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Abstract 

 

The Morita-Baylis-Hillman (MBH) reaction is one of most synthetically versatile 

carbon-carbon bond-forming reactions. It has been used to generate building blocks for 

synthesis of many heterocycles, drug molecules and natural products. This reaction fa-

cilitates the coupling of an aldehyde (or activated ketone) with an electron deficient al-

kene, catalysed by nucleophilic bases (tertiary amines or phosphines). Each MBH 

adduct contains several functional groups with the potential to undergo a variety of 

organic transformations involving regio- and stereochemical control.  

Recently, considerable efforts have been dedicated to the development of asymmetric 

MBH/aza-MBH reactions. Significant progress have been made in the design and 

synthesis of new chiral catalysts based on the concept of bi/ multifunctionality 

achieving high enantioselectivity. 

However, as of yet there is no single catalyst which is capable of tolerating a broad 

range of substrates. Thus, the development of effective catalysts for the asymmetric 

MBH/aza-MBH reactions that are applicable to all or at least to most of the commonly 

used activated alkenes and electrophiles is of the upmost importance. 

The primary objective of this project was to realise the development of an effective 

stereoselective MBH catalyst. In our novel system, a Catalytic Module, CM (with both 

a catalytic centre and a component at which hydrogen-bonding can occur), and a 

Selectivity Inducing Module, SIM (consisting of both hydrogen-bonding scaffold and a 

site through which selectivity, such as enantioselectivity, may be induced), were bound 

through hydrogen-bonding interactions to give a modular catalyst.  

The focus of this research was on the design and preparation of this system. Computa-

tional modelling was used in the design of the module predicting its interaction. Follow-

ing design of the modules, they were synthesised using robust organic syntheses to pro-

duce both modules.  Following synthesis, the catalyst was applied in test MBH reactions 

for initial catalysis screening. 
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1. Introduction 

1.1. Organocatalysis 

 

Nature utilises weak non covalent interactions like hydrogen bonds, in the construction 

of three-dimensional biologically active structures, such as DNA, proteins and enzymes. 

Chemical transformations catalysed by enzymes are central to biology, with these great-

ly accelerating both the rate and specificity of a reaction. Chemists have interpreted a 

great deal from the mechanisms of action of enzymes and have applied these principles 

in the development of new synthetic strategies, inspiring the use of organic molecules as 

catalysts for organic reactions.  

In recent years, it has been established that small organic molecules can be highly 

selective and efficient catalysts.  A new concept has emerged in which metal-free 

organic molecules are used as catalysts in organic reactions.
[1,2]

                                                                                            

Bifunctional organocatalysis combine hydrogen bond donors and Lewis bases, within a 

single compound to accelerate organic reactions, while also providing selectivity. 

Hydrogen bonding is a key contributor and plays an important role in stabilising the 

reactive intermediates and in modulating the reactivity. 

As a result, organocatalysis is gaining more and more recognition from the scientific 

community, thus becoming an important research area in asymmetric synthesis, 

complementing bio- and metal-catalysis. The term organocatalysis was introduced by 

MacMillan in 2000, 
[3]

 and is used to describe the acceleration of chemical reactions 

with a substoichiometric amount of a small organic compound which does not contain a 

metal atom.
[1]

 This field was driven by the necessity to develop environmentally 

friendly methodology that can eliminate the need for potentially toxic metal-based 

catalysts.   

Organocatalytic reactions show great resemblance to metal- and enzyme catalysed 

reactions in selectivity and performance, but present some potential advantages.
[2]

                                                                                        

They are inexpensive, readily available in a range of quantities, suitable for industrial-

scale reactions and they are often more stable than enzymes or other bioorganic 

catalysts. Due to their robustness they generally do not require demanding reaction 

conditions like inert gas atmosphere, special reaction vessels, or ultra-dry reagents and 

solvents. 
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Organocatalytic reactions look back on a long history. Pizarrello and Weber proposed 

that this metal free type of catalysis played a key role in the formation of chiral prebiotic 

key building blocks for life, such as sugars, and thus allowed the introduction and 

spread of homochirality in living organisms.
[4]

                                                                                        

According to this hypothesis, it was proposed that enantiomerically enriched amino 

acids, such as alanine and isovaline, were present with up to 15% ee in carbonaceous 

meteorites that landed onto earth in its early history. These natural amino acids catalyse 

the asymmetric synthesis of sugar derivatives with significant enantiomeric excess from 

glycolaldehyde and formaldehyde. 

 

 

Scheme 1: The Hajos-Parrish-Eder-Sauer-Wiechert reaction. 

 

In the early 1970s, proline as an organocatalyst was explored for the first time in the 

intramolecular aldol reaction by the industrial groups of Eder, Sauer and Wiechert at 

Schering,
[5]

 and Hajos and Parrish at Hoffmann-La Roche.
[6]

                                                                                  

The Hajos-Parrish-Eder-Sauer-Wiechert reaction was probably the most famous small 

organic molecule-catalysed asymmetric reaction until the early 1990s (Scheme 1). 

 

 

Scheme 2: L-Proline-catalysed intermolecular aldol reaction reported by Barbas and 

List 
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Despite this early success it took some time for the scientific community to 

acknowledge this research area. It wasn’t until the promising potential of 

organocatalytic transformations were highlighted in two publications, which appeared 

almost simultaneously. In 2000, List and Barbas discussed their studies on the enamine 

catalysis of intermolecular asymmetric aldol reactions (Scheme 2) 
[7]

                                                                                 

with the other from the MacMillan et al. on iminium catalysis of enantioselective Diels-

Alder reactions (Scheme 3). 
[3]

                                                          

 

Scheme 3: First enantioselective organocatalytic Diels-Alder reaction reported by 

MacMillan et al. 

 

Due to the large amount of organocatalytic reactions reported in literature in recent 

years, a division will be adopted in this discussion that mirrors the classification for 

organocatalytic processes which was introduced by List. 
[8]

                                                                               

It categorises Lewis base and Brønsted acid catalysis into groups according to their 

mechanisms. Not all organocatalytic processes can be described with these general 

reaction mechanisms, but this division can give a brief overview of the large diversity of 

asymmetric organocatalytic reactions reported in literature. 

These catalysts initiate their catalytic cycles by either providing or removing electrons 

or protons from a substrate or a transition state. Most of the organocatalysts published to 

date work via a Lewis base mechanism (Scheme 4), although the use of Brønsted acid 

catalysts has recently grown.
[9]

  Incorporation of both a Lewis base and Brønsted acid 

has led to a new class of bifunctional catalysts  which are expected  to ultimately deliver 

extremely active catalysts that can rival the efficiency of enzymes. A bifunctional 

catalyst contains two distinct functionalities within the same molecule;   activating 

either the electron donor or the acceptor thus speeding up the overall rate of the 

reaction.  
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1.1.2. Lewis Base Catalysis 

 

The general catalytic cycle for reactions catalysed by Lewis bases (B :) is shown in 

Scheme 4. The cycle starts with a nucleophilic addition of Lewis base (B :) to substrate 

S, which is converted into adduct B
+
-S

-
. This adduct then undergoes a transformation to 

form the intermediate species B
+
-P

−
, from which the product (P) is released. The cata-

lyst is regenerated and re-enters the catalytic cycle for further turnover. 

 

 

Scheme 4: General mechanism for Lewis base-catalysed reactions. 

 

The majority of organocatalysts tend to react as heteroatom-centered N, O-, P-, and S- 

Lewis bases, which transform substrates into typical reactive intermediates such as 

iminium ions, enamines, acyl ammonium ions, and ammonium enolates. 

In iminium catalysis, the active species is an iminium ion formed by the reversible reac-

tion of an amine catalyst with a carbonyl substrate (Scheme 5). In the first iminium ca-

talysis reaction, MacMillan reported the reaction of α, β-unsaturated aldehydes and ke-

tones with dienes, using the chiral imidazolidinone catalyst (Scheme 3). The condensa-

tion of the α, β -unsaturated aldehyde with the enantiopure amine catalyst forms a reac-

tive iminium ion with lowered LUMO energy, which reacts with the diene leading to a 

Diels–Alder cycloaddition. With lower LUMO energy, the iminium ions are more elec-

trophilic than the corresponding aldehydes or ketones, and thereby more effectively ac-

tivate the adjacent C–C–double bond for 1, 4-addition or pericyclic reactions.  
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This concept of activating unsaturated aldehydes into more reactive intermediate 

iminium ions, has been used in reactions such as [3+2]-cycloaddition reactions 
[10]

                                                                              

and Mukayiama-Michael reactions.
[11]

                                                                   

 

 

Scheme 5: Formation of iminium and enamine intermediates. 

 

Enamine catalysis involves an enamine intermediate formed via deprotonation of an 

iminium ion, which can react with various electrophiles or undergo pericyclic reactions. 

The first example of asymmetric enamine catalysis was the Hajos–Parrish–Eder–Sauer–

Wiechert reaction (Scheme 1). Proline and a carbonyl compound condense to form a 

nucleophilic enamine. The incoming electrophile is directed by hydrogen bonding to 

proline’s carboxylic acid. 

List and Barbas described the first intermolecular aldol reaction, shown in Scheme 2 

that proceeds through the enamine intermediate.  This then undergoes an aldol-type 

addition with aldehyde to give the product. 

The Enamine catalysis concept has been further extended to other reactions like the 

Mannich-,
[12]

 and the Michael reaction.
[13]

 Other Lewis base-catalysed processes mainly 

proceed through acyl-ammonium 
[14]

 and ammonium-enolate intermediates 
[15]

                 

such as the Morita-Baylis-Hillman (MBH) reaction (see in chapter 1.2). 
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1.1.3. Brønsted Acid Catalysis 

 

Brønsted acid-catalysed reactions are initiated with (partial) protonation of the substrate 

(S :). The resulting adduct HS
+
A

-
 is converted into the adduct HP

+
S

-
, which undergoes 

an elimination reaction to release the product (P) and the catalyst (A-H) (Scheme 6). 

 

 

Scheme 6: General mechanism of Brønsted acid catalysis. 

 

Generally chiral Brønsted acids can classified into two categories. Weakly acidic 

Brønsted acids, such as thiourea, (12) and TADDOL (13) derivatives, (pka >10) and 

stronger Brønsted acids, such as BINOL (14) derivatives and phosphoric acid (15) (pka 

<10). 

 

 

Scheme 7: Examples of chiral Brønsted acid catalysts. 

 

Jacobsen and co-workers used urea- and thiourea compounds (12) as chiral Brønsted 

acids to activate carbonyl- and imine groups in a variety of reactions like the Mannich-

[16]
 ; and Strecker reactions. 

[17]
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Rawal et al. reported the use of TADDOL derivative 13 as chiral catalysts for the 

enantioselective hetero-Diels-Alder reaction of aldehydes with dienes.
[18]

 They reacted 

benzaldehyde and diene in the presence of TADDOL to form the cycloadduct as a 

single diastereomer, which was converted to dihydropyrone on treatment with acetyl 

chloride. Protecting one or both hydroxy-groups leads to a decrease in activity and 

selectivity, indicating the involvement of both OH groups in the activation of the 

aldehyde. 

The Japanese groups of Akiyama et al. and Terada et al. discovered that strong acids 

can be efficient asymmetric catalysts alone.
[19]

 As compared to hydrogen-bonding type 

Brønsted acid catalysis, protonation of the substrates is likely to occur in these cases. 

This series of chiral phosphoric acids has been applied to a variety of reactions such as 

the Pictet-Spengler-
[20]

 and aza-Diels- Alder reaction. 
[21]
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1.1.4. Bifunctional Acid-Base Catalysis 

 

Recently, several groups have shown that the incorporation of a basic and an acidic 

moiety in one chiral molecule can facilitate a synergistic interaction speeding up the 

overall rate of the reaction, while also providing selectivity. Bifunctional catalysts have 

enabled effective transformations, which cannot be achieved by a single functional cata-

lyst.  

