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Abstract 
 

We show that the morphology, 

defect and alignment of vertically 

one dimensional (1D) ZnO nanorod (NR) 

arrays grown using an aqueous solution 

method could be effectively controlled by 

simply varying the hexamine concentration 

in the growth solution. Lower amine 

concentration (0.2 M) resulted in randomly 

aligned ZnO NRs with non uniform 

diameters.  Increasing the amine 

concentration (to 1.0 M) yielded well 

aligned, prismatic ZnO NR arrays with 

uniform NR diameters of 80 nm along the NR length. 1D growth ceases on further increasing the 

amine concentration (> 1M) and this favors the formation of 2

(CA) measurements show increases in CA from 83º to 145º with increases in amine concentrations 

due to improvement in alignment of the ZnO NR array. Low temperature (10 K) photoluminescence 

studies revealed that increases in amine concentration (0.2 to 1M) increases the optically active defect 

concentration and influences both free and bound exciton emissions from ZnO NRs. 

revealed that the amine acts both as a growth stabilizer and a surfactant and th

release for ZnO formation and caps non

grown along the [002] direction.  The competition between the ‘stabilizer’ and ‘surfactant’ roles by the 

amine facilitates the morphology, alignment and defect control of 1D ZnO NR array. At low amine 

concentrations, the role as surfactant dominates over that of stabilizer which does not favor uniform 

growth due to the slow release of Zn to form ZnO. On increasing the amine concentration,

and amine capping aspects balance and this results in uniform and aligned growth of NR arrays. At the 

higher amine concentrations, the sudden release of Zn generates an overshoot effect, which dominates 

over the surfactant capping aspect, thus 
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uniform NR diameters of 80 nm along the NR length. 1D growth ceases on further increasing the 

D platelet like structures. Contact angle 

(CA) measurements show increases in CA from 83º to 145º with increases in amine concentrations 

due to improvement in alignment of the ZnO NR array. Low temperature (10 K) photoluminescence 

reases in amine concentration (0.2 to 1M) increases the optically active defect 

concentration and influences both free and bound exciton emissions from ZnO NRs. Investigations 
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grown along the [002] direction.  The competition between the ‘stabilizer’ and ‘surfactant’ roles by the 

gy, alignment and defect control of 1D ZnO NR array. At low amine 

concentrations, the role as surfactant dominates over that of stabilizer which does not favor uniform 

growth due to the slow release of Zn to form ZnO. On increasing the amine concentration, Zn release 

and amine capping aspects balance and this results in uniform and aligned growth of NR arrays. At the 

higher amine concentrations, the sudden release of Zn generates an overshoot effect, which dominates 

favoring the growth of irregular micro platelets. 

Page 1 of 30

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Understanding the role of amine in the growth of 1D ZnO NR arrays holds great promise for tailoring 

ZnO NR functionalities for various potential applications.  
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Abstract 

We show that the morphology, defect and alignment of vertically aligned one dimensional (1D) ZnO 

nanorod (NR) arrays grown using an aqueous solution method could be effectively controlled by 

simply varying the hexamine concentration in the growth solution. Lower amine concentration (0.2 

M) resulted in randomly aligned ZnO NRs with non-uniform diameters.  Increasing the amine 

concentration (to 1.0 M) yielded well aligned, prismatic ZnO NR arrays with uniform NR diameters 

of 80 nm along the NR length. 1D growth ceases on further increasing the amine concentration (> 

1M) and this favors the formation of 2D platelet like structures. Contact angle (CA) measurements 

show an increase in CA from 83º to 145º with an increase in amine concentrations due to 

improvement in alignment of the ZnO NR array. Low temperature (10 K) photoluminescence studies 

revealed that increase in amine concentration (0.2 to 2M) increases the optically active defect 

concentration and influences both free and bound exciton emissions from ZnO NRs.  Investigations 

revealed that the amine acts both as a growth stabilizer and a surfactant and thus controls both Zn 

release for ZnO formation and caps non-polar planes, the latter function facilitating 1D anisotropic 

grown along the [002] direction.  The competition between the ‘stabilizer’ and ‘surfactant’ roles by 

the amine facilitates the morphology, alignment and defect control of 1D ZnO NR array. At low 
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amine concentrations, the role as surfactant dominates over that of stabilizer which does not favor 

uniform growth due to the slow release of Zn to form ZnO. On increasing the amine concentration, 

