

ESR2. Synthesis and use of novel functionalised materials

Larisa Florea

Dublin City University

OrgBIO kick-off meeting

April 2014

Host Institution : Dublin City University

PhD Student Alexandru Tudor Recruited: January 2014

Prof. Dermot Diamond Supervisor

Host Institution

OrgBIO - WP1

WP 1: Materials, Processes and Technologies for organic bioelectronics > WP2, WP3, WP4

Main Objective

 Design, synthesis, development and deposition of materials for organic bioelectronics.

This includes: synthesis and use of novel functionalised materials, synthesis and supply of new polymer materials, organic semiconductor based on solutions, nanomaterials for production of nanodevices with a diagnostic role. Compatibility with devices and large scale manufacturing techniques will be considered.

Task 1A. Novel organic materials and polymers (POLYMAT, DCU, UNIBA)

- Testing and integration of light activated polymer valves (DCU).
- Development of nanostructured conducting polymers and nanocomposites (POLYMAT, DCU).
- Development and provision of biocompatible organic ionogels (DCU).

time (s)

more hydrophilic

Linear photo-actuator =

Monomeric Ionic Liquid =

Linear photo-actuator =

Crosslinker = —— (PPO 800)

<u>Advantages</u>

- Ever-present liquid phase
- Enhanced swelling/shrinking
- Improved mechanical properties

Conductive Matrix

 Incorporation of other conductive materials (conductive polymers)

2. Development of nanostructured conducting polymers and nanocomposites (POLYMAT, DCU).

3. Development of biocompatible organic ionogels

Collaboration with Prof. R. M. Owens and Prof. G. Malliaras

- ➤ Previously demonstrated the application of ILs as electrolytes for the development of OECTs for sensing glucose [1] and lactic acid [2].
- ➤ IL incorporation into a polymeric matrix (an ionogel) to achieve a solid-state electrolyte [2].
- Synthesis of biocompatible hydrated choline ionic liquids [3].
 - [1] S. Y. Yang, F. Cicoira, R. Byrne, F. Benito-Lopez, D. Diamond, R. M. Owens and G. G. Malliaras, Chem. Commun., 2010, 46, 7972–7974.
 - [2] D. Khodagholy, V. F. Curto, K. J. Fraser, M. Gurfinkel, R. Byrne, D. Diamond, G. G. Malliaras, F. Benito-Lopez and R. M. Owens, J. Mater. Chem., 2012, 22, 4440–4443.
 - [3] Curto, V. F., Scheuermann, S., Owens, R. M., Ranganathan, V., MacFarlane, D. R., Benito-Lopez, F., & Diamond, D. PCCP, 2014, 16, 1841-1849.

Acknowledgements

- Alexandru Tudor
- Prof. Dermot Diamond
- Adaptive Sensors Group
- Marie Curie ITN FP7 OrgBIO project

Thank you!

