

Stimuli-responsive materials as sensors and actuators in microfluidic devices

Larisa Florea

Dublin City University

12/05/2014

1. Introduction

- > stimuli-responsive materials
- > optical sensors and actuators in microfluidics
- 2. Polyaniline functionalised micro-fluidic channels for:
 - PH sensing
 - study mixing
- **3. Spiropyran functionalised micro-capillaries for:**
 - ➤ solvent sensing
 - ➤ metal ion sensing
- 4. Photo-actuators for:
 - > micro-valve applications

OÉ Gaillimh

Stimuli-responsive Materials

Materials whose characteristics can be changed using an external stimulus

OÉ Gaillimh

Optical Sensors in Microfluidics

OÉ Gaillimh

NUI Galway

Optical Sensors

UCC

Microfluidics

DC

2. Polyaniline functionalised micro-capillaries and micro-fluidic channels

- > pH sensing
- > ammonia sensing
- diffusion study

0

Polyaniline Nanofibres

OÉ Gaillimh

NUI Galway

- low cost, easy synthesis
- reversible acid-base doping-dedoping chemistry
- environmental stability

J.X. Huang, S. Viril, B.H. Weller, R.B. Kaner / J.Am.Chem.Soc. 125 (2003), 314-315

Polyaniline-coated micro-capillaries for ammonia sensing

Micro-capillary functionalisation OH HO OH HO OH HO-OH HO SciVerse Scopus OH HO SciVerse SciTopics OH HO Scientific web content SciVerse Applications Find the data you oxidant need with one click H₂N⁻ SciVerse Hub H₂Noxidant NH₂ oxidant SciVerse

L. Florea, D. Diamond and F. Benito-Lopez, Anal. Chim. Acta, 2013, 759, 1-7

vailable online at www.sciencedirect.com SciVerse ScienceDirect

OÉ Gaillimh

Polyaniline-coated micro-capillaries for ammonia sensing

OÉ Gaillimh

NUI Galway

DC

UCC

Doping dedoping properties

OÉ Gaillimh

NUI Galway

é 🕯 🛱

L. Florea, D. Diamond and F. Benito-Lopez, Anal. Chim. Acta, 2013, 759, 1-7

DC

Ammonia sensing

<u>OÉ</u> Gaillimh

NUI Galway

na na na UCD

L. Florea, D. Diamond and F. Benito-Lopez, Anal. Chim. Acta, 2013, 759, 1-7

ST

DC

From micro-capillaries to micro-channels

Micro-chip fabrication

✓ PDMS is poured onto master mold, cured at 80°C for 1 h and removed from mold.

✓ PDMS and glass slide are treated with oxygen plasma.

 \checkmark PDMS and glass slide are brought together.

OÉ Gaillimh

<u>NUI Ga</u>lway

L. Yu, C.M. Li, Y. Liu et al. / Lab Chip, 9 (2009), 1243-1247.

Micro-channels

500µm x 1000µm

1000µm x 100µm

45µm x 50µm

ST

Fast Response

L. Florea, C. Fay, E. Lahiff, T. Phelan, N. E. O'Connor, B. Corcoran, D. Diamond and F. Benito-Lopez, *Lab Chip*, 2013, 13, 1079-1085.

UCC

DC

OÉ Gaillimh

pH sensing in continous flow

Dedoping process

L. Florea, C. Fay, E. Lahiff, T. Phelan, N. E. O'Connor, B. Corcoran, D. Diamond and F. Benito-Lopez, *Lab Chip*, 2013, 13, 1079-1085.

<mark>OÉ Gaillimh</mark> <u>NUI Gal</u>way

ST

DP

pH sensing in continous flow

L. Florea, C. Fay, E. Lahiff, T. Phelan, N. E. O'Connor, B. Corcoran, D. Diamond and F. Benito-Lopez, *Lab Chip*, 2013, 13, 1079-1085.

