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Abstract—Dementia is one of the most common diseases in the
elderly people. Experience shows that Microsoft’s SenseCam can
be an effective memory-aid device, as it helps users to improve
recollecting an experience by creating visual lifelogs. Given the
vast amount of images that are maintained in a visual lifelog, it
is a significant challenge to deconstruct a sizeable collection of
images into meaningful events for users. In this paper, random
matrix theory (RMT) is applied to a cross-correlation matrix
C, constructed using SenseCam lifelog data streams to identify
such events. The analysis reveals a number of eigenvalues that
deviate from the spectrum suggested by RMT. The components
of the deviating eigenvectors are found to correspond to “distinct
significant events” in the visual lifelogs. Finally, the cross-
correlation matrix C is cleaned by separating the noisy part from
the non-noisy part. Overall, the RMT technique is shown to be
useful to detect major events in SenseCam images.

I. INTRODUCTION

Dementia is an important public health issue as it is one of
the most common diseases in the elderly people. There are
an estimates suggest that Ireland have 41,470 people with
dementia in 2010 [1] and approximately 5.1 million people
live with dementia in the European Union [2]. Microsoft
Research has contributed a device, the SenseCam, that has
potential to aid dementia patience to cope with their life
situation. SenseCam [3] was first developed to help people
with memory loss, but the camera is currently being tested to
aid those suffering from serious cognitive memory loss [4].
The SenseCam is a small, wearable camera that takes images,
automatically, in order to document the events of a wearers’s
day. The SenseCam also contains several electronic sensors,
including those which record light-intensity and light-colour,
a passive infrared (body heat) detector, a temperature sensor,
and a multiple-axis accelerometer for monitoring the wearer’s
environment. The device takes pictures at VGA resolution,
(480x640 pixels), and stores these as compressed .jpg files
on internal flash memory. SenseCam can thus collect a large
amount of data, even over a short period of time, with a picture
typically taken every 30 seconds, an average of 2,000 images
captured in any given day, together with associated sensor
readings. The SenseCam produces images which are very
similar to one’s memory, particularly episodic memory, which
is usually in the form of visual imagery [3]. By reviewing
the day’s filmstrip, patients have found it much easier to
retrieve lost memories [5]. However, given the large size
of the dataset that is created by the SenseCam, refreshing
one’s memory just by browsing the vast corpus is a tedious,
if not unacceptable task. Hence, techniques are required for
all users to manage, organise and analyse these large image
collections, e.g., by automatically highlighting key episodes

and, ideally, classifying them in order of importance to the life
logger. Doherty et al. [6] address this challenge by identifying
distinct events within a full day, e.g. breakfast, working on
PC, meeting, etc.. However, their approach still contains a
significant percentage of routine events. Our previous research
[7] tackle the challenge by treating SenseCam images as time
series. They show that these time series exhibit a strong long-
range correlation, concluding that the time series is not a
random walk, but is cyclical, with continuous low levels of
background information picked up constantly by the device.
Further, they adopt a cross-correlation matrix to highlight key
episodes, thus identifying boundaries between different daily
events.

However, due to the finite length of time series available to
estimate cross correlations, the matrix contains much which
corresponds to “random” contributions [8, 9]. As a conse-
quence, their technique results in the identification of a high
percentage of noise or routine events. This phenomenon can
also be observed in other domains such as the analysis of
financial data, wireless communications and many other fields.
A well-proven technique to handle this issue is the application
of random matrix theory (RMT) [10]. In this paper, we
investigate whether RMT can be used to distinguish routine
events from important events. We argue that such routine
events can then be removed from the cross-correlation matrix
by applying RMT. Our goal is to segment the content of the
cross-correlation matrix into two: (a) the part of the correlation
matrix that conforms to the properties of random correlation
matrices (“noise”) and (b) the part of the correlation matrix
that deviates from random (i.e. has “information” on important
events).

This paper is organised as follow: in Section II we describe
the data used, methods are reviewed in Section III, Section IV
details the results obtained, conclusions and outlook on future
work are given in Section V.

II. DATA

For this study, we analyze 2096 lifelog images that have
been recorded using a SenseCam over the period of one day.
The wearer of the camera, i.e., the lifelogger, experienced
an average day of her life: commuting to the office in the
morning, sitting and working in the office at a desk, talking
with colleagues and sharing lunch in the cafeteria, as well
as commuting back home in the evening and so on. In order
to create a ground truth, the user reviewed her collection and
manually classified the whole day into 12 events. Data statistics
are reported in Table I. Given the size of the test corpus and
its content, we argue that it is a typical visual lifelogging



collection depicting a typical day of the lifelogger’s life. As
discussed above [6], a user will experience approximately 20
events per a day, but when exploring one’s lifelog, reviewing
routine or “boring” events has only limited interest, depending
on the device purpose [5]. Efforts to determine automatically
which events is most important or unusual (e.g., talking with
a colleague as opposed to working in front of a computer), is
an open research challenge. In order to distinguish routine or
“boring” events from important events, we apply RMT meth-
ods to the cross-correlation matrix of the dataset, where such
noise filtering has proved successful in many fields [10–14].
In the next section, successful the method is outlined.

