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Abstract 

Network Intrusion Detection and Prevention Systems (NIDPS) are important elements 

of network security. Their role is to monitor internet traffic for malicious content and, 

on detection, generate an alert message and/or block the offending traffic. Potential 

attacks are described in a database of rules known as the rule set, where each rule 

consists of an IP header part and a payload signature part. The payload signature can 

be in the form of a fixed string and/or regular expression. This thesis studies the three 

main stages of these systems, namely TCP/IP reassembly, multi-match header 

matching and Deep Packet Inspection (DPI).  

TCP/IP reassembly is a necessary prerequisite to DPI as attack patterns may span 

more than one IP fragment or TCP segment. Either target-based reassembly or traffic 

normalisation is required in order to overcome insertion/evasion attacks. This thesis 

builds upon existing research by outlining an FPGA-based architecture that handles 

the common case of reassembling in-sequence data streams in hardware and the much 

rarer out-of-sequence data streams in software.  

Multi-match header matching involves the matching of each packet header against 

the header section of all rules. This differs from the single-match classification used in 

routers where there is a single highest priority match per packet. The strategy adopted 

in this thesis was to adapt a number of single match algorithms to perform multi-

matching and to compare their performance with existing solutions. Existing solutions 

typically involve the use of Ternary Content Addressable Memory (TCAM) and 

therefore suffer from disadvantages such as high cost, high energy consumption, and 

low storage efficiency. Algorithmic solutions, which use SRAM instead of TCAM, 

can therefore have an advantage. The adapted algorithms were implemented in C code 

and evaluated in terms of speed and energy efficiency on an ARM processor.  

DPI is particularly challenging due to the number and complexity of regular 

expressions. This thesis builds on existing research into Bit-Parallel hardware 

architectures. The main contribution is an extension for the efficient handling of the 

constrained {min,max} repetition syntax, including a solution to the issue of counter 

overlap. This allows for the handling of many additional regular expressions that 

would otherwise be unsuitable. The design was implemented in VHDL and evaluated 

using the Xilinx tool set. A comprehensive review of the most significant research 

works in the DPI field is also provided.  
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Chapter 1 - Introduction 

1.1. Background 

1.1.1. Growth of the Internet 

Recent years have witnessed rapid growth in both internet penetration and bandwidth 

due to huge improvements in telecommunication infrastructure, the proliferation of 

competitively priced computers and internet-capable mobile devices, and the reduced 

cost of internet access resulting from increased competition. The number of 

individuals using the internet has increased from 1 billion in 2005 to over 2.7 billion 

in 2013 (ITU, 2013). Cisco (2013) estimates that global internet traffic has increased 

from 2,000 GB/s in 2007 to 12,000 GB/s in 2012 and forecasts that this will increase 

to 35,000 GB/s by 2017, equivalent to 1 zettabyte per year, mainly driven by 

increased video traffic. Business IP traffic is expected to triple between 2012 and 

2017, mainly due to the increased use of high quality video communications.     

1.1.2. Energy Consumption 

The increase in energy consumption associated with expanding internet use has 

become a concern because of the associated economic and environmental costs. 

Raghavan and Ma (2011) estimated that the power consumed globally by the internet 

in 2011 was between 170 and 307 GW, in other words between 1.1 and 1.9% of the 

total 16TW used by the world population. Although this may seem like a small 

fraction, it is equivalent to the power output of over 350 typical nuclear reactors. 

Raghavan and Ma argue that we should apply the internet to reducing other forms of 

energy consumption (e.g. video conferencing versus travel) in addition to making the 

internet itself more efficient. According to Lanzisera et al. (2012), network equipment 

consumed about 1% of buildings electricity in the USA in 2008 and was increasing at 

a rate of approximately 6% per annum, with most of this consumption occurring in 

offices and residences rather than data centres. They found that office building 

networking equipment is one of the largest energy consumers, accounting for 40% of 

the total in 2008. 

