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Abstract

This paper discusses the growth atmosphere, condensing species and nucleation conditions

relevant to vapour phase transport growth of ZnO nanostructures, including the molecular pa-

rameters and thermodynamics of the gas phase ZnO molecule and its importance compared to

atomic Zn and molecular O2. The partial pressure of molecular ZnO in a Zn/O2 mix at normal

ZnO growth temperatures is ∼ 6× 10−7 of the Zn partial pressures. In typical vapour phase

transport growth conditions, using carbothermal reduction, the Zn vapour is always undersat-

urated while the ZnO vapour is always supersaturated. In the case of the ZnO vapour, our

analysis suggests that the barrier to homogeneous nucleation (or heterogeneous nucleation at

unseeded/uncatalysed areas of the substrates) is too large for nucleation of this species to take

place, which is consistent with experimental evidence that nanostructures will not grow on un-

seeded areas of substrates. In the presence of suitable accommodation sites, due to ZnO seeds,

growth can occur via Zn vapour condensation (followed by oxidation) and via direct conden-

sation of molecular ZnO (whose flux at the surface, although less than that of Zn vapour, is

still sufficient to yield an appreciable nanostructure deposit). The balance between these two
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condensing species is likely to be a sensitive function of growth parameters and could explain

both the diversity of reported nanostructure morphologies and the challenges to be faced in

developing reproducible and scalable growth systems for specific applicable morphologies.

Introduction

ZnO nanostructures have a wide range of morphologies which are sensitive to growth parameters

such as temperature, substrate type and the method used to generate source species.1–5 Because

of this sensitivity and morphological diversity, in order to reproducibly grow specific ZnO nanos-

tructure morphologies, especially on an industrial scale, a greater theoretical understanding of the

growth process is required. There is presently a scarcity of theoretical work on ZnO nanostructure

growth, when compared to the number of observational reports of various ZnO morphologies.

One of the most widely used methods of growth is Vapour Phase Transport (VPT) with the Zn

vapour generated by carbothermal reduction (CTR) of ZnO powder.6 ZnO nanostructure growth

via VPT involves four stages: generation of source species, transport of source species to the

substrate, impingement of material onto the substrate (i.e condensation and nucleation) and in-

corporation of material into a nanostructure. This paper focuses on the production of the source

species and the impingement of the material onto the substrate for ZnO nanostructure growth using

Zn vapour generation via carbothermal reduction (CTR) of ZnO powders. We present a thermody-

namic analysis of the gas atmosphere of the growth system and, based on this analysis a discussion

of the likely condensing species for the case of a Si/SiO2 substrate (a commonly used substrate ma-

terial). We also discuss the saturation levels of ZnO vapour and nucleation conditions for molecular

ZnO. We compare the theoretical results with experimental VPT growth results.

For the thermodynamic calculations in this paper we need parameters for the diatomic gaseous

molecule ZnO, such as intermolecular distance re, the vibrational frequency ωe, the dissociation

2
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energy D0, and the difference in energy between the first excited state and the energy of the ground

state ∆ε . Despite the relative dearth of experimental evidence for the existence and properties of

this molecule, there are various reported values for these parameters. The molecular parameters

of the ZnO(g) molecule were first studied by Brewer and Chandrasekharaiah7 , whose technical

report on gaseous monoxides estimated values of re and ωe, respectively as 1.74 Å and 680 cm−1

(based on extrapolation from neighbouring species). These values have been refined over the years

and compared with various theoretical measurements, and the current best estimates for re and ωe

are 1.72 Å and 780 cm−1 , respectively.8 However, the value of the dissociation energy, D0, has

been continuously revised. Early reports (based on mass spectroscopy measurements) by Brewer

and Mastick9 and Anthrop and Searcy10 gave upper limits (the experiments revealed no direct ev-

idence of ZnO molecules) on D0 of 3.99 eV and 2.86 eV, respectively. Later measurements, using

guided ion-beam mass spectroscopy, have tended towards lower values of D0 (1.61 eV11) which

agree well with recent theoretical calculations of D0 (e.g. 1.63 eV12, 13). A value of 1.77 eV is

used in the most recent version of the IVTANTHERMO database.8 In our calculations we use four

different parameter sets corresponding to the results of previous studies. These values are sum-

marised in Table 1. In much of the subsequent analysis we show the data for sets 3 and 4 below,

which represent the extreme values of D0, and since D0 tends to be a key parameter in determining

the thermodynamic properties of the ZnO(g) molecule (as mentioned below also) and thus issues

around nucleation and growth, the presentation of these data represent the range spanned by D0 in

sets 1-4.