TABLE I. DATA STATISTICS

Event Number Event Series Number of Images
1 Go to work 38
2 Arriving in the office 21
3 Working 136
4 Chatting with people 107
5 Working 157
6 Walking in the building 29
7 Working 177
8 Go to the bank 108
9 Working 412
10 Lunch 148
11 Working 668
12 Leaving the office 38

Total: 2096

III. METHODS

A. Random Matrix Theory

In order to optimize the calculation process and reduce the
amount of memory required for our calculations, we first adopt
an averaging method to decrease the image size from 480×640
pixels to 60×80 pixels. Given pixels Gi(t), i = {1, .., N}, of a
collection of images. The equal-time cross-correlation matrix
[15] may be expressed as follows:

Cij ≡
〈
GiGj

〉
−
〈
Gi
〉〈
Gj
〉

σ(i)σ(j)
(1)

where σ(i) is the standard deviation of Gi for image numbers
i = {1, .., N}, and < ... >denotes a time average over the
period studied.

In matrix notation, the correlation matrix can be expressed as
C = 1

TGG
τ , where τ is the transpose of a matrix, G is an N

× T matrix with elements git. N is the number of images and
T is the pixel size of an image. The spectral properties of C
may be compared to those of a “random” Wishart correlation
matrix R = 1

T AA
τ [10], where A is an N×T matrix with

each element random, by distributed with zero mean and unit
variance.

In particular, the limiting property for the sample size N →∞
and sample length T → ∞, providing that Q = T/N ≥ 1 is
fixed, has been analysed to give the distribution of eigenvalues
λ of the random correlation matrix R, given by:

Prm(λ) =
Q

2πσ2

√
(λ+ − λ)(λ− λ−)

λ
(2)

where λ− and λ+ are the minimum and maximum eigenvalues
of R. Hence, by comparing the empirical distribution of the
eigenvalues of the correlation matrix to the distribution for
a random matrix, as given in Eq. (2), we can identify those

key eigenvalues which can be used to identify the specific in-
formation relating to the system. Eigenvector analysis enables
identification of the specific information present, in terms of
contributory components.

B. Eigenvector Analysis

Differences between the eigenvalues P (λ) of C and RMT
eigenvalues, Prm(λ) should also be displayed, therefore, in
the statistics of the corresponding eigenvector components. In
order to interpret this deviation of the eigenvectors, we note
that the largest eigenvalue is an order of magnitude larger than
the others, which constrains the remaining N − 1 eigenvalues,
since the trace of C, Tr[C] sums to N . Hence, in order to
analyse the contents of the remaining eigenvectors, we need
first remove the effect of the largest eigenvalue. To do this we
can use the linear regression [10]

Gi(t) = αi + βiG
large(t) + εi(t) (3)

where Glarge =
∑N

1 ulargei Gi(t) and N is the number
of images in our sample. Here ulargei corresponds to the
components of the largest eigenvector. The cross-correlation
matrix C is then recalculated using the residuals εi(t). If we
quantify the remainder variance, (i.e., of the part not explained
by the largest eigenvalue) as σ2 = 1−λlarge/n, this value can
be used to recalculate our values of λ±.

IV. RESULTS

A. Eigenvalue Analysis

As stated above, our aim is to separate information (major
events) and noisy parts from the cross-correlation matrix C.
In order to approach this task, we compare the eigenvalue
distribution P (λ) of C with Prm(λ). Fig. 1 compares the prob-
ability distribution P (λ) with Prm(λ). We note the presence
of a well-defined “bulk” of eigenvalues which fall within the
bounds [λ−, λ+] for Prm(λ). We also note deviations for a
number of (≈ 80%) largest and smallest eigenvalues. Fig. 1
hence suggests that the cross-correlation matrix captured most
of the major events from the data stream, but still contains a
small part of noise (≈ 20%).
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Fig. 1. Eigenvalue Distribution for the Correlation Matrix C for SenseCam
data, Full spectral distribution (a) Partial spectral distribution (b)



B. Bootstrapping

In order to study whether there is no dependency on the
choice of image series or the length of the pixel series we
split the image series into two segments and compare the
eigenvalue spectrum of the cross-correlation matrix C with
that of a random Wishart matrix. As can be seen in Fig. 2,
the eigenvalue contributions are very similar for both periods
chosen which implies independence from the choice of image
series, i.e., for both image series studies we observe the same
amount of eigenvalues that deviate from the RMT prediction.
We conclude from this, that independent from the image series
that is analyzed, the proposed technique can be used to identify
major events.
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Fig. 2. Eigenvalue Distribution for the Correlation Matrix C for SenseCam
data, 2096 images using 1st 2400 pixels series (a) 2096 images using 2nd
2400 pixels series (b)

C. Eigenvector Analysis

The deviations of P (λ) from the RMT result Prm(λ) suggest
that these deviations should also be displayed in the statistics of
the corresponding eigenvector components [15]. Accordingly,
in this section, we analyse the distribution of eigenvector
components. Fig. 3 shows the spectrum of the components of
the largest, the second largest and the third largest eigenvector.
Our previous research [7] has shown that the largest Eigenvalue
presents information from the image that reflects the largest
change in the SenseCam recording. Similarly, we expect that
the largest eigenvector can be interpreted as major events
or key sources in the data corpus. As Fig. 3 illustrates, the
different features can be found at various points in the eigen-
vectors spectrum, suggesting that the eigenvectors represent
different major events or key sources with different eigenvector
components. Compared to the third largest eigenvector, the
first and second largest eigenvector have larger fluctuations
in the eigenvector spectrum. This implies that the first and
second eigenvector captured some different major events or
key sources.