 

Shibasaki et al. developed the concept of multifunctional catalysis, employing catalysts 

containing both Lewis acidity and Brønsted basicity, using lanthanide complexes. 
[22]

         

An early example of a bifunctional chiral organocatalyst was reported by the group of 

Takemoto et al, activating nitro compounds for the enantioselective aza-Henry and 

Michael reactions.
[23]

 They used catalyst 18 which contains an amine moiety and a 

thiourea group, both needed for high yield and selectivity (Scheme 8). The amino group 

activates the nucleophile via (partial) deprotonation, while the thiourea group 

coordinates to the nitro function of the α, β-unsaturated olefin via hydrogen bonding.  

 

 

 

Scheme 8: Michael addition of diethyl malonate to trans-β-nitrostyrene. 

 

 

Since then, bifunctional organocatalysts have been successfully applied to a wide range 

of reactions like the Henry- 
[24]

 , and Strecker reactions.
[25]

 Another reaction employing 

multifunctional/bifunctional chiral catalysis is the Morita-Baylis-Hillman reaction and 

its aza-counterpart, which will be discussed in detail in section 1.2. 
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1.2. Morita-Baylis-Hillman Reaction 

1.2.1. General Aspects 

 

Carbon-carbon bond formation and functional group transformations are two of the 

most fundamental reactions in present day synthetic organic chemistry. In the last num-

ber of years, much effort has gone into not only the development of new methodologies 

for these transformations but also in the development of new catalysts, reagents, and 

strategies for these reactions, often involving the concepts of atom economy and selec-

tivity. With the importance of generating chiral centres throughout bioactive compounds 

for the pharmaceutical industry, atom economy and selectivity (chemo-, regio-, stereo-) 

are of a premium requirement in any efficient reaction. 

Due to the MBH reactions atom economy and ability to produce highly functionalised 

compounds with a newly created chiral centre, it has become increasingly important as a 

method for carbon–carbon bond formation. 

 

1.2.2. Origin and Development 

 

The Morita-Baylis-Hillman (MBH) reaction is one of most synthetically versatile 

carbon-carbon bond-forming reactions. It has been used to generate building blocks for 

the synthesis of many heterocycles, drug molecules and natural products. 
[26]

                                                             

Typically it takes place between an aldehyde and an activated alkene, in the presence of 

a tertiary base/ nucleophile (Scheme 9). (If the aldehyde is replaced by an imine the 

reaction is called aza-Morita-Baylis-Hillman (aza-MBH) (see section 1.3) reaction, 

which leads to very useful α-methylene-β-amino products. Each MBH adduct contains 

several functional groups with the potential to undergo a variety of organic 

transformations involving regio- and stereochemical control.  

 

Scheme 9: General MBH Reaction. 
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The origin of the reaction dates back to 1968, when Morita et al., who originally worked 

with phosphine catalysts, demonstrated that the reaction of acrylonitrile or methyl 

acrylate with various aldehydes under the catalytic influence of PCy3 led to densely 

functionalized products (Scheme 10).
[27a]

 However the reaction was not immediately 

utilised due to low conversion rates.  

The reaction also takes its name from A.B. Baylis and M.E.D. Hillman, Baylis, who in 

1972, reported a similar reaction between acetaldehyde and ethyl acrylate or 

acrylonitrile in the presence of catalytic amounts of Lewis bases such as DABCO to 

obtain similar products to those which Morita had obtained earlier.
[27b]

 The main 

difference in their report was that the use of DABCO instead of the phosphine 

derivative now meant that the adduct could be obtained in a much higher yield (Scheme 

10).  

 

 

Scheme 10: Original patents of the MBH Reaction. 

 

It was not however until the 1980s, that organic chemists fully explored the reactions 

utility after Drewes and Emslie, in 1982 applied an MBH adduct in the synthesis of 

integerrinecic acid,
[28]

  and then in 1983 Hoffman and Rabe reported another MBH 

adduct in the synthesis of mikanecic acid.
[29]

  This led to the publication of the first 

review in 1988 by Drewes and Roos.
[30]
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1.2.3. Mechanism 

 

Based on pressure dependence, rate, and kinetic isotope effect data, the first mechanism 

was proposed by Hill and Isaacs showing a reversible Michael addition of a 

nucleophilic catalyst to an activated alkene to generate a zwitterionic 3- ammonium 

enolate. Nucleophilic addition of this enolate onto an aldehyde in aldol- type coupling 

gives a second zwitterionic intermediate, which undergoes an intramolecular proton 

transfer with elimination yielding the product and liberating the catalyst (Scheme 11). 

Initially Step 2 was suggested as the MBH rate-determining step RDS, due to a low 

kinetic isotopic effect (KIE = 1.03 ± 0.1). 
[31]

                  

 

 

Scheme 11: Simplified mechanism for the MBH reaction. 

 

This mechanism was supported by Bode and Kaye through kinetic data and was initially 

the most commonly accepted mechanism. Kaye et al. reacted pyridine carboxaldehydes 

with acrylate esters in the presence of DABCO in CDCl3. They monitored the reaction 

via NMR spectroscopy and observed a first-order dependence in catalyst, aldehyde, and 

acrylate, thus proposing a mechanism that contained the intermediates shown in Scheme 

11 with the aldol-coupling as the RDS.
[32]
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Further experimental evidence was provided by Drewes et al. They reacted methyl 

acrylate with 2- hydroxybenzaldehyde in DCM at 0
o 

C in the presence of DABCO and 

isolated the second intermediate, coumarin salt, which was confirmed by X-ray 

crystallography (Scheme 12).
[33]

                                                         

 

 

Scheme 12: Coumarin salt isolated by Drewes et al. 

 

Eberlin et al. also intercepted all of the key intermediates in the mechanism (Scheme 

11) using ESI-MS/MS.
[34]

 They examined reactions of two aldehydes, thiazole-2-

carbaldehyde and 4-nitrobenzaldehyde with methyl acrylate and DABCO in MeOH at 

room temperature. 

McQuade et al. re-evaluated the mechanism on the basis of rate and isotope data, due to 

unanswered questions in previous literature. They found that the reaction was first order 

in acrylate and DABCO, but second order in aldehyde in the reactions of various 

aromatic aldehydes with methyl acrylate, catalysed by DABCO, in polar, non-polar, and 

even protic solvents.
[35, 36]

 A large kinetic isotope effect was observed when α- 

deuterioacrylate was used in the DABCO catalysed reaction of methyl acrylate and 4-

nitrobenzaldehyde (KIE, KH/KD= 2.2–5.2 depending on the solvent used), with a large 

inverse isotope effect (KH/KD=0.72–0.80) when α -deuterio-4-nitrobenzaldehyde was 

employed.  Observation of a KIE greater than 2 indicates a deprotonation in the RDS. 

These results strongly suggested that deprotonation of α-H (D) atom of 27 (step 3) was 

rate-limiting (Scheme 11). 

Based on this new data, McQuade et al. proposed a new mechanism, for the proton-

transfer step. They suggested addition of the second zwitterionic intermediate onto a 

second molecule of aldehyde forms a hemiacetal intermediate/alkoxide, which 

undergoes proton transfer via a six membered transition state. The mechanism features 
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all of the intermediates previously proposed but now includes the formation of a 

hemiacetal that subsequently goes on to eliminate DABCO after proton transfer. The 

new mechanism also provides an explanation for the formation of dioxanone products. 

The proposed hemiacetal intermediate, 33, can cyclize to yield a dioxanone product 35 

(Scheme 13). 

 

 

Scheme 13: Formation of the dioxanone by-product proposed by McQuade et al. 

 

Aggarwal, Fulford and Lloyd-jones also proposed that the proton transfer step was the 

RDS based on their kinetic studies.
[37]

 They investigated the reaction of ethyl acrylate 

with benzaldehyde catalysed by quinuclidine without solvent. 

They observed at the start of the reaction, proton transfer was the RDS, when conducted 

in aprotic media as noted by McQuade. Below 20 % conversion, the non-

deuterioacrylate was consumed more, but as the reaction proceeded however, the ratio 

of non-deuterated to α-deuterated ethyl acrylate remained constant.  The proton migra-

tion becomes increasingly efficient which results in a shift of the RDS from the proton 

transfer to the aldol-type coupling in step 2 (Scheme 11).  

It was proposed that the product serves as a hydrogen-donating co-catalyst to assist the 

proton transfer from the α-keto methine to the alkoxide via a six-membered transition 

state 37 (Scheme 14) thus making the reaction autocatalytic. This transition state also 

explains the large rate enhancements in the MBH reaction caused by water and other 

protic solvents or additives.                                                
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Scheme 14: Proton-transfer mechanism proposed by Aggarwal et al. 

 

At the end of the report, the authors proposed a model for enantioselective MBH reac-

tions with bifunctional chiral catalysts containing a Lewis basic and a Brønsted acidic 

moiety. Since the second intermediate of the MBH reaction, 38 contained two centres of 

chirality; four diastereoisomers could be formed with an enantiopure catalyst. They 

suggested that all four diastereomers are formed in the reaction, but only one has the 

hydrogen-bond donor suitably positioned to allow fast proton transfer, while the other 

diastereomers revert back to starting materials. This implied that the proton migration 

step determined the enantioselectivity of the reaction (Scheme 15).  

 

 

Scheme 15: Model for enantioselective MBH reactions proposed by Aggarwal and 

Lloyd-Jones (Nu
+
∩OH = chiral bifunctional catalyst). 

 

Sunoj and Roy reported the first ab initio and DFT investigations on the mechanism of 

the MBH reaction.
[39]

  Initially acrolein was reacted with formaldehyde in the presence 

of trimethylamine (NMe3) in order to establish the reaction profile (model system). 

Once established, the reaction profile was then applied to a real system in which MVK 

was reacted with benzaldehyde catalysed by DABCO.  They showed that the rate-
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limiting step was the intramolecular proton transfer in the second zwitterionic 

intermediate 27 (Scheme 11). The intramolecular proton transfer was found to be the 

highest point on the reaction profile, with the activation barrier for C-C bond formation 

in the reaction between the initial zwitterion and benzaldehyde to be 20.2 kcal mol
-1

 

lower. The CBS-4M, MP2/6-31+G* and mPW1K/6-31+G* levels of theories were used 

in the calculations and solvation effects were accounted for by use of the continuum 

dielectric method included in the polarisable continuum model (IEF-PCM).  

Subsequently, Aggarwal, Robiette and Harvey carried out an extensive computational 

investigation which supported their own kinetic observations and those of McQuade in 

regard to the proton transfer step.
[40]

  Their study focused on the reaction between 

methyl acrylate and benzaldehyde catalysed by a tertiary amine in both the presence and 

absence of alcohol. 

In the presence of methanol it acts as a hydrogen-bond donor to activate the reaction by 

allowing the proton-transfer step to occur via a concerted lower-energy mechanism in 

which one molecule of alcohol (or water) can act as a shuttle to transfer the proton from 

the α-position of 27 to the alkoxide of the second zwitterionic intermediate.  

Based on the proposals by McQuade and Aggarwal that the proton-transfer step is the 

RDS, Eberlin et al. performed complementary investigations on the MBH reaction using 

ESI-MS/MS techniques with the aim of intercepting and characterising the 

intermediates demonstrated in the key rate-determining proton-transfer step.
[41]

                                               

They monitored the DABCO-catalysed reaction of methyl acrylate with excess benzal-

dehyde without solvent and were able to intercept the intermediate of type 33 proposed 

by McQuade (Scheme 13).  When the MBH reaction was studied using the same exper-

imental protocol, but adding β-naphthol (external proton source), they intercepted an 

intermediate of type 37 (Scheme 14), supporting Aggarwal’s proposal. 

Eberlin et al. also investigated the MBH reaction of formaldehyde and acrolein in the 

presence of NMe3 as catalyst and MeOH as solvent.
[42]

 Their results clearly showed that 

the proton transfer step is the RDS and that MeOH is important as it acts as a proton 

shuttle between the carbon and oxygen centres, as Aggarwal et al. had proposed earlier. 

