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Abstract

The ability to accurately achieve performance capture of athlete motion during competitive play in near real-time
promises to revolutionise not only broadcast sports graphics visualisation and commentary, but also potentially
performance analysis, sports medicine, fantasy sports and wagering. In this paper, we present a highly portable,
non-intrusive approach for synthesising human athlete motion in competitive game-play with lightweight instru-
mentation of both the athlete and field of play. Our data-driven puppetry technique relies on a pre-captured
database of short segments of motion capture data to construct a motion graph augmented with interpolated mo-
tions and speed variations. An athlete’s performed motion is synthesised by finding a related action sequence
through the motion graph using a sparse set of measurements from the performance, acquired from both worn
inertial and global location sensors. We demonstrate the efficacy of our approach in a challenging application
scenario, with a high-performance tennis athlete wearing one or more lightweight body-worn accelerometers and
a single overhead camera providing the athlete’s global position and orientation data. However, the approach is
flexible in both the number and variety of input sensor data used. The technique can also be adopted for searching
a motion graph efficiently in linear time in alternative applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.0 [Computer Graphics]: General—

1. Introduction

The adoption of 3D graphical visualisation techniques has
become increasingly prevalent in sports broadcasting, al-
lowing expert analysts to highlight specific aspects of key
game events and increase viewer insight, education and en-
gagement. However, to date, in-game visualisation of game-
play has generally been limited to non-human objects, such
as illustrations of offside lines or ball trajectories, as ac-
curate performance capture of athlete motion during com-
petitive play is impractical with traditional motion capture
techniques. Optical motion capture systems, such as Vicon
[Vic12] or Codamotion [Cod12], are typically considered
the gold standard in human performance capture and the re-
cent emergence of the Kinect [Kin12] has provided marker-
less full-body gaming in home environments. However, cap-
turing sporting motion with any optical system can be chal-
lenging, even impractical, within large spatial volumes due
to the cost and difficulty in densely and safely populating a
capture area with enough cameras to ensure adequate cov-

erage. This is especially problematic for Kinect systems, as
the IR patterns from multiple devices can interfere with each
other and significantly decrease tracking accuracy. Although
large area captures are possible with traditional motion cap-
ture systems during practice sessions with heavy athlete in-
strumentation, multiple optical markers are unlikely to be
worn, or allowed, during professional competitive match-
play. Additional complications can also arise during out-
door data capture sessions where there is little control over
lighting conditions or occlusions, when motion from high-
velocity movements is required and tracking (of markers or
limbs) can easily be lost, or when strict constraints on re-
construction time leave little scope for manual intervention
to correct captured motion artefacts.

An increasing demand for high-quality human motion in
recent years has driven the computer animation community
to research and develop techniques that simplify, expedite
and reduce the cost of acquiring motion data or that increase
the range of feasible capture environments. A variety of re-
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cent approaches are shown in Table 1 along with a list of
properties that are important for different applications. Not
surprisingly, no one approach is perfect for all applications.

Our approach is aimed at applications that require capture
outside of the tightly controlled laboratory or capture stage
and subjects who can tolerate only a lightweight, unobtru-
sive and hidden form of instrumentation. We aim to capture
high quality animations of both the root position (with re-
spect to a global environment origin) and subject pose po-
sition for subsequent visualisation and animation. We do
not target on-line applications, but instead aim to optimise
animation quality within a few seconds or minutes of the
performance of the full sequence of motion, so that in live
sports broadcasts for example, an athlete’s performance can
be quickly and accurately synthesised for both visualisation
and discussion during the break between periods. The trade-
off for obtaining high quality capture from lightweight sub-
ject and environment instrumentation is that our approach re-
quires a database of short pre-captured segments of motion
that cover the basic behaviours expected from the subject
during the capture. As such, truly novel action that are signif-
icantly distinct from those incorporated within the database
can not be accurately synthesised using our method.

The approach can be seen as a data-driven puppetry tech-
nique, where a subject’s performed motion is synthesised
by finding related action sequences in the database using a
sparse set of measurements from the performance. At the
core of our approach is a memory efficient technique for
searching a motion graph in linear time, regardless of the set
of animation requirements or constraints. We demonstrate
the approach using constraining input data acquired from
one or more 3D accelerometers and a single overhead cam-
era for global position and orientation of the subject. How-
ever, any other set of constraints or requirements could be
used; including additional inertial sensors, other sources of
global position data (differential GPS, ultra-wide-band tag
tracking, or even simple human sketch to define a charac-
ter’s required path through a scene) or any manually defined
animator constraints (such as times at which the character
is required to perform specific actions). As such, the tech-
nique can be adopted as an efficient technique for any appli-
cation that requires to search large motion graphs in linear
time [KSG02, LCR∗02, AF02, SH07].

There are three primary contributions of this paper. (1) We
illustrate how multiple input data modalities (such as in-
ertial, global position or orientation data and other manu-
ally defined constraints) can be efficiently incorporated into
a motion graph search in linear time. Unlike previous ap-
proaches, the inclusion of global position data into a graph
search does not require a large scale and computationally
complex unrolling of the motion database. Alternatively, a
linear 30% increase in computational cost (as opposed to
an exponential increase in unrolling cost with respect to se-
quence length) is required. (2) Unlike previous work in the

area, if inertial sensor input data is solely used to synthe-
sise motions, our approach is guaranteed to obtain an opti-
mal path through a motion graph (by globally minimising the
squared error between real-world sensors and the local mo-
tion of the body). Although incorporating global information
as input data invalidates this contribution (as an optimal path
through the motion graph in that situation is not guaranteed),
the technique can consistently provide synthesised motions
that significantly reduce global positional and orientation er-
ror. This contribution is important for applications that do
not need or require global positional data to be considered
in a motion graph search. (3) In order to reduce memory re-
quirements, previous approaches tend to reduce the size or
complexity of its underlying motion graph before search-
ing the graph for appropriate paths. This is especially true if
long sequences of synthesised motion are required, or if the
search requires global position constraints to be enforced.
As the length of required sequences increase, the amount of
compression required also grows (or the search tends to be
inefficiently split into N multiple searches). In this work, we
illustrate an alternative approach where memory reduction
techniques are focused on the search algorithm, and not on
the motion graph. This technique can be used to successfully
synthesise motion sequences of arbitrary lengths on a stan-
dard desktop computer, and without a need in the reduction
in complexity or size of the underlying motion graph.

