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Abstract 

We report a study of the structural, optical and magnetic properties of undoped and Mn-doped 

ZnO nanorods grown by chemical bath deposition in a periodic honeycomb lattice formation. 

Mn-doping is accomplished by a diffusion process at a constant time of 8 h for different 

temperatures of 500, 600 and 700 °C. Undoped and Mn-doped ZnO nanorods had a hexagonal 

wurtzite structure with a (002) preferred orientation. From SEM results, it was seen that Mn-

doped ZnO nanorods grew vertically in the honeycomb lattice with lengths of 0.8 µm. XPS 

results showed that Mn3+ ions was successfully incorporated in the ZnO matrix by substituting 

for Zn2+ ions and that Mn-doping increased the number of oxygen vacancies in ZnO 

compared to undoped ZnO. This result was also supported by photoluminescence data at 10 

K. Magnetic data showed that all the samples exhibited ferromagnetic character. Although the 

origin of undoped ZnO is related to oxygen vacancy-induced d0 ferromagnetism, bound 

magnetic polarons are responsible from the ferromagnetism of Mn-doped ZnO samples which 

have Tc values above the room temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: ZnO:Mn; nanorods; nanosphere lithography; oxygen vacancy; BMP 



3 
 

1. Introduction 
 

In recent years, diluted magnetic semiconductors (DMS) have attracted significant 

interest due to their potential applications in spintronic devices. Among II-VI group 

semiconductors, especially, ZnO has gained lots of interest since it has a wide band gap of 

3.37 eV with an excitonic binding energy of 60 meV at room temperature that make it an 

important material for potential optoelectronic applications [1]. ZnO is also a promising 

material in the investigation of DMS systems that can be achieved by doping with 3-d group 

elements like Mn, Co, Fe etc. and by these means the optical and magnetic properties of ZnO 

materials can be tuned. In particular, Mn-doped ZnO nanostructures have attracted significant 

interest as Mn has the highest magnetic moment and the first half of the d band is fully 

occupied [2]. The literature contains some reports of experimental studies on ZnO:Mn grown 

with diverse morphologies such as thin films, nanocrystals and nanowires and exhibiting 

room temperature ferromagnetism. For instance, Yang et al. produced Mn-doped ZnO thin 

films by the sol-gel technique on both glass and Si substrates and they found that even though 

undoped ZnO exhibited diamagnetic behavior, all the ZnO:Mn samples had a ferromagnetic 

character at room temperature. The origin of ferromagnetism was explained by the 

substitution of Mn2+ ions on Zn2+ sites [3]. Sain et al. synthesized ZnO:Mn nanocrystalline 

samples by mechanical alloying using a mixture of ZnO and MnO powders for different 

doping concentrations and room temperature ferromagnetism for ZnO:Mn samples was 

obtained. The origin of ferromagnetism was attributed to RKKY exchange interactions [4]. 

Furthermore, Philipose et al. grew ZnO:Mn nanowires by the vapor phase transport technique 

on Au-catalyzed Si substrates with Mn concentrations of 1, 2 and 4 at.%. They observed room 

temperature ferromagnetic character for 1 at.% Mn-doping and the ferromagnetism was 

attributed to the interactions between Mn ions and native defects [5].  

ZnO material doped with transition-metal (TM) ions has been grown in various 

morphologies such as nanowires, nanorods and nanotubes [6-8]. Some methods to deposit 

TM-doped 1-D ZnO nanostructures include RF magnetron sputtering [9], vapor phase 

transport [10], pulsed laser deposition [11], spray pyrolysis [12] and chemical bath deposition 

(CBD) [13]. Among these methods, CBD is an attractive technique and offers advantages 

such as simple, low cost equipment and a low growth temperature [14]. To the best of our 

knowledge, this is the first study investigating the structural, optical and magnetic properties 

of Mn-doped ZnO nanorods grown into a periodic honeycomb pattern. Additionally, the study 

focuses on clarifying the origin of room temperature ferromagnetism observed in both 
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undoped and Mn-doped ZnO nanorods grown this honeycomb lattice using both 

photoluminescence and X-ray photoelectron spectroscopy results. 

