
Modelling Discourse Theory

Elaine K. Mahon

M.Sc. 1995

i

Modelling Discourse Theory

A Dissertation Presented in Fulfilment of
the Requirement of the M.Sc. Degree

28th of September 1995.

Elaine K. Mahon

School of Computer Applications
Dublin City University

Supervisor: Mr Andrew Way

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of
study leading to the award of Masters of Science in Computer Applications, is entirely my
own work and has not been taken from the work of others save to the extent that such
work has been cited and acknowledged within the text of my work.

Elaine M ahon, B. Sc.
DATE.... J

Acknowledgements
I would like to thank:

My supervisor Andy Way for his advice, encouragement and patience. I'll see you in Kitty
O'Sheas for a pint!

Josef van Genabilh for guiding me through the boggling world o f linguistics. Vielcn Dank.

My parents and family for listening, helping and tolerating my highs as well as my lows.

Ian and my fellow postgrads for providing many a social and unsocial outlet.

Abstract

Anaphora are hidden descriptions found in discourse, which refer to explicitly mentioned
entities of the discourse e.g.

Mary loves tennis, she plays everyday.

Humans can expand anaphors into fuller descriptions with ease by using intuitive world
knowledge, which links the anaphor with a suitable entity o f the discourse. In the example
above it is obvious to us that she may be expanded into, or refer to, the previously
mentioned female entity Mary. As humans we do not allow she to refer to tennis, as
intuitively we know that the female she must refer to another female entity. Modelling
anaphora resolution or expansion is a difficult task as so much of what is communicated is
implicit in discourse. This thesis investigates the historical development of existing
methods of resolving anaphors within discourse, and aims at implementing one such
mechanism using a small fragment of English.

1.0 Introduction..5
1.1 Traditional modelling methods..6

C h a p te r 2 T h e d e v e lo p m e n t o f sy s te m s to t r e a t a n a p h o r a8

2.0 Introduction.. 9
2.1 The treatment of Indefinite NPs - The Static Approaches... 9

2.1.1 Russell's School of Thought - Indefinite NPs do not refer.........................10
2.1.2 The Anti-Russell School - Indefinite NPs can refer....................................16
2.1.3 Indefinites as Quantifying NPs - The Problem of Donkey sentences 18
2.1.4 Indefinites as Variables - The application to Donkey sentences................23

2.2 The Treatment of Indefinite NPs - The Dynamic Approaches................................. 28
2.2.1 Heim and File Change Sem antics.................... 29
2.2.2 Kamp and Discourse Representation Theory... 31

C h a p te r 3 A n o v e rv ie w o f D isc o u rse R e p re s e n ta t io n T h e o ry33
3.0 Introduction.. 34
3.1 The basic building blocks of Discourse Representation Theory................................. 34

3.1.1 An overview of Discourse Representation Theory......................................35
3.1.2 Definite NPs and construction rules... 38

3.2 Sub-DRSs and Accessibility...40
3.2.1 Negation..41
3.2.2 Referent Accessibility..42
3.2.3 Conditionals..44
3.2.4 Proper Nouns and Sub-DRSs.. 48

Chapter 1 Introduction... 4

1

3.2.5 Quantified Sentences.. 50
3.2.6 Disjunction.. 52

3.2.6.1 Sentential clauses... 52
3.2.3.2 Non-sentential clauses... 53

3.2.7 Conjunction.. 58
3.2.7.1 Sentential clauscs..58
3.2.7.2 NP clauses.. 61

3.3 The Plural - Indefinite, Definite and Quantified NPs.. 63

3.3.1 Methods o f set formation...65
3.3.1.1 Summation and its application to plural NPs............................... 65
3.3.1.2 Abstraction and its application to plural NPs............................... 69

3.3.2 How many readings can a sentence have?..71
3.3.2.1 The Collective Reading..72
3.3.2.2 The Distributive Reading... 73

3.3.3 Interpreting Plural NPs and pronouns...77
3.3.3.1 They as an Individual Variable... 79

3.3.3.2 They as a Plural Variable.. 80
3.4 Summary.. 82

Chapter 4 Implementation... 83
4.1 Introduction..84
4.2 The Syntax Module..84

4.2.1 Top Down Parsing... 85

2

4.2.2 Bottom Up Parsing... 87
4.2.3 Left Corner Parsing..90

4.2.4 Implementing the Left Comer Parser in P rolog.. 93

4.3 The Semantic Module... 94
4.3.1 The Basic DRS Format.. 95
4.3.2 Sub-DRSs and the Semantic Module.. 96

4.3.3 Constructing a DRS... 101
4.3.3.1 Analysing simple sentences within constructing.........................104

4.3.3.1.1 The Treatment of Pronouns and Negated sentences.. 113
4.3.3.1.2 The Treatment of Definites within simple sentences... 124

4.3.3.2 Analysing complex sentences...129
4.3.3.2.1 The Quantified sentences - the duplex condition 130
4.3.3.2.2 Conjunctive and Disjunctive NPs............................... 134

4.3.3.2.3 Conjunctive and Disjunctive sentences...................... 136
4.3.3.2.4 Conditional sentences...137

4.4 Conclusions... 139

C h a p te r 5 C o n c lu s io n s ...141

5.1 Conclusions.. 142
5.2 Suggestions for further work.. 143

R e fe re n c e s .. 145

A p p e n d ix A .. 151

3

Chapter 1 Introduction

1.0 Introduction.

Conversation involves the transfer of knowledge between two or more people. The participants of
a discourse - the speaker and hearer, are assumed to have the same basic knowledge of the world
which they draw on to participate in a successful conversation. If they do not have the same world
knowledge the conversation fails, as neither speaker nor hearer has enough background
knowledge to reason with, and understand the other person.

(1). John owns a dog. He feeds him.

What do the pronouns He and him refer to in (1)? Humans have no difficulty deciphering what
pronouns encode. World knowledge suggests to us that John, a human, feeds the non-human dog.
These referring pronouns are called anaphors and refer to an entity explicitly mentioned in text
e.g. the anaphor him refers to its antecedent (previously mentioned entity) dog. We can also
assert that the anaphor is resolved when him refers to dog i.e. finds an entity to refer to. Anaphor
resolution is a difficult task as so much of what is communicated is implicit in discourse.

(2). At the supermarket John found the shelf where the milk was.
He paid fo r it at the checkout and left.

The anaphor it has two possible meanings in this discourse: it can be the shelf or the milk.
Furthermore it doesn't refer to "all the milk" in the shop but just one or two cartons. As humans
we would not entertain the thought of it referring to the shelf ox "all the milk", as a supermarket is
a place where shelves are not normally sold, and people usually buy cartons of milk not all the milk
in the shop. In order to model anaphora resolution i.e. expand the anaphor, world knowledge must
be incorporated in to the model in an attempt to model the reasoning behaviour of humans.

Antecedents are not always readily available in discourse as (3) illustrates.

(3). Mary is engaged to John. They are happy.

The anaphor They does not refer to a single entity but a set of individuals, in this case Mary and
John. The human mind reasons by drawing on intuitive or world knowledge to produce a suitable
set of individuals to replace They. Modelling even a small natural language system with a limited
domain requires a method of anaphor resolution and world knowledge to bring implicit
information to the forefront. Our ability to reason in language entails that we are able to recognise

5

how the truth conditions of different sentences are systematically related to each other, crossing
sentence boundaries and thereby linking an antecedent and anaphor.

1.1 Traditional M odelling M ethods

Traditional modelling methods attempt to model the human reasoning process by representing
sentences of the discourse in a mathematical format. Historically predicate calculus was used to
map words to propositions and predicates, thereby capturing the words and actions of a sentence.
Proper nouns and indefinites introduce propositions, with verbs combining these propositions in
the guise of predicates. Anaphoric pronouns look for antecedents within a sentence or discourse.
When this antecedent is found the meaning of the pronoun in this instance is captured.

(4). John loves Sue, she loves him.

(5). 3x 3y (John(x) a Sue(y) a loves(x,y) a loves(y,x)).

Humans can quickly resolve the anaphors of (4), by intuitively linking she with the female human
Sue, and him with John. Predicate calculus works well within single sentences, capturing the
antecedents of anaphors easily as the truth conditions of (5) show. Problems arise however when
this method of analysis is used in discourse, as breaking (4) into two sentences forming the mini­
discourse of (6) illustrates

(6). John loves Sue. She loves him.

The discourse is represented by (7) and (8).

(7). 3x 3y (John(x) a Sue(y) a loves(y,x)).

(8). 3w 3y (woman(w) a man(u) a loves(w,u)).

The calculus is unable to pass the variables that represent a word in one sentence through the
sentence boundaries so that the variable may be used in other sentences. Each sentence is
represented in isolation from the other. The anaphoric pronouns of (8) cannot refer to John and
Sue of (7), as variables introduced by predicate calculus producing cannot be shared across the
sentence boundaries of (6).

6

Predicate calculus cannot capture relationships between sentences of discourse, and therefore
cannot possibly help the author in resolving anaphor within such a discourse.
This thesis investigates existing methods of resolving anaphors within a discourse, and aims at
implementing one such mechanism for a discourse using a small fragment of English. The thesis is
constructed as follows:

• Chapter 2 - With the failure of Predicate calculus this chapter discusses the historical
development of approaches to anaphora resolution that led to contemporary thinking, and
Discourse Representation Theory (DRT).

• Chapter 3 - This chapter takes a more detailed look at one approach to anaphora
resolution namely Discourse Representation Theory (DRT) as presented by Kamp and Reyle
(1993). The author produces an extended DRT theory that is implemented in chapter 4. A
wide range of syntactic structures is examined in this chapter, with the construction rules used
for such structures in DRT.

• Chapter 4 - This chapter discusses an implementation of the extended DRT theory. The
chapter is divided into two modules, the syntactic and semantic modules. The syntactic module
discusses the parsing techniques available and the one chosen by the author. The semantic
module analyses negated, conditional, quantified, conjunctive, and disjunctive sentences
producing semantic representations.

• Chapter 5 - This chapter presents conclusions and suggestions for further work with an
overview of the contents of each chapter of the thesis.

7

Chapter 2 The development of systems to treat
anaphora.

2.0 Introduction

Anaphora is the problem o f coreference or reference to an entity
explicitly mentioned in the text....Interpretation o f anaphoric
expressions involves uncertainty. The understander arrives at the most
probable rather than 'correct' interpretation o f anaphor.

(Van Dijk, 1985).
As Van Dijk states anaphora refer to entities already mentioned in discourse. The meaning
of an anaphor is captured by isolating a suitable entity or antecedent in the discourse. In
this way, a complete semantic representation of discourse may be presented. The core
problem of anaphoric resolution is the linking of anaphor and antecedent; selecting a
suitable referent from all the available ones to arrive at the most suitable one. Representing
as vast a domain as that of Natural Language requires the construction of a model. A
common theme running through all the methods designed to resolve anaphoric resolution
is the different treatment given to indefinite NPs. An analysis may regard the NP as a
variable, a referring, non-referring or quantifying article. How the indefinite is regarded
forms the hub of the many methods developed. Traditional approaches to natural language
semantics focus on the sentence only, the narrowness of these approaches being
highlighted when an attempt is made to cross sentence boundaries. It becomes obvious
that the narrow sense of meaning, quantification and bound variables must be changed to
give a new more dynamic approach to anaphor resolution.

Sentences may be ambiguous because:
(a). more than one antecedent may be available.
(b). the scope of quantification may be undetermined.

Disambiguated representation is designed to resolve the problems of (a) and (b) with
anaphoric relations marked with numerical subscripts, and with the scope and restrictor of
quantifiers clearly marked. The next two sections investigate the historic development of
theories to resolve anaphoric resolution, starting with the now standard static approaches.

2.1 The Treatm ent o f Indefinite NPs - The Static Approaches

As mentioned in the introduction to this chapter, the treatment of indefinite NPs forms the
core element of various anaphoric resolution techniques. The spotlight is on indefinite NPs
for the following reasons:

9

(1). They can range across conjunctions or sequences of sentences,
and can set up a referent that can be picked up by subsequent discourse,
unlike other quantified NPs.

(2). They behave differently to other NPs when found in conditionals.

(3). An indefinite is capable of anteceding a pronoun across a relative
clause, whereas other NPs cannot.

The only conclusion that can be drawn from points (1) to (3) is that the anaphoric and
quantificational ability of indefinite NPs differs significantly from other NPs. The treatment
of these NPs can be divided into four distinct schools:

(1). those that regard indefinite NPs as existential quantifiers e.g. Russell (1905).
(2). those that regard indefinite NPs as referring articles e.g. Chastain (1975).
(3). those that treat indefinites as quantified NPs e.g. Egli(1979).
(4) those that consider indefinites as variables e.g. Heim (1982).

The intricacies of each technique will be discussed in the next 3 subsections. Truth
conditions used to capture meaning, as our ability to reason in natural language entails that
we are able to recognise how the truth conditions of different sentences are systematically
related to each other. If the relationship between truth conditions of different sentences
can be captured a theory of semantics could capture the meaning of a complete discourse.

2.1.1 Russell's School of thought - Indefinite NPs do not refer.

Betrand Russell (1905) and followers claim that indefinite NPs have the power of
existential quantifiers and do not refer. This causes a problem in that anaphoric pronouns
seem to pick up the reference of their antecedents.

(1). A dog came in.

The indefinite NP a dog in (1) has the meaning of an existential quantifier. It does not
refer to a particular dog, agreeing with Russell's claim that indefinites do not refer. In
Russellian terms sentence (1) simply implies that the set of dogs that came in is not empty;
it does not denote any particular dog any more than Every dog in (2) does.

10

(2). Every dog came in.

One argument in favour of Russell claims that if a dog refers to anything then it either
refers to something new, or the same thing on each occasion where it is uttered, or else it
never refers to anything at all.

(3). A dog came in. It lay under the table.

Common sense implies that the pronoun it in (3) refers to the indefinite NP a dog\ but how
could this be if the indefinite itself does not refer to a particular dog?

Russell seems to have shown that indefinites do not have a reference,
they should not be able to serve as antecedents fo r anaphoric pronouns
but they do. (Heim 1982).

Russell's advocates attempt to explain this contradiction and have formulated various
approaches to show how indefinites can have the power of existential quantifiers, and still
act as antecedents for anaphors within a discourse.

Geach (Geach 1962) completely denies that anaphora need to pick up reference and uses
truth conditions to represent discourse, looking at the whole discourse and not just
sentences in isolation. Sentence (3) can be treated by Geach producing (4).

(4). 3 x (x is a dog & x came in & x lay down under the table) (Heim 1982).

Geach proposes to analyse the problematic anaphoric pronouns as bound variables thereby
forcing the assignment of a truth condition to the complete discourse. His theory relies on
attributing to indefinite NPs a scope that may encompass as much as an entire text. As (4)
illustrates, he would analyse (3) as the set of dogs that came in and lay down under the
table being not empty. The method works well however in instances where sentences
within a discourse do not contradict each other; but fails miserably in cases like sentence
(5).

(5). (a). A man fe ll over the edge. (b). He didn't fa ll he jumped.

11

The analysis assigns a truth condition for the discourse as a whole, so conflicting
information as supplied by (5) (a), and (b) leads to an overall false truth condition for the
whole discourse. The truth conditions of (5) are represented in (6) which contains the
conflicting information implying that x both fell and jumped.

(6). 3 x (x is a man & x fell over the edge & not(x fell) & x jumped)

Interest in this theoiy has waned, since it is unable to assign truth conditions to single
utterances and predicts false truth conditions for discourses that contain conflicting
information.

Another approach is that of Kripke (Kripke 1980), which is based on the teachings of
Grice (Grice 1975). He claims that finding a reference for anaphora is not a problem. He
asserts that the problem lies in the confusion between the two notions of "reference"; the
Speaker's and Semantic reference, that is there is no dilemma at all. The Speaker's referent
is that individual which the speaker wishes to talk about at the time of the utterance. The
Semantic referent concerns whether a referent can be found in the language, and is a
matter for the rules of language in which the utterance is being made, hi this case it is
possible for indefinites not to refer, because an utterance that does not have Semantic
reference may have Speaker's reference.

(7). A woman taught Jeff in first year.

Assume sentence (7) is part of a discourse, where the Speaker's referent is the specific
individual that the speaker has in mind e.g. Mrs Jones. The speaker assumes that both he
and the hearer have the same world knowledge, and are thereby able to isolate the
intended individual. The Semantic referent is isolated by syntactic and semantic rules of
language producing a set of probable individuals. The Speaker's reference is a mental
representation found in the minds of the speaker and hearer, whereas the Semantic
reference is a reference isolated by semantic and syntactic processes.

The assumption of different types of referents accounts for contradictions that may occur
within discourse as in (5), by simply stating that (5b) is an instance of Speaker's reference,
it is the speaker's opinion, he has a particular man in mind who jumped off the bridge.
Although Kripke can handle the problem of conflicting information, the approach is
limited in its domain as sentence (8) illustrates.

12

(8). A dog has been rummaging in the garbage can. It has torn open all the bags.
(Heim 1982).

Utterance (8) can be asserted when the speaker has no knowledge of the dog, rather the
evidence of the torn bags suggests the presence of a dog, but there is no Speaker's referent
available as the speaker has no particular dog in mind. The Semantic referent must be
referred to in order, to find a referent for the indefinite NP. This is the problem Kripke
originally set out to solve i.e. whether the indefinite NP was to refer or not. He also takes
the presence of the Speaker's reference as a sufficient precondition for a subsequent
anaphoric pronoun and so the word ordering of the utterance becomes important.

Lewis (Lewis 1979), developed another variation on the Gricean theme and thereby laid
the foundations for Kamp's (Kamp 1981) Discourse Representation Theory which will be
discussed in Chapter Three. He believes that a well-run conversation contains
presupposition, which the speaker and hearer take for granted. He also asserts that these
presuppositions arc continuously evolving in conversation, with the evolution governed by
rules of accommodation. Lewis compares language and baseball implying that like baseball
eveiy discourse has a score, which is manipulated by rules of accommodation that cope
with the introduction of new information, and highlight the salient elements present in the
discourse.

I f at a time t something is said that requires, i f it is to be acceptable,
that x be more salient than y; and if, just before t, x is no more salient
than y; then....at t, x becomes more salient than y.

(Lewis 1979).

He claims that a pronoun may refer to whatever object is maximally salient in the situation
of its utterance. Heim explains how an object may be promoted to maximal salience:

A necessary condition fo r an utterance to promote an object X to
maximal salience is that the sentence containing the utterance contains
either an NP that refers to X, or a singular indefinite NP whose
predicate is true ofX. (Heim 1982).

13

Lewis's thinking is that:
Although indefinite descriptions...are not themselves referring
expressions, they may raise the salience o f particular individuals in
such a way as to pave the way for referring expressions.

(Lewis 1979).

Grice (Grice 1975), Kripke (Kripke 1980) and Lewis (Lewis 1979) do not endorse the
view that indefinites should be regarded as variables or quantifiers, but state instead that
the contribution of indefinites to sentences should be measured in degrees of salience and
differing types of reference. To sum up, their approach to indefinites is that anaphoric
pronouns refer to the maximally salient object; whose salience is due to the content of
preceding utterances. In Kripke's analysis the Speaker's reference refers to a particular
individual made salient in the speaker's mind by previous utterances. The downside of
these approaches is found in the addition of extra syntactic work, where the grammar will
have to assign salience raising potential to expressions as well as a local analysis. These
methods are at a disadvantage as they still leave the implementor with a pronoun
resolution problem along with the added chore of assigning salience levels to all
expressions.

Evans' (Evans 1980) approach attempts to maintain Russell's view. He says there are three
types of pronoun: bound variable, pragmatic (those referring by virtue of their referent's
salience), and the unique E-type pronoun. He claims that E-type pronouns always have
quantified NPs as their antecedents but are not bound by them, and that they may be
regarded as descriptions in disguise waiting to be expanded. Anaphoric pronouns are E-
type pronouns, and Evans proposes to analyse them as paraphrases of certain definite
descriptions present in the discourse. These paraphrases are inserted systematically to
replace the pronouns in discourse.

(9). A dog came in. It lay under the table.

The indefinite NP a dog of (9) is treated as a potential description that may replace a
pronoun in utterances to come. Evans asserts that the pronoun it is a shorthand
description waiting to be expanded. This expansion is achieved by replacing it by a definite
description formed from information provided by previous discourse utterances. In this
case the information is provided by the first sentence of (9). Sentence (10) displays the
results of expanding the E-type pronoun using an available NP.

14

(10). A dog came in. The dog that came in lay under the table.

The domain of possible definite descriptions available to an E-type pronoun is small, with
the descriptions selected from a range of relevant individuals, hi order for this substitution
theory to work, Evans makes two assumptions:

Assumption (1). Certain anaphoric pronouns mean the same thing as
certain definite descriptions.

Assumption (2). Definite descriptions are to be analysed in a certain
way

Assumption (1) is stated so that substitutions can take place, while assumption (2) proves
to be very loose and the failing point of the E-type theory.

Definite descriptions that are anaphoric to indefinites probably work more or less the same
way as pronouns that are anaphoric to indefinites; once a solution has been found for one
problem it will apply to the other.

Evan's proposal to paraphrase anaphoric pronouns away in favour o f
anaphoric definite descriptions is not a solution. (Heim 1982).

Definite NPs cannot be used to solve the problems of anaphoric pronouns if the theory of
definites is left undeveloped, as the same problems apply in both cases. This proposal has
little substance as the treatment of definite descriptions is left undeveloped by Evans.

He also asserts that E-type pronouns carry a uniqueness implication. This is widely
disputed and is another failing of this form of analysis.

(11). I f John has a donkey, he beats it.

Evans analyses this sentence as (12):

(12). I f John has a donkey, John beats the donkey that John owns.

15

This analysis (12), presupposes the unique condition that John has just one donkey. The
uniqueness condition does not carry easily to other sentences as in (13), where it cannot be
distinguished which cardinal the pronoun he is talking about: it could be either cardinal or
both cardinals i.e. each blessing each other, so the uniqueness condition does not hold
true.

(13). I f a cardinal meets another cardinal he blesses him (Kamp 1981)
(14). The man who gave his paycheque to his wife is wiser than the one

who gave it to his mistress (Karttunen 1969).

Also according to Evans the E-type pronoun it of sentence (14) is unique. Assume his
paycheque is the antecedent of it, referring to the paycheque of the first man. The position
of the pronoun it in the sentence implies that it refers to the paycheque of the second man
therefore the pronoun does not have a unique referent. A final illustration of how this
uniqueness assertion fails is found in sentence (15).

(15). I f someone is in Rhodes, he is not in Athens. (Heim 1982)

The word someone does not presuppose a unique person but supposes that there is at least
one unique person that can be found in Rhodes. Evans' method replaces the pronoun he
with the definite description the person who is in Rhodes, (16). This is an improper
description as there will be many people who are in Rhodes.

(16). I f someone is in Rhodes, the person who is in Rhodes is not in Athens.

The concept of E-type pronouns works well in some cases, but the uniqueness condition is
implausible and the theory is too undeveloped in the form Evans presents. The problem of
indefinite NPs and anaphors cannot be solved using definite NPs if the theory behind
definite NPs is left undeveloped. We are simply translating the problem from one form to
another. The author will now explore the anti-Russell school of thought.

2.1.2 The Anti-Russell School - Indefinite NPs can refer.

This school is led by Chastain and Strawson whose claim is not that indefinite NPs always
refer, but that they can refer. They concluded that the extent to which indefinites
participate in anaphoric relations simply defies Russell's analysis.

16

Strawson (Strawson 1952) says that some anaphoric relationships are coreferential, and
that indefinites can be used to refer. He states that anaphoric pronouns found in sentences
like (3) are instances of plain coreference. Heim further explains Strawsons thinking:

..that we must therefore acknowledge that indefinites can, at least sometimes,
be used to refer. (Heim 1982).

Chastain (Chastain 1975) is of the same opinion, and claims that sentences containing
indefinites are ambiguous and have two meanings - the referential and the existential
reading - where the analysis of the indefinite is ambiguous between the two. He explains
that the existential reading of the indefinite does not emerge if something else in the
sentence has wider scope. Chastain's referential reading relies on the thinking that:

(17). There is a mosquito in here

Sentence (17) may be read in two ways; the referential reading refers to a particular
mosquito, and the existential reading refers to a place that is not mosquito-less, but where
there is no particular mosquito in mind. He does not claim that indefinites always refer but
simply that they can refer. Every utterance produces two possible readings with the
referential reading being one of the possible readings.

Sentences containing indefinite descriptions, are ambiguous. Sometimes 'A
mosquito is in here' and its stylistic variant 'There is a mosquito in here' must
be taken as asserting merely that the place is not wholly mosquito-less, but
sometimes they involve an intended reference to one particular mosquito.

(Chastain 1975).
Chastain relies heavily on the plausibility of the belief that:

An anaphoric pronoun with an indefinite antecedent (where the latter does
not bind i t) is coreferential with its antecedent. (Heim 1982).

This approach is very similar to Kripke's (Kripke 1980) theory of Speaker's and Semantic
referents. Instead of thinking of coreference we should think instead of the Speaker's
reference and a correlation may be found between the two theories. Due to the similarity
of approach, both theories share many of the same problems.

17

2.1.3 Indefinites as Quantified NPs - The Problems of Donkey Sentences.

Up to now in this thesis indefinite NPs have been treated as referring or non-referring NPs.
They will now be treated as quantified NPs. This change of treatment is due to the
introduction of a new problematic sentence type, the donkey sentence. These sentences
are called donkey sentences after work in this area presented by Geach (Geach 1962), in
which he cited only sentences involving donkeys. Donkey sentences (already encountered
in the section on non-uniqueness and E-type pronouns e.g. (13) and (14)), are sentences
that contain an indefinite NP which is inside an if-clause or relative clause, and a pronoun
which is outside that clause, but is related anaphorically to the indefinite NP as in (18) and
(19). The two types of donkey sentences, the conditional and universal sentence, have the
same truth conditions as they basically represent the same instruction i.e. IF A, B - if A is
true then B is performed, and Every A,B - for all A then B is performed.

(18). I f a man owns a donkey, he beats it.

(19). Every man who owns a donkey, beats it.

Sentences (18) and (19) are represented by the truth conditions of (20) where the
indefinite NP is universally quantified with a scope that extends beyond that of the NP's
clause. The indefinite can therefore bind a pronoun outside its own clause. In (20) the
indefinite NP a donkey, has now got the semantic meaning of all donkeys, due to the
universal quantifier that binds it. The question must be raised as to whether these truth
conditions are correct or not, as reading the sentence human intuition awards the NP the
power of an existential quantifier i.e. refers to a unique donkey.

(20). V x V y (man(x) a donkey(y) a owns(x,y) —> beats(x, y))

The assumption of quantificational force i.e. indefinite NPs acting as quantifiers, and scope
possibilities of donkey pronouns, is necessary to account for this sentence type and
anaphoric resolution within these sentences. An explanation is required, however, to
account for the exact conditions under which an indefinite may receive this wide scope
universal interpretation.

Smaby (Smaby 1979) and Egli (Egli 1979) construct an artificial language which shares
'every' NPs, indefinite NPs, proper names and pronouns as well as many other NPs with

18

natural languages. They specify an algorithm that converts texts to logical language
formulae in this artificial language. Both authors consider donkey sentences as a major
application of their proposals, but after this their proposals differ.

Egli (1979) claims that indefinites can take scope beyond a matrix sentence and relative
clause. He asserts that an equivalence relation exists between sentences and logical forms
which is similar to the valid equivalence relation of predicate logic, (2 1).

(21). If P and Q are formulas and P does not contain the free variable x, then the
following formula is logically true: (3xP —> Q) o Vx(P —> Q). (Heim 1982).

Egli parses sentences, applying context free rules of to form syntactic analyses which are
then transformed into logical forms using a set of specified translation rules, and relations
of predicate logic. He claims there is an algorithm consisting of a full set of translation
rules and equivalence relations that converts every sentence into its logical form. The
consequences of this claim are as follows:

(a). An indefinite inside an if-clause is read as a wide-scope universal
that may bind a pronoun in the then-clause

(b). An indefinite in the first conjunct of an 'and' conjunction can be
read as an existential quantifier, whose scope extends throughout the
second conjunct and can bind a pronoun here.

(Heim 1982).

The donkey sentence of (22) will illustrate the workings of this algorithm and how the
indefinite NP obtains quantificational force.

(22). Every farmer who owns a donkey beats it.

Sentence (22) is partially transformed by the conditional translation rules to (23),
introducing a variable and predicate for ths, farmer.

(23). V x ((farmer(x) a x owns a donkey) —» (x beats it))

which may be further converted to (24), by dealing with the indefinite NP a donkey.

19

(24). V x ((farmer(x) a x owns y a donkey(y)) -> (x beats y))

Semantic interpretations are not assigned to syntactic representations directly but to the
logical forms created by the construal rules. Egli's theory is subject to the same objections
as that of Geach as truth conditions are assigned to complete texts only, with weak truth
conditions predicted when the theory is extended to plurals. A sentence has weak truth
conditions when these conditions do not impart any useful information, and encompass
too vast a domain. This all means that Egli's theory does not improve on the theories that
have gone before. He also treats universal quantifiers and existential quantifiers as the
same quantifier, allowing under certain conditions (i.e. (VxP —> Q) where x is not free in
Q), the universal quantifier to turn into a wide scope existential quantifier, 3x(P —» Q).
This cannot ever occur, as false semantic representations may result from predicting a
symmetiy between universal and existential quantifiers as (25) illustrates.

(25). A man is dead this is represented by 3x (man(x) —» dead(x))

This representation may be transformed by (21) to: V x (man(x) —» dead(x))
which falsely implies that all men are dead.