Zn release and amine capping aspects were balanced and this result in uniform and aligned growth of 

NR arrays. At the higher amine concentrations, the sudden release of Zn generates an overshoot 

effect, which dominates over the surfactant capping aspect, thus favoring the growth of irregular 

micro platelets.  1D, well aligned, prismatic, ZnO NR arrays grown at an amine concentration of 1M 

show higher photocatalytic degradation activity for the degradation of Methylene Blue dye solution 

under UV irradiation owing to both the high surface to volume ratio of the arrays and increased 

charge carrier density due to Zn interstitial defects. Zinc interstitials are shallow donors readily 

supply electrons to conduction band which could buildup space charge near to the nanocatalayst 

surface.  The occurrence of band bending associated with the interfacial electric field in the space 

charge region could facilitate the separation of photogenerated electrons and holes and thus enhances 

the photocatalytic performance. Understanding the role of amine in the growth of 1D ZnO NR arrays 

holds great promise for tailoring ZnO NR functionalities for various potential applications 

 

Introduction 

ZnO is an environmentally friendly and nontoxic II-VI semiconducting material possessing a high 

exciton binding energy of 60meV and a wide band gap of ~ 3.3eV. Recently, researchers have shown 

tremendous interest in 1D ZnO nano arrays due to their remarkable physical and chemical properties 

[1].  1D ZnO nanostructural arrays have been extensively studied due to their potential applications 

in nanodevices such as sensors [2], solar cells [3], light emitting diodes [4], field effect transistors [5] 

and field emitters [6].These nanostructures have large surface area, high aspect ratio, and show 

quantum confinement and high electron mobility compared to nanoparticle thin films.  Synthesis of 

well aligned 1D nanostructured arrays is of great interest because it is an important step towards 

realizing nano-optoelectronics devices, which include light emitting diodes and laser diodes. Many 

techniques are used to produce vertically aligned 1D ZnO nanostructural arrays, including vapour 

phase transport [7], metal organic vapour phase transport [8], thermal evaporation [9], pulsed laser 

deposition [10], spray pyrolysis[3], electro chemical deposition [11], hydrothermal [12] and aqueous  

solution technique [13]. Among the many methods reported for the growth of ZnO nanostructures, 

the aqueous solution technique is simple, cost effective and nanostructures can be obtained at lower 

growth temperature, thereby facilitating growth on a wide range of possible substrates with a reduced 

cost in terms of process steps.  As mentioned above, morphology and defect control of ZnO 
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nanoarrays are important for their applications in optoelectronics. Very few authors have used 

hexamine as a surfactant along with growth precursors to control the morphology of ZnO 

nanostructures in aqueous solution growth. Control of defects in ZnO nanostructures is also critical 

for their applications in optoelectronics.  Jingbiao Cui et al.,[11] has reported no role due to amine in 

the growth solution for the growth of ZnO structures via electrodeposition. Other reports show that 

defect emission from ZnO nanostructures may be controlled by plasma treatment of nanostructures 

[14]. Besides plasma treatment, annealing processes in various gas ambients (i.e., O2, H2, N2, etc.) 

conditions is also useful for controlling the defect concentration in nanorods [15, 16]. Control on the 

defect state play a major role on tune the optoelectronic properties of nanostructures. Rapid progress 

in nanotechnology promises few semiconductors as a potential tool on the environmental 

remediation applications. Semiconductors such as titanium dioxide (TiO2), zinc oxide (ZnO), iron 

oxide (Fe2O3), tungsten oxide (WO3) and cadmium sulphide (CdS) have became popular as a 

photocatalyst for degradation of organic pollutance in water and air. Recently the ZnO based 

nanostructures has attracted much attention as a photocatalysis on removing the organic dye 

pollutance from the water. Although the photocatalytic activity of the ZnO nanostructures toward the 

organic molecules have been widely documented, studies on their renewable catalytic properties are 

rarely performed and presumably because of the poor recovery of the catalyst for multiple use [17, 

18, 19]. Recovery of the ZnO powders after photocatalytic water treatment is tricky/complex but a 

necessity. Due to the cost of recovery operations, possible powder loss and to avoid the catalysis 

presence in the degraded solution after purification, it is proposed that instead of ZnO nano powders, 

ZnO nanostructural arrayed thin films may be used. For water treatment applications, ZnO 

nanoarrays might be interesting as dispersion of the catalyst and the catalyst loss will be avoided.  

