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1.  Evolutionary 
development, cost driven 
down, reliable, improved 

scalability 
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2.  Revolutionary breakthroughs in 
materials science; hidden complexity, 
biomimetic platforms, all fluid handling 

integrated on chip, indefinitely self-
sustaining 
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€<20&

€<2&

1.  Low-cost, autonomous, deployable 
platforms. !

!
!
2.  Enhancing current platforms through:!
!
•  Innovative sampling and target pre-

concentrat ion strategies for more 
comprehensive analysis of Water supplies.!

!
•  Bringing together novel smart materials 

technologies for fluid manipulation and flow 
control within microfluidic platforms.!

•  Target detection using highly specific 
detection methods for determination of 
bacterial (e.g E.coli) and chemical (e.g 
phosphate, surfactants) contaminants.!



NAPES	
  Pla;orm	
  

1.  Raw sample pre-filtration!

2.  Reverse osmosis!
(bacterial/chemical concentration)!
!

3.  Purified water stream (water source)!

4.  Concentrated sample stream!
!
5.  Chemical analysis of sample 

(phosphate, nitrate, nitrite, pH)!
!
6.  Tubular membrane filtration !

(bacterial concentration)!
!

7.  Microfluidic sample extract!
!
8.  Detection platforms; !

8a: Bead based bacterial capture!
8b: Refractive index based 
detection!
!
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Sampling	
  and	
  Pre-­‐Concentra6on!

!
•  Commonly, portable deployable platforms take small (millilitre 

scale) volumes for analysis!

•  Test protocols often call for detection of ONE CFU/SPORE in 
100ml – 10L. Microlitre and millilitre sampling is redundant for 
these specifications.!

•  Sampling system will process larger volumes (5-10 litres) with 
sample reduction to 100 milliliter scale and significant 
concentration in analytes.!

•  Reverse Osmosis (RO) and a tubular membrane based filtration 
unit (TF) will be employed for concentration of chemical and 
bacterial targets.!

Water	
  image:	
  h#p://crea+vity103.com/collec+ons/Water/water_surface.JPG	
  <accessed	
  11/04/14>	
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Sampling	
  and	
  Pre-­‐Concentra6on!

!
•  RO system using “waste” stream for sample concentration!
!
•  Concentration increases of chemical components 1.5x –3x!

•  Volume throughput: 15L/hour (purified water) !

•  Final volume (concentrated chemical/biological targets): approx 2-5L!

Purified	
  water	
  

Concentrated	
  
waste	
  stream	
  
for	
  bacterial	
  
and	
  chemical	
  
analysis	
  

Raw	
  water	
  
sample	
  

Reverse Osmosis (RO)	
  

Tubular Membrane Filtration (TF) !
!
•  Ceramic membrane system.!
!
•  Concentration increases of up to 50X!

•  Volume throughput:1mL/minute!

•  50% (5 mins) - 500% (1 hr) reduction in volume related to processing 
time!

•  Final volume (conc. chemical/biological targets): 100-500 μL!

Tubular	
  
membrane	
  



Smart	
  Materials	
  for	
  fluid	
  Handling!

•  Production of stimuli responsive materials for 
microfluidic applications.!

•  Microvalves allow for complex and precise 
control over fluid flow across microfluidic 
platform.!

!
•  Micrometer dimensions allow for complex 

arrays of valves, not currently possible with 
conventional valves.!

•  Low energy requirements through LED 
functionality.!

!
•  Low cost, no maintenance!



Smart	
  Materials	
  for	
  fluid	
  Handling!
Light actuated polymer valves!

contain any BSP (Fig. 2). However, samples from the same batch
(gel 0-1) pre-soaked in 1 mM HCl exhibit a yellow colour char-
acteristic of the protonated MC form (MC-H+), and shrink
considerably (down to 80% relative swelling) under white light
as previously reported for such systems.4,10,16 This suggests that
the shrinking of these gels is induced more by the combined
deprotonation of MC-H+ and conversion to BSP, rather than the
conversion of MC to BSP on its own (i.e. deprotonation of MC-
H+ is inherent to the shrinking mechanism).

