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Abstract

In pharmaceutical modelling, cellular automata have been used as an es-
tablished tool to represent molecular changes through discrete structural
interactions. The data quality provided by such modelling is found suitable
for the early drug design phase where flexibility is paramount. While both
synchronous (CA) and asynchronous (ACA) types of automata have been
used, analysis of their nature and comparative influence on model outputs
is lacking. In this paper, we outline a representative probabilistic CA for
modelling complex controlled drug formulations and investigate its transition
from synchronous to asynchronous update algorithms. The key investigation
points include quantification of model dynamics through three distinct sce-
narios, parallelisation performance and the ability to describe different release
phenomena, namely erosion, diffusion and swelling. The choice of the appro-
priate update mechanism impacts the perceived realism of the simulation as
well as the applicability of large-scale simulations.

Keywords: complex systems, controlled drug delivery, high-performance
computing, swellable devices, probabilistic models

1. Introduction

Probabilistic models based on Monte Carlo and CA frameworks have
emerged in recent years as a viable response to the modelling needs imposed
by design requirements of next generation drug delivery systems (DDS)
[10]. In research papers covering the application of CA to the field, both
synchronous and asynchronous update methods have been used [15, 11],
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without going into deeper analysis of advantages and disadvantages of each.
Choosing the algorithm for iterating through the cellular matrix affects how
temporal realism of the physical process is represented. As DDS is biological
in nature, chaotic or random updates might represent the system dynamics
better than synchronous, ”all-at-once”, changes. On the other hand, as size
and complexity of the models grow, the need for efficient parallelisation
of model space restricts the application of asynchronous methods due to
performance reasons [5]. The transition of CA to ACA in general has been
investigated in literature in a number of modelling contexts [5, 1].

In this paper we compare behavioural characteristics, model outputs and
performance for different CA and ACA update mechanisms in the context
of probabilistic models used in controlled drug delivery and their parallel
implementation, where differential equations are not applicable due to inherent
unknowns in the parameter space. Finally, we analyse the results obtained by
running the models for a specific case of coated drug bead formulations and
test it for three distinct scenarios.

We provide here an extension of the work, initially presented in [7]. In
what follows, Section 2 presents the design methodology used for developing
the CA rule sets, together with comparison of different CA and ACA update
mechanisms when used in the context of the model and gives a theoretical
analysis of their properties and variations in parallel and sequential implemen-
tations. Section 3 describes the developed model, with analysis of obtained
results in Section 4, followed by the final discussion, (Section 5).

2. Methodology

2.1. Update Algorithms

As for any model build, the first stage involves transfer of domain knowl-
edge of structural and behavioural characteristics of the DDS to the CA model.
There are several distinct DDS characteristic categories to be considered,
including shape and geometry, polymer composition and interactions, drug
loading and influence of the dissolution environment. The models obtained
are classified as kinetic CA or ACA models [3]. Based on the way we choose
to represent the physical phenomena modelled, we adopt rules, either deter-
ministic or probabilistic, (or a combination of both) affecting individual cell
behaviour and the surrounding neighbourhood.

To satisfy the condition that the models need to mimic the non-homogeneity
of the physical device, with exact distributions of polymer properties not
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usually available from experimental data, the model initialises cell states using
stochastic distributions within the device geometry. Therefore, various direct
Monte Carlo algorithms provide a natural solution to the initial condition
problem. Here we address the choice of the appropriate cellular automaton
update method, with particular emphasis on the CA rule correctness as we
consider several standard synchronous and asynchronous algorithms [3].

Mathematically, the principal features of the 3-dimensional DDS models
can be represented as a cellular automaton by a tuple representation:

{G,A,U,Θ, F} (1)

where G ⊂ Z3 denotes a set of cell coordinates (the model matrix) and A
is the model alphabet - a finite set of possible cell states, (aggregate polymer
states), and U denotes the cell neighbourhood (including the cell itself). Then
A(U(x), t) denotes the state of a neighbourhood of cells U around a given cell
x ∈ G at a moment in time t. The behaviour of the system is described by a
set of elementary transition rules, F, where these are applied to the states
of a neighbourhood of cells U. For the sequential (i.e. non-parallel) case of
both synchronous and asynchronous updates, the general form of the rules
(Fs) can be written as following:

Fs = {f(x, t) : A(U(x), t)→ A(U(x), t + 1) | x ∈ G} (2)

with f indicating the specific rule. Finally, Θ denotes the CA/ACA update
order function, applied to G and A in order to advance the global model
state. As a basis for Θ we investigated the application of several random and
ordered asynchronous update methods, (see e.g. [8]) and compared these to
the well-used synchronous method.

