
Data Transformation and Query Management in
Personal Health Sensor Networks

Mark Roantree, Jie Shi, Paolo Cappellari, Martin F. O’Connor

Interoperable Systems Group, School of Computing, Dublin City University

{mark,jshi,pcappellari,moconnor}@computing.dcu.ie

Michael Whelan, Niall Moyna

School of Health and Human Performance, Dublin City University

{michael.whelan,niall.moyna}@dcu.ie

Abstract

Sensor technology has been exploited in many application areas ranging from
climate monitoring, to traffic management, and healthcare. The role of these
sensors is to monitor human beings, the environment or instrumentation and
provide continuous streams of information regarding their status or well being.
In the case study presented in this work, the network is provided by football
teams with sensors generating continuous heart rate values during a number of
different sporting activities. In wireless networks such as these, the requirement
is for methods of data management and transformation in order to present data
in a format suited to high level queries. In effect, what is required is a traditional
database-style query interface where domain experts can continue to probe for
the answers required in more specialised environments. The challenge arises
from the gap that emerges between the low level sensor output and the high
level user requirements of the domain experts. This paper describes a process
to close this gap by automatically harvesting the raw sensor data and providing
semantic enrichment through the addition of context data.

1. Introduction

Sensor networks are being used in increasing numbers to monitor and sup-
port various processes and activities. Sensors provide a means of automating
monitoring processes as they conduct simple yet specific tasks and report their
findings at either fixed or variable intervals. What is consistent is the contin-
uous generation of information these networks provide. On the negative side,

1The research described in this paper has been jointly funded by Enterprise Ireland Grants
TD-2007-201 and CFTD-2008-231.

these networks provide vast volumes of information that has no structure and
little semantics and is thus, very difficult to exploit. In effect, there are no data
storage methods and no mechanism for query answering or knowledge extrac-
tion. On the positive side, with an appropriate data management layer, this
information can be transformed into knowledge, providing input into all forms
of decision making through an efficient query answering process.

A recent overview of the Sensor Web [6] highlighted the growth of sensor
networks and described research in areas such as sensor development, toolkits
and standards, security, ubiquitous sensing systems and wearable sensors. Many
of these topics focused on bridging the physical-digital divide and discussed
research into areas ranging from environmental monitoring, testing in large scale
engine development, detection of hazardous gases in emergency disasters, and
personal and wearable sensors.

In the area of personal Health (pHealth) sensor networks, sensors are used
to indicate both levels of health and well being and levels of human perfor-
mance. Unobtrusive sensors are now commonly used to assess the physiological
responses during individual and team sports. The measurement of heart rate to
assess the physiological load during sporting activities is widely accepted within
the sporting community [1, 20]. Ambulatory telemetric equipment such as the
wireless Polar Team Heart monitor [19] used in this study has made it possible
to innocuously monitor heart rates during team sports. Relative exercise inten-
sity can be estimated [2] by processing and manipulating the output from the
heart rate monitors as this is commonly used as a measure of exercise intensity
during a game of soccer [1, 20]. This work describes a number of processes that
have been developed to transform the low level output from pHealth sensor net-
works and provide an environment in which exercise scientists can express their
needs in the form of complex query and analysis operations.

Paper Structure. The paper is structured as follows: in the remainder
of this section, we discuss the background of this research, the research aims,
and the contribution; in §2, we describe the hardware environment that is used
to generate knowledge and our initial filtering process for removing sensed data
that has no value; in §3, we present a process to identify and normalise abnormal
sensor data; in §4, we describe how knowledge is extracted from this dataset
and transformed for usage by a wider user base; in §5, we present an outline of
our framework and metadata service that we used to manage the data trans-
formations; in §6, we provide an overview of some of the query needs of users,
how they are expressed in a standard query language, and the times needed to
generate the results; in §7, we discuss some related research and finally, in §8,
we provide conclusions.

1.1. Background and Motivation

Gaelic football [8, 21] is the most popular sport in Ireland. It is a hybrid
of Rugby and Australian Rules football. This project assessed heart rate re-
sponses during small sided and regular Gaelic football games in young players.
To achieve this, we created a wireless sensor network that has multiple configura-

2

Table 1: Heart Rate Training Zones

Perc. Zone Description Typical Range
Rest to 60% Resting Walking Pace RHR to 120

60%-70% Recovery Develops basic endurance and aerobic capacity. 120 to 140
70%-80% Aerobic Develops the cardiovascular system. 140 to 160
80%-90% Anaerobic Develops the lactic acid system. 160 to 180
90%-100% Maximal Training in this zone is optimal for 180 to 200

development of players’ aerobic capacity
(but is possible only for short periods).

tions and requires a sophisticated data management layer to process, normalise
and query the data streams.

Heart rate monitoring with telemetry equipment is commonly used to assess
and monitor the physiological responses during team sports involving intermit-
tent activity. A wireless heart rate monitor consists of a transmitter attached to
a belt worn around the chest which transmits automatically to a receiver base
station. This electromagnetic signal contains heart rate data and is generated
for as long as the heart monitor is worn. In Table 1, we show the heart rate
training zones, which range from Resting to Maximal. Coaches and exercise sci-
entists seek to accurately determine the intensity at which each player is working
while on the training field or where possible, in a competitive environment. To
do this, a calculation of each player’s maximum heart rate (MHR) and rest-
ing heart rate (RHR) is calculated. Later in this section, we will describe how
this information was gathered for the set of experiments on which this paper is
based.

1.2. Research Aims

The focus of this research is to monitor the effect of high intensity sporting
activity on a group of 14 year old boys. The aim is to determine if the maximal
heart rate is attained by all players while varying two parameters: the size of
the playing area and the number of players per team. The challenge is how
to capture and make sense of the large volumes of data that will be gathered
during each experiment. This paper describes a collaboration between a team
of computer scientists and exercise scientists. Written informal consent and
assent were obtained from the parents/guardians and children respectively and
the study was approved by the Research Ethics Committee at Dublin City
University.

