the delay parameter b is equal to zero. For System A the SCCF for both AT and 

HDD] 8 starts to decay immediately after the first cut off at lag 0 and therefore nb was set equal
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to zero in each model. In addition, in each case the SCCF dies down in a damped sine wave 

fashion and thus was set n f was set equal to 2. In the case of System B nb was set equal to 

zero for both the AT and HDDig models since the SCCF starts to decay immediately after the 

first cut off at lag 0. In this case it is more difficult to establish how the SCCF is decaying and 

model structures with n f set equal to 0 , 1 , 2  were estimated and the t-ratio associated with the 

parameter examined for significance. Using this method the order for n f was determined to be 

equal to 0 for both AT and HDDig models.

ARX (2.20) and ARMAX (2.21) models were fitted to the detrended weekly electricity demand 

and original temperature time series. The model structures were determined by comparing the 

performance of the loss function (2.26) as described in the univariate analysis. For each 

system the following ARX model structures were compared:

• na = 52 chosen based on AR model analysis.

• nb = 1 to 2 0 , chosen relative to na.

• b= 0 chosen based on SCCF analysis.

Table 3.7 describes the model structures determined.

Table 3.7 Description of ARX model structures

Exogenous
Variable

System A System B
na nb b na nb b

AT 52 3 0 52 2 0

H D D i g 52 1 0 52 10 0

The determination of the ARMAX model structure involved the comparison of the performance 

of models with the na, nb and b orders given in Table 3.7 and with different values of the nc 

parameter in the range from 1 to 20. The model structures determined for each case arc 

described in Table 3.8.

Table 3.8 Description of ARMAX model structures

Exogenous
Variable

System A System B
na nb nc b na nb nc b

AT 52 3 7 0 52 2 3 0

H D D i g 52 1 3 0 52 10 1 0

3.4.1.6 Estimation and Model Adequacy Checking of Classical Models

The techniques used by the software packages to estimate the univariate and bivariate models 

were previously described in Section 2.4.3.3. The adequacy of the estimated models was
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checked using the methods outlined in Section 2.4.3A. For example, Figure 3.29 shows a plot 

of the residuals for the SARI model for the System A data set.

Figure 3.29 Plot of residuals of SARI model for System A

The plot shows that the residuals are random and show no distinguishable pattern. The Ljung- 

Box statistic for T  = 21 (that is, Nm ) was calculated as 21.34 and x^os] (13) = 22.36 and 

therefore the model was accepted as adequate. A similar analysis was performed on the other 

univariate models.

For the bivariate models independence between the residuals and past values of the exogenous 

variable of the model was tested. This was checked by examining a plot of the SCCF (2.12) 

calculated between the residual and the exogenous variable time series. For example, Figure 

3.30 shows the SCCF calculated for the residuals of the System A ARX model and AT. 

Ninety five percent significance levels based on the hypothesis that the residuals are white and 

independent of the exogenous variable are given by the dashed fine (Ljung, 1987). A similar 

plot is shown in Figure 3.31 for the System B data set for the ARMAX model with the HDDis 

exogenous variable.

0 IS

LLo nu u w

-0V|0 -10 0 1 
Lags

0 20

Figure 3.31 SCCF of residuals of ARMAX

model and HDDi8 for System B
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In each case there are no cut offs and thus independence between the residuals and past values 

of the exogenous was assumed. A similar analysis was performed on all of the bivariate 

models.

3.4.2 State Space Structural M odels

3.4.2.1 Univariate and Bivariate Model Structure

In the case of the structural models it was not necessary to transform the weekly time series 

data as this model can handle nonstationary series. A BSM with a dummy seasonal component 

was fitted to the System A and System B weekly electricity demand (2.44). From a complexity 

point of view a dummy seasonal component was employed rather than a trigonometric 

component (2.45 and 2.46) due to the relatively large seasonal length, ,'>=52. A univariate 

BSM with dummy seasonal component was also used to model the AT and HDDi8 time series.

A state space structural model with exogenous variable (2.49) was fitted to the weekly 

electricity demand and AT time series and also to the weekly electricity demand and HDDig 

time series. The classical linear analysis carried out in Section 3.4.1.5 determined that the lag 

between weekly electricity demand and each of the weather variables is equal to zero. 

Therefore, the bivariate structural model may be derived from (2.49) and is given by the 

following equation:

y (k )=  i i ( k )  + y ( k )  + u (k )g  + e ( k )  (3.5)

where the trend component and seasonal components are represented by (2,44). The state 

space form of the (3.5) is given by equation (2.51) and (2.52), where the matrix F is given by 

the state transition matrix of the BSM with dummy seasonal component state space model 

given in (2.44)

3.4.2.2 Estimation of Structural Models

It was necessary to estimate the hyperparameters, { a F 2, ct̂ 2, ct̂ 2, a 0)2}, of the BSM with dummy 

seasonal component and BSMX with dummy seasonal component models, where maximum 

likelihood estimation via the prediction error decomposition was used. A description of this 

was previously given in Section 2.5.3 of Chapter 2.

In order to reduce the computational time the number of parameters which it was required to 

estimate was reduced by reparameterising the structural models (Harvey, 1989). This was
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achieved by choosing one of the variances of the disturbance terms as a scaling factor, denoted 

cr*2. In all cases cte2 was chosen as the scaling factor and thus the other variances given in 

terms of the scaling factor are:

2 Vflr(ti(*)) 2 Varfc(k)) Var(oi(k))
c „ = — — . 0 ( — and a .  —

with the scaling variance cr* 2 is fixed to unity. Therefore, the number of hyperparameters 

required to be estimated was reduced to three, where the new vector of hyperparameters is 

given by vy=[v|/* a*2], where y*=(ar|2> <7ro2]. It was necessary to rewrite the likelihood

function given by (A. 17) in terms of the newly defined parameters as, where this is given as:

N N  2 1 ^  1
logL(\|f) = log2 ?r loga* 2*,

v(k)2

2 k=l 2c* fc=1 T,(k)
(3.6)

This expression was maximised with respect to er* 2 by setting the derivative to zero and 

solving to give

1
N t i  m )

Substitution of (3.7) into (3.6) yields the likelihood function in terms of the new parameters as: 

logZ/(\|/) = -~^-(log2n  + l) -^ ^ lo g X (fc )  -  -^-logc*2 (3.8)
1  1  k = l  1

The likelihood function (3.8) was maximised with respect to vji, where a numerical optimisation 

routine was employed. The numerical routine employed was provided by the NAG Foundation 

Toolbox For Use with MATLAB (Matlab, 1994), where the routine which was used is 

E04UCF. This routine minimises a function of several variables using the sequential quadratic 

programming method with linear constraints and simple bounds on the variables (Taha, 1987). 

It was necessary to supply the function to be minimised, which in this case was -log L(\\r), and 

an initial set of parameter values. In all cases, the initial parameters values were set equal to 

0.01. Bounds were placed on the variables which in this case were that the ĉ 2 and c m2 are 

strictly positive (Harvey, 1989). The estimates of the hyperparameters for each model are 

given in Table 3.10 to Table 3.15 of Section 3.5.
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3.4.2.3 Model Adequacy Checking of Structural Model

The techniques employed to check the adequacy of the classical Unear models were also 

employed here. This involved checking that the residuals of the model were approximately 

random, that there was no serial correlation among in the residuals and that there was 

independence between the residuals and past inputs. The Ljung-Box test statistic (2.35) was 

also applied to the structural models where np in equation (2.36) (the number of parameters 

estimated) was in all cases equal to 3 since the models were reparameterised.

3.4.3 Sum mary o f Classical and State Space M odelling M ethods

Table 3.9 provides a summary of the linear modelling methods employed.

Table 3.9 Summary of modelling methods

Model Transform Identify Estimation

AR Detrend y(k) na Least Squares

ARMA Detrendy (A;) na, nc Maximum Likelihood

SARI Difference y(k) d, D, s, p, P Least Squares

ARX Detrend y(k) na, b Least Squares

ARMAX Detrend y(k) na, nc, b Maximum Likelihood

BJTF Difference y(k) 

Difference u(k)

d, D, s, b, nb, nf, p, P Maximum Likelihood

III |
BSM None s Maximum Likelihood via PED

BSMX None s Maximum Likelihood via PED

3.5 Forecasting Results

The forecasting accuracy results for the prediction set (see Table 3.5) produced by each of the 

models are given in Table 3.10 for System A and Table 3.13 for System B respectively. The 

results for the prediction of future values of the AT and HDDig temperature variables are given 

in Table 3.11 and Table 3.12 for System A and Table 3.14 and Table 3.15 for System B. Note 

that, in the case of the HDD18 since there are zero values in the actual data over the prediction 

horizon the calculation of the MAPE and MPE results in a division by zero and thus these 

forecasting accuracy results are not calculated for these models. Associated with the 

forecasting accuracy result of all models is a summary of the model structure, where in the 

case of the structural models the values of the estimated hyperparameters are given. Note that, 

“diff ’ refers to differencing transformation and NF and NM transfer function model and noise 

model respectively in the BJTF.
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Table 3.10 Electricity demand forecasting results for System A

No Model Input Structure MAE 
x 10 4

MSE
x lO 8

MAPE MPE

1 SARI diff=(l-9-')(l-?-52),
p=(l,2,3,4,5,6),

P=(52,104)

1.0691 1.8223 3.91 -2.64

2 AR V;: : na=52 1.1024 2.1639 3.83 2.09
3 ARMA ■ na=52, nc= 8 0.9721 1.9978 3.41 1.94
4 BSM cr^O.1253 x 10' 3 

oif=0.1643 x 10'7
0.78911 1.3022 2.78 0.35

. . i v ‘'i v ' r..... ■ x •

<x^u.ul)Ul x 10 
<7,̂ =0.0072 x 10'3

5 BJTF
..............—

Actual
HDDig

TF:
ditt=(l-qA)(l-q52), 

b=0 , nb=0 , nf= 2
m y .

diff=(i-9-l)d-^-52)>
i?=(l,2,3,4,5,6),

P=(52,104)

0.6777 1.0250 2.47 -1.15

6 BJTF Pred
HDD18

- ;'V
0.8080 1.4151 2.90 -0.95

7 BJTF Actual
AT

TF:
M (=(\-ql)(\-q51), 

b=0 , nb=0 , nf= 2 
NM:

diff=(l-?-1)(l-^52),
p=(l,2,3,4,5,6),

P=(52,104)

0.8570 1.4426 3.09 -1.25

8 BJTF Pred AT 0.9252 1.5815 3.34 -1.58
9 ARX Actual

HDDig
na-52, nb=\ 1.0714 2.0757 3.73 1.90

10 ARX Pred
HDDig

na=52, nb=\ 1.0736 2.0882 3.74 1.90

11 ARX Actual
AT

na=52, nb=3 1.1690 2.3058 4.06 2.42

12 ARX Pred AT 1.1549 2.3416 4.01 2.42
13 ARMAX Actual

HDDig
na= 52, nb=l, 

nc= 3
0.9966 1.9511 3.50 1.70

14 ARMAX Pred
h d d 18 ; ’ ” ' ‘ N

0.9975 1.9791 3.50 1.70

15 ARMAX Actual
AT

na=52, nb=3 ,nc=l 1.0065 2.0708 3.53 1.93

16 ARMAX Pred AT . . . . . . . . . . . . .  ..

1.0135 2.1234 3.55 1.93
17 BSMX Actual

h d d 18
cr^O.1156 x 10’3 
<j^=0.5119 x 10'7 
cj^O.OOOI x 10'7 
cr„=0.0079 x 10‘3

0.7111 1.0617 2.50 0.46

18 BSMX Pred
HDDig

: :
: :;:50 ■

•I-:-!-;-;-:- -;- - -‘-‘-v-v ' - ' i S ' W ’

0.7667 1.2367 2.69 0.47

19 BSMX Actual
AT

cr^O.1151 x 10'3 
avpO.1643 x 10'7 

cr̂ =0.0 
<7̂ =0.0079 x 10'3

0.7277 1.0958 2.55 0.84

20 BSMX Pred AT
. . .

0.7959 1.2746 2.77 0.93
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Table 3.11 AT forecasting results for System A

No Model Structure MAE MSE MAPE MPE Used In
21 AR «fl=48 1.52 3.46 27.39 -15.97 ARX, 

ARMAX 
and BJTF

22 BSM oi=0.3413 x 10'3 
£7,7=0.0009 x 10'3 

0.0 
o>„=0.0

1.47 3.09 24.08 -12.74 BSMX

Table 3.12 HDD18 forecasting results for System A

No. Model Structure MAE MSE MAPE MPE Used in
23 AR na=48 10.39 155.90 26.86 -16.11 ARX, 

ARMAX 
and BJTF

24 BSM ai=0.1617 x 10'3 
(7^=0.0003 x 10‘3 

<x̂ =0.0 
C7«=0.0

10.08 145.71 21.09 -11.01 BSMX

Table 3.13 Electricity demand forecasting results for System B

No Model Input Structure MAEx 
10 s

MSEx
1011

MAPE MPE

25 SARI :‘"V
: : : : •

diff=(l-<z-1)(l-«7-52), 
pH  1,2,3), 
P=(52,104)

3.2336 1.8817 2.62 -0.75

26 AR na=52 3.3509 1.8553 2.69 1.13
27 ARMA na=52, nc=2 3.3778 1.8872 2.72 1.27
28 BSM

r̂ r:r.rrr?rrrrr-r

1 '':

0^=0.5622 x 10'5 
cr^=0.1443 x 10‘5 

cr̂ =0.0 
cr^O.0250 x 10'5

2.9964 1.6162 2.43 -0.57

29 BJTF Actual
HDDlg

TF:
diff=(l-?-1)(l-^52), 

b=0 , nb=0 , n/= 0 
NM:

d iff= (lV )(l-?52), 
P=(l ,2,3,4,5,6,7), 

P=(52,104)

2.5543 1.1736 2.06 0.47

30 BJTF Pred
HDDig

3.2288 1.7733 2.61 0.24

31 BJTF Actual
AT

TF:
m = < l-q 'X l-q52),

b=0, nb=0 , nf= 0 
Nik): 

diff=(l-^1) ( l< 52), 
P=( 1,2,3), 
P=(52,104)

2.7767 1.3672 2.26 0.16

32 BJTF Pred AT 3.2122 1.9133 2.61 -0.95
33 ARX Actual

h d d 1r
na=52, nfr=10 2.5147 1.1566 2.02 0.62
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34 ARX Pred
HDDig 1 ‘ , ■ ■; • 1 3.0269 1.5974 2.44 0.41

35 ARX Actual
AT

na=52, nb=2 2.8764 1.4134 2.32 0.86

36 ARX Pred AT 3.1850 1.6995 2.56 0.82
37 ARM AX Actual

HDDig
na=52, nb=10, nc= t 2.2984 0.9035 1.85 0.05

38 ARMAX Pred
HDDig

2.8791 1.3753 2.33 -0.15

39 ARMAX Actual
AT

na=52, nb=2, nc=3 2.5933 1.2718 2.01 0.11

40 ARMAX Pred AT l 3.3470 1.7274 2.69 0.18
41 BSMX Actual

HDDig
ct^O.4769 x 10'5 
o-r/=0.0831 x 10’5 

og=0.0 
{7̂ =0.008 x 10'5

2.5606 1.1054 2.05 0.99

42 BSMX Pred 
HDD] g

2.9324 1.4961 2.36 0.34

43 BSMX Actual
AT

oi=0.5341 x 10'5 
o,/=0.0942 x 10‘5

O£=0.0 
a„,=0.0112 x 10's

2.7490 1.2916 2.22 0.81

45 BSMX Pred AT .... 2.9474 1.5390 2.37 0.21

Table 3.14 AT forecasting results for System B

No Model Structure MAE MSE MAPE MPE Used In
46 AR «a=4l 1.42 2.91 9.25 2.04 ARX, 

ARMAX 
and BJTF

47 BSM cĵ O.21 17 x 10'3 
cr^=0.0008 x 10'3 

o^=0.0 
crm=0.0006 x 10‘5

1.36 2.88 8.80 3.34 BSMX

Table 3.15 HDDig forecasting results for System B

No Model Structure MAE MSE MAPE MPE Used in
48 AR na=49 7.25 90.95 N/A N/A ARX, 

ARMAX 
and BJTF

49 BSM O r0.7856 x 10'2 
0 -̂ =0.0028  x 10-2

og= 0.0
oa=0.7240 x 10'5

6.77 87.05 N/A N/A BSMX

3.5.1 Discussion of Classical Model Results

Comparison of the System A forecasting accuracy measures show that as expected the use of 

an exogenous weather variable significantly improves the one-year-ahead prediction. 

Examination of the forecasting accuracy of the predicted AT and HDDI8 for this system shows 

that these weather variables are difficult to predict, where the MAPE is as high as
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approximately 27 for both variables. However, in spite of this considerable improvement was 

obtained through the employment of these variables. It can also be seen that the improvement 

obtained is greater when HDDig is employed rather than AT, where this improvement is 

approximately of the order of 11%. The improvement in the bivariate forecast using HDD18 

over the univariate forecast is of the order of 16% in the MAE and 27% in the MSE, with a 

reduction in the MAPE from 3.41 to 2.90 and from 1.94 to -0,94 in the MPE.

In the case of System B the use of the exogenous weathervariables also improves the accuracy 

of the prediction but it is can be seen that it is necessary to employ HDDig if a significant 

improvement is to be obtained. This highlights the importance of the use of the optimal form of 

the available weather variable. The improvement obtained in the bivariate forecast over the 

univariate forecast for System B is of the order of 13% in the MAE, 20% in MSE and a 

reduction in MAPE from 2.62 to 2.33 and in MPE from -0.75 to -0.15. Relatively high 

forecasting errors were also experienced in the prediction of the weather variables in this case 

but the results appear better than those obtained in the System A case.

Figure 3.32 gives a plot of the actual versus predicted System A results, where the most 

accurate univariate model result (ARMA) and the most accurate bivariate model result (BJTF, 

with HDDig) is given. Figure 3.33 gives similar results for System B, where the most accurate 

univariate model result is produced by the SARI model and the most accurate bivariate model 

result is produced by an ARMAX model with HDDig as the exogenous variable.
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Figure 3.33 System B actual vs predicted - SARI and ARMAX(HDDig)

In the case of System A the most significant improvement in the bivariate forecast over the 

univariate forecast can be seen at Weeks 15 to 20 (April/May), Weeks 25 to 30 (July/August) 

and Weeks 40 to 47 (October/November). Each of these weekly periods contain a seasonal 

transitional month, that is at May, August and November, thus suggesting that during these 

months that the change in the weather pattern has a considerable effect on the demand which 

the univariate model is not capable of modelling. In the case of System B it is more difficult to 

establish the effect of the weather variable. It can be seen that at various weeks throughout the 

forecast horizon the presence of the weather variable in the bivariate improves the forecast, 

however it is difficult to establish any particular pattern. A possible reason for this is that 

weather is a non-dominant exogenous variable in this system.

A final note is made regarding the different transformations performed on the time series data 

prior to the fitting of the classical models. As expected the type of transformation appropriate 

is case dependent. For example, in the case of System A the univariate ARMA model which 

was used to represent the detrended electricity demand time series produced the most accurate 

result. In contrast, in the case of System B the SARI model which was used to represent the 

differenced the time series produced the most accurate result.

3.5.2 Discussion of Structural Model Results

The structural model results show that the bivariate structural model produces more accurate 

results than the univariate model. However the improvement obtained is significantly less than 

that attained in the equivalent results produced by the classical models. For example, in the 

System A case the improvement is only of the order of approximately 3% in the MAE and 5%
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in the MSE, with similar results in case of System B. As in the case of the classical models it 

is necessary to employ HDDig over AT in the bivariate model to achieve the greatest 

improvement over the univariate model results. The results also show that as in the case of the 

classical models the BSM univariate models employed to produce predictions of AT and 

HDDig do not produce accurate results, where as before the weather data in System B appears 

to be relatively easier to predict. Figure 3.34 and Figure 3.35 compare the univariate and 

bivariate forecasts for System A and System B respectively.

In both systems it is difficult to select a week at which any significant improvement occurred, 

especially in the System A case, and it is thus assumed that minor improvements occurred at 

some weeks throughout the entire forecasting horizon.
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3.5.3 Comparison of Classical and Structural Model Results

Comparing the forecasting results produced by the System A univariate and bivariate classical 

and structural models shows that the structural models outperform the classical models. In the 

univariate case the MAE and MSE of the structural model results are approximately 18% and 

34% more accurate than those produced by the classical models. There is also substantial 

improvement in the MAPE and MPE, where the structural model MAPE is 2.78 as opposed to 

3.83 for the classical model and for the MPE the difference is even more significant with the 

structural model MPE equal to 0.35 and the classical model MPE equal to 2.09. The latter 

results demonstrate that the structural model produces an overall more accurate prediction over 

the entire forecast horizon. The variance in the performance between the System A bivariate 

models is not as great, with the MAE of the structural approximately 5% more accurate and 

the MSE approximately 12% more accurate. The reason for this is that the inclusion of 

exogenous weather variables in the structural model does not have as notable an effect as in the 

classical model case.

Although a difference between the performance of the different classes of the univariate model 

can also seen in the System B results the variance is not as large, with the structural model 

MAE 8 % more accurate than the classical model MAE and the MSE 12% more accurate. In 

contrast to the above in the bivariate case the classical ARMAX with HDDi8 as an exogenous 

variable produces a more accurate result than the structural bivariate model. Figure 3.36 

compares the most accurate System A univariate classical model result to the System A 

univariate structural model result, with the results for the bivariate models in Figure 3.37. 

Similar results are given for System B in Figure 3.38 and Figure 3.39.

Figure 3.36 System A comparison of classical and structural univariate result
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Figure 3.37 System A comparison of classical and structural bivariate result

A c tU a l-o - Prfeid (SARI)-j*-- Pred ($SM)

20 30
Weeks

Figure 3.38 System B comparison of classical and structural univariate result
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Comparing the System A univariate results shows that from Weeks 19 to 30 that the ARMA 

model performance is inferior in comparison with the BSM model. Examination of the 

bivariate profiles show that the BJTF model performs better over this period but produces 

particularly poor predictions from Weeks 47 to 50. The reason for this is that the prediction of 

HDDlg was relatively inaccurate over this period. Therefore, since the inclusion of this 

exogenous weather variable has a greater influence on the prediction in the case of the classical 

model in comparison with the structural model the variance between the results of two models 

is notable during this period. In the case of System B the results show that the variance 

between the results produced by the two models is more subtle, with relatively minor 

differences between the performances of the models over the entire forecast horizon.

3.6 Conclusions

This chapter shows that an improvement in the accuracy of weekly electricity demand 

forecasting results may be achieved through the use of an appropriately selected exogenous 

weather variable; this was shown to be true for both dominant and non-dominant exogenous 

variables. The degree of improvement obtained is greater for the dominant case. This 

increased accuracy is attained for both cases even when future values of the exogenous variable 

are unknown and it is necessary to predict it through the use of a univariate forecasting model. 

However, it was found that the exogenous variables were difficult to predict using the linear 

forecasting models and thus it may be more appropriate to use an alternative modelling tool, 

where the use of neural networks is a possibility.

Methods of determining the optimal configuration of the exogenous temperature variable for 

the electricity demand systems is considered. For both systems, it was found that HDD was

more effective than AT, where a base temperature of 18°C was selected in each case. The 

evaluation of HDD was also studied with respect to the availability of temperature data on 

various time scales. It was not possible to use correlation analysis to ascertain the best time 

scale to use when calculating HDD, however, using the MAE as a criterion it was found for 

each system that the use of the finest AT time scale available yielded the HDD values which 

had the highest correlation with electricity demand.

The results demonstrated that the structural time series models produced more accurate 

forecasting results than the classical models. The variance between the results produced by the 

different class of models was considerably greater in the univariate case than in the bivariate 

case, thus it appears that the BSMX model is not a particularly effective model for representing 

the bivariate system.
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CHAPTER 4

Application of Neural Networks to W eekly E lectricity Dem and and 

Yearly Electricity Sales

4.1 Introduction

This chapter examines the application of neural networks to modelling electricity demand time 

series data. A neural network may be considered as a data processing technique that 

formulates a relationship, or mapping, between some type of input stream of information and 

an output stream of information. The process of constructing this relationship is achieved 

through the use of learning algorithms. For the purposes of time series analysis, a neural 

network can be considered as a general nonlinear mapping between some subset of past time 

series values and a future time series value. It is this nonlinear mapping which makes neural 

networks attractive as a time series modelling tool. The traditional linear time series 

approaches (Box-Jenkins, 1976; Harvey, 1989) assume a linear relationship among the 

variables, which may be an inadequate representation of the system. Although nonlinear 

forecasting techniques have been developed (Priestly, 1988; Tong, 1990) they can often involve 

complex methods which result in unwieldy models (Gooijer and Kumar, 1992). Another 

advantages of using neural networks for time series forecasting is their excellent learning and 

generalisation capabilities, where the neural network has the capability to infer and deduce the 

system behaviour from the time series data.

Two applications are considered where the main objective is to address some of the issues 

involved in the design of neural networks for time series forecasting. The first application 

examines the weekly electricity demand data sets for System A and System B, which was 

modelled using linear forecasting techniques in Chapter 3, and the second application examines 

yearly electricity demand data.

4.2 Neural Networks for Time Series Forecasting

There are a number of works devoted to the subject of time series forecasting using neural 

networks (Wong, 1991; Weigend and Gershenfeld, 1992; Lu et al, 1993; Peng et al, 1993; 

Lachtermacher and Fuller, 1995). A widely applied network structure is the MLP (multi-layer 

perceptron) (Tang et al, 1991; Park et al, 1991; Chen et al, 1992; Chakraborty el al, 1992;

91



Papalexopoulos et al, 1994; Azoff, 1994). The MLP is an example of a feedforward network, 

where information is fed forward through the network during learning. Typically, temporal 

information is presented to the network by a time-lagged vector of time series data at the input, 

with the current value of the time series at the output. Following learning the MLP may be 

configured to operate in recurrent male, where the production of a multi-step-ahead forecast 

involves the use of predicted values of the time series which are fed back to the input. In 

contrast, examples of works which use neural networks which operate recurrently during the 

learning stage, referred to as recurrent networks, are Blake et al (1995) and Connor et al

(1994). Another network structure which may be configured to operate recurrently during the 

forecasting stage is the radial basis function network (Hudson et al, 1994; Zaknich and 

Attikiouzel, 1994), where the main difference between this network structure and the MLP is 

the training algorithm employed.

In the case of electricity demand forecasting there is a substantial amount of literature which 

deals with the application of short term and peak load forecasting (Park et al, 1991; Chen et al, 

1992; Kermanshahi et al, 1993; Lu et al, 1993 ; Morioka et al, 1993; Onoda, 1993 ; Azzam-ul- 

Asar et al, 1994; Papalexopoulos et al, 1994; Bakirtzis et al, 1996 among others). However, 

the application of weekly and yearly forecasting are not dealt with in nearly tbe same depth, 

one example in the weekly case is Smith (1994) and Lachtermacher and Fuller (1995) in the 

yearly case.

4.2.1 Background

The study of neural networks can be considered as an attempt to understand a replicate human 

biological nervous system. Of particular interest is the formulation of an ‘artificial’ 

computational form which mimic the brain’s thinking process. The basic structure of a neural 

network consists of processing elements, called nodes or neurons, which are based on the 

physiology and individual neurons in the human brain. These neurons are interconnected with 

one-way signal channels, called connections. The relative strengths and nature of the 

connecting links determine the overall operational characteristics of the network. Network 

learning (training) involves selecting and modifying the interconnecting links in an adaptive 

manner so as to execute the specific task(s) required of the network. An important property of 

a neural network is that it can learn from particular patterns of data presented to it, where it 

can recognise such patterns when they occur again, but can also recognise similar patterns 

through generalisation. It is this capability of learning and generalisation coupled with the
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property of potentially faster operational speeds, realised through inherent parallel operation, 

which make neural network a very powerful computational tool.

There are many different types of neural networks, with variations in network topology, neuron 

characteristics and learning rules. One method of broadly classifying them is according to their 

learning techniques. They may be broadly classified into two learning classes: supervised 

learning and unsupervised learning. Supervised learning involves presenting the network with 

a set of example input and output data pairs and the network learns how to match the examples 

as closely as possible. In contrast, for unsupervised learning the networks are only presented 

with input samples and samples are grouped into classes which are self-similar; networks of 

this type are called self-organising networks. Examples of self-organising networks are the 

ART (adaptive resonance theory) network (Hertz et al, 1991) and Kohonen’s Self Organising 

feature maps (Lipmann, 1987). Supervised learning neural networks may be further divided 

into static and dynamic networks (Hush and Horne, 1993). Static networks are memoryless, 

that is, the output of the network during learning is only a function of the current input and not 

on past or future inputs or outputs. Examples of static models are the MLP (multi layer 

perception) network (Rummelhart et al, 1986) and the RBF (radial basis function) network 

(Hush and Horne, 1993). Dynamic networks are systems with memory which may have 

feedforward dynamics, output feedback or state feedback. Examples of dynamic networks are 

Hopfield networks (Hertz et al, 1991) and recurrent networks (Giles et al, 1994).

4.2.2 Choice o f Network Type and Architecture

The type of neural network used depends on the task for which it is being employed. In time 

series analysis applications the autoregressive nature of time series require a network structure 

that can operate recurrently and produce a continuous output. In addition, a network which 

adopts a supervised learning methodology is appropriate due to presence of recurring patterns 

within the time series data. An MLP network structure fulfils these criteria and is adopted for 

the time series applications dealt with in this neural network analysis.

An MLP is a feedforward network which consists of a layer of input nodes; a layer of output 

neurons and one or more additional layers of neurons sandwiched in between. The additional 

layers are referred to as the hidden layers. Each neuron computes the weighted sum of its 

inputs, adds a bias value and then passes this sum through a nonlinear function called an 

activation function, as in Figure 4.1.
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Figure 4.1 Outline of a basic neuron

An example of an MLP network with two input nodes, a single hidden layer with three hidden 

neurons and two output neurons is shown in Figure 4.2.

The values of the connection weights wy; and bias values b y  of the network are determined 

through network training. A training algorithm developed by Rummelhart et al (1986) for 

MLP networks, referred to as the ‘backpropagation’ training algorithm, is described in Section 

4.2.3. However, the basic framework of network training may be described as follows: the 

network is presented with a set of input/output data vectors which is representative of the 

process which the neural network is attempting to model. Upon each presentation, the weights 

are adjusted to decrease the difference between the networks’s output and the target output. 

The error is minimised using the technique of gradient descent. The bias values b y  serve as a 

threshold for the neurons to which they are connected, where these values are adjusted in a 

similar manner to the weights w y u  . Network training is an iterative process which involves the 

following basic steps:
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• the input and output data is presented to the network;

• the network output is calculated for a particular set of weight and bias values;

• the weights and bias values are adapted accordingly;

• repeat this procedure for a specified number of iterations or until a specified error 

criteria has been achieved.

Nonlinearity is introduced into the network through the activation functions. The type of 

activation function used in the neural network depends on the intended application. The 

simplest activation function is the linear function, whose output equals the input. Smooth 

nonlinearities, such as, tan-sigmoid or log-sigmoid are suitable for networks which are to model 

continuous variables, whereas hard-limiting nonlinearities are better for classifiers. Figure 4.3 

and Figure 4.4 describe log-sigmoid and tan-sigmoid activation function respectively. These 

activation functions have a squashing role in restricting the possible neuron output, where a 

value lying in the range (-00,00) is constrained to [0 ,1] in the log-sigmoid case and [-1,1] in the 

tan-sigmoid case.

Figure 4.4 Tan-sigmoid activation function

The number of nodes in the input and output layer are determined by the nature of the task 

which the neural network is to perform. The input layer to the network does not perform 

processing but merely acts as a means by which data is introduced to the network. It is made 

up of the variables which are necessary for modelling the target output, where from a 

complexity and parsimony point of view it is desirable to select the absolute minimum number 

of essential input variables. The number of neurons in the output layer should also be the 

minimum that satisfy the problem requirements. A single output neuron has the advantage that 

the network is focused on one task and there are no conflicting outputs pulling the weights in 

opposing directions during training. For time series forecasting applications the output layer
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usually consists of a single neuron, where this neuron represents the current value of the time 

series. The input variables often consists of past values of the time series and current and past 

values of exogenous variables which have an external influence on the time series.

In the majority of cases it will be necessary to normalise the input data to the network, where 

normalisation standardises the possible numerical range that the input data to the network can 

take. It also ensures that the weights of the network are of the same order of magnitude which 

allows the n e tw o rk  to train more easily. An exception to the requirement for normalisation 

may be when the data concerned is in binary form, when it is, in a sense, already normalised. 

There are a number of methods available for normalisation (Azoff, 1994). The choice of 

method depends on the composition of the input vector but ultimately it is a matter of how the 

network performs, as different normalisation approaches may affect the convergence of the 

training process (Azzam-ul-Asar, 1994). A common approach in time series analysis is to 

divide all the values of the data by one number larger than the magnitude of the greatest value 

of the time series (Azzam-ul-Asar, 1994; Lachtermacher and Fuller, 1994; Smith, 1994), for 

the purposes of this analysis this number shall be referred to as the normalisation factor (NF). 

This approach is an external normalisation method, that is, the data is scaled prior to the 

construction of the input vectors. It may also be necessary to normalise the target output data. 

The main consideration is the output range of the output neuron’s activation function. In time 

series forecasting applications the output neurons often have linear activation functions at the 

output layer, thus allowing an unrestricted output range. To aid the learning process it is 

useful to ensure that the weights of the output neurons are of the same order of magnitude as 

those in the input and hidden regions and therefore the target output data is scaled to the same 

order of magnitude as the input data. As a result of the target data normalisation the actual 

network output will correspond to the normalised scaling. Therefore, in order to interpret the 

network output on the original scale it will be necessary to re-scale it with the normalising 

parameters.

The characteristics of the MLP depend on the input and output structure but also depend on the 

hidden layer region. An MLP may contain one or more hidden layers. For classification 

problems Lippmann (1986) demonstrated that an MLP network with one hidden layer can 

implement arbitrary convex decision boundaries. However, for some problems, a network with 

two hidden layers with a relatively small number of neurons in each layer can be used where a 

network with one hidden layer would require an infinite number of neurons (Hush and Horne, 

1993). Chester’s (1990) work shows that networks with two hidden layers appear to provide
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higher accuracy and better generalisation than a single hidden layer network with the added 

advantage that fewer neurons are required. The decision of the number of neurons in the 

hidden layers of the network is highly problem dependent and is best determined through 

experimentation (Azoff, 1994). Azoff also notes that some problems work well with a 

bottleneck structure, where there are fewer neurons in the hidden layer than nodes in the input 

layer. The experimentation exercise involves training a number of neural networks with 

different hidden layer architectures whose performance is then compared according to some 

chosen criterion. This may be computationally demanding due to the large number of possible 

architectures. It would be possible to search the set of all possible architectures using a genetic 

algorithm (Hertz et al, 1991; Dodd, 1992; Jones, 1993; Beltratti et al 1996) but this kind of 

search would frequently require an unreasonable amount of CPU time.

4.2.3 Training Algorithm

The aim of the training process is to choose values of the weights and biases of the network so 

as to realise the desired mapping from inputs to outputs. Each weight in a network represents a 

unique dimension in a multi-dimensional weight space. Rummelhart (1986) developed an 

algorithm, named the ‘backpropagation algorithm’ to train MLP networks. The algorithm is an 

iterative gradient algorithm which minimises a cost function which is a function of the weights 

of the network The traditional MLP training algorithm cost function is the Sum Squared Error 

(SSE) cost function. The algorithm also requires an activation function which is differentiable, 

where the most common nonlinearity used is a sigmoid function. The algorithm is described 

for a network of L  layers, with a sigmoid nonlinearity and a SSE cost function. The following 

notation is used:

To account for the bias weights define the Oth component of the input vector to each layer I to 

be equal to 1, therefore, ui,0 = i; which represents the bias weight wij,0. Therefore, using this 

notation the output of a node; in layer I is given by:

where/(.) represents a sigmoidal function and Ni is the number of nodes in layer I  The 

algorithm is now described in Steps 1 to 6 .

• uij represents the output of the y'th node on layer I.

• wi,j,i represents the weight which connects the ith node 

in layer l-l to the y'th node in layer I.

(4.1)
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Step 1. Define cost function - the SSE criterion function may be described as:

(4.2)

where P = number of training patterns

J p(w) = z l \ u La (xp) -  dq (xp))

Step 2 . 

Step 3. 

Step 4.

Step 5.

uL q = output of <jth neuron in output layer.

N L = number of neurons in output layer.

dq = desired response for qth output neuron,

x p = pth  training sample.

Initialise weights and biases to random values.

Present input training vectors and desired output vector. 

Calculate actual output at each layer:

where wi y = output of jth  neuron in layer I. 

wUji = weight which connects the

z'th neuron in layer / - 1  to ;th 
neuron in layer I.

N, = number of neurons in layer/.

/ ( . )  = sigmoid nonlinearity.

Adapt each weight iteratively using Equation (4.4) by starting at the output 

layer neurons and working back to the preceding layer of neurons until the 

first hidden layer is reached:

(4.4)

where Ir = the learning rate.
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3 /,(w ) dJ„(w) duu

dw,j. du,j dww

dui,j _ /. \
a ~ ui.j\ uu  )ui-u

From one hidden layer to the next hidden layer: 

w)

dul.J
Ul+l,m )W l+Um,j

l+ln\

At the output layer: 

3 /p(w)

dULJ
= “ L J (xp) - d j ( x p)

Step 6 . the process of computing the gradient and adjusting the weights is repeated by

going to back to Step 3.

Note that Step 3 to Step 6 is referred to as a training epoch.

The learning rate Ir defines the amount by which the weights and biases of a network arc 

adjusted. If the learning rate is set too small the network may take a long time to train, while 

setting the learning rate too large may result in the error minimum being ‘jumped over’. Since 

there is no way of calculating the optimum learning rate a solution to the problem is to adapt 

the learning rate during training, where the objective is to keep the learning rate as large as 

possible while ensuring stable learning.

A problem with the gradient descent algorithm is that learning may finish in a local, instead of 

a global minimum, resulting in a sub-optimally trained network. This problem may be 

alleviated by the inclusion of a momentum term, a. This involves altering the updating of 

weights in Step 5, where the following equation is used:

w
^  dJ (w)

+ a(wUfi (k ) -  wLji (k - 1)) (4.5)
w ( k )

where, 0<a<l. The momentum term helps the weights move across flat portions and overcome 

small peaks of the error surface after having descended from the steep portions of the surface.
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A further problem is that the performance of the network can be sensitive to the initial 

condition of the network weights and bias values. A number of networks with identical 

structure, but initialised with different sets of weights and bias values, can yield different 

results due to the existence of local minima in the error surface. Therefore, to provide some 

insensitivity to initial conditions which result in local solutions it is advisable to re-train the 

same network structure a number of times.

^Another important aspect of training is the criterion used to assess network performance. For 

time series forecasting purposes the aim is to perform a multi-step-ahead forecast, however, the 

neural network is typically trained using a single-step-ahead prediction criterion. 

Consequently, this does not always determine the weight set which optimises the multi-step- 

ahead prediction performance of the network. It is difficult to design backpropagation training 

with a multi-step-ahead criterion, with the added difficulty that it would be computationally 

intensive, particularly when the prediction horizon is long. A compromise is to train the 

network using a single-step-ahead criterion, but also examine the multi-step-ahead performance 

during training. To do this the data is divided into the following data sets:

• training data set - adapt weights and biases using a single-step-ahead criterion .

• validation data set - examine multi-step-ahead performance for the weights 

obtained in training.

• prediction data set - perform multi-step-ahead forecast.

Figure 4.5 show an example of data segmentation for a weekly time series application (System 

A), where a total of ten years of weekly data is available.

a d a p t  w e i g h t s  a n d  b i a s e s  u s i n g  single- 
s t e p - a h e a d  criterion

8 y e a r s

e x a m i n e  m u l t i - s t e p - a h e a d  

p e r f o r m a n c e

1 y e a r

forec a s t

1 y e a r

I d en t i f ica t io n  set V a l idat ion
set

P rediction
set

Figure 4.5 Weekly time series data segmentation

The performance criterion used to adapt the weights and biases of the network during training 

is the traditional single-step-ahead SSE and the performance criterion used to examine the 

multi-step-ahead performance during validation is the multi-step-ahead MAE (see Section 2.8).
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4.2.4 Training Cessation Point

An important decision in neural network training is the selection of the network training 

cessation point. Consider Figure 4.6 which shows an example of the different network

performance criterion at each training epoch for a weekly electricity demand application. The

network used in the example has two hidden layers and was trained using the LMS gradient 

technique with backpropagation, an adaptive learning rate and a momentum term (Section 

4.2.3). The total number of training epochs was 5000, however the results are given for the 

epoch range 1500 epochs - 2000 epochs for visual clarity. The following performance criterion 

are shown on the graph:

• single-step-ahead SSE (scaled) over the training set.

• multi-step-ahead MAE over the validation set.

• multi-step-ahead MAE over the prediction set.

The graph also shows the adaptive learning rate (scaled).
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Figure 4.6 Different performance criterion

The profile of the performance criteria vary across the training epochs, where this is due to the 

effect of the adaptive learning rate during training. As a result of the variation in performance 

criterion different network training cessation points and thus choice of weight vector result in 

the achievement of different performance criterion values. It can be seen in Figure 4.6 that the 

variation in the performance criterion is consistent over the validation and prediction set and it 

is therefore possible to choose the training cessation point based on the validation set which 

will give good multi-step-ahead performance on the prediction set. An example of this may be 

seen by examining Figure 4.6 more closely; that is, in the range 1650 epochs to 1690 epochs, 

given in Figure 4,7. A choice of weight at epoch 1654 (shown by •  on the graph) yields a
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multi-step-ahead performance value of 3.19 x 104 on the prediction set while the corresponding 

value at epoch 1666 (shown by * on the graph) is 4.29 x 104 which is approximately 35% 

worse. Note that the single-step-ahead performance criterion over the training set suggests a 

cessation point at 1683 (shown by o  on the graph) which yields a value of 3.53 x 104 on the 

prediction set, which is approximately 10% worse.

Consequently, the training cessation point is chosen by the examination of the multi-step-ahead 

performance over the validation set which should ensure good performance over the prediction 

set. In the thesis the optimal multi-step-ahead MAE over the validation set shall be referred to 

as MMAE_val. In practice the procedure involves training the network for a fixed number of 

epochs and the calculation of the multi-step-ahead MAE at every epoch.

It is necessary to determine a suitable number of fixed training epochs over which to train the 

network. Given that the network is being trained to perform a multi-step-ahead prediction and 

since there is a correlation between the multi-step-ahead performance over the validation and 

prediction sets, it is acceptable to continue training the network until the multi-step-head MAE 

over the validation set has stopped decreasing beyond a particular chosen tolerance level. The 

number of epochs required to reach this point will depend on the size of the network and on the 

training data set. Consequently, different networks may require to be trained for a different 

numbers of fixed training epochs. It is desirable to choose as a low a tolerance level as 

possible, however this may not always be practical since it is necessary to re-train a network a 

number of times and thus the overall time taken to complete the training of a network can be 

lengthy. For example, in the System A weekly application typical training times for a 3-5-1 

network with 11 inputs is approximately 50 minutes per 10000 epochs trained on a 160 MHz 

Pentium PC with 16 MB of RAM. It was required to train this particular network for 40000
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epochs to reach a tolerance of approximately 0.4% over 10000 epochs. Therefore, training this 

network for a further 10000 epochs would reduce the MMAE_val by an estimated 0.4%. The 

overall computation time for training this network over 40000 epochs for 10 training runs takes 

approximately 33 hours. For the applications dealt with in this chapter a tolerance level of 

approximately 0.5% over 10000 epochs was chosen for each network. In some cases however 

it was not always possible to achieve this tolerance level due to unacceptable training times but 

in this instance a measure of the tolerance level attained is given.

4.2.5 Application Procedure

The objective of this chapter is to address some of the issues involved in the specification of 

MLP neural networks for time series forecasting purposes, where weekly and yearly electricity 

demand applications are considered. The basic steps involved in the specification of the MLP 

network for each application are as follows:

NN-Step 1. Select input and output structure.

NN-Step 2. Perform input and output data normalisation.

NN-Step 3. Construct input/output training, validation and prediction data sets. 

NN-Step 4. Select hidden layer architecture: number of hidden layers; number of 

neurons in hidden layers and neuron activation functions.

There are numerous factors involved in the specification of the MLP network, where at present 

there is no complete theoretical basis relating these factors to known characteristics of the 

system being modelled. Consequently, some of the network specifications, such as 

input/output data normalisation and hidden layer architecture are best determined through 

experimentation. However, such an experimentation analysis can involve long training times 

and therefore due to computational time constraints the work dealt with here concentrates on 

two aspects of the MLP network specification:

• the specification of the input structure.

• the optimal number of neurons in the hidden layers.

where the latter case is only dealt with in the yearly application. The other MLP specifications, 

such as the input/output data normalisation and the selection of the activation functions are 

specified based on previous work carried out in this application area (Smith, 1994).