1.1.3. Internet Security 

Approximately 7.6 million new unique pieces of malware were detected by the AV-

Test Institute (2013) for the month of June 2013. In other words, a new malware was 
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created every 0.35 seconds. The ever increasing penetration and speed of the internet 

means that these viruses can spread even faster. The MyDoom worm was one of the 

fastest spreading email worms ever. Within a few hours of its first appearance in 

January 2004, it had slowed the internet by 10% and average web page load times by 

50% (Jones 2006). The worm spread as an email attachment, and spammed itself to 

addresses listed in computer’s address books when the attachment was clicked on. It’s 

estimated that 10% of email messages, sent in the hours immediately after its first 

appearance, contained the worm. Consultancy firm mi2g (2004) estimated the 

economic losses caused by MyDoom at $38.5 billion, although this figure has been 

disputed by others. Another famous worm, Sasser, appeared in April 2004. Unlike 

MyDoom, it was not transmitted via email. It instead exploited a buffer-overrun flaw 

in unpatched versions of Microsoft Windows 2000 and XP which allowed it to take 

control of the infected computer (Vamosi 2004). It then scanned local networks and 

the internet for other computers to infect. It caused French satellite communications to 

be shut down, the cancellation of several Delta flights and the shutdown of many 

computer systems worldwide. The economic damage is estimated at between $14.8 

and $18.1 billion (ThinkQuest 2004). The virus was created by a German student who 

released it on his 18
th

 birthday. 

Mobile internet traffic is currently growing rapidly due to the recent surge in 

smartphone take-up and the rollout of 4G networks. Smartphones are particularly 

attractive to cyber criminals as owners regularly use them for personal tasks such as 

online purchases, email and social media – all involving the use of sensitive personal 

information such as usernames, passwords and credit card details (Ruggiero and Foote 

2011). They also pose an easier target than PCs as many users do not recognise the 

need to install or enable security software on their smartphones. Many naively believe 

that surfing the internet on their phone is safer than on their PC.  NQ Mobile (2013) 

found that mobile malware attacks increased 163% in 2012, with 95% of all attacks 

targeting the Android OS. 

The conventional way of defending against malware attacks is to use end-host based 

solutions such as patches to vulnerable operating systems and applications, anti-virus 

software and firewalls. The main issue with these approaches is that there is a time lag 

between the appearance of a virus, the availability of a software patch and virus 

database update, and finally the actual update of the end-hosts. Given the speed with 
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which some viruses can spread, this time lag can be more than sufficient for many 

systems to be infected.  Moreover, the repeated updating of end-host software is an 

added maintenance cost for businesses, which also disrupts the normal work of 

computer users. 

1.2. Motivation 

Given the issues with end-host security software, a more attractive approach is to 

block the malware in the network before it arrives at the end-hosts. This is known as 

intrusion prevention. In the case of office networks, this is typically performed at the 

edge of the network, just inside the firewall. It can also be performed internally to 

protect a particularly important segment of the network. In the case of the mobile 

internet, next generation security gateways would block attacks at the Gi/SGi interface 

between the 3G/4G network and the external PDN. 

In addition to matching against the TCP/IP header, this type of Network Intrusion 

Prevention System (NIPS) needs Deep Packet Inspection (DPI) in order to analyse 

packet payloads for the presence of malicious content. Existing hardware systems 

commonly use energy inefficient TCAM to perform pattern matching. The ever 

increasing number and complexity of attack signatures and traffic speeds will lead to 

such systems becoming a significant consumer of power in the enterprise network. 

Due to customer demand, there is a growing requirement to design more efficient 

systems that miminise the use of energy inefficient technologies such as TCAM. The 

challenge is therefore to find hardware solutions which can accelerate, in an energy 

efficient manner, the analysis of network traffic for particular header values and the 

presence of complex attack signatures.  

1.3. Intrusion Detection and Prevention 

The NIPS is one member of a larger family of what are known as Intrusion Detection 

and Prevention Systems (IDPS). 

1.3.1. Classification 

IDPS can be classified in the following categories: 

 Host-based – this system is a software agent installed on an individual computer. 

In addition to monitoring all incoming and outgoing traffic for attacks such as a 

virus, a worm or hacking activity, it also monitors applications running on the 
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computer for suspicious behaviour. Although host-based agents provide additional 

security features compared to network-based systems, they can be more difficult to 

administer because of their distributed nature  

 Network-based – this system is a standalone system which monitors all traffic into 

and out of a network. It can also be used to monitor internal network traffic. It can 

be either a dedicated hardware system from a networking equipment vendor or a 

software program running on an off-the-shelf server. One of the most well-known 

network-based software solutions is the open-source Snort (Roesch et al. 2012).  

 Wireless – this system monitors wireless network traffic and the associated 

wireless networking protocols for suspicious activity. 