OÉ Gaillimh NUI Galway

Dynamic pH sensing

OÉ Gaillimh

NUI Galway

NaOH 10⁻² M

DP

UCC

HCI 10⁻² M

Sti

pH gradient sensing^{iew Article Online}

L. Florea, C. Fay, E. Lahiff, T. Phelan, N. E. O'Connor, B. Corcoran, D. Diamond and F. Benito-Lopez, *Lab Chip*, 2013, 13, 1079-1085.

DP

OÉ Gaillimh

NUI Galway

ê 🛍 🛍

ST

D

pH gradient sensing

L. Florea, C. Fay, E. Lahiff, T. Phelan, N. E. O'Connor, B. Corcoran, D. Diamond and F. Benito-Lopez, *Lab Chip*, 2013, 13, 1079-1085.

OÉ Gaillimh

NUI Galway

1 🖄 🛍

Study of diffusion process

Study of diffusion process

OÉ Gaillimh

NUI Galway

DC

UCC

- Self-diagnostic for continuous flow device
- Simple and fast photometric method to measure pH
- Replace the glass layer with glass-ITO -> electro-chemical sensing of redox active species

2. Spiropyran polymeric brushes functionalised microcapillaries

- > ON/OFF sensing
- ➤ solvent sensing
- ➤ metal ion sensing

OÉ Gaillimh

Spiropyran

A : Spiropyran SP (closed, colorless)

UCC

B : Merocyanine MC (open, colored)

é 🕯 🛍

I

OÉ Gaillimh

OÉ Gaillimh

NUI Galway

Macromolecular Materials and Engineering

Special Issue: Advances in Actively Moving Polymers Guest-edited by Andreas Lendlein

12/2012

WILEY-VCH

L. Florea, D. Diamond and F. Benito-Lopez, *Macromolecular Materials and Engineering*, 2012, 297, 1148-1159.

Our Approach

- spiropyran molecule

- polymer brushes
- high loading of spiropyran molecule
- 3D arrangement

Micro-capillary : Convenient platform for rapid analysis and detection

Advantages

act as a mechanical support for the optically sensitive layer

OÉ Gaillimh

- represents an optical waveguide structure
- suitable for real-time continuous flow analysis
- requires very small volume of analyte

Spiropyran polymeric brushes in micro-capillaries

Silanisation

Attachment of the catalyst

OÉ Gaillimh

O Spiropyran polymeric brushes in micro-capillaries

OÉ Gaillimh

NUI Galway

DC

Characterisation

OÉ Gaillimh NUI Galway

L. Florea, A. Hennart, D. Diamond and F. Benito-Lopez, Sens. Actuators B: Chem., 2012, 175, 92-99.

DC

Solvatochromic Proprieties

The colour of the MC form depends on the difference in polarity between the photo-excited MC form and the conjugated zwitterionic ground state

The absorption band of MC form undergoes a hypsochromic (blue) shift in solvents of increasing polarity (negatively solvatochromism).

OÉ Gaillimh NUI Galway

U.I. Minkin / Chem. Reviews,104 (2004) 2751-2776.

Solvatochromic Proprieties

> In solution

 $\mathbf{\dot{o}}$

> Polymeric brushes

STI

Solvatochromic Proprieties

OÉ Gaillimh

NUI Galway

L. Florea, A. McKeon, D. Diamond and F. Benito-Lopez, Langmuir, 2013, 29, 2790-2797.

UCC

DC

Metal ions sensing, binding and releasing

OÉ Gaillimh NUI Galway

Metal ions sensing binding and releasing

I. Solution studies

I. Solution studies

St

De

Metal ions sensing, binding and releasing

OÉ Gaillimh

NUI Galway

BUCC

Metal ions sensing binding and releasing

II. Capillary coatings

OÉ Gaillimh NUI Galway

Metal ions sensing binding and releasing II. Capillary coatings

OÉ Gaillimh

NUI Galway

-

Metal ions binding and releasing

D

Quantitative binding

OÉ Gaillimh

- Self-diagnostic for continuous flow device
- Solvent detection and divalent metal ion detection in micro-capillaries
- Sensing behaviour can be switched on/off remotely using light