Table 1: reported values for ZnO molecule

set Re(Å) ωe(cm−1) D0(eV ) ∆ε(eV )

Set112 1.719 727 1.63 0.26
Set213 1.719 770 1.63 0.305
Set311 1.719 805 1.61 0.25
Set48 1.72 780 1.77 0.32

3
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Experimental

Growth substrates were prepared with ZnO seeds using a method combining drop coating and

chemical bath deposition.14 A small area of the sample was then dipped in H2SO4 and rinsed to

remove the catalyst seeds and provide an unseeded area of the substrate for comparison. Non-

metallic seeds were used, to eliminate the possibility of a vapour-liquid-solid (VLS) growth mode

and ensure a vapour-solid (VS) growth mode. Equal amounts (0.06 g) of ZnO powder and graphite

were mixed and placed in an alumina boat with the prepared seeded substrate placed face down

above the mixed powders and placed in a furnace (see Figure 1). The furnace is flushed with

Argon at 90 sccm for 50 minutes to remove residual oxygen, then heated to 1200 K with a mixed

gas flow of 90 sccm of Argon and 4 sccm of Oxygen for 1 hour. The ZnO nanostructures were

then examined using a scanning electron microscope (SEM, Karl-Zeiss EVO series). The pressure

in the furnace is one atmosphere as the tube is open to the external atmosphere via the exhaust line.

Figure 1: experimental set up

4
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Thermodynamic Methods

Calculations of partial pressures of various components

In the first stage of VPT growth produces Zn vapour via the carbothermal reduction of ZnO pow-

der. The Gibbs free energy of the carbothermal reduction reaction can be found using standard

thermodynamic data (eg. from the IVANTHERMO8 database). The reactions that describe CTR

in the low (T < 973K) and high (T > 973K) temperature regime are:

T < 973K ZnO(s)+ 1
2C(s)→ Zn(g)+ 1

2CO2(g) (1)

T > 973K ZnO(s)+C(s)→ Zn(g)+CO(g)

The equilibrium constant Kp of the carbothermal reduction reaction is calculated using the Gibbs

free energy of the reaction, ∆Gr:

Kp = exp
(
−∆Gr

RT

)
(2)

The partial pressure of Zn vapour is calculated using Kp as follows:

T < 973K Kp =

(
PZn

P	

)(
PCO2

P	

) 1
2

(3)

T > 973K Kp =

(
PZn

P	

)(
PCO

P	

)

where P	 is 1 bar. The partial pressure of Zn is normalized, so that the total partial pressure of all

gases present (the sum of the partial pressures of the Ar, CO/CO2,O2 and Zn vapours) in the fur-

nace tube remain at one atmosphere pressure, because the tube is open to the external atmosphere

via the exhaust line. The vapour pressure of Zn was calculated using the Gibbs free energy of the

5
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reaction Zn(g)→ Zn(c) which gives the equilibrium pressure of Zn vapour over the most stable

condensed Zn phase (Zn(c); solid below∼ 692 K and liquid above). We have compared the results

of our calculation of Zn vapour pressure with those of Rao15 and find excellent agreement for the

entire temperature range over which Rao presented data. The relative amounts of the ZnO gaseous

species in the chamber are controlled by the Gibbs free energy of the reaction ∆Gr for the reaction

Zn(g)+ 1
2O2(g)→ ZnO(g) where ∆Gr = GZnO− 1

2GO2 −GZn. ∆Gr was calculated for ZnO, Zn

and O2, using a model of basic ideal monatomic and diatomic gases and the molecular parameters

for ZnO(g) summarized in Table 1.

For diatomic ZnO and O2:

G(T )ZnO,O2 = RT ln
[(

pλ 3
T

kbT

)(
θRσ

T

)(
1− exp

(
−θV

T

))]
−RT ln

[
∑

i
giexp

(
−∆εi

(kb)T

)]
−D0 (4)

with λT = h̄
(

2π

kbT m

)
θR =

hcB
kb

B =
h̄

4πcI
θV =

hcν0

kb

where I is the principal moment of inertia of the molecule, D0 is the dissociation energy ,ωe is the

vibration frequency, re is the interatomic distance, ∆εi is the difference in energy between the ith

excited state and the energy of the ground state and gi is the degeneracy of the excited electronic

states. m is the molecular mass. R, c, h, h̄, kb have their usual meanings.16

For monatomic Zn(g):

