
Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

Harnessing Software Development Contexts to Inform

Software Process Selection Decisions

Simona Jeners, RWTH Aachen University, Germany

Rory V. O’Connor, Dublin City University, Ireland

Paul Clarke, Dundalk Institute of Technology, Ireland

Horst Lichter, RWTH Aachen University, Germany

Marion Lepmets, Dundalk Institute of Technology, Ireland

Luigi Buglione, ETS Montréal/Engineering IT SpA, Italy

Abstract

Software development is a complex process for which numerous approaches have been

suggested. However, no single approach to software development has been met with

universal acceptance, which is not surprising, as there are many different software

development concerns. In addition, there are a multitude of other contextual factors that

influence the choice of software development process and process management decisions.

The authors believe it is important to develop a robust mechanism for relating software

process decisions and software development contexts. Such an approach supports industry

practitioners in their efforts to implement the software development processes vital for a

particular set of contextual factors. In this paper, the authors outline a new tool-based

framework for relating the complexity of software settings with the various aspects of

software processes. This framework can extract the key software process concepts from

process repositories, for example, from CMMI-DEV or ISO/IEC 15504-5 (a.k.a. SPICE –

Software Process Improvement and Capability dEtermination). A team of software

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

development experts then collaborates in order to identify and validate the strength and

nature of the relationship between the key process concepts and the contextual factors that

are known to affect the software development process. The result of this collaboration is a

prototype of a flexible model, which can be extended over time into a broader process

consideration, for example, where agile processes or further specific situational factors could

be added to the framework. The authors contend that a model such as the one proposed in

this paper can serve as a valuable tool, assisting software developers in making decisions

regarding the selection of software best practices, as well as providing general guidance for

process improvement initiatives.

Key words: best practice selection, CMMI, process repositories, situational factors

INTRODUCTION

Best practices have been documented through models and/or standards of processes for

different disciplines such as software and systems engineering, information technology, or

information systems. Most models and standards, such as ISO/IEC 15504-2 (SPICE) (SPICE

2010) or the CMMI-DEV (CMMI Product Team 2010), address a common purpose: to make

available a set of generic processes (technical, managerial, support, and enterprise) that come

from the best international practices to guide and improve organizational process, with the

expected outcome to preserve, correct, and ultimately improve the quality, value, and cost-

efficiency issues of the resulting products and services.

Due to the myriad of available models and standards -- henceforth referred to in this paper as

process repositories (PRs) -- the authors argue that organizations have difficulties with the

correct understanding and adoption of such PRs. “In the current marketplace, there are

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

maturity models, standards, methodologies, and guidelines that can help an organization

improve the way it does business” (CMMI Product Team 2010).

While there are many comparative studies on standards and models of processes (for

example, on a more higher-level, such as (Sheard and Lake 1998; Minnich 2002; Mora et al.

2008; Ferreira, Machado and Paulk 2010), and on the fine granular level of practices, such as

(Ferchichi and Bigand 2008; Liao, Qu, and Leung 2005; Wang et al. 1999; Malzahn 2009;

Pardo et al. 2011; Soto and Munch 2008; and Jeners and Lichter 2013), which have identified

core similarities and differences, only some research has been done to assist software

developers and managers in making decisions regarding the selection of appropriate

processes (or their alignment with specific process repositories).

The selection of appropriate processes for a project can be done by considering the project’s

context, and this has been widely accepted. The international standard ISO/IEC 12207

(ISO/IEC 2008, 12) states “any project is assumed to be conducted within the context of an

organization,” and furthermore, “this is important because a software project is dependent

upon various outcomes produced by the business processes of the organization, for example,

employees to staff the project and facilities to house the project.” ISO/IEC 12207 also

recommends that the sequencing of software development stages should be “appropriate for

the project’s scope, magnitude, complexity, changing needs, and opportunities.” CMMI-DEV

or COBIT (ISACA 2011) adopt a similar position to ISO/IEC 12207, recommending that

various contexts should be considered when implementing processes.”

Furthermore, other contributions also stress the role of the project context in software

development process decisions. Boehm and Turner (2004, 7) suggest that when it comes to

software development processes, it seems likely that the claim “one size fits all” is in fact a

myth. Jones (2007, 13) further argues that the available evidence suggests that no single

approach to software development “is universally deployed or even universally useful.” The

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

reason for such lack of universal utility of any single approach to software development is

related to the basic requirement of a software development process: that it “should fit the

needs of the project” (Feiler and Humphrey 1992, 6). Software development processes are

influenced by the context in which the project operates and, therefore, the optimal software

development process should be “contingent on the context” (Benediktsson, Dalcher and

Thorbergsson 2006, 97) and “best fit the conditions, product, talent, and goals of the markets

and organizations” (Subramanian et al. 2009). Kautz (1998) also shares this view, stating that

process improvement initiatives should be “adjusted to their particular situation and…should

not slavishly follow one of the comprehensive approaches.”

The aforementioned argument demonstrates that both established PRs and recognized

software process academics acknowledge that a software process should be designed so as to

address the context within which the process operates. Therefore, when PRs are considered as

a guideline to design software processes, some PR components are more critical than others

and must be intensively addressed. It therefore seems reasonable to state that this requirement

can be generalized to other process improvement initiatives, such as initiatives based on

COBIT, ITIL (Steinberg et al. 2011), or CMMI-SVC. However, in this paper the authors

focus on the software development process improvement initiatives.