A small but discernable shrinkage of the poly(NIPAM) blank
gel under white light irradiation (Gel 0-0, Fig. 2 and 4) occurs
because the light source used to actuate the gels, although a
‘cold’ LED source, induces a small degree of heating of the gel
and surrounding water due to absorption of incandescent
radiation. In fact, the temperature rose from the initial 18 !C to
22 !C during the 20 min period of measurement. Therefore,
because poly(NIPAM) gels are thermoresponsive and have been
shown to shrink slightly even at temperatures several degrees
below the actual LCST12,13,19 a slight temperature induced
shrinkage in the blank poly(NIPAM) gels occurs.

Inuence of AA content on gels with 1% BSP

Fig. 2 shows the results of photoinduced shrinking experiments
performed on gels containing 1% BSP and 0 to 5% AA. The rst
observation is that the gels incorporating AA function remark-
ably well without the need for prior soaking in HCl. When
placed in DI water and in darkness, a yellow colouration of the
AA-modied gels can be observed aer 5–10minutes, indicating
spontaneous formation of MC-H+ and, by implication, an
equivalent number of deprotonated –COO" groups. A sche-
matic of this equilibrium within the gel is shown in Fig. 3.
Moreover, the shrinking of the 1-1 gel is both faster and greater
in extent than for the equivalent non-AA modied 0-1 gel pre-
equilibrated in HCl (30% versus 20%, respectively, Fig. 2). Gel 5-
1 shrinks most, reaching 50% relative swelling aer 20 min of
irradiation with white light.

Poly(acrylic acid) polymers are themselves pH responsive,
and gels made from this polymer have been shown to swell
when the acid is deprotonated to the acrylate anion, and shrink
when reprotonated to the uncharged form.20 During the light-
induced deprotonation of the MC-H+ protons are liberated
(sometimes referred to as a pH jump reaction)14 and these re-
protonate the acrylic acid groups and increase the extent of
shrinkage (Fig. 2). These results show that the incorporation of
AA into these gels simplies the actuator operation by removing
the need to use an external HCl bathing solution to prime the
gel prior to photo-induced shrinking.

Inuence of BSP content on gels

Intuitively it might be assumed that increasing the BSP-acrylate
content in the gel formulation will increase the rate and extent
of the photo-induced actuation effect. However, the results in
Fig. 4 suggest that there is an optimum BSP content of ca. 1–2
mol % (gels 5-1 and 5-2) which in both cases produces #50%
relative shrinking. However, increasing the BSP content in the
polymer to 3% (gel 5-3) reduces the relative shrinking extent to
#20%.

Another optimisation aspect of these gels is the reswelling
rates. When the gels (Table 1) had adopted their steady-state
contracted form under white light irradiation, they, were kept
for 1 hour in the dark and their diameters measured again. The
resulting data (Table 2) shows that all gels with 1% BSP i.e. 1-1,
2-1, 5-1 shrink more with increasing amount of AA and reswell
to #100% aer one hour storage in darkness. When the BSP

Fig. 2 Shrinking of gels containing 1% spiropyran and varying amounts of
acrylic acid. Error bars are standard deviations, note that in some cases they are
obscured by the marker. (n ¼ 6).

Fig. 3 Schematic representation of the proton exchange taking place in the gels
between the acrylic acid and the spiropyran together with the effect of light
irradiation; Y:Z:X refer to the mol% of BSP, poly(NIPAM), and acrylic acid in the
formulation (see Table 1).

This journal is ª The Royal Society of Chemistry 2013 Soft Matter, 2013, 9, 8754–8760 | 8757
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•  DCU has developed light actuated polymer valve systems 
based upon spiropyran!

•  Shrinking upon exposure to white light. Spontaneous re-
swelling due to self protonation (acrylic acid)!

•  Reproducible actuation effects over several cycles!

•  Approx. 10- 25% shrinking in 5mins (depending on gel size)!

•  Work in neutral (pH 7) and acidic (pH 1) conditions.!
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Fig. 6. Ionogel small discs: (a) [P6,6,6,14][NTf2], (b) [P6,6,6,14][dca] and (c) [P6,6,6,14][Cl] after photopolymerisation (left); swelling in 1 mM HCl solution for 2 h (middle) and
shrinking upon white light irradiation (right).

once water has reached the previous bulk layer. As a consequence,
if the bulk region is made larger, the overall time for diffusion to
establish a steady state throughout the entire structure becomes
increasingly longer. Therefore, the effective rate constant for the
structure changes with the bulk-to-surface ratio, but the funda-
mental processes involved are the same. This phenomenon clearly
supports our findings, that the fastest water diffusion dependent
swelling process occurs for ring-shaped ionogels, followed by small
disc, large disc and line microstructures, see Fig. 5.

