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Abstract 

So-called “targeted therapeutics”, agents with tumour-selective action, promise to 

revolutionise treatment of specific malignancies; however, realisation of the 

therapeutic promise of such drugs requires new methods of rapidly distinguishing 

patients who will derive treatment benefit.  Tyrosine Kinase Inhibitors (TKIs), a 

group of small molecule therapeutics, inhibit specific aspects of the phosphorylation-

mediated intracellular signalling pathways commonly altered in cancer. 

Overexpression of one such pathway, initiated by the HER2 growth factor receptor, 

occurs commonly in breast cancer. Lapatinib, a HER2 TKI, has been used in 

combinations with other cancer drugs for treating HER2 overexpressing breast 

cancer. The aim of this study was to evaluate gene expression changes in response to 

these targeted therapies to examine their ability to predict treatment response.  

In this thesis, microarray data from lapatinib-treated drug sensitive breast cancer cell 

lines was interrogated using an emerging bioinformatic technique, Co-inertia 

analysis (CIA). Using this technique, 512 genes were found to be altered in a specific 

response to lapatinib treatment in the cell lines. 27 gene targets were chosen for more 

detailed analysis using Taqman RT-PCR, of which five showed predictive response 

in a broader panel of breast cancer cell lines treated with lapatinib.  

Expression of the five genes was further examined in response to other HER2 

targeted therapies and the analysis indicated that the gene expression changes 

remained consistent with these other treatments, demonstrating a more broadly 

representative anti-HER2 response pattern. An in vivo study sought to evaluate these 

gene expression responses in a more in vivo-relevant scenario and found that they 

were also conserved in this model.  

Our research indicates that there are commonalities among the gene expression 

response to HER2-targeting therapeutics in responsive cells which may extrapolate 

to HER2-amplified patient tumours and more broadly suggests that characterisation 

of gene changes shortly after treatment may provide a valuable rapid predictor of 

inhibitor response, potentially guiding a more specific use of such agents by 

identifying patients that will benefit from these therapies. 
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1.1 Cancer 

1.1.1 History  

 

Commonly thought to be one single malady, cancer is in fact a highly complex group 

of diseases. It can originate and affect any organ and system in the body and affects 

men and women of all ages. In the developed world it is one of the biggest killers 

and it is becoming more prevalent in the developing world. Of the 7.6 million deaths 

in 2008 associated with cancer, 4.8 million of those occurred in developing countries 

[1].  In 2012, the number of deaths associated with cancer in Ireland was 8544. Of 

this number 30% were neoplasms of the gastrointestinal tract (e.g. colon cancer), 

excluding the stomach, 21% were trachea, bronchus and lung cancers, 17% were 

genitourinary and 8% were breast neoplasms [2]. In the last decade or so our 

knowledge of the molecular origins and implications of cancer has grown 

significantly and this has successfully translated into improved treatment options and 

patient outcome[3]. 

Early detection of cancer in any form can reduce the need for extensive treatment. 

Typically, once located, a solid tumour is surgically removed and, if it determined 

that it has not spread to other part of the body, a patient may not have to undergo 

chemotherapy or radiation. In some cases, especially breast cancer, clinical 

experience suggests that adjuvant treatment with radiation and/or chemotherapy may 

additionally ensure that no undetected errant cancer cells have survived. However, if 

it found that the cancer has spread or is more locally advanced a more intense 

treatment approach is indicated with toxic chemotherapy being the mainstay of 

disease management.  
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On its own or in combination with radiation and or surgery, application of relatively 

non-specific cytotoxic chemotherapy drugs has been a mainstay in the treatment and 

management of advanced malignancies (where the disease is a major burden in the 

body and/or has spread) for several decades and this is discussed in more detail in 

section 1.2. However more recently, treatment agents have started to be more 

targeted to the molecular drivers of the cancer, making them more specific. As 

examples, the treatment of breast cancer and chronic myeloid leukaemia (CML) are 

good illustrations of success of this approach of so-called “molecularly targeted 

therapy”. Overall survival of CML, in the chronic phase has improved from 15% 

pre-introduction of imatinib (a tyrosine kinase inhibitor) to as high as 87% since the 

introduction of the targeted therapy [4]. Molecular aberrations, such as over 

expression of the HER2 growth factor receptor and expression of the BCR/ABL 

transgene, have been successfully targeted with agents such as trastuzumab and 

gefitinib respectively. Breast cancer has become a particular focus for treatment 

individualisation and application of targeted therapeutics with notable success in 

increased survival, complemented by increased early detection and disease 

management. From initial studies carried out using trastuzumab in combination with 

first-line chemotherapy, data showed an increase in survival from 20.3 months with 

chemotherapy alone to 25.1 months with chemotherapy combined with trastuzumab 

[5]. 
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1.1.2 Breast Cancer 

 

According the World Health Organisation (WHO), breast cancer accounts for 16% 

of all cancers that affect women globally. Nationally, the Irish Cancer Society 

estimates that 1 in 10 Irish women will develop breast cancer at some stage in their 

life  and it accounted for 29% (excluding non- melanoma skin cancer) of the number 

of cancer diagnoses in Ireland between 1995 and 2007 in women [6]. The disease is 

most commonly diagnosed in women over the age of 50 but can affect women of any 

age. Pathological classification of this cancer, undertaken to provide predictive 

diagnostic information,  is based on a number of aspects such as, tumour size, 

tumour progression, nodal spread and receptor status e.g. estrogen receptor (ER), 

progesterone status (PR) and human epidermal growth factor 2 (HER2). 

Classification of these clinical parameters will generally dictate the course of 

treatment to be recommended to the patient. Breast cancer is often detected by self-

examination or routine mammographic screening. Tumour classification/staging can 

be completed using a number of methods. One such method is the TNM 

classification system. The tumour stage is assessed based on three criteria; tumour 

size (T), whether nearby lymph nodes are involved (N) and the presence or absence 

of metastatic tumours at other sites (M) [7]. Later stage breast cancers are often 

associated with a reduced chance of survival and the type of treatment offered may 

change. In early stage disease treatment will often be multimodal involving surgery 

followed by radiation, endocrine therapy (for hormone-positive malignancies) and/or 

adjuvant chemotherapy (aimed at eradicating any small undetected tumour deposits 

in the body. Chemotherapy, often simply called “chemo” involves treatment with 

cytotoxic drugs designed to bring about cell cycle arrest and/or apoptotic tumour cell 
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death [8] However, the application of these agents is limited by their toxicity to 

normal cells and the development of drug resistance. The toxicity to normal cells can 

result in adverse effects such as hair loss [9], extreme fatigue [10], depression of the 

immune system  and vomiting [11]. Hence there is need for more personalised 

medicine allowing treatment and dosage to be tailored to a particular patient’s 

tumour type, thus improving response to treatment and limiting patient exposure to 

unnecessary drugs.  

As breast cancer treatment has evolved over the last decades, it was recognised that 

there were many inconsistencies in the outcome of breast cancer patients when 

pathological classification alone was employed for prediction and prognosis.  Hence 

a lot of research effort has gone into improved molecular subclassification of tumour 

type to give better prognostic information for the patient and their clinician, with 

more recent research being used to predict the most efficacious treatments for 

specific molecular subtypes of cancer [12]. For example, using microarray analysis 

and hierarchal clustering analysis of over 100 patient tumour samples, Sorlie et 

al.,[13]  evaluated the different subtypes occurring in breast cancer patients. The 

microarray analysis consisted of examination of the expression of 534 genes.  

(Figure 1.1) 
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Figure 1.1: Hierarchial clustering of subtypes of breast cancer from Sorlie et al 2003. The tumour 

samples were analysed using microarray analysis which consisted of 534 genes. The microarray 

analysis identified four major cancer subtypes, which have their own individual characteristics and 

expected prognosis and the normal breast like tissue. The four cancer subtypes identified were 

luminal subtype A (blue), luminal subtype B (turquoise), ERBB2+ (pink) and basal subtype (red).  

 

Their analysis indicated that there were four major subtypes within the tumour 

sample population which they termed luminal type A, luminal type B, ERBB2 

(HER2) positive and basal. Each of the subtypes has their own individual 

characteristics that give general indications as to patient prognosis and what 

treatment type will often be most effective. Luminal type A and luminal type B are 

both considered to be ER positive, with subtype A found to be low grade with 

subtype B tending to be more high grade. As both subtypes express ER, they are 

treated with hormone inhibitor therapies (endocrine therapies)  such as tamoxifen or 

aromatase inhibitors (usually in post-menopausal women), with subtype B requiring 

additional chemotherapy [14]. The basal subtype is also referred to as triple negative 

as it does not overexpress HER2, ER or PR receptors. This sub group of cancer has 

been associated with poor prognosis [15, 16]. While many patients have been shown 

to respond to chemotherapy treatment, the use of newer targeted therapies in the 

treatment of this form of breast cancer has been very limited due to the lack of 

specific targets [17, 18]. 
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The last subtype ERBB2/HER2-overexpressing has been shown to be one of the 

most suitable for targeted therapies, and this is discussed in detail below.  

 

1.1.3 Role of HER2 in Breast Cancer 

 

Aberrations in the epidermal growth factor (EGFR) family of proteins have been 

identified as being important in breast cancer. One particular member of this growth 

factor receptor family, HER2/ ERBB2, has been found to be particularly important in 

breast cancer biology, in a subset of patients [19]. Although research is now trying to 

tease out the role and relevance of the three remaining members of this receptor 

group, EGFR, HER3 and HER4. The EGFR family are tyrosine kinase receptors, a 

class of transmembrane receptors that can bind and phosphorylate with other 

receptors within the family to activate a kinase-signalling pathway within the cell.  

Activation of the functional component of these receptors requires that the Src 

Homology 2(SH2) domain of the receptors must undergo phosphorylation. The SH2 

regions are conserved domains first identified within the Src oncoprotein [20]. The 

ability to enzymatically phosphorylate target substrates results from dimerisation and 

auto-phosphorylation of the C terminal tyrosine residue, induced by ligand binding 

to the extracellular domain of the receptor. 

Signal transduction within the cells therefore requires receptor dimerisation [21]. 

While homodimerisation can take place, a number of combinations of functional 

heterodimers have been identified since the first dimerisation was suggested [22, 23].  

The combination of receptors in the homo/heterodimer(s) will dictate which 
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signalling pathway is activated, with some dimers having inherent signalling activity 

and others requiring ligand binding for activation [24].  

However, these receptors do have some limitations. The kinase domain of HER3 is 

inactive and as a result the protein can only signal through hetrodimerisation partners 

[25]. HER2 has no known ligands and therefore acts as a signal transducer by 

hetrodimerising with EGFR, HER3 and HER4 [26].  

HER2-positive breast cancer, in which the HER2 receptor is overexpressed, 

generally through amplification of the HER2 gene, is found in approximately 20-

30% of human breast cancers [27] and has been associated with poorer prognosis 

and outcome [19, 28].  This alteration has been associated with the increase of 

tumour invasiveness by the down-regulation of α-4 integrin via the p38MAPK 

pathway[29]. It is this poor responsiveness, the aggressive nature of HER2+ breast 

cancers and the relatively high incidence of the target that has made this growth 

factor receptor a good therapeutic target. In addition, HER2-overexpressing breast 

tumours tend to become dependent on this aberration, a process which has been 

termed “oncogene addiction” hence inhibition also represents an effective 

treatment[30]. 
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1.1.4 Cancer Biomarkers  

 

The use of biomarkers has become increasingly important in the diagnosis and 

treatment of many malignancies including breast cancer. A biomarker has been 

described as a cellular, biochemical or molecular alteration that can be measured in a 

biological medium, e.g. blood or tissue. These alterations can be evaluated as an 

indicator of pharmacological response to therapy or a pathogenic process [31, 32]. 

Biomarkers can be classified as prognostic, predictive or diagnostic. Prognostic 

markers can be used to evaluate how a disease will progress in a patient regardless of 

their treatment. Predictive markers can be used to determine the effects that a 

treatment will have on a patient’s disease and diagnostic markers can be used to 

investigate the presence of a disease.   

 

1.1.4.1 Biomarkers in breast cancer 

 

 In the diagnosis of breast cancer, the evaluation of the molecular markers PR, ER 

and HER2 are routinely used in order to determine the most suitable treatment 

regime [33]. There are currently only two FDA-approved methods to determine that 

HER2 overexpression is present, immuno-histochemical analysis (IHC) and 

fluorescence in-situ hybridisation (FISH) [34].  

Recent developments in the field which utilise molecular-based assays to classify the 

different subtypes of cancer are moving away from the anatomical/pathological 

classification of the malignancy and have been focussed on giving more predictive 
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and prognostic information, thereby promising to allow physicians identify the most 

suitable treatment options available. Many of the assays that will be described below 

have both prognostic and predictive applications although it will likely be several 

years before their full utility is characterised and their use becomes the international 

standard of care. 

 The Breast BioClassifier or PAM50 is an RT-PCR assay which utilises analysis of 

the expression of 50 genes and 5 control genes to determine which subset of breast 

cancer the patient samples belong to [35, 36]. In the prognostic setting this assay 

evaluates the risk of recurrence or the likelihood of relapse following 5 years in 

patients based on the expression of these genes [36-38]. In the predictive setting, this 

assay has been utilised in the RxPonder trial to determine the most suitable course of 

treatment for ER positive, node positive patients, whether it be chemotherapy or 

hormone therapy [37].  

The oncotype DX assay which examines the expression of a 21 gene signature is 

used in the prognostic setting to evaluate the likelihood of disease recurrence in 

women with estrogen receptor (ER) positive only breast cancer [39]. In the 

TAILORx clinical trial, which was devised by the National Cancer Institute (NCI), 

the oncotype DX gene signature was used to predict if adjuvant chemotherapy 

treatment should be indicated in ER-positive, node negative breast cancer patients. 

[40]. The test uses recurrence scores to predict which patient will likely need 

additional chemotherapy added to their hormonal treatment. This recurrence score is 

calculate by normalising the expression of the 21 genes to the expression of the 5 

reference genes that are also screened for in the assay [41]. The resultant recurrence 

score is then segregated into 3 groups which dictates treatment option, scores lower 
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than 16 (hormonal treatment alone), scores 16 to 25(randomised arm) and scores 

greater than 26 (hormonal treatment in combination with chemotherapy) [41]. 

MammaPrint is a 70 gene expression-based assay that is manufactured by Agendia 

BV. This microarray based assay which uses fresh mRNA from patient resections 

has been utilised to determine the risk of metastasis from a breast cancer tumour. 

This assay is being utilised in the MINDACT clinical trial which aims to predict  the 

appropriate therapy option for patients suffering from lymph node negative, ER 

positive or negative breast cancer [42]. Using the MammaPrint assay in combination 

with standard clinicopathologic prognostic factors (tumour grade, ER status and 

HER2 status), patients are assigned high or low risk status.  Patients with a high risk 

status as determined by the MammaPrint assay and clinicopathological factors are 

treated with chemotherapy, patients with a low risk status from both assessments are 

not treated and are monitored and patients that show a difference between the two 

tests are given a randomised treatment.  In patients that are ER+ that present with a 

high risk from both the MammaPrint and the clinicopathologic prognostic factors, 

hormonal therapy (tamoxifen) is prescribed in combination with chemotherapeutic 

agents. In patients that present as low risk, while no chemotherapy is given they do 

undergo a course of hormonal therapy. This is the same for patients that are enrolled 

in the randomised arm [43]. 

The three assays that have been described above all use gene expression signatures 

to evaluate how a disease is expected to develop (prognosis) and also have been used 

to predict what patients would benefit from treatment with chemotherapeutic agents. 

However, none of these assays has the capability to determine if the patient will 

respond to the treatment that they will receive. In the case of HER2 positive patients 

who receive HER2 targeted therapies such as the monoclonal antibody trastuzumab 
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or the tyrosine kinase inhibitor lapatinib, it is estimated that as many as 50% of 

patients will develop resistance to the therapy within 12-36 months [27]. The cost of 

these therapies as well as the undue burden that they can cause to patients has 

resulted in regulatory agencies such as the FDA promoting the development of 

companion diagnostics that can be used by clinicians to determine whether or not 

patients are responding to treatment.  
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1.2 Cancer Treatment 

1.2.1 Conventional treatment 

 

Conventional treatment of cancer can include combinations of surgery, radiation 

and/or chemotherapy, depending on a large number of variables including patient 

age, anatomical location and molecular and pathological characteristics of the 

tumour. 

Surgery has proven to be one of the most successful methods for tumour eradication 

when the tumour is localised. and can be used in combination with chemotherapy, 

radiation and targeted drug therapies [44]. Radiation treatment uses ionising 

radiation to target and treat solid tumours, many of which have been detected at an 

early stage. By targeting the nuclear DNA of the cancer cell and disrupting it, 

radiotherapy is thought to work primarily by interrupting the cell cycle process and 

thereby killing the cancer cell [45].  

 

1.2.2 Cancer chemotherapy 

 

Chemotherapy is the use of cytotoxic chemical agents that have the ability to damage 

cancer cells, where successful this action disrupts growth of the cancer cell and can 

result in cessation of cell growth and/or (preferably) tumour cell death [46]. As a 

neo-adjuvant treatment, chemotherapy can be used, much like radiation to shrink 

tumours prior to surgery. As an adjuvant therapy it can be used to eliminate any 

cancer cells that may have spread from the primary tumour site and hence target 
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metastasis that might otherwise occur at a later date [47]. As with other cancer 

treatments, chemotherapy is also used in combination with radiation and it is not 

uncommon for a patient to be on regimens containing multiple agents. [48].  

Chemotherapy has been proven to be a useful therapeutic tool in the treatment of 

metastatic cancers. As radiation tends to damage surrounding tissue, it is generally 

employed only in localised disease, while chemotherapy can disseminate throughout 

the bloodstream to multiple potential sites in the body. Chemotherapy can be 

administered by oral dosage or, more usually, intravenously for delivery throughout 

the bloodstream [46].  

The cytotoxic actions of chemotherapy drugs are not specific to cancer cells, healthy 

cells can also be affected as a result of this, and hence, many patients suffer adverse 

effects. Fatigue is the most commonly reported side effect associated with 

chemotherapy treatment. Alopecia (hair loss), nausea, vomiting, diarrhoea, low 

blood cell counts, cardiotoxicity, fertility and sterility issues and neurotoxicity are 

also common side effects. In addition to these, patients undergoing chemotherapy 

can become immunosuppressed leaving them susceptible to opportunistic infections. 

This effect is due to chemotherapeutic agents causing damage to the bone marrow, 

which is responsible for the production of many of the immune cells that the body 

needs to fight infection, such as T-cell, B-cells, and dendritic cells [44].  

Chemotherapy drugs are classified depending on what stage of DNA synthesis they 

are capable of interfering with.  

Alkylating agents, such as cyclophosphamide, are used in the treatment of some 

breast cancers. These drugs add an alkyl group which damages cellular DNA. 

Platinum agents, e.g. cisplatin, damage DNA with the addition of a platinum adduct. 
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These cytotoxic agents are used in the treatment of many malignancies, including 

lung and ovarian cancer.  

Antimetabolites are responsible for the inhibition of pyrimidine and purine 

metabolites production which are required for DNA and RNA synthesis (a vital 

component of cell growth and division) [44]. Methotrexate and 5-fluorouracil are 

two agents that fall into the antimetabolite category. They are employed in many 

forms of cancer, for example, in  CMF (cyclophosphamide, mexotrexate, 5 

fluorouracil) combination therapy which has been used successfully in the treatment 

of node positive breast cancer [48].  

Anthracyclines or anti-tumour antibiotics such as doxorubicin or epirubicin are again 

used in several forms of cancer including breast cancer. These agents generally 

function by an intercalation interaction with DNA [49].  

Antimitotic agents, for example taxanes such as paclitaxel, target spindle formation 

in mitosis, thereby having a major impact on tumour cell growth.  Paclitaxel is used 

in many malignancies including lung, ovarian and breast cancer treatment [44].   

 

1.2.3 Targeted therapies 

 

 The use of targeted therapies has come to the forefront of oncology in the past 

decade. Monoclonal antibodies and tyrosine kinase inhibitors are currently being 

used for the treatment of a number of receptor and pathway alteration-driven forms 

of cancer. The Philadelphia chromosome (BCR-ABL) has proven to be extremely 

vulnerable to targeting with specific TKIs [50]. The introduction of imatinib into the 
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portfolio of drugs employed for the treatment of chronic myeloid leukaemia has been 

extremely successful, with one study indicating that, since its introduction, imatinib 

has improved the 8 year survival rate to 87% from a 20% pre-imatinib rate [4]. 

Following the success of imatinib, additional targeted therapies have also been 

developed for the treatment of CML, such as sunitinib and dasatinib. The epidermal 

growth factor receptor (EGFR) is another commonly expressed cell surface protein 

on cancer cells that has also been successfully targeted using TKI. Overexpression of 

this receptor has been found commonly in lung cancer and, as a result, gefitinib, an 

EGFR inhibitor, has been used in the treatment of EGFR-overexpressing lung and 

breast cancer [51, 52].  

 

1.2.3.1 Targeted therapies for HER2 positive breast cancer 

 

Since the identification of frequent overexpression of HER2 (especially in breast 

cancer) in the 1980s, HER2 receptor-based inhibitor strategies have proven to be a 

poster child for the applicability and clinical of molecularly targeted therapies. The 

monoclonal antibody trastuzumab was developed by Genentech and has been used 

extensively in HER2+ metastatic breast cancer patients, both as a mono-therapy and 

in combination with chemotherapeutic agents. In addition to monoclonal antibodies, 

tyrosine kinase inhibitors have also been developed that bind specifically to the 

HER2 kinase domain.  Lapatinib, along with second generation agents, such as 

afatinib and neratinib have been used in a large number of clinical trials. Figure 1.2 

illustrates the different binding domains of the epidermal growth factor family that 

are targeted by the molecularly targeted therapies discussed in this section.  
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Figure 1.2: Schematic representing the binding site of the target therapies trastuzumab, 

lapatinib, afatinib and neratinib.  

 

1.2.3.1.1  Trastuzumab 

 

Trastuzumab was the first inhibitor developed to target HER2. The recombinant 

humanised monoclonal antibody was generated by Genentech and works by 

preventing activation of downstream pathways such as RAS-MAPK and PI3K-AKT-

mTOR by the antibody binding to the extracellular membrane of the domain of the 

HER2 receptor. By inhibiting these downstream pathways, susceptible cancer cells 

are unable to proliferate [5]. A large number of clinical trials have demonstrated that 

the drug is a clinically active and tolerated therapy in metastatic HER2-

overexpressing breast cancer patients who have undergone extensive prior treatment 

[53]. Administered intravenously, patients are typically given a loading dose of 
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4mg/kg followed by a weekly infusion of 2mg/kg until the patient has progressed or 

responded to the therapy [54]. Cardiac toxicity is one of the main adverse effects 

attributed to trastuzumab. [55]. With the cost of treatment per patient estimated to be 

approximately €24,000 per year, the risk of cardiac toxicity and the incidence of 

intrinsic and acquired resistance, it has become increasingly important to clinicians 

to be able to determine which patients will benefit most significantly from this drug.  

A number of clinical trials have been undertaken to evaluate the synergistic effects 

of combining trastuzumab with other treatments. Kaufman et al., [56] evaluated that 

the combination of trastuzumab with anastrozole, an aromatase inhibitor.; When 

compared with anastrozole alone in HER2 positive, hormone positive metastatic 

breast cancer patients there was an increase in the activity of the combination 

treatment. Piccart-Gebhat et al., [57] and Romond et al., [58] have also provided 

results that indicate that combining trastuzumab with adjuvant chemotherapy has 

reduced the risk of relapse and death quite substantially. 

While trastuzumab has been shown to be extremely effective in the treatment of 

metastatic breast cancer, clinical experience, especially in advanced disease, has 

found that some patients don’t respond to treatment and a large number of patients 

develop resistance to the monoclonal antibody treatment [59]. In an attempt to 

overcome the development of this resistance, TDM1, a trastuzumab-maytansine 1 

conjugate has been developed and evaluated pre clinically and is now successfully in 

a number of clinical trials  [60-62]. In combining the cytotoxic drug maytansine with 

the HER2 specific antibody trastuzumab, TDM1 ensures that the toxin is delivered 

directly to tumour cells [63]. 
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1.2.3.1.2 Lapatinib 

 

Lapatinib, a dual kinase inhibitor developed by GlaxoSmithKline, targets both HER2 

and EGFR receptors[64]. By inhibiting the tyrosine kinase domains of the receptors, 

lapatinib prevents activation of important pro-cancer pathways such as Erk/MAPK 

(extracellular-signal-regulated kinase/mitogen-activated protein kinase) and PI3K 

(Phosphatidylinositol 3-kinases) which have vital roles in cell proliferation and 

survival [64, 65]. Lapatinib is currently approved for the second line treatment of 

metastatic breast cancer when used in combination with the chemotherapeutic agent 

capecitabine, a pro-drug that is enzymatically converted to 5-fluorouracil in the 

tumour [66]. Due to their complementary mechanisms of action, a number of studies 

have been undertaken to evaluate the synergistic effects of combining trastuzumab 

with lapatinib for the treatment of HER2 positive metastatic breast cancer [63, 67-

69]. As a result of these studies, this treatment regime has been approved for patients 

suffering from HER2 positive, HR negative metastatic breast cancer by the European 

Medicines Agency (EMA) [70]. It has also been approved in combination with the 

aromatase inhibitor, letrozole, in HER2 positive, hormone positive metastatic breast 

cancer patients, with the combination increasing progression free survival as well as 

clinical benefit rate [71]. 

There have been some studies to evaluate the potential use of lapatinib in non-breast 

malignancies such as HER2 positive gastric cancer [72]. These studies were based 

upon results that indicate the response of this subtype of gastric cancer to 

trastuzumab [73, 74] .  
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The typical dosage of lapatinib is 1250mg taken daily, orally. The TKI is usually 

taken for 21 days at a time with the next 7 days off. It is also recommended that the 

agent be taken one hour before or after food [75]. Adverse effects associated with 

lapatinib treatment include, cardio-toxicity, however, the risk is thought to be lesser 

than that associated with trastuzumab treatment. Additional adverse effects include 

diarrhoea, hepatic and skin toxicity [64].  

 

1.2.3.1.3 Afatinib 

 

Afatinib is also a tyrosine kinase dual inhibitor of HER2 and EGFR[76]. This agent, 

developed by Boehringer Ingelheim, has been shown to irreversibly inhibit the 

HER2 and EGFR receptors[77]. The drug has been shown to be more potent than 

lapatinib and, as a result, a dose of 50mg per day has been identified as being 

effective in comparison to the 1250mg twice daily that is required for lapatinib [78, 

79]. Clinical trial data has indicated that afatinib may have activity in metastatic 

breast cancer patients that have developed resistance to trastuzumab[80] Due to 

inhibition of the EGFR receptor, the inhibitor has been proven to be effective in the 

treatment of non-small cell lung cancer and lung adenocarcinomas and a number of 

phase 2 and 3 clinical trials have been undertaken studying these malignancies. The 

results of these trials have indicated that in patients who have developed resistance to 

a number of first line treatments such as gefitinib and erlotinib, treatment with 

afatinib may be beneficial [81, 82].  Bouche, O et al., [83]have also suggested that 

there may be some evidence to support the use of the agent in the treatment of 
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colorectal cancer [83]. As with lapatinib there are some notable adverse reactions 

with the use of afatinib, in particular diarrhoea, rash and fatigue [84].  

 

1.2.3.1.4 Neratinib 

 

Neratinib (HKI-272), a dual kinase inhibitor, developed by Pfizer, targets both HER2 

and EGFR [85]. By irreversibly binding to the HER2 and EGFR receptors, this TKI 

reduces auto-phosphorylation within the cell which in turn prevents the activation of 

downstream pathways [86, 87]. Phase 1 clinical trials within patients with solid 

tumours indicated that the most suitable dose of neratinib was between 240 and 

320mg per day. Doses greater than this resulted in dose-related toxicities, most 

predominately diarrhoea [88]. Initial phase 1 trials also indicated that treatment of 

patients with neratinib that had been pre-treated with trastuzumab, anthracyclines or 

taxanes showed therapeutic potential and warranted further studies [87]. Due to dose 

related adverse effects that has been associated with the drug, the number of phase 2 

trials have been limited in metastatic breast cancer [89-91]. As with afatinib, due to 

its ability to target EGFR, neratinib has also been investigated in the treatment of 

NSCLC [92]. Phase 1 [87] and phase 2 [88] trials have been limited and have shown 

disappointing results, with little to no response rate evident in the study. 
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1.3 Resistance to targeted therapies 

 

Resistance to targeted therapies has been the Achilles heel of the successful 

application of these emerging agents. The resistance can be as a result of pre-existing 

mutations/ alterations in the drug target (intrinsic) or induced following drug 

treatment (acquired) [93].   

Acquired resistance, i.e. resistance evident in patients who were initially responsive 

and have been treated typically a year to 18 months, has become a major issue for 

clinicians treating patients with targeted therapies, in particular trastuzumab and 

lapatinib. While the mechanisms by which this resistance occurs have not yet been 

fully characterised, a large number of studies have provided potential hypotheses. 

Liu et al., [94] have evaluated the activation of AXL, a member of the receptor 

tyrosine kinase subfamily, in BT474 cell lines with acquired resistance. The cell line 

was exposed to lapatinib over an extended period of time in order to induce the 

acquired resistance phenotype. Using AXL gene targeting siRNA, AXL expression 

was decreased in the BT474 lapatinib-resistant cell line, restoring sensitivity to the 

targeted therapy. While this initial data provides strong supporting evidence to 

examine the expression of AXL in patients, as of yet there has been no clinical 

evaluation of this finding. Xia et al., [95] investigated the role of estrogen receptor 

signalling and its involvement in the development of acquired resistance. Similar to 

Liu et al., the BT474 parental cell lines were cultured continuously for an extended 

period of time in the presence of lapatinib in order to establish an acquired resistance 

model. Transfection with siRNA targeting the estrogen receptor indicated that 

estrogen signalling was increased following treatment with lapatinib in the BT474 

lapatinib sensitive cell line. In the resistant cell line it was identified that cell survival 
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was no longer being driven by the HER2 pathway but a co-dependence of the HER2 

and ER pathways combined. This finding was confirmed using tumour biopsies from 

patients undergoing lapatinib treatment. It was hypothesised that acquired resistance 

could be avoided by inhibiting both the HER2 and ER pathways simultaneously 

during treatment.  In addition, Eichhorn et al., [96] established that mutation in the 

PI3K pathway leads to resistance to lapatinib in vitro. The mutations identified, loss 

of function of PTEN or activating mutation in PIK3CA, drove the resistance to 

lapatinib. However the resistance phenotype was reversed following treatment with a 

PI3K inhibitor developed by Novartis known as BEZ235 [97].  

Through the evaluation of all of these studies it has become clear that there are a 

number of different mechanisms that can be responsible for the induction of acquired 

resistance in patients undergoing treatment with targeted therapies. Further studies 

will have to be completed in order to determine what pathways are involved and 

what methods can be used in order to overcome them.  
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1.4 Aims of project 

Combining a number of bioinformatics, in vitro and in vivo techniques the aims of 

this project were to:  

- Identify differentially expressed genes which might act as possible indicators 

of response to HER2 drug treatment using analysis of a microarray data set 

derived from a panel of cell lines treated with lapatinib 

- Validate the relevance of these genes of interest in a more diverse panel of 

breast cancer cell lines with varying HER2 expression and in response to a 

broader range of therapeutics 

- Evaluate the relevance of these genes in a model of acquired lapatinib 

resistance  

- Assess whether the alterations in specific genes identified in the cell line 

models transpose to an in vivo cell line-derived tumour xenograft 
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2.1. Cell Culture and reagents 

2.1.1. Cell Culture Solutions 

 

The following solutions were prepared as needed. Phosphate buffered saline (PBS) 

was prepared by dissolving 1 tablet (Oxoid, Basingstoke, Hampshire, England) in 

100mL of ultra-high purity (UHP) water and autoclaved. Sodium acetate buffer was 

prepared by dissolving sodium acetate (Sigma, St. Louis, MO, USA) to a 

concentration of 0.1M with 0.1% (v/v) triton-X-100 and then pH to 5.5. Phosphate 

substrate was prepared dissolving p-nitrophenol phosphate to a concentration of 

10mM in the previously described 0.1M sodium acetate. 1N NaOH was prepared by 

dissolving 40g/L of NaOH (Sigma, St. Louis, MO, USA) in UHP water. EDTA was 

prepared by dissolving 1% w/v EDTA (Sigma) in UHP and was then autoclaved. 1X 

trypsin was prepared by combining 50mL of 10X trypsin (Gibco by Life 

technologies, Grand Island, NY 14072, USA) and 10mL of 1% EDTA solution to 

440mL of sterile PBS.  