Different authors (Xu and Remesh 2007; Petersen and Wohlin 2009; Dede and Lioufko 2010;

Bekkers et al. 2008; Clarke and O’Connor 2012) propose to “evaluate a wide range of

contextual factors before deciding on the most appropriate process to adopt for any given

project” (MacCormack and Verganti 2003). The work of Clarke and O’Connor (2012) is best

grounded in the earlier related publications and offers a comprehensive listing of situational

factors that can be used to characterize the context of a project. Therefore, the authors can

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

consider these situational factors to describe the context and select appropriate practices for

it. Many of these situational factors not only describe the software development context, but

they are also valid for other process improvement initiatives (for example, from the

“personnel” category the situational factors “personnel cohesiveness” and “customer

satisfaction”). Therefore, organizations interested in PRs, such as COBIT or ITIL, can also

consider these situational factors to design their processes.

The task of aligning components of PRs with situational factors is necessarily complex, as the

number of PRs, their components, and situational factors are large and sometimes

interrelated. This work proposes a framework -- model-based selection, adoption and

assessment of improvement concepts (MoSAIC) -- to systematically support this alignment

and thus, the selection of practices from multiple PRs based on the situational factors.

As the framework’s name suggests, the selection is only one aspect of MoSAIC. It addresses

further challenges to support organizations, such as a practice comparison or the

identification of dependencies between practices over the border of a single PR (Jeners and

Lichter 2013). Therefore, it offers an integrated view on PRs for the adoption and assessment

of one or more PRs.

Next, the authors describe the MoSAIC framework and how it supports the practice selection.

Afterward they describe the steps performed to validate MoSAIC. After the validation, they

summarize the benefits of the MoSAIC framework, indicating also the limitations that need

to be addressed in the further work. Finally, the authors close with their conclusions in the

last section.

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

MoSAIC FRAMEWORK

In this section the authors provide an overview of the MoSAIC framework. The framework

defines meta-models to integrate different PRs and situational factors, allowing an automated

selection of PR practices based on the project context. Furthermore, the authors give more

details about the structure and semantics of the MoSAIC models and modelling activities.

Finally, the mapping of practices to situational factors is described. Additional information

about the MoSAIC framework can be found in (Jeners and Lichter 2013; Jeners, Lichter, and

Dragomir 2012; Chen, Staples, and Bannerman 2008).

Overview and Parts of the Framework

The MoSAIC framework contains three main parts that are outlined in Figure 1: 1) tool-

supported model operations; 2) meta-models and their respective instance models; and 3)

modeling activities to build up and relate the different models: integrated structure models

(ISMs) – one for each PR -- integrated concept model (ICM), and situational factor model

(SFM).

The central model of MoSAIC is the ICM, which integrates the various PRs at a conceptual

level, resulting in a common terminology enabling the harmonization of the previously

disparate PRs and the various situational factors. This harmonization allows one to

automatically identify PR practices that are needed for addressing different situations in

software development settings.

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

Figure 2 illustrates in greater detail the structure and relations of the concrete MoSAIC

models and how these models are created. First, the authors briefly introduce each PR. Then

they describe how they were transformed and mapped into the respective ISMs (Part I).

Afterward they present their subsequent elaboration into the central ICM (Part II). Finally,

they briefly describe how the concepts stored in the ICM are related to the situational factors

(Part III). Details about how ICM is related to SFM and the tool-supported model operations

to map practices to situational factors are given in a further section.

	

PRs are organized by applying different structures as well as different terms for the same

structural elements. For example, a group of processes addressing the same topic is called a

domain in COBIT; in CMMI it is entitled category. Processes are called process areas in

CMMI and processes in COBIT, SPICE, or ITIL. Furthermore, PRs are written on different

levels of abstraction. The authors found similarities between COBIT control objectives;

COBIT control practices; CMMI specific-goals, generic-goals, practices, subpractices;

SPICE practices; and IEC 61508 objectives and requirements by comparing their outputs,

inputs, and roles.

• Part I: As PRs have different structures, the authors transform each PR according to

the IS meta-model to normalize its structure into a corresponding ISM, thus, manually

extracting from the PRs elements, such as categories, processes, or practices, or

practice elements such as activities, roles, artefacts (outputs or inputs), and purposes.

A description and examples of these elements can be found in (Jeners, Lichter, and

Dragomir 2012; Jeners and Lichter 2013). Based on an analysis of the writing styles,

the authors defined further guidelines and a parsing tool to automatically extract these

practice elements (Jeners, Lichter, and Dragomir 2012). As the automated results are

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

not always correct due to sentence complexity, and as several important artefacts (for

example, inputs that are needed to produce a certain output) are not explicitly defined

in the practice text but in their description, a human expert has to validate or manually

correct the extracted elements.

• Part II: To elaborate concepts based on practice elements, the authors map each ISM

output, input, role, and purpose to the concepts in the ICM. A concept is a word or the

smallest combination of words contained in a procedure that has a unique meaning in

the context of PRs (for example, project plan or work breakdown structure). The ICM

does not contain aggregated concepts, such as “software key stakeholder,” but

contains the two basic concepts “software stakeholder” and “key stakeholder.” If a

practice element is an aggregated concept, then it will be related to every ICM

concept that expresses this aggregation. ICM concepts are related in ICM by

generalizatioOf- and composedOf-relations and form generalizationOf-hierachies (see

Jeners and Lichter 2013 for further details) to structure the ICM and support its

maintainability.

• Part III: Relating situational factors to concepts creates a mapping between the SFM

situational factors and the ICM concepts. MoSAIC defines four different semantic

relations to support the mapping between the situational factors and the concepts.