103



The specification of the MLP networks used in each application was carried out using the 

procedure, NN-Step 1 to NN-Step 4, outlined above. Each of the MLP networks were trained 

on a 160 MHz Pentium (586) PC with 16 MB of RAM using the backpropagation LMS 

training algorithm (with adaptive learning rate and momentum) given in the Neural Network 

Toolbox For Use with MATALB (1994)

4.3 Application to Weekly Electricity Demand

A neural network analysis was performed on the weekly electricity demand systems, SystemA 

and System B, which were previously dealt with using linear analysis in Chapter 3.

4.3.1 System A

Weekly electricity demand (MWh) and weather (AT and HDDig) data is available for System 

A from 4th April 1982 to 28th December 1991. Figure 3.1 shows a plot of the time series and 

the characteristics of the system are discussed in Section 3.2. Information already established 

in the linear analysis developed in Chapter 3 is used in the neural network analysis. The linear 

models of particular interest are the Box-Jenkins models (2.19) and the structural models 

(2.41). These models identify specific characteristics within the time series, such as trend and 

seasonality, and model these elements. The characteristics are handled differently by each 

model and Table 4.1 compares and contrasts the models and the modelling techniques.

Table 4.1 Comparison of linear models

Box-Jenkins Structural

Trend

component

(1 -  aLq“l- .....~apq~p){ 1 -  q~1)'y(k) = z(k) mfc)=K*-i)+p(*-i)+Ti(fc) 
p(fc) = P(fc- i)H (*0

Seasonal

component

0--auq̂ s-....-aPsq-ps)(\-q-s)'y(k) = E (k) Y (k) = -% y ( k - j )  + <o(k)
M

Identify s, d, D, p  and P S

Estimate >"** and >••••»&ptS _  2 2 2 2 Cfs , Otj , C , CTqj

Estimation

technique

Least Squares 

/Maximum Likelihood

Maximum Likelihood via PED

Problem type System parameter identification 

problem

State estimation problem

Stationarity

issues

Differencing applied to induce 

stationarity in time series

Models non-stationary time 

series
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Two different modelling approaches were adopted. The first approach involves the use of Box- 

Jenkins univariate (2.19) and bivariate (2.23) linear models to determine the input structure to 

the MLP used to forecast weekly electricity demand. The second is a hybrid approach which 

involves using the linear BSM with dummy seasonal component (2.44) to forecast the trend 

and seasonal components of the weekly electricity demand time series and using an MLP to 

forecast the irregular component of the series. A single example of a simple black-box neural 

network modelling approach is also presented to demonstrate such a case, where this involves 

the use of a purely autoregressive weekly electricity demand input structure to the MLP. Due 

to computational time constraints only the univariate case in this instance was examined.

4.3,1.1 Box-Jenkins Model Approach

NN-Step 1: Input and output structure

The construction of the MLP input structure based on the Box-Jenkins linear model involves 

the adaptation of equation (2.19). The specific form of the model identified for this data set is 

given in Table 3.10, Model No. 1, with the seasonal length s=52\ the order of nonseasonal 

differencing d=l\ the order of seasonal differencing D=l. The model is given by:

(1 -  a,q-1-  -a pq~p)(1 -  alf52q~52 -  a252q~lM +aP i2q"f52)(l -  ̂ ‘(l -  q~52)ly(k) = e(fc) (4.6)

where, p  the order of the nonseasonal autoregressive part; P  the order of the seasonal 

autoregressive part. Expansion of the nonseasonal and seasonal regressors in (4.6) yields:

(1 -  ai4 1 ~  -a ,q~ r - a ii52q~52 + a .a ^ q - 53 + +apal52q-l52+p) - ..... - a , ,52tf

+ a ia r,52q~l52F+1)+ +a a r i l q - (-nr+p)) { \ - <7“‘)(i- q~52) y W  = e(fc)
(4.7)

By defining z(k) as:

Z ( k )  =  ( l - q - 1) ( l - q - 52) y ( k ) (4.8)

a generalisation of the linear model given by equation (4.7) to the nonlinear case is given by the 

following:

z(k) = g(z(k -1), ,z(k -  p), z(k -  52), ,z (k -5 2 -  p),z(k -  52 P),

z (k -5 2 P - l)  ,z (k -5 2 P -  p)) + e(k)
(4.9)

where g(.) represents a nonlinear function. An MLP with an input structure described by the 

nonlinear model given by equation (4.9) is used to forecast z(k). A single neuron at the output
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represents the current value of the z(k). The forecast of the original weekly electricity demand 

time series y(k) is obtained by applying the inverse of the differencing transformation given by 

equation (4.8). Figure 4.9 describes the total model which is referred to as a Univariate 

Differenced Box-Jenkins model, denoted as UDBJ_A, where the A denotes the System A data

z { f c - 5 2 P - p )  .

z ( f c - 2 )  - 

z ( f c - l ) ■

M L P

Figure 4.8 UDBJ_A model

A plot of the z(k) time series was shown in Figure 2.10 of Chapter 2.

Further expansion of z(k) in (4.8) yields the following:

1 a\4 ....  apQ. ^1,52# + ̂ 1^1,52#  ~̂a pai,52(l  ̂ ....
- a P52q 52P +a1a P52q (52P+1)+ .+apa P52q (-52P+p)

-q~] +a1q~2+....+apq~(p+1) + ah52q~53 - a ^ ^ q ' 54- .....- a pa152q~(52+p+l) +....
- ( 5 2 P + 1 ) ____  —(52P+2) „  „  - ( 52P+P+1)

+ a P, 5 2 #  ~ a i a P ,S2(l    a p a P ,52<l

-q~51 + a1q~53+.....+apq~(52+p) +ah51q~m - a xali2q~m -  - a pah52q~(m+p) +.

+ap,s2q~(52P+52) - a la P'S2q~('52f>+53) - . , . . - a pa P52q ^ 2p+p+52)

- ? ' 53 + a 1? ”54+  .+apq~(p+S3> +ah52q~105- a xa ^ 2qW6-  .-apah52q~(m+p)+...

(4.10)

A nonlinear model may be adapted from (4.10) and is given by:

y(k) = h(y(k - 1)........ y(k - p - 1),y(k - 52).......y(k - 5 2 - p - I ) , y ( k - 52- p ) .....
...., y(k - 105 -  p)   y(k -  52 P - 1), y (k -  52P), y (k -  52 P -  p -1), y (k -  52 P -p),....
 y (k -  52P -  54), y (k -  52P-  p -  53)) + 8 (k)

(4.11)

where h(.) represents a nonlinear function. An MLP with an input structure described by this 

nonlinear model (4.11) is used to forecast the time series y(k), where the output of the MLP
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represents the current value of y(k). This model is referred to a Univariate Box-Jenkins 

(UB J_A) model and is described in Figure 4.9.

y(k-52P-p-53)---------- »

y(k-52P-54) 1

MLP -----------------------♦?(*>
y(k-2)---------- *

y(k-l)---------- *

Figure 4.9 Description of UBJ_A

The input structures of the MLP’s in the UDBJ_A and UBJ_A models may be extended to 

include AT and HDDig weather variables. Analysis carried out in Chapter 3 determined the 

form of the BJTF model (2.22) for the weekly weather and electricity demand variables. This 

analysis involved the application of differencing transformations to the electricity demand and 

weather time series and the subsequent use of the SCCF (2.12) to determine the structure of the 

model. For both AT and HDDig the delay parameter b was determined to be equal to zero, 

that is the weather in the current week affects the electricity demand in the current week. In 

addition, the order of the B(q) polynomials was determined to be equal to zero and the order of 

F(q) equal to 2. Therefore, the temperature in any previous weeks does not effect the electricity 

demand in the current week. The relationship between electricity demand and weather may be 

described by the following equation

z(k)=  ——  r  , _2 w (k -b )  (4.12)
( l - / i ?  ~ fiQ  )

where z(k) represents the differenced weekly electricity demand time series and w(k) represents 

the differenced weekly weather time series, wAT or h'HDD]8. For each of the AT and HDDlg 

time series the differencing transformations were determined in Section 3.4.1.4 to be as

follows:

wAT(k) = (1 -q ~ l )(1 -  q~52)AT(k) (4.13)

wHDDls (k) = (1 -q~ l )(1 -  q~S2)HDDls (k) (4-14)

The differenced form of the weather variables, wAT and wHDDis, given by (4.13) and (4.14) 

may be included in the nonlinear model UDBJ_A (4.9) to yield a multivariate nonlinear model 

of the following form:
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Z ( k )  =  G[z(k - 1 ) ....... z(k -  p), z(k -  5 2 ) , ............z (k -5 2 -  p),z(k -  5 2 P ) ,

z ( k  -  52P - 1)......   z ( k  -  52P -  p), wAT(k ), wHDD18 (k )) + z ( k )

where G(.) represents a nonlinear function. Expansion of (4.13) and (4.14) yields the 

following:

wAT(k) = AT(k) -  AT(k -  1) -  AT(k -  52) + AT{k -  53) (4.16)

wHDDls (k) = HDDiS (k) -  HDDiS ( k - 1) -  HDDlg (k -  52) + HDDlts (k-53) (4-17)

Based on (4.16) and (4.17) the nonlinear model UBJ_A (4.11) may be extended to the 

multivariate case as follows:

y(k) = H [y(k-1), , y(k-  p - 1), y(k -  52), ,y(k- 5 2 - p -l) ,y (k - 5 2 - p), 
 y(k-lO S-p) y(k-52P -l),y(k-52P ),y(k-52P -p-l),y(k-52P -p),...
,...,y(k-52P-54),y(k—52P -p—53),AT(k),AT(k-l),AT(k-52),AT(k-53)

. HDDn (k), HDDm (k-l),HDDw (k -  52), HDD1S (fc-53)) +e(fc)

where //(.) represents a nonlinear function. The models which use MLP’s with input structure 

described by equation (4.15) and (4.18) shall be referred to as the a Multivariate Differenced 

Box-Jenkins (MDBJ _A) and Multivariate Box-Jenkins (MBJ_A) models respectively.

The number of input variables in the input structure of the MLP’s in the UDBJ_A, UBJ_A, 

MDBJ_A and MBJ_A models depend on the value of the p and P parameters in equations 

(4.9), (4.11), (4.15) and (4.18). The origin of these equations are from the linear Box-Jenkins 

model (4.7), whose parameters were previously identified in Chapter 3 as p=6 and P= 2 (Table 

3.10- Model No. 1). The number of variables in the input structure of the MLP’s for p=6 and 

P -2  are given in Table 4.2

Table 4.2 Number of variables in input structure for p=6 and P -2

Model No. of Input Variables
UDBJ A 21

UBJ_A 31
MDBJ A 23
MBJ_A 39
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Since it is desirable that the MLP input structure contains the absolute minimum number of 

input variables an attempt was made to reduce the order of p  and P. This was achieved 

through the examination of the r-ratio of the estimated parameters of the linear model identified 

in Chapter 3. The general guideline used in the linear analysis is that if the absolute value of 

the r-ratio is greater than 2 then the parameter should be included in the model (Bowerman and 

O’Connell, 1987). Table 4.3 gives the absolute value of the r-ratio for each of the estimated 

parameters at lags p  = 1 to 6 and P = 52, 104.

Table 4.3 t-ratio for estimated parameters of linear Box-Jenkins model

Autoregressive lags t-ratio
1 16.52
2 10.57
3 7.41
4 6.11

5 6.04
6 5.01

52 18.05
104 11.11

Comparing the relative magnitudes of the absolute value of the r-ratio, the larger values are at 

lags 1 and 2 at the nonseasonal level and at lag 52 at the seasonal level. Consequently, a 

reduction in the total number of input variables may be obtained by reducing the value p  = 6 to 

p = 2 and P = 2 to P = 1. The UDBJ_A and UBJ_A models with MLP input structures based 

on p= 6, P = 2 and p  = 2, P = 1 were trained and the multi-step-ahead MAE results obtained 

over the validation set were compared. Table 4.4 presents these results.

Table 4.4 Comparison of models with input structures based on different p and P

p andP Model No. of Input 
Variables

Multi-Step-Ahead MAE 
Validation Set

p = 6 P=2 UDBJ A 21 1.2053 x 104
UBJ_A 31 1.3000 x 104

p=2 P= 1 UDBJ A 5 0.7149 x 104
UBJ_A 11 0.6858 x 104

Based on the results given in Table 4.4 the input structure of the MLP’s in the UDBJ_A, 

UBJ_A, MDBJ_A and MBJ_A models are modified top  = 2 and P =  1, where Table 4.5 gives 

the specific form of the input structure for each MLP.
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Table 4.5 MLP input variables based on p =2 and P= 1.

Model MLP Input Variables

UDBJ_A z(k-l), zik-2), z(k-52), z(k-53), z(k-54)

UBJ_A y(k-V), y(k-2), y(k-3), y(k-52), y(k-53), y(k-54), y(k-55), y(k-104), 

y(/k-105), ></t-106), y(k-107)

MDBJ_A z(k-l), z(k-2), z(k-52), z(k-53), z(/fc-54), wAT(k), wHDD18(fc)

MBJ A y(fc-l), y(k- 2), y(k- 3), y(k- 52), y(k- 53), y(k- 54), y(k- 55), y^-104),

y(jt-105), y(Jt-106), y(k-l0J), wAT(k), wAT(fc-l), wAT(fc-52), 

wAT(fc-53), wHDD|8(fc), wHDDi8(fc-l), wHDDlg(/r-52), wHDDi8(/c-53)

NN-Step 2: Input/output data normalisation

The input and output data for each MLP was normalised by dividing each value of the time

series making up the input vector by the its corresponding NF value. The NF value are as

follows:

• y(k) = 1 x 106

• AT = 1 x 102

• HDD18 = 1 x 103

• z(k) = 1 x 106

• wAT = 1 x 101

• wHDD18 = 1 x 102

The normalisation was carried out prior to the construction of the input training vectors. For 

each MLP the output neuron has a linear activation function and thus has an unrestricted 

output range, however, to ensure efficient learning the target output data was normalised to the 

same magnitude as the input data (divide by 1 x 106 for all cases).

NN-Step 3: Construct input/output training, validation and prediction data sets

The time series data was divided into the following training, validation and prediction sets (see

Section 4.2.3):

• training data set - weekly time series data from 2/01/1983 - 25/12/1989.

• validation data set - weekly time series data from 31/12/1989 - 23/12/1990.

• prediction data set - weekly time series data from 30/12/1990 - 22/12/1991.
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NN-Step 4: Network structure and hidden layer architecture

For the reasons outlined earlier in Section 4.2.2 an MLP with two hidden layers was chosen. It 

would be desirable to select the optimal hidden layer architecture for each of the different 

MLP’s through a full experimentation analysis, however, for practical reasons this was not 

possible due to computational time constraints. Work carried out by Smith (1994) was used to 

aid the determination of a suitable hidden layer architecture, where his work examined different 

hidden layer architecture for this specific application. Table 4.6 describes MLP structures 

employed for each model.

Table 4.6 MLP structure for Box-Jenkins models

Model MLP Structure Activation Function

Hidden Layers Output Neuron

UDBJ_A 3-5-1 Log-sigmoid Linear

UBJ_A 3-5-1 Log-sigmoid Linear

MDBJ_A 10-30-1 Log-sigmoid Linear

MBJ.A 10-30-1 Log-sigmoid Linear

4.3.1.2 Structural Model Approach

The approach using the structural model involved modelling the trend and seasonal components 

of the time series using the linear BSM (2.44) model and using the neural network to model the 

remaining residual component. The determination of the residual component involves the 

estimation of the trend and seasonal components of the weekly electricity demand time series 

through the use of a fixed interval smoothing (FIS) algorithm (Appendix A) and the 

subsequent removal of these components from the data. The residual component is given by:

r ( k )  = y ( k ) - f L ( k ) - y ( k )  + e( k)  k = l  N  (4.19)

where r(k) is the residual component; y(k) is the original time scries; fi(k)  is the estimated 

trend component; f ( k )  is the estimated seasonal component; s(k) is the forecast error and N  is 

the number of observations in the time series. A general autoregressive nonlinear model may 

then be defined for r(k) as follows:

r (k ) = m ( r (& - l ) , ............, r { k - 52),............r ( k - l ) ] + e ( k ) (4.20)

where m(.) is a nonlinear function and I represents the order of the autoregressive component of 

r(k).
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The modelling approach involved four distinct stages:

Stage 1. Modelling of ju(k) and y{lc) to obtain r(k) data.

Stage 2. Modelling and prediction of r(k) using MLP network 

Stage 3. Prediction of ju(k) and y(k) using BSM model.

Stage 4. Prediction of y(k) is the sum of the predictions of r(k), /u(k) and y(k).

Figure 4.10 and Figure 4.11 give a description of the stages involved in the modelling

procedure.

F I S  u s in g  B S M  
m ode l

l
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O — K )

k )

► r ( k )

Figure 4.10 Stage 1 of structural modelling procedure
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Stage 1: Modelling o f ju(k) and y(k) to obtain r(k) data

The estimation of the trend, /u(k), and seasonal component, y(k), of y(k) was carried out using 

FIS smoothing, with the equations for the smoothing algorithm given in Appendix A ((A6) to 

(A7)). The FIS algorithm was used to estimate the trend and seasonal components of the time 

series for every point within the series. For this application the hyperparameters of the basic 

structural model were estimated previously in Chapter 3 and are described in Table 3.10, 

Model No. 4. Figure 4.12 and Figure 4.13 show a plot of the Kalman filter estimates of y(k) 

and the smoothed Kalman filter estimates of y(k) respectively, note that for visual clarity only 

the first four years of the data are shown.
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Figure 4.12 Kalman filter estimates of y(k)

Figure 4.12 shows that the non-smoothed estimates are poor during initial convergence, with 

the improvement obtained in the smoothed estimates clearly demonstrated in Figure 4.13. The 

residual component of the time series was determined using equation (4.19) and Figure 4.14 

gives a plot of the r(k) time series.
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Stage 2: Modelling and prediction of rile) using an MLP

The application procedure described in Section 4.2.5 was used to specify the MLP network. 

NN-Step 1: Input and output structure

The construction of the input structure for the MLP used to forecast r(k) involved the 

determination of the lags of r(k) to include in equation (4.20). The SACF (2.8) of r(k) was 

calculated in an attempt to determine appropriate lags, where the plot of this function is given 

in Figure 4.15.

At the nonseasonal level there are significant lags at 1 and 3 and at the seasonal level at 

approximately 52 and 104. Thus, the SACF suggests the inclusion of r(k) at lags 1, 2, 3, 52 

and 104 in the input structure. These lags were used with the performance of the MLP 

network further improved when the number of lags at the seasonal level was increased to 

include 52, 53, 54 and 104, 105, 106. The inclusion of weather variables in the input structure 

of the MLP was investigated but the MAE multi-step-ahead performance over both validation 

and prediction was approximately 8% less accurate than the univariate case. Consequently, 

only past values of the residual component were included in the MLP input structure for r(k). 

Table 4.7 describes this input structure.

Table 4.7 MLP input structure for r(k)

Predict MLP Input Variables

m r(k-l), r(k-2), r(k-3), r(k-52), r(k-53), r(k-54), r(k-104), r(k-105), r(k-106)
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NN-Step 2: Input/output data normalisation

Since the input structure consists of a single time series, r(k), and given the order of magnitude 

of this series (1 x 10"1), shown in Figure 4.14, it was not necessary to normalise the input and 

output data.

NN-Step 3: Construct input/output training, validation and prediction data set

The data segmentation, used in Section 4.3.1.1 in the Box-Jenkins modelling approach was also

used hereT

NN-Step 4: Select structure and hidden layer architecture

As in the case of the Box-Jenkins modelling approach it was not possible to carry out a full 

experimentation analysis into the optimal hidden layer architecture due to computational time 

constraints. However, using trial and error a network structure which produced good multi- 

step-ahead performance over the training and validation data set was determined. This 

structure is described in Table 4.8.

Table 4.8 Network structure for r(k) MLP

MLP Structure Activation Function

Hidden Layers Output Neuron

20-60-1 Log-sigmoid Linear

Stage 3: Prediction o f /j(k) and y{k)

The prediction of fiik) and yik) was carried out using the BSM with dummy seasonal 

component already estimated in Chapter 3, where this model is described in Table 3.10, Model 

No. 4.

Stage 4: Prediction ofy(k)

The prediction of r(k) obtained in Stage 2 and the prediction of /u(k) and yik) obtained in Stage 

3 are combined to yield y(k), where the results for y(k) are given in Section 4.3.1.4 in Table 

4.18 and Table 4.19.

4.3.1.3 Autoregressive Model

To demonstrate a simple black-box modelling approach an MLP with a purely autoregressive 

input structure was also used to forecast weekly electricity demand.
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NN-Step 1: Input and output structure

A purely autoregressive input structure consisting of 52 past values of the time series, 

corresponding to a full season of data, was constructed. A nonlinear model for this case may 

be described by the following:

y(k) = M{ y(k -1), y(k -  2), y (k -  3), , y(k-51),y(k -52)) +e(k) (4.21)

where M(.) represents a nonlinear function and e(k) represents the forecast error. T h is_ is _

referred to as the AR(52) model.

NN-Step 2: Input/output data normalisation

The weekly electricity demand time series was normalised prior to the construction of the input 

training vectors by dividing each value of the time series by its NF value (1 x 106) and the 

output data was normalised to the same order of magnitude as the input data (divide by 1 x 

106).

NN-Step 3: Construct inpulVoutput training, validation and prediction data sets

The same data segmentation that was used in Box-Jenkins and structural modelling approaches

in Section 4.3.1.1 and Section 4,3.1.2 was also used here.

NN- Step 4: Structure and hidden layer architecture

For comparative purposes the MLP network structure of the univariate AR(52) model was 

chosen to be the same as that used in the univariate UBJ_A and UDBJ_A models. Table 4.9 

describes the structure.

Table 4.9 Network structure for AR(52) MLP

MLP Structure Activation Function

In the Two Hidden Layers Output Neuron

3-5-1 Log-sigmoid Linear

4.3.1.4 Network Training and Forecasting Results

The neural networks were trained using the LMS gradient technique with backpropagation 

(Section 4.2.3), with an adaptive learning rate (initial value of 1 x 10'3) and a momentum 

constant equal to 0.95. Each network is re-trained ten times in an attempt to circumvent the 

sensitivity to initial conditions (Section 4.2.3). The network training cessation point was 

selected through the examination of the multi-step-ahead MAE performance over the validation
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1. MMAE_val.

2. Network training cessation point.

3. Multi-step-ahead MAE over prediction set.

For comparative purposes results are presented^where the network training cessation point was 

selected through the examination of the single-step-ahead SSE performance over the training 

set. Since the SSE will continue to decrease at each training epoch the optimal SSE occurs at 

the final training epoch, that is the fixed number of training epochs. For each training run the 

normalised single-step-ahead SSE (MSE) is given, where this is referred to as SMSE_tr. The 

following results are given for this case (referred to as Result Set 2):

1. SMSE_tr.

2. Network training cessation point = fixed number of training epochs.

3. Multi-step-ahead MAE over prediction set.

For both result sets the average value over the ten training is presented for each result. Table 

4.10 to Table 4.21 give the results for each of the models.

set (MMAE_val) as discussed in Section 4.2.4. The following results are given for each

training run (referred to as Result Set 1 ):

Table 4.10 Results for UDBJ_A model - Result Set 1

Run no.
Valid ation Set Prediction Set

MMAE^val Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1 7.1790 xlO3 29881 6.8860 xlO3
2 7.2904 xlO3 29876 6.7746 xlO3
3 7.1118 xlO3 29907 6.5865 xlO3
4 9.3909 xlO3 29806 7.0104 xlO3
5 9.0564 xlO3 29800 6.8135 xlO3
6 1.1197 xlO4 29803 8.1852 xlO3
7 8.0102 xlO3 29807 6.6456 xlO3
8 7.1490 xlO3 29845 6.5415 xlO3
9 8.1541 xlO3 29846 6.6951 xlO3
10 1.2199 xlO4 29807 9.0160 xlO3

Average 8.7738 xlO4 29838 7.1455 xlO3
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Table 4.11 Results for UDBJ_A model - Result Set 2

Run no.
Training Set Prediction Set

SMSE_tr Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1 293.75 30000 2.2470 xlO4
2 283.28 30000 0.8979 xlO4
3 273.04 30000 6.3565 xlO4
4 289.00 30000 0.7705 xlO4
5 278.76 30000 0.7820 xlO4
6 274.54 30000 1.5096 xlO4
7 292.56 30000 0.7705 xlO4
8 285.18 30000 0.7820 xlO4
9 298.46 30000 0.7430 xlO4
10 294.28 30000 1.0490 xlO4

Average 286.28 30000 1.5908 xlO4

Table 4.12 Results for UBJ_A model - Result Set 1

Run no.
Valid ation Set Prediction Set

M M AEval Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1 7.0749 xlO3 39086 9.3060 xlO3
2 6.8247 xlO3 39015 9.0925 xlO3
3 7.5083 xlO3 39224 9.6032 xlO3
4 7.1203 xlO3 39359 9.3432 xlO3
5 7.5930 xlO3 39495 9.8535 xlO3
6 6.8589 xlO3 38567 9.1489 xlO3
7 7.3369 xlO3 39129 9.5380 xlO3
8 7.3412 xlO3 39139 9.4724 xlO3
9 6.9347 xlO3 39776 9.2060 xlO3
10 7.2175 xlO3 39565 9.3383 xlO3

Average 7.1910 xlO3 39236 9.3902 xlO3

Table 4.13 Results for UB J_A model - Result Set 2

Run no.
Training Set Prediction Set

SMSE_tr Training Cessation 
@ Epoch

Multi-S tep-Ahead 
MAE

1 154.12 40000 1.1929 xlO4
2 155.31 40000 1.2094 xlO4
3 166.61 40000 1.3385 xlO4
4 155.63 40000 1.1433 xlO4
5 160.12 40000 1.2601 xlO4
6 154.29 40000 1.1755 xlO4
7 161.03 40000 1.2337 xlO4
8 163.25 40000 1.2062 xlO4
9 153.67 40000 1.1080 xlO4
10 155.46 40000 1.1399 xlO4

Average 157.95 40000 1.2008 xlO4
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Table 4.14 Results for M D B J A  model - Result Set 1

Run no.
Valid ation Set Prediction Set

MMAELval Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1 6.0061 xlO3 15790 6.1044 xlO3
2 6.0773 xlO3 15938 6.2210 xlO3
3 6.1233 xlO3 12141 6.1168 xlO3
4 6.1665 xlO3 15688 6.2274 xlO3
5 6.1099 xlO3 15951 6.5599 xlO3

6.4501 xlO3 15963 6.4986 xlO3
7 5.5488 xlO3 7584 6.0582 xlO3
8 6.2693 xlO3 15830 6.3409 xlO3
9 6.3632 xlO3 15986 6.5911 xlO3
10 6.6650 xlO3 15887 7.0494 xlO3

Average 6.1780 xlO3 14676 6.3768 xlO3

Table 4.15 Results for M D B JA  model - Result Set 2

Run no.
Training Set Prediction Set

SMSE_tr Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1 492.57 16000 2.8123 xlO4
2 427.07 16000 3.5201 xlO4
3 419.69 16000 6.5690 xlO3
4 437.27 16000 6.2613 xlO3
5 439.03 16000 3.7607 xlO4
6 419.21 16000 1.0752 xlO4
7 403.13 16000 6.6272 xlO3
8 443.67 16000 6.4607 xlO3
9 441.42 16000 7.0697 xlO4
10 485.92 16000 1.3630 xlO4

Average 440.90 16000 1.5830 xlO4

Table 4.16 Results for MBJ_A model - Result Set 1

Run no.
Validation Set Prediction Set

MMAE_val Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1 6.0160 xlO3 49892 8.0084 xlO3
2 6.8663 xlO3 34628 8.2311 xlO3
3 7.6078 xlO3 49857 8.5897 xlO3
4 8.1573 xlO3 49646 9.1075 xlO3
5 7.1181 xlO3 47993 8.7441 xlO3
6 7.1501 xlO3 49927 8.5954 xlO3
7 7.7932 xlO3 49324 8.9950 xlO3
8 7.5659 xlO3 49784 8.1294 xlO3
9 7.6585 xlO3 49922 8.9795 xlO3
10 8.5320 xlO3 46983 9.1812 xlO3

Average 7.5465 xlO3 47796 8.6561 xlO3
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Table 4.17 Results for MB J_A model - Result Set 2

Run no.
Training Set Prediction Set

SMSE_tr Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1 154.58 50000 8.2847 xlO3
2 147.86 50000 8.2108 xlO3
3 151.02 50000 8.9355 xlO3
4 160.12 50000 9.6343 xlO3
5 155.25 50000 9.2200 xlO3
6 151.66 50000 8.7553 xlO3
7 164.83 50000 1.0125 xlO4
8 157.01 50000 8.1042 xlO3
9 149.12 50000 9.4504 xlO3
10 163.58 50000 9.8336 xlO3

Average 155.50 50000 9.0554 xlO3

Table 4.18 Results for structural model - Result Set 1

Run no.
Valid ation Set Prediction Set

MMAE_vaI Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1 2.8965 xlO3 645 7.2739 xlO3
2 3.9759 xlO3 1453 7.9150 xlO3
3 2.7675 xlO^ 371 7.5447 xlO3
4 2.8475 xlO3 1389 7.8416 xlO3
5 3.8571 xlO3 1570 7.5481 xlO3
6 2.9405 xlO3 854 7.4538 xlO3
7 3.9911 xlO3 578 7.1716 xlO3
8 2.7511 xlO3 514 7.1978 xlO3
9 3.0468 xlO3 632 7.4873 xlO3
10 2.8492 xlO3 419 7.5554 xlO3

Average 3.1923 xlO3 842 7.5171 xlO3

Table 4.19 Results for structural model-Result Set 2

Run no.
Training Set Prediction Set

SMSE_tr Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1 255.59 2000 7.2243 xlO3
2 193.60 2000 7.5622 xlOJ
3 212.34 2000 7.3391 xlO3
4 200.14 2000 7.7790 xlO3
5 209.03 2000 7.5187 xlO3
6 225.33 2000 7.3208 xlO3
7 189.36 2000 7.3704 xlO^
8 198.20 2000 7.2498 xlO3
9 222.48 2000 7.2743 xlO3
10 210.65 2000 7.4456 xlO3

Average 211.67 2000 7.4084 xlO3
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Table 4.20 Results for AR(52)_A model -Result Set 1

Run no.
Valid ation Set Prediction Set

MMAE_val Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1 1.0025 xlO4 59677 1.3266 xlO4
2 0.9070 xlO4 59721 1.1839 xlO4
3 1.0465 xlO4 59441 1.4157 xlO4
4 0.8558 xlO4 59970 1.0642 xlO4
5 0.9980 xlO4 59969 1.2851 xlO4
6 0.9508 xlO4 59928 1.2089 xlO4
7 0.9205 xlO4 59911 1.2179 xlO4
8 0.9274 xlO4 59627 1.4846 xlO4
9 1.1063 xlO4 59892 1.2761 xlO4
10 0.9435 xlO4 59250 1.2761 xlO4

Average 1.7360 xlO4 59739 1.2739 xlO4

Table 4.21 Results for AR(52)_A model -Result Set 2

Run no.
Training Set Prediction Set

SMSE_tr Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1 247.00 60000 1.4544 xlO4
2 243.35 60000 1.2410 xlO4
3 259.24 60000 1.7439 xlO4
4 228.45 60000 1.0755 xlO4
5 245.35 60000 1.3205 xlO4
6 236.01 60000 1.2808 xlO4
7 242.59 60000 1.3339 xlO4
8 241.07 60000 1.3169 xlO4
9 249.17 60000 1.6179 xlO4
10 238.64 60000 1.3676 xlO4

Average 243.09 60000 1.3752 xlO4

Before going on to make some general conclusions some comments are made regarding the 

training results. In the case of the MDBJ_A, MBJ„A and structural models the networks have 

been successfully trained within the fixed number of training epochs. However, for the 

UDBJ_A, UBJ_A and AR(52) this is not the case where the tolerance levels attained were as 

follows:

• UDBJ_A - 0.56% over 10000 epochs.

• UBJ_A - 0.35% over 10000 epochs.

• AR(52) - 0.36% over 10000 epochs.

It is interesting to compare the number of training epochs required to train the networks to a 

reasonable degree of accuracy to both network structure and type of training data. This is 

achieved by comparing the average of the training cessation points (based on the M M AEjval)
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calculated over the ten training runs with the different MLP properties. Table 4.22 provides 

such a comparison, where n/a refers to not applicable.

Table 4.22 Comparison of average number of training epochs to network properties

Model Average No. of 
Training Epochs

No. of 
Inputs

MLP Structure Training
Data

Tolerance
Level

UDBJ A 29838 5 3-5-1 differenced 0.5%
UBJ_A 39236 11 3-5-1 original 0.35%

MDBJ A 14676 _  7 _ 10-30-1 differenced n/a
MBJ A 47796 19 10-30-1 original n/a

Structural 842 9 20-60-1 residual n/a
AR(52) 59739 52 3-5-1 original 0.36%

It can be seen that the required number of training epochs depends on the network size but a 

more significant factor is the type of training data used. For example, the networks which use 

pre-processed data in the training vectors take relatively less number of epochs to train 

successfully. An outstanding example is in the case of the structural model where it only takes 

on average 842 epochs to train the network. Moreover, comparison of the Box-Jenkins models 

show that the UDBJ_A and MDBJ_A models took on average less number of iterations to train 

than the UBJ_A, MBJ_A models which use original data in the training vectors. The reason is 

that the pre-processing removes a certain amount of information from the data prior to 

modelling and the system which the network is required to represent has been simplified. This 

is particularly true in the case of the structural model where the majority of the information has 

been removed from the training data through pre-processing. In contrast, in the Box-Jenkins 

case the pre-processing (differencing) removes a proportion of the data but there still remains a 

reasonable amount of information content which the network is required to model. It is also 

interesting to note that the multivariate model MDBJ_A took a significantly less amount of 

time to train than its univariate counterpart UDBJ_A. The reason for this is that the input 

structure in the MDBJ_A model has the advantage of being pre-processed but also presents a 

truer representation of the system through the inclusion of weather variables.

The results show that in the majority of cases the selection of the training cessation point based 

on the MMAE_val produced a more accurate multi-step-ahead MAE performance over the 

prediction set than the selection based on the SMSE_tr (that is, the final training epoch). The 

only exception is in the case of the structural model where the average over the 10 training runs 

of the multi-step-ahead MAE over the prediction set is 7.5171 x 103 using the MMAE_val to 

choose the training cessation point and 7.4084 x 103 using the SMSE_tr to choose the training 

cessation point.
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The results also demonstrate the sensitivity of the network training results to the stochastic 

initialisation of the weight and biases during training. A notable example of this is in the 

UDBJ_A results where there is a difference of approximately 27% in the multi-step-ahead 

MAE over the prediction set produced by training ran 3 (6.5872 x 103) and training run 10 

(9.0160 x 103), with a similar variance in the validation set results. Similarly, in the case of 

the AR(52) model there is a difference of approximately 28% in the multi-step-ahead MAE 

over the prediction set produced by training run 4 (1.0642 x 104) and training run 8 (1.4864 x 

104). In the cases of the other models differences of the order of approximately 13% occurred.

In order to compare the models performance over the prediction set a summary table of the 

entire set of results is given in Table 4.23 where the multi-step-ahead MAE over the prediction 

set is given, with the best result out of the ten training runs selected according to the following 

criterion:

• Minimum MMAE_val out of all training runs.

The following are also included in the table:

• Average of multi-step-ahead MAE over prediction set of the ten training runs.

• Multi-step-ahead MAE over prediction set produced by the equivalent linear model 

developed in Chapter 3.

Note that, in the case of the MDBJ_A and MBJ_A there is no linear model for which a true 

direct comparison can be made since a bivariate analysis as opposed to a multivariate was 

conducted in Chapter 3. However, in this instance the most accurate linear bivariate model 

result is given, that is BJTF with HDDig as an exogenous variable.

Table 4.23 Summary of forecasting results over the prediction data set

Model Minimum MMAE_vaI 
Out of Training 10 Runs

Average Over 
10 Training runs

Linear Model

Training
Run

Multi-Step-Ahead 
MAE 

(Prediction Set)

Multi-Step-Ahead 
MAE 

(Prediction Set)

Multi-Step-Ahead 
MAE 

(Prediction Set)
UDBJ A 3 0.6586 xlO4 0.7146 xlO4 1.0691 xlO4
UBJ A 2 0.9093 xlO4 0.9390 xlO4

MDBJ A 7 0.6058 xlO4 0.6377 xlO4 0.6777 xlO4
MBJ_A 1 0.8008 xlO4 0.8656 xlO4

Structural 8 0.7198 xlO4 0.7517 xlO4 0.7891 xlO4
AR(52) 4 1.0642 xlO4 1.2739 xlO4 1.1101 xlO4
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Comparison of the multi-step-ahead MAE over the prediction set results show that the pre­

processing of the training data achieves higher accuracy than the networks which use original 

data in the training vectors. Comparing the results achieved between UDB J_A and UB J_A and 

between MDBJ_A and MBJ_A this improvement in accuracy is of the order of approximately 

27% in the univariate case and 32% in the multivariate case. In addition, as discussed above 

pre-processing the data has the added advantage that the network take less numbers of 

iterations to train. It is interesting to note that the univariate structural model does not 

outperform the univariate UDB J_A model, where in the linear application this was found to be 

the case. A likely reason for this is that the multi-step-ahead prediction in the case of the 

structural model is a combination of forecasts produced by a Unear and neural network model, 

whereas in the UDBJ_A the prediction was produced solely by a neural network.

Although the UBJ_A and MBJ__A models use original data in the input structure the use of 

linear Box-Jenkins modelling techniques to determine a parsimonious input structure to the 

MLP may also be considered as a form of pre-processing when compared with the more 

traditional black-box modelling approach. Comparison of the multi-step-ahead MAE over the 

prediction set results produced by the UBJ_A and the AR(52) models shows that significant 

improvement (of the order of approximately 38%) can be achieved through the use of use of 

Box-Jenkins linear analysis to determine the input structure to the MLP.

Overall comparison of the multi-step-ahead MAE results in Table 4.32 show that all neural 

network based models outperform their Unear counterparts with the exception of the MBJ_A 

model. The MDBJ_A produces the best multi-step-ahead MAE result over the prediction set 

(0.6058 xlO4). The improvement over its Unear counterpart is of the order of 11 % and over the 

second best neural network model (UDBJ_A) of the order of 8%.

Finally, the criterion (minimum MMAE_val) used to select the training run out of the 10 

possible training runs is consistent with the multi-step-ahead MAE over the prediction set in all 

but two cases. The first case is the UDBJ_A model where the most accurate multi-step-ahead 

prediction is produced by training run 3 over the vaUdation set but by training run 8 over the 

prediction set. The difference in accuracy is of the order of approximately 0.7%. In the case 

of the structural model using the minimum MMAE_val criterion training run 8 is selected but 

the most accurate multi-step-ahead result over the prediction is produced by training run 7. 

Here the difference in accuracy is of the order of approximately 0.4%. Therefore for this 

appUcation given the low magnitude in the percentage differences and the overall success of the 

criterion, the minimum MMAE_val may be considered as a suitable criterion to adopt when the
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selecting the best training run out of a set of possible training runs. The full set of forecasting 

accuracy results for each of the models are given in Table 4.24.

Table 4.24 Forecasting accuracy results for weekly electricity demand

Mu] ti-Step-Ahead Over Prediction Set
Model Training Run MAE MSE MAPE MPE

UDBJ_A 3 0.6586 xlO4 1.0620 xlO8 2.33 0.11
UBJ A 2 0.9093 xlO4 1.9870 xlO8 3.21 0.38

MDBJ A 7 0.6058 xlO4 0.9191 xlO8 2.16 0.39
MBJ A 1 0.8008 xlO4 1.5884 x10s 2.88 -0.37

Structural 8 0.7198 xlO4 1.0104 xlO8 2.57 0.12
AR(52) 4 1.0642 xlO4 1.9261 xlO8 3.74 0.71

The additional forecasting accuracy measures MSE, MAPE and MPE also indicate that the 

models which use prc-processed training data produce the most accurate forecast over the 

prediction set. Based on the MAE, MSE and MAPE measures the MDBJ A produces the most 

accurate result over the prediction set. The relatively high value of the MPE (0.39) for this 

model indicates that it tends to make predictions that are lower on average in comparison with 

the UDBJ_A (0.11) and the structural models (0.12). The UDBJ_A and structural models 

produce comparatively accurate results over all forecasting accuracy measures.

Figure 4.16 to Figure 4.21 give the actual versus predicted graphical results.
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Examining the results graphically it can be seen that the greatest variance between the actual 

and predicted data occurs at Weeks 1 to 8; Week 17; Week 32 and Week 52. The 

uncharacteristically low demand at Week 17 is not due to weather effects since the AT for this 

week is 8°C which is typical. Therefore, it is assumed that this value is an outlier or that the 

low demand is due to some other influencing factor. A striking feature of the predictions is that 

the UDBJ_A, MDBJ_A and the structural models produce a more accurate prediction of 

Weeks 2 to 8; Week 32 and Week 52 than the UBJ_A, AR(52) and MBJ_A model. In 

addition, all the models with the exception of the AR(52) produce an inaccurate prediction of 

Week 1, where the inaccuracy is of the order of approximately 7%. In an attempt to explain 

these variances the time series data over the prediction and training sets are compared. For
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visual clarity only the most recent two years of the training data set are shown. Figure 4.22 

shows the weekly electricity demand time series data for the following years:

• 1991 - prediction set.

• 1989 - training data,

• 1988 - training data.

Examination of Figure 4.22 shows that the three profiles are reasonably consistent during 

Week 18 to Week 47, with the exception of Week 32 in 1988. However, from Week 1 to Week 

18, during the winter (December to February) and spring (March to April) months, the profiles 

vary mainly due to the dominant effect of weather influences. In addition, there appears to be 

an outlier at Week 6 in 1988. Comparing the annual increase in demand due to economic and 

demographic factors, it can be seen that the increase in 1991 is greater relative to the increase 

in 1989. A more significant difference can be seen during Weeks 1 to 8 where electricity 

demand is higher in the prediction data than in the training data. One of the reasons for this 

was an unusually cold spell in 1991 where AT was on average approximately 3°C during this 

period, whereas in contrast it was on average approximately 7°C in 1988 and 1989. Therefore, 

the relatively lower demand produced by the univariate UBJ_A and AR(52) models for Weeks 

1 to 8 can be matched to the relatively low demand during Weeks 1 to 8 of 1988 and 1989. In 

the case of the MBJ_A the input weather variables result in the production of a more accurate 

prediction of demand during Weeks 5 to 8 but this model still under predicts demand for the 

first 4 weeks of the forecast horizon. Since the UDBJ_A and structural models were also
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capable of producing a reasonably accurate prediction of Weeks 2 to 8 but do not contain 

weather variables a contributing factor to the success of the UDBJ_A, MDBJ_A and structural 

model must be the fact that these models use pre-processed training data. Figure 4.23 shows a 

plot of the differenced data and Figure 4.24 shows a plot of the structural model residual data, 

where for visual clarity the prediction set (1991) and one year (1989) of the training data set is 

given.

Figure 4.24 One year of residual training data and residual prediction data

The spurious value at Week 5 in the 1989 differenced and residual data is due to the effect of 

the outlier at Week 6 in the 1988 original data (see Figure 4.22). Similarly, the spurious
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values at Weeks 17 and 18 in the 1991 differenced data are due effect of the outlier at Week 17 

in the 1991 original data. In each case notwithstanding the effect of the outliers there is still a 

variance between the training data and prediction data during the winter and spring months 

(Weeks 1 to 17 and Weeks 48 to 52), however the magnitude of the variance has been reduced 

through pre-processing. Consequently, the neural networks which are trained on pre-processed 

data produce have the capability of producing a more accurate prediction over this period.

The important conclusions that were determined from the results of the neural networkanalysis 

and that are valid for the System A weekly electricity demand application are summarised as

follows:

• the fixed number of training epochs that are required to train the network is highly 

dependent on the type of training data, that is original or pre-processed data.

• overall the selection of the training cessation point based on the multi-step-ahead 

performance over the validation set produces good performance over the prediction set.

• it is sufficient to re-train the network 10 times in order to circumvent the sensitivity of 

the network to initial conditions.

• the minimum MMAE_val is a suitable criterion to use when selecting the best training 

out of a set of training runs.

• the models that were trained using pre-processed training data produced the most 

accurate results over the prediction set.