3.5. Characterisation of the shrinking behaviour of the ionogel
microstructures

After immersion in HCl aqueous solution, the p(SPNIPAAm)
ionogels have a yellowish colour caused by the formation of
the MC−H+ species. Exposure to white light induces photoiso-
merisation of the MC−H+ form to the closed spirobenzopyran
chromophore SP, resulting in a change of the ionogel colour from
yellow to white. The hydrophobic SP isomer induces the dehydra-
tion of the polymer and thus the shrinkage of the ionogel due to
restructuring of the polymer matrix.

3.5.1. Shrinking rates of ionogel microstructures
The kinetics of the shrinking behaviour of [P6,6,6,14][NTf2],

[P6,6,6,14][dca] and [P6,6,6,14][Cl] ionogels, monitored by white light
irradiation for 30 min, shows that the IL plays an important role in
the ionogel dehydration mechanism, similar to the swelling pro-
cess. Fig. S7, Supporting Information, presents the kinetic curves of
the large disc ionogel microstructures analysed in triplicate, show-
ing that the shrinking process is reproducible for each ionogel and
the related microstructures (see Supporting Information, Table S2).
Under constant white light irradiation, the %H values vs. time were
obtained, and the average values fitted to exponential models (Eq.
(2)), see Fig. 3B. Table 1 lists the shrinking rate constants of the iono-
gels. The largest shrinkage rate was observed for the [P6,6,6,14][NTf2]
ionogel microstructures with ksh = 29 ± 4 × 10−2 s−1, followed by
[Cl]− (9 ± 2 × 10−2 s−1) and [dca]− (8.3 ± 0.9 × 10−2 s−1) based

ionogels. A video of the [P6,6,6,14][NTf2] ring ionogel microstructures
shrinking can be viewed at http://tinyurl.com/d5yvq6l (see Suppor-
ting Information, Fig. S8).

Although stronger light irradiation may  induce a faster iso-
merisation of the protonated merocyanine to spiropyran, the
dehydration of the polymer and subsequent ionogel shrinkage is
not an immediate process since it requires a few minutes to reach
ca. 50% shrinkage of its initial swollen value. [NTf2]− ionogels
reached 50% of their swollen height after 3 min, [Cl]− after 10 min
and [dca]− after 15 min  of irradiation, Fig. 3B. However, it is impor-
tant to mention that when these materials are incorporated within
micro-fluidic manifolds for microvalve applications, only a rela-
tively small percentage of height change is required to open the
valve. Therefore, valves based on these materials in micro-fluidic
channels will typically occur at much shorter timescales (seconds)
[18].

The %H of all the photopolymerised microstructures was  mea-
sured after 30 min  (Figs. 3B and 4) of white light irradiation
following the same protocol described above. In all cases, the
[P6,6,6,14][NTf2] microstructures exhibit the greatest %H reduc-
tion, followed by [P6,6,6,14][dca] and [P6,6,6,14][Cl]. There are several
interesting outcomes arising from these experiments. For all the
ionogels, the water release is clearly dependent on the IL encap-
sulated in the crosslinked p(SPNIPAAm) ionogel. As the ionogel
shrinks, the water and ionic liquid interactions with the polymer
backbone (e.g. hydrogen bonding with pNIPAAm amide groups)
are reduced in favour of increasingly strong polymer–polymer
hydrogen bonding. In turn, the gel adopts more compact format,
which also reduces the free volume available for water to occupy.
This effect is more apparent in ionogels with more hydropho-
bic ionic liquids, such as [P6,6,6,14][NTf2], leading to greater and
faster shrinkage. Our experiments demonstrate that the ionogel
ksh increases with increasing hydrophobicity of the IL. Dehydra-
tion is more favourable for [NTf2]− than for [Cl]− and [dca]−,
since [NTf2]− presents six hydrophobic fluoride groups and con-
sequently, exhibits larger tendency towards dehydration [26]. The
water release process is triggered by MC−H+–SP conversion, during
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Fig. 6. Ionogel small discs: (a) [P6,6,6,14][NTf2], (b) [P6,6,6,14][dca] and (c) [P6,6,6,14][Cl] after photopolymerisation (left); swelling in 1 mM HCl solution for 2 h (middle) and
shrinking upon white light irradiation (right).