G(T ) = RT ln
[

pλ 3
T

kbT

]
(5)

6
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with λT = h̄
(

2π

kbT m

)
where m is the mass of atomic Zn. For the majority of our calculations we use the two extreme

values of recently reported values of D0 in Table 1 (1.61 eV and 1.77 eV, data sets 3 and 4,

respectively in Table 1) to show the effects of changes in D0. The equilibrium constant of the

reaction Zn(g)+ 1
2O2(g)→ ZnO(g) was calculated using ∆Gr. The partial pressure of Zn vapour

produced by CTR and the partial pressure of O2 calculated from the relative value in the gas flow

mix were used for the ZnO and O2 values. The Zn vapour pressure is calculated using the reac-

tion Zn(g)→ Zn(c). Using the partial pressure of the Zn vapour from this reaction as the input

to Zn(g)+ 1
2O2(g)→ ZnO(g) gives the vapour pressure of ZnO(g) over ZnO(s). We assume the

reaction to create ZnO(g) has a negligible effect on the various other gas pressures, a fact borne

out by the subsequent calculations.

Nucleation of ZnO crystals from ZnO molecular vapour

In the analysis of nucleation barriers we assume that the nucleating crystal is a hexagonal cross

section cylinder, which is consistent with most of experimental reports. We use the Gibbs-Curie-

Wulff theorem to find the equilibrium shapes of both homogeneously and heterogeneously nucle-

ated crystals, following the treatment outlined by Markov.17 ZnO is an anisotropic material and

thus has different values of surface energy for different faces. Recent data indicates that for the

prismatic plane surface (1010) the surface energy is σp = 1.15 J/m2 and for the basal plane surface

(0001) it is σb = 2.0 J/m2.18

7
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(a) (b)

Figure 2: (a) homogeneously nucleating crystal and (b) heterogeneously nucleating crystal

The energy barrier to homogeneous nucleation is found by simple geometry and is given by:

∆Ehom =
16
√

3νm
2σp

2σb

(RT ln [s+1])2 (6)

where s is the degree of supersaturation, σb is the basal plane energy and σp is the prismatic plane

energy, νm is the molar volume of ZnO
(
νm = 14.52×10−16 m3/mole19). At a temperature of

1200 K the energy barrier to homogeneous nucleation is 2.65 eV, more than 200 times the ther-

mal energy at this temperature. The classical homogeneous nucleation rate Ihom
(
events/m3s

)
for

hexagonal particles is calculated following the procedure described by Markov17 where p is the

partial pressure of the molecular ZnO vapour:

Ihom =

(
p2

k2
bT 2ρ

)(
2m√
3π2

) 1
2
(

3+
6σb

σp

)(
σp√
σb

)
exp
(
−∆Ehom

kbT

)
(7)

We have again used the Gibbs-Curie-Wulff theorem to find the equilibrium shape of the nu-

cleating particle using the surface energies of ZnO as inputs to determine the aspect ratios of the

hexagonal cylinder. To calculate the energy barrier for heterogeneously nucleating particles we

followed the method of treatment outlined by Markov. The contact angle for the ZnO on the sub-

strate is taken as θ = 90◦ consistent with experimental data and growth on non-wetting substrates.

8
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An additional term to accounts for the strain due to the lattice mismatch between the substrate and

ZnO.20 The analysis predicts an energy barrier ∆Ehet to heterogeneous 3D nucleation for such a

nucleus of:

∆Ehet = 8
√

3σp
2
σb

(
2νm

2RT ln [s+1]−νmY ε2

)2

(8)

where Y is the Young’s modulus of ZnO (estimated to be 100 GPa21), N0
17 is the number of ad-

sorption sites (1×1015 cm−2), and ε is the lattice mismatch between ZnO and the silicon substrate(
ε =

aSi−aZnO

aSi
= 0.4

)
. In reality, the lattice mismatch ε would be larger than the value 0.4 cal-

culated using the lattice parameters of Si, because the substrate will be silicon with a thin layer

of silicon dioxide. The lattice mismatch between ZnO and SiO2 will be ∼ 1.4.22–24 This would

lead to a much greater energy barrier. We take the calculation for Si as a maximum number of

nucleation events, but in an experimental situation the number would be smaller, due to the pres-

ence of the layer of SiO2. This gives an energy barrier to heterogeneous nucleation of 8.63 eV at

a temperature of 1200 K. The nucleation rate for heterogeneously nucleating particles is found to

be:

Ihet =
νmNo

NA

√
σb
√

3

(
p

πmkbT

)(
2RT ln[s+1]−νmY ε2

2νm

)
4λd

2

ad
exp
(
−∆Ehet

kbT

)
(9)

where λd is the estimated diffusion length of ZnO on silicon (here estimated to be 1 µm based

here estimated to be 1 micron based on species diffusion lengths deduced for nanowire growth in

other binary compound materials at about 1200 K25). The hopping distance is approximated as

ad = 0.3 nm.26

Results

Figure 3 shows the Gibbs free energy of reaction ∆Gr for each parameter set as a function of

temperature over the temperature range of interest for VPT, from 300 K to 2000 K. The values for

the Gibbs free energy of reaction vary for each set. The variation of interatomic distance, frequency

9
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and electronic energy level separation from set to set appear to have little impact on ∆Gr and the

differences between the ∆Gr values of each set depend mainly on the dissociation energy of that

set. The Gibbs free energy of reaction for the generation of ZnO is positive for each set despite the

difference in absolute values, giving a very small equilibrium constant and consequently a small

partial pressure of ZnO(g) in all cases.

Figure 3: ∆Gr for reaction Zn(g)+ 1
2O2(g)→ ZnO(g)

The calculated partial pressures and vapour pressures of Zn and ZnO are shown in Figure 4(a)

and Figure 4(b) as a function of temperature over the temperature range of interest for VPT. The

partial pressure of Zn, at the growth temp of 1200 K, is 0.294 atm compared to a partial pressure of

ZnO of 1.73×10−7 atm. This means that the partial pressure of ZnO vapour is∼ 6×10−7 smaller

than the partial pressure of the Zn vapour, a very substantial difference.

10
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(a)

(b)

Figure 4: Partial and vapour pressures of (a) Zn (b) ZnO

The degree of saturation of a vapour is given by s =
p− p0

p0
where p0 is the vapour pressure.

The degree of supersaturation indicates whether a vapour is undersaturated (s <1) or supersatu-

rated (s >1), and determines the likelyhood of a molecule which has condensed onto the surface

remaining on the surface and ultimately incorporating into a growing crystallite or evaporating

back to the vapour state. Figure 5(a) shows the degree of saturation of Zn vapour over the most

stable condensed Zn phase, Zn(c), while Figure 5(b) shows the saturation of ZnO vapour over

solid ZnO for two values of molecular parameters (sets 3 and 4 from Table 1). Figure 5(c) is the

saturation of Zn vapour over solid ZnO (i.e the saturation of Zn over an already growing nanowire

11
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crystal).

(a)

(b)

(c)

Figure 5: Degree of saturation for (a) Zn(g) over Zn(c), (b) ZnO(g) over solid ZnO for two values
of molecular parameters (sets 3 and 4 from Table 1) and (c) Zn(g) over solid ZnO
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The Zn vapour is undersaturated at all temperatures. A negative value for the degree of satu-

ration would indicate that the number of molecules leaving the surface is greater than the number

arriving at the surface. However the Zn vapour over solid ZnO is supersaturated at all temperatures.

The pressure of ZnO is far, far greater than the vapour pressure of ZnO, showing that ZnO(g) is

supersaturated at all temperatures to a large degree.
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(a)

(b)

Figure 6: Rate of nucleation for (a) homogeneous nucleation and (b) heterogeneous nucleation

Figure 6(a) and Figure 6(b) show the rate of nucleation for homogeneous and heterogeneous

growths are shown in for two values of molecular parameters (sets 3 and 4 from Table 1). At a

growth temperature of 1200K, the rate of homogeneous nucleation (rate of nucleation events per

unit volume) Ihom = 6.58× 108 events/m3s and the rate of heterogeneous nucleation (rate of nu-

14
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cleation events per surface area) Ihet = 2.57×10−9 events/m2s.

The results of the VPT ZnO nanowire growth on Si substrates with a native oxide are shown in

Figure 7. The SEM image shows well aligned ZnO nanowires of length ∼ 2 µm and of diameter

∼ 75 nm on seeded areas of the substrate. There are no nanowires on the bare/unseeded area of the

substrate.