In certain cases Egli fails to account for the readings that indefinites exhibit, and can only
cope if ad hoc construal rules are added for each new example.

Smaby's (Smaby 1979) proposal is very similar to that of Egli, but instead of a set of
construal rules Smaby relies on one single rule R-Smaby. The rule states that an existential
quantifier in the left conjunct of a conjunction must be exported to take scope over the
entire conjunction and works for donkey sentences

(R-Smaby). Rewrite 3 x S j a (S2 pronoun....)

as 3 x (S j a (S 2 x)

20

Smaby thereby predicts the correct truth conditions for non-donkey sentences while being
able to handle donkey sentences also. Let's take sentence (16) once more, to illustrate this
point.

(16). I f someone is in Athens, he is not in Rhodes.

This sentence holds the implication of (26).

(26). (If someone is in Athens —» he is not in Rhodes)
Changing the implication to the logically equivalent negation and conjunction leads to (27)

(27). (NOT(3 x (in_Athens(x) a NOT (NOT (in_Rhodes(he))))).
(Heim 1982)

Applying R-Smaby exports the existential quantifier, and replaces the pronoun he with x
to yield (28).

(28). NOT (3 x (in_Athens(x) a NOT(NOT(in_Rhodes(x)))))
(Heim 1982).

moving the NOT into the expression results in the logically equivalent expression of (28)

(29). V x (NOT(in_Athens(x) a in_Rhodes(x))).

Comparing this method with that of Egli's, it has the advantage of only exporting original
existential quantifiers. Unfortunately it runs into the same problems as Egli's approach i.e.
it is unable to account for certain indefinite readings, e.g. sentences (13) and (14) in
section 2 .1 .1 .

(13). I f a cardinal meets another cardinal, he blesses him.
(Kamp 1981)

In (13), R-Smaby does not give any guidelines as to which is performing the action of
blessing the other cardinal, therefore since this distinction cannot be made the pronouns
cannot be replaced. The analyses proposed by Smaby and Egli cannot account for all
options and handle all the facts available, and only work in a limited domain.

Another approach is that of Parsons (Parsons 1978) who agrees with Evans about there
being a third semantically distinct reading for pronouns, with this reading treated on a par
with definite descriptions. He present a Montague fragment which translates not only NPs

21

with indefinite articles but also other personal pronouns into logical expressions of the
form of (30).

(30). 3 x (V y (.... (y) <-> x = y) a P(x))

Parsons' method contains a syntactic transformation that substitutes certain definite
descriptions for pronouns, namely those definite descriptions matching a clause
somewhere to their left which contains an indefinite. Taking the sentence (31), the
pronoun it is replaced in (32) by a definite description formed from the clause John owns a
donkey.

(31). John owns a donkey and beats it.

This sentence is paraphrased as (32) with transformation as meaning preserving.

(32). John owns a donkey and beats the donkey such that John owns it.

The formula of (30) represents the structure definite NPs and pronouns will be mapped
onto, to represent the logical forms of the said NPs. It asserts the presence of a unique x
such that for all y, a predicate exists involving y where x and y are equal and there is a
further operation on x. Parsons presents a rule fragment that maps NPs onto this formula,
and the equality x = y is designed to link the newly produced definite descriptions of the
paraphrased utterance (32) with the original unique indefinite NP. This process is
illustrated by (31)-(33) where (32), illustrates the definite NP introduction to replace
pronouns. The next step involves the introduction of logical expressions, with the template
specified in (30) used to represent the new definite NP the donkey such that John owns it,
with beat(j,u) filling the predicate position of P(x).

(33). 3u(own(j,u) a donkey(u)) a 3u(Vv((own(j,v) a donkey(v)) <-> u = v) a beat(j,u))

From formula (30).
This strategy works well for donkey sentences, resolving the anaphoric pronoun easily.
The theory is, however, not fully developed, only covering some options. The logical form
of (33) implies that there is at most one donkey that John owns and beats i.e. a unique
donkey. Parsons analysis appears to agree fully with that developed by Evans, even down

22

to the uniqueness condition. The E-type strategy which treats pronouns in donkey
sentences as disguised descriptions assumes the referent of the object denoted by the
pronoun is unique. There is however, no systematic uniqueness requirement in donkey
sentences as sentences (13) and (14) illustrated in section 2.1.1. A more recent approach
by Parsons (Parsons 1990) relegates this uniqueness condition to one of context, claiming
that conditionals and when-clauses involve a quantification over eventualities or situations.

(34). John sings.

Sentence (34) may be interpreted as the occasion when there exists a person called John
who sings, represented as (35), where 30 signifies the occasion where John sings.

(35). 30 (sings (j,o)) where John is j and o is the occasion.

Parsons claiming that pronouns are descriptive according to certain minimal situations.
Yet this still does not handle the problems posed in sentences like (13), as for any minimal
situation S in which a cardinal] meets another cardinal^ the cardinal in that situation
blesses the cardinal in that situation, but which cardinal performs the blessing? The
approach does not work as it is not clear which cardinal is being referred to at any one
time. The author concludes that donkey sentences are not satisfactorily inteipreted by
treating the crucial pronoun as E-type and its indefinite antecedent as an existential
quantifier, as Parsons proposes. This conclusion is drawn from the uniqueness condition
specified by Evans to which donkey sentences do not adhere, and the failure of an
undeveloped definite NP theory to solve the problems of indefinite NPs.

2.1.4 Indefinite NPs as variables - The application to donkey sentences.

Continuing with the static analyses of indefinite NPs and anaphors, the author now
considers the treatment of indefinites by Kamp (Kamp 1981) and Heim (Heim 1982). They
claim that indefinites do not have quantificational force of their own, and state that
indefinites show their true nature in donkey sentences, that they have no force of
quantification, and should be treated like variables which get bound by whatever quantifier
is there to bind them. A further claim is that indefinite NPs never contribute anything to
the sentence in which they occur, other than this variable interpretation. Whenever an
indefinite NP seems to be acting like a quantifier, it is really something else in the sentence
that is causing this effect.

23

Their assumption is that a discourse-level existential quantifier binds
variables contributed by indefinite NPs which do not become bound in
some other way. (Rooth 1986)

(36). Every man who owns a donkey beats it.

In section 2.1.3 the indefinite a donkey was treated like a quantifying NP gaining the
power to bind variables beyond the NP clause i.e. (37).

(37). V x,y (man(x) a donkey(y) a own(x,y) —» beat(x,y))

In this section (36) is treated differently by Heim and Kamp who claim that the indefinite
acts like a variable which in this case is bound by the universal quantifier Every. The
thinking behind the theories of Heim and Kamp is extremely similar although they use
different analogies to model their theories, which are discussed later in this chapter. In
practice the ideas of Heim and Kamp lead to the following logical forms or disambiguated
representations of (38) and (41).

(38). A man walked in. He was wearing a hat (Chierchia 1994).

Rules operate on the constituents of sentence (38) to change this sentence into a
disambiguated representation. The first step in this disambiguation is to associate any
indefinites with free variables. The remaining parts of the sentence are shown in their first
order format.

(39). man(x) a walked_in(x) a hat(y) a wear(x,y).

It is assumed that the pronoun he is associated with the same index as the indefinite a
man. A rule of existential closure is applied to assign existential force to indefinites that
are not in the scope of a quantifier. As can be seen from (40) indefinite NPs can bind
across sentence boundaries.

(40). 3 x y (man(x) a walked_in(x) a hat(y) a wear(x,y))
(Chierchia 1994).

24

A more complicated sentence structure is the quantified sentence. These sentences are
tripartite structures with a quantifier, restrictor and scope, which may be divided up
accordingly as sentence (41) illustrates.

(41). Every (man who owns a donkey)(beats it with a stick)
RESTRICTOR SCOPE

(Chierchia 1994).
Processing begins with the introduction of first order predicates and free variables for all
predicates of (41) resulting in (42).

(42). Every (man(x) a donkey(y) a own(x,y)) (stick(z) a beat_with(x,y,z)) .
(Chierchia 1994)

The quantifier Every must be dealt with next. Quantifiers are unselective and bind all
variables in the restrictive clause, therefore the quantifier Every binds x and y. The
variables the quantifier binds are copied into the quantifier in (43).

(43). V x,y (man(x) a donkey(y) a own(x,y))(stick(z) a beat_with(x,y,z))
Restrictor Scope o f universal quantifier

The indefinite NP of the scope condition is not quantified so the rule of existential closure
is applied to give it existential power (44). This rale is applied to all non-quantified
indefinite NPs. The logical form of (44) yields the correct truth conditions for sentence
(40).

(44). V x,y ((man(x) a donkey(y) a own(x,y)) —> 3 z (stick(z) a beat_with(x,y,z)))
Restrictor Scope o f universal quantifier

(Chierchia 1994)

The last two examples illustrate how indefinites may bind across stretches of discourse,
with disambiguated representations formed by applying rules of transformation or
construal. What exactly do these rules look like ? We will now look more closely at the
construal rules employed by Heim. She associates syntactically analysed expressions of
English with certain disambiguated representations or logical forms using rules of
construal. Heim makes basic assumptions that every NP carries a referential index, all non-

25

pronominal NPs are adjoined to the S node, and introduces rules of construal to deal with
donkey sentences. Some of the basic rules of construal are listed below.

(1).NP Indexing
Assign every NP a referent index.

(2).NP Prefixing
In the parse tree adjoin every non-pronominal NP to S, leaving behind a coindexed empty
NP.

(3).Quantifiers
Attach every quantifier as a leftmost immediate constituent of S.

(4).Existential closure
Insert 3 in the nuclear scope of the quantifier and if a NP is non-quantifying insert a 3.

(5).Conditionals
An if-clause is positioned between the quantifier it restricts and the rest of the sentence.

(6).Quantifier Indexing
Copy the index o f each indefinite NP onto the nearest quantifier that shares the
same branching node. A quantifier binds all and only those variables whose
referential indices match one o f the quantifier indices.

(Heim 1982).

Indefinites are interpreted as formulae containing free variables whose quantifying force is
determined by the closest quantifier that does not dominate the indefinite, but is dominated
by a node that dominates the indefinite. Indefinite NPs must always carry a new referential
index with the added stipulation that an indefinite cannot carry the index of an NP that is
situated directly to its left in the same sentence.

(45). Every man arrived.

Assuming that a simple syntactic analysis exists for sentence (45), the sentence will be
analysed using Heim's system of construal rules.

26

• The first step in this analysis assigns a referential index to each NP, this step can be
seen in the parse tree Fig 2.1.

• Non-pronominal NPs are assigned to an S node leaving behind a coindexed empty NP,
in this case e^. The node C| represents an empty NP which was introduced by the
removal of the NP, Every man Fig 2.2.

• Finally the quantifier construal rule is applied, which attaches every quantifier as a
leftmost immediate constituent of the S node. Fig 2.3 shows the parse tree, with the
linear representation found in (46).

NPj VP

Every man-j arrived

Fig 2.1. Developing the logical form

Every man-j

ei arrived

Fig 2.2. A partial logical form.

S

man-! ê arrived

Fig 2.3 The completed disambiguated logical form

27

(46). [sEvery [manj [s ej arrived]]] (Heim 1982).

The analysis produces the representation of sentence (45), in Fig 2.3 and (46), which may
be interpreted as every variable assignment that satisfies man\ also satisfies the scope
condition e\ arrived. There is, however, no direct way for a pronoun to impose its
referential index onto a quantifier.

The only way fo r a pronoun to get bound is indirectly by virtue o f its
being anaphoric to and thus coindexed with another NP.

(Heim 1982).

Heim has thus presented a static standard method of capturing the semantics of discourse
by direct interpretation of logical forms, which are formed by construal rules.

2.2 The Treatm ent o f Indefinite NPs -The D ynam ic Approaches

Another way of presenting things, while still staying with the concept of indefinites as
variables, simplifies the construal component by using a different notion of meaning and
presents a more dynamic view of the semantics.

This dynamic aspect is taken as a cue for deviating from the safe (and
static) path o f standard logic....these theories more or less try to
combine static semantics with an analysis o f dynamic aspects o f
language use

(Cooper e ta l 1995)

In dynamic semantic theories new sentences in discourse are interpreted in the context of
what has gone before, and in this way new information is built into an existing structure.
The core philosophy behind these theories is that meaning is change (Cooper et al 1995).
Heim and Kamp introduce metaphors to deal with this more dynamic form of semantics,
all of which hinge on the concept of context, and how the context or state of mind of the
interpreter is changed by every new utterance of the discourse. Heim uses the metaphor of
the file, with indefinites introducing new cards to the files. Kamp uses a Discourse
Representation Structure, a type of flowchart to represent the disambiguated semantic
meanings. Each of the theories relies on a small body of construal rules (as a discussion of

28

Heims static system illustrated in the last section), with the emphasis moved from the
construal component to a now bigger semantic component.

2.2.1 Heim and File Change Semantics

Heim works with the metaphor of File Change Semantics, where information is stored in
cards of files. The metaphor provides a simple picture of how information is built up in
discourse. A small body of construal rules are used to produce a disambiguated
representation. Files are introduced as an extra level of analysis between language and the
world, encoding information from non-linguistic and linguistic sources. Processing a
discourse involves adding information to the file which contains numbered cards. The
standard condition is that indefinite NPs are novel and add new cards to the fde, whereas
definite NPs are familiar and update existing cards. In model-theoretic terms a picture of
what information is available to act as antecedents is built up and stored in the domain of
the file Dom(f), along with the numbers on cards of the file. The domain of a file keeps
track of the variables being used by the file, as well as relationships between these
variables. The content of discourse i.e. the predicates and formulae encountered in the file
as well as the prepositional content of the discourse is stored in the satisfaction set Sat(f).
Every new utterance updates the contents of the file, changing the domain and satisfaction
sets. A file can be represented as an ordered pair < Dom(f), Sat(f) >, with the semantic
value of the discourse represented in terms of the context or file change potential of the
file. Files represent contexts with any change in the file represented by the file or context
change potential of that file. This is a function from file to file that represents the change
new information brings to the existing file, to produce a new updated file i.e. existing file f
+ new information = updated file / ' .

(47). A man loves a woman

Sentence (47) introduces two new indefinites to the file f, each of which introduces a new
card in the file, card(l) and card(2). The cards contain the folio whig information:

card(l). {man(l), 1 loves 2 }, card(2). {woman(2), 1 loves 2 },

The domain and satisfaction sets of this file are

Dom(f) = {1,2}, Sat(f) = { man(l), woman(2), 1 loves 2 }

29

with the file f represented by the ordered pair

< { 1 , 2 }, { man(l), woman(2). 1 loves 2 } >

Heim's file change semantics is based on the teachings of Lewis (Lewis 1979) who views a
new utterance as a change of context, which brings existing or new information to the
forefront. Every time new information is added the file must be revised and sequences that
do not agree with the new context must be removed. The satisfaction set gets more
specific with each new bit of information, as (48) illustrates.

(48). A television was stolen. No, George borrowed it yesterday.

The mini discourse of (48), asserts in sentence 1 that the television was stolen, which is
later refuted in sentence 2 with the new information that George actually borrowed it. The
original information - the fact that the television was stolen is now defunct - and must be
removed from the file sequence. This mirrors the way in which we as humans update our
information stores.

Files are interpreted in certain contexts, so the truth condition of a file is defined by the
context change potential of that file which is updated as new information is added. When
this new information is added to the file, sequences present in the file that do not agree
with the new context are removed and the domain and satisfaction sets are updated
accordingly.

File generation starts with the interpretation of the semantic content of the discourse. New
information introduces new cards or updates existing cards, and whichever action is
chosen a bridge of cross-reference must be built between the new card or updated card
and the pre-existing file, resulting in a hypertext-like system with links from file to file
instead of node to node. This is carried out by accommodation rules which can be applied
at any point during the evaluation of a complex logical form. These rules look after the
addition of anaphoric pronouns and definite NPs to the file.

The outcome of File Change Semantics (FCS) is the simplification of the construal
component but at the cost of an arguably more complex semantics. An improvement
provided by FCS is found in how it handles definite NPs. Heim rejects Russell's analysis of

30

definite NPs as quantifying NPs, saying that a definite description which does not contain
any bound variables has a unique referent. Definites are therefore treated like free variables
whose value is fixed by the context of the sentence. She also assumes that the content of
the description is presupposed. The condition used to add definite NPs to files must now
be updated to handle two types of definite: the definite NP having a unique referent and
that NP that introduces new information to the file, i.e. an unfamiliar definite. For the
unfamiliar definite NP the rule of accommodation introduces a new file card for the NP,
and accommodates the new card with the existing state of affairs in the file. Attempts are
made first of all to accommodate globally, and failing this local accommodation is
attempted.

The author's preliminary investigation of dynamic semantics illustrates the basic premise of
meaning as change. The notion of context is captured by the chosen structures (e.g. files
for Heim) that are constantly updated with the addition of newly processed utterances.
Truth is captured using a variant of model-theoretic semantics, in the form of satisfaction
sets and domains in the case of File Change Semantics. The next section presents another
dynamic theory, namely Discourse Representation Theory developed by Kamp (Kamp
1981).

2.2.2. Kamp and Discourse Representation Theory

Kamp defines a formal language that corresponds to the logical forms the author has
presented already, thereby cutting straight to the problem of resolving anaphors. This
language is designed to allow anaphoric relations to be expressed directly, without the
complexities of relative clauses, agreement and general problems of natural language
taking centre stage. The language copes with areas including quantification, negation and
implication and is directly and simply rewritten in a Discourse Representation Structure
(DRS).

A DRS is a type of flowchart or diagram that is built while the discourse is processed, with
the final DRS representing the semantic content of the discourse as a whole. Within the
flowchart the DRS is made up of a set of discourse referents or variables and a set of
conditions. DRSs may be nested inside one another to represent complex conditions. It is
possible to provide a set of construal rules that yield logical forms having essentially the
same semantics as DRSs, as they have a close affinity with certain formulae of symbolic

31

logic, more specifically those of first order predicate calculus. Each DRS can be regarded
as a formula of predicate logic in disguise, with a function mapping from logic to DRS.

The Discourse Representation Theory (DRT) itself processes a text T consisting of
sentences S i....Sn and determines a semantic representation, a DRS. As the discourse is
processed each new sentence updates the existing DRS producing a new output DRS
which captures the context of the discourse processed so far. The process advocated by
Kamp involves the construction of the DRS, with truth defined as an embedding of the
completed DRS in a model. DRT differs from other forms of model-theoretic semantics in
that it offers a theory of truth conditions and interpretation.

Embedding the DRS in a model to capture truth conditions involves mapping from the
discourse referents or variables of the DRS to the individuals in the model. In more formal
terms a model M for a vocabulary V is the set <UM,Name;M, PfC(JM > > where U]yj is the
universe of model M, N am e^ is a function from the set of individual constants of V to
U]y[, and Pred]y[maps from the set of predicate constants of V into suitable objects
associated with the universe of M. A DRS is correct with respect to a model M if it is
possible to embed the universe U of the DRS truthfully into Um i.e. a function f operates
on Uk and verifies all the conditions in U ^ .

The formal language created by Kamp is not essential for the development of a DRS as
surface structures are directly mapped into DRS. Kamp provides a set of construction
rules or trigger rules that readily convert text to DRS format, without having to refer to
the formal language. Accessibility within the DRS determines when a pronoun can be
anaphorically 1 hiked to an indefinite antecedent. The discussion of DRT continues in
Chapter Three which presents an overview of the surface structure of DRT, discussing the
treatment of definites, indefinites, quantification and negation within the DRT framework.
Chapter Four then implements a DRT module for a small fragment of English.

32

Chapter 3 An overview of Discourse Representation Theory.

33

3.0 Introduction

Discourse Representation Theory (DRT) developed by Hans Kamp (Kamp 1981), works on a
discourse processing it sentence by sentence building on what has gone before to produce a
semantic representation, the Discourse Representation Structure (DRS). It is a departure from
traditional methods which treat sentences in isolation giving each sentence a separate semantic
representation, and so fail to find antecedents for anaphoric pronouns within a discourse. In DRT
anaphora are analysed not as a relationship between pronouns and other NPs, but as one between
pronouns and the discourse referents that are already present in the semantic representation under
construction. The hypothesis is that anaphoric pronouns select then referents from certain sets of
antecedently available entities or discourse referents. By representing the whole discourse within
the same DRS, all suitable referents for anaphoric pronouns are available to act as antecedents,
and are easily accessible from within the structure. The concepts of suitability and accessibility are
central to the thinking behind DRT and will be discussed in this chapter.

This theory is an attempt to bring two schools of thought together: the logicians who see meaning
as truth conditions and the philosophers who regard meaning as that which the user grasps when
he understands the words he hears. Sentences of the discourse are analysed one by one adding to
the existing DRS. The first stage of the DRT cycle involves the syntactic analysis of a sentence of
the discourse, followed by the application of construction rules to the said syntactic representation
extending the existing DRS. DRT is not tied to a theory of English or syntax and so the third stage
defines truth as the embedding of the newly formed or extended DRS in a model of the world.

In this chapter the basic mechanisms, construction rules and antecedent prediction methods of
DRT will be discussed.

3.1 The basic building blocks o f D iscourse R epresentation Theory

As mentioned above the basic unit of DRT is the Discourse Representation Structure (DRS). A
DRS is made up of two parts < U, Con >, where U is the set of referents or variables presently in
use and Con is the set of conditions of the DRS. The DRS itself is represented by a rectangular
box that is divided in two with the top half reserved for U while the bottom is the set Con. DRSs
are called Kj where i is given the value from 1 upwards with U and Con of a DRS K j called Ukt
and Conk;

34

u

Con

Fig 3.1 The template for a simple DRS.

3.1.1 An overview of basic construction rules of DRT.

Construction rules search for trigger words and categories in the parse trees of sentences. Firing a
trigger may involve the introduction of a new discourse referent x to U accompanied by a
condition in Con, the condition being generally of the form word(x). Construction rules exist for
many categories, including proper nouns and indefinites.

The following example highlights the proper noun construction rule, and illustrates the
development of a simple DRS. Taking the small discourse of (1), processing begins with the first
sentence John owns a book.

(1). John owns a book. He reads it.

S

NP VP

PN V NP
John Det N

a book
Fig 3.2 The parse tree of John owns a book.

The parse tree is processed category by category from left to right. The proper noun category fires
a construction rule which introduces a new referent x in U and the condition John(x) in Con. The
word John is then replaced by x in the parse tree changing the sentence to x owns a book.

The verb owns follows. There are no construction rules for verbs and owns is quickly skipped over
leading to the indefinite, a book. The indefinite construction rule is a simple one, again introducing
a new discourse referent y to Ukj and condition book(y) to Conkj.

Indefinite and definite NPs are treated differently in DRT: indefinite NPs introduce new
information to the DRS, while definite NPs are considered familiar and generally refer to
something explicitly mentioned before in the discourse. Definite NPs will be discussed more
thoroughly in section 3.1.3.

Continuing the example, the indefinite is replaced in the sentence by the referent y to give the new
sentence x owns y. The tour of the parse tree is complete and the sentence has been fully
processed, the discourse analysis continues with the formation of a parse for the next sentence,
extending the existing DRT Kq.

Jolin(x)

x owns a book
book(y)

___________ x owns y___________
Fig 3.3 The completed DRS of John owns a book.

Processing of discourse (1), continues with the second sentence (2).

(2). He reads it.

This sentence contains anaphoric pronouns, whose antecedents must be found from the set U of
available, suitable referents. The construction rale for anaphoric pronouns introduces a new
discourse referent w to Ukj with the anaphoric pronoun replaced in the sentence by w. The partner
condition w = x is added to Conkj, where x is a suitable referent already existing in Ukj.

The idea of suitability introduces a weak point in Kamp's theory. DRT gives precise conditions
for anaphoric linking, but does not give a way to choose the appropriate referent when more than
one is available. All that is said is that the chosen antecedent of an anaphoric pronoun must be
suitable. A suitable referent, therefore, can be thought of as a referent with the same gender and
number as the anaphor, and can be found in the set of available referents of the DRS. In a simple

36

DRS Kj, the set Ukj is the set of available referents. There may of course be more than one
suitable referent, in such a case each suitable referent must be bound to the anaphor producing the
appropriate DRS.

A single discourse may produce two or three DRSs, depending on the number of suitable referents
available and accessible from an anaphor at any one time. This case is illustrated by sentences (12)
and (13) o f chapter 2. (12) is ambiguous as one cannot decide which cardinal is performing and
which is receiving the blessing or are they both mutually blessing each other? Each possibility must
be represented by a complete DRS, resulting in three different DRSs for (12)

(12). I f a. cardinal meets another cardinal he blesses him.

DRT relies on the addition of external theories to aid in the choice of a suitable antecedent. Extra
information must be encoded e.g. gender and number agreement between anaphor and antecedent.
This may be performed in the syntax module, by adding more information to our grammar or
semantically by adding extra information.

The strategies used in selecting the referent o f anaphoric pronouns are
notoriously complex; they usually employ background assumptions about the
real world, grammatical clues, such as the requirement o f number and gender
agreement between the anaphor and its antecedent, and the order in which the
potential referents were introduced by the preceding discourse.

(Kamp 1981).
(3). John saw Luke dead. He cried.

The thinking behind suitability implies that He can only be John, as dead people like Luke cannot
cry. Suitability is really another name for the encoding or attachment of world knowledge to
DRT. Kamp assumes this mechanism exists, and will work hand and hand with the mechanics of
DRT.

Processing of sentence (2) continues as the sentence is further reduced to w reads it, the verb
reads is left untouched but the anaphoric neuter pronoun it fires the personal pronoun
construction rule. This rule also deals with expletive pronouns, but there is a separate reflexive
pronoun construction rale. The author will not discuss this rale in this thesis, dwelling instead on
the treatment of personal pronouns.

37

________________________X, y, w, u_______________
John(x)

x owns a book
book(y)
x owns y

He reads it
w reads it

w = x
w reads u

Fig 3.4 The completed DRS of John owns a book. He reads it.

Finally the pronoun construction rule introduces a referent u to Ukj to represent it, with the
changed sentence w reads u, and the condition u = ?? where ?? is a suitable referent. The search
continues as before, there is now a choice from w, x or y in Ukj (u itself is obviously excluded).
As reflexive pronouns are omitted, the referent w represents a non reflexive anaphoric pronoun
and is therefore excluded from consideration leaving the set {x,y} with x (male) and y (neuter), i.e.
y is a suitable referent for the neuter anaphoric pronoun. The condition u = y is added to Conk j .
The sentence w reads u, is irreducible so processing stops. The completed DRS is shown in Fig
3.4.

3.1.2 Definite NPs and construction rules.

In section 3.1.2, the indefinite, proper noun and anaphoric pronoun construction rules,
introducing new referents and giving guidelines for the introduction of new conditions to Con
were discussed. A construction rule is also triggered by a definite NP introducing a new referent
and a corresponding condition. The author is ignoring generic definite NPs e.g. the Romans, the
King o f France, in this thesis.

(4). The man works in Dublin. (5). A man works in Dublin.

Sentence (5) introduces a new man into conversation, so a new referent and corresponding
condition are added to the DRS. In discourse the speaker assumes that the listener knows what
man is being talked about in (4), because this man will have been mentioned or named already.

38

When the definite NP the man is used, or any definite, the listener should have enough information
to link the definite with something or somebody already mentioned; if no link can be formed the
discourse fails and does not make sense. These facts must be represented in the condition
introduced by the definite NP to Con.

The assumption of DRT is that indefinite NPs are treated as reference establishing terms, while
definite NPs are familiar entities.

Dealing with singular definite NPs.

Definite descriptions can be used in different ways. The first way isolates a unique individual in
discourse as in (6), where the man acts like the pronoun - he, isolating the individual a man. The
description the man serves to pick either, whichever man was last mentioned or the most salient
man (Lewis 1989) present in the discourse (see chapter 2 section 2.1.1).

(6). A man and a woman went to the cinema. The man bought two tickets.

(7). A car is parked over there. The door is open.

hi (7), The door is understood to refer to the door of the car mentioned previously. The
description the door is not coreferential with that of a car but by bridging refers to a part of the

Processing definite NPs being a complex affair, Kamp advocates a construction rule for definite
NPs that introduces a new referent jc to Ukj, a condition definite_NP(x) e.g. the woman(x) to
Conkj, and replaces the definite NP in the sentence by x. This treats the condition defmite(x) as
irreducible.

At this stage, Kamp asserts that if possible a condition x = y must be introduced to Conki where y
is the most salient or suitable referent that the definite NP refers to as in (8). This condition links
the definite NP with an existing referent in the text, treating it as a familiar element or an expanded
pronoun.

(8). John bought a cake. He put the cake away.

39

Assume the construction of the parse tree. Construction starts in the first sentence with proper
noun John and indefinite cake, which introduce simple new conditions John(x), cake(y) and
referents x and y. The second sentence contains an anaphoric pronoun and definite NP, the male
pronoun introduces a new referent u and a condition u = other male suitable referent i.e. x. The
definite NP introduces a new referent of w with a condition the cake(w). Kamp advocates that
processing for definites should stop here, but if a suitable referent ? is available for w add the
condition w = ?, thereby isolating the particular individual the definite refers to. In this way the
particular individual or thing, the definite stands for can be isolated. The referent w is neuter and
so is y, giving the condition w = y.

_______________ x, y, w,u_______________
John bought a cake

John(x)
x bought a cake

cake(y)
x bought y

He put the cake away
u put the cake away

u = x
the cake(w)

u put w away
_________________ w = y_________________

Fig 3.5 The DRS of John bought a cake. He pu t the cake away.
In Fig 3.5 the conditions the cake(w) and w = y arc added to the DRS to represent the definite NP
the cake, the second condition attempts to find an antecedent for w if at all possible. This is found
readily in y using the notions of accessibility and suitability.