2.1.2. Cell Culture Equipment 

 

The following equipment was used throughout the course of this research. 30mL 

sterile universal containers (Ramboldi Ltd, Limassol, Cyprus), 96-well plates 

(Corning, Costar, Sigma Aldrich, St.Louis, MO), T25cm
2
 and T75cm

2
 vented flasks 

(Corning, Costar, Sigma Aldrich, St. Louis, MO) and cryovials (Greiner Bio-One 

GmbH, Frickenhausen, Germany) were used in cell culture. 
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2.1.3. Cells culture and aseptic techniques 

 

All cell culture work was carried out in a class II laminar airflow cabinet, Holten 

LaminAir Maxisafe. All experiments involving cytotoxic compounds were 

conducted in a cytoguard laminar airflow cabinet. Before and after use the laminar 

airflow cabinet was cleaned with 70% v/v industrial methylated spirits (IMS). Any 

items brought into the cabinet were also swabbed with 70% IMS. Only one cell line 

was used in the laminar airflow cabinet at a time and upon completion of work with 

any given cell line, the laminar airflow cabinet was allowed to clear for at least 15 

minutes before further use. This was to eliminate any possibility of cross-

contamination between cell lines. The cabinets were cleaned weekly with industrial 

disinfectants (Virkon, Antech International, P0550) and operation validated by 

annual inspection by a certified contractor.  

 

2.1.4. Monitoring of sterility of cell culture solutions 

 

Sterility testing was performed on all cell culture media and related culturing 

solutions. Samples of prepared basal media were incubated at 37
°
C for a period of 

seven days. This ensured that no bacterial or fungal contamination was present in the 

media. 
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2.1.5. Sub-culturing of cell lines 

 

The waste cell culture medium was removed from the tissue culture flask to a sterile 

bottle. The flask was rinsed with 1mL of 1X trypsin solution to ensure the removal 

of any residual media. 2mL of 1x tryspin was then added to the flask and incubated 

at 37
°
C for the required period of time until all cells were detached from the inside 

surface of the culture flask. The trypsin was deactivated with an equal volume of 

complete media. The cell suspension was removed from the flask and placed in a 

sterile universal container and centrifuged at 200g for 5 minutes. The supernatant 

was then discarded from the universal and the pellet was suspended in complete 

medium. A cell count was performed using a haemocytometer. An aliquot of cells 

was then used to re-seed a flask at the required density with fresh media. All cell 

lines used in the course of this research are described in table 2.1.  

 

2.1.5.1. Sub-culturing of Human Mammary Epithelial Cells (HMEC) 

 

As cultured cells derived from normal mammary epithelium, the culturing of the 

HMEC (Human mammary epithelial cells) (CC-2551, Lonza) was different to that of 

the immortalised cell lines used within this project. The preparation of the media was 

completed 5-7 days prior to thawing of cells. The singlequots kit (CC-4136, Lonza) 

which contained cytokines, growth factors and supplements were added to the 

MEBM (Mammary epithelial basal media, CC-3151, Lonza) and the media 

underwent sterility checks as outlined in section 2.1.4.  
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30 minutes prior to addition of cells, 1mL/5cm
2 

of media was added to a T25cm
2
 

vented flask and returned to the incubator. Cells were seeded at a recommended 

density of 2500 cells/cm
2
. The flask was gently rocked to ensure dispersion of the 

cells. The media was changed the day after thawing and every other day thereafter.  

To sub-culture these cells, the Lonza ReagentPack (CC-5034, Lonza) was 

recommended for use. Waste media was removed from the flask and HEPES- 

buffered saline was first used to wash the cells. Following this, trypsin/EDTA 

solution was added to the flask and the cells were returned to the incubator in order 

to allow the cells to detach from the flask. Trypsin neutralizing solution was used to 

stop the trypsin action and to wash all detached cells from the flask. Harvested cells 

were centrifuged at 220g for 5 minutes to pellet them. Once again the cells were re-

suspended at a density of 2500 cells/cm
2
. Cells were re-suspended in T75cm

2
 vented 

flasks. According to the manufacturer, these cells are capable of 18 doubling and 

have a doubling time of approximately 18 hours.   

 

  

2.1.6. Cryopreservation of cells 

 

Cells for cryopreservation were harvested in the log phase of growth. Cell pellets 

were resuspended in a suitable volume of FCS (PAA, GE Healthcase BioScience 

Corp, New Jersey, USA). An equal volume of a 10-20% DMSO/FCS solution was 

added drop-wise to the cell suspension. A total volume of 1mL of this suspension 

was then placed in a cryovial. These vials were then placed in the vapour phase of a 

liquid nitrogen container, which was equivalent to a temperature of -80
°
C. 
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After a period of three hours, vials were removed from the vapour phase and 

transferred to the liquid phase for storage (-196
°
C). 

 

2.1.7. Thawing of cryopreserved cells 

 

A volume of 5mL of fresh warmed growth media was added to a sterile universal. 

The cryopreserved cells were removed from the liquid nitrogen tank and thawed 

rapidly at 37
°
C. The cells were removed from the vials and transferred to the 

aliquoted media. The resulting cell suspension was centrifuged at 200g for 5 

minutes. The supernatant was removed and the pellet resuspended in fresh culture 

medium. Thawed cells were then added to a T25cm
2
 tissue culture flask with a 

suitable volume of fresh growth media. 

 

2.1.8. Mycoplasma testing  

 

Cell lines were tested for possible mycoplasma contamination quarterly in house by 

Mr Michael Henry according to the SOP 007-01 using the in-direct test. 
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Table 2.1: Description of breast cancer cell lines, characteristics and basal 

media components 

Cell Line Characteristics Basal Media Source 

BT474 HER2-overexpressing, 

ER positive  

Dulbecco’s Modified 

Eagles medium (DMEM) 

supplemented with 10% 

fetal bovine serum, 2% 

L-Glutamine and 1% 

Sodium Pyruvate 

NICB 

through the 

ATCC 

SKBR3 HER2-overexpressing, 

ER negative 

RPMI 1640 medium 

supplemented with 10% 

fetal bovine serum 

NICB 

EFM 192a HER2-overexpressing 

ER positive 

RPMI 1640 medium 

supplemented with 10% 

fetal bovine serum 

NICB 

HCC1954 HER2-overexpressing, 

ER negative 

RPMI 1640 medium 

supplemented with 10% 

fetal bovine serum 

NICB 

MDAMB453 HER2-overexpressing, 

ER negative 

RPMI 1640 medium 

supplemented with 10% 

fetal bovine serum 

NICB 

MDAMB231 Triple negative, 

ER negative 

RPMI 1640 medium 

supplemented with 10% 

fetal bovine serum 

NICB 

HMEC-

Mammary 

Epithelial 

Cells 

Normal breast tissue MEGM BulletKit (CC-

3150) containing MEBM 

(CC3151) and the 

SingleQuots (CC4136) 

Lonza 

Bioresearch, 

Basel, 

Switzerland 

SKBR3-L HER2-overexpressing 

acquired lapatinib 

resistance 

RPMI 1640 medium 

supplemented with 10% 

fetal bovine serum 

NICB, 

generated by 

Fiona 

O’Neill as 

part of this 

thesis 

 

All cell lines were cultured at 37°C in a 5% CO2\95% humidified air incubator. 

 

The chemical compounds listed in Table 2.2 were prepared as stock solutions in 

dimethyl sulfoxide (Sigma Aldrich, St Louis, MO, USA) with the exception of 

trastuzumab and epirubicin which were provided already in solution and not in 

powder form as the other were. 
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Table 2.2: Source and stock concentrations of chemotherapy drugs and 

inhibitors in this project 

 

Drug Name Source Stock Concentration 

Lapatinib Sequoia Chemicals 

Pangbourne, 

RG8 7AP, 

United Kingdom 

10mM 

Neratinib Sequoia Chemicals 10mM 

Afatinib Sequoia Chemicals 10mM 

5’DFUR Sigma 10nM 

Gefitinib Sequoia Chemicals 10mM 

Dasatinib Sequoia Chemicals 10mM 

Trastuzumab Roche, Basel, Switzerland 21mg/ml 

Epirubicin Pfizer Inc. 235 East 42nd 

Street, New York, NY 10017 

21mg/mL 
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2.2. Proliferation Assay 

 

Proliferation was measured using an acid phosphatase assay [1]. This colorimetric 

asssy uses p-nitrophenyl phosphate to determine the percentage of live cells 

following treatment with a therapy. This percentage is expressed as the IC50 which is 

the inhibitory concentration in which 50% of the biological activity of the cell lines 

is inhibited. 1x10
3
 cells/well were seeded in 96-well plates with the exception of the 

BT474 cells which were seeded at 5x10
3
 cells/well. Plates were incubated overnight 

at 37°C followed by the addition of drug at appropriate concentrations and incubated 

for a further 5 days until wells were 80% to 90% confluent. All media was removed 

and the wells were washed twice with PBS (Sigma). 10mM paranitrophenol 

phosphate substrate (Sigma-Aldrich) in 0.1M sodium acetate buffer with 0.1% 

Triton X (Sigma) pH 5.5 was added to each well and incubated at 37°C to 1 hour. 

50µL of 1 M NaOH was added and the absorbance was read at 405 nm with a 620nm 

reference wavelength using the Synergy HT plate reader (BioTek, Winooski, 

Vermont, USA). 

 

2.3. Establishment of Lapatinib-Resistant Cell Lines 

 

The lapatinib-sensitive, HER2+ cell line, SKBR3 was chosen to be conditioned in 

lapatinib. A 96 well plate dose response proliferation assay was completed in order 

to determine the IC70 concentration for conditioning This toxicological value was 

employed as it was felt to be more appropriate for developing resistant lines,  

consistent with Sheikh et al., [2] who had also been developing   a lapatinib resistant 
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cell line (of pancreatic origin).  Duplicate flasks of the cell line were grown until 65-

70% confluent at which time they were treated with 250nM lapatinib. The cells were 

treated with the lapatinib twice a week for 6 months. After two months the dose of 

lapatinib was increased to 300nM and again to 350nM two months later. 

Proliferation assays were performed at regular intervals in order monitor the 

alteration in response to the drug. Cells were considered to be resistant when an IC50 

value of 1µM or greater was achieved.  

 

2.4. Genomic DNA Isolation 

 

Using the Promega Wizard SV genomic DNA purification system, genomic DNA 

was isolated for parental and lapatinib-resistant variants of the SKBR3 breast cancer 

cell line. Briefly, a cell suspension containing 2x10
6
 cells was spun down and re-

suspended in 150µL of cell lysis buffer. This sample lysate was then transferred to a 

Wizard SV mini-column. The column was centrifuged for 1 minute at 13,000g. The 

eluent was removed. 650µL of wash solution containing 95% of ethanol was added 

to the column and once again was centrifuged for 1 minute at 13,000g. This step was 

repeated a further 3 times. The eluent was discarded following each spin. To elute 

the DNA, 250µL of nuclease free water containing 2µL of RNase, which removes 

any co-purified RNA, was added to each column and allowed to incubate for 2 

minutes at room temperature. The column was then centrifuged for 1 minute at 

13,000g. The isolated genomic DNA was stored in labelled tubes at -20°C until it 

was required for DNA fingerprinting analysis. The DNA was quantified using the 
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Nanodrop (ND-1000 spectrophotometer, Thermo Scientific) and a DNA purity with 

an OD 260/280 ratio of 1.8 was required for the DNA fingerprinting.  

 

2.5. DNA fingerprinting of the SKBR3 parental and acquired resistance cell 

lines 

 

The DNA fingerprinting of the parental and resistant variants of the SKBR3 cell line 

was carried out by the lab of Dr. Michael Crowley in the University of Alabama at 

Birmingham. The method used looked at STR profiling of 9 polymorphic regions.  

Briefly, the lab used the ABI Identifiler® Kit (Life Technologies) to map the DNA 

fingerprint of the cell lines. The markers that were present in this kit include those as 

used by the ATCC which included Amelogenin, CSF1PO, D135317 and TH01. 

Using gene amplification technologies, the genomic DNA was mapped. The mapped 

genomic DNA was then analysed using Gene-mapper software, and the genomic 

fingerprint was compared to that provided by the ATCC.  

 

2.6. RNA Extraction 

 

RNA extraction was achieved using the Qiagen RNeasy mini Kit (Qiagen). Briefly, 

cells were grown until confluent in a T75cm
2
 cell culture flask. Media was removed 

and cells were trypsinised, centrifuged at 8000 x g and a pellet formed. All media 

was removed from the pellet as it can interfere with the lysis buffer. One volume of 

lysis buffer per number of pelleted cells was added to the cells, in this case 600µL, 
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and mixed gently. Cells were passed gently through a 19 gauge needle to induce 

lysis. One volume of 70% ethanol (600µL) was then added to the cells and 700µL of 

the cell suspension was added to the column and were centrifuged for 15 seconds at 

8000g. This step was repeated with the remainder of the sample. Flow through was 

discarded following each spin. Following this 350µL of the RW1 buffer provided 

was then added to the column and was spun for 15 seconds at 8000g. The Qiagen 

DNase incubation mix was prepared. 70µL of RDD buffer and 10 µL of the DNase 1 

stock were mixed together per sample with additional volume prepared for pipetting 

error. The incubation mix was placed directly on the column membrane and was left 

for 15 minutes at room temperature. 350µL of the RW1 buffer was added to the 

column and it was centrifuged for 15 seconds at 8000g. 500µL of RPE buffer was 

added to the column and it was further centrifuged for 15 seconds at 8000g. This step 

was repeated and the column centrifuged for 2 minutes at 8000g. To dry, the column 

was then added to a new collection tube and centrifuged at full speed for 1 minute. 

The column was transferred to a 1.5mL collection tube. 40µL of nuclease free water 

was added and it was centrifuged for 1 minute at 8000 x g. This was repeated once 

more. The extracted RNA was quantified using a Nanodrop (ND-1000 

spectrophotometer, Thermo Scientific). The RNA was stored in labelled tubes at -

80°C until analysed.  
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2.7. Homogenisation of animal tissue 

 

To extract RNA from mouse tumour tissue, a homogenisation step was required 

prior to the addition of one volume of 70% ethanol in the extraction method above. 

Two methods of tissue homogenisation were optimised for the animal tissue. 

 

 

2.7.1. Disruption and homogenisation using a rotor-stator homogeniser 

 

30mg of tissue was placed in 2mL non-stick nuclease-free tubes which contained 1 

5mm diameter stainless steel bead.  600µL of lysis buffer from the Qiagen RNeasy 

kit containing 1% β-mercaptoethanol was added to the tube. Samples were placed in 

the Qiagen tissuelyser, which was then operated at 20-30 Hz until the tissue was 

fully disrupted. The steel bead was removed from the tube and disposed of and the 

sample was centrifuged at full speed for 3 minutes. The supernatant was removed 

and retained at -80°C until the RNA extraction could be completed.   

 

2.7.2. Disruption and homogenisation using a pestle and mortar and 

QiaShredder 

 

30mg of tissue was placed in a pestle and mortar, to which a small volume of liquid 

nitrogen was added. The sample was crushed until a fine powder formed. Once all 
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the tissue was broken down, the liquid nitrogen was allowed to evaporate without 

allowing the tissue to thaw. The tissue in its powder form was then scraped into a 

2mL non-stick nuclease-free tube containing 600µL of lysis buffer from the Qiagen 

RNeasy kit containing 1% β-mercaptoethanol. The powder was dissolved in the 

buffer. The suspension was then centrifuged at full speed for 3 minutes. The 

supernatant was removed and retained at -80°C until the RNA extraction could be 

completed.  

 

 

2.8. Reverse Transcription (RT) Reaction 

 

To synthesise cDNA, the extracted RNA was diluted to a concentration of 2µg. A 

high capacity cDNA reverse transcription master mix (Applied Biosystems) was 

prepared containing 2µL of 10X RT Buffer, 0.8µl of 25X dNTP, 2 µL of 10X  RT 

primers, 1 µL of Multiscribe Reverse transcriptase, 1 µL RNase inhibitor and 3.2 µL 

nuclease free water per reaction. 10 µL of the master mix was added to 10 µL of the 

2 µg RNA solution. The solution was pipetted gently to mix and briefly centrifuged 

to remove any bubbles.  The tubes were labelled and were placed in the G storm 

thermo cycler (Model GS1, Somerton Biotechnology Centre, Somerset, UK). The 

thermo cycler conditions were 25°C for 10 minutes, 37°C for 120 minutes and 85°C 

for 5 minutes. The resulting cDNA was stored at -20°C in labelled tubes.  
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2.9. Taqman Real Time PCR 

 

Taqman real time PCR was used for the mRNA quantification in this study. Real-

time RT PCR monitors the progress of the reaction as it occurs and only requires a 

few nanograms of target RNA in order for the amplification reaction to take place. 

The reactions are characterised by the point during the cycle when the amplification 

of a target is first detected. This detection occurs when the quencher dye that is 

found in the 3’ end of the probe is separated from the fluorescent dye which is found 

in the 5’ end of the probe due to cleaving of the probe with the target. The higher the 

copy number of the target, the sooner a fluorescent signal will be observed. The 

value at which this increase is seen is known as the threshold cycle (Ct). It is defined 

as the fractional cycle number at which the fluorescence passes the fixed 

threshold[3].  

2.9.1. Taqman Array Fast 96-well plate 

 

RNA was extracted and cDNA synthesised as per section 2.3 and 2.4. Taqman Real 

Time PCR analysis was performed using Taqman Array Fast 96-well plate (Applied 

Biosystems), which was pre-prepared containing assays for our 28 targets and 4 

endogenous controls. The experiment was prepared by diluting the cDNA to a 

concentration of 40ng/well. A total cDNA volume of 5µL is required per well. 

5µL/well of Taqman fast universal PCR master mix (2x), NO AmpErase UNG 

(Applied Biosystems) was combined with the diluted cDNA and 10µL of the 

solution was added to each of the wells on the Taqman plate. Plates were vortexed to 

remove any bubbles and ensure that the solutions were mixed. The thermocycler 
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conditions were as follows: hold at 95°C for 20 seconds, followed by melt at 95°C 

for 3 seconds and anneal/extend at 60°C for 30 seconds for 40 cycles on a 7900 fast 

real-time PCR instrument (Applied Biosystems).  

  

2.9.2. Individual Taqman Gene expression assays 

 

Additional Taqman RT PCR reactions were performed using individual gene 

expression assays.  

The assay was prepared by diluting the cDNA to a concentration of 80ng/well 

(20ng/µL) in dH2O. A total cDNA volume of 4µL is required per well. For each 

assay a master mix was prepared containing 1µL of the taqman assay, 10µL of 

Taqman fast universal PCR master mix (2x), NO AmpErase UNG (Applied 

Biosystems) and 5µL of dH2O was required for each well. 16µL of the assay and 

master mix solution was added to each well and 4µL of the 80ng/well cDNA 

solution in dH2O. Plates were vortexed to remove any bubbles and ensure that the 

solutions were mixed. The thermocycler conditions were as follows: hold at 95°C for 

20 seconds, followed by melt at 95°C for 3 seconds and anneal/extend at 60°C for 30 

seconds for 40 cycles on a 7900 fast real-time PCR instrument (Applied 

Biosystems).  

.  
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Table 2.3 Individual Taqman Gene expression assays 

Gene Target Species detected Assay ID 

ALDH3A2 Human Hs00166066_m1 

CCND1 Human, Murine Hs00277039_m1 

CDKN1B Human Hs00153277_m1 

ERBB3 Human Hs00951444_m1 

FOXO3a Human Hs04195365_s1 

FOXO3a Human, Murine Hs00818121_m1 

FOXO3a Murine Mm00490673_m1 

GAPDH Human Hs99999905_m1 

GAPDH Murine Mm99999915_g1 

NR3C1 Human, Murine Hs00230818_m1 

NR3C1 Human Hs00230813_m1 

PIK3C3 Human, Murine Hs00176908_m1 

RB1CC1 Human, Murine Hs01089010_m1 

RB1CC1 Human Hs00207547_m1 
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2.9.3. Relative gene expression analysis using the Comparative CT method 

 

Relative expression values were calculated using the comparative threshold cycle 

(Ct) method [3]. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was selected 

as the endogenous control for all experiments. The cycle threshold (Ct) indicates the 

cycle number by which the amount of amplified target reaches a fixed threshold. The 

Ct data for GAPDH was used to create ΔCt values [ΔCt = Ct (target gene)-Ct 

(GAPDH)]. ΔΔCt values were calculated by subtracting ΔCt of the calibrator 

(untreated controls) from the ΔCt value of each drug-treated sample. Relative 

quantification (RQ) values were calculated using the equation:  

2
-ΔΔCt

 

 Genes with a fold change ± 2 in the drug-treated BT474 and SKBR3 cell lines were 

deemed to be differentially expressed. 

Standard deviations (SD) were calculated on the mean of the ΔΔCt value, which was 

based on triplicate replicate measurements of the relative expression of each gene. 

Error bars on each graph represent the SD of each estimate. This mean ΔΔCt value 

was then used in the calculation of the RQ value using the equation above. This 

method for calculating the error bars was used in lieu of using the RQmax and RQmin 

values, which are which is sometimes employed in related analysis.    
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2.10. Protein Extraction 

 

Whole cell lysis buffer was prepared by combining 7M urea (Sigma), 4% w/v 

CHAPS (Sigma), 1% Triton X (Sigma) and 1x PICS (Protease Inhibitor Cocktail) 

(Roche Diagnostics, Mannheim, Germany) in UHP water. This lysis buffer was 

aliquotted into 1mL eppendorfs and stored at -20°C. In order to extract the protein 

from the cells, the cells are first trypsinised and pelleted. Once a pellet had been 

formed following centrifugation, 100µL of the lysis buffer was added to the cell 

pellet and was pipetted gently. The cell suspension and lysis mixture was left on ice 

for approximately 1 hour, with the eppendorf being vortexed every 20 minutes. 

Following an hour on ice, the cell suspension was centrifuged at 3000 x g at 4°C for 

15 minutes. The supernatant was removed and stored in labelled tubes at -20°C. 

  

2.11. Protein Quantification 

 

Protein concentrations were quantified using a Bradford Assay.  Bovine Serum 

Albumin standards were prepared from a stock concentration of 2mg/mL, with 

concentrations per well from 0.312µg to 10µg prepared. To ensure that the sample 

concentrations were within the standard curve, one sample was chosen and diluted 

down by various factors. These dilution factors were then examined to make sure 

that they were within the standard curve.  If dilutions were required, all samples were 

diluted. All samples and standards were left on ice. To each plate, 5µL of either 

standards or sample were added to each well. To this, 245µL of Bradford reagent 
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was added to each well. The plate was then left in the dark to develop and the plates, 

once developed, were read at 595nm on the BioTek Plate reader.  

 

 

2.12. Immunoblotting 

 

Protein (30µg) was electrophoretically resolved on 7.5% (Lonza, 59501) denaturing 

polyacrylamine gels. The resolved proteins were then transferred to nitrocellulose 

membranes (Invitrogen, IB3010-01) using the iBlot transfer system (Invitrogen, 

IB1001). Protein transfer was visually confirmed using Ponceau S staining (Sigma, 

P7170). Membranes were blocked with 2.5% skimmed milk powder in PBS and 

incubated overnight at 4°C with primary antibodies. Antibody dilutions and sources 

can be found in Table 2.4. Proteins were visualised using horseradish peroxidase-

conjugated anti-mouse or anti-rabbit antibodies (Sigma – see Table 2.4). and ECL 

Prime reagent (GE Healthcare, RPN 2232). Membranes were washed with 0.1% 

PBS-tween 3 times for 10 minutes each, both prior to and following incubation with 

secondary antibodies. Following the final washing, the membranes were exposed to 

ECL Prime reagent (GE Healthcare, RPN 2232) in the dark room and the membrane 

was exposed to autoradiographic film (Kodak,) for various times (from 10 seconds to 

30 minutes depending on the signal). The exposed autoradiographic film was 

developed for 3 minutes in developer (Kodak, LX-24). They were then washed in 

water and transferred to fixative (Kodak FX-40) for 5 minutes. The film was then 

washed with water and allowed to dry at room temperature.  
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Table 2.4 List of primary antibodies. 

 

Protein 

of 

interest 

Primary 

Antibody 

Primary 

Antibody 

Dilution 

Source Secondary 

Antibody 

Source Secondary 

Antibody 

Dilution 

CCND1 #2922s 1/1000 Cell 

Signalling 

Technology 

(CST) 

Rabbit Sigma 

Aldrich 

1/10,000 

ERBB3 #4754s 1/1000 CST Rabbit Sigma 

Aldrich 

1/10,000 

FOXO3a #2497s 1/1000 CST Rabbit Sigma 

Aldrich 

1/10,000 

NR3C1 #7437s 1/1000 CST Rabbit Sigma 

Aldrich 

1/10,000 

RB1CC1 17250-1-

AP 

1/1500 ProteinTech Rabbit Sigma 

Aldrich 

1/10,000 

β-actin  1/10,000 Sigma Mouse Sigma 1/10,000 
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2.13. Development of cell line-derived tumours in vivo (xenografts) 

 

2.13.1.  Mice 

 

28-35 day old CB17/lcr-Prkdc
scid

/Crl mice were used under the guidelines of the 

Irish Department of Health and procedures approved by the research ethics 

committee of Dublin City University, Dublin 9. CB17/lcr-Prkdc
scid

/Crl mice were 

purchased from Charles River (Charles River International Inc., Wilmington, MA). 

The immunodeficiency of these animals is as a result of the inhibition to produce B 

and T lymphocytes. This deficiency provides the mice with a wide tolerance to 

implanted foreign tissues and tumours, which makes them an ideal model for 

research. 

 

2.13.2.  Cell line suspension preparation 

 

BT474 cells were grown until 70% confluent in T75cm
2
 vented flasks. A cell count 

was completed and the cells were re-suspended at a density of 5 x 10
6
 per 100µL in 

serum free Dulbeccos modified Eagles Medium (DMEM). To this cell- and serum- 

free media suspension was added a 1:1 volume of matrigel (BD, Franklin Lakes, NJ, 

USA 07417). Cell and matrigel suspension was stored on ice until needed. 
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2.13.3.  Estrogen implantation and tumour development 

 

BT474 cells are estrogen dependent. In order to support the growth of the cells in 

vivo, 72mg estrogen pellets (Innovative technology, Sarasota, FL, USA) were 

implanted in the shoulder region of the mice. 200µL of the cell lines and matrigel 

suspension was subcutaneously injected into the flank of the mice. Mice were 

monitored daily and once tumours were observed they were measured using a digital 

calliper. The equation used to evaluate the tumour volume was; 

 

H(height of tumour) x W(width of tumour) x D (depth of tumour)/2 =                              

volume of tumour (mm
3
) 

 

2.13.4. Tumour graft implantation 

 

Once tumours had developed following the injection of the cell line into the 

subcutaneous layer of the skin, they were removed and placed into serum free media. 

24 hours prior to implantation with the tumours, mice were implanted with 72mg 

estrogen pellets. The tumour was cut into approximately 2 x 2 x 2mm
3 

sections and 

dipped in matrigel before they were inserted subcutaneously in a small incision in 

the flank of mice. The incision was sealed using a wound clip, which was removed 

10 days post-surgery.  

2.13.5. Vehicle and Drug preparation 
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The vehicle used to administer the drug suspension to the mice was prepared by 

dissolving 0.5% hydroxyl-propyl-methyl-cellulose (Sigma-Aldrich, St Louis, MO, 

USA) and 0.1% Tween 80 (Sigma-Aldrich, St Louis, MO, USA) in UHP water.  

Lapatinib ditosylate (Sequoia Chemicals) was administered at a dose of 200mg/kg. 

100µL of drug was given to each mouse by oral gavage.  

Animals were monitored daily during the treatment with either the vehicle or 

200mg/kg lapatinib. They were weighed prior to the treatment and visually observed 

post treatment to ensure that there were no complications. 

 

2.13.6.  Drug Quantification in Plasma samples using LC-MS 

 

Lapatinib was quantified according to [4] and the analysis was carried out by Dr. 

Sandra Roche, NICB, DCU. 

 

2.13.6.1. Liquid-liquid extraction procedure 

 

100L of 500ng/mL internal standard was added, to 10 µL of plasma. Dasatinib 

500ng/mL was used as the internal standard for lapatinib. Also 200L of 1M 

ammonium formate pH 3.5 buffer and 1.6mL of extraction solvent tBME/ACN (3:1) 

w/v was added to the plasma. The extraction tubes were vortexed and mixed on a 

blood tube mixer for 15mins. The samples were centrifuged at 3200g for 5 minutes; 

the organic layer was removed with a glass pasteur pipette and 1.1mL of solvent was 
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transferred to conical bottomed glass LC autosampler vials. The vials were 

evaporated to dryness using a Genevac EZ-2 evaporator at ambient temperature, 

without light. The samples were reconstituted in 40L of acetonitrile with 20L 

injected automatically by the autosampler 

 

2.13.6.2. Preparation of standard curve 

 

10 µL of plasma was added to an extraction tube, with the addition of 100L of 

500ng/mL internal standard and 100L of analyte varying in concentration from 

1ng/mL to 1000ng/mL. Samples were extracted as outlined in section 2.13.6.1. Each 

concentration point was extracted in triplicate. Samples were analysed by LC-

MS/MS at intervals during the sample run time.  

 

2.13.6.3. System standard preparation 

 

A 10mL solution of lapatinib 100ng/mL and 100ng/mL dasatinib was prepared in 

acetonitrile and divided into 200L aliquots. Aliquots were stored at -20
°
C. A 

system standard was analysed before each run to verify the instrument was operating 

as normal. During the analysis of a batch of samples, system standards and mobile 

phase blanks were run at intervals to identify any potential instrumentation errors.  
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2.13.6.4. Chromatographic and mass spectrometric conditions 

 

Chromatographic separation was achieved using a Hyperclone BDS C18 column 

(150mm×2.0mm i.d., 3μm particle size) with a SecurityGuard C18 guard column 

(4mm×3.0mm i.d.) both from Phenomenex, UK. An optimised mixture of 

acetonitrile and 10mM ammonium formate pH 4 (54:46, v/v) was used as mobile 

phase, at a flow rate of 0.2mL/min. The column temperature was maintained at 20
0
C 

and the temperature of the autosampler was maintained 4
0
C. The complete 

chromatographic run time of each sample was 10min, which separated dasatinib and 

lapatinib from each other with retention times 2.3 and 5.1 minutes respectively. 

Peaks were quantified using Agilent Masshunter Software. 

The mass spectrometer was operated using an ESI source in the positive ion 

detection mode. The ionisation temperature was 350
0
C, gas flow rate was 11L/min 

and nebulizer pressure was 50psi. Nitrogen was used as the ionisation source gas and 

ultrapure nitrogen, the collision cell gas. 

Analysis was performed using MRM (multiple reaction monitoring) mode with the 

following transitions: m/z 581→m/z 365 for lapatinib, and m/z 488→m/z (231 and 

401) for dasatinib, with a dwell time of 200ms.   

Quantification was based on the integrated peak area as determined by the 

Masshunter Quantification Analysis software which quantitates the peak areas of the 

MRM transitions of each analyte. 
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3. Gene expression changes in response 

to lapatinib 
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3.1 Introduction 

 

Cancers originating from cells of the breast are among the most common female 

malignancies [1].  Breast cancer is a very heterogeneous malignancy and there has 

been extensive research conducted aimed at better subcategorising breast cancer into 

subtypes of the disease to better understand the implications of this heterogeneity in 

treatment response and survival [2]. Over-expression of HER2, defines one such 

subtype that has been identified [3]. Due to the downstream effects of activation of 

the HER2 signalling pathway, HER2 over-expression is associated with more 

aggressive, often treatment resistant disease with patients often presenting with the 

malignancy at a lower median age than the general breast cancer population. [4, 5]. 