This paper is organised as follows: Section 2 details pre-
vious work in the area. Section 3 provides a high level
overview of the approach, while Sections 4 and 5 describe
each individual component. Section 6 provides quantitative
evaluation of our approach in a real world test scenario; in
particular we focus on synthesising the rapid motions from a
nationally ranked tennis player in competitive action. Ten-
nis is a challenging test scenario for our work, given the
speed, movement and explosive nature of the actions per-
formed by high performance tennis players. In addition to
tennis, for qualitative evaluation we also synthesise boxing
motions, and extend the approach to a variety of other non-
sports specific actions incorporated within the publicly avail-
able HDM05 [MRC∗07] dataset. Finally, Section 7 provides
conclusions and directions for future work.

2. Prior Work

Motion capture is a well-studied and broad research area,
so in this brief account of related work we limit ourselves
to a review of data-driven approaches for motion animation
and inexpensive, portable human motion capture systems.
We also briefly discuss the use of motion graphs and search
algorithms, as we build on this work in our approach. A tech-
nology review for motion capture is provided in [WF02].

Changes in lighting, coverage or occlusion problems can
introduce robustness issues for most optical systems. An al-
ternative, less intrusive method, for motion inference that
can overcome these drawbacks is to embed sensors in a sub-
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Table 1: Comparison of motion capture techniques; (N)one,
(S)mall, (M)edium, (H)igh, (P)remium.
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Subject instrumentation H N H H S S
Environment instrumentation H S S S N S
Size of capture environment M S H H H H
Robust to outdoor lighting 7 7 X X X X
Robust to occlusions 7 7 7 X X X
Reconstruct fast movements X 7 7 X X X
Free-form motions captured X X X X 7 7

Database required 7 X 7 7 X X
Reconstruction accuracy P M M H M M
Reconstruct global root motion X X X 7 7 X
Performs activity recognition 7 X 7 7 7 X
Manual post-processing X 7 7 7 7 7

Online time complexity H S H M S M
System Cost H S M M S S

ject’s clothing. When held in a static position, the pitch and
roll of a tri-axial accelerometer sensor can be inferred. Us-
ing this technique and the assumption of low acceleration
motions, body limb positions can be directly inferred from
wearable accelerometer data streams [LH01, TL06]. Com-
bining an accelerometer with a magnetometer and a gyro-
scope in a single inertial measurement unit (IMU) device,
allows sensor yaw to be determined and can help increase
robustness against high acceleration motions [LWC∗11].
IMUs have been incorporated into commercial products
[XSE12] however are still prone to drift in accuracy over
time, especially if fast movements with high accelerations
are performed. Incorporating further sensors, such as ul-
trasonic time-of-flight devices, on the body can reduce the
negative impact of this drift [VAV∗07]. Shiratori et al.
[SPS∗11] takes an interesting alternative approach, instru-
menting an actor with multiple outward-looking cameras
and acquiring pose and global position of the subject using
image processing techniques. From discussions with elite
athletes and sports professionals, we believe that our target
application requires minimal subject instrumentation. We
therefore focus on the use of accelerometers alone, as they
can be sewn into clothing and sporting equipment in a very
unobtrusive way [SH08].

The most similar approaches to the one described in
this paper are data-driven, using sensor data to index into
a motion database and animate motion segments that ex-
hibit similar motion data to those acquired by the sensors
[LH01, RSH∗05, SH08, Kum08, TZK∗11, HBL11]. Ren et
al. [RSH∗05] search for upper-body motions in the database
that have similar features to those extracted from silhouettes
extracted by image processing techniques, Slyper and Hod-

gins [SH08] and Kumar [Kum08] describe a similar sys-
tem but use features obtained from inertial sensors placed
on the subject’s arms to search the database, while Taut-
ges et al. [TZK∗11] and Ha et al. [HBL11] extend this
approach of using inertial data to full-body motion synthe-
sis and for significantly larger motion databases. These ap-
proaches adopt sliding window-based search algorithms, de-
termining the actions to perform using only a small tempo-
ral sequence of accelerometer data. This technique, coupled
with small window sizes, ensures that the latency between
user movement and motion synthesis is short, allowing these
techniques to be used for near real-time applications. How-
ever, the use of small independent windowing techniques
can negatively affect animation quality, as pose transitions
tend to be only loosely constrained, which can result in poor,
unnatural motion animations. In addition, none of these ap-
proaches can reliably recover the global position, orientation
(compass heading) and movement of the character over time.

Motion graph data structures [AF02, LCR∗02, Kum08]
can be used to encode a pre-captured motion database and
limit unnatural motion transitions. Using this data struc-
ture, synthesised motions can be acquired by animating
a sequence of poses associated with a path of connected
nodes through the directed motion graph. Prior work in
this area has included contributions by Safonova and Hod-
gins [SH07] who describe a number of additional transition
rules, based on foot contact states, to minimise unnatural
motions and broaden the variability of actions incorporated
within the database by interpolating motions in the graph.
Ren et al. [RSH∗05] also extend the graph structure to al-
low original database motions to be performed at a variety
of speeds. In order to acquire animations, many approaches
[KSG02, LCR∗02, AF02, SH07] use the motion graphs in
conjunction with high-level animator requirements, such as
simple human sketches defining a character’s required path
through a scene, or predefined times at which a character
is expected to perform a high level action (such as a jump,
wave or other such general movement) [AFO03]. Off-line
variants of these techniques can produce high-quality ani-
mations that strictly adhere to the navigational constraints
outlined by the animator. However, for realistic motion syn-
thesis of human actions, the cost and time requirements of
providing fine grained human limb and torso motion input
requirements can be prohibitive, leading to searches being
under-constrained in terms of local motion accuracy.

Many previous works [LCR∗02, RP04, SH07, GSKJ03]
navigate characters through a scene by unrolling or embed-
ding the whole, or a portion, of the motion graph into the en-
vironment. For large graphs, this approach can be extremely
expensive, both in terms of the space required to store the
unrolled graph, and the time required to search for plausi-
ble solutions. As such, some approaches only unroll subsets
of the graph at a time, or attempt to reduce its complexity
and size [GSKJ03]. Even so, using optimal path search tech-
niques, such as A* search [SH07] where the complexity is
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Figure 1: Approach overview for a tennis test scenario with
three input data modalities: root orientation data; root posi-
tion information; and a single accelerometer stream.

dependent on the heuristic used but can be polynomial with
respect to time, can still be unrealistic. In this work, we use a
variation of the Viterbi algorithm [For73] to search for mo-
tion graph paths that adhere to a weighted range of input
data modalities. If the system is Markovian, Viterbi can op-
timally match the input readings to a suitable graph path with
a complexity that is linear with respect to sequence length.
In addition, if the memory reduction techniques of Abbas-
far and Yoa [AY05] are incorporated, then very large data
sequences and motion graphs can be searched in a single
Viterbi pass. If the system is not Markovian (such as in our
approach, when global root position and orientation data are
incorporated into the search), the algorithm does not guar-
antee an optimal graph path solution, but the computational
time and space requirements remain linear. To the authors’
knowledge, no alternative search algorithm would guarantee
an optimal solution in linear time.