 

2. Experimental details 

The experimental details concerning the growth of a ZnO buffer layer on Si substrates 

using both a seed layer followed by chemical bath deposition (CBD) can be found in [10]. To 

ensure spatially ordered nanostructure growth, ZnO buffer layer coated Si substrates were 

patterned using a modified nanosphere lithography (NSL) technique [15] whereby a close 

packed monolayer of polystyrene nanospheres (diameter 1 µm) are deposited on the sample. 

This nanosphere layer is then used as a template for a secondary silica mask [16]. Once 

deposited, the nanosphere layer is annealed at 110 °C for 40 s to ensure that each sphere has 

made good contact with the underlying ZnO buffer layer. Then a silica sol (prepared by 

mixing 1 ml of TEOS with 1 ml of 0.1 M HCl in 20 ml of absolute ethanol for three hours) is 

diluted 1:1 with absolute ethanol. 20 µl of this diluted sol is drop coated onto the annealed 

nanosphere layer. This is allowed to evaporate for a short period time before any excess is 

removed by spinning at 2500 rpm for 30 s. The silica is then left to dry in air before being 

heated to 90 °C for 10 mins. The nanospheres are then removed by dissolution in toluene, the 

substrate is rinsed in DI water and dried under a stream of nitrogen. Finally, the silica layer is 

densified by heating to 550 °C at a ramp rate of 15 °C min-1. Using this method a periodic 

honeycomb silica lattice with periodic apertures exposing the underlying ZnO layer was 

formed. Vertically aligned ZnO nanorods were then deposited into the honeycomb pattern by 

the CBD process where 25 mM zinc acetate was dissolved in deionized water and the solution 

was heated at 70 °C and the substrates were submerged into the solution and kept at this 

temperature for two hours under stirring. After deposition, the samples were taken from the 

solution and cleaned with deionized water for five minutes. Finally, they were dried with 

nitrogen gas flow at room temperature. Introduction of Mn into ZnO nanorods was achieved 

by the evaporation of Mn metal using a thermal evaporation (Leybold Univex 350) system 

that had a pressure ~10−6 Torr during deposition. A thickness monitor (Inficon XTM/2) was 

used to control the evaporated Mn amount onto ZnO nanorods and thickness of the Mn layer 

was maintained at ~5 nm. After this process, the samples were annealed in a quartz tube at 

temperatures of 500 °C, 600 °C and 700 °C for 8 h in a vacuum of ~10-2 Torr.  

  X-ray diffraction (XRD) and X-ray rocking curve (XRC) studies were performed to 

investigate the crystal structure of the samples by means of a Bruker AXS D8 diffractometer 

with CuKα radiation in the range of 2θ = 20° – 60° with a step of 0.01°. Studies of surface 
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morphology and chemical composition were done with a Zeiss EVOLS 15 scanning electron 

microscope (SEM) which had an energy dispersive x-ray spectroscopy (EDS) attachment at 

an acceleration voltage of 20 kV. Detailed information about bonding at the surface was 

possessed via x-ray photoelectron spectroscopy (XPS) with Al Kα radiation (1486.6eV). The 

C 1s peak located at 285.0 eV was used as a reference for the charge-correction of binding 

energies of all the peaks. For the photoluminescence (PL) measurements at 10 K, a SPEX 

1704 monochromator was employed with a closed cycle cryostat (Janis SHI-950-5) using an 

excitation 325 nm line of a He-Cd laser. Magnetization measurements of the specimens were 

conducted using a Quantum Design Physical Property Measurement System (PPMS) system. 

 

3. Results and discussion 

Fig. 1(a)-(d) show the XRD patterns of undoped and Mn-doped ZnO nanorods 

annealed at 500 °C, 600 °C and 700 °C for 8 h in vacuum, respectively. In all cases a 

dominant peak at 34.4° is seen, corresponding to the ZnO (002) reflection (JCPDS card 

no:36-1451), confirming the deposit as ZnO material with the normal hexagonal wurtzite 

structure. As seen from the figure, the strong (002) preferred orientation perpendicular to the 

substrate was observed for all the samples, indicating a highly textured deposit, following the 

seed layer texture [17,18], and this result is also supported by the SEM images discussed later. 