Figure 7: Nanowire growth on bare/unseeded and seeded areas of the silicon substrate

Discussion

Calculation of the partial pressures and degree of saturation of Zn vapour over Zn(c) show that

while the partial pressure of Zn vapour is relatively large, the vapour is undersaturated and so will

not condense on the surface unless energetically suitable accommodation sites exist. Note however

that the saturation of Zn vapour over solid ZnO is 422, at a growth temperature of 1200 K (and

significantly greater than 1 over a wider temperature range from 600 K to 1600 K), which means

that once the nanostructure has nucleated and started to grow, Zn vapour molecules will readily

condense at the ZnO crystallite, and react with O2 to form ZnO. Conversely, the partial pressure of

15

Page 15 of 24

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ZnO is very small, but the vapour present is significantly supersaturated, meaning it would be ex-

pected to condense readily either in the gas phase or on the surface, if it can overcome the relevant

nucleation barrier. Because we experimentally observe no nanostructure growth without suitable

accommodation sites (seeds) for growth, on Si substrates at a temperature of ∼ 1200 K, we expect

that barriers to nucleation will probably play an important role along with other effects.

The rate of homogeneous nucleation at 1200 K is Ihom = 6.58×108 events/m3s. In a volume of

1 cm×1 µm×1 µm (a surface area of 1 µm2 and a distance of 1 cm between source and substrate),

over a growth time of 1 hour, the number of nucleation events is 0.0236. This is consistent with

experimental results showing little or no nucleation of nanostructures on bare substrates. While

this nucleation rate is small, it is conceivable that occasional nuclei might form homogeneously

and land on the substrate surface, for example we note that occasionally ZnO nanostructures are

seen on unseeded areas of substrate. We also note that during growth, the native silicon dioxide

tends to grow around and consume surface particulates, which also will mitigate against substantial

ZnO growth on these nuclei.27

The energy barrier to heterogeneous nucleation at 1200 K is 8.63 eV. This is a large value

compared to the thermal energy at this temperature due to the large lattice mismatch between

the ZnO and Si/SiO2 substrate, which leads to a large strain term in the energy barrier to nuclei

formation. The rate of heterogeneous nucleation for ZnO on a Si/SiO2 substrate at 1200 K is

Ihet = 2.57× 10−9 events/m2s. In an area of 1 µm× 1 µm, over a growth time of 1 hour, the

number of events is 9.25×10−18. This is a negligible number of nucleation events and is consis-

tent with the experimental results, showing no growth on such an unseeded Si/SiO2 substrate, at

such temperatures as shown in Figure 7. The ZnO vapour, despite being strongly supersaturated,

is unlikely to nucleate on bare substrates due to the energy barriers to homogeneous and heteroge-

neous nucleation. Thus neither Zn vapour nor ZnO vapour is likely to condense and nucleate ZnO

crystals on bare silicon substrates.
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We now consider the case where suitable accommodation sites or ’seeds’ nanostructure growth

will take place. In order to determine whether growth takes place via condensation of Zn vapour

(followed by oxidation) or direct condensation of ZnO vapour the impingement rate of the molecules

was calculated using the Knudsen relation

J =
p√

2πmkbT
(10)

Using the partial pressures for Zn, ZnO and O2 the impingement rate was calculated. The sticking

coefficients αZn and αZnO for Zn and ZnO are assumed to be unity. The sticking coefficient for

oxygen is not unity as it is a diatomic molecule and the dissociation of oxygen molecules to react

with Zn atoms is a complex process. The sticking coefficient αO2 was found using an expression

derived by Carlos Rojo et al.28

αO2 = 0.27966exp
[
−14,107.9578

T

]
(11)
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Figure 8: Effective impingement rates for Zn, O2 and ZnO

In order to be compatible with the experimental results in figure 7 the impingement rate re-

quired for the experimentally observed nanowire growth is estimated assuming an average density

of 25 nanorods/µm2 of length 2 µm and diameter 75 nm over a growth time of 1 hour. The es-

timated impingement rate is 2.4×1018 molecules/m2s. The impingement of Zn molecules is the

highest, however it will be limited by the amount of O2 arriving at the surface, in order for the