3. Overview

Our approach has two stages, as outlined in Figure 1. In
the Offline Stage, a motion graph is created that encodes
a database of motions that we expect an actor to perform

at capture time. These can be captured in short segments in
a standard motion capture setup. The motion graph is then
augmented to associate metadata such as virtual accelerom-
eter traces with each graph edge. During the Online Oper-
ation, an actor’s (i.e. athlete’s) performed motion is synthe-
sised by finding a sequences of connected nodes through the
motion graph that have similar metadata values to those mea-
sured from the actor. The poses associated with each node
on the determined graph path are then post-processed to ac-
quire the final animated motion sequence. These two stages
will now be discussed in detail.

4. Offline Stage

We use motion graph data structures to encode how clips
from a captured motion database may be re-assembled to
form new realistic motion sequences. We automatically cre-
ate a motion graph using a point cloud driven approach, as
described by Kovar [KGP02], using additional constraints
that limit transitions to only occur during changes in foot
contact state, and only between poses with the same con-
tact state. Safonova and Hodgins [SH07] demonstrated that
adopting these constraints ensures that motions acquired
from the motion graph remain close to physically correct.
The final stage for many approaches [KSG02, LCR∗02] is
to ensure that the created motion graph is strongly con-
nected. This process ensures that a path exists between any
two given nodes in the directed graph, thus making sure that
there are no “dead ends” in the graph. We can skip this step
because the Viterbi search automatically avoids “dead ends”
unless they are a natural conclusion to the input data.

We extend the motion graph creation technique to incor-
porate two additional features. We modify the graph struc-
ture so that during performance capture, actions may be per-
formed at speeds significantly different to those in the train-
ing data. Secondly, we automatically broaden the number of
poses and increase graph connectivity by incorporating in-
terpolated motion segments into the motion graph. Although
these techniques increase both graph size and motion syn-
thesis computation time, Section 6.1 illustrates how these
techniques can increase motion synthesis accuracy.

4.1. Motion Speed Variations (MSV)

To allow variations in database motion playback speed,
Kumar [Kum08] explicitly defines self-looping edges (i.e.
starting and ending at the same node) within the motion
graph. Traversing self-looping edges pauses the motion for
a period of time, which can result in unnatural motion.
We adopt an alternative approach, similar to Ren et al.
[RSH∗05], which allows more naturalistic variations in mo-
tion playback speed to be synthesised. Figure 2 illustrates
the graph modification, where equidistant interpolated slow-
down nodes are inserted between original nodes allowing
the motion speed to be decreased by a factor of two, while
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(a) (b)

Figure 2: MSV; (a) Normal graph; (b) Additional slowdown
nodes (grey dots) and speedup edges (dashed-lines).

traversing a path containing speedup edges can double the
speed of a performed action. Intermediary playback speeds
between these two extremes can also be generated by al-
ternating between normal and MSV edges. Poses from an
acquired graph path are post-processed in the Online Op-
eration stage to smooth out the resulting discontinuities in
velocity. Further edges and nodes can also be added at al-
ternative intervals if greater changes in motion speed are ex-
pected. It is important to note that additional edges should
not be added when a subject has both feet off the ground,
otherwise spurious motions could be generated where grav-
ity will not be correctly enforced (its effect could be halved
or doubled).

4.2. Interpolation

Given a limited amount of motion data, interpolation of ex-
isting clips can allow input constraints to be synthesised
more accurately. In this work, we interpolate temporally
similar database action segments and incorporate these new
movements directly into the motion graph. Our approach is
similar to that of Safonova and Hodgins [SH07], however
we are more selective in the type of motions that we allow to
be interpolated. Safonova and Hodgins create an interpolated
sequence from two time-scaled graph paths that are com-
pared for similarity using foot contact state patterns only. We
extend this process, comparing the body positions, acceler-
ations and movements of two segments before interpolation
is allowed. Using this technique, only similar temporal ac-
tions are interpolated, while interpolation of dissimilar ac-
tions (e.g. a jumping-jack and a back-flip, for example) that
can result in unnatural motions are more easily avoided, es-
pecially for sequences where little or no foot movement oc-
curs. As with Safonova, our approach is automatic and does
not require any human input or manual database labelling.

Given two input sequences from the motion database, S of
length s poses and P of length p poses, a similarity matrix
is created by directly comparing all poses Sα to Pβ using the
point cloud approach of Kovar [KSG02]. An illustrative vi-
sualisation of a similarity matrix is depicted in Figure 3(a),
where the sequence poses of S and P are represented by the
columns and rows of the matrix respectively, and the bright-
ness of pixel (α,β) directly corresponds to the determined
similarity between pose Sα and Pβ. The similarity matrix is
then filtered so that only pose pairs with the same foot con-
tact states, and a point cloud difference below a threshold, ti,
remain – see the red pixels in Figure 3(b). Remaining neigh-

(a) (b) (c)

Figure 3: Interpolation; (a) Similarity matrix; (b) Two
groups of close similarity; and (c) Optimal paths through
clustered groups.

bour pairs are then clustered into coherent groups using an
iterative 8-neighbourhood connected components algorithm.
Each group represents a continuous temporal sequence of
motion frames (or actions) from S that can be mapped to a
similar sequence in P. Two coherent groups, highlighted by
blue bounding boxes, are obtained in Figure 3(b).

As a brute force algorithm for acquiring the optimal map-
ping between sequence pairs has exponential complexity, we
apply a Dynamic Time Warping (DTW) [KR05] approach
based on Dynamic Programming (DP), which has complex-
ity of O(ŝ p̂), where ŝ, p̂ are the width and height of the
clustered region. This algorithm can determine the optimum
non-linear path through the clustered cells of the similarity
matrix, so that each pose Sα is matched to a single pose Pβ

(and vice versa), using the point cloud similarity between
poses as a cost function, and with the DTW alignment slope
constrained between 1/2 and 2 to prevent motion disconti-
nuities. Once matched, two temporally aligned motion seg-
ments over 0.5 seconds in length are blended together using
even weights to form new interpolated motions, using the
approach described by Park and colleagues [PSKS04], and
then added to the motion graph as previously described.