3.2 Sub-DRSs and Accessibility.
The sentences processed so far have all been represented by simple DRSs. As sentences get more
complex so do the DRSs, and nesting occurs as DRSs can be embedded in each other. Complex
sentences like conditionals, negation and universally quantified sentences all introduce sub-DRSs.
Each structure has a specific sub-DRS template, introduced by construction rules. The first DRS

40

generated is the principal DRS and all other DRSs are subordinate to this. DRSs are called Kj and
are numbered upwards, with i incremented by 1 each time.

3.2.1 Negation.

Negated sentences introduce a sub DRS. The parse tree of such a sentence contains categories NP
AUX not VP. The negation construction rule is fired when AUX not is encountered within the
parse tree introducing a sub DRS.

(9). David does not own a porsche

S

Fig 3.6 A parse tree of a negated sentence.

The representation of a negated sentence should involve the positive sentence it negates. That is,
looking at (9) the positive sentence David owns a porsche will be involved in the DRS
construction. Construction of a DRS for (9), starts at the proper noun node introducing a new
referent x and condition David(x) with the sentence changed to x does not own a porsche.

david(x)
x does not own a porsche

NOT x owns a porsche

Fig 3.7 The negated DRS template.
Moving on in the parse tree, Aux not NP triggers the negated construction rule introducing a sub
DRS of the form of Fig 3.7. The sub DRS for a negated sentence has a NOT outside the DRS and

41

the positive sentence x owns a porsche ready to be processed inside the DRS Processing continues
now as normal within the sub DRS K2 . The verb owns is ignored, moving processing to the
indefinite a porsche that introduces a new referent y to Uk2 and condition porsche(y) to Conk2 ,
leaving the changed irreducible sentence x owns y.

david(x)
x does not own a porsche

N O T x owns a porscheporsche(y)
 x owns y_____

DRS
Fig 3.8 The completed DRS for David does not own a porsche.

3.2.2 Referent Accessibility.

Simple DRSs have only one set of accessible referents available, the set Ukj of the DRS Kj. With
the introduction of sub-DRSs more referents are available to act as antecedents for anaphoric
pronouns. The pairing of anaphor and antecedent must be controlled. This control is achieved in
DRT using accessibility. Accessibility governs the selection of referents, and is controlled by a
subordination relation which is defined below in three parts:

(1). A DRS A is subordinate to another DRS B if A is nested in B,

This definition needs extension to deal with negated DRSs and continuous nesting of DRSs.

(2). A DRS A is immediately subordinate or has access to the referents of
any DRS B, iff B represents a negation condition nested in Con^

An example of immediate subordination is found in Fig 3.9 where the negated DRS K4 is nested in
K3 . This part of the subordination relation governs which referents are accessible from negated
sub-DRSs.
The author has established the subordination relation between neighbouring DRSs but these
relationships need to be passed up to other higher DRSs; this is achieved by introducing
transitivity to the relation.

42

(3). If a DRS A is subordinate to or nested in DRS B, and C is subordinate to
A, then C is subordinate to B

Fig 3.9 illustrates transitivity where K3 is subordinate to K2 and K4 is immediately subordinate to
K3 implying that K4 is subordinate to K2 .

K i

Fig 3.9 An illustration of DRS embedding.

The subordination relation between DRSs is expressed using <, if A is subordinate to B it is
written as A < B. Establishing the subordination relation starts with the DRS with the greatest
index i.e. the most nested sub-DRS, in this case K4 . The fact that K4 is subordinate to K3 and K2 ,
was established above, and is written as K4 < K3 < K2 . The DRS K2 is nested in the principal
DRS K4 , K2 < K], transitivity extends the relation of the DRSs of Fig 3.9 to give K4 < K3 < K2

< K.j. In this case the subordination relation included all nested DRSs in the same relation, this is
not always the case. As sub-DRSs become more complex many different subordination relations
can result for the same DRS system. This will be illustrated in section 3.3.3

Finally we will look at the referent sets formed by the subordination relation that are accessible
from K 1 ,2,3 and K4 of Fig 3.9. The principal DRS K] has access to the referents of Ukj so the
accessible set of suitable referents for K j is {a,b}. K2 has access to {c,d} of Uk2 and the referents
of Ukj (a,b) the only DRS above K2 as K2 < K4 . This gives an accessible set of {a,b,c,d}. DRS
K3 has access to {e,f} of Uk3 and {a,b,c,d}, the referents of DRSs above K3 as K3 < K2 < K4

giving the accessible set {a,b,c,d,e,f}. K4 has access to (g,h) and all the referents of DRSs above it
K4 < K 3 < K 2 <K] , that is {a,b,c,d,e,f}, giving the accessible set is {a,b,c,d,e,f,g,h}.

43

3.2.3 Conditionals.

Conditional claims are made by a pair of sentences the first of which begins with some such phrase
as suppose, assume or i f e.g. i f Kevin owns a book, (then) he reads it. These sentences are of the
basic format If/Suppose/Assume A (then) B, and are represented by two DRSs, one for A and
the other for the consequence B.

Fig 3.10 The DRS template for conditional sentences.

hi Fig 3.10, The standard subordination relation for conditional DRSs is K3 < K2 < K] implying
that, K3 has access to its own referents and the referents of Kj and K2 , with DRS K2 having
access to its own referents and those of K] the principal DRS.

(10). Mary is a teacher. I f a student causes trouble, then she suspends her.

Processing of discourse (10) starts with sentence 1, Mary is a teacher. This sentence contains a
proper noun and indefinite which introduce new referents x and _y and conditions Mary(x) and
teacher(y). The existing sentence is changed to x is y, which suggests that the individuals
represented by x and y coincide.

The second sentence, a conditional, is processed next. The I f causes the introduction of the
conditional sub-DRS template with a student causes trouble considered as part A and she
suspends her as part B

44

Mary(x), teacher (y)
x is y

a student
causes = >

she suspends
her

trouble
K 2

DRS K l

Fig 3.11 A partially processed DRS of sentence (10).
Processing continues within the sub-DRS, the parse tree is toured and any new conditions or
referents for part A are put in K 2- Part A contains an indefinite NP, that introduces a new referent
u and condition student(u) to K 2> the sentence now becomes u. causes trouble which is
irreducible. Part B, she suspends her contains two anaphoric pronouns.

x, y___________
Maty(x), teacher (y)

u k is y

student(u)
= >

she suspends
u causes her

trouble.
k 2

DRS K l

Fig 3.12 Developing the DRS of sentence (10).
The first pronoun of part B introduces a new referent v, changing the sentence to v suspends her
with a new condition v = ?, where ? is a suitable discourse referent already existing in K3 or a
DRS above K3 . At present, v must find a suitable referent from the set of K3 , K2 and K |; that is
from the set {u,x,y}. The discourse referents x and y are equal, so the set may be reduced to {u,x}.
The referent u is male or female representing the indefinite a student, x is a female referent
representing the person Mary who is a teacher and v represents the female pronoun she.
Suitability requires that v must have a female antecedent and uses world knowledge to isolate this
referent. The referent x is a teacher, world knowledge implies that teachers are in positions of
power and may suspend students, where u is such a student. The principles of accessibility and
suitability have isolated x as the antecedent for v, with the condition v = x, Fig 3.13

The second female pronoun introduces referent w and condition w = ?, with an accessible suitable
referent list {x,y,u,v}. This list may be reduced to {x,u} as y and v equal x, the syntax implies that

45

I

w cannot equal v as part B of (10) would be reflexive, and as x is v, the set is further reduced to u
which must be the suitable referent. Even more evidence that w = u is provided by world
knowledge which asserts that students are suspended by teachers therefore w must equal u. as u is
being suspended, Fig 3.13. If there is more than one suitable referent available at any one time, a
DRS must be generated and fully processed taking each member of the suitable referent list one at
a time. A single sentence can therefore result in more that one DRS.

x, y
Mary(x), teacher(y)

* K V
u

= >

K 2

v w

k 3

student(u)
u causes

trouble.

v suspends
her

V = X
v suspends w

w = u

DRS K i

Fig 3.13 The complete DRS

Let's take another example, (11).

(11). Mary is a teacher. I f she does not know a student then she is a bad teacher.
The first sentence of discourse (11) is processed as normal, placing referents and conditions in
DRS K], The second sentence introduces the conditional DRS template, K-2 => K3 , with the
sentence divided accordingly between the two sub-DRSs. At present K3 < K2 < Kq is the only
existing subordination relation. Processing she does not know a student of K2 introduces a new
referent p for she with the condition p = a suitable accessible referent. The subordination relation
stated above provides the referent set The condition m is t states that these referents are
equal so it is irrelevant which one is chosen as the suitable referent, Fig 3.14.

m, t

m is t
te achei(t)

P

K 3

p = m
p does not know

a student

she is a bad
teacher

Fig 3.14 The partial DRS.

46

Next a sub-DRS K4 is introduced to K2 as negation is encountered in (11) in the form of does not
know a student, Fig 3.15. Processing within K4 introduces a new referent and condition for a
student. The negated sub-DRS K4 is immediately subordinate to K2 and in turn subordinate to
KI, introducing another subordination relation K4 < K2 < K j . No link can be made between K3

and K4 , as they are not involved in the same subordination relation. This means that the referent s
is not accessible from K3 the pronoun she of K3 cannot equal s. There are now two subordination
relation governing referent set formation, K3 < K2 < K [and K4 < K2 < K j.

Fig 3.15 Processing the DRS.

The DRS K3 contains the sentence she is a bad teacher. Processing normally starts by trying to
find a suitable referent for the pronoun she using the referent set presented by the accessibility
rules. This time the author is going to ignore the rules of suitability and accessibility by assuming
that any referent can form a link with K3 . A referent u is introduced to represent the female
pronoun she, Fig 3.15. Without the constraints of suitability and accessibility the referent u may
equal any other referent i.e. ,v, p m or t. Either one of the referents m or t can be omitted from the
set as they are exactly the same, and p is also equal to m, this leaves the referent set {s,m}. Since
no rules of suitability are to be used, we cannot distinguish between referents, therefore two DRSs
must be produced one with u = s as a condition and another with the condition u = m. The final
indefinite a bad teacher introduces a new referent and condition into each of the two DRSs.

We will now examine each of these equality conditions, starting with u = s. Semantically it is
implausible to let u = s as the reading is counter-intuitive, (11). This condition would not have
been admitted by the subordination relation as there is no link between DRSs K3 and K4, where s
is declared. Reintroducing accessibility and suitability, the subordination relation produces the set

47

{p,m,t} but both p and t equal to m, so the set may be reduced to {m }. This results in the
condition u = m which generates a single DRS, as in the final analysis only one referent was
suitable.

Fig 3.16 The completed DRS.

3.2.4. Proper Nouns and Sub DRSs.

With the introduction of sub-DRSs processing has become more complicated. Referents may not
always be accessible from a particular place in a sub DRS. In certain cases these referents must be
made available.

(12). I f a woman loves him, then Pedro courts her.
This is a conditional sentence which introduces two sub DRSs linked by implication. Part A
contains an indefinite NP which is replaced by a referent w and condition woman(w). There is also
a male pronoun in part A, that introduces a referent x and a condition x - a suitable referent.
DRS K2 has access to its own referents and those of K j , giving the set (w), but w cannot act as
an antecedent for x as they have different genders. At present there is no antecedent available for

Part B Pedro courts her contains a proper noun that is replaced by referent p and condition
pedro(p). The sentence becomes p courts her. The female pronoun introduces a referent h, and
may choose an antecedent from the referents of K3 , K2 or Kj i.e. {p,w,x} where p is male, w is
female and x is male. The only suitable referent is w, this gives the condition h = w.

48

The referent x is a male referent and needs a male antecedent. There is a male referent p in K3

which cannot be accessed by K2 . The antecedent exists but cannot be accessed from the present
position, Fig 3.17

DRS K 1
W, X P h

a woman loves Pedro courts her
him

woman(w) = > Pedro(p)
p courts her

w loves x x = ???? K 2 p courts h
h = W

Fig 3.17 The DRS, with no antecedent for referent x.
This occurs in many discourses and sentences, as (13) and (14) illustrate.

(13) George does not like a woman. She loves him.

The discourse referent for a woman, is nested in the negated DRS and cannot act as an antecedent
for She. Kamp and Reyle (Kamp & Reyle 1993) assert that in some cases referents and
declarations for indefinite NPs should be placed in the principal DRS. Indeed if this was so, a
referent would be readily available for the pronoun She. The author does not agree with this, if this
idea was followed to its conclusion there would be no referents or declarations of any sort
remaining in any sub-DRSs. Every declaration would be eventually moved into the principal DRS
to cover some unusual sentence structure that could occur.

(14) I f she loves him, Alice will marry Felix.
Another example is that of (14), where the referents of she and him, cannot access Alice and Felix
in the consequent DRS. This problem can be solved by putting all conditions and referents of
proper nouns, wherever they occur, into the principal DRS so they can be readily accessed from
any sub DRS. Kamp and Reyle (1993) assert that in similar situations indefinite NPs can be
promoted to the principal DRS. The author does not agree with this ad hoc solution, as what stops
us declaring everything in the principal DRS, thereby eroding the whole DRT hierarchical
structure? Such a treatment of proper nouns is, however, justified as unlike indefinite NPs, proper
nouns are really global variables that refer to their bearer, and will be referred to many times in a
discourse, and as such should be placed in the principal DRS.
Applying this solution to the DRS of sentence (12) yields Fig 3.18, with an antecedent readily
available for x. When the proper noun Pedro is encountered, the referent p and condition pedro(p)

49

are introduced to the principal DRS. The sentence Pedro loves her is changed to p loves her in
the sub DRS K3 with processing continuing as normal.

pedro(p)
W, X

a woman loves p courts her
him = > p courts h

woman(w) h = w
w loves x x = p k 2

DRS K 1

Fig 3.18 Moving the referents and conditions of proper nouns into the principal DRS

3.2.5. Quantified sentences.

Quantifiers like most, every, some and few introduce a new sub-DRS template called the duplex
condition. This is the condition that will be investigated here, and developed for all quantified
sentences. It consists of two set defining expressions in the form of sub DRSs connected by a
quantifier and embedded in the main DRS.

Fig 3.19 The duplex condition template.
The DRS K2 contains the restrictor of the quantified sentence, with the scope in K]. The
quantifier of the template is the quantifier that is encountered in the sentence, with the referent
being the principal discourse referent of the sentence, i.e. the referent that occurs after the
quantifier.

The princip al referent s c op e

(15). Every man who owns a dog? walks it.

restrictor
In (15), introduction of the duplex condition is triggered by the quantifier Every. The restrictor is
put in K2 with the scope in K3 . The main referent is passed into the scope to form the second
sentence man walks it, with the referent and condition for man are introduced in DRS KI.

50

The subordination relation is K3 < implying that the DRS K3 has access to the referents of K2

and the principal DRS the duplex condition is embedded in. DRwS K2 has access to its own
referents and those of the principal DRS. The partial DRS for sentence (15) is represented in Fig
3.20.

/ \man who / svery\ man
owns a " \m a n / walks itdc-g k2 s / k

Fig 3.20 Breaking up the quantified sentence.

The restrictor is tackled first introducing a referent and condition in K2 for the indefinite man, this
referent replaces man everywhere it occurs in the duplex condition. The indefinite a dog
introduces a new referent y and condition dog(y). The sentence of K2 is irreducible so processing
moves to K3 , with the pronoun it treated as normal.

Fig 3.21 The completed DRS.
Proper nouns occurring in a quantified sentence are declared in the principal DRS, take for
example the sentence (16). The proper noun is declared in the principal DRS. This apparently
leaves an empty DRS, Fig 3.22. such a structure is not satisfiable or derivable from the
implementation.

(16). Eve ry John 1 kno w is rich.

Fig 3.22 Proper nouns and duplex conditions, (16).

51

3.2.6 Disjunction.
Disjunction is where one or more clauses of a sentence are joined together with or. The function
of or is to show alternatives, where one clause of the sentence will be true. The clauses of a
disjunction are know as disjuncts. There are three different types of disjunctive sentence, all of
which will be discussed below.

3.2.6.I. Sentential clauses.

(17). Mary will marry George, or he will leave London.
In (17), or acts as a connector between the two sentences presenting a set of alternatives. The
representation of such a sentence must list all the alternatives without making a choice between
them. This is achieved using a sub-DRS template which places each alternative or disjunct in a
DRS joined to the next alternative with an V indicating that the truth conditions of the sentence
either fit the description given by DRS], or DRS2 ,-.-.or, DRSj.

Mary will marry George

K2

he will leave London.

K3
DRSK1

Fig 3.23 Breaking the sentence into disjuncts.
The representation of a disjunctive sentence presents the alternatives in DRSs each one joined by a
V. No disjunct is subordinate to any other disjunct, each alternative is isolated from all the other
alternatives, and cannot have access to the referents of any other disjunct. A disjunctive sub-DRS
Kj has access to the referents of Ukj and the referents of the principal DRS, but there is no access
between disjunctive DRSs. Proper nouns, wherever they occur, are embedded in the DRS, as
stated in 3.3.4. Processing continues as normal within each disjuctive sub-DRS, with the limited
set of suitable referents available.

x, y, z
Maryfx), George (y), London(z)

x will marry y
uu will leave London u = y

u will leave z______
K 2 K3

DRSK1
Fig 3.24 The completed DRS with disjunctive sub DRSs.

52

3.2.6.2 Non-Sentential Disjunctions.
The only constraint on the constituents that can be combined using or is that the constituents
should be of the same grammatical category.

Disjunctive NPs.
The triggering mechanism for the disjunctive NP construction rule is a list of NPs found in the
parse tree as in Fig 3.25 (Kamp and Reyle 1991).

N Pl, N P 2 ,... or NPi
Fig 3.25 The trigger mechanism for the disjunctive NP construction rule.

The construction rule for disjunctive NPs states that each NP of parse tree (1) should be re-written
and processed as Fig 3.26.

Fig 3.26 Applying the construction rule to (1).

(18). A bag, a book or a record is the present.
Sentence (18), has the same structure as parse tree (1) of Fig 3.25, therefore processing will
commence with the formation of newly synthesised sentences as in Fig 3.27. These sentences are
placed in sub-DRSs. The sentences are analysed as normal with no sharing of referents between
the sub-DRSs as a sub-DRS Kj has access to the referents of Ukj and those of the main DRS
only.

53

Fig 3.27 The completed disjunctive DRS.
Sentence (18) gives a list of options for the present. The present is a unique item, and such
uniqueness should be represented in the sub-DRSs. In each of the disjunctive DRSs the present
introduces a different referent and condition i.e. present(y), present(w) and present(v). There is no
extra condition to state that y,w and v are equivalent, and Kamp and Reyle assert that:

It can be easily verified that this has no undesirable effect for the truth
conditional content o f the resulting DRS: its truth conditions are the same as i f
we had introduced only one common discourse referent for the two
occurrences. (Kamp & Reyle 1993).

The author accepts that the resulting truth conditions are exactly the same whether different or
common referents are used. However, the use of different referents to represent the same object,
without the addition of an extra equivalence condition causes great computational problems. How
can the computer know that present y,w and v represent the same present if it has not been
explicitly stated?

Adding different referents to each disjunctive DRS to represent the same noun, results in a
computational explosion with each referent treated separately in subsequent processing. This
duplication is crazy considering the different referents represent the same noun. The strangeness of
this approach is further highlighted by sentence (19).

(19). George, Amanda or Sue know Ada

George knows V Sue knows V Amanda knows
Ada Ada Ada

Fig 3.28 Breaking sentence (17). up into separate sentences.

The proper noun Ada appears in the three sub-DRSs Fig 3.28, each of which will yield its own
discourse referent and condition. Producing multiple referents and conditions for a noun has no
effect on the truth conditions of a sentence. As for Fig 3.27, the DRS of Fig 3.29 has the same
truth conditions as a DRS with a common referent and condition for Ada.

x, y, w, U, V, z
George(x), Ada(y), Sue(w), Ada(u), Amanda(v), Ada(z)

George knows
Ada

x knows y
V

Sue knows Ada

w knows u
Y Amanda knows

Ada
v knows z

Fig 3.29 Multiple referents and conditions for the proper noun Ada.

Again the author does not agree with Kamp & Reyle's (Kamp & Reyle 1993) treatment of the
non-disjunctive part of these sentences especially when proper nouns are involved. Proper nouns,
in this case Ada, refer to their bearer the same unique bearer in each case. A unique referent and
condition should therefore be introduced to represent a proper noun. A possible solution is to
analyse the non-disjunctive part of disjunctive sentences before the synthesised sentences are
formed, thereby eliminating duplication. Applying this to sentence (17), the existing sentence is
changed by construction rules to form a new sentence which the synthesised sentences are formed.

This non-disjunctive VP
forms the main part of the synthesised sentence

(18). bag, a book or a record is the present.
Construction rules introduce a new referent x and condition present(x) for the present changing
(18) to (20).

(20). A bag, a book or a record is x. the present(x).
The new sentences are synthesised and introduced to disjunctive sub-DRSs with the condition the
present(x), Fig 3.30. Processing continues as normal within the sub-DRSs.

X X X

the present^) the present(x) the present(x)

A bag is x V A book is x V A record is x

Fig 3.30 Introducing a common referent for the non-disjunctive NP.

55

A similar approach can be taken for proper nouns (20), with the discourse referent and condition
introduced to the main DRS, and the original sentence changed accordingly. Parse tree (2) in Fig
3.25, is processed from left to right as normal, with the list of NPs introducing the sub-DRSs when
encountered.

(21). George lives in Durban, London or Sydney.

Sentence (21) introduces a new referent x and condition George(x), changing the sentence to x
lives in Durban, London, or Sydney. The verb owns is left untouched. The list of NPs Durban,
London, or Sydney triggers the introduction or sub-DRSs with synthesised sentences of the form
of Fig 3.31 present in each DRS.

S
/ \

NP

V NPi

Fig 3.31 The parse tree of the newly constructed sentences, and the DRS that results from
applying the construction rule to (2).

In Fig 3.31 NPi stands for each of the elements in the NP list. Following this procedure with
sentence (21) produces a new DRS as in Fig 3.32. As usual the referents and conditional
declarations of proper nouns Durban, London and Sydney are placed in the main DRS.

x, y, z, w
George (x)

x lives in Durban, London or Sydney
Durban(y), London(z), Sydney(w).

x lives in y V x lives in z V x lives in w

Fig 3.32 Processing a sentence with disjunctive NPs in the VP.

Other types of disjuncts.

The trigger parse tree of the final type of disjunct is in Fig 3.33, where X is not an NP. The tree of
sentence (22) contains this trigger.

56

(22). John loves or hates Judy.

XI X2 X3 or Xn

Fig 3.33 A disjunctive parse tree, where X is not an NP.

This parse tree introduces a set of sub DRSs each of which contains a synthesised sentence of the
form of Fig 3.34.

Processing of sentence (22) is as normal introducing a new referent and condition for John, with
the sentence becoming x loves or hates Judy. The disjunctive trigger rule is fired by the verb list
loves or hates, introducing the sub DRSs with the newly synthesised sentences. The author
chooses to introduce only one referent and condition for Judy as discussed in the preceding
section, y and Judy(y), changing the sentence to x loves or hates y. Processing continues as
normal within the sub DRSs, Fig 3.35

The revised construction rule for disjunctive NPs proposed by the author will be used extensively
in this thesis. This rule analyses the non-disjunctive part of a sentence only once, this partial
analysis is then used in the generation of the synthesised sentences for each disjunctive DRS
(illustrated in examples of this chapter). This approach avoids the production of more than one
referent for the same entity, which causes problems computationally.

S

Fig 3.34. The synthesised sentence that goes into each of the sub DRSs

John(x), x loves Judy

Judy(y)
V.

x loves y ▼ x hates y

Fig 3.35 The completed DRS.

57

3.2.7 Conjunction.
Conjunction is where one or more clauses of a sentence, are joined together with and.
There are two types of conjunctive clause, sentential and constituent clauses. These may
be found nested in larger sentences or may in some cases form a sentence.

3.2.7.1 Sentential clauses.
(23). Anne is going to the shop, Jill is going to the school and Ada is cooking at home.

Sentence (23). contains sentential clauses, and is made up of three different sentences. The
truth conditions for these type of sentences are simple, the sentence made of clauses
S],S2 ,...and Sx is true if each one of the sentences S],S2 ••■•Sx are true. The construction
rule proposes the processing of each sentence, starting with S; and i = 1. Care must be
taken to fully process each sentence S[before moving onto the next conjunct Sj+ i, in
order to avoid the predicament of anaphoric pronouns in S[being allowed to refer to
referents of Sj (where j > i) as sentence (24) illustrates.

(24). He bought a book, Sue left the shop and George waited outside.

(25). George bought a book, he waited outside the shop, and Sue left soon after.

In (24), the pronoun He cannot be allowed refer to George as the meaning of the sentence
would be completely lost. To avoid such referencing, conjunctive sentences are processed
one at a time with clause 1 fully processed to irreducibility before clause 2 is considered.
The overall sentence is broken into component clauses, with each numbered increasingly
with processing starting at clause 0. Clause 1 is only considered when clause 0 has been
fully processed. Sentence (25) illustrates the point that George, in this case, can act as
antecedent for he. Antecedents can be found readily from earlier conjuncts, but no linkage
can be allowed between pronouns of an earlier conjunct and referents of a later conjunct.
Breaking sentence (22). up into its respective clauses, and numbering each clause
increasingly yields the DRS of Fig 3.36. The next step in the construction process involves
the normal processing of each clause one by one, only considering clause j+] when clause j
has been fully processed.

58

I

< Anne is going to the shop 0 >
< Jill is going to the school 1 >
< Ada is cooking at home 2 >

Fig 3.36 Breaking sentence (19) into clauses.

Processing begins with clause 0. Proper noun Anne introduces a new referent and
condition, the definite NP introduces a new condition and referent (the final step of
definite NP rule is ignored as no suitable referent is readily available). This clause is now
irreducible, i is incremented and processing moves to clause 1 .

___________________________ ^ s ___________________________

anne(a)
the shop(s)

a is going to s
{ processing moves to clause 1 }

< Jill is going to school 1 >
< Ada is cooking at home 2 >

Fig 3.37 Processing the clauses.
When clause 1 is fully reduced, processing moves onto the final clause 2 giving the
complete DRS of Fig 3.38___________________________________

_____________ a, s, j, x, y_____________
anne(a),

the shop(s)
a is going to s

jill(j), the school(x)
j is going to x

{ process the final clause }
ada(y)

________ y is cooking at home _

Fig 3.38 The completed DRS for a conjunctive sentence with sentential clauses.

59

The numbering of clauses works well with simple conjuncts. Unfortunately things are not
always as straightforward, as sentence (26) from Kamp and Reyle (1993) illustrates, hi
this sentence the conjunction is part of a larger conditional clause.

(26). I f Mary likes him and she owns a tape recorder, Fred will get it.

The anaphoric pronoun him of clause 1 must be linked to a suitable referent of the
discourse. A suitable referent is available in the consequent of the conditional, but at
present is inaccessible to the anaphoric pronoun of the conjunctive condition, as
conjunctive clauses must be processed in order and before anything else.

The DRS construction rule must be changed at this point to introduce DRS conditions 5,
with indices for each clause of a conjunction, and 0 markers for any other non conjunctive
clause; indicating that these 0 clauses may be processed at any time. Given this, we are
able to infer that him refers to Fred in (26) as the DRS of Fig 3.39 - 3.40 taken from
(Kamp and Reyle 1993) implies.

< Mary likes him {6,1 } > < Fred will
< She owns a tape ------------ get it 0 >

recorder (3,2)>

Fig 3.39 Breaking the sentence up into its respective clauses, numbering each.

Processing may start with: the first clause {5,1}.
the consequent the 0 clause,
or part of either clauses.

0 clauses may be analysed at any time during the construction process, making the
referents these clauses introduce available within the respective sub-DRS or main DRS.
The male pronoun of {5,1} requires a male antecedent which is not available at present. A
0 clause may be able to provide the needed antecedent so partial processing starts on the
only 0 clause available yielding Fig 3.40. The referent and condition of the proper noun
Fred are as always put in the main DRS, unlike other referent types which are always

60

declared in the DRS in which they are encountered. Clause {9,1} can now readily access
the referent y.

x, y
< Mary (x) {5,1 } > < Fred(y) 0 >

z< x likes him (5,1 } >
< x likes z {9,1 } >
< z = y {5,1 } >

< She owns a tape
recorder {5,2}>

Fig 3.40 Processing a 0 clause, produces an available suitable referent for him.

Clause {5,1} is now irreducible, so processing continues as normal incrementing the
clause count moving onto {5,2}. The new DRS construction rule proposes a processing of
sentences, with non conjunctive clauses labelled as 0 clauses with conjunctive clauses
labelled, numbered and processed incrementally. Sentence (23) will be broken into clauses,
each one numbered and labelled with DRS clauses 5 to show it is a conjunctive sentence.
Processing will then continue as shown in Fig 3.36 - 3.38 with the added DRS condition 5.

3.2.7.2 NP clauses

(27). John, Sue, George and Mary play tennis.

This sentence has two meanings both of which are handled by DRT, the first one
(discussed in this section) that John, Sue, George and Mary are tennis players and the
second one, which will be investigated in section 3.4.1.1, that they play tennis with each
other. This second type of conjunctive clause is made up of a series of NPs, NP^,NP2 ,
NP3 ,....and NPj with a parse tree of the form:

S
/ \

NP VP
/

NPl,NP2>NP3v-and NPj

>

61

As shown above the construction process demands that clauses should be broken up,
numbered, labelled and processed incrementally, i.e. NP j VP, NP2 VP,...NPj VP
incrementing i as before.

< John plays tennis {5, 1 }>
< Sue plays tennis {5, 2}>

< George plays tennis {0, 3}>
< Mary plays tennis {9, 4}>

Fig 3.41 Separating the NP clauses.