4.3.2 System B

The System B data set that was introduced in Section 3.2 consists of weekly electricity demand 

(MWh), AT and HDDis data from 5th April 1980 to 25th August 1990. Figure 3.3 gives a 

plot of this series and Section 3.2 discusses the main attributes of the time series. Neural 

networks were applied to model the weekly electricity demand system, where a similar analysis 

to the one performed on the System A data set was carried out. However, preliminary results 

were not promising. The results showed that in contrast to the System A case the MLP 

networks did not produce more accurate forecasting results in comparison with their linear 

counterparts. This was true for both univariate and multivariate neural networks. MLP’s with 

a number of different design configurations were trained but it was not possible to determine a 

suitable MLP structure which could model the System B data set. Due to the consistent 

achievement of poor forecasting results it was decided not to continue with a full neural 

network analysis. A brief summary of the preliminary analysis is given in now given.
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4.3.2.1 System B MLP Specification

The Box-Jenkins modelling approach (Section 4.3.1.1) employed in the System A case was 

also employed here, where the application procedure outlined in Section 4.2.5 was used to 

specify the MLP networks. An MLP with a purely autoregressive input structure was also 

used.

NN-Step 1: Input and output structure

Input structures adapted from the Box-Jenkins linear model (2.19) similar to those developed 

in the System A weekly electricity demand application were constructed. Nonlinear models 

were adapted based on the linear Box-Jenkins models identified for this data set which are 

given in Chapter 3, Table 3.13, Model No. 25. Table 4.25 gives a description of the MLP 

input structures.

Table 4.25 MLP input structures

Model M LP Input Variables

UDBJJ3 zQc-1), z(k-2), z(k-3), z(k-52), z(k-53), z(k-54), z(k-55)

UBJ_B y(k-\), y(k-2), y(k-3), y(k-4), y(k-52), y(k-53), y(k-54), y(k-55), y(k-56), 

y(k-104), y(k-l05), y(k-106), y(k-107), y(/t-108)

MDBJ_B z(k-\), z(k-2\ z(k-3), z(k-52), z(k-53), z(k-54),z(k-55), wAT(k), wHDD18(fc)

MBJ_B y(£-l), y(k-2), y(k-3), y(k-4), y(k-52), y(k-53), y(k-54), y(k-55), y(k-56), 

y(k-104), y(k-105), y(k-106), y(fc-107), y(it-108), wAT(k), wAT(k-l), 

wAT(k-52), wAT(k-53), wHDD18(fc), wHDD18(it-l), wHDD18(jk-52),

wHDDi8(A:-53)

AR(52)_B y(k-l),..........y(k-52)

NN-Step 2: Input and output data normalisation

The input data is normalised prior to the construction of the input vectors by dividing each 

time series by its corresponding NF value which are as follows:

• y(k) = 1 x 108;

• AT = 1 x 102

• HDD18 = 1 x 102

• z(k) = 1 x 107;

• wAT = 1 x 101

• wHDDis = 1 x 102
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The output was also normalised to the same order of magnitude of the input data (divide by 1 

x 108 for UBJ_B; MBJJB and divide by 1 x 107 for MBJ_B; MDBJ_B).

NN-Step 3: Training, validation, prediction data sets

The training, validation and prediction data sets are constructed as follows:

• training data set - weekly time series data from 31/08/1980 - 21/08/1988.

• validation data set - weekly data time series from 28/8/1980 - 20/08/1989.

• prediction data set - weekly data time series from 27/08/1989 - 19/08/1990.

NN-Step 4: Network structure and hidden layer architecture

An MLP with two hidden layers was used, where work carried out by Smith (1994) was used 

to select the hidden layer architecture. Table 4.26 describes the MLP structures for each 

model.

Table 4.26 MLP input structure

Model MLP Structure Activation Function
In the Two Hidden Layers Output Neuron

UDBJ_B 2-6-1 Log-sigmoid Linear
UBJ B 2-6-1 Log-sigmoid Linear

MDBJ_B 3-9-1 Log-sigmoid Linear
MBJ_B 3-9-1 Log-sigmoid Linear

AR(52)_B 2-6-1 Log-sigmoid Linear

4.3.2.2 Training and Forecasting Results

The networks were trained using the LMS gradient technique with backpropagation, with an 

adaptive learning rate (initial value of lx l0 '3), a momentum constant equal to 0.95 and each 

network was re-trained 10 times. For brevity the most accurate result achieved out of the 10 

training runs is given. Similar results to those given in the System A analysis are presented in 

Table 4.27 and Table 4.28, that is Result Set 1 and Result Set 2 respectively.

Table 4.27 Summary of results for System B - Result Set 1

Model Validation Set Prediction Set
Multi-Step-Ahead

MAE
Training Cessation @ 

Epoch
Multi-Step-Ahead

MAE
UDBJ_B 2.6710 x 105 22114 3.4817 x 103
UBJ_B 4.1706 x lO 5 14750 3.8789 x 10"

MDBJ_B 4.2970 xlO5 22778 3.8560 x 105
MBJ_B 5.1230 xlO5 58784 4.2190 x 105

AR(52)_B 2.9940 x 105 58690 3.9686 x 10s
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Table 4.28 Summary of results for System B - Result Set 2

Model Tra ningSet Prediction Set
Single-Step- 
Ahead MSE

Training Cessation @ 
Epoch

Multi-Step-Ahead
MAE

UDBJ_B 1.9640 x 103 30000 3.4978 x 105
UBJ B 1.5240 x 103 40000 4.4126 x 105

MDBJ B 2.1423 x lO 3 30000 4.0060 x 105
MBJ B 2.0019 x 103 60000 4.2240 x 103

AR(52)_B 2.1327 x lO 3 60000 3.8235 x 105

Comparing the results obtained using the MLP’s to those obtained using the equivalent linear 

models in Chapter 3 show that the linear models produce the most accurate results over the 

prediction set. The variance in the MAE over the prediction set between the UDB J_B and the 

equivalent Unear model (SARI) is of the order of approximately 7%. In the multivariate case 

the results are even poorer, with the variance in the MAE over the prediction set of the order 

of approximately 34% between the MDBJ_B model and the linear BJTF (with HDDig) model. 

As in the case of System A it can be seen that pre-processing the training data reduces the 

number of iterations required to train the network. In addition, the selection of the training 

cessation point using the MMAE_val criterion yields the best result over the predication set 

compared with the MSE_tr criterion.

It is difficult to analyse the physical significance of the relationship that a neural network 

constructs between the past and future values of the time series and consequently, it is difficult 

to ascertain the reasons why the MLP networks did not perform well in this particular 

application. One possible reason is that System B is a linear as opposed to a nonUnear system 

and may thus be adequately represented by a Unear model. Unfortunately, there is no clear cut 

strategy available for distinguishing Unear time series from nonUnear time series. The 

common approach is to construct both Unear and nonUnear models and then find sufficient 

evidence for the abandonment of the Unear model, where this often involves the use of 

hypothesis testing (Gooijer and Kumar, 1992). However, the tests available for the 

comparison of the Unear and nonUnear models are model specific. For example the tests 

presented in Gooijer and Kumar (1992), who provide an overview of existing methods on the 

subject, deal with tests specifically designed for traditional nonUnear models, such as 

Autoregressive Conditional Heteroscedastic (ARCH); BiUnear and Threshold Autoregressive 

(TAR) models.

Another possible reason for the failure of the MLP’s in this appUcation could be that the 

networks are getting trapped in local minimum during training. Since, the error surface is
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multi-dimensional it is not possible to examine the shape of this surface in an attempt to verify 

if this is the case. It is known that many backpropagation error surfaces have extensive flat 

areas and troughs that have very little slope (Hecht-Neilsen, 1990). Therefore, in these areas 

it is necessary to move the weight value a substantial distance before a significant drop in 

error occurs. Consequently, the use of the backpropagation learning rule in this application 

may have required greater numerical precision and a greater number of training runs in order 

to make significant progress.

4.4 Application to Yearly Electricity Sales

A neural network analysis was performed on yearly electricity sales (GWh) data which was 

obtained from the same national power board dealt with in the System A weekly electricity 

demand application (Table 3.1). Aggregated and disaggregated data is available from 1965 to 

1994 and 1971 to 1994 respectively. The disaggregated data is divided into three sectors: 

industrial; commercial; domestic. The aggregated data is referred to as the total sales. Figure 

4.25 compares the four electricity sales time series.

Each of the time series exhibit a rising trend due to the annual influences of economic and 

demographic variables. Data is available for these economic (in real terms) and demographic 

variables, where Table 4.29 gives a description of each variable.
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Table 4.29 Economic and demographic variables

Name Definition

AIW Average industrial wage (£/week)

GDP Gross domestic product (£m)

TAUP Total average unit price (p/KWh)

IAUP Industrial average unit price (p/KWh)

DAUP Domestic average unit price (p/KWh)

CAUP Commercial average unit price (p/KWh)

TNOC Total number of customers

INOC Industrial number of customers

DNOC Domestic number of customers

INOC Commercial number of customers

A multivariate neural networks analysis was performed on each of the total, industrial, 

domestic and commercial yearly electricity sales systems, where the application procedure 

outlined in Section 4.2.5 was followed. The aggregate and disaggregate cases are considered 

simultaneously.

4.4.1 Specification o f M LP Networks

NN-Step 1: Input and output structure

Analysis developed in the weekly electricity demand application showed the advantage to be 

gained through the incorporation of information obtained through linear time series modelling 

when constructing the MLP input structure. The construction of the input structure for the 

yearly application involved the expansion and adaptation of the Box-Jenkins Unear model 

(2.19). The yearly electricity sales time series are nonseasonal series with a rising trend and 

each have a linear model structure of the following form:

( 1 - a ^ '1- .......- apq~p)z(k) = e(k) (4.22)

where p  is the order of the autoregressive component and z(k) = ( l-q~ L)dy(k) is the 

differencing transformation required to convert the nonstationary electricity sales time series 

to stationary series. Expansion of (4.22) yields a generaUsed nonUnear model of the following 

form:
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z{k) = g{z(k - 1), z(k -  pj) + e(k) (4.23)

where g(.) is a nonlinear function and sik) is the forecast error. Alternatively a nonlinear 

model structure may he obtained from the full expansion of the following

(1 -a,q~l - .......-a  q-p)(l-q~l )d y(k) = e(k) (4.24)

which yields

y(k)  = ft(>>(fc-l), y ( k -  p )  y ( k -  p + d)) + e(k) (4.25)

where h(.) is a nonlinear function and s(k) is the forecast error.

The order of the nonlinear models given by (4.23) and (4.25) depend on the value of the 

parameters p  and d. The SACF (2.8) was used to determine the appropriate order of 

differencing required to convert the time series to stationary series (see Section 2.4.1.2) and 

the SPACF (2.9) was used to determine the order of the autoregressive parameter p for each 

series (see Section 2.4.3.1). Table 4.30 gives the value of the parameters for the electricity 

sales time series, where tot, ind, dom and com represent the total, industrial, domestic and 

commercial electricity sales time series respectively.

Table 4.30 Value of p  and d for electricity sales time series

Time Series P d
tot 2 2
ind 2 2
dom 2 2
com 1 1

Based on the values of p  given in Table 4.28 the following nonlinear models may be obtained 

from equation (4.23):

zto t(k) = g M{ztot(k  - 1 ) ,zto t(k  -  2)) (4.26)

z ind(k)  = g ini{ z in d (k - \ ) , z in d { k  - 2 ) )  (4.27)

zdom(k) = g ^Jzdom ik  -l) ,zdom (k -2 ) )  (4.28)

zcom(k) = g com{zcom(k - 1)) (4.29)
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where, gtot(.), gindt), gdomC) and gcomO are nonlinear functions and ztot, zind, zdom and zcom 

are the differenced tot, ind, dom and com time series respectively. Based on the values of p 

and d in Table 4.30 the following nonlinear models may be obtained from equation (4.25):

tot(k)= hlol(tot(k-V), tot(k - 2 ),tot(k -3), tot(k-  4)) (4.30)

ind(k) = hjnd{ind(k - l ) , in d (k  -2 ) ,in d (k  -3 ) ,ind(k  -4 ) )  (4.31)

dom(k) = hdom{dom(k -  l),dom(k -2),dom (k  -  3),dom(k - 4 ) )  (4.32)

com(k) = hcom{com(k -  Y),com(k -  2)) (4.33)

where, htoi(.), hmd(.)> hdomt) and hCOm(-) are nonlinear functions. The nonlinear models given 

by equation (4.26) to (4.33) were extended to include the economic and demographic 

exogenous variables given in Table 4.29, The entire set of available exogenous variables 

could be included in each model, however, a parsimonious model is desirable and some pre­

processing analysis was thus performed on the exogenous variables. The SCCF(2.12) was 

used to ascertain if a relationship existed between a particular exogenous variable and the 

electricity sales variable of interest. The SCCF was calculated for each of the exogenous 

variable/electricity demand pairs. The SCCF analysis involved the conversion of each time 

series to a stationary one through differencing. Table 4.31 give the exogenous variables which 

were found to have a relationship with electricity sales for each of the sectors, the 

corresponding delay parameter b and nb the order of the input variable regressor B(q). Table 

4.32 give the degree of differencing applied to each time series to achieve stationarity.

Table 4.31 Relevant exogenous variables

Time Series Exogenous
variable

b nb

Total AIW 0 0
GDP 0 0
TAUP 0 1

Industrial sector AIW 0 0
GDP 0 0
IAUP 1 0

Domestic sector AIW 0 1
GDP 0 0

DAUP 0 0
Commercial sector GDP 0 0

TAUP 0 1
CNOC 0 0
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Table 4.32 Value of d for exogenous time series

Time Series d

AIW 2
GDP 2
TAUP 2
IAUP 2
DAUP 2
CAUP 1
CNOC 2

Figure 4.26 to Figure 4.29 show the profile of the original electricity sales and the associated 

exogenous variable time series for each sector, where each time series is scaled to the same 

order of magnitude.

Figure 4.26 Total sales and exogenous 
variables

Years

Figure 4.27 Industrial sales and exogenous 
variables
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Based on the results given in Table 4.31 and Table 4.32 the nonlinear models described by 

equations (4.26) to (4.29) were extended to include the relevant exogenous variables.

ztot(k) = Glol{wGDP(k),wTAUP(k),wTAUP(k-l),wAIW(k),ztot(k-\),ztot(k-2)) (4.34) 

z ind(k)  = Gind (wGDP(k), wIA U P ( k - 1), wAIW (k), zind ( k - 1), zind ( k -  2)) (4.35)

zdom(k) = (wGDP(k), wDAUP(k), wAIW(k), wAIW(k -1 ) ,zdom(k -1), z.dom(k -  2)) (4.36)

zcom(k) = Gcom{w G D P (k) ,w C A U P (k) ,w C A U P (k-l) ,w C N O C (k) ,zcom (k - \ )) (4.37)

where, GtotC), Gind(.), Gdomt) and Gcom(.) are nonlinear functions and wGDP, wAIW, wTAUP, 

wIUAP, wDAUP and wCNOC are the differenced GDP, AIW, TAUP, IUAP, DAUP and 

CNOC time series respectively. Similarly for equations (4.30) to (4.33).

totik) = H lnl (GDP(k), GDP(k - 1), GDP(k -  2), TAUP(k), TAUP(k - 1), TAUP(k -  2),
v (4.38)

TAUP(k -  3), AIW(k)AIW(k - 1), AIW(k -  2), tot(k - 1), tot(k -  2), totik -  3), tot(k -  4)J 

ind(k) = HM{GDP(k),GDP(k - 1),GDP(k - 2),IAUP(K- 1), IAUP(k - 2 ) , IAUP(k -  3),
(4.39)

AIW(k ), AIW(k - 1), AIW(k -  2),ind(k -1  ),ind(k -  2),ind(k -  3),ind(k -4 )) 

dom(k) = H, (GDP(k),GDP(k-l),GDP(k-2),DAUP(k),DAUP(k-l),DAUP(k-2),
. (4.40)

AIW{k\ AIW(k - 1), AIW(k -  2), AIW(k -  3),dom(k -1  ),dom(k -  2),dom(k -  3), dom(k -  4)) 

com(k) = H com{GDP(k),GDP(k - 1),GDP(k -  2), CAUP(k -  l),CAUP{k -  2),
(4.41)

CNOC(k), CNOC(k - 1), CNOC(k -  2), com(k - 1), com(k -  2))

where, H t01(.), Hind(), Hdom(.) and HCOm(.) are nonlinear functions. The names of the aggregate 

and disaggregate models with MLP’s input structures based on the nonlinear models given by 

equations (4.34) to (4.41) are given in Table 4.33.

Table 4.33 Aggregate and disaggregate models

Model Equation
MDBJ tot (4.34)
MDBJ_ind (4.35)
MDBJ dom (4.36)
MDBJ_com (4.37)

MBJ tot (4.38)
M BJJnd (4.39)
MBJ dom (4.40)
MBJ com (4.41)
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As in the case of the weekly electricity demand application (Section 4.3.1.1) if the MLP is 

used to forecast the differenced form of the time series then it is necessary to apply the inverse 

differencing transformation to obtain the forecast of the original electricity sales time series 

(see Figure 4.8 for an example of this).

NN-Step 2: Input and output training data normalisation

For each case the input data was scaled using the external normalisation procedure, where

each time series was divided by the NF value prior to the construction of the input training _

vectors. Table 4.34 describes the NF values used for each time series in the MBJ and MDBJ 

networks.

Table 4.34 NF values for time series in MBJ and MDBJ models

Variable NF Variable NF

tot 1 x 10s ztot 1 x 103
ind l x l O 5 zind l x l O 3
dom 1 x 103 zdom 1 x 103
com l x l O 5 zcorn 1 x 104
AIW l x l O 3 wAIW 1 x 102
GDP l x l O 6 wGDP 1 x 101
TAUP 1 x 102 wTAUP 1 x 106
IAUP 1 x 102 wIAUP 1 x 10°
DAUP 1 x 102 wDAUP 1 x 10°
CAUP l x l O 2 wCAUP 1x10°
INOC 1 x 10“ wINOC 1 x 104

The output neuron has a linear activation function and thus has an unrestricted output range 

but to aid the learning process the output data was normalised to the same order of magnitude 

as the input data (divide by 1 x 105 for MBJ_tot; MBJJnd; MBJ_dom; MBJ_com and divide 

by 1 x 103 for MDBJ_tot; MDBJ_ind; MDBJ_dom; MDBJ_com).

NN-Step 3: Construct input/output training, validation and prediction data sets 

A typical forecast horizon for yearly electricity sales for this system is five years ahead 

(Section 1.1) and therefore the prediction data set is made up of five years of data. Due to 

data limitations only two years data was selected for the validation set the remainder of the 

data was reserved for the training set. The aggregate electricity sales data is available from 

1965 to 1994, whereas the disaggregate electricity sales data is only available from 1972 to 

1994 and therefore there was less training data available for the disaggregate case. The data 

segmentation for each case is as follows:
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Aggregate case:

• training data set - yearly time series data from 1965 to 1987.

• validation data set - yearly data time series from 1988 to 1989.

• prediction data set - yearly data time series from 1990 to 1994.

Disaggregate case:

• training data set - yearly time series data from 1972 to 1987.

• ^validation data set - yearly data time series from 1988 to 1989.

• prediction data set - yearly data time series from 1990 to 1994.

NN-Step 4: Select Structure and Hidden Layer Architecture

Based on the motivation given in Section 4.2.2 an MLP with two hidden layers was chosen as 

the network structure. An experimentation analysis was carried out to select the optimal 

number of neurons in the hidden layers of the MLP. Networks with different number of 

neurons in the hidden layers were trained and their performance over the training, validation 

and prediction sets were compared. The main objective of the analysis was to ascertain the 

type of network structures that are suitable for forecasting yearly electricity sales. Moreover, 

an attempt was made to establish a suitable criterion to employ when selecting the best 

network structure out of a set of trained network structures. Given a set of trained network 

structures there are two choices available for comparing their performance. These are

1. SMSE_tr (optimal single-step-ahead MSE over the training set)

2. MMAE_val (optimal multi-step-ahead MAE over the validation set)

Since, a forecast and thus a separate neural network model was required for the aggregate and 

disaggregate electricity sales, some preliminary analysis was conducted based on the 

aggregate (total) sales to gain some insight into problem. To achieve the objectives of the 

analysis ten different MLP networks with different numbers of neurons in the hidden layers 

were trained and the results analysed. Initial results showed that the MBJ_tot (4.38) model 

outperformed the MDBJ_tot model (4.34) and therefore the ten MLP structures were trained 

using the MBJ_tot model. Log-sigmoid activation functions were used in all the neurons in 

the hidden layers and a single linear neuron was used at the output. The networks were 

trained using the LMS gradient technique with backpropagation (Section 4.2.3), with an 

adaptive learning rate (initial value of lxlO'3) and a momentum constant equal to 0.95. Each 

network was re-trained 30 times using different random weight initialisations. Since there are 

10 different network structures and 30 training runs for each structure, the set of results for
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1. MMAE_val

2. Network training cessation point.

3. Multi-step-ahead MAE over prediction set.

For the purposes of determining a criteria to select the best network structure out the 10 

network structures, each structure is ranked according to the MMAE_val. To aid the analysis 

the structure which yields the best multi-step-ahead MAE result over the prediction set is 

highlighted (shaded).

For comparative purposes the results were the network training cessation point was selected 

through the examination of the single-step-ahead SSE performance over the training set are 

also given (Result Set 2), where these are:

1. SMSE„tr

2. Network training cessation point.

3. Multi-step-ahead MAE over prediction set.

Similarly, these results are ranked according to the SMSE_tr and the best multi-step-ahead 

MAE over the prediction set result is highlighted. Table 4.35 and Table 4.36 give the above 

results for the MBJ_tot model.

every training run are not given. Instead, for each MLP structure the results are shown for the

training run which yielded the minimum MMAE_val. Similar results to those presented in the

weekly application are also presented here, that is: (Result Set 1):

Table 4.35 Results for MB J J o t  model - Result Set 1

Minimum MMAE_val Out of 30 Training Runs
Validation Set Prediction Set

Structure Rank MMAE_val Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1-3-1 10 15.08 30874 205.27
1-9-1 6 1.85 9339 359.14
2-6-1 8 10.85 4652 153.98
2-9-1 1 0.17 8263 375.65
3-5-1 5 1.62 37665 315.69
3-9-1 7 5.04 4636 179.05

3-15-1 3 1.27 19149 369.99
4-10-1 4 1.28 36138 310.37
4-20-1 2 0.96 7687 373.15
10-30-1 9 11.22 32708 309.81
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Table 4.36 Results for MBJ_tot model - Result Set 2

Minimum MMAE_val Out of 30 Training Runs
Trainin K Set Prediction Set

Structure Rank SMSE_tr Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1-3-1 1 2.204 xlO'6 40000 203.79
1-9-1 9 4.960 xlO'6 40000 418.88
2-6-1. 4 1 3.02ft x i n ' 1  40000 156.77
2-9-1 5 3.260 xlO'6 40000 344.65
3-5-1 8 3.872 xlO'6 40000 317.40
3-9-1 3 2.364x1 O'6 40000 178.70

3-15-1 6 3.468 xlO’6 40000 464.61
4-10-1 7 3.728 xlO'6 40000 365.40
4-20-1 2 2.232 xlO-6 40000 401.14
10-30-1 10 5.480 xlO'6 40000 402.13

Examination of the results in Table 4.35 show that the MLP structure that yields the best 

MMAE_val is 2-9-1. This however is inconsistent with the corresponding result over the 

prediction set, where the structure that yields the best multi-step-ahead forecast is in fact 2-6-

1. In Table 4.36 the best multi-step-ahead result over the prediction set is also obtained using 

a 2-6-1 structure but again this was inconsistent with the result for the SMSE_tr, where if this 

criterion was used a 1-3-1 structure would be selected. A possible reason for the variance in 

the case of the MMAE_val criterion is that only two-year-ahead forecast is carried out over 

the validation set, due to limitations in the total number of data points available for the 

MBJ_A model (20 points), whereas a five-year-ahead forecast is performed over the 

prediction set. Consequently, the weight set which produces a good two-year ahead forecast 

on the validation set may not always produce a comparable five-year-ahead forecast over the 

prediction set. However, the extension of the validation to five years data would reduce the 

number of data points in the training set to an unacceptable number of points (15 points) 

which could result in learning difficulties. In the case of the SMSE_tr criterion a likely reason 

for the inconsistency is the problem associated with the use of a single-step-ahead criterion to 

select the training cessation point for a network that is required to perform a multi-step-ahead 

prediction.

Closer examination of the overall set of results for all training runs shows that some structures 

are very sensitive to initial conditions. In some cases the MMAE_val and SMSEJx vary 

greatly across training runs. Notable example are given in Table 4.37 which shows the 

minimum MMAE_val achieved out of the 30 training runs and the maximum MMAE_val 

achieved out of the 30 training runs, with similar results given for the SMSE_tr.
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Table 4.37 Network structures that are particularly sensitive to initial conditions

MMAE val SMSE_tr
Structures Minimum Maximum Minimum Maximum

1-9-1 1.85 1287.01 0.24 xlO'5 1.36 xlO’5
2-9-1 0.17 1105.05 0.34 xlO”3 1.32 x l0°
3-15-1 1.27 1194.14 0.35 xlO'5 1.36 xlO’5

In contrast, network structures whose performance is relatively stable across training runs are 

given in Table 4.38.

Table 4.38 Network structures that were not sensitive to initial conditions

MMAE val SMSE_tr
Structures Minimum Maximum Minimum Maximum

1-3-1 15.08 632.51 0.22 xlO’3 0.84 xlO"5
2-6-1 10.85 666.04 0.30 xl0'? 0.81 xlO*
3-5-1 1.62 672.04 0.39 xlO’3 0.86 xlO'5
3-9-1 5.04 692.44 0.24 xlO'5 0.95 x l0°

To account for the significant sensitivity of some network structures to initial conditions and 

in an effort to assess the overall capability of a particular MLP structure the average value 

over the 30 training runs was calculated for the MMAE_val and SMSE_tr. The results are 

given in the same format as Result Set 1 and Result Set 2 and are referred to as Result Set 3 

and Result Set 4. Table 4.39 and Table 4.40 show the results.

Table 4.39 Comparison of MLP structures for MBJ_tot model - Result Set 3

Average Value Over 30 Training Runs
Validation Set Prediction Set

Structure Rank MMAE_val @ Epoch Rank Multi-Step-Ahead
MAE

1-3-1 3 241.28 35197 3 205.27
1-9-1 8 349.32 29725 359.14
2-6-1 1 : i i i i i s 20907 1 > 153^8
2-9-1 10 358.31 32863 375.65
3-5-1 2 214.55 28419 4 315.69
3-9-1 4 245.30 30684 2 179.05

3-15-1 6 317.34 29908 369.99
4-10-1 7 346.64 35498 5 310.37
4-20-1 5 288.92 28047 373.15
10-30-1 9 352.24 33523 309.81
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Table 4.40 Comparison of MLP structures for MB J_tot model - Result Set 4

Average Value Over 30 Training Runs
Trainiu K Set Prediction Set

Structure Rank SMSE_tr @ Epoch Multi-Step- 
Ahead MAE

1-3-1 3 4.8244 xlO'6 40000 203.79
1-9-1 8 6.0800 xlO'6 40000 418.88

l l l l i i l i l l : i 4.1392x10** m m m 156.77
2-9-1 10 6.1988 xlO'^ 40000 344.65
3-5-1 2 4.3576 xlO'6 40000 317.40
3-9-1 4 4.8800 xlO'6 40000 178.70

3-15-1 6 5.9124 xlO'5 40000 464.61
4-10-1 7 5.9528 xlO'6 40000 365.40
4-20-1 5 5.6880 xlO'6 40000 401.14
10-30-1 9 6.0496 xlO'6 40000 402.13

The interesting point to note here is that in contrast to the previous results given by Result Set 

1 in Table 4.35 and Result Set 2 in Table 4.36 the use of criteria based on average values 

yield a consistent structure selection over training, validation and prediction set, where this 

selection is 2-6-1. In addition, the ranking of the network structures based on the MMAEjval 

MMSEJx are consistent. However, with the exception of the top ranking structure (2-6-1) 

the ranking is not consistent with the prediction set, where the most likely reason for this is the 

large variation in performance across training runs due to the sensitivity to initial conditions. 

Although the order of ranking is not consistent between the validation and prediction set and 

also between the training and prediction set the top four ranking structures for all cases are 2- 

6-1; 3-5-1; 1-3-1 and 3-9-1. Note that, these were the structures that were found to be not as 

sensitive to initial conditions as the other structures in the set.

Based on the preliminary analysis the following guidelines may be adopted for the remainder 

of the experimentation analysis:

• to alleviate the problem of sensitivity to initial conditions it was nccessary to carry out 

at least 30 training runs.

• to assess the overall capability of a network structure a criterion based on the average 

values of the performances over the 30 training runs should be used to select the most 

suitable network structure out of a set of trained network structures.

• the most suitable network structures for yearly electricity sales forecasting are the 1-3- 

1; 2-6-1; 3-5-1 and 3-9-1 structures.
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One of the objective of the overall experimentation analysis was to determine a suitable 

criterion to use when selecting the best network structure out of a set of trained network 

structures. The preliminary analysis suggests that either the average values over 30 training 

runs of the MMAE_val or the average values over 30 training runs of the S M SE jr could be 

used as a criterion. However, in order to make some broader conclusion concerning this 

objective it was necessary to examine the results for the disaggregate case. However, before 

proceeding any further the four choices of criterion available to select the network structure 

are summarised

Criterion 1: Minimum value out of 30 training runs of the MMAE_val - Result Set 1.

Criterion 2: Minimum value out of 30 training runs of the SMSE_tr - Result Set 2.

Criterion 3: Minimum of average over 30 training runs of the MMAE_val - Result Set 3.

Criterion 4: Minimum of average over 30 training runs of the S M SE jr - Result Set 4.

The results for the MDBJ_tot model are examined before proceeding to the disaggregate 

cases. Using the guidelines outlined above the MDBJ J o t  model was trained with the results, 

Result Set 1 to Result Set 4 given in Tables 4.41 to Table 4.44 respectively.

Table 4.41 Results for MDBJ J o t  model - Result Set 1 (Criterion 1)

Minimum MMAEjval Out of 30 Training Runs
Validation Set Prediction Set

Structur
e

Rank MMAE_val Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1-3-1 3 199.21 10551 272.41
2-6-1 1 186.02 11471 404.99
3-5-1 2 195.87 6769 346.20
3-9-1 A 202.22 8545 260.11

Table 4.42 Results for MDBJ J o t  model - Result Set 2 (Criterion 2)

Minimum MMAEjval Out of 30 Training Runs
Trainin ii Set Prediction Set

Structure Rank SM SE jr Training Cessation 
@ Epoch

Multi-Step- 
Ahead MAE

1-3-1 4 7.256 x l0 ‘6 40000 2743.19
2-6-1 2 7.120 xlO'6 40000 2507.19
3-5-1 3 7.240 xlO'6 40000 2114.30
3 9-1 1 6.840 xlO'6 40000 2054.50
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Table 4.43 Comparison of MLP structures for MDB J_tot model - Result Set 3 (Criterion 3)

Average Value Over 30 Training Runs
Validation Set Prediction Set

Structure Rank MMAE_val @ Epoch Multi-Step- 
Ahead MAE

1-3-1 1 300.93 16169 272.41
2-6-1 2 317.44 18899 404.99
3-5-1 3 345.20 10359 346.20
3*9,1, . i  4 349.98 9455 m u  26o.ii

Table 4.44 Comparison of MLP structures for MDBJ_tot model - Result Set 4 (Criterion 4)

Average Value Over 30 Training Runs
Trainin e Set Prediction Set

Structure Rank SMSE_tr @ Epoch Multi-Step- 
Ahead MAE

1-3-1 3 6.8864 xlO'6 40000 2743.19
2-6-1 2 6.6396 xlO'6 40000 2507.19
3-5-1 4 6.9060 xlO'6 40000 2114.30

1 3 -9 -1 1 . . . 0 .3 1 2 0 x 1 0 '' . |  40000 2054.50 v

The only criteria that select the optimal network structure for the prediction set, that is 3-9-1, 

are Criterion 2 and Criterion 4. Moreover, the results produced by the MDBJ_tot networks 

are approximately 45% worse, over the prediction set, and 40% worse, over the validation set, 

than the results produced by the MBJ_tot model. Based on the above MDBJ_tot results a 

final guideline that was ascertained from the total sales analysis is that an MBJ model will 

outperform an equivalent MDBJ model.

Finally, based on the above preliminary results the final MLP network selected for 1990 to 

1994 prediction of total electricity sales is the MBJ_tot model using a 2-6-1 structure. The 

full set of results for the prediction are given in the Section 4.4.2.

Disaggregate Electricity Sales Analysis:

An experimentation into the most suitable network structure for the disaggregate electricity 

sales was carried based on the guidelines determined in the preliminary analysis. It was also 

hoped that some conclusion may be made concerning the criterion to use when selecting the 

optimal network structure. For the disaggregate networks the fixed number of training epochs 

was reduced to 20000 as there was no significant improvement in the single-step-ahead MSE 

over the training set or the multi-step-ahead MAE over the validation set beyond this point. 

The results for the MBJ_ind model are presented first and are given in Table 4.45 to Table 

4.48.
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Table 4.45 Results for MBJ_ind model - Result Set 1 (Criterion 1)

Minimum MMAE_vaI Out of 30 Training Runs
Validation Set Prediction Set

Structure Rank MMAE_val Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1-3-1 1 17.41 4189 87.62
2-6-1 3 25.43 5643 96.09
3-5-1 2 21.48 4222 136.96
3-9-1 4 • % . 36.96 • 7039 41.15

Table 4.46 Results for MBJ_ind model - Result Set 2 (Criterion 2)

Minimum MMAE val Out of 30 Trai ningRuns
Trainin K Set Prediction Set

Structure Rank SMSE^tr Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1-3-1 2 1.2352 xlO'4 20000 201.92
2-6-1 2 1.1986 xlO'4 20000 212.89
3-5-1 3 1.2495 xlO'4 20000 224.00

!  3-9-1 i 1.1117 XlO'4 20000 107.98

Table 4.47 Results for MBJ_ind model - Result Set 3 (Criterion 3)

Average Value Over 30 Training Runs
Validai.ion Set Prediction Set

Structure Rank MMAE_val @ Epoch Multi-Step-Ahead
MAE

1-3-1 3 69.49 7729 87.62
2-6-1 1 64.80 8429 96.09
3-5-1 4 71.81 7045 136.96
3-9-11 ; | - 2 WH5 8941 41.15

Table 4.48 Results for MBJ_ind model - Result Set 4 (Criterion 4)

Average Value Over 30 Training Runs
TrainingSet Prediction Set

Structure Rank SMSE_tr @ Epoch Multi-Step-Ahead
MAE

1-3-1 3 1.2765 xlO'4 20000 201.92
2-6-1 1 1.0245 x l0 ‘4 20000 212.89
3-5-1 3 1.2765 xlO'4 20000 224.00
3-9-1 2 : : ■ 1.2353 xlO* ' ' 20000 107.98

Before examining the performance of the different network structures in the industrial case a 

comment is made regarding the fixed number of epochs for which the networks were trained. 

Although Table 4.45 shows that the training cessation points selected using MMAE_val 

criterion is between approximately 4000 and 7000 examination of the results for all 30
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training runs show that the training cessation point varies between 4000 and 18000 epochs. 

Consequently, it was considered necessary to train the networks for a total of 20000 epochs.

For the MBJ_ind model Criterion 2 is the only criterion that is consistent with the prediction 

set. The use of Criterion 3, which gave a consistent selection in the MB J J o t  case, results in a 

27 % deterioration in the multi-step-ahead MAE over the prediction set and similarly using 

Criterion 4 results in a 78 % deterioration.

The results for the MDBJ_dom model are given in Table 4.49 to Table 4.52.

Table 4.49 Results for MBJ_dom model - Result Set 1 (Criterion 1)

Minimum MMAE val Out of 30 Training Runs
Validation Set Prediction Set

Structur
e

Rank MMAE.val Training Cessation 
@ Epoch

Multi-Step-Ahead 
MAE

1-3-1 3 12.64 2282 177.89
2-6-1 4 15.71 2401 76.40
3-5-1 1 2.33 2425 52.53
3-9-1 2 1 6.89 49.46 :

Table 4.50 Results for MB J_dom model - Result Set 2 (Criterion 2)

Minimum MMAE_val Out of 30 Training Runs
Trainin e Set Prediction Set

Structure Rank SM SE jr Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

1-3-1 1 0.5882 xlO'4 20000 173.51
2-6-1 1 0.5882 xlO’4 20000 167.55

n 0,7058 x M : 2 0 0 0 0  :: 98.31
3-9-1 i 0.5882 xlO’4 20000 122.73

Table 4.51 Results for MBJ_dom model - Result Set 3 (Criterion 3)

Average Value Over 30 Training Runs
Validation Set Prediction Set

Structure Rank MMAE_val @ Epoch Multi-Step-Ahead
MAE

1-3-1 4 50.20 15280 177.89
2-6-1 1 40.81 13377 76.40
3-5-1 2 43.26 14030 52.53
3-9-1 3 50.19 15504 49.46
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Table 4.52 Results for MBJ_dom model - Result Set 4 (Criterion 4)

Average Value Over 30 Training Runs
TrainingSet Prediction Set

Structure Rank SMSE_tr @ Epoch Multi-Step-Ahead 
MAE

1-3-1 1 6.7059 xlO'4 20000 173.51
2-6-1 1 6.7059 xlO'4 20000 167.55

1' 1-5-1 ! If* 2 : 6.8824 x lt f5 m *  20000 ■ , 9 m m
3-9-1 3 7.1765 xlO'* 20000 122.73

For the domestic case there are no consistent results between the validation and prediction set 

or the training and prediction set. Moreover, using the MMAE__val criterion for the training 

cessation point the network which performs the best over the prediction set is the 3-9-1 

structure, whereas in contrast for the MMSE_tr criterion it is a 3-5-1 structure. The results 

for the MDBJ_com model are given in Table 4.53 to Table 4.56.

Table 4.53 Results for MBJ_com model - Result Set 1 (Criterion 1)

Minimum MMAE val Out of 30 Training Runs
Validaf.ion Set Prediction Set

Structure Rank MMAE_val Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

■■ 1-3& 2 0.2$ 3296 <54.11
2-6-1 1 0.18 4488 85.92
3-5-1 1 0.18 5042 74.52
3-9-1 3 0.83 6295 88.10

Table 4.54 Results for MBJ_com model - Result Set 2 (Criterion 2)

Minimum MMAE_val Out of 30 Training Runs
Training Set Prediction Set

Structure Rank SMSE_tr Training Cessation 
@ Epoch

Multi-Step-Ahead
MAE

! 3-1 3 0,8870 xlO'5 . 20000 84.95
2-6-1 1 0.7647 xlO * 20000 122.43
3-5-1 2 0.8129 xlO"5 20000 104.34
3-9-1 4 0.8562 xlO5 20000 119.85

Table 4.55 Results for MBJ_com model - Result Set 3 (Criterion 3)

Average Value Over 30 Training Runs
Validation Set Prediction Set

Structure Rank M M AEval @ Epoch Multi-Step-Ahead
MAE

a i l 3 :¥  16.72 . 13796 ' 64.n
2-6-1 4 17.89 11893 85.92
3-5-1 1 12.45 12630 74.52
3-9-1 2 15.25 13713 88.10
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Table 4.56 Results for MBJ_com model - Result Set 4 (Criterion 4)

Average Value Over 30 Training Runs
Training Set Prediction Set

Structure Rank SM SE jr @ Epoch Multi-Step-Ahead
MAE

m m i 1 ; 0.9688 xlO' I I  20000 84.95 t ,
2-6-1 3 1.0188 xlO'5 20000 122.43
3-5-1 2 1.0125 xlO'3 20000 104.34
3-9-1 4 1.0813 xlO'3 20000 119.85

In the case of commercial electricity sales Criterion 4 is the only criterion that produces a 

consistent result with the prediction set.

Due to the overall inconsistency of the disaggregate results an attempt was made to compare 

the four possible criterion available over all sectors, total, industrial, domestic and 

commercial, where the selections made based on each criterion are compared to the actual 

networks structures which yielded the best multi-step-ahead MAE over the prediction set. The 

results are split into two groups. The first group gives the structures selected using Criterion 

1 and Criterion 2, given in Table 4.57 and the second group gives the structures selected based 

on Criterion 3 and Criterion 4, given in Table 4.58. Included in each table are the structures 

that gave the two best (Rank 1 and Rank 2) multi-step-ahead MAE over the prediction set 

results.

Table 4.57 Comparison of structures selected using Criterion 1 and Criterion 2

Model Criterion 1 Criterion 2 Multi-Step -Ahead 
MAE (Prediction 

Set) Rank 1

Multi-Step -Ahead 
MAE (Prediction 

Set) Rank 2
MBJ tot 1-3-1 2-9-1 2-6-1 3-9-1
MBJ ind 1-3-1 3-9-1 3-9-1 2-6-1
MBJ_dom 3-5-1 2-6-1 3-9-1 3-5-1
MBJ_com 2-6-1 2-6-1 1-3-1 3-5-1

Table 4.58 Comparison of structures selected using Criterion 3 and Criterion 4

Model Criterion 3 Criterion 4 Multi-Step -Ahead 
MAE (Prediction 

Set) Rank 1

Multi-Step -Ahead 
MAE (Prediction 

Set) Rank 2
MBJ_tot 2-6-1 2-6-1 2-6-1 3-9-1
M BJJnd 2-6-1 2-6-1 3-9-1 2-6-1

MBJ dom 2-6-1 2-6-1 3-9-1 3-5-1
MBJ_com 3-5-1 1-3-1 1-3-1 3-5-1

Comparison of the results across both tables indicates that Criterion 3 and Criterion 4 appear 

to produce the most consistent selections over the prediction set with the exception of the
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domestic case. In addition, the results suggest that overall a 2-6-1 structure could be a 

suitable structure for all sectors. In order to compare Criterion 3 and Criterion 4 Table 4.59 

gives the multi-step-ahead MAE results over the prediction set obtained using the network 

structures selected using each of the criterion for each of the models.

Table 4.59 Results over prediction set for selections based on Criterion 3 and Criterion 4

Criterion 3 Criterion 4
Model Multi-Step-Ahead MAE Multi-Step-Ahead MAE

(Prediction Set) (Prediction Set)
MBJ tot 2-6-1 153.98 2-6-1 156.77
MBJ ind 2-6-1 96.09 2-6-1 212.89

MBJ dom 2-6-1 76.40 2-6-1 167.55
MBJ com 3-5-1 74.52 1-3-1 84.95

For the yearly application based on the above results Criterion 3 is the most suitable criterion 

to use when selecting a network structure out of a set of trained networks structures. The 

networks structures given in Table 4.59 are the MLP structures that were used to obtain the 

five-year-ahead prediction of aggregate and disaggregate yearly electricity sales,

4.4.2 Forecasting Results

For comparative purposes BJTF models (2.23) were built for each of the total, industrial, 

domestic and commercial time series, where the methodology described in Section 2.4.31. of 

Chapter 2 was employed. A description of the model structure for each lime series is given in 

Table 4.60. The structure of the transfer function (TF), that is the delay parameter b and the 

order of the B(q) and F(q) polynomials associated with each exogenous variable is given and 

also the order of the autoregressive polynomial p  in the noise model N(k).

Table 4.60 Description of Box-Jenkins transfer function models

TF Nik)
Time Series Variable b nb P

tot AIW 0 0 2 1
GDP 0 0 0
TAUP 0 1 0

ind AIW 0 0 0 8
GDP 0 0 0
IAUP 1 0 0

dom AIW 0 1 2 1
GDP 0 0 0

DAUP 0 0 0
com GDP 0 0 0 4

CAUP 0 1 0
CNOC 0 0 0
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The forecasts produced by the MLP’s and Unear models are compared graphically in Figure 

4.30 to Figure 4.34 with the full set of forecasting accuracy results given in Table 4.61, where 

I n n O nd+dom+com) is the sum of the industrial, domestic and commercial forecasts produced 

by the neural networks and I BjTF(ind+dom+com) is the equivalent result produced by the 

BJTF models.

x 1 0 *

Figure 4.30 Actual vs predicted for total electricity sales

Figure 4.31 Actual vs predicted for industrial electricity sales
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Figure 4.32 Actual vs predicted for domestic electricity sales
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Figure 4.33 Actual vs predicted for commercial electricity sales

X 1 0 4

Figure 4.34 Actual vs predicted for sum of disaggregate sales
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Table 4.61 Forecasting accuracy results for yearly electricity sales

Model MAE MSE MAPE MPE
MBJ_tot 153 98 3.653 x ID4 11.21  ^ :: -0.38
M BJJnd 96.09 1.323 x 104 1.92 1.91

MBJ dom 76.40 1.034 x 104 1.48 -1.16
MBJ com 74.52 0.706 x 104 2.24 2.00

SNN(ind+dom+com) 342.32 1.644 x 105 2.60 -2.60
BJTF tot 219.82 8.769 x 104 1.58 1.58
BJTF_ind 81.52 0.917 x 104 1.79 1.79
BJTF dom 78.39 0.769 x 104 1.59 -1.29
BJTF_com 38.05 0.219 x 104 1.16 -0.59

2BJTF(ind+dom+com) 103.KU ! 452 x )01 0.79 -0.01

Examination of the total sales graph (Figure 4.30) shows that, in spite of accurate forecasts 

for the first two years, the BJTF forecast deteriorates considerably for the remaining three 

years of the forecast horizon. Therefore, overall the neural networks outperforms the BJTF 

model. This can also be seen in the forecasting accuracy results, with the MAE of the neural 

networks approximately 40% better than that of the BJTF, the MSE approximately 60% 

better, with similar improvements in the case of the MAPE and MPE.