4.3. Metadata

Pre-calculated metadata is associated with each motion
graph edge to allow a comparison of paths through the mo-
tion graph with the input data streams. As such, the required
metadata depends on the input data to be provided. In the ex-
ample scenario, three input data streams are expected at cap-
ture time (global position and orientation data, plus a single
accelerometer stream – see the metadata features extracted
in the top-right section of Figure 1), three metadata items
are associated with each graph edge. The first metadata item
describes the global orientation offset that is incurred when
traversing the edge (i.e. moving from pose α to pose β). This
offset is calculated as the local root compass heading off-
set (with respect to pose α) that occurs from unrolling node
pose α to pose β (e.g. if the compass heading of α is 5o

and β is 7.5o, then the metadata item is set to +2.5o). Sim-
ilarly, the global position offset metadata item is calculated
as the local groundplane vector from unrolling α to β (e.g.
if the position of α on the groundplane is (5,2) and β is
(1,8), the offset vector (−4,+6) is stored). The third meta-
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data item in the example scenario models the inertial read-
ings that are induced when moving between pose α and β.
We model the induced inertial readings using tri-axial virtual
accelerometers [SH08], with the virtual device matching the
position and orientation of each real world sensor expected
to be worn on the body during performance capture. If other
input data streams are provided, global or inertial input meta-
data (such as jumping height, rotation from gyroscopes, etc)
should be calculated and stored in a similar manner.

5. Online Operation

Given a series of T samples, where a sample corresponds
to one set of synchronised readings from all input sensor
readings (such as accelerometers, body root tracker, etc),
the goal of the online stage is to find an appropriate path
through the motion graph, such that the estimated motion
is a good approximation of the actions performed. Once ac-
quired, the database poses traversed on the graph path can
be post-processed and animated. We use a variation of the
Viterbi algorithm [For73] using the pre-calculated metadata
in the traversed edges to find the motion graph path that
best matches the measured input values in a least-squared
sense. Viterbi’s approach is a Dynamic Programming (DP)
algorithm that finds the most likely sequence of unknown
states (i.e. motion graph nodes) given a series of observa-
tions (i.e. T input data samples). More formally, the Viterbi
algorithm may be viewed as a solution to the problem of
maximum a posteriori probability (MAP) estimation of the
state sequence of a finite-state discrete-time Markov process
observed in memoryless noise [For73]. Algorithmically, it
determines the optimal discrete-time sequence of states that
minimises the sum of costs, G(n,T ):

G(n,T ) =
T

∑
t=1

C(n, t) (1)

where t is a discrete-time period, n is the sequence node se-
lected at time t and C(n, t) is the local cost of selecting node
n at time t. In our approach, the sequence of nodes in the
Viterbi path is chosen so that a motion graph-edge exists be-
tween all nodes in the path. As such, we assign the Viterbi
cost function to be

C(n, t) =
{

1 if t = 0
L(e, t) t > 0

(2)

where L(e, t), the local cost of selecting the edge, e, that tran-
sitions to node n at time t. This cost can be quantitatively ob-
tained by directly comparing the input data samples at time t
to the metadata associated with the edge e. A number of vari-
ants of L(e, t), using differing input modalities, are described
in Sections 5.2 and 5.4.

The Viterbi algorithm is an iterative process that con-
stantly maintains N possible paths through the graph, where
N is the number of nodes in the motion graph. At each time
stage, the last node in every path is unique, i.e. for any given

node n in the motion graph at time t, a path of length t end-
ing in node n exists and is maintained by the algorithm. On
each iteration, the length of each path is extended by a single
node and a global minimum cost, G(n, t), of reaching node
n at time t is updated via

G(n, t) = arg min
e∈En

[L(e, t)+G(m, t−1)] (3)

where G(n,0) = 0, En are the set of edges leading from node
m to node n, and e an edge from that set. From Equation 3,
it is clear that Viterbi assumes that temporal transitions from
one state to another are Markovian, and therefore comput-
ing G(n,T ) requires only 2N memory elements, as only N
states at time t and t− 1 must be maintained. However, NT
memory elements are required to store the DP lattice back-
trace links, which stores the immediate predecessor to every
N node at each time iteration.

At time T , the optimal path is determined to be the one
from the N stored paths that has the lowest associated global
cost, G(n,T ). Using the DP lattice, the temporal sequence
of graph nodes from this Viterbi path can be acquired and
animated. We use blending windows of size w at motion
transitions in the graph path, where every pose within the
blending window is made up of w weighted poses centred
around the transition point. The blending of root position
is achieved using Bézier curves, while the w weighted pose
quaternions are blended using Bernstein polynomials as de-
scribed by Park and colleagues [PSKS04]. In our experi-
ments, w is typically set to 0.7 seconds. However, in order to
avoid unnatural movement with respect to gravity, the root
position is blended using w = 0.1 second when neither foot
is in contact with the ground. Finally, footskate artefacts are
removed using a technique similar to the inverse kinematics
based approach proposed by Kovar [KSG02].

5.1. Complexity and Memory Reduction

The Viterbi algorithm (with a graph of N nodes, E edges
and T input data samples) has a processing time of the order
O(ET ) and a DP lattice memory footprint of order O(NT )
(Note: E = NN if every node is connected to every other
node in the graph). While the processing time has linear
complexity with respect to the length of the input data, for
long sequences and large graphs the memory requirements
may be high. Fortunately, the NT lattice is highly redundant,
and can be compressed during the online search to signifi-
cantly reduce memory usage. The approach we use is similar
to that of Abssafar and Yao [AY05], removing lattice points
that can never be found in the optimal path. This reduction
is achieved by periodically performing a backtrace from all
nodes at time t and removing all unused DP lattice points be-
tween time [0, t]. Lattice nodes that are not included in any
backtrace path are redundant and can be removed, as they
will never form part of the optimal path.
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5.2. Motion Synthesis using Wearable Sensor Data

An optimal Viterbi path through the motion graph can be ac-
quired in the sense that the squared error between the entire
sequence of measured real-world values and the virtual sen-
sor values is guaranteed to be globally minimised. For wear-
able accelerometers, the local cost of transitioning between
nodes using the graph edge e at time t is given by:

L(e, t) =CA(e, t) =
∑

S
s=1 ||E

s
acc(e)−Ms

acc(t)||2

S
(4)

where S is the number of sensors worn by the subject,
Es

acc(e) is the pre-computed virtual acceleration metadata as-
signed to edge e for sensor s (with the virtual device match-
ing the position and orientation on the subject’s body as the
real world sensor), and Ms

acc(t) is the acceleration for sensor
s measured by the worn device at time t.