1.3.2. Detection Methods 

IDPS use one or a combination of the following techniques to detect attacks: 

 Signature-based – attacks are described in a large database of attack signatures 

known as the rule set  

 Anomaly-based – attacks are detected by comparing the current activity with pre-

defined “normal” activity. Such systems have the advantage that they can detect 

attacks hidden within encrypted traffic, but often suffer from a high number of 

false positives, i.e. incorrectly generating an attack alert notification. Note that a 

network-based system that uses anomaly-based detection is also known as a 

Network Behavioural Analysis (NBA) System 

 Stateful protocol analysis – the state of network, transport and application 

protocols are tracked and the activity compared with correct protocol behaviour in 

order to detect attacks. Some signature-based systems provide the ability to 

specify stateful signature-based rules, e.g. flowbits keyword in Snort allows a 

number of rules to be linked together in order to track state across multiple 

datagrams in a single transport layer session; flow:established keywords restrict 

application of the rule to established sessions only. 

1.3.3. Modes 

IDPS can be split into two types based on their mode of operation: 
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 Passive – An Intrusion Detection System (IDS) is passive in that it only monitors 

traffic for attacks and generates an alert and logs an event on detection 

 Reactive – An Intrusion Prevention System (IPS) is reactive in that it can be 

configured to perform an action on detection of a particular attack.  

In the case of an NIPS, such an action could be to block the connection carrying 

the malicious traffic. Snort can function as an NIPS by running it in inline mode. 

Although an NIPS is a very powerful solution, it suffers from a couple of issues. 

Firstly, false positives can result in valid, and perhaps critical, connections being 

dropped. Secondly, processing overload or DoS attacks can result in valid traffic 

being dropped or attacks left through. 

The action perform by a Host-based IPS (HIPS) depends on the exact detection 

technique used – e.g. it could prevent code being executed, block a network 

connection, stop inappropriate file access. 

1.3.4. NIDS Sensor Location 

The most common location for an NIDS system is inside an enterprise’s firewall so as 

to reduce its incoming traffic workload and exposure to DoS attacks. The firewall is 

the first line of defence which is configured to block all incoming connections on 

ports which have not been opened. The NIDS will monitor traffic passed by the 

firewall for attack patterns, e.g. a virus inside HTTP connection traffic.  

On detection of potential malicious traffic by the NIDS, the event is typically logged 

on the management server and an alert sent to the console. 

 

Figure 1. Possible locations for NIDS in enterprise network 
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Figure 1 shows an example enterprise network with NIDS systems placed in a 

number of locations: 

 NIDS outside the firewall in order to detect attacks against the firewall  

 NIDS in DMZ (demilitarised zone) to detect attacks against web/mail servers, etc. 

Each server should also run a HIDS agent for increased security 

 NIDS in the internal network to detect internal attacks and external attacks that 

firewall left through. 

An NIDS is a passive system that sniffs packets from the network. It can be 

connected to the network using a hub, ethernet tap or via the SPAN port of a switch. 

In the case of a switch, it may be possible to mirror a number of ports to the SPAN 

port using a VLAN. The disadvantages of the SPAN port are that the total VLAN 

traffic may exceed the bandwidth of the port and, the performance of the switch may 

be degraded. Bandwidth is typically more of an issue when the NIDS is used to 

monitor internal network traffic since the traffic throughput is likely to be much 

higher than that found at the gateway to the external internet. Finally, some 

networking equipment vendors have switches and firewalls with built-in NIDS 

functionality. 

1.3.5. NIPS Sensor Location 

An NIPS system is an inline sensor which the monitored traffic must flow through. It 

is typically deployed on secure side of the firewall in order to reduce its workload. As 

time goes on, the line between firewall and IPS is becoming blurred as more and more 

firewall vendors provide IPS functionality as part of next generation firewall systems. 

The NIPS can be configured to carry out various actions on detection of a particular 

attack or undesirable traffic, e.g.: 

 drop packets containing an attack pattern 

 block the corresponding transport layer connection. This could be done inline or 

by automatically reconfiguring the firewall 

 reset the transport layer connection 

 reconfigure router to redirect offending connection traffic to a honey pot 
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 throttle the bandwidth used by undesirable traffic (e.g. P2P file sharing, suspected 

DoS attack, etc.) 

 run a script written by the NIPS administrator – script gives a lot of flexibility to 

automatically reconfigure third-party networking equipment. 

Figure 2 shows an example enterprise network with two NIPS systems. One is 

positioned just inside the firewall to detect any attacks that manage to get through it. 

The second is used to protect a particularly important segment of the network against 

internal intrusions, e.g. finance department, labelled segment 1. 