 

In this work, we highlight the effects of varying hexamine concentration in the precursor-solution on 

the growth, morphology and alignment control of ZnO nanorod arrays. We show that increase in 

hexamine concentration drastically affects the morphology and defect content of ZnO nanostructures. 

On increasing the hexamine concentration, the aspect ratio of ZnO nanorods decreases along while 

the optically active defect concentration increases, associated with an increased release rate of Zn 

ions in growth solution. We demonstrate that well aligned ZnO NR arrays show higher 

photocatalytic activity. And we propose that amine concentration not only plays an important role on 

the growth and alignment of the 1D NR arrays, but it also plays a role in the control of their the 

defect states and improved the photocatalytic efficiency. 
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Materials and Methods   

ZnO nanostructures were synthesized by a low temperature aqueous solution growth method. A ZnO 

buffer layer of ~100 nm thickness was coated on glass substrates by dip coating method [20]. For the 

growth solution, zinc nitrate hexahydrade Zn(NO3)2.6H2O and hexamine (HMTA) (C6H12N4)  were 

dissolved in double distilled water and stirred continuously for 15 min in separate beakers. HMTA 

solution was added drop wise to Zn(NO3)2 solution and stirred continuously for 20 min to form a 

single phase solution. The buffer layer coated substrates were immersed in the growth solution and 

maintained at 90°C for 4 hours. After completing the growth process, the substrates with deposited 

nanostructures were cleaned twice, with distilled water and ethanol, and baked at 150°C. The molar 

ratio between the hexamine and zinc nitrate hexahydrade was varied with the ratios, (0.2:1), (0.5:1), 

(0.75:1), (1:1), (1.5:1) and (2:1). X-ray diffraction was used to investigate the crystalline phase of 

ZnO nanostructures (Bruker Advanced D8). Plane and cross-sectional images of ZnO nanostructural 

arrays were obtained using a field-emission scanning electron microscopy (FESEM). The 

photoluminescence (PL) properties of the synthesised nanostructural arrays were investigated by 

generating 325-nm line of a HeCd laser operating in the range 80 - 200 mW. The spectra were 

recorded at temperatures in the range 10 K using Janis closed cycle helium cryostats. The 

luminescence was analysed by a SPEX 0.75 m grating spectrometer equipped with a LN2-cooled 

Jobin-Yvon CCD detector for the radiotracer implanted samples, and a Jobin-Yvon iHR320 grating 

spectrometer fitted with an Andor Newton EM-CCD detector cooled to -25°C for the uniaxial stress 

and normal PL measurements. 

Photocatalytic degradation 

The photocatalytic activity of the ZnO NR arrays was evaluated using a 9 W of Hg lamp (ZF-1 UV, 

Philips, China), setup with strongest emission at ~365nm. The amine:Zn ratio controlled ZnO NR 

arrays of dimension 4 cm x 1 cm were immersed in 5 ml of 15 ppm Methylene Blue (MB) dye 

solution in a typical quartz container. Quartz container with samples grown with different amine 

ratios were placed side by side at the same time and irradiated under UV light at a distance of 10 cm 

to minimize heating effects. The catalyst loaded solution was first kept in the dark for 10 minutes to 

achieve an absorption/desorption equilibrium between the catalyst and the MB dye molecules. After 

UV irradiation the substrate was removed and the dye solution was collected and UV-Vis absorption 

analyses were performed using a JASCO V-660 spectrophotometer. After these spectral 

measurements, the substrates were placed back into the solutions for further irradiation for periods of 

20 min (at which time further UV-Vis absorption analyses were performed) for 200 min in total. The 
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concentration of organic dyes was determined by measuring the absorption intensity at the maximum 

absorbance wavelength of the supernatant (for MB = 661 nm). The degradation percentage (η) of the 

solutions is defined as follows [21]. 

100
0

0 ×
−

=
C

CC tη  

Co is the initial dye concentration and Ct the dye concentration after an illumination time t (min). 