The group also confirmed in non-protic solvents the reaction appeared to follow a 

different pathway involving a hemiacetal species as proposed by McQuade et al.  
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More recently, Cantillo and Kappe presented a detailed computational and experimental 

reinvestigation on the amine catalysed MBH reaction of benzaldehyde with methyl 

acrylate.
[43]

 Initially, they evaluated the proposed reversible character of the MBH 

reaction, and pointed to a strong temperature dependence of the equilibrium constant. 

The production of the adduct is favoured at low temperatures, while the reactants are 

favoured at elevated temperatures. The reaction shifts from exergonic to endergonic 

when heated at temperatures above 330 K (57
o 

C) in the case of the 

benzaldehyde/methyl acrylate system, and 380K (107
o 

C) for 4-nitrobenzaldehyde (due 

to the higher reaction exothermicity), showing a need for the reaction to be performed at 

moderate temperatures. 

Due to a proposed limitation of the B3LYP hybrid density functional, used in of the 

computational mechanistic work as already described, Cantillo and Kappe revisited the 

MBH reaction mechanism using the M06-2X computational method. The results pro-

vided by this theoretical approach however are still in agreement with all the previous 

experimental/kinetic evidence such as reaction order, acceleration by protic species, and 

autocatalysis.  

From this re-evaluation, the authors show the direct proton transfer from 40 to form 42 

through a four membered ring transition structure 41 calculated at the M06-2X level has 

an energy barrier of 41.8 kcal mol
-1

 (Scheme 16). This relatively high energy barrier 

explains the observed KIE when using isotopically labelled methyl acrylate.
[32]

                                             

 

 

Scheme 16: Direct proton transfer through a 4-membered transition structure. 

 



 

17 
 

McQuade’s intermediate 33 for the proton transfer which takes place through a six-

membered-ring transition structure has a free energy of activation of 22.4 kcal mol
-1

. 

Since this energy barrier is still higher than the carbon-carbon bond formation, this 

mechanistic proposal explains both the KIE effect and the second-order kinetics for the 

aldehyde component. 

Aggarwal’s methanol-catalysed proton transfer (Scheme 14) has an energy barrier of 

22.6 kcal mol
-1

, suggesting these similar energetics can result in competitive reactions. 

Therefore depending on the amount of protic species and the reaction progress both 

pathways can take place. 

 

1.2.4. Catalysis of the Morita-Baylis-Hillman Reaction 

 

Various nucleophilic Lewis bases can be employed to initiate the MBH reaction. This 

includes amine, phosphine, selenide or sulphide.
[45]

 However, presence of a Lewis 

acidic co-catalyst is necessary to obtain an efficient catalytic activity for selenide or 

sulphide. 
[44]

                                         

Baylis and Hillman reported DABCO as their catalyst of choice and, subsequently, most 

researchers initially used DABCO as the catalyst for MBH reactions. However, because 

of the slow reaction rates with some substrates, researchers began to explore alternative 

nucleophilic catalysts which might give better yields and increased reaction rates.  Other 

N-Lewis base catalysts for the MBH reaction are 3-quinuclidinol, 
[45]

   quinuclidine, 
[45]

    

DBU, 
[46]

     DMAP, 
[47]

    and imidazole.
[48]

    (Scheme 17). 

 

 

Scheme 17: Typical N-Lewis base catalysts used in the MBH reaction. 
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Aggarwal et al. examined the reactivity of the series of quinuclidine -based catalysts 

such as 43, 44 and 45 in the MBH reaction. They established a correlation between the 

basicity of the catalysts and reactivity, according to which more basic catalysts in this 

series are more reactive. 

Compared to their nitrogen analogues, P-centered Lewis bases have higher 

nucleophilicity and weaker proton-basicity.
[49]

 They also adopt a similar trend in which 

more strongly basic alkyl phosphines, such as tributylphosphine (pKa (8.43) and 

diphenylmethylphosphine (pKa (6.50), are typically more effective than aryl phosphines, 

such as triphenylphosphine (pKa (2.73).
[50]

 Because of reduced nucleophilicity, 

triarylphosphines like triphenylphosphine (PPh3) can only initiate the reaction in the 

presence of a suitable co-catalyst like phenol.
[51]

 On the other hand, due to their high 

air-sensitivity, the potential efficiency of trialkylphosphines in MBH reactions is 

somewhat reduced. Typical P-containing Lewis bases for the MBH reaction are 

tributylphosphine, triethylphosphine, and triphenylphosphine (Scheme 18). 

 

 

Scheme 18: Typical P-Lewis base catalysts used in the MBH reaction. 

 

Recently, considerable efforts have been devoted to development of asymmetric MBH 

reactions. The formation of a new chiral centre in the MBH product allows asymmetric 

transformations. Incorporation of a chiral source into any of the three components in-

volved in the MBH reaction (catalyst, activated alkene, or carbon electrophile), asym-

metric transformations of the MBH product can be realised. Unfortunately, the scope 

and applications of chiral activated alkenes and electrophiles are limited. Therefore the 

real attraction lies in the development of chiral catalysts. Recently, strategy around em-

ploying bifunctional catalysts in MBH reactions has proven to be very successful in 

asymmetric catalytic variants. 
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As already mentioned, Brønsted acids are efficient co-catalysts for the MBH reaction 

and lead to significant rate enhancements. A Brønsted acid and a Lewis base can be po-

sitioned onto a chiral backbone to activate the MBH reaction cycle and enhance selec-

tivity. 

The first practical chiral catalyst was developed in 1999 by Hatakeyama et al. who 

applied a cinchona alkaloid derivative, β-isocupreidine 53 as catalyst for the MBH 

reaction of various aldehydes with 52. The reaction was performed at −55° C in DMF 

obtaining the corresponding product, 54 in enantioselectivities up to 99% ee (Scheme 

19). 
[52]

                

 

 

Scheme 19: β-ICD-Catalysed MBH reaction. 

 

The explanation for the enhanced enantioselectivity and rate acceleration was based on 

some unique features of the catalyst: 1) its increased nucleophilicity via reduced steric 

hindrance and 2) the presence of the free phenolic hydroxyl group on the quinoline ring. 

The nucleophilic nitrogen atom in the quinuclidine moiety of 53 acts as a Lewis base to 

initiate the MBH reaction, whereas the phenolic OH group acts as a Lewis acid to stabi-

lise and organise the enolate intermediate and also to promote the subsequent aldol ad-

dition (Scheme 20). 



 

20 
 

 

Scheme 20: Hatekeyama’s rationalizations for the formation of adduct 54. 

 

Since the chirality of the catalyst is fixed, and intermediate 56 contains two chiral cen-

tres, (A and B), four diastereoisomers can be formed. The authors postulated that dia-

stereoisomer 56 is the most stable and has a nearly ideal conformation for the subse-

quent elimination reaction. Elimination of the catalyst in intermediate 56 leads to the 

MBH product with the same stereoconfiguration of the ester 54.  

Unfortunately, there is a disadvantage of Hatakeyama’s catalytic system, with the for-

mation of a dioxanone by-product, as explained by McQuade with the opposite absolute 

stereoconfigurations and worse enantioselectivity.  

In 2003, Schaus et al. reported the MBH reaction of cyclohexenone with aldehydes 

using a chiral BINOL-derived Brønsted acid as the catalyst and triethylphosphine (PEt3) 

as the nucleophilic promoter. 
[53]

  Good to excellent enantioselectivities were achieved 

with aliphatic aldehydes, while conjugated aldehydes such as benzaldehyde and 

cinnamaldehyde led to products in low yields and enantioselectivities. It was suggested 

that the Brønsted acid promotes the conjugate addition step of the reaction, and then 

remains hydrogen-bonded to the resulting enolate in the enantioselectivity-determining 

aldehyde addition step.  Substitution of one Brønsted acid equivalent from the BINOL-

derived catalyst resulted in reduced catalytic activity and no enantioselectivity. The 

highest levels of enantioselectivity were achieved with presence of bulky substituents at 

the 3, 3’-positions (Scheme 21). 
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Scheme 21: BINOL derivative 59 and PEt3 co-catalysed MBH reaction. 

 

Nagasawa et al. developed a new bis-thiourea type catalyst 63 which could promote the 

MBH reaction of cyclohexanecarboxaldehyde with cyclohexenone in the presence of 

DMAP to give the desired product with good yield and high enantioselectivity (Scheme 

22). They proposed that the aldehyde and the enone become activated via coordination 

to the thiourea units of the catalyst, through hydrogen bonding interactions.
[54]

                                 

 

 

Scheme 22: DMAP and bis-thiourea co-catalysed MBH reaction. 
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An example of a chiral phosphine-catalysed MBH reaction was reported by Wu et al.
[55]

                               

They employed a series of chiral phosphine thioureas derived fromtrans-2-amino-1-

(diphenylphosphino) cyclohexane to promote the MBH reaction of various aromatic 

aldehydes with MVK. The MBH adducts were obtained under mild conditions in short 

reaction times with excellent enantiomeric excesses (Scheme 23). 

 

 

Scheme 23: MBH reaction of aldehyde and MVK catalysed by 67. 
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1.1.3. Aza-Morita-Baylis-Hillman Reaction 

1.3.1. General Aspects 

 

The first example of the aza-Morita Baylis– Hillman (aza-MBH) reaction came in 1984 

when Perlmutter and Teo reported that N-tosyl imines reacted with ethyl acrylate in the 

presence of DABCO to give adducts in moderate to good yields.
[56]

                               

In a standard aza-MBH reaction, activated alkenes are coupled with imines, catalysed 

by Lewis bases such as amines or phosphines, resulting in highly functionalised allylic 

amines. However it can also be performed as a three component reaction in which 

aldehyde, activated alkene and tosylamide or diphenylphosphinamide are coupled in 

one pot. 
[57]

                             

The catalytic cycle is initiated by the reversible conjugate addition of a Lewis base to 

the activated alkene 24 to generate the corresponding enolate, which performs a Man-

nich-type addition on the imine forming the zwitterion 70.  Finally, a proton transfer 

followed by an elimination of the catalyst furnishes the aza-MBH adduct 71. (Scheme 

24). The proton transfer constitutes the RDS. 

 

 

Scheme 24: Simplified mechanism for the aza-MBH reaction. 
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1.3.2. Mechanism 

 

In 2005, Jacobsen et al. investigated the asymmetric aza-MBH reactions of N-p-

nitrobenzenesulfonylimines with methyl acrylate catalysed by chiral thiourea 

derivatives.
[58]

 Under the optimized reaction conditions, electron-donating, 

withdrawing, and heteroaromatic substrates were successfully employed with high 

enantioselectivities albeit with modest isolated yields (Scheme 25). 

 

 

Scheme 25: The aza-MBH reaction catalysed by a chiral thiourea, with isolation and 

characterisation of the dihydrochloride salt 76. 

 

During the study, the authors isolated and characterised the second zwitterionic inter-

mediate of the catalytic cycle 75 as a yellow precipitate. Upon treatment with excess 

hydrochloric acid, they obtained the dihydrochloride salt 76 as a glassy solid. The salt 

76 was highly diastereomerically pure with the relative stereochemistry of the major 

isomer assigned as anti. However when zwitterionic compound 75 was regenerated in 

DMSO-d6/ CDCl3 through deprotonation by DBU, methyl acrylate 66 and imine 72 

were also detected, indicating that 75 undergoes reversion to its precursors (Scheme 25). 
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When generated in this manner, 75 underwent further proton transfer to provide the 

product, confirming its presence as an intermediate in the catalytic cycle. 

Because the reaction mixture disclosed in (Scheme 25) was not homogeneous, the au-

thors studied the uncatalysed reaction of methyl acrylate and imine promoted by DAB-

CO in CHCl3 which provided a homogeneous mixture. Monitoring the reaction by gas 

chromatography analysis, the reaction showed a first order kinetic dependence on both 

DABCO 23 and methyl acrylate 24, with an observed rate saturation for the imine as 

electrophile. When α-deuterioacrylate was used, a prominent primary kinetic isotope 

effect was also observed (kH/kD= 3.8), strongly suggesting that the proton transfer step 

is rate-limiting. 