Multimodality therapy (surgery and/or drug treatment with radiation therapy) is the 

mainstay of general treatment. However, treatment options have moved towards a 

more targeted approach. Current targeted therapies available for this breast cancer 

subtype include the monoclonal antibody trastuzumab and the dual tyrosine kinase 

inhibitor lapatinib. The adverse effects associated with these types of therapies are 

generally less severe than those of traditional chemotherapies as they target cancer 

cells more specifically [6].  

Tyrosine kinases are a group of enzymes that play a critical role in the signalling 

cascades of the cell. The function of these enzymes is typically coupled to, and 

moderated by ligand binding (receptor) components, and receptor-coupled tyrosine 

kinases are involved in the phosphorylation of tyrosine receptors in targeted proteins. 

Many important receptor-coupled tyrosine kinases are located in the cell membrane 

and proteins are activated by the binding of ligands to their extracellular domain. 

HER2 and EGFR (epidermal growth factor receptor) are two such examples of 
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growth factor receptors which can homodimerise or heterodimerise with other 

members of the human epidermal growth factor receptor family, which, in turn, 

activates their tyrosine kinase moiety. The activated tyrosine kinases have critical 

roles in cell signalling processes such as cell proliferation and growth [7, 8]. 

Tyrosine kinase inhibitors (TKIs) prevent the activation of these tyrosine kinases 

thus inhibiting the activation of the pathways that would promote tumour cell growth 

and proliferation.  

Despite the wide application of HER2 testing in breast cancer to stratify patients for 

HER2 targeting treatment, a significant proportion of HER2-positive patients do not 

respond to HER2-targeted therapy [9]. In recent studies performed using lapatinib as 

a monotherapy, in combination with capecitabine and also with trastuzumab, clinical 

benefit response rates were found to range from 12.4% with lapatinib alone, 22% in 

combination with capecitabine and 24.7% for the combination of lapatinib with 

trastuzumab [10-12]. When one factors in the enormous financial cost of such 

medicines, there is huge need to develop methods to identify patients who will 

specifically benefit from treatment. We have therefore sought to use cellular models 

to examine and identify the gene expression changes which might be characteristic 

of response to treatment with lapatinib. The longer term hope being that if such gene 

expression changes were characteristic of human tumour response to lapatinib, they 

could form the basis of a diagnostic capable of very rapidly identifying patients who 

are responding to treatment from those who are not. 
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3.2 Materials and Methods 

 

In summary, microarray data on a panel of responsive and non-response cell lines in 

response to lapatinib completed by GSK was analysed using the Co-inertia Analysis 

(CIA) technique as described in detail in section 3.3.1-4. All bioinformatic analysis 

was completed by Dr. Stephen Madden. 

The sensitivity of the BT474, SKBR3, EFM192a, HCC1954, MDAMB453 and 

MDAMB231 cell lines to lapatinib was determined by measuring IC50 values using 

proliferation assays as described in section 2.2. Taqman RT-PCR was used to 

examine the expression of a panel of 19 genes and 9 transcription factors identified 

as potentially being altered in cells responding to lapatinib in a panel of cell lines 

(Table 3.4). These cell lines were cultured until 70% confluent at which point they 

underwent treatment with 1µM lapatinib for 12 hours. These optimal treatment 

conditions were determined based on the bioinformatics analysis undertaken (section 

3.6). Following this treatment, RNA was extracted from the cells using the Qiagen 

RNeasy extraction kit (section 2.2). As described in sections 2.8 and 2.9 the 

extracted RNA underwent reverse transcription followed by Taqman RT-PCR to 

evaluate the gene expression changes in the cells following treatment with the drug. 

Using the comparative cycle threshold method, the relative expression of these genes 

was examined.  
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3.3 Results 

 

3.3.1 GSK microarray data set 

 

Microarray data provided by GlaxoSmithKline (GSK) formed the back bone for this 

study. Completed and published by Hedge et al. [13], the microarray analysis 

consisted of gene expression data from 4 cell lines; BT474, SKBR3, T47D and 

MDAMB468, which were treated with varying concentrations of lapatinib at 

different time points. The analysis was conducted using the Affymetrix human 

genome HG U133A arrays containing more than 22,000 probe sets. RNA was 

extracted from four independent biological replicates for each cell line condition. An 

array for each of the following conditions was completed on each of the four cell 

lines; 0.1% DMSO-treated cells at 0, 2, 6, 12 and 24 hours (5 arrays), 0.1µM 

lapatinib-treated cells at 2, 6, 12 and 24 hours (4 arrays) and 1µM lapatinib treated 

cells at 2, 6 and 12 hours (3 arrays). When completed in each of the four independent 

replicates, there were a total of 48 arrays per cell line. When completing the 

bioinformatics analysis of this data set, the data associated with T47D and 

MDAMB468 cell lines were not taken into consideration. The hypothesis of the 

experiment was to initially identify genes that were differentially regulated in 

response to lapatinib. As T47D and MDAMB468 cell lines do not overexpress the 

HER2 receptor and as such are not responsive to the drug, the gene expression 

analysis from these cell lines would not contribute to evaluating differentially 

expressed genes in response to the HER2 targeted therapy lapatinib. Figure 3.1 

illustrates the unsupervised CIA that was undertaken on the microarray expression 

data for the MDAMB468 and T47D cell lines. This analysis indicated that there was 
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no clear clustering of the replicate samples when the samples were labelled 

according to the treatment they received. Figure 3.2 and figure 3.3 illustrate the 

clustering that was evident in the BT474 and SKBR3 cell line data when the data for 

these cell lines was labelled in the same fashion. While this analysis indicated that 

there were no consistent gene expression changes in the MDAMB468 and T47D cell 

lines in response to lapatinib and as such the data from these cell lines would not be 

useful to identify genes indicative of response to the drug, it did highlight 15 gene 

targets that were found to be differently expressed in all four cell lines. These genes 

were disregarded from all further analysis as they would not have informed the 

objective of the analysis which was to evaluate genes differently expressed in 

responsive cell lines.  
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Figure 3.1: Plot of the correlation of axes 1 (horizontal) and 3 (vertical) of the unsupervised 

CIA for (A) MDAMB468 and (B) T47D cell line data. A gene/TFBS (transcription factor 

binding site)  frequency table produced with a position specific scoring matrix (PSSM) 

threshold of 0.8 was used. (I) shows the projection of the cell line samples. There is no clear 

split in the 0.1% DMSO-treated samples (red), the 0.1µM-lapatinib treated samples (blue) or 

the 1µM lapatinib treated samples (green) in either cell  line. (II) Shows the projection of the 

TFBS motifs. The position of the individual TFBS in (II) had a direct relationship with the 

genes in the same position in (I). The TFBS in (II) was predicted to regulate the expression 

of the genes situated at the same position in (I). 

 

 

 

II 
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3.3.2 Co-Inertia analysis of BT474 and SKBR3 cell lines 

 

There are a number of data mining and bioinformatics techniques that have the 

capability to identify differentially expressed genes from microarray data, such as 

canonical correlation analysis or canonical correspondence analysis. While these 

techniques could have been used, CIA (Co-inertia analysis) was applied in this 

study, as this emerging technique has previously been shown to be capable of 

correlating gene expression data with databases containing target predictions such as 

miRNA or transcription factor binding sites [14, 15]. This ability to correlate TFBS 

with predicted gene targets was used to guide the selection of genes for validation 

using Taqman RT PCR. Without this guidance from the TFBS, the gene expression 

data could have been evaluated using gene lists generated by between group analysis 

(BGA), examining the fold changes of the genes from the microarray data or 

clustering trends [16, 17].   

CIA is a multi-variant data analysis technique that allows for the identification of 

trends in gene expression across multiple datasets of the same samples. CIA is 

flexible and is a suitable approach for unifying data to identify patterns and trends 

from data that contain the same sample. CIA analysis provides simple representation 

of the data and is robust and efficient in its application to large datasets [18, 19].  

The use of the CIA multi-variant technique in this study was the first time this 

method was applied to breast cancer data. This analysis was used as a data 

exploration technique on the microarray data set and allowed incorporation of time 

series data at low and high drug concentrations from lapatinib-sensitive HER2-

positive cell lines. This analysis, described in detail in sections 3.3.3 and 3.3.4, 
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yielded a list of 512 genes differentially regulated in response to the lapatinib 

treatment in the BT474 and SKBR3 cell lines. The six comparisons described in 

table 3.1, which incorporated all data from the two lapatinib responsive cell lines at 

all of the time points following treatment (2 hours, 6 hours, 12 hours and 24 hours) 

and treatment conditions (0.1% DMSO, 0.1 µM and 1 µM lapatinib), were utilised in 

the generation of the list of differentially regulated genes.  The description of these 

comparisons was suggested by the initial unsupervised analysis. The 512 genes were 

found to be differentially expressed across all six comparisons and the direction of 

their changes was also consistent across all of the comparisons. This list of genes 

whose expression was altered can be found in appendix 4. In addition to this, the 

analysis suggested the optimal treatment conditions for the molecular validation 

study that was completed using qRT-PCR. This conditions were chosen based on the 

separation of data points observed in figure 3.2 and 3.3. These conditions were a 12 

hour treatment of 1µM lapatinib.  
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Table 3.1: The six comparisons of the gene expression data which were 

determined by the CIA (Group 1 vs Group 2) 

 

Comparison 

Number 

Cell Line Group 1 Group 1 

Microarray 

Number 

Group 2 Group 2 

Microarray 

Number 

1 BT474 6hr & 12hr 

1µM 

lapatinib 

8 all 

remaining 

samples 

40 

2 BT474 6hr & 12hr 

1µM 

lapatinib 

8 6hr & 12hr 

0.1% 

DMSO 

8 

3 SKBR3 6hr &12 hr 

0.1 and 

1µM 

lapatinib 

16 all 

remaining 

samples 

32 

4 SKBR3 6hr &12 hr 

0.1 and 

1µM 

lapatinib 

16 remaining 

samples 

less 24hr 

0.1µM 

lapatinib 

28 

5 SKBR3 12hr 0.1 

and 1µM 

lapatinib 

8 all 

remaining 

samples 

32 

6 SKBR3 12hr 0.1 

and 1µM 

lapatinib 

8 remaining 

samples 

less 24hr 

0.1µM 

lapatinib 

28 
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Furthermore, to identifying significantly differentially expressed genes, this CIA 

multivariate statistical technique was used to link transcription factor binding site 

target predictions and gene expression data in order to identify transcription factors 

(TFs) associated with the cellular response to lapatinib [15, 20]. CIA allowed us to 

identify commonality between the expression of the genes and the TFs that are 

predicted to target these genes. It also provided a ranked list of TFs predicted to be 

associated with the cellular response to lapatinib.  

To complete the CIA analysis, the microarray expression data underwent two 

methods of analysis. Un-supervised analysis, which assumes that there is no prior 

knowledge of the sample data, allowed for the clustering of groups of similar 

samples e.g. the same treatment concentration or time exposed to drug. This form of 

analysis is not driven by any hypothesis, it is used to evaluate the clustering of 

samples that behave similarly. Supervised analysis evaluated the number of 

differentially expressed genes in response to the drug treatment. Supervised analysis 

requires a hypothesis to be in place to apply to the data. The hypothesis that genes 

would be differentially expressed following exposure to a targeted therapy for a 

period of time formed the basis of our supervised analysis. Thus the unsupervised 

step allowed for data exploration and the identification of interesting trends or splits 

in the data as a result of the lapatinib treatment and trends in the predicted TFBS 

(transcription factor binding sites) frequency tables. The supervised analysis allowed 

us to identify which TFs were specifically associated with the response to lapatinib 

and ranked them in order of importance. This ranked list aided in the selection of the 

genes that were chosen for validation using Taqman RT-PCR, as the majority of the 

genes selected were predicted to be regulated by one of the eight ranked TFs (table 

3.4). 
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3.3.3 Unsupervised Co-Inertia Analysis identified clear and consistent gene 

expression changes in the BT474 and SKBR3 cell lines 

 

 

In analysing the data from the responsive cell lines (BT474 and SKBR3), CIA was 

employed to simultaneously analyse mRNA expression levels arising from the arrays 

with the detail on transcription factor binding sites (TFBS) in the promoters of the 

genes in the data. Unsupervised CIA was applied to the data from the 48 microarrays 

for each of the BT474 and SKBR3 cell lines and the associated gene/TFBS 

frequency tables and was used to identify underlying trends in the data in each of the 

cell lines. The TFBS tables were generated from information known about 1236 

known TFBS from three publications[21-23] and predicted TFBSs for ~17,000 

genes. The ultimate aim of this analytical approach was to identify the transcription 

factors (TF) responsible for the gene expression change trends in the data which 

would therefore also identify the differentially regulated genes these TFs were 

predicted to target. The results of the unsupervised CIA of the BT474 and SKBR3 

cell lines are shown in figures 3.2 and 3.3 respectively. CIA was used to combine 

two linked datasets (two sets of measurements on the same objects) and perform two 

simultaneous non-symmetric correspondence analyses (NSC) and identify the axes 

that are maximally co-variant [19, 20]. The use of an ordination method such as NSC 

allowed us to summarise the data in a low dimensional space. In this case, the two 

linked datasets were normalised gene expression data from the lapatinib-treated cell 

lines and TFBS information for the same genes. 
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3.3.3.1 Unsupervised co-inertia analysis of the BT474 cell line identifies a 

separation of 6- and 12-hour 1µm lapatinib-treated samples from those 

treated for 24 hours  

 

Axes one and three of the CIA for BT474 are plotted in figure 3.2. This allowed us 

to evaluate the response in the BT474 cell line to the 1µM lapatinib treatment at 

various time points. Axes one and three were chosen as they represent the dominant 

split within the data. The samples are represented as different colours based on 

treatment. The samples at 6 hours and 12 hours post treatment with 1µM lapatinib 

(green) clearly separate from those treated with 0.1% DMSO (red) with 0.1µM 

lapatinib (blue) and those 2 hours post treatment with 1µM lapatinib (green). With 

the exception of the 2 hour 0.1µM treatment, all 1µM treated samples form a clear 

separation from all of the other samples. However, no difference was observed in the 

data from the 0.1µM lapatinib-treated cells and 0.1% DMSO-treated cells. This 

suggested a dosage-dependant response in that a data separation only occurred 

between the data from control samples and the high dose lapatinib samples, with the 

exception of one outlier on the far right of the plot. The lack of sample separation at 

2 hours post treatment with 1µM lapatinib suggested that the gene expression effects 

of the drug were not yet apparent at this time point. These observations guided our 

choice of comparisons for both the supervised CIA and the differential gene 

expression analysis which are summarised in Table 3.1.  
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Figure 3.2 Plot of the correlation of axes 1 (horizontal) and 3 (vertical) of the unsupervised 

CIA for BT474 cell line data. A gene/TFBS frequency table produced with a position 

specific scoring matrix (PSSM) threshold of 0.8 was used. (A) shows the projection of the 

cell line samples. The 0.1% DMSO-treated samples (red), the 0.1µM-lapatinib treated 

samples (blue) are split from the 1µM lapatinib treated samples (green), the exception being 

the four 1µM lapatinib treated samples at 2 hours post treatment. (B) Shows the projection 

of the TFBS motifs.  The position of the individual TFBS in (B) had a direct relationship 

with the genes in the same position in (A). The TFBS in (B) was predicted to regulate the 

expression of the genes situated at the same position in (A). 

  

A 

B 
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Figure 3.2B shows the TF motifs associated with the genes separating the data. The 

most extreme motifs along each axis are labelled and named. Those motifs furthest 

from the origin in the same orientation as the split of interest shown in figure 3.2A 

are most associated with that split. V.AHRARNT.02 was the motif most associated 

with the separation of 1µM lapatinib-treated cells from the other samples and 

therefore was the motif most associated with the response to lapatinib. This was the 

motif for the agonist-activated heterodimer AHR/ARNT (Aryl hydrocarbon 

receptor/Arnt (hypoxia inducible factor 1 beta)) which directly associates with the 

estrogen receptors ER-alpha and ER-beta in ER-positive breast cancer, although its 

function in HER2-positive breast cancers is not well characterised[24]. 

These results indicated that the BT474 gene expression response was dose-

dependent. 
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3.3.3.2 Unsupervised co-inertia analysis of the SKBR3 cell line identifies a 

separation of 6- and 12-hour 0.1µM and 1µm lapatinib treatment 

samples from the 24-hour 0.1 µM lapatinib treatment samples. 

 

Figure 3.3A shows axes one and two of the CIA for the SKBR3 cells. The samples 

are labelled as before based on treatment. There was a clear split between the 0.1µM 

(blue) and 1µM (green) lapatinib-treated cells at 6 and 12 hours post treatment from 

the 0.1% DMSO treated cells (red), with the exception of one outlier. As with the 

BT474 cell line, there was no separation at 2 hours post treatment with 0.1µM and 

1µM lapatinib suggesting that the effects of the drug are not yet apparent at this time 

point in both cell lines. However, in this cell line the split occurred at both the 0.1µM 

and 1µM lapatinib dosages. Again, as with the BT474 data, these analyses were used 

to guide our comparisons for the supervised CIA and the gene expression analysis 

(Table 3.1).  

The TF motifs associated with this split in the data are in the same orientation 

relative to the origin as the genes separating the data in Figure 3.3B. These include 

the VDR/RXR heterodimer (V.VDR_RXR.06, vitamin D receptor/retinoid X 

receptor). The expression of the VDR/RXR heterodimer has been previously 

associated with numerous cancers, including breast cancer. It has been suggested that 

its expression of this heterodimer may indicate a patient population that may 

response better to adjuvant therapy[25]. 

These results indicated that the SKBR3 gene expression response was also a time-

dependent response.  
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Figure 3.3: Plot of the correlation of axes 1 (horizontal) and 2 (vertical) of the unsupervised 

CIA for SKBR3 cell line data. A gene/TFBS frequency table produced with a PSSM 

(position specific spacing matrix) threshold of 0.8 was used. The PSSM gives the log-odds 

score for finding a particular motifs in a target sequence. (A) shows the projection of 

the cell line samples. The 0.1% DMSO-treated samples (red), are split from the 0.1µM 

lapatinib-treated samples (blue) and the 1µM lapatinib-treated samples (green), the 

exception being the eight 0.1µM lapatinib and 1µM lapatinib-treated samples at 2 hours post 

treatment. (B) Shows the projection of the TFBS motifs. . The position of the individual 

TFBS in (B) had a direct relationship with the genes in the same position in (A). The TFBS 

in (B) was predicted to regulate the expression of the genes situated at the same position in 

(A). 

 

B 
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3.3.4 Supervised CIA identifies 8 putative transcription factors associated 

with the response to lapatinib 

 

In order to systematically identify the TFBSs specifically associated with the 

response to lapatinib in the two responsive cell lines, we performed a supervised 

analysis of the data, combining CIA and Between Group Analysis (BGA). BGA co-

ordinates the expression data from sets of grouped microarray samples described in 

table 3.1 [17]. CIA was performed twice in the BT474 dataset and four times in the 

SKBR3 dataset to perform all comparisons described in table 3.1. The description of 

these comparisons was provided by the most distinct separation of the data in the 

unsupervised analysis (sections 3.3.4 and 3.3.5). This resulted in six ranked lists of 

TFBS associated with a response to lapatinib treatment. The 8 transcription factor 

motifs (representing 8 individual transcription factors) which were consistently 

ranked highly across the six comparisons are displayed in Table 3.2.  From these 

motifs we can infer the transcription factors which are most important in driving the 

response to lapatinib in these cell lines. 
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Table 3.2: The ranked list of TFs associated with the response of BT474 and 

SKBR3 to lapatinib. 

TF Motif ID Description 

RAR V.RAR_RXR.02 Retinoic acid receptor 

RXR V.RAR_RXR.02 Retinoid X receptor 

ARNT V.AHRARNT.02 hypoxia inducible factor 1 beta 

AHR V.AHRARNT.02 Aryl hydrocarbon receptor 

ZNF143 V.STAF.02 Zinc finger protein 143 

PAX9 V.PAX9.01 Paired box gene 9 

OLF1 V.OLF1.01 Olfactory neuron-specific factor 

PAX3 V.PAX3.01 Paired box gene 3 
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3.4 Selection of breast cancer cell line panel 

 

The analysis of the microarrays outlined in the previous sections was undertaken in 

SKBR3 and BT474 breast cancer cell lines. Both of these cell lines are HER2 

overexpressing and have been previously shown to be responsive to lapatinib[3]. 

Proliferation assays were performed on these cell lines to determine their sensitivity 

to lapatinib. In order to examine if this sensitivity corresponds to the magnitude of 

the differential gene expression, a further four cell lines known to have different 

levels of lapatinib sensitivity were also analysed using the methods outlined in 

section 2.2 (Table 3.3). The additional cell lines chosen were the lapatinib-sensitive 

HER2over-expressing EFM192A and HCC1954, the lapatinib-insensitive HER2 

over-expressing MDAMB453 and the lapatinib-insensitive triple negative 

MDAMB231. A triple negative cell line is one that does not expression the 

oestrogen receptor (ER), progesterone receptor (PR) nor overexpress HER2. For our 

purposes we defined an insensitive cell line as one demonstrating a drug IC50 greater 

than 1µM [3]. 
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Table 3.3: Lapatinib IC50 values for the panel of breast cancer cell lines employed in 

this programme n=3 (biological replicates). 

 Cell Line Name IC50 ± SD (µM) 

Lapatinib-Sensitive Cell Lines BT474 0.036 ± 0.015 

 SKBR3 0.080 ± 0.017 

 EFM 192A 0.193 ± 0.067 

 HCC1954 0.416 ± 0.180 

Lapatinib-Insensitive Cell Line MDAMB453 6.08 ± 0.83 

Triple Negative Cell Line MDAMB231 7.46 ± 0.10 
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3.5 Determination of appropriate endogenous control genes 

 

An endogenous gene control was required for this analysis as it was necessary for the 

calculation of the relative expression of the genes in response to lapatinib [26]. For a 

particular gene to be useful as endogenous control it should be expressed at a 

constant level across different sample types and should not be affected by 

experimental treatments[27, 28].The Ct values of each of the evaluated genes were 

normalised to the Ct value of the endogenous control to provide the ∆Ct value of that 

gene.  

Four endogenous control genes (GAPDH, GUSB, 18S and HPRT1) were examined 

for their suitability and were quantitated using Taqman RT-PCR. These endogenous 

controls are commonly employed in the literature [28, 29].  In order to evaluate 

which would be most suitable in the comparative threshold analysis, the Ct values of 

the four candidate genes in the BT474 and SKBR3 cells lines (untreated and treated 

with 1µM lapatinib in triplicate) were examined to evaluate the variability of the 

expression of the putative control genes. The standard deviations (SD) of the 

triplicate untreated and treated Ct values of both cell lines at both conditions were 

calculated (Figure 3.3). The SDs resulting from these analyses were as follows; 18s 

= 1.14, GAPDH = 0.92, GUSB = 0.77 and HRPT = 1.23. The SD for 18s and HRPT 

were deemed to be too high so they were eliminated as endogenous control 

candidates. In choosing between GAPDH and GUSB, with the SD values being quite 

similar, GAPDH was chosen over GUSB for use as an endogenous control in further 

studies as it demonstrated a higher level of expression with Ct values of ~18, while 

the GUSB had Ct levels ~26. GAPDH is also a very well established control in the 

literature [30, 31].
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Figure 3.4: Determination of endogenous controls in SKBR3 and BT474 cell lines. Triplicate (untreated and treated with 1µM lapatinib for 12 hours) Ct 

values were evaluated and the standard deviation values were calculated. Utilising a combination of both of these values GAPDH was determined to be the 

most suitable endogenous control.
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3.6 Expression of eight transcription factors in response to lapatinib 

 

Taqman RT-PCR analysis was performed to validate the transcription factor 

expression in lapatinib-treated BT474 and SKBR3 breast cancer cell lines. Treatment 

with 1µM lapatinib for 12 hours was chosen as the optimal condition for treating the 

cells based on the separations seen in CIA analysis (Figures 3.2 and 3.3). In addition, 

1µM of lapatinib is a clinically relevant concentration [32]. These two cell lines are 

highly sensitive to lapatinib with IC50 values of 0.036µM ± 0.015µM and 0.080µM ± 

0.017µM respectively (table 3-1) [3]. Four additional cell lines were also chosen 

based on their sensitivity to lapatinib (EFM192A, HCC1954, MDAMB453 and 

MDAMB231). Their IC50 values are shown in Table 3.3. 

The expression levels of eight TFs described in table 3.2 were assessed. Six of the 

eight transcription factors were found to be expressed following 1µM 12hr lapatinib 

treatment relative to untreated controls (Figure 3.5). Ct values for these TFs were all 

determined to have values between 27 and 29. Although these TFs were not 

identified as significantly differentially expressed in the microarray analysis, they 

were clearly dysregulated in these cell lines, as predicted by CIA. Two of the 

predicted transcription factors (PAX3 and OLF1) were not expressed (data not 

shown). While the expression of the TFs did not follow an obvious pattern, there 

were some distinct trends. For example, all of the TFs were up-regulated following 

treatment in the most lapatinib-sensitive cell line (BT474) and nearly all were down-

regulated following lapatinib treatment in the most lapatinib-insensitive cell line 
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(MDAMB453). In addition, ARNT was up-regulated following lapatinib treatment 

in all lines, apart from MDAMB231, the triple negative cell line. 

It should be noted that even the smallest changes in the expression of any of the TFs 

could have had some major effects. This would be due to the key role that these TFs 

play in a large number of pathways so as such large changes in the expression of 

these genes would not be expected. 
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Figure 3.5:  The expression of transcription factors (TFs) was evaluated in the six cell line panel following 1µM lapatinib for 12 hours and are ordered left to 

right in order of importance from the ranked list generated from the CIA (table 3.2). Although theses TFs were not identified as significantly differentially 

expressed in the microarray analysis, they are clearly dysregulated in these cell lines as predicted by the CIA  The cell lines are represented in order of 

lapatinib sensitivity, with BT474 being the most sensitive and MDAMB231 being the triple negative insensitive cell line. The analysis was completed in 

triplicate the error bars represent the standard deviation of the mean ∆∆Ct value.  
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3.7 Expression of differentially expressed genes in response to lapatinib 

From the panel of 512 genes of interest arising from the original CIA analysis, a 

subset of 19 genes was selected for more detailed validatory analysis. The genes 

were selected on the basis of the following criteria; a large alteration in expression 

following treatment , the expression of the gene was predicted to be regulated by one 

or more of the ranked TFs or the gene was known to play an important role in some 

aspect of cancer biology. (Table 3.4). As with the TFs, the 19 genes (CCND1, 

ERBB3, FOXO3a, NR3C1, RB1CC1, ALDH3A2, CDKN1B, PIK3C3, AKT1, BID, 

E2F3, eIF4E, FKBP4, MAPK9, PARP2, PSMD13, SLC29A1, TFPT and CBFA2T2)  

were first analysed for expression in BT474 and SKBR3 cells that had been treated 

with 1µM lapatinib for 12 hours using untreated cells as a control (Figure 3.5). Table 

3.4 summarises the basic characteristics of these genes of interest. The analysis was 

first completed in these two cell lines as they were the cell lines used by Hedge et 

al., [13] in the microarray analysis. Eight of the 19 genes (CCND1, ERBB3, 

FOXO3a, NR3C1, RB1CC1, ALDH3A2, CDKN1B and PIK3C3) were found to be 

differentially expressed with an RQ value of ≥ ±2 in both the BT474 and SKBR3 

cell lines. The remaining 11 genes (AKT1, BID, E2F3, eIF4E, FKBP4, MAPK9, 

PARP2, PSMD13, SLC29A1, TFPT and CBFA2T2), were also found to be 

differentially expressed, however, the alterations in gene expression level did not 

occur in both of the cell lines and hence we did not conduct any further analysis of 

them . 
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Table 3.4 : List of genes chosen for Taqman RT PCR validation. 

Gene Symbol Gene Name Key 

Known Gene Function Specific TF that gene is 

predicted to be a target of  

CCND1 Cyclin D1 
1,3

+ 

regulates the cell-cycle during 

G(1)/S transition [33] 

AHR/ARNT, 

PAX9,RAR/RXR 

ERBB3 

v-erb-b2 erythroblastic leukemia 

viral oncogene homolog 3 
2,3

+ 

Binds and is activated by 

neuregulins [34] 

 

OLF-1 

FOXO3a Forkhead box protein O3 
1,3

+ 

Downstream target of 

PIK3/AKT pathway which are 

associated with cellular 

differentiation, metabolism, 

tumorgenesis [35] RAR/RXR 

NR3C1 

nuclear receptor sub family 3 group 

C member 1 
2,3

+ 

Regulated transcription of the 

NR3C1[36] 

 

AHR/ARNT, PAX3 

RB1CC1 RB1 inducible coiled coil protein 1 
3
+ 

Inhibition of G1-S progression 

[37] 
ZNF143 

ALDH3A2 
aldehyde dehydrogenase 3 family 

2
+ role in the detoxification of  
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member 2a aldehydes generated by 

alcohol metabolism and lipid 

peroxidation [38] 

CDKN1B cyclin dependent kindase inhibitor 1B 
2
+ 

Regulation of cell cycle 

progression [39]   

PIK3C3 phosphoinositide 3 kinase class 3 
2
+ 

mediates formation of 

phosphatidylinositol 3-

phosphate [40]  

AKT1 

v-akt murine thymoma viral oncogene 

homolog 1 
3 

Tumour angiogenesis[41]  

RAR/RXR 

BID BH3 interacting domain 
2 

important component of death 

receptor-mediated caspase 

activation [42]  

E2F3 E2F transcription factor 3 
1,3 

control the cell cycle-dependent 

expression of genes that are 

essential for cellular 

proliferation [43] 

AHR/ARNT, OLF-1, PAX9, 

ZNF143 

eIF4E 

eukaryotic translation initiation factor 

4e 
3 

role in cancer initiation and 

progression [44] 
PAX3, RAR/RXR 

FKBP4 Fk506 binding protein 4 
2,3 

regulates progesterone activity  

[45] 
ZNF143 
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MAPK9 mitogne-activated protein kinase 9 
2 

cell proliferation, 

differentiation, migration, 

transformation and programmed 

cell death [46] 

 

PARP2 poly (ADP-ribose) polymerase 2 
2 

DNA-break sensing and 

signaling[47]  

PSMD13 

proteasome 26S subunit non-ATPase 

13 
2 

processing of class I MHC 

peptides[48] 
 

SLC29A1 solute carrier family 29 member 1 
2 

mediates the cellular uptake of 

nucleosides from the 

surrounding medium [49]  

TFPT TCF3 (E2A) fusion partner 
2,3 

promotes cell differentiation 

[50] 
ZNF143 

CBFA2T2 

core-binding factor, runt domain, alpha 

subunit 2; translocated to, 2 
2 

promoting leukemogenesis [51] 
 

 

1
 denotes a highly differentially regulated gene (±2 fold across all 6 supervised CIA comparisons)   

2
 denotes a gene that has been previously shown to be 

associated with cancer or was a known drug target, 
3
 denotes a gene was predicted to be targeted by one or more of the transcription factors. Those in bold 

were found to be consistently dysregulated in response to lapatinib in all 6 of the cell lines. + denotes that the gene was found to be differentially expressed in 

BT474 and SKBR3 cell lines but not in the additional four cell lines also tested.
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For further validation, expression levels of CCND1, ERBB3, FOXO3, NR3C1, 

RB1CC1, ALDH3A2, CDKN1B and PIK3C3 genes were measured in two additional 

lapatinib-sensitive cell lines; EFM192A and HCC1954. These genes were chosen for 

further validation as they exhibited RQ values that were greater than 2 in both the 

BT474 and SKBR3 cell lines. Both of these cell lines are HER2-overexpressing and 

have varying sensitivities to lapatinib, with IC50 values of 0.193µM ± 0.067µM and 

0.417µM ± 0.18µM, respectively (Table 3.3). Two lapatinib-insensitive cell lines 

were also analysed, MDAMB453 and MDAMB231.  

In the lapatinib-sensitive cell lines (BT474, SKBR3, EFM192A and HCC1954), five 

of the eight genes (RB1CC1, FOXO3a, NR3C1, ERBB3 and CCND1) analysed 

showed differential expression post lapatinib treatment and are highlighted in bold in 

table 3.4. The relative expression of three genes that did not follow this trend 

(PIK3C3, ALDH3A2 and CDKN1B) is shown in figure 3.7. It should be noted 

however, that this expression trend was evident in the BT474 and SKBR3 cell lines 

but not in the other four cell lines. Thus these genes would not be considered as 

robust indicators of response to the lapatinib. 