 

Result and Discussion 

Figure 1 shows SEM images of the ZnO nanostructures grown using different amine: zinc nitrate 

ratios and the corresponding growth schematic are shown in figure 2. A low amine: Zn concentration 

ratio of (0.2:1) results in randomly aligned ZnO 1D nanostructures (figure 1a, figure 2a). The 

diameter of the nanorods at their base is around 150 - 200 nm and decreased to 30 nm at their top. On 

increasing the hexamine:Zn ratio to (0.5:1), the alignment of  nanorod arrays improved (figure 1b) 

and the diameter was again found to gradually from their base (100 – 150 nm) to the top (30 nm). 

Figure 1c shows the morphology of nanorod arrays grown with amine:Zn ratio of 0.75:1.  At this 

growth condition, the alignment of the nanorod arrays was further improved and the diameters of the 

NRs were nearly constant along their length. By increasing the amine:Zn to 1:1 better control over 

the morphology and alignment of the NRs was achieved (Fig. 1d) and well aligned, homogenously 

distributed and clearly faceted hexagonal NRs with diameters of 80nm were obtained. Further 

increasing the amine:Zn concentration to 1.5:1 resulted in NRs with an inhomogeneous morphology 

and diameters (50-150 nm) as shown in figure 1e. Finally, increasing the amine:Zn concentration to 

2:1 resulted in the formation of two dimensional nanostructures with platelet/disc-like  morphology 

(figure 1f). 

 

Figures 3a, 3b & 3c show the cross sectional views of ZnO nanorod arrays grown at amine:Zn ratios  

of 0.2:1,  1:1 and 1.5:1, respectively. The concentration of amine plays a critical role on the control 

of NR length and the diameter of the nanostructures. On increasing the amine concentration in the 

growth solution, the diameter of the NRs increased along with a decrease in the length of the NRs 

(Table I). Figure 4 shows the XRD patterns from ZnO nanostructures prepared with different 

concentration ratios of amine:Zn. The observed XRD peaks match well with those predicted for 

wurtzite ZnO (JCPDS card 36-1451) in all cases (figure 4a). Figure 4b indicates the presence of 

(100), (002) and (101) peaks from ZnO nanostructures grown on the seed substrate at low amine:Zn 
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(0.2:1) concentrations. The presence of multiple peaks indicates the random alignment of the nano 

structured arrays, consistent with our SEM data. On increasing the amine:Zn concentration, Figures 

4c,d,e,f show that the intensity of the (002) plane reflection  is increasing relative to other peaks 

associated with (100) and (101) planes. This indicates that one dimensional nanostructural growth 

occurs preferentially along the c-axis perpendicular to the substrate.  Thus on increasing the 

amine:Zn up to 1.5:1, the alignment of the ZnO nanorod arrays found to be improved. However, 

further increasing the amine:Zn concentration to 2:1 (fig 4g) leads to a reduction in this alignment 

and the emergence of other XRD peaks, especially one associated with the (100) plane. This result 

shows that the alignment of the nanostructured arrays is strongly influenced by the amine 

concentration in the growth solution.  

 

In order to study the surface wettability behaviour of the ZnO NR arrays grown at different amine 

ratios, the water contact angle was evaluated for the different ZnO arrays, as shown in figure 5. 

Water contact angles from 145° to 36° are obtained for the different amine concentration ratio 

samples. A sample is considered to be hydrophobic when it has a contact angle greater than 90° and 

hydrophilic when its contact angle is less than 90° [22]. Figure 5 shows the graph and images of 

water drops on the surface of the NR arrays grown with different amine concentration ratios. From 

figure 5, it can be observed that the NR arrays grown at the lowest amine ratios have a contact angle 

of 83°. On increasing the amine ratio to 1:1 the hydrophobicity increased up to a maximum contact 

angle of 145°, due to the improvement in NR alignment. At the higher amine concentration ratios the 

contact angle reduces and the sample changed to a hydrophilic behaviour, due to the irregular growth 

of micro platelet type structures.  