In contrast, comparing the BJTF and neural network forecasts in the case of the sum of the 

disaggregate forecasts the BJTF forecast (£BjTF(ind+dom+com)) significantly outperforms the 

neural network forecast (ZNN(ind+dom+com)). Examination of the profile of the neural 

network results show although the first step of the forecast is reasonable there is significant 

deterioration as the forecast progresses through time. In contrast, the sum of the BJTF 

disaggregate results produce a very accurate result over the entire forecast horizon, where the 

MAPE(0.79) and MPE (-0.01) forecasting measures also provide an indication of this. A 

significant contribution to the poor performance in the neural network result for the sum of the 

disaggregate case is the highly inaccurate commercial electricity sales forecast, where 

examination of this profile in Figure 4.33 shows that the forecast deteriorates rapidly as it 

progresses through time. The ability of the Unear model to represent the commercial 

electricity sales time scries to a reasonable degree of accuracy suggests that this system is 

Unear and thus does not require a nonlinear function for its representation. It is suggested that 

since this sector is very diverse further disaggregation may increase the accuracy of the Unear 

result, however, availabiUty of data may pose a problem in such an approach.

Overall, the domestic electricity sales forecast produced by the neural networks and the BJTF 

are comparable. However, it can seen that in the case of industrial sales neither model seems 

capable of representing the time series thus suggesting that this system is undergoing a

155



structural change, where it may only be possible to account for this change as more time series 

data becomes available.

Therefore, the results indicate that the neural networks are an appropriate modelling tool for 

the total electricity sales system but does not seem capable of representing the disaggregate 

sectors. In contrast, in the linear case disaggregation results in the production of a more 

accurate forecast for the aggregate sector.

4.5 Conclusion

A neural network analysis of the production of medium and long term forecasts of electricity 

demand was performed. The analysis has shown that the neural networks are highly case 

dependent, where this was demonstrated in both the weekly and yearly applications. Of 

particular relevance is the fact that the neural works were not capable of modelling a system 

that had been disaggregated, whereas they had been able to model the overall aggregate system 

(total sales). In contrast in the linear modelling case the disaggregation resulted in a more 

accurate forecast of the overall aggregate system. Therefore, it appears that the neural 

networks have the ability to decipher the complex dynamics of the aggregate system but a 

linear model was sufficient to represent this same system when it has been subdivided into its 

principal sectors.

It has been shown in the applications where neural networks are suitable for representing the 

electricity demand system that there is a reasonable improvement over the forecasting 

accuracy results produced by an equivalent linear analysis. For example, in the weekly 

application the MAPE was improved from 2.47 in the linear case (using a BJTF model with 

HDDi8) to 2.16 in the neural network case (using MDBJ_A) and likewise the MPE was 

improved from -1.55 to 0.39. Similarly, in the yearly case these measures were improved 

from 1.58 to 1.12 in the MAPE and from 1.58 to -0.38 in the MPE (total sales). However, 

the neural network analysis conducted in this chapter demonstrated that the best results were 

obtained when the analysis was performed in conjunction with a linear analysis. Given that 

this is the case the resulting overall development effort required to obtain a neural network to 

represent the electricity demand time series is considerably greater than the development effort 

required to obtain an equivalent model using a linear analysis.

A substantial bulk of the development effort required in the neural network analysis is spent 

on the selection of an appropriate configuration for the network. Unfortunately, the lack of 

specific rules for the design of neural networks can result in the use of a large amount of
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computation time due to the requirement of experimentation analysis and also the necessity to 

alleviate the problem of sensitivity of network training to initial conditions. However, for the 

applications dealt with in this chapter forecasting is essentially an off-line activity and thus the 

computation time is not a significant issue.

The analysis carried out in the chapter established that the training times required to train a 

network can be reduced considerably if the time series training data has been pre-processed 

—using an appropriate transformation. However, depending on the characteristics of the system 

the transformations can have the effect of improving or deteriorating the forecasts produced 

by the network in comparison with the forecast produced by a network using original time 

series training data. The use of pre-processing has been seen to be particularly effective in the 

case where the time series possesses a seasonal characteristic. In contrast, the pre-processing 

of the training data based on a time series with a trend component only resulted in a 

substantial reduction in the forecasting ability of the network. This suggests in this case that 

either alternative transformation to those presented in the chapter should be investigated, such 

as a Box-Cox transformation (Janacek and Swift, 1993), or that the original data should be 

used in cases where the series solely exhibits a trend characteristic.

The work conducted in the chapter also attempted to address the issue of the criteria to use in 

an experimentation analysis into the optimal configuration of the hidden layers of an MLP. 

Unfortunately, since the neural networks were not particularly suited to the representation of 

the disaggregate sectors it was difficult to establish conclusive results. However, in the case 

where the networks were suitable for representation of the system, that is total electricity 

sales, reasonably consistent results were obtained. It was established that when assessing the 

overall performance of a network structure that the average values of the performance criteria 

calculated over a number of training runs should be compared.
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CHAPTER 5

M ulti-Tim e-Scale Integration Technique

5.1 Introduction

This chapter develops a technique which combines forecasts produced on different times 

scales. The advantage of combining forecasts obtained at different time-scales is that each 

forecast may be based on information or variables that the other forecast does not consider. In 

addition, one forecast may make different assumptions about the form of the relationship 

between the variables. Therefore, a forecast produced by a model based on one time-scale 

may capture information that the other forecast based on a different time-scale may not.

Specifically, the objective here is to produce a long range prediction on a short sampling 

interval. The motivation for addressing this problem stems from forecasting problems in the 

electricity supply industry where forecasts of weekly demand are required for a period of up to 

five years in advance and the requirement of hourly demand up to a month in advance. The 

proposed approach involves the improvement of the forecasting accuracy of a relatively long 

range prediction based on a short-time-scale. This is achieved through the incorporation of 

information from a long sampling period time series into forecasts produced by a model based 

on a short sampling period series. Moreover, the framework of the approach is such that the 

long-time-scale information could in fact come from an independent source, if available.

There are numerous works available on the subject of combining forecasts produced on the 

same sampling frequency (Bordely, 1982, 1986; Winkler and Makridakis, 1983; Granger and 

Ramanathan, 1984; Shi and Liu;1993; Holden and Peel; 1986 Diebold and Pauly, 1987; 

Batchelor and Dua, 1995 and Clemen et al, 1995). However, the subject of combining 

forecasts produced on different time-scales is not dealt with in nearly the same depth. Corrado 

and Greene (1988) and Howry et al (1991) deal with the subject where they use outside 

information to improve economic forecasts, such as GNP and employment rate. In contrast to 

the approach presented here each of these methods produce the combined forecast at the lower 

sampling frequency. However, Fuhrer and Haltmaier (1988) extend the approach put forward 

by Corrado and Greene to produce the combined forecast at the higher sampling frequency. In 

all of these cases the methods are demonstrated using quarterly and monthly economic data. 

Another approach to the problem could be the use of multi-rate analysis. This approach
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would involve a discrete time multi-rate model (Berg et al, 1988) which would conceptually 

contain both short and long sampling periods. However, with this approach all models must 

fit within the same mathematical framework resulting in a structurally unwieldy model.

The current proposed method, which is referred to as multi-time-scale integration, is presented 

and an example is then provided to demonstrate the approach. The example involves the 

combination of quarterly and yearly UK primary fuel consumption forecasts (Janecek and 

Sw ift,1993). Chapter 6 presents two different electricity demand applications, where the first 

of these applications combines weekly and yearly demand forecasts and the second application 

combines hourly and daily demand forecasts.

5.2 Multi-Time-Scale Model Integration Approach

5.2.1 Overview

The objective of the approach is to combine forecasts produced by models based on different 

time-scales with the intention of providing a forecast based on a relatively line sampling 

period, while retaining the fidelity of longer trends and natural cycles within the data. The 

underlying principle of the method is demonstrated using an example. Consider Figure 5.1, 

which shows an electricity demand time series based on two different time-scales.

Series A: weekly electricity demand (o)

Series B: electricity demand for a single week of the year (*) 

Series C: yearly electricity demand (x)
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The two time-scales being dealt with are weekly (Series A) and yearly (Series B and Series C). 

Therefore, Series A is a short sampling period time series relative to Series B and Series C 

that are long sampling period time series. The short-time-scale model built to predict Series A 

will be suitable for predicting weekly electricity demand over a period of one year. That is, it

is capable of predicting y>A(t+l) for lead times 1=1, 2, 3,  N  weeks ahead, where

represents the predictions of Series A and t is the forecasting origin. The longer-time-scale 

models built to predict Series B and Series C can make yearly predictions over a period of five 

years. They are capable of predicting YB(T+L) and YC(T+L) for lead times L=l, 2,...7M 

years ahead, where Ys and Yc represent the predictions of Series B and Series C respectively 

and T  is the forecasting origin.

The objective is to integrate the forecasts of the three series A, B and C to produce a long term 

prediction of Series A where a forecasting horizon of up to five years in advance would be 

typical for this example. The integration is achieved by using the forecasts of Series B and 

Series C to impose the longer-time-scale information on the long term prediction of Series A. 

The forecasts of Series B shall be termed “end-point” information that are intermediate points 

that Series A should attain. The forecasts from Series C are termed “sum” information that 

corresponds to values that the accumulation of Series A between the ‘sum’ points should 

attain. The forecasts from the long sampling period series therefore provide intermediate 

‘targets’ for the shorter interval forecast to follow. Cholette (1982) also considers this 

approach of target achievement, where partial prior information in the form of benchmarks are 

employed as the targets.

The application of the technique involves the generation of appropriate long sampling period 

sum and end-point time series. The manner in which the series are generated depends on the 

characteristics of the short sampling period time series. The generation of the sum series 

involves choosing a suitable time-scale on which to aggregrate the short sampling period 

series. Consider the example given in Figure 5.1, since Series A is seasonal in nature Series C 

was generated through the aggregation of Series A at the seasonal level. Factors of 

consideration when generating the end-point series are the existence of cardinal points (for 

example a peak or trough) in the short sampling period series. In the example given in Figure

5.1 there are no such cardinal points and thus there was freedom of choice when selecting the 

end-point value to when generating the end-point series.
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The multi-time-scale integration technique developed here requires a state space model for the 

short sampling period time series. The long-time-scale information may be a forecast 

produced by any model based on the long sampling period time series or it may come from an 

outside independent source. The framework of the technique is such that it depends on the 

quality of the forecasts produced by the long-time-scale models. The production of these 

forecasts may in turn dependent on the availability of data at the long sampling period. 

Application of the technique has shown it to be particularly effective in the case where the 

short sampling period time series exhibits a seasonal component. In this instance the sum and 

end-point may be chosen such that they are separated by a full season. Therefore, the sum 

series is generated through the aggregation of the short sampling period time series at the 

seasonal level and the end-points are chosen to be one season apart. If the time series 

possesses a trend component then the characteristics of this trend may affect the 

characteristics of end-point time series. For example, in some cases it may be more 

straightforward to predict an end-point series that had been generated from a short sampling 

period series that has a steadily rising trend as opposed to a trend that is shifting up or down 

over time.

Initially, the technique is developed for the imposition of a single end-point and a single sum 

value. With reference to the example given in Figure 5.1 this would be the case where

predictions of Series A are obtained for lead times 1=1, 2, 3,.....,52, since the season is of

length 52. The required long-time-scale information is given by End-point 1 and Sum 1. The 

technique is then extended to the case where multi-end-point and multi-sum values are 

imposed. In relation to the example this would be the case where End-point 1, End-point 2 

and End-point 3 and also Sum 1, Sum 2 and Sum 3 are imposed on the short-time-scale 

prediction obtained for lead times 1=1,2,3,....,156.

The technique is further extended to the case where additional long-time-scale information, 

other than the sum and end-point, may be used to provide extra targets for the short-time-scale 

prediction to follow. This would be applicable if there were a number of cardinal points in the 

short sampling period series, where one cardinal point is chosen as the end-point and an 

alternative cardinal point is chosen as the additional point. An example of this would be in the 

case of the daily electricity demand load profile where the tea-time peak could be chosen as 

the end-point and the midday peak could be choscn as the additional point. The long sampling 

period series for the additional point is constructed in the same manner as the end-point, with 

forecasts of the additional points required as in the case of the end-points.
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5.2.2 Short and Long Time-Scale M odels

A suitable slate space model is required for the short sampling period time series. The choice 

of model depends on the properties of the time series in question. For example, whether the 

time series exhibits trend and/or seasonal characteristics or if the series is stationary or non- 

stationary. In the case of a stationary series an ARMA model (Jones, 1980; Ansley and Kohn, 

1985a) could be employed. For some non-stationary series an ARMA model may be used 

after the time series has been be detrended or alternatively it may be more appropriate to 

employ an ARMA model after differencing the time series (Harvey and Pierce, 1984; Kohn 

and Ansley, 1986). However if the time series has a time trend (Harvey, 1989; Kang, 1990) a 

structural state space model may be more suitable (Harvey, 1984, 1989; Young, 1988, 1994; 

Young et al, 1989, 1991; Harvey and Peters, 1990; Ng and Young, 1990).

The mathematical formulation of the multi-time-scale integration technique is developed for a 

generalised state space form of the short-time-scale model. However, for the main 

applications dealt with in the thesis the most suitable model at the short sampling interval is a 

structural state space model and thus there is an emphasis on issues relating to the application 

of the technique when such a model is employed. Practical experience has also been gained in 

the application of the technique using AR (Kohn and Annsley, 1989), ARMA (Jones, 1990) 

and ARIMA (Annsley and Kohn, 1985a, 1985b) models and some discussion is provided in 

relation to the use of these models. The work to data has involved the development of the 

technique for the case where a univariate model is employed at the short sampling period. The 

extension of the technique to the case where a multivariate model is employed at the short 

sampling interval is an area of future work and this is discussed further in the conclusions 

presented in Chapter 7.

There are no restrictions imposed on the long-time-scale models since the focus is on the 

forecast which it produces and not the model itself. Therefore, any appropriate forecasting 

model may be used to produce the long-time-scale information. Exogenous variables can be 

used in the long-time-scale models which may lead to the production of more accurate 

forecasts, with the added advantage that the subsequent application of the multi-time-scale 

technique could result in the provision of information not already available at the shorter time 

scale. This flexibility in the choice of the long-time-scale model is demonstrated in the 

examples given in the thesis, where neural networks are used to forecast the long-time-scale 

information in two out of the three applications.
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5.2.3 Multi-Time-Scale Integration Technique

The multi-time-scale integration procedure involves modifying a long term prediction of a 

short sampling period time series so that it matches, in a least squares sense, longer-time-scale 

information. The end-point and sum matching is achieved by adjusting the solution of the 

state space short-time-scale model through the relaxation of a number of the states in the state 

vector at the forecasting origin of the prediction. The procedure may be basically described 

by the following four steps

1. Formulation of the problem in least squares terms, Ax=b, where x represents the freed 

(relaxed) states in the state vector at the forecasting origin of the prediction and A and b 

are formulated subject to sum and end-point specifications.

2. Solving the least squares formulation for x to obtain the new states in the state vector at 

the forecasting origin of the prediction.

3. Combining the new states x with the original states to form the new state vector at the 

forecasting origin of the prediction.

4. Calculation of the new adjusted short-time-scale prediction using the new state vector.

A weighted least squares problem may be formulated which allows for selective alteration of 

the original unadjusted solution.

5.2.3.1 Single End-Point and Single Sum Matching

Let the short time-scale model for the observations y(k), k = 1 ST be a general state-space

model of the form:

where x(k)  e Rn is the state vector, F e Rnx" , G e Rnym and Hr e Rn are the system matrices 

which are assumed to be constant matrices, and r|(jfc) and e (k )are assumed to be zero mean 

independent and identically distributed normal random variables. Equation (5.1) is the state 

equation and (5.2) is the observation equation, together they make up the state space model for 

a system with n state variables, m system inputs and a single system output. An /-step-ahead 

forecast of the series is obtained through the following:

x(Jfc) = F x (k  -  1) + Gr|(Jt -  1) 

y(k) = Hx(k) + e(k)

(5.1)

(5.2)

(5.3)

(5.4)
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where t represents the forecasting origin, I represents the forecasting lead time and x(t + l f  t) 

is the estimate of the state vector at time t+l given the state estimate x(/)at time t. Let the

forecast be required for lead times I = 1, 2, 3, N. It is required to modify the prediction

from this state space model so that the forecast obtained at the end-point, N, matches the long- 

time-scale end-point value. It is also required that the sum of the forecasts, aggregated over 

the forecast horizon, matches the long-time-scale sum value. The adjustment is achieved by 

relaxing some of the states in the state vector x(t)at forecasting origin t and back-solving for 

these freed states using the end-point and sum data. Define:

<fKl) =  F l e i?nxn (5.5)

The forecast from the short-time-scale model at the end-point N  of the forecast horizon is 

given by:

y ( N )  = U O ( N ) x ( t ) (5.6)

Let the value of the end-point predicted by the long-time-scale model be denoted Yep (L). Also, 

let the number of states which are fixed in the state vector at the forecasting origin x(i) be r, 

and the number of states which are freed states be (n-r). The state vector is reconstructed as 

follows:

x = [x [  x l Y  (5-7)

where

Xj e  R 1 and x 2 e  i?(n'r)

and with Xj contains the fixed states and x2 contains the freed states which it is necessary to

solve for using the long-time-scale end-point specification. The matrix O  is partitioned

appropriately according to the above construction of x(t) (5.7) as follows:

® =[® ! ®2] (5-8)

where

O, € R ™  and %  e  R nx(n'r)

then, using (5.6), (5.7) and (5.8),
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(5.9)

(5.10)

Equations (5.9) and (5.10) represents the end-point and sum matching constraints imposed on 

the short-ttme-scale prediction.

5.2.3.2 Deviation From the Original Solution

When applying the end-point and sum information it is desirable that the prediction follows, to 

some degree, the original unaltered solution. Therefore, minimisation of the deviation from 

the unmodified prediction for N-l forecasts, i.e., all the forecasts minus the end-point, is

sought. Let y(I  jand y*(l),l=  1,2 N, be the unaltered and altered predictions respectively.

Also, let x(t) be the original state vector at the forecasting origin and x'(t) be the new altered 

state vector at the forecasting origin t, then it is required to minimise \y(l) -  y*(l)f in

K O (l)x(t)  = HO(l)x*(t) + { y ( l ) - y  (I)) for I = 1,2 ,...2V -  1 (5.11)

Partitioning <D and x*(r) according to equations (5.7) and (5.8), equation (5.11) can be 

written as:

H<D(Z)x(f) -  (?)x* (0  = H 0 2 ( / ) x 2 (0  + et f o r / = 1,2 N - l  (5.12)

where el = (y(l) -  y*(l)) represents the error on the deviation from the original solution for 

the forecast at lead time I. Therefore, equation (5.12) represents the deviation from the

original unadjusted solution constraint. The errors e, = (_y(Z) -  y*(l)), 1= 1,2 N, are

referred to as the deviation errors.

Yep (L) -  H<J\ (N )x l (t) = IK>2 (N )x2 (t) + e, 

where ex = Y (L) -  y(N) represents the error on the end-point specification.

A

Similarly, if the forecast of the sum from the long-time-scale model is Ys (L) then

N  N

YS( L ) ~ Z \  H O , (Dx,  (0  =  X  H«X>2 ( / ) x 2 ( / )  +  e2
;=i - i=i

where e2=Yt( L ) - ^ y ( l )  represents the error in the sum specification.
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5.2.3.3 Weighted Least Squares Solution

A weighted least squares formulation (Franklin et al, 1990) of the problem is sought which 

allows for selective adjustment of the original prediction of the short sampling period time 

series. The combination of Equations (5.9), (5.10) and (5.12) gives:

F tD - IM ^ A O x ^ )
N [h <^(ao]

N
E h  ®j(01=1

H O ( l)x (0 -H ^ ( l  )x[(t)
= h ®2(1)

x2(0  + E (5.13)

_H O (iV -l)x (0 -H « i(2V -l)x J(f). _H«X>2(W-1)_

where

E = [e, e2 e3 . u r

e3   eN+l represents the deviation of the modified prediction from the original prediction,

where el+2 = y(l) -  y*(l), 1= 1,2, N, and ei and <?2 are obtained from equations (5.9) and

(5.10) respectively. Equation (5.13) may be rewritten as:

b  = A x2 + E  (5.14)

where

Y (L ) - l ^ ( N ) x x(t) [h <d2(ao]
N

1=1

N
£ h ®2(i)
l~l

IK)(l)x(f)-H^(l)x*(f) A =
h o 2(1)

m (N - l )x ( t )  -H «5 ( N -  1)x* (O' ,H<E»2(iV -l).

The matrix A is of dimension (N+1) x (n-r), the matrix b of dimension (N+l) x 1 and the 

matrix x2 is of dimension (n-r) x 1. A weighted least squares solution of the freed states x2(r) 

which minimises E TWE  is given by:

x 2(t)  = (A TW A )-1 A t W  b  (5.15)

166



The relative importance of the error minimisation can be specified in the weighting matrix W 

which is chosen to be of the form:

w, 0 0 . 0

w  =

0 0 . 0

(5.16)
• ■ • wi *

.  0 0 0 . w*+1.

where the weight wf corresponds to the error term e.2 in E TW E . The errors may be 

weighted differently allowing selective control of the modified solution. For example, the 

deviation errors could be weighted more heavily near the forecasting origin and lighter toward 

the end. This type of configuration would allow more freedom at the latter end of the forecast 

in order to achieve the end-point.

Therefore, equation (5.15) is used to solve for x^r) and the new modified state vector given 

by equation (5.7) is then comprised of the r original states and (n-r) new modified states. This 

new state vector at the forecasting origin is now used to obtain the modified short time-scale 

prediction using equations (5.3) and (5.4).

Before proceeding on to deal with the extension of the technique to deal with more than one 

sum and end-point value a summary of the technique is given.

1. Use the state space short-time-scale model to calculate the original state vector at the 

forecasting origin of the short-time-scale prediction.

2. Select r the number of states to fix in the state vector.

3. Use equations (5.9), (5.10) and (5.12) to form the least squares formulation given by 

(5.13), where (5.9) and (5.10) require forecasts of Yep and Ys from the long-time-scale 

models respectively.

4. Formulate the weighting matrix W.

5. Solve the weighted least squares formulation of (5.13) for x2 using equation (5.15).

6. Combine X! and x2 to form the new state vector at the forecasting origin.

7. Using the new state vector in equation (5.3) obtain the adjusted short-time-scale prediction 

through (5.4).
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5.2.3.4 Extension of Technique to Multi-End-Point and Multi-Sum Matching

The multi-time-scale integration technique has been described for imposing a single end-point 

and a single sum value on the short-time-scale prediction. It is straightforward to extend the 

technique to deal with multi-end-points and multi-sum values. In this case j  end-points and j

sum values are applied to a short-time-scale prediction obtained for lead times 1=1,2, jN,

where N  represents the number of prediction steps performed between each of the j  end-points. 

There are two choices available for this procedure. The first choice involves augmenting the 

least squares problem given by equation (5.13) with the new end-points and sum values. The 

second approach involves reapplying the adjustment after each cycle. For the first choice the 

least squares formulation (5.13) for the application of j  end-points and j  sum values becomes:

yv (L)-HO,(W)x1(0
#V(2L )-H ^(2 tf )*,(*)

[H*2(N)\ 
[H02(2 N)\

Yv UL)-B*iUN)*i(t)
N [h ^ o'ao]

£ ( £ ) - X H®i(0Xi(O/=1 1=1

t(2L)~
l=N+1 l=N+l

^ H ^ 1(Z)x1(0
l= (j- l)N

H®(t)x(0-H«l(l)xj(0

i n o 2(/)
t=U~l)N

H ^ d )

H<£(N -  l)x(f) -  (N -  l)xj (f) 
HO(N + l)x(t)-H<bl(N +l)x*(0

H02(N - l)  
H02(AT + 1)

H4>(2iV -  l)x(f) -H«l(2iV -  l)x*(f) -1)

H *(((; -1  )N) + 1 )x(0 -  H«l(((y -1) N + l)x\ (t) H*2 (((;-  1)N) +1)

H Q (jN -l)x(t)-H 01(jN -l)xi(t) _ U ^ U N - D  .

where

E — [ e i  e 2  • • e j + 1 e j+ 2 ' 1 e 2 j  e 2j+ \ • • • • e j ( N - 1)
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and where

• ej, e% . . ej represent the errors on the (1 to j)  end-point specifications,

• ej+i, ej+2,. .e2j represent the errors on the (1 to j) sum specifications.

• ey+i ej(N-1> represents the deviations errors

Equation (5.17) is of the form b=Ax2, with A of dimension (2j+j(N-l)) x (n-r), the matrix b 

of dimension (2j+j(N-l)) x 1 and the matrix x2 is of dimension (n-r) x 1. As in the single end- 

poinf and single sum case a weighted least squares solution of x2(t) may be found by 

minimising E TW E . In this case W  is the same form as equation (5.16), where it is of 

dimension 2j+j(N-l) x 2j+j(N-l).

The second approach involves the application of the technique using the first end-point and 

first sum value to obtain the new modified state vector at the forecasting origin t, that is x* (t) . 

The adjusted short-time-scale prediction is obtained using x* (t) for lead times 1=1,....N. The 

second end-point and sum values are now applied to obtain a new state vector at the 

forecasting origin t+N, that is x‘(r + N) and the short-time-scale prediction is performed using 

x*(f + N) for lead times l=N+l,..,2N. The process is repeated j  times where the final adjusted 

short-time-scale prediction is obtained for lead times l=(j-l)N+l,...,jN using the state vector 

x*(t + j N - N )  at the forecasting origin t+jN-N, where this state vector was obtained through 

the application of the jth end-point and jth sum specification.

Experience has shown that the approach involving the augmented weighted least squares 

problem given by equation (5.17) yields the most accurate results. The reason for this is that 

a solution that simultaneously satisfies the multi-sum and multi-end-point specifications is 

obtained for this case. Therefore, for the applications dealt with in this thesis this approach is 

used for all cases involving the use of the technique with more than one-end-point and sum 

value.

5.2.3.5 Extension of Technique to Include an Additional Long-Time-Scale Point

The technique may be extended so that an additional point in the short-time-scale prediction 

may also be adjusted. It will be necessary to generate a long sampling period series for the 

additional point and future long-time-scale predictions of the additional points will also be 

required. In practicc, an additional long-time-scale point is usually chosen as a cardinal point 

on the short sampling period time series. It is possible to use one or more additional points 

but the inclusion of additional points will affect the matching on the end-point and sum
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specifications, resulting in a trade-off between increased improvement due to the additional 

point and a reduction in the matching achieved for the end-point and sum values.

If the forecast of the additional point from the long-time-scale model is denoted by Ya (I) then 

the constraint at this point is given by:

£ ( / )  -H ^ ( t)X j(0  = [H4>2 (i)]x2(0  + 3  (5.18)

where, i is the index in the short-time-scale prediction where the additional point occurs. As in 

the case of the end-point, the constraint which deals with the deviation from the original 

prediction is relaxed at this point i. Similar constraints may be constructed for each additional 

point used.

5.2.3.6 Solution of Least Squares Formulation

Equation (5.17) is a least squares problem of the form Ax=b which represents 2j+j(N-l) 

equations in (n-r) unknowns. Depending on the value of N  the number of predictions carried 

out between each end-point; j  the number of sum and end-point specifications; n the order of 

the state vector of the short-time-scale model and r the number of fixed states in the state 

vector, this system is either underdetermined or overdetermined. If 2j+j(N-l) > (n-r) then it is 

overdctermined and if 2j+j(N-l) < (n-r) then it is undetermined (Noble and Daniel, 1977). In 

either case the problem is whether there exists some matrix Z, uniquely determined by A, such 

that the unique minimum length of the least squares problem is given by x = Zb. This matrix 

Z docs exist and is called the pseudoinverse of A (Lawson and Hanson, 1974). For a general 

a x  b matrix A , the pseudoinverse of A, denoted by A+, is the a x b  matrix whose jth column 

zj is the unique minimum length solution of the least squares problem

Axj = ej (5.19)

where ej is the jth column of the identity matrix of dimension a x  a.

5.2.4 Solution Parameters

The application of the multi-time-scale integration technique involves the selection of the 

following two parameters:

• the number of states to fix in the state vector at the forecasting origin of the original 

short-time-scale prediction, that is r.
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• the weighting matrix W used to obtain the weighted least squares solution to the 

problem.

The choices available for the parameter r depend on the structure of the state vector of the 

short-time-scale model. The weighting matrix W  has been found from experience to be 

application dependent, thus making it’s specification more difficult. The optimal values of r 

and W are determined through the application of the technique using actual long-time-scale 

data for different combinations of the r and W parameters. Once determined the technique is 

then applied using the optimal value of the parameters but where predicted long-time-scale 

information is used.

5.2.4.1 Selection of r

The value of the parameter r depends on the structure of the state vector of the short-time- 

scale model. For example, for an AR model (Kohn and Annsley, 1989), ARMA model 

(Jones, 1990) or ARIMA model (Annsley and Kohn, 1985a, 1985b) the state vector is made 

up of present and past values of the model output. In this case it is desirable to leave a 

proportion of the states which represent the most recent values of the model output unchanged 

since they provide the starting point and higher order derivatives for the solution. Consider an 

example involving the application of the technique to weekly/yearly System B AT data. It 

involved the adjustment of a one-year-ahead prediction of weekly AT using yearly sum and 

end-point long time-scale AT information. The end-point is the last week of the year (Week 

52) and the sum is the culmulation of weekly AT from Week 1 in January to Week 52 in 

December. In Chapter 3 it was determined that an AR(41) model is a suitable model for this 

data set and this model is thus used as the state space short-time-scale model. The possible 

values of the parameter r are from 1 to 40. The basic structure of W  was chosen to a 

diagonal matrix, with the sum and end-point errors assigned larger values relative to the 

deviation errors and where the deviation errors were weighted more heavily at the forecasting 

origin and lighter towards the end. The MAE surface obtained for the adjustment carried out 

using actual sum and end-point data is shown in Figure 5.2. The MAE is shown on the z- 

axis, the variation in r, from state 1 to state 40, is shown along the x-axis and the variation in 

W is shown along the y-axis, where W was varied by assigning values of varying magnitudes 

to the deviation errors terms
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Figure 5.2 MAE surface for AR(41) model

The graph shows that the error surface in the case of the AR model is relatively smooth and it 

is thus straightforward to determine the optimal combination of the r and W  parameters. The 

optimal value for r is 16, therefore the first 16 states in the state vector at the forecasting 

origin are fixed and the remaining 25 are freed. In the case of the optimal W  the sum and end­

point error weights are equal to 100, the first deviation error weight is equal to 42, the last 

deviation error is equal to 1, with linear interpolation between these values assigned to the 

deviation error weights in between. The adjustment of the 52-week-ahead prediction using the 

optimal value of r and W results in a 9% improvement in the MAE and a 20% improvement 

in the MSE over the original solution.

Further improvement of the adjustment results may be achieved through the 

overparameterisation of the AR(41) model. If the order of the parsimonious AR(41) model 

was artificially increased, that is overparameterised, then a greater number of the most recent 

states could remain fixed while allowing approximately the same number of initial conditions 

to be freed. For example, when an AR(59) model is used at the short sampling period and 

adjustment is carried out with the parameter r equal to 34 then approximately the same 

number of stares are freed as in the AR(41) model case, that is 24. Adjustment carried out in 

this case results in approximately a 15% improvement in the MAE and a 24% improvement 

the MSE over the original unadjusted solution.

Experience has shown that relatively smooth error surfaces similar to that obtained in the AR 

model example given above are also obtained in the case of the ARMA and ARIMA models. 

Consequently, the search for the optimal value of the parameter r through the examination of 

the error surface is a straightforward exercise when any of these models are employed at the 

short sampling interval. However, as a general guideline it has been found that fixing
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approximately the first 40% of the states for an AR model, the first 30% of states for an 

ARMA model and the first 20% of states for an ARIMA model have been found to give good 

results in practice.

In the case of structural state space models the structure of the state vector is different to the 

AR, ARMA and ARIMA models in that the states represents characteristics within the data, 

such as trend and seasonality. For example, in a BSM with a dummy seasonal component 

(2.44) the first state represents the level of the trend component, the second state the slope of 

the trend component, the third state represents the current seasonal component and states 4 to 

n represent past values of the seasonal component, where n is the order of the state vector. 

Fixing states 1 to 3 states in the state vector yields the original solution and therefore there are 

only three choices available for r. The choices are as follows:

• fix state 1 and free states 2 to n.

• fix state 2 and free states 1 and states 3 to n.

• fix states 1 and 2 and free states 3 to n.

For a BSM with a trigonometric seasonal component (2.48) the state vector is composed of a 

trend component and a set of trigonometric terms at seasonal frequencies 7y=2 n/s, for

j= l,..... s/2-1, for ,v even and for j= l,  s/2, for s odd, where s is the seasonal length. The

state vector is of dimension (s+2) for s even and of dimension (s+1) if s is odd. The first two 

states make up the level and slope of the trend component and the pairs of states from 3 to 

s+2, if s is even, and 3 to s+1, if s is odd, make up the trigonometric terms. For this state 

space structure the number of choices available for r is when s is even are as follows:

• fix state 1 and free states 2 to (s+2).

• fix state 2 and free states 1 and states 3 to (s+2).

• fix state 3 and free states 1 to 2 and states 4 to (s+2).

• fix state ((s+2)-l) and free states 1 to ((s+2)-2).

• fix state 1 to 2 and free states 3 to (s+2).

• fix state 1 to 3 and free states 4 to (s+2).

• fix state 1 to ((s+2)-3) and free states ((s+2)-2) to (s+2)
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Note that, it is necessary to fix only one of the states in seasonal pairs given by (2.28), that is 

Yj{k), since y]\k) appears only as a matter of construction and thus the adjustment achieved 

through fixing state yf(k) is the equal to the adjustment achieved by fixing }0 ). Based on the 

above representation the total number of choices available for r is for s even or s odd is s +2. 

Therefore, for applications where s is large the use of a trigonometric seasonal component in 

the BSM increases the development effort significantly in two ways. Firstly the details of the 

implementation are more involved. Secondly it results in a multi-time-scale integration 

method which is work intensive, since the model performance must be examined for each 

value of r through simulation.

5.2.4.2 Selection of W

The values of the weights in W allows the user considerable control over the adjustment of the 

short-time-scale prediction. For the most part, W  is application dependent, however some 

general guidelines and comments are given based on application experience.

The most common form for W is given by equation (5.16) where it is only necessary to 

specify the weights along the diagonal elements. Weights are assigned to the following error 

terms:

• the sum, end-point and additional point error terms.

• the deviation errors terms.

When a single sum, end-point and additional value is imposed on the short-time-scale 

prediction larger values, relative to the magnitude of the weights on the deviation errors, are 

assigned to these error terms reflecting the importance of their minimisation. Experience has 

shown that good adjustment results may be obtained when the ratio of the magnitude of sum, 

end-point and additional point weight to the deviation error weights is approximately of the 

order of 10/1. For cases involving more than one sum, end-point and additional value the 

weight on the end-point error terms are more heavily penalised than the sum, additional point 

and the deviation error terms, since the end-point of each prediction provides the starting 

value for the next cycle. In this case the weight on the sum and additional point error is 

usually reduced to the same order of magnitude as the deviation errors.

There are a number of choices available for the weighting profile on the deviation error terms. 

For example, the weighting profile may be specified such that the error terms near the 

forecasting origin are heavily penalised but allowed more freedom near the end-point, in order 

to allow the solution to achieve the end-point specification. In contrast, the deviation error
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terms at the forecasting origin may be given more freedom, to allow the solution to achieve the 

level of the trend specified by the end-point values, but given heavier weighting toward the 

end-point. This may be appropriate in cases where the end-point values are difficult to predict 

and the solution is encouraged to achieve the end-point while attaining the natural course of 

the original prediction. An alternative is to adopt this profile but to weight a small number of 

the deviation error terms at the forecasting origin, typically two, the same as the weights near 

the end-point. Thus, this weighting profile has the combined characteristics of the two 

previous weighting profiles. In practice, the latter weighting profile has proven to be suitable 

where adjustment is carried out using more than one end-point and sum value and in addition 

where the forecast horizon is relatively long.

5.2.5 Multi-Time-Scale Integration Application Procedure

The application of the multi-time-scale integration technique is demonstrated using a standard 

time series taken from the literature. The technique is applied to the UK quarterly fuel 

consumption time series dealt with by Janecek and Swift (1993). The purpose of this example 

is to demonstrate the effectiveness of the technique on an alternative time series and to discuss 

the issues involved in its practical application. Overall, there are four cardinal steps involved 

in the application of the technique, where these are as follows:

• Develop the state space short sampling period forecasting model.

• Generate suitable long sampling period time series.

• Develop long sampling period forecasting models.

• Select appropriate r and W.

However, for both clarity of presentation and also for practicality in the application of the 

technique a comprehensive multi-time-scale integration application procedure was developed. 

This procedure is used in the example presented here and also in the applications dealt with in 

Chapter 6. The application procedure is as follows:

MTSI-Step 1, Select sampling period and forecast horizon of short-time-scale prediction. 

MTSI-Step 2. Select short sampling period time series which may depend on selection in 

Step 1

MTSI-Step 3. Generate long sampling period time series which involves the following:

• Generation of the sum long sampling period series which involves 

selecting the time-scale which to aggregate the short sampling period time
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MTSI-Step

MTSI-Step

MTSI-Step

MTSI-Step

MTSI-Step

MTSI-Step

MTSI-Step

MTSI-Step

MTSI-Step

series on. For example, if the time series is seasonal then aggregation 

could be performed at the seasonal level.

• Generation of the end-point long sampling period series which involves 

the selection of the end-point, where factors of consideration here may the 

presence of cardinal points in the series.

• Generation of the additional point(s) series, where again the presence of 

cardinal points in the series may determine the selection of the additional 

points.

4. Based on MTSI-Step 1 and MTSI-Step 3 determine what long-time-scale 

information is required to perform the adjustment. The factors involved may 

be whether a single or multi sum, end-point and/or additional point(s) are 

being applied.

5. Determine a suitable state space short-time-scale model.

6. For comparative purposes, perform unadjusted short-time-scale prediction 

using model found in MTSI-Step 5

7. Determine suitable long-time-scale models.

8. Using models obtained in MTSI-Step 7 produce predictions of long-time- 

scale information described in MTSI-Step 4.

9. Based on structure of state vector of short time scale model determined in 

MTSI-Step 5 construct the set of possible values of the parameter r.

10. Determine if weighted least squares solution is underdetermined, 

overdetermined or exact. This depends on the number of equations and the 

number of unknowns which in turn depend on the following:

• Number of equations depends on the long-time-scale information given 

in MTSI-Step 4 (single or multi sum, end-point and/or additional long- 

time-scale information) and on the length of the forecast horizon.

• Number of unknowns depends on the number of free parameters (n-r) 

in the state vector determined in MTSI-Step 9.

11. Construct a suitable set of W.

12. Determine the optimal combination of r and W by examining the 

forecasting accuracy achieved by carrying out the adjustment using actual 

long-time-scale information. If necessary return to MTSI-11 to construct a 

new set of W  until an optimal the combination of r and W  is determined.
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MTSI-Step 13. Using the optimal r and W determined in MTSI-Step 12 perform the 

adjustment of short-time-scale prediction using the predicted long-time- 

scale information obtained in MTSI-Step 8.

5.3 Quarterly and Yearly Fuel Consumption Example

5.3.1 Overview

The multi-time-scale integration technique was applied to a quarterly UK primary fuel 

consumption (lxlO5 tons) series (Janecek and Swift, 1993). The fuel data is available from 

1965 to 1985. The following predictions of quarterly fuel consumption are performed:

• one-year-ahead - Quarters 1-4 of 1984 and Quarters 1-4 of 1985.

• two-year-ahead - Quarters 1-4 of 1984 to 1985.

• two-quarter-ahead - Quarter 3 to Quarter 4 of 1985.

where the application of the multi-time-scale integration technique for each forecast is dealt 

with separately.

5.3.2 One-Year-Ahead Forecast

MTSI-Step 1: Short-time-scale forecast

The aim here is to perform two separate one-year-ahead forecasts of quarterly UK primary 

fuel consumption, where the forecast horizons are Quarters 1- 4 of 1984 and Quarters 1- 4 of 

1985

MTSI-Step 2: Short sampling period time series

The short sampling period time series is made up of quarterly UK primary fuel consumption

from 1965 to 1985. Figure 5.3 gives a plot of the time series.
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The time series exhibits an irregular long term trend component and a seasonal component, 

with a seasonal length of 4, which is due to the UK seasonal variation in temperature. The 

seasonal component may be examined further by comparing the quarterly data for each year 

on the same graph where Figure 5.4 provides such a plot. In this graph quarterly data is over­

plotted for two years at the beginning of the series, 1965 and 1966, and two years at the end 

of the series, 1984 and 1985.

Q uarte rs

Figure 5.4 Over-plotting of quarterly demand

The 1965, 1966 and 1985 profiles exhibit the same seasonal pattern, however this is not the 

case for the 1984 profile. Over-plotting of the quarterly data for each year in the entire data 

set was carried out. The same seasonal pattern is repeated from 1965 up to 1977. However, 

after 1977 there are variances in the seasonal pattern for three separate years, where these 

years are 1978, 1980 and 1984. A plot of the data for these years is given on the graph in 

Figure 5.5 where the 1985 data is also included as a representation of the more regular 

seasonal pattern for the series.
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The differences occur at Quarter 2 in 1978, Quarter 3 in 1980 and Quarter 3 and Quarter 4 in

1984. In all cases the outliers have a higher value of consumption than expected. 

Unfortunately, at the time of the study access to UK weather data was not possible. However, 

Irish AT data was examined in an attempt to establish if an unusual cold spell affected the fuel 

consumption at these particular times, where the assumption was made that the weather 

conditions in Ireland and the UK would not differ substantially. AT at Quarters 3 and 4 in 

1984 were compared to AT at Quarters 3 and 4 in 1985. The AT at Quarter 3 in 1984 is 

approximately 3 °C lower than the same quarter in 1985 and is approximately 6 °C lower in 

Quarter 4. Irish AT data was not available for the years 1978 and 1980. Based on the 

analysis for 1984 it is thought that the most likely reason for the outliers in the UK fuel 

consumption is diverse weather conditions.

MTSI-Step 3: Long sampling period time series

To generate the sum long sampling period series it was necessary to select the time-scale on 

which to aggregate the short sampling period time series. Since the short sampling period time 

series is seasonal in nature the series is aggregated at the yearly level. Therefore, the sum 

series is the aggregate of the fuel consumption from Quarter 1 to Quarter 4 of each year. 

Because there are no cardinal points in the short sampling period time series there is freedom 

of choice for the end-point and it was chosen as the fuel consumption in the last quarter of 

each year. Since the one-year-ahead predictions consists of only 4 points no additional points 

are chosen for adjustment. Plots of the end-point and sum time series are given in Figure 5.6 

and Figure 5.7 respectively.
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It can be seen from the graphs that the sum and end-point series follow a rising trend up to the 

year 1980 mainly due to annual economic and demographic influences. However, a decline in 

the economic environment starting in 1980 resulted in a decrease in the UK fuel consumption 

until 1984. By the year 1985 economic conditions were improving resulting in a moderate 

increase in the fuel consumption in this year. The significantly high sum value in 1984 is due 

to the high fuel consumption in Quarter 3 and Quarter 4 of that year that were assumed to be 

due to diverse weather conditions.

MTSI-Step 3: Required long-time-scale information

The long-time-scale information required to carry out the adjustment of the one-year-ahead 

predictions is described in Table 5.1.

Table 5.1 Required end-point and sum long-time-scale information

Short-Time-Scale Forecast Horizon End-point Sum

Quarters 1- 4 of 1984 Quarter 4 1984 I  (Quarter 1 to Quarter 4 of 1984)

Quarters 1- 4 of 1985 Quarter 4 1984 E(Quarter 1 to Quarter 4 of 1985)

MTSI-Step 4: Short time-scale-model

The short sampling period series is a nonstationary time series with trend and seasonal 

characteristics. Analysis carried out in Chapter 3 determined that a BSM with a dummy 

seasonal component (2.44) is a suitable model to represent such a series and the use of this 

model in the current case would have been appropriate. However, given the shortness of the 

seasonal length, that is s = 4, a BSM with a trigonometric seasonal component (2.48) was 

chosen to model the short sampling period series to demonstrate the multi-time-scale 

integration approach for such a model. This is in direct contrast to the two applications dealt 

with in Chapter 6, where the short sampling period time series have seasonal lengths of s = 52 

(weekly time series) and s = 24 (hourly time series) and thus a BSM with dummy seasonal 

component was employed in each case. Equations (5.20) and (5.21) give the state space form 

of the quarterly BSM with trigonometric seasonal component:

\i(k) 1 1 0 0 0 n ( f c  - 1 ) Tl(fc)

P ( * ) 0 1 0 0 0 P ( * - 1 ) « * )

Y i ( * ) = 0 0 0 1 0 Y i ( f e - l ) + ® , ( * )

y I w 0 0 - 1 0 0 y ; ( * - d ® ; < * )

_ Y , ( * ) . 0 0 0 0 - 1 Y 2 ( * - ! ) _ CO j ( * ) _

y(*) = [l 0 1 0 l)jc(*) + E(Jfc) (5.21)
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where

• fi(k) is the level of the trend component.