We implement the different update forms as modifications of the basic
synchronous CA two-phase update algorithm of the main matrix G:

• Random order algorithm involves updating cells of G in a random
order which is changed every time a full cell sweep is finished. All cells
are updated in each time step of the simulation.

• Random cyclic algorithm is a variation of the random order algo-
rithm, with the difference that a single random permutation of G is
always used. Random permutation of G is chosen at the beginning of
the simulation.
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• Random independent method chooses one cell at random for updat-
ing at each time step. In the overall simulation, each cell should thus
be updated approximately the same amount of times. However, over
shorter time periods a given cell may be updated much more frequently.
To achieve uniform selection, the algorithm thus depends heavily on the
size of the sequence of the random number generator. The Mersenne
Twister algorithm has been used in this case, to reduce bias [12].

• Fixed cyclic sequential algorithm is used in its first form where
cells of G are visited in sequential order of their coordinates, (first width,
then depth, then height in 3D).

2.2. Equivalence of Sequential and Parallel Implementations

In the representative model the mechanisms described above only apply
as long as the simulation is sequential. Once the algorithm has to scale up
to be applicable to large data sets, the inclusion of parallelisation will have
fundamental impact on the update logic. It can be shown that in our case
synchronous matrix updates are more suitable to parallelisation, as the effect
of parallel updates on the resulting state should be equivalent. Consider a
parallel version (Fp) of the fundamental rule set given in equation 2:

Fp = {f(x1, ..., xk, t) :
k⋃

i=1

A(U(xi), t)→
k⋃

i=1

A(U(xi), t+1)|x1, ...xn ∈ G} (3)

Essentially, parallelising the update mechanism by splitting the CA space
into disjoint domains, each having a set of boundary cells, introduces a
simultaneous update of k cells at a time, where k represents the degree
of parallelisation. The exact selection of cells x1, ... , xk depends on the
particular parallel algorithm being used. In the synchronous case, the state of
a neighbourhood of cells U(x) at moment t only depends on the same state
for the previous moment t− 1, and not on any currently updated state of any
of the other neighbourhoods. Therefore, for synchronous updates, it holds
that FS ⇔ FP , which is in line with [4].

For asynchronous updates, the equivalence of sequential and parallel
implementation breaks down. As the parallel version of the rule set presents a
composition of functions applied simultaneously, the order of their application
can result in a different overall state of the matrix. This is always true if any
of the chosen neighbourhoods U(xi) overlap.
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When implementing parallelisation of pharmaceutical models using some
of the industry standard APIs, such as Message Passing Interface (MPI),
for course grained parallelisation, or OpenMP, for a more fine grained one,
synchronous updates are preferable from the execution speed point of view,
as simulations have a practical wall-time limit of 24hrs, the amount of time
it would take to run a single in vitro experiment. Synchronous updates
are extremely efficient in terms of execution speed especially as they can
utilise two-sided communication using MPI “send” and “receive” primitives.
Asynchronous parallelisation schemes have to use one-sided communication
primitives such as MPI “put” and “get”, utilising the remote memory access
mechanism, which, although slower, allows for the cell state to be asked for or
provided on demand, without the need to wait on some eventual update [16].

Finally, it is important to note that according to [17], for relatively slow
changing stochastic CA models, the expected variance in outputs between
synchronous and asynchronous update methods would be small. This results
from the fact that large-scale, low-probability models do not have too many
cell state updates in each iteration, which in turn limits the number of cases
where overlapping neighbourhoods are updated.