It is well-known that preferential orientation along the [002] crystallographic direction of ZnO 

is favorable in terms of thermodynamic aspects because deposition/growth on the (002) plane 

provides the lowest energy configuration on a variety of substrates [19]. A peak located at 

56.3° was also observed for Mn-doped ZnO nanorods annealed at 700 °C for 8 h and was 

indexed as due to reflections from the (110) plane of ZnO, according to the JCPDS card 

referred to earlier. The appearance of this small peak at high annealing temperatures is 

probably due to slight misalignments in the seed and buffer layers at high temperatures as 

observed previously [18]. Neither MnO nor its binary compounds were seen in XRD studies 

of the samples, suggesting that Mn3+ substituted for Zn2+ in the ZnO host matrix without 

varying the wurtzite structure (confirmed by XPS results below). For the undoped ZnO 

sample, the c lattice parameter value of 5.20 Å was found from the (002) reflection peak 

centered at 34.45°. With respect to the undoped ZnO nanorods, no significant peak shift for 

the Mn-doped ZnO samples annealed at different temperatures for 8 h was seen.  

The XRC results obtained from ZnO (002) diffraction peaks of undoped and Mn-

doped ZnO nanorods (grown into the honeycomb pattern) annealed at 500 °C, 600 °C and 700 

°C for 8 h in vacuum, respectively, are presented in Fig. 2. The undoped ZnO nanorods had a 
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full width at half-maximum (FWHM) value of 10.77°, confirming alignment perpendicular to 

the substrate surface. Upon Mn doping, the FWHM values decrease gradually with respect to 

undoped ZnO with increasing annealing temperature and reach a minimum value of 8.86° for 

Mn-doping at 700 °C, indicating a slightly improved alignment.  

The top view SEM image of a monolayer of polystyrene nanospheres of 1µm diameter 

is shown in Fig. 3(a), implying that these nanospheres have a large and uniform coverage on 

the underlying ZnO buffer layer as well as the hexagonal close packing (hcp) structure. Fig. 

3(b) shows the patterned silica honeycomb lattice on ZnO buffer layer coated Si substrates 

with apertures at the centre of each hexagon exposing the underlying ZnO layer. After well-

aligned ZnO nanorods were grown into the honeycomb lattice, Mn evaporation and 

subsequent annealing was performed and SEM results are illustrated in Fig. 3 (c)-(f). Fig. 3(c) 

shows the plane view image of ZnO:Mn nanorods annealed at 700 °C for 8 h in vacuum 

which suggests that the pattern has a homogenous distribution of ZnO nanorods and each 

sphere was filled with a cluster of ZnO nanorods instead of one single nanorod. This result 

can be explained by the ZnO buffer layer providing multiple nucleation centers in the exposed 

region. A detailed study dealing with the effect of crystal quality was made by Szabo et al. for 

ZnO nanowires grown by a CBD technique on both polycrystalline sputtered ZnO thin film 

and ZnO single crystals [20]. Fig. 3(d)-(f) show the 45° tilted, 60° tilted and cross section 

images of ZnO:Mn nanorods annealed at 700 °C for 8 h, showing that these ZnO nanorods 

grew uniformly in a large area and perpendicular to the ZnO buffer layer coated Si substrate, 

consistent with the XRD and XRC results. The nanorod lengths were quite uniform at 

approximately 0.8 µm. 

EDS measurements were made to determine the chemical composition of Mn element 

in the ZnO matrix. The EDS spectrum of ZnO:Mn nanorods annealed at 700 °C for 8 h is 

shown in Fig. 4 which confirms the presence of Zn, O, and Mn in the sample, as well as a Si 

signal due to the substrate. The atomic ratios of Mn/(Zn+O) for all the Mn-doped ZnO 

samples had almost constant values of ~ 0.5 at.% and their values did not significantly change 

with increase in the annealing temperature up to 700 °C. 

XPS studies give useful information about the nature of Mn incorporation into the host 

matrix. Fig. 5(a) shows the survey spectrum of Mn-doped ZnO nanorods annealed at 500 °C 

for 8 h. From the figure, we see that Mn is present in the spectrum in addition to Zn, O and C. 