5.3. Incorporating Root Position and Orientation

The search technique of Section 5.2 allows the position and
orientation of the actor to drift over time as the selected path
through the motion graph contains slightly different amounts
of position and orientation changes than that of the required
motion sequence. In this section, we adapt the Viterbi algo-
rithm to integrate additional global input data and signifi-
cantly reduce this error. The algorithm is modified to store
and maintain the global character positions and orientations
for each of the N maintained paths through the graph. At
t = 0, each of the N global positions, P(n, t), and orienta-
tions, O(n, t), are initialised to the first input data stream val-
ues. At time t, let v be the edge from the set, En, which leads
from node m to node n and minimises Equation 3. The as-
sociated position, P(n, t), for the path ending in pose n is
subsequently updated via

P(n, t) = Ppos(v)+P(m, t−1) (5)

where Ppos(v) is the global position offset metadata associ-
ated with traversing edge v. O(n, t) is similarly updated.

When calculating the local cost of transitioning a graph
edge in Equation 3, we weight the costs from CA(e, t), plus
position (CP(e, t)) and orientation data (CO(e, t)) using

L(e, t) =WACA(e, t)+WPCP(e, t)+WOCO(e, t) (6)

where WA, WP and WO are weighting parameters. The po-
sition cost of transitioning to node n with edge e at time t
is

CP(e, t) = ||P̂(n, t)−Mpos(t)|| (7)

where P̂(n, t) is the global position of the character if it tran-
sitioned to node n at time t using edge e (as described in
Equation 5). The local orientation cost, CO(e, t) is similarly
calculated. To ensure that the magnitude of position, orien-
tation and accelerometer data errors are roughly comparable
perceptually, we use metres, radians and g-force as the mea-
surement units in Equation 6.

This adaption significantly reduces the average global po-
sitional and orientation error of the synthesised motions. In
addition, as the complexity of the solution remains linear at
O(ET ), this adaptation can be achieved with a linear in-
crease in computation cost, caused by the substitution of
Equation 4 for Equation 6. However, it is important to note
that this alteration also breaks the Markovian assumption in-
herent in the Viterbi algorithm, due to the position and orien-
tation associated with each of the N stored paths. For a given
time iteration t, both P(n, t) and O(n, t) are calculated using
the first values provided by the input data streams plus the
metadata offsets from each edge in the sequence of nodes in
the path. As such, at time t (using Equations 3 and 6) future
states depend not only upon the observed input data at point
t and the present state at time t− 1, but also on the full se-
quence of states that preceded it. As the adapted approach is
non-Markovian, the optimal path through the motion graph
with respect to the chosen cost function is not guaranteed.

5.4. Manually Defined Human Input Constraints

Additional human-defined constraints can also be incorpo-
rated into the search algorithm. Let the user input a sequence
of T constraints, where r(t) specifies the state requirement
(such as required foot contact states or specific actions to be
performed) at time t. When a single set of T constraints are
provided, an additional set of N global costs are maintained

Gr(n,T ) =
T

∑
t=1

Cr(n, t) (8)

where Cr(n, t) = 0 if the graph node n adheres to the required
constraint r(t) at time t, and Cr(n, t) = 1 otherwise. The op-
timal, animated Viterbi path, breaks the fewest number of
constraints and, as such, will minimise this new cost. If two
or more paths adhere equally to the set of user constraints,
then the global cost of Equation 1 is used to select the opti-
mal path. If γ different user constraint sets are provided, then
γ additional global costs can be simultaneously maintained,
with the optimal paths ranked using the costs of the most
important constraints first.

6. Experimental Validation

In this section we quantitatively evaluate our approach in
a real world test scenario by synthesising motions from a
nationally ranked tennis player in competitive action. Ten-
nis is a challenging test scenario for our work, given the
speed, movement and explosive nature of the actions per-
formed by high performance tennis players. In addition to
the local motion of a player’s limbs, the synthesised motion
must also take into account the global movement of the ath-
lete through the field of play. In order to acquire the motion
database, we instrumented an indoor tennis court with a 12-
camera Vicon optical motion capture system [Vic12] and
captured 20 sequences from a 6.5×3.25 metre capture area
that covered a number of variations of all the major tennis
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Figure 5: Synthesised serve motion using input data from six equally weighted accelerometers.

Figure 4: Example synthesised (right figure) versus
groundtruth motions (left); (Column 1) Tennis Forehand;
(Column 2) Boxing Sequence; (Column 3) Jumping-jacks
with HDM05 dataset.

shots, enough data to allow the player to traverse the cap-
ture area efficiently plus a number of unscripted competitive
game-plays. In total 15,304 frames at 30 Hz were captured
(8.5 minutes of data). The camera placement and player in-
strumentation required to capture these isolated shots would
not have been viable during competitive tournament play.
For qualitative evaluation in a number of different scenar-
ios, including tennis, boxing and motions from the publicly
available HDM05 [MRC∗07] dataset, readers are directed
to Figures 4 and 5, and the supplementary videos associated
with this paper.

In Section 6.2, a player’s root position on the court is ob-
tained using video processing from a single overhead cam-
era [CKCO09], however any alternative modality, including
human drawn sketches of temporal positions, could be used.
The chosen source depends on the infrastructure available
and accuracy required. For orientation, we simply make an
assumption that the compass heading of the player is facing
their direction of movement if the root position velocity is
greater than a threshold (set empirically to 2 metres per sec-

ond) otherwise we assume the player is facing the tennis net.
Although simplistic, these assumptions provide good results.

6.1. Synthesis using Wearable Sensor Data

During the capture of the motion database, six ±12 g tri-
axial wireless accelerometers (capable of transmitting syn-
chronised data to a single base-station over 20 metres away)
were placed on the body of the player (one on each forearm,
each shin, one on the lower back and one on the chest). Using
both the groundtruth Vicon and sensor data, we can quantita-
tively evaluate synthesis results via the approach of Section
5.2. This evaluation serves three purposes; firstly, we can in-
vestigate the benefits of incorporating Motion Speed Varia-
tions (MSVs) and interpolated motion sequences in a graph;
secondly, we can compare the accuracy of virtual sensors
and their real world counterparts; and thirdly, it provides a
quantitative baseline for local-based motion reconstruction
accuracy in subsequent experiments when both wearable and
global information are provided as input data.