As heart rate data indicates the amount of time spent in different intensity
zones (Table 1), sensors to detect heart rate during game time were used. A
player’s heart rate was measured every 5 seconds during the different activities.
A major problem for coaches and sport scientists is how to effectively inter-
rogate the large databases generated during match play. For example, there
are approximately 10,800 heart rate values generated by a team of 15 players
during a 60 minute game of Gaelic football. This presents a major challenge to
exercise scientists as they seek to determine the intensity for each individual or

3

across teams, per activity, at specified times or for specified intervals. One of
the goals was to the develop a fast and accurate measurement of the amount of
time spent in each training zone as this is an important factor in determining
the primary energy source utilised during games and training. It also plays a
vital role in allowing coaches to develop an individual physiological profile for
each player and thus, personalised training programmes.

The requirement for an infrastructure to monitor and optimise players’ per-
formances led to the development of a wireless sensor network that was config-
ured for each experiment as described in §2. While the network provided the
participants and hardware, it was then necessary to develop the data manage-
ment layer in order to process and calibrate data generated by the networks.
The motivation was firstly, to provide a traditional query interface for the low
level data generated by the wireless network and secondly, to process the data
streams to enable an easier expression of queries. As such, the goal from the
computer scientists’ perspective was to develop a method to automatically har-
vest and transform or enrich low level sensor data.

1.3. Contribution

In earlier work [23], we described how we deployed the different sensor net-
works and created common wrapper algorithms to provide the necessary context
to interpret different activities and groups. This process was automated to al-
low simple queries to be expressed using a standard query language. XQuery
was the language of choice as our approach wrapped the sensor output in XML
and stored the output directly into the MonetDB XML database. What was
missing from this work was the transformation of sensor data so that it could be
interpreted and manipulated by a wider target group. In this paper, we com-
plete this transformation process to make knowledge extraction by the masses
possible. Specifically, our contribution can be summarised as follows:

• The development of a new process for identifying and eliminating outlier
values generated by the sensors;

• A process of automatically transforming data generated by sensors into
a schema-based format and thus, providing an interface for a wider user
group;

• The development of a metamodel and metadata service to make our re-
search more applicable to a wider user base as it facilitates the customi-
sation of the transformation process.

2. Managing Data in Sensor Networks

This section contains a description of the wireless sensor network configura-
tion and the experimental scenarios in which it operates. We will also outline
the filtering process by which we remove sensor readings that lie outside the
activity periods to be analysed by the sports scientists.

4

nt
er

fa
ce

a)

sensor
database

L
Q

ue
ry

 In
X

M

transformations

outliers

enrichment &
filtering

b)

Figure 1: Network Configurations and Data Management Processes

2.1. Wireless Sensor Network Configuration

Four teams took part and the study involved participation in a series of:
three 15-a-side games, played on a full size adult pitch under official adult rules;
three 9-a-side games played on a modified size pitch (100m x 72m); and three
other 9-a-side games in which the pitch size was further reduced in size (90m
x 60m). Both 9-a-side games were played under official adult rules. A unique
feature of the study is the fact that the surface area available to each player was
identical in the 15-a-side games and the 9-a-side games played on the 100m x
72m pitch. Finally, an endurance test was used to determine players’ maximum
heart rates. Different configurations of the sensor network can be described as
follows:

• 15-a-side games: Each team consists of one goalkeeper, six defenders, two
midfielders and six attackers. The wireless sensor network will contain 30
nodes (2 * 15 players).

• 9-a-side games: Each team consists of one goalkeeper, three defenders, two
midfielders and three attackers. The wireless sensor network will contain
18 nodes (2 * 9 players).

• Endurance test: The endurance test evaluates an individual’s aerobic en-
durance fitness. Up to 50 participants take part in an activity which
progresses with levels of increasing intensity until they drop out due to
fatigue.

5

In figure 1(a), we illustrate the network topology used for the experiments.
Sensed data is transmitted to the base station through the heart rate monitors,
for every node (participant) in the network. The conceptual model for the sensor
network is shown in figure 1(b), where we expect nodes to be in certain physical
areas.

Each player straps on the wireless device shortly before the activity begins
and removes them shortly after the activity ends. However, the devices are
not synchronised and not all players strap on the devices at the same time.
Furthermore, a game of Irish Gaelic football is played over two halves and sports
scientists require heart rate values for the periods corresponding to the first and
second half only. Extra sensor readings from either side of these periods are in
effect noise and serve only as a corrupting influence on the integrity of results
returned by queries processing the data. This requirement motivates the need
for a filtering process whereby we filter out and eliminate all sensor readings
that lie outside the first and second half periods. Before filtering can begin we
need to structurally enrich the sensor stream into XML format.

Example 1. An Enriched Sensor Stream

<user>Kelly</user>
<session>080709</session>
<sessiontype>Under 14</sessiontype>
<sensorData candidate="candidate">

<device>HRM</device>
<startTime>1215627214000</startTime>
<interval>5000</interval>
<sections>

<section name="Params">
<parameter>

<key>Version</key>
<value>106</value>

</parameter>
... (parameter element repeats)

</section>
<section name="HRData">

<measurement offset="0" state="" stateoffset="" time="1215627214000">
<reading ordinal="">

<key>HeartRate</key>
<raw-value>91</raw-value>
<outlier-value>91</outlier-value>
<padded-value>91</padded-value>
<value>80</value>
<averages>

<average>
<time/>
<value/>

</average>
</averages>

</reading>
</measurement>
... (measurement element repeats)

2.2. Structural Enrichment

The purpose of the structural enrichment process is to convert the raw sensor
data into XML format, providing both structure and meaningful semantics. The
semi-structured XML format permits the use of a high level query language

6

Figure 2: Player Sensor Data Stream

rather than requiring low level primitives to be written every time the user
modifies or has a new query requirement. A template file (an XML schema
document) facilitating the transformation of the raw data into XML is provided
for each sensor device. We described an architecture where all sensor streams use
an XML template to make themselves readable and queryable by the system in
our previous work [13]. The benefit of this modular approach is that the system
requires no modification when new sensors are added to the wireless network.
The enriched XML file contains a header section detailing the user information,
session parameters that describe the current experiment or activity, and sensor
device ID information. The body of the XML file contains the readings recorded
by the sensor device.

In Example 1, we present a small extract from an enriched sensor stream
containing some header data, followed by a stream of heart rate values and time
stamps. Meaningful queries (see Tables 3 and 6 for different queries expressed by
the exercise scientists) are only made possible by the addition of the descriptive
attributes from the sensors’ template file. In addition to structural markup,
semantics such as outlier information, rolling averages and athlete details are
also included to enable more complex queries.