These relations also reflect the mapping strength between the situational factors and

the concepts and, thus, support the automated selection of appropriate practices for a

certain context characterized by a situational factor. As this mapping cannot be done

automatically, human experts must be involved. The higher the number of experts

involved in this mapping, the better the quality of the mapping. This, in turn, allows

MoSAIC to provide better support for the selection of practices based on situational

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

factors. The MoSAIC way to relate situational factors to concepts is the result of an

intensive collaboration between a group of PR researchers.

To relate situational factors to concepts, the generalizationOf-hierarchy trees in ICM must be

considered. The situational factors are related to the most abstract concepts. Therefore, the

relation will also apply to its children and parents in the tree. This helps one avoid defining

unnecessary relations, and thus, mapping efficiency is increased. However, when the relation

does not apply for one of the children on a certain level in the generalizationOf-tree, then the

situational factor must be related to all corresponding children. Similarly, the relation will

also apply to their children and parents. There is also an exception. Sometimes the children

and parents should not be considered (for example, the “personnel disharmony” is strongly

managed by “ommitted requirement” and not by its abstract parent “requirement”). MoSAIC

marks this exception and handles it in a different way

Mapping Practices to Situational Factors

One of the authors’ goals is to systematically map practices to situational factors and, thus, to

select appropriate practices for a certain context characterized by situational factors.

They performed a case study in collaboration with researchers to analyze when practices are

mapped to situational factors and mapped eight situational factors to all practices in CMMI-

DEV of level 2 and 3 (see online supplement for further details).

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

Based on the discussions of the researchers and on the analysis of the manual mappings in the

case study, the authors propose to map practices to situational factors based on the modeling

of relations between situational factors and concepts.

MoSAIC mapping is based on two operations: 1) the modeling of relations between

situational factors and concepts; and 2) mapping practices to situational factors operation.

First, the discussions during the collaborative workshops indicated that the mapping strength

between the practices and a situational factor is derived from the mapping strength between

the practice concepts and the situational factor (for example, practice “Establish and maintain

a definition of required functionality and quality attributes” is strongly mapped to

“application performance” because of the concept “quality attribute”). Therefore, MoSAIC

uses an ordinal scale to map situational factors to concepts. In contrast to the manual

mappings performed with the collaboration partners, MoSAIC uses only a three- (not four)

point ordinal scale (2 = strong, 1 = medium, 0 = absent), as a differentiation between

moderate and weak is too small and has no value for the process adoption. This decision was

supported by several software process improvement experts from industry and research.

Second, the experts had difficulties indicating the mapping strength between the practices and

the situational factors. A definition of medium and strong mapping strength is needed.

Therefore, the authors define four relations to semantically enrich the mapping strength

between concepts and situational factors:

• Concerns: A situational factor is strongly related to a concept if the situational factor

concerns a concept (for example, “requirements rigidity” concerns “requirement”).

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

• Strongly manages: A situational factor is strongly related to a concept if the

situational factor is strongly managed (“requirements changeability” is strongly

managed by “analyzed change request”) by the adoption of the concept.

• Manages: The relationship between a situational factor and a concept is medium if the

situational factor is managed by the adoption of the concept (“requirements

changeability” is managed by “traceability matrix”).

• Influences: The relationship between a situational factor and a concept is medium also

when the situational factor influences the adoption of a concept (“requirements

changeability” influences the “project plan”).

Figure 4 visualizes an example of the mapping between concepts and situational factors

based on a three-point ordinal scale and the semantical enrichment of the mapping.	 	

	

The mapping of practices to situational factors operation uses the mappings among ISMs,

ICM, and SFM to automatically identify important practices based on situational factors.

Shortly, it identifies all related ICM concepts of the situational factor and then the

corresponding ISM artifacts responsible for their practices. According to the relation between

ICM concepts and situational factors, the practices are categorized as strong or medium.

Figure 4 depicts the steps by giving some examples of different mapping relations between

situational factors and concepts (abstract or children), and between concepts and practices

outputs/inputs. For example, “personnel disharmony” is strongly managed by the abstract

concept “guideline for managing teams.” Its children are mapped to the ISM inputs

“guidelines for structure teams” or output “maintained guideline for structure teams” that are

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

contained in the practice organizational process definition (OPD) SP1.7 of CMMI-DEV.

Furthermore, the practice “requirements management” (REQM) SP1.2 of CMMI-DEV is also

selected, as the “personnel disharmony” is strongly managed by the concept “committed

requirements.” Furthermore, the relations between “personnel disharmony” and “project

goals” or “maintained goals” do not lead to the selection of practices, as CMMI-DEV does

not contain inputs/outputs that are related to these concepts.

	

To summarize, MoSAIC systematically maps practices to situational factors by considering

the practices’ concepts and their different relations (concerns, strongly manages, manages, or

influences) to the situational factors.

VALIDATION

In this section, the authors present the validation performed that shows that the MoSAIC

framework is adequate to support the different operations, such as the mapping between

practices and situational factors or comparison of practices used for the selection, adoption,

and assessment of multiple PRs. Furthermore, they show that MosAIC is extendable by

performing the different operations on PRs (for example, COBIT or ITIL) for further IT

domains. Several experts participated in the validation activities to acquire broader feedback,

thus improving MosAIC (for further details see the online supplement).

In the following, the authors describe the validation activities by referring to the MoSAIC

modeling activities. Figure 5 gives an overview of these activities and the experts involved.