Table 2 provides quantitative evaluation of motion synthe-
sis results from five different motion graphs. The first four
graphs (named GA to GD respectively) were created from a
4.25 minute subset of the captured data, while the last graph,
GE , was created from all 8.5 minutes of data. It is impor-
tant to note that although some, or all, of the test 20 tennis
motion sequences are incorporated into the motion graphs
used, when testing against a given groundtruth movement,
the original Vicon motion is removed from the motion graph.
As such, the synthesised motion can not come directly from
the groundtruth-captured motion. Other specifics on the cre-
ation of each graph is provided by three columns in this ta-
ble, which highlight whether a specific graph includes Mo-
tion Speed Variations (MSV) or Interpolation (I) sequences
or not. In this work, interpolated sections were created using
ti = 0.5 metres, resulting in 17,567 potential new motion
poses from 552 interpolated actions sequences with an aver-
age length of 1.1 seconds.

Using the smallest graph GA, and synthesising motion
from all 20 sequences (removing the groundtruth from the
motion graph before applying our approach), we obtain an
average joint position error of 12.7 cm plus a standard de-
viation of this error of 7.3 cm. By incorporating MSV or
interpolated nodes, improvements in this error can be ob-
tained. The error metric, as used by Tautges [TZK∗11], is
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Table 2: Synthesis using 6 equally-weighted wearable accelerometer input data streams.

Num. Num. Average Joint Actions
of of Error (St.Dev.) Computational

Graph MSV I Nodes Edges In cm TP FP TN FN Increase
GA 7 7 7,577 9,433 12.7 (7.3) 98 0 4 9 −
GB X 7 13,870 28,312 12.2 (7.0) 99 0 3 9 ×2.00
GC 7 X 25,054 95,318 11.9 (6.8) 104 0 3 4 ×9.10
GD X X 46,409 159,127 11.1 (6.1) 105 0 3 3 ×15.87
GE X X 100,686 317,600 10.8 (6.0) 105 0 3 3 ×32.67

Synthesis without removing groundtruth from the motion graph.
GE X X 100,686 317,600 4.3 (5.0) 111 0 0 0 ×32.67

calculated by directly comparing the positions from all bone
joints (from pelvis, lowerback, upperback, neck, head, fe-
mur, tibia, foot, toes, clavicle, humerus, radius, hand) in each
synthesised motion pose to the groundtruth joint positions,
and acquiring the average position error over the entire 20
sequences. A potential issue with this metric is that it evalu-
ates each body pose as a single connected object. As such, an
error in one bone can negatively impact the accuracy result
of other connected bones. For example, an error in the shoul-
der joint will subsequently cause errors in the connected arm
bones (even if the local arm joint angles may be perfect), and
in essence the error can be counted twice (or more). How-
ever, as this metric has been used in prior literature we adopt
it for fairness of comparison. From the first four rows of Ta-
ble 2, precision increases are obtained from including MSVs
and interpolation into a graph.

We also evaluate our results on a higher semantic level,
determining the number of correctly synthesised tennis
stroke actions in each sequence. Within the 20 test se-
quences, 111 tennis strokes were performed – 20 serves,
43 forehands, 40 backhands (13 single-handed, 27 double-
handed) and 8 overhead volleys. In Table 2, True Positive
(TP) represents the number of correctly performed strokes
in the synthesised motion (where a correct shot is one that
is performed in full and the peak of the shot, i.e. the time
when the ball is hit, is no further than 0.25 seconds from
that of the groundtruth motion), False Positive (FP) repre-
sents strokes made at times when no such action occurred in
the groundtruth motion, True Negative (TN) represents the
number of strokes that occur in the groundtruth motion but
no stroke (at all) was performed in the synthesised motion,
and False Negative (FN) represents the number of incorrect
strokes made by the reconstruction (e.g. the algorithm syn-
thesises a forehand instead of a backhand).

From Table 2, graph GA correctly performs 98/111
strokes, never performs a shot when it should not, misses
four stokes completely and misclassifies nine shots. Of the
four strokes it missed, three are relatively unique strokes that
appear in the database which were not selected to be part
of the test graph, as such it is not surprising that they are

synthesised incorrectly. The fourth missed stroke is correctly
synthesised if MSVs (GB) or interpolation (GC) is incorpo-
rated. All but one of the nine misclassified strokes were over-
head volleys incorrectly synthesised as forehands. By adding
interpolated sequences, the graphs become more connected
and more examples of overhead volleys are introduced, re-
sulting in a reduction in the number of misclassifications to
three or four. Graph GE illustrates that doubling the num-
ber of nodes and edges in the graph by using all 8.5 minutes
of data captured in the database leads to a slight decrease
in joint error, but does not alter the accuracy of actions per-
formed. This higher joint error accuracy is offset by an in-
crease in the computational time needed to acquire a solu-
tion. Using the baseline approach (graph GA), an optimal
search solution for an example 24 second sequence can be
obtained in only 5 seconds (on a standard Intel Core2 Duo
3.0 GHz processor, with 4 GB of RAM). This rises to 163
seconds when using graph GE , or 32.6 times the computa-
tional cost of the baseline approach. These timings do not
include the offline metadata calculation, processed on aver-
age at 2,567 edges per second. The offline motion graph cre-
ation process (which is only implemented once to create the
graph) is processed on average at 51 Vicon frames per sec-
ond on a standard desktop computer.

By examining the last row of the table, which uses graph
GE again but incorporates all the groundtruth frames in the
search, an evaluation can be made on how well the virtual
accelerometers model the readings of the real devices. Ide-
ally, the average joint error should approach zero, as the
groundtruth poses should be selected in each synthesised
frame. However, the 4.3 cm error indicates a discrepancy
between the real and idealised sensor models. This error is
caused by a number of reasons including; tracking inaccu-
racies in the motion database, not incorporating all physical
forces such as centrifugal acceleration and vibrations in the
model, and inaccurate synchronisation and calibration.

6.2. Synthesis using Global Data

Although the results of Section 6.1 tend to produce good ac-
curacy in terms of average joint error and stroke selection,
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Table 3: Synthesis with graph GD for different input modality configurations.

Number Equation 6 Average Joint Avg. Position Avg. Orientation Actions
of Weights Error (St.D.) Error (St.D.) Error (St.D.)