2.3. Filtering Process

The purpose of the filtering process is to remove all heart rate values that are
not part of the core sporting activity as the inclusion of these values generates
erroneous results. In the case of football matches, algorithms seek to identify the
first or second half periods. A 15-a-side game consists of two halves, each with
a duration of 30 minutes; whereas each half in a 9-a-side game has a duration
of 15 minutes. The following description of the filtering process is for a 15-a-
side game, however, it may be parametrised and applied to a 9-a-side game by
changing the appropriate values.

When dealing with match activities, the exercise specialists requested the
identification of two 30-minute periods of maximal activity immediately before

7

and after the half-time interval. All other values should be eliminated for the
purpose of these experiments. Thus, we defined three fixed functions. The
functions T(FH) = 1800 and T(SH) = 1800 (30 * 60 seconds) correspond to
the first and second halves respectively. The half-time interval (12 minutes) is
defined as T(HT) = 720.

The filtering process comprises three principal algorithms. The first detectHT
identifies the start and end times of the half-time interval. This algorithm is key
to the entire filtering process as it is used to effectively divide and reduce the
search space into two smaller sections. The algorithms detechFH and detectSH

will process and identify the first and second half periods in the first and second
sections respectively.

The detectHT algorithm begins processing from the sensor reading at point
[endOfStream - T(Init)] in the sensor stream until the end of the stream and
calculates all candidate Half Times by computing 12-minute rolling averages
for every 5 second interval. T(Init) is calculated as the sum of the length of
the second half period, T(SH) and the length of half time period, T(HT) and a
surplus period, T(Surplus). The purpose of the surplus period is to ensure we
have processed a sufficient segment of the data stream. The algorithm identifies
the smallest 12 minutes rolling average as the end of the half time period and
designates the time associated with this reading as the end time of the half time
period. The start of the half time period is obtained by subtracting the duration
of half time (12 minutes). An illustration of a typical player heart rate stream
over a full game is presented in Fig 2.

Algorithm 1: The detectHT algorithm

Input: An XML file corresponding to the sensor stream of one participant
Output: The end time of the half time period
Start from End(Stream)
Calculate all 12 minute average AVG(i) for T(SH)+T(HT)+T(Surplus)
foreach AVG(i) do

if AVG(i) < SmallestAvg then
SmallestAvg = AVG(i);
// locate the smallest 12 minute rolling average.

Return Time(SmallestAvg);

The detectSH algorithm reads from the end of half time plus T(SH) until the
end of the sensor stream and generates each 30 minute rolling average of heart
rate values. The algorithm identifies the largest 30 minute rolling average and
designates the time associated with this reading as the end time of the second
half period. The start time of the second half period is obtained by subtracting
the duration of the second half (30 minutes). Although the end of half time
and the start of the second half period should be the same time in theory, in
our experiments this was often not the case. This anomaly is a positive finding
because our algorithm is designed to return the 30 minute period of maximal
activity after the half time period.

8

Algorithm 2: The detectSH algorithm

Input: An XML sensor stream of one participant after the half time period
Output: The end time of the second half period
Start from End(HT) + T(SH)
Calculate all 30 minute average AVG(i) until end of stream
foreach AVG(i) do

if AVG(i) > LargestAvg then
LargestAvg = AVG(i);
// locate the largest 30 minute rolling average.

Return Time(LargestAvg);

A similar approach is adopted for the detectFH algorithm. The filter process
for the endurance test is far more complex and shall be omitted from this paper
due to space restrictions.

3. A Method for Outlier Removal

In almost all sensor networks, the network will generate outlier values which
are clearly outside the normal acceptable range. Before any queries or trans-
formations of data can progress, it is necessary to detect and calibrate these
outliers. In this section, we present a generic method that operates on XML
sensor output and can be parametrised by domain specialists. There are four
primary steps: Set Valid Range; Identify Candidate Outliers; Identify Actual
Outliers; and Calibrate Outlier.

Step 1. Set Valid Range, MinValue and MaxValue. In heart rate (HR)
monitoring, the general rule of thumb for Max HR is HRLimit − age (and
generally HRLimit = 220). While this is generally applicable, we need to be as
flexible as possible as we are dealing with a specific age group and within that
age group, there may be wide differences. Here we define the following function
to identify the upper and lower bounds of the range containing valid candidate
outliers.

fvalidRange(hr,HRLimit, age, variance) =
FALSE if (hr > (HRLimit − age) ∗ (1 + variance))

FALSE if (hr < (HRLimit − age) ∗ (1− variance/2))

TRUE Otherwise

In the case of this experiment we have age = 14, thus the probable maximum
HR is ProbableMax = HRLimit − age = 206. Then we add a 10% variable
(variance = 10%) so that anything upto ProbableMax + 10% is a possible
valid MaxHR. Anything above is an Outlier (automatic). Thus: MaxV alue =
206 + 10% = 227; MinV alue = 206 − 5% = 196. Anything below 196 cannot
be an outlier which is important because there are many variances as the heart
rate increases swiftly in the early stages of activity.

9

Figure 3: Basic Sensor Schema S1

Step 2. Identify Candidate Outliers. Read through the stream of heart
rates from start to finish. We examine all HRs which are within the above
defined valid range: anything within this range is a Candidate Outlier. In our
case, everything within the range 196 to 227.

Step 3. Identify Actual Outlier. Read the 5 HRs before and 5 HRs
after the candidate outlier. Calculate the mean of these 10 values (call this
Mean Compare) If the Candidate Outlier is outside 1.5% of Mean Compare,
where 1.5% is a variance parameter, it is deemed an Actual Outlier.

Step 4. Calibrate Outlier. Once deemed an Actual Outlier, it is replaced
with the Mean Compare calculated in Step 3.

4. Data Transformation and Storage Model

In the two previous sections, we described how data is harvested from sensor
networks and taken from a raw format and enriched both structurally and with
some element of context to provide for basic user queries. We also described a
generic process for outlier removal. In this section, we discuss the transformation
processes necessary to make queries more manageable for domain specialists. In
Fig. 3, we can see the XML schema for sensor data that has been structured,
filtered and classified. This schema forms the input to all three transformation
processes described here. In each case, the result will be an enlarged schema to
facilitate knowledge based queries. At the end of this section, we provide details
of the times required for processing the experiments used throughout this work.