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

	

In the modelling activity extract manually, ISM elements such as PRs, categories, and

practices were extracted. As PRs are described on different levels of abstractions and use

different identifiers for practices, the authors validated this extraction (validation activities 4,

5, and 6). The validation showed that the different element types, such as control objectives

and practices in COBIT, practices and goals in CMMI, or requirements in IEC 61508, are to

some extent similar and can be compared.

	

In the modelling activity extract automatically, practice elements were extracted from the

corresponding practice descriptions based on grammatical rules, on certain prepositions, and

on further GATE words databases (for example, person database). In validation activities 1

and 2, three participants (one researcher and two master students) manually modelled the

practice elements and compared the results with the automated extraction.

	

Validation activity 1 Practices written in different writing styles (containing verbs in

passive, perfect continuous, or modal form; gerunds; and nominalizations), and also

containing different concept types (activities, inputs, outputs, roles, and purposes), were first

manually identified (14 CMMI-DEV, 18 COBIT, and 15 IEC 61508 practices). The

automatically extracted results were then compared to the manual extraction. The deviation

showed that the results are promising (Jeners, Lichter, and Dragomir 2012), but still need to

be improved. The authors improved not only the grammatical rules the tool was based on, but

also the prepositions and the GATE person database to allow a better extraction of inputs and

roles.

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

Validation activity 2 Entire processes from CMMI-DEV, SPICE, COBIT, and IEC 61508

were randomly selected (110 practices totally). The authors worked with these PRs, as at that

time the authors had experience with them. The automated extraction was compared to the

manual extraction, and they calculated the deviation by using two metrics from pattern

recognition and information retrieval theory: precision and recall. They achieved good results

(see, for example, Table 3). As the MoSAIC parser is mainly based on the syntactical

analysis of the sentences, the identification of inputs and purposes led to weaker results (for

example, as prepositions are not always used to introduce an input, the parser cannot

differentiate between an input and an output artefact). Thus, the semantic is important and the

databases were not large enough to solve this issue by a machine. Furthermore, the language

was sometimes too complex for the automated extraction (large sentences with more than 25

words).

	

In the modelling activity correct manually, the authors did not only correct the automated

extraction of practice elements but also modelled the practice’s inputs and outputs that are not

explicitly mentioned in the practice description. Some PRs mention or list artefacts that are

needed or are produced by the practice activities (for example, in CMMI-DEV the typical

work products, in SPICE the work products). Without modelling the artefacts explicitly, the

authors got a high deviation between the dependencies calculated by MoSAIC and the

dependencies that were identified by collaborating participants (see validation activity 3).

The modelling activity elaborate concepts based on practice elements creates the ICM and

maps the practice elements to the ICM concepts. To validate the ICM creation, its relations to

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

the ISMs, and to the different MoSAIC processes performed on these models, two major

activities were conducted: evaluation of dependencies between practices, and the manual

similarity mappings between practice activities pairs. As the MoSAIC mapping process

between practices and situational factors is based on ICM and its relations to ISMs, the

validation activities 7 and 8 also validate this modeling activity. In all of these validation

activities, 10 different participants were involved (three consultants, two industry partners,

and five academic researchers).

Validation activity 3 To validate the relations between concepts and outputs/inputs, and the

MoSAIC dependency identification operation, the authors identified the practice

dependencies. To evaluate the dependencies, the authors verified dependencies between 31

practices within the CMMI-DEV processes REQM, MA, CM, PPQA, and SAM based on

previously established relationships (Chen, Staples, and Bannerman 2008). The authors

calculated the deviation as the number of missing dependencies divided by the total number

of dependencies. First, they obtained a deviation of 0.5 (every second MoSAIC result

deviates by one point from the experts’ result) for 54 dependencies within four CMMI-DEV-

processes. Finally, the modelling of implicit inputs and outputs led to a better deviation: 0.19.

A deviation was expected, as the authors did not model the artefacts that were not specified in

the practice descriptions (for example, MoSAIC did not identify that CMMI-DEV MA-SP1-2

“Specify measures to address measurement objectives” is dependent on CMMI-DEV MA-

SP1-4 “Specify how measurement data are analyzed and communicated,” and, as the authors

did not model for CMMI-DEV MA-SP1-4 the outputs “updated measures” and “updated

measurement objectives” that, according to the authors of the mentioned paper, are used as

inputs in CMMI-DEV MA-SP1-2).

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

Validation activities 4 through 6 Furthermore, to validate the relations between concepts

and outputs/inputs and the MoSAIC comparison operation, the authors compared the various

PR practices. The MoSAIC framework uses similarity metrics derived from the similarity

theory to compare the PRs’ practices and calculates the similarity degree of the practice

activities (see 31 – AUTHOR: NAMES ARE MISSING FOR THIS REFERENCE IN

REF. LIST. PLEASE ADD; Jeners, Lichter, and Pyatkova 2012). First, the authors

manually determined similar practices from CMMI-DEV, SPICE, COBIT, CMMI-SVC, and

ITIL (they used mapping materials from International Software Consulting Group (ISCN) for

the comparison of CMMI-DEV with SPICE, mapping materials provided by ISACA (ISACA

2011) for CMMI-DEV with COBIT and mapping materials from their cooperation partner for

CMMI-SVC and ITIL). Second, they computed the similarity degree for 161 pairs of practice

activities. As the calculated similarity degree can have a value in the range of [0, 1], the

authors mapped their results to five categories: [1,1] as identical; [0.67, 1) as high; [0.3, 0.67)

AUTHOR: ARE THERE SUPPOSED TO BE BOTH BRACKETS AND

PARANTHESES USED IN THE SAME RANGE? as medium; (0, 0.3) as low; [0,0] as

different. This allows them to compare their results with the participants’ results. The

deviation is the number of incorrect results (the result category is not equal to the

participants’ category) divided by the number of compared pairs. The final results (0.25 for

CMMI-DEV and COBIT, 0.26 for CMMI-DEV and SPICE, and 0.0 for CMMI-SVC and

ITIL) indicate that on average less than every fourth metric result deviates from the given

category. The deviations are mainly caused by missing mappings between ISM practice

elements and ICM concepts and missing or inaccurate relationships between the ICM

concepts.