 

Figure 6 shows PL spectra obtained for ZnO nanostructural arrays measured at 10 K. It is interesting 

to note that the emission properties of ZnO nanostructured arrays drastically vary with amine 

concentration.  The sample grown at low amine:Zn (0.2:1) concentration ratios show two distinct 

optical emission features (figure 6a).  The emission peak centered at 3.25 eV corresponds to the band 

edge emission and the broad defect emission peak centered at 2.5 eV originates from defects, most 

probably due to oxygen vacancies [23, 24].  On increasing the amine:Zn (0.5:1) concentration (figure 

6b) the defect emission is  suppressed and band edge emission is  shifted to 3.2 eV along with the 

appearance of a blue band emission around 2.9 eV probably associated with Zn interstitials [25]. On 

further increasing the amine:Zn concentration ratio from 0.75:1 to 2:1 the ratio of Zn interstitial 

emission at 2.9 eV to band edge emission at 3.2 eV increases (figure 6c,d,e,f).  The samples grown at 
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1.5:1 and 2:1 amine:Zn concentration ratios also both show the broad defect emission centered at 2.5 

eV.  

 

The photocatalytic activity of the amine:Zn ratio controlled ZnO NR arrays on glass substrates was 

investigated using degradation of MB dye. Time dependent UV irradiation shows that the amine 

ratio controlled ZnO NR arrays are highly active as photocatalysts under UV irradiation. The 

decomposition efficiency of amine ratio controlled ZnO NR arrays, as well as a bare substrate 

sample, on MB is shown in figure 7. The sample without ZnO catalyst, shows a decomposition 

efficiency of 10% of MB dye following UV irradiation for 200 min. In the presence of ZnO NR 

array catalysts and after UV irradiation of 200 min, the morphology and defect controlled ZnO 

nanorod arrays exhibited MB decomposition levels of 80%, 88%, 94%, 95%, 96% and 91% of for 

(0.2:1), (0.5:1), (0.75:1), (1:1), (1.5:1) and (2:1) amine:Zn ratio grown ZnO NRs, respectively. The 

exponential decay profiles and plots of ln(C/C0) versus time suggest that the photodecomposition 

reactions follow a pseudo-first-order rate law [26]. The calculated rate constant for MB 

decomposition using these ZnO NR array catalyst samples are 0.007, 0.0136, 0.0155, 0.0163, 0.0182 

and 0.0144 min
-1

 for (0.2:1), (0.5:1) 0.75:1), (1:1), (1.5:1) and (2:1) amine: Zn ratio grown ZnO NRs, 

respectively. These results show that the lowest degradation rate is seen for the sample grown with a 

(0.2:1) amine:Zn ratio and the sample grown with a (1:1) amine:Zn ratio shows the higher 

degradation rate.  

 

Previous reports show that amine has a role as a stabiliser which controls the formation of Zn 

complexes followed by release of Zn (equations 1 to 4) in the growth solution [27] and it  also 

decomposes to form the formaldehyde and ammonia species (equation 5) upon raising the 

temperature [17]. Reports also show that amine can be an effective surfactant; being a non-polar 

chelating agent it covers the non-polar planes (100) & (110) of ZnO and thus facilitates the growth of 

ZnO nanostructures along the [002] axis [11, 28, 29].  J. Cui et al., reported no role due to amine in 

the growth solution for the growth of ZnO structures via electrodeposition.  However in our case, the 

absence of amine in the growth solution resulted in no formation of ZnO nanostructures and this 

clearly indicates its active role as a stabiliser for the release of Zn.  Table.1 clearly shows the 

increase in pH of the growth solution observed before and after ZnO NR growth.  This may be due to 

the decomposition of amine into formaldehyde and NH3.  The increase in amine decomposition 

increases ammonia concentration thereby increasing the pH of the growth solution. 
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At a low amine:Zn concentration ratio of (0.2:1), a substantial volume of amine decomposes to form 

ammonia compared to the very small fraction left for the release of Zn for the subsequent formation 

of ZnO.  During NR growth, the amine concentration decreases with time due to decomposition and 

thus the rate of Zn release also decreases.  This can be seen from the SEM images shown previously, 

where the diameter of NRs grown in these conditions is ~ 200 nm at their base and decreases to 20 

nm at the tip.  Therefore at lower concentrations, amine behaves a weak stabiliser and only a small 

fraction of amine is left for ZnO formation.  On increasing the amine concentration, a greater fraction 

of amine is available for ZnO formation and its stabiliser role is promoted.  At an amine:Zn 

concentration ratio of 0.75:1 alignment of the NR arrays is found to be improved and the diameters 

of the NRs were nearly constant along the length of the NRs, as shown in figure 1c.  At an amine:Zn 

concentration ratio of  1:1 the role of the amine balances between stabilizer and surfactant, resulting 

in the formation of well aligned, prismatic, NRs with uniform diameters.   With further increases of 

the relative amine concentration, a strong enhancement in the release of Zn in an uncontrolled 

manner leads to the formation of 2D disc-like structures rather than 1D NR morphologies.  In other 

words, the competition between the stabilizer and surfactant roles of the amine dictates the 

morphology and alignment of the ZnO NRs.   