3. CA Model for Coated Drug Formulations

Following the notation from Section 2.1, each of the transition functions
is applied to an alphabet of CA states:

A = {PCOAT , PCORE, PWCOAT , PWCORE, B,D} (4)

where PCOAT , PWCOAT , PCORE and PWCORE denote the coating layers
and core polymers, and their wetted state, respectively. B represents buffer
(the solvent) cells and D drug molecules (the solute). Table 1 outlines the
behavioural characteristics of each state. The rules affecting each cell type
can be described using a formal notation:

• Erosion: Polymer lifetime of a given cell x (l(x)) decreases linearly
with time according to the following function: fe(x) : {l(x) → l(x) −
t | ∀x,A(x) ∈ {PCOAT , PWCOAT , PCORE, PWCORE}, l(x) ∈ R+}

• Diffusion: The amount of drug present in cell xa (d(xa)) partially
transitions to a neighbouring cell xb with probability pdiff : fdiff (xa, xb) :

{d(xa, xb)
pdiff−−−→ d(xa)−∆d, d(xb)+∆d | ∀xa, A(xa) ∈ {D},∀xb, A(xb) ∈

U(xa), d(x) ∈ N+,∆d ∈ N+}
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Table 1: Cell types and rules of behaviour for the examined model

Cell type Behaviour description

Buffer (B) Acts as a perfect sink for drug dissolution; Rules: diffu-
sion; dissolution.

Coating polymer
(PCOAT )

Protective coating layer. Upon water penetration erodes
into (PWCOAT ); Rules: erosion; Initial state: assigned
random lifetime using Erlang distribution.

Core polymer
(PCORE)

Binds drug in the solid phase. Upon water penetration
erodes into (PWCORE); Rules: erosion.

Wet coating poly-
mer (PWCOAT )

Coating layer with some water penetration through the
polymeric chains, allowing drug to diffuse. Applicable
rules: diffusion.

Wet core poly-
mer (PWCORE)

Result of core erosion allowing drug diffusion through
relaxed chains; Rules: erosion; diffusion; swelling.

Drug packet (D) Agent, initially dispersed in core polymer cells. Each
cell can hold a maximum (saturation) amount of drug
“packets”. Initial distribution of packets throughout the
sphere is determined using MC methods.

• Swelling: The amount of polymer present in cell is distributed in a
similar fashion, using probability ps: fs(xa, xb) : {l(xa, xb)

ps−→ l(xa) −
∆l, l(xb)+∆l | ∀xa, A(xa) ∈ {PWCORE},∀xb ∈ U(xa), A(xb) ∈ {PCOAT ,
PCORE, B}, l(x) ∈ R+,∆l ∈ R+}

• Dissolution: Finally, the process of partial or total drug dissolution is
described as the reduction in drug molecule count of a given cell once
it transitions to solvent state: fdiss(x) : {d(x)

pd−→ d(x)− n | ∀x,A(x) ∈
{B}, n ≤ d(x), d(x) ∈ N+, n ∈ N+}

Multiple rule combinations can be superimposed (e.g. f(x) = fe(fdiff (fs(x))))
to fully define a cell behaviour during a single iteration if the given cell state
satisfies all the alphabet preconditions of the rules given in Equation 4.

3.1. Analytical measures of release and model dynamics

The dynamics of the resulting structural changes are primarily observed
using model visualisation, which will highlight differences in key moments.
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However, in addition to this it is of interest to examine a more formalised
analytical measure of the impact that different update algorithms have on
model dynamics over time. When it comes to measuring these in CA systems,
several key indicators have been used, such as Hamming distance or Lyapunov
exponents [2]. In a system of this complexity, where the cell state transitions
are not directly caused by isolated changes in the neighbourhood, but instead
follow probabilistic dependencies on the neighbourhood as a whole, as well
as having internal state degradation, the former metric was considered to be
more readily applicable.

We calculate the Hamming distance as the total number of symbols from
A different across the entire model space between current and initial time
(〈H〉(t) =

∑
a(x), x ∈ G, where a(x) = 1 if A(x, t) 6= A(x, 0), 0 otherwise).