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

The modelling activity relate situational factors to concepts maps the situational factors to

the ICM concepts to perform the mapping between practices and situational factors. First, the

relations between concepts and situational factors were derived from the relations between

practices and situational factors performed by the academic researchers. Second, the authors

performed a validation by comparing the results of the mapping operation to the manual

mappings between situational factors and practices. The manual mappings were created in a

collaboration with academic researchers. For eight situational factors, they obtained a

deviation of 0.02 (on average less than every tenth result deviates from the two-point scale).

The reason for this deviation is that MoSAIC considers the inputs to identify best suited

practices. Some of the manual mappings did not consider the inputs. A mapping exists

between a situational factor and a practice when producing certain concepts, but there was no

mapping when this concept was needed by a practice. A retrospective discussion on this issue

with the participants pointed out that the participants considered it important to create a

concept in the present (for example, “process improvements” in CMMI-DEV-OPF-SP1-3

“Identify improvements to the organization’s processes and process assets”), but not as

important if and how this concept is needed in the future (CMMI-DEV-OPF-SP2-1

“Establish and maintain process action plans to address improvements”). To know if this is

an issue, a broader validation is required.

DISCUSSION

There are many approaches to the complex activity of software development, with no single

approach being universally applicable. A new framework, called MoSAIC, supports the

integration of different PRs and situational factors that can be used to describe the context of

a project. Based on the guidelines implemented in the MoSAIC framework, the authors

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

modelled parts of multiple PRs (all 18 processes from CMMI-DEV maturity levels 2 and 3,

10 processes from SPICE, eight processes from COBIT, and parts from ITIL and CMMI-

SVC). The authors extracted more than 1000 concepts that are grouped in about 100 different

generalizationOf- trees. Due to the structure of the trees -- with their most abstract concept at

the top and to the categorization of the subconcepts in the ICM -- it was relatively

straightforward to insert new concepts, and to find and assign them to the practice elements

and situational factors. Finally, the authors modelled eight situational factors and related them

to the PRs’ concepts.

The MoSAIC framework has various benefits to help support an organization’s work with

multiple PRs:

• It is extendable: New/changed PRs or further situational factors can be easily integrated

into MoSAIC by defining their relations to ICM concepts. If the concepts do not exist,

they must be created. Integration of new PRs and situational factors becomes easier. This

is because the ICM already contains many of the corresponding concepts and few new

concepts have to be added. Only the relations to the ICM concepts must be defined.

• Its maturity grows: The more PRs are integrated into MoSAIC, the better the quality of

ICM and the easier it is to integrate new PRs. The PR’s information helps the user to

better understand the semantic of the concepts and their relations and, thus, improve the

ICM and the relations of the ISMs and of the SFM to the ICM.

• It is maintainable: All the models (ISMs, SFM, and ICM) are saved in MySQL and

XML to allow different users to maintain the database. The MoSAIC application offers

two modalities to add/remove/edit the data: 1) interact directly with the MySQL database;

2) import/export XML data into/out of the MySQL database.

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

• It enables model analyses: The MoSAIC framework allows one to run different

operations on the aforementioned models depending on the interests of the organizations

that work with multiple PRs. The computation of the similarity degree of two or more

practices, the identification of practice dependencies, the categorization of practices

according to their output, and the selection of best-suited practices are only some

examples that can be implemented based on the framework (Jeners and Lichter 2013).

• It supports PR understandability: The MoSAIC framework integrates different PRs

and, thus, more information about a certain aspect is provided where PRs are overlapping.

MoSAIC can determine the overlap based on the relation between ICM and ISMs.

Therefore, the ICM acts as a dictionary, where the context for each concept is described

in the PRs. This can lead to a better understanding of the concepts used in the PRs.

Although the MoSAIC framework is based on plenty of information from multiple PRs and

from a well-proved reference framework of situational factors affecting the software

development process, there are still some limitations.

First, a broader involvement of experts from research and industry on the construction and

validation of the MoSAIC framework would increase the quality of the data and will give

better results for the selection, adoption, and assessment of PR practices. Although the

modelling of the ISMs, ICM, and their connection was implicitly evaluated by the practice

comparisons and dependencies, an explicit review conducted by experts would increase the

framework quality and thus the quality of the practice comparison, dependencies, and

selection results. Furthermore, more PRs could be integrated into the framework to increase

the scope of ICM and to offer support to different organizations. Finally, the automated

selection of practices was validated based on the manual mappings between the situational

factors and practices. The authors think different interpretations of the CMMI-DEV practices

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

and the too general definition of the mapping strength could lead to wrong mappings. A

mapping that is based on the MoSAIC relations between concepts and situational factors that

involves more experts would increase the quality of the selection results.

Second, additional situational factors from other domains could be incorporated into a later

version of a framework. For example, factors that influence how IT supports the business

could be integrated into the framework. These could be then be mapped to COBIT-specific

concepts and allow an automated selection of COBIT practices.

Finally, it would be useful to integrate agile software development activities into MoSAIC, as

this might address a larger portion of the software development community.