Zn molecules to be oxidized to form ZnO and thus determined by αO2JO2 . The impingement rate

of ZnO molecules, while smaller than Zn, is still more than required for the growth observed at

temperatures greater than 1000 K. Clearly the gas pressures, nucleation and growth rates resulting

from our earlier analyses are upper bounds. Kinetic aspects of the CTR reaction, the reaction of Zn

vapour and O2 to form ZnO vapour and the vapour transport from source to substrate is likely to

lead to smaller values for all of these quantities, compared to the thermodynamic analysis, which

explains the lower actual growth rates. Nevertheless, good order of magnitude agreement is found

between theory and experiment. This indicates that both species can contribute to the growth of
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ZnO nanowires in VPT growth via CTR. We suggest that the diversity of ZnO nanostructure mor-

phologies observed experimentally is related to the simultaneous presence of these two growth

channels and their varying relative importance in different growth conditions, which will depend

on, inter alia, the varying temperature dependences and time-scales of surface diffusion of Zn

and ZnO species and the oxidative reaction and incorporation of Zn atoms into the growing ZnO

nanocrystals. This balance is likely to be a sensitive function of growth parameters, thus explain-

ing both the diverse nanostructure morphologies reported and the challenges faced in developing

reproducible and scalable growth systems for specific applicable morphologies. Various authors

have suggested that ZnO growth proceeds by (a) Zn(g) condensation followed by oxidation,29 (b)

ZnO(g) condensation into crystalline ZnO,30 or (c) by a combination of such processes, with the

dominant one being dependent on experimental conditions.31 Our data support the final hypothesis,

and the key aspect of our findings is that the simultaneous presence of these two growth channels,

over a range of growth temperatures, and their varying relative importance at different growth

conditions, produce the diversity of ZnO nanostructure morphologies observed experimentally.

Conclusions

This paper reports theoretical data concerning the thermodynamic conditions in the growth atmo-

sphere for CTR-VPT growth of ZnO nanowires. We show that in typical carbothermal vapour

phase transport growth conditions the Zn vapour is always undersaturated while the ZnO vapour is

always supersaturated, although the absolute pressure of the ZnO(g) species is∼ 6×10−7 less than

that of the Zn(g) species. Based on these results, we discuss the potential condensing/nucleating

species. The undersaturated Zn(g) species will nucleate only at locations with energetically suit-

able accommodation sites which is consistent with experimental data. Despite its low absolute

pressure, the ZnO(g) flux cannot be neglected as a potential source of nanowire growth. However,

in the case of this species, an analysis based on classical nucleation theory suggests that the nu-

cleation barrier is such that homogeneous nucleation (and also heterogeneous nucleation on the
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commonly used inert substrates, such as Si/SiO2 in the absence of either metal catalysts or ZnO

buffer layers) is not possible. Thus our conclusions agree with the experimental evidence that ZnO

nanostructure growth using CTR-VPT requires metal catalysts or pre-deposited ZnO nucleation

points. In the presence of suitable accommodation sites, due either to metal catalysts or prede-

posited ZnO seeds, growth can occur via Zn vapour condensation (followed by oxidation) and also

via direct condensation of molecular ZnO (whose flux at the surface, although less than that of

Zn vapour, is still sufficient to yield an appreciable nanostructure deposit). The presence of two

growth channels and the balance between them offers a possible explanation for the diverse mor-

phologies observed in ZnO nanostructure growth.

This discussion of CTR-VPT growth may also be relevant to other gas phase growth tech-

niques, where Zn(g) vapour and oxygen are the main growth species, such as thermal or electron

beam evaporation of ZnO / Zn powders in various oxygen-containing atmospheres, where simi-

lar conclusions concerning the growth mechanism may apply. However, techniques such as PLD,

which involve a range of particulate sizes and charge states, or MOCVD, where the chemistry

and reactions of the various gaseous species are substantially different to the present case, will

undoubtedly require a more complex analysis, taking into account the specific features of these

techniques. This will also certainly be the case for chemical solution techniques.

We believe that the results presented above provide a general framework from which to view

ZnO nanowire growth processes of the VPT type. Physical insights gained from this thermody-

namic analysis approach to understand the relatively narrow range of growth processes of the VPT

type may ultimately be applicable to a broader range of ZnO nanostructure growth processes and

may lead to more general understanding of the key aspects which determine the morphology of

this nanomaterial.
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Theoretical analysis of nucleation and growth of ZnO nanostructures in Vapour Phase Trans-

port growth

Ruth B. Saunders, Enda McGlynn, Martin O. Henry

This paper discusses the growth atmosphere, condensing species and nucleation conditions rel-

evant to vapour phase transport growth of ZnO nanostructures, including the molecular parameters

and thermodynamics of the gas phase ZnO molecule and its importance compared to atomic Zn

and molecular O2.
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