We disregard the internal changes of the cell not directly caused by the change
in neighbourhood, such as state degradation over time as these proceed at the
same rate irrespective of the update algorithm used, and cause a corresponding
symbol change in roughly the same time interval (depending on whether the
cell was visited in every iteration). Thus, the number of symbol changes over
time provide a plausible overview of the model dynamics.

For describing relationship between dominant release kinetics within the
modelled device, we make use of the Peppas power-law [14]. The Peppas
n-factor is used to describe the drug release mechanism as predominately
erosion or swelling controlled. It has become the standard method of analysis
of any pharmaceutical device, used to estimate the linearity of release for
different drug fractions. Even though it cannot fully explain all swellable
systems of interest, it has proved very useful in the investigation of complex
formulations in the absence of adequate experimental data [11]. Information
about the appropriate value of n is needed for adequate classification of a
given system.

Values of n are obtained from resulting simulated release curves, using
linear regression methods, (the slope of the log-log line, of cumulative release
against elapsed time), for the period during which the majority of the drug
dissolution occurs.

4. Experimental Results

For each of the described update mechanisms, simulations investigated
the following:

• The shape of the release curve during a 24hr period
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Figure 1: Simulated 24hr period for different update methods applied. Left - Drug release
curves (blue - release fraction for appropriate update mechanism, gray - synchronous
reference); Right - dissolution front changes over time (green - swelling front, blue - erosion
front, black - gel layer thickness)
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Figure 2: Left - modelled device schematics; Right - An example experimental vs.
simulated results for the case of synchronous updates (experimental data provided by
Sigmoid Pharma Ltd.)

• The radii of two main reaction fronts: the swelling and the erosion front

• Visualisation of the device composite structure changes, along with its
numerical quantification using Hamming distances

• Key release indicators in three characteristic release scenarios.

In Figure 1 we show the results for synchronous updates, (used as a basis
for relative comparison with all subsequent ACA methods). The presented
data are considered stable, as variations between different runs of the same
parameter set were negligible. Comparing with random order updates, (Figure
1b), we find a good match, with negligible release curve difference, (indicating
that the methods are effectively interchangeable e.g. for the case where
synchronous update is deemed more appropriate, (for specified structure [6]).
By comparing the curves analytically using the f2 factor, defined in [13] and
commonly used to establish the similarity of two drug dissolution profiles
(with f2 ∈ (50, 100) representing difference of ≤ 10%), we obtain results
ranging from 50.93 (10% fit) for random independent to 77.83 (3% fit) for
random order type of updates. However, random order, random cyclic and
fixed cyclic independent have very similar f2 values (3%-4%) so considering
release curves alone is not enough to establish a clear advantage of one over
the other.

Figure 1 shows possible alternatives to the asynchronous random order
method. Random independent selection (Figure 1d) produces shifted release
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Figure 3: Speed of symbol changes over time (Hamming distance).

curves, although the radii behaviour is similar, in the sense that polymer
transitions occur at the same rate. The features which give rise to this
discrepancy can be observed in (Figure 4d), where large drug clusters (black
diamonds) occur as a consequence of some cells being updated more often
than others. Random cyclic updating, on the other hand, produces release
curves which are qualitatively similar to those expected, (Figures 1(c1), 1(c2)
and Figure 4(c)), although radii decrease dynamics are much slower. Finally,
Figures 1(e1), 1(e2) and Figure 4(e), show results obtained using sequential
matrix sweeps. This approach is not recommended due to the significant bias,
which can be observed in the visualisation, leading to highly unrealistic radii
dynamics.