CONCLUSIONS

An optimal approach to software development is regarded as being dependent on a wide

variety of situational factors in individual software development settings, domains, and

contexts (Clarke and O’Connor 2012). In addition, there are a wide variety of software

process concepts contained within a collection of diverse process repositories that

practitioners can use when attempting to make key process decisions. In the absence of

published guidance with respect to such complex decisions, the authors have presented a

robust framework for relating software process decisions and software development contexts

to harness the power of disparate conceptual activities into holistic process decisions. Early

evidence from industrial application suggests that the framework is of benefit in practice (for

more information see the online supplement). Therefore, the authors are convinced that the

MoSAIC framework can serve as a valuable tool for software development endeavors and

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

specifically in assisting software process managers in making decisions regarding the

selection of software best practices, as well as general guidance for process improvement

initiatives.

REFERENCES

SPICE. 2012. SPICE User Group 2005-2010. ISO/IEC 15504-x, Information technology --

Process assessment – Parts 1-10, 2012 2003.	

CMMI Product Team. 2010. CMMI for Development, Version 1.3 (CMU/SEI-2010-TR-033).

Pittsburgh: Software Engineering Institute, Carnegie Mellon University.

Sheard, S. A., and J. G. Lake. 1998. Systems engineering standards and models compared. In

Proceedings of the Eighth International Symposium on Systems Engineering,

Vancouver, Canada, 589–605.

Minnich, I. 2002. IA IS 731 compared to CMMISM-SE/SW. Syst. Eng. 5, no. 1:62–72.

Mora, M., O. Gelman, R. O’Conner, F. Alvarez, and J. Macías-Lúevano. 2008. A conceptual

descriptive-comparative study of models and standards of processes in SE, SwE, and IT

disciplines using the theory of systems. International Journal of Information

Technology Systems Approach 1, no. 2:57–85.

Ferreira, A. L., R. J. Machado, and M. C. Paulk. 2010. Quantitative analysis of best practices

models in the software domain. In Software Engineering Conference (APSEC), 2010

17th Asia Pacific, 433 –442.

Ferchichi, A., and M. Bigand. 2008. An ontology for quality standards integration in software

collaborative projects. In Proceedings of MDISISʼ08 Model Driven Interoperability

Sustain. Inf. Syst. Montp. Fr.

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

Liao, Li, Yuzhong Qu, and H. K. N. Leung. 2005. A software process ontology and its

Application. Presented in the Proceedings of the Int.Workshop on Future Software

Technology, IWFST-2005, Shanghai.

Wang, Y., G. King, A. Dorling, and H. Wickberg. 1999. A unified framework for the

software engineering process system standards and models. In Proceedings of the

Fourth IEEE International Symposium and Forum on, 132 –141.

Malzahn, D. 2009. Assessing - learning - improving, an integrated approach for self-

assessment and process improvement systems. In Systems 2009. ICONS ’09. Fourth

International Conference on, 126 –130. AUTHOR: WHAT WORD GOES AFTER

"ON" HERE IN THE NAME OF THE CONFERENCE. I AM CONFUSED AS

TO HOW TO REFERNCE IT.

Pardo, C., F. J. Pino, F. García, M. Piattini, M. T. Baldassarre, and S. Lemus. 2011.

Homogenization, comparison and integration: A harmonizing strategy for the

unification of multi-models in the banking sector. In Product-Focused Software Process

Improvement, D. Caivano, M. Oivo, M. T. Baldassarre, and G. Visaggio, eds. Springer

Berlin Heidelberg, 59–72.

Soto, M., and J. Münch. 2008. Using model comparison to maintain model-to-standard

compliance. In Proceedings of the 2008 International Workshop on Comparison and

Versioning of Software Models, New York: 35–40.

Jeners, S., and H. Lichter. 2013. Smart integration of process improvement reference models

based on an automated comparison approach. In Systems, Software and Services

Process Improvement 364, F. McCaffery, R. V. O’Connor, and R. Messnarz, eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 143–154.

ISO/IEC 2008. ISO/IEC 12207:2008, Systems and software engineering - Software life cycle

processes. Geneva, Switzerland: ISO.

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

ISACA. 2011. COBIT®5: Process Reference Guide.

Boehm, B. W., and R. Turner. 2004. Balancing agility and discipline: A guide for the

perplexed. Boston: Addison-Wesley.

Jones, C. 2007. Development practices for small software applications. Software Prod. Res.

Feiler, P. H., and W. S. Humphrey. 1992. Software process development and enactment:

Concepts and definitions, 28–40.

Benediktsson, O., D. Dalcher, and H. Thorbergsson. 2006. Comparison of software

development life cycles: A multiproject experiment. IEE Proceedings - Software 153,

no. 3:87.

Subramanian, G. H., G. Klein, J. J. Jiang, and C.-L. Chan. 2009. Balancing four factors in

system development projects. Communications of the ACM 52, no. 10:118.

Kautz, K. 1998. Software process improvement in very small enterprises: Does it pay off?

Software Process Improvement Pr. 4, no. 4:209–226.

Steinberg, R. A., C. Rudd, S. Lacy, and A. Hanna. 2011. ITIL service operation. London:

TSO.

Xu, P., and B. Ramesh. 2007. Software process tailoring: An empirical investigation. Journal

of Management Information Systems 24, no. 2:293–328.

Petersen, K., and C. Wohlin. 2009. Context in industrial software engineering research, 401–

404.

Dede, B., and I. Lioufko. 2010. Situational factors affecting software development process

selection.