Subsequently the authors attempted to detect the influence of the electrophile on the 

elimination reaction. They investigated the DBU mediated elimination of 76 in metha-

nol via IR spectroscopy and found a first-order reaction rate profile for more than 4 

half-lives. This is consistent with the rapid and irreversible deprotonation of 76 to 75, 

and intramolecular proton transfer of 75 to the corresponding enolate 76. Since the 

imine 72 had no effect on the rate of elimination, they concluded that the electrophile 

did not play a role in mediating the elimination step. 

As a result, it was also proposed that the zwitterionic species 75 exists as both syn and 

anti diastereomers but that 75syn is generated in high ee and decomposes relatively rap-

idly by intramolecular proton transfer/ elimination to generate 74 in high ee. In contrast, 

75anti may undergo a relatively slow elimination to 74 due to less favourable steric inter-

actions and therefore its concentration builds up during the course of the reaction lead-

ing to precipitation.  This also explains why solvent systems that effectively solubilise 

both diastereomers of 75 lead to formation of 74 in reduced ee.  

Leitner et al. initially performed kinetic studies on the aza-MBH reaction of methyl 

vinyl ketone 66 with N-(3- fluorobenzylidene)-4-methylbenzenesulfonamide 77 in the 

presence of PPh3 in THF at room temperature, monitored by 
19

F NMR spectroscopy 

(Scheme 26).
[59]

  No evidence for autocatalysis was observed, and the broken order of 

0.5 in imine 77 indicated that the RDS is partly influenced by proton transfer. 
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Scheme 26: Kinetic study performed by Leitner et al. 

 

The group then conducted experiments to assess the influence of Brønsted acidic addi-

tives with different pKa values ranging from 3-16.  3, 5-bis (trifluoromethyl) phenol 

(pKa ~ 8) was the best, displaying a 14-fold rate enhancement relative to the reaction 

without additive. Water also gave a significant rate enhancement, but if more acidic ad-

ditives are used, the enhancement is reduced, postulated to be because of formation of 

the protonated enolate. 

Further examination of the kinetics revealed a change in the rate law of the reaction in 

the presence of Brønsted acid (PhOH), showing first-order dependence on imine 77.  

This demonstrated that the elimination step is not involved in the RDS, and that the 

proton transfer is accelerated by these additives. This was rationalised by transition state 

79 involving a Brønsted acid assisted proton transfer step, which is somewhat similar to 

autocatalysis (Scheme 27). 

 

 

Scheme 27: Transition state proposed for the Brønsted Acid-Assisted Proton transfer by 

Leitner et al. 
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Recently, Shibasaki et al. investigated the aza-MBH reaction of various N-

diphenylphosphinoyl imines with methyl acrylate in the presence of Lewis base 

DABCO, Lewis acid La(O-iPr)3, ligand 81, and a phenol-type additive 83. Aryl, 

heteroaryl, alkenyl, and alkyl imines were all suitable for this reaction at ambient 

temperature, giving products in 67-99% yield and 81-98% ee.
[60]

                            

 

 

Scheme 28: La(O-iPr)3 and DABCO cocatalysed aza- MBH reaction. 

 

Kinetic studies pointed to the importance of the nucleophilicity of an intermediate La-

enolate species as well as the Brønsted basicity of the catalyst, rather than its Lewis 

acidity, for accelerating the enantioselective aza-MBH reaction. No kinetic isotope ef-

fect was observed (kH/kD= 1), when α-deuterioacrylate was used, indicating that the 

proton transfer step is not the RDS in this system. On the other hand in the absence of 

phenol-additive 83, a kinetic isotope effect (kH/kD= 2.5) was observed, suggesting the 

importance of a proton source in the proton transfer step. Based on the kinetic data of a 

first-order dependence on acrylate, a zeroth-order dependence on La(O-iPr)3-ligand 

complex and imine, and a 1.4th-order dependence on DABCO. It was proposed that the 

RDS was Michael addition of DABCO to methyl acrylate, and that the chiral La(O-

iPr)3-ligand complex was involved in the enantioselectivity-determining step via the 

interaction with the zwitterionic enolate and the activation of the imine component 

(Scheme 28). 
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Very recently, Eberlin et al. investigated the DABCO-catalysed aza-MBH reaction of 

methyl acrylate with imine in ACN by ESI-MS/MS spectrometry, intercepting the key 

intermediates 70, and 71. However they also identified a unique bis-sulfonamide 

intermediate 85.
[61]

 This intermediate, resulting from the nucleophilic attack of the N-

tosyl anion on the electrophilic carbon of 69, facilitates the rate determining 

intramolecular proton transfer via a stable six-membered intermediate, justifying 

increased rate in the aza-MBH reactions (Scheme 29).  Subsequently there is no need 

for a resolution step to increase the enantiomeric excess. 

This mechanism also shows great similarity to other successful asymmetric MBH 

variants, although the aza-intermediate 85 does not cyclise to a pyrimidinone derivative 

84 as observed in analogous reactions displaying a dioxanone cyclisation intermediate. 

Intrigued by this observation, the group employed a hexafluoroisopropyl acrylate, 

instead of the methyl acrylate, in an attempt to facilitate the formation of a cyclisation 

intermediate due to the efficiency of hexafluoroisopropanoxide as a leaving group. 

Surprisingly no product was formed, which lead the group to suggest that the basicity of 

the sulfonylated nitrogen ion may be sufficiently high to promote intermolecular proton 

transfer via 85 through a six membered transition state, but low enough to prevent the 

intramolecular nucleophilic attack on the carbonyl of the hexafluoroisopropyl acrylate 

that would afford the pyrimidinone intermediate.  

The group also confirmed that the second intermediate on the catalytic cycle 70 

undergoes a retro-aza-MBH reaction forming the aza-enolate 25, accompanied by 

acrylate and imine resonances in different concentrations. This supports the observation 

of Jacobsen et al. of a similar molecule displaying a retro-aza-MBH reaction.  
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Scheme 29: Mechanistic cycle proposed for the aza-MBH reaction of methyl acrylate 

with imine, with the inception of the bis-sulfonamide intermediate 85. 

 

1.3.3. Catalysis of the aza- Morita-Baylis-Hillman Reaction 

 

In general, the nucleophilic N- and P-containing Lewis bases, already discussed as 

catalysts for the MBH reaction, can also be applied to mediate the aza-MBH reaction. 

However for the asymmetric aza-MBH reaction, different catalytic systems are 

incorporated. 

Following on from the pioneering work of Hatekeyama with cinchona alkaloid 

derivative β-ICD, Shi et al. reported the same catalyst in the asymmetric aza-MBH 

reaction of tosylimine with MVK or methyl acrylate obtaining high yield and 

enantioselectivity. As with Hatekeyama, They also rationalised that the key factor for 

high enantioselectivity is the intramolecular hydrogen bond between the phenolic 
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hydroxyl group and the nitrogen-centered anion, stabilised by a sulfonyl group to give a 

relatively rigid transition state 89 (Scheme 30).
[62]

     

 

 

Scheme 30: β-ICD-Catalysed aza-MBH reaction. 

 

In 2003 Adolfsson et al.  also utilised β-ICD and a catalytic amount of Ti(O-iPr) in a 

three component  aza- MBH reaction of aldehyde, tosylamide and activated alkene, with 

enantioselectivities up to 99% ee (Scheme 31).
[57]

                       

 

 

Scheme 31: β-ICD-Catalysed three component aza-MBH reaction. 

 

In 2003 Shi et al. developed one of the most successful chiral bifunctional phosphine-

based catalytic systems for the aza-BH reaction.
[63]

 The binol derivative 94 containing a 

phosphorus-centered Lewis base and a Brønsted acid moiety was initially tested in the 

coupling of aromatic tosylaldimines like 93 with simple Michael acceptors like MVK 
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66 and phenyl acrylate to give the corresponding adducts in good yields and high 

enantioselectivity (Scheme 32). 

 

 

Scheme 32: aza-MBH reaction catalysed by phosphine BINOL derived catalyst 94. 

 

They proposed that the Lewis base phosphine initiates the reaction sequence, while the 

phenolic OH group serves as a Lewis acid to activate the electrophile and to stabilize 

the phosphonium enolate intermediate through hydrogen bonding. When the hydroxyl 

group was replaced by a methoxy group, (as in catalyst 96) significantly reduced cata-

lytic reactivity and enantioselectivity was observed. 

Based on the same 1, 1’-binaphthalene framework, a series of multi/bifunctional 

catalysts were also developed (Scheme 33). Shi et al. reported BINOL-type bifunctional 

chiral catalysts which have been incorporated as enantioselective catalysts in the aza-

MBH reactions.
[64-65]

                     

 

 

Scheme 33: Other BINOL-derived bifunctional catalysts. 
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Along the same lines, Sasai et al. investigated the reaction of aromatic tosylaldimines 

like 87 with MVK 66 catalysed by a BINOL-based bifunctional organocatalyst 99 

(Scheme 34).
[66]

  In a mixed solvent system of toluene and CPME, enantioselectivities 

were obtained in up to 95% ee. 

The authors proposed that the reaction is strongly influenced by the exact position of the 

active units within the catalyst. One pair of the acid-base unit fixes the conformation of 

the organocatalyst, while the other pair activate the alkyl vinyl ketone in a synergistic 

interaction promoting the reaction with high enantiocontrol. This theory was supported 

by molecular orbital calculation of 99. They also showed that similar catalysts with 

varying chain length of spacers between the catalytic moieties, and other catalysts with 

different positions of the pyridine nitrogen relative to the Brønsted acidic group were 

often inactive or non-selective. 

 

 

Scheme 34: BINOL-based bifunctional organocatalyst for the aza- 

MBH reaction. 

 

In 2006 Sasai et al. developed another BINOL-based chiral phosphine catalyst. They 

attached a phosphine unit through an aromatic ring as a chiral Brønsted acid and tested 

it in the aza-MBH reaction of imine 90 with MVK 66 affording the corresponding S-

allylamine 101 in high yield and with excellent enantioselectivity, albeit with a very 

slow reaction rate (Scheme 35). 

When both catalytic moieties of this bifunctional catalyst were positioned where no 

synergistic interaction between the Lewis base and the Brønsted acid was possible in an 

intramolecular fashion, the selectivity decreased dramatically. 
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Scheme 35: The aza-MBH reation catalysed by 100. 
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1.4. Self-assembling catalysts 

 

There are many examples of self-assembled systems where hydrogen-bonding plays a 

key role, as in enzymes and DNA.
[67]

 Often, these systems do not contain any metal 

centres and thus form the basis for organocatalysis. An ambition of this area is to be 

able to mimic enzymatic processes while simultaneously achieving the same high 

selectivity and turn-over with a synthetic organocatalytic system. Significant advances 

have been made in this area in recent years with considerably increased activity in this 

field due to the many opportunities organocatalytic systems may offer in terms of 

catalyst design. However control of self-assembly of small molecules and subsequent 

use in catalysis is a relatively unexplored area. 

A modular system for organocatalysis, rather than a single molecule containing both 

catalytic and asymmetry inducing regions, offers several improvements. Large molecule 

synthesis usually requires a long multi-step synthesis, thus resulting in low yields. In a 

binary system, it is possible to construct the two components individually, generating 

both modules in a relatively low number of steps and in high yields. Modification of the 

catalyst structure only needs simple replacement of the modules, with the potential to 

build a library of diverse organocatalysts. 

A literature search revealed that there are few examples of self-assembly of small 

molecules. However in 1990 Kelly et al. reported a host-guest system, in which  

substrates are bound through hydrogen-bonding interactions that align the components 

for reaction (Figure 1).
[68]

 These systems provided an excellent starting point for the 

design of a self-assembling system, through a hydrogen-bonding array.  

 

 

Figure 1: Guest-host interaction investigated by Kelly et al. 
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Another piece of inspiration came from Clarke et al. who in 2007; reported the first 

example of the self-assembly of prolinamide-based organocatalysts for the Michael 

addition of ketones to nitroalkenes, wherein the addition of achiral pyridinone 

derivatives to a chiral organocatalyst host can transform an unselective chiral 

prolinamide  catalyst into a highly effective one through hydrogen-bonding interactions. 