10

4.1. Aggregate Reporting

In §2.2, we indicated that the sensor streams are structurally enriched as
XML files. These XML files are rich in data (sensor readings) but are devoid
of context. In particular, a single heart rate reading by itself does not convey
useful information. However, when examined within a wider category of values,
heart rate readings provide for invaluable comparative and performance related
metrics.

When the filtering processing described in §2.3 has completed, we apply
state information to each sensor reading and the state information is stored
with every sensor reading in the XML file. A state refers to some interval in the
sporting activity such as the first half period or second half period in a Gaelic
football game. We then mine these XML files to produce aggregate information
for each participant in a sporting activity. Depending on the type of activity,
we can compute several layers of aggregated information and generate reports
that can assist sport scientists to analyse and optimise the performance of their
athletes. The following aggregate information may be obtained from a game of
Gaelic football.

• PeakHR - The maximum heart rate for a participant during the game;

• HR as % of PeakHR - The heart rate reading as a percentage of the
maximal heart rate for a participant during the game;

• The average heart rate of a participant over the entire game.

Table 2: Process Details.

Process Input Total in MB Execution Time Result Size Output

Filter Sensor Data 1.97 MB 4m 25s 141ms 145 MB S1

Outlier Schema S1 145 MB 1m 38s 372ms 276 MB S2

Aggregate Schema S2 276 MB 3m 05s 361ms 8.7 MB S3

PeakHeartRate Schema S2 276 MB 1m 02s 609ms 840 KB S4

PeakInterval Schema S2 276 MB 1m 15s 208ms 862 KB S5

4.2. PeakHeartRate Transformation

This process performs the PeakHeartRate Transformation of the sensor data
stream and is designed according to sports scientists’ requirements. According
to the user query as “The time length of each player performing at: 0% to 50%
of his Peak Heart Rate, 50% to 60% of his Peak Heart Rate, 60% to 70% of his
Peak Heart Rate, etc.,” the process computes the Peak Heart Rate from each
player data stream and calculates the time length of different Peak Heart Rate
percentage ranges for each player.

The result is enriched into XML format as shown in Example 1 and stored
in MonetDB on top of previously enriched sensor streams, ready for sports
scientists to query using XQuery.

11

Figure 4: Transformed Schema S2

4.3. PeakInterval Transformation

Similar to the above process, the PeakInterval Transformation process is de-
signed according to the user query as “The occurrence of each player performing
at: 70% or above of his Peak Heart Rate lasting more than 10 seconds, 80% or
above of his Peak Heart Rate lasting more than 10 seconds, 90% or above of
his Peak Heart Rate lasting more than 10 seconds, 70% or above of his Peak
Heart Rate lasting more than 20 seconds, etc.,” then it computes the different
PeakInterval levels for each player as required.

The transformation of data can now answer more complex queries from
sports scientist as outlined in §6.

4.4. Process Evaluation

At this point, we reflect on the times required to process the raw sensor data
and compute the various transformations. After enrichment, data is stored in
the MonetDB XQuery server [15] where it is then calibrated until ready for user
queries.

• Filtering. Harvesting and filtering takes four and half minutes to com-
plete all sensor streams simply because it structurally enriches all the raw
HR data into XML format with total outputs as large as 145 MB and
stores them in MonetDB.

• Outlier Detection and Removal. This process is designed to calibrate
outlier values, and takes approximately one minute and forty seconds for
all of the data in this experiment.

12

• Aggregate Reporting. It takes a little longer to run the Aggregate
Reporting Process, approximately 3 minutes, because it computes over
several ranges and extracts the Activity Period for each individual player
as well as for each team, then calculates and prints out each report for all
sensor data, the total result size is about 8.7 MB.

• PeakHeartRate and PeakInterval Transformations. These two pro-
cesses both require in excess of 1 minute to generate results. This is due to
the fact that it must compute all the PeakHeartRate levels and intervals
for the whole experiment.

Table 2 provides the full details for each process in terms of: Data Input;
Total Size in MB; the Execution Time; Result Size and Data Output.

5. Metadata Service

The result of the transformations described in the previous section have
effectively created a form of data warehouse where the same data subjects are
used in different result materialisations. For domain specialists to understand
the contents of each transformation and be able to express queries on these
datasets, there must be a more abstract description of each dataset. In [9],
authors build an ontology to provide context for location-based services such as
the smart home. However, their ontology is tightly coupled with the smart home
domain whereas our efforts focus on a more abstract sensor network. The role of
the Metadata Service is to both manage these transformations and to facilitate
configuration to ensure the correct linkage across the datasets. Furthermore, we
must allow for a high level of genericity to make this service applicable across
sensor networks. In this section, we provide only a brief overview of this service.

At an abstract level, a sensor will be deployed in a specific Context and in
association with a specific Activity. A Context will always have one or more
of State (the phase of the activity during which the sensor value was generated,
or is relevant to), Zone (the location in which the sensor generated output), and
Timing (information on the time at which an activity commenced and the inter-
val at which sensor readings are generated). In prior work [24], we demonstrated
how Zone information provided the necessary context for ubiquitous applica-
tions. In the work presented here, we focus more on the State (for example FH,
HT, SH states are discussed earlier) and Timing information (heart rates are
generated every 5 seconds). While Context is more often associated with an
Activity, we associate Context with Sensor (in this case a HRM Sensor) as
there may be multiple sensors with different contexts for later experiments (for
example in future work, we correlate the readings from a heart rate monitor
with one which monitors the levels of sweat produced by athletes).

5.1. Metadata Constructs

There are four primary objects that are consistent to all sensor networks:
Sensor, Subject, Activity and Context. In our system, we include a fifth ob-
ject, Template, that is used to insulate the system from new sensors being added

13

0..*

Transform
BaseObject : SensorData
TransformNum : int
MapFrom : SensorData
MapTo : SensorData

1..*

1..*

Subject
SubjectID : string

1

1
SensorData

ID : string
Path : string
Template : STemplate

0..*1..*

1

1

Activity
ActID : string
ActDate : date
SensorList [] : HRMSensor
Subjects [] : Subject

1..*

1

1..*

1Template
preamble : string
SensorType : string
NumRecords : int
NumFields : int

1

1

1

1
Sensor

SensorID : int
SensorType : Template

11..*

1

1

1

Context
States [] : string
Zones [] : string
Timing : int
TimingOffset : int

1

1

File: C:\PAPERS\2010 JNCA Jie\Metamodel.mdl Tue Jun 29 21:03:04 2010 Class Diagram: Logical View / Main Page 1

Figure 5: Metamodel Components

or a change in the way sensors create their output. This was presented in earlier
work [13] where we described how XML template descriptions could be exploited
through a generic interface to interpret any sensor device. When data gener-
ated by these networks is processed, we have two other objects: SensorData

and (data) Transform. As will be shown in §6, transformations allow far more
powerful queries to be expressed on the datasets. While the processors are part
of the system (shown in Fig. 1), the mappings between the low level sensor
readings and their transformed aggregations are captured by the metamodel.