Figure 3.6 shows the expression of RB1CC1, FOXO3A, NR3C1, ERBB3 & CCND1 

in the four lapatinib-sensitive cell lines and clearly demonstrates a correlation 

between the degree of sensitivity of the cell line to lapatinib and the magnitude of 

gene expression change. BT474 was the most lapatinib-sensitive cell line and has the 

highest expression values for the four up-regulated genes. As the cell lines become 

less sensitive to lapatinib, the magnitude of gene expression decreased. In contrast, 

in the lapatinib-insensitive cell lines, MDAMB453 and MDAMB231, the differential 
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expression of these genes was seen to be down regulated following lapatinib 

exposure. 

In the case of CCND1, the differential gene expression pattern followed a largely 

proportional response across the various cell lines. In the lapatinib-sensitive cell lines 

expression of this gene was found to be strongly down-regulated following the 12hr 

treatment. The magnitude of this down-regulation was reduced as the cells became 

more lapatinib-insensitive (Figure 3.6).  
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Figure 3.6: The differential expression of five genes was examined following 1µM lapatinib treatment for 12 hours in a panel of six breast cancer cell lines 

with varying degrees of lapatinib sensitivity. It was established that   the degree of dysregulation of the genes in each of the cell lines was proportional to the 

response to lapatinib.  The cell lines are represented in order of sensitivity to lapatinib, with BT474 being the most sensitive and MDAMB231 being the least. 

The analysis was completed in triplicate the error bars represent the standard deviation of the mean ∆∆Ct value. 
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Figure 3.7:  The differential expression of three genes was examined following 1µM 

lapatinib treatment for 12 hours in a panel of six breast cancer cell lines with varying 

degrees of lapatinib sensitivity. There were some differences in the expression pattern of 

these three genes when compared with the five genes examined in figure 3.6, in particular in 

the HCC1954 cell lines, The cell lines are represented in order of sensitivity to lapatinib, 

with BT474 being the most sensitive and MDAMB231 being the least. The analysis was 

completed in triplicate, the error bars represent the standard deviation of the mean ∆∆Ct 

value.  
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3.8 Comparison of pre-seeded TaqMan plates vs individual TaqMan assays. 

 

For the initial validation of the bioinformatic predictions from the CIA (Section 3.7) 

custom pre-seeded Taqman RT-PCR plates were used for the analysis. These custom 

pre-seeded Taqman RT-PCR plates are manufactured with the selected genes assays 

lyophilised to the wells of the 96 well plates. All cell lines were examined in 

biological triplicate using these plates. In using these custom pre-seeded plates, it 

was possible to validate the expression of a larger number of genes using a small 

concentration of target material. When further analysis on a sub-set of eight genes 

was required, individual gene assays were utilised. These individual assays were 

employed as they were more versatile and cost effective for the smaller number of 

gene targets. The cell lines were examined in both biological and technical triplicate 

using the individual assays. These individual assays were prepared by the addition of 

the Taqman universal master mix with the individual assay and the sample cDNA. 

For the pre-seeded plates the  Taqman universal master mix in combination with the 

cDNA for the sample was added to each well as the assay was already present in the 

well.  

In figure 3.8 the fold changes calculated from the custom pre-seeded Taqman plates 

and the individual assays have been compared. The trend that was exhibited in the 

initial analysis with the pre-seeded plates remained evident in the analysis completed 

with the individual assays. However, in the BT474 cell lines, there was a large 

increase in the magnitude of expression of RB1CC1, FOXO3a and PIK3C3 using the 

individual assays.  
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No published data could be found which could explain the difference that was 

observed. It is possible that there was some evaporation of the assays which were 

lyophilised on to the pre-seeded plates. There was no difference in the Ct values for 

the endogenous controls between the pre-seeded plates and the individual assays 

with all of them showing values between 21 and 22. However, there was some 

variation in the Ct values of the target genes which account for the changes in 

magnitude of gene expression.  For all further gene expression analysis, the 

individual assays were utilised as they were more suitable for the smaller number of 

genes being validated. 
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Figure 3.8: Differential gene expression of significant genes using both preseeded custom Taqman plates and individual gene assays. Analysis was completed 

on all six cell lines and the cells lines were treated with 1µM lapatinib for 12 hours. The preseeded custom taqman plates were used for the initial validation 

of the 27 targets and the individual gene assays were used for all other analysis completed following the selection of the gene targets. The main difference 

between the two is exhibited, particularly, in the BT474 cell lines which showed higher fold change values for all of the gene targets using the individual 

assays.  The analysis was completed in triplicate the error bars represent the standard deviation of the  mean ∆∆Ct value.
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3.9 Evaluation of the lapatinib gene expression profile in a sub-panel of 

lapatinib-treated breast cancer cell lines over time 

 

In order to establish if the altered expression of the genes that had been shown in 

figure 3.6 and figure 3.7 was stable over a period of time, lapatinib-induced gene 

expression changes over different durations of time were quantitated. Three cell lines 

were chosen for this study; BT474 and SKBR3, the most lapatinib-sensitive cell 

lines and MDAMB453, the HER2-overexpressing lapatinib-insensitive model. The 

cells were treated for 6hrs, 24hrs and 36hrs with 1µM lapatinib. The 12hr treated 

cells were also re-analysed using the individual Taqman RT-PCR assays. The 

expression of the five genes (RB1CC1, FOXO3a, NR3C1, ERBB3 and CCND1) in 

the lapatinib-treated cell lines were compared with those of the untreated cell lines, 

see figure 3.9.  
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Figure 3.9: Analysis of (A) RB1CC1,(B)  FOXO3a, (C )NR3C1, (D) ERBB3 and ( E )  

CCND1 in BT474, SKBR3, and MDAMB453 over 4 different time points. Cell lines were 

treated with 1µM lapatinib for 6, 12, 24 and 36 hours. This analysis was undertaken to 

determine how robust the differential expression of the genes were over a time course. The 

analysis indicated that the expression of the genes remained consistent to a time point of 36 

hours. The analysis was completed in triplicate, the error bars represent the standard 

deviation of the mean ∆∆Ct value. 
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In figure 3.9, the alteration in the relative expression of each gene has been graphed 

independently showing the three cell lines that were tested over the 36 hour time 

period. The expression of RB1CC1 (figure 3.9 A) in the lapatinib-insensitive cell line 

MDAMB453 was found to be unchanged over the 36 hour time period. In 

comparison, the lapatinib-sensitive cell lines BT474 and SKBR3 demonstrated 

considerable up-regulation of RB1CC1 in response to the lapatinib treatment over the 

36 hours.  

FOXO3a (figure 3.9 B) expression in the MDAMB453 cell line was found to be 

down-regulated in response to lapatinib. The lapatinib-sensitive BT474 cells showed 

a slight decrease in FOXO3a expression following the 12 hour treatment but the 

expression remained consistently up-regulated. As with the expression of RB1CC1, 

in the SKBR3 cells, the expression of FOXO3a increased after the 12 hour time 

point, and at 36 hours the expression was higher in the SKBR3 cell lines than it was 

in the BT474 cells.  

NR3C1 (figure 3.9 C) expression slightly increased in the MDAMB453 cell line 

from 6 to 12 hours, after which its expression became down regulated in the 

remaining time points. The expression in the lapatinib-sensitive cell lines showed a 

slight increase after 12 hours in the SKBR3 and a higher level of expression in the 

BT474, with a decrease at 36 hours.  

The expression of ERBB3 (figure 3.9 D) in the MDAMB453 cell lines was shown to 

be predominately down regulated. In the SKBR3 and BT474 cell lines, The 

expression of the gene, showed a constant up-regulation across all the time points. 

The last of the genes, CCND1 (figure 3.9 E), was shown to be unchanged in 

response to the lapatinib treatment over the time course. The response was 
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considered unchanged as it had a fold change less than two. As was found in the 

initial analysis of these genes, there was a down-regulation in the expression of this 

gene in the lapatinib-sensitive cell lines. The trend remained consistant over the time 

points.  

A comparison of the data from all of the different time points indicated that the 

expression of the genes was reasonably constant over the 36 hours of examination 

and that difference in the expression levels between the lapatinib-insensitive cell 

lines MDAMB453 and the lapatinib-sensitive BT474 and SKBR3 remained 

recognisable.  All RQ values can be found in appendix 2. 

As shown in section 3.7 it was determined that while the genes PIK3C3, ALDH3A2 

and CDKN1B, were interesting in response to lapatinib in BT474 and SKBR3 cell 

lines, they did not follow the same trend of proportional response to lapatinib that the 

remaining five genes did when the panel of cell lines was expanded. The relative 

expression changes of these genes over the 36 hour time period did follow similar 

patterns to those observed in the other five genes (Figure 3.10 A-C). In PIK3C3, 

there was a continued up-regulation in the lapatinib sensitive cell lines and a down-

regulation in the MDAMB453 cell line. This trend was evident also in relation to the 

expression profile for the ALDH3A2. In the expression profile for CDKN1B, the gap 

between the expression of the gene in the lapatinib-sensitive and insensitive cell lines 

was most evident. The expression of the gene in the MDAMB453 cell line remained 

stable over the 36 hours. In the BT474 and SKBR3 cell lines, the expression was 

stable over the four time points and has at a similar level to each other.  
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Figure 3.10 A-C: Analysis of (A) PIK3C3, (B) ALDH3A2 and (C) CDKN1B in BT474, 

SKBR3, and MDAMB453 over 4 different time points. Cell lines were treated with 1µM 

lapatinib for 6, 12, 24 and 36 hours. This analysis was undertaken to determine how robust 

the differential expression of the genes were over a time course. The analysis indicated that 

the expression of the genes remained consistent to a time point of 36 hours. The analysis was 

completed in triplicate, the error bars represent the standard deviation of the mean ∆∆Ct 

value. 
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3.10 Evaluation of differential gene expression changes in normal breast tissue 

cells in comparison to the panel of breast cancer cell lines. 

 

If the findings of this study were to be applied to a real cancer treatment scenario to 

evaluate the gene expression changes in response to drug treatment, samples would 

be required for both pre and post treatment. To translate this method to the clinic 

would therefore require biopsy samples to be taken pre and post treatment from the 

tumour site. The tumour material that would be taken during these biopsies would 

not necessarily be pure tumour. As a result of this, it was necessary to establish if 

normal breast tissue would have an impact on the gene expression pattern that had 

been identified.  

To investigate this, human mammary epithelial cells (HMEC) isolated from donor 

normal breast tissue were purchased and cultured as described in section 2.1.5.1. 

RNA was extracted from the cells pre and post 12 hour lapatinib treatment (1µM). 

Cells were treated with the lapatinib so as to evaluate if it was possible to identify the 

gene expression pattern pre and post lapatinib treatment.   

Figure 3.11 shows that when the gene expression changes were examined in the 

HMEC cells pre and post 1µM lapatinib treatment for 12 hours, there was no 

evidence of lapatinib-induced differential expression of the genes in these cells. This 

result indicated that the normal breast cells did not express the pattern observed in 

the cancer cell lines in response to lapatinib, indicating that the gene expression 

changes are specific to tumour tissue. It also indicated that inclusion of normal tissue 

in the examination of tumour biopsies could have an impact on the gene expression 

analysis as contamination of the tumour tissue with normal tissue could reduce the 
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signal of the gene in the analysis. Such interference could lead to an inaccurate result 

of no change in gene expression.   
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Figure 3.11: In order to establish if there would be any interference in the gene expression 

pattern from normal breast tissue in the event that biopsy samples were taken, the expression 

of the genes was examined following 1µM lapatinib treatment for 12 hours in human 

mammary epithelial cells (HMEC). The analysis indicated that there was no distinct pattern 

evident in the gene expression in the normal breast cells following the lapatinib treatment. 

However as some of the genes did indicate a fold change greater than 2, it is possible that the 

inclusion of normal tissue in the examination of tumour biopsies may reduce the gene signal 

from the tumour material leading to an inaccurate result. The analysis was completed in 

triplicate the error bars represent the standard deviation of the mean ∆∆Ct value.   
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Table 3.5 represents the gene expression changes between untreated and treated 

HMEC cells with untreated and treated breast cancer cell lines. To determine the 

relative expression of the genes, in the untreated comparison, the RNA expression 

values from the untreated HMEC cells were used as the calibrator sample. In the 

treated comparison, the lapatinib-treated HMEC cells were used as the calibrator 

sample. These comparisons, breast cancer cell lines versus HMEC cells pre and post 

lapatinib treatment, were used to evaluate the tumour specificity of the findings and 

evaluate if the gene expression pattern could potentially be identified using a 

heterogeneous biopsy material from a patient which could likely contain both normal 

breast and tumour tissue. 

Table 3.5 and figure 3.12 A +B shows the differences in the expression of the genes 

between the HMEC cells and the sub-panel of breast cancer cell lines. The gene 

changes were examined both pre and post 1µM lapatinib treatment. The relative gene 

expression change for a number of the genes was quite high in the untreated 

comparison. The expression of ERBB3 was exceptionally high, with RQ values of 

>200 in comparison to the expression of RB1CC1, which has RQ values between 

two and eight across the three cell lines. The expression of NR3C1 was greater in the 

MDAMB453 cell line compared to the BT474 and SKBR3, which indicated that 

there are differences in the expression of the genes in the different cell lines.  With 

the exception of ERBB3, MDAMB453 showed a higher relative expression of the 

genes in the untreated comparison. In the expression of ERBB3 the MDAMB453 cell 

lines had a lower level of relative expression than the BT474 and SKBR3 when 

related to the expression in the HMEC cells.  It should be noted that the Ct values for 

the endogenous control for the HMEC cells both untreated and treated were shown 
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to be stable with values ~ 17-18 which is comparable to those seen in the breast 

cancer cell lines.  
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Table 3.5: Relative gene expression comparisons between HMEC cells and the sub-

panel of HER2 over-expressing breast cancer cell lines.  

 

 

 

 

 

 

 

  HMEC untreated vs Cancer 

untreated RQ values 

  HMEC Treated vs Cancer 

Treated RQ values 

  BT474 SKBR3 MDAMB453  BT474 SKBR3 MDAMB453 

RB1CC1 2.0 2.1 8.9  19.2 7.8 13.7 

FOXO3a 4.4 1.1 14.9  20.6 2.5 3.9 

NR3C1 -1.0 1.8 199.7  6.8 5.7 30.9 

ERBB3 276.3 247.8 178.9  823.9 456.2 1193.9 

CCND1 18.9 10.2 57.4  5.6 1.9 44.3 

PIK3C3 9.1 1.8 37.7  24.7 5.1 23.7 

ALDH3A2 8.9 5.0 92.7  11.2 3.4 22.9 

CDKN1B 29.6 9.9 84.0  104.5 43.2 124.6 
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Figure 3.12:   To determine if there was any distinct pattern emerging from the comparison 

of the HMEC cells and three of the breast cancer cell lines, gene expression analysis was 

completed both before (A) and after (B) 1µM 12 hour lapatinib treatment. While expression 

changes were clearly evident, there were no distinct patterns that could be used to evaluate 

response to lapatinib using the different cell types. This analysis indicated that the optimal 

method to evaluate the gene expression changes in response lapatinib treatment would be pre 

and post treatment tumour samples. The analysis was completed in triplicate the error bars 

represent the standard deviation of the mean ∆∆Ct value.   
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Following treatment with lapatinib, the RQ values for the genes in the MDAMB453 

cell line were seen to be reduced compared to RQ values exhibited in the untreated 

cell line data with the exception of the values for RB1CC1, ERBB3 and CDKN1B. 

The ERBB3 response also differed following treatment with lapatinib in the BT474 

and SKBR3 cell lines. There was a large increase in the RQ values, with values 

ranging from 200-276 to 456-1193. The largest rise in the expression value is in the 

MDAMB453 cell line. In the SKBR3 cell line there was a sharp increase in 

expression from ERBB3 to 823 following treatment. Biologically, these large RQ 

values make sense. HMEC cells have been shown not to overexpress HER2 [52] and 

the co-expression of HER2 and ERBB3 is frequently observed [53] which would 

indicate that the HMEC cells would not over-express ERBB3 either.   Studies have 

indicated that there is an increase in the expression of ERBB3 in breast cancer 

following lapatinib treatment [54]. This observation would support the large relative 

expression (RQ) value for ERBB3 that was seen following lapatinib treatment in the 

breast cancer cell lines in comparison to HMEC cells. 

 Unlike the data shown in figures 3.6 and 3.7, while there were changes evident, 

there was no distinct pattern emerging from the data that could be used to evaluate a 

response to lapatinib using the different cell types. These results indicate that the 

optimal method to evaluate the gene expression changes in response to lapatinib 

treatment would require pre and post treatment tumour samples.   
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3.11 Discussion 

 

CIA, a multi-variant bioinformatics technique was used to identify a number of 

genes and TFs associated with the cellular response to lapatinib. In applying these 

methods there was no requirement for the filtering of gene expression data or the 

generation of gene lists or clusters that can be necessary in other bioinformatics 

methods such as gene ontology. This technique utilised transcription factor binding 

site information in combination with the genes that these TFs putatively regulate. 

This was the first time that this technique had been applied to a breast cancer dataset 

in response to targeted treatments. The technique has also been employed to other 

linked data sets, for example, to link geographic locations and species composition in 

ecology [20]. Jeffery et al.,[15] provided examples of how the CIA technique can be 

utilised in determining transcriptional pathways associated with differences between 

benign and metastatic samples in prostate cancer. Using this technique we identified 

a panel of 512 gene targets of interest which was reduced to 19 genes and 8 TFs that 

were associated with lapatinib response in BT474 and SKBR3 cell lines. The 19 

genes and 8 transcription factors were selected for more detailed qPCR analyses 

based on varying combinations of the following criteria; (i) the magnitude of 

response to lapatinib, (ii) whether the selected genes were predicted targets of the 8 

TFs, (iii) the involvement of the gene in important oncogenic processes (determined 

from functional annotation using the literature mining analysis software Pathway 

Studio Enterprise (Ariadne Genomics). Genes were manually selected on the basis of 

meeting two or more of these criteria. This panel included both known and novel 

markers of lapatinib response and represents a cohort of markers for predicting both 

the response and the cellular sensitivity to lapatinib. The gene expression pattern was 
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evaluated in a panel of breast cancer cell lines that had varying sensitivities to 

lapatinib but also differing HER2 over-expression status. There have been a number 

of recent publications that have found a correlation between pTEN/AKT/PI3K 

pathway activation and the response of the patient to either trastuzumab or lapatinib. 

The consensus is that patient with low pTEN expression would suggest trastuzumab 

resistance but sensitivity to lapatinib [55-57]. These studies have provided a valuable 

insight into intrinsic resistance in the HER2 target models. The changes in PTEN 

and AKT expression have been well characterised and published by a large number 

of preclinical and clinical studies. However, there have been limited studies 

completed on molecular gene targets that are expressed in response to lapatinib or 

other targeted therapies.  

 From the panel of 19 genes that were molecularly validated, five were found to be 

differentially regulated in a lapatinib sensitive manner with changes in the 

expression of these genes correlated directly with the lapatinib sensitivity of the cell 

line being examined (figure 3.6). These five genes included known lapatinib 

response genes such as FOXO3A and CCND1, as well as novel genes such as, 

RB1CC1 and NR3C1. In addition to these five genes, PIK3C3, ALDH3A2 and 

CDKN1B  were also found to be differentially expressed in response to lapatinib in 

BT474 and SKBR3 cell lines, however, they did not provide as compelling a 

response in the remaining four cell lines (EFM192a, HCC1954, MDAMB453 and 

MDAMB231) and so were not further investigated.  

Putative candidate regulators (TFs) of this lapatinib response were also identified, 

none of which have been previously studied in lapatinib-treated cells. It is important 

to note that none of these TFs were associated with the lapatinib response through 

conventional microarray differential expression and their prioritisation here was only 
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achieved via the novel use of the CIA method in this breast cancer dataset. CIA was 

not restricted to a specific gene list but rather used the entire microarray data as 

input. CIA is therefore not limited to arbitrary cut-offs which may exclude important 

TFs of interest.   

The expression of 6 TFs, AHR, ARNT, RXR, RAR, PAX9 and ZNF143 were found to 

be altered across all the cell lines in response to lapatinib treatment. These TFs are 

putative regulators of the cellular response to lapatinib and are predicted to target a 

number of the significantly differentially regulated genes. The expression of these 

TFs does not follow a set pattern but do follow some distinct trends as mentioned 

above in section 3.6. All of these TFs have been previously demonstrated to play 

important roles in cancer, although their function in HER2-positive breast cancer is 

unclear. The AHR/ARNT heterodimer has been implicated as having importance in 

ER positive breast cancer and has been shown to directly associate with estrogen 

receptors ER-alpha and ER-beta[24, 58, 59].  Retinoids targeting the RXR/RAR 

heterodimer have marked effects on cellular processes such as proliferation and 

apoptosis and this has been shown both in vivo and in vitro in breast cancer models 

[60]. The RARA receptor has also been recently identified as being co-amplified with 

HER2 in some breast cancers [61]. While being known oncogenes, PAX9 and 

ZNF143 have not been extensively studied in breast cancer [62, 63]. The remaining 

two TFs that were identified through the CIA were OLF-1 and PAX3. Although the 

TFs were present in the microarray probes and were identified as being involved in 

the regulation of a number of the genes, it was not possible to validate them using 

Taqman RT PCR. It was possible that the signal emitted from the expression of the 

TF was not strong enough to be detected using the Taqman probes.  
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Utilising transcription factor genes or indeed the TFs themselves as potential 

biomarkers could prove to be very difficult in practice.  A small change in the 

expression of a transcription factor can have a much larger an effect on the 

expression of a gene that it regulates. Also, as this study has indicated, it can be 

difficult to measure these changes using microarray or Taqman RTPCR methods. In 

addition, TF genes are not suitable as potential drug targets as, even if other practical 

hurdles were overcome, a single transcription factor can be responsible for the 

regulation of a number of different genes, inhibiting its expression could have an 

impact on a number of different pathways and cell functions.  

In the case of five of the genes identified FOXO3A, CDKN1B, CCND1, RB1CC1 

and NR3C1, in the panel of six cell lines their expression correlated broadly with 

sensitivity of each cell line to lapatinib. Four of the genes; FOXO3A, CDKN1B, 

RB1CC1 and NR3C1 were found to be up-regulated in response to lapatinib. The 

results indicate that the more sensitive that the cell line is to lapatinib, as determined 

using proliferation assays, the greater the magnitude of up-regulation of the four 

genes. In contrast to the findings with the sensitive cell models, these genes were 

found to be downregulated in the remaining two lapatinib-insensitive cell lines 

(MDAMB453 and MDAMB231). In the case of CCND1, the expression of CCND1 

became less down-regulated as the level of lapatinib sensitivity decreased.  

All five of the genes have been previously demonstrated to have importance in 

cancer. Increased RB1 inducible coiled-coil 1 (RB1CC1) expression has been shown 

to be associated with improved long term survival of breast cancer patients and has 

been found to have a role in the inhibition of G1/S progression and proliferation in 

breast cancer cell lines [37, 64]. Genetic variations to a non-coding BclI restriction 

fragment length polymorphism in NR3C1, a glucocorticoid receptor, have been 
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associated with poor response to treatment in multiple myeloma samples [65]. Up-

regulation of ERBB3 (HER3) has been connected with invasive breast carcinomas 

and also drug resistance in some HER2 over-expressing cancers [66, 67]. FOXO3A 

and CCND1 have been demonstrated to be important in both breast cancer and the 

lapatinib response [13, 68]. FOXO3A and CCND1 were both shown by [13] to be 

differently expressed following treatment with lapatinib. This group reported up-

regulation of FOXO3A in both BT474 and SKBR3 and also a down-regulation of 

CCND1 in the same cell lines following lapatinib treatment. These results are 

consistent with the results obtained by our study. It should be noted that CDKN1B 

was also differentially expressed in response to lapatinib in our study although its 

dysregulation did not correlate with lapatinib sensitivity. The authors identified that 

these three genes all played roles in the regulation of the AKT pathway, both 

positive and negative. They noted that the down regulation of CCND1 and that the 

up-regulation of CDKN1B in response to lapatinib could be as a result of a 

FOXO3A-dependent mechanism, which promotes lapatinib-induced apoptosis. 

However, they did not examine the expression of these genes in other lapatinib 

sensitive cell lines nor did they observe that the expression of these genes correlated 

with the sensitivity of the cell lines to lapatinib. They also observed additional 

changes in response to genes associated with a number of cellular processes such as 

glycolysis and cell cycle regulation. 

Of the five lapatinib responsive genes, lapatinib associated alterations in FOXO3A 

and CCND1 have been previously described in lapatinib-treated BT474 and SKBR3 

cell lines by the group that generated the original microarray dataset [13]. However, 

the inclusion of the additional 4 cell lines allowed us to examine expression of the 

five differentially expressed genes in the context of cell lines with varying 
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sensitivities to lapatinib. The up-regulation of RB1CC1 and NR3C1 in response to 

lapatinib has not been previously observed, while only limited work has been 

performed on ERBB3, FOXO3A and CCND1 in this setting [69, 70].  

In evaluating the expression of these genes over a period of 36 hours we sought to 

establish if the relative expression changes in our genes of interest were stable over 

this period. There was an increase in the expression of RB1CC1, NR3C1, FOXO3a 

and ERBB3 over the additional time points in the lapatinib-sensitive BT474 and 

SKBR3 cell lines. For CCND1, the relative expression of the gene remained down 

regulated in the lapatinib sensitive cell lines. All of the genes remain unchanged in 

the MDAMB453 lapatinib in-sensitive cell line. Examination of the gene expression 

changes at a number of different time points indicated that these changes are steady 

for more than 24 hours. This finding could have an impact on the translation of this 

work to patient samples. Pre and post treatment samples would be required to 

complete the analysis and these results indicated that the post treatment sample could 

be taken a number of days following treatment. 

We also sought to examine any alterations in our gene expression profile in normal 

breast cells in comparison to the breast cancer cell lines, BT474, SKBR3 and 

MDAMB453. Evaluation of the lapatinib gene expression profile response in the 

HMEC cells provided evidence that the profile exhibited was not seen in normal, 

non-HER2 over-expressing cells. This indicated that in order to evaluate the 

response, analysis would have to be run on relatively pure cancer cell samples. This 

finding was further strengthened by the data looking at the relative expression of the 

genes between the HMEC cells and a sub panel of breast cancer cell lines. While 

there were changes evident in both the untreated and the lapatinib-treated cells 

compared to the HMEC cells, only the lapatinib-responsive cells demonstrated 
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distinct gene expression patterns that could be used to determine response to the 

therapy. These result also indicated that there would be implications in the presence 

of normal tissue in tumour samples that would be analysed. Too much normal tissue 

with the tumour tissue could confound the results generated from the gene 

expression analysis. It should be noted, however, that this analysis has some 

impactful limitations. In order for cancer cell lines to continue to proliferate 

indefinitely, cell cycle pathways involved in replicative senescence and apoptosis are 

disturbed which results in the cells continuing to divide and multiple. This results in 

an immortal cell line that can continue to proliferate indefinitely [71]. The HMEC 

cells, as a primary cell source, would not have undergone any of these changes and, 

as such, can only be cultured for an finite period of time [72] (as indicated which by 

the limited doubling times recommended by the supplier, in this case 18 doublings). 

It is therefore important to note that the pathways associated with replicative 

senescence in both of the cell lines and the HMEC cells would be extremely 

different, which could have an impact on the expression of genes that are associated 

with cell cycle progression, proliferation and cell death. These distinct differences 

between the two cell types would explain some of the large differential expression 

changes that were observed in this analysis.     

In using the CIA method, a number of genes and TFs associated with the cellular 

response to lapatinib were identified. This was the first time that this technique has 

been applied to a dataset derived from drug-treated breast cancer cells. CIA allowed 

for the integration of two data sets, the transcription factors binding sites and the 

gene expression data. Using this method it was possible to identify TF that were 

involved in the regulation of a number of the genes without them being differentially 

expressed on the microarray. The methods utilised in this study represent a novel 
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route to identify putative response biomarkers or targets for therapeutic intervention 

to increase treatment efficacy. The Taqman RT PCR methods that were applied to 

this study were fast and specific and provided relative expression of the genes. 

Although initial validation of the 19 genes and 8 TFs were completed using custom 

pre-seeded Taqman 96 well plate, all further examination of target genes was 

completed using individual assays. These preseeded plates, while advantageous for 

the initial validation, did not have the flexibility that the individual assays provided. 

Another advantage of the Taqman RT-PCR method was the small amount of sample 

material that was necessary. The maximum concentration of RNA necessary to 

complete this type of analysis is as low as 2µg.  Although the maximum 

concentration of RNA (2µg) was used for this analysis, which resulted in the cDNA 

generated needing considerable dilution, analysis of the dilutions  employed suggests 

that it would be possible to perform the RT PCR with as little as 20ng of RNA.  In 

needing only a small amount of sample material it would allow for additional 

analysis to be completed and/or allow for further gene expression analysis to be 

completed.  

While all of this work has been undertaken in cell lines, in order for this to move 

forward and potentially be tested in the clinic, a number of challenges first need to be 

overcome. Firstly, as all of the gene expression changes have been identified by 

relating transcription of specific genes before and after treatment hence, multiple 

samples over a relatively short duration of time from the same patients would be 

needed. For this to progress further, it will also be necessary to determine how many 

days after treatment had started that the second biopsy should be taken to provide the 

most suitable tumour sample, i.e. the time at which relative changes are clearest.  

Our cell line data does suggest though that this is likely to be a reasonably large 
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window of several days, particularly when some of the pharmacokinetic differences 

in drug delivery between cell models and real human tumours, and the differences in 

human tumour growth rates are considered.  The Taqman method itself, although it 

does not require a large amount of material to be analysed, would require a trained 

person to process the samples correctly without incorporating any genomic DNA 

contamination which can have an impact on the analysis.  

This initial study has delivered extensive preclinical data that can be further 

investigated. The five genes identified have the potential to represent a strong panel 

of biomarkers of response to lapatinib and potentially additional targeted therapies 

used for the treatment of HER2 positive breast cancer. 
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4. Gene expression changes in response 

to a panel of targeted therapies 
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4.1 Introduction 

 

While chemotherapeutic drugs, such as anthracyclines, are still routinely used in 

breast cancer treatment, in recent years a more molecularly-informed approach has 

been taken with the introduction of targeted therapies. Tyrosine kinase receptors 

have proven to be successful targets for inhibition. Lapatinib was one of the first 

HER2-targetting tyrosine kinase inhibitors (TKI) to be used in the clinic. It is 

approved in combination with capecitabine for the treatment of metastatic breast 

cancer that is no longer responding to trastuzumab [1]. Trastuzumab is a humanised 

monoclonal antibody that binds to the extracellular membrane of the HER2 receptor, 

preventing activation of the receptor and interrupting the cell cycle progression [2] .  

More recently the small molecule TKI therapeutic arsenal has seen the addition of 

newer agents such as, afatinib and neratinib.  

Afatinib is an irreversible EGFR/HER2 inhibitor developed by Boehringer 

Ingelheim [3] currently being clinically evaluated in non-small cell lung 

cancer(NSCLC). The aniline-quinazoline structure of the inhibitor has the potential 

to irreversibly bind to the EGFR and HER2 receptors, which in turn prevents 

activation of the kinase domain [3-5].  

Similar to afatinib, neratinib is also an irreversible inhibitor of the EGFR and HER2 

receptors. Developed by Wyeth, this small molecule drug also inhibits the HER4 

receptor [6]. Neratinib interferes with phosphorylation by binding to the cytoplasmic 

domain of the receptors resulting in the inhibition of downstream phosphorylation of 

substrates. This inhibition in turn has an effect on the cells ability to proliferate and 
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can ensure that the cell arrests at the correct cell cycle transition to ensure cell death 

occurs [7, 8].   

TKIs have also been employed, with some specific successes, in the treatment of 

other forms of cancer by targeting different tyrosine kinase receptors. Gefitinib, an 

EGFR inhibitor, has been used in the treatment of lung cancer patients with EGFR 

mutations or overexpression [9]. Dasatinib, a BCR/ABL inhibitor, has been used in 

the treatment of chromic myeloid leukaemia in patients that are not responding to 

imatinib [10]. 