• [Kk) to the slope of the trend component.

• yi(k) and y  j(k) are the pair of states representing the seasonal component 

at the fundamental frequency.

• y2(k) represents the seasonal component at the first harmonic.

• r/(k) is the stochastic disturbance term corresponding to /.t(k)

• £(k) is the stochastic disturbance term corresponding to p(k)

• to, (k) and to* ( i t )  are the stochastic disturbance terms corresponding to 

Y,.(*) andy*(fc)

• e(k) is the irregular component.

Note that, the yi*(k) appears only as a matter of construction of the state space model and 

y2*(k) is not required as s is even.

The prediction of future values of the time series obtained using equations (5.3) and (5.4) 

require an estimate of the state vector at the forecasting origin of the forecast horizon. To this 

end, a different identification data set was used to obtain the model employed to carry out each 

of the one-year-ahcad forecasts described in MTSI-Step 1. The identification data sets and 

corresponding forecast horizons are given in Table 5.2

Table 5.2 Identification data sets and forecast horizon

Forecast Horizon Identification Data Set

Quarters 1 to 4 of 1984 Quarter 1 of 1965 - Quarter 4 of 1983

Quarters 1 to 4 of 1985 Quarter 1 of 1965 - Quarter 4 of 1984

A basic description of the techniques used to estimate the hyperparameters of the BSM with 

trigonometric component was described in Section 2.4.2 of Chapter 2 and full details are given 

in Appendix A. Tables 5.3 and 5.4 describe the models obtained for each identification data 

set. The following information is given in each table:

•  cr£2 , the variance of aik).

•  crn2 is the variance of 77(A).

•  <t/ is the variance of £(k).

•  crj is the variance of co(k).
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•  6r is the one step ahead prediction error variance.

•  (2(7) is the Box-Ljung statistic (2.35).

Table 5.3 Structural model for 1965/1983 data set

ID data set Quarter 1 of 1965 - Quarter 4 of 1983

Forecast Horizon 1-year-ahead: predict Quarters 1 -4 of 1984

cre2 °n2
_  2<7* a Q(8)

0.221xl0'40.013x 10'4 0.68 lxlO '8 0 0.0054 7.31

Table 5.4 Structural model for 1965/1984 data set

ID data set Quarter of 1 of 1965 - Quarter 4 of 1984

Forecast Horizon 1-year-ahead: predict Quarters 1 - 4 of 1985

Os2 „  2 CT <2(8)

0.280xl0‘40.019xl0'4 0 0.007xl0'4 0.0065 4.56

The chi-squared statistics are xVs](8) = 1 5  and the models were assumed to be adequate 

based on the Ljung-Box statistics given by Q(8). For each model the relatively large values of 

the variance cry,2 in comparison with cr/ and a j  are due to the fact that the trend component 

of the series is shitting up and down, where the larger the variance a n2 the greater the 

stochastic movement. The small values of the variance ct?2 indicate that the slope of the trend 

component is reasonably constant. The greater the value of crj relative to aE 2 the more past 

observations are discounted in the prediction of the seasonal component. For the 1965-1983 

data set the value of crj is zero, where in contrast it is of the order of 10‘4 for the 1965-1984 

data set. This is possibly due to the effect of the two outliers at Quarters 3 and 4 in 1984, 

with more discounting in the 1965-1984 data set.

MTSI-Step 6: Unadjusted short time-scale prediction

The unadjusted short-time-scale predictions were obtained using the models determined in 

MTSI-Step 5. The forecasting accuracy of these results are given in Table 5.5.

Table 5.5 Unadjusted short-time-scale prediction

Forecast Horizon MAE MSE xlO 4 MAPE MPE
Quarters 1 to 4 of 1984 119.63 2.6830 13.05 11.47
Quarters 1 to 4 of 1985 45.25 0.2712 6.04 -6.04
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The relatively high values of the forecasting accuracy measures for the 1984 prediction, 

particularly in the case of the MSE which penalises large forecasting discrepancies, are due to 

the outliers at Quarters 3 and 4 in 1984 quarterly data. In the case of the 1985 prediction the 

high values of the MAPE and MPE show that the presence of the outliers in the 1965-1984 

identification data set appear to have affected the performance of the model used to carry out 

the 1985 prediction.

MTSI-Step 6: Long-time-scale yearly model

MLP neural networks were used to model the yearly sum and end-point long sampling period 

time series. The neural network analysis developed in Chapter 4 was adopted and the MLP 

application procedure outlined in Section 4.2.5 was used where both cases are dealt with 

simultaneously.

NN-Step 1: Input and output structure

The output layer of the MLP consists of a single neuron which represents the current value of 

the time series.

In Chapter 4 linear forecasting analysis was used to determine the input structure to the 

MLPs. An attempt was made to employ a similar analysis in the case of the sum and end­

point MLPs, however difficulty was encountered in the identification of a linear model 

structure, particularly in the case of the sum series. The SACF (2.8) for the yearly sum fuel 

consumption time series is given in Figure 5.8 where it can be seen that there are no cut offs.

The input structure to the MLP used to predict the sum series was determined on a trial and 

error basis since it was not possible to use the SACF for its determination. The form of the 

input structure used may be described by the following nonlinear equation
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F (*) = g(Y' (k - 1), 7 (* -  2),7 (k -  3)) (5.22)

where g is the nonlinear function and Ys(k) is the sum of the fuel consumption for year k.

The SACF for the end-point series is shown in Figure 5.9 , where it can be seen that there is a 

cut-off at lag 1.

Figure 5.9 SACF of end-point long sampling series

Based on the SACF the end-point at lag one was included in the input structure. It was 

established that the inclusion of the end-point at lags 2 and 3 further improved the results over 

the validation set. Thus the MLP input structure for the end-point series may be described by 

the following nonlinear equation

Yp (k) = f ( Y p{k- 1), Yp (k -  2), Y J k -  3)) (5.23)

where / i s  the nonlinear function and Yep(k) is the fuel consumption at the end-point in year k. 

NN-Step 2: Input and output data normalisation

The training data for each MLP was normalised by dividing by the NF value of the time 

series. For the sum series the NF value is 1 x 104 and for the end-point series the NF value is 

1 x 103. The target output data was normalised to the same order of magnitude as the input 

data as discussed in Section 4.2.2.

NN-Step 3: Construct input/output training data sets

For each case, two years (1982-1983) were used for the validation data set and the remainder 

of the data was used for the training data set (1965 to 1981).

NN-Step 4: Select structure and hidden layer architecture

Based on the motivation given in Section 4.2.2 of Chapter 4 two hidden layers were used in 

each MLP. Due to computational time constraints it was not possible to conduct a full
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experimentation analysis to select the optimal number of neurons in each of the hidden layers 

of the networks. Therefore, based on the experimentation analysis performed in Section 4.4.1 

of Chapter 4 four network structures were trained and their performance compared. These 

structures were 1-3-1, 2-6-1, 3-5-1 and 3-9-1. Initial results showed that the 1-3-1 and 2-6-1 

network structures did not produce good forecasting results and thus only the 3-5-1 and 3-9-1 

structures were trained and the results compared. The MLPs were trained using the LMS 

gradient technique with backpropagation, with an adaptive learning rate (initial value of 1 x 

10'3) and a momentum constant equal to 0.95. Ten training runs were performed and the 

training cessation point was determined through the examined of the multi-step-ahead MAE 

performance over the validation set. The sum and end-point MLPs were trained for 60000 

and 50000 epochs respectively. In the experimentation analysis conducted in Section 4.4,1 the 

average over the total number of training runs of the MMAE_val was used to compare the 

different network structures and a similar approach is adopted here. A summary of the results 

of the currcnt analysis is given in Table 5.6 and Table 5.7.

Table 5.6 Comparison of hidden layer architecture for sum MLP

Average value over 10 training runs
Structure MMAEJVal

@ Epoch MAE
3-5-1 47629 3.51
3-9-1 47387 4.01

Table 5.7 Comparison of hidden layer architecture for end-point MLP

Average value over 10 training runs
Structure MMAE_Val

@ Epoch MAE
3-5-1 18640 55.19
3-9-1 37022 68.33

Based on the above results a 3-5-1 neural network was used to forecast the sum and end-point 

long-time-scale information.

MTSI-Step 8: Long-time-scale prediction

Forecasts of the long-time-scale information described in MTSI-Step 4 were obtained using 

the MLPs obtained in MTSI-Step 7. Two single-step-ahead forecasts were obtained for the
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1984 and 1985 sum and end-point sum predictions and the percentage error associated with 

each of the predictions is given in Table 5.8.

Table 5.8 Percentage accuracy for predicted end-point and sum

Prediction End-point Sum
% Error % Error

1984 6.55 4.86
1985 0.56 4.22

All the forecasting errors are relatively high with the exception of the end-point forecast in

1985. In the case of the 1984 sum forecast the high forecasting error may be explained to 

some extent by the presence of outliers in the latter two quarters of this year. However, 

overall the high forecasting errors in the predictions suggest that a more extension neural 

network analysis is possibly merited, where a particular area of concern is the input structure 

of the sum and end-point MLPs. However, due to computational time constraints a more 

detailed neural network analysis was not performed and the multi-time-scale integration 

technique was applied using the predictions given in Table 5.8 under the assumption the 

results may be further improved through the improvement in accuracy of the results of long- 

time-scale models.

MTSI-Step 9: Selection of possible values of r

The selection of r depends on the structure of the state vector of the short-time-scale model. 

Given the structure of the state vector (5.20) there are six choices available for r. These 

choices are as follows:

R l: fix state 1 and free states 2 to 5

R2: fix state 2 and free states 1 and states 3 to 5

R3: fix state 3 and free states 1 to 2 and states 4 to 5

R4: fix state 5 and free states 1 to 4

R5: fix state 1 to 2 and free states 3 to 5

R6: fix state 1 to 3 and free states 4 to 5

MTSI-Step 10: Description of weighted least squares problem

Table 5.9 describes the form of the weighted least squares problem for the adjustment of the 

one-year-ahead forecast using each of the different choices of r described in MTSI-Step 9, 

where it can be seen that an overdetermined system of equations is obtained.
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Table 5.9 Description of weighted least squares problem

r (n-r) 

No. of 

Unknowns

Forecast
Horizon

Long-Time-Scale
Information

No. of 
Equations in 

WLS 
Solution

Type of 

System

R1 -R 4 4 4 sum and end-point 5 overdetermined

R5 3 4 sum and end-point 5 overdetermined

R6 2 4 sum and end-point 5 overdelermined

MTSI-Step 11: Selection of set of W

The weighting matrix W  was chosen to be a diagonal matrix of the following form:

W = diag[wep w wdevqn w^_qrl wdevqr3\ (5.24)

where

• wep is the weight on the end-point error.

• is the weight on the sum error.

• w(iev_qn represents the weight on the error for the deviation from the

original forecast at quarter i,

• wdev_qri is referred to as the starting value of the deviation error profile.

• Wdev_qr3 is referred to as the finishing value of the deviation error profile.

As discussed in Section 5.2.4.2 the weights on the end-point and sum errors were given large 

values relative to the weights on the deviation errors, where the order of magnitude is typically 

a ratio of approximately 10/1.

Three different weighting profiles were considered for the deviation error. An example of the 

weighting profiles is shown in Figure 5.10:

Figure 5.10 Comparison of weighting profiles
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where

• wa weights the deviation error corresponding to Quarter 1 heavily and 

weights Quarter 2 and Quarter 3 progressively lighter.

• wb weights the deviation error corresponding to Quarter 3 heavily with 

gradually lighter weighting on Quarter 2 and Quarter 1

• wc employs a symmetrical weighting profile on the deviation errors 

corresponding to Quarter 1 to Quarter 3.

For example, setting up the deviation error weights in the wa weighting matrix involved the 

following steps:

1. select a number for the starting value.

2. decrement this number by a set amount to obtain Wdev_qr2 , where the set 

amount = starting value/ the number of deviation errors.

3. decrement Wdev_qr2 by the set amount to obtain Wdev_qr3 .

Similarly for wb:

1. select a number for the finishing value.

2. decrement this number by a set amount to obtain Wdev_qr2 , where the set 

amount = finishing value/ the number of deviation errors.

3. decrement Wdev_qr2 by the set amount to obtain Wdev_qri

Finally for wc:

1. select a number for the starting value.

2. set this number equal to the finishing value.

3. Wdev_qr2 is equal to half the starting value.

The wa, wb, and wc weighting matrices with starting/finishing values equal to 8 and end-point 

and sum error weights equal to 100 are as follows:

W = diag[wcp w, wdevqri wdevqr2 wdevqr3 ]

wa = diag[\00  100 8 5 |  2 f]
(5.25)

wb = diag[100 100 2 \  5 |  8 ]

wc = diag \100 100 8 4 8 ]



where it can be seen that the starting/finishing values are equal to 8. Variations of the wa, wb 

and wc weighting matrices given in (5.25) may be constructed by choosing different starting 

and finishing values on the deviation error weighting profiles. For example, changing the 

starting value of the Unear weighting profile on deviation errors in the wa matrix from 8 to 5 

yields the following:

W = d i a g [ w , p w, w dtv frl w d„ qr2 w _ qri \
(5.26)

w a  =  d i a g  [l 00 100 5 3 f  i f ]

and similarly for wb, where the finishing value of the linear weighting profile is changed from 

8 to 5:

W = diag[wip w, wdtv qrl wdiy qr2 w,„_frS]
(5.27)

w b  =  d i a g [ 100 100 I f  3 f  5 ]

Similarly, for the wc matrix the starting and finishing values on the symmetrical deviation 

error profile could be changed as follows:

W  =diag[wep w, wilev qri wdev qr2 wdn qr3\

(5.28)

wc = diag[100 100 5 2 f  5 ]

Different wa, wb and wc weighting matrices were constructed using the steps describes above, 

where different number were assigned to the starting/finishing values of the deviation error

weighting profile. The range of numbers considers for the starting/finishing were from 1 to

20. Therefore, a set of 60 different weighting matrices were considered in total, that is 20 

different wa matrices with starting values in the range 1 to 20, 20 different wb matrices with 

finishing values in the range 1 to 20 and 20 different wc matrices with finishing values in the 

range 1 to 20.

MTSI-Step 12: Optimal selection of r and W

This step involved the determination of the optimal r and W out of the set of parameter values 

chosen in MTSI-Step 10 and MTSI-Step 11 respectively. This was achieved through the 

comparison of the forecasting accuracy results obtained for the adjustment of the one-year-
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ahead quarterly predictions using actual end-point and sum data. The objective here was to 

determine the optimal combination of the r and W parameters. Graphical comparison of the 

MAE and MSE error surfaces for the different combinations of the parameter values were 

used to aid their determination. For each of the different weighting matrices, wa, wb and wc, 

the MAE, r and the range of starting/finishing values of the deviation error profile were 

plotted against each other. A similar graph was plotted for the MSE. The graphs are shown 

inFigure5.11 to Figure 5.16 for 1984 and Figure 5.17 to Figure 5.22 for 1985, wherein each 

of the graphs the axis represent the following:

x-aixs: the different choices for the parameter r - R1 to R6.

y-axis: the variation in the starting/finishing values on the deviation error profile:

• the different starting values for the deviation error for wa.

• the different finishing values for the deviation error for wb.

• the different starting and finishing values for wc.

m s :  MAE or MSE.

Variation in wa r

Figure 5.11 MAE for 1984 using wa

Variation inwa

Figure 5.12 MSE for 1984 using wa

Figure 5.13 MAE for 1984 using wb

Variation in wb

Figure 5.14 MSE for 1984 using wb
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Variation in wc Variation in wc

Figure 5.15 MAE for 1984 using wc Figure 5.16 MSE for 1984 using wc

Figure 5.17 MAE 1985 using wa

Variation in wa

Figure 5.18 MSE 1985 using wa

Variation inwa

Figure 5.20 MSE for 1985 using wbFigure 5.19 MAE for 1985 using wb

Variation in wbVariation inwb

4000-

w 3000' s
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Variation in wc

Examination of the graphs allowed the optimal combination of the r and W parameters to be 

determined. Comparing the MAE and the MSE achieved for each of the different weighting 

matrices, wa, wb and wc shows that the optimal weighting matrix structure out of three 

matrices is wa, with a starting value equal to 1. The graphs obtained using the wa matrix 

were examination further to determine the optimal choice for the parameter r. It is clear from 

these graphs that R5 and R6 do not yield good adjustment results but it also appears as though 

the results obtained for R1 to R4 are practically the same. Closer examination of the MAE 

and MSE showed that the most accurate results were obtained for R4, however the differences 

in the results between this choice and R1 to R3 are negligible. The reason for this is that the 

same number of states in the original state vector were freed (4 states) for the adjustment 

carried out for these choices of r, in order to achieve the single sum and end-point 

specifications over the relatively short forecast horizon (4 points). In contrast, the choices that 

produced inferior adjustment results, that is R5 and R6, only freed 3 and 2 states respectively. 

Therefore, the results indicate that the parameter r should be chosen such that the maximum 

number of states are freed in order to achieve the sum and end-point specifications.

Table 5.10 summarises the optimal r and W  for the adjustment of one-year-ahead 1984 and 

1985 predictions.

Table 5.10 Optimal r and W  for one-year-ahead predictions

Year r W
1984 R4 wa = diag[ 10 10 1 f  1]
1985 R4 wa = diag[ 10 10 1 j  f]
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Note that, the weight on the end-point and sum error terms for the wa matrix with starting 

value equal to 1 is such that the order of magnitude of the end-point weight to deviation error 

weight and sum weight to deviation error weight is in the ratio of 1/10.

MTSI-Step 13: Adjustment of short-time-scale prediction

Adjustment of the one-year-ahead predictions was carried out, with the optimal values of the r 

and W parameters determined in MTSI-Step 12, hut where the predicted end-point and sum 

data values determined in MTSI-Step 8 were used.

Figure 5.23 and Figure 5.24 give the actual vs. predicted graphs for the adjusted one-year- 

ahead short-time-scale prediction, where the unadjusted solution is included for comparative 

purposes.

Figure 5.23 Actual vs. predicted for 1984

Figure 5.24 Actual vs. predicted for 1985

193



The graph of the 1984 prediction shows that although there are significant errors at Quarter 3 

and Quarter 4 of the adjusted solution there is considerable improvement over the original 

unadjusted solution at these points. Over and above the improvement at Quarters 3 and 4 the 

achievement of the sum and end-point specifications yielded a minor error at Quarter 1 but 

resulted in a higher error in the adjusted solution over the original solution at Quarter 2. In 

the case of the 1985 prediction the effect of the adjustment is to move the prediction closer to 

the actual points at all quarters of the forecast horizon, with significant improvement at 

Quarter 3.

A measure of the improvement achieved may be seen in forecasting accuracy results given 

Table 5.11 and Table 5.12. The table includes the unadjusted short-time-scale prediction and 

the adjusted short-time-scale prediction using actual end-point and sum data. The results for 

the adjustment carried out using the actual long-time-scale information provides a measure of 

the maximum improvement that may be obtained.

Table 5.11 Adjustment results for 1984 prediction

Forecast MAE MSE x 10 4 MAPE MPE
Unadjusted 119.63 2.6830 13.05 11.47

Adjusted using actual 65.75 0.7451 8.97 -0.81
Adjusted using predicted 82.79 1.1535 9.63 3.94

Table 5.12 Adjustment results for 1985 prediction

Forecast MAE MSE x 1 0 4 MAPE MPE
Unadjusted 45.25 0.2712 6.04 -6.04

Adjusted using actual 7.49 0.0086 0.90 0.23
Adjusted using predicted 25.17 0.1137 3.52 -3.52

The forecasting accuracy results clearly demonstrate the overall improvement achieved 

through the adjustment of the original solution in each of the 1984 and 1985 cases. Although 

reasonable improvement was obtained through the adjustment of the 1984 prediction the 

presence of the outliers result in a relatively high MAPE measure of 9.63, where the MAPE 

provides an overall measure of accuracy over time. However, comparison of the MSE 

measures shows that there is considerable improvement (57%) at the outliers over the original 

case since the MSE penalises large errors. It can be seen that the presence of the outliers in 

the data set have an effect on the original 1985 prediction, where the MAPE of the solution is 

as high as 6.04. For the adjusted solution of the 1985 prediction this value is approximately 

halved to 3.52. In addition, in the 1985 case, as in the case of the 1984 prediction, there is 

significant improvement (58%) in the MSE measure. An outstanding factor in the overall set
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of results is the maximum achievable improvement that could be obtained (adjustment using 

actual), where there is a considerable difference between the unadjusted and adjusted results 

for this case. The reason for this substantial improvement is again the presence of the 

outliers. However, although it is possible that the forecasting accuracy results of the long- 

time-scale models could be improved to some extent, the very presence of the outliers are 

likely to hinder the production of these results.

5.3.3 T w o-Y ear-A head  F o recast 

MTSI- Step 1 to MTSI-Step 3

In this case a two-year-ahead forecast of quarterly UK primary fuel consumption, Quarters 1- 

4 of 1984 to 1985, was performed. As in the one-year-ahead case the short sampling period 

time series is made up of quarterly UK primary fuel consumption from 1965 to 1985, where 

Figure 5.2 gives a plot this series. The long sampling period time series are the yearly sum 

and end-point series described in the one-year-ahead case and plots of the time series are given 

in Figure 5.6 and Figure 5.7.

MTSI-Step 4: Long-time-scale information required

The long-time-scale information used to carry out the adjustment of the two-year-ahead 

prediction is described in Table 5.13.

Table 5.13 Required yearly end-point and sum long-time-scale information

Short-Time-Scale 

Forecast Horizon

End-point Sum

Quarters 1- 4 1984 - 1985 1. Quarter 4 1984

2. Quarter 4 1985

1. ^(Quarter 1 to Quarter 4 of 1984)

2. ^(Quarter 1 to Quarter 4 of 1985)

MTSI-Step 5: Short-time-scale-model

As in the one-year-ahead case a BSM with a trigonometric seasonal component was used to 

obtain the two-year-ahead forecast of quarterly fuel consumption. The identification data set 

and corresponding forecast horizon is given in Table 5.14.

Table 5.14 Identification data sets and forecast horizon

Forecast Horizon Identification Data Set

Quarters 1- 4 1984 - 1985 Quarter 1 of 1965 - Quarter 4 of 1984

The model for this identification data set was already determined in MTSI-Step 5 of the one- 

year-ahead case in Section 5.3.2 and the model was described in Table 5.4.
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MTSI-Step 6: Unadjusted short time-scale prediction

The forecasting accuracy results of the unadjusted two-year-ahead prediction obtained using 

the short-time-scale model are given in Table 5.15.

Table 5.15 Unadjusted two-year-ahead prediction

Forecast MAE MSE xlO-4 MAPE MPE
1984/1985 91.07 1.5514 10.35 9.56

So that a comparison may be made between the results obtained in the one-year-ahead case 

and the results obtained here; Table 5.16 gives the MAE and MSE for each of the individual 

years, 1984 and 1985, of the two-year-ahead prediction.

Table 5.16 Single years of unadjusted two-year-ahead prediction

Forecast MAE MSE xlO-4 MAPE MPE
1984 119.63 2.6830 13.05 11.47
1985 62.50 0.4198 7.66 7.66

As expected the accuracy in 1985 of the multi-step-ahead prediction is lower than that 

obtained in the single-step-ahead prediction for that year obtained in Section MTSI-Step 6 of 

Section 5.3.2.

MTSI-Step 7 - MTSI-Step 8: Long-time-scale yearly model and prediction 

The long-time-scale information required to carry out the adjustment of the quarterly two- 

year-ahead prediction was described in MTSI-Step 4. A two-step-ahead prediction of the 

required end-point and sum data were obtained using the MLPs that were developed in the 

one-year-ahead case in Section 5.3.2. The percentage accuracy of the forecasts for each step 

of the two-year-ahead prediction are given in Table 5.17.

Table 5.17 Percentage accuracy for predicted end-point and sum

Prediction End-point Sum
% Error % Error

1984 6.55 4.86
1985 1.14 4.99

The multi-step-ahead prediction has resulted in a further loss in accuracy in the 1985 

prediction, particularly in the case of the end-point forecast.
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MTSI-Step 9: Selection of possible set of r

The set of six possible choices available for r were already discussed in the one-year-ahead 

case in Section 5.3.2.

MTSI-Step 10: Form of weighted least squares solution

The form of the weighted least squares solution is given in Table 5.18.

Table 5.18 Description Of weighted least squares solution

r (n-r) 

No. of 

Unknowns

Forecast
Horizon

Long-Time-Scale
Information

No. of 
Equations in 

WLS 
Solution

Type of 

System

R1 -R4 4 4 sum and end-point 10 overdetermined

R5 3 4 sum and end-point 10 overdetermined

R6 2 4 sum and end-point 10 ovcrdetermined

As in the one-year-ahead case for all choices of the parameter r  the WLS problem is 

overdetermined but where the number of equations has now been increased to 10.

MTSI-Step 11: Selection of possible set of W

In this step a set of appropriate weighting matrices were constructed, where the weighting 

vector for the adjustment of the two-year-ahead prediction is of the following form:

W  = diag[wepyn 

wdev _qrl_yr\

where

• wep_yrj is the weight on the end-point error in year j.

• ws_yrj is the weight on the sum error in year j.

• Wdev_qri_yrj represents the weight on the error for the deviation from the 

original forecast at quarter i in year j.

• Wdev_qri_yrj is the starting value of the deviation error profile for year j.

• Wdev_qr3jyrj is the finishing value of the deviation error profile for year j.

Similar weighting matrices to those used in the one-year-ahead case were also considered here, 

that is the wa, wb and wc matrices. The weight on the end-point error is more heavily

VV VV w  w .ep-.yr 2 s_yr 1 sjyr 2 dev_qr\_yrl

d̂ev__qr3_yrl ^ dev_qrl_yr2 ^ dev_qrl_yr3 d̂ev _qr'i_yrl\
(5.29)
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penalised than the weight on the sum error since the end-point of each year provides the 

starting point for the next year’s prediction as discussed in Section 5.2.4.1. Thus the sum 

weight is reduced to the same order of magnitude as the weights on the deviation errors. It 

would have been possible to assign different deviation error weighting profiles to each year of 

the two-year-ahead prediction. However, this would increase the computational time involved 

in the selection of the optimal value of W significantly because the adjustment of the short- 

time-scale prediction must be performed for each W. Consequently, the same deviation error 

profile was adopted for each year. Examples of these weighting matrices are as follows:

£

JLII£

W ep_yr2 W s_yrl W s.yr2 Wdev_qr\_yrl Wdev_qr2_yrl wdev_qr3_yrl
i

XVdev _qr\_yr 2 Wdev_qr\_yr2 d̂ev_qr3_yr2 J

wa = diag[ 100 100 10 10 8 5 3 2 f

8 21]

wb = diag[\QQ 100 10 10 2 f 5t 8

2 f 5t 8

wc=diag[\CQ 100 10 10 8 4 8

8 4 8]

Different weighting matrices were constructed with different values assigned to the 

starting/finishing points of the deviation error weighting profile, where values in the range 

from 1 to 20 were considered.

MTSI-Step 12: Selection of optimal r and W

Adjustment was carried out on the two-year-ahead prediction with actual end-point and sum 

data and using the set of r and W  parameter outlined in MTSI-Step 10 and MTSI-Step 11. 

The optimal values of the parameters were selected through the examination of the MAE and 

MSE results obtained. Similar graphs to those given in the one-year-ahead case in Section 

5.3.2 are presented. Figure 5.25 to Figure 5.30 gives the graphs.
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Variation in wa
Variation in wa

Figure 5.25 MAE for adjustment of 

1984/1985 prediction using wa

Figure 5.26 MSE for adjustment of 

1984/1985 prediction using wa

Figure 5.27 MAE for adjustment of 

1984/1985 prediction using wb

Variation in wb

Figure 5.28 MSE for adjustment of 

1984/1985 prediction using wb

Variation in wb

Variation in wc

Figure 5.30 MSE for adjustment of 

1984/1985 prediction using wc

Figure 5.29 MAE for adjustment of 

1984/1985 prediction using wc

Variation in wc
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Examination of the graphs show that using both the MAE and MSE as a criterion that the 

optimal value for the parameter r may clearly be chosen as R4. In contrast to the one-year- 

ahead case the results obtained for each choice of r are different since it is necessary to satisfy 

multi-sum and multi-end-point-specifications over a relatively long forecast horizon. The 

graphs also indicate that either wa or wc is the optimal weighting matrix structure. In order to 

determine the most suitable weighting matrix the MAE and MSE values were examined more 

closely for the following for R4 with the matrix structure wa and R4 with the matrix structure

Using both the MAE and MSE as a criterion the most accurate results were obtained using the 

wa matrix, with a starting value of 1. The optimal r and W parameters used to carry out the 

adjustment of the two-year prediction are summarised in Table 5.19.

Table 5.19 Optimal r and W for two-year-ahead prediction

r W
R4 wa =  d iag[100 100 10 10 1 0.6 03 1 0.6 0.3]
R4 wa =  d iag[100 100 10 10 1 0.6 03 1 0.6 0.3]

MTSI-Step 13: Adjustment of short-time-scale prediction

Adjustment of the two-year-ahead prediction was carried out using the optimal r and W 

parameters determined in MTSI-Step 12 but where the predicted sum and end-point data 

determined in MTSI-Step 8 were used. Graphs of actual vs. predicted are given in Figure 

5.31 and Table 5.20 give the forecasting accuracy results obtained. Table 5.21 and Table 

5.22 give the forecasting accuracy results for each of the individual years, 1984 and 1985, of 

the two-year-ahead prediction.
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Table 5.20 Adjustment results for two-year-ahead case

Forecast MAE MSE xlO 4 MAPE MPE
Unadjusted 91.07 1.5514 10.35 9.56

Adjusted using actual 52.13 0.5327 6.28 0.40
Adjusted using predicted 66.15 0.8077 7.86 1.25

Table 5.21 1984 of two-year-ahead prediction

Forecast MAE MSE xlO 4 MAPE MPE
Unadjusted 119.63 2.6830 13.05 11.47

Adjusted using actual 71.13 0.8930 8.59 0.08
Adjusted using predicted 95.41 1.4641 11.09 4.58

Table 5.22 1985 of two-year-ahead prediction

Forecast MAE MSE xlO-4 MAPE MPE
Unadjusted 62.50 0.4198 7.66 7.66

Ad justed using actual 33.12 0.1723 3.90 0.71
Adjusted using predicted 36.90 0.1513 4.63 -2.08

The graph shows that with the exception of Quarter 2 in each year of the prediction the result 

of the adjustment is to move the solution closer to the actual values at each quarter. As in the 

one-year-ahead case considerable improvement is seen at the outliers in the 1984 prediction. 

Overall, the original forecast of 1985 is poor due to the outliers in the preceding two quarters 

at the start of this prediction. Notable improvement through adjustment of the prediction can 

be observed at Quarter 1 and Quarter 4 (the end-point) of the 1985 prediction The degree of 

improvement obtained may be seen in the forecasting accuracy measures. As in the one-year- 

ahead case, in Section 5.3.2, significant improvement over the original solution can be seen in 

the MSE measure. Comparison of the results of the forecasting accuracy measures of the 

single years of the two-step-ahead prediction to the results obtained in the one-year-ahead case 

shows that overall moderately greater improvement was achieved in the latter case. The 

reason for this is the relatively poorer forecasting of the long-time-scale information in the 

multi-step-ahead case.

5.3.4 Two-Quarter-Ahead Forecast

The purpose of the two-quarter-ahead example is to illustrate the case where the least squares 

problem is an underdetermined system of equations.
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MTSI- Step 1 to MTSI-Step 3

A two quarter-ahead forecast of quarterly UK primary fuel consumption, Quarter 3 to Quarter 

4 of 1985 is performed. The short and long sampling period time series are as in the one-year- 

ahead and two-year-ahead cases, where a plot of the short sampling period series is given in 

Figure 5.3 and plots of the sum and end-point series are given in Figure 5.6 and Figure 5.7 

respectively.

MTSI-Step 4: Required long-time-scale information

The end-point and sum data required to carry out the adjustment of the two-quarter-ahead 

prediction is described in Table 5.23.

Table 5.23 Required end-point and sum information

Short-Time-Scale 

Forecast Horizon

End-point Sum

Quarters 3- 4 1985 Quarter 4 1985 £(Quarter 3 to Quarter 4 of 1985)

MTSI-Step 5 to MTSI-Step 6: Short-time-scale-model and prediction 

As in the one-year-ahead and two-year-ahead cases a BSM with a trigonometric seasonal 

component was used to obtain the two-quarter-ahead forecast of quarterly fuel consumption. 

The identification data set is described in Table 5.24 and the parameters of the estimated 

model are given in Table 5.25.

Table 5.24 Identification data set and forecast horizon

Forecast Horizon Identification Data Set

Quarters 3- 4 of 1985 Quarter 1 of 1965 - Quarter 2 of 1985

Table 5.25 Structural model for Quarter 1 of 1965 to Quarter 2 of 1985 identification data set

ID data set Quarter 1 of 1965 - Quarter 2 of 1985

Forecast Horizon 2-quarters-ahead: predict Quarters 3 - 4 of 1985

cfe2 °n2
-  2O'© or Q(8)

0.274xl0'4 0.017xl0'4 0 0.002xl0'4 0.0032 6.68

As expected a similar model to that obtained for the Quarter 1 of 1965 - Quarter 4 of 1984 

identification data set used in the one-year-ahead case was also obtained here, since there are 

only two extra data points in the identification data set for this case. Table 5.26 gives the 

forecasting accuracy measures of the unadjusted solution.
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Table 5.26 Unadjusted two-quarter-ahead prediction

Forecast Horizon MAE MSE MAPE MPE
Quarters 3 and 4 1985 58.42 3697.04 8.00 -8.00

MTSI-Step 7 - MTSI-Step 8: Long-time-scale yearly model and prediction 

The predicted end-point value, Quarter 4 of 1985, was previously obtained in Section 5.3.2 in 

the adjustment of Quarter 1 to Quarter 4 of 1985 of the one-year-ahead case, where Table 5.8 

gives the percentage accuracy associated with this forecast. The predicted sum value, 

^(Quarter 3 to Quarter 4 of 1985), is obtained using the predicted sum value determined in the 

1985 one-year-ahead case, where this is as follows:

£  = £ _ .« * - X * * )  (5.3Dk=QR\

wherey(k) is the actual quarterly fuel consumption series, Ys ms= ^(Quarter 1 to Quarter 4 of
A

1985) is the predicted sum value obtained for the 1985 one-year-ahead case and Ys denotes 

the sum value required for the current case.

MTSI-Step 9: Selection of possible sel of r and description of weighted least squares problem 

The possible values of the parameter r were dealt with in Section 5.3.2. However, in order to 

demonstrate the underdetermined case the possible choices of the parameter are R1 to R4. 

Table 5.27 describes the characteristics of the weighted least squares formulation for this 

case.

Table 5.27 Description of weighted least squares problem

r (n-r) 

No. of 

Unknowns

Forecast
Horizon

Long-Time-
Scale

Information

No. of 
Equations in 

WLS 
Solution

Type of System

R1 -R 4 4 2 sum and end­

point

3 underdetermined

MTSI-Step 11: Selection of possible set of W

The form of the weighting matrix for the two-quarter-ahead case is given in equation (5.32)

W = diag[w'P w wdevqrl] (5.32)
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The only decision to be made here is the relative value of the sum and end-point error weights 

to the deviation error weight Wdev_qri. Different weighting matrices were constructed where the 

end-point and sum weights set equal to 10 and the deviation error weight was varied from 5 to

MTSI-Step 12: Selection of optimal r and W

Adjustment was carried out using actual sum and end-point data using the choices of the r and 

W  parameters described in MTSI-Step 11 and MTSI-Step 12. The difference between the 

adjustment obtained for the different choices of the r parameters was minor (approximately of 

the order 10'12), with the minimum MAE and MSE occurring for R3. Therefore, as in the 

one-year-ahead and two-year-ahead cases the optimal choice of r involves freeing the states 

representing the level and slope of the trend component. The optimal weighting matrix was 

determined to be W = diag\\Q 10 5].

MTSI-Step 13: Adjustment of short-time-scale prediction

The adjustment was carried out using the predicted long-time-scale data described in MTSI- 

Step 8. Table 5.28 gives the forecasting accuracy results and a plot of the actual versus 

predicted is given in Figure 5.32.

Table 5.28 Adjustment results for two-quarter-ahead

MAE MSE MAPE MPE
Unadjusted 58.42 3697.04 8.00 -8.00

Adjusted using actual 28.22 885 3.88 -1.73
Adjusted using predicted 48.15 3507.88 6.95 -6.95
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The graph shows the effect of the adjustment is to move the end-point at Quarter 4 closer to 

the actual value. The prediction of Quarter 3 in both the unadjusted and adjusted solution are 

equally inaccurate. The forecasting accuracy results also indicate the achievement obtained at 

the end-point in the adjusted solution.

5.4 Conclusions

The multi-time-scale integration approach was described and the mathematical formulation of 

the technique was presented. For clarity a multi-time-scale integration application procedure 

was developed.

The application of the technique to the quarterly fuel consumption example demonstrated its 

effectiveness on a variety of prediction horizons. Improvement over the original prediction 

was achieved in all scenarios. In the case of the 1984 prediction the presence of outliers 

resulted in a high degree of inaccuracy in the original prediction at these points. The 

adjustment of the prediction using the multi-time-scale technique significantly improved the 

overall prediction especially at the outliers. The quarterly fuel consumption time series is 

influenced by weather and the inclusion of such variables in the short-time-scale model for this 

example may provide an even more accurate forecast at the outliers. However, at present the 

technique has only been developed for a univariate model at the short sampling period, where 

the extension to the multivariate case is an area for future work.

The comparison between the maximum achievable improvement and the improvement 

obtained using the predicted long-time-scale data provides a measure of the techniques 

dependency on the accuracy of the predicted long-time-scale information. However, in the 

case of the 1984 one-year-ahead prediction the variance between the adjustment achieved 

using actual and that achieved using predicted data is inflated due to the presence of the 

outliers.

The flexibility of the technique was illustrated where a neural network was employed to model 

the long-time-scale information. Socio-economic exogenous variables are likely to have an 

influence on the fuel consumption and their inclusion in the long-time-scale models would 

have been of benefit. Unfortunately, access to this data was not readily available. However, 

the application of the technique in this example illustrates that considerable improvement may 

be attained even when exogenous influencing variables are not included in the models at either 

time-scale.
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The selection of the parameter r was demonstrated in the application. In the case of the 

structural model the selection of this parameter is more straightforward than in the case of the 

classical models since the states in the state vector have a physical representation. The 

optimal choice for r involved freeing the maximum number of states possible in order to attain 

the sum and end-point specifications. Both states representing the trend component were freed 

so that the level of end-point could be achieved. In addition, the state representing the 

fundamental harmonic was also freed so as to allow enough freedom to attain the sum 

specification.

The application also demonstrated the use a variety of weighting matrices. The selection of 

this matrix allows the user selective control over the adjustment; particularly in the assignment 

of the weights to the deviation error terms; in the case of the application various 

configurations were considered.
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CHAPTER 6

M ulti-Tim e-Scale Integration Technique Applications

6.1 Introduction

The multi-time-scale integration technique developed in Chapter 5 was applied to two different 

electricity demand (MWh) examples. The electricity demand data was obtained from the 

System A power board which was previously dealt with in Chapter 3, where weather, 

economic and demographic variables were also available for this data set. The first 

application involved the combination of weekly and yearly electricity demand forecasts, with 

the overall objective of producing a one to three-year-ahead forecast of weekly electricity 

demand. The second application involved the combination of hourly and daily electricity 

demand forecasts, with the objective of producing a ‘next day’ (24-hour-ahead) and a three- 

day-ahead prediction of hourly electricity demand. In each case the multi-time-scale 

integration application procedure developed in Section 5.2.5 was applied.

6.2 Weekly and Yearly Electricity Demand Integration

For this case, the short and long sampling period time series are made up of weekly and yearly 

electricity demand respectively. Forecasts produced by the long-time-scale models were used 

to adjust the weekly forecast. In Chapter 4 weather, economic and demographic variables 

were employed to forecast yearly electricity sales. In this application these exogenous 

variables were used as inputs to the models employed to predict the long sampling period 

yearly electricity demand. Therefore, the adjustment carried out using the long-time-scale 

forecasts may provide supplemental information not already available at the shorter sampling 

period. Exogenous weather variables are available at the short sampling period but they were 

not employed in the short-time-scale model used in this particular application, however this is 

an area of future work and will be discussed in Chapter 7.

6.2.1 One-Year-Ahead Forecast

MTSI-Step 1: Short-time-scale forecast

Three separate one-year-ahead forecasts of weekly electricity demand were performed over the 

following forecast horizons:

• Week 30 1987 to Week 29 1988
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• Week 30 1988 to Week 29 1989

• Week 30 1989 to Week 29 1990

MTSI-Step 2: Short sampling period time series

The short-time-scale forecast of electricity demand was performed on a weekly sampling 

period, where Figure 6.1 gives a plot of the electricity demand short sampling period series 

from July 1982-July 1990, note that the data is scaled for confidentiality reasons.

From the plot of time series it may be seen that the salient features are a slowly rising trend 

due to annual influences and seasonality of reasonably sustained amplitude mainly due to 

seasonal weather factors, where the seasonal length is 52 weeks. Closer graphical 

examination of the profile shows that there are changes in the seasonal pattern as the time 

series progresses through time, where the profile appears to be smoother at the latter end of 

the time-series. To examine this more closely weekly electricity demand is over-plotted on the 

same graph for two seasons at the beginning of the time series and for two seasons at the end 

of the time series, given in Figure 6.2.

208



The profile is less erratic in the late 1980’s than in the early 1980’s, particularly during the 

months of August to December. The corresponding plots of AT are given in Figure 6.3, 

where only 1982/1983 and 1989/1990 are presented for visual clarity. There does not appear 

to be any major differences in AT during these two years and the changes in the seasonal 

pattern are thus not attributed to this particular weather variable. There may, however, be 

different weather variables or other influencing factors affecting the series. The plot of AT for 

each year over the full data set was examined but no distinguishable variance between each 

year could be determined.

Graphical techniques have shown that the time series has two main components, trend and 

seasonal and that the smoothness of the seasonal pattern changes over time, where this change 

is assumed to be attributable to some influencing factor other than the weather.

MTSI-Step 3: Long sampling period time series

Generation of the long sampling period time series which involved making the following 

selections:

1. The time-scale on which to aggregate the short sampling period time series - yields 

the sum long sampling period time series.

2. The end-point - yields the end-point long sampling period time series.

The seasonal nature of the weekly short sampling period time series suggests an aggregation 

of the series up to an annual level. Consequently, the sum time series is made up of the 

cumulation of a full season of weekly electricity demand data for each year from 1982 to 

1990. Based on this selection of aggregation level the end-point was chosen to be one season 

apart. Since there are no cardinal points in the weekly seasonal profile the end-point may be
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chosen arbitrarily and was chosen as the electricity demand in the last week of July. This 

occurs approximately at Week 29 of the year, where Week 1 is the first week in January and 

Week 52 is the last week in December.

Therefore, the electricity demand long sampling period sum and end-point time series are 

based on a yearly sampling period, where Table 6.1 describes each time series.

Table 6.1 Description of sum and end-point series

Sum 2(Week 30 year(k-l) to Week 29 year(k)), k=1982 to 1990

End-point Week 29 of year(k), k=1982 to 1990

Since there are a limited number of data points available at the long sampling period, other 

variables which are known to have an effect on electricity demand were employed when 

forecasting the end-point and sum data. In Chapter 3 it was shown that AT and HDDig 

affects weekly electricity demand and thus these variables were considered as inputs to the 

models employed to predict the end-point data. In Chapter 4 a number of economic variables 

were utilised when forecasting yearly ‘total’ electricity sales and these variables were also 

considered for use when forecasting the required yearly sum data. The economic variables are 

GDP, AIW and Average Unit Price (AUP). In addition, a demographic variable, number of 

customers (NOC), was also considered in the exogenous variable set in order to further 

increase the size of the data set.