• Sensor. The sensor produces output that must be interpreted and struc-
turally enriched to a format suitable for queries. As a result, this sensor
output is received by the system in the form of XML. As new sensors are
added or modified, a template to interpret the sensed data is required, but
without changing the system. A more detailed description of this process
can be found in [22].

• Subject. Sensor(s) are generally associated with a single subject. This
subject may be a piece of instrumentation, a person, or some aspect of
the environment. This is necessary as the subject will provide a significant
contribution to the contextual information required to make assumptions
about, or interpret sensor data.

14

• Context. Sensor output has little meaning unless it can be used in a
specific context which provides additional semantics to the data generated
by the sensor. The metadata service allows end users to specify a number
of different contextual parameters including States to be associated with
all sensed data.

• Activity. Both Subject and Activity form the contextual input for
interpreting sensor data. For example, a heart rate monitor will generate
data in a uniform, easy to read, format. However, the context in which
that sensor is used is crucial to query processing. In this work, Activity
can be either 9-a-side matches, 15-a-side matches, or different forms of
endurance testing.

• Template. Irrespective of the context in which a sensor may be used,
the sensing device will generate its output in some prescribed format.
The benefit of removing the logic that interprets sensor output from algo-
rithms and describing the output in a template (managed by the metadata
service) is that changes to sensor output do not require a system change.

• SensorData. When structurally enriched, the sensor stream is stored in
XML format with an unique ID, XML Path, and mapping to its position in
a Schema (the schema for this research project is shown in Fig. 3). This is
the base form of the sensor data to which all transformations are mapped.
Each SensorData instance may be used in any number of transformations.

• Transform. Each transformation will comprise a series of SensorData
instances. They may be part of the basic schema (see Fig. 3) or from an
existing transformation (see Fig. 4).

5.2. Services

There are a number of services that are worthy of discussion in the context
of this work.

• Add New Sensor. When domain users need to introduce a new sensor
into an experiment or activity, they simply provide a template file and the
system can read the sensor data. This will also create the new Template
object necessary to interpret the sensor stream. In these experiments, it
was necessary to add a Polar HRM sensor and the appropriate template
and previously in [16], we provided details of how this process is performed.
In Fig. 6, the relatively complex nature of the template for heart rate
sensors is illustrated.

• Add New Context. In the work presented here, we provide a set of States
{FH,HT,SH}, TimingOffset is set to 0, and Timing is set to 5. In many
experiments, we use relative timing to indicate the start of an experiment
but in some cases, we use the real time as indicated on the sensor. In
the latter case, the TimingOffset parameter is used when we wish to start
processing data on or after a specific time.

15

SensorData

parameters

parameter

key

V02Max

value

30

measurements

measurement[@offset=30]

value

$value

healthSense

[Params]
Version=106
Monitor=2
SMode=00000000
Date=20081101
StartTime=13:53:02.0
Length=0:47:50.0
Interval=5
Upper1=0
Lower1=0
Upper2=0
Lower2=0
Upper3=0
Lower3=0
Timer1=0:00:00.0
Timer2=0:00:00.0
Timer3=0:00:00.0
ActiveLimit=0
MaxHR=180
RestHR=70
StartDelay=0

VO2max=30
Weight=0

[Note]

[IntTimes]

[ExtraData]

[Summary-123]
2870 650 2220 0 0 0
180 0 0 70
2870 650 2220 0 0 0
180 0 0 70
0 0 0 0 0 0
180 0 0 70
0 574

[Summary-TH]
2870 650 2220 0 0 0
180 0 0 70
0 574

[HRZones]
180
153
126
108
90
0
0
0
0
0
0

[SwapTimes]

[HRData]
104
106
116
115
111
97

95
95
102
...
..
.

Stream
Data

Section 6

Section 2

Section 3

Section 4

Section 5

Section 7

Section 8

$key

$value

Section 1

$offset

$value

Section 9

Template

Figure 6: Output Generated by Heart Rate Sensors

• Apply Activity. When a new sensor is introduced, the template file
facilitates reading and processing the output. However, the activity pro-
vides the context that determines those values that are of no use, of high
importance, that should map to a particular state, and so on. The role of
the Activity object is to map each value to a particular state.

• Add New Transformation. There are three transformations used in this
project, all transforming from the basic schema to provide enhanced ver-
sions of the schema. The Transform object is used to provide a mapping
between the two schema versions.

6. Experiments and Results

In this section, we report on the experiments we developed to evaluate our
system. The main validation came from the exercise scientists with a simply
criteria: can the system automate contextual enrichment of sensor data and can
it meet our information needs? These needs were expressed in the queries in
Tables 3 and 5 with the remaining queries requiring only parameterized changes
to the query set used in our experiments. Furthermore, as the sensor repository
is stored in the MonetDB XML database which has a full XQuery interface,
the query possibilities are broader than those listed in this paper. However, we
created this experiment both to confirm that the overhead introduced by XML
would not affect usability (in terms of query times) and to identify any queries

16

which exceeded our internally chosen threshold of 1000ms. We now describe
these experiments and provide details of query expressions and the times taken
to compute the result sets.

The initial set of queries can be expressed before the development of the
transformation layers and demonstrate the complex XQuery expressions re-
quired to satisfy relatively simple user requirements. The benefit of this ap-
proach is the provision of a standard query interface for low level or raw sensor
data. After the development of the metadata service and transformation layer,
it is possible to facilitate far more complex queries while reducing the complexity
of the XQuery expressions.

Table 3: Standard Query Set and Response Times.