The core level peaks of the Mn elements (Mn 2p3/2 and Mn 2p1/2) are shown in Fig. 5(b) along 

with Gaussian peak fits. Mn 2p3/2 and Mn 2p1/2 peaks were located at the binding energy 
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values of 642.75 eV and 654.69 eV, respectively, meaning that Mn ions were successfully 

incorporated to the ZnO matrix as the valence state of +3. These results are in good agreement 

with reports in the literature [21, 22]. The O 1s peak data for undoped ZnO nanorods are 

presented in Fig. 5(c), indicating an asymmetric peak that is usually fitted with three 

components in the literature [23]. The binding energies of 530.39, 531.66 and 531.82 eV were 

obtained after fitting by Gaussian functions and are marked as OL, OM and OH, respectively. 

The OL peak is attributed to the lattice O2- ions in the ZnO host matrix, the OH peak is 

associated with the chemisorbed oxygen of the surface hydroxyl, CO3, absorbed H2O or 

absorbed O2 [24]. On the other hand, the OM peak is ascribed to oxygen deficient regions in 

ZnO, which imply the presence of oxygen vacancies (Vo) in the sample. The corresponding 

areas of the OL, OM and OH peaks were labeled AL, AM and AH, respectively. The ratio of 

AM/AL+AM+AH was found to be ~0.46 for undoped ZnO samples whereas it increased to 

~0.66 for Mn-doped ZnO nanorods annealed at 500 °C for 8 h shown in Fig. 5(d), meaning 

that Mn-doping and annealing enhanced the number of Vo defects.  

Fig. 6(a)-(d) shows PL data measured at 10 K for undoped and Mn-doped ZnO 

nanorods annealed at 500, 600 and 700 °C for 8 h, respectively. Undoped ZnO nanorods 

exhibit a UV peak centered at 3.358 eV that is related to excitons bound to donors (D0X). The 

intensity of this peak was fully quenched after Mn-doping together with vacuum annealing 

due to the strong nonradiative recombination processes and quenching associated with Mn 

atoms in ZnO [25]. Similar results were also reported by Inamdar and co-workers for Mn- and 

Co-doped ZnO nanocrystals [26]. In addition, the overall bandedge quenching trend for 

annealed samples is also consistent with that discussed by Wang and co-workers [27]. On the 

other hand, undoped ZnO also has a weak broad band betweeen 1.77 and 2.82 eV that is 

associated with deep level emission (DLE). This band is often associated with intrinsic 

defects such as Zni, VZn
-, Vo and Oi [28,29]. Upon Mn-doping and annealing at 500 and 600 

°C for 8 h, two distinct bands located at ~500 nm and ~680 nm (2.48 eV and 1.82 eV, 

respectively) appear in the spectrum. The bands with energy values of 2.48 eV and 1.82 eV 

can be attributed to Vo and Oi defects, respectively, created in the sample due to the both 

vacuum annealing and Mn-doping treatment. With further increase of annealing temperature 

to 700 °C, it is noted that the relative peak intensity of the DLE reaches a maximum value, 

implying that the number of associated defects (especially Vo) significantly increased with 

respect to undoped ZnO, in good agreement with the XPS results discussed above. 

M-H curves measured at 300 K for undoped and Mn-doped ZnO nanorods annealed at 

500, 600 and 700 °C for 8 h, respectively are shown in Fig. 7(a)-(d). It is very clear from the 
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inset of Fig. 7 that the Si substrate has a diamagnetic behavior and its effect is subtracted from 

total magnetization of all the samples subsequently measured. As seen from Fig. 7, one 

surprising result is that undoped ZnO nanorods exhibited ferromagnetic character in addition 

to all the Mn-doped ZnO nanorod samples. The unexpected ferromagnetism in undoped ZnO 

nanorods may be ascribed to the defect-induced d0 ferromagnetism, specifically related to the 