In order to assess if the panel of lapatinib response gene expression changes 

identified in chapter 3 were exclusive to the agent alone, were also associated with 

other HER2 targeting therapies or were non-specific, we examined the gene 

expression changes associated with a number of drug treatments. To characterise the 

breath and specificity of the response we employed three groups of agents, 1) a panel 

of HER2-targeted therapies, which included, afatinib, neratinib, trastuzumab and, the 

clinically-relevant combination of lapatinib in combination with capecitabine [11, 

12];. 2) non-HER2 TKI therapeutics, gefitinib and dasatinib, and 3) the apoptosis-

inducing cytotoxic anthracycline, epirubicin. All agents were employed at 

therapeutically relevant concentrations. 
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4.2 Materials and Methods 

 

Similar to the initial lapatinib experiments (Section 3.7), BT474, SKBR3 and 

MDAMB453 breast cancer cell lines were exposed to clinically relevant doses of 

tyrosine kinase inhibitors neratinib (150nM for 12 hours), afatinib (150nM for 12 

hours), dasatinib (1µM for 12 hours) and gefitinib (1µM for 12hours), monoclonal 

antibody trastuzumab, (150nM for 12 hours) and the combination of lapatinib and 

capecitabine (1µM and 20µM for 12 hours). In addition to this, the response to an 

anthracycline chemotherapeutic was evaluated using epirubicin (25nM for 12 hours).  

RNA was extracted and the differential expression of targeted genes was determined, 

using Taqman RT-PCR, and compared to the relative gene changes in response to 

lapatinib alone.   

In the analysis of this data the trend of the relative differential expression changes in 

response to the drugs when compared with lapatinib in the three cell lines were 

examined to establish if the response of the cells to these additional targeted 

therapies resulted in alterations in the expression of the same genes.  
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Results 

4.3 Comparison of gene expression changes between lapatinib and other TKIs 

 

Following the identification of the panel of response genes from section 3.7 evident 

after 12 hours of 1µM lapatinib treatment, the gene expression responses associated 

with additional TKI drugs were examined to establish if these gene changes are 

unique to a lapatinib response or more broadly characteristic of other drug responses.  

4.3.1 Neratinib 

Neratinib, an irreversible tyrosine kinase inhibitor that targets HER2, HER4 and 

EGFR [13], is more potent than lapatinib (Table 4.1). BT474 (HER2+, lapatinib-

sensitive), SKBR3 (HER2+, lapatinib-sensitive) and MDAMB453 (HER2+, 

lapatinib-insensitive) cell lines were treated with a relevant dose of neratinib for 12 

hours. In this case the dose chosen for the treatment was 150nM. This dose was 

based on knowledge of the  Cmax (peak plasma concentration) of the drug [14].   

 

Table 4.1: IC50 values for BT474, SKBR3 and MDAMB453 for lapatinib and 

neratinib. n=3 

Cell Lines Lapatinib IC50 (µM± SD) Neratinib IC50 (µM± SD) 

BT474 0.036 ± 0.015 0.0019 ± 0.0005 

SKBR3 0.08 ± 0.02 0.0023 ± 0.0001 

MDAMB453 6.08 ± 0.83 0.820 ± 0.140 
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The differential expression of the five genes characteristic of the lapatinib response, 

RB1CC1, FOXO3a, NR3C1, ERBB3 and CCND1 (section 3.7), was examined 

following treatment with 150nM neratinib and compared to expression changes in 

response to lapatinib.  This data is presented in figure (A) and demonstrated that the 

gene expression pattern was similar in response to both drug treatments. 

As had been previously seen with the lapatinib findings, in the expression 

comparison for RB1CC1, the magnitude of differential up-regulation seen in the 

BT474 and SKBR3 cell lines was not present in the MDAMB453. While the gene 

was distinctly up-regulated in the lapatinib sensitive cell lines, the relative expression 

(RQ) of the gene in the MDAMB453 cell line was less than 2 and as such was 

considered unchanged in response to the neratinib treatment.  The other genes, 

FOXO3, NR3C1, ERBB3 were also found to be differentially up-regulated in 

response to neratinib, similar to the response that was observed when the cells were 

treated with lapatinib in the BT474 and SKBR3 cell lines. It should be noted that the 

magnitudinal changes in the relative response to neratinib were higher than the 

changes exhibited in response to lapatinib. This increase in the gene response to 

neratinib treatment may be as a result of the irreversible inhibitory action of neratinib 

as opposed to the reversible inhibition provided by lapatinib treatment. It should be 

noted that the Ct values for the endogenous control GAPDH following treatment 

with both lapatinib and neratinib were equivalent in all the cell lines. This indicated 

that although different doses of drug were used, there was no difference in the 

expression in the control gene. For CCND1, the lapatinib-sensitive cell lines 

responded with a downregulation of expression of this gene in a similar fashion in 

response to neratinib as they did in response to lapatinib as did the lapatinib 

insensitive MDAMB453.  
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In relation to the relative gene expression changes in the remaining three genes, 

PIK3C3, ALDH32 and CDKN1B, shown in (figure 4.1B), while the genes were up-

regulated in the lapatinib-sensitive cell lines BT474 and SKBR3 in response to 

neratinib, which follows the trend seen in response to lapatinib, they were found to 

be unchanged in the lapatinib-insensitive cell line MDAMB453 in response to 

neratinib.  All RQ and standard deviation values can be found in appendix 2.  
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Figure 4.1(A&B) Mean relative differential gene expression changes in BT474, SKBR3 and 

MDAMB453 cell lines in response to lapatinib (1µM for 12 hours) and neratinib (150nM for 

12 hours) treatment. Similar to lapatinib, neratinib is a HER2 targeted TKI that irreversibly 

inhibits HER2 signalling. The gene expression changes in response to lapatinib were 

conserved when examined in response to the neratinib treatment with some increase in the 

magnitude of the fold change in response to neratinib. This result indicated that the gene 

expression pattern that had been identified was not specific to lapatinib response but may 

also be an indicator of additional HER2 TKI response. The analysis was completed in 

triplicate, the error bars represent the standard deviation of the mean ∆∆Ct value.  

-10

-5

0

5

10

15

20

25

RB1CC1 FOXO3a NR3C1 ERBB3 CCND1

F
o

ld
 C

h
a

n
g

e 
(R

Q
) 

Lapatinib vs Neratinib differntial gene expression following 12 hour 

treatment 

BT474 Lapatinib SKBR3 Lapatinib MDAMB453 Lapatinib

BT474 Neratinib SKBR3 Neratinib MDAMB453 Neratinib

A 

-3

-1

1

3

5

7

PIK3C3 ALDH3A2 CDKN1B

F
o

ld
 C

h
a

n
g

e 
(R

Q
) 

Lapatinib vs Neratinib differntial gene expression following 12 hour 

treatment 

BT474 Lapatinib SKBR3 Lapatinib MDAMB453 Lapatinib

BT474 Neratinib SKBR3 Neratinib MDAMB453 Neratinib

B 



133 

 

4.3.2 Afatinib 

Afatinib, an irreversible tyrosine inhibitor, which inhibits EGFR, HER2 and HER4 

[15] is more potent than lapatinib (Table 4.2.) BT474, SKBR3 and MDAMB453 cell 

lines were treated with afatinib for 12 hours. In this case the dose chosen for the 

treatment was 150nM. 

  

Table 4.2: IC50 values for BT474, SKBR3 and MDAMB453 for lapatinib and 

afatinib. 

Cell Lines Lapatinib IC50 (µM± 

SD) 

Afatinib IC50 (µM± SD) 

BT474 0.036 ± 0.015 0.0032 ± 0.008  

SKBR3 0.08 ± 0.02 0.0075 ± 0.005 

MDAMB453 6.08 ± 0.83 1.59 ± 0.18 

 

 

As illustrated in figure 4.2 A, it should be first noted that the genes that were found 

to be up-regulated in response to lapatinib were also found to be up-regulated in 

response to afatinib. Interestingly, the magnitude of expression of these 4 up-

regulated genes in response to afatinib was far greater than the magnitude of 

expression of the genes in response to lapatinib in the BT474 cell lines, the most 

sensitive of the HER2-overexpressing cell lines. Afatinib was slightly less potent 

than neratinib in our cell lines models (tables 4.1 and 4.2) with IC50 values differing 

in all cell lines, e.g. for BT474 IC50 value for afatinib was 0.0032µM ± 0.0001 and 

for neratinib was 0.0019µM ± 0.0005. In spite of this observation, the gene 
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expression changes in response to afatinib had a higher magnitude of expression than 

in response to neratinib. It should also be noted, as with the neratinib treatment, the 

Ct value of the endogenous control gene GAPDH for the afatinib treatment was 

equivalent to that of the lapatinib and the neratinib treatment.  

RB1CC1 expression in response to afatinib was shown to be similar to that following 

the neratinib treatment (Figure 4.1A and 4.2A). The lapatinib-sensitive cell lines 

BT474 and SKBR3 showed an increase in the magnitude of expression of the gene 

in response to neratinib, while the relative expression of the gene in the 

MDAMB453 cell line was less than 2 which was considered unchanged in response 

to the drug. (Figure 4.2 A)  The expression of the FOXO3a gene in BT474 cell lines 

was shown to be highly differentially up-regulated in response to afatinib. The 

MDAMB453 cell line demonstrated down-regulation of this gene in response to 

afatinib treatment and, although the SKBR3 cell line exhibited up-regulation of the 

FOXO3a gene, the magnitude of the expression change was lower than that shown in 

response to lapatinib.  

NR3C1 and ERBB3 relative gene expression changes displayed similar expression 

patterns for all three cell lines in response to afatinib. There was a high level of up-

regulation in the BT474 cell line, slightly lower level of expression in the SKBR3 

and, while the genes were not shown to be down regulated in response to the drug in 

the MDAMB453 cells, there was no up-regulation shown either. The expression 

pattern for CCND1 displayed in response to afatinib Figure 4.2 A) was very similar 

to that seen in response to neratinib (Figure 4.1A). The lapatinib-sensitive cell lines 

responded in a similar profile as they did in response to lapatinib. Interestingly in the 

lapatinib-insensitive cell line MDAMB 453, the gene became up-regulated in 
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response to afatinib. All RQ and standard deviation values can be found in appendix 

2. 

For the remaining three genes, (figure 4.2 B) PIK3C3, ALDH3A2 and CDKN1B, it 

was once again evident that the expression profile showed a higher magnitude of 

expression in the BT474 cell line in response to afatinib than lapatinib. For PIK3C3, 

there was very little difference in the level of expression between the SKBR3 and 

MDAMB453 cell lines. For ALDH3A2 and CDKN1B, the trend shown in response to 

lapatinib in the three cell lines was similar to that shown in response to afatinib.  
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Figure 4.2(A&B) Mean relative differential gene expression changes in BT474, SKBR3 and 

MDAMB453 cell lines in response to lapatinib (1µM for 12 hours) and afatinib (150nM for 

12 hours) treatment Similar to neratinib, afatinib is a HER2 targeted TKI, that irreversibly 

inhibits HER2 signalling. The gene expression changes in response to lapatinib were 

conserved when examined in response to the afatinib treatment with some increase in the 

magnitude of the fold change in response to afatinib. This result indicated that the gene 

expression pattern that had been identified was not specific to lapatinib response but may 

also be an indicator of additional HER2 TKI response. The analysis was completed in 

triplicate, the error bars represent the standard deviation of the mean ∆∆Ct value.  
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4.3.3 Differential expression of genes in response to lapatinib, neratinib and 

afatinib examined at 36 hours 

 

To examine if the gene expression changes found at the 12 hour time point were 

specific to that duration of drug exposure or were more temporally robust, the cell 

lines were treated with the three HER2 TKIs for a period of 36 hours. As before, the 

differential gene expression changes were assessed using Taqman RT-PCR. The 

differential expression changes were compared to the 12 hour treatment gene 

changes.  

For RB1CC1, FOXO3a, NR3C1 and ERBB3 in the lapatinib- and afatinib-treated 

cells there was an increase in the magnitude of up-regulation in the BT474 and 

SKBR3 cell lines 36 hours post treatment, while in the MDAMB453 cell line the 

expression of the genes remained unchanged or slightly more down-regulated in 

response to the treatments (Figure 4.3 A-E). In the neratinib-treated cell lines, the 

same trend was evident in the BT474 and SKBR3 cell results, with a large increase 

in gene expression post treatment, albeit the extent of this increase varied somewhat 

over the time course of the experiment. As with the other treatments, in the 

MDAMB453 cells the gene expression levels remained unchanged or down-

regulated 36 hour post treatment. 

Expression of the CCND1 gene in the lapatinib-treated BT474 and the SKBR3 cell 

lines continued to be down-regulated or showed no change in expression 36 hour 

post treatment.  In the MDAMB453 cells the gene expression remained unchanged 

in response to the 36 hour drug treatment. RQ values that were less than 2 were 

considered unchanged. For the afatinib and neratinib-treated BT474 and SKBR3 cell 
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lines the gene expression changes remained down regulated 36 hour post treatment 

of the drugs. As was the case with the other four genes, the expression pattern 

remained largely unchanged between treated and untreated cells (either drug) in the 

MDAMB453 cells. All RQ and standard deviation values can be found in appendix 

2. 
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Figure 4.3 (A-E): Differential gene expression changes in the 5 genes of interest following 

12 and 36 hour treatment with 1µM lapatinib, 150nM afatinib and 150nM neratinib. The 

figures show that the following 36 hours treatment the trend that was exhibited following the 

initial 12 hour treatment remained and thus indicates that the genes are robustly changed 

following longer drug treatments. This result supports the analysis that was completed in 

chapter 3 which indicated that the differential gene expression was robust following a 36 

hour treatment with 1µM lapatinib treatment. The analysis was completed in triplicate, the 

error bars represent the standard deviation of the mean ∆∆Ct value.  
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4.3.4 Western Blot analysis of proteins after 36 hours of drug treatment 

 

The corresponding proteins of the five main genes of interest were assessed through 

immunoblotting (section 2.12). This was undertaken in order to evaluate if the genes 

of interest are expressed at the protein level following 36 hour treatment with 

lapatinib, afatinib and neratinib.  

Lysates were processed following a 36 hour treatment with 1µM lapatinib, 150nM 

afatinib and 150nM neratinib. β-actin acted as endogenous and loading control for 

the analysis. Figure 4.4 illustrates the expression of the proteins following the drug 

treatments.  

CCND1 protein expression exhibited some changes in the BT474 and SKBR3 cell 

lines; however, there was no distinct trend or pattern visible. NR3C1 demonstrated a 

limited expression in the cell lines, in particular the MDAMB453 cell line which 

displayed no expression following treatment with the panel of targeted therapies. 

FOXO3a protein was detectable across the cell lines and in the different treatment 

samples; however, it was not possible to discern any specific trends in expression of 

the protein between samples. RB1CC1 protein levels were detectable; however, the 

expression change that was seen at the mRNA level was not evident at the protein 

level. Finally, HER3 was detectable in all of the samples across the cell line panel, 

however, once again it was not possible to identify specific trends between samples.  

The protein changes that were exhibited in response to the 36 hour treatment with 

lapatinib, afatinib and neratinib did not appear to correlate in any way with the gene 

expression changes that were previous described in figure 4.3 A-E, indicating that 
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the changes at the gene transcription levels did not correspond to changes at the 

translational level of the protein products of the gene. 
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Figure 4.4: Western blot analysis of corresponding proteins to the genes of interest. These 

Western blots represent a single replicate for each cell line (BT474, SKBR3 and 

MDAMB453) and drug treatment (36 hour treatments).  Lane one of each cell lines 

represents the control (untreated) samples. Lane two represents the 36 hour 1µM lapatinib 

treatment. Lane three represents the 36 hour 150nM afatinib treatment and lane four 

represents the 36 hour 150nM neratinib treatment. This analysis indicated that the expression 

of the corresponding proteins of the genes of interest did not correlate in response to the 

drug treatments in the same manner in which the genes did. This result indicated that 

examining the protein expression of the gene genes of interest would not provide relevant 

drug response information.  
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4.3.5 Gene expression changes in response to treatment with lapatinib in 

combination with capecitabine 

 

Currently the US FDA licence lapatinib to be used in combination with the cytotoxic 

chemotherapeutic agent, capecitabine, in the second line treatment of metastatic 

breast cancer [1]. Capecitabine is a pro-drug and is converted in humans (but not in 

vitro) to 5-fluorouracil in the tumour, which, in turn, inhibits DNA synthesis and 

slows the growth of the tumour cells [16]. Prior to conversion to 5-fluorouracil, the 

drug is converted into a number of precursors. The major precursor is 5'-deoxy-5-

fluorouridine (5’DFUR) and it was this active agent that the cells were treated with 

for 12 hours in combination with lapatinib (1µM). The dose of 5’DFUR that was 

used was 20µM. 

Figure 4.5A and 4.5B illustrated the gene expression profile of the three cell lines in 

response to lapatinib in combination with 5’DFUR (capecitabine active agent) in 

comparison to the cell lines treated with lapatinib alone. The addition of capecitabine 

in the treatment of the cell lines did not impact prominently the expression profile 

that was exhibited by lapatinib alone treatment.  

The main differences that were seen between the two treatments were an increase in 

the magnitude of expression of the four up-regulated genes (RB1CC1, NR3C1, 

ERBB3 and FOXO3a) in the BT474 cell lines with the lapatinib plus capecitabine 

treatment when compared with lapatinib alone. In addition to this, there was a slight 

reduction in the amount of increased expression of FOXO3a in the SKBR3 cell lines 

in response to the combination treatment. Figure 4.6B also indicated that the 

combination treatment resulted in an increase in the expression of PIK3C3, 
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ALDH3A2 and CDKN1B in the BT474 cell lines, while the amount of increased 

expression of the three genes in the SKBR3 cell line was slightly reduced in the 

combination treated cells.  

These results indicated that the inclusion of the capecitabine to the cell treatment did 

not particularly impact the gene expression response pattern which was evident with 

lapatinib alone. This observation has significant implications, as lapatinib has been 

shown to be modestly successful as a mono-therapy and is much more commonly 

used as part of the 2
nd

 line capecitabine combination treatment [17]. All RQ and 

standard deviation values can be found in appendix 2. 
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Figure 4.5(A&B):  Mean relative differential gene expression in BT474, SKBR3 and 

MDAMB453 cell lines in response to lapatinib (1µM for 12 hours) and lapatinib in 

combination with capecitabine. This analysis was undertaken to evaluate the effect 

capecitabine could have on the gene expression pattern. Lapatinib is licenced in combination 

with capecitabine as a second line treatment of metastatic breast cancer. The gene expression 

changes in response to lapatinib were conserved when examined in response to the lapatinib 

and capecitabine combination treatment. These results indicate that the inclusion of 

capecitabine in the treatment regime did not interfere with the gene expression pattern that 

has been seen in response lapatinib alone. The analysis was completed in triplicate, the error 

bars represent the standard deviation of the mean ∆∆Ct value.  

-10

-5

0

5

10

15

20

RB1CC1 FOXO3a NR3C1 ERBB3 CCND1

F
o

ld
 C

h
a

n
g

e 
(R

Q
) 

Lapatinib vs Cap/Lap differential gene expression following 12 

hour treatment 

BT474 Lapatinib SKBR3 Lapatinib MDAMB453 Lapatinib

BT474 Lap/Cap SKBR3 Lap/Cap MDAMB453 Lap/Cap

A 

-5

0

5

10

15

20

PIK3C3 ALDH3A2 CDKN1B

F
o

ld
 C

h
a

n
g

e 
(R

Q
) 

Lapatinib vs Cap/Lap differential gene expression following 12 hour 

treatment 

BT474 Lapatinib SKBR3 Lapatinib MDAMB453 Lapatinib

BT474 Lap/Cap SKBR3 Lap/Cap MDAMB453 Lap/Cap

B 



148 

 

4.3.6 Gene expression changes in response to trastuzumab 

 

Trastuzumab is a monoclonal antibody that targets the HER2 pathway. It was the 

first therapeutic developed for the treatment of HER2 over-expressing breast cancer. 

As with the other drug treatments that were carried out, a relevant dose of 

trastuzumab, 150nM was used to treat BT474, SKBR3 and MDAMB453 cell lines. 

This concentration represented the typical pharmacokinetic trough concentration 

(Cmin) that has been reported from patient trials [18] .  

Figure 4.6A and 4.6B illustrated the gene expression response following treatment 

with trastuzumab in comparison to the gene expression response following lapatinib 

treatment. The results indicated that treatment with trastuzumab generates the same 

gene expression changes in RB1CC1, FOXO3a, NR3C1 and ERBB3 as was evident 

with lapatinib treatment in all cell lines. The magnitude of expression in the cell lines 

between both treatments was also equivalent to that seen in response to lapatinib 

with the exception of the relative expression of the FOXO3a gene in the SKBR3 

cells which was found to be below 2 and as a result was considered unchanged in 

response to the treatment. In the case of CCND1, expression of the gene was found 

to be up-regulated following the trastuzumab treatment in the BT474 and 

MDAMD453 cell lines.  

These results indicated that the expression pattern that had been identified in 

response to lapatinib in chapter 3 is not specific to TKI treatment in the HER2 

setting but could also be used to provide response information for HER2 targeting 

monoclonal antibodies. All RQ and standard deviation values can be found in 

appendix 2. 
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Figure 4-6(A&B): Mean relative differential gene expression in BT474, SKBR3 and 

MDAMB453 cell lines in response to lapatinib (1µM for 12 hours) and trastuzumab (150nM 

for 12 hours). Trastuzumab is a monoclonal antibody that was one of the first targeted 

therapies produced for the inhibition of HER2 and is widely used. This analysis was 

undertaken to determine if the gene expression pattern that had been identified in response 

the HER2 targeting TKIs would also be evident in response to other forms of HER2 targeted 

therapies, such as monoclonal antibodies. The gene expression changes in response to 

lapatinib were conserved when examined in response to the trastuzumab treatment. This 

result indicated that the gene expression pattern identified can also be utilised to determine 

response to other forms of HER2 targeted therapies and not limited to TKIs The analysis 

was completed in triplicate, the error bars represent the standard deviation of the mean ∆∆Ct 

value.   
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4.3.7 Gene expression changes in response to dasatinib 

 

Dasatinib, a TKI that targets the BCR/ABL transgene product as well as Src kinase, 

but not HER2+ or EGFR, was used to examine if the gene changes that had been 

exhibited in response to lapatinib, neratinib and afatinib were also evident with other 

non-HER2-targeting tyrosine kinase inhibitors. Following a 12 hour treatment with 

1µM dasatinib, the expression pattern of the genes of interest was examined in 

BT474, SKBR3 and MDAMB453 cell lines. This dose was selected based on the 

IC50 values reported in the literature.  

The dasatinib gene expression pattern from the three cell lines was compared to that 

of the response to lapatinib.  Changes in RB1CC1, NR3C1 and CDKN1B relative 

expression levels showed a similar pattern in response to both lapatinib and dasatinib 

(Figure 4.7).  

However, in the case of FOXO3a, ERBB3, PIK3C3 and ALDH3A2, the gene 

expression changes exhibited following dasatinib treatment in the three cell lines 

were different to those exhibited in response to lapatinib (Figure 4.7). In BT474, the 

genes were seen to be up-regulated, while, in SKBR3 and MDAMB453 the genes 

were shown to be down-regulated. It should be noted that magnitude of the 

expression in the MDAMB453 in response to dasatinib treatment was greater than 

that seen in response to lapatinib. 

For CCND1, the profile exhibited in response to dasatinib was the opposite of the 

profile that was found in response to lapatinib. None of the CCND1 expression 

changes were of a magnitude that would be considered significant in the cell lines 

treated with dasatinib.  
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Examination of the gene expression changes of RB1CC1, ERBB3, NR3C1, FOXO3a 

and CCND1 in the panel of cell lines in response to dasatinib treatment indicated that 

the gene expression profile seen in response to lapatinib, afatinib and neratinib was 

not visible when the HER2 pathway was not being targeted. All RQ and standard 

deviation values can be found in appendix 2. 
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Figure 4.7(A&B): Mean relative differential gene expression in BT474, SKBR3 and 

MDAMB453 cell lines in response to lapatinib (1µM for 12 hours) and dasatinib (1µM for 

12 hours) treatments. The dasatinib treatment was undertaken to evaluate if the gene 

expression pattern evident in response to HER2 inhibition was visible in response to other 

TKI treatments. The gene expression changes in response to the lapatinib treatment were not 

conserved when examined in response to the dasatinib treatment indicating that the response 

was specific to HER2 TKI. The analysis was completed in triplicate, the error bars represent 

the standard deviation of the mean ∆∆Ct value. 
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4.3.8 Gene expression changes in response to gefitinib 

 

The HER2-targetting TKIs (lapatinib, afatinib and neratinib) that were employed in 

the previous work were all also EGFR inhibitors. In order to determine if the gene 

expression pattern that had been identified was associated with the disruption of the 

EGFR pathway, or specific to HER2 inhibition, cell lines were treated with 1 µM 

gefitinib. Gefitinib is a TKI that targets the EGFR receptor kinase and interrupts 

signalling through the EGFR pathway. The BT474 and SKBR3 cell lines express 

low levels of EGFR [19] and are sensitive to the drug [20]. However, the 

MDAMB453 cells do not express EGFR [19] and are insensitive to the drug [21]. 

The sensitivity of these cells to gefitinib is important as the gene expression pattern 

that we have identified is based on the responsiveness of the cells to lapatinib. When 

the differential expression of the cells following gefitinib treatment was compared to 

that of the lapatinib treatment, it was evident that even though the cells had a similar 

sensitivity to gefitinib as they did to lapatinib, the gene expression pattern was 

different. 

Gefitinib treatment at 1µM resulted in a completely different expression pattern 

within the cell lines following 12 hour treatment. With the exception of the RB1CC1 

expression in the BT474 and SKBR3 cells and the FOXO3a expression in the BT474 

cells, the relative expression of all of the remaining genes was either  down-regulated 

or there was no change post treatment. These results, combined with those following 

dasatinib treatment, indicated that unless the HER2 pathway of the cell line was 

being directly inhibited or targeted, the gene expression pattern that was seen in 

response to lapatinib was not evident.  
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Figure 4.8(A&B) Mean relative differential gene expression in BT474, SKBR3 and 

MDAMB453 cell lines in response to lapatinib (1µM for 12 hours) and gefitinib (1µM for 

12 hours) treatments. Gefitinib inhibits EGFR expression, which lapatinib, neratinib and 

afatinib also have been shown to inhibit, as well as HER2. This analysis was undertaken to 

evaluate if the gene expression pattern was evident when EGFR expression was targeted.  

The gene expression changes in response to lapatinib were not conserved when examined in 

response to the gefitinib treatment again indicating that the gene expression pattern was 

specific to HER2 inhibition. The analysis was completed in triplicate, the error bars 

represent the standard deviation of the mean ∆∆Ct value. 
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4.3.9 Gene expression changes in response to epirubicin 

 

Epirubicin is an anthracycline cytotoxic chemotherapeutic used in the management 

of many cancers, including breast and ovarian cancer [22], which has been shown to 

stimulate apoptosis in cancer cells through inhibition of the topoisomerase II 

enzyme[23].  

By examining the gene expression changes in response to this chemotherapeutic 

drug (Figure 4.9A and 4.9B), we were able to establish that once again the profile 

exhibited by the cells post treatment with the HER2 targeted agents was as a result of 

the specific inhibition of the HER2 pathway.  

As with the gefitinib treatment, the relative gene expression change exhibited after 

epirubicin treatment was completely different to that post lapatinib treatment. In all 

cases the genes of interest were found to be unchanged or differential down-

regulated in response to the epirubicin treatment.  

 

 

 

 

 

 

 



156 

 

 

 

Figure 4.9(A&B): Mean relative differential gene expression in BT474, SKBR3 and 

MDAMB453 cell lines in response to lapatinib (1µM for 12 hours) and epirubicin (25nM for 

12 hours) treatment. This analysis was used to further demonstrate that the gene expression 

pattern that was initially seen in response to lapatinib and further more with afatinib, 

neratinib and trastuzumab was only evident when the HER2 receptor was being targeted. 

The gene expression changes in response to lapatinib were not conserved when examined in 

response to the epirubicin treatment. The analysis was completed in triplicate, the error bars 

represent the standard deviation of the mean ∆∆Ct value. 
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4.4 Discussion 

 

In this study, we aimed to further examine the significance of our prior finding 

(section 3.7) of a characteristic five gene expression response pattern to lapatinib 

treatment.  To do this we characterised the impact of two other HER2-targetting 

TKIs, afatinib and neratinib, on these genes changes, and the durability of this 

response over different time points. In addition, we assessed the gene changes in 

response to two further approved treatments for HER2-positive breast cancer; 

trastuzumab, and lapatinib in combination with capecitabine.  Finally, to evaluate 

how HER2-centric the changes were, we interrogated gene expression changes in 

response to the EGFR inhibitor, gefitinib, the BCR/ABL and Src inhibitor, dasatinib, 

and the anthracycline agent epirubicin [24]. BT474, SKBR3 and MDAMB453 cell 

lines were treated with 150nM afatinib and neratinib for 12 hours and the gene 

expression analysed using RT-PCR. In line with the previously reported lapatinib 

treatment finding, in our panel of five genes (section 3.7), four RB1CC1, NR3C1, 

FOXO3A and ERBB3 were also up-regulated in response to other HER2 inhibitor 

treatments. The magnitude of the expression of these genes was correlated with the 

sensitivity of cells to the drug. CCND1 was shown to be down-regulated in response 

to the drug treatment, again consistent with the previously published lapatinib data.  

Even in patients who over-express targetable molecular changes in cancer, we cannot 

predict who will respond, hence there is an urgent clinical and 

pharmacoeconomically driven  need for an effective diagnostic assay for targeted 

therapies that would have the ability to determine if a patient is responding to the 

treatment during the early stages of the treatment regime. Currently over-expression 

of HER2 is the only available indicator for use of HER2 targeting drugs in patients. 
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However, not all patients that over express HER2 will respond to treatment with a 

HER2 targeting therapeutic. It has been estimated that as many as 50% of patients 

that overexpress HER2 do not respond to targeted therapies [25] either due to an 

innate/ de novo resistance or an acquired resistance to the treatment. There have been 

some limited studies evaluating expression of the cell proliferation marker, Ki67, 

following lapatinib treatment to evaluate if it could be employed as a predictive 

marker for treatment response [26]. Expression of this protein can be detected during 

the active phases of the cell cycle but is not evident during the rest phase G0 [27]. 

Decensi et al., [26] found that in patients with ER-negative tumours, Ki67 

expression was reduced by as much as 34% in comparison to the placebo arm of 

their study. In patients with ER-positive tumours, the expression of Ki67 was 

reduced by approximately 12%.  In measuring the level of expression of this protein, 

using IHC, it may be possible to determine if the cells are continuing to proliferate or 

if they are undergoing apoptosis, regardless of the treatment being employed [28]. In 

addition to the clinical drivers for early prediction of response, these agents are also 

extremely costly so hence there is a clear pharmacoeconomic imperative to know, as 

early on in a treatment regime, if a patient is responding and in so doing potentially 

save the responsible health service significant money. If the patient is not responding 

to a treatment, continuing on the regime could cause unnecessary toxicity without 

potential efficacy and at significant financial cost. The similarity of our findings 

among the HER2-targeting treatments of the panel of cell lines, with trastuzumab, 

and the combination treatment of lapatinib with capecitabine, further strengthens the 

hypothesis that this gene expression pattern is indicative of the HER2 pathway being 

inhibited. Both of these additional HER2-targeting treatments provided similar 

expression patterns at 12 hours post treatment. It should also be noted that despite 
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the addition of the chemotherapeutic agent capecitabine to the lapatinib treatment, 

the gene expression profile remained evident. 

To examine if the gene changes are stable over a longer period of time, the cell lines 

were treated for 36 hours with the 1µM lapatinib, 150nM afatinib and 150nM 

neratinib. The trends that were exhibited 12 hour post treatment were also seen 36 

hour post treatment. These results provide a strong indicator that expression changes 

in this panel of genes is a good and robust representation of responsiveness not only 

to lapatinib but also afatinib and neratinib. 