Figure 6.4 gives a plot of the end-point and corresponding weather data, where the data is 

scaled to the same order of magnitude. It can be seen from the end-point profile that the 

annual influences result in a moderate increase in demand from one year to the next. In 

addition, the graph shows the correlation between electricity demand and the weather 

variables. An exception to this is in 1989 where it is expected that the relatively high value of 

HDDig would have resulted in a higher value of electricity demand in that week than actually 

occurred. Figure 6.5 to Figure 6.8 give plots of the sum data with each of the economic and 

demographic influencing variables. In each case the data is scaled to the same order of 

magnitude. The annual influences are more significant in the sum case, where it can be seen 

that the sum series coupled with GDP, AIW and NOC following a rising trend, with AUP 

following a declining trend.
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Figure 6.6 Sum and AIW series
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MTSI-Step 4: Description of required long-time-scale scale information

The specific form of the long-time-scale information used to carry out the adjustment of the 

one-year-ahead predictions is described in Table 6.2

Table 6.2 Yearly end-point and sum long-time-scale information for one-year-ahead case

Short-Time-Scale 

Forecast Horizon

End-point Sum

Week 30 1987 - Week 29 1988 Week 29 1988 E(Week 30 1987 - Week 29 1988)

Week 30 1988 - Week 29 1989 Week 29 1989 E(Week 30 1988 - Week 29 1989)

Week 30 1989 - Week 29 1990 Week 29 1990 E(Week 30 1989 - Week 29 1990)

MTSI-Step 5: Short-time-scale model

The short sampling period time series exhibits both trend and seasonal characteristics. A 

BSM with a dummy seasonal component was employed to model the time series. This type of 

model was used in the weekly electricity demand application dealt with in Chapter 3 where it 

outperformed the classical linear statistical models. The state space structure of the model is 

given by (2.44) and the techniques used to estimate the model are described in Section 2.5.3 

and also in Section 3.4.2.2. Note that, the seasonal length is 52 and thus the state vector is of 

dimension n = 53.

An estimate of the state vector at the forecasting origin of the one-year-ahead predictions was 

required (5.3 and 5.4) to carry out a forecast. The identification data set used to obtain the 

estimate of the state vector at the forecasting origin of the prediction for each of the one-year- 

ahead cases is given in Table 6.3.

Table 6.3 Short-time-scale identification data sets and forecast horizon

Forecast Horizon Identification Data Set

Week 30 1987 - Week 29 1988 Week 30 1982 - Week 29 1987

Week 30 1988 - Week 29 1989 Week 30 1982 - Week 29 1988

Week 30 1989 - Week 29 1990 Week 30 1982 - Week 29 1989

Table 6.4 to Table 6.6 describe the different models obtained for each identification data set 

where the following information is given:

• crE2 is tire estimated variance of s(k).

• cr,,2 is the estimated variance of rj(k).
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• cr/ is the estimated variance of £(k).

• crj is the estimated variance of co(k).

• CT is the one step ahead prediction error variance.

• Q(T) is the Box-Ljung statistic (2.35)

Table 6.4 Structural model for 1982/1987 data set

ID data set Week 30 1982 - Week 29 1987

Forecast Horizon 1-year-ahead: predict Week 30 1987 - Week 29 1988

oE2 CTn2 ct*2 d Q m

0.170x103 0 0.517xl0'u 0 0.0161 21.65

Table 6.5 Structural model for 1982/1988 data set

ID data set Week 30 1982 - Week 29 1988

Forecast Horizon 1-year-ahead : predict Week 30 1988 - Week 29 1989

crE2 o?2 cr Q(17)

0.179xl0'3 0 0.134xl0'10 0 0.0161 23.48

Table 6.6 Structural model for 1982/1989 data set

ID data set Week 30 1982 - Week 29 1989

Forecast Horizon 1-year-ahead: predict Week 30 1989 - Week 29 1990

cre2 CTn2 °s2 csw2 d Q(19)

0.164x10'* 0 0.132xl0'lc 0.129x1 O’5 0.0154 22.31

The chi-squared statistics are x2[o.5](16) = 26; x2[o.5](17) = 28; %2[o.5](1 9 ) = 30 and thus each of 

the model were assumed to be adequate based on the Ljung-Box statistics given by Q. For 

each of the three models o,, is equal to zero. This is to be expected because the trend of the 

weekly time series is a steadily rising trend and the effect of ij(k) is to allow the trend to shift 

up and down, where the larger the variance the greater the stochastic movement. Also, as 

expected the variance which determines the change in the slope of the trend component is 

of approximately the same order of magnitude for each model. In a BSM with dummy 

seasonal component the greater the value of cr0)2 relative to cr,2 the more past observations are 

discounted in the prediction of the seasonal component. The value of a a,2 in the case of the 

1982/1987 and 1982/1988 models is zero but is 0.129xl0'5 in the 1982/1989 model. The 

reason for the change in a f02 in the 1982/1989 model is due to the change in the smoothness of
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the seasonal pattern toward the end of the 1982/1989 data set, with the model discounting 

more observations nearer the start of the series where the seasonal pattern is more erratic.

MTSI-Step 6: Unadjusted short-time-scale prediction

For comparative purposes unadjusted short-time-scale predictions were obtained using the 

BSM models determined in MTSI-Step 5. The forecasting accuracy results are given in Table

Table 6.7 Forecasting accuracy of unadjusted one-year-ahead forecasts

Forecast Horizon MAE xlO 3 M S E xlO 8 MAPE MPE
1987/1988 7.669 1.4023 3.46 -0.92
1988/1989 7.788 1.3470 3.22 0.89
1989/1990 6.228 0.6275 2.36 1.49

Comparison of the MSE and MAPE forecasting accuracy results indicate that as the number 

of data points in the identification data set increases the forecasting accuracy of the 

predictions produced by the model improves. The MPE, which provides an estimate of 

accuracy over time but also includes the effect of bias, indicates that as the identification data 

set increases the model changes from producing forecasts that are that on average higher than 

actual demand to forecasts that on average lower than actual demand.

MTSI-Step 7: Long-time-scale yearly models

In Chapter 4 it was established that MLP neural networks were capable of modelling ‘total’ 

yearly electricity sales. Under the assumption that there is a close association between yearly 

electricity sales and yearly electricity demand neural networks were employed to model the 

yearly sum and end-point long sampling period time series. The neural network analysis 

developed in Chapter 4 was adopted here and the MLP application procedure outlined in 

Section 4.2.5 was used. Both the sum and end-point cases are dealt with simultaneously.

NN-Step 1: Input and output structure

The output layer of the sum and end-point MLPs consists of a single neuron which represents 

the current value of the time series. Linear forecasting analysis was used to determine the 

input structure of the yearly electricity sales MLPs developed in Section 4.4.1 of Chapter 4. 

In that application it was possible to include a number of autoregressive electricity demand 

variables in the input structure. However, in the current application due to data limitations the 

input structure was confined to only a single autoregressive electricity demand variable at lag 

1, for both the end-point and sum, and the current value of the weather, economic and 

demographic exogenous variables.
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Therefore, the input structure for the MLP used to forecast the sum long sampling period time 

series may be described by the following nonlinear equation

7 (k) = g{GDP(k), AUP(k), AIW(k), NOC(k), Ya (k - 1)) (6.1)

where
• g is a nonlinear function

• Ys(k) is the sum of weekly electricity demand for year k.

• GDP(k) is the GDP (£m) for year k.

• AUP(k) is th&AUP (pence(KWh) for year k.

• AIW(k) is the AIW  (pence(KWh) for year k.

• NOC(k) is the number of customers in year k.

In the case of the end-point series results showed that the inclusion of HDD18 in the input 

structure did not produce accurate forecasting results and therefore AT is the only exogenous 

variable used in this case. Consequently, the end-point MLP input structure may be described 

by the following nonlinear equation:

• / i s  a nonlinear function

• Yep(k) is the electricity demand at the end-point in year k.

• AT(k) is the average temperature over the end-point week in year k.

NN-Step 2: Input and output data normalisation

The training data for each MLP was normalised, prior to the construction of the input training 

vectors, by dividing each value of each time series making up the input vector by the its 

corresponding NF value. The target output data is normalised to the same order of magnitude 

as the input data, see Section 4.2.2. The NF values for each of the time series are as follows.

• sum -1  x 10s

• AIW -1 x 103

• GDP - 1 x 106

• A U P - l x l O 2

• NOC - 1 x 108

• end-point -1 x 106

• A T - l x l O 2

(6.2)

where
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NN-Step 3: Construct input/output training data sets

A separate MLP was trained for each of the one-year-ahead cases, 1987/1988, 1988/1989, 

1989/1990. For each case, a single year was used for the validation data set and the 

remainder of the data was used for the training data set.

NN-Step 4: Select structure and hidden layer architecture

Based on the motivation given in Section 4.2.2 of Chapter 4 two hidden layers were used in 

each MLP. An appropriate hidden layer architecture was determined using a similar 

experimentation analysis to that carried out in the yearly electricity sales application dealt with 

in Section 4.4.1. However, due to computational time constraints it was not possible to 

conduct as extensive an analysis and based on the results obtained in Section 4.4.1 the 

performance of four MLP structures were compared. These structure were 1-3-1, 2-6-1, 3-5- 

1 and 3-9-1. Initial results showed that the 3-9-1 structure did not produce good forecasting 

accuracy results and this structure was subsequently dropped from the set. The MLPs were 

trained using the LMS gradient technique with backpropagation, with an adaptive learning 

rate (initial value of 1 x 10'3) and a momentum constant equal to 0.95. It was established that 

it was necessary to train the sum MLPs for approximately 100000 fixed training epochs and 

the end-point MLPs for approximately 120000 epochs. Each training run took approximately 

15 hours in the case of the sum network and 18 hours in the case of the end-point network, run 

on a 33 MHz IBM Compatible 486 PC with 16 MB of RAM, and thus it was not practical to 

re-train the networks more than four times. Determination of the training cessation point was 

performed through the examination of the single-step-ahead MAE over the validation set. The 

results of the analysis for each of the three one-year-ahead cases are summarised in Table 6.8 

for the sum MLPs and Table 6.9 for the end-point MLPs, where based on the analysis 

developed in Section 4.4.1 of Chapter 4 the average values of the results produced over the 

four training runs are given.

Table 6.8 Comparison of different sum MLPs

1987/1988 Case 1987/1988 Case 1987/1988 Case
Average Over 4 
Training Runs

Average Over 4 
Training Runs

Average Over 4 
Training Runs

Structure Single-Sti
Mi

(Yalidat

sp-Ahead
\E
tion Set)

Single-St<
Mi

(Validat

ip-Ahead 
KE
tion Set)

Single-Step-Ahead 
MAE 

(Validation Set)
MAE @ Epoch MAE @ Epoch MAE @ Epoch

1-3-1 0.04 xlO2 65927 0.26 xlO2 79840 2.89 xlO2 79472
2-6-1 7.76xl03 75438 1.68xl03 79754 0.41xl0J 72053
3-5-1 4.77 xlO3 79346 0.03 xlO3 59809 1.13 xlO3 59316
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Table 6.9 Comparison of different end-point MLPs

1987/1988 Case 1987/1988 Case 1987/1988 Case
Average Over 4 
TrainingRuns

Average Over 4 
Training Runs

Average Over 4 
Training Runs

Structure Single-St(
Mi

(Validal

sp- Ahead 
\E
tion Set)

Single-St<
Mi

(Validal

jp-Ahead
\E
tion Set)

Single-Sti
Mi

(Validal

ip-A head 

tion Set)
MAE @ Epoch MAE @ Epoch MAE @ Epoch

1-3-1 1544 36322 18493 59662 9932 21883
2-6-1 415 26710 11925 47119 363 96795
3-5-1 1094 68488 17421 88879 1551 31808

Based on the above analysis a 1-3-1 network structure was used to predict the future values of 

the sum long sampling period series and 2-6-1 network was used to predict the required future 

values of the end-point series.

In order to predict the sum and end-point time series future values of the exogenous variables, 

AT, GDP, AIW, AUP and NOC were required. Data was available for each of the economic 

and demographic variables from 1965 to 1990 and for AT from 1982 to 1991. Box-Jenkins 

linear autoregressive forecasting models (2.19) were used to forecast the exogenous variables. 

The structure of such models has been described in Chapter 2 Section 2.4.2.1 and the 

identification and estimation techniques were described in Section 2.4.3. It was found, 

however, that the linear forecasting results for the GDP time series were poor and thus an 

MLP was used to model this series which resulted in an improvement in the forecasting 

accuracy of the predictions. Table 6.10 gives details of the linear Box-Jenkins models used to 

forecast the exogenous long sampling period time series.

Table 6.10 Exogenous variable autoregressive model structures

Exogenous Variable Box-Jenkins Model Structure

AT SARI(4,1,0)(1,52,0)

AIW ARI(6,2,0)

AUP ARI( 1,2,0)

NOC ARI(3,2,0)

Details of the neural network analysis used to forecast GDP are as follows:
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NN-Step 1: Input and output structure

The output layer of the MLP consists of a single neuron which represents the current value of 

the GDP time series. The input structure to the MLP used to forecast GDP was adapted from 

the linear analysis and can be described by the following nonlinear equation

GDP(k) = h{G DP(k-1), GDP(k -  2), GDP(k -  2)) (6.3)

where is a nonlinear function and GDP(k) is the GDP in year k.

NN-Step 2: Input and output data normalisation

The training data for the MLP was normalised by dividing by the NF factor which was 1 x 

106 and the target output data was also normalised using this value.

NN-Step 3: Construct input/output training data sets

The training data set for the MLP consisted of GDP data from 1965 to 1984 and the 

validation set of GDP from 1985 to 1986.

NN-Step 4: Select structure and hidden layer architecture

A two layer MLP was used where an appropriate hidden layer architecture was determined 

through experimentation, where the 1-3-1, 2-6-1, 3-5-1 and 3-9-1 network structures were 

compared. As before the MLPs were trained using the LMS gradient technique with 

backpropagation (Section 4.2.3), with an adaptive learning rate (initial value of 1 x 10'3) and a 

momentum constant equal to 0.95. The number fixed training epochs was 15000 epochs and 

the networks were re-trained four times. Table 6.11 gives a the results of the analysis where 

the average values of the results produced over the four training runs are given.

Table 6.11 Comparison of different sum MLPs

1987/1988 Case
Average Over 4 Training Runs

Structure Multi-Step-j
(Validat

^head MAE 
tion Set)

MAE @ Epoch
1-3-1 263.79 11942
2-6-1 314.46 8034
3-5-1 117.93 4936
3-9-1 305.41 6607

Based on the above analysis a 3-5-1 network structure was used to predict the future values of 

the GDP time series.
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MTSI-Step 8: Long-Time-Scale Prediction

The one-year-ahead forecasts of the yearly long-time-scale information described in MTSI- 

Step 4 were obtained using the long-time-scale models developed in MTSI-Step 7. Table 6.12 

gives the percentage accuracy of the forecasts of the yearly sum predictions, with the accuracy 

of the predictions of the exogenous variables required to obtain the sum forecasts given in 

Table 6.13. Similar results are presented in Table 6.14 for the predicted end-point values, 

with the percentage accuracy of the AT values given in Table 6.15.

Table 6.12 Accuracy (%) for predicted yearly sum

Short-Time-Scale Forecast 
Horizon

Sum % Error

Week 30 1987 - Week 29 1988 Z(Week 30 1987 - Week 29 1988) 0.89
Week 30 1988 - Week 29 1989 W e e k  30 1988 - Week 29 1989) 0.20
Week 30 1989 - Week 29 1990 E(Week 30 1989 - Week 29 1990) 0.06

Table 6.13 Accuracy (%) of predicted economic and demographic exogenous variables

Sum Forecast Required For GDP AIW AUP NOC
% Error % Error % Error % Error

KW eek 30 1987 - Week 29 1988) 1.92 0.51 2.69 0.90
EfWeek 30 1988 - Week 29 1989) 0.47 0.95 1.04 1.62
E(Week 30 1989 - Week 29 1990) 0.01 0.29 0.12 0.25

Table 6.14 Accuracy (%) for predicted yearly end-point

Short-Time-Scale Forecast 
Horizon

End-point % Error

Week 30 1987 - Week 29 1988 Week 29 1988 0.19
Week 30 1988 - Week 29 1989 Week 29 1989 5.17
Week 30 1989 - Week 29 1990 Week 29 1990 0.15

Table 6.15 Accuracy (%) of predicted AT

End-point Forecast Required 
For

AT

% Error
Week 29 1988 1.89
Week 29 1989 22.84
Week 29 1990 3.51

Examination of the results show that there is a high degree of accuracy in the yearly sum 

results for all of the one-year-ahead cases in spite of the poor accuracy of some of the 

economic and demographic exogenous variable forecasts, where examples of this are in the 

case of AUP and NOC, In contrast, there is a strong relationship between the accuracy of the 

predicted AT values and the accuracy of the predicted end-point values. For example, the
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accuracy of the prediction of the end-point in Week 29 of 1989 is 5.31% with the accuracy of 

the AT in that week at 22.84%. This is to be expected since AT is highly correlated with the 

end-point electricity demand and in addition it is the only exogenous variable used to obtain 

the end-point prediction. However, in the case of the exogenous variables used to obtain the 

sum predictions the highest degree of inaccuracy occurs in the NOC variable which is known 

to be the least correlated with yearly electricity demand. Furthermore, the accuracy of GDP 

which is a significant influencing variable on yearly electricity demand is relatively good.

MTSI-Step 9: Selection of possible values of r

The selection of r  depends on the structure of the state vector of the state space model. For a 

BSM with a dummy seasonal component the state vector consists of the following states:

• State 1 = the level of the trend component.

•  State 2 = the slope of the trend component.

• State 3 = the current seasonal component.

• States 4 to 53 = past values of the seasonal component.

Fixing states 1 to 3 in the state vector yields the original unmodified solution and therefore 

there are only three choices available when choosing r. The choices are as follows:

R l: fix state 1 and free states 2 to 53.

R2: fix state 2 and free states 1 and states 3 to 53.

R3: fix states 1 and 2 and free states 3 to 53.

MTSI-Step 10: Form of weighted least squares solution

The form of the weighted least squares solution depends on the selection of the parameter r 

described in MTSI-Step 9 above, the length of the forecast horizon and also on the number of

end-point and sum values used in the adjustment. Table 6.16 describes the form of the least

squares solution for each of the different cases R l to R3, where it can be seen that there is an 

overdetermined system of equations in all cases.

Table 6.16 Description of weighted least squares solution

r (n-r) 

No. of 

Unknowns

Forecast
Horizon

Long-Time-Scale
Information

No. of 
Equations 

in WLS 
Solution

Type of System

Rl -R 2 52 156 sum and end-point 53 overdetermined

R3 51 156 sum and end-point 53 overdetermined
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MTSI-Step 11: Construction of W

For the adjustment of a one-year-ahead prediction the weighting matrix was chosen to be of 

the following form:

• wep is the weight on the end-point error

• ws is the weight on the sum error.

• wjev_wki represents the weight on the error for the deviation from the 

original forecast at week i.

• Wdev_wki is the starting value of the deviation error profile.

• Wdev_wksi is the finishing value of the deviation error profile.

The wa, wb and wc weighting matrices (see Figure 5.10) considered in the fuel consumption 

example presented in Section 5.3 of Chapter 5 were also considered in this application. 

Results showed that wc matrix, which has a quadratic deviation error weighting profile, did 

not yield good adjustment results and was therefore not used. An alternative to the wb 

weighting matrix was considered. This involved adapting the wb matrix so that the first two 

deviation errors at the forecasting origin (the starting value and the second deviation error) 

were assigned the same weight as the weight on the last deviation error (the finishing value). 

This weighting matrix, which is referred to as wd, has a combination of the properties of the 

wa and wb matrices.

The setting up the deviation error weighting profile in the wa weighting matrix involved the 

following steps:

1. select a number for the starting value.

2. assign the starting value to Wdev_wki and assign the value 1 to Wdev_wksi.

3. assign the values corresponding to the linear interpolation between the 

starting value and 1 to the deviation errors Wdev_wk2 to Wdev_wkso.

where

Similarly for wb:

1. select a number for the finishing value.

2. assign the finishing value to Wdev_wk5i and assign the value 1 to Wdev_wki.
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3. assign the values corresponding to the linear interpolation between the 

finishing value and 1 to the deviation errors W deV_wkso  to W j ev_wk2-

1. select a number for the finishing value.

2. assign the finishing value to Wdev_wksn Wdev_wki and Wdev_wn and assign the

Value 1 tO Wdev_wk3.

3. assign the values corresponding to the linear interpolation between the 

finishing value and 1 to the deviation errors W d ev_wk5o to w*v wk4-

Examples of wa, wb and wd matrices with starting/finishing values equal to 10 and the end­

point and sum error weight equal to 100 are shown as follows:

W  = diag[ W ep W s Wdet_vik\ Wdev_ttk2 d̂aijtlci ‘ ' Wdev_ h*49 W dev_ H*50 W cfev_«* 51 I

wa = diag[ 100 100 10 9.82 9.64 . . 136 118 1 ]

] (6.5)

Mb = diag[ 100 100 1 118 136 . . 9.64 9.82 10 ]

wd = diag\ 100 100 10 10 1 . . 9.67 9.86 10 ]

The wa, wb and wd weighting matrices with different starting/finishing values in the range 1 to 

20, were constructed. Note that, in each of the matrices a stating/finishing value equal to 1 

corresponds to a constant deviation error weighting profile, that is each deviation error is 

assigned a value of 1. The weights on the end-point and sum errors were given large values in 

relation to the weights on the deviation error. The ratio of the order of magnitude ol the end­

point and sum error weights to the deviation error weights was approximately equal to 10/1, 

as discussed in Section 5.2.4.2. Therefore, the values assigned to the end-point and sum error 

weights in all the wa, wb and wd weighting matrices were wep = ws =100.

MTSI-Step 12: Determination of optimal r and W

The optimal combination of r and W was determined using similar methods to those described 

in the fuel consumption example described in Section 5.3.2 and Section 5.3.3 of Chapter 5. 

The MAE and MSE results obtained through the adjustment of the one-year-ahead predictions 

using actual long-time-scale information were compared for different combinations of the r 

and W parameters determined in MTSI-Step 10 and MTSI-Step 11. Table 6.17 show the 

optimal values of the parameters for the adjustment of each of the one-year-ahead predictions.

Finally for wd:
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In the case of the optimal weighting matrices the corresponding starting/finishing value is 

given.

Table 6.17 Optimal r and W  for adjustment of one-year-ahead predictions

Forecast Horizon r W Starting/Finishing Value on 
Deviation Error Weighting Profile

1987/1988 R2 wd Wdev_wk51 “ 17

1988/1989 R2 wa Wdev_wkl = 5

1989/1990 R2 wb Wdev_wk51 = 2

For each prediction the optimal choice for the parameter r was determined to be R2. This 

corresponds to fixing the slope of the trend component in the short-time-scale model and 

freeing the remaining states. A possible reason for this choice may be due the fact that it is 

necessary to free the level of the trend component in order to achieve the end-point 

specification. It can seen that the optimal weighting matrix varies across the predictions, thus 

illustrating that this parameter depends on the specific characteristics of the forecast which is 

being adjusted. The weighting matrices given in Table 6.17 are the optimal weighting 

matrices, that is the matrices that give the maximum improvement achieved through the 

adjustment of the original prediction. However, it is important to note that improvement over 

the original prediction was achieved for all weighting matrices in all cases for the choice of 

parameter r equal to R2. For example, consider Figure 6.9 and Figure 6.10 which show the 

MAE and MSE performance achieved through the adjustment of the original 1987/1988 

prediction using the different weighting matrices, wa, wb and wd. The y-axis gives the 

variation in the starting/finishing values for each of the matrices and the solid horizontal line 

in each graph shows the MAE or MSE of the original unadjusted prediction.

Figure 6.9 Comparison of MAE 

performance for different W  1987/1988

Figure 6.10 Comparison of MSE 

performance for different W  - 1987/1988

Variation in W Variation in starting/finishing value
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The graphs show that for both the MAE and MSE an improvement over the original 

prediction is achieved through adjustment using any one of the weighting matrices. The 

maximum improvement achieved using the wd matrix is clear from the graphs. Figure 6.11 to 

Figure 6.14 show similar plots for the 1988/1989 and 1989/1990 predictions.

Variation in starting/finishing value

Figure 6.12 Comparison of MSE 

performance for different W 1988/1989

Vanation m starling/finishing value

Figure 6.11 Comparison of MAE 

performance for different W  -1988/1989

Figure 6.13 Comparison of MAE 

performance for different W -1989/1990

Variation in starting/finishing value

Figure 6.14 Comparison of MSE 

performance for different W  - 1989/1990

16 16

Variation in

Figure 6.11 to Figure 6.14 shows that in the case of the sub optimal matrices, that is wb and 

wd in the 1988/1989 prediction and wa and wd in the 1989/1990 prediction, that as the 

starting/finishing values increase from 1 to 20 that the forecasting accuracy of the adjustment 

decreases. In fact the use of a constant deviation error weighting profile (starting/finishing 

value equal to 1) yields a more accurate result than the use of a sub optimal matrix that has 

variation on the deviation error weighting profile.
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MTSI- Step 13: Adjustment of short-time-scale prediction

The one-year-ahead short time scale predictions were adjusted using the optimal values of r 

and W, described in Table 6.17 of MTSI-Step 12, using the predicted long-time-scale 

information obtained in MTSI-Step 8.

Figure 6.15 to Figure 6.17 give the actual vs. predicted graphs for each of the adjusted one- 

year-ahead predictions. The unadjusted solution is also included for comparative purposes.
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Comparison of the profile of the adjusted and unadjusted predictions illustrate the effect of the 

choice of W  on the solution. For example, in the 1987/1988 and 1989/1990 predictions the 

majority of the adjustment occurred during the first 10 weeks of the predictions due to the 

deviation error weighting profile of the wd and wb weighting matrices respectively. In 

contrast, in the 1988/1989 prediction the heavier weighting of deviation errors near the 

forecasting origin in the wa weighting matrix results in the majority of the adjustment 

occurring during the last 16 weeks of the forecast horizon. Thus, it is can seen that the 

weighting matrix W allows selective control over the adjustment of the original solution. 

Consequently, it would be possible to choose a particular weighting matrix such that a 

particular type of adjustment would be performed depending on the forecast requirement.

Further examination of the graphs show that the low error (0.2%) on predicted end-point of 

the 1987/1988 prediction resulted in approximately an 8% improvement over the original 

solution at this point. In the case of the 1988/1989 prediction in spite of the high error 

(5.31%) on the predicted end-point there is still approximately a 4% improvement over the 

original solution This demonstrates that although the forecasting accuracy of the predicted 

end-point value is an important factor in the adjustment, it is still possible to achieve a 

reasonable degree of improvement even when the end-point error is relatively high. In 

contrast, the original 1989/1990 prediction produced a more accurate prediction (0.1%) at the 

end-point than the adjusted solution (3.8%). However, the adjustment of this prediction 

produced a greater improvement than that achieved in the 1987/1988 and 1989/1988 cases. 

The improvement over the unadjusted solution is of the order of approximately 14% in the 

MAE and 24% in the MSE. The reason for this is the combination of the very low errors on
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both the sum and (0.06%) and end-point (0.15%) predictions for this case It is expected that 

the degree of accuracy achieved through the adjustment of the original prediction would be 

more sensitive to the error on the predicted sum value, since this value affects the overall 

prediction, where this has been found to be true form practical experience.

Table 6.18 to Table 6.20 gives these results where the results for the unadjusted prediction 

and adjusted prediction using actual long-time-scale data are also included for comparative 

purposes. The adjustment of the prediction using actual long-time-scale information provides 

a measure of the maximum achievable improvement.

Table 6.18 Adjusted and unadjusted results for 1987/1988 one-year-ahead prediction

Forecast MAE xlO 3 MSE xlO 8 MAPE MPE
Unadjusted 7.669 1.4023 3.46 -0.92

Adjusted using actual 7.328 1.2813 3.26 -0.14
Adjusted using predicted 7.326 1.2795 3.27 -0.22

Table 6.19 Adjusted and unadjusted results for 1988/1989 one-year-ahead prediction

Forecast MAE xlO 3 MSE xlO'8 MAPE MPE
Unadjusted 7.788 1.3470 3.22 0.89

Adjusted using actual 7.055 1.1991 2.92 -0.14
Adjusted using predicted 7.399 1.2305 3.07 -0.33

Table 6.20 Adjusted and unadjusted results for 1989/1990 one-year-ahead prediction

Forecast MAE xlO 3 MSE xlO8 MAPE MPE
Unadjusted 6.228 0.6275 2.36 1.49

Adjusted using actual 5.149 04587 2.00 -0.10
Adjusted using predicted 5.392 0.4765 2.08 -0.14

Examination of the forecasting accuracy measures shows that improvement over the original 

prediction is achieved in all cases for all forecasting accuracy measures. In addition, for all 

cases the improvement in the MSE is approximately twice the order of the improvement 

achieved in the MAE, The reason for this is that the MSE penalises large errors, where 

examples of these are at Weeks 23, 45 and the end-point in the 1987/1988 and 1988/1989 

predictions and at weeks 19 to 21 and at Weeks 30 to 34 in the 1989/1990 prediction. 

Examination of the MPE values shows that the effect of the adjustment is to produce a 

solution that tends to forecast on average higher than actual values. With the exception of the 

1987/1988 prediction the error on the sum and end-point information resulted in 

approximately a 5% loss in the maximum achievable improvement. In the case of 1987/1988 

prediction the maximum improvement possible was attained to within 0.02 %.
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MTSI-Step 1 to MTSI-Step 3

A three year multi-step-ahead forecast of weekly electricity demand from Week 30 1987 to 

Week 29 1990 was performed. The short and long sampling period time series are the same 

as in the one-year-ahead case dealt with in Section 6.2.1.

MTSI-Step 4: Description of long-time-scale scale information

The long-time-scale information used to carry out the adjustment of the three-year-ahead 

prediction is described in Table 6.21.

6.2.2 Three-Year-Ahead Forecast

Table 6.21 Long-time-scale information used for adjustment of three-year-ahead prediction

Short-Time-Scale 

Forecast Horizon

End-point Sum

Week 30 1987-Week 29 1990 1. Week 29 1988

2. Week 29 1989

3. Week 29 1990

1 .1(Week 30 1987 - Week 29 1988)

2. X(Week 30 1988 - Week 29 1989)

3. E(Week 30 1989 - Week 29 1990)

MTSI-Step 5: Short-time-scale model

The BSM with dummy seasonal component that was used to carry out the one-year-ahead 

1987/1988 prediction was used to obtain the three-year-ahead prediction from 1987/1990. 

The identification data set and forecast horizon are given in Table 6.22

Table 6.22 Short-time-scale identification data sets and forecast horizon

Forecast Horizon Identification Data Set

Week 30 1987 - Week 29 1990 Week 30 1982 - Week 29 1987

The model for this identification data set was given earlier in Table 6.4.

MTSI-Step 6: Unadjusted short-time-scale prediction

The forecasting accuracy results of the unadjusted three-year-ahead forecast obtained using 

the BSM with dummy seasonal component model are given in Table 6.23.

Table 6.23 Unadjusted three-year-ahead prediction

Forecast Horizon MAE xlO'3 MSE x l O 8 MAPE MPE
1987/1990 8.621 1.7358 3.61 -0.82
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For comparative purposes Table 6.24 gives the forecasting accuracy results for each of the 

individual years of the three-year-ahead forecast.

Table 6.24 One-year-ahead results for unadjusted three-year-ahead prediction

Single Year of 
3-Year-Ahead Forecast

MAE x 10’3 MSE xlO’8 MAPE MPE

lst-slep-ahead - 1987/1988 7.669 1.4023 3.46 -0.92
2nd-step-ahead - 1988/1989 8.882 1.6621 3.71 1.17
3rd-step-ahead - 1989/1990 9.314 2.1133 3.67 -0.36

As expected all forecasting accuracy measures are greater than the results obtained in each of 

the one-year-ahead cases.

MTSI-Step 7 and MTSI-Step 8: Long-time-scale models and predictions 

A multi-step-ahead forecast of the end-point and sum long-time-scale information described 

above in MTSI-Step 4 was obtained using the neural networks developed in Section 6.2.1 of 

the one-year-ahead case. The percentage accuracy associated with each step in the multi-step- 

ahead prediction is given, where Table 6.25 shows the results obtained for the three-step- 

ahead forecast of the sum series and Table 6.26 gives the results for the associated exogenous 

variables. Similar results are shown in Table 6.27 and Table 6.28 for the end-point and AT 

series.

Table 6.25 Accuracy (%) for predicted yearly sum

Step-Ahead of Forecast Sum % Error
1 st-step-ahead 1 .1(Week 30 1987 - Week 29 1988) 0.89
2nd-step-ahead 2. E(Week 30 1988 - Week 29 1989) 0.19
3rd-step-ahead 3. £(Week 30 1989 - Week 29 1990) 2.90

Table 6.26 Accuracy (%) of predicted exogenous variables used to obtain forecast of sum

Step-Ahead of Forecast GDP AIW AUP NOC
% Error % Error % Error % Error

1 st-step-ahead 1.92 0.51 3.50 0.90
2nd-step-ahead 5.31 0.53 3.54 2.45
3rd-step-ahead 6.95 0.35 0.12 2.58

Table 6.27 Accuracy (%) for three-year-ahead prediction of end-point

Step-Ahead of Forecast End-point % Error
1 st-step-ahead 1. Week 29 1988 0.19
2nd-step-ahead 2. Week 29 1989 4.16
3rd-step-ahead 3. Week 29 1990 4.50
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Table 6.28 Accuracy (%) of predicted AT used to obtain forecast of end-point

Step-Ahead of Forecast AT
% Error

1 st-step-ahead 1.89
2nd-step~ ahead 21.7
3rd-step-ahead 11.87

For the most part the error on the predictions obtained from the three-step-ahead forecast are 

greater than the errors on the single step-ahead predictions obtained in the one-year-ahead case 

in Section 6.2.1, one exception is the 2nd step of the 1987/1990 sum prediction.

MTSI-Step 9: Selection of possible values of r

The structure of the state vector in the BSM with dummy seasonal component short-time-scale 

model yields three possible choices for r and these choices were described previously in 

MTSI-Step 9 of Section 6.2.1.

MTSI-Step 10 Description of weighted least squares problem

Table 6.29 describes the form of the weighted least squares solution of the three-year-ahead 

case.

Table 6.29 Form of weighted least squares solution

r (n-r) 

No. of 

Unknowns

Forecast
Horizon

Long-Time-Scale
Information

No. of 
Equations in 

WLS 
Solution

Type of 

System

R l -R 2 52 156 sum and end-point 159 overdeteimined

R3 51 156 sum and end-point 159 overdetermined

The number of equations in the weighted least squares solution has increased relative to the 

one-year-ahead case with the increase in the forecast horizon, with an overdetermined system 

of equations for all choices of the parameter r.

MTSI-Step 11: Construction of set of W

For the adjustment of the three-year-ahead prediction the weighting matrix was of the 

following form:

W=diag[wV yrl Wep yr2 

w
d e v _ w k i _ y r 2

^ep_yr3 ^s_yr2  ^Ks_yr3 ^dcv__wkl_yrl *

* * * ^ d e v _ v / k S l_ y r 2  ^ d e v _ w k l_ y r 3  ’ * * ^ d e v  _ w k 5 \_ y r 3J
^ d e v _ w k 5 1 _ y r l  ^  ^
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where

• WeP_yrj is the weight on the end-point error in year j. 

wS yrj is the weight on the sum error in year j.

• Wdev_wkUrj represents the weight on the error for the deviation from the 

original forecast at week i in year j.

• Wdev_wki_yrj is the starting value of the deviation error profile of year j.

• Wdev_wksi_yrj is the finishing value of the deviation error profile of year j.

The weighting matrix structures considered in the one-year-head case, wa, wb and wd were 

also considered here. The weight on the end-point error was more heavily penalised than the 

weight on the sum error, since the end-point of each year provides the starting point for the 

next year’s prediction, as discussed in Section 5.2.4.2. Therefore, the sum weight was 

reduced to the same order of magnitude as the deviation error weights and thus the end-point 

and sum weights were as follows: as wep =100  and Wj = 10. For the reasons outlined in the 

two-year-ahead fuel consumption example in Section 5.3.3 the same weighting values were 

assigned to the deviation error profile of each year (Wdev_wki_yrj........... Wdev_wksi_yrj„ j=l:3).

Weighting matrices wa, wb and wd were constructed with different starting/finishing values 

assigned to the deviation error weighting profile, with the range of values considered from 1 to 

20. Results showed that the error was still continuing to decrease for starting/finishing values 

equal to 20 and the range of values for the starting/finishing values was thus increased from 

20 to 50. Therefore, the total set of weighting matrices considered was 150, that is 50 wa 

matrices, 50 wb matrices and 50 wd matrices.

MTSI-Step 12: Determination of optimal r  and W

The MAE and MSE results obtained through the adjustment of the three-year-ahead prediction 

using actual long-time-scale information for different combinations of the r and W parameters 

compared using the methods described in Section 5.3 of Chapter 5. Table 6.30 given the 

optimal values of the parameters for three-year-ahead case.

Table 6.30 Optimal r and W  for adjustment of three-year-ahead predictions

Forecast Horizon r W Finishing Value on Deviation 

Error Profile

1987/1990 R2 wd Wdev_wk51 — 38
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It can be seen that the optimal choice for the parameter r is again R2, as in the case of the 

adjustment of the one-year-ahead predictions, and that wd is the optimal weighting matrix. 

The MAE and MSE achieved using the different weighting matrices are shown in Figure 6.18 

and Figure 6.19 respectively. A similar effect to that observed in the one-year-ahead case can 

be seen, with the improvement achieved using the sub-optimal matrices decreasing as the 

starting/finishing value increases.

Variation in starting/finishing value Variation in starting/finishing value

t 1---- 1---- r~
:+ni - i —--J**. —

Figure 6.18 Comparison of MAE 

performance for different W -1987/1990

Figure 6.19 Comparison of MSE 

performance for different W - 1987/1988

MTSI-Step 13: Adjustment of short-time-scale prediction

The three-year-ahead forecast was adjusted, using the optimal values of r and W determined 

in MTSI-Step 12 above, with the predicted long-time-scale information obtained in MTSI- 

Step 8. Figure 6.20 gives the actual vs. predicted graphs for the three-year-ahead case. For 

visual clarity a graph of each year of the three-year-ahead forecast is also given in Figure 6.21 

to Figure 6.23.

Figure 6.20 1987/1990 - actual vs predicted
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Figure 6.23 Year 3 of 1987/1990 - actual vs predicted
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The forecasting accuracy measures are given in Table 6.31 and Table 6.32 to Table 6.34 give 

the results for each of the individual years of the three-year-ahead adjusted forecast.

Table 6.31 Adjusted and unadjusted results for 1987/1990 three-year-ahead prediction

Forecast MAE xlO 3 MSE x lO 8 MAPE MPE
Unadjusted 8.621 1.7358 3.61 -0.82

Ad justed using actual 7.9478 1.5838 3.29 -0.27
Adjusted using predicted 8.1595 1.6186 3.39 -0.34

Table 6.32 Results for 1987/1988 of three-year-ahead prediction

Forecast MAE xlO 3 MSE xlO * MAPE MPE
Unadjusted 7.669 1.4023 3.46 -0.92

Adjusted using actual 7.3437 1.2813 3.28 -0.36
Adjusted using predicted 7.4193 1.3028 3.32 -0.43

Table 6.33 Results for 1988/1989 of three-year-ahead prediction

Forecast MAE xlO'3 MSE xlO'8 MAPE MPE
Unadjusted 8.882 1.6621 3.71 1.17

Adjusted using actual 8.0161 1.5240 3.32 -0.63
Adjusted using predicted 8.2981 1.5533 3.45 -0.69

Table 6.34 Results for 1989/1990 of three-year-ahead prediction

Forecast M A E xlO 3 MSE x lO 8 MAPE MPE
Unadjusted 9.314 2.1133 3.67 -0.36

Adjusted using actual 8.4807 1.9460 3.29 0.16
Adjusted using predicted 8.7621 1.9997 3.41 0.09

Examination of the graphs of the predictions for each the individual years of the three-year- 

ahead forecast shows that the effect of the adjustment is to moderately improve the forecast at 

each step of the prediction over the whole forecast horizon. An exception to this is at the end­

point, where relatively speaking there is significant improvement over the original prediction. 

This smooth improvement over the whole of the forecast horizon is in contrast to the one-year- 

ahead cases, where there was a variation in the magnitude of adjustment achieved throughout 

the forecast. The more even adjustment in the three-year-ahead case is required in order to 

simultaneously satisfy the multi-sum and multi-end-point specifications over the three-year- 

ahead forecast horizon.

Examination of the results in Tables 6.31 to Tables 6.34 shows that improvement over the 

original prediction is achieved over all forecasting accuracy measures. Comparing the results 

for each of the individual years of the three-year-ahead prediction shows that in contrast to the
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one-year-ahead predictions comparable improvement was achieved between each year. In 

addition, the significant improvement in the MSE experienced in the one-year-ahead cases is 

not seen here. The reason for the above is the even adjustment achieved over the entire 

forecast horizon.

Comparing the MAPE, which provides a measure of accuracy over time, between the adjusted 

and unadjusted results for the one-year-ahead and individual years of the three-year-ahead 

cases shows that on average a greater improvement was achieved in the adjustment of the 

three year-ahead prediction. This is to be expected since the three-year-ahead prediction will 

deteriorate as the forecast horizon increases beyond the seasonal length and the effect of the 

adjustment in this case will have a greater improvement relative to the one-year-ahead cases.

6.3 Hourly and D aily Electricity Dem and Integration

In this application the multi-time-scale integration technique was applied to hourly and daily 

electricity demand short and long period time series respectively. This application is being 

considered principally for the illustration of the technique as an interpolation technique 

associated with the short-time-scale load profile. It is employed to interpolate between 

cardinal points on the daily load profile; such as the tea-time peak, the midday peak and the 

overnight minimum. The cardinal points at the daily sampling period make up the long-time- 

scale data. For brevity, future predictions of the cardinal points were obtained using a simple 

univariate structural model, however a comprehensive model for the production of such 

forecasts would normally include exogenous weather variables.

Both twenty-four-hour-ahead and three-day-ahead predictions of weekday forecasts during the 

month the of November were produced. For confidentiality reasons the specific dates 

associated with each of the forecasts performed are not provided and only the day(s) of the 

week associated with the forecast is given.

6.3.1 Twenty-Four-Hour-Ahead Forecast

MTSI-Step 1 Required short-time-scale forecast

A 24-hour-ahead prediction of hourly electricity demand was performed for the following 

forecast horizon:

• 1900 hrs Tuesday to 1800 hrs Wednesday during the month of November.
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MTSI-Step 2: Short sampling period time series

The short sampling period time series is hourly electricity demand data. Before proceeding 

any farther the daily load profile is examined. The shape of the daily load profile depends 

mainly on the month of the year and on the day of the week. Figure 6.24 shows a plot of a 

typical week-day daily load profile during the month of November

For this particular day the peak occurs at 1800 hrs and the minimum at 0500 hrs. Other 

significant turning points occur at lunch-time (1300 hrs) followed by a sharp dip at 1400 hrs. 

For contrast, Figure 6.25 shows the daily load profile for a Wednesday during the second 

week of the month for October, November and December.

The difference in the October load profile can be seen clearly in the graph, where in particular 

there is an absence of a tea-time peak load. The load profiles for November and December 

are reasonably consistent. This is to be expected because it is only the second week of the 

month and the Christmas factor in December has not yet begun to take effect. Similar
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graphical comparisons were carried out for typical week-days for each month of the year. The 

common characteristics in the daily load profile are as follows:

• An overnight minimum between the hours of 0400 hrs and 0600 hrs.

• A sharp increase between the hours of 0600 hrs and 1000 hrs.

• A plateau between 1100 hrs and 1200 hrs.

• A lunchtime peak at 1300 hrs.

• A sharp decrease after lunch-time at 1400 hrs.

• In winter, the peak load of the day is at 1800 hrs (attributed to higher heating and 

lighting requirements during the winter months).

• In summer, there is a late high at 2000 hrs or 2100 hrs.

The shape of the daily load profile also varies according to the day of the week, with the main 

difference occurring between the week-days and the weekend. Figure 6.26 gives a plot of 

hourly demand for a typical week in November from 000 hrs Monday to 2400 hrs Sunday.

It is easy to distinguish the Saturday and Sunday load profiles due to the pronounced 

reduction in electricity demand on these days. The graph shows that the load profiles for each 

week-day are similar with a slight reduction in the load as the week progresses. Furthermore, 

the peak occurs at 1800 hrs for each day of the week.

Since the 24-hour-ahead prediction falls on a week-day which occurs during the month of 

November the short sampling period time series is made up of week-day hourly electricity 

demand data recorded during the month of November. Figure 6.27 shows a plot of the time 

series for the month of November for two consecutive years. It is seen that the time series
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exhibits a trend component which shifts up and down and has a small slope. In addition it has 

a seasonal component of seasonal length equal to 24.