 

Zn(NO3)2 + C6H12N4� [Zn(C6H12N4)]
2+

  + 2NO3
-
    .......…..(1) 

 

[Zn(C6H12N4)]
2+

 +  4OH
-
 ---------- Zn(OH)4

2-
  +  C6H12N4……….(2) 

 

Zn(OH)4
2-

  ----------Zn
2+

 + 4OH
- 
               ………..(3) 

 

Zn
2+

 + 2OH
-
 ------ Zn(OH)2------------ZnO + H2O    ………..(4) 

 

C6H12N4 + 6H2O ↔ 6CH2O + 4NH3               ............. (5) 

 

It is interesting to note, along with morphology and alignment, that the emission properties of ZnO 

nanostructured arrays also vary with their morphology.  Our data provides evidence that the relative 

amine concentration plays a role in controlling the optically active defect concentration in ZnO NRs 

in addition to controlling the NR morphology and alignment. PL analysis revealed that the sample 

grown at a low amine:Zn  concentration ratio had a dominant defect emission peak centered at 2.5 

eV, probably due appearance of a strong green emission is ascribed to the formation of oxygen 
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vacancy defects or antisite defects (OZn). On increasing the amine:Zn concentration ratio, the 

oxygen vacancy defect emission was found to be suppressed and a new defect emission around 2.9 

eV (probably associated with Zn interstitials) emerges accompanied by change in the detailed 

spectral shape of the band edge emission (3.25 eV).   This increase in Zn interstitial defects as a 

function of amine concentration may be attributed to a greater release of Zn in the growth solution 

associated with enhancement of the ‘stabiliser’ role of the amine. The low temperature PL spectrum 

for samples with different amine concentration ratios were shown in the figure 6.  The fitted peak 

position of the FX emission varied from 3.38eV to 3.31 eV as the hexamine concentration was 

increased from (0.2:1) to (1.5:1) ratio. It is possible that the defect density is responsible for the 

increase in carrier concentration on the ZnO nano arrays. Due to the presence of the high defect 

density, the FX emission was totally suppressed in the micro structure arrays grown in high amine 

ratio. The interesting fact is that on controlling the amine ratio in the growth solution, the domination 

of free excitonic emission was varied. As stated previously, the additional low intensity peak at ~ 2.9 

eV has been associated with a transition between a state due to Zn interstials and the valence band 

[25]. This association is consistent with our data because the increased Zn interstitial concentration 

may be due to the increasing Zn release rate with increasing amine concentration in the growth 

solution.  

 

The mechanism behind photocatalytic activity on metal oxides is based on electrons (e-) and holes 

(h+) creation upon irradiating the nanocatalysts.  When the incident photon energy exceeds the band 

gap energy of the nanomaterial, electron-hole pairs are created.  These photoexcited electron-hole 

pairs reach the surface of the nanoparticles and generate reactive oxygen species (ROS) which is 

responsible for degradation of the dye solution [30]. When aqueous ZnO suspension is illuminated 

by UV light the conduction band electrons (e-) and valence band holes (h+) are generated.  Majority 

of the photoexcited electron-hole pairs recombine before reaching to nanocatalyst surface. Surface 

defects play a vital role on the enhancement of photocatalyst activity. Oxygen vacancies in ZnO 

nanoparticles act as a trap states for photogenerated electrons or holes which prevent the 

recombination and enhances the photocatalytic activity [31].  In our case, PL spectra clearly exhibit 

that on increasing the amine ratio, zinc interstitial defects were increased (Figure.6). The influence of 

zinc interstitials in ZnO nanostructures on the photocatalytic performance is not understood sofar. 