 

Figure 2. Example of NIPS placement in enterprise network 

1.4. Research Goals 

This thesis focuses on the three primary parts of an NIDPS system, namely TCP/IP 

reassembly, multi-match header classification and regular expression (regex) DPI, as 

highlighted in grey in Figure 3. Depending on the requirements of the DPI stage 

implementation, the multi-match header classification stage may run either in series or 

in parallel with the DPI stage. When placed in front of the DPI, the header 

classification stage acts as a pre-filter which reduces the number of rules that need to 

be processed at the DPI stage for a particular connection flow. However, some DPI 

algorithms cannot take advantage of this as they always examine every rule for every 

packet, and, in this case, it makes more sense to run the header classification in 

parallel. In the parallel architecture, a negative header match will result in a fast 

overall negative match decision which will cut short the processing in the DPI block 

for that particular connection flow. 
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Figure 3. Example NIDPS Architecture 

The overall goal of this thesis is to propose new, or extend existing, algorithms and 

architectures that lead to systems that can handle higher traffic throughputs, greater 

numbers and complexity of attack signatures, while keeping power consumption to a 

minimum. The specific goals in each area are as follows: 

 Improve on existing hardware acceleration techniques for the acceleration of 

TCP/IP reassembly in the context of DPI: 

Existing hardware-based designs typically drop out-of-order TCP segments in 

order to force the originating host to resend. Dropping packets in this way is not 

ideal as network performance is adversely affected. This leads to the thesis goal 

of outlining a hardware-based architecture that avoids unnecessary packet 

dropping. 

 Develop and evaluate algorithmic solutions to the problem of multi-match 

header matching: 

Hardware-based NIDPS typically use TCAM-based technology to perform 

TCP/IP header matching. The strategy adopted in this thesis is to adapt a number 

of single match algorithms to perform multi-matching and to compare their 

performance with existing solutions. Such algorithms can use SRAM instead of 

TCAM and should therefore be less expensive and more energy efficient. 

 Survey existing research work on DPI, with a particular focus on regular 

expression matching: 

A review of the most significant research in the area of DPI will be of use to 

other researchers looking to improve the state of the art. 

 Extend Bit-Parallel (BP) hardware architecture from existing research to 

include improved handling of constrained {min,max} repetition syntax: 
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Constrained repetition syntax is commonly used in DPI regular expressions. 

Existing BP architectures handle such repetitions by unrolling of the repetition 

with the result that the regex is often unsuitable for processing because of its 

excessive length. The goal is to modify the BP architecture based on the 

Glushkov NFA so that it can handle these repetitions without unrolling, thereby 

greatly increasing the number of DPI signatures that can be handled. 

1.5. Contributions 

The main contributions of this thesis are summarised as follows: 

TCP Segment Reassembly 

The importance of IP fragment and TCP segment reassembly in DPI systems is 

examined and the reassembly functionality of open source software NIDPS is 

analysed.  Existing research solutions to hardware acceleration of TCP/IP reassembly 

do not fully handle all cases of out-of-sequence packets. This thesis outlines an 

FPGA-based architecture that handles the common case of reassembling in-sequence 

data streams in hardware and the much rarer out-of-sequence data streams in software. 

Multi-match Packet Classification 

A number of algorithmic approaches to multi-match classification which use SRAM 

instead of TCAM are evaluated and compared in terms of throughput performance and 

energy efficiency. These algorithms are mainly for single-match classification and so 

have to be adapted for multi-match. The adapted algorithms were implemented in C 

code and evaluated on an ARM simulation platform. The EGT-PC and ART 

algorithms were found to be a suitable alternative to TCAM. Although these 

algorithms do not currently match the performance of existing bit vector based 

algorithms, such as FSBV and StrideBV, due to the commonality of field values in 

recent rule sets, this may change in the future. 

Deep Packet Inspection 

While extensive research has been conducted into algorithms for performing fixed 

string and general regex matching, the majority has ignored some of the more 

complicated regex syntax such as constrained repetition quantifiers and back 

references. This thesis describes a hardware architecture for handling regexes 

containing constrained repetitions. The issue of pattern overlap affecting the handling 
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of these repetitions is then examined and, a First-In-First-Out (FIFO) queue based 

solution is described for susceptible regexes. The algorithms were implemented in 

VHDL and evaluated using the Xilinx tool set and the open-source NetFPGA (Naous 

et al., 2008) research platform as the target. 