once water has reached the previous bulk layer. As a consequence,
if the bulk region is made larger, the overall time for diffusion to
establish a steady state throughout the entire structure becomes
increasingly longer. Therefore, the effective rate constant for the
structure changes with the bulk-to-surface ratio, but the funda-
mental processes involved are the same. This phenomenon clearly
supports our findings, that the fastest water diffusion dependent
swelling process occurs for ring-shaped ionogels, followed by small
disc, large disc and line microstructures, see Fig. 5.

3.5. Characterisation of the shrinking behaviour of the ionogel
microstructures

After immersion in HCl aqueous solution, the p(SPNIPAAm)
ionogels have a yellowish colour caused by the formation of
the MC−H+ species. Exposure to white light induces photoiso-
merisation of the MC−H+ form to the closed spirobenzopyran
chromophore SP, resulting in a change of the ionogel colour from
yellow to white. The hydrophobic SP isomer induces the dehydra-
tion of the polymer and thus the shrinkage of the ionogel due to
restructuring of the polymer matrix.

3.5.1. Shrinking rates of ionogel microstructures
The kinetics of the shrinking behaviour of [P6,6,6,14][NTf2],

[P6,6,6,14][dca] and [P6,6,6,14][Cl] ionogels, monitored by white light
irradiation for 30 min, shows that the IL plays an important role in
the ionogel dehydration mechanism, similar to the swelling pro-
cess. Fig. S7, Supporting Information, presents the kinetic curves of
the large disc ionogel microstructures analysed in triplicate, show-
ing that the shrinking process is reproducible for each ionogel and
the related microstructures (see Supporting Information, Table S2).
Under constant white light irradiation, the %H values vs. time were
obtained, and the average values fitted to exponential models (Eq.
(2)), see Fig. 3B. Table 1 lists the shrinking rate constants of the iono-
gels. The largest shrinkage rate was observed for the [P6,6,6,14][NTf2]
ionogel microstructures with ksh = 29 ± 4 × 10−2 s−1, followed by
[Cl]− (9 ± 2 × 10−2 s−1) and [dca]− (8.3 ± 0.9 × 10−2 s−1) based

ionogels. A video of the [P6,6,6,14][NTf2] ring ionogel microstructures
shrinking can be viewed at http://tinyurl.com/d5yvq6l (see Suppor-
ting Information, Fig. S8).

Although stronger light irradiation may  induce a faster iso-
merisation of the protonated merocyanine to spiropyran, the
dehydration of the polymer and subsequent ionogel shrinkage is
not an immediate process since it requires a few minutes to reach
ca. 50% shrinkage of its initial swollen value. [NTf2]− ionogels
reached 50% of their swollen height after 3 min, [Cl]− after 10 min
and [dca]− after 15 min  of irradiation, Fig. 3B. However, it is impor-
tant to mention that when these materials are incorporated within
micro-fluidic manifolds for microvalve applications, only a rela-
tively small percentage of height change is required to open the
valve. Therefore, valves based on these materials in micro-fluidic
channels will typically occur at much shorter timescales (seconds)
[18].

The %H of all the photopolymerised microstructures was  mea-
sured after 30 min  (Figs. 3B and 4) of white light irradiation
following the same protocol described above. In all cases, the
[P6,6,6,14][NTf2] microstructures exhibit the greatest %H reduc-
tion, followed by [P6,6,6,14][dca] and [P6,6,6,14][Cl]. There are several
interesting outcomes arising from these experiments. For all the
ionogels, the water release is clearly dependent on the IL encap-
sulated in the crosslinked p(SPNIPAAm) ionogel. As the ionogel
shrinks, the water and ionic liquid interactions with the polymer
backbone (e.g. hydrogen bonding with pNIPAAm amide groups)
are reduced in favour of increasingly strong polymer–polymer
hydrogen bonding. In turn, the gel adopts more compact format,
which also reduces the free volume available for water to occupy.
This effect is more apparent in ionogels with more hydropho-
bic ionic liquids, such as [P6,6,6,14][NTf2], leading to greater and
faster shrinkage. Our experiments demonstrate that the ionogel
ksh increases with increasing hydrophobicity of the IL. Dehydra-
tion is more favourable for [NTf2]− than for [Cl]− and [dca]−,
since [NTf2]− presents six hydrophobic fluoride groups and con-
sequently, exhibits larger tendency towards dehydration [26]. The
water release process is triggered by MC−H+–SP conversion, during
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Smart	
  Materials	
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  fluid	
  Handling!
Photoresponsive coatings!
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Smart	
  Materials	
  for	
  fluid	
  Handling!
Thermoresponsive ionogel valves and integration of 
valves into microfluidic platforms!