Zinc interstitials are shallow donors lie 0.26 eV below the conduction band of ZnO [32-35] readily 

supply electrons to conduction band and increases the carrier concentration at the surface of 

nanostructures. Increase in carrier concentration at the surface could lead the formation of space 

Page 11 of 30

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10 

 

charge region near to the nanocatalayst surface [36]. The space charge region could affect energy 

band structure and local conductivity at nanocatalyst surface.  The space charge formation due to the 

accumulation of electrons at nanocatalyst surface may cause downward band bending associated 

with the interfacial electric field in the space charge region as shown in the schematics (Figure. 8) 

which may facilitate the separation of photogenerated electrons and holes and thus enhances the 

photocatalytic behavior. Our results showed that the density of the nanostructures grown at low 

amine:Zn concentration ratio (0.2:1) is around  12 NRs/µm
2
  (Figure. 1) whereas the samples grown 

in amine:Zn concentration ratio (0.5:1) to (1.5:1) show higher density in the range of  ~ 56 NRs/ µm
2 

(Figure.1). ZnO nanostructures fabricated at low amine concentration show slower photocatalytic 

response due to lower density of ZnO nanostructures.  On increasing the amine:Zn concentration 

ratio (0.5:1)-(1.5:1), the photocatalytic degradation efficiency found to be enhanced with the increase 

of Zn interstitials.  The micron scale platelets grown at high amine ratio (2:1) exhibit slow 

photocatalytic degradation due to their low surface to volume ratio.  

Conclusions 

We have demonstrated that the morphology, alignment and optically active defect content of 

vertically aligned 1D ZnO NR arrays grown using an aqueous solution method can be controlled by 

simply varying the hexamine relative concentration in the growth solution. Well aligned, prismatic 

ZnO NR arrays with a uniform NR diameter of 80 nm along their lengths were obtained at an 

amine:Zn ratio of 1:1.  We propose that amine concentration not only plays an important role on the 

growth and alignment of the 1D NR arrays, but it also plays a role in controlling their optically active 

defect concentration.  Amine plays a role both as growth stabilizer and as a surfactant and thus 

controls the Zn release rate for ZnO formation while also capping non polar planes.  The competition 

between these ‘stabliser’ and ‘surfactant’ roles facilitates the morphology, alignment and defect 

control of 1D ZnO NR arrays. These defect controlled NR arrays have also been demonstrated to 

work as effective photocatalysts and exhibit excellent photocatalytic activity under UV irradiation. 

ZnO NR arrays grown at amine concentrations of 1M show higher photocatalytic degradation  in an 

MB dye solution under UV irradiation owing to both the high surface to volume ratio of the arrays 

and increased charge carrier density due to Zn interstitial defects. Understanding and then utilizing 

the role of amine in the growth of 1D ZnO NR arrays offers tremendous promise as a simple but 

highly effective method for tailoring ZnO NR morphologies (and thus functionalities) for various 

potential applications.  
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Table  

Table I: Growth parameters, pH, diameter and length of ZnO nanostructures grown with different 

amine:Zn concentrations. 

S. No Amine Ratio 

(Hexamine: 

Zinc Nitrate) 

Growth initial 

pH 

Growth ending 

pH 

Average 

Diameter 

Length 

1 0.2:1 5.10 6.17 ...... ~1µm 

2 0.5:1 5.24 6.45 ~30nm ~1µm 

3 0.75:1 5.47 6.68 ~50nm ~400nm 

4 1:1 5.63 6.93 ~60nm ~400nm 

5 1.5:1 5.71 7.26 ~100nm ~150nm 

6 2:1 5.82 7.94 ........ ......... 
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Figure Caption 

 

Figure 1: SEM images showing plan views of ZnO nanostructure  arrays grown on dip coated ZnO 

thin film seeded substrates at amine: zinc nitride ratios of (a) 0.2:1, (b)0.5:1, (c)0.75:1,  (d) 1:1,  (e) 

1.5:1, (f) 2:1. The images in the insets are more highly magnified images of the respective 

nanostructures shown in the main images.  

 

Figure 2: Schematic diagram of the nanostructured arrays grown with different amine:zinc nitride  

concentrations of (a)0.2:1, (b)0.5:1, (c)0.75:1,  (d)1:1,  (e) 1.5:1, (f) 2:1.  