[69]
   

 

 

Figure 2: Clarke's self-assembled modules with catalyst and co-catayst 

 

One drawback however, in this system is that the catalytic centre is proximal to the 

assembly array and this may result in interference with either the catalytic or assembly 

event. Our approach, will differ from Clark and aim to bring together two molecules 

with unique roles, harnessing hydrogen-bonding as an assembly mechanism (Figure 3). 

To achieve this goal, following optimisation of the hydrogen-bonding array, we can 

then investigate catalytic applications through simple changes on the catalytic site or the 

selectivity induction point, rather than changing elements contributing to the hydrogen-

bonded scaffold. 
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1.5. Research Objectives 

 

Recently, considerable efforts have been dedicated to the development of asymmetric 

MBH/aza-MBH reactions. Significant progress have been made in the design and 

synthesis of new chiral catalysts based on the concept of bi/ multifunctionality 

achieving high enantioselectivity. 

However, as of yet there is no single catalyst which is capable of tolerating a broad 

range of substrates.  Thus, the development of effective catalysts for the asymmetric 

MBH/aza-MBH reactions that are applicable to all or at least to most of the commonly 

used activated alkenes and electrophiles is of the upmost importance. These new 

advances in an asymmetric version can make this reaction a valuable chiral source for 

asymmetric synthesis of various enantiomerically pure molecules of biological 

importance. 

All successful chiral catalysts to date contain at least two groups with distinct 

functionalities within the same molecule, generally a Brønsted acid and a Lewis basic 

centre. In this bifunctional strategy, these units can be situated onto a chiral backbone to 

facilitate a synergistic interaction between the functional groups in the MBH reaction 

cycle. The Lewis base functionality serves to initiate the Michael addition step of the 

reaction, while the Brønsted acidity stabilizes the zwitterionic intermediates, promoting 

the subsequent aldol and proton transfer- elimination step. Positioning of both 

catalytically active sites in close proximity with favourable geometry facilitates 

asymmetric addition, analogous to enzyme catalysis. Just as enzymes control incoming 

reagents and catalytic residues in ideal geometries, the combination of basic and acidic 

sites within a small molecule could provide a similar scenario. These bifunctional 

catalysts may represent a solution for synthetic chemists in the development of chemical 

catalysts with enzyme-like reactivity and selectivity. 

The primary objective of this project is to realise the development of an effective 

stereoselective MBH catalyst. In our system, a Catalytic Module, CM (with both a 

catalytic centre and a component at which hydrogen-bonding can occur), and a 

Selectivity Inducing Module, SIM (consisting of both hydrogen-bonding scaffold and a 

site through which selectivity, such as enantioselectivity, may be induced), are bound 

through hydrogen-bonding interactions to give a modular catalyst (Figure 3).  
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Figure 3. Modular representation of the self-assembling catalyst. 

 

 The focus of this research will be on design and preparation of this system. 

Computational modelling will be used in the design of the module predicting its 

interaction. Following design of the modules, they will be synthesised using robust 

organic syntheses to produce multigram quantities of both modules.  Following 

synthesis, the catalyst will be applied in test MBH reactions for initial catalysis 

screening.  
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2. Results and Discussion 

 

2.1. General considerations 

 

The synthetic plan was devised with three key aspects to consider: a) the hydrogen-

bonding array, b) incorporation of a suitable catalyst and c) inclusion of a component to 

induce selectivity. The modular catalysts can thus be prepared with a common hydrogen 

array, but simple substitution of catalyst or symmetry-inducing functionality can 

produce modular catalysts for a broad range of reaction types. The hydrogen-bonding 

system chosen for this investigation is based around the amidonaphthyridine/pyridinone 

hydrogen bonding scaffolds proposed by Kelly et al. and utilised by Clarke et al. 

(Figure 1 & 2). However, while Clarke has demonstrated the incorporation of a proline 

catalyst in a bimolecular system, location of the chiral centre directly adjacent to the 

hydrogen-bonding array may account for the selectivity observed. To ensure that this is 

not the case in the designed catalyst, it was planned to ensure that there was a suitable 

linker separating the catalyst moiety from the hydrogen-bonding scaffold. 

 

The MBH reaction was chosen as a model reaction to demonstrate proof-of-concept for 

the modular catalyst system, and thus the CM and SIM were chosen to best suit this 

chemistry. For the catalyst, a quinuclidine moiety was chosen, as quinuclidine (and 

quinuclidinol) have been shown to greatly enhance the MBH reaction due to their 

increased nucleophilicity with respect to other amine bases.
[1]

 Such cyclic tertiary 

amines are substantially more nucleophilic than the corresponding open structures, with 

decreased steric hindrance ensured by the locked structure around the nitrogen atom. 

Previous studies have demonstrated that hydroxyl groups are effective co-catalysts in 

the MBH reaction, especially phenolic hydroxyl groups.
[2]

 They enhance the rate 

through stabilisation of the zwitterionic intermediates and have been extensively utilised 

in BINOL-derived asymmetric catalysts for the MBH/ aza-MBH reactions.  
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2.2. Computational studies 

 

Following identification of suitable components, CM and SIM structures were proposed 

that should come in close proximity to facilitate asymmetric addition following a self-

assembly event (Figure 4). Computational investigations looking at structure 

optimisations and frequency calculations at DFT//B3LYP/6-31+G(d,p) were used to 

predict likely interactions. The SIM and CM were initially optimised individually, 

scanning through possible conformations at five degree intervals to find the lowest 

energy conformation. The CM was optimised with and without the quinuclidine 

component, as the catalytic centre should be sufficiently distant that it will not affect the 

interaction between the two modules. 

 

 

Figure 4: Our proposed self-assembled catalyst. 

 

 

Following individual geometry optimisations, the modules were placed together and 

optimised. When placed in close proximity to mimic binding, the modules pushed apart, 

though they remained close enough together to indicate atomic interactions. 

Additionally, when the modules were placed far beyond interacting distances, they 

came together and achieved a similar geometry.  
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Figure 5: Structures of the proposed CM and SIM 

 

 

Frequency calculations were run on this optimised structure to verify that it was a 

transition state. The frequency calculation yielded one negative eigenvalue (one 

imaginary frequency), verifying the transitional nature of the complex. The resulting 

transition state displayed one eigenvalue at -42.08cm
-1

, corresponding to a true 

transition state.  

 

An intrinsic reaction coordinate (IRC) calculation then verified that the transition state 

emerged from the two modules converging from a distance greater than interaction 

distance. The distance between the SIM oxygen and the CM hydrogen was found to be 

1.79 Å, while the hydrogen attached to the SIM heterocyclic nitrogen was separated 

from the CM heterocyclic nitrogen by 2.02 Å and, finally, the hydrogen attached to the 

SIM amine functionality was 2.09 Å from the second CM heterocyclic nitrogen (Figure 

6). While these distances do not indicate that the two modules are bound, they are well 

within atomic distances known to interact.  
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Figure 6: Self-assembly with bond distances 

 

 

From these preliminary calculations, the system shown in Figures 5 and 6 above should 

engage in suitable hydrogen-bond interactions. We anticipate that the module could 

bring a substrate in close proximity to the phenolic proton shuttle while still allowing 

the structural freedom necessary to tune enantiomeric selectivity. Importantly, 

computational investigations showed that optimum interaction in the MBH transition 

state would be achieved using (R)-(-)-quinuclidinol in the CM. 

 

 

2.3. Synthetic strategy 

 

 

Following identification of the proposed CM and SIM structures, synthetic routes were 

devised based on literature procedures. Only steps which had a minimum published 

yield of 60% or above with commercially available starting materials were considered. 

Each step of the synthesis was initially performed on ~ 1 mmol scale, and subsequently 

scaled up if successful. 
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2.3.1. Synthesis of the CM  

 

 

As shown in Scheme 36, the original synthetic route devised was a 6-step synthesis, 

utilising a ring-forming reaction from the literature to construct the amidonaphthyridine 

structure in the first step (i). Following acetylation (ii), it was proposed to convert the 

hydroxyl group to a bromide using phosphorus oxybromide (iii) and to extend the side 

chain to a hydroxymethyl using DMF and a reduction step (iv). This would then be 

converted to a tosyl leaving group (v) to then undergo a substitution reaction using qui-

nuclidinol producing the desired CM (vi).  

 

 

Scheme 36: Proposed synthesis of catalytic module, CM. 

(i) H2SO4, 110 °C, 2-3 h; (ii) Ac2O, 140 °C; (iii) POBr3, 95 °C, 1-2 h; (iv) BuLi, tolu-

ene, -78 °C, 2 h then DMF/NaBH4; (v) TsCl, pyridine; (vi) 3-quinuclidinol then NaH. 

 

Unfortunately, early into the synthesis it was found that step iii did not proceed as 

proposed. Subsequently a paper describing the same reaction was found, also detailing 

that the reaction was unreactive at room and elevated temperature temperature.
[3]

 As a 

consequence the synthesis was revised and an alternative route proposed, wherein the 

bromide was replaced by an aldehyde 112 (Scheme 37). This could then be easily 

reduced to the desired alcohol 107. Construction of the methyl-amidonaphthyridine 110 

could be achieved using a similar literature procedure as used in Scheme 36, and the 

acetylated product 111 could be converted to an aldehyde using selenium dioxide. 

Reduction to the alcohol (iv) should proceed readily and following tosylation (v) the 

quinuclidinol catalyst could be incorporated as initially planned. 
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Scheme 37: Revised synthesis of the CM via aldehyde 112. 

(i) H3PO4, 90-115 °C, 3 h; (ii) Ac2O, 80 °C, 12 h; (iii) SeO2, Dioxane, 50-55 
o
C, 4 h; 

70% (iv) NaBH4, EtOH, 0 °C, 3-4 h; (v) NaH, -20 °C, 16 h., then TsCl, rt, 1 h; (vi) ) 3-

quinuclidinol then NaH. 

 

However, further difficulties were encountered at step v of this synthesis. While 
1
H 

NMR spectroscopic analysis of the crude product showed that the desired tosylated 

product had formed, it appeared that the product was completely unstable and 

decomposed to a black solid over time, which could not be characterised.  

 

Following this, it was decided that a different leaving group would need to be 

employed. After a literature search, bromine was chosen as replacement (Scheme 38). 

Again, the core methyl-amidonaphthyridine structure could be constructed as per 

Scheme 37, but the acetylated product 111 could be brominated using N-

Bromosuccinimide. Although a reduced yield was anticipated, direct addition of 

bromine to 111 would reduce the synthesis by two synthetic steps. 
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Scheme 38: Final synthetic route to the CM. 

(i) H3PO4, 90-115 °C, 3 h; 96% (ii) Ac2O, 80 °C, 12 h; 87% (iii) NBS, [C6H5C(O)]2O2, 

DMC, 110 °C, 0.25 h; 28% (iv) (R)-N-Boranyl-1-aza bicycle [2.2.2] octan-3-ol, NaH, 

DMF, rt, 1h; 34% (v) 1.25M HCl-MeOH 0 °C, 0.5h, rt, 0.5 h, 37%. 

 

Gratifying, using this route the CM was prepared, albeit in a low yield. The initial 

design criteria had intended for the synthesis to be high-yielding and readily scalable at 

each step and this was not the case for the final synthesis. As anticipated, the free 

radical bromination step (iii) presented some difficulties but optimisation of the reaction 

time ensured the best possible yields (up to 30%). A reaction time of no more than 15 

mins was found to be optimum, as prolonged reaction times resulted in a dibromination 

of 111. However, purification of the compound presented a challenge as the crude 

product contained starting material, the desired monobromination product 113 and the 

dibromination product. Initial purification was employed with a mobile phase of 2% 

MeOH/ DCM on silica as this gave the best separation of the components on TLC. 