Query Time

1 Return all heart rate values for Player 1 during the first half 92 ms

2 Return the Avg HR of player 9 in first half 140 ms

3 Return the Max HR of player 9 in first half 113 ms

4 Return the Avg HR of Team CastleBlayney in same match 202 ms

5 Return Avg HR value for each CastleBlayney defender in selected game 593 ms

6 Return Max HR value for each CastleBlayney defender in selected game 566 ms

6.1. Standard Query Set

Table 3 shows a set of basic queries, in English, along with their execution
time. These queries have been provided by domain experts and represent a real
case scenario of the information health scientists are interested in retrieving
from a game. In particular, these queries have been executed on the sensor
data generated during a 15-a-side game. Sensors recorded data over a period of,
roughly, 100 minutes, and were configured to read heart rate values at intervals
of 5 seconds: in this configuration each sensor generated an average of 1200
readings. Response time for each query reported in Table 3 includes the time
required to execute the query and return the result to the users.

In their English formulation, queries sound rather simple. However, it must
be noticed that executing these queries on raw data streams is complex. Without
the data management layer we provide, each query would be implemented in an
ad-hoc program that: identify the stream (or the streams, possibly among many)
from which to collect the values , enrich such values with context information
(phase of the game, teams, etc.), implement the primitives to group sequences
and compute aggregation functions (average, min, max, etc.). The provision of
our data management layer free users from having to develop an ad-hoc program
for each query, enabling the use of a standard query language (XQuery) to
retrieve the data of interest.

Table 4 shows the queries from Table 3 in their XQuery formulation. While
this syntax may still be not familiar to a non-IT specialist, the efforts required

17

to specify queries in this format is dramatically lower than that of having to
design and implement some ad-hoc program for each of the query of interest.

6.2. Evaluating Standard Queries

Table 4: XQuery Formulation for the Standard Query Set

Query Time

1 let $c := collection(’080517CS 15AS’) return $c/healthSense[user[text 92 ms

()=’mbrenn’]]/sensorData/sections/section[@name=’HRData’]/measurement

/reading[key[text()=’HeartRate’]]/value/text())

2 let $c := collection(’080517CS 15AS’) return fn:avg($c/healthSense 140 ms

[user[text()=’cmcnal’]]/sensorData/sections/section[@name=’HRData’]

/measurement[@offset>=3600000]/reading[key[text()=’HeartRate’]]/value/text())

3 let $c := collection(’080517CS 15AS’) return fn:max($c/healthSense 113 ms

[user[text()=’cmcnal’]]/sensorData/sections/section[@name=’HRData’]

/measurement[@offset>=3600000]/reading[key[text()=’HeartRate’]]/value/text())

4 fn:avg(let $c := collection(’080517CS 15AS’) for $p in $c//healthSense, 202 ms

$q in $c//Players/Player where $p/user = $q/Name/Code order by $q/@Id

return if $q/TeamId=”CB” then $p//measurement/reading[key[text

()=’HeartRate’]]/value/text() else())

5 let $c := collection(’080517CS 15AS’) for $p in $c//healthSense, 593 ms

$q in $c//Players/Player,$r in $c//Players where $p/user =$q/Name/Code

and $p/session = $r/Game/Id order by $q/@Id return if (($q/Position/Role=”DE”)

and ($r/Game/Type=”15aside”) and ($q/TeamId=”CB”)) then fn:avg($p//

measurement/reading[key[text()=’HeartRate’]]/value/text()) else())

6 let $c := collection(’080517CS 15AS’) for $p in $c//healthSense, 566 ms

$q in $c//Players/Player,$r in $c//Players where $p/user =$q/Name/Code

and $p/session = $r/Game/Id order by $q/@Id return if (($q/Position/Role=”DE”)

and ($r/Game/Type=”15aside”) and ($q/TeamId=”CB”)) then fn:max($p//

measurement/reading[key[text()=’HeartRate’]]/value/text()) else())

Let us comment on the response times in Table 4. Query 1 and 3 are executed
in about 100ms, while query 2 in 140ms. These three queries have rather fast
execution time because they select values belonging to a single athlete, thus are
marginally, if at all, affected by the size of the dataset.

Query 4 requires more time because it has to access the data of 15 athletes
belonging to the same team, and calculate the average hear rate. Execution
time for this query is likely to increase with the size of the dataset, as more
match data is added. Currently, our dataset includes data from 200 games, 80
of which are from 15-a-side matches.

Results for the last two queries in Table 4 require slightly more than a half
of a second to deliver their results, the reason being that they have to compute
either averages or maximums for all athletes in a given team.

18

As a final comment, let us remark on two main advantages our data man-
agement layer provides: queries can specify a high level of detail, queries are
exposed thus are easily editable (a simple text editor will suffice) and customiz-
able.

6.3. Post Transformation Query Set

User queries are listed in Table 5 in plain English with their corresponding
XQuery expressions shown in Table 6. A full description of the physiological
value of these queries is outside the scope of this paper, but they are all based on
the maximal heart rate achieved during each activity (PeakHR). The percentage
of times that players were close to this value is of high interest to exercise
scientists.

Queries are executed on the extended schema resulting from the transforma-
tion processes described in the previous sections: without such transformations
these queries are either difficult or impossible to express on the original dataset.
In other words, as it was the case for the standard query set, without the data
management layer each query would essentially require a complex program,
while in our system, thanks to the transformations, we can specify reasonably
simple XQuery expressions to answer the users’ queries.

Table 5: The List of Post Transformational Queries.

Query in natural language

1 How many times was a specific player at 70% Max HR for more
than 20s?

2 How many times was each player at 70% Max HR for more than
20s across all games?

3 How many players across all 9-a-side games were at 90% Max HR
for 30 seconds?

4 How many players across all 15-a-side matches spent more than 10%
of playing time above 80% of their Max HR?

5 What was the average time spent in seconds, per player, below 50%
of their Max HR across all 15-a-side games?

6.4. Evaluating Queries on Transformed Data

Execution times are reported in Table 6: times are average values measured
over 10 runs on each query. By analysing the results, we can see all are within
acceptable response times. The most complex case, query 5, must build results
for roughly 300 players and generates the result in slightly over 100ms. All the
other queries have execution times below 100ms. By analysing queries 1 and
2, it is interesting to note how establishing a connection with the database and
building the resultset have an impact on the overall time. Query 1 performs 4
times faster than query 2. Query 1 and 2 both ask for occurrences of players
performing at 70% Max HR for more than 20 seconds, where the difference is

19

Table 6: Full Query Expressions.