An examination of the expression of proteins corresponding to the genes of interest 

was also undertaken. In examining the corresponding proteins of the genes 

previously examined, we aimed to determine if these proteins would be altered 

following 36 hours treatment with lapatinib, afatinib and neratinib. If a treatment 

induced a corresponding protein expression response, this might indicate the 

possibility that the drug response could be monitored via protein-detecting assays, a 

generally cheaper and more straightforward analytical process. If protein alterations 

were detected and such proteins were part of the tumour secretome, it might 

additionally be possible to measure response using by quantification of the level of 

these proteins circulating from the tumour cell.  Following evaluation of the protein 

expression in response to the three targeted treatments, there was no correlation in 

the expression of the proteins and their corresponding genes. This lack of correlation 

is not uncommon, as other studies have established that correlation between the 

expression of proteins and their corresponding gene can be as low as 40% due to the 

large number of processes that must be undertaken between transcription and 

translation  [29, 30]. The lack of correlation could also be attributed to a possible 

transient nature of expression of these proteins and the inherent variations in protein 
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half-life and stability [31] . It is possible that for some of the genes that were being 

examined, the levels of the proteins which would have correlated with the expression 

of the corresponding gene may have been bettered examined at shorter time points 

such as 12 or 24 hours. These earlier time points may have allowed for a better 

representation of the changes in the protein levels in response to the treatment. The 

blots that were represented in section 4.3.4 may have been over saturated with 

protein expression following a 36 hour treatment of the cells with the different drug 

treatments. Additional time point analysis would be necessary to examine this. 

To evaluate if this gene panel was only responsive to HER2-targeted therapies, the 

panel of cell lines (BT474, SKBR3 and MDAMB453) were also treated with 1µM 

gefitinib. Gefitinib is a EGFR inhibitor that is used in the treatment of non-small cell 

lung cancer [32]. The panel of cell lines examined have a variable level of EGFR 

expression. MDAMB453 do not express any EGFR [19] with BT474 expressing low 

levels [33] and SKBR3 expressing intermediate levels [19]. BT474 and SKBR3 are 

both sensitive to gefitinib[34]. The trend that was observed in response to gefitinib 

did not correlate with that shown in response to the HER2-targeting TKIs, giving a 

strong indication that this gene expression trend is associated with response to HER2 

and not EGFR inhibition. Cells were also treated with 1µM dasatinib, a BCR/ABL 

and src inhibitor and 25nM epirubicin for 12 hours. Acting as control treatments, the 

observation that there was no similarities in the gene expression exhibited following 

these treatments, allows us to assume that it is the inhibition of the HER2 pathway 

that gives rise to this and not the induction of apoptosis using unspecific targeted or 

chemotherapeutic agents.  

Although all of the genes in this panel have been reported to have roles in breast 

cancer [24], there have been no reports of expression changes in NR3C1 and 
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RB1CC1 genes in response to afatinib, neratinib or gefitinib. FOXO3A expression 

changes have not been reported to change in response to neratinib or afatinib. 

However, there are a small number of publications that have indicated that gefitinib 

can target FOXO3A and thereby mediate cell cycle arrest and apoptosis in breast 

cancer [21, 35, 36]. ERBB3 has not been studied in the context of neratinib treatment 

and very limited information regarding the effects of afatinib on the expression of 

this gene is available [3].  

CCND1 expression changes have not been reported for cellular responses to 

neratinib or afatinib, however, there is some data in the literature demonstrating that 

treatment with gefitinib can result in down-regulation of CCND1 which supports our 

finding [37, 38]. 

In conclusion, by exposing the three breast cancer cell lines, BT474, SKBR3 and 

MDAMB453 to an array of targeted and chemotherapeutic agents, it has been 

determined that the gene expression profile, that had been observed in response to 

lapatinib, was also observed in response to other HER2 specific agents. This profile 

was not evident following the treatment of the cell lines with non-HER2 specific 

agents. Therefore, this profile has the potential to be used not only in determining 

response to lapatinib but also afatinib, neratinib and trastuzumab and most likely all 

HER2-targeting agents. The advantage to having one test that could be applied to the 

identification of treatment efficacy with a number of established and validated 

therapies is that the same diagnostic assay could be used globally where the 

treatment regime may differ due to the clinicians preferred course of therapy. As of 

yet there has been no validated or approved assay or biomarkers developed or 

identified. However, it should be noted that pharmaceutical companies and the FDA 

have realised the economic benefits of having such  assays and are looking for 
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evidence of such diagnostics as part of the regulatory registration submission for 

such agents [39].  
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5.1 Introduction 

Development of resistance to treatment with targeted therapeutic agents in tumours 

is a significant challenge in the efficacious use of such agents. For example, acquired 

resistance to lapatinib, i.e. breast cancer which initially responds to therapy but then 

recurs during ongoing treatment, has proved to be a hurdle that has yet to be 

overcome or, indeed, fully understood [1-3]. In many cases, patients who initially 

respond to targeted therapies such as lapatinib or trastuzumab combinations with 

chemotherapy will relapse within a year of commencing treatment [4-7].  

Development of a mechanistic understanding of the molecular causes of such 

resistance could clearly contribute to formulation of resistance circumvention 

strategies and generation of cell lines resistant to targeted agents, such as lapatinib, 

may provide simple models with which to explore and better understand resistance 

phenomena.  

 

5.2 Material and methods 

5.2.1 Materials 

The SKBR3 cell line was cultured as set out in section 2.1.4. 

The SKBR3-L cell line was developed as outlined in section 2.3. Briefly, SKBR3 

cells were treated with increasing doses of lapatinib over a period of six months and 

proliferation assays (section 2.2) were used periodically to evaluate the level of 

resistance that was being developed by the cell line. Once the cell line had reached 

an IC50 of >1µM, the cell line was considered to be resistant and the treatment was 

ceased. The parental cell line has an IC50 value of 0.08 µM  ± 0.017. IC50 values 
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were also determined for afatinib and neratinib in these cell lines. After such an 

extensive period in culture, DNA fingerprinting was undertaken, as described in 

section 2.4 and 2.5., to ensure that the cell line had not been contaminated and 

maintained a genotype consistent with the original SKBR3 parental line.  

5.2.2 Methods 

In order to examine the expression of the genes of interest identified from chapters 3 

and 4, in a lapatinib resistance setting, the lapatinib-resistant SKBR3 cells (termed 

SKBR3-L)  were treated with 1µM lapatinib, 150nM afatinib or 150nM neratinib. 

The differential gene expression of the five genes was determined using Taqman RT-

PCR, as described in sections 2.6, 2.8 and 2.9. The three remaining genes were not 

evaluated in this cell line study as they were not considered as distinct, robust 

indicators of response to the targeted therapies. The results were evaluated to 

determine if the acquired lapatinib resistance of the cell lines had an impact on the 

differential expression of the genes.  
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5.3 Results 

5.3.1 Evaluation of differential gene expression changes in SKBR3-L cell line.  

 

SKBR3 are a routinely used HER2 over-expressing lapatinib-sensitive cell line. 

They have proven successful for the development of acquired lapatinib resistance 

cell line models [8]. It was determined that their IC50 values were 0.08 ± 0.017µM 

for lapatinib, 0.0075 ± 0.005µM for afatinib and 0.0023 ± 0.0001 µM for neratinib 

(Table 5.2). Following six months of continuous treatment with increasing 

concentrations of lapatinib, starting with 250nM twice weekly for approximately 1 

month before being increased to 305nM, the resistance was tested using proliferation 

assays. Triplicate assays determined that the cell lines had an IC50 which was greater 

than 1µM. The IC50 values were determined to be >1µM for lapatinib, 0.130 ± 

0.045µM for afatinib and 0.083 ± 0.038µM for neratinib in the SKBR3-L cell line. 

For DNA fingerprinting analysis, the short tandem repeat (STR) profile of the 

SKBR3-L cells was compared to that provided by the American type culture 

collection (ATCC) for the SKBR3 parental cells to confirm that there were no 

differences in our resistant model of the cell line. Short tandem repeat profiles are 

used to compare specific loci on DNA from different samples. Amelogenin is a gene 

used for gender determination while the remaining eight are core STR loci that are 

used by the ATCC to discriminate human cell lines [9]. Gender is determined by 

detecting different sizes and locations of two gene products, AMEX and AMEY on 

the sex chromosome [10]. Table 5.1 details the STR profile of SKBR3 as published 

on the ATCC website and that of SKBR3-L profile that was generated following the 

fingerprinting analysis. 
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Table 5.1 STR profile for the SKBR3 parental cell line from the ATCC and the 

profile generated from the DNA fingerprinting carried out on the SKBR3-L cell 

line 

ATCC STR Profile for SKBR3 SKBR3-L STR Profile from DNA fingerprinting 

Amelogenin: X Amelogenin: X 

CSF1PO: 12 CSF1PO: 12 

D13S317: 11,12 D13S317: 11,12 

D16S539: 9 D16S539: 9 

D5S818: 9,12 D5S818: 9,12 

D7S820: 9,12 D7S820: 9 

THO1: 8,9 THO1: 8,9 

TPOX: 8,11 TPOX: 8,11 

vWA: 17 vWA: 17 

 

5.3.2 Eradication of mycoplasma contamination in SKBR3-L cell line using 

plasmocin. 

During routine mycoplasma testing that was performed quarterly on all cell lines 

used (section 2.1.8) it was found that the SKBR3-L cell line had become infected 

with mycoplasma. Due to the time and materials involved in the development of this 

resistant cell line, the decision was taken to treat the cell line in an attempt to 

eradicate the mycoplasma infection using Plasmocin (Invivogen, Toulouse, France) 

[11]. This treatment works by combining two bactericidal components. One 

component interferes with bacterial ribosome translation which has an impact on the 

protein synthesis machinery. The other component interferes with bacterial DNA 

replication. Both of these targets are found in mycoplasma and bacterial cells, 

however, they are not found in eukaryotic cells. This treatment generally has a high 
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success rate with one study indicating that it had a 65% success rate in the 

elimination of mycoplasma in the panel of cell lines used [11]. The anti-mycoplasma 

treatment was used as recommended for 2 weeks at 25µg/mL.  

Following completion of the recommended treatment, the cells were tested for the 

presence of mycoplasma 14, 21 and 28 days post Plasmocin treatment. Using both 

direct and indirect methods (Section 2.1.8.1 and 2.1.8.2) it was determined that the 

cells were mycoplasma free. At this point the cells were also re-tested to confirm that 

the cells remained resistant to lapatinib and it was found that they were.  

Table 5.2 details the response of the SKBR3-L cell line to lapatinib, afatinib and 

neratinib. The second column indicates that the acquired lapatinib resistance resulted 

in decreased sensitivity of the cell line to afatinib and neratinib.  

 

Table 5.2 IC50 values comparing SKBR3 and SKBR3-L for lapatinib, afatinib 

and neratinib. 

 SKBR3 (Lapatinib 

sensitive) 

SKBR3-L  (acquired lapatinib 

resistance) 

 IC50(µM±SD) IC50(µM ±SD) 

Lapatinib 0.08 ± 0.017 >1 

Afatinib 0.0075 ± 0.005 0.130 ± 0.045 

Neratinib 0.0023 ± 0.00008 0.083 ± 0.038 

N=3 

 

Figure 5.1 showed that the treatment with Plasmocin had an impact on the 

expression of the five genes in the untreated parental SKBR3 cell line. Following 
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treatment with the Plasmocin for 2 weeks at the recommended dose of 25µg/mL, it 

was shown that the expression of the genes was differentially down-regulated 

following the treatment. Examination of the Ct values for the endogenous control 

GAPDH indicated that the expression of this gene was equivalent across all 

treatments in the cell lines. 
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Figure 5.1: The mean fold changes in expression of the five gene expression pattern. This 

data was generated by comparing the gene expression values for plasmocin-treated SKBR3 

parental cells with the corresponding values from untreated SKBR3 parental cells The 

parental cell line was treated with the recommended treatment of Plasmocin of 25µg/mL for 

2 weeks. The plasmocin treatment resulted in differential downregulation of all of the genes 

in the SKBR3 parental cells, which indicated that the agent had an effect on the expression 

of these genes. The analysis was completed in triplicate, the error bars represent the standard 

deviation of the mean ∆∆Ct value. 
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5.3.3 Gene expression changes in SKBR3-L cell line in response to targeted 

therapies 

SKBR3-L cells were treated with 1µM lapatinib, 150nM afatinib and 150nM 

neratinib for 12 hours. These treatments were completed in order to determine if the 

acquired resistance of the cell line to lapatinib would have an impact on the 

expression pattern that had been previously described in chapter 3 and 4 in response 

to lapatinib, afatinib and neratinib. Taqman RT-PCR was completed. When 

comparing the expression of the genes in the SKBR3-L and the SKBR3-L cells 

treated with lapatinib, afatinib and neratinib, the relative expression was shown to be 

unchanged (as indicated by a fold change less than 2) in response to the treatment 

(Figure 5.2).  The ∆Ct values from the untreated parental SKBR3 cell line were used 

as the calibrator in the calculation of the RQ value (Figure 5.3).These results 

indicated that the changes established in chapters 3 and 4 were only present in 

sensitive cell lines and not those with acquired resistance to lapatinib. This 

strengthens the hypothesis that the pattern was indicative of the response in sensitive 

cell lines. Analysis of the gene expression pattern in further acquired resistant cell 

lines would need to be completed in order to evaluate if the gene changes are not just 

as a result of a cell lines specific response. 
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Figure 5.2: Gene expression changes from SKBR3-L cells treated with 12 hour treatments of 

1µM lapatinib, 150nM afatinib and 150nM neratinib respectively with all data normalised by 

division of the relevant untreated SKBR3-L gene expression values. All cells in this 

experiment had previously been treated with plasmocin. The results indicated that the 

acquired resistance of the SKBR3-L cells to lapatinib impacted the gene expression pattern 

that had been seen in the parental cell lines response to the same targeted treatments as seen 

in chapter 4. The analysis was completed in triplicate, the error bars represent the standard 

deviation of the mean ∆∆Ct value. 
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Plasmocin treatment of the SKBR3-L was necessary to attempt to eliminate a 

mycoplasma contamination on the cell lines. To establish if the Plasmocin treatment 

itself had an impact on the gene expression within the cell lines, Plasmocin treatment 

of the parental SKBR3 cell line was undertaken. The parental cells were treated with 

the same recommended dose of 25µg/mL for 2 weeks. Following treatment the cells 

were allowed to recover and RNA was extracted and Taqman RT-PCR was 

completed. The ∆Ct values of the Plasmocin treated SKBR3 parental cell lines were 

used as a calibrator in the calculation of the RQ values of the SKBR3-L cells 

following treatment with the panel of TKIs. (Figure 5.3) 

Chapters three and four illustrated that differing treatments resulted in variability in 

the magnitude of the differential expression of the genes in the same cell lines. In the 

SKBR3-L cell lines, this was not the case. The magnitude of the gene expression 

remained consistent regardless of the four conditions that were compared. The four 

conditions were the SKBR3-L cells alone, the SKBR3-L cell line following 12 hour 

1µM lapatinib, 150nM afatinib and 150nM neratinib. Irrespective of the calibrator 

sample that was used to calculate the RQ values, whether it was SKBR3 untreated or 

SKBR3 treated with Plasmocin, this trend remained.  

The change in the calibrator from SKBR3 control not treated with Plasmocin to 

SKBR3 control treated with Plasmocin did have an impact on the quantitation of the 

expression of the genes. In the analysis of the RQ values when the calibrator sample 

was the SKBR3 untreated cell lines, there was noteworthy down-regulation in the 

relative expression of NR3C1, ERBB3 and CCND1 genes in response to all of the 

conditions (Figure 5.3). RB1CC1 expression was shown to be slightly down-

regulated with RQ values of between two and three. FOXO3a expression was shown 
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to be unchanged in all of the cell treatments. When the calibrator was switched to 

utilise the SKBR3 plasmocin-treated gene expression results, the relative expression 

of the genes was unchanged. This was defined by a fold change less than 2 in 

response to the generation of acquired resistance to lapatinib or the treatment of the 

acquired resistant cell line with lapatinib, afatinib or neratinib (Figure 5.4).  
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Figure 5.3:  Relative gene expression changes in SKBR3-L cells (previously treated with 

Plasmocin) which were then further treated with 1µM lapatinib, 150nM afatinib and 150nM 

neratinib for 12 hours. The control sample was untreated SKBR3 parental cells.  The results 

indicated that the acquired resistance of the SKBR3-L cells resulted in a different expression 

pattern than that seen in the parental cell lines in response to the targeted treatments which 

are described in chapter 3. The analysis was completed in triplicate, the error bars represent 

the standard deviation of the mean ∆∆Ct value.  
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Figure 5.4: Relative gene expression changes in SKBR3-L cells (previously treated with 

Plasmocin) which were then further treated with 1µM lapatinib, 150nM afatinib and 150nM 

neratinib for 12 hours. The control sample was plasmocin-treated SKBR3 parental cells.  

The results indicated that the acquired resistance of the SKBR3-L cells resulted in a different 

expression pattern than that seen in the parental cell lines in response to the targeted 

treatments which are described in chapter 3. The results indicated that the acquired 

resistance of the SKBR3-L cells resulted in a different gene expression pattern than that seen 

in the parental cell lines in response to the targeted treatments. It also indicated that the 

plasmocin treatment has an impact on the gene expression pattern as it results in differences 

in the gene expression changes that were exhibited in figure 5.3. The analysis was completed 

in triplicate, the error bars represent the standard deviation of the mean ∆∆Ct value. 
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5.4 Discussion 

While the development and analysis of in vitro models of resistance has been shown 

to be helpful in understanding mechanisms of resistance and in therapy regime 

development, some concerns have more recently been raised as to whether they 

provide a realistic picture of what occurs in vivo. Gillet et al., 2011 [12] have 

provided evidence that suggests that characterisation experiments carried out on both 

in vitro cell-based models and tumour samples resulted in very different outcomes. 

In particular they looked at the expression of the Multi Drug Resistance (MDR) 

transcriptome using RT-PCR assay technology. The MDR transcriptome is a well 

characterised and extensively researched group of 380 genes associated with aspects 

of MDR. The study investigated the expression of genes associated with this 

mechanism in six different cancer types (ovarian, glioblastoma, colorectal, breast, 

metastatic melanoma and leukaemia) using the NCI-60 [13] cell line panel and 

clinically relevant samples. One of the outcomes of the study indicated that the cell 

lines had been highly selected for expression of a number of genes that were 

associated with MDR. They suggested that this expression was as a result of the cells 

adapting to their “new” environment [14]. It also highlighted that the cell culture 

models did not reflect what clinical samples did in relation to the MDR gene 

expression patterns. 

While this study does show some limitations to the applicability of in vitro cell 

models of resistance, until a more easily developed and cultured model is available, 

it will continue to be utilised by researchers to identify the mechanism by which 

acquired resistance is established [15].  
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Summarising the gene changes in chapter three and four, where the cell lines were 

sensitive to the targeted therapies, there was an increase in the differential expression 

of RB1CC1, FOXO3a, NR3C1 and ERBB3, while CCND1 was shown to be 

differentially down-regulated in response to the HER2 targeted treatments. When the 

expression of these five genes was evaluated in response to lapatinib, afatinib and 

neratinib in the lapatinib-resistant, SKBR3-L, cell line, the trend that was exhibited 

in responsive cell lines was not evident at all. However, it should be taken in to 

account that the Plasmocin treatment that was applied to the SKBR3-L cells to 

eliminate a mycoplasma contamination may have impacted the cells response to the 

drugs. This was supported by the analysis of the parental cell line and the expression 

of the genes before and after the treatment with Plasmocin. Mycoplasma 

contamination has been shown to have an impact on the expression of different 

genes, eg oncogenes and tumour suppressor genes [16] however, there is evidence to 

support our assumption that once cells have been treated with plasmocin or other 

anti-mycoplasma treatment, the function of these genes can be restored [17, 18].  

Gene expression changes associated with lapatinib resistance have not been 

extensively researched. Using qRT-PCR methodology, Penzvalto et al. [19] have 

identified three genes associated with resistance to lapatinib. The three genes were 

FURIN, ME1 and TMOD3. There are no published reports linking NR3C1 and 

RB1CC1 with lapatinib resistance. Depression of FOXO3a expression increased ER 

transcriptional activity and increased localisation of ERBB3 have all been proposed 

as potential mechanisms of acquired resistance to lapatinib [20-22]. As an important 

oncogene and regulator of cell cycle progression CCND1 and a number of the genes 

single nucleotide-polymorphisms (SNPs) has recently been associated with clinical 

response to lapatinib in combination with capecitabine [23]. Any dysregulation of 
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the gene might possibly have a negative impact on the response of the patient to the 

therapy.  

A limitation of this study is that only one cell line model was used. The mycoplasma 

contamination would also have had an impact on the results. In order to fully 

understand the effect of acquired resistance on the expression of the five genes 

indicative of response to HER2 targeting therapies, multiple cell lines would need to 

be treated in order to develop acquired resistance to lapatinib and also possibly 

additional targeted therapies such as afatinib or neratinib. As a back-up, multiple 

flasks would need to be treated individually with identical treatments so that in the 

event of a contamination there would be another flask that is undergoing treatment. 

Routine mycoplasma testing would also need to be completed. 

However, these preliminary results do give an indication that the gene expression 

pattern that was exhibited in the responsive cell lines is not evident in the acquired 

resistant SKBR3-L cells following treatment with lapatinib, afatinib and neratinib. 

The fact that there was a difference between the expression pattern, even in this one 

responsive cell line and its acquired resistance counterpart, strengthens the 

hypothesis that this panel of five genes provide a strong marker of response to HER2 

targeted therapies in sensitive cell lines undergoing a treatment with such agents.  
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6.  In vivo evaluation of tumour gene 

expression in response to targeted 

therapies 
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6.1 Introduction 

 

While in vitro analysis has proven to be extremely useful in the cancer research 

setting, is has been clearly established that the use of these immortal cell lines does 

not give a fully clinically relevant picture in regards to changes in protein or gene 

expression [1] and as such has significant limitations. Cancer cell lines are typically 

grown in a monolayer or in suspension and cultured in plastic flasks. Some argue 

this can cause changes that would not occur in an in vivo setting and that these 

changes could have varied effects on the targets that are being examined. By using in 

vivo models, where tumours are cultured in immune compromised animals, such as 

nude mice or severe combined immune-deficient mice (SCID mice), researchers are 

able to determine if the micro-environment of the animal would have an impact, 

either negatively or positively, on the results that they have found in the in vitro 

setting [2]. Nude and SCID mice are immune compromised by their inability to 

generate enough T lymphocytes, in the case of nudes or the inability to produce any 

B or T lymphocytes which are vital in mounting an immune response, as is the case 

for SCID [3]. It is due to these immune alterations that allow for the implanted 

“foreign” cells to grow and develop the xenograft models. Xenografts in these 

immune-compromised mice can be generated in a number of ways. Methods include 

injection of a cell line, either sub-cutaneous or intra-peritoneal injection, or 

implantation of a sample of patient material. Once these cell lines or patient-derived 

materials have developed tumours, they can be passaged into further animals. Such 

tumour models much more closely imitate human tumours in key ways since they 

have a blood supply and are three dimensional but do, however, have some 

limitations. Murine stroma can infiltrate the human tumour where the characteristics 
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of the malignancy can be affected by the murine micro-environment; the blood 

supply to the tumour is supplied by the murine host which can have different 

characteristics to humans in terms of hormones, growth factors etc, [4]. There have 

been some studies that have indicated that the pharmacological response seen in the 

mice models does not always correspond to that seen in humans [5,6]. 

Cognisant of such limitations, we sought to advance our in vitro findings with a pilot 

in vivo examination. This pilot in vivo study aimed to determine if the gene changes 

that were described in chapter 3 in response to lapatinib treatment remained when 

examined in tumours formed from the BT474 cell line in SCID mice.  
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6.2 Materials and methods 

 

As laid out in more detail in section 2.13, the following methods were used in the 

process of the in vivo study.  

The cell based tumours were developed by sub-cutaneous implantation of the BT474 

cell lines in eight SCID mice. Once tumours had developed in these animals, three 

were sacrificed and the tumours were used for implantation into 14 SCID mice, for 

further growth. Three of the remaining animals underwent treatment with either a 

vehicle or lapatinib at a concentration of 200mg/kg. Following five days treatment, 

the animals were sacrificed and the tumours were removed for further analysis using 

qRT-PCR.  

The 14 mice implanted with tumours from the donor mice were allowed to develop 

tumours. Animals were monitored daily and once the tumours were palpable, they 

were measured twice weekly to determine the tumour volume. There were three 

treatment conditions in the tumour implanted group of mice, (1) vehicle (0.5% 

hydroxyl-propyl-methyl-cellulose/0.1% Tween 80), (2) one day lapatinib treatment 

with 200mg/kg and (3) five day treatment with 200mg/kg. Once the treatment was 

completed, the tumour, as well as organs tissue and skin were snap frozen for 

analysis with qRT-PCR.  
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6.3 Results 

 

BT474 cells were selected for this study has they had been used successfully in a 

large number of in vivo studies. They were also the most lapatinib-sensitive cell lines 

that were in the panel that was used in previous experiments.  

Figure 6.1 provides a flow chart of the course of the experiment and the number of 

animals used in each arm.  
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Figure 6.1: Schematic of in vivo experiment. Outline of the steps involved in the generation 

of the cell-line derived tumours and tumour xenografts used to evaluate the gene expression 

pattern identified in chapter 3 in response to lapatinib. 

 

Culturing of BT474 cell lines 

in vitro 

5x10
6
 cells in matrigel implanted 

subcutaneously into 8 SCID mice. Mice were 

monitored daily and tumour was measured twice 

weekly once tumours had begun to grow. 

3/8 mice (only 2 with tumour) 

were treated for 5 days, 2 with 

200mg/kg lapatinib and 1 

with vehicle. 

F1 phase: 3/8 mice tumours 

were harvested for transplant 

into 14 donor mice 

Tumours were removed and 

snap frozen for qRT-PCR 

analysis. 

4 mice treated 

200mg/kg 

lapatinib for 1 

day 

4/4 survived 

5 mice treated 

with 

200mg/kg 

lapatinib for 5 

days  

4/5 survived 

5 mice treated 

with vehicle 

for 5 days 

3/5 survived 

Tumours and tissue were 

removed and snap frozen for 

qRT-PCR analysis. 

2/8 mice 

culled for 

exploratory 

surgery 
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6.3.1 Generation of the cell line and tumour-derived xenografts in SCID mice 

 

The outcome for all of the animals that were treated in the study is detailed in table 

6.1 and 6.2. It was necessary to cull two animals in order to determine the progress 

of the tumours.  

Table 6.1: Assignment of animals used for the development of BT474 cell line 

derived tumours. 

Animal number n=8 Outcome during investigation 

2/8 Culled for exploratory surgery 

3/8 Used for tumour donation for the F2 phase of the study. 

Tumours had been growing for 35 days at point of removal 

for implantation 

3/8 Of the 3 animals, 2 of them had developed tumours. 1 of 

the tumoured mice and the mouse with no tumour were 

treated with 200mg/kg of lapatinib for 5 days 

The remaining mouse with a tumour was treated with the 

vehicle for 5 days.   

 

Table 6.2: Assignment of animals used in the development of tumour derived 

xenografts.  

Animal 

Number n=14 

Donor Mouse Treatment Animals survived 

to end of 

experiment 

5/14 Donor 3 and 1 

sample from 

donor 2 

1 day 200mg/kg  4/5 

5/14 Donor 2 5 days vehicle 3/5 

4/14 Donor 1  5 days 200mg/kg 4/4 
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Figure 6.2 shows images of the tumour-derived xenograft models for the 11 

remaining animals of F2 phase of the study. It should be noted that the size of the 

tumours was quite small, at the time of dissection they were no more than 100mm
3
. 

For comparison, in an additional study carried out by the group, tumours were 

developed using a DLKP-variant lung cancer cell line. After 30 days of growth these 

tumours typically reached a volume of approximately 1500mm
3
 (data not shown). 

The tumours were derived in the same mouse model (SCID) and the same cell line 

concentration was implanted in this study. These cells did not require estrogen for 

proliferation so the mice were not implanted with estrogen pellets prior to cell 

implantation. The presence of increased vasculature in the BT474-implanted mice is 

visible in figure 6.2, in particular in images C, I and J (highlighted with yellow 

arrows). This vasculature was a sign that the implanted tumour sections had begun to 

proliferate. In a number of the images slightly enlarged lymph nodes are also visible, 

in particular, images A, D, H, I and J. Once these enlarged lymph nodes were 

visualised during dissection, they were also removed and snap frozen in liquid 

nitrogen for qRT-PCR analysis. It was hoped that analysis of these nodes would give 

an indication if cells from the implanted tumour had travelled to the lymph system of 

the mice and as a result could form potential metastasis.  

Another issue that may have impacted the size of the tumours was the formation of 

bladder stones in animals as a result of the estrogen pellets that were implanted to 

maintain the growth of the tumours. BT474 cells are estrogen dependent and in order 

for them to continue to grow in vivo estrogen pellets were implanted into the 

shoulders of the animals 24 hours prior to the sub-cutaneous injection of cells or the 

implantation of a tumour fragment.  This is a standard approach for the generation 

and maintenance of such tumours [7, 8].  In F1 phase of the study, which examined 
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the growth of tumours derived from the cell line, approximately 19-21 days 

following the implant of the cells, deterioration in the health of the animals was 

noticed. They had begun to lose weight and there was a hardening around the 

bladder area. During exploratory surgery on two of the animals, a build-up of a 

significant volume of a hardened white crystalline material was found in the bladders 

of the animals (Figure 6.3). On a detailed examination of the literature in this field, 

this adverse effect was also identified by a number of other groups using estrogen 

dependent cell line-derived tumours [8, 9]. The bladder sac had also increased in 

size. Following discovery of this adverse effect of the estrogen tablets, the animals 

were given sub-cutaneous injections of sterile saline in an attempt to delay the build-

up of this material in phase 2 of the study through increased flushing of the bladder. 

The animals were also closely monitored for any signs of distress as well as palpated 

daily for any hardening in the region of the bladder.   
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 A B  C  

 D  E  F  G 

H   I  J  K 

 

Figure 6.2: Location of BT474-derived tumours following subcutaneous implantation in the 

surviving animals following treatment with either vehicle, lapatinib 200mg/kg for 1 day or 

lapatinib 200mg/kg for 5 days. Images A-C indicate the tumours that were present in the 

mice that were treated with the vehicle,  images D-G indicate the tumours that were present 

in the mice treated with lapatinib 200mg/kg for 1 day and images H-K indicate the tumours 

present that were present in the mice treated with lapatinib 200mg/kg for 5 days. The red 

arrow indicated the location of the implanted tumour. Increased vasculature is clearly visible 

around the tumour and the adjacent lymph node (highlighted by the yellow arrows).  
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  A 

  B 

  

Figure 6.3: In situ visualisation of enlarged bladders (and the dissected bladders) that 

occurred following supplementation of animals with estrogen pellets to support the growth 

of the tumours. A white crystalline substance was found to have been deposited in the 

bladders of the mice approximately 19-21 days following the implantation of the estrogen 

tablets. The extent of the build-up was not known until an exploratory surgery was 

performed on the two of the animals affected which are shown in A and B.  The only 

external indication that there was an issue was a swollen abdomen on the affected animals 

and the solid mass could be felt when the area surrounding the bladder was palpated.  
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6.3.2 Isolation of RNA and Taqman RT-PCR of snap frozen tumour samples 

 

Two methods of RNA extraction from the tumour and tissue were optimised 

(homogenisation using a mortar and pestle in combination with the Qiagen 

Qiashredder or the Qiagen automated Tissue Lyser) as outlined in section 2.7. These 

two methods are routinely used for the homogenisation of tumour samples for 

analysis [10]. Following RNA extraction using either method of tissue 

homogenisation, the RNA concentration in each sample was evaluated using a 

nanodrop. Two tumour samples were used for the optimisation of the two methods. 

When the extraction process was completed using the tissue lyser method in the 

autolyser for 20 minutes, it was evident that the tumour sample was not fully 

homogenised.  Although the automated tissue lyser would have allowed for 12 

samples to be homogenised at once, for the purpose of this study, the tumour and 

tissue samples were homogenised using liquid nitrogen in a mortar and pestle in 

combination with the Qiagen Qiashredder method as it ensured that all of the tissue 

was homogenised and it was also a faster method to use.   