Figure 6.27 Hourly data 

MTSI-Step 3: Generate long sampling period series

Given the seasonal nature of the short sampling period time series a daily aggregation level 

was chosen to generate the sum series. Consequently, the sum time series is made up of the 

cumulation of hourly electricity demand over a 24 hour period. A number of cardinal points 

on the daily load profile were chosen as intermediate target values for the adjusted short-time- 

scale prediction to follow. These points are as follows:

• the peak load of the day at 1800 hrs.

• the 0500 hrs overnight minimum.

• the lunch-time peak at 1300 hrs.

• the 1400 hrs decrease after lunch-time.

One of the above cardinal points was chosen as the end-point and the remaining points as the 

additional intermediate points (see Section 5.2.3.5). The end-point value was chosen as the 

peak load of the day at 1800 hrs. The reason for choosing this point as the end-point is for 

demonstrative purposes since, although it is not the focus of the work carried out in this thesis, 

generally there will be a reasonably accurate forecast of the peak load of the day available to 

the utility.

The electricity demand long sampling period sum, end-point and additional point time series 

are based on a daily sampling period. Table 6.35 describes each time series.

238



Table 6.35 Description of long sampling period time series

Time Series Description

Sum 1(1900 hrs one day to 1800 hrs of the next day)

End-point 1800 hrs

Additional point 1 1400 hrs

Additional point 2 1300 hrs

Additional point 3 0500 hrs

Each time series is made up of data recorded during the month of November recorded over 9 

years. The omission of data for Saturday and Sunday reduces the number of points in the 

time series from 245 points to only 175 and it was therefore decided to include both week-day 

and weekend data points in each series. The number of points in each time series is therefore 

245 days or 35 weeks. Figure 6.28 to Figure 6.32 show plots of the long sampling period 

time series.

Figure 6.28 End-point time series

Figure 6.30 1300 hrs time series

2400

12001 J 1 '  -----------------
0 50 100 150 200 250

Days

Figure 6.31 1400 hrs time series
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Each of the time series exhibit a rising trend due to annual influences and seasonality with a 

seasonal length of 7, corresponding to one weeks data, as might be expected. The seasonal 

component may be seen more clearly by over-plotting various weeks on the same graph. 

Weeks 1, 11, 23 and 35 of the 35 week data set are over-plotted, with Figure 6.33 to Figure 

6.37 showing such graphs, where it can be seen that the seven day profile for each week is 

very similar with the possible exception of Week 23 for the 1400 hrs time series.

W eek l x —x—x W eek11* -

Week23 ■+— j— +- Week 35 o-
W e e k  1 x — H — x  W e e k  11  * — * — *

W e e k  2 5  ■*— f— ► W e e k  3 5  o — * — *

1 2 3 4 5 6 7
Days

Figure 6.33 Over-plotting for end-point Figure 6.34 Over-plotting for sum

Days

Figure 6.35 Over-plotting for 1300 hrs
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Figure 6.37 Over-plotting of 500 hrs

For this application at the daily sampling period the only exogenous variables available are 

AT or HDDig. However, given the difficulty associated with predicting these variables at the 

daily sampling period and since it would be necessary to predict future values of the variables 

for each of the five models it was decided not to include the exogenous weather variables in 

the long-time-scale models.

MTSI-Step 4: Description of required long-time-scale scale information

The long-time-scale information that was used in the adjustment of the 24-hour-ahead

prediction is described in Table 6.36.

Table 6.36 Long-time-scale information required to carry out adjustment

Short-Time-Scale 

Forecast Horizon

End-point and additional points Sum

1900 hrs Tues to 

1800 hrs Wed

1800 hrs, 1400 hrs, 1300 hrs and 

0500 hrs on Wed

£(1900 hrs Tues to 1800 hrs 

Wed)

MTSI-Step 5 Short-time-scale model

The hourly short sampling period time series is a seasonal series with a long term trend. An 

appropriate model structure for a time series exhibiting these characteristics is the BSM with 

a dummy seasonal component (2.44). Note that, the seasonal length is 24 and thus the 

dimension of the state vector is n = 25.

An estimate of the state vector at the forecasting origin was required to perform the 24-hour- 

ahead prediction (5.3 and 5.4). The identification data set used to obtain this estimate is made 

up of 17 days of hourly electricity demand data taken from the month of November. The 

estimated state space model for this identification data set is described in Table 6.37.
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Table 6.37 Short-time-scale model for 24-hour-ahead prediction

CTe2 °n2
_ 2Oqo a 0(18)

0 0.155xl0‘4 0 0.004xl0'4 0.0047 23.67

Since %2[0.5](18) = 38 the model was assumed to be adequate based on the Ljung-Box statistic 

£>(18). The variance of the stochastic disturbance term corresponding to the slope of the time 

series is zero as expected and the trend component is allowed to shift up and down due to the 

relatively large value of cr/. The value of oa2 = 0.004xl0'4 relative to ctb2 = 0 indicates that 

there is a small amount of discounting of past value when predicting the seasonal component.

MTSI-Step 6: Unadjusted short-time-scalc prediction

The forecasting accuracy results for the unadjusted 24-hour-ahead prediction obtained using 

the short-time-scale model determined in MTSI-Step 5 are given in Table 6.30

Table 6.38 Unadjusted 24-hour-ahead forecast

Forecast Horizon MAE MSE x lO'3 MAPE MPE
1900 hrs Tues to 1800 hrs Wed 45.54 2.8074 2.19 1.89

MTSI-Step 7: Long-time-scale models

The long sampling period time series described in MTSI-Step 3 are all seasonal time series 

with seasonal length equal to 7 and with a rising trend characteristic. Consequently, a BSM 

with a dummy seasonal component was used to forecast the time series. The identification 

data set is made up of data taken for the month of November over a period of 9 years. Details 

of the estimated models are given in Tables 6.39 Table 6.43.

Table 6.39 Daily sum structural model

cte2 a / ac2 _  2 a 0(15)

0,385xl0‘ItJ 0.385xl0’4 0 0.005xl05 0.0337 17.39

Table 6.40 Daily end-point structural model

cfe2 °n2 _ 2CTo) a 6(15)

0.188xl0"5 0.654xl0"5 0 0.006x10'* 0.0195 21.98

Table 6.41 Daily 1400 hrs structural model

as2 On2 CT?2
_ 2 CT 0(15)

0.142xl0'4 0,0435x1O'4 0 0.004xl0'3 0.0053 22.34
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Table 6.42 Daily 1300 hrs structural model

Ch2 On2 _ 2 CT 2(15)

0.139xl0'4 0.038 xlO'4 0 0.002x10'5 0.0051 17.87

Table 6.43 Daily 0500 hrs structural model

CTe2 °c2
_  2 CToj d 2(15)

0.177xl0‘5 0.397xl0"5 0 O.OOlxlO'5 0.0028 20.66

Since %2[0.s](15) = 25 all the models are assumed to be adequate based on the Ljung-Box 

statistic <2(15). In all cases, the variance corresponding to the slope of the trend component, 

a / ,  is zero indicating that each series has a constant slope which does not vary stochastically 

with time. The relatively large values of the variance ov,2 account for the fact the trend 

component is shifting up and down as the time series progresses through time. In each model 

the values of a m2 are less than the values of cte2 and thus the model does not discount a large 

number of past observations when estimating the seasonal component.

MTSI-Step 8 Long-time-scale prediction

The forecasting accuracy of the long-time-scale forecasts obtained using the models given in 

MTSI-Step 7 are given in Table 6.44.

Table 6.44 Accuracy (%) of long-time-scale information for 24-hour-ahead prediction

Long-Time-Scale Forecast % Error

2(1900 hrs Tues 12/11/1991 to 1800 hrs Wed 3/11/1991) 1.56

1800 hrs Wed 13/11/1991 2.90

1400 hrs Wed 13/11/1991 1.11

1300 hrs Wed 13/11/1991 3.67

0500 hrs Wed 13/11/1991 2.13

The relatively high errors on the end-point and 1300 hrs forecast suggest that although an 

adequate model was identified for both time series that either these models could be improved 

upon or that an alternative modelling approach should be adopted. The use of neural 

networks is a possible option since as discussed in Chapter 2 they have been widely applied to 

the area of short term and peak load forecasting. However, the results obtained using the 

BSM with dummy seasonal component long-time-scale models were used to carry out the 

adjustment of the short-time-scale prediction under the assumption that any improvement
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obtained may possibly be further improved if an alternative modelling approach was adopted 

for the long sampling period series.

MTSI-Step 9: Selection of possible values of r

The structure of the state vector of the short-time-scale model determines the possible choices 

available for the parameter r. For the current case the dimension of the state vector is 25 and 

the choices available for r are as follows:

R l : fix state 1 and free states 2 to 25.

R2: fix state 2 and free states 1 and states 3 to 25.

R3: fix states 1 and 2 and free states 3 to 25.

MTSI-Step 10: Form of weighted least squares solution

The form of the weighted least squares solution, for each of the different cases of R l to R3, is

described in Table 6.45, where for each choice of the parameter r an overdctermined system of

equations is obtained.

Table 6.45 Form of weighted least squares solution for 24-hour-ahead prediction

r in-r) 

No. of 

Unknowns

Forecast
Horizon

Long-Time-Scale
Information

No. of 
Equations in 

WLS 
Solution

Type of 

System

Rl -R 2 24 24 sum, end-point and 

additional points

25 overdetermined

R3 23 24 sum, end-point and 

additional points

25 overdctermined

MTSI-Step 11: Construction of set of W

For the adjustment of the 24-hour-ahead prediction the weighting matrix is of the following 

form:

W=diag[wep W, Waddpl Wdev l900 kr, Wdev_2000 hrs • ■ • WdeV_il00 hr, ]

where

• wep is the weight on the end-point error.

• ws is the weight on the sum error

• Waddpt is the weight on the additional point error
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• Wdevjoo hrs represents the weight on the error for the deviation from the 

original forecast at iOO hrs.

• Wdevjm hrs is the starting value on the deviation error weighting profile.

• Wdev_i7oo hrs is the finishing value on the deviation error weighting profile.

The weighting matrices wa, wb and wd considered in the weekly/yearly application dealt with 

in Section 6.2 were also considered here. Different matrices were constructed with 

starting/finishing values in the range 1 to 20. The weight on the end-point and sum was 

chosen relative to the deviation errors and was thus equal to wep = ws = waddpt=100.

MTSI-Step 12; Determination of optimal r and W

In order to determine the optimal values of the r and W parameters adjustment of the 24-hour- 

ahead prediction was carried out with the set of r and W  parameters determined in MTSI-Step 

10 and MTSI-Step 11 using actual long-time-scale information. Adjustment was carried out 

for a number of different combinations of the long-time-scale information, where Table 6.46 

describes each of the different cases.

Table 6.46 Different adjustments performed

Long-Time-Scale Data Used for Adjustment Reference

sum and end-point PA

sum, end-point and 1300 hrs PB

sum, end-point and 1400 hrs PC

sum, end-point and 0500 hrs PD

sum, end-point, 1300 hrs and 1400 hrs PE

sum, end-point, 1300 hrs and 0500 hrs PF

sum, end-point, 1400 hrs and 0500 hrs PG

The adjustment carried out using PF and PG were not found to give good results and were 

thus discarded from the set. Using the graphical techniques described in the fuel consumption 

example in Section 5.3 of Chapter 5 the optimal value of r and W for each of the cases PA to 

PE were determined. Table 6.47 summarises the results of this analysis.
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Table 6.47 Optimal r and W  for adjustment of 24-hour-ahead prediction

Forecast Horizon Case r Weighting Matrix
Type Starting Value on Deviation 

Error Profile
1900 hrs Tues to 1800 hrs 

Wed
PA 

to PE
R2 wa Wdev_1900 hrs = 2

As in the case of the weekly/yearly application the optimal choice of the parameter r is R2. 

The optimal weighting matrix out of the set of weighting matrices was determined to be wa 

but improvement over the original prediction could also be achieved using the wb and wd 

weighting matrices. Figure 6.38 and Figure 6.39 show an example of this where the MAE 

and MSE performances are compared for the different W for the adjustment case PA.

Variation in starting/finishing value

Figure 6.39 Comparison of MSE 

performance for different W -PA

Figure 6.38 Comparison of MAE 

performance for different W -PA

Variation in starting/finishing value

Examination of the profiles show that in contrast to the weekly/yearly application the 

similarity between the wb matrix and the wd matrix can be seen in the adjustment results. A 

possible reason for the difference between the two applications is that the 24-hour-ahead 

profile is smoother and more consistent than the weekly one-year-ahead profile and thus the 

effect of the heavier weighting on the first two deviation errors is not as significant as in the 

weekly/yearly case. In addition, the performance of the wb and wd sub optimal matrices 

deteriorates as the starting/finishing values increase from 1 to 20 and as in the case of the 

weekly/yearly application a finishing value equal to 1 yields the more accurate result.

MTSI-Step 13: Adjustment of short-time-scale prediction

In this step adjustment of the 24-hour-ahead prediction was carried out using the predicted 

long-time-scale information obtained in MTSI-Step 8. Figure 6.40 to Figure 6.44 give the 

actual vs. predicted graphs which include the adjusted and unadjusted 24-hour-ahead 

predictions and Table 6.48 gives the forecasting accuracy results.
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Table 6.48 Results for adjustment of 24-hour-ahead prediction

Forecast MAE MSE x 103 MAPE MPE

Unadjusted 45.54 2.8074 2.19 1.89

PA using actual 21.34 652.10 1.14 -0.09
PA using predicted 37.22 2.0407 1.78 1.52

PB using actual 23.85 1.1328 1.27 -0.18
PB using predicted 39.65 3.1053 1.86 1.44

PC using actual 26.16 71.166 1.34 -0.09
PC using predicted 44.12 2.6909 2.11 1.56

PD using actual 19.69 566.30 1.05 -0.09
PD using predicted 37.21 1.9880 1.80 1.54

PE using actual 29.04 1.6280 1.49 -0.14
PE using predicted 44.92 3.6723 2.10 1.48
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Before going on to discuss the adjustment results some comments are made regarding the 

forecast produced by the univariate structural model. Figure 6.45 gives a plot of the actual 

and predicted load (unadjusted and adjusted PA), with the AT profile for the twenty-four- 

hour-ahead forecast also shown. For comparative purposes the AT for the previous day is 

also given.

1  2500 .................... - .....................I--------------- ; --------------- ------------
g  ! actual (Moh/Tues) □ . © S '  ** *

s  * * *  i i i

I 200”  H - J  \  r {  i ................
o  i i i i »
_a> » I I I »lu ! g : j .

1500 --------------- i ......... g - v - i - ------ ................................ -i------- ------- i - -
* * s* * ; i

S  o ° ° ° < i , o 0 0 0 : i 0 0 5 ^ 0  i
1000  -----------   -j----------tIj _a  "Q~6”( i"0 ~x~ ° ---------r

tc x x x x > < x><><x ^ ><><xx)kx i
500 ............... \ ................j-...............\ ...............-I-...............i---

1800 2300 0400 0900 1400 1900
Hours

Figure 6.45 Actual vs predicted Tues/Wed including AT data

Examination of the graph shows that the main differences in AT occurs overnight, when 

weather is not expected to have a significant influence on the load. During the hours of 0900 

hrs and 1800 hrs the difference in the AT is small, approximately 2°C and therefore, for this 

particular day, the univariate structural model was capable of producing a reasonably 

accurate forecast of the load.

Examining the adjusted forecasts the most accurate results were obtained for the PA and PD 

adjustments. Examination of the PA and PD graphs show that the effect of the adjustment is 

to moderately change each hour of the prediction so that it is closer to the actual load. For the 

PA and PD cases the most significant variance between the actual and predicted profiles occur 

at 0800 hrs, 1000 hrs, 1200 hrs, 1700 hrs and 1800 hrs. On average an 18 % improvement in 

MAE and 28% improvement in MSE was achieved, with the MAPE and MPE equal to 1.79 

and 1.53 respectively. However, the average maximum achievable improvement that could be 

obtained in PA and PD cases is of the order of 54% in the MAE, 78% in the MSE, with an 

MAPE of 1.04 and MPE of -0.09. This indicates that the case for the improvement of the 

predicted long-time-scale information is strong. Consider Figure 6.46 and Figure 6.47 which 

show the actual load versus the adjusted load using actual long-time-scale information for PA
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and PD respectively, where for comparative purposes the adjustment using predicted long- 

time-scale data is also included.
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Figure 6.46 Actual vs. adjusted using actual long-time-scale data for PA
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Figure 6.47 Actual vs. adjusted using actual long-time-scale data for PD

Comparison of the adjustment using actual long-time-scale data to the adjustment using 

predicted long-time-scale data shows that overall, in addition to the obvious improvement at 

the end-point, the effect of an improvement in the sum information is to push the prediction 

even closer to the actual load at each hour of the forecast. Of particular significance are the 

hours at which the greatest error in the adjustment using predicted long-time-scale data 

occurred, that is 0800 hrs, 1000 hrs, 1200 hrs and 1700 hrs. Exceptions to the overall 

improvement using the actual data are at 0400 hrs, 0600 hrs, 0700 hrs, 0900 hrs and 1200 

hrs. Consequently, since the improvement that could be obtained using more accurate long- 

time-scale data is significant it is suggested that further improvement of the long-time-scale 

models would be desirable. The inclusion of a daily weather variable in the structural models
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or the use of neural networks are possible directions for future work in this particular 

application.

In the case of the PB, PC and PE adjustments significant loss of accuracy occurred due to the 

inaccurate predictions of the additional long-time-scale data, where the difference between the 

original solution and the adjusted solution at this points is clearly shown on the graph. As 

expected the forecasting accuracy measures for these solutions are comparable to the original 

solution. However, examination of the maximum achievable improvement demonstrates again 

the case for the improvement of the forecasting accuracy of the long-time-scale models. The 

maximum achievable improvement over the MAE of the original prediction is on average of 

the order of 42%, of the order of 53% in the MSE, with the MAPE and MPE equal to on 

average 1.36 and -0.13.

For an arbitrarily chosen day the results have shown that an improvement over the original 

solution may be obtained through the application of the technique. However, no comment 

may be made regarding the quality of the results produced through the application of the 

technique to a set of different days, for example, a weekday occurring during the summer 

months.

6.3.2 Three-Day-Ahead Forecast

MTSI-Step 1 - MTSI-Step 3

The 24-hour-ahead forecast was extended to a three-day-ahead forecast of hourly electricity 

demand, that is:

• 1900 hrs Tuesday to 1800 hrs Friday during the month of November.

The short and long sampling period time series used in the 24-four-hour-ahead case were also 

used in this case.

MTSI-Step 4: Description of required long-time-scale scale information

The long-time-scale information which was used in the adjustment of the three-day-ahead

prediction is described in Table 6.49
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Table 6.49 Required daily end-point, sum and additional information forecasts

Short-Time-Scale 

Forecast Horizon

End-point and additional 

points

Sum

1900 hrs Tues to 

1800 hrs Fri

0500 hrs, 1300 hrs, 1400 hrs 

and 1800 hrs on Wed

E(1900 hrs Tues 

to 1800 hrs Wed)

0500 hrs, 1300 hrs, 1400 hrs 

and 1800 hrs on Thur

2(1900 hrs Wed 

to 1800 hrs Thur)

0500 hrs, 1300 hrs, 1400 hrs 

and 1800 hrs on Fri

£(1900 hrs Thur 

to 1800 hrs Fri

MTSI-Step 5: Short-time-scale models

The BSM with dummy seasonal component used for the 24-hour-ahead case was used to 

obtain the three-day-ahead prediction, where a description of the estimated model was given in 

Table 6.37 in Section 6.3.1.

MTSI-Step 6: Unadjusted short-time-scale prediction

An unadjusted three-day-aliead prediction was obtained using the short-time-scale model 

described in MTSI-Step 5 above, where the forecasting accuracy result are given in Table 

6.50.

Table 6.50 Unadjusted three-day-ahead forecast

Forecast MAE MSE x 1 0 3 MAPE MPE
1900 hrs Tues to 1800 hrs Fri 47.79 3.0308 2.42 1.34

Since the main interest in the area of short-term load forecasting is in the daily load profile the 

forecasting accuracy results are calculated for each of the 24 hour periods in the three-day- 

ahead prediction, where these results are given in Table 6.51.

Table 6.51 Individuals days of unadjusted three-day-ahead forecast

Forecast MAE MSE x 1 0 3 MAPE MPE
1900 hrs Tues to 1800 hrs Wed 45.54 2.8074 2.19 1.89
1900 hrs Wed to 1800 hrs Thur 54.45 3.6420 2.83 0.79
1900 hrs Thur to 1800 hrs Fri 43.40 2.6429 2.26 1.34
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MTSI-Step 7 and MTSI-Step 8: Long-time-scale model and prediction 

The long-time-scale models determined in the 24-hour-ahead case, in Section 6.3.1, for each 

of the long sampling period time series were used to obtain a three-step-ahead forecast of the 

long-time-scale information. These models were described in Table 6.39 to Table 6.43. The 

forecasting accuracy results of the three-step-ahead long-time-scale predictions are given in 

Table 6.52 to Table 6.56. The percentage accuracy associated with each step of the forecast 

is given.

Table 6.52 Percentage accuracy for sum

Step-Ahead of Forecast % Error
lst-step-ahead 1.56
2nd-step-ahead 0.22
3rd-step-ahead 0.47

Table 6.53 Percentage accuracy for end-point

Step-Ahead of Forecast % Error
1 st-step-ahead 2.90
2nd-step-ahead 0.28
3rd-step-ahead 0.20

Table 6.54 Percentage accuracy for 1400 hrs

Step-Ahead of Forecast % Error
1 st-step-ahead 1.11
2nd-step-ahead 2.58
3rd-step-ahead 0.65

Table 6.55 Percentage accuracy for 1300 hrs

Step-Ahead of Forecast % Error
1 st-step-ahead 3.67
2nd-step-ahead 1.85
3rd-step-ahead 0.33

Table 6.56 Percentage accuracy for 0500 hrs

Step-Ahead of Forecast % Error
1 st-step-ahead 2.13
2nd-step-ahead 1.17
3rd-step-ahead 2.03

The prediction of the long-time-scale information on the Wednesday are relatively inaccurate 

in comparison with the long-time-scale predictions of Thursday and Friday, where an 

exception to this is in the 1400 hrs prediction.
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MTSI-Step 9: Selection of possible values of r

The three possible choices available for r have been described previously in Section 6.3.1 in 

MTSI-Step 9 of the 24-hour-ahead case.

MTSI-Step 10: Description of weighted least squares problem

Table 6.57 describes the form of the weighted least squares solution of the three-day-ahead 

prediction, where the number of equations relative to the 24-hour-ahead prediction has been 

increased from 25 to 75 and for each choice of r the system of equations is overdetermined.

Table 6.57 Description of weighted least squares solution for three-day-ahead prediction

r (n-r) 

No. of 

Unknowns

Forecast
Horizon

Long-Time-Scale
Information

No. of 
Equations in 

WLS 
Solution

Type of 

System

R1 -R 2 24 72 sum, end-point and 

additional points

75 overdetermined

R3 23 72 sum, end-point and 

additional points

75 overdetermined

MTSI-Step 11: Construction of set of W

For the adjustment of the 24-hour-ahead prediction the weighting matrix is of the form:

where

w = diag[wv W W W  w  w
,m d  e p jh u r s  eP ~ fr< s_ tueslw ed  s_w ed/lhurs s jh u r s f f r i

wdev_  1900 hrs J u t s

tv, rv_1900 krs_w ed

wdev _  1900 hrs_tfairs

wdev_  1700 hrs_w ed

w (6 .8)
d ev_ l7 0 0  hrs_lhurs

w
dev_ 1700 hrs_ f r i  J

wepj  is the weight on the end-point error on day j. 

wsj  is the weight on the sum error on day j.

Wdevjoo hrsj represents the weight on the error for the deviation from the 

original forecast at hour iOO on day j.

Wdev_mo hrsj is the starting value on the deviation error weighting profile on 

day j.

W d ev_ i7oo h r s j  is the finishing value on the deviation error weighting profile 

on day j.
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The weighting matrices wa, wb and w d  were considered with starting/finishing values in the 

range 1 to 20. Since the adjustment was being carried out on a three-ahead-ahead prediction 

using multiple long-time-scale points, the weight on the sum error was reduced to the same 

order of magnitude as the weight on the deviation error, as discussed in Section 5.2.4,2. 

Therefore, the weights on the end-point and sum were as follows: wep =100 and ws =  10.

MTSI-Step 12: Determination of optimal r  and W

Using the methods outlined in Chapter 5 Section 5.3 the optimal r  and W  parameters for the 

cases PA to PE were determined, where a description of the parameters is given in Table 6.58.

Table 6.58 Optimal r  and W for adjustment of 24-hour-ahead prediction

Forecast Horizon Case r Weighting Matrix
Type Starting Value on Deviation 

Error Profile
1900 hrs Tues - 
1800 hrs Wed

PA R2 w d Wdev 1700 hrs = 7
PB R2 w d Wdev 1700 hrs =  5

PC R2 w d Wdev 1700 hrs =  8

PD R2 w d Wdev 1700 hrs =  6

PE R2 w d Wdev 1700 hrs =  5

The optimal choice for the parameter r is again R2, which is consistent with all other 

applications using the BSM with dummy seasonal component and the optimal weighting 

matrix w d  is consistent with the multi sum and multi end-point adjustment case in the 

weekly/yearly application. As in the case of the other applications improvement over the 

original solution was also achieved using the other weighting matrices w a  and w b  but the 

optimal weighting matrix is wd. Figure 6.48 and Figure 6.49 the MAE and MSE 

performances for the different weighting matrices for the adjustment case PA.

As in the case of the 24-hour-ahead prediction the performance of the wb and w d  weighting 

matrix is similar due to the similarity of their structure. In the case of the MSE performance 

for the wa  matrix improvement over the original solution is limited to a starting values in the 

range 1 to 6. In addition, the performance of the wa  sub optimal weighting matrix deteriorates 

as the starting value increases from 1 to 20, where a similar effect was also observed in the 

sub optimal matrices of the other applications.
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Venation in starting/finishing value

Figure 6.48 Comparison of MAE 

performance for different W-PA

Variation in startinfin ishing value

Figure 6.49 Comparison of MSE 

performance for different W-PA

MTSI-Step 13: Adjustment of short-time-scale prediction

Adjustment was performed using the optimal values of the r and W, where Figure 6.53 to 

Figure 6.57 (see pages ) give the actual vs. predicted graphs which include the adjusted and 

unadjusted three-day-ahead predictions. Table 6.59 gives the forecasting accuracy results for 

the 3-day-ahead prediction and Table 6.60 to 6.62 give the results for each 24 hour period 

making up the three-day-ahead prediction,

Table 6.59 Results for adjustment of 3-day-ahead prediction

Forecast 1900 hrs Tues to 1800 hrs Fri
MAE MSE x 10 3 MAPE MPE

Unadjusted 47.79 3.0308 2,42 1.34

PA using actual 33.20 1.6593 1.63 0.04
PA using predicted 36.96 1.9879 1.84 0.69

PB using actual 36.31 2.3886 1.76 -0.04
PB using predicted 39.45 2.6943 1.92 0.62

PC using actual 37.72 2.4875 1.86 0.08
PC using predicted 38.9 2.2664 1.95 0.72

PD using actual 32.97 1.6575 1.62 0.05
PD using predicted 37.43 1.9886 1.88 0.72

PE using actual 40.45 3.1311 1.95 0.01
PE using predicted 40.74 2.9240 1.98 0.63
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Table 6.60 Results for Wednesday of 3-day-ahead prediction

Forecast 900 hrs Tues to 1800 hrs Wed
MAE MSE x 10’3 MAPE MPE

Unadjusted 45.54 2.8074 2.19 1.89

PA using actual 29.20 1.2121 1.42 0.59
PA using predicted 31.92 1.6282 1.51 1.25

PB using actual 35.00 2.4397 1.69 0.50
PB using predicted 37.77 2.9147 1.78 1.16

PC using actual 30.42 1.3859 1.46 0.64
PC using predicted 31.01 1.6015 1.48 1.27

PD using actual 28.13 1.1322 1.36 0.60
PD using predicted 31.44 1.5711 1.50 1.27

PE using actual 36.22 2.5431 1.73 0.55
PE using predicted 35.81 2.8599 1.68 1.18

Table 6.61 Results for Thursday of 3-day-ahead prediction

Forecast 1900 hrs Wed to 1800 hrs Thur
MAE MSE x 10’3 MAPE MPE

Unadjusted 54.45 3.6420 2.83 0.79

PA using actual 42.29 2.5994 2.09 -0.51
PA using predicted 46.68 2.8081 2.36 0.15

PB using actual 41.94 2.7358 2.05 -0.58
PB using predicted 45.32 2.8336 2.25 0.07

PC using actual 48.71 4.0044 2.42 -0.47
PC using predicted 50.13 3.3551 2.55 0.16

PD using actual 42.99 2.6725 2.12 -0.50
PD using predicted 47.71 2.8573 2.44 0.17

PE using actual 48,05 4.0467 2.35 -0.55
PE using predicted 48.22 3.3155 2.40 0.09

Table 6.62 Results for Friday of 3-day-ahead prediction

Forecast 1900 hrs Thur to 1800 hrs Fri
MAE MSE x 103 MAPE MPE

Unadjusted 43.40 2.6429 2.26 1.34

PA using actual 28.10 1.1663 1.39 0.04
PA using predicted 32.28 1.5274 1.65 0.70

PB using actual 31.98 1.9903 1.53 -0.04
PB using predicted 35.27 2.3345 1.72 0.61

PC using actual 34.01 2.0772 1.69 0.08
PC using predicted 35.81 1.8428 1.83 0.72

PD using actual 27.80 1.1677 1.37 0.05
PD using predicted 33.15 1.5374 1.71 0.72

PE using actual 37.07 2.8033 1.78 -0.001
PE using predicted 38.19 2.5996 1.87 0.63
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Examining the unadjusted results produced hy the univariate structural model for each of the 

twenty-four-ahead periods making up the three-day-ahead forecast (1900 hrs Tuesday to 1800 

hrs Wednesday; 1900 hrs Wednesday to 1800 hrs Thursday; 1900 hrs Thursday to 1800 hrs 

Friday) it can be seen that the error associated with the Wednesday/Thursday prediction is 

higher than the other two days of the forecast. In an attempt to find a reason for this AT and 

actual and predicted load are plotted on the same graph in Figure 6.50. For comparative 

purposes AT and load for the day prior to the three-day-ahead forecast, that is 

Monday/Tuesday, is also given.
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Figure 6.50 Actual vs predicted Wed/Thurs including AT data

The effect of weather on the daily load profile is clearly demonstrated in the graph, with the 

lower AT on Wednesday/Thursday resulting for the most part in a relatively higher load on 

this day in comparison with Monday/Tuesday. Examining the actual versus predicted profiles 

for Wednesday/Thursday shows that the largest discrepancy occurs between the hours of 1100 

hrs and 1600 hrs on Thursday. Comparing the actual load of 1900 hrs on Wednesday to 0600 

hrs on Thursday with 1900 hrs on Monday to 0600 on Tuesday shows that the lower AT on 

Wednesday/Thursday has the effect of increasing the load relative to Monday/Tuesday. 

However, a similar comparison of the load between 1100 hrs and 1600 hrs shows that 

although the AT on Thursday is still low relative to Tuesday the load is lower than expected. 

It is assumed that other influencing factors, possibly weather related, resulted in this reduced 

load. Figure 6.51 and Figure 6.52 show that this discrepancy is not experienced in the other 

two days of the three-day-ahead forecast. Consequently the forecast error for these two days 

is lower than on the error on the Wednesday/Thursday prediction.
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Examining the forecasting accuracy of the adjusted prediction it can be seen that the results 

obtained for Tuesday/Wednesday of the 3-day-ahead forecast are more accurate than those 

obtained for the adjustment of the 24-hour-ahead forecast over this time period. This is the 

case for all adjustments PA to PE. For example, in the case of the PC adjustment the 

predicted 1400 hrs specification is 2315 MWh. In the 24-hour-ahead adjustment a value of 

2323 MWh was attained but in the 3-day-ahead case a value of 2327 MWh was attained, 

which is in fact closer to the actual value of 2341 MWh. The difference in the adjustment of
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the 3-day-ahead prediction is that it has the additional effect of the specifications on the other 

two days of the forecast, which in this particular case has had a beneficial effect.

As in the 24-hour-ahead case the adjustment carried using PA and PD produced the most 

accurate results. Examination of the improvement over the whole forecast horizon shows that 

the improvement in MAE is on average of the order of approximately 22%, the improvement 

in MSE is of the order of approximately 34%, with a MAPE and MPE of on average 1.86 and

0.70 respectively. Comparing the adjustments, PA to PE, for each day of the forecast horizon 

shows that the MAE measures are comparable but the MSE results indicate the effect of the 

inaccurate predictions of the long-time-scale information on the PC to PE adjusted predictions, 

where this inaccuracy can also be seen clearly in the graphs. Examination of the maximum 

achievable improvement in all cases demonstrates the need for more accurate predictions of 

the long-time-scale data.

Examination of the graphs show that for the most part the adjusted solution has been moved 

closer to the actual load for each point of the 3-day-ahead forecast. The relatively accurate 

predictions of the sum long-time-scale data in the case of Wednesday/Thursday, 0.22%, and 

Thursday/Friday, 0.47%, combined with the relatively accurate predictions at the end-point, 

that is 0.28% and 0.20% respectively, on these days has resulted overall in good adjustment of 

this forecast for the PA and PD cases. This is in spite of the relatively inaccurate predictions 

of the sum and end-point on the Tuesday/Wednesday, where the error on the sum is equal to 

1.56% and the error on the end-point is equal to 2.90%. In addition, in the PD case the 

relatively inaccurate prediction of the 0500 hrs point over all days does not appear to have had 

a significant effect on the adjustment, where the errors on this point are 2.13%, 1.17% and 

2.03% for Wednesday, Thursday and Friday respectively.

Finally, comparing the maximum achievable improvement of the PA to PE adjustment results 

indicates that the inclusion of these additional points in the application of the technique does 

not result in an increased improvement over the use of the sum and end-point only (PA). An 

exception to this is in the case of PD (additional equal to 0500 hrs) where comparable results 

to the adjustment attained using sum and end-point only was obtained.
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Figure 6.54 Three-day-ahead actual vs predicted for PB
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Figure 6.56 Three-day-ahead actual vs predicted for PD



Figure 6.57 Three-day-ahead actual vs predicted for PE



The multi-time-scale integration technique was applied to two electricity demand applications. 

In all cases where adjustment was applied subject to sum and end-point specifications there 

was a good improvement over the original unadjusted solution. The improvement achieved in 

the hourly/daily application was considerable; an example of this is in the 3-day-ahead 

hourly/daily application where the improvement obtained was from 2.42 to 1.89 in the MAPE 

and from 1.34 to 0.69 in the MPE.

The effect of the accuracy of the predicted long-time-scale data was clearly established in both 

applications. This was significant in the hourly/daily application where inaccurate predictions 

of the additional long-time-scale data hindered the achievement of good adjustment results. Of 

particular importance is the accuracy of the sum data, where since this effects the overall 

forecast the accuracy of this specification is important.

The scope for the application of the technique in the hourly/daily application is wide. The 

characteristics of the daily load profile are such it is straightforward to select intermediate 

target points for the hourly prediction to follow. Examination of the maximum achievable 

improvement for this application shows that if more accurate predictions of the cardinal points 

were available then greater improvement than was achieved could be obtained. The use of an 

alternative long-time-scale model such as neural networks would be appropriate. The reason 

being that neural networks have been widely applied to the problem of predicting the cardinal 

points on the daily load profile (Bacha and Meyer 1992; Caire et al, 1992; Tamura et al, 

1993; Papalexopoulos et al 1994) and they offer a real alternative to the structural models.

The results also demonstrated the effect of the form of the weighting matrices on the solution. 

In each application in the case where multiple long-time-scale specifications were applied the 

wd weighting matrix was the optimal matrix structure. In this matrix the weights on the 

deviation errors on either side of the end-point are heavy penalised. Therefore, the short-time- 

scale prediction follows the long term path determined by the end-points but does not deviate 

form the original solution significantly at the start of each prediction cycle. Thus ensuring 

sensible adjustment over the entire long term prediction.

The optimal choice for the parameter r in all cases was shown to be R2, that is fix the state 

representing the slope of the trend and free the states representing the level of the trend and the 

seasonal component. The freedom in the level of the trend allows for the solution to achieve

6.4 Conclusions

266



the level of the long-time-scale end-points and the freedom in the seasonal component allows 

for the achievement o f  the sum specification

Ultimately, the aim is to combine the hourly/daily and weekly/yearly applications so that a 

prediction of hourly load could be produced over a period of three years. The implementation 

of this application requires the resolution of a number of issues which are the areas of future 

work; a discussion of these issues is given in the Conclusions in Chapter 7.
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CHAPTER 7

Conclusions

7.1 Evaluation of Short, Medium and Long Term Forecasting Techniques

This thesis has dealt with a number of forecasting methods for the production of short, 

medium and long term electricity forecasts based on a single-time-scale and also addresses the 

problem of multi-time-scale forecasting.

The multi-time-scale integration technique was shown to be a valuable forecasting tool for the 

production of hourly short term load forecasts. The characteristic of the daily load profile is 

such that the application of the technique is well suited to this problem area. However, in the 

work carried out in the thesis weather variables were not included at the short sampling 

interval, where it is known that they have a significant effect but this is an area of future work 

(see Section 7.3.2). In addition, the structural long-time-scale models employed in the 

application did not produce accurate predictions and this substantially affected the attainment 

of good adjustment results. Therefore, there is a requirement for the use of alternative long- 

time-scale models in this case; this is also an area for future work (see Section 7.3.2).

In the case of medium term forecasting it was established that the employment of exogenous 

weather variables can improve the accuracy of the results produced by linear and nonlinear 

forecasting models. The use of such variables are appropriate even in the case where weather 

is not a dominant influencing factor in the system. However, it is important to examine the 

optimal form of the available weather variable. For example, in the applications dealt with in 

the thesis the use of HDD as the exogenous weather variable in a linear forecasting model 

produced more accurate results than the use of AT.

The results also determined that neural networks in some cases are suitable for representing a 

medium term electricity demand time series; these are discussed further in the Section 7.2. In 

cases where a linear model is appropriate, comparative results showed that structural time 

series models produced more accurate forecasting results than classical models. In addition, 

the development of structural models is more straightforward and is not as highly dependent 

on user interaction. However, comparing the univariate (2.41) and bivariate (2.49) structural
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model results show that the multivariate structural model is inadequate at representing a 

system with exogenous variables.

The application of the multi-time-scale integration technique to the problem of medium term 

forecasting was shown to be of considerable benefit. The production of the forecasts over a 

prediction of a year or more allowed the effect of economic and demographic influences to be 

accounted for at the medium term time-scale.

In the case of long term forecasting, the results indicated that neural networks are a suitable 

modelling tool for the representation of an aggregate system but when the system is 

disaggregated linear models may be adequate to represent the simpler systems. However, this 

would require an examination of case by case. Therefore, depending on the modelling tool 

employed the analysis of the system may benefit from disaggregation.

7.2 Assessment of Neural Networks as a Forecasting Tool

The work conducted in the thesis established that neural networks can be a powerful modelling 

tool for medium and long term electricity forecasting. However, it was also established that 

they are highly case dependent. Furthermore, a successful neural network analysis relies on 

the use of prior knowledge of the system, where this may be obtained from a linear time series 

analysis.

A number of guidelines that may be employed when conducting a medium and long term 

neural network analysis were determined and these are described as follows:

1. If the time series has trend and seasonal characteristics then pre-processing the training 

data using a linear transformation reduces the time required to train the network 

considerably.

2. The use of linear differencing transformations for seasonal time series results in a 

substantial improvement in the network performance.

3. Linear analysis should be employed to select a parsimonious input structure to the neural 

network.

4. If the network is required to perform a multi-step head prediction but is being trained only 

on a single-step-ahead criterion, then the performance of the network should be assessed 

by examining the multi-step-ahead performance over a validation data set.

5. It is necessary to re-train a network a number of times to circumvent the problem of 

sensitivity to initial conditions.
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6. When performing an experimentation analysis to determine an appropriate network 

structure the overall capability of a structure should be assessed based on the average 

values of the performance criterion and not on the best result, calculated over a suitable 

number of training runs.

Three areas were identified for further investigation, as follows:

1. Determination of an appropriate test for nonlinearity.

2. Use of alternative neural network structures.

3. Use of genetic algorithms in the neural network analysis.

(1) In spite of the fact that neural networks can be very successful in the area of medium and 

long term forecasting a significant problem is that they are especially case dependent. The 

problem can arise that the system that the neural network is required to represent is a linear 

and not a nonlinear system. The determination of a neural networks suitability to represent a 

time series usually involves examining the forecasting accuracy of the results produced on a 

test (out of sample) set. However, this can entail a considerable amount of effort, since the 

design of the network often requires extensive experimentation analysis. In classical analysis 

there are a number of hypothesis based tests available to test if a nonlinear linear model is 

suitable to represent the system but unfortunately the majority of them are model specific 

(Gooijer and Kumar, 1992). The employment of a nonlinear test for the time series data is 

desirable. The use of third and fourth order cumulants to detect the existence of system 

nonlinearities (Emara-Shabaik and Moustafa, 1994) are possible directions for future work in 

this area.

(2) The MLP’s employed in the medium and long term applications dealt with in the tbesis are 

feedforward MLP networks. However, it would be of value to investigate the possible 

improvement of these networks through the extension of the network structure. One such 

extension is to that of the Dynamical Neural Network (Hush and Horne, 1993). This involves 

feeding the output of the network back to the input during training through a tapped delay line 

(see Figure 2.14) and the use of a gradient descent algorithm for learning. Alternatively, the 

MLP could be extended to the case where in addition to the nonlinear connections between the 

hidden units there is also a direct linear connection from each input to the output. This type of 

architecture can extract the linearly predictable part early in the learning process and free the 

nonlinear resources to be employed were they are really needed (Weigend and Gersenfield,
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1992). Other possibilities are the use of Radial Basis Function (Hush and Horne, 1993), 

Feature Maps (Hertz et al, 1991) or the Recurrent networks (Hertz et al, 1991)

(3) The optimal design of a neural network for a particular application can be difficult to 

determine since there are a large number of factors involved. Genetic algorithms are general 

purpose adaptive optimisation search algorithms that could be employed in the design of the 

neural network. Specifically they could be used to determine the following:

(i) networks weights.

(ii) input structure.

(iii) number of neurons in each layer.

(iv) number of layers.

In the case of (i), the genetic algorithms search the weight space without use of any gradient 

information. The advantage is that they perform a global search and do not have the local 

minima problem associated with backpropagation learning. However, there is a high 

computational penalty associated where the gradient information is not used. A possible 

compromise would be the use of genetic algorithms to conduct an initial search followed by a 

gradient method. In the case of (ii), (iii) and (iv), the genetic algorithms could be employed to 

search the space of all possible input structures and network architectures. However, for 

applications requiring large networks this would require an inordinate amount of computation 

time.

7.3 Multi-Time-Scale Forecasting Technique

7.3.1 Evaluation of Multi-Time-Scale Integration Technique

The multi-time-scale integration technique proposed in the thesis has been applied to a number 

of applications with the achievement of consistently good results. In addition to the 

development of the mathematical formulation of the technique many issues regarding its 

practical implementation were resolved. However, there still remains some issues that require 

further attention; this is an intended area of future work and is discussed in Section 7.3.2.

It has been shown that in addition to its use for the production of a short-time-scale prediction 

over a relatively long forecast horizon, the technique is also ideal for the improvement of a 

short-time-scale prediction over a short forecast horizon. For example, in the case of the 

hourly/daily application, where methods for the prediction of the cardinal points on the daily
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load profile, such as the midday peak, the tea-time peak and the overnight minimum may 

already be in place.

The versatility of the technique in comparison with other multi-time-scale techniques (Corrado 

and Greene, 1994) was demonstrated in the applications, where a variety of models were 

employed at the long sampling period. However, the dependency of the technique on the 

accuracy of the predicted long-time-scale information was also established, where the 

accuracy of the long-time-scale sum prediction is particularly important.

The technique has been shown to be particularly well suited to applications involving the 

prediction of a short sampling period time series that has a seasonal component. In the 

majority of systems the electricity demand time series will have seasonal characteristics due to 

weather and temporal factors, with the exception of yearly electricity demand. In such a case 

the long sampling period time series are generated at the seasonal level.

The analysis conducted in the thesis identified a number of guidelines that may be employed 

for the determination of the parameters involved in the application of the technique. The 

guidelines are summarised as follows

Selection of r when a structural model is employed at short sampling interval

1. Free the maximum number of states possible.

2. If possible free both states representing the trend component, that is the level and slope.

3. If it is nceessary to fix a state in the trend component then the state corresponding to the 

slope of the trend component should be fixed.

4. In a BSM with trigonometric seasonal component model free the state representing the 

fundamental harmonic.

Selection of r when AR. ARMA or ARIMA model is employed at short sampling interval

1. Fix approximately the first 40% of state and free the remaining states.

2. Fix approximately the first 30% of state and free the remaining states.

3. Fix approximately the first 20% of state and free the remaining states.

Form of W when single sum, end-point and additional point are applied

1. the ratio of the end-point, sum and additional point error weights to deviation error 

weights is approximately of the order of 10/1.