Query as XQuery expression Time

1 doc(‘dataAggregation.xml’)/healthSense/user[text()=’edoher’] 26 ms

/sensorData/dataAggregations/peakInterval[avgPerformance=70

and timeLength>20]/timesAboveAvgPerf/text()

2 doc(‘dataAggregation.xml’)/healthSense/user/sensorData 97 ms

/dataAggregations/peakInterval[avgPerformance=70

and timeLength>20]/timesAboveAvgPerf/text()

3 for $c in doc(‘dataAggregation.xml’) return fn:count($c/healthSense 75 ms

[session[text()=‘9aside’]]/user/sensorData/dataAggregations/

peakInterval[avgPerformance=90 and timeLength=30])

4 for $c in doc(‘dataAggregation.xml’) return fn:count($c/healthSense 69 ms

[session[text()=‘15aside’]]/user/sensorData/dataAggregations

/peakLength[gameLengthPercentage>10 and avgPerformance>80])

5 for $c in doc(‘dataAggregation.xml’) return fn:count($c/healthSense 127 ms

[session[text()=‘15aside’]]/user/sensorData/dataAggregations

/peakLength[avgPerformance<50]/gameLengthTime/text())

that Query 1 retrieves the values for a specific (single) player in all the games
and Query 2 retrieves the same information for each player (a total of, roughly
300) in all the games.

Before concluding this section, let us emphasise the fact that because queries
are specified as standard XQuery expressions, they can be modified using a
simple text editor for further interrogation, not requiring an alteration to any
part of the system.

7. Related Research

In [5], the authors present an approach to address contextual synthesis of
sensor networks in the sports domain. Sensor data, generated from a single
sporting event, are kept in their proprietary raw format. Queries are developed
as ad-hoc programs over the proprietary data format, they are not SQL-like,
but instead they are object-oriented, containing context operators which per-
form synthesising operations. Context operators can in turn use other simpler
operators to execute smaller tasks and to reuse existing functionality. While the
experimental evaluation of the prototype shows fast response times for built-in
queries, this work does not support any open query language but requires pre-
composed built-in queries: every time a query needs to be added or edited
there is the need for a system expert to apply the changes. Their work enables
multiple applications or even different context-aware systems to use the same
operators designed for a specific domain without being concerned about their
implementation. In our approach, we expose data in a standard XML format

20

which can be queried by the XQuery language and we enrich the data in order
to answer complex queries.

In [26], the authors process and query streams of raw data as it arrives from
the sensors. Their approach enriches the raw data into “semantic streams” and
processes the streams as they are generated. The “semantic streams” permit
the user to issue queries over semantic values directly without addressing which
data or operations are to be used. This work is still theoretical and has yet
to provide experiments or an indication of query performance. In [12], the
authors also process sensor data in its raw format. They employ the concept of
proximity queries where network nodes monitor and record “local” interesting
events. They introduce proximity queries as a means of detecting interesting
events that are observed by nodes in the network that are within certain distance
of each other. While their results are positive in terms of cost, queries are still
at a relatively low level (no common format for query expression), and it is
difficult to see how this type of proximity network can be applied in general
terms due to the complexity of the technologies involved.

There has been limited research efforts addressing outlier detection in the
context of sensor networks. Palpanas et al. [18] have proposed an in-network
approach for distributed online deviation detection for streaming data. They are
only interested in finding those values that deviate significantly from the norm.
Their detection mechanism can be used to identify faulty sensors, and to filter
spurious reports from different sensors. However, this approach depends on the
existence of more powerful and sophisticated sensors (high capacity sensors) to
perform the outlier detection and to manage groups of low capacity sensors.
Their more recent work [25] uses an online outlier detection scheme for sensor
networks. Their approach initially estimates the sensor data distributions, then
compute the density of the data space around each value, and therefore deter-
mine which values are outliers. The key point is every sensor keeps a sliding
window of the historical data and estimates the data distribution to detect the
outliers. This method, however, consumes a lot of memory and may not find all
outliers. Our approach identifies candidate outliers only after the valid range is
selected. It requires a small memory footprint and facilitates the calibration of
actual outliers in a deterministic manner. A similar approach for outlier detec-
tion in streaming data is described by Kenji et al. [11]. In contrast to Palpanas’s
work [18], their method does not operate on sliding windows, but rather on the
entire history of the data values, using an exponential forgetting factor for dis-
counting the effect of the older values. Furthermore, the above approach is not
geared towards a distributed environment, such as a sensor network.

Research efforts on early tiny database systems, such as TinyDB [14] and
Cougar [27] have shown that a declarative approach can provide a powerful
and easy to use interface for collecting data from static sensor networks. These
early systems, however, have significant limitations. In particular, they require
the end user to understand the operators running over the raw sensor data and
interpret the meaning of the results. In our case, the automated transformations
processes allow domain experts to express far simpler queries using the XQuery
language.

21

In both [3] and [4], the authors examine how Sensor Web enablement ser-
vices work in healthcare sensor networks. They offer a standardised protocol
for discovering and accessing sensor data which enables data to be reused in
potentially new and novel ways, and also enables sensor data to be vitalised,
providing a common, self-describing data format and access protocol. Both ap-
proaches enrich multiple sources of sensor data into a data model that represents
different sensors and data as a series of observations. The approaches focus on
simple live sensor data from multiple sources, obtaining query results on the
basis of a series of simple rules applied to the streams. However, our goal is to
facilitate more complex queries by non-IT domain experts.

Authors in [7] implemented a working process integrating multiple databases
into a data warehouse and in line with our strategy, a small part of the warehouse
data is then extracted to answer user queries, depending on contextual needs.
They are only concerned with the integration of experimental data from domain
databases and the interactive manipulation of the heterogeneous data that have
been integrated. Our approach differs in that we are using sensor networks and
we enrich and make usable the low level data emerging from these networks.

8. Conclusions

Sensor networks provide both solutions and problems for experts across a
range of different domains. In this paper, we focused on how exercise scientists
developed a series of personal health sensor networks to monitor the physical
effects of different sporting activities on young children. The benefit provided
by the sensor network was in facilitating the automatic generation and harvest-
ing of the heart rates of the individuals involved. However, the development of
a sensor network does not in itself provide for any form of data storage meth-
ods, efficient query answering or the extraction or management of knowledge.
Before the collaboration with data management specialists, data was captured
in spreadsheets, one per sensor, with no clear understanding of what each heart
value represented or how meaningful analysis could take place. In the work
presented here, the goal was to provide a framework and services to enable the
domain specials to generate the knowledge themselves, and thus, empower this
wider user base with knowledge management capabilities.