4. Photo-actuators for micro-valve applications in microfluidics

OÉ Gaillimh

NUI Galway

DC

UCC

Overlapsic Series and An American Series and Series an

OÉ Gaillimh

NUI Galway

[1] Sugiura et al., Sens. Act. A, 140 (2007) 176–184

DC

STI

Spiropyran –pNIPAAM photo-actuators

• Size: 120-170 µm [1]

- Shrinking: to 68% of initial size after 120 s
- Maximum shrinking: to 52 % of initial size [1]
- Necessary time for reswelling: > one hour

Drawbacks

OÉ Gaillimh

NUI Galway

- Gels are soaked in 0.5 mM HCl overnight
- Operating only in acidic environment
- Suitable for single-use only

Spiropyran a = 1

NIPAAm b = 100

MBAA c = 2

[1] Sugiura et al., Sens. Act. A, 140 (2007) 176–184

i Self-protonating hydrogels

DP

OÉ Gaillimh

NUI Galway

B. Ziolkowski, L. Florea, J. Theobald, F. Benito-Lopez and D. Diamond, Soft Matter, 2013, 9, 8754-8760.

Photo-polymerised in circular PDMS moulds

OÉ Gaillimh

Optimization of hydrogel composition

View Article Qr

Shrinking/Reswelling Behaviour

 $\mathbf{\dot{o}}$

D

sample	20 [min] (Vis. light)	std dev	60 [min] (in darkness)	std dev
poly(NIPAM) blank	87.85 %	1.18	97.44 %	1.60
1 % AA, 1 % BSP-A	67.33 %	1.85	100.45 %	0.64
2 % AA, 1 % BSP-A	59.37 %	4.26	96.48 %	1.34
5 % AA, 1 % BSP-A	49.10 %	4.73	97.35 %	1.93
2 % AA, 2 % BSP-A	61.31 %	5.20	83.69 %	1.27
5 % AA, 2% BSP-A	45.50 %	5.33	82.69 %	3.33
5 % AA, 3 % BSP-A	77.22 %	1.12	76.44 %	1.46

OÉ Gaillimh

NUI Galway

n n n

B. Ziolkowski, L. Florea, J. Theobald, F. Benito-Lopez and D. Diamond, Soft Matter, 2013, 9, 8754-8760.

O Reproducible actuation

- DI water
- No external proton source

CC

OÉ Gaillimh

NUI Galway

Ī

DC

• Comparison by etween with 5-1 and 0-1 hydrogels

OÉ Gaillimh

NUI Galway

B. Ziolkowski, L. Florea, J. Theobald, F. Benito-Lopez and D. Diamond, Soft Matter, 2013, 9, 8754-8760.

- 5-1 Hydrogel
- poly(ethylene glycol) $M_w = 2000 \text{ g/mol}$ $M_w = 20000 \text{ g/mol}$

		Blank gel	2k gel	20k gel
AA	[mol %]	5	5	5
BSP	[mol %]	1	1	1
MBIS	[mol %]	3	3	3
PBPO	[mol %]	1	1	:1
NIPAM	[mg]	200	200	200
PEG 2k	[mg]	2	400	1
PEG 20k	[mg]		1	200
Solvent	[µL]	500	500	500

OÉ Gaillimh

NUI Galway

Blank hydrogel

20k hydrogel

STI

DC

CC

OÉ Gaillimh NUI Galway

Oracle Shrinking/Reswelling Behaviour

DC

CU

OÉ Gaillimh

NUI Galway

Į.

Swelling and protonation kinetics

0

OÉ Gaillimh

- Self-protonating hydrogels
- Capable of performing in DI water and neutral pH solutions
- Reproducible photo-actuation
- Porous hydrogels for improved reswelling kinetics

\checkmark Novel sensors and actuators

✓ Advantages of integrating stimuli-responsive materials and fluidic functionalities at the microscale

✓ Nanostructured materials ensure short diffusion-paths and fast response times.

- Jannick Theobald
- Dr. Bartosz Ziółkowski
- Prof. Dermot Diamond
- Adaptive Sensors Group
- Insight SFI award

Thank you!

 $\mathbf{\dot{o}}$

UCC