Figure 3 shows the Hamming distance for different asynchronous methods
and their comparison with synchronous updates. The first section of the
curve represents the speed of decay of the outer coating, which as noted in
Section 3.1, generally occurs at the same speed irrespective of the method.
The second, larger, portion of the curve shows dynamics primarily caused
by the decay of the core. In line with the release results presented in Figure
1, the asynchronous mechanisms are displaying slower release dynamics in
greater or lesser extent. While random order is again the most favourable,
fixed cyclic and random cyclic algorithms show close matches as well. The
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Figure 4: Model visualisation during 10, 30, 150, 400 and 700 minute interval, respectively:
(a) synchronous; (b) random order; (c) random cyclic; (d) random independent; (e) fixed
cyclic sequential.

outlier is the random independent method, discussed previously, which may
not traverse all cells depending on the random sequence generated, and thus
tends to model a slower rate of change. Interesting to note is that all update
mechanisms show qualitatively the same profile of structural changes, with
only relative speed being affected. Not unexpectedly, since the stochastic
model itself changes slowly, with usual probability values used much smaller
than 1, and changes being highly symmetrical, due to the spherical device
geometry. Results obtained are less anomalous than would be expected in
general CA to ACA transition [9], (in agreement with theory, [17]). The
validity of the synchronous updates when compared against experimental data
is shown in Figure 2, with the similarity factor falling within the standard
variability range (< 6%).

Next, we examine the overall simulation length using different ACA mech-
anisms in a thread-level parallelisation context. The best results are obtained
for random cyclic variants, an optimal choice when best simulation perfor-
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Figure 5: Comparison of parallel and total simulation times for different synchronous and
asynchronous update mechanisms. Left - comparison of different ACA update methods
using thread-level parallelism. Right - comparison of synchronous update mechanism for
thread-level (blue) vs. process-level (red).

mance is desired, as opposed to preservation of state update realism, (see
earlier comments). The poorest performance is that of random order algo-
rithms which are not able to leverage the processor cache due to constantly
changing order of memory access. However, these offer the best simulation
realism with respect to process represented, so the advantages and disad-
vantages should be weighed in light of simulation objectives when making
a decision. Figure 5 shows an example performance profile for synchronous
updates when switching from a thread-level to a process-level parallelisation
model [6]. Although synchronous updates do not perform at the same level as
asynchronous ones, the former do not have a parallelisation limit, and thus,
ultimately, can be scaled to any number of nodes allowed by the model size.

Finally, as the initial dataset presented an image of the model performance
for an isolated scenario, we also tested the adequacy of different asynchronous
methods in describing three distinct release scenarios: (i) erosion dominated
release; (ii) swelling dominated release and (iii) equilibrium between the two
- which should lead to a constant gel layer determining the shape of the
release profile. We compare n and f2 factors across all methods (Figure 6).
Figure 6 (left panel) shows side-by-side comparison of n for synchronous,
fixed and random cyclic, random independent and random order updates.
We observe that asynchronous variants exhibit varied dynamics across a more
erosion-driven range (n > 0.85). For devices with constant gel layer, random
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Figure 6: Comparison of release dynamics for different update methods (Peppas’ n factor),
(left), and for different dissolution dynamics (f2 factor - higher is better), (right)

independent and random order provide the closest match to synchronous
updates, in line with visual observations from Figure 2. Results are similar
for highly swellable devices, while performance of random order updates is
somewhat poorer for predominantly erodible ones. This highlights the fact
that erosion is expected to be faster as the single-iteration random updates
across the matrix tend to exacerbate the effect of rules which deal with decay
in polymer state, as transitions to wet states are immediate.

The f2 factor was again employed to assess the quantitative similarity
between the release curves obtained for each scenario. Looking at Figure 6
(right panel), we can observe that, while scenarios with constant gel layer
thickness are adequately described by all methods, scenarios with more
extreme behaviour give rise to much wider variability in the resulting release
curves.

5. Conclusions

Advantages and disadvantages of CA and ACA update methods, important
for modelling of DDS were investigated using different metrics. While all
methods have merit, findings show that performance can be affected by
update rules, with one of the most robust solution found for random order
asynchronous. Model visualisation, augmented by analytical measures of
the change dynamics, provided valuable insight on structural behaviour and
dissolution mechanisms, which is not readily apparent from working with
standard release curve data alone. We tested the applicability of ACA for
three extreme cases. The findings are useful for future modelling scenarios
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both where it may be necessary to switch from one update mechanism to
another for models describing a wide variety of drug-polymer interactions,
as well as to accommodate large-scale optimisation. The CA pharmaceutical
models presented here mark some progress toward these goals.
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