We presented the data management layers that take the raw sensor data and
process the data to a point where simple queries are expressed using a standard
query language. The overall process is managed by a metadata service to pro-
vide the appropriate level of genericity. For more complex queries, we use the
metadata service to associate processors with sensor data to perform different
transformations. The metadata service tracks transformations and records the
mappings between base values and the transformations in which these base val-
ues occur. System performance is demonstrated by publishing times for basic
query expressions, transformation processes and the more complex queries that
are executed on transformed data. As we cannot expect many domain special-
ists to be able to express their requirements using XQuery, our current focus is
on creating a graphical interface that enables them to construct queries using a

22

graphic of both schema and transformations. We are also continuing work on
the Metadata Service to enable new processes to further improve the genericity
of the system.

References

[1] Bangsbo J., The Physiology of Soccer - With special reference to Intense
intermittent exercise, In Acta Physioligica Scandinavica, 151 (supp. 619),
1994.

[2] Bangsbo J. Fitness Training in Football: A Scientific Approach, HO+Storm,
ISBN 87-983350-7-3, 1994.

[3] Churcher G., Foley J., Bilchev G., et al. Experiences applying Sensor Web
Enablement to a practical Telecare application. International Symposium on
Wireless Pervasive Computing (ISWPC), 2008.

[4] Churcher, G., and Foley J. Applying and Extending Sensor Web Enablement
to a Telecare Sensor network Architecture. 4th International ICST Confer-
ence on Communication System software and middleware(ICST), 2009.

[5] Devlic A., Koziuk M., and Horsman W. Synthesizing Context for a Sports
Domain on a Mobile Device. 3rd European Conference on Smart Sensing
and Context (EuroSSC), LNCS vol. 5279, pp. 206-219, 2008.

[6] ERCIM News Special theme: The Sensor Web. ERCIM News vol. 76,
Janaury 2009.

[7] Fabin J., Sylvie R., Vincent D., and Michel C. IDEE: An Integrated and
Interactive Data Exploration Environment Used for Ontology Design. 15th
International Conference on Knowledge Engineering and Knowledge Man-
agement Managing Knowledge in a World of Networks (EKAW), pp. 256-
271, 2006.

[8] The Gaelic Athletic Association, (http://gaa.ie), 2010.

[9] Gu T., Pung H.K., and Zhang D. A Service-Oriented Middleware for Build-
ing context Aware Services. Journal of Network and Computer Applications,
28(1), pp. 1-18, Elsevier, 2005.

[10] Grust T. Accelerating XPath Location Steps. Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, pp.109-120,
ACM Press, 2002.

[11] Kenji Y., Jun I.T., Graham J.W., and Peter M. On-Line Unsupervised Out-
lier Detection Using Finite Mixtures with Discounting Learning Algorithms.
Data Mining and Knowledge Discovery, pp. 275-300, 2004.

23

[12] Kotidis Y. Processing Proximity Queries in Sensor Networks. 3rd Interna-
tional Workshop on Data Management for Sensor Networks (DMSN), pp.
1-6, 2006.

[13] Camous F., McCann D., and Roantree M. Capturing Personal Health Data
from Wearable Sensors, Proceedings of the 2008 International Symposium on
Applications and the Internet, (SAINT 2008). IEEE Computer Society 2008,
pp. 153-156, 2008.

[14] Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W. TAG: a Tiny
Aggregation Service for Ad-Hoc Sensor Networks. 5th Symposium on Oper-
ating Systems Design and Implementation (OSDI), pp. 131-146, 2002.

[15] MonetDB - open source XML database. http://monetdb.cwi.nl/, 2008.

[16] McCann D. and Roantree M. A Query Service for Raw Sensor Data. In
Proceedings of 4th European Conference on Smart Sensing and Context (Eu-
roSSC), LNCS vol. 5741, Springer, pp. 38-50, 2009.

[17] Marks G., and Roantree M. Metamodel-Based Optimisation of XPath
Queries. Proceedings of 26th BNCOD, LNCS vol. 5588, Springer, 2009.

[18] Palpanas T., Papadopoulos D., Kalogeraki V., and Gunopulos D. Dis-
tributed deviation detection in sensor networks. ACM SIGMOD, vol. 32,
no. 4, pp. 77-82, 2003.

[19] Polar, http://www.polar.fi, 2008.

[20] Reilly T., Energetics of high intensity exercise (soccer) with particular ref-
erence to fatigue. In Journal of Sports Sciences, vol. 15, pp. 257-263, 1997.

[21] Reilly T., and Doran D. Science and Gaelic Football: A Review. In Journal
of Sports Sciences, vol. 19, pp 181-193, 2001.

[22] Roantree M., McCann D., and Moyna N. Integrating Sensor Streams in
pHealth Networks. Proceedings of 14th International Conference on Parallel
and Distributed Systems (ICPADS 2008), IEEE Press, pp.320-327, 2008.

[23] Roantree M., Whelan M., Shi J., and Moyna N. Using Sensor Networks
to Measure Intensity in Sporting Activities. Proceedings of QShine 2009,
LNICST Vol. 22, pp 598-612, Springer 2009.

[24] Shaeib A., Cappellari P. and Roantree M. A Framework for Real-Time
Context Provision in Ubiquitous Sensing Environments, In Proceedings of
1st International Workshop on Semantic Interoperability for Smart Spaces
(SISS 2010), IEEE Press, 2010.

[25] Subramaniam S., Palpanas T., Papadopoulos D., Kalogeraki V., and
Gunopulos D. Online outlier detection in sensor data using non-parametric
models. Proceedings of the 32nd international conference on Very large data
bases (VLDB), pp 187-198, 2006.

24

[26] Whitehouse K., Zhao F., and Liu J. Semantic Streams: a Framework for
Composable Semantic Interpretation of Sensor Data. 3rd European Work-
shop on Wireless Sensor Networks (EWSN), LNCS 3868, pp 5-20, 2006.

[27] Yao Y., and Gehrke J. Query processing for sensor networks. Proceedings
of CIDR, Jan. 2003.

25