However, using these conditions in flash column chromatography showed that the 

bromination products eluted quickly and did not separate well (although the starting 

material was removed). Due to the rapid nature in which the dibromination was 

collected, a re-evaluation of solvents was performed on a small scale and EtOAc/DCM 

was found to be the best mobile phase to elute the dibromination product at a rate which 

kept 113 on the column. Following removal of the dibromination by-product, 113 was 

collected in 2-4% MeOH/DCM.  
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Furthermore, initially step iv was performed overnight, but analysis by 
1
H NMR 

spectroscopy showed that deacetylation of the amide had occurred. Reducing the time 

scale of the reaction increased the yield of 114, however there was always presence of 

the unacetylated product also. Due to the use of sodium hydride in step v in Scheme 36 

over a period of hours, where no deacetylation was observed, it was assumed that it was 

the alkoxide of 3-quinuclidinol that was causing the observed deacetylation. 

Optimisation of purification allowed separation of the desired product from the 

deacetylated by-product, which could then be reacetylated using acetyl chloride 

(although full conversion to 114 was never achieved, even at reduced temperature). 

 

In the final synthesis, it was necessary to protect the quinuclidinol nitrogen using borane 

prior to introduction of the catalyst (iv). In the last step of the synthesis (v), a solution of 

hydrogen chloride in methanol was employed to remove the BH3 protecting group. 

Again, optimisation of reaction time was crucial, 30 mins was found to be the optimum 

time scale for the reaction as prolonged time resulted in deacetylation of the amide 

again. To ensure the free nitrogen was deprotonated, a basic work up was performed 

after the reaction. Initially sodium hydroxide was applied, however ~20% yields were 

obtained, with any by-products formed being uncharacterisable. When a weaker base 

for work up was employed, yields increased on small scale up to 58% however. 

Potassium phosphate tribasic was chosen as the weaker base as its pKa of 12 was a 

perfect choice to deprotonate the quinuclidine derivative with a pKa of 11. 
[4]

  Due to the 

nucleophilic nature of the CM, extra care was taken to prevent any aklyation on the 

nitrogen in any alkyl solvents. Pleasingly none has been observed while working with 

the compound. 
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2.3.3. Synthesis of SIM 

 

As shown in Scheme 39, the original synthetic route devised was a 5-step synthesis, in 

which the desired symmetry-inducing functionality was incorporated early in the 

synthesis (steps i-ii), followed by formation of the 3-aminoquinoline scaffold using a 

literature procedure. This would then be converted to the desired pyridinone using 

CuI/DMEDA in microwave conditions and finally deprotection of the phenolic 

hydroxyl group would give the desired SIM. 

 

 

Scheme 39: Proposed synthesis of asymmetrical environment module SIM. 

(i) NaCN; (ii) KO
t
Bu, DMF, rt, 1 h; (iii) HBr/HOAc; (iv) CuI/DMEDA, K3PO4, H2O, 

180 °C, 30 min;  (v) 1-decanethiol, KO
t
Bu, DMF, 110 °C, 3-4h. 

 

However, due to the unavailability of a microwave for Scheme 39 (iv), this step was 

revised. A search of the literature showed that a benzyloxy group could be introduced 

instead of the bromide. This was a favourable functional group for the next step as now 

both the benzyl and methyl could be removed from the aryl ethers in the last step, 

simply by increasing the equivalents of boron tribromide employed (Scheme 40). 
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Scheme 40: Final synthesis of the SIM. 

(i) NaCN, EtOH, 80 
o
C, 2 h; 98% (ii) KO

t
Bu, DMF, rt, 1 h; 95% (iii) HBr/HOAc, rt, 2 

h; 62% (iv) BnOH, NaH, DMF, 0
o
 C; 73% (v) BBr3, DCM, 24 h, rt; 62%. 

 

2.4. Assessment of assembly event 

 

Following preparation of the CM and SIM components, the next step in development of 

a self-assembling catalyst was to investigate the hydrogen bonding of the modules. To 

do this, several NMR spectroscopic tests were carried out.  
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2.4.1. Dosy Test 

 

Due to the formation of hydrogen bonding (which is considerably larger than Van de 

Waals forces) between CM and SIM, the translational diffusion movements of these two 

compounds would be hindered, 
[5]

 and possibly merge into a single diffusion movement 

of the new-formed dimer. Hence, by measuring the variation of diffusion coefficients of 

the two components, the possible formation of the hydrogen bonding could be directly 

detected. 

 

 

Figure 7: Dosy spectrum of CM and SIM in DMSO-d6 

 

Experimental setup: BPGPDSTE with LED and Presaturation; 

Diffusion time: 49.5 ms; Gradient Length: 4.4 ms. 

 

As shown in Figure 7, the diffusion coefficients of SIM (blue) and CM (red) are 

1.982×10
-10

 and 2.506×10
-10

 respectively. However, the diffusion coefficient of the 

mixture (purple) solution has a single value around 5.470×10
-10

, this is the direct 

evidence of the formation of dimer in the sample. 
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2.4.2. TV NMR Test 

 

Due to the Born-Oppenheimer approximation’s breakdown in the case of internal 

energy’s influence over hydrogen bonding,
[6]

 a temperature variation NMR test of the 

compound would be a good indication of the existence of hydrogen bonding in the 

sample. 

 

 

Figure 8: TV NMR Test of CM and SIM in DMSO-d6 

 

Experimental detail: 293 K (blue), 313 K (red), 333 K (green) 
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As demonstrated in Figure 8, the large change (around 0.1 ppm) in the chemical shifts 

of these protons at assumed hydrogen bonding positions, in comparison to the small 

shifts (around 0.01 ppm) for other protons in the compound (caused by the thermal 

induced increment of the vibrational energy), is a strong proof of the presence of 

hydrogen bonding at these positions. However, the major drawback of this method is 

the inability to correlate the hydrogen bonding with the formation of dimer. 

 

2.4.3. Simple Chemical Shift Demonstration Test 

 

As discussed by many previous studies,
[7]

  chemical shift could be largely affected by 

the presence of hydrogen bonding, and due to the de-shielding effect other bonding 

nucleus casted on the proton, normally the formation of hydrogen bonding would shift 

δ(H) to low field. 

 

Figure 9: Relevant interactions between CM and SIM 

 

As demonstrated in Figure 10, the δ(H) of 2’, 10 and 11 undertake a shift of 0.02 ppm, 

0.03 ppm, 0.03 ppm toward the low field, respectively, this is consistent with 

observation from other studies in regard to hydrogen bonding effect on the chemical 

shift of the bonding protons.
[8, 9]

            

 

 

 

 



 

55 
 

 

 

Figure 10: Change in chemical shift during the simple chemical shift demonstration test 

in DMSO-d6 

 

Experimental Detail: CM (red), SIM (green), Mixture (blue). 

 

2.4.4. Hydrogen bonding equilibrium disturbing test by NMR 

 

As several other papers 
[10, 11]

 have indicated, the formation of hydrogen bonding could 

cause a change in chemical shift of the interested protons, due to the de-shielding effect 

the bonding nuclei has on the target proton. Hence, a disruption of hydrogen bonding 

equilibrium would have an effect on the observed chemical shift of proton assumed to 

be undergoing hydrogen bonding. 

Generally, two sets of experiments could be carried out in this respect. One is by 

varying the substrate’s concentration, the template’s hydrogen-bonding proton would 

have a different chemical shift in regard to this concentration differences. The second 

approach is by varying the concentration of the whole mixture (namely both 

compounds), a new equilibrium of hydrogen bonding would be formed, which would 

further vary the degree of change in the chemical shift of proton caused by the 

formation of hydrogen bonding. As shown in Figure 11, dilution of the sample leads to 

a shift in the δ(H) of 2’, 10 and 11 toward the low field, once again. This suggests that 

hydrogen bonding has occurred. 
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Figure 11: Dilution test in DMSO-d6 

 

Experimental Detail: 0.05M (blue), 0.025M (light red), 0.0125M (green), 0.00625M 

(dark red) 

 

2.5. Catalytic rate studies 

 

Following NMR spectroscopic investigations of the CM and SIM to investigate that the 

desired hydrogen bonding occurred, the final consideration was effectiveness as a 

catalyst. The reaction of benzaldehyde with methyl acrylate was chosen as a model 

reaction for rate studies (Scheme 41). 

 

 

 

Scheme 41: Model reaction for investigation of MBH reaction. 

 

Initial investigations looked at unbound quinuclidine catalysts, quinuclidinol (3-QD) 

and DABCO using methanol or phenol as hydrogen bond donors. Conditions were 

based on studies conducted by Aggarwal et al. 
[1]

 and proposals from Cantilo et al, 
[12]

 in 

which they suggest that the MBH reaction should be performed at moderate 

temperature, due to the reactions endergonic nature. We choose to perform the study in 

triplicate at rt and 0 
o
C to identify the best thermal window for our catalyst.  
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Figure 12: Rate of MBH reaction using unbound 3- quinuclinol (3-QD), with and 

without proton donor additive at room temperature and 0
o
C 

 

 

 

 

Figure 13: Rate of MBH reaction using unbound 3- quinuclinol (3-QD), with and 

without proton donor additive at room temperature and 0
o
C 
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These results show that while 3-quinuclidinol and DABCO were both effective 

catalysts, presence of a proton donor additive (3:1 proton donor/catalyst ratio) gave a 

pronounced rate enhancement (Figure 12 & 13). To investigate use of the CM-SIM 

modular catalyst, the studies were conducted using (R)-3-QD and PhOH as this system 

should mimic our modular catalyst. The test was performed at rt due the large rate 

decrease of the 3-QD/ PhOH system at 0 
o
C (Figure 12). 

 

 

 

Figure 14: Rate study using CM-SIM in comparison to 3-QD/ PhOH  

 

After confirming the rate enhancement of the MBH reaction with our catalyst without 

additive, the final factor to consider was induction of selectivity. It was envisanged that 

the use of the self-assembled modular catalyst would induce selectivity. Therefore the 

product of the reaction using the CM-SIM and the product from the (R)-3-QD/PhOH 

reactions were isolated by column chromatography and the optical rotation of each was 

obtained. Gratifying a modest enhancement of selectivity was observed using the CM-

SIM ([α]24 = ‐4.99
 o
), while use of (R)-(-)-3- quinuclidinol gave a racemic mixture ([α]24 

= 0.48
 o

). Although the former value is a long way off the literature value of -94.3 
o
 for 

(R)-Methyl 2-(hydroxy(phenyl)methyl)acrylate 28, 
[13]

  it does  demonstrate that the 

selectivity induced is not due to the presence of a chiral centre in the catalyst moiety 

alone and must instead be the result of the SIM interaction. 
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2.6. Conclusion 

 

In this thesis, the rational development of a new enantioselective catalytic system for the 

MBH reaction was described. After initial short comings, the CM and SIM module were syn-

thesised in <6 steps.  NMR spectroscopic tests show presence of assembly through hydrogen 

bonding. Preliminary catalytic tests demonstrate rate enhancement in the MBH test with no 

additional additive. Due to the racemic product produced by (R)-(-)-3-Quinuclidinol, some 

asymmetric induction has been induced by the catalyst produced. 

 

2.6.1. Outlook 

 

With the low yields in the final steps of the CM synthesis (Sceme 38), and subsequent 

small amount of product produced for testing, there are still tests that need to be 

completed. Re- optimization of these steps will be required to increase the overall yield. 

More analysis on the assembly event is also necessary, which can pinpoint the 

interactions occuring. This should heighten our understanding of what is happening in 

the reaction and hopefully help to increase the induced selectivity. 