Once the samples were homogenised they underwent extraction using the Qiagen 

RNeasy extraction kit that had been used for all of the in vitro cell line samples. The 

samples were quantified using the nanodrop in order to evaluate concentration of 

RNA for the reverse transcription reactions. It was necessary to concentrate the 

samples using the Maxi dry vacuum concentration system. All samples were 

concentrated so as to prevent any bias in the quality of the samples. Table 6.2 

outlines the average ng/µL concentration of RNA found for each of the tumour, 

lymph node, lung and skin samples from each of the treatment groups. Each sample 

was quantified twice and the standard deviations are also reported. It should be noted 
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that the samples for the tumour from mouse 2 and mouse 3 from the 5 day lapatinib 

treated group did not contain an accurately quantifiable concentration of RNA as 

concentrations below 10ng/µL measured by the nanodrop were not considered to be 

reliable. 

A number of internal controls were utilised throughout this analysis. On each 96 well 

Taqman plate there were 3 controls; no RT, no template control (NTC) and a pooled 

control. The no RT control was prepared at the same time as the RNA was 

undergoing reverse transcription. It contained no multiscribe reverse transcriptase. 

The no RT control was used to determine that there was no genomic DNA 

contamination in the RNA. DNase treatment during the RNA extraction protocol and 

correct handling of the samples would also aid in reducing genomic DNA 

contamination. The NTC control contained a gene assay and the universal Taqman 

mastermix but no target cDNA and was used to determine if there was any 

contamination of the reagents used in the qRT-PCR. The final control was the 

analysis of a pooled sample. Once RNA quantification was completed, 1µL of each 

of the RNA samples was pooled together and it underwent reverse transcription. A 

gene assay was chosen at random and this assay was analysed on each plate using 

the pooled sample. For the purpose of this study, FOXO3a was used for this control. 

As expected, on all of the plates, it was expected that this pooled sample  had the 

same Ct value. This control exhibited a Ct value of ~26 on all plates tested indicating 

that there was no intra-plate variability and that the machine was working 

comparably on different days and different plates. 
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Table 6.3: Quantification of extracted RNA from tumour, lung and skin 

samples 

 

Sample ID ng/µL ± SD 

F2 samples   

Tumour vehicle m1 29.09 0.099 

Tumour vehicle m4 32.63 0.163 

Tumour vehicle m5 25.115 0.318 

Skin vehicle m1 106.95 0.085 

Skin vehicle m4 137.09 2.659 

Skin vehicle m5 47.86 0.156 

Lung vehicle m1 298.38 2.036 

Lung vehicle m4 204.54 1.259 

Lung vehicle m5 255.92 0.969 

Tumour 1 day  m1 63.40 0.247 

Tumour 1 day m2 45.29 0.127 

Tumour 1 day m3 67.07 0.057 

Tumour 1 day m4 52.63 1.499 

Tumour 5 day m2 
#
 ----- ----- 

Tumour 5 day m3 
#
 ----- ----- 

Tumour 5 day m4 46.5 0.849 

Tumour 5 day m5 25.31 0.495 

Lymph node 5 day m2 101.05 3.521 

Lymph node 5 day m3 89.29 0.325 

Lymph node 5 day m4 144.05 0.933 

Lymph node 5 day m5 135.6 0.714 

Skin 5 day m2 89.83 1.322 

Skin 5 day m3 139.68 0.269 

Skin 5 day m4 109.5 0.820 

Lung 5 day m2 171.28 2.206 

Lung 5 day m3 393.84 2.652 

Lung 5 day m4 161.69 1.421 

Lung 5 day m5 208.71 0.403 

Exploratory animal 

Samples 

  

Cell derived tumour vehicle 14.82 0.078 

Cell derived tumour 5 day 10.30 0.219 

# indicates that the RNA from these two samples could not be accurately determined due to 

the concentration being too low. n= 2  
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As depicted in figure 6.1, the F1 phase of the in vivo study involved the sub-

cutaneous implantation of 5x10
6
 BT474 cells per mouse in eight SCID mice. Of 

these eight animals three were used as donors for arm 2 of the study, two were 

sacrificed for investigation purposes and the remaining three animals were treated as 

a pilot to give experience of the treatment schedule and demonstrate that sampling 

would be possible and likely to generate viable data post treatment in the second arm 

of the study. Unfortunately, of the three remaining animals, only two of them had 

developed tumours. Two of the mice (one of which had no tumour growth) were 

treated with 200mg/kg of lapatinib for 5 days and the remaining mouse was treated 

with vehicle alone for 5 days. Following sacrifice, the tumours were analysed using 

qRT-PCR. Of the eight genes determined to be differentially expressed in response 

to lapatinib in the panel of cell lines in chapter 3, five of them; RB1CC1, FOXO3a, 

NR3C1, ERBB3 and CCND1 provided a more compelling response pattern in 

response to lapatinib in chapter 4. It was these five that were evaluated in the in vivo 

setting. 
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6.3.3 Gene expression changes in response to lapatinib in cell line derived 

tumours  

 

The tumour cells that were injected sub-cutaneously in the mice, were anticipated to 

be supported by the murine stroma [4, 6, 11]. As the cells that were injected were 

derived from a human tumour it was expected that the expression profile of these 

would be maintained. Of the five genes that we had previously examined in the in 

vitro experiments, it was found that only the primer for ERBB3 was human specific, 

while the remaining four primers employed had the ability to detect both human and 

mouse variants of the gene. In order to determine if there was any infiltration of the 

murine stroma into the human cell, human specific assays for the genes were 

sourced. There was no human specific assay for CCND1 available; however for all 

other genes, human specific assays were purchased. The endogenous control assay 

for GAPDH was also determined to be human specific. The assays that were not 

human specific, would have been expected to detect expression of the gene in 

question in both the human and murine tissue.   A mouse specific assay for both 

FOXO3a and GAPDH were also purchased so as to determine the expression of 

these genes in the mouse tissues. It was expected that there would be no differential 

expression of these genes following treatment with lapatinib, as the mouse tissue 

should not respond to lapatinib treatment. 

From the in vitro work that was performed in chapters three and four, the pattern that 

had been observed from the cell lines showed an increase in the differential 

expression of the RB1CC1(H/M), FOXO3a(H/M), NR3C1(H/M) and ERBB3(H) 

genes and a decrease in the differential expression of CCND1(H/M) in response to 

lapatinib. This pattern was not evident in the single cell line-derived tumour in this 
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pilot experiment.  As shown in figure 6.4. FOXO3a(H/M), CCND1(H/M) and 

FOXO3a(H) showed no change in the expression of the genes of interest between the 

5 day 200mg/kg lapatinib (single tumour) and the vehicle alone treatments (single 

tumour). The genes were considered unchanged if the RQ value was less than 2. 

Decreases in gene expression following the treatment were seen in RB1CC1(H/M), 

NR3C1(H/M), ERBB3(H), RB1CC1 (H), NR3C1(H) and FOXO3a (M). The Ct values 

for the GAPDH (H) endogenous control were equivalent to the values expressed in 

the cell line in vitro analysis with values of 20 and 22 for the untreated and 5 day 

lapatinib treated animals respectively. As there was only one replicate of each 

treatment these results could not be conclusively analysed but the experiment did 

prove that sufficient high quality RNA could be generated to permit accurate gene 

expression measurement. 
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Figure 6.4: A summary of the changes in gene expression in a BT474 cell line xenograft 

tumour from an animal treated with  lapatinib (200mg/kg) for 5 days, when compared to the 

gene expression data from a non-drug treated tumour. (H) indicates the human specific gene 

assay.  (M) indicates the murine specific assay.  (H/M) indicates that this assay detects both 

human and murine gene.. The control animal was treated with vehicle ((0.5% hydroxyl-

propyl-methyl-cellulose/0.1% Tween 80) for 5 days, the tumour was then excised 

and expression of the relevant genes calculated. The test animal was treated with 

200mg/kg lapatinib in the same vehicle for 5 days. Both treatments were 

administered using oral gavage. There was no correlation between the in vitro pattern that 

was discussed in chapter 3 and the in vivo pattern from this pilot study. n=1 
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6.3.4 Gene expression changes in response to lapatinib in tumour derived 

xenografts 

 

As outlined in figure 6.1, the F2 phase of the study examined gene expression  

changes in tumour-derived xenograft models. 14 animals were implanted with 

fragments from tumours derived from the BT474 cell lines in arm 1. Once split into 

three groups, the tumours were allowed to develop and two groups were then treated 

with 200mg/kg of lapatinib for one or five days with the third group treated with 

vehicle (0.5% hydroxyl-propyl-methyl-cellulose/0.1% Tween 80) alone for 5 days.  

Figure 6.5 shows the differential gene expression changes following one and five 

days 200mg/kg lapatinib treatment. It should be noted that not all of the animals in 

each group of the experiment showed expression of the genes and that the graphs 

below show a mean expression change from those animals that did. Table 6.4 

outlines the number of individual Ct values for each gene at each treatment 

conditions that were included in the calculation of the relative expression of the 

genes (Individual Ct values can be found in appendix 3). 
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Table 6.4: Number of individual Ct values for each gene used in the RQ 

calculation 

 Number of Ct values for each gene used in 

the RQ calculation 

 Vehicle /3 1 Day/4 5 Day/4 

RB1CC1(H/M) 2 3 3 

FOXO3a (H/M) 3 4 4 

NR3C1(H/M) 2 ND ND 

ERBB3(H) 2 3 3 

CCND1(H/M) 3 4 4 

RB1CC1 (H) 2 3 2 

FOXO3a (H) 2 2 4 

NR3C1 (H) 2 4 2 

GAPDH (H) 2 4 4 

FOXO3a (M) 3 4 4 

GAPDH (M) 3 4 4 

 

All genes showed a differential upregulation following 1 day of treatment with 

200mg/kg lapatinib with the exception of NR3C1(H/M) where no expression was 

detected in any sample. FOXO3a(H/M), CCND1(H/M) and NR3C1 (H) showed the 

highest levels of differential expression. The upregulation of CCND1(H/M) was 

unexpected as it has been downregulated in response to lapatinib in all of the other 

studies completed. The calibrator sample for all of the RQ calculations was the 5 day 

vehicle treatment.  

 In the in vitro experiments, RB1CC1(H/M) FOXO3a (H/M), NR3C1(H/M) 

ERBB3(H) were found to be up-regulated in response to lapatinib and CCND1(H/M) 

was found to be down-regulated in response to lapatinib in the BT474 cell line. In 

comparison in the in vivo experiment, all of the genes with the exception of 

NR3C1(H/M) which was not expressed in the 1 day lapatinib treated xenografts, 

were all differentially up-regulated in response to lapatinib.  
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Figure 6.5A showed the differential expression of the genes in response to 1 day 

treatment of lapatinib. There was no RQ value for NR3C1 determined as there were 

no Ct values detected for the gene in the treated animals. It is possible that no signal 

could be detected using this probe due to stromal contamination of the samples. This 

could possibly be evidenced by the finding that the FOXO3a(H/M) assay showed a 

higher level of expression than that of the human specific assay. The Ct values for 

the FOXO3a (H/M) were slightly lower than that of the human specific assay 

(Appendix 3) which could be attributed to the higher differential expression for the 

non-specific assay. There was also some biological variability in the Ct values for the 

FOXO3a (H) vehicle control group as well as the 1 and 5 day lapatinib treatment 

groups which could account for some of the discrepancies in the RQ values 

exhibited.  Interestingly, the mouse specific gene was also shown to be differently 

expressed. There was a high magnitude of up-regulation in the CCND1(H/M) and the 

NR3C1(H). The CCND1(H/M) up-regulation was an unexpected result as down-

regulation of the gene in response to lapatinib has been identified by a number of 

studies [12, 13].  

Figure 6.5B shows the expression of the panel of genes in response to 5 days 

treatment of lapatinib. As with the 1 day lapatinib treatment, all of the genes were 

shown to be up-regulated. However, in comparison to the 1 day lapatinib treatment, 

there were some differences in the expression of the genes following the 5 day 

treatment. There was a reduction in the magnitude of FOXO3a(H/M), CCND1(H/M) 

and NR3C1(H). The levels of RB1CC1 (H/M), ERBB3(H), and FOXO3a(H) 

remained the same. A relative expression for the NR3C1(H/M) assay was evaluated, 

however, there was only one animal in the 5 day lapatinib treatment group that 
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expressed detectable levels of the gene, so no standard deviation value could be 

evaluated. 

All Ct values can be found in appendix 3.   
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Figure 6.5: Relative changes in mean differential expression of the panel of genes following 

1 and 5 days lapatinib treatment in tumour derived xenografts. The expression of the genes 

was evaluated relative to the expression of the same genes in the vehicle treated animals. 

The n values (number of biological replicates) for each gene expression measurement can be 

found in table 6.4. (H) indicates the human specific gene assay, (M) indicates the murine 

specific assay (H/M) indicates that this assay detects both human and murine gene. Control 

animals were treated with vehicle, (0.5% hydroxyl-propyl-methyl-cellulose/0.1% 

Tween 80) for 5 days.  Test group (A) was treated with 200mg/kg lapatinib 

suspended in vehicle for 1 day (A) and group (B) treated with the same agent for 5 

days. Treatments were administered using oral gavage. The error bars represent the 

standard deviation of the mean ∆∆Ct value.  
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6.3.5 Gene expression changes in response to lapatinib in lymph-nodes, lung 

and skin 

 

In addition to the tumours, the lymph-nodes, lung and skin tissue of the vehicle and 5 

day lapatinib treated mice were assessed for the gene expression pattern. The lymph-

nodes were examined as it was observed that in a number of the mice examined that 

the lymph-nodes were enlarged (Figure 6.6). The lung tissue was examined, as it is a 

normal tissue, and as such the genes should not be differentially expressed. The skin 

was evaluated as a known adverse effect of lapatinib treatment in humans is skin 

irritation [14-16] and it has been observed in some studies, that patients who develop 

a rash/skin irritation have an increase in life expectancy [17]. 
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A   B 

Figure 6.6: Images illustrating the enlarged lymph-nodes that were associated with the 

tumour implantation that were observed in the vehicle(A) and 5 day lapatinib (B)-treated 

mice. The blue arrow highlights the enlarged lymph-node. The yellow arrow indicates the 

implanted tumour. 
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Following extraction of the RNA from the tissue samples (concentration of RNA can 

be found in table 6.3), Taqman RT-PCR was completed on the samples. In all of the 

samples, it was not possible to evaluate the relative expression of the following 

genes, RB1CC1(H/M), FOXO3a(H/M), NR3C1(H/M), ERBB3(H), CCND1(H/M), 

RB1CC1(H), FOXO3a(H) and NR3C1(H) as no Ct  values for these genes were 

detected in the samples, with the exception of FOXO3a(H/M) and CCND1(H/M) (Ct 

values can be found in appendix 3). There was also no detectable Ct value for the 

GAPDH(H) which is used to normalise the expression of the gene in the Livak 

method[18]. 

The murine specific FOXO3a and GAPDH did, however, have detectable Ct values 

and the relative gene expression was calculated. Figure 6.7 illustrated that following 

the treatment of lapatinib for 5 days, the gene was considered to be unchanged in 

response to the lapatinib treatment in the three tissues as they had an RQ value that 

was below 2.  
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Figure 6.7: Changes in mean relative murine FOXO 3a gene expression in response to five 

days of lapatinib treatment from mouse skin, lung and lymph-nodes tissues in comparison to 

untreated tissue for the same regions The error bars represent the standard deviation of the 

mean ∆∆Ct value. 
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6.4 Lapatinib quantification in plasma using LC-MS. 

 

In order to evaluate the level of drug that was present in the animals system, drug 

quantification was completed. Dr Sandra Roche completed the analysis. Blood 

samples were taken from the animals before they were sacrificed and the plasma was 

separated from the whole blood by centrifugation for 15 minutes at 2000g. The 

plasma was then stored at -80°C until ready for analysis. There were no samples 

collected for two mice (C4M3 or C4M4 day lapatinib treatment) as blood could not 

be sampled from the animal. The method was completed as set out in section 2.13.6.  

Duplicate technical samples were taken from each of the plasma samples, with the 

exception of the 1 day lapatinib treated mouse 4 as there was insufficient plasma 

volume, and were analysed. Table 6.5 shows the lapatinib concentrations that were 

determined in the plasma samples. There are no standard deviations as these 

concentrations were determined based on only two readings.  

 

Table 6.5: Lapatinib plasma concentration as determined using LC-MS. 

 

Treatment Mouse ID Plasma Concentration 

(ng/mL) 

±SD (n=2) 

Vehicle B4M1 below limit of detection n/a 

Vehicle B4M4 below limit of detection n/a 

Vehicle B4M5 below limit of detection n/a 

1 day Lapatinib A4M2 106.44 9.18 

1 day Lapatinib A4M3 5556.50 2331.04 

1 day Lapatinib A4M4 42.13 n/a * 

1 day Lapatinib A4M5 33.63 6.11 

5 day Lapatinib C4M2 51.39 3.53 

5 day Lapatinib C4M3 98.61 7.44 

*indicates that there was only one replicate analysed so no SD could be determined 
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The plasma concentrations of lapatinib in the vehicle samples were below the limit 

of detection, which was to be expected as no lapatinib was given to the animals. In 

the 1 day lapatinib treated A4M3 there was extremely high level of lapatinib in the 

plasma, with a concentration that was >5000ng/mL. This was an unexpected result 

and could not be explained. The two technical readings of these samples both 

showed high level of lapatinib in the plasma. It is possible that there was some form 

of sample handling error that could have resulted in the reading of a high level of 

lapatinib in this plasma sample. In addition to this it is also possible that the blood 

sample did not have sufficient anticoagulant in the tube during collection and as a 

result there was some clotting of the blood sample. The remaining samples all had 

levels that were between 33 (A4M5) and 106  (A4M2) ng/mL.  
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6.5 Discussion 

 

The use of xenograft models has gained importance in particularly in the clinical trial 

setting[19]. In the course of this in vivo study, two approaches were employed, a cell 

line-derived tumour as well as the implantation of a tumour fragment from a donor 

mouse into a recipient mouse.  

The BT474 cell line that was selected to generate the cell line-derived tumour had 

been successfully used in previous HER2+ tumour xenograft experiments in the 

literature. [20-23]. As the most lapatinib sensitive cell line in our breast cancer cell 

lines panel from the in vitro studies from chapter 3 and 4, it was deemed the most 

suitable for the in vivo investigation. In culture, the cell line has a tendency to be 

slow growing and can take a number of weeks to become confluent following 

thawing [24]. When the cells were implanted it was discovered that the tumours 

derived from these cells were also slow growing as, after 23 days, the tumours had 

only reached a volume of approximately 100mm
3
. This tumour volume was in line 

with what other BT474  in vivo studies determined at this time point [25, 26]. In 

comparison to an unrelated study that used the same method this tumour volume was 

quite small as at the same time point, the volume of tumours derived from the DLKP 

cell line had reached over 400-500mm
3
. In addition to the small tumour size, the 

mice suffered an unusual and potentially life threatening reaction to the estrogen 

pellets that were implanted in order to maintain the growth of the estrogen-dependent 

BT474 cells.  

The pellets were implanted 24 hours prior to the cells to allow the mice to recover 

from the anaesthesia needed for this procedure prior to tumour cell implantation. 

During daily monitoring it was discovered that a number of the mice had significant 
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hardening in the bladder region, approximately 20 days post implantation of the 

pellet and, upon closer observation, it was noticed that they were not producing 

normal volumes of urine. It was also observed that the urine that was produced was 

extremely dark in colour and was causing staining of the fur. It was decided that an 

exploratory surgery would be undertaken in order to determine the cause of these 

symptoms. Upon dissection of the chosen mouse, it was discovered that the bladder 

has become blocked with a large deposit of crystalline material that was preventing 

the animal from urinating (Figure 6.3). This adverse effect had not been described by 

the producer of the pellet, however, when a detailed literature search was performed 

it was found that this effect has been observed by a number of other researchers [8, 

27-29]. Kang et al., [9] described, that by using lower doses of the estrogen pellet 

that the number of deaths that they had observed could be reduced but that the lowest 

dose of the estrogen pellet that was available still resulted in some deaths. They also 

described similar build ups in the bladder, which coincide with the timeline that the 

mice within our study exhibited these adverse effects. 

In conjugation with these adverse estrogen effects and the slow growing nature of 

the tumours, it was not possible to leave the animals any more than 35 days post 

implantation with the cell line before they were sacrificed for use in the tumour-

derived model or before the 5 day lapatinib treatment could be initiated. If the 

animals were left any longer, it was feared that this could cause undue suffering and 

could also possibly result in them succumbing to death from the bladder stones and 

the loss of the experimental material. The saline treatment that was given to the 

animals, while it may have provided the animals with increased hydration, did not 

prevent or slow down the crystalline build-up that was found in the bladders. As the 

experiment progressed, it was hypothesised that prolonged use of this palliative 
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method might also possibly cause increased harm to the animals as it was increasing 

their fluid intake, which they did not have the ability to adequately  relieve due to the 

bladder blockage.  

The gene expression pattern that was determined for the cell line-derived tumours 

was evaluated using RNA extracted from a tumour from a vehicle treated mouse and 

a tumour from a 5 day lapatinib treated mouse. From the cell line analysis, it was 

expected that we would see an up-regulation in expression of RB1CC1(H/M), 

FOXO3a(H/M), NR3C1(H/M) and ERBB3(H) and a down-regulation in the 

expression of CCND1(H/M) in the lapatinib treated tumours. However, in this initial 

pilot with only material from one control and one test animal this pattern was not 

evident. The anticipated down-regulation of CCND1(H/M) was evident but all of the 

remaining genes were also all down-regulated. There are a number of rationales for 

why this may have been the case. It is possible that the tumours did not respond to 

the treatment and if that was the case, the response that was evident would coincide 

with profile of non-responding cell lines to lapatinib treatment. This non-response 

could have been due to drug preparation issues or possibly due to issues with the 

absorption of the drug. Due to the small size of the tumour, it was not possible to use 

some of the material to evaluate the levels of the drug in the tumour using LC-MS as 

described in section 6.4. This analysis would have allowed us to determine that there 

was sufficient drug present in the tumour to affect gene expression.   All previous 

analysis was done on triplicate cell line sample measurements for each gene; this 

analysis was only completed on one tumour sample and hence the finding could be 

subject to significant inaccuracy. In addition to the five assays that were used in the 

in vitro experiments, three human specific assays for RB1CC1(H), FOXO3a(H) and 

NR3C1(H) and one mouse specific assay FOXO3a (M) were also employed in the 
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analysis. These human specific assays were used in the hope of distinguishing 

tumour (human cells) from murine gene expression, and thereby help evaluate the 

tumour specificity of lapatinib-induced gene expression changes   

The probes used throughout the analysis were either human specific, murine specific 

or cross-reactive for both species. The original Taqman probes that were used in the 

in vitro analysis were (unintentionally) a mixture of human specific and cross-

reactive probes. Human specific probes were employed for the in vivo analysis to 

help evaluate the effect of potential murine stromal contamination of the tumour 

material. The species specific probes, although targeting the same genes as the cross-

reactive probes, target a different region of the gene sequence that has not been 

conserved in the different species. The targeting of the different region could account 

for some of the variability that was exhibited in the gene expression in the tumour 

derived xenograft samples following lapatinib treatments.  

Another objective of this arm of the study was to determine if the mice could cope 

with the dose of lapatinib they would receive for 5 days. The half-life of lapatinib 

has been determined to be approximately 24 hours and a steady state level of 

lapatinib occurred after five to seven days in human patients [30, 31]. It was these 

aspects of the pharmacology of lapatinib that determined the time points in the 

lapatinib treatment of 1 and 5 days. 200mg/kg was the maximum drug dose 

administered. There have been a number of in vivo studies where varying doses of 

lapatinib have been admistered [23, 32-35]. Had there been sufficient animals to use, 

it would have been ideal to conduct a dose range experiment on a number of 

different animals to evaluate any dose dependent correlations in the gene findings.  

However, due to time and experimental limitations our dose regime was based on 

previous literature. A dose of 200mg/kg was selected as literature suggested it would 
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provide a sufficient dose of the drug to infiltrate the tumour while being of limited 

toxicity to the mice over durations longer than we proposed to use. It was 

hypothesised that exposure of the tumours to this drug level for the durations chosen 

(particularly for the five day duration) should be roughly consistent with the 

maximal durations previously evaluated in vitro and result in maximal gene 

expression changes. 

The xenograft study, involved 14 mice that underwent treatment with the vehicle 

alone, lapatinib for 1 day or lapatinib for 5 days. As the estrogen pellets were also 

required in F2 phase of the study, where the tumour fragments from donor mice were 

transplanted into recipient mice, sub cutaneous injections of saline were given to the 

animals from approximately day 10 post implantation in order to encourage urine 

production, in the hope that extra fluid delivery would “flush” the bladder, 

preventing or delaying development of the bladder issues. Unfortunately all of the 

mice within each of the three treatment groups (vehicle, 1 day lapatinib treatment 

and 5 day lapatinib) developed the same bladder issues as those in the F1 phase of 

the study. As a result of this, the animals were treated with either vehicle or 1 or 5 

day 200mg/kg of lapatinib using oral gavage before the tumours had sufficient time 

to develop into larger tumours. All genes showed a differential upregulation 

following 1 day of treatment with 200mg/kg lapatinib with the exception of 

NR3C1(H/M) where no expression was detected in any sample. FOXO3a(H/M), 

CCND1(H/M) and NR3C1 (H) had the highest levels of differential expression. The 

upregulation of CCND1(H/M) was unexpected as it has been downregulated in 

response to lapatinib in all of the other studies completed.  When examining the 

differential expression of the genes following 5 days treatment with lapatinib, there 
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was a change in the level of expression when compared with the values from the 1 

day lapatinib treated tumours.  

There was a significant biological variation between the Ct values for the genes 

between each mouse which accounts for the large standard deviation values that are 

present (appendix 3).  The variation in the tumour response could be explained by 

differences in the tumour section that was implanted into the mice. The tumour that 

was generated by injecting BT474 cells sub-cutaneously into the mouse, was cut up 

in order to be transplanted into the donor animals. It is possible that there were 

differences in the characteristics of the different sections such as the relative level of 

murine stroma infiltration or a concentrated pocket of cells that could explain the 

biological variation. The size of the tumours could also have had an impact on the 

tumour response. The tumours that developed were quite small in size in comparison 

to the tumour that developed following implantation with the BT474 cells. As a 

result of the small size it is possible that there was limited amount of human tissue 

from which RNA could have been extracted. When the tumours were being dissected 

from the mice there were small amounts of murine tissue extracted simultaneously. 

This murine tissue contamination could have reduced the signal for the human 

specific probes.     

LC-MS/MS analysis was employed to measure the concentration of lapatinib in 

plasma samples from the animals. Measurements of the drug (table 6.5) indicated 

that there were measureable levels of the drug in the animals system following the 

oral gavage administration. In order to confirm that sufficient levels of the drug were 

present in the tumour, this analysis would need to be completed on tumour samples 

following treatment. Unfortunately this was not possible due to the small size of the 

tumours. It was believed that the levels measured in the blood indicated that 
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sufficient levels were present, that the tumour had internalised the drug to affect gene 

expression within the cancer cells. 

Examination of the gene expression changes in the lymph-nodes, the lung and the 

skin following 5 day lapatinib treatment was completed to determine if there was any 

similarity of the expression pattern in other animal tissue samples. As anticipated, it 

was not possible to determine the relative expression of the genes, including the 

endogenous control, GAPDH, that were targeted by the human specific assays in 

these murine tissues.. It was possible to evaluate Ct values for the FOXO3a(H/M) 

and CCND1(H/M) but as there as there was no GAPDH Ct values, it was not possible 

to generate relative expression data. Ct values for the murine specific FOXO3a and 

GAPDH were detected and hence the relative expression of the murine gene variants 

was measurable. In all of the tissue samples the gene expression was determined to 

be unchanged after lapatinib treatment as the RQ values were below 2 indicating that 

this normal tissue was not responsive to the circulating drug.  

It was promising to see that it was possible to evaluate the gene expression changes 

in both the cell line and tumour-derived xenograft models and with proportionately 

small amounts of tumour material.  In order to fully examine the gene changes in this 

in vivo setting it would be critical to repeat this experiment with a number of 

changes. At the initial implantation and generation of the tumours, it would be 

important to monitor and possibly reduce the dose of the estrogen that is required for 

the experiment or else use a non-estrogen-dependent HER2+ model for the 

xenografts. Kang et al., [9] has shown that low dose estrogen can still maintain and 

support growth of the receptor-dependent cell lines and can extend the life 

expectancy of the animals. It has also been shown that introducing the estrogen in 

the water could be a plausible way to ensure dosing of the animals at a low dose 
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[36]. It has also be shown that it may not be necessary to use estrogen to maintain the 

tumour growth [37]. The strain of mice that was used may also be important to look 

at. Although SCID mice have been evaluated as being more immune-compromised 

than nudes, they are not the only suitable model that could be used. They have been 

shown to have a tendency to develop lymphomas, which could impact results of the 

study [38]. Nude mice have been shown to be comparable for the generation of 

xenograft models [36, 39, 40]. Nude mice tend to have some other practical 

limitations though as they have been shown to not support metastasis studies[41], 

while SCID mice appear to be more supportive of metastasis studies [3].  A slightly 

larger cohort of animals would also need to be used for each treatment group, giving 

tighter statistical findings to the results and also that biological variation could be 

examined more. It would also be important to blind the study and RNA analysis. 

Blinding the study would mean that animals were transplanted with tumour sections 

from differing sources. If this was to be completed in human studies, it would 

involve treating tumour samples from different patients under the same treatment 

conditions and determining the mean relative gene expression.    

It was not possible to detect a signal for the endogenous control in the lymph-node, 

lung and skin tissue samples. There were also biological variations in the Ct values 

that were determined for the tumour samples. It would be necessary to optimise the 

expression of a more suitable endogenous control for any further study. Further 

control genes such as TFRC, ABL and PSMC4 as evaluated by McNeal, R.E et 

al.,[42] may be more suitable, however, optimisation would have be undertaken.   

In principle, this study indicated that the experimental approach is appropriate for the 

evaluations we were attempting. Tumours were developed using both breast cancer 

cell lines and also secondary tumour implants derived from those cell lines. The 
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mouse strain that was utilised, SCID, successfully supported tumour culture, with 

nearly a 100% tumour growth success rate. It was also evident that the mice could 

tolerate the dose and treatment regime of the targeted therapy lapatinib. Successful 

RNA extraction and Taqman RT-PCR analysis were completed on the tumour 

material.  Inclusion of a patient derived xenograft (PDX) model could also provide 

interesting data as it provides a more realistic representation of a human tumour due 

having been less modified by culture and since such tumours typically demonstrate a 

presence of human stromal tissue. Further in vivo studies would be required in order 

to fully examine the effect of the lapatinib on the gene expression pattern; however 

the preliminary results described here are a strong foundation to build additional 

studies on. These results do show a consistency with the initial premise of the 

experiment, which was to evaluate if the gene pattern identified in vitro can be assed 

in an in vivo model.  
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7.1 Discussion 

 

The aim of this project was to employ bioinformatics and in vitro and in vivo 

techniques to understand the molecular effect of targeted therapies on a panel of 

breast cancer cell lines. By investigating molecular gene expression changes, it was 

hoped to identify potential markers of response to a panel of HER2 targeted 

therapies. Development of novel targeted drugs is a major focus for the 

pharmaceutical industry; however, there is enormous need to identify a means to 

characterise which patients will benefit from treatment, thereby making such agents 

more useful and cost effective.  It was hoped that if we could identify markers of 

response this might be part of a potential route to ensure that only patients that will 

benefit from these expensive targeted therapies will receive the treatment.  

Extensive bioinformatic interrogation of microarray data from two HER2-positive 

lapatinib-sensitive cell lines treated with varying concentrations of lapatinib resulted 

in a list of 512 genes which were significantly altered in response to the drug. This 

list was generated using the Co-inertia analysis (CIA) technique, a multi-variant data 

analysis method that allows for the identification of trends or co-relationships in 

gene expression across multiple datasets which contain the same samples. This was 

the first time the analysis method had been applied to breast cancer cell lines or 

cellular drug response data.  From this list of 512 targets, a subset of 19 genes was 

examined using RT-PCR with five genes being shown to be differentially expressed 

in response to lapatinib and their magnitude of expression change was proportional 

to the sensitivity of the cell lines to the targeted drug [1]. When these five genes 

(RB1CC1, ERBB3, NR3C1, FOXO3a and CCND1) were examined in response to 

additional HER2 targeted therapies (afatinib, neratinib and traztuzumab), they 
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showed a similar gene expression pattern, indicating that the pattern identified has 

the potential to predict not only response to lapatinib but also, more broadly, HER2 

targeting therapies [2]. The gene expression pattern was not present when it was 

evaluated in a cell line (SKBR3-L) that has developed acquired resistance to 

lapatinib. When combined with our findings from a series of intrinsically sensitive 

and resistant cell models, this result suggested that the gene expression pattern has 

the potential for differentiating cell lines that are responsive, insensitive or have 

become resistant to lapatinib. Finally, when evaluated in a pilot in vivo study, the 

gene expression pattern was also largely evident in a xenograft model following 

treatment with lapatinib for both 1 and 5 days.  