The impact of this work is that the handling of many regexes that would otherwise 

be unfeasible due to their unrolled length can now be efficiently and correctly handled 

by the BP architecture based on the Glushkov NFA. This enables the hardware 

acceleration of over half the regexes found in recent Snort rule sets. The remainder 

could be handled by extracting suitable sub-expressions and using the BP system as an 

imprecise pre-filter followed by full verification of any positive matches in software. 

The design evaluated in this thesis matches against all regexes in parallel. An 

alternative approach would be to use multi-match header and fixed string matching as 

pre-filters so as to greatly reduce the number of regexes to match against per packet. 

The counting block algorithm outlined in this thesis could equally be used in such a 

design. Such an approach would allow for regex data to be stored in external SRAM, 

thereby allowing for the storage of a much larger number of regexes. Such a design 

would give high throughput through the use of pipelining and parallel processing of 

packets. 

Hardware acceleration of regex matching for DPI is a very challenging task. It is 

hoped that the contributions of this thesis will be useful to other researchers looking to 

further advance the state of the art. 

1.6. Thesis Organisation 

The remainder of this thesis is structured as follows: 

 Chapter 2: Background 

This gives background information useful for a better understanding of the thesis. 

Operation of the open-source NIDPS, Snort, is looked at and the rule syntax 

examined. Some of the mathematical concepts related to the finite automaton 

representation of regexes are described. 

 Chapter 3: TCP/IP Reassembly 

Most research articles on signature-based NIDPS do not mention TCP/IP 

reassembly. This chapter looks at what is an essential element of any NIDPS as 
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attack patterns may be split over multiple IP fragments or TCP segments. 

Moreover, target OS–based reassembly is necessary in order to avoid attack 

evasion. An FPGA-based design is outlined for the acceleration of this 

reassembly. 

 Chapter 4: Multi-match Header Classification 

This chapter describes the adaption and evaluation of a number of single-match 

packet classification algorithms for multi-match classification. Multi-match header 

classification is needed in NIDPS because a number of rules may match the header 

of the incoming IP packet.  

 Chapter 5: Pattern Matching Methods 

This chapter looks at the general theory of both fixed string and regex matching in 

DPI and related research. 

 Chapter 6: Constrained Repetition Handling Algorithm 

A counter-based algorithm and a corresponding Bit-Parallel (BP) hardware 

architecture are presented for the more efficient processing of regexes which 

include constrained repetitions. 

 Chapter 7: Dealing with Pattern Overlap in the case of Constrained Repetitions 

This chapter describes how certain regexes which include constrained repetitions 

are not suitable for the counter-based algorithm as they are susceptible to a pattern 

overlap issue. A FIFO-based mechanism to deal with the issue is outlined and 

evaluated. 

 Chapter 8: Conclusion and Future Work 

A summary is presented of the results achieved in the preceding chapters and 

possible directions for future research are discussed. 
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Chapter 2 - Background 

This chapter provides a brief introduction to those aspects of automata theory that are 

helpful for a better understanding of the thesis. An overview is also provided of some 

of the main open source and commercial NIDPS, including a discussion of the recent 

trend for IPS functionality to be included in next generation firewall products. The 

choice of platform for an NIDPS product has a significant impact on achievable 

performance and price. All the various commodity and custom hardware platforms, 

suitable for an NIDPS implementation, are examined.   

2.1. Automata Theory 

2.1.1. Formal Languages 

Alphabet 

An alphabet, denoted by the symbol Σ, is a finite, nonempty ordered set of symbols. 

e.g.: 

 Σ = {a,b,...z} is the set of all lower-case letters 

 Σ = {00,01,02,...FF} is the set of 256 symbols that can be represented by 8-

bit values (using hexadecimal representation). 

Strings 

A string is a finite sequence of symbols from a particular alphabet. e.g. bxsf is a string 

from the alphabet Σ = {a,b,...z}. An empty string, denoted by ε, has zero occurrences 

of symbols from Σ. 

Exponential notation is used to express the set of all strings of a particular length 

from an alphabet, e.g. 

If Σ = {0,1}, then Σ
2
 = {00, 01, 10, 11}. 

Σ
0
 = { ε }, regardless of the alphabet. 

Σ
*
 = { ε , 0, 1, 00, 01, 10, 11, 000, 001, ....}, the set of all strings over Σ. 



Chapter 2 – Background 

 
13 

Languages 

If Σ is an alphabet, and    Σ
*
 , then L is a language over Σ. In other words, L is a set 

of strings chosen from Σ
*
. Formal languages are treated in the same way as 

mathematical sets and so set theory operations such as union and intersection can be 

applied. It can be defined using an automaton or formal grammar system. 