 

On a broader scale, results herein only signify the starting point of a new type of 

catalysis for a much wider range of substrates and reactions. 
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Experimental  

 

General 

 

All reagents were purchased from commercial sources and were used without further 

purification, unless otherwise stated. Dry solvents were purchased from Sigma Aldrich 

or Fisher (Acros Chemicals) and handled under an inert atmosphere. Dichloromethane 

was freshly distilled from calcium hydride and handled under argon. Tetrahydrofuran 

was freshly distilled from sodium/benzophenone and handled under argon. Acetone was 

freshly distilled from calcium sulphate and handled under argon. Deuterated solvents 

were purchased from Fluorochem. Thin layer chromatography (TLC) was performed on 

Machery-Nagel ALUGRAM® Xtra SILG/UV254 aluminium-backed plates and sots 

were visualised using UV light (254 nm). Column chromatography purifications were 

carried out using the flash technique on DAVISIL LC60A (35-70 µm) silica gel. NMR 

spectra were recorded on Bruker Avance 400 and Bruker Avance Ultrashield 600 

spectrometers. The chemical shifts (δ) for 
1
H and 

13
C are given in parts per million 

(ppm) referenced to the residual proton signal of the deuterated solvent (CHCl3 at δ 7.26 

ppm, 77.16 ppm, respectively); coupling constants are expressed in hertz (Hz). All 

experiments were conducted under an atmosphere of dry argon unless otherwise noted, 

using Schlenk technique. 
[1]

 

Preparation of the CM and SIM modules 

 

7-Amino-1,8-naphthyridin-2-ol 104:
[2]

 DL-Malic acid (7.5 g, 55.0 

mmol) and 2,6-diaminopyridine (5.5 g, 50.0 mmol) were ground into 

a powder in a pestle and mortar, and transferred to a round bottom 

flask. The flask was immersed in an ice bath, and conc. H2SO4 (25 mL) was added 

dropwise. The solution was heated to 110
 o

C in an oil bath for 3 h and then made 

alkaline with conc. NH4OH. Vacuum filtration gave 104 as a brown solid (7.5 g, 46.5 

mmol, 93%) which was used in subsequent reaction without further purification. 
1
H 

NMR (400 MHz, DMSO-d6) δ: 6.11 (dd, J = 9.1, 1.5 Hz, 1H), 6.34 (d, J = 8.6 Hz, 1H), 

6.97 (br. s, 2H), 7.64 (d, J = 8.6 Hz, 1H), 7.65 (d, J = 9.1 Hz, 1H), 11.83 (br. s, 1H). 

 

 

104 
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N-(7-Hydroxy-1,8-naphthyridin-2-yl)acetamide 105:
[2]

 A 

suspension of 7-amino-1,8-naphthyridin-2-ol 104 (7.4 g, 46.4 

mmol) in 140 mL of acetic anhydride was heated at reflux for 3 h. 

The resulting mixture was cooled to room temperature, and the 

precipitate was collected by vacuum filtration, washed with Et2O, and air-dried to give 

105 as a yellow solid (8.4 g, 41.8 mmol, 90%). The product was used in subsequent 

reactions without further purification. 
1
H NMR (400 MHz, DMSO-d6) δ: 2.14 (s, 3H), 

6.42 (dd, J = 9.6, 1.5 Hz, 1H), 7.84 (d, J = 9.6 Hz, 1H), 7.92 (d, J = 8.3 Hz, 1H), 8.05 

(d, J = 8.3 Hz, 1H), 10.58 (br. s, 1H), 11.92 (br. s, 1H). 

 

 

7-Methyl-1,8-naphthyridin-2-amine 110:
[3]

 2,6-Diaminopyridine 

(5.5 g, 50.0 mmol) and H3PO4 (40 mL) were heated to 90 
o
C until 

melted. 4,4-Dimethoxy-2-butanone (6.6 mL, 50.0 mmol) was then 

added dropwise over 0.5 h and the reaction mixture was heated 

under reflux at 115 
o
C for 3 h. After cooling to room temperature, NH4OH was added 

dropwise in an ice bath until pH>10. The resultant mixture was extracted numerous 

times with chloroform and then a 2:1 mixture of chloroform/ethanol. The combined 

organics were washed with brine, dried (Na2SO4) and concentrated in vacuo to give 110 

as a brown solid (7.6 g, 48.0 mmol, 96%), which was used in subsequent reaction 

without further purification. 
1
H NMR (400 MHz, CDCl3) δ: 2.68 (s, 3H), 5.03 (br. s, 

2H), 6.71 (d, J = 8.6 Hz, 1H), 7.07 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.6 Hz, 1H), 7.82 (d, 

J = 8.1 Hz, 1H). 

 

 

N-(7-Methyl-1,8-naphthyridin-2-yl)acetamide 111:
[3]

 Acetic 

anhydride (25 mL) was added to 7-methyl-1,8-naphthyridin-2-

amine 110 (7.5 g, 47.0 mmol) and the reaction mixture was stirred 

overnight at 80 
o
C. After, the excess acetic anhydride was removed 

in vacuo. To this, Et2O was added and the solid separated was collected by vacuum 

filtration, and air-dried to afford 111 as a brown solid (8.2 g, 40.9 mmol, 87%). 
1
H 

NMR (400 MHz, CDCl3) δ:
 
2.29 (s, 3H), 2.75 (s, 3H), 7.29 (d, J = 8.1 Hz, 1H), 8.02 (d, 

J = 8.3 Hz, 1H), 8.15 (d, J = 8.8 Hz, 1H), 8.47 (d, J = 8.8 Hz, 1H), 8.98 (br. s, 1H). 

105 

110 

111 
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N-(7-Formyl-1,8-naphthyridin-2-yl)acetamide 112 :
[3] 

To a 

stirred solution of selenium dioxide (4.4 g, 39.7 mmol) in 

dioxane (400 mL) containing 5 mL of H2O, 111 (8.0 g, 40 mmol) 

was added and heated for 4 h at 50-55 
o
C. The hot solution was 

filtered through a plug of Celite and the solvent was removed under vacuum. The 

residue was extracted numerous times with CHCl3 and washed well with H2O, dried 

(Na2SO4) and concentrated in vacuo. Purification by flash column chromatography (6% 

MeOH/DCM with 1% TEA) gave 112 as a red/ brown solid (6.0 g, 27.8 mmol, 70%). 

1
H NMR (400 MHz, CDCl3) δ:

 
2.32 (s, 3H), 8.05 (d, J = 8.1 Hz, 1H), 8.28 (d, J = 8.8 

Hz, 1H), 8.33 (dd, J = 8.3, 0.7 Hz, 1H), 8.46 (br. s, 1H), 8.67 (d, J = 8.8 Hz, 1H), 10.24 

(d, J = 0.8 Hz, 1H). 

 

 

N-[7-(Hydroxymethyl)-1,8-naphthyridin-2-yl]acetamide 

107:
[3]

 To an ice-cold solution of 112 (5.8 g, 27.0 mmol) in 

EtOH (135 mL) was added NaBH4 (2.0 g, 54.0 mmol) in 

portions. After observing disappearance of the starting material 

by TLC, the reaction mixture was quenched by dropwise addition of sat. aq. NH4Cl. 

The reaction was then allowed to warm to rt and the EtOH was removed. The resulting 

aqueous solution was extracted with CHCl3 and the combined organics were washed 

with brine, dried (Na2SO4), filtered and concentrated in vacuo. Purification by flash 

column chromatography (6% MeOH/DCM with 1% TEA) gave 107 as an orange oil 

(3.8 g, 17.5 mmol, 64%). 
1
H NMR (400 MHz, CDCl3) δ: 2.28 (s, 3H), 4.18 (br. s, 1H), 

4.96 (s, 2H), 7.32 (d, J = 8.1 Hz, 1H), 8.14 (d, J = 8.1 Hz, 1H), 8.21 (d, J = 8.8 Hz, 1H), 

8.53 (d, J = 8.8 Hz, 1H), 8.54 (br. s, 1H). 

 

 

 

 

 

 

112 

107 
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[7-(Acetylamino)-1,8-naphthyridin-2-yl]methyl      4-

methylbenzenesulfonate 108:
[3]

 NaH (60% dispersion in oil, 

0.7 g, 17.9 mmol) was added in portions to a solution of N-[7-

(hydroxymethyl)-1,8-naphthyridin-2-yl]acetamide 107 (3.7 g, 

17.0 mmol) in DCM (20 mL) and stirred at reflux overnight. After, it was cooled to -20 

o
C; and a solution of TsCl (3.3 g, 17.0 mmol) in DCM (20 mL) was added dropwise. 

This mixture was allowed to warm to rt and stirred for a further 1 h. The reaction was 

quenched with dropwise addition of sat. aq. NH4Cl, and extracted with CHCl3. The 

crude was concentrated in vacuo to give 108 as a brown solid which subsequently 

decomposed (6.3 g, 17.0 mmol, quantitative yield). 
1
H NMR (400 MHz, CDCl3) δ:

 
2.21 

(s, 3H), 2.37 (s, 3H), 5.25 (s, 2H), 7.28 (d, J = 8.1 Hz, 1H), 7.51 (d, J = 8.1 Hz, 1H), 

7.80 (d, J = 8.4 Hz, 2H), 8.11 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.8 Hz, 1H), 8.51 (d, J = 

8.8 Hz, 1H), 9.89 (br. s, 1H). 

 

 

N-[7-(Bromomethyl)-1,8-naphthyridin-2-yl]acetamide 113 : 

111 (13.3 g, 66.1 mmol), NBS (11.7 g, 65.7 mmol), and benzoyl 

peroxide (75% remainder H2O, 10.7 g, 33.1 mmol) in dimethyl 

carbonate (200 mL) were refluxed in a preheated oil bath at 110 

o
C for 0.25 h. After cooling to room temperature, the reaction mixture was dissolved in 

CHCl3 washed with H2O, dried (Na2SO4), filtered and concentrated in vacuo. 

Purification by flash column chromatography (50/50 DCM/ethyl acetate and then 2-

2.5% MeOH/DCM) gave 113 as a white solid (5.2 g,18.6 mmol, 28%). 
1
H NMR (400 

MHz, CDCl3) δ: 2.29 (s, 3H), 4.69 (s, 2H), 7.58 (d, J = 8.1 Hz, 1H), 8.16 (d, J = 8.1 Hz, 

1H), 8.19 (d, J = 8.8 Hz, 1H), 8.55 (d, J = 8.8 Hz, 1H), 8.96 (br. s, 1H). 

 

 

(R)-N-Boranyl-1-aza-bicyclo[2.2.2]octan-3-ol 122:
[5]

 A solution of 

borane-THF complex solution (1.0 M in THF, 50 mL, 50.0 mmol) was 

added dropwise to a solution of (R)-(-)-3-quinuclidinol (6 g, 47.2 mmol) in 

THF (40 mL) in an ice bath at 0 
o
C. The reaction mixture was allowed to 

warm to room temperature, stirred for 24 h, and then evaporated in vacuo. The resulting 

residue was dissolved with CHCl3, washed with water, then brine, dried (Na2SO4), and 

108 

113 

122 
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then filtered and concentrated in vacuo. The resulting residue was dissolved in Et2O and 

treated with hexane. The resulting fine white precipitate was collected by vacuum 

filtration to afford (R)-N-boranyl-1-aza-bicyclo[2.2.2]octan-3-ol 122 as a white solid 

(5.5 g, 39.0 mmol, 83%). 
1
H NMR (400 MHz, CDCl3) δ: 1.54-1.70 (m, 3H), 1.80-1.88 

(m, 2H), 2.02- 2.06 (m, 1H), 2.10-2.19 (m, 1H), 2.81- 3.11 (m, 5H), 3.21-3.27 (m, 1H), 

4.06-4.10 (m, 1H). 

 

  

N-(7-{[N-Boranyl-1-azabicyclo[2.2.2]oct-3-yloxy]methyl}-1,8-naphthyridin-2-

yl)acetamide 114:
[5]

 A solution of (R)-N-boranyl-1-aza-bicyclo[2.2.2]octan-3-ol 122 

(5.1 g, 36.2 mmol) in DMF was treated with NaH (60% dispersion in oil, 1.4 g, 35.0 

mmol), stirred for 5 min then treated with 111 (5.0 g, 17.8 mmol). The reaction was 

monitored by TLC and stopped after disappearance of the starting material. The mixture 

was quenched with water, filtered through a plug of celite, and then extracted numerous 

times with chloroform. It was then dried (Na2SO4), filtered and evaporated in vacuo. 