2. use a deviation error weighting profile that is heavy at the forecasting origin and lighter 

towards the end-point (wa see Figure 5.10)
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Form of W  when multi sum, end-point and additional point are applied

1. the ratio of the end-point error weight to the sum, additional point and deviation error 

weights is approximately of the order of 10/1.

2. use a deviation error weighting profile that is heavy on either side of the end-point and 

lighter for the remaining deviation errors (wd see Figure 5.10)

7.3.2 Areas for Further Research

The following issues require farther attention and are the subject of ongoing research:

1. Numerical optimisation of r and W.

2. Extension of technique so that a multivariate short-time-scale model could be 

employed at the short sampling period.

3. Extension of the technique to deal with multiple levels.

4. Use of other long-time-scale models.

(1) This involves the optimisation of the error E(r, W) with respect to the parameters using an 

appropriate numerical optimisation routine. The use of such an approach in the case where an 

AR, ARMA or ARIMA model is employed at the short sampling period would in practical 

terms be reasonably straightforward since the value of r is simply a proportion of the states in 

the state vector. In addition, analysis has shown (see Figure 5.2) that the error surface, as a 

function of r and W, associated with these model is relatively smooth. In contrast, in the case 

of the structural model the different choices of r  do not result in such a smooth error surface. 

However, since the states in this model have a physical significance the selection of the r is 

simpler and the requirement for numerical optimisation in this case not as important.

(2) The use of a multivariate model at the short sampling period requires the mathematical 

formulation of the technique for a multivariate model in state space form.

As it stands, the technique may be applied when an ARX model is employed at the short 

sampling interval if this model is rewritten as a multivariable AR model with multiple outputs 

(Isaksson, A, 1993). This involves writing z(k) = [y(fc) u(fc)]T, where y(k) is the univariate 

time series and u(k) is a vector of exogenous variables and the state vector is formulated as 

past values of z(k). In the same manner, the technique could also be employed in its present 

form where a BSMX model (2.49) is used at the short sampling interval. However, analysis 

has shown that this model is not a particularly effective model for representing a system with 

exogenous variables and an alternative structural model approach would be more appropriate.
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One possibility is the use of the structural model presented by Ng and Young (1994) which 

involves the use of a Deterministic Transfer Function (DTF) model to represent the 

relationship between the y(k) and u(k) time series, and the use of similar models to those 

employed in the BSM with dummy seasonal component (IRW and DPRW) to represent the 

trend and seasonal components, In either of the above cases investigation of the use of such 

models on the r and W parameters would be necessary.

(3) The extension of the technique to the case where more than two time-scales can be dealt 

with is required. In relation to the applications dealt with in thesis this would involve the 

combination of the hourly/daily and weekly/yearly applications, namely the application of the 

technique on four time-scales. This would result in the production of hourly forecasts over a 

yearly forecast horizon. The practical implementation of the technique to such an application 

would require the resolution of a number of issues, as follows:

(i) Mathematical formulation of the technique on multiple time-scales. It is anticipated that 

this will be a natural extension of the two-time-scale case.

(ii) On the hourly time-scale issues concerning the STLF problem in itself will require 

consideration. The use of the standard data concept (Longergan, 1995) may be 

applicable, where multiple models across different days and different seasons could 

employed.

(iii) The optimisation of r and W obviously explodes exponentially for the multi-level case.

(iv) The inclusion of exogenous variables on all time-scales, where this is related the 

discussion in (2) above,

(4) An investigation into the use of alternative models at the long- time-scale is desirable. For 

the applications dealt with in the thesis this is particularly important in the hourly/daily 

application. In this case improved methods of producing the prediction of the cardinal points 

on the daily load profile are required. Longergan (1995) deals specifically with this problem 

using a linguistic model, where this deals with qualitative rather than quantitative information.

7.4 General Areas for Future Research

This thesis provides a comprehensive set of forecasting tools that can be applied to the area of 

short, medium and long term electricity demand forecasting. Of considerable importance is 

the provision of a solution to the relatively new problem in the area that has arisen due to 

changing market structures in the power industry world-wide, that is the production of short 

term forecasts over a long forecast horizon. The area of electricity demand forecasting is a
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vast and well researched subject; however there still remains a number of areas that have not 

received much attention. Two such important areas are as follows:

1. Measurement of the stochastic component in the load.

2. Investigation of the relationship between yearly electricity demand and the socio-economic 

and demographic variables.

(1) On any time-scale the electricity time series may be divided into a predictable component 

and an irregular stochastic component. This irregular component can be very difficult to 

predict and the majority of existing forecasting methodologies focus on the modelling of the 

predictable part as accurately as possibly. Obviously, an accurate prediction of the irregular 

component would be desirable, however in some cases it is sufficient to know what proportion 

of the load this component makes up. For example, an estimate of the value of this component 

would be of great benefit at power system operational level (hourly) for the purposes of 

improving the unit commitment and economic dispatch functions.

(2) In the short and medium term the relationship between weather, the significant influencing 

factor, and electricity demand is relatively easy to understand. However, the relationship 

between yearly electricity demand and the socio-economic and demographic variables, such as 

GDP, price of electricity and unemployment and changes in the population growth rate are 

more complex and less well understood. Changes in living patterns and social attitudes, for 

example more women in the workforce and rapid technological growth all have an impact on 

these socio-economic and demographic factors and ultimately on the behaviour of electricity 

demand. To fully understand the effect of such changes it would be necessary to conduct an 

investigation at both the aggregate and disaggregate levels.

275



8. REFERENCES
Abraham, B and Ledolter, J., Statistical Methods for Forecasting, John Wiley & Sons, 1983. 

Ackerman, G., “Short-term Load Prediction for Electric-utility Control of Generating Units”, 

in: Bunn, D. W. and Farmer, E, D.( eds., Comparative Models fo r Electrical Load 

Forecasting, John Wiley & Sons, 1985, 33-42.

Adegbulugbe, A. O. and Dayo, F. B., “A Synthesis Of Monte Carlo And Noise-In-Variable 

Model Techniques For Energy Demand Modelling”, in: IF AC Energy Systems, Management 

and Economics, Toyko, Japan, (1989) 83-86.

Akaikc, H. “Maximum Likelihood Identification of Gaussian Autoregressive Moving Average 

Models”, Biometrika, 60, (1973), 255-265.

Aleksander, I., “Introduction to Neural Nets”, in Warick, K. Applied Artificial Intelligence, 

Peregrinus, 1991, 13-30.

Al-Zayer, J. and Al-Ibrahim, A., “Modelling the Impact of Temperature on Electricity 

Consumption in the Eastern Province of Saudi Arabia”, Journal o f Forecasting, 15 (1996), 

97-106.

Anderson, B. D. O. and Moore, J. B., Optimal Filtering, Englewood Cliffs, NJ:Prentice-Hall, 

1979.

Ansley, C. F. and Kohn, R., “A Structured State Space Approach to Computing the 

Likelihood of an ARIMA Process and its Derivatives”, Journal o f Statistical Computer 

Simulations, 21 (1985a), 135-169.

Ansley, C. F. and Kohn, R., “Estimation, Filtering, And Smoothing In State Space Models 

With Incompletely Specified Initial Conditions”, The Annals o f Statistics, 13 (1985b), 1286- 

1316.

Arellano, C. and Pantula, S. G., “Testing For Trend Stationarity Versus Difference 

Stationarity”, Journal o f Time Series Analysis, 16 (1995), 147-164.

Azoff, M. E. “Reducing Error in Neural Network Time Series Forecasting”, Neural 

Computing & Applications, 1 (1993),240-247.

Azoff, M.E., Neural Network Time Series Forecasting o f Financial Markets, John Wiley and 

Son, 1994.

Azzam-ul-Asar and McDonald, J. R., “A Specification of Neural Network Applications in the 

Load Forecasting Problem”, IEEE Transactions on Control Systems Technology, 2 (1994), 

135-141.

276



Bacha, H. and Meyer, W., “A neural Network Architecture for Load Forecasting”, in: 

Proceedings o f the International Joint Conference on Neural Networks, Baltimore, 1992, 

442-447.

Baker, A., “Load Forecasting for Scheduling Generation on a Large Interconnected System”, 

in: Bunn, D. W. and Farmer, E, D., eds., Comparative Models fo r  Electrical Load 

Forecasting, John Wiley & Sons, 1985, 57-68.

Bakirtzis, A. G., Petridis, V., Klartzis, S. J., Alexladis, M. C. andMalssis, A. H., “A Neural 

Network Short Term Load Forecasting Model For The Greek Poser System”, IEEE 

Transactions on Power Systems, 11 (1996), 858-863.

Banim, J. and Hodnett, P.F., “Use of Pattern Recognition in Electricity Load Forecasting” in: 

Proceedings o f the 5th European Conference on Mathematics in Industry, (1991) 77-81. 

Barakat, E. H., Qayyum, M. A., Hamed, M. N. and Rashed, S. A., “Short-term Peak Demand 

Forecasting in Fast Developing Utility with Inherit Dynamic Load Characteristics - Part I- 

Application of Classical Time Series Methods”, IEEE Transactions on Power Systems, 5

(1990), 813-819.

Batchelor, R. and Dua, P., “Forecaster Diversity and the Benefits of Combining Forecasts”, 

Management Science, 41 (1995), 68-75.

Beltratti, A, Margarita, S. and Pieto, T. Neural Networks fo r  Economic and Financial 

Modelling, International Thomson Computer Press, 1996.

Berg, M. C., Amit, N. and Powell, D. J,, “Multirate Digital Control System Design”, IEEE 

Transactions on Automatic Control, 33 (1988), 1139-1150.

Billings, S. A., Jamaluddin, H. B. and Chen, S., “Properties of Neural Networks with 

Applications to Modelling Non-Linear Dynamic Systems”, International Journal o f 

Forecasting, 55 (1992), 193-224.

Blake, J., Francino, P., Catot, J. M. and Sole, I “A Comparative Study for Forecasting using 

Neural Networks vs Genetically Identified Box & Jenkins Models”, Neural Computing & 

Applications, 3 (1995), 139-148.

BMDP Statistical Software Manual, BMDP, 1990.

Bordley, R. F., “Linear Combination of Forecasts with an Intercept: A Bayesian Approach”, 

Journal o f Forecasting, 5 (1986), 243-249.

Bordley, R. F., “The Combination of Forecasts: a Bayesian Approach”, Journal o f the 

Operational Research Society, 33 (1982), 171-174.

Bornholdt, S. and Graudenz, D, “Genetic Asymmetric Neural Networks and Structure Design 

by Genetic Algorithms”, Neural Networks, 5 (1992), 327-334.

277



Bowerman, B. and 0 ”Connell, R. T., Time Series Forecasting: Unified Concepts and 

Computer Implementations, Duxbury Press, 1987.

Box, G. and Jenkins, G., Time Series Analysis Forecasting and Control, Holden-Day, 1976. 

Box, G. E. P., Pierce, D. A. and Newbold, P., “Estimating Trend and Growth Rates in 

Seasonal Time Series”, Journal o f American Statistical Association, 82 (1987), 276-282. 

Brockwell, P. J. and Davis, R. A., Time Series: Theory and Methods, Springer-Verlag, 1987. 

Bunn, D. W. and Farmer, E, D. “Review of Short-term Forecasting Methods in the Electric 

Power Industry”, in: Bunn, D. W. and Farmer, E, D., eds., Comparative Models for  

Electrical Load Forecasting, John Wiley & Sons, 1985.

Caire, P., Hatabin, P. and Muller, G., “Progress in Forecasting by Neural Networks”, in: 

Proceedings o f the International Joint Conference on Neural Networks, Baltimore, 1992, 

540-545.

Carbone, R., Bilongo, R., Piat-Corson, P. and Nadeau, S., “AEP Filtering”, in: Makridakis, 

A., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, 

E. and Winkler, R., The Forecasting Accuracy o f Major Time Series Methods, John Wiley 

and Sons, 1984, 201-220.

Chakraborty, K., Mehrotra, K., Mohan, C.K. and Ranka, S. “Forecasting the Behaviour of 

Multivariate Time Series Using Neural Networks”, Neural Networks, 5, (1992) pp 961-970. 

Chandrasekharan, R., Moriarty, M. M. and Wright, G. P., “Testing for Unreliable Estimators 

and Insignificant Forecasts in Combined Forecasts”, Journal o f Forecasting, 13 (1994), 611- 

624.

Chang, M. C. and Dickey, D. A., “Recognising Overdifferenced Time Series”, Journal o f 

Time Series Analysis, 15 (1994), 1-18.

Chen, S. and Billings, S. A., “Modelling and Analysis of Non-linear Time Series”, 

International Journal o f Control, 50 (1989), 2151-2171.

Chen, S. and Jarrett, J., “On improving Time Series Forecasting”, Omega, 19 (1991), 505- 

505.

Chen, S-T, Yu, D. C. and Moghaddanjo, A. R., “Weather Sensitive Short-Term Load 

Forecasting Using Nonfully Connected Artificial Neural Network”, IEEE Transactions on 

Power Systems, 7 (1992), 1098-1105.

Chester, D., “Why Two Hidden Layers are Better than One”, in: Proceedings o f the 

International Joint Conference on Neural Networks, 1990, 265-268.

Cholette, P., “Prior Information and ARIMA Forecasting”, Journal o f Forecasting, 1 (1982), 

375-383.

278



Clemen, R. T., “Linear Constraints and Efficiency of Combined Forecasts”, Journal o f 

Forecasting, 5 (1986), 31-38.

Clemen, R. T., Murphy, A. H. and Winkler, R. L„ “Screening Probability Forecasts: 

Contrasts Between Choosing and Combining”, International Journal o f Forecasting, 11 

(1995), 133-146.

Connor J. T., Martin, R. D. and Atlas, L. E., “Recurrent Neural Networks and Robust Time 

Series Prediction” Elimination” IEEE Transactions on Neural Networks, 6 (1994), 240-254. 

Corrado, C. and Greene, M., “Reducing Uncertainty in Short-Term Projections: Linkage of 

Monthly and Quarterly Models”, Journal o f Forecasting, 7 (1988), 77-102.

Cottrell, M., Girad, B„ Girad, Y., Mangeas, M, and Muller, C., “Neural Modelling for Time 

Series: A Statistical Stepwise Method for Weight Elimination” IEEE Transactions on Neural 

Networks, 6 (1995) 1355-1363.

Demirovic, E. A., “Short Term Forecasting Algorithm”, in: IASTED International 

Symposium on Modelling, Identification and Control, Switzerland (1988) 233-236.

Dharan, B. L., “A Priori Sample Size Evaluation and Information Matrix Computation for 

Time Scries Models”, Journal o f Statistical Computer Simulations, 21 (1985), 171-177.

Di Caprio, U., Genesio, R., Pozzi, S. and Vicino, A., “Comparison of ARMA and Extended 

Wiener Filtering for Load Prediction at ENEL”, in: Bunn, D. W. and Farmer, E, D., eds., 

Comparative Models fo r  Electrical Load Forecasting, John Wiley & Sons, 1985,109-130. 

Dickey, D. A. and Fuller, W. A. “Distributions of the Estimators for Autoregressive Time 

Series with a Unit Root”, Journal o f American Statistical Association, 74,(1979), 427-431. 

Diebold, F. X. and Pauly, P., “Structural Change and the Combination of Forecasts”, Journal 

o f Forecasting, 6 (1987), 21-40.

Dodds, G. I. and Beattie, W.C., “Electrical Demand Forecasting Through Exponential 

Smoothing And Additional External Parameters”, in: Proceedings o f the 25th Universities 

Power Engineering Conference, Aberdeen, UK, (1990) 473-476.

Dodds, G. I., Irwin, G. W. and Beattie, W. C., “Electricity Demand Modelling from 

Disaggregate Data”, Electricity Power & Energy Systems, 12 (1990), 50-60.

Donaldson, R. G. and Kamstra, M., “Forecast Combining with Neural Networks”, Journal o f 

Forecasting, 15 (1996), 49-61.

El-Sharkawi, M. A., “Short Term Load Forecasting Using Adaptively Trained Peceptrons”, 

in: Proceedings o f the 1 st International Forum on Applications o f Neural Networks to Power 

Systems, Seattle, (1989) 23-26.

Emara-Shabaik, H. and Moustafa, K. “Characterisation of Dynamic System Nonlinearities 

via Probabilistic Approach”, International Journal o f System Science, 3 (1994), 603-611.

279



Engle R. F„ Chowdhury M. and Rice R., “Modelling peak electricity demand”, Journal o f 

Forecasting, 11 (1992), 241-251.

Engle, R. F., Brown, S. J. and Stern, G., “A Comparison of Adaptive Structural Forecasting 

Methods for Electricity Sales” Journal o f Forecasting, 7 (1988), 149-172.

Engle, R. F„ Mustafa, C. and Rice, J., “Modelling Peak Electricity Demand”, Journal of 

Forecasting, 11 (1992) 241-251.

Espada, A. and Pena, D., “The Decomposition of Forecast in Seasonal ARIMA Models”, 

Journal o f Forecasting, 14 (1995), 565-583.

Fildes, R. and Makridakis, S. “The Impact of Empirical Accuracy Studies on Time Series 

Analysis and Forecasting”, International Journal o f Forecasting, (1991).

Fildes, R. “BayesianForecasting”, in: Makridakis, A., Andersen, A , Carbone, R„ Fildes, R., 

Hibon, M., Lewandowski, R., Newton, J., Parzen, E. and Winkler, R., The Forecasting 

Accuracy o f Major Time Series Methods, John Wiley and Sons, 1984, 221-238.

Franklin, G.F., Powell, J.D. and Workman, M. L., Digital Control Systems, Addison and 

Wesley, 1990.

Franses, P. H., “Seasonality, Non-stationarity and the Forecasting of Monthly Time Series”, 

International Journal o f Forecasting, 7 (1991), 199-208.

Fuller, W. A., Introduction to Statistical Time Series, John Wiley & Sons, 1996.

Furher, J. and Haltmaier, J., “Minimum Variance Pooling of Forecasts at Different Levels of 

Aggregation”, Journal o f Forecasting, 7 (1988), 63-73.

Gardner, E.S. and McKenzie, E., “Seasonal Exponential Smoothing with Damped Trends”, 

Management Science, 35 (1989), 372-376.

Gelb, A., Applied Optimal Estimation, MIT Press, 1974.

Giles C. L., Kuhn, G. M. and Williams R. J., “Dynamic Recurrent Neural Networks: Theory 

and Applications”, IEEE Transactions on Neural Networks, 5 (1994), 153-155.

Gooijcr, J. J. and Kumar, K., “Some Recent Developments in Non-linear Time Series 

Modelling, Testing, and Forecasting”, International Journal o f Forecasting, 8 (1992), 135- 

156.

Granger, C. W. J. and Andersen, A. P., Introduction to Bilinear Time Series Models, 

Vandenhoeck and Ruprecht, Gottingen, 1978.

Granger, C. W. J. and Ramanathan, R., “Improved Methods of Combining Forecasts”, 

Journal o f Forecasting, 3 (1984), 197-204.

Gupta, P., “Adaptive Short-term Forecasting of Hourly Loads Using Weather Information”, 

in: Bunn, D. W. and Farmer, E. D., eds., Comparative Models fo r  Electrical Load 

Forecasting, John Wiley & Sons, 1985.

280



Haido, T., and Muto, S., “Regression Based Peak Load Forecasting Using a Transformation 

Technique”, IEEE Transactions on Power Systems, 9 (1994), 1788-1794.

Harris, J. L and Liu, M., “Dynamic Structural Analysis and Forecasting of Residential 

Electricity Consumption”, International Journal o f Forecasting, 9 (1993), 437-455.

Harrison , P. J. and Stevens, C. F., “A Bayesian Approach to Short-term Forecasting”, 

Operations Research Quarterly, 22 (1971), 341-362.

Harvey, A. C. , Forecasting Structural Time Series Models and the Kalman Filter, 

Cambridge University Press, Cambridge, 1989.

Harvey, A. C. and Durbin, J., “The Effects of Seat Belt Legislation on British Road 

Causalities: A Case Study in Structural Time Series Modelling”, Journal o f the Royal 

Statistical Society Association, 149 (1986), 187-227.

Harvey, A. C. and Pierse, R. G., “Estimating Missing Observations in Economic Time 

Series”, Journal o f the American Statistical Association, 19 (1984), 125-131.

Harvey, A. C„ “A Unified View of Statistical Forecasting Procedures”, Journal of 

Forecasting, 3 (1984), 245-275.

Harvey, A. C., and Peters, S, “Estimation Procedures for Structural Time Series Models”, 

Journal o f Forecasting, 9 (1990), 89-108.

Harvey, A. C., The Econometric Analysis o f Time Series, Oxford Press, 1981.

Hect-Neilsen, R. Neurocomputing, Addison Welsley, 1990.

Hegazy, Y. G. and Salama, M. A., “An Efficient Algorithm for Identifying the Structure of 

Artificial Neural Networks for Forecasting Problems”, in: Proceedings o f the 37th Midwest 

Symposium on Circuits and Systems, (1994) 618-621.

Hertz, J., Krogh, A. and Palmer, R. G., Introduction to the Theory o f Neural Computing, 

Addison-Wesley, 1991.

Hibon, M. “Naive, Moving Average, Exponential Smoothing and Regression Methods”, in: 

Makridakis, A , Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, 

J., Parzen, E. and Winkler, R., The Forecasting Accuracy o f Major Time Series Methods, 

John Wiley and Sons, 1984, 239-244.

Holden, K. and Peel, D. A , “An Empirical Investigation of Combinations of Economic 

Forecasts”, Journal o f Forecasting, 5 (1986), 229-242.

Howrey, E. P., Hymans, S. H. and Donihue, M. R., “Merging Monthly and Quarterly 

Forecasts: Experience with MQME”, Journal o f Forecasting, 10 (1991), 255-268.

Hudson, J. L., Kube, M., Adomaitis, R. A., Kevrekidid, I.G., Lapedcs, A  S. and Farber, R. 

M., “Nonlinear Signal Processing and System Identification Applications to Time Series from 

Electrochemical Reactions”, Chemical Engineering Science, 45 (1990) 2075-2081.

281



Hunt, K. A. and Sbarboro, D,, “Studies in Neural Network Control”, in Warick, K. Applied 

Artificial Intelligence, Peregrinus, 1991, 94-120.

Hush, D. R. and Horne, B. G., “Progress in Supervised Networks”, IEEE Signal Processing 

Magazine, (January 1993), 8-39.

Hyde, O. and Hodnett, P.F., “An Electricity Load Forecasting System” in: Proceedings o f the 

5th European Conference on Mathematics in Industry, (1991) 99-103.

Isakasson, A. “Identification of ARX Subject to Missing Data”, IEEE Transactions on 

Automatic Control, 5, 813-819.

Janecek, G. and Swift, L., Time Series Forecasting, Simulation, Applications, Ellis Horwood 

Ltd., 1993.

Jin, L., Nikiforuk, P. N. and Gupta, M., “Adaptive Control of Discrete-Time Nonlinear 

Systems using Recurrent Neural Networks” IEEE Proceedings o f Control Theory and 

Applications, 141 (1994), 169-176.

Jones, A. J., “Genetic Algorithms and Their Applications to the Design of Neural Networks”, 

Neural Computing & Applications, 1 (1993) 32-45.

Jones, R. H., “Maximum Likelihood Fitting of ARMA Models to Time Series With Missing 

Observations”, Technometrics, 22 (1980), 389-395.

Kalman, R. E. “On the General Theory f  Control Systems”, in: Proceedings o f the 1st IFAC 

Congress, Moscow, (1960), 481-492.

Kang, H., “A composite Model for Deterministic and Stochastic Trends”, International 

Journal o f Forecasting, 6 (1990), 175-186.

Kermanshahi, B. S., Poskar, C. H., Swift, G., McLaren, P., Pcdryez, W., Bhur, W. and Silk, 

A., “Artificial Neural Network for Forecasting Daily Loads of a Canadian Electric Utility”, 

in: Proceedings o f the 2nd International Forum on Applications o f Neural Networks to 

Power Systems, Yokohama, Japan, (1993) 302-307.

Kiernan, L. A., Hannan, J.M., Bishop, M., Mitchell, R.J. and Kambhampati, C. “Neural 

Networks for Load Reshaping”, in: Proceedings o f the 29th Universities Power Engineering 

Conference, Galway, Ireland (1994) 358-361.

Kitagawa, G. and Gerch, W. “A  Smoothness Priors-State Space Modelling of Time Series 

With Trend and Seasonality”, Journal o f American Statistical Association, 79 (1984), 378- 

389.

Kitagawa, G., “A Nonstationary Time Series Model And Its Fitting By A Recursive Filter”, 

Journal o f Time Series Analysis, 2 (1981),103-116.

Kohn, R. and Ansley, C. F., “Estimation, Prediction and Interpolation for ARIMA Models 

With Missing Data”, Journal o f American Statistical Association, 81 (1986), 751-761.

282



Kohn, R. and Ansley, C. F., “Filtering And Smcx>thing Algorithms For State Space Models”, 

Computers and Mathematics with Applications, 18 (1989), 515-528.

Komprej, I. and Zunko, P., “Short Term Load Forecasting”, in: 6th Mediterranean 

Electrotechnical Conference Proceedings, Ljublijana, Yugoslavia (1991) 1470-3.

Koreisha, S. G. and Pukkila, T., “The Identification Of Seasonal Autoregressive Models”, 

Journal o f Time Series Analysis, 16 (1995), 267-290.

Kuschewski, J. G., Hui, S. and Zak, S. Application o f Feedforward Neural Networks to 

Dynamical System Identification and Control, IEEE Trans, on Control System Tech., 1

(1993).

Lachtermacher, G. and Fuller, J. D., “Backpropagation in Time-series Forecasting”, Journal 

of Forecasting, 14 (1995), 381-393.

Lawson, C. L. and Hanson, R. J., Solving Least Squares Problems, Prentice Hall, 1974. 

Lewandowski, R., “Sales Forecasting by FORSYS”, Journal o f Forecasting, 1 (1982), 205- 

214.

Lin, W. T., “Modelling and Forecasting Hospital Patient Movements: Univariate and Multiple 

Time Series Approaches”, International Journal o f Forecasting, 5 (1989), 195-208. 

Lippmann, R. P., “An Introduction to Computing with Neural Nets”, IEEE ASSP Magazine, 

(April 1987), 4-22.

Ljung, L., System Identification - Theory fo r  the User, Prentice Hall, 1987.

Lonergan, T and Ringwood, J.V. “Linguistic Modelling of Short-Time-Scale Electricity 

Consumption Using Fuzzy Modelling Techniques”, in Proceedings o f the 6th Irish DSP and 

Control Colloquium, Belfast, (1995), 171-178.

Lu, C. N., Wu, H. T. and Vemuri, S. “Neural Network Based Short Term Load Forecasting”, 

IEEE Transactions on Power Systems, 8 (1993), 336-342.

Mahmoud, E. and Pegels, C., “An Approach for Selecting Time Series Forecasting Models”, 

International Journal o f Quality Management, 10 (1989), 50 61.

Makridakis, A., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, 

J., Parzen, E. and Winkler, R., “The Accuracy of Extrapolation (Time Series) Methods: 

Results of a Forecasting Competition”, Journal o f Forecasting, 1, (1982), 111-153. 

Makridakis, A., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, 

J., Parzen, E. and Winkler, R., The Forecasting Accuracy o f Major Time Series Methods, 

John Wiley and Sons, 1984.

MATLAB Identification Toolbox For Use with MATLAB User’s Guide, The MATHWORKS 

Inc., 1992.

283



MATLAB NAG Foundation Toolbox For Use with MATLAB User’s Guide, The 

MATHWORKS Inc., 1995.

MATLAB Neural Network Toolbox For Use with MATLAB User’s Guide, The 

MATHWORKS Inc., 1994.

MATLAB User’s Guide, The MATHWORKS Inc., 1993.

Matthew”s, B. P. and Diamantopoulos, A., “Towards a Taxonomy of Forecast Error 

Measures”, Journal o f Forecasting, 13 (1994), 409-416.

Mbamalu, G. A. N. and El-Hawary, M. E., “Load Forecasting Via Seasonal Autoregressive 

Models And Iteratively Reweighted Least Squares Estimation”, IEEE Transactions on Power 

Systems, 8 (1993), 343-348.

McCafferty, P., Beattie, W. and Dodds, G., “Time Series Modelling of Industrial Electricity 

Demand”, in: Proceedings o f the 25th Universities Power Engineering Conference, 

Aberdeen, UK, (1990) 595-598.

Mills, T, C. and Stephenson, M. J., “Forecasting Contemporaneous Aggregates and the 

Combination of Forecasts: the Case of the U.K. Monetary Aggregates” Journal of 

Forecasting, 4 (1985), 273-281.

Mitchell J., “Comparing Feedforward Neural Network Models for Time Series Prediction”, in: 

Proceedings Neural Computing Research and Applications, Belfast, Northern Ireland,

(1992)75-182.

Mogbrqm, I. and Rahman, S., “Analysis and Evaluation of Five Short-term Load Forecasting 

Techniques”, IEEE Transactions on Power Systems 4 (1989) 1484-91.

Morioka, Y., Sakurai, K., Yokoyama, A. and Sekine, Y., “Next Day Peak Load Forecasting 

Using Multi Layer Neural Network with an Additional Learning”, in: Proceedings o f the 2nd

International Forum on Applications o f Neural Networks to Power Systems, Yokohama, 

Japan, (1993) 60-5.

Morrison, D., Multivariate Statistical Methods, McGraw-Hill, New York, 1976.

Natarajan, B. and Tandan, G., “Methodology for On-Line Forecasting of Loads For Electric 

Utilities”, in: IFAC Energy Systems, Management and Economics, Toyko, Japan, (1989) 

247-250.

Ng C. N. and Young P. C., “Recursive Estimation and Forecasting of Non-stationary Time 

Series” Journal o f Forecasting, 9 (1990), 173-203.

Ng, C. N., Young, P. C. and Wang, C., “Recursive Identification, Estimation And Forecasting 

Of Multivariate Time-Series”, in: IFAC Identification and System Parameter Estimation, 

Beijing, PRC, (1988) 593-598.

284



O’Sullivan, C. “Time Series Modelling Using Fuzzy Logic”, Final Year Dissertation, School 

of Electronic Engineering, Dublin City Univ., Dublin, 1994.

Onoda, T., “Next day”s Peak Load Forecasting Using an Artificial Neural Network”, in: 

Proceedings o f the 2nd International Forum on Applications o f Neural Networks to Power 

Systems, Yokohama, Japan, (1993) 284-289.

Pankratz, A., Forecasting with Univariate Box-Jenkins Models Concepts and Cases, John 

Wiley & Sons, 1983.

Papalexopoulos, A. D., Hao, S. and Peng, T-M., “An Implementation Of A Neural Network 

Based Load Forecasting Model For The EMS”, IEEE Transactions on Power Systems, 9

(1994), 1956-1962.

Park, D.C., El-Sharkawi, R. J., Marks, 1.1. R. J., Atlas, L. E. and Damborg, M. J., “Electric 

Load Forecasting Using an Artificial Neural Network”, IEEE Transactions on Power 

Systems, 6 (1991), 442-449.

Parzan, E., “ARARMA Models for Time Series Analysis and Forecasting” Journal of 

Forecasting, 1 (1982), 67-82.

Peng, T. M., Hubele, N. F. and Karady, G. C., “An Adaptive Network Approach to One- 

Week Ahead Load Forecasting” IEEE Transactions on Power Systems, 8 (1993), 1195-1201, 

Piggott, J. L. “Short-term Forecasting at British”, in: Bunn, D. W. and Farmer, E, D., eds., 

Comparative Models fo r Electrical Load Forecasting, John Wiley & Sons, 1985,173-212. 

Priestly, M. B., Spectral Analysis and Time Series. Volume 1: Univariate Series, Academic 

Press, 1981.

Priestly, M. B., Spectral Analysis and Time Series. Volume 2: Multivariate Series, 

Prediction and Control, Academic Press, 1981.

Qayyum, M. A. and Hamed, M. N., “Short Term Peak Demand Forecasting in Fast 

Developing Utility with Inherent Dynamic Load Characteristics: Part -1. Application of 

Classical Time Series Methods”, IEEE Transactions on Power Systems, 5 (1990), 813-819. 

Rahman, R. and Hazim, O., “A generalised Knowledge-Based Short-Term Load-Forecasting 

Technique”, IEEE Transactions on Power Systems, 8 (1993), 508-514.

Rissanen, J. “Modelling by Shortest Data Description”, Automatica, 14, 465-471.

Rosenblat, F., Principles o f Neurodynamics, Spartan, 192

Rummelhart, D.E., Hinton, G.E. and Williams, R.J., “ Learning Internal Representations by 

Error Propagation”, , in: Rummelhart and McClelland, J.L., eds., Parallel Distributed 

Processing, MIT Press, 1986.

285



Schneider, A., Takenawa, T. and Schiffrnan, D., “24-hour Electric Load Forecasting”, in: 

Bunn, D. W. and Farmer, E. D., eds., Comparative Models fo r  Electrical Load Forecasting, 

John Wiley & Sons, 1985.

Sharda, R. and Patil, R. “Neural Networks as Forecasting Experts: An Empirical Test”, in; 

Proceedings o f the International Joint Conference on Neural Networks, 1990, 491-494.

Shi, S. and Lui, B., “Nonlinear Combination Of Forecasts With Neural Networks”, in: 

Proceedings o f 1993 International Joint Conference on Neural Networks, Nagoya, Japan

(1993)959-962.

Smyth, I. , “The Prediction of Weekly Electrical Energy Consumption Using Input Driven 

Neural Networks”, MEng. Dissertation, School of Electronic Engineering, Dublin City Univ., 

D ublin, 1994.

Snedecor, G. and Cochran, W., Statistical Methods Iowa State University Press, Iowa, 1980. 

Sobajic, D.J. and Pao, Y.H., “Artificial Neural Networks Based Dynamics Security 

Assessment for Electric Power Systems”, IEEE Transactions on Power Systems, 4, (1989), 

220-228.

Soderstrom, T. and Stoica, P., System Identification, Prentice Hall International, 1989. 

Srinivasan, D., Chang, C. S. and Liew, A. C., “Demand Forecasting Using Fuzzy Neural 

Computation, With Special Emphasis On Weekend And Public Holiday Forecasting”, IEEE 

Transactions on Power Systems, 10 (1995), 1897-1903.

Stetson, L. E. and Stark G, L., “Peak Electricity Demands of Individuals and Groups of 

Rural Residential Customers”, IEEE Transactions on Industry Applications, 24 (1988), 772- 

776.

Taha, H. A., Operations Research: An Introduction, Collier MacMillan, 1987.

Tamura, Y., Suszuki, H. and Mori, H. “Another Look at Forecasting with Neural Networks”, 

in Proceedings o f the 2nd International Forum on Applications if  Neural Networks to Power 

Systems, Japan, 1993.

Tang, Z., Almeida, Fishwick, P.A. “Time Series Forecasting Using Neural Networks vs Box- 

Jenkins Methodology”, Simulation, 57 (1991), 101-310.

Tang, Z., Nonlinear Time Series a Dynamical Systems Approach, Oxford University Press, 

Oxford, 1990.

Train, T., Ignelz, P., Engle, R., Granger, C. and Ramanathan, R., “The Billing Cycle And 

Weather Variables In Models Of Electricity Sales”, Energy, 9 (1984) 1041-1047.

Vcmuri, V. R. and Rogers, R. D., Artificial Neural Networks: Forecasting Time Series, 

IEEE Press, 1994.

286



Vermuri, V. and Rogers, R. D., Artificial Neural Networks: Forecasting Time Series, IEEE 

Computer Society Press, 1994.

Villiers, J de., and Barnard, E., “Backpropagation Neural Nets with One and Two Hidden 

Layers”, IEEE Transactions on Neural Networks, 4 (1992), 136-141.

Warwick, K., Irwin, G. W. and Hunt, K. J., Neural Networks fo r  Control and Systems, Peter 

Peregrinus Ltd., 1992.

Weber, K., “Forecasting Software: Evaluation and Usage”, Methods o f Operational 

Research, 62 (1990), 591-600.

Weigend, A. S. and Gershenfeld, N. A , Time Series Prediction: Forecasting the Future and 

Understanding the Past, Addison-Wesley, 1992.

Winkler, R. L. and Makridakis, S., “The Combination of Forecasts”, Journal o f the Royal 

Statistical Society Association, 146 (1983), 150-157.

Wong, F. S., “Time Series Forecasting Using Backpropagation Neural Networks”, 

Neurocomputing, 2(1990/91), 147-159.

Wu, L. S. -Y., Ravishanker, N. and Hosking, J. R. M., “Forecasting for Business Planning: A 

Case Study of IBM Product Sales”, Journal o f Forecasting, 10 (1991), 579-595.

Yang, H-T, Huang, C-M. and Huang, C. L, “Identification of ARMAX Model for Short- 

Term Load Forecasting: An Evolutionary Programme Approach”, IEEE Transactions on 

Power Systems, 11 (1996), 403-408.

Young, P. C. , Recursive Estimation and Time-Series Analysis, Berlin: Springer-Verlag, 

1984.

Young, P. C., “Recursive Extrapolation, Interpolation And Smoothing Of Nonstationary 

Time-Series”, in: IFAC Symposium on Identification and System Parameter Estimation, 

Beijing, PRC, (1988) 35-46.

Young, P. C., “Time-variable Parameter and Trend Estimation in Non-stationery Economic 

Time Series”, Journal o f Forecasting, 13 (1994), 179-210.

Young, P. C., Ng, C. N., and Armitage, P., “A Systems Approach To Recursive Economic 

Forecasting And Seasonal Adjustment”, International Journal on Computers and 

Mathematics with Applications, 18 (1989), 481-501.

Young, P. C., Ng, C. N., Lane, K., and Parker, D., “Recursive Forecasting, Smoothing and 

Seasonal Adjustment of Non-stationary Environmental Data”, Journal o f Forecasting, 10

(1991), 57-89.

Zaknich, A, deSilvia, C J.S . and Attikiouzel, Y., “A Modified Probabilistic Neural Network 

for Nonlinear Time Series Analysis”, in: Proceedings International Joint Conference on 

Neural Networks, (1991) 1530-1535.

287



APPENDIX A

The K alm an F ilter and M axim um  Likelihood Estim ation via  

Prediction Error Decom position

A .l The Kalman Filter

Considering the state space form given in (2.37) and (2.38) let the optimal estimator of x(fc-l), 

based on observations up to and including y(k), be given by x ( k  -  1). Let P(fc-l) denote the n 

x n covariance matrix of the estimation error:

P(Jfc -1 ) = E [(\(k  -1 )  - x(k  - 1  ))(x(k -1 )  -  x(* -  l)r ] (Al)

Given x ( k  — 1) and P(k-1 ), the optimal estimator of x(k-l) is given by

x(fc|jfc-l)=Fx(fc-l) (A2)

with the covariance matrix of the estimation error is

Y(k\k  -1 )  = F V ( k ) F T + GQGr (A3)

Equations (A2) and (A3) are known as the prediction equations. Once the latest observation

becomes available the estimator of x(k) can be updated using the following updating 

equations:

x(k ) = x(fe|fc -1 )  + P(fc|fc -  l)H r X(A:)"1 (y(k) -  Hx(it|fc -1 )) (A4)

P (k) = P(k\k  -1 )  -  P(fc|jfe -  l)H TE(fc)-1 HP(Jk|it -1 )  (A5)

where l ( k )  = H r P(fc|* -  1)H + a].
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If the recursions are started at k= 1 the estimator of the state at k=0, x<> and P0 are required 

where the prediction equations are used to claculate x(l|0) and P (l|0 ). Given the initial 

conditions, Xq and P0 the Kalman filter computes the optimal estimator of the state vector as 

each new observation becomes available. When all N  observations have been processed, the 

filter gives the optimal estimator of the current state vector based on the full set of 

observations. This estimator of the current state contains all the information required to make 

optimal future predictions of the state and thus also future predictions of the observations.

The Kalman filter may also be used to carry out fixed interval smoothing (FIS), where this 

consists of a set of recursions which start with the final quantities x(N) and P(iV) given by the 

Kalman filter and working backwards. The equations are: (Harvey, 1989)

x(k\ N ) = x(Jfc) + P(ifc)FPr (k  + II k){x(k + 11N ) -  Fx(k))  (A6)

P(fclW) = P (k) + P(k)FPT(k + l\k){P(k + 11 A O -P(it + llfc))(P(A:)FPr )r  (A7)

with x(N\N) = x(N) and P(N\N)=P(N).

A.2 Maximum Likelihood Estimation for Time Series

Maximum likelihood is first considered for the non-time series case. Given a sample of 

independent and identically distributed observations y(k), k=l,....,N, each with p.d.f f(y(k)), 

the joint density function is

y(2)........... y(N))  = ] J  /  (y(k)) (A8)
t=l

The likelihood function is this joint probability but is a function of the parameter vector vy 

and is written

t(V')=Uf(ytt);Y) (A9)
*=1

Therefore L(y) is interpreted as the hkelihood function and the maximum likelihood estimates 

(MLEs) are found by maximising this function with respect to vy.
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The problem with time series is that it is assumed that the observations are not independent 

and thus (A7) is not applicable. Denote all the observations up to and including y(k) by Y(k), 

that is Y(fc)={y(fc),y(fc-1), y{k-2).......y(l)}.

/(y(l), y(2),.., y(N)) = f{y(N)\Y(k))f(y(l),  y( 2)...... y ( N - 1))

= f{y(N)\Y(N -1  )) f (y{N -  l p ( N  -  2))f(y(l), y(2), . . . , y (N-  2))

and so on until

/(y ( l) ,  y( 2).......   y(N))  = ] J  /(y(fc)|Y(k -1 ) )  (Al 1)
k = 1

where f(y(k)\Y(k -1)) is the distribution of y(k) conditional on the information set {y(k-l),

y(k-2),.....,>>(/)}. The likelihood of the time series y(k) can be written as the product of these

conditional distributions given by:

L (v) = f [ f ( y ( k ) \ y ( l ) , y ( 2 )  y (fc -l))  (A12)
k=1

Equivalently the log-likelihood can be calculated:

logL ty) = H  log /(y (^ )|y (l),y (2 ),.......y(k - 1)) (A13)
k= l

A.3 Maximum Likelihood Estimation via Prediction Error Decomposition

For the general state space model (2.37 and 2.38) it was assumed that e(k) is a white noise 

distrubance term and r\(k) is a vector white noise distrubance term, therefore only the second 

order moments are known and the form of their probabilty distributions has not been specified. 

To use maximum likelihood estimation it is necessary to determine the probabilty distribution

of these disturbances and thus of the time series y(k). The usual assumption is that e(k) is

normally distributed and that r\(k) has a multivariate normal distribution. Using the state 

space model each observation y(k) is a linear function of normal distrubance terms and 

therefore the time series y(k) is also multivariate normal. Consequently the distribution of any 

observation conditional on any other observation must also be normal, by the properties of 

multivariate normal distribution. Specifically the conditional distribution of

III



/ (J(fc)|;y(1), y(2) ,y(k -1)) which is required for the likelihood is normal. Furthermore the

mean and covariance matrix of this conditional distribution are given directly by the Kalman

filter (Janecek and Swift 1993). Conditional on {y(k-l), y(k-2),.... ,y(7)} x(k) is normally

distributed with a mean x(fc|fc-l)and a covariance P(k\k-1). If the measurement equation 

(2.37) is written

y(k)  = Hx(fc|fc - 1 )  + h (x (* )  -  it(k\k  - 1 ) )  + e(*) (A14)

then the conditional distribution of y(k) is normal with mean

e ( y(k)) = Hx(fc|/: -1 ) = Hx(fc|fc) (A15)

and a covariance matrix given byE(fc) = H r P(fc|fc -  1)H + c 2 (Janecek and Swift, 1993)

For this normal model the likelihood of (Al 3) can be written (Harvey, 1981):

log/ ( y(^)|y(l), y(2 ),...,y(k  - 1)) = -^ lo g 2 7 r -  ^Togl ( k )  -  2^ ^ (v(fc))2 (A16)

where v(k) = (y(k) -  y(k\k - 1)) = (y(k)  - Hx(jfc|jfc -1)), with thelog-Mkelihood given by:

N  1 ^  l ^ v ( f c ) 2
logL(Y) = - - l o g27T - - Z l o g W - - Z ^ 7 -  (A17)

L  Z  k=i Z k=i lAJC)

The vector v(k) is interpreted as a vector of prediction errors since y(k\k - 1) is the optimal

one step predictor of y(k) at time k-1 as well as the conditional expectation of y(k) at k-1. For 

this reason (A17) is often referred to as the prediction error decomposition of the likelihood. 

The values of 2Xk) and v(k) can be computed using the Kalman filter and the likelihood 

function (A17) may be found. The likelihood function is then maximised with respect to the 

unknown parameters \j/, where this is usually carried out using some kind of numerical 

optimisation.

IV