Sensors WA WP WO in cm in cm in Degrees TP FP TN FN
Three synthesis results using various accelerometer streams only.

a 6 1 0 0 11.1 (6.1) 142.8 (114.3) 41.1 (27.3) 105 0 3 3
b 2 1 0 0 11.8 (6.3) 154.6 (137.6) 39.1 (35.8) 105 0 3 3
c 1 1 0 0 12.5 (6.8) 173.5 (163.8) 56.4 (44.2) 98 0 2 11

Synthesis using position and position-orientation input data.
d 0 0 1 0 20.9 (10.4) 27.4 (21.5) 50.3 (48.6) 15 32 79 17
e 0 0 1 1 17.7 (8.4) 27.7 (22.6) 17.3 (12.4) 25 10 68 18

Three synthesis results using multiple input modalities.
f 6 0.5 1 1 11.6 (7.0) 44.7 (50.4) 17.6 (13.2) 100 1 3 8
g 2 0.5 1 1 11.4 (6.4) 51.4 (47.0) 22.4 (15.1) 105 0 2 4
h 1 0.5 1 1 12.0 (6.7) 49.9 (52.2) 22.1 (14.7) 98 0 2 11

Synthesis with added human input constraints.
i 1 0.5 1 1 11.9 (6.7) 58.5 (61.3) 21.6 (15.0) 110 0 0 1

(a) Global positional error over time (b) Global orientation error over time (c) Average joint error over time

Figure 6: Temporal errors from a specific example test sequence using graph GD and 6 inertial sensors.

due to the vigorous and rapid movements in our test corpus,
the approach performs less well with respect to global posi-
tion and orientation (compass heading) errors as seen in row
a of Table 3, where average errors of 1.4 metres and 41.1 de-
grees are obtained respectively. Conversely when using the
approach of Section 5.3 with no acceleration data good po-
sition and orientation data can be obtained, at the expense of
joint accuracy – see rows d and e of Table 3. Note that the
position error in this table is calculated using the groundtruth
Vicon data as a baseline. However, if the error is is calculated
using the input data from the overhead camera as a baseline,
the error value drops by roughly 13.7 cm on average (i.e. the
calibration of the Vicon system with respect to the overhead
camera is on average 13.7 cm off). Other experiments using
position only information can be even lower, for example the
10 minute sequence of motion obtained from the publicly
available HDM05 [MRC∗07] dataset (as seen in the supple-
mentary video associated with this paper) obtains an average
position error of just 2.9 cm with a standard deviation of this
error of 1.1 cm. This error is significantly lower as the move-
ments around the scene are far less fast and aggressive than
those in our test scenario.

By weighting the six accelerometer streams, at WA = 0.5,
with global input data using the approach of Section 5.3,
significant improvements in global positional and orienta-
tion error values can be obtained, for a minor increase in
the local joint synthesis error – see row f of Table 3. The
benefits of using this approach can also be seen in Figure
6, which depicts how errors evolve temporally in an illus-
trative example sequence where a TN (i.e. missed shot) oc-
curs at the 9 second mark. At this point regardless of the in-
put data modalities, motion is synthesised poorly. This intro-
duces significant global position and orientation errors into
the animation. However, unlike the accelerometer-only ap-
proach (Ac), when synthesising motion using both local and
global data modalities (Ac,Pc,Oc) the animated motion is
able to quickly recover, removing the error in position with-
out significantly compromising local joint accuracy.

Using the results of our quantitative experiments, we de-
termined that the optimal results using accelerometer-only
synthesis were achieved in our tennis scenario when all six
accelerometers were used (i.e. row a of Table 3). This re-
sult is expected as the data streams simultaneously reduce
the ambiguity of motion at six independent body locations.
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When only two (one on each forearm) or one sensor (on the
right forearm) was employed, a subsequent increase in the
average joint error was observed (see rows b and c of Ta-
ble 3 respectively). However this was not the case when the
accelerometer data was augmented with global position and
orientation data (compare the joint error of rows g and h
to row f), where the error from the one and six sensor se-
tups were roughly on a par, and the two sensor setup per-
formed significantly better, both in terms of joint error and
the number of TP shots correctly synthesised. For a fully
automatic approach in our tennis scenario, the best results
were obtained by discarding the use of all but the two arm
sensors and incorporating global data. In this setup, the two
arm sensors provide adequate information to correctly syn-
thesise 95% of all shots correctly, while the weighted global
data reduced motion ambiguity between shots in a more ef-
ficient manner than the combination of leg, chest and hip
acceleration information.

6.3. Synthesis using Manually Defined Constraints

For configuration i of Table 3 a semi-automatic approach
was adopted, incorporating manually defined human input
constraints into the setup. In this scenario, the motion dataset
is manually annotated so that each pose is labelled with an
action type (forehand, backhand, serve, volley, or none); the
input constraints, r(t) of Equation 8, are used to define the
temporal location of shots to be performed in a sequence (de-
fined as “don’t care” at all times apart for±10 frames around
the time when a ball is hit). This minimal human input en-
sures that if the connectivity of the motion graph is strong
enough (in one case it was not), a correct shot is always
obtained using a single right-arm sensor (that can perhaps
be embedded into a tennis racket in a real-world scenario),
while simultaneously minimising the costs of Equation 6.

6.4. Complexity, Memory Reduction and Windowing

Using the memory reduction technique of Section 5.1, an al-
most linear compression ratio with the number of samples
added to the DP lattice was achieved as illustrated in Fig-
ure 9(a), achieving an average compression of over 120 : 1
with 600 input data samples added. Using any reasonably
well-connected motion graph should result in similar high-
compression ratios. With regards to the added complexity of
synthesising motion using global input data, the time taken
to process each edge increases by an average of 28.4%,
see Figure 9(b) which graphs a timing comparison between
the two techniques using a number of different example se-
quences and graph sizes.

In Figure 10, we adapt the approach to operate with a
lower latency, using a sliding window-based approach and
evaluate the resultant depreciation in synthesis accuracy with
two different motion graphs. The baseline results are ob-
tained by synthesising motion using all input data streams

(Ac,Pc,Oc) without windowing. In either figure, regardless
of the input modality, roughly a 5 second window is required
to reach joint error levels similar to that of the baseline ap-
proach. However, to achieve similar global positional errors,
a 10 second window is required when using graph GA (the
most appropriate motion graph for a real-time scenario), or
a 40 second window with the larger graph GD. For graph
GA a sliding window size of less than 1 second results in the
global input data having little, or no, impact on the synthe-
sised motion. This rises to 3 seconds when using GD.