Purification by flash column chromatography (ethyl acetate and then 2% MeOH/DCM 

gave 114 as a yellow solid (2.1 g, 6.2 mmol, 34%). 
1
H NMR (400 MHz, CDCl3) δ: 

1.45-1.54 (m, 2H), 1.71-179 (m, 1H), 1.94-2.01 (m, 1H), 2.18 (s, 3H), 2.21-2.23 (m, 

1H), 2.73- 3.01 (m, 5H), 3.13-3.19 (m, 1H), 3.71-3.75 (m, 1H), 4.62 (d, J = 13.6 Hz, 

1H), 4.71 (d, J = 13.6 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 8.10 

(d, J = 8.8 Hz, 1H), 8.43 (d, J = 8.8 Hz, 1H), 10.37 (br. s, 1H).  

Depending on the length of time of the reaction, varying amounts of the unacetylated 

compound 123 were also formed. Isolation of 123 as a yellow solid could be achieved 

by flash column chromatography using 6% MeOH/DCM with 1% TEA.
1
H NMR (400 

MHz, DMSO-d6) δ: 1.52-1.62 (m, 2H), 1.73-1.81 (m, 1H), 1.88-2.00 (m, 1H), 2.24-2.28 

(m, 1H), 2.70-2.89 (m, 5H), 3.17-3.24 (m, 1H), 3.82-3.86 (m, 1H), 4.57 (d, J = 13.4 Hz, 

1H), 4.64 (d, J = 13.4 Hz, 1H), 6.79 (d, J = 8.8 Hz, 1H), 6.81 (br. s, 2H), 7.25 (d, J = 8.1 

Hz, 1H), 7.91 (d, J = 8.8 Hz, 1H), 8.04 (d, J = 8.1 Hz, 1H). 

Reacylation of 123: A solution of acetyl chloride (0.2 mL, 3.0 mmol) in DCM (3 mL) 

was added dropwise to a stirred solution of 123 (0.3 g, 1.0 mmol) and TEA (0.4 mL, 3.0 

114 123 
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mmol) in DCM (6 mL) in an ice bath. The reaction mixture was allowed to warm to rt 

and stirred for an additional 2 h. The reaction mixture was then dissolved in CHCl3 and 

washed with H2O, dried (Na2SO4), filtered and concentrated in vacuo. Purification by 

flash column chromatography (6% MeOH/DCM with 1% TEA) gave 114 as yellow 

solid (0.16 g,0.5 mmol, 48%). 

 

 

N-(7-{[1-Azabicyclo[2.2.2]oct-3-yloxy]methyl}-1,8-naphthyridin-2-yl)acetamide 

CM:
[5]

 A solution of 114 (2.1 g, 6.1 mmol) in acetone (35 

mL) in an ice bath at 0 
o
C was treated with HCl solution 

(1.25 M in MeOH, 70 mL, 87.5 mmol), stirred at 0 
o
C for 

0.5 h, and then stirred at room temperature for 0.5 h. The 

reaction mixture was neutralised with sat. aq. K3PO4, dried 

(Na2SO4), filtered and concentrated in vacuo. Purification by flash column 

chromatography (9% MeOH/DCM in 1% TEA) gave CM as a white solid (0.7 g, 2.2 

mmol, 37%). 
1
H NMR (400 MHz, CDCl3) δ: 1.30-1.43 (m, 2H), 1.62-1.70 (m, 1H), 

1.85-1.92 (m, 1H), 2.07-2.11 (m, 1H), 2.25 (s, 3H), 2.62-2.94 (m, 5H), 3.09-3.15 (m, 

1H), 3.59-3.63 (m, 1H), 4.70 (d, J = 13.9 Hz, 1H), 4.79 (d, J = 13.9 Hz, 1H), 7.62 (d, J 

= 8.4 Hz, 1H), 8.11 (d, J = 8.3 Hz, 1H), 8.15 (d, J = 8.8 Hz, 1H), 8.49 (d, J = 8.8 Hz, 

1H), 9.73 (br. s, 1H); 
13

C NMR (100 MHz, CDCl3) δ: 19.3, 24.4, 24.5, 25.0, 46.8, 47.6, 

56.0, 71.6, 76.2, 115.3, 118.9, 119.6, 137.1, 139.3, 154.1, 154.2, 163.7, 170.1. HRMS 

[M + H]
+
: m/z calcd 326.1743, found 327.1817. 

 

 

(3-Methoxyphenyl)acetonitrile 115
[6] 

3-Methoxybenzyl bromide 

(10.1 g 50.2 mmol) was dissolved in a mixture of EtOH (6 mL) and 

H2O (3 mL), and then NaCN (3.2 g, 65.3 mmol) was added. The 

mixture was heated to reflux and stirred for 3 h, and then the crude was concentrated in 

vacuo. The orange residue was dissolved with DCM and washed with H2O. The organic 

layer was dried (Na2SO4), filtered and concentrated in vacuo giving 115 as a colourless 

oil (7.2 g, 48.9 mmol, 98%). The product was used in subsequent reactions without 

further purification. 
1
H NMR (400 MHz, CDCl3) δ: 3.71 (s, 2H), 3.81 (s, 3H), 6.91(m, 

3H), 7.31 (td, J = 7.6, 1.8 Hz, 1H) 

CM 

115 
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2-[Cyano(3-methoxyphenyl)methyl]benzonitrile 118:
[7]

 To a 

solution of potassium tert-butoxide (10.8 g, 96.2 mmol) in DMF 

(20 mL) in an ice bath, a mixture of 2-chlorobenzonitrile (8.6 g, 

62.5 mmol) and (3-methoxyphenyl)acetonitrile 115 (7.1 g, 48.2 

mmol) in DMF (12 mL) was added dropwise. The mixture was stirred at room 

temperature for 1 h, and then quenched with sat. aq. NH4Cl. The solution was extracted 

with Et2O, washed with H2O, dried (Na2SO4), filtered and concentrated in vacuo. 

Purification by flash column chromatography (10-15% EtOAc/hexane) gave 118 an an 

orange oil (11.3 g, 45.5 mmol, 94%). 
1
H NMR (400 MHz, CDCl3) δ: 3.80 (s, 3H), 5.53 

(s, 1H), 6.87 (ddd, J = 8.3, 2.5, 0.8 Hz, 1H), 6.94 (t, J = 2.1 Hz, 1H), 6.99-7.01 (m, 1H), 

7.30 (t, J = 7.9 Hz, 1H), 7.47 (td, J = 7.6, 1.5 Hz, 1H), 7.65-7.73 (m, 3H); 
13

C NMR 

(100 MHz, CDCl3) δ: 41.0, 55.5, 112.0, 113.6, 114.3, 117.0, 118.4 119.9, 128.9, 129.2, 

130.7, 133.7, 134.0, 135.6, 139.5, 160.3 

 

 

1-Bromo-4-(3-methoxyphenyl)isoquinolin-3-amine 119:
 

A 

solution of HBr (30% in acetic acid, 73 mL, 378.9 mmol) was 

added to 118 (11.2 g, 45.1 mmol), and stirred for 2 h at rt. The 

crude was then neutralised by addition of aq. sat. NaHCO3, 

extracted with ethyl acetate, washed with H2O, dried (Na2SO4), filtered and 

concentrated in vacuo. Purification by flash column chromatography (1-5% 

EtOAc/benzene) gave 119 as a yellow oil (9.2 g, 27.9 mmol, 62%). 
1
H NMR (400 MHz, 

CDCl3) δ: 3.84 (s, 3H), 4.43 (br. s, 2H), 6.90 (dd, J = 2.5, 1.5 Hz, 1H), 6.94 (dt, J = 7.6, 

1.3 Hz, 1H), 7.00 (ddd, 8.4, 2.8, 1.0 Hz, 1H), 7.27-7.33 (m, 2H), 7.41-7.45 (m, 1H), 

7.47 (t, J = 7.8 Hz, 1H), 8.12 (d, J = 8.6 Hz, 1H), 
13

C NMR (100 MHz, CDCl3) δ: 55.5, 

111.6, 114.0, 115.9, 122.8, 123.5, 123.8, 124.1, 128.9, 130.8, 131.1, 136.4, 139.0, 

143.4, 150.9, 160.6 
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1-(Benzyloxy)-4-(3-methoxyphenyl)isoquinolin-3-amine 

121:
[8]

 A solution of benzyl alcohol (8.4 mL, 81.2 mmol) in 

DMF (30 mL) was cooled to 0 °C, treated with NaH (60% 

mineral oil dispersion; 3.2 g, 80.0 mmol) in portions and stirred 

at 0 °C for 0.5 h. Subsequently it was added to a solution of 119 

(8.9 g, 27.0 mmol) in DMF (8 mL) at the same temperature. The mixture was warmed 

to rt and stirred for an additional 1.5 h. The reaction was quenched with the addition of 

sat. aq. NaHCO3, and extracted with Et2O, washed with H2O, dried (Na2SO4), and 

concentrated in vacuo. Purification by flash column chromatography (1% 

EtOAc/benzene) gave 121 as a yellow solid (7.0 g,19.5 mmol, 73%). 
1
H NMR (400 

MHz, CDCl3) δ: 3.88 (s, 3H), 4.28 (br. s, 2H), 5.65 (s, 2H), 7.01-7.05 (m, 3H), 7.21-

7.25 (m, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.38-7.51 (m, 5H), 7.61 (d, J = 7.1 Hz, 2H), 8.27 

(d, J = 7.8 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) δ: 55.4, 67.8, 104.8, 113.3, 114.3, 

116.5, 122.0, 122.8, 123.5, 124.3, 127.9, 128.0, 128.6, 130.5, 130.6, 137.7, 137.9, 

139.7, 149.0, 159.6, 160.4. 

 

 

3-Amino-4-(3-hydroxyphenyl)isoquinolin-1(2H)-one SIM:
[9]

 A 

solution of 121 (6.8 g, 19.1 mmol) in DCM (300 mL) was chilled 

to 0 
o
C. To this solution was added a solution of BBr3 (5.5 mL, 

57.1 mmol) in DCM (250 mL) at the same temperature. After, the 

reaction was allowed to warm to rt and stirred for 24 h. The 

mixture was quenched with H2O, extracted with CHCl3, to remove soluble impurities 

and then extracted with EtOAc. The organic layer was washed with H2O, dried 

(Na2SO4), and concentrated in vacuo. Purification by flash column chromatography (6% 

MeOH/DCM) gave SIM as a yellow solid (3.0 g, 11.8 mmol, 62%). 
1
H NMR (400 

MHz, DMSO-d6) δ: 4.93 (br. s, 2H), 6.65-6.69 (m, 2H), 6.78 (ddd, J = 8.1, 2.5, 1.0 Hz, 

1H), 6.70 (d, J = 8.1 Hz, 1H), 7.04 (ddd, J = 8.1, 7.1, 1.0 Hz, 1H), 7.29 (t, , J = 7.8 Hz, 

1H), 7.37 (ddd, J = 8.3, 6.8, 1.5 Hz, 1H), 8.00 (dd, J = 8.1, 1.5 Hz, 1H), 9.50 (s, 1H), 

10.78 (s, 1H). 
13

C NMR (100 MHz, DMSO-d6) δ: 93.3, 114.3, 118.3, 119.3, 120.9, 

121.7, 122.1, 126.8, 130.3, 132.2, 136.1, 140.4, 142.1, 158.0, 161.4. HRMS [M + H]
+
: 

m/z calcd 252.0899, found 253.0972. 
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Catalytic studies 

 

(R)-Methyl 2-(hydroxy(phenyl)methyl)acrylate 124:
[10]

 

To a stirred mixture of the benzaldehyde (0.1 mL, 1.0 mmol) and 

methyl acrylate (0.11 mL, 1.2 mmol) were added the catalyst (0.25 

mmol) and, where required, hydrogen bond donor (0.25-0.75 mmol). 

The reaction mixture was stirred at rt, and upon completion, the reaction mixture was 

purified by flash column chromatography (20% EtOAc/hexane) to give 124 as a 

colourless oil (0.14 g, 0.7 mmol, 71%).
 1

H NMR (400 MHz, CDCl3) δ: 3.39 (br. s, 1H), 

3.72 (s, 3H), 5.57 (br. s, 1H), 5.89 (s, 1H), 6.36 (s, 1H), 7.29‐7.41 (m, 5H). 
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