There are no 0 clauses present in sentence (27), so processing continues within each
clause i until that is irreducible when processing moves onto the next clause i + 1. The
sequential information {5, i} in the DRS, can be dropped when processing is complete.

________ x, y, z, w_____________
< John plays tennis {5, 1 }>

John(x)
< x plays tennis {5, 1 }>

< Sue plays tennis {5, 2}>
Sue(y)

< y plays tennis {5, 2 }>
< George plays tennis {3, 3 }>

George(z)
< z plays tennis {9, 3}>

< Mary plays tennis {5 ,4}>
Mary(w)

_______ < w plays tennis {5,4}>_______

Fig 3.42 The first reading of sentence (26).

62

A mixture of disjunction and conjunction within a sentence can be handled easily by DRT.
The respective construction rules are applied one at a time, until the conditions within the
DRSs are irreducible.

3.3. The Plural - Indefinite, Definite and Quantified Plurals.
Any natural language processing system will be severely limited in its
performance unless it incorporates a systematic way o f dealing with
plurality. (Linkl983)

Although Link (1983) may overstate the need for a systematic plural treatment, the DRT
plural proposal is based on Link's lattice theory approach (Link 1983), and is particularly
concerned with plural pronominal anaphora. This improves on the Predicate Calculus
approach which maps single objects to individuals, and sets of objects to predicates.
Lattice theory uses lattices and rules of algebra. A lattice L is a non-empty set, which has
two binary operations defined across it join and meet such that all elements of L are:

Associative: x and (y and z) = (x and y) and z.

x or (y or z) = (x or y) or z.

Commutative: x and y = y and x, x or y = y or x.
Idempotent: x or x = x x and x = x
Absorptive: x = x or (x and y) x = x and (x or y)

Fig 3.43 Lattice < L, c>

63

The lattice L presented in Fig 3.43 has upward arcs that represent the subset relation, c
e.g. {a} c {a,b}, {b,c} c {a,b,c} and so on. Plural NPs denote sets of individuals, and
are represented in the domain of individuals, which is modelled as a semi-lattice with the
join operation, e.g. Fig 3.43 illustrates the possible set combinations and permutations
found in the domain of individuals a, b and c. A semi-lattice is a non-empty set equipped
with one binary operation, all elements of which are commutative, associative and
idempotent. The author will explain how lattice theory is incorporated in DRT in the next
sections.

Until now the only referent available has been the singular or atomic discourse referent.
The non-atomic discourse referent represented by a capital letter is now introduced to
represent plurals and sets of objects. These referents may be introduced by plural NPs e.g.
the men, the televisions, that introduce a non-atomic discourse referent with a
corresponding condition. The plural NP the men introduces a new referent X and
condition the men(X), with the existing sentence changed to replace the men with X.

Plural pronouns also introduce non-atomic discourse referents. Discourse referents that
serve as antecedents for singular pronouns are typically to be found among those already
present in the DRS when the pronoun is encountered. This is not the case with plural
pronouns and their antecedents, whose referents do not exist already in the DRS and need
to be "synthesised". Plural pronouns do not have one single referent acting as an
antecedent but a set of referents. Existing discourse referents are used to synthesise the
set, which is given the name of a newly introduced non-atomic discourse referent. In this
way the elements of the set that the plural or non-atomic referent represents may be
gathered together.

Kamp and Reyle (1993) assert that within strict DRT, non-atomic discourse referents
should be accompanied by the condition non-at(discourse referent) and represented by a
capital letter, with atomic discourse referents represented by the condition at(discourse
referent). They also assert that on occasion these extra conditions may be omitted, with
non-atomic referents represented by a capital letter, and atomic referents represented by a
small letter. The author agrees with this omission, and asserts it should be permanent as
the extra conditions are superfluous, and within a computational environment could lead
to confusion.

64

3.3.1 Methods of set formation.

There are many different methods of set formation, of which summation and abstraction
are two. Representing plural pronouns, e.g. they and them, involves the introduction of
new noil-atomic discourse referents. The referents must find antecedents from the set of
available referents of the DRS. A non-atomic discourse referent can only have another
non-atomic referent as an antecedent. This antecedent is generated by set formation
techniques that introduce a new set which is made equal to the non-atomic discourse
referent introduced by the plural pronoun.

3.3.1.1 Summation and its application to plural NPs.

Link (Link 1983) presents a semantics of plurality, treating groups as distinct individuals
in a lattice model instead of sets, and assumes there is a structural domain of discourse

where apart from regular atomic individuals there are complex objects
or individual sums (i-sums) serving as denotations fo r plural
expressions.

(Cooper et al 1994)

This i-sum or least upper bound (lub) is an operation on two individuals of a lattice. It is
the union of the individual denotations into a new denotation representing the group e.g.
in Fig 3.43, lub({a,b}, (b,c}) = { a,b,c }. Taking another example, imagine Sally and
John are nodes of a lattice, then the i-sum of these two individuals is the new denotation
of the union of Sally and John. Link proposes sufficient conditions to allow the
interpretation of individuals as a collection by algebraically combining the denotations of
the said individuals.

This operation is known as summation in DRT, and can be applied at any construction
stage where there exist discourse referents that can be summed together. The method
combines the referents of a number of different NPs into a single set, giving this set the
name of a newly introduced non-atomic discourse referent e.g. Z = u © v , where u and v
are previously defined atomic discourse referents, and Z is the newly synthesised non-
atomic discourse referent. We will discuss how summation is applied to sentences (27) and
(28).

65

(27). John, Sue George and Mary play tennis

The construction rule leading to Fig 3.42 accounts for the reading of sentence (27) as an
action each individual participates in on their own. There is however another reading, that
which states that John, Sue, Mary and George are playing tennis with each other, i.e. the
set of NPs are performing the action. A set consists of a group of objects and must be
represented by a plural (or non-atomic) discourse referent. Summation combines the
referents of a DRS into a set giving it the name of a new non-atomic discourse referent.

____________ x, y, z, w, Z____________
< John plays tennis {3,1 }>

John(x)
< Sue plays tennis {3, 2}>

Sue(y)
< George plays tennis (3, 3}>

George(z)
< Mary plays tennis {3, 4}>

Mary(w)
Z = x © y © z © w

____________ Z play tennis____________
Fig 3.44 An application of Summation - introducing the second reading of (27).

The construction rule for conjunctive NPs allows the interpretation of the NPs collectively
as a set, but does not force this interpretation on us. The referents of the conjunctive NP
can be directly copied into a summation set which is named after a new non-atomic
discourse referent i.e. Z = x ® y Q > z ® w where x is John, y is Sue, George is z, and w is
Mary; the respective elements of the conjunctive NP. The action of playing tennis is now
performed by the set Z, Fig 3.44. Any subsequent sentence containing a plural NP, and
possibly requiring a non-atomic antecedent e.g. they enjoy themselves, will find one readily
available in Fig 3.44.

(28). Peter works in Dublin. Sue lives in Galway. They meet in Athlone.

66

Conjunctive clauses are not always present in discourse to provide a ready made set. The
summation construction rule presented by Kamp and Reyle (Kamp & Reyle 1993) does
not give any guidelines as to what type or how many referents should be summed to form
the summation set. They simply assert that summation can be applied at any stage to
group more than one referent together. The number of referents involved in any one
grouping is at the implementor's discretion, this produces an unsatisfactory computational
algorithm as (28) will illustrate.

x, y, w, u
Peter works in Dublin

Peter (x)
Dublin(y)

x works in y
Sue Eves in Galway

Sue(w)
Galway(u)

w lives inu They meet in Athlone
Fig 3.45 The partial DRS of (28).

The first two sentences of the small discourse of (28) introduce the new referents x,y,w,u
and corresponding conditions, Fig 3.45. The third sentence of (28) contains the plural
pronoun They which introduces a new non-atomic discourse referent V, and the condition
V = a suitable non-atomic discourse referent Fig 3.46. At present there is no other non-
atomic discourse referent present in the DRS so one must be synthesised from the existing
atomic referents of the DRS.

There are four referents x, y, w and u representing Peter, Dublin, Sue and Galway in the
DRS. Summing them together results in Z = x © y f f i z f f iw where Z is a possible non-
atomic discourse referent formed by summation. Allowing They to be represented by the
non-atomic set Z of Peter © Dublin © Sue © Galway makes no sense, especially since the
set representing They should intuitively be a set of humans i.e. Peter © Sue.

Outside the conjunctive clause framework, Kamp and Reyle (Kamp & Reyle 1993) do not
provide us with the tools to discriminate between referents so that set inclusion or
exclusion can be established. The author proposes building this into DRT, with summation
being applied to form sets of two types: human and non-human referents, thereby solving

67

the problem of set formation. The production of a human and non-human sets by
summation will account for a broad band of examples.

The author proposes that a single apphcation of summation should produce the two sets,
with each set type incorporated into a DRS. If a DRS contains non-human and human
referents, at its simplest a single application of summation will result in two different DRSs
being developed. The two set groupings of discourse (28) are Galway © Dublin and Peter
© Sue, which one will we choose to represent the plural pronoun They ? The author
asserts that both sets should be incorporated into DRSs, thereby producing two different
DRSs for (28) both shown in Fig 3.46.

(1).

A non-atomic
referent is
introduced for
the plural
pronoun

Hie set is formed
by an application
of Summation

x, y, w, u, a, V, Z
Peter works in Dublin

Peter (x)
Dublin(y)

x works in y
Sue lives in Galway

Sue(w)
Galway(u)

w lives in u
They meet in Athlone

V meet in Athlone
V = suitable non-atomic

referent.
 Z = x © w

V = Z
Athlone (a)

V meet in a

v x, y, w, u, a, V, Z
Peter works in Dublin

Peter (x)
Dublin(y)

x works in y
Sue lives in Galway

Sue(w)
Galway(u)

w lives in u
They meet in Athlone

V meet in Athlone
V = suitable non-atomic

referent.
Z = y © u

------------------ V = Z
Athlone (a)

V meet in a
A non-atomic referent can only have
another non-atomic as an antecedent.

Fig 3.46 Finding the antecedent of a plural pronoun using summation.

Although DRS (2) of Fig 3.46 is implausible in this case, as how can Galway + Dublin
meet in Athlone?, development of the DRS will continue within the implementation until a
failure is encountered e.g. failure to find a suitable referent is encountered, or the DRS is

68

outputted as a possible DRS. Indeed changing sentence (28) slightly leads to a plausible
reading for both sets W of Fig 3.46, (29):

(29). Peter works in Dublin. Sue lives in Galway. They are beautiful.

3.3.1.2 Abstraction and its application to plural pronouns.
Abstraction works on duplex conditions (introduced in section 3.3.5), to form sets. This
method unites the restrictor and scope of a duplex condition into one set, so that the set of
objects in this set can be readily referred to.

scope The main discourse referent
(30). George has found every present Ada wants. They are on the bed.

restnctor
The first sentence of (30) is represented by the duplex condition of Fig 3.47.

restrictor

Ada(y), George (x)
w

Ada wants a George has
present / every \ found v/
y wants a 'v W

present x has found wy wants w
present(w)

scope

Fig 3.47 The DRS for sentence (1), of (28).

Moving onto the second sentence of (30), a non-atomic referent T is introduced to
represent They, an antecedent for which must now be found. They can represent every
present Ada wants and George has found. Summation cannot generate this meaning, as no
union of referents would let they refer to every present Ada wants and George has found.
A duplex condition cannot be used either, as there is no quantifier in the second sentence
of (29). Abstraction is applied, forming the new set of objects by uniting the referents and
conditions of the restrictor and scope of a duplex condition. A sigma sign is put outside
this union to represent the sum of all such conditions together with a referent chosen from

69

the new set of referents, this set is then given the name of a new non-atomic discourse
referent, as in Fig 3.48

w
W= I w present(w)

y wants w
x has found w

Fig 3.48 Applying abstraction to the duplex condition of Fig 3.46
The condition of Fig 3.48 says that the newly introduced discourse referent W stands for
the set consisting of all individuals w which satisfy the conditions of the DRS beside the
summation sign. Abstraction has made a non-atomic discourse referent available to the
plural pronoun They, with the condition T = W linking the anaphor and antecedent.
Processing continues as normal with the introduction of a new referent and condition for
the definite NP the bed.

restrictor

x,y, W ,T, b
Ada(y), George (x)

w
Ada wants a George haspresent / every \ found wy wants a \ w /
present x has found wy wants w \ v/
present(w)

w
W = Z w present(w)

y wants w
x has found w

They are on the bed
T are on the bed

T = W
the bed(b)T are on b

Fig 3.49 The completed DRS with an antecedent formed by abstraction.

Another reading of (30) is equally likely, this is the reading supplied by summation which
sums all referents not involved in the duplex condition together. As discussed in the

70

3.4.1.1, summation sums human and non-human referents into two sets. In this case there
are no non-human referents available outside the duplex condition, and therefore no non­
human summation set available. The only summation set available is the human summation
set which is W = y © z, and produces the DRS of Fig 3.50.

x, y, "W, T, b
Ada(y), George(x)

w
Ada wants a George has
present / every \ found w
y wants a
present x has found wy wants w \ /
present(w)

W = y© x
They are on the bed

T are on the bed
T = W
the bed(b) __________T are on b_____ __________

Fig 3.50. Producing a non-atomic referent W by summation.

3.3.2 How many meanings can a sentence have?
Sentences containing plural NPs are often ambiguous, leading to many different
interpretations. This problem has been tackled by the star convention of Kamp and Reyle
(Kamp & Reyle 1993) which treats a predicate with a star superscript (e.g. lawyer*), as a
predicate that can refer to both singular and plural objects (i.e one lawyer or a group of
lawyers). The star convention is not discussed in this thesis as it is not included in the
implementation.

These different approaches lead to many divergent representations of the same sentence,
leading to a combinatorial explosion as every possible representation of every sentence of
the discourse is produced. Two such representations are the collective and distributive
readings of a sentence, which may be obligatory or optional in either case. Sentences (31)
and (32) have both collective and distributive readings which will be discussed in the
upcoming sections.

71

(31). The women bought a bouquet o f flowers.
(32). The lawyers hired a secretary (Kamp and Reyle 1993).

All interpretations of sentences containing plural NPs begin with the introduction of a non-
atomic discourse referent to represent the NP. The decision as to which reading to
develop is taken from here, Fig 3.51 (a) & (b). For sentence (31), the definite plural NP
introduces the condition, the women(W) which uses a non-atomic referent. Sentence (31)
is changed accordingly showing the action the group performed W bought a bouquet, Fig
3.51 (a).

(a) .___________________________________
__________________________ W J __________________________

the women(W)
W bought a bouquet of flowers.

(b) .___________________________________
_______________ W J:_______________

the lawyers(X)
_________X hired a secretary._________

Fig 3.51 Representing the plural NPs of sentences (31) and (32).

3.3.2.1 The Collective Reading.

The author has already discussed collective readings formed by the application of
summation. We will now examine the collective reading of a sentence containing plural
definite NPs. The collective reading of a sentence is the reading that takes any action being
performed as a group action.

The collective reading of sentence (31) is that which states that the women as a group,
participated in the action of buying one bouquet o f flowers. Collectively the women bought
the bouquet. This type of set can be represented by an exhaustive conjunction of the
individuals of the set i.e. by listing all the women in the group, but this is a tiresome
approach. A collective reading is simply represented by introducing a single non-atomic
discourse referent to represent the set as achieved in Fig 3.51 (a). Processing within the

72

DRS continues as normal with the indefinite a bouquet o f flowers introducing a new
referent, condition and changing the sentence to its irreducible form W b o u g h tf Fig 3.52.

__________________________ W J __________________________

the women(W)
W bought a bouquet of flowers

bouquet of flowers(f)
____________ W bought f____________

Fig 3.52 A DRS representing the collective reading of (30).

Collective readings may be optional or obligatory, but may not be represented by a duplex
condition, as the main discourse referent in a duplex condition is atomic whereas it is non-
atomic in a collective reading. Extending the DRS of Fig 3.51 (b) to produce the collective
reading of sentence (32) results in Fig 3.53.

the lawyers(X)

X hired a secretary
secretary (y)

_____________ X hired y._____________

Fig 3.53 A DRS representing the collective reading of (31).

33.2.2 The Distributed Reading.

The distributive reading represents the case where every member of the set performs the
same specified action. In the case of (32), the distributive reading states that each lawyer
out of the set of lawyers hired a secretary of his own. Distributive readings are represented
using duplex conditions. The set of individuals or entities is declared in the DRS first, then
within the duplex condition a member x is chosen to distribute over the set. The scope of
the duplex condition states the action that each member x of the group performed on his
own.

73

The first step in the construction process is the introduction of a non-atomic referent to
represent the plural NP as achieved by Fig 3.51. The distributive reading uses the duplex
condition template, the contents of which will differ according to whether the NP is
quantified or not. In Link's lattice theory [Link 1983], a distributive function D is applied
to the sentences to produce the distributive representation.

This distributive reading represents the case where every member of the set performs the
same specified action. The DRS template for the distributive reading of a sentence is
shown in Fig 3.54.

set X

Fig 3.54 DRS template for a distributive reading.

The general format for the production of a DRS to represent the distributive reading of
quantified NPs starts (as with collective readings) with the declaration of the set, call it X,
representing the plural NP in the main DRS. The scope of the duplex condition picks an
individual x out of the set X, such that every such x performs the action stated in the
restrictor. Analysis continues as normal within the restrictor.

In the case of (32), the distributive reading states that every lawyer out of the set of
lawyers X, hired a secretary. Each member x of the set X performed the action of hiring a
secretary. The restrictor of the duplex condition picks the member x out of the set X, with
every x performing the action specified in the scope i.e. x hired a secretary, Fig 3.55.

74

Fig 3.55 Developing the distributive reading of sentence (32).

Following the same process, the initial DRS representing the distributive reading of
sentence (31), is shown in Fig 3.56

Fig 3.56 Developing the distributive reading of sentence (30).

Processing continues as normal within the scope of Fig 3.55 and 3.56 producing the
complete DRSs of Fig 3.57 (a) and (b).

(a)

75

(b).

Fig 3.57 DRSs representing the distributive readings of sentence (32) and (31).

(33). Three lawyers hired a secretary (Kamp and Reyle 1991)

If an upper limit is specified as to the size of the plural NP e.g. three, four, this may be
specified as a quantifier within the distributive duplex condition, Fig 3.58 or entered in the
DRS, Fig 3.59 and 3.60. Sentence (33) is ambiguous between its distributive and
collective reading, neither is favoured over the other. Interpreting this sentence
distributively; each of the lawyers hired a secretary on his/her own or collectively, the
three lawyers as a set hired a secretary produces different DRSs.

The distributive reading of (33), can be represented in a DRS in two ways. The first way,
represented in Fig 3.58 treats the non-quantified NP like a quantified NP introducing a
duplex condition and treating the Three (the determiner) as a quantifier. The restrictor of
the sentence is put in the first DRS, with three put in the diamond DRS, and the scope x
hired a secretary is dealt with in the final DRS.

Fig 3.58 The first representation of sentence (33) (Kamp & Reyle 1991)

76

The second distributive representation simply specifies the number of lawyers in the set X.
Processing continues as before, with the sentence is changed to X hired a secretary, Fig
3.59.

It is only here _
that the decision
to represent
the sentence
collectively
or distnbutively
is made.

X
lawyer (X)
pq = 3

X hired a secretary
x hired a _ secretary secretaiy(s)

x hired s

Fig 3.59. The second distributive DRS of (33)

Finally the collective reading the size of set X is asserted and represented in Fig 3.60.

lawyer(X)
IXI =3

X hired a secretary
secretary (y)

X hired y

Fig 3.60 The DRS representing the collective reading of (33).

3.3.3 Interpreting plural NPs and pronouns.
Up to now, plural pronouns have introduced non-atomic referents and picked up non-
atomic referents as antecedents. Plural pronouns have always refereed to other plural NPs,
but this is not always the case. As in section 3.3.5 where quantified plural NPs e.g. most
books, few books, introduced atomic referents to the duplex condition; so too do plural
pronouns. There is no hard and fast rule as to what type of referent a plural pronoun will
introduce. They can pick up and introduce atomic or non-atomic discourse referents in

77

discourse, depending on the situation. These circumstances make the treatment of plural
pronouns and NPs much more complicated than that of singular NPs.

Any plural pronoun can introduce an atomic and non-atomic discourse referent producing
two possible DRSs, the only stipulation is that an antecedent be available for the new
referent. If this referent is not available within a DRS, the DRS is improper and
abandoned. The author will now illustrate with examples the sentence types where atomic,
non-atomic and both referent types represent they and produce viable DRSs.

They can refer to an individual as in (34).

(34). Every teacher taught a student they liked.

where each individual teacher taught a student that they themselves liked.

Alternatively they can refer to a set:

(27). John, Sue, George and Mary play tennis. They like it.

In (27), the set representing they must be synthesised to include the individuals John and
Sue, George and Mary. This set synthesis has been discussed in section 3.4.1.1

Another option presenting two alternatives in one is found in sentences of the form of
(35). This type of sentence may be represented distributively or collectively; giving
different referents for they depending on which representation is chosen.

"they" can be interpreted as semantically singular i f the antecedent NP
is not read collectively. (Reyle 1984)

(35). The lawyers hired a secretary they liked.

The referents introduced by they in sentences (34) and (35) will be discussed in the next
two sections. When a plural pronoun is encountered in discourse, an atomic and non-
atomic referent is introduced to represent they producing two possible DRS. An atomic
referent can only have another atomic referent as antecedent, and vice versa for non-
atomic referents. If both DRSs prove to be viable, processing continues within each one.

78

3.3.3.1 They as an Individual variable.
(34). Every teacher taught a student they liked.

This quantified sentence can only be represented by a duplex condition, Fig 3.61. Within
this condition they can introduce an atomic or non-atomic discourse referent; both options
(1), and (2) are presented producing two DRSs in Fig 3.62.

Fig 3.61 The DRS of sentence (30).

Option (1), introduces a non-atomic discourse referent which must find an antecedent
within the duplex condition. No other non-atomic referent is available, so one would have
to be synthesised by summation or abstraction. Summation would unite the referent x and
y letting Z represent the union of teacher and student. This would not make sense, as how
could Z the union of teacher and student, like the same student. Abstraction is dismissed
also, as they occurs within the duplex condition and therefore cannot be made equal to the
union of restrictor and scope. Abstraction may only be used, once the duplex condition to
which it is being applied has been completed, Fig 3.62 (a). The second option, is the only
viable one in this case introducing an atomic discourse referent which requires another
atomic referent as antecedent; this referent is readily found in x, Fig 3.62 (b).

79

(a). Introducing anon-atomic referent for they

(b). Introducing an atomic referent for they
Fig 3.62 (a) and (b), Introducing different referent types for they.

3.3.3.2 They as a plural variable.
This section introduces a sentence of the form of (35), which like Fig 3.63 gives the choice
of atomic or non-atomic referent introduction for they. Only one option is possible at any
time within a single DRS, but both referent types will find an antecedent readily available.

X
the lawyers (X)

x hired a
secretary
secretaiy(y)
x hired y
they liked y

Fig 3.63 The incomplete DRS for sentence (35).

80

The distributive reading representation of sentence (35), presents the different discourse
referent options for they. This representation introduces a non-atomic referent to represent
the plural NP, the lawyers', with the rest of the duplex condition template filled according
to the rules illustrated in section 3.4.2.2, this incomplete DRS is presented in Fig 3.63.

The plural pronoun they can introduce an atomic or non-atomic discourse referent. Only
one of the options can be represented in a single DRS, Fig 3.63 presents both DRSs.

X
the lawyers (X)

X
the lawyers (X)

(a).Introducing a non atomic referent (b). Introducing an atomic referent for they
for they

Fig 3.63 The two DRSs for sentence (35).

DRS (a), introduces an atomic discourse referent z for they, z must find an atomic
antecedent from the set (x), x is chosen. DRS (b), introduces a non-atomic discourse
referent Z which can only refer to another non-atomic referent i.e. X.

In Fig 3.63, the plural pronoun they introduced an atomic discourse referent. We need to
keep the information that this atomic referent was introduced by a plural NP, so that only
such referents can act as antecedents for such plural NPs. This is achieved by marking the
atomic referent with a superscript pi. The pronoun construction rule must be changed to
allow X and to act as antecedents for non-atomic discourse referents. The
distributive template is changed to introduce * as the individual chosen from the set.
Changing Fig 3.63 to include ^ Fig 3.64 is produced.

81

X
the lawyers (X)

pl
x s X

lJL
x hired a
secretary
secretary(y)
x hired y
they liked y
Z liked y
Z = X

X
the lawyers (X)

_L_L
x hired a
secretary
secretary(y)
x hired y
they liked y
z liked y
z = x

Fig 3.64 The DRSs complete with superscript pl.

The same rules apply to other plural pronouns e.g. them, their and these. These plural
pronouns have all the same choices, atomic or non-atomic referent introduction with all
the same representations. The last two sections illustrate the facts that any plural pronoun
can introduce an atomic or non-atomic discourse referent to the DRS. The only stipulation
being, that like refers to like when antecedents are being selected.

3.4 Summary
This chapter introduced the basics of DRT as proposed by Kamp and Reyle (1991). These
principles will be expanded by the author in subsequent chapters; where the proposal is
to model DRT so that a working implementation can be produced. This implementation
will resolve all anaphora that occur within any possible discourse of a limited domain.

82

Chapter 4 Implementation.

83

4.1 Introduction.
The process of implementing Discourse Representation Theory can be divided into two distinct
modules, the syntax and semantics modules. The choice of which parser or grammar to use is left
entirely up to the implementor by Kamp and Reyle (Kamp & Reyle 1993), DRT simply requires a
syntax module to produce a parse tree to trigger the semantic construction rules. This chapter will
outline the mechanisms used by the author to implement the syntax and semantic modules
presently in operation in the implementation of DRT.

4.2. The Syntax Module.
A syntax module for a NLP application comprises of a grammar and sometimes a parser, the
development of each of these will be examined in the upcoming sections. The lexicon and rules for
the implementation are taken from chapters 0 and 4 of (Kamp & Reyle 1993), and can be
examined in more detail in appendix A. The rules are limited to a small domain but cover all
sentential forms of conjunction, disjunction, negation, quantification, indefinite, definite and
quantified plurals as well as relative clauses.

Definite clause grammars (DCGs) are easily translated to Prolog (the implementation language) by
means of an interpreter present in the Prolog language. They prove to be a good starting point for
grammar and parser development since they also contain a parser that works exactly like Prolog
itself. DCGs can be used as recognisers, where a sentence is fed into the grammar and a yes or no
is outputted depending on whether it is accepted or not, or parsers, where the sentence is fed in
and a parse tree is output if the string is accepted showing all the categories the words are related
to. Feature structures may be built into the grammar e.g. gender, number or case, and will be
returned in the parse tree. To output a parse tree the DCG is of the form of Fig 4.1, which
illustrates the structure of some of the rules of the initial DCG.

s(s(N P,V P)) - > s(nogap,s(NP,VP))
s(Gap,s(NP,VP)) —> np(Gender, Number,NP),vp(Case,Gender,Number,VP)

np(Gender,Number,np(DET,N,OPT)) —> det(Number,DET), n(Gender,Number,N),
optrel(Gender,Number,OPT)

np(Gender,Number,np(NP)) --> pn(Gender,Number, N P)
pn(Gen,Num, pn(Gen,Num,PN)) --> [PN], { pn(Gen,Num,PN) }

pn(male, singular ,john)
Fig 4.1 An extract of the DCG containing feature structures which outputs a parse tree.

84

The DCG takes input of the form s(Tree,Sentence,[]) and parses the sentence using a top down
approach, the input s(Tree,[john,smokes],{]) outputs the parse tree of the form:

s(np(pn(male, singular John)),vp(v(fin,intra,sin g,smokes))).

with feature structures associated with each terminal of the grammar. This DCG is extended to
associate a feature structure list with each category, not just the terminal categories. The start rule
is now of the form:

s([s(NP,VP), [num:Num,gap:Gap]], [num:Num,gap:Gap]) —>
np(NP,[case:Case,gen:Gen,num:Num,gap:nogap]),
vp(VP,[fin:Fin,trans:Trans,num:Num.,gap:Gap]).

This time the same input produces a different parse tree with feature structure lists associated
with each syntactic category.

[s([np([pn(mary),[gen:fem,num:sing]]) ,
[case:_,gen:fem,num:sing,gap:nogap]

[vp([v(knows),[fin:fin,trans:intra,num:sing]]),
[fin:fin,trans:intra,num:sing,gap:nogap]]),

[num:sing, gap :J]

As mentioned above, the DCG uses a top down parsing approach as normally used by Prolog,
which will be discussed in the next section.

4.2.1. Top Down Parsing.

Top down parsers execute a left parse deriving sentential form by expanding the symbol found on
the left hand side. They start with the start symbol S and find rules that apply to it, expanding the
symbol to other categories, e.g. S —> NP VP, which continues until all the non-terminals are
converted to terminals. These parsers are also known as hypothesis driven parsers in that they
explore a particular derivation in the belief it is right until they meet failure or success. They also
parse in a depth first manner, visiting every sentential form of the derivation tree in a single vertical
path. Four rules are used to implement top down parsing.

85

The initialisation rule - this introduces the start symbol S, that will be expanded in the parse.
The success rule - this is where all the terminals of the sentence have been derived from the S
symbol, and the string is empty.

The predict rule - as each step of the parse introduces a new non-terminal symbol, this rule
decides which grammar rules should be applied to expand these non-terminals in the hope of
finding the rule that will lead to a terminal present in the string.

The pop rule - if a non-terminal symbol of the grammar has been fully expanded and leads to a
terminal present in the string, change the string accordingly by removing the terminals. Work will
now continue on the modified string.