Bekkers, W., I. van de Weerd, S. Brinkkemper, and A. Mahieu. 2008. The influence of

situational factors in software product management: An empirical study, 41–48.

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

Clarke, P., and R. V. O’Connor. 2012. The situational factors that affect the software

development process: Towards a comprehensive reference framework. Information

Software Technologies 54, no. 5, pp. 433–447.

MacCormack, A., and R. Verganti. 2003. Managing the sources of uncertainty: Matching

process and context in software development. Journal of Prod. Innov. Management 20,

no. 3:217–232.

Jeners, S., H. Lichter, and A. Dragomir. 2012. Towards an Integration of multiple process

improvement reference models based on automated concept extraction. In EuroSPI 301,

D. Winkler, R. V. O’Connor, and R. Messnarz, eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 205–216.

Chen, X., M. Staples, and P. Bannerman. 2008. Analysis of dependencies between specific

practices in CMMI maturity level 2. In Software Process Improvement 16, R. V.

O’Connor, N. Baddoo, K. Smolander, and R. Messnarz, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 94–105.

S. J. -, H. L. -, and E. P. -. 2012. Metric based comparison of reference models based on

similarity. International Journal Digit. Content Technol. Its Appl. 6, no. 21:50–59.

AUTHOR: PLEASE PROVIDE MISSING INFORMATION.

Jeners, S., H. Lichter, and E. Pyatkova. 2012. Automated comparison of process

improvement reference models based on similarity metrics, 743–748.

ISACA. 2011. COBIT mapping: Mapping of CMMI for development V1.2 With COBIT 4.1.

	

BIOGRAPHIES

Simona Jeners studied computer science at the Computer Science Faculty, Iasi, Romania,

the Konstanz University, Konstanz, Germany, and at RWTH Aachen, Germany. Since 2010

she has been a research assistant at the Department of Software Construction, at the RWTH

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

Aachen. She has accrued six years working in different large organizations and has supported

them in their software process improvement based on different models, such as CMMI-DEV,

SPICE or Functional Safety (ISO 61508). Jeners can be reached by email at XXX.

Rory V. O’Connor is a senior lecturer in software engineering at Dublin City University and

a senior researcher with Lero, The Irish Software Engineering Research Centre. He has held

research positions at both the National Centre for Software Engineering and the Centre for

Teaching Computing, and has also worked as a software engineer and consultant for several

European technology organizations. He is also Ireland’s head of delegation to ISO/IEC

JCT1/SC7. His research interests are centered on the processes whereby software intensive

systems are designed, implemented, and managed.

Paul Clarke received his doctorate from Dublin City University in 2012, having previously

accrued 12 years of industrial software development experience in the telecommunications,

Internet, and insurance sectors. Presently, he is a research manager in the Regulated Software

Research Group at Dundalk Institute of Technology, and he is also a research fellow with

Lero - the Irish Software Research Centre. His research interests include software processes,

software development methodologies and standards, software process improvement,

economics of software engineering, and team dynamics.

Horst Lichter studied computer science and economics at Technical University

Kaiserslautern, Germany. He was a research assistant at ETH Zurich and the University of

Stuttgart. He was a project manager at Union Bank of Switzerland Zurich and ABB

Corporate Research, Heidelberg. Since 1998 he has been a professor for computer science at

RWTH Aachen University and head of the research group Software Construction.

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

Marion Lepmets has conducted research in process improvement and process assessment

since 2000 and has been teaching process management courses at both Tallinn University of

Technology and Tartu University in Estonia. Lepmets holds a doctorate degree from Tampere

University of Technology (Finland).. She received a grant from Luxembourg National

Research Fund (AFR) for her post-doctorate studies on process assessment impact on IT

service quality that she conducted from 2010 until 2012. She has been involved in the

development of software engineering standards in the International Standardization

Organization (ISO/IEC JTC1 SC7) for the last six years. Lepmets is presently a senior

research fellow at the Regulated Software Research Centre, based in Dundalk Institute of

Technology, Ireland.

Luigi Buglione is an associate professor at the École de Technologie Supérieure (ETS) –

Université du Québec, Canada, and is currently working as a measurement & process

improvement specialist at Engineering IT SpA in Rome, Italy. Previously he worked as a

software process engineer at the European Software Institute (ESI) in Bilbao, Spain. Buglione

is a regular speaker at international conferences on software/service measurement, process

improvement, and quality, and is actively part of several international/national associations

on such issues. He achieved a doctorate in MIS and a degree cum laude in economics.

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

Process	 repositories	 (PRs)

Extract	 automatically

Extract	 manually

Modeling	 Activities

Correct	 manually

ModelsTool	 supported
Model	 Operations

Mapping	
Practice	 to	

Situational	 Factors

Transformation	 and	 mapping	 between	 PRs	 and	 ISMs
Activity	 to	 relate	 the	 different	 models
Algorithm	 uses	 information	 from	 models

Mapping	 between	 elements	 of	 ICM,	 ISMs	 and	 SFM

Situational	 Factor	 Meta-‐Model

Instance	 Of

Meta-‐Models

Integrated	 Structure	 Models	 (ISMs)

Integrated	 Concept	 Meta-‐Model

Integrated	 Structure	 Meta-‐Model

Integrated	 Concept	 Model	 (ICM)

Situational	 Factor	 Model	 (SFMs)

Models

Practice
Dependencies	
Identification

Practice	
Comparison Elaborate	 concepts

based	 practice	 elements

Relate	 situational	 factors	
to	 concepts	

	

Figure	 1	 MoSAIC	 Framework	 Overview	

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

V-‐Modell

XP

Mapping	 between	 a	 and	 b

IEC	 61508 ISO/IEC	 12207SPICE

CMMI-‐DEV

requirements

functional	 req. non-‐ functional	 req.

project	 plan activities

Requirements	
changeability

Product	
performance

strong strong medium

CMMI-‐DEV

Integrated	 Structure	 Models	 (ISMs)

Integrated	 Concept	 Model	 (ICM)

Situational	 Factor	 Model	 (SFM)

...