Vo defects observed in both XPS and PL data [30,31]. It is noted that the undoped ZnO 

nanorods had a saturation magnetization (Ms) of 0.004 emu/g. This value increased to 0.006 

emu/g after Mn-doping with annealing at 500 °C for 8 h in vacuum. With further increase of 

annealing temperature to 600 °C, Ms reached a value of 0.01 emu/g. For the ZnO:Mn sample 

annealed at 700 °C for 8 h, Ms reached its maximum value of 0.02 emu/g. This gradual 

increase is an indication of the increased number of Vo defects in the ZnO:Mn samples with 

respect to undoped ZnO, consistent with both PL and XPS results. Based on all these results, 

we consider that the observed ferromagnetic character for all the ZnO:Mn nanorods is related 

to a bound magnetic polaron (BMP) model where there is an interaction among Mn2+ ions, the 

electronic carriers and Vo defects, first proposed by Coey et al. [32]. 

 M-T data of Mn-doped ZnO nanorods annealed at 600 °C for 8 h is shown in Fig. 8. 

This measurement is performed at temperatures between 5 and 320 K at a magnetic field of 

500 Oe. Above 120 K there is a significant decrease in magnetization value with increasing 

temperatures up to 320 K. It can be concluded from these data that our sample has a Curie 

temperature which is above room temperature. However, we cannot determine the exact Curie 

temperature of the sample owing our limited measurement range. In the literature, much lower 

Tc values (43 K and 60 K, respectively) were reported by Zheng et al. and Roy et al. in their 

studies of ZnO:Mn tetrapod [33,25].  

 
4. Conclusions 
  

In conclusion, the results of the study can be summarized as follows: (i) XRD data 

showed that all the samples had a (002) preferential orientation perpendicular to the substrate; 

(ii) SEM results indicated that undoped and Mn-doped ZnO nanorods were successfully 

grown in the periodic honeycomb pattern; (iii) the valence state of Mn ions in the ZnO was 

determined to be +3, indicating that Mn substitutes for Zn in the ZnO lattice, consistent with 

XRD data also; (iv) it was found from optical measurements that Mn-doping significantly 

enhanced the deep level emission of ZnO; (v) room temperature ferromagnetism was obtained 

for all the samples; (vi) the origin of ferromagnetism for undoped ZnO was attributed to Vo-
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induced d0 ferromagnetism, whereas a BMP model accounted for the origin of 

ferromagnetism in Mn-doped ZnO nanorods. 
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Figure Captions 
 
Fig. 1. XRD patterns of undoped ZnO (a) and Mn-doped ZnO nanorods (grown into the 

honeycomb lattice) annealed at 500 °C (b), 600 °C (c), 700 °C (d) for 8 h. 

Fig. 2. XRC results of undoped ZnO (a) and Mn-doped ZnO nanorods annealed at 500 °C (b), 

600 °C (c), 700 °C (d) for 8 h. 

Fig. 3. (a) A SEM image of monolayer of polystyrene nanospheres, (b) the honeycomb silica 

lattice atop the ZnO buffer layer coated Si substrates, (c) top view, (d) 45° tilted view, (e) 60° 

tilted view and (f) cross-section SEM images of Mn-doped ZnO nanorods (grown into the 

honeycomb lattice) annealed at 700 °C for 8 h. 

Fig. 4. EDS spectrum of Mn-doped ZnO nanorods annealed at 700 °C for 8 h. 

Fig. 5. (a) XPS survey spectra of Mn-doped ZnO nanorods annealed at 500 °C for 8 h, (b) 

indicates the core-level peak of Mn 2p and its Gaussian fitting, (c) and (d) show the core level 

peaks of O 1s together with Gaussian fitting for undoped ZnO and Mn-doped ZnO nanorods 

annealed at 500 °C for 8 h, respectively. 

Fig. 6. Photoluminescence spectra (at 10 K) of undoped ZnO (a) and Mn-doped ZnO 

nanorods annealed at 500 °C (b), 600 °C (c), 700 °C (d) for 8 h. 

Fig. 7. M-H loops at 300 K for undoped ZnO (a), Mn-doped ZnO nanorods annealed at 500 

°C (b), 600 °C (c), 700 °C (d) for 8 h. M-H curve of bare Si substrate is presented in the inset. 

Fig. 8. M-T curve of Mn-doped ZnO nanorods annealed at 600 °C for 8 h. 
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