Fig. 4 shows that P (Cij) is asymmetric, with a long positive
tail and has a high peak, implying that positively correlated
behaviour is more prevalent than negatively correlated posi-
tively. This is consistent with our previous research [7]. We
argue that the tail represents significant or unusual events in
the data stream. In order to remove the effects of the largest
eigenvalue we use the techniques described in Section III
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Fig. 3. Eigenvector components spectrum, the largest eigenvalue (a), 2nd
largest eigenvalue (b) and 3rd largest eigenvalue (c)

(B). In Fig. 4 the distribution P (Cij) thus obtained has a
smaller significantly average value <Cij>, showing that a
degree of cross correlations contained in C can be attributed
to the influence of the largest eigenvalue and its corresponding
eigenvector.
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Fig. 4. Probability distribution P of the cross-correlation coefficients for data
before (blue) and after (red) removing the effect of the largest eigenvalue by
linear regression method

The distribution of the components of the largest remaining
deviating eigenvectors shows some distinctive clustering in
Fig. 5(a). In particular, Events 2, 6&12, Events 4&5 and
Events 3&7 (in Table I) are the major contributors here. By
examination of the images, we find that each clustering reflects
quite similar light levels for grouping of events. For instance in
the clustering for Events 2, 6&12: Event 2 described the user
going from outside to the office; The office is dark; When the
user switched on the lights, the light level suddenly changed.
Also, quite similar situations occurred in Events 6 and 12,
when the user was walking in the building, sometimes the
camera captured the lights and sometimes not. When the user
was preparing to leave the office, she was packing her stuff
and stood up, and the camera captured the lights form the roof.
Also several images captured the user’s bag (black colour)
and this makes a big difference in the sequence of images.
Events 3&7 describe the same scenario: the user was sitting
in front of her laptop, with laptop, lights and seating position



unchanged over on extended period, contributing same pixel
values in this sequence of images. However, although Event
11 also described the same scenario (working), it have not
been grouped in the same cluster. By re-examination of these
images, we note that this scenario is different to Events 3&7.
This working process lasted for a very long time when the user
was mainly working, but several times the camera was totally
blocked by the user’s hair or the desk. A similarly clustered
distribution also emerges for the other deviating eigenvalues,
shown in Fig 5 (b) and (c). However, these eigenvalues show
no variation when compared to the largest remaining deviating
eigenvector. Events 2, 5, 6, 8, 9&12, 1, 3&10 and 1, 2, 5, 8&12,
3, 6&10 mainly contribute for the second and third largest
remaining deviating eigenvector, representatively. This implies
that these eigenvectors could carry additional information on
the description of the events such as possible lead-in, lead
out.
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Fig. 5. Distribution of eigenvector components, largest remaining eigenvalue
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(c)

V. CONCLUSIONS

A promising method to assist dementia patients in coping
with their disability to retrieve autobiographical events is the
creation of visual lifelogs that allow them to re-live these
events. Visual lifelogs are personal image collections that
are recorded on a frequent basis to capture the wearer’s
life activities. Facing vast amounts of images that have been
recorded automatically, an open research challenge is the
identification of key events in the data stream, i.e., events
that are potentially more memorable than other events. In this
paper, we studied whether random matrix theory (RMT) can
be applied to extract meaningful information and noise from
such data corpus. Significant deviations from RMT predic-
tions are observed. Further, we analyze the deviations from
RMT, and find that (a) different eigenvectors have different
features, suggesting that different major events are captured
by various eigenvectors. (b) By examining the eigenvectors
corresponding to the images, we find that alternating light
levels as key source are always picked up by the device for the
largest remaining deviating eigenvector. In addition, the same
events have been grouped together. The distinctive clustering
captured the same events. (c) The second and third largest
remaining deviating eigenvectors have a similarly-clustered
distribution to the largest remaining deviating eigenvector.

However, the different clusters consist of different events. This
imply that these eigenvectors carry additional information on
the description of the events for leading-in or leading out
to major events. (d) We also note that even quite similar
scenarios but key sources are slightly different, these events
have been classified by different clustered distributions. This
implies that key sources have played a major part for the
classification by the cross-correlation matrix. The proposed
cleaning technique of separating the noisy part from the non-
noisy part has been proved useful. Overall, the RMT technique
provides a powerful tool to analyze cross correlations across
whole data streams. Future work includes evaluation large of
datasets and assessment of the eigenvalues of C within the
RMT bound for universal properties of random matrices, in
order to confirm initial results and further explore the detailed
features of the SenseCam images.
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