6.5. Synthesis of Different Subjects

In this final experimental results section, we perform an in-
vestigation into how accurately the motion graph of one
player (using motion graph GD) and be used to drive the
synthesised motion of three different player subjects. Unfor-
tunately, due to budgetary constraints and the significant cost
in cleaning up motion data captured in sub-optimal outdoor
lighting conditions, the groundtruth motion capture data for
each of the three additional subjects could not be obtained.
As such, an alternative, more rudimentary form of quanti-
tative results are provided than those previously presented
in this paper, and are solely intended to act as an indication
of its potential performance. In order to obtain quantitative
results, we synthesised motion from each of the subjects us-
ing a single accelerometer (placed on the right hand of the
subject). The virtual accelerations obtained from these syn-
thesised motions were then directly compared to the real,
input, accelerometer data. The closer the match in the real
and virtual accelerometer readings, the higher the probabil-
ity that a close match between real and synthesised motions
have been acquired. In Figure 7 we present these results, and
for qualitative evaluation readers are also directed to the sup-
plementary videos associated with this paper.

To establish a base error rate, we firstly compare the vir-
tual and real accelerations from groundtruth Vicon motions.
Theoretically, this error should be zero, however as seen
in Figure 7 an average mean squared error of rate 1.6 g-
force units (or g, were 1g ≈ 9.81ms2), with a standard de-
viation of 10.0g, was obtained for the Groundtruth results.
The discrepancy that is inherent in the two signals can be
clearly seen in Figure 8, where time-slice of real and vir-
tual accelerometer data are overlaid. The variance between
groundtruth readings has five main causes: (1) inaccuracies
in the motion database, caused by inaccurate marker track-
ing, calibration and data clean-up; (2) the virtual model is
rigidly attached to the limb of the motion capture skeleton,
while a real sensor can slide, move and vibrate against a
limb, especially during high speed motions; (3) the virtual
sensor is not modelled to incorporate all physical forces,
such as centrifugal acceleration; (4) inaccurate calibration
of the exact sensor locations and orientations; and (5) inac-
curate synchronisation between the real-world sensors.

From Figure 7 it can be seen that when the captured player
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(a) (b)

Figure 7: Comparison of errors between virtual and real
accelerometer data for different players; (a) Average mean
squared error; (b) Standard Deviation of the error.

(a) X-Axis (b) Y-Axis (c) Z-Axis

Figure 8: Comparison of real (blue) and virtual (red)
groundtruth accelerometer data.

and motion graph are of the same actor (i.e. Subject A)
the error rate rises to 3.0g (or a 87% increase in the base
groundtruth error rate). As shown in Table 3 row c, this error
rate allows still allows accurate synthesised motions to be
obtained. When motion of different subjects is synthesised,
an increase in the error is expected and seen. The smallest
increase in error occurs with Subject D, where the error rises
to 3.26g (or an 8% increase with respect to that of Subject
A’s error). The largest increase in error occurs with Subject
B, with a 4.16g error (a 38% increase in Subject A’s error). It
should be noted that these error increases are relatively mi-
nor when compared to the initial 87% increase from the base
groundtruth error rate experienced by Subject A. However, as
can be seen in the supplementary videos, the increase in er-
ror tends to expedite drift with respect to a subject’s global
position and orientation, and as such highlights the impor-
tance of incorporating global data into the search algorithm
for these specific capture scenarios.

7. Discussion

In this work we describe a data-driven approach that can in-
corporate multiple and diverse input data modalities to syn-
thesise accurate high-quality motion animations. For inertial
sensor data, an optimal path through a motion graph with re-
spect to the defined cost function is guaranteed. In addition,
global position and/or orientation data can be efficiently in-
corporated into the algorithmic process, which can signifi-
cantly reduce global errors, while the computational com-
plexity remains linear with respect to time. The approach can
be used with large motion graphs and input data sequences
and can be adopted to allow human performance synthesis
with light instrumentation, or to create animations that ad-
here to manually defined animator requirements.

(a) (b)

Figure 9: (a) Average memory compression ratio over
time; (b) Timing comparison synthesis of accelerometers-
only (Ac) Vs accelerometers, position and orientation data
(Ac,Pc,Oc).

(a) Results using graph GA. (b) Results using graph GD.

Figure 10: Percentage increase in average joint error and
average position error from a baseline approach when us-
ing various sliding windowing sizes; A Average Joint Error
(Accelerometer Input Only); B Average Position Error (Ac-
celerometers Only); C Average Joint Error (All input data
streams); and D Average Position Error (All input streams).

As with many data-driven techniques, an inherent limi-
tation of the approach is the inability to reconstruct free-
form motion that is significantly different from the move-
ments stored in the motion database. Although we mitigate
the issue by broadening the type of movements allowed us-
ing MSVs and interpolation, and ensuring that we begin with
a relatively complete database of motions expected to be per-
formed at capture time, this remains an inherent limitation
of the approach. Although a relatively complete database
of movements can be captured quickly for many activities,
especially sporting scenarios that have a limited number of
well-defined motions that occur frequently, acquiring appro-
priate motion databases for some scenarios (such as ski-
ing, driving, and biking) in a lab-setting would be difficult.
However, in Table 1, only with the approach of Shiratori et
al. [SPS∗11] can these specific motions be captured with
global root positioning.

A further limitation lies in the simplified virtual sensor
model employed, as discussed in Section 6.1. In our test
scenario, we attempt to mitigate a number of the causes of
virtual sensor error by using tightly fitting sensor straps to
maintain a fixed position on the person’s body, performing
predefined motions to acquire accurate sensor locations, as
well as performing motion clean-up to ensure a good motion
database. In future work, we would likely expand the model
to incorporate more sophisticated modelling. However, am-
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biguity from a one-to-many mapping from the (small num-
ber of) accelerometer readings to body joint angles is an in-
herent issue and is more difficult to overcome. For alterna-
tive application scenarios, the use of alternative or additional
inertial sensors, such as gyroscopes or IMUs, could be inves-
tigated as they can be easily incorporated into the approach.

Finally, an equal importance weighting is currently given
to each worn sensor device. However, as seen in Section 6.2,
some sensors provide more distinct and valuable informa-
tion, whereas the additional information provided by others
can be negligible. Quantitative experiments can tell us the
optimal sensor locations for specific application scenarios.
In future work, we plan to analyse the motion graph as a
whole and use this information to associate higher weight-
ings to the metadata of specific graph edges that have the
most distinctive readings and therefore the best chance of
leading to a good match. In our tennis scenario, for example,
the weighting given to the arm sensors would be automat-
ically set to significantly higher levels than the other data
streams because their readings tend to be more distinct with
respect to the database motions.
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