 

Figure 3: SEM image showing cross sectional views of 1D NR arrays grown on dip coated ZnO thin 

film seeded substrates with amine:zinc nitride ratios of (a) 0.2:1, (b) 1:1 , (c) 1.5:1. Schematic 

representations of the morphologies with varying amine:zinc nitrate ratios are also shown in (d)0.2:1, 

(e) 1:1, (f) 1.5:1. 

 

Figure 4: XRD patterns from nanostructured arrays grown using different amine:zinc nitrate  

concentrations (a)standard pattern of ZnO (JCPDS 36-1451),  (b)0.2:1, (c)0.5:1, (d)0.75:1,  (e)1:1,  

(f) 1.5:1, (j) 2:1. 

 

Figure 5: Water contact angle on ZnO NR arrays as a function of varying the amine concentration 

ratio. 

 

Figure 6: PL spectra (measured at 10 K)  of ZnO nanostructured arrays grown with different 

hexamine:zinc nitrate  concentrations (a) 0.2:1, (b) 0.5:1, (c) 0.75:1,  (d) 1:1,  (e) 1.5:1, (f) 2:1.  Insets 

show the corresponding sample morphologies. 

 

Figure 7: (a) The photo degradation efficiency of MB versus time using ZnO NR array samples 

grown with hexamine:zinc nitrate  concentrations of 0.2:1, 0.5:1, 0.75:1, 1:1,1.5:1 and 2:1. (b) 

Kinetics of photocatalytic degradation of MB in the presence of ZnO NR array samples grown with 

different hexamine:zinc nitrate  concentrations. 

 

Figure 8: Schematic diagram showing the energy levels and free charge carrier densities from the 

ZnO nanostructural surface to the dye solution (a) under dark and (b) under UV irradiation.  
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Figure 5 
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SEM images showing plan views of ZnO nanostructure  arrays grown on dip coated ZnO thin film seeded 
substrates at amine: zinc nitride ratios of (a) 0.2:1, (b)0.5:1, (c)0.75:1,  (d) 1:1,  (e) 1.5:1, (f) 2:1. The 
images in the insets are more highly magnified images of the respective nanostructures shown in the main 

images.  
136x177mm (150 x 150 DPI)  
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Schematic diagram of the nanostructured arrays grown with different amine:zinc nitride  concentrations of 
(a)0.2:1, (b)0.5:1, (c)0.75:1,  (d)1:1,  (e) 1.5:1, (f) 2:1.  

167x29mm (150 x 150 DPI)  
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SEM image showing cross sectional views of 1D NR arrays grown on dip coated ZnO thin film seeded 
substrates with amine:zinc nitride ratios of (a) 0.2:1, (b) 1:1 , (c) 1.5:1. Schematic representations of the 

morphologies with varying amine:zinc nitrate ratios are also shown in (d)0.2:1, (e) 1:1, (f) 1.5:1.  

167x86mm (150 x 150 DPI)  
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XRD patterns from nanostructured arrays grown using different amine:zinc nitrate  concentrations (a)0.2:1, 
(b)0.5:1, (c)0.75:1,  (d)1:1,  (e) 1.5:1, (f) 2:1.  
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Water contact angle on ZnO NR arrays as a function of varying the amine concentration ratio.  
182x155mm (104 x 104 DPI)  
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PL spectra (measured at 10 K)  of ZnO nanostructured arrays grown with different hexamine:zinc 
nitrate  concentrations (a) 0.2:1, (b) 0.5:1, (c) 0.75:1,  (d) 1:1,  (e) 1.5:1, (f) 2:1.  Insets show the 

corresponding sample morphologies.  

111x132mm (150 x 150 DPI)  
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(a) The photo degradation efficiency of MB versus time using ZnO NR array samples grown with 
hexamine:zinc nitrate  concentrations of 0.2:1, 0.5:1, 0.75:1, 1:1,1.5:1 and 2:1. (b) Kinetics of 
photocatalytic degradation of MB in the presence of ZnO NR array samples grown with different 

hexamine:zinc nitrate  concentrations.  
159x79mm (150 x 150 DPI)  
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Schematic diagram showing the energy levels and free charge carrier densities from the ZnO nanostructural 
surface to the dye solution (a) under dark and (b) under UV irradiation.  
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