Process	 repositories	 (PRs)

Elaborate	 concepts
based	 on	 practice	
elements

Relate	 situational	 factors
to	 concepts

Goals Base	 Practice Activities/Tasks

Practice

Output	 	 Input	 	 Role	 ...

SPICE

ENG3-‐BP4

IEC	 61508

Practice

ISO/IEC	 12207

Practice

COBIT

non-‐functional	 req.

Correct	 manually

Extract	 automatically

Extract	 manually

Practice

Objective

Requirement

MoSAIC	 Framework	 Models Modeling	 Activities

Part	 I

Part	 II

Part	 III

Transformation	 of	 a	 in	 b
Activity	 relates	 a	 to	 b

a b
a b

PRs	 for	 further	 IT	 domains
ITIL

SCRUM

a b

Further	 PRs	 for	 software	 dev.

	

Figure	 2	 MoSAIC:	 Models	 and	 Modeling	 Activities	

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

	

	

Figure	 3:	 Example	 of	 a	 mapping	 between	 a	 concept	 and	 a	 situational	 factor	

Personnel
disharmony

goal

committed req.

ICM

SFM

strongly managed by
only

req.
...

guideline for
formation of teams

guideline for managing
teams guideline for

structure of teams

...

strongly managed by

managed by

project goal

maintained guideline
for managing teams

organisational goal

maintained
goal

...

Strong Output:
committed development

req.

Medium Input: guideline
for formation of teams

Strong Output:
maintained guideline for

formation of teams

Strong Output:
maintained guideline for

structureof of teams

Medium Input: guideline
for structureof teams

CMMI-ISM

Strong: REQM-SP 1.2
Obtain commitment to

requirements from
project participants

Strong: OPD-SP 1.7
Establish and maintain
organizational rules and

guidelines for the
structure, formation, and

operation of teams

Mapping betwenn the a and b
b is a Generalization-Of a
b contains a

a b

a b

a b 	

Figure	 4	 Examples	 of	 mapping	 practices	 to	 situational	 factors	

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

	

CMMI-‐SVC	 ó ITIL

-‐ Focused	 group
-‐ Peer	 review

-‐ Independent
-‐ Peer	 review

8

Manualmappings	 between	
situational	 factors	 and	 practices

2	 sit.	 factors
CMMI-‐DEV

6	 sit.	 factors
CMMI-‐DEV

7

CMMI-‐DEV	 ó SPICE
6

Manual	 similarity	 mappings	 between	
practice	 activities	 pairs

31	 pairs
30	 pairs

117	 pairs

5

CMMI-‐DEV	 ó SPICE
CMMI-‐DEV	 ó COBIT

10	 pairs

4

CMMI-‐DEV	 Dependencies
3

Dependencies	 between	 practices

4	 processes	 with	
24	 practices

CMMI-‐DEV,	 SPICE,	 COBIT,	
IEC	 51508

2
110	 practices

Extraction	 of	 practice	 elements

Validation	 Activities	 and	
Collaborations	 Partners

CMMI-‐DEV,	 COBIT,	 IEC	 615081 57practices

Integrated	 Structure	 Models	 (ISMs)

Process	 repositories	 (PRs)

Integrated	 Concept	 Model	 (ICM)

Situational	 Factor	 Model	 (SFM)

CMMI-‐DEV

Practice

CMMI-‐DEV

Requirements	
changeability ...

...

...

...

Elaborate	 concepts
based	 practice	
elements

Extract	 automatically

Extract	 manually

Relate	 situational	
factors	 to	 concepts	

MoSAIC	 Framework

Modeling	 Activities

Correct	 manually

activity

ModelsTool	 supported
Model	 Operations

Practice	
Dependencies	
Identification

Practice	
Comparison

Mapping	
Practice	 to	

Situational	 Factors

Transformation	 of	 a	 in	 b
Activity	 relates	 a	 to	 b
Operation	 uses	 information	 from	 a	 and	 b

Mapping	 between	 a	 and	 ba b
a b

a b
a b

Considered	 PRs:
CMMI-‐DEV	 v1.3,	 SPICE	 (2010),	 COBIT	 4.0,	 IEC	 61508	 (2000),	 ITIL	 v3,	 CMMI-‐SVC	 v1.3 	

Figure	 5	 MoSAIC	 validation	 scenario	

Jeners,	 S.,	 O'Connor,	 R.V.,	 Clarke,	 P.,	 Lichter,	 H.,	 Lepmets	 M.	 and	 Buglione,	 L.,	 Harnessing	 Software	 Development	 Contexts	
to	 inform	 Software	 Process	 Selection	 Decisions,	 Software	 Quality	 Professional,	 Vol.	 16,	 No.	 1,	 December	 2013.	

Metric	 \	 Concept	 Type Activity Output Input Role Purpose
PRECISION 89% 91% 85% 85% 96%
RECALL 84% 82% 65% 85% 60% 	

Table	 3	 Deviation	 results	 for	 the	 automated	 parsing	 using	 precision	 and	 recall	 metrics	 	