Formal languages are often used to define computer programming languages. 

Grammars 

A formal grammar consists of 

 a finite set of non-terminal variable symbols that can be rewritten as a sequence of 

symbols 

 a finite set of terminal symbols, Σ, the alphabet of the language, that cannot be 

rewritten – hence “terminal” 

 a finite set of rewrite/derivation rules X → Y,  (i.e. X directly derives Y), 

where X and Y consist of non-terminals and/or terminals 

 a start variable, S, which is an element of the set of non-terminals 

Chomsky (1956) categorised formal grammars into four classes, as shown in Table 

1, by restricting the forms of X and Y. 
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Table 1. Chomsky Hierarchy 

 Language Grammar Automaton 
Rewrite rule 

restriction
*
 

3 Regular 

Regular 

(Right-linear or  

Left-linear)
 †

 

NFA or DFA 

A→a 

and 

A→aB (or A→Ba) 
†
 

and 

A→ ε 

2 Context-free Context-free 
Push-Down 

Automaton 
A→α 

1 Context-sensitive Context-sensitive 

Linear-

Bounded 

Automaton 

α Aβ→ α µβ 

0 Unrestricted/Free 
Recursively 

enumerable 

Turing 

Machine 
α → β 

* A and B represent single non-terminal variables, a represents a single terminal symbol 

and, greek letters represent strings of terminals and non-terminals. α and β can be empty. 

† See section 2.1.2 for explanation of left-linear and right-linear grammars 

2.1.2. Regular Languages 

Regular Grammars 

Strictly regular grammars generate regular languages and can be represented by finite 

state automata. The rewrite rules are restricted to having a left-hand side consisting of 

a single non-terminal and a right-hand side consisting of a single terminal possibly 

followed by a single non-terminal in the case of a right-linear grammar, or it can 

alternatively be preceded by a single non-terminal in the case of a left-linear grammar. 

Left and right-linear rules cannot be mixed in the same regular grammar. The rule S→ 

ε is allowed, provided the start variable, S, does not appear on the right-hand side of 

any rule. Left and right-linear grammars are discussed further at the end of this 

section. 

An Extended Regular grammar is similar to a regular grammar except that in the rule 

A→aB (or A→Ba), a can be a string of terminals. It can be shown that any extended 

regular grammar can be also expressed as an equivalent strictly regular grammar. 
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A regular grammar is said to be non-deterministic if it includes two rules A→aB and 

A→a or two rules A→aB and A→aC. Otherwise it is said to be deterministic. 

Finite State Automata 

A finite automaton is a 5-tuple ( Q, Σ, q0, F, δ ) where 

 Q is a finite set of states (circles in state diagram). 

 Σ is a finite set of symbols called the alphabet. 

 q0 ∈ Q is the start state (state with incoming arrow not connected to any other state 

in the state diagram). 

 F   Q is the finite set of accept or final states (double circles in state diagram). 

 δ is the transition relation, indicating where to go for a given state and input 

symbol. In the same way as for regular grammars, a finite state automaton is said 

to be non-deterministic if there exist states for which the same input symbol 

results in more than one transition. The transition function can therefore be 

defined:  

o for a Non-deterministic Finite Automaton (NFA) 

δ : Q × (Σ ∪ {ε}) → P(Q) 

where P(Q) is the power set (set of all subsets) of Q. 

× denotes Cartesian product, the set of all ordered pairs from two sets.  

This is a multi-valued transition function, i.e. for a given state and input 

symbol, there can be more than one transition. 

o for a Deterministic Finite Automaton (DFA) 

δ : Q × Σ → Q 

This is a single valued transition function. 

It can be shown that the languages accepted by finite automata are regular languages. 

Therefore any language represented by a regular grammar can also be represented by 

an equivalent finite automaton. 

Consider the following regular grammar in which {a,b} is the alphabet of the 

language and q0 ,q1 are non-terminal variables 

 q0→aq0 q0→bq1 q1→a  q1→aq1 
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Now if q2 is added as a non-terminal variable corresponding to accept or final state 

of the equivalent NFA, the regular grammar can be rewritten as 

  q0→aq0 q0→bq1 q1→aq2 q1→aq1 q2→ ε 

The state transition table and the state diagram of the equivalent NFA are shown in 

Table 2 and Figure 4, respectively. q0 is the start state and q2 is the accept state. Note 

that state q1 has two outgoing edges with the same symbol, i.e. this is an NFA. 

Table 2. State Transition Table for example regular grammar 

Input Symbol 

State 

a b 