Ionic Liquid!
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Polymer matrix!
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Innova6ve	
  Detec6on	
  Pla;orms!
Highly specific bacterial detection: !
Lectin microarrays and phage display!
!
!

!
•  Selection of lectins to be selected that can discriminate between strains of bacteria!

•  Production of Bacteriophages expressing specific binding for pre-selected strains of 
bacteria. !

•  Both approaches will detect E.coli O157:H7, E.coli O6, Enterbacter spp and 
Pseudomonas aeruginosa and additionally the potential to examine shiga-like toxins 
produced by  E.coli O157:H7 will be examined by phage display.!

•  Optimised lectin and phage derivatives will be used in conjunction with MMBM and UMIL 
detection platforms!

!
!



Innova6ve	
  Detec6on	
  Pla;orms!
Lectin microarray analysis of two strains of C. Jejuni!
!
!

Glass	
  slide	
  
8	
  lec6n	
  arrays	
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  slide.	
  	
  
	
  
42	
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  6x	
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  heat	
  map	
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At	
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  degree	
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  strain	
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  lec6n	
  SNA	
  II	
  with	
  high	
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(red)	
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Innova6ve	
  Detec6on	
  Pla;orms!
On-chip bacterial detection using magnetic bead system !

Raw sample! Extraction in the 
microfluidic Fluidized bed!

Bacteria release!
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Reflective Phantom Interface (RPI) Method!

•  F.	
  Giavazzi	
  et	
  al.,	
  Proc	
  Natl	
  Acad	
  Sci	
  USA,	
  110	
  (2013)	
  9350-­‐9355	
  
•  F.	
  Giavazzi	
  et	
  al.,	
  Biosensors	
  and	
  Bioelectronics,	
  in	
  press	
  (2014),	
  DOI:	
  10.1016/j.bios.2014.02.077	
  

Innova6ve	
  Detec6on	
  Pla;orms!

Surface reflectivity initially is 
very low due to refractive index 
matching of polymer to water!

n2 

n1 

Binding to surface significantly 
alters refractive index and 

increases reflectivity!

Surfactants  (Tween 20)  
concentration  from 10-8  M to 10-4  M 
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Bacteria detection by RPI (UMIL)!

1 cm 

Design and realisation of the fluidic module!

Evaluation of the optical platform!

Preliminary data on bacteria detection (6 hours 
flow analysis) :!
!
     Unbound spot ! !   Bacteria bound!

Innova6ve	
  Detec6on	
  Pla;orms!

•  ABL and UMIL will produce RPI 
surfaces with strain specific bonding 
based upon lectin and phage 
development!



Prototype	
  development	
  and	
  
deployment!

•  TEL and WIS will assist DCU in Prototype testing and deployment at 
Irish sites.!

•  Lab based testing of prototypes (phase 1) and Field trials at Waste 
water treatment plants and water supply reservoirs (phase 2)!

•  Potential for deployments outside of Ireland with partners!

Example of DCU coordinated deployment 
of autonomous phosphate system!

Prototype	
  deployment	
  

(a) (c) (b) 
Prototype	
  development	
  

•  DCU will lead the production of prototype 
platforms!

•  Design and engineering of platform for scalable 
production and commercialisation activities in 
parallel with TEL!



Concluding	
  remarks!

•  Bringing together novel materials technologies to create platforms with lower energy 
demand and significant size reduction.!

•  Highly sensitive and specific bacterial detection platform for detection of pathogenic 
bacterial strains and chemical contaminants.!

•  Innovative sampling and pre-concentration methods for increase in sample volume and 
larger representative samples for broader testing of water source.!

!
•  Autonomous, reliable platforms for long-term deployment with significant reduction in 

unit cost relative to existing platforms.!
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