Taking the simple grammar, S —> NP VP, NP—>John, VP —» V, V —> smokes, a top down
derivation will be derived and represented in Fig 4.1 in category sequence based notation.

Category list String

8 John smokes

(initialisation rule - introduces the start symbol)
S John smokes

(predict rale - expands the S symbol, S —» NP VP)
NP VP John smokes

(pop rule - NP —> John, remove this terminal from the string
and the non-term inal from the category list)

VP smokes

(predict rule, expands the VP category)
V smokes

(pop rule - V —> smokes, remove smokes from
the string and V from the category lis t)

e £

Fig 4.1 The Top down derivation of John smokes.

86

categories. These parsers are also known as shift reduce parsers due to the method of replacing
words by categories in the string. There are three rules in bottom up parsing:
The success rule - when the empty string e is in String and the S symbol is in the Category list,
this is the success state and parsing stops.

The shift rule - this rule captures the relationship between non-terminals and terminals i.e.non-
terminal —» terminal. The rule works by removing non-terminals from the string, and introducing
the category they belong to in the category list.

The reduce rule - if all the daughters of a grammar rule are present i.e.
mother ̂ daughter i,daughter2..... daughtern replace them in the category list by the mother of the
rule.

Using the same grammar defined in section 4.2.1 John smokes will be parsed bottom up.
Category list String.

e John smokes

(the shift rule - NP —> John, introduce NP to the Category list
and remove John from String)
NP smokes

(the shift rule, removes the word smokes leaving the empty string,
and introduces V to the Category lis t)

NP V e

(the reduce rule, replaces one non-terminal by another, VP —» V)
NP VP e

(the reduce rule, replaces NPVP by S, S —> NP V P).
S e

(This is the success state, parsing stops).

Fig 4.3 Bottom up parse of John smokes.

Bottom up parsing is data driven, i.e. the words present in the string drive the derivation. It is
because of this that this type of parsing has no problem with left recursive rules, given that the
elements are always present before the categories are introduced, so verification has already been
received meaning that false hypotheses are not a problem. However, empty production rules, i.e.
X -> e do cause a problem in bottom up parsing and not in top down parsing. Empty production
rules which are used to fill the gaps introduced by relative clauses, can in bottom up parsing be
applied using the reduce rule at any time leading to a loop. Assume an empty production NP —» e
is present in the grammar.

Category list String

8 John smokes

(shift rule - removes John from the list)
NP smokes

(the shift rule, removes the word smokes)
NPV e

(NP —> £ , the shift rule removes £ from the string
leaving the empty string)

NP V NP £

(the same shift rule can be applied an infinite number of tim es)
NP V N P N P £

(This continues, forming an infinite loop that will never reach the success state)

Fig 4.4. The problem of empty production rules.

Originally the implementation used a simple top down parser. However this ran into trouble with
the NP conjunctive rule i.e. NP —» NP conj NP, and the problem of left-recursion. Left recursion
causes a problem for top down but not bottom up parsers, with empty production rules proving to
be a problem for bottom up but not top down parsers. The drawbacks of one parser are solved by
the other, therefore an ideal parser would take parts of each approach and incorporate them into a
new type of parser, the left comer parser. The author will now investigate this approach.

89

4.2.3 Left Corner Parsing.

This is the parser that was finally employed in the syntax module of the implementation, and is a
step towards a combined parsing technique, with grammar rules triggered by the left most element
of the right-hand side of the rule, Fig 4.5

the remainder is parsed using the top down
parsing approach.

Mother —» Daughter j, D aughter,......... , Daughtern

left comer verified by bottom up approach
which triggers other rules.

Fig 4.5 The left most element of a grammar rule.

The basic cycle used in left corner parsing is that each grammar rule is triggered by the left most
element of the rule, which has already been corroborated by a bottom up parse. The remaining
daughters of the rule are parsed using the top down approach. The rule Mother serves as the next
left comer, i.e. the remaining mles are searched for a rule that contains the Mother as a left corner
and the cycle starts again. Three rales are used in a left-corner implementation, presented in a
sequence based notation which presents two states linked by implication i.e.

present state —> final state,
where the final state or aim of the parse must be specified at the start of parsing e.g.

John smokes —> S

The success rule - a grammar rule consists of a mother and verified left corner which are the same
i.e. X - + X .

The shift rule - if the rule Category —> word is in the grammar, replace the word by the Category
changing the string accordingly.

The left-corner predict rule - this rule introduces branches to the derivation,. If the left comer we
are searching for is present in a grammar rule i.e.

mother —> left-corner daughter j daughtern,

90

branch 1 is formed by applying any rules
X j —> daughteri,.. Xn —» daughtern

present with branch 2 from mother and remainder of the daughters —> final state. Using the
grammar defined in section 4.2.1 John smokes will be parsed using the left-corner parser and
sequence notation.

String —» Final State

John smokes —> S

(shift rule - replace John by the category NP, NP —> John)
NP smokes —> S

(daughter \ , daugh ter —> final state)

(1-c predict, we are looking for a rule with NP as the left corner,
S —> NP VP , forming two branches of derivation
linking the daughters with any available categories

daughter i NP —» NP daughter smokes —» VP
and the mother of the rule S, with the remainder of the daughters,

none in this case leads to the final state S —>S
Each of the derivations is pursued until it reaches the success state.

NP —> NP smokes —> VP S —> S

(success rule) (shift rule V smokes) (success rule)
V —» VP

(left-corner predict, grammar rule VP —> V , with no daughters present, just have 2 cases)
V -» V VP —> VP

(success rule) (success rule)
Fig 4.6 The left corner parse of John smokes.

As mentioned previously, left recursion leads to infinite loops in top down parsers with empty
production rules causing the same problem for bottom up parsers. Left-corner parsers establish the
left-corner of a rule bottom up with the rest of the rule parsed top down. They do not have any
problem with left recursion as the left-corner of every grammar rule is established bottom up. The
top down section of the parser has as before no problem with empty production rules, but the left-

91

comer that is established bottom up falters here. This problem is eliminated by the introduction of
a link-table that explicitly states what relations are allowed in the grammar and thereby introduces
more top down information to the grammar.

A link table contains the reflexive, transitive closure of non-terminals of the grammar and is
restricted to include only the left-corner categories of the grammar rules. There are three different
types of link included in the table, all of which provide new information: the reflexive, left-corner
and transitive link.

• The reflexive link, links all non-terminal left-corners to themselves:
link(non-terminal, non-terminal).

• The left-corner link, links all mothers and left-corners of rules, i.e.
mother —» left-corner, daughteri....daughtern introducing link(mother, left-corner).

• The final link is the transitive link, if link(x,y) and link(y,z) are present in the table introduce
link(x,z).

The shift and left-corner predict rules must be amended to include the link table relations.

The shift rule (amended) - Category —> word: replace the word by the category iff there is a link
from the final state we are aiming for to the Category i.e. hnk(final state, Category) present in
the link table.

The left-corner rule (amended) - the same conditions apply as above and the link(final state,
mother) must be present in the link table.

Basically a left-corner parser is a bottom up parser which uses the left-corner relation
incorporating top down information to determine which rules to try, which helps limit the search
space compared to a naive bottom up parser which traverses the entire search space. The top
down parser was abandoned because of left-recursion, so the author then investigated bottom up
parsing only to abandon this technique due to problems with large search spaces and empty
production rules. The left comer parser is a mix of top down and bottom up parsing techniques,
which solves the problems of both, resulting in the author's decision to use this technique in
building the syntactic parser. The DCG must be changed slightly to accept the new parser, as this

92

parser is not inbuilt and therefore must be implemented by specifying Prolog rules. This results in a
change to the terminal conditions of the DCG, changing the format of lexical entries e.g.

lex(pn([pn(john), [gen:male,num:sing]], [gen:male,num:sing]), john),
with parse rules added to access these entries.

4.2.4 Implementing the left-corner parser in Prolog.

Introducing a new parsing method involves the introduction of parsing rales, as the inbuilt top
down parse is to be ignored. The left corner parser uses four Prolog rules, with the main rule
parse taking three arguments, and calling the other three rales, finally returning a parse tree. The
prolog implementation of the main rule parse is presented in Fig 4.7.

parse(G<?a/, Begin, End) :-
shift(SubGoal, Begin, Middle),
link(Goal, SubGoal),
l_c(SubGoal, Goal, Middle, E n d).

Fig 4.7. The main rule parse of the Prolog implementation of a left corner parser.

Fig 4.8 explains each step of parse:

The Goal, is the category depth we wish to parse to, with the variable Tree
associated with it e.g. s{Tree), np(7>ee), v(Tree), returned. Begin is the string to
be parsed presented in list form e.g. [john,smokes], and End is the empty list [].

parse(Goal, Begin, E n d) :-

shift(SubGoal, Begin, M iddle), - This is the shift rule of
section 4.2.3 presented in Prolog form. A word is removed from the string
Begin, and its category is returned as SubGoal. Middle is the changed string.

Iink(Goal, SubGoal), - The link relation searches
the linkjable which explicitly states the links between non-terminals in grammar
and the left comers of the non-terminal rales. The links of the table are formed
as described in 4.2.3, with any duplication caused by such rules removed to
avoid backtracking here.

93

l_c(SubGoal, Goal, M iddle,End). - This is a recursive prediction
rule introducing branches to the derivation, and works as described in section
4.2.3. The left corner l_c rule identifies a grammar rule with the left corner
SubGoal, Mother --> [SubGoal I Restgoals]. The link table is then checked for a
link between Mother and a new SuperGoal, with the processing of RestGoals
continuing by feeding them into the parse_rest rule.

Finally l_c is recursively called with _c(Mother, SuperGoal, Middle, End). The
l_c rule introduces two different branches of derivation by calling the parse rule
and l_c rule, each of these derivations are pursued until the success state is
reached.

Fig 4.8An explanation of the parse rule.

parse_rest([], String, String).
parse_rest([Goal I RestGoal], B, E) % deals recursively with

parse(Goal, B, M), % sub derivations
parse_rest(RestGoal, M, E). % generated by l_c predict
Fig 4.9 The parse_rest rule.

The fourth parse rule is the parse_rest rule which recursively parses the sub derivations RestGoals
produced by the l_c predict rule. The rule takes three arguments with the list SubGoal divided into
head and tail, [Goal I RestGoal], parse_rest(SubGoal, Begin, End). The parse rule is called
within parsejrest with Goal fed in as the first argument, and parse_rest is recursively called with
RestGoal. The second argument Begin reflects the state of the string at that moment, with the
empty string End as the third argument. Full code for the left corner parser, with the grammar and
link-table can be seen in appendix A.

4.3 The Semantics Module.

Hardly any o f the implementations known to us really implements the DRS-
construction algorithm as detailed in (Kamp 1981) and (Kamp & Reyle 1993),
to the letter but is either based on a (semi-) compositional a-calculus style or a
unification based reformulation

(Cooper et al 1995)
The implementation presented in this thesis sets out to follow the guidelines laid down in (Kamp &
Reyle 1993), extending the existing DRT theory into a viable computational algorithm.

94

4.3.1 The Basic DRS format.

As discussed in chapter 3, Discourse Representation Structures (DRSs) are the basic building
blocks of DRT and are represented by flowcharts, Fig 4.1.

Referents

Conditions

Fig 4.10 The DRS.

In the semantic module of this thesis, the principal DRS is represented by the template
drs([Referents,Conditions j) where Referents and Conditions are lists. The change from
flowchart to drs(I Referent,Conditions]) formal is illustrated in tiie change from Fig 4.11. to
4.12.

x,y
john loves mary

john(x)
mary(y)
x loves y

Fig 4.11. John loves Mary, represented by a DRS.

Conditions.
i----------------------------------- 1

drs([[x,y], [john(x), mary(y), x loves y]])
I I

Referents

Fig 4.12 How the DRS of John loves Mary is represented in the semantic module.

95

To make processing within the module easier referents are represented by numbers not letters, as
numbers can be easily updated. The brackets are also changed to colons to avoid the Prolog
interpreter mistaking the conditions for Prolog rule or fact declarations, Fig 4.13.

1 , 2

john loves maty
john :1
rnary:2

1 loves 2
Conditions.

i----------------------------------- 1
drs([[1,2], [john:l , maiy:2, 1 loves 2]])

I I
Referents

Fig 4.13. Using numbers to represent referents - the revised Fig 4.2 and Fig 4.3

Feature structures provided by the syntactic module e.g. [gemmale, num:sing], are included in the
semantic module representation of the flowcharts in an attempt to incorporate a small amount of
world knowledge into the implementation. Adding feature structures to Fig 4.13:

drs([[1 ,2], [john.T, [gemmale,num:sing], mary:2 , [gen:fem,num:sing],
1 , loves [fin:fin, trans:trans, num:sing], 2]]).

For ease of reading, the author will omit feature structures from the semantic representations of
section 4.3.2.

4.3.2 Sub-DRSs and the semantic module.

As stated in section 3.3 of chapter 3, DRSs can be nested in one another. Conditional, negated,
conjunctive, disjunctive and quantified sentences introduce different sub-DRS templates to the
condition list of the principal DRS. These sentences, with the exception of negation, will be
referred to as complex sentences within this thesis, with the remaining sentence types known as
simple sentences. This section presents the different sub-DRS templates used within the semantic
module, the prolog rules used to introduce the said templates, and an illustration from a flowchart
presented in chapter 3 to semantic module representation of DRSs.

The negated sub-DRS: sub(not(SubReferent, SubCondition)).
Negated sub-DRSs are introduced by the start rule.

96

NOT

3, 4
a woman owns

a porsche
woman: 3
porsche: 4
3 owns 4

sub(not([3,4], [woman:3. porsche:4, 3 owns 4]))

Fig 4.14. The negated DRS of A woman does not own a porsche , showing the flowchart
and semantic module representations.

The negated DRS must be embedded in the Condition list of the principal DRS. We will assume
that the principal DRS in Fig 4.15 is empty, with the principal DRS of Fig 4.13 extended in Fig
4.16.

NOT

3, 4
a woman owns

a porsche
woman: 3
porsche: 4
3 owns 4

->drs([[], [sub(not([3,4], [woman:3. porsche:4, 3 owns 4]))]])

Fig 4.15. The change from flowchart to semantic module representation of
embedding the negated sub-DRS in an empty principal DRS.

1 2

john:l
mary:2

1 loves 2
3, 4

a woman owns
a porsche

NOT _woman: 3
porsche: 4
3 owns 4

Referents Conditions
drs([[1 ,2], [john: 1 , mary:2, 1 loves 2,

sub(not([3,4], [woman:3. porsche:4, 3 owns 4]))]])

Fig 4.16. The change from flowchart to semantic module representation of
embedding the negated sub-DRS in the principal DRS of Fig 4.13.

The conditional sub-DRS: sub(cond(DRS1,=>,DRS2)).

97

Conditional sub-DRSs are introduced by the condition rule.
1 , 2 3, 4

woman: 1
cat(2)

1 owns 2

man(3)
dog(4)
3 owns 4

/

sub(cond(drs([[1,2], [woman:l,cat:2,l owns 2]]),=> ,drs([[3,4], [man(3), dog(4), 3 owns 4]])))
Fig 4.17. The flowchart and semantic module representation of the conditional sentence I f

a woman owns a cat, then a man owns a dog.

As with all sub-DRSs, the conditional sub-DRS is placed in the condition set of the principal DRS.
Fig 4.18 illustrates the sub-DRS of Fig 4.17 being embedded in the condition list of the existing
principal DRS of Fig 4.16.

1 r
john:l
mary:2

1 loves 2

NOT

3, 4
a woman owns

a porsche
woman: 3
porsche: 4
3 owns 4

1 , 2 3, 4
woman: 1

cat(2)
1 owns 2

man(3)
dog(4)
3 owns 4

/

drs([[1,2], [johnl, maty:2, 1 loves 2, sub(not([3,4], [woman:3. porsche:4, 3 owns 4]) \
sub(cond(drs([[1 ,2], [woman:l,cat:2 ,l owns 2]]),

=> ,drs([[3,4], [man(3), dog(4), 3 owns 4]])))]])

Fig 4.18. The flowchart and semantic module representations of embedding the
conditional sub-DRS in the principal DRS of Fig 4.16.

The Duplex condition DRS: duplex(DRS 1,Quantifier,Main-Referent,DRS2).
Duplex conditions are introduced by the duplex rule.

duplex(drs([[1], [m an:l]]), every,man, drs([[2], [woman:2 , 1 loves 2]])) .

Fig 4.19. The flowchart and semantic representation of the duplex sub-DRS of
Every man loves a woman.

Again the duplex condition can be embedded in the condition list of the principal DRS. Fig 4.20
now represents the disjointed mini-discourse: John loves Mary. Every man loves a woman.

drs([[1 ,2], [john:l, mary:2 , 1 loves 2 ,
duplex(drs([[1], [man:l]]), every, man,drs([[2], [woman:2 , 1 loves 2]]))]])

Fig 4.20. The flowchart and semantic representation of embedding the duplex condition in
the principal DRS of Fig 4.13.

99

The disjunctive DRS:connector([DRSl,or,DRS2,or....,or,DRS5]).
Disjunctive sub-DRSs are introduced by conj_and_disjunction
and sentence_disj_and_conj rules to represent disjunctive NPs
and sentential disjunction.

4, 3
dog: 3
man: 4

4 own 3
\ /

5, 3
dog: 3

woman: 5
5 own 3

6, 3
dog: 3
girl: 6

6 own 3

connector(|drs([[4,3], [dog:3, man:4, 4 own 3]]), or,
drs([[5,3], [dog:3, woman:5, 5 own 3]]), or,

drs([[6,3], [dog:3, girl:6, 6 own 3]])]).

Fig 4.21. The flowchart and semantic representation of
A man, a woman or a girl own a dog.

1 . ~ , _john:l
maiy:2

1 loves 2

4, 3 5, 3

\ /

6, 3
dog: 3
man: 4

4 own 3

dog: 3
woman: 5
5 own 3

dog:3
girl: 6

6 own 3

drs([[1 ,2], [john:l, mary:2 , 1 loves 2 ,
connector([drs([[4,3], [dog:3, man:4, 4 own 3]]), or,

drs([[5,3], [dog:3, woman:5, 5 own 3]]), or,
drs([[6,3], [dog:3, girl:6, 6 own 3]])])]])

Fig 4.22. The flowchart and semantic representation of embedding the disjunctive sub
DRSs of Fig 4.21 in the principal DRS of Fig 4.13.

100

Conjunction is treated within the same rules as disjunction, although conjunction does not
introduce sub-DRSs (see section 3.3.7 chapter 3).

4.3.3. Constructing a DRS.

DRS construction starts when the syntactic analysis of a sentence of the discourse Sentence_Syn,
is passed into the construction rule.

c.onstruction(Refe rent, Sentence_Syn, Existing_Drs, New_Drs, Condition, Refcount):-
constructing(Referent, Sentence_Syn, Existing_Drs, New_Drs, main,

Condition, Refcount).
\
Flag

• Referent is the number of the next referent to be assigned.

• Sentence_Syn is the syntactic analysis of a sentence of the discourse.

• Existing_Drs is the principal DRS built so far. This receives the value drs([[], []]) if the
principal DRS is empty or processing has just begun.

• New_Drs is the rule output incorporating the new information introduced by Sentence_Syn and
the information already stored in the Existing_Drs.

• Condition controls looping within the module.

• Refcount is the number of the next referent to be assigned when construction or constructing
is exited.

• Flag i.e Flag = main, acts as a signal indicating where new information should be placed in the
DRS.

The construction rule calls a three part recursive rale constructing, which treats simple and
complex sentences. All recursive rales need terminating conditions, and so Condition controls the
number of iterations of constructing. The first call to constructing gives Condition the value

101

[s(unanalysed,unanalysed)], indicating that both the NP and VP part of the Sentence _Syn are
unanalysed as yet:

NP part
I

[s(unanalysed, unanalysed)].
I

VP part

The construction rules of DRT use triggers to recognise parts of sentences and introduce referents
and conditions to the DRS. As each trigger is fired depending on which part of the sentence the
trigger apphes to, the NP or VP part of Condition is changed to analysed. Looping stops when
Condition is [s(analysed, analysed)], implying that the sentence is irreducible or fully processed.
The need for Condition is further explained by revisiting Fig 4.11

Object
conditions -

1 , 2
john loves mary

- john:l
- mary:2

1 loves 2 ~ Hie sentence condition

The author asserts that excluding sub-DRS templates, there are two different types of DRS
conditions present in any DRS:

object conditions: which are introduced when a trigger rule fires e.g john:l. These conditions
also change the existing sentence syntax e.g. when john:l is introduced the sentence is
changed from john loves rnary to 1 loves mary. Object conditions are added to the DRS until
Condition is [s(analysed, analysed)], and the sentence is irreducible.

sentence conditions: When Condition is [s(analysed, analysed)], the sentence is irreducible,
but the remaining sentence syntax contains the sentence condition e.g. 1 loves 2. This
essential condition is nested in other syntactic information which must be removed before the
condition can be inserted into the DRS, this which achieved by constructing.

As mentioned previously, there are two different types of sentence in this implementation, simple
and complex sentences. The analysis of simple sentences forms the backbone of the semantic

102

implementation, as all sentences may be reduced to this type. Complex sentences are treated by
breaking them up into simple sentences, analysing these parts, and joining the new structures
together into a sub-DRS template which will be incorporated into the principal DRS. To cope
with simple and complex sentences which introduce object and sentence conditions, the
constructing rule is three pronged:

Prong 1. Establishes the sentence type, simple or complex, and treats accordingly.

Prong 2. Introduces sentence conditions to simple sentences.

Prong 3. Assigns the new information to the New_Drs for complex sentences.

Entry to each part of constructing is controlled by Condition.

Prong 1:
construcHng(Referent,Sentence_Syn,Existing_Drs,Finished_Drs,Flag,Condition,Refcount)

((duplex(Referent, Existing_Drs, Sentence_Syn, Flag, Condition, Finished_Drs,_))
»

(not(same(Condition, finished)),
conj_and_disjuncfion(Referent,Sentence_Syn, Existing_Drs,New_Drs,

Flag, Refcount),
same(NewCond, finished))

»
(start {Referent, Sentence_Syn, New_Sentence_Syn, Existing_Drs, New_Drs, Flag,

New Flag, Condition, NewCond),
(number (Referent);
(not(number(7?£?/£renf))>!> fa il)),

Referent_two is Referent + 1, !)
y
(plural_definiteNPs(Referent, Refer entjtwo, Sentence_Syn, New_Sentence_Syn,

Condition, NewCond, Existing_Drs, Flag, NewFlag, New_Drs))

(not(same(Condition, finished)),
sentence_disj_and_conj(Referent,Sentence_Syn, Existing_Drs, New_Drs,

Flag,Ref count),

103

(condition(Sentence_Syn, Existing_Drs, Finished_Drs, NewFlag, Referent,
Referent_two, NewCond, Condition))),

constructing(Referent_two, New_Sentence_Syn, New_Drs, Fini.shed_Drs, NewFlag,
NewCond, Refcount).

Prong 1. of constructing consists of an or-loop of rules, where each or-clause contains a rule
designed to recognise a sentential component and introduce a sub-DRS to the DRS being
developed, aside from start which works on simple sentences. Since sentences of any type can
eventually be broken up into smaller simpler sentences the start rule - which encodes the bulk of
the construction rules of DRT - is used at some stage in most processing.

As simple sentence analysis forms the essence of the semantic implementation presented in this
thesis the author will begin the semantic discussion at this point, before moving onto each of the
complex rules of the or-loop of prong 1 in turn.

4.3.3.1. Analysing simple sentences within constructing

The first call to constructing will have Referent as 1, Condition as [s(unanalysed,unanalysed)] and
Flag as main. As stated in chapter 3, the construction rules of DRT use triggers to recognise parts
of sentences, and introduce referents and conditions to the DRS according to which triggers have
been fired. The start rule contains an or-list of triggers with a corresponding set of actions to be
executed when any trigger is fired. The rule takes the Sentence_Syntax and passes it through the
triggers to see if any element of the sentence e.g. indefinite NP, definite NP, can introduce a new
referent and condition, start succeeds if one of the triggers fires, and the connected actions are
executed. At present the author is assuming that the Sentence_Syntax passed into constructing is
simple and start will succeed where the other complex rules of the or-clauses fail. The structure of
start is:

start(Referent, Sentence_Syntax, New_Sentence_Syntax, Existing_Drs, New_Drs,
Flag, NewFlag, Condition, NewCondition)

((triggeri(cr_pn)t _______________ cr_pn is the construction

ssane(NewCond, finished))

104

Action to be performed if trigger ̂ is fired) rule for proper nouns.
All trigger rules have
two parts, one to

(trigger2(cr_pn,....), _______________ recognise the NP part
Action to be performed if trig ger is fired) of a sentence and the

; other for the VP part
(trig ger (cr_pro„...),
. Action to be performed if trigger is fired)

(triggerj(cr_id....),
Action to be performed if triggeq is fired)).

The trigger rule is a matching fact declared as:

trigger(Trigger_name, Syntax, Syntax,
DRS, DRS,

New_Sentence_Syntax, New_Sentence_Syn,
Flag, Flag).

An instance of the indefinite NP trigger is shown below:
If Sentence J3yn is the same as the shown syntax

the trigger fires.
I(trigger (cr_id, Sentence _Syn,

[s([np([det(a), [num:sing]], [n(B), [gen:C,num:sing]],
A new DRS is [optrel([]), J , _],VP)> S_Featstr],
formed, DAS' ------- drs([[Referent], [BReferent, [gen:C, num:sing]]]), DAS',
with the specified [s {Referent ,VP), S_Featstr], New _Sentence_3yn,Flag,New Flag),
conditions. I_________________________ I IReferent replaces the NP part of the sentence

to give the New _Sentence _8yn
Change the „
NPpart T = [s(l)L Flag stays„ J , I NewCondition = [s(analysed, F)], the same.of Condition, . drs conc {Existing DPS, DRS, New Drs, Flag))to analysed. ~ | -

Add the newly formed DRS'to the condition list of the Existing_DRS

105

• This states that if the Sentence._Syntax is the same as [s([np([det(a)] the trigger fires as the
syntax of the two sentences is equivalent. A new referent, the number of which is specified by
Referent, and condition (B:Referent e.g. woman:l) are introduced to the DRS. Changes
made to DRS are incorporated into the ExistingJDRS at a later stage.

• The Sentence_Syntax is changed by replacing the trigger element, in this case the indefinite NP
declaration i.e. [np([det(a), [num:sing]], [n(B), [gen:C, numrsingj], [optrel([]),_],_] by the
newly introduced Referent producing New_Sentence_Syntax.

The Flag of the trigger rule has two values main or sub, where main states that the DRS additions
are simple and should be placed in the main universe of the Existing_DRS, and sub states that the
new conditions and referents should be incorporated into a sub-DRS which was just joined with
the ExistingJDRS. These changes are made by the drs_conc rule:

drs_conc(DRS1, DRS2, NewJDrs, Flag) :-

which concatenates conditions and referents of different DRSs together depending on the value of
Flag, producing the NewJDrs which is output by start.

The value of Flag can be changed within start by the negation trigger rale, which recognises the
do not of the negated Sentence_Syn, changes the Flag to sub and introduces a negated sub-DRS
template. All referents and conditions introduced by this sentence from this point on will be
incorporated into the negated sub-DRS.
As illustrated in section 3.3.4 of chapter3, referents and conditions of proper nouns are always put
into the principal DRS condition list, regardless of whether they occur in a sentence that
introduces a sub-DRS or not. To account for this within the proper uoun trigger rales, the
drs_conc rule call always presents Flag as main:

drs_conc(ExistingJDRS, DRS, NewJDrs, main)

This is so that the proper noun declarations contained in DRS will always be placed in the
condition list of the ExistingJDRS and not a sub-DRS within ExistingJDRS.

start is non-recursive with one iteration firing at most one trigger, therefore taking at least two
iterations to completely reduce a sentence. The recursive constructing rale, calls start until the

106

value of Condition changes to [s(analysed,analysed)] and the second prong of constructing can be
called.

Taking an example: (1). A man loves Sue.
Assume the syntactic analysis exists and this is the initial call, therefore the Existing_Drs is empty
i.e. drs([[] ,[]]):

Sentence _Syntax
I

construction 1, [s([np([det(a), [num:sing]], [n(man), [gen:male,num:sing]],[optrel([]),J),
[case:_, gen:male, num:sing, gap:nogap]],

[vp([v(loves), [fin:fin, trans:trans, num:sing]],
[np([pn(sue), [gen:fem,num:sing]]), [case:_, gen:fem, num:sing]]),

[fin:fin, trans:trans, num:sing, gap:nogap]]),
[num:sing, gap: nogap]],

drs([[], []]), New_Drs, [s(unanalysed, unanalysed)], Refcount) :-
I I

Existing_Drs Condition.

constructing(l,[s([np([det(a),[num:sing]],[n(man),[gen:male,num:sing]],[optrel([]),_]),
[case:_, gen:male, num:sing, gap:nogap]],

[vp([v(loves), [fin:fin, trans:trans, num:sing]],
[np([pn(sue), [gen:fem, num:sing]]), [case:_, gen:fem, num:sing]]),

[fin:fin, trans:trans, num:sing, gap:nogap]]),
[num:sing, gap: nogap]],

drs([[], []]), New_Drs, main, [s(unanalysed, unanalysed)], Refcount).
Prong 1. of constructing is executed, as the sentence is simple i.e. contains no complex
components, and all other rules fail until start is encountered:

start(l, [s([np([det(a), [num:sing]], [n(man), [gen:male, num:sing]], [optrel([]),_]),
[case:_, gen:male, num:sing, gap:nogap]],

[vp([v(loves), [fin:fin, trans:trans, num:sing]],
[np([pn(sue), [gen:fem, num:sing]]), [case:_, gen:male, num:sing]]),

[fin:fin, trans:trans, num:sing, gap:nogap]]),
[num:sing, gap: nogap]],

New_Sentence_Syntax, drs([[], []]), New_Drs, main, NewFlag,
[s(unanalysed,unanalsyed)], NewCondition).

107

The triggers are processed in order one by one with the proper noun trigger firing first:

(trigger(cr_pn, [s([np([det(a), [nurn:sing], [n(man), [gemmale, num:sing]],
[optrel([]),_], [case:_,gen:male,num:sing,gap:nogap]],

[vp([v(loves), [fin:fin, trans:trans, num:sing]],
[np([pn(sue), [gen:fem, num:sing]],

[case:_,gen:fem, num:sing, gap:nogap]]),
[fin:fin,trans:trans, num:sing,gap:nogap]]), [num:sing, gap:nogap]l,

[s(NP, [vp(V, [np([pn(A), [gen:B, num:C]]), _]), VPfeatstr]), Sfeatstr],

drs([[1], [sue:l, [gen:fem, num:sing]]]), DRS,

[s([np([det(a), [nura:sing,], [n(man), [gen:male, num:sing]],
[optrel([]), _], [case:_, gen:male, num:sing, gap:nogap]],

[vp([v(loves), [fin:fin, trans:trans, num:sing]], 1),
[fin:fin, trans:trans, num:sing, gap:nogap]]), [num:sing, gap:nogap]],

Ne w_Se.ntence._Syn,
main, NewFlag),

Condition = [s(unanalysed, unanalysed)],
NewCondition = [s(unanalysed, analysed)],
drs_conc(ExistingJDRS, DRS, New_Drs, main))

This trigger fires as the syntax of the two sentences presented is equivalent introducing:

• a referent specified by Referent which is 1 and condition sued to DRS
DRS = drs([[1], [sue:l, [gen:fem, num:sing]]])

• a New_Sentence_Syntax which is formed by replacing the recognised category with Referent.

New_Sentence_Syntax = [s([np([det(a), [num:sing,], [n(man), [gen:male, nunr.sing]],
[optrel([]) ,_] ,

[case:_, gen:male, num:sing, gap:nogap]],
[vp([v(loves), [fin:fin, trans:trans, num:sing]], 1),

[fin:fin, trans:trans, num:sing, gap:nogap]]),
[num:sing, gap:nogapJ]

108

• The VP part of Condition is changed to analysed as the proper noun occurs in this part of the
sentence producing NewCondition.

NewCondition = [s(unanalysed, analysed)].

- The new conditions and referents introduced to the temporary variable DRS must now be
incorporated into the Existing_DRS to give New_Drs. As this is a proper noun construction
rule, all information will be introduced to the main condition list, and not a sub-DRS.

New_Drs = drs([[1], [sue:l, [gen:fem, num:sing]]]).

The next step within the start or-clause of constructing is to increment Referent in preparation
for the next iteration: Referent_two is Referent + 1. This completes the operations of this or-
clause, and dropping out of the clause and the or-loop leads to a second call to constructing:

constructing(Referentjtwo, New_Sentence_Syn, New_Drs, Finished_Drs, NewFlag,
NewCond, Refcount).

Filling in the values we have just generated:

constructing(2, [s([np([det(a), [num:sing]], [n(man), [gen:male, num:sing]],
[optrel([]),J, [case:_,gen:male,numLsing,gap:nogap]],

[vp([v(loves), [fin:fin, trans:trans,num:sing]], 1),
[fin:fin,trans:trans,num:sing,gap:nogap]]), [num:sing,gap:nogap]],

drs([[1], [sue:l, [gen:fem, num:sing]]), Finished_Drs, main,
[s(unanalysed, analysed)], Refcount).

Prong 1 of constructing is executed as long as Condition is not [s(analysed,analysed)] or
finished. This is the case, so it is called again. The sentence syntax is simple as before, and all
other rule invocations fail until start is encountered where the indefinite NP construction rule is
executed producing another NewJDrs and a Condition of [s(analysed,analysed)].

(trigger(cr_id, [s([np([det(a), [num:sing]|, [n(man), [gen:male, num:sing]],
[optrel([]),J, [case:_,gen:male,numLsing,gap:nogap]],

[vp([v(loves), [fin:fin, trans:trans,num:sing]], 1),
[fin:fin,trans:trans,num:sing,gap:nogap]]), [num:sing,gap:nogap]],

[s([np([det(a), [num:sing]], [n(B), [gen:C, num:sing]], [optrel([]),_]),_],VP),
Sfeatstr],

109

drs([[2], |man:2, [gen:male, num:sing]]]), DRS,

[s(2, [vp([v(loves), [fin:fin, trans:trans, num:sing]],l),
[fin:fin, transitrans, numbing, gap:nogap]]), [num:sing, gapinogapj],

New_Sentence_Syn,
main, New Flag),

Condition = [s(unanalysed, analysed)],
NewCondition = [s(analysed, analysed)],
drs_conc(Existing_Drs, DRS, New_Drs, Flag))

This time start is exited with:

New_Sentence_Syn = [s(2, [vp([v(loves), [fin:fin, trans:trans, num:sing]], 1),
[fin:fin, trans:trans, num:sing, gap:nogap]]),

[num:sing, gap:nogap]]

New_Drs = drs([[1,2], [sue:l, [gen:fem, num:sing], man:2, [gen:male, num:sing]]])

Condition = [s(analysed,analysed)].

Again Referent is incremented, and the or-loop is exited resulting in a third call to constructing.
Filling in the values obtained from start results in:

constructing(3, [s(2, [vp([v(loves), [fin:fin, trans:trans, num:sing]], 1),
[fin:fin, trans:trans, num:sing, gap:nogap]]),

[num:sing, gapmogap]],
drs([[1,2], [sue:l, [gen:fem, num:sing], man:2, [gen:male, num:sing]]]),
Finished_Drs, main, [s(analysed,analysed)], R ef count).

The New_Sent.ence_Syn produced by start is irreducible, but the sentence condition contained in
New_Sentence_Syn must be removed and put into the DRS being developed. This is achieved by
the second prong of constructing which is called when Condition is [s(analysed, analysed)].

Sentences containing relative clauses and gap information contribute more that one sentence
condition to the DRS being developed, an example of this is shown on the next page.

110

John loves a woman who does not love him contributes two sentence conditions to a DRS:

John loves a woman A woman does not love him.

Mary saw the woman who George kissed also contributes two sentence conditions to a DRS:

Prong 2 of constructing contains a set of or-clauses that present an irreducible sentence syntax
coupled with actions to be executed if the sentence syntax presented and the Sentence_Syntax are
equivalent. In this way sentence conditions can be isolated and inserted one at a time to the DRS.

An extract of Section (1) of Prong 2:

constructing(Referent, Sentence_Syn, Existing_Drs, The_Drs, Flag,

drs_conc(drs([[], [Ref2, Verb, Info, Ref3]]), Temp_Drs, Finished_Drs, main))

(same(Sentence_Syntax, [s([np(Refl, |vp([v(V), Info]), _]),_], This sentence syntax

• Mary saw the woman • George kissed the woman.

[_,gap:gap(np)]]),_], This sentence
[vp([v(Verb2), Info2], Ref4),_]), [_, gap:nogap]]), syntax is one of

many produced by sentences
Existing_Drs = drs([Refs, Cons]),
Flag = main,
drs_conc(drs([[], [Refl, Verb2, Info2, Ref4]]),

that contain a NP gap, which
produce two different sentence
conditions.

drs([Refs, C ons]), Temp_Drs, main),

[vp([v(V2), Info2], Ref2),_]),_]), is one of many produced by
relative clauses, which
produce two different
sentence conditions.

ExistingJDrs = drs([Refs, Conds]),
Flag = main,
drs_conc(drs([[], [Refl,V,Info, Ref2]]),

drs([Refs, Conds]), Temp_Drs, main),
drs_conc(drs([[], [Ref2,V2,Info2]]), Temp_Drs, Finished_Drs, main))

This is the syntax
produced by start

111

(same(Sentence_Syntax, [not(R efl, for negated sentences
[vp(V,[np(Ref2, [vp(D,Ref3),F]),J),G]),H]),

ExistingJDrs = drs([Refs, Conditions]),
is_last(Conditions, sub(not(SubRef, SubCond))),
Flag = sub,
drs_conc(drs([[Refs, Conditions]), drs([[], [Refl,V,Ref2]]), Temp_Drs,sub),
drs_conc(Temp_Drs,drs([[], [Ref2,D,Ref3]]), Finished_Drs, sub))

(same(Sentence_Syntax, [s(Ref2, [vp([v(Verb), Info], Ref3), _]), _]), This is the
Existing_Drs = drs([Refl, Condi]), same as Sentence ̂ Syntax
Flag = main,
drs_conc(drs([[],[Ref2,Verb,Info,Ref3]]),drs([Refl, Condi]), Finished_Drs,main))

Generally the procedure followed in this part of constructing is to assign Refcount the value of
Referent, and search the or-loop for a sentence syntax the same as SentenceJSyn. When this is
found the sentence condition or conditions within the Sentence_Syn are isolated and put into
Temp_Drs before being incorporated into Finished_Drs.

Resuming the processing of sentence (1), Sentence ̂ Syntax matches the syntax presented in the
final clause of section (1) prong 2 of constructing producing New_Drs, the output of
constructing.

The_Drs = drs([[1,2], [sue:l, [genifem, num:sing], man:2, [genrmale, num:sing],
2, loves, [fin:fin, trans:trans, num:sing, gap:nogap], 1]])

Refcount = 3,

When this or-loop is exited, section (2) prong 2 includes a search for suitable referents of any
pronoun conditions i.e. suitable_referent:R of the Finished_Drs. If as in this case there are no such
conditions present The_Drs is output, and this non-recursive part of constructing is exited. The
treatment of pronouns within this implementation will be discussed in the next section.

112

4.3.3.1.2 The treatment of pronouns and negated sentences.
(2). A man loves Sue. She does not love him.

To illustrate the resolution of pronouns within the semantic module the author will extend the
Finished_Drs produced in section 4.3.3.1 which represents A man loves Sue:

drs([[1,2], [sue:l, [gen:fem, num:sing], man:2, [gen:male, num:sing],
1, loves, [fin:fin, trans:trans, num:sing, gap:nogap],2]]),

to include the new sentence representation She does not loves him. As before the construction
rule is called but with the Referent as 4 taken from the Refcount.

construction 3, [s([np([pro(she), [case:(+), gen:fem, num:sing]],
[case:(+), gen:fem, numising, gap:nogap]],

[vp([aux(does), [num:sing]], not,
[vp([v(love), [fin:nonfin,trans:trans,num:J],

[np([pro(him), [case:(-), gen:male, num:sing, gap:nogap]]),
[fin:nonfin, trans:trans, num:_, gap:nogap]]),

[fin:nonfm, trans:_, num:sing, gap:_]]),
[num:sing, gap: nogap]],

Within the lexicon, case is given a positive value, + to signal that this pronoun should be placed in
the subject position whereas a negative value, - indicates that the pronoun should be placed in the
object position

Within constructing,
known as
Existing_Drs ------ drs([[l ,2],[sue:l,[gen:fem,num:sing], man:2, [gen;male, num:sing],

1, loves, [fin:fin, trans:trans, num:sing], 2]]), DRS,
[(s(unanalysed,unanalysed)], Refcount).

The construction rule calls constructing, and since Sentence_Syntax is simple start will be
invoked to introduce the referents and conditions to DRS. The pronoun trigger rule of start is
fired, introducing a new referent 3 and conditions: suitable_referent:3, [gen.-fem, num:sing] to
DRS. Unlike other word categories, pronouns are not themselves introduced to DRS but are

113

replaced by the phrase - suitable_referent, which acts as a catchall for all types of pronouns.
Incorporating these new conditions into the Existing_Drs gives:

New__Drs = drs([[1,2], [sue:l, [gen:fem, num:sing], man:2, [gen:male, num:sing],
2, loves, [fin:fin, trans:trans, num:sing], 1,
suitable_referent:3, [case:(+),gen:fera, nura:sing]]]).

New_Sentence_Syntax = [s(3, [vp([aux(does), [num:sing]], not,
[vp([v(love), [fin:nonfin,trans:trans,num:_]],

[np([pro(him),[case:(-), gen:male, num:sing]]),
[case:(-), gen:male, num:sing, gap:nogap]]),

[fin:nonfin, trans:trans, num:_, gap:nogap]]),
[fin:nonfin, trans:_, num:sing, gap:_]]), [num:sing, gap: nogap]],

Condition = [s(analysed, unanalysed)]

Licrementing Referent and passing the new sentence syntax into the second constructing rule,
calls the negation trigger:

(trigger (cr_neg, [s(3, [vp([aux(does), [num:sing]J, not,
[vp([v(love), [fin:nonfin,trans:trans,num:_]],

[np([pro(him), [case:(-), gen:male, nura:sing, gap:nogap]]),
[finmonfin, trans:trans, num:_, gap:nogap]]),

[fin:nonfin, trans:_, num:sing, gap:_]]), [nura:sing, gap: nogap]],
[s(X, [vp([aux(A), [num:B]], not, Y),J),Z], drs(sub(not(L],[]))), DRS,
[not(X,Y), Z], New_Sentence_Syn, sub, NewFlag),

NewCondition = Condition,

drs_conc(Existing_Drs, DRS, NewJDrs, sub))

This rule:

• introduces the empty sub-DRS template to the Existing__Drs, and sets the NewFlag to sub, so
that any new referents and conditions will be added to the sub-DRS.

114

In this case ExistingJDrs = drs([[1,2], [sue:l, [gen:fem,num:sing],
man:2, [gen:male,num:sing],

2, loves, [fin:fin, trans:trans, num:sing], 1,
suitable_referent:3, [case:(+),gen:fera, num:sing],
sub(not([], []))]]).

• changes the Sentence_Syntax by removing the auxiliary not syntactic information. The new
positive sentence New_Sentence_Syntax is encased in a not i.e.[not(NP,VP)] signalling a
negated sentence.

New_Sentence_Syntax = [not(3, [vp([v(love), [fin:nonfin, trans:trans, num:_J],
[np([pro(him),

[case:(-),gen:male,num:sing,gap:nogap]]),
[fin:nonfin, trans:trans, num:_, gap:nogap]],
[num:sing, gap:nogap]]

• does not change the value of Condition, as neither the NP or VP part of the sentence has been
analysed. Condition = [s(analysed,unanalysed)], as no real changes have been made the value
of Referent stays the same.

The recursive constructing rule is called again with Condition as [s(analysed,unanalysed)]. This
time none of the trigger rules will fire, as the Sen ten c e_Syntax is headed by not. The
sentence_in_sentence rule located in the final clause of the start trigger or-loop, looks after these
sentence types in the same way as start producing a new DRS. In this case the NewJDrs,
New_Sentence_Syn and Condition produced are:

NewJDrs = drs([[1,2], [sue:l, [gen:fem,num:sing],
man:2, [gen:male,num:sing],
2, loves, [fin:fin, trans:trans, num:sing], 1,
suitable_referent:3, [case:(+),gen:fem, num:sing],
sub(not([4], [suitable_referent:4,

[case:(-),gen:male,num:sing]]))]]).

New_Sentence_Syn - [not(3, [vp([v(love), [fin:nonfin, trans:trans, num:_]],4),
[fin:nonfin, trans:trans, num:_, gap:nogap]],

[num:sing, gap:nogap]]

115

Condition = [s(analysed, analysed)], with Flag = sub

The second prong of constructing can now be called as Condition is [s(analysed, analysed)].
Flag is sub, so any referents and conditions introduced at this stage will be put in the sub-DRS.
that was last added to the existing DRS. The first section prong (2) of constructing produces:

Finished_Drs = drs([[1,2], [sue:l, [gen:fem,nura:sing], man:2, [gen:male,num:sing],
2, loves, [fin.-fin, trans:trans, num:sing], 1,
suitable_referent:3, [case:(+),gen:fem, num:sing],
sub(not([4], [suitable_referent:4,

[case:(-),gen:male,num:sing]
3 love [fin:nonfin, trans:trans, num:_], 4]))]]).

Finally the suitable_referent:_ conditions of Finished_Drs need to be removed and replaced with
suitable referents that occur in Finished_Drs. This is achieved by the section (2) of prong 2 of
constructing

prong 2 section(2)

same(Finished_Drs, drs(| The_Conds])), % picks the condition list out of FinishedJDrs
% and calls it The_Conds.

% is_last checks to see if the negated sub-DRS template was the last thing entered in
% TheConds. The or-loop collects all the conditions to be searched into one variable
% ThejConditions.

((is_last(sub(not(_,S«&C(?n<i)), TheConds),
% member_ref removes the sub-DRS template from TheConds to give The_MainC
member_ref(sub(not(_,SubCond)), TheConds, [], The,_MainC,._,_),
% Now need to rejoin the sub-DRS conditions SubCond with TheMainC
% resulting in ThejConditions so an extensive search for the
% condition suitable_refevent:_ can take place.
conc(TheMainC, SubCond, The_Conditions));

(not(is_last(sub(not(_,_)), ThejConds)),
% The sub-DRS template was not the last thing entered, just call the main

116

% conditions ThejConditions.
same(ThejConds, ThejConditions))),

% find, counts the number of unresolved pronouns, suitable_referent:_ conditions present.
% in The_Conditions
Qnd(The_Conditions, suitable_referent:_,0,77z<?_CownO,
% If Count > 0, replace these referents.

((not(same(ThejCount, 0)),
% There are suitable_referent:_ conditions to be replaced so call change_the_drs
% to replace them and call the new DRS, The_Drs.

change_the_drs(The_Count, Finished_Drs, NewFlag, Referent,The_Drs));

(not(same(ThejCount, 0)),!,
% If change_the_drs fails, it is because the sentence is complex and all
% suitable_referent:_ conditions are replaced within the complex rules.
not(change_the_drs(ThejCount, Finished_Drs, NewFlag, Referent, The_Drs));

(snme(The_Count, 0),!,
% There are no conditions to replace so The_Drs is Finished_Drs.
ssane(Finished_Drs, The_Drs))).

Continuing the processing of sentence (2) through section (2) of prong 2:

ThejConds = [sue:l, [gen:fem,num:sing], man:2, [gen:male,num:sing],
2, loves, [fin:fin, trans:trans, num:sing], 1,
suitable_referent:3, [case:(+),gen:fem, num:sing],
sub(not([4], [suitable_referent:4, [case:(-),gen:male,num:sing]

3 love [fin:nonfin, trans:trans, num:_], 4]))]]).

As we can see the negated sub-DRS is the last thing to have been added to ThejConds, isjist
recognises this and calls member_ref to divide ThejConds into sub-DRS conditions SubCond,
and the main conditions The_MainC:

SubCond = [suitable_referent:4, [case:(-),gen:male,num:sing],
3, love, [fin:nonfin, trans:trans, num :J, 4]

117

The_MainC = [sue:l, [gen:fem,num:sing], raan:2, [gen:male,num:sing],
2, loves, [finifin, trans:trans, num:sing], 1,

suitable_referent:3, [case:(+),gen:fem, num:sing]]

The next step is to join these condition lists up into The_Conditions having eliminated the sub-
DRS template. ThejConditions contains all the suitable_referent:_ conditions to be resolved and
referents accessible from the current position in the DRS are available to resolve them.

ThejConditions = [sue:l, [gen:fem,num:sing], man:2, [gen:male,num:sing],
2 loves, [fin:fin, trans:trans, num:sing], 1
suitable_referent:3, [case;(+),gen:fem, num:sing],
suitable_referent:4, [case:(-),gen:male,num:sing]
3 love [fin:nonfin, trans:trans, num :J, 4]

find counts the number of suitable_referent:R conditions present in ThejConditions, and
ThejCount. is incremented by two each time such a condition is found to account for the condition
and its feature structures. Passing The_Conditions into find results in The_Count of four. All
replacements of suitable_referent:R conditions occurs in change_the_drs which produces the final
DRS output of constructing. This rule is recursive with each iteration decreasing The_Count by
two, until all suitable_referent:R conditions have been replaced in Finished_Drs.

change_the_drs(0, Finished_Drs,_, The_Drs) :-
same(Finished_Drs, The_Drs).

change_the_drs(Count, Finished_Drs, Flag, Referent, Referent,The_Drs)
new_drs(Finished_Drs, Flag, continue, Referent, TempDrs),
NewCount is Count - 2,
cli ange_the_d rs(Ne w Co uni, TempDrs, Flag, Referent, The_Drs).

change_the_drs recursively calls new_drs to resolve the pronouns until Count is zero, when the
new information is passed into The_Drs. One iteration of new_drs succeeds in resolving one set
of pronoun conditions with the help of suitable_ref and changing_DRS. One call to
change_the_drs can account for many different DRSs being produced as all possible suitable
referents can replace a suitable_referent:R condition must be allowed to do so producing many
possible DRSs.

118

new_drs(FinishedJDrs, _, _, [], end,_, TheJDrs)
same(TheJDrs, FinishedJDrs),!.

new_drs(FinishedJDrs, Flag, DRS, Tail, Loop Referent, TheJDrs)

suitable_ref(Finished-Drs, SuitableJist, Rfeaturestructures, Referent, Head, Tail).

% suitable_ref picks out all the suitable referents of the DRS that could replace a
% suitable_referent:_ condition, and puts them into Suitable J ist.

((same(Suitable J is t, []),!, fail % There are no suitable_referent:_ conditions in
% FinishedJDrs to be replaced so new_drs fails.

);

(changing_DRS(Suitable Jist, Rfeaturestructures, FinishedJDrs, DRS, Flag,
Tail),

% changing_DRS picks one suitable referent of Suitable J is t and replaces the
% specified suitable_referent:_ condition with it.
((same(Rest, []),

% Rest, Tail and Loop control iterations of new_drs
% when Rest = [], one suitable_referent:_ condition has been replaced.

new_drs(D R S , e n d , TheJDrs));

(same(Loop, continue,),
new_drs(Drs, Flag, ^ continue, _, TheJDrs))))) .

The suitable_ref rule:

suitable_ref(FinishedJDrs, Suitable J ist, Rfeaturestructures, Referent, Head, Tail).

takes the FinishedJDrs and searches to see if there are any suitable_referent:R conditions present
in the condition list. If these conditions are present the suitable referents (i.e. those referents of the
DRS with the same feature structures as suitable_referent:R) are isolated and put into
Suitable J ist. If there are no suitable_referent:R conditions present in the existing DRS,
Suitable J is t is assigned to [].

119

If a suitable_referent:R condition represents a plural pronoun i.e. the feature structures associated
with the condition are: [case:_, gen:_, num:plur]:

• the condition list of the Finished_Drs is searched to see if there are any existing non-atomic
referents i.e. Referent: Setdeclaration - 6:[table: 1, book:2] or Plural definite NP
conditions, thejnan(l), [gen:male, num:plur], present. If there are any such referents present
they are put into Tem pjist, and if no such conditions are found T em pjis t is given the value of
[]•

• summation is applied summing all the human referents into one set, and non-human elements
into another set, with the two sets placed in Su.mJ.ist. These synthesised sets represent the
antecedent of a plural pronoun.

• finally S u m jis t and T em pjist are concatenated by drs_conc to give the set of non-atomic
suitable referents, Suitable Jist.

Suitable J is t contains a set of suitable referents for any one suitable_referent:R condition of the
DRS. This list is accessed element by element, with each element taking the place of the
suitable_referent:R condition specified by suitable_ref yielding R:Element, i.e.

Suitable J i s t = [3,4,5] &nd suitable_referent:6,
replacing this condition results in three possible conditions

6:3, 6:4, and 6:5
all of which must be entered into a DRS producing three possible DRSs.

changing_DRS(Suitable J ist, Rfeaturestructures, FinishedJDrs, DRS, Flag, Tail).

changing_DRS replaces suitable_referent:R in the FinishedJDrs with an element from the
Suitable J ist, provided this element is not in the UnavailableReferent list. The
UnavailableReferent list contains the list of referents of the DRS that must be excluded from
consideration as suitable referents. These elements include other suitable_referent:R conditions,
and those involved in sentence conditions with the R of the present suitable_referent:R condition.
If these referents were allowed to be considered as suitable referents, we would be allowing
sentences like john likes him to mean john likes john where john represents the same person in
each case.

120

iSuitableJist can have four different values within changing_DRS:

• the empty list, [] implying that there are no suitable referents in the DRS and therefore failure
results as the discourse the DRS represents is invalid.

• a set representing a plural pronoun which contains two non-atomic sets - human and non­
human. An element of the set list is taken to replace the suitable_referent part of the plural
pronoun condition. Backtracking will select another element of the list.

• a plural referent representing a plural definite NP - more detail in section 4.3.3.1.3.

• singular referents that are chosen one at a time to replace the suitable_referent part of
suitable_referent:R.

Within changing_DRS, m\x\i\)(Element, Suitable J is t), picks an element from the Suitable J is t to
represent the suitable_referent:R. The next step replaces the suitable_referent:R with Element.R to
give the new condition which is joined with the rest of the conditions of the DRS being developed,
and changing_DRS and new_drs are exited.

Applying all this to the example presently being processed means processing continues within
section 2, prong 2 of constructing where ThejCount is four, and change_the_drs is called to
replace the suitable_referent:R conditions with suitable referents.

ThejCount Finished_Drs
I I

change_the_drs(4, drs([[1,2], [sue:l, [gen:fem,num:sing], man:2, [gen:male,num:sing],
2,loves, [fin:fin, trans.'trans, numrsing], 1
suitable_referent:3, [gen:fem, num:sing],
sub(not([4], [suitable_referent:4, [gen:male,num:sing]
3 love [fimnonfin, trans:trans, num:_], 4]))]]),

sub, TheJDrs).

• change_the_drs calls new_drs which replaces one suitable_referent:R condition in the DRS.

121

• suitable^ref forms the Suitablejist of referents for suitable_referent:3 which is the first
pronoun condition to be encountered within the DRS: Suitab lejist = [sue:l].

• changing_DRS replaces the suitable_referent:3 with 3:1 to give the TempDrs, and new_drs is
exited ThejCount is decreased by two to give NewCount = 2.

TempDrs = drs([[1,2], [sue:l, [gen:fem,num:sing], man:2, [gen:male,num:sing],
2, loves, [fin:fin, trans:trans, num:sing], 1,
3:1, [gen:fem, num:sing],
sub(not([4], [suitable_referent:4, [gen:male,num:sing],

3, love, [fin:nonfin, trans:trans, num:_], 4]))]])

• Since NewCount is not zero there are still suitable_referent:R conditions to be replaced in the
TempDrs and new_drs is called again to replace them yielding TheJDrs which is output by
constructing.

The_Drs = drs([[1,2], [sue:l, [gen:fem,num:sing], man:2, [gen:male,num:sing],
2, loves, [fin:fin, trans:trans, num:sing], 1,
suitable_referent:3, [gen:fem, num:sing],
sub(not([4], [4:2, [gen:male,num:sing],
3, love, [fin:nonfin, trans:trans, num:plur], 4]))]]).

In this case there was only one element present in Suitablejist implying that there is only one
possible TheJDrs. This is not always the case as the next example will illustrate:

(4.3). John loves Ulysses. Anne loves Polly anna. They rotate.

The author assumes that DRS for (4.3) has been produced by constructing:

DRS = drs([[1,2,3,4,5], [john:l, [gen:male, num:sing], ulysses:2, [gen:neut, num:sing],
1, loves, [fin:fin, trans:trans, num:sing], 2,
anne:3, [gen:fem, num:sing], pollyanna:4, [gen:neut, num:sing],
3, loves, [fin:fin, trans:trans, num:sing], 4,
suitable_referent:5, [case:(+), gen:_, num:plur],
5, rotate, [fin:fin,trans:intrans,num:_]]]).

122

Processing continues within section (2), prong 2 of constructing, as any suitable_referent:R
conditions of DRS need to be resolved.

• suitable_ref is called producing the Suitable_list for suitable_referent:5. There is no existing
non-atomic referent present in the condition list, so the non-atomic referents are synthesised
by summation.

Suitab lejist = [[non-at, 6: [anne:3, john:l], 5:6, [case:(+), gen:_, num:plur]],
[non-at, 6: [pollyanna:4, ulysses:2],

5:6,[case:(+),gen:_, num:plur]]]

The non-at is placed at the head of the set list to indicate that what is to follow is a set.

• changing_DRS introduces one of the suitable referents of Suitable_list at a time to replace
the suitable_referent:5 condition to give two possible DRSs as output of constructing.

The_Drs = drs([[1,2,3,4,5,6],
[john:l, [genmale, num:sing], ulysses:2, [gen:neut, num:sing],

1, loves,[fin:fin, trans:trans, num:sing], 2
anne:3, [gen:fem, nunr.sing], poUyanna:4, [gen:neut, num:sing],
3, loves, [fin:fin, trans:trans, num:sing], 4,
6: [anne:3, john:l], 5:6, [case:(+), gen:_, num:plur]],
5 rotate, [fin:fin, trans:intrans, num:_]]]).

The_Drs = drs([[1,2,3,4,5,6],
[john:l, [genmale, num:sing], ulysses:2, [gen:neut, num:sing],
1, loves,[fin:fin, trans:trans, num:sing], 2
anne:3, [gen:fem, num:sing], pollyanna:4, [gen:neut, num:sing],
3, loves, [fin:fin, trans:trans, num:sing], 4,
6: [pollyanna:4, ulysses:2], 5:6, [case:(+), gen:_, num:plur]],
5 rotate, [fin:fin, trans:intrans, num:_]]]).

This system combines everything possible to give every reading possible for every sentence of the
discourse, because of this the implementation may output a small amount nonsensical readings.
These readings are a result of not having enough world knowledge built into the system, and
nonsensical results will have to be eliminated by the human operator when the results are output.

123

4.3.3.I.3. The treatment of definite NPs within simple sentences.
Singular definite NPs.

Within this semantic module, singular definite NPs are treated like pronouns in that we presume
that they are familiar entities. The author appreciates that definite NPs can be used in a multitude
of ways, but asserts that within this implementation which uses a small fragment of English, an
attempt can be made to regard them as familiar. The NPs are treated within start, which presents
two different triggers for a definite NP:

(1). which introduces the suitable_referent:R condition to the DRS being developed, and will
result in a search for the most suitable referent.

(2) if (1) fails, trigger (2) which introduces the condition definite NP:Referent (i.e. the_man:4),
will be fired.

(3). Bill knows a woman. The woman owns a book.

DRS = drs([[4,3,2,l], [book:3,[gen:neut,num:sing],
worn an: 2, [gen :fem ,num :sing],
bill: l,[gen:male,num :sing],
1, knows,[fin:fin,trans:trans,num:sing], 2,
4, owns, [fin:fin,trans:trans,num:sing], 3,
4:2, [gen:fem,num:sing]]]) ? ;

no
No problem finding a suitable referent for the definite NP above, so trigger (2) does not fire. If
Sentence (4). is processed when the Existing_DRS is empty, trigger (2) would fire:

(4). Bill knows the woman.

DRS = drs([[4,3,2,l],
[the_wom an: 2, [gen: fem, num: sing],
bill: 1 ,[gen:male,num:sing],
1, knows,[fin:fin,trans:trans,num:sing], 2])? ;

124

Plural definite NPs - they and them.

plural_definiteNPs(7? /̂erenf, NewReferent, Sentence_Syntax, New_Sentence_Syn,
Cond, NewCond, Existing_DRS,
Flag, NewFlag, New_DRS).

These NPs are treated by the rule plural_definiteNPs contained in the or-loop of prong 1 of
constructing. This rule, like start, contains an or-loop of triggers, and actions to be performed if
the said triggers are fired. As discussed in chapter 3 section 3.4, depending where the NP is
situated in a sentence, a sentence can have a collective, distributive, or both collective and
distributive readings producing many possible DRSs for one Sentence_Syntax, all of which must
be generated by plural_definiteNPs. A typical trigger or-clause of plural_definiteNPs which
produces both the collective and distributive readings is shown below:

((% Is the Sentence_Syntax the same as the sentence syntax presented?, if so place the plural
% noun in a non-atomic DRS condition.
trigger(cr_id, Sentence_Syntax,

[s([np([det(the), [num:plur]],[n(B), [gen:C,num:plur]],
[optrel([]),_]),_)], W),Z],

drs([[Referent], [Referent\[B:Referent, [gen:C, num:plur]]]]), DRS,
_, _,Flag, NewFlag),

% In this case the NP part of Cond has been analysed
Cond = [s(unanalysed,G)J,
TempCond = [s(analysed,G)j,
% Both collective and distributive readings are available with this Sentence_Syntax.
% plural_definiteNPs outputs one of these readings at a time , with the other one
% available by backtracking.

((% Collective Reading - this reading is represented by introducing a non-atomic referent
% to represent the plural noun, as achieved in DRS with processing continuing as
% normal after this - section 3.4.2.1
sailie(w_Sentence_Syn, [s(R,W),Z]), % remove the NP information from

% Sentence_Syntax

NewCond = TempCond, % The NewCond simply carries the information
% that the NP part of Sentence_Syn has been analysed,

125

% and processing will continue as normal outside
% plural_definiteNPs and within constructing.

drs_conc(Existing_DRS, DRS, New_DRS, Flag))

(% Distributive Reading - The non-atomic set is DRS, we now intend to distribute over
% the set producing a duplex condition- section 3.4.2.2
Refl is Referent + 1, % Ref2 is going to be the element picked out of set Referent.
same(Afew_Sentence_Syn, [s(Ref2,W),Z]), % introduce R efl to the sentence syntax

% so that it will be involved in future
% conditions.

same(DRS, drs([[Referent], TheSet])), % isolate the set list - TheSet.
same(D7?Si,drs([G,[/?e/2.TfceSef]])), % mimicking x e X the first part of the

% distributive sub-DRS template
% chapter 3, section 3.4.2.2
% introduce Refl : TheSet.

Ref3 is R efl + 1, % the set is called Referent, R efl is an element of the set
% and future processing will lead to Ref3.

% Need to analyse the rest of the sentence to form DRS1 of the duplex condition that
% is the action every element, R efl of the set performed.
construcfion(Ref3,New_Sentence_Syn,Existing_DRS,DRSl,TempCond,

New Referent),
% Putting the duplex condition together.
same(TempDRS / ,dup\cx(DRS I,every,Refl, DRS1)),
% The original set declaration, Referent:TheSet must be added before the
% Existing_DRS.
drs_conc(Existing_DRS, DRS, Temp_mainDRS),

% The main condition information must be joined with the duplex condition.

drs_conc(Jemp_mainDRS, TempDRSl, The_drs,_),

% Need to remove any suitable_referent:R conditions replacing them with suitable

126

% referents, and outputting New_DRS.

changing_conditions(The_drs, Flag, New_DRS, Ref4),

% All processing of the sentence is complete, so assign NewCond the value
% finished - so that constructing will be exited.
NewCond = finished)))

This treatment of plural NPs which introduce collective and distributive readings will be illustrated
by example (5) which is processed by construction where the Existing_DRS is empty.

(5). The men love a woman that they know.

construction 1, [s([np([det(the),[num:plur]],[n(men),[gen:male,num:plur]],
[optrel([]),_H]),

[case:_I,gen:male,num:plur,gap:nogap]],
[vp([v(love),[fin:nonfin,trans:trans,num:plur]],

[np([det(a),[num:sing]],[n(woman),[gen:fem,num:sing]],
[op trel([relpron (that), [gen: fem ,n um :_F]],

[s([np([pro(they),[case:(+),gen:_D,num:plur]]),
[case: (+) ,gen:_E,num: plur,gap: nogap]],
[vp([v(know),[fin:nonfin,trans:trans,num:plur]],

[np(gap),
[case:_A,gen:_B,num:_C,gap:gap(np)]]),

[fin:nonfin,trans:trans,num:plur,gap:gap(np)]]),
[num:plur,gap:gap(np)]]),

[gen:fem,num:sing]]),
[case:_G,gen:fem,num:sing,gap:nogap]]),
[fin:nonfin,trans:trans,num:plur,gap:nogap]]),

[nnm:plur,gap:nogap]],

drs([[],[]]), DRS, [s(unanalysed,unanalysed)], _).

This call to constructing produces seven different DRSs, each representing a different reading of
sentence (5).

127

DRS = drs([[2,1,3], Collective reading (1).
[woman:2, [gen:fem,num:sing], The men love a woman that
1 :[men: 1 ,[gen:male,num:plur]], they know.
1, love, [fin:nonfin,trans:trans,num:plur], 2,
3, know, [fin:nonfin,trans:trans,num:plur], 2,
3:1, [case:_J,gen:_D,num:plur]]])? ;

DRS = drs([[1], Distributive reading (1).
[1 :[men: l,[gen:male,nunr.plur]], Every man
duplex(drs([[], [2:[l:[men:l,[gen:male,num:plur]]]]]), out of the set

every,2, of men loves a
drs([[3,4],[woman:3,[gen:fem,num:sing], woman the set of

2, love, [fin:nonfin,trans:trans,num:plur], 3, men know.
4, know, [fin:nonfin,trans:trans,num:plur], 3,
4:1, [case:_J,gen:_D,num:plur]]]))]]) ? ;

DRS = drs([[l], Distributive reading (2).
[l:[men:l,[gen:male,num:plur]], Every man out of

duplex(drs([[],[2:[l:[men:l,[gen:male,num:plur]]]]]), the set of men loves
every,2, a woman that he

drs([[3,4],[woman:3,[gen:fem,num:sing], knows.
2, love,[fin:nonfin,trans:trans,num:plur],3,
4,know,[fin:nonfin,trans:trans,num:plur],3,
4:2, [case:_J,gen:_D,num:plur]]]))]]) ? ;

DRS = drs([[2,1,3], _________ Collective reading (2).
[2:[men:2, [gen:male,num:plur]], The set of men
woman: 1, [gen:fem,num:sing], love a women
2, love,[fin:nonfin,trans:trans,num:plur],l, that they know
3, know,[fin:nonfin,trans:trans,num:plur],l,
3:2, [case:_J,gen:_D,num:plur]]]); The referents are declared in a

different order to Collective reading (1).

128

DRS = drs([[2,1], Distributive reading (3).
[2:[men:2,[gen:male,num:plur]], Same meaning
woman: 1 ,[gen:fem,num:sing], as Distributive reading
duplex(drs([[],[3:[2:[men:2,[gen:male,num:plur]]]]]), (1), but conditions

every,3, are declared in
drs([[1,4], [woman.T,[gen:fem,num:sing], a different order

3,love,[fin:nonfin,trans:trans,num:plur], 1, which
4,know,[fin:nonfin,trans:trans,num:plur],l, may lead
4:2, [case:_J,gen:_D,num:plur]]]))]]) ? ; to different

readings in the future

DRS = drs([[2,1], Distributive reading (4).
[2:[men:2,[gen:male,num:plur]], Same meaning as dist reading(2)

woman:l,[gen:fem,num:sing], but conditions are declared in
duplex(drs([G> [3:[2:[men:2,[gen:male,num:plur]]]]]), a different order,

every,3,
drs([[1,4], [woman:l,[gen:fem,num:sing],

3, love, [fin:nonfin,trans:trans,num:plur],l,
4, know,[fin:nonfin,trans:trans,num:plur],l,
4:3, [case:_J,gen:_D,num:plur]]]))]]) ? ;

DRS = drs([[3,1,2], Collective reading (3).
[3:[men:3, [gen:male,num:plur]], Same meaning as collective
woman:l,[gen:fem,num:sing], reading (2) but different
3, love, [fin:nonfin,trans:trans,num:plur],l, referent declarations.
2, know, [fin:nonfin,trans:trans,num:plur],l,
2:3, [case:_J,gen:_D,num:plur]]])?;

4.3.3.2. Analysing complex sentences.
The author will now discuss how complex sentences are treated within the semantic module.
These sentences are analysed within prong 1 of constructing, where inside the or-clauses each
complex sentential component calls a complex rule to break the sentence into a simple form so it
can be treated by start and change_the_drs. Each complex rule will be discussed and analysed by
taking them in the order in which they occur in prong 1.

129

4.3.3.2.I. The Quantified sentence - the duplex condition.

The sub-DRS template for quantified sentences is of the form:

6up\ex(DuplexDRS 1,Quantifier,Referent,Du.plexDRS2).

and is introduced by the duplex rule within constructing.

duplex(Referent, Existing_Drs, Sentence_Syntax, Flag, Condition, Finished_Drs,
NewCondition) :-

% produce the duplex DRS.
e\ery_ru\e(Referent, Sentence_Syntax, Existing_Drs, DuplexDRS,

Flag, Condition, NewCondition,NewRef),
% Resolve any suitable_referent:R conditions.
changing_conditions(DuplexDRS, Flag, Temp_DRS, NewRef),

% A duplex condition can produce a non-atomic set by abstraction. This set may
% be needed at a later stage in processing, the author chooses to produce the set
% now, inserting it as a non-atomic condition into the New_DRS.

Referent_two is NewRef + 1,

same(Temp_DRS, drs([/?e/Conditions])),

member_ref(duplex(A,B,C,D), Conditions, % isolate the duplex
% condition of Conditions.

% abstraction produces a NewCondset by putting all the conditions
% of the duplex condition into a new sub-DRS- Referent_two:NewCondset.

abstraction(duplex(A,B,C,D), Referent_two, NewCondset),

conc(Conditions, [NewCondset] ,NewConditions), % Add the set to Conditions.

130

Like start, every_rule contains a set of triggers and actions to be performed if these triggers are
fired. The difference being that a quantified sentence introduces two different DRSs joined by a
quantifier and main referent Fig 4.10, 4.11. Within every_rule, the triggers are structured as
follows:

• check to see if Sentence_Syntax contains a determiner noun category where the determiner is a
quantifier.

• Introduce a condition and referent to DuplexDRSl representing the noun.

• The Referent replaces the NP of Sentence_Syntax that contains the recognised determiner
noun categories to give TempSentence_Syn.

• The appropriate part of Condition is changed to analysed to give TempCondition, and
Referent is incremented to give Referentjtwo.

• DuplexDRS2 still needs to be generated, a call to constructing will generate it, the call is of
the form:

constructing (Referentjtwo, TempSentence_Syn, drs ([[],[]]), DuplexDRS2, Flag,
TempCondition).

Complex Sentence-Syntax trigger rules call sub-sentence which copes with NP gaps and
complex relative clauses.

• same(DRS, &u\)\tx(DuplexDRSl,Quantifier,Referent,DuplexDRS2)) - produces the DRS
which is incorporated into the Existing_Drs condition list by calling drs_conc producing the
DuplexDRS.

every_rule produces the DuplexDRS. The next step is to replace any suitable_referent:R
conditions present in the respective DuplexDRSs, which is achieved by changing_conditions.
changing_conditions takes into account which suitable referents are accessible from either of the
DuplexDRSs, and forms a TemporaryDRS which contains all suitable referents accessible from the

same(New_DRS, drs ([Ref, New Conditions])). % Add the new condition list to
% New_DRS

131

DuplexDRS we are currently looking at, where cond_drs resolves all suitable_referent:R
conditions within this DuplexDRS by calling change_the_drs.

• DuplexDRS contains the duplex condition and other main DRS conditions. member_ref
isolates these different DRS conditions:

The duplex condition: dxvplex(drs([Refl,Condl]), Quantifier, MainRef,
drs([Ref2,Cond2]))

The main conditions and referents: Conds Refs.

The suitable_referent:R conditions of DuplexDRS 1 have access to suitable referents of
DuplexDRS 1 and Conds so cond_drs is called with a TemporaryDRS containing the
main referents and conditions, and DuplexDRSl, with the conditions are resolved to
produce NewDuplexDRSl.

DuplexDRS 1
I

cond_drs(drs([/?e/s, Conds]), drs {[Refl, Condi]), Flag, NewDuplexDRSl ,NewRef).
I

Refs are the main referents of DuplexDRS, and Conds are the
main DuplexDRS conditions.

The suitable_referent:R conditions of DuplexDRS2 have access to the suitable referents of
DuplexDRS2, DuplexDRSl and the main Conds and Refs. The referents Refs and R efl are
concatenated into TempRef, and Conds and Condi are concatenated into TempCond
encompassing all of the suitable referents outside DuplexDRS2:

cond_drs(dvs([TempRef TempCond]), drs([/?e/2, Cond2]), Flag, NewDuplexDRS2,
New Ref).

The resolved DRSs of NewDuplexDRSl, and NewDuplexDRS2 are joined into a new duplex
condition Temp_DRS as changing_conditions is exited.

• The next step involves an application of abstraction to the duplex condition of Temp_DRS
producing a non-atomic set NewCondset which contains all the conditions of the duplex
condition. This set may be needed in future processing, and is added to the condition list of
Temp_DRS producing the NewConditions.

132

• Finally the main Refs of Temp_DRS, and the list NewConditions form the New_DRS.

Condition is changed to finished within every_rule, to indicate that all processing has been
completed within this or-clause. This occurs within all complex rule or-clauses, activating the third
prong of constructing, and exiting the module where this prong simply outputs the New_DRS
formed.

The author will now illustrate the production of a DRS for the quantified sentence (6). As aspects
of scope are ignored within the semantic module only one scope representation of (6) is produced,
with the two DRS representations resulting from backtracking which rearranges the application of
semantic rules, and therefore the introduction of conditions to DRS.

(6). Every man loves a woman.

Assuming that the Existing_DRS of construction is empty, the following DRSs are produced:

DRS = drs([[3], [duplex(drs([[1], [man:l, [gen:male, num:sing]]]),
every, man,

drs([[2], [woman:2, [gen:fem, num:sing],
1, loves, [fin:fin, trans:trans, num:sing], 2]])),

3: [1: [man:l, [gen:male, num:sing],
woman:2, [gen:fem, num:sing], The non-atomic
1, loves, [fin:fin, trans:trans, num:sing], 2]]]))?; set declaration.

The set is called 3.

DRS = drs([[1,4], [woman: 1, [gen:fem, num:sing],
duplex(drs([[2], [man:2, [gen:male, num:sing]]]),

every, man,
drs([[], [2, loves, [fin:fin, trans:trans, num:sing], 1]])),

4: [2: [man:2, [gen:male, num:sing],
2, loves, [fin:fin, trans:trans, num:sing], 1]]]))?;

133

4.3.3.2.2. Conjunction and disjunction NPs within sentences.

conj_and_disjunction(Referent, Sentence_Syntax, Existing_Drs, New_Drs, Flag,
Refcount).

conj_and_disjunction works on NP conjunction and disjunction. The conjunctive and disjunctive
NPs are found at the beginning or end of the Sentence_Syntax, but wherever they are found they
need to be isolated from the rest of the sentence, so that the remaining sentence syntax can be
analysed once, and not every time a conjunct or disjunct is encountered, viz. chapter 3, sections
3.3.6 & 3.3.7.

• The non-conjunctive or disjunctive part of Sentence_Syntax - NonDisjConj, is separated from
the disjunctive or conjunctive part.

Connector is found in Sentence_Syntax and is or or and depending on whether the
Sentence_Syntax is a disjunctive or conjunctive NP.

• If NonDisjconj contains a transitive verb, the referents and conditions are introduced into a
DRS by passing NonDisjConj into put_in_right_place which develops two DRSs DisjDrs
and StartDrs.

If a proper noun is present in the NonDisjConj information the referents and conditions
introduced are put into StartDrs, which holds all principal DRS information. If Connector is
or all other information is put into DisjDrs, but if Connector is and all information is put into
StartDrs. This is because conjunction does not introduce sub-DRSs whereas disjunction does
(chapter 3 section 3.3.6).

NonDisjConj has been analysed producing a NewNonDisjConj with the referents and
conditions introduced by it placed in StartDrs and DisjDrs respectively.

• Sentences are synthesised with NP disjunction or conjunction joined with the analysed
NewNonDisjConj. Processing continues using start and construction calls, making sure that
the referent and condition information is put into the correct DRS. Any suitable_referent:R
conditions are analysed within construction, with a disjunctive DRS only having access to the
referents of the disjunctive DRS being developed DisjDrs, and the main DRS StartDrs.
Accessibility is taken into account by the formation of careful calls to construction.

134

All information is put into the StartDrs if Connector is and, and the a different DisjDrs for
each disjunctive NP clause if the Connector is or, with proper noun information always placed
in StartDrs.

• The final processing step for Connnector = or involves incorporating the newly formed
disjunctive DRSs into the main DRS information:

drs([Refs,
[mainconditions connector(DisjDRSl,or,DisjDRS2,or, DisjDRS5)]]).

I
Disjunctive sub-DRS template.

Conjunctive information is simply incorporated into the main DRS Start_Drs during
processing, and does not introduce a sub-DRS template.

Let's take some examples to inspect the results produced by the above code fragments, taking a
disjunctive example (5), and then the same example expressed conjunctively (6).

(5). Bill owns Ulysses or Polly anna.

produces one DRS when the Existing DRS is empty:

DRS = drs([[1],
[bill: 1, [gen:male, num:sing],
connector([drs([[2], [ulysses:2, [gen:neut, num:sing],

1, owns, [fin:fin, trans:trans, num:sing], 2]]),
or,
drs([[3], [pollyanna:3, [gen:neut, num;sing],

1, owns, [fin:fin, trans:trans, num:sing], 3]])])
]])?;

Changing (5) slightly results in the conjunctive sentence (6):

(6). Bill owns Ulysses and Polly anna.

135

Again assume that the Existing_DRS is empty.

DRS = drs([[3,2,1],
[pollyanna:3, [gen:neut, num:sing],
ulysses:2, [gen:neut, num:sing],
1, owns, [fin:fin, trans:trans, num:sing], 2,
1, owns, [fin:fin, trans:trans, num:sing], 3,
bill: 1, [gen:male, num:sing]]])?;

4.3.3.2.3. Conjunctive and disjunctive sentences.

sentence_disj_and_conj(/?e/eren?, Sentence_Syntax, ExistingJDrs, New_Drs, Flag,
Refcount).

This rule works on sentential disjunction and conjunction. Conjunction produces one DRS with
each conjunct fully analysed before moving onto the next sentential conjunct. When all conjuncts
have been analysed the new DRS information is put into New_Drs. Disjunction introduces
disjunctive DRSs, DisjDrs, which are eventually incorporated into the ExistingJDrs producing the
NewJDrs.

Sentence_Syntax is analysed breaking the sentence up into the respective conjunctive or
disjunctive sentential components. The constructing and start rules introduce referents and
conditions to DisjDrs and the conjunctive DRS, taking care to place proper nouns in the main
DRS being developed, and resolve pronouns considering only suitable referents accessible from
the conjunctive DRS or DisjDrs being developed.

When processing is complete the DisjDrs formed are placed into the disjunctive sub-DRS template
shown in 4.3.3.2.2, and joined to the main DRS by drs_conc to produce the NewJ)rs.

We will take the following examples to illustrate the mechanics of the semantic implementation of
disjunctive and conjunctive sentences (7) and (8).

136

(7). John owns a cat or Mary owns a dog.

DRS = drs([[4,1],
[mary :4, [gen :fem ,num: sing],

john:l,[gen:male,num:sing],
connector([drs([[2],[cat:2,[gen:neut,num:sing],

1, owns, [fin:fin,trans:trans,num:sing], 2]]),
or,

drs([[5], [do g: 5, [gen: neut,num: sing],
4,owns,[fin:fin,trans:trans,num:sing],5]])])]])? ;

(8). John owns a cat and Mary owns a dog.

DRS = drs([[4,3,2,1], [dog:4, [gen:neut,nura:sing],
mary:3, [gen:fem,num:sing],
cat:2, [gen:neut,num:sing],
john:l, [gen:male,num:sing],
1, owns, [fin:fin,trans:trans,num:sing],2,
3, owns, [fin:fin,trans:trans,num:sing],4]])? ;

no.

4.3.3.2.4. Conditional sentences.

condition(Sentence_Syntax, Existing_Drs, New_Drs, NewFlag, Referent,
Referent_two, NewCondition, Condition).

• This rule contains the conditional trigger rule which checks Sentence_Syntax to see if it
contains [s(if, Sentencel, then, Sentence2)]. If this is present two calls are made to
constructing, one to analyse Sentencel and the other to analyse Sentence2, producing DRS1
and DRS2 respectively.

• CondDRS is declared as sub(cond(DRS1, =>, DRS2)). NewCondition = finished indicating
that when this rule is exited all processing will be complete for Sentence_Syntax and the third
prong of constructing will output the New_Drs.

137

• changing_conc_drs is called to resolve any suitable_referent:R conditions present in
CondDRS.

changing_cond_drs(Existing_Drs, CondDRS, NewJDrs)

same(CondDRS, sub(cond£>i?5i, =>, DRS2))),
cond_drs (Existing_Drs, DRS1,_, New_DRSl),

% The second DRS can have access to the referents of DRS1 and the
% Existing_Drs
% Join the conditions of both of these DRSs into TempConds.
same(Existing_Drs, drs([_,MainConds])),
conc(MainConds, Conds, TempConds),

% Resolve the suitable_referent:_ conditions in DRS2, to give NewDRS2
cond_drs(drs([[], TempConds]), DRS2, NewDRS2),

% Form the NewCondDRS
same(NewCondDRS, sub(cond(NewDRS 1,=>,NewDRS2))),
same(Existing_Drs, drs([MainRef, MainConds])),

% Add the NewCondDRS to the MainConds
conc(Ma in Conds, [NewCondDRS], New Conditions),
same(NewDRS, drs ([MainRef, NewConditions])),

changing_cond_drs rale takes the Existing_DRS and a CondDRS which contains two DRSs,
DRS I and DRS2. The aim of the rule is to produce a New_DRS with CondDRS incorporated
into the Existing_Drs and all suitable_referent:R conditions resolved.

The suitable_referent:R conditions of DRS I must be resolved first of all. These conditions
have access to suitable referents in DRS I and Existing_Drs. cond_drs is called using DRS I
and Existing_Drs as arguments producing New__DRSI with all such conditions resolved.

The suitable_referent:R conditions of DRS2 have access to the referents of DRS2, DRS1 and
Existing_Drs. A TempDRS is formed by concatenating the referents and conditions of DRS1

138

and Existing_Drs, cond_drs takes this TempDRS and DRS2 as arguments and resolves any
such conditions within DRS2 producing NewDRS2.

Finally the NewjCondDRS is formed by placing NewDRSl and NewDRS2 into the conditional
sub-DRS template: sub(cond(NewDRSl,=>, NewDRS2)), which is joined with Existing_DRS
using drs_conc to produce New_Drs. As before all the possible suitable referents that can
replace a suitable_referent:R condition are allowed to do so producing all possible NewDRSs.

(9). I f a man knows a woman, then she knows him.

Assuming Existing_DRS is empty, processing (9), results in DRS:

New_DRS = drs([[], [sub(cond(drs([[2,1], [woman:2,[gen:fem,num:sing],
man: l,[gen:male,num:sing],
1, knows, [fin:fin,trans:trans,num:sing], 2]]),

=>,

drs([[4,3], [3, knows, [fin:fin,trans:trans,num:sing], 4,
4:1, [case:(-),gen:male,num:sing],
3:2, [case:(+),gen:fem,num:sing]]])))]]) ? ;

4.4 Conclusions
This chapter presented an implementation of Discourse Representation Theory as presented in
Kamp and Reyle (1993), with extensions by the author in the areas of disjunction, summation set
formation, and definite NPs. These extensions, and many more were necessary to facilitate the
usage of a theoretical approach to DRT in a strict computational environment, thereby avoiding:

• condition and referent declaration duplication within disjunctive DRSs, which is harmless in a
theoretical sphere but superfluous in a computational domain, viz. chapter 3 section 3.3.6.2

139

• formation of incorrect summation sets. Kamp and Reyle (1993) suggest that every referent
present in a DRS can be summed to form a new non-atomic referent set. This approach
produces only one summation set, and concentrates on world knowledge to eliminate
nonsensical referent combinations within the set.

Computationally this ungainly method can lead to senseless readings as non-human and human
referents are joined into one unusual set. The author attempts to incorporate world knowledge
into the procedure by placing human, and non-human referents in separate sets. Consequently
each application of summation produces two summation sets, and two possible DRSs. Each
DRS produced is developed until the discourse is fully processed and the DRS is output, or the
DRS becomes improper and failure occurs.

• problems with definite NPs and familiarity. There are many different types and treatments of
definite NPs. Non-generic definite NPs when encountered in discourse re-introduce familiar
entities to the environment. Kamp and Reyle (1993) provisionally assert that processing of
indefinite NPs as new entities, and definite NPs as familiar entities forms the backbone of
DRT. They claim that definite NPs are treated like pronouns in that they are familiar to the
speaker and hearer of a discourse, and should be linked with available accessible suitable
referents. Subsequently Kamp and Reyle (1993) revise this approach as suitable referents are
not always available in the DRS, they assert that definite NPs should simply introduce a
referent and condition without the suitable referent search.

The author agrees that suitable referents are not always available, but claims that after the
initial referent and condition of the definite NP are introduced to the DRS, a search for a
suitable referent should take place. If this search fails the conditions are left as they are, but if
a suitable referent or set of suitable referents are found an extra condition linking the NP and
referent should be added to the DRS being developed. This search is achieved by the author in
the implementation.

The next chapter will discuss the areas of the implementation that would benefit from expansion
and improvement.

140

Chapter 5 Conclusions.

141

5.1 Conclusions.
This thesis presented:

• Chapter 1 - This chapter defines the terminology used in the discussion of anaphora, the
problem of anaphora, and the traditional approaches used in anaphora resolution.

Anaphors are conversational shorthand, in that they refer to entities explicitly mentioned in
text e.g.

(1). Mary owns a dog. She loves it.

She and it are the anaphors and can be linked with the antecedents (i.e. preceding entities)
Mary and dog. Humans use world knowledge i.e. our knowledge of particular events and
situations, to isolate and expand anaphors into entities they refer to in text. This world
knowledge is implicit in conversation, as in order to communicate, and be understood the
speaker and hearer must share the same knowledge of the world and environment. In (1)
world knowledge implies that the female anaphor She refers to a previously mentioned
female human entity, this is readily found in Mary. The information that She should be
linked with a human, and that humans usually own dogs suggesting that it is a dog, is also
provided by world knowledge which is not explicitly mention anywhere in (1). In order to
model anaphora resolution i.e. expand the anaphor, world knowledge must be incorporated
in an attempt to model the reasoning behaviour of humans.

This chapter also discusses the earliest approach to anaphora resolution that of Predicate
Calculus. This calculus provides truth conditions for eveiy sentence of a discourse, but
unlike human reasoning is unable to provide a link or common variable connection between
sentences of the discourse. The calculus works well for single sentences but fails in a
multisentential domain.

• Chapter 2 - With the failure of Predicate Calculus as applied to discourses, this chapter
discusses the historical manipulations of anaphora that led to contemporary thinking, and
Discourse Representation Theoiy (DRT). Historical approaches were built on Predicate
Calculus, and attempt to build on the calculus so that it may be applied to multisentential
domains. A common theme running through all the methods designed to resolve anaphors
is that different treatment given to indefinite NPs. An analysis may regard the NP as a
variable, a referring, non-referring or quantifying article. How the indefinite NP is regarded
forms the core of these methods. This NP is singled out for special treatment as it can

142

range across sequences of sentences, behaves differently to other NPs when in a
conditional and is capable of anteceding a pronoun across a relative clause when other NPs
cannot.

This chapter introduces the awkward donkey sentence, as discussed by Geach (Geach
1962), the development of methods to deal with such sentences, and the behaviour of
indefinite NPs within the said sentences. Ultimately leading to a discussion of the dynamic
systems, with a discussion of File Change Semantics (Heim 1982), and Discourse
Representation Theory (Kamp 1981). These systems are deal with discourses, and differ
from those developed previously in that they present a more dynamic view of semantics. In
dynamic semantic theories new sentences in discourse are interpreted in the context of
what has gone before, and in this way new information is built into an existing structure.
The core philosophy behind these theories is that meaning is change (Cooper et al 1995).
Discourse Representation Theory (DRT) is discussed further in chapter 3.

• Chapter 3 - This chapter presents an overview, and a discussion of the dynamic
multisentential system of DRT as presented by Kamp and Reyle (Kamp and Reyle 1993)
with extensions provided by the author. The overview discusses the basic mechanisms,
construction rules and antecedent prediction methods of DRT covering all syntactic
structures and plural NPs.

• Chapter 4 - This chapter presents, and discusses an implementation of a DRT extended
theory in Prolog, where the discussion is divided into two modules - the syntactic and
semantic modules. The syntactic module discusses the parsing methods that were available
to the author, and explains why a left comer parser was chosen. The semantic module
divides all sentences into simple and complex sentences, where a complex sentence is a
conditional, quantified, conjunctive, disjunctive sentence, or any sentence containing a
plural NP. The analysis of simple sentences with the reduction of complex sentences to
simple sentences is discussed with examples in the semantic module.

5.2 Suggestions for further work.
The implementation works well within the small domain specified, but would benefit from
improvement as:

• the selection of accessible suitable referents for definite NPs, plural, or singular pronouns
repeatedly results in sets of possible referents. Each element of the suitable referent set
must be placed in the existing DRS producing a new DRS. This simple operation can lead

143

to the production of multiple DRSs, normally anything from two to eight DRSs are
produced by a search for a suitable referent. A computational explosion is the consequence
of this as even a simple three sentence discourse can lead to at least eight or ten possible
DRSs, some of which contain nonsensical readings e.g. section 4.3.3.1.2

A computational explosion also results from ambiguous sentences where eveiy possible
reading of every sentence of the discourse must be represented in a DRS, section 4.3.3.1.2.
e.g.

Everyone in the room speaks at least two languages.
(Sag, 1991).

The ambiguity here, is do they speak the same two languages or does eveiybody know
different languages.

These inherent ambiguities make the system in its present state nonviable as an instrument
in analysing large discourses, e.g. if a three sentence discourse can result in eight DRSs, a
larger discourse would result in hundreds of possible DRSs.

The implementation needs to be revised, eliminating nonviable sentence readings and
unsuitable set elements before they are added to the existing DRS. This could be achieved
by examining surrounding sentences, introducing a type of focus or ranking to gauge the
sentence readings and set elements, with only the two highest ranking set elements or
readings considered. One sentence would therefore produce at most four DRSs. This could
potentially halve the number of DRSs produced, and greatly reduce the computational
effort required to process a medium sized discourse. Alternatively more processing could
be introduced at the syntactic level, introducing more world knowledge to the system.

• in forming the implementation, it was decided to omit the treatment of scope relations
between quantifiers of sentences. This decision excludes one form of ambiguity from the
implementation, with the disadvantage of a resulting 2-dimensional mechanism rather than
3-dimensional approach. For a more rounded implementation this ambiguity can be
introduced to the system.

Theoretically the DRT system of Kamp and Reyle (1993) works well, but merely provides
guidelines to build on. The system is basic and needs to incorporate a greater degree of world
knowledge with the early elimination of nonsensical readings before they produce nonviable
DRSs.

144

References.
Allwood, J. Dahl, O. and Andersson, L-G. (1977), Logic in Linguistics, Cambridge Textbooks in
Linguistics.

Asher N. and Wader H. (1986), BUILDRS: An implementation o f DR theory and CFG, in
COLING '86, p540-46

Bates, M. and Weischedel R. (1993), Challenges in Natural Language Processing, Studies in
NLP series, Cambridge University Press.

Beardon, C, Holmes, G. and Lumsden, D (1991), Natural Language and Computational
Linguistics, an introduction, Ellist Horwood.

Bumstein, M and Schank, R. (1985), Artificial Intelligence Modelling Memory fo r Language
Understanding, From Van Dijk, T. (ed.), Handbook o f Discourse Analysis, London Ontario
Academic Press.

Cann, R. (1993), Formal semantics. An introduction. Cambridge University Press.

Carter, D. (1987), Interpreting anaphors in natural language text, Chichester: E Horwoods New
York Halsted Press.

Charniak E, (1977), Inference and Knowledge in Language Computation, From Elcock and
Mitchie, Machine Intelligence 8, p541-75.

Chierchia, G. (1992), Anaphora and Dynamic Binding, Linguistics and Philosophy 15.

Chierchia, G. and Me Connell, S. (1990), Meaning and Grammar. An Introduction to Semantics,
MIT Press.

Chierchia, G. (1995), Dynamics o f Meaning - Anaphora, Presuppositions and the theory o f
Grammar, Universtiy of Chicago Press - forthcoming.

Cohen, R. (1987), Analysing the Structure o f Argumentative Discourse. Computational
Linguistics Volume 13 no 1-2, Jan-Jun.

145

Cooper, R (1979), The Interpretation o f pronouns in Heny, F and Schnelle, H (eds), Selections
from the 3rd Groningen Round Table, Syntax and Semantics (10), New York Academic Press, p
61-92.

Cooper, R et al (1994), Describing Approaches, FraCaS - A Framework for Computational
Semantics, LRE 62-051 Deliverable D8.

Cooper, R et al (1995), Evaluating the State o f the Art, FraCaS - A Framework for
Computational Semantics, LRE 62-051 Deliverable DIO.

Coulthard, M. (1985), An introduction to Discourse Analysis, Longman.

Covington, M. Schmitz D. N. and Goodman D, (1988), From English to Prolog via Discourse
Representation Theory, Advanced Computational Methods Centre Research Report 01-0024,
University of Georgia.

Crouch, D. Kamp, H. and van Genabith, J. (1994), Specification o f Linguistic Coverage, FraCaS -
A Framework for Computational Semantics LRE 62-051 Deliverable D2

Egli, U. (1979), The Stoic Concept o f Anaphora in Bauerle, R. Egli, U. and Stechow, A.
Semantics from Different Points o f View, Berlin Springer.

Evans, G. (1977), Pronouns; quantifiers o f relative clauses, Canadian Journal of Philosophy 7.

Evans, G (1980), Pronouns, Linguistic Inquiry 11, MIT Press.

Gal, A. Lapalme, G. Saint Dizier, P. and Somers, H, (1991), Prolog for Natural Language
Processing, Chichester: Wiley.

Gamut, L. T. F. (1990), Logic, Language and Meaning, volume I, University of Chicago.

Gamut, L. T. F. (1990), Logic, Language and Meaning, volume 2, University of Chicago.

Gazdar, G and Mellish, C. (1989), Natural Language Processing in Prolog. An introduction to
Computational Linguistics, Wesley.

146

Grice, H. P. (1975), Logic and Conversation in Cole, P. R and Morgan, J. L. eds (1975) Studies
in Syntax, Volume 3, NewYork: Academic Press.

Grishman, R. (1986), Computational Linguistics, An introduction, Cambridge University Press.

Grosz, B. J. (1986), Attention, Intentions, and Structure o f discourse, Computational Linguistics
Volume 12, no 3, July-Sept.

Guenthner, F. Lehmann, H. and Schonfeld, W. (1986). A theory fo r representation o f knowledge.
International Business Corporation.

Heim, I. (1981), The Semantics o f Definite and Indefinite Noun Phrases in English, PhD Thesis,
University of Massachusetts, Amherst. Distributed as Arbeitspapier 73, SFB 99, Konstanz. -
Published (1988). NewYork: Garland.

Hinkelman, E. and Traum, D.R. (1992), Conversation Acts in Task Oriented Spoken dialogue,
Computational Linguistics Special issue: Computational Approaches to Non-Literal Language,
Volume 8 no 3 August.

Hobbs, J (1986), Resolving pronoun references in Grosz, B. J, Sparc Jones, K and Webber, B.
(eds), Readings in Natural Language Processing, Morgan Kaufman Publishing Inc.

Hobbs, J. and Shieber, S. (1987), An algorithm fo r General Quantifier scoping, Computational
Linguistics, Volume 13, Numbers 1-2, January-June.

Johnson, M. and Klein E. (1986), Discourse, anaphora, and parsing, From COLING '86, p669-75

Kamp, H. (1981), A Theory o f Truth and Semantic Representation, in Jeroen A. G. Groenendijk,
T. M. V. Janssen & Martin B. J. Stokhof (eds.), Formal Methods in the Study o f Language,
Mathematical Centre Tract 135, Amsterdam, pp 277-322. - Reprinted in: Jeroen A. G.
Groenendijk, T. M. V. Janssen & Martin B. J. Stokhof (eds.), Truth, Representation and
Information (= GRASS Series No. 2), Dordrecht, pp. 227 - 322.

147

Kamp, H. and Reyle, U. (1993), From Discourse to Logic. Introduction to Model Theoretic
Semantics o f Natural Language, Formal Logic and Discourse Representation Theory. Kluwer
Academic Publishers.

Kartunnen, L., Zwicky, A. (1985), Introduction to Natural Language Processing in Dowty, D.
Kartunnen, L. Zwicky, A (eds), Natural Language Parsing, Cambridge University Press.

Laird, J. (1986), Reasoning without Logic, From Cognitive Science Series - Myers, T., Brown, K ,
and Me Gonigle, B, (1986), Reasoning and Discourse Processes.

Lewis, D. (1979), Scorekeeping in a Language Game, From Bauerle,R. Egli U. and Stechow A,
Semantics from Different Points o f View, Berlin Springer.

Link, G. (1983), The logical analysis o f plurals and mass terms: A lattice-theoretical approach,
In Bauerle, R et al (eds), Meaning, Use, and Interpretation o f Language, de Gruryter, Berlin p
302-23.

Link, G. (1991), First order axioms fo r the logic o f plurality, presented at the Third European
Summer School in Language, Logic and Information, Saarbrucken, August 12-23, 1991.

Link, G. (1986), Generalized Quantifiers and Plurals, University of Munich and CSLI Report no
CSLI-86-67.

Link, G, and Lonning J. (1991), A chapter in Lattice Theory, From Algebraic Semantics I:
Plurals and Mass Terms, presented at the Third European Summer School in Language, Logic
and Information, Saarbrucken, August 12-23, 1991.

Lonning, J. T. (1987), Mass Terms and Quantification, Linguistics and Philosophy 10, p 1-52.

Maier, H (1994), IAN - A testbed for incremental syntax-semantic analysis o f natural language,
Final year project, School of Computational Linguistics, Dublin City University.

Partee, B. (1976), Montague Grammar, New York Academic Press.

Parsons, B. (1978), Pronouns as paraphrases, University of Massachusetts, Amherst.

148

Pereira, F. C. N and Shieber, S. M. (1987), Prolog and Natural Language Analysis, CSLI Lecture
Notes no 10.

Pereira, F. C. N. and Pollack, M. E. (1991), Incremental Interpretation, Artificial Intelligence 50,
p 37 - 82, Received December 1989, Revised May 1990.

Renkema, J. (1993), Discourse Studies, An Introductory Textbook, John Benjamins Publishing
Company.

Reape, M. (1992), Introduction to Some Common Parsing Algorithms, Department of Computer
Science, Trinity College Dublin.

Roberts, C. (1991), Distributivity, presented at the Third European Summer School in Language,
Logic and Information, Saarbrucken, August 12-23, 1991.

Roeper, P. (1991), Semantics fo r mass terms with quantifiers, presented at the Third European
Summer School in Language, Logic and Information, Saarbrucken, August 12-23.

Rooth, M. (1986), NP interpretation in Montague Grammar, File Change Semantics and
Situation Semantics. Centre for Study of Language and Information, Report no CSLI-86-51,
Dordecht, Holland.

Russell, B (1905), Descriptions in Linsky L (1972), Semantics and the Philosophy o f language, A
collection o f readings, Urbana, 111: University of Illinois Press 1972.

Sag, I. (1991), Linguistic Theory and Natural Language Processing, From Natural Language
Speech Symposium Proceedings, Brussels.

Sedogbo, C. (1987), A DRT system in Prolog, in Natural Language in Dahl, V. and Samint-
Dizier, P. (eds), Understanding and Language Programming, p 185-201.

Shieber, S. M. (1986), An Introduction to Unification Based Approaches, CSLI Lecture Notes no
4, Stanford University Press.

Smaby, R. (1979), Ambiguous coreference with quantifiers in Guenthner, F and Schmidt, S (eds),
Formal Semantics and Pragmatics for Natural Language, Dordrecht Reidel, p 37 - 75.

149

van Genabith, J. (1995), Lecture Notes on parsing presented at Dublin City University, Spring
1995.

Varile, G. B. (1983), Charts: a Data Structure fo r parsing. From King, M (1983), Parsing
Natural Language, Academic Press.

Webber, B (1986), So what can we talk about now? in Grosz, B. J, Spare Jones, K and Webber,
B. (eds), Readings in Natural Language Processing, Morgan Kaufman Publishing Inc.

150

Appendix A

151

% This file kamp4.pl contains the grammar and lexicon which is parsed by the
% left_corner parser of left_corner.pl.

?-op(500,xfy,—>). % declares the operator.

% This left corner recursive grammar, this file is parsed by
% "left_corner" the parser which
% also uses the link table in file "linkjable".

% gap has two values gap(np) and nogap

s(S) —> [s(S,[num:_,gap:nogap])].

% np(Case,Gender,Num,Gap)].
% vp(Fin,Trans,Num,Gap)].

s([s(COND 1 ,S 1 ,COND2,S2),[num:_,gap:nogap]],
[num:_,gap:nogap]) —> [cond(CONDl),

s(Sl,[num:_,gap:nogap]),
cond(COND2),
s(S2,[num:_,gap:nogap])].

s([s(S 1,CONNECTOR,S2),[num:_,gap:nogap]],
[num:_,gap:nogap]) —> [s(Sl,[num:_,gap:nogap]),

connector(CONNECTOR),
s(S2,[num:_,gap:nogap])].

s([s(NP,VP),[num:Num,gap:Gap]],
[num:Num,gap:Gap]) —>

[np(NP,[case:_,gen:_,num:Num,gap:nogap]),
vp(VP,[fin:_,trans:_,num:Num,gap:Gap])].

np([np(PN),[case:_,gen:Gen,num:Num,gap:nogap]],
[case:_,gen:Gen,num:Num,gap:nogap]) — >

[pn(PN,[gen:Gen,num:Num])].

152

np([np(DET,N,OPT),[case:_,gen:Gen,num:Num,gap:nogap]],
[case:_,gen:Gen,num:Nura,gap:nogap]) —>

[det(DET,[num:Num]),
n(N,[gen:Gen,num:Num]),

optrel(OPT,[gen:Gen,num:Num])].

np([np(N,OPT),[case:_,gen:Gen,num:Num,gap:nogap]],
[case:_,gen:Gen,num:Num,gap:nogap]) —>

[n(N,[gen:Gen,num:Num]),
optrel(OPT,[gen:Gen,num:Num])].

np([np(PRO), [case:Case,gen:Gen,num:Num,gap:nogap]],
[case:Case,gen:Gen,num:Num,gap:nogap]) —>

[pro(PRO,[case:Case,gen:Gen,num:Num])].

np([np(gap), [case:_,gen:_,num:_,gap:gap(np)]],
[case:_,gen:_,num:_,gap:gap(np)]) —> [[]]. % This is the empty np

% productions.

np([np(NPl,NP2,CONNECTOR,NP3),[case:Case,gen:_,num:_,gap:nogap]],
[case:Case,gen:_,num:_,gap:nogap]) —>

[np(NPl,
[case:Case,gen:_,num:_,gap:nogap]),

special_np(NP2,
[case:Case,gen:_,num:_,gap:nogap]),

connector(CONNECTOR),
np(NP3,

[case:Case,gen:_,num:_,gap:nogap])].

special_np([np(NPl,NP2,NP3),[case:Case,gen:_,num:_,gap:nogap]],
[case:Case,gen:_,num:_,gap:nogap]) — >

[np(NPl,[case:Case,gen:_,num:_,gap:_]),
np(NP2,[case:Case,gen:_,num:_,gap:_]),

153

np(NP3,[case:Case,gen:_,nura:_,gap:_])].

% vp(Fin,Trans,Num,Gap)].

% intransitive verb rule:

vp([vp(V),[fin:Fin,trans:intra,num:Num,gap:nogap]],
[fin:Fin,trans:intra,num:Num,gap:nogap]) —>

[v(V,[fin:Fin,trans:intra,num:Num])].
% transitive verb rule:
vp([vp(V,NP),[fin:Fin,trans:trans,num:Num,gap:Gap]],

[fin: Fin,trans: trans ,num: Num ,gap: Gap]) — >
[v(V,[fin:Fin,trans:trans,num:Num]),
np(NP,[case:_,gen:_,num:_,gap:Gap])].

vp([vp(AUX,NOT,VP),[fin:Fin,trans:_,num:Num,gap:_]J,
[fin:Fin,trans:_,num:Num,gap:_]) —>

[aux(AUX, [num: Num]),
neg(NOT),

vp(VP,[fin:Fin,trans:_,num:_,gap:_])].

optrel([optrel([]),_],[gen:_,num:J) —> [[]].

optrel([optrel(PRON,V),[gen:Gen,num:Num]],
[gen:Gen,num:Num]) —>

[relpron(PRON, [gen :Gen,num: Num]),
vp(V,[fin:_,trans:_,num:_,gap:nogap])].

optrel([optrel(PRON,S),[gen:Gen,num:Num]],
[gen:Gen,num:Num]) —>

[relpron(PRON, [gen: Gen, num: Num]),
s(S,[num:_,gap:gap(np)])].

lex(connector(and),and):- !.
lex(connector(or),or):- !.

154

% For conjunction:

lex(conj(and),and).

% For negation:
lex(neg(not),not).

% For conditionals:
lex(cond(if),if)-
lex(cond(then),then).
% For disjunctions.
lex(disj(or),or).

lex(relpron([relpron(that),[gen:neut,num:_]],[gen:neut,num:_]),that).
lex(relpron([relpron(who),[gen:male,num:_]],[gen:male,num:J),who).
lex(relpron([relpron(who),[gen:fem,num:_]],[gen:fem,num:_]),who).
lex(relpron([relpron(which),[gen:neut,num: J],[gen:neut,nura:_J),which).

lex(det([det(the), [num: sing]], [num: sing]) ,the).
lex(det([det(the),[num:plur]],[num:plur]),the).
lex(det([det(some),[num:sing]],[num:sing]),some).
lex(det([det(some),[num:plur]],[num:plur]),some).
lex(det([det(a), [num: sing]], [num: sing]), a).
lex (det([det(every), [num: sing]], [num: sing]),every).
lex (det([det(all), [num: plur] |,[num: plur]), all).
lex(det([det(most),[num:plur]],[num:plur]),most).

lex(n([n(book),[gen:neut,num:sing]],[gen:neut,num:sing]),book).
lex(n([n(woman),[gen:fem,num:sing]],[gen:fem,num:sing]),woman).
lex(n([n(man),[gen:male,num:sing]],[gen:male,num:sing]),man).
lex(n([n(stockbroker),[gen:male,num:sing]],[gen:male,num:sing]),stockbroker).
lex(n([n(stockbroker),[gen:fem,num:sing]],[gen:fem,num:sing]), stockbroker).
lex(n([n(books),[gen:neut,num:plur]],[gen:neut,num:plur]),books).
lex(n([n(women),[gen:fem,num:plur]],[gen:fem,num :plur]),women).
lex(n([n(men),[gen:male,num:plur]],[gen:male,num:plur]),men).
lex(n([n(stockbrokers),[gen:male,num:plur]],[gen:male,num:plur]), stockbrokers).

155

lex(n([n(stockbrokers),[gen:fem,num:plur]],[gen:fem,num:plur]),stockbrokers).
lex(n([n(ulysses),[gen:neut,num:sing]],[gen:neut,num:sing]),ulysses).
lex(n([n(porche),[gen:neut,num:sing]],[gen:neut,num:sing]), porsche).
lex(n([n(porche),[gen:neut,num:plur]],[gen:neut,num:p]ur]),porsche).

lex(pn([pn(john),[gen:male,num:sing]],[gen:raale,num:sing]),john).
lex(pn([pn(aniia),[gen:fem,nura:sing]],[gen:fem,nura:sing]),anna).
lex(pn([pn(elaine),[gen:fem,num:sing]],[gen:fem,num:sing]),elaine).
lex(pn([pn(jones),[gen:male,num:sing]],[gen:raale,num:sing]),jones).
lex(pn([pn(anna_karenina),[gen:fem,num:sing]],[gen:fem,num:sing]),anna_karenina).
lex(pn([pn(bill),[gen:male,num:sing]],[gen:male,num:sing]),bill).
lex(pn([pn(mary),[gen:fem,num:sing]],[gen:fem,num:sing]),mary).
lex(pn([pn(smith),[gen:male,num:sing]],[gen:male,num:sing]),smith).

% trans - transitive, intra - intransitive],
% fin:fin - fin:tinite, infin:fin - infin:finite

lex(v([v(abhors),[fin:fin,trans:trans,num:sing]],
[fin :fin, trans: trans, num: sing]), abhors).

lex(v([v(adores),[fin:fin,trans:trans,num:sing]],
[fin :fin,trans:trans,num:sing]), adores).

lex(v([v(knows),[fin:fin,trans:trans,num:sing]],
[fin :fin, trans: trans, num: sing]), knows).

lex(v([v(Ukes),[fin:fin,trans:trans,num:sing]],
[fin: fin, trans: trans, num: sing]), likes).

lex(v([v(loves),[fin:fin,trans:trans,num:sing]],
[fin:fin,trans:trans,num:sing]),loves).

lex(v([v(owns), [fin:fin,trans:trans,num:sing]],
[fin :fin, trans: tr ans ,num: sing]), o wns).

lex(v([v(hit), [fin:fin,trans:trans,num:sing]],
[fin:fin,trans:trans,num:sing]),hit).

lex(v([v(fascinates),[fin:fin,trans:trans,num:sing]],
[fin:fin, trans: trans, num: sing]) .fascinates).

156

lex(v([v(adore),[fin:nonfin,trans:trans,num:plur]],
[fin:nonfin,trans:trans,num:plur]),adore).

lex(v([v(know), [fin:nonfin,trans:trans,num:plur]],
[fin:nonfin,trans:trans,num:plur]),know).

lex(v([v(own), [fin:nonfin,trans:trans,num:plur]],
[fin: n o nfin, tr ans: tr ans, num: plur]), o wn).

lex(v([v(love), [fin:nonfin,trans:trans,num:plur]],
[fin:nonfin,trans:tr ans, num:plur]), love).

lex(v([v(like), [fin:nonfin,trans:trans,num:plur]],
[fin:nonfin,trans:trans,num:plur]),like).

lex(v([v(fascinate),[fin:nonfin,trans:trans,num:plur],
[fin:nonfin,trans:tr ans, num:plur]]), fascinate).

lex(v([v(hit), [fin:nonfin,trans:trans,num:plur]],
[fin inonfin ,tr ans: trans ,num: plur]),hit).

lex(v([v(abhor),[fin:nonfin,trans:trans,num:plur]],
[fin:nonfin,trans:tr ans,num:plur]),abhor).

lex(v([v(knows), [fin:fin,trans:intra,num:sing]],
[fin:fin,trans:intra,num:sing]),knows).

lex(v([v(rotates),[fin:fin,trans:intra,num:sing]],
[fin:fin,trans:intra,num:sing]), rotates).

lex(v([v(know), [fin:nonfin,trans:intra,num:plur]],
[fin :nonfin, trans :intra,num: plur]) ,kno w).

lex(v([v(rotate),[fin:nonfin,trans:intra,num:plur]],
[fin:nonfin,trans:intra,num:plur]),rotate).

% Case is nominative + for he,she and they and non-nominative for him,her and
% them].

lex(pro([pro(it),[case: _,gen:neut,num:sing]],[case: _,gen:neut,num:sing]),it).
lex(pro([pro(he),[case: +,gen:male,num:sing]],[case: +,gen:male,num:sing]),he).
lex(pro([pro(she),[case: +,gen:fem,num:sing]],[case: +,gen:fem,num:sing]),she).
lex(pro([pro(they),[case: +,gen:_,num:plur]], [case: +,gen:_,num:plur]),they).
lex(pro([pro(him),[case: -,gen:male,num:sing]],[case: -,gen:male,num:sing]),him).

157

lex(pro([pro(her),[case: gen:fem,num:sing]],[case: -,gen:fem,num:sing]),her).

lex(pro([pro(them),[case: -,gen:_,num:plm]J,[case: -,gen:_,num:plur]),lhem).

lex(aux([aux(does),[num:sing]],[num:smg]),does).

lex(aux([aux(do),[num:plur]],[num:plur]),do).

158

% This is the left_corner parser - left_corner.pl

% This is the parser, it is callcd with parse(Goal,[sentence],[]).
% This file is used in conjunction with hnk_table.pl which explicitly
% states the links between categories in the grammar, and the grammar
% kamp4.pl. An example query is parse(s(Tree),[jones,loves,mary],[]).

?-op(500,xfy,—>).

parse(Goal,B,E)
shift(SubGoal,B,M),
link(Goal,SubGoal), % the link fact is found in file link_table.

% which needs to be compiled with this file.
l_c(SubGoal,Goal,M,E).

shift(Cat,[WordlRest],Rest)
lex(Cat,Word).

shift(Cat,String,String)
Cat —> [[]].

l_c(Goal,Goal,String,String). %shift

l_c(SubGoal,SuperGoal,B,E)
Mother —> [SubGoallRestGoals],
link(SuperGoal, Mother),
parse_rest(RestGoals,B ,M),
l_c(Mother,SuperGoal,M,E).

parse_rest([],String,String). % deals recursively with the sub derivations.
parse_ rest([G oallR estG oal],B ,E)% generated by l_c predict.

parse(Goal,B,M),
parse_rest(RestGoal,M,E).

% Next rules, check the link table and attempt to stop the problem of

159

% looping when the head of a rule h —> [].

% This is the link table used by the parser - link_table.pl

% This file is used in conjunction with the parser "left_comer" and the
% grammar "kamp4'', this file is called by "left_corner".

% This is a link table, it explicitly states the links between non terminals
% in grammars and the left comers of the non terminal rules.

% Reflexive links, links for every category to themselves.
% x element of nontermials -> link(x,x) [Josef lecture notes]

l in k (s (_) ,s (J) !.
l in k (s (_ ,_) ,s (_ ,J) !.
lin k (n p (_ ,_),n p (_ ,J)!.
link(vp(_,_),vp(_ ,_)) ! .
link(pn(_ ,_),pn(_ ,_))!.
link(det(_ ,_),det(_ ,_))!.
l in k (n (_ ,_) ,n (_ ,J) !.
link(optrel(_,_),optrel(_,_))!.
l i n k (p r o p r o (_ , _)) ! .
link(conj(_),conj(_)) ! .
lin k (n e g (_) ,n e g (J)!.
link(aux(_ ,_),aux(_ ,_))!.
l i n k (v v (_ , _)) ! .
link(relpron(_),relpron(_))!.
link(cond(_),cond(_))!.
1 ink(disj(_),disj(_)) ! .
link(connector(_),connector(_)) > !•
Unk(special_np(_,_),special_np(_,_))!.

% The left comer links :
% for all x all y (x -> y i.e y is 1ft corner of rule, y el of nonterminal
% —> link(x,y) [josef lecture notes]

160

7T ?r 7TK »! W
*3 13 "3o o or . o c

*3 "3 "3

r r r
L L L

o r
u

7T 7T 7T 7T 7T
✓ v y—s /—S73 K ^ W
r r r r r
oc crc era era Gfci ps C5 js <-'•
■3 *a T> "3 Ir L L L L
•a 3 o . "os r 2
r l rC ^ L

r

•j -
: (

r,_
)u‘

Ds
)2|u

n
•j -:

 (C
‘“)1

0P‘
C)S

)>IU
!I

•j
-:

((
-‘

-)
u

d
‘C

)s
)>

Ii
i!I

-: (
([d

e§o
u:d

i?g
‘-‘

-<“
l<_

)di
i‘O

s)>
|iir

[
•j -:

 (O
puo

D‘C
)s)3

lu!i

% The transitive links:
% for all x all y all z [(link(x,y) and liiik(y.z) -> link(x,z))J.

eras;

"3
ri

<rs <•a
r r
L L

o•§ I

< T3
P <

£ P L fcrc•a
03"O

u

?*r ?r ?r tt/—'N /■ s3 3T3 "3
P P

=;?r3 3-T3
P P
r r

i i i i
e:•a -a

O Lr»» v■5
-3 c:■a
aa aa &

r 3 p a 2 .
C. “3CS

„ f P
u

era
-o
a
■5

tt ?r—v '—'■72 00r r
0aS2-a

CT5-3
CTS—

C
CL

aa era era era era •— > irs» ^ ft*. f* V.,/ ^h ' •o
P :

-: (
(-‘

-)s
‘C

)s)
W

\

link(special_np(_,_),pro(_,_))!.
link(special_np(_,_),np(_,[_,_,_,gap:_]))!.

% Not all the links were added in again due to duplication.

162