The results generated from this project suggest that measuring gene expression 

changes in tumours treated with HER2-targeting drugs may have the potential to be 

utilised as a rapid, sensitive predictive marker of response to such therapies.  More 

generally, such an approach might potentially be adaptable to examination of the 

drug response of tumours to various drug treatments. In using this approach to 

determine response to therapies, it could be possible to avoid treating patients with 

expensive drugs that they will receive no benefit from and which could cause 

potentially serious side effects without any likely benefit. This could greatly improve 

overall treatment efficiency and efficacy. 
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7.2 Current state of the art in predictive cancer diagnostics 

 

7.2.1 Diagnostically Predictive Microarray technologies 

 

In examining the currently available prognostic or predictive biomarker approaches, 

there is clear diversity in the methodologies that have applied using each specific 

technology. 

Microarray technology has been utilised by a number of different groups that have 

identified gene expression patterns that can be used as either prognostic or predictive 

indicators of patient response. Oncotype DX, which involves a 21 gene signature, 

has been used in a prognostic manner to identify patients that are at risk of a 

recurrence of disease[3]. In the TAILOR X clinical trial the Oncoytpe gene 

expression signature was utilised to identify patients that would benefit from the 

inclusion of chemotherapy in their treatment regime[4]. MammaPrint uses a similar 

methodology [5] and in their approach a 70 gene signature has been used to  predict 

patients that were likely to suffer from metastasis from their original tumour. This 

assay is employed in the MINDACT trial, as with the TAILOR X trial, to predict 

which patients would benefit, from the inclusion of chemotherapy in their 

treatment[6]. Of interest, it has been suggested that the number of genes in both of 

these tests could be reduced as more detailed analysis has indicated that several do 

not make major contributions to the final therapeutic assessment and clearly in 

reducing the number of genes analysed there is potential to  reduce the cost of the 

test [7].  
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7.2.2 Diagnostically predictive gene mutation tests 

 

Examination of tumoural genetic mutations has also come to forefront of attempts to 

predict patients that will respond to certain chemotherapeutic or targeted therapies. 

The MassARRAY platform developed by Sequenom has been used to identify 

specific gene mutations that have been validated to predict to response to certain 

therapies. In combining PCR amplification steps with mass spectrometry (MALDI-

TOF) detection, the MassARRAY analyser 4 system has the capability of high 

throughput analysis of a large number of patient samples. In utilising this technology 

the following studies were able to determine the most suitable treatment regimens for 

patients based on the presence of gene mutations. Brevet, M et al., [8] utilised the 

MassARRAY technology to evaluate the presence of EGFR mutations in order to 

predict who would have an improved overall survival following erlotinib treatment, 

an EGFR inhibitor. Parker WT et al.,[9] determined that identification of BCR-ABL 

gene mutations following failure to respond to imatinib treatment in leukaemia 

patients, could predict which second line treatment would be the most suitable. Su, K 

et al.,[10] used the MassARRAY technology to identify the presence of the T790M 

mutation in lung cancer. Presence of this mutation has been associated with 

resistance to the EGFR inhibitors erlotinib and gefitinib. Identifying the presence of 

this mutation prior to or soon after beginning treatment could guide a more suitable 

treatment regime.  

With the advances in sequencing technologies, the ability to characterise a patient’s 

genomic tumour signature (including mutations etc.) more directly has become much 

easier and cheaper [11]. Next generation sequencing has proven to be a valuable tool 

in the deep sequencing of the tumour genome[12]. This high throughput technology 
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has the capability to sequence hundreds if not thousands of DNA sequences 

concurrently, cutting down on the time necessary to undertake this type of analysis 

[13].  It has the ability to be utilised in a number of studies, including SNP (small 

nucleotide polymorphisms), gene insertion and mutation, and copy number mutation 

analyses [11, 14]. While the technology has vastly improved in the last decade, there 

is still more work to be done before such technology can  form the basis of a routine 

diagnostic and deep sequencing of a cancer genome results in an extremely rich data 

set, which requires expert analysis or would not be clinically useful [15]. That being 

said, this technique has the capability to identify small somatic gene mutations that 

could have huge clinical implications in relation to suitable treatment options [16]. 

RNA-sequencing, also known as RNA-seq utilises next generation sequencing 

technologies and applies them to sequencing RNA transcripts. In using this method, 

researchers can investigate alternative gene splicing [17], post-translational changes, 

changes in gene expression [18], ribosomal changes [19] and examine different RNA 

populations such as miRNA and tRNA.  

 

7.2.3 Ex vivo diagnostic approaches 

 

In addition to these molecular biological approaches to evaluate tumour response, an 

ex-vivo methodology has also been developed to assess a patients response to 

different therapies[20]. Precision Therapeutics Inc. have developed ChemoFX to 

evaluate the response of patient samples to possible treatment regimens at varying 

drug concentrations using core biopsy samples [21]. Briefly, a primary culture is 

prepared from the patient biopsy by mincing the samples, which are then seeded to a 

culture flask with the correct medium and cultured until confluent. The cells are then 
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seeded to a 384 well plate and incubated for 72 hours with the relevant drug 

treatments. Survival fractions are calculated using untreated cells as controls and 

dose response curves are generated to evaluate the response index of the treatments. 

While this method was initially developed for the evaluation of the sensitivity of 

gynaecological cancers such as ovarian [22, 23] and cervical [24] cancer, this assay 

has also been applied to a number of breast cancer studies[25-28]. 

 

7.2.4 Sample preparation challenges  

 

When examining the different approaches for assessing predictive biomarkers, a 

common challenge that seems to affect all researchers is the quality of the samples 

on which the test will be performed. This challenge also relates to the validation and 

optimisation that is required in the preclinical evaluation of these markers. 

Historically FFPE tissue samples are the most common archival samples available, 

however, recent studies have indicated that this method of preservation is not 

conducive to the high quality RNA extraction necessary to evaluate mRNA and gene 

expression [29-31]. While there can be practical challenges with gene expression 

analyses from this type of material, it should be noted that while mRNA can be 

degraded in FFPE tissues, miRNA is generally not as impacted and as such archival 

material can be useful in miRNA studies.[32] While flash frozen samples would be 

more suitable for this type of analysis, the capability of hospitals to complete this 

method of preservation and store the collect samples is extremely restricted. In the 

Sequenom and Oncotype DX methodologies described in preceding paragraphs, 

FFPE is the recommended source material, while fresh tissue samples are preferred 

for the Mammaprint and ChemoFX methods.  The Sequenom method is a DNA 
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based technology and as DNA is not  as sensitive to degradation, FFPE tissues can 

be used successfully in this analysis. 

 

7.2.5 Regulatory relevance of companion diagnostics 

 

The drive to provide diagnostic tests for response to therapy has been continually 

increasing. The FDA have recently issued a directive, 21CFR809, calling for all 

pharmaceutical companies to incorporate companion diagnostics into their clinical 

and regulatory strategies[33] . Biomarker analysis and diagnostic development will 

now be required in conjunction with the pre-clinical and clinical trials with drug 

development [34]. However, it is not just regulatory bodies that are calling for 

companion diagnostics, national health services are also looking for tests that will 

indicate which patients will benefit from targeted therapy treatments. The National 

Centre for Pharmacoeconomics (NCPE) in Ireland and the National Institute of 

Health and Care Excellence (NICE) in the UK are responsible for determining if a 

drug should be made available to patients. Most of newly developed targeted 

therapies are expensive and have been seen to work in only a limited subset of 

potential patients. Without a companion diagnostic to determine which patients will 

benefit from treatment with these costly drugs, many of these therapies are not 

recommended to be made available for patients. In Ireland, the NCPE recently 

announced that it would not support the use of pertuzumab for treatment in HER2 

positive metastatic breast cancer patients due to cost. The monoclonal antibody has 

proven to be extremely successful in clinical trials when combined with trastuzumab 

[35]. In the UK, NICE announced that it would not support the use of lapatinib in 

patients with HER2 positive metastatic breast cancer. Without the ability to evaluate 
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who will benefit from treatment with the TKI, they determined that it was not cost 

effective to recommend the treatment [36]. These are just two examples of how, due 

to inability to determine benefit from treatment, successful therapies are not being 

utilised to their full capacity.  

In the area of HER2-targeted therapies, there are currently a limited number of 

approved companion diagnostics and none of these can be used to evaluate tumour 

response. The approved kits use either immunohistochemistry (IHC), fluorescent in 

situ hybridisation (FISH) or chromogenic in situ hybridisation (CISH) to evaluate 

HER2 status and expression [37].  However, only a subset of all HER2 

overexpressing patients will respond to HER2 targeting therapies. More broadly in 

the larger cancer field, utilisation of cancer gene expression changes as potential 

markers of response has been applied to a limited number of experimental studies. 

Wang, XD et al., [38] identified potential predictive gene expression markers of 

response to dasatinib which correlated with sensitivity of the cell lines used in their 

study. A similar approach, where gene expression changes were evaluated before 

and immediately after the start of treatment, was used by Modlich, O et al.,[39]. This 

group sought to determine if a comparison of gene changes before and after 

treatment could predict response to neoadjuvant chemotherapy regimens in patients 

with primary breast cancer. Their initial analysis indicated that this approach could 

be utilised for this purpose but that additional studies would need to be completed in 

order to fully evaluate which genes would be most suitable as markers.  
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7.2.6 Context of this work to the predictive diagnostic field 

 

The evaluation of gene expression changes has been used by a number of the 

methods described above; however, none of the commercial kits evaluate gene 

changes after a treatment has been given. All of the methods described above employ 

gene expression changes to determine if a patient should be given a treatment or not, 

but do not evaluate if the patient should remain on the treatment already started. The 

gene expression pattern described in this thesis has the potential to be utilised in 

determining if a patient should continue to respond to a HER2-targeting treatment 

that they have recently been given or not. For most clinicians the only indicator for a 

patient to be given one of the HER2 targeted therapies is that they demonstrate 

amplification of the HER2 gene. However, as indicated in previous chapters 

summarising the literature and the in vitro results described in chapters 3 and 4, the 

presence of HER2 is not necessarily an indicator of ultimate patient response to 

therapy.  In our models this is illustrated, for example, with our use of the 

MDAMB453 cell line which over-expressed HER2 but has an innate resistance to 

the effects of lapatinib.  

While this preliminary work has both demonstrated that there are clear alterations in 

the expression of a specific set of genes in response to HER2 inhibitor treatment in 

sensitive cells and possibly more broadly that this concept might therefore be 

adaptable to other agents, further research will be needed to take this to the stage of 

being a useful diagnostic.  In addition, while the findings of our in vivo study support 

our general hypothesis, there were practical challenges in our first experiment in this 

area.  Overcoming the estrogen-related bladder issues and thereby generating a larger 

amount of tumour material for evaluation in larger groups of animals will make for a 
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much clearer and more therapeutically-relevant understanding of our findings.  

Functional validation of our genes of interest will confirm their role in the cellular 

HER2 inhibitor response. It is also possible that there may be more suitable gene 

targets from the original list of 512 genes described, in particular from the 19 genes 

which were more closely examined in chapter 3. The roles of PIK3C3, CDKN1B 

and ALDH3A2 may warrant examination in parallel with our five gene response in 

any future in vivo study to determine if they may provide additional response 

information. A patient-derived xenograft, which has much closer architecture and 

biological characteristics to that of a human tumour, would also help to assess the 

relevance and significance of the gene expression changes described. 

One of the challenges that will have to be assessed in order to turn these gene 

changes into a useful diagnostic will be how the tumour samples will be taken and 

processed in a conventional patient/clinical context. As described in chapter 3, the 

minimum amount of RNA that is necessary to complete this type of analysis is as 

low as 20ng. A needle biopsy of a patient tumour would provide sufficient tumour 

material; however, processing of the sample will likely be very important. As the 

analysis is RNA-based, preventing contamination with genomic DNA and RNase 

degradation will be vital to ensuring that the quality of the sample remains at as high 

a standard as possible so that these contaminations do not interfere with the outcome 

of the analysis. So too will be our ability to utilise just tumour material, as our 

research has clearly shown that the response will not be evident in non-tumour 

material and a gene expression change signal could therefore be “crowded out” by 

RNA from non-tumour material. The capacity to use an automated processing step 

would remove some of the opportunity for these types of contamination to enter the 

samples. It appears likely that it will be necessary to complete a second biopsy of the 
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patient tumour within approximately one week of the treatment regime beginning 

which could cause some issues. In addition to patient discomfort and practical 

challenges with resampling from the same area, intra-tumour heterogeneity could 

have an impact on the analysis so it would be important that the second biopsy be 

taken close to the first one. It is conceivable that a second biopsy might not be 

required if the primary material could be kept alive and treated with clinically 

relevant concentrations of the test agent. Sampling of the gene expression before and 

after treatment would then be possible without having to go back to the patient and 

the associated inherent challenges of that approach.  Further in vivo investigation 

could help to remedy some of these challenges and fine tune the optimal approach. A 

suitable gene analysis platform would also need to be chosen. As there may only be 

five genes in the expression pattern, use of microarray technology and next 

generation sequencing would be an inefficient use of these platform types as well as 

being costly.  

In conclusion, there is an enormous imperative on biomedical science to identify 

diagnostics which predict or very rapidly measure tumour response in a patient if we 

are to improve the pharmacoeconomic viability of the emerging raft of new cancer 

pharmaceuticals and improve the selectivity of cancer treatment for our community. 

The work outlined in this thesis has identified a gene pattern that is predictive of 

response to HER2-targeted therapies in cell line models and a cell line derived 

xenograft. Using a multi-disciplinary approach which incorporated an emerging 

bioinformatic technique and molecular biological methods, the gene expression 

targets were successfully interrogated in a panel of cell lines with varying sensitivity 

to lapatinib and also in response to a number of different anti-HER2 therapies. By 

examining the genes in cells with varying sensitivities, we were able to determine if 
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the sensitivity of the cells to the treatment had an impact on the gene expression 

response, and hence whether the extent of alterations in our gene expression 

response could be used to predict the ultimate response of cells. In these HER2-

expressing cell line models, lapatinib, neratinib, afatinib and trastuzumab treatment 

generated a characteristic and specific gene expression response, proportionate to the 

sensitivity of the cell lines to the HER2 inhibitor. Characterisation of the induced 

changes in expression levels of these genes may therefore give a valuable, very early 

predictor of the likely extent and specificity of tumour HER2 inhibitor response in 

patients, potentially guiding more specific use of these agents.  Adoption of such an 

approach in the investigation of other therapeutics may also point the way for a 

whole new route and rapid methodology to assess treatment response. 
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7.3 Future Work 

 

 In order to functionally validate the gene targets, an siRNA study should be 

completed. By examining the toxicological impact of knocking down the 

genes in the cell line sub panel (BT474, SKBR3 and MDAMB453) the 

causative or associative role of the genes in response to lapatinib will be 

more apparent. This relevance and toxicological impact might also be 

examined  and assessed by looking at induced alterations in theexpression of 

genes (and their associated proteins) and even the targets of those genes 

downstream of the siRNA gene target.. A proteomic study using mass 

spectrometry methodology should be able to identify any major changes in 

the levels of such proteins. These roles should also be evaluated in the cell 

line panel in response to the additional HER2 targeted therapies (afatinib, 

neratinib and trastuzumab). This functional study will help to indicate if 

sensitivity of the cell lines to the targeted therapies has any impact on the 

roles of the genes in their response.   

  It would be informative to investigate the relevance of our gene expression 

pattern in HER2 over-expressing cell lines with acquired resistance to 

additional targeted therapies such as afatinib, neratinib or trastuzumab.  

 To further inform the in vivo results generated in this thesis the following 

adaptations of the described in vivo study (chapter 6) should be undertaken. 

Throughout the course of the experiment, the presence of the estrogen pellets 

resulted in bladder issues developing in a large percentage of the animals and 

this greatly impacted on our need to prematurely excise and analyse the 

tumours when it would have been preferable to leave them develop to a 
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larger size.  In order to determine if estrogen supplementation is necessary to 

support the growth of the tumours and if implantation was the most suitable 

administration method, a further study in which one group would not be 

given any estrogen supplementation, while another group would be given 

estrogen but in their water will be necessary. The in vitro identification of the 

gene expression pattern has indicated that this response pattern is indicative 

of response to not just lapatinib treatment but also additional HER2 targeted 

therapies. To evaluate that this observation translates to the in vivo setting, 

study evaluating gene expression response to these additional therapies 

should be carried out. Evaluation of the gene pattern in a HER2 positive 

patient-derived xenograft (PDX) should further inform the results that have 

already been generated in this study. A PDX better represents the molecular 

characteristics of the original tumour and reproduces more effectively the 

architecture of the primary tumour compared to cell line derived xenografts.  
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Appendix 1: Relative Expression (RQ) and Standard Deviation (SD) Values for breast cancer cell lines in response to lapatinib. (n=3) 

  12 Hours Lapatinib Preseeded Plates (Figures 3.6 and 3.7) 

  BT474 SKBR3 EFM192A HCC1954 MDAMB453 MDAMB231 

 RQ SD RQ SD RQ SD RQ SD RQ SD RQ SD 

RB1CC1 5.002 0.925 2.612 0.707 2.516 0.671 1.303 0.223 -1.273 0.595 -1.219 1.512 

FOXO3a 4.702 0.644 2.869 0.588 2.189 0.660 1.729 0.245 -2.226 0.543 -1.078 1.373 

NR3C1 4.215 0.699 2.624 0.746 3.446 0.123 1.285 1.337 -1.342 0.330 -1.097 0.378 

ERBB3 3.524 0.051 2.794 0.659 1.466 0.681 1.477 0.665 -1.118 0.416 -1.132 1.260 

PIK3C3 2.474 0.491 3.198 0.737 1.286 0.666 -1.036 0.642 1.066 0.338 -1.007 0.370 

ALDH3A2 3.370 0.279 2.593 0.732 1.369 0.220 -1.333 0.225 -1.123 0.715 1.246 0.481 

CDKN1B 2.366 0.351 3.044 0.428 1.316 0.504 1.113 0.753 -1.471 0.091 1.058 0.490 

CCND1 -3.256 0.412 -5.711 0.637 -2.180 0.217 -1.781 0.583 -1.341 0.182 -1.060 0.906 

  

  6 hour Lapatinib Treatment (Figure 3.9)  12 hour Individual Assay Lapatinib Treatment 

(Figure 3.8) 

  BT474 SKBR3 MDAMB453 BT474 SKBR3 MDAMB453 

  RQ SD RQ SD RQ SD RQ SD RQ SD RQ SD 

RB1CC1 18.021 1.119 10.172 0.773 1.592 0.218 37.214 1.007 5.339 1.162 1.221 0.724 

FOXO3a 6.235 1.069 2.974 0.304 -2.924 0.675 12.809 0.666 2.194 0.773 1.007 0.708 

NR3C1 6.871 0.613 2.791 0.726 -2.122 0.193 9.601 0.869 1.925 0.780 1.244 0.418 

ERBB3 6.096 0.576 4.518 0.478 -3.081 2.139 4.305 1.125 2.836 0.701 1.462 0.641 

PIK3C3 2.510 0.543 2.955 0.140 1.073 0.366 15.407 0.875 1.954 0.361 1.669 0.300 

ALDH3A2 3.468 0.456 4.040 0.571 -1.018 0.439 7.632 0.482 2.118 0.684 1.127 0.378 

CDKN1B 4.016 0.402 4.615 0.728 -1.387 0.317 4.362 0.612 3.205 0.762 -1.311 0.273 

CCND1 -3.614 0.959 -5.839 0.758 1.360 0.689 -2.031 1.478 -3.875 0.584 1.415 0.404 
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  24 hour Lapatinib Treatment (Figure 3.9)  36 hour Lapatinib Treatment (Figure 3.9) 

  BT474 SKBR3 MDAMB453 BT474 SKBR3 MDAMB453 

  RQ SD RQ SD RQ SD RQ SD RQ SD RQ SD 

RB1CC1 21.757 1.110 17.309 1.141 1.339 0.351 15.088 1.191 32.812 1.701 1.004 0.331 

FOXO3a 11.884 0.794 9.169 0.689 -2.113 0.448 8.433 1.681 13.244 0.929 -3.492 0.665 

NR3C1 9.603 0.458 3.216 0.901 -2.034 0.200 5.765 1.604 5.115 1.082 -2.618 0.109 

ERBB3 10.730 0.500 7.260 0.681 -1.036 0.271 8.789 0.693 9.645 0.781 -1.619 0.251 

PIK3C3 6.253 0.665 4.064 0.345 -1.072 0.380 5.406 0.732 5.615 0.839 -1.035 0.413 

ALDH3A2 11.307 0.355 5.334 0.758 -1.584 0.345 7.614 1.267 7.578 0.840 -2.436 0.495 

CDKN1B 7.358 0.887 5.565 0.707 -1.274 0.172 5.543 1.107 6.683 0.816 -1.268 0.279 

CCND1 -1.637 1.857 -3.465 0.535 1.082 0.335 1.117 0.655 -2.197 0.678 -1.032 0.408 

 

 

 

 

 

 

 

 



247 
 

RQ values for remaining 11 genes not used for further evaluation. 

 BT474 SKBR3 EFM192A HCC1954 MDAMB453 MDAMB231 

AKT1 -1.454 -1.580 -1.567 1.013 1.091 1.289 

BID -1.212 -2.017 -2.367 1.219 -1.288 -1.108 

E2F3 -1.697 -3.013 -2.574 -1.006 1.025 1.192 

EIF4E -1.218 -1.802 1.028 1.001 -1.038 1.003 

FKBP4 -1.155 -1.664 -1.759 -1.207 1.297 1.456 

MAPK9 -1.301 -1.478 -1.212 -1.124 -1.289 1.202 

PARP2 1.359 -1.316 -1.238 -1.355 1.000 -1.050 

PSMD13 1.159 1.362 -1.369 -1.453 -1.199 1.228 

SLC29A1 1.265 -2.071 -1.365 -1.812 -1.269 -1.014 

TFPT -1.086 1.362 -1.728 -1.443 -1.268 1.062 

CBFA2T2 1.850 2.812 1.101 1.135 1.024 1.366 
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Appendix 2: Relative Expression (RQ) and Standard Deviation (SD) Values for breast cancer cell lines in response to additional treatments (n=3) 

 12 Hour Neratinib Treatment (Figure 4.1) 36 Hour Neratinib Treatment (Figure 4.3) 

 BT474 SKBR3 MDAMB 453 BT474 SKBR3 MDAMB 453 

 RQ SD RQ SD RQ SD RQ SD RQ SD RQ SD 

RB1CC1 19.971 0.986 10.704 1.293 2.014 0.610 8.827 0.879 4.058 1.185 -0.844 0.667 

FOXO3a 8.924 0.647 3.916 0.786 -1.752 0.777 8.416 0.791 3.444 0.713 -1.402 0.506 

NR3C1 7.803 0.528 2.664 0.807 -1.645 0.712 5.225 0.371 1.707 0.834 -1.198 0.207 

ERBB3 8.619 0.142 5.040 0.602 -1.240 1.343 5.669 0.102 2.574 0.730 -1.369 0.092 

PIK3C3 3.684 0.055 3.221 0.417 1.055 1.560 2.194 0.256 1.215 0.448 -2.233 0.264 

ALDH3A2 5.975 0.301 4.409 0.691 1.342 0.067 4.145 0.106 1.643 0.814 -1.228 0.379 

CDKN1B 5.011 0.230 4.919 0.721 1.098 0.516 2.771 0.301 1.413 1.034 -0.967 0.408 

CCND1 -3.189 0.767 -3.725 0.695 1.091 0.825 -3.903 1.026 -3.657 0.631 -1.585 0.357 

 

  12 Hour Afatinib Treatment (Figure 4.2) 36 Hour Afatinib Treatment (Figure 4.3) 

  BT474 SKBR3 MDAMB 453 BT474 SKBR3 MDAMB 453 

 RQ SD RQ SD RQ SD RQ SD RQ SD RQ SD 

RB1CC1 25.653 0.929 4.827 1.262 1.266 0.423 27.855 0.955 10.790 1.301 -1.454 0.309 

FOXO3a 9.394 0.900 1.367 0.758 -1.104 0.496 33.545 0.823 14.978 0.863 -1.320 0.291 

NR3C1 10.966 0.583 3.512 0.838 1.129 0.278 87.956 0.631 24.008 0.864 3.540 0.283 

ERBB3 12.165 0.297 2.481 0.769 1.147 0.382 14.999 0.324 5.581 0.779 -1.875 0.235 

PIK3C3 26.396 0.218 1.760 0.522 1.280 0.650 6.054 0.374 2.652 0.381 -1.836 0.299 

ALDH3A2 15.982 0.162 2.275 0.885 -1.144 0.689 26.450 0.231 7.645 0.681 -2.716 0.385 

CDKN1B 7.955 0.324 2.675 0.868 -1.513 0.484 9.270 0.481 4.993 0.789 -1.497 0.245 

CCND1 -1.589 1.020 -6.070 0.645 1.606 0.429 -1.452 1.017 -2.512 0.656 1.130 0.379 
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  12 Hour Lapatinib with Capecitabine(Figure 4.5) 12 Hour trastuzumab Treatment (Figure 4.6) 

  BT474 SKBR3 MDAMB 453 BT474 SKBR3 MDAMB 453 

  RQ SD RQ SD RQ SD RQ SD RQ SD RQ SD 

RB1CC1 17.814 0.462 4.412 1.129 1.221 0.724 7.895 1.660 3.810 1.219 -1.217 0.079 

FOXO3a 6.673 0.232 1.483 0.829 1.007 0.708 3.077 0.856 1.001 0.796 -1.306 0.404 

NR3C1 8.756 0.463 3.853 0.797 1.244 0.418 4.419 0.636 2.202 0.757 -1.111 0.385 

ERBB3 7.562 0.518 2.276 0.796 1.462 0.641 3.970 0.328 1.655 0.743 -1.135 0.361 

PIK3C3 15.263 0.395 1.991 0.361 1.669 0.300 15.626 0.371 1.445 0.330 1.193 0.532 

ALDH3A2 10.575 0.769 2.050 0.814 1.127 0.378 8.125 0.294 1.689 0.695 -1.386 0.366 

CDKN1B 5.351 0.754 2.172 0.748 -1.311 0.273 4.783 0.322 1.999 0.663 -1.794 0.059 

CCND1 -2.591 0.607 -7.175 0.620 1.415 0.404 2.167 1.000 -1.362 0.628 1.897 0.300 

 

  12 Hour Dasatinib (Figure 4.7) 12 Hour Gefitinib Treatment (Figure 4.8) 

  BT474 SKBR3 MDAMB 453 BT474 SKBR3 MDAMB 453 

  RQ SD RQ SD RQ SD RQ SD RQ SD RQ SD 

RB1CC1 5.288 1.136 2.004 0.744 -1.783 0.346 1.250 0.968 2.350 1.169 -2.992 0.311 

FOXO3a 1.940 0.952 -1.412 0.752 -4.184 0.577 2.331 0.841 -2.402 0.786 -11.118 0.424 

NR3C1 6.206 0.843 2.599 0.655 -1.003 0.326 -2.216 0.700 -1.418 0.806 -4.514 0.304 

ERBB3 1.616 0.366 -1.497 0.803 -3.810 0.557 -3.723 1.090 -1.320 0.591 -6.019 0.227 

PIK3C3 1.676 0.460 -1.109 0.363 -2.230 0.256 -2.670 0.369 -1.703 0.395 -3.741 0.437 

ALDH3A2 1.680 0.362 -1.102 0.763 -5.904 0.189 -1.080 0.232 1.074 0.657 -5.986 0.408 

CDKN1B 2.718 0.521 1.495 0.777 -2.434 0.299 -2.328 0.536 -1.305 0.630 -5.503 0.308 

CCND1 1.360 1.096 1.093 0.457 1.079 0.274 -13.438 1.221 -3.787 0.515 -2.801 0.319 
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  12 Hour Epirubicin Treatment (Figure 4.9) 

  BT474 SKBR3 MDAMB 453 

  RQ SD RQ SD RQ SD 

RB1CC1 -1.358 1.232 1.278 1.229 -4.842 0.050 

FOXO3a 1.102 1.122 -4.068 0.794 -13.298 0.349 

NR3C1 -4.982 0.885 -2.224 0.859 -6.321 0.323 

ERBB3 -4.757 0.614 -2.084 0.614 -14.388 1.320 

PIK3C3 -4.172 0.660 -2.195 0.391 -5.285 0.588 

ALDH3A2 -2.857 0.493 -1.569 0.743 -8.458 0.480 

CDKN1B -3.161 0.822 -1.679 0.751 -8.046 0.296 

CCND1 -6.443 1.399 -3.583 0.629 -3.212 0.328 
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Appendix 3:  

Ct values for each of the genes in the vehicle, 1 day lapatinib and 5 day lapatinib treatment in each animal. 

 Vehicle  1 day lapatinib treatment  5 Day lapatinib treatment 

 Ct m1 Ct m4 Ct m5  Ct m1 Ct m2 Ct m3 Ct m4  Ct m2 Ct m3 Ct m4 Ct m5 

RB1CC1 (H/M) * 32.998 28.215  * 34.625 33.771 32.855  32.075 35.455 31.298 * 

FOXO3a (H/M) 30.658 30.134 29.307  30.569 31.204 29.922 31.461  32.312 30.135 29.675 31.968 

NR3C1 (H/M) * 34.563 30.030  * * * *  32.961 * * * 

ERBB3 (H) * 32.114 27.573  * 33.444 32.461 31.467  30.999 34.730 30.742 * 

CCND1 (H/M) 31.068 29.467 28.485  29.458 31.405 29.007 30.808  31.857 30.007 29.540 31.880 

RB1CC1 (H) * 33.047 28.901  * 33.813 33.439 32.331  32.025 * 31.351 * 

FOXO3a (H) * 30.932 26.789  * * 34.199 30.157  30.061 33.753 29.511 33.803 

NR3C1 (H) * 33.753 28.597  33.286 29.970 29.489 32.502  31.079 * 33.344 * 

FOXO3a (M) 30.653 27.876 29.459 

 

28.004 28.549 27.877 28.462 

 

30.407 28.420 28.105 28.849 

GAPDH (M) 21.913 21.509 25.816  22.622 23.498 23.621 23.531  26.930 22.752 22.452 25.417 

              

              

GAPDH * 26.488 21.843  31.096 28.556 28.153 26.577  26.651 28.845 24.570 31.921 

*indicates that the Ct values was above 35 and as such was not considered expressed and was excluded from the calculations. 
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 Skin Ct values 

 Vehicle 5 Day lapatinib treatment 

 Ct m1 Ct m4 Ct m5 Ct m2 Ct m3 Ct m4 Ct m5 

FOXO3a (H/M) 29.19784 30.5586 30.87789 29.6879 28.15496 28.67739  * 

CCND1(H/M) 29.92199 30.90163 31.42274 30.681 29.507 29.628  * 

 Lung Ct values 

 Vehicle 5 Day lapatinib treatment 

 Ct m1 Ct m4 Ct m5 Ct m2 Ct m3 Ct m4 Ct m5 

FOXO3a (H/M) 27.51486 28.1907 28.1907 27.51962 27.42548 27.72178 27.54139 

CCND1(H/M) 27.65937 27.95 27.92429 28.22269 27.47478 27.96587 27.6164 

 Lymph-node Ct values 

 Vehicle 5 Day lapatinib treatment 

 Ct m1 Ct m4 Ct m5 Ct m2 Ct m3 Ct m4 Ct m5 

FOXO3a (H/M)  #  # #  29.52675 29.16434 29.41843 29.07615 

CCND1(H/M)  # #   # 28.44526 28.44598 28.3298 28.10955 

*indicates that the Ct values was above 35 and as such was not considered expressed and was excluded from the calculations. 

#indicates that RNA extraction was not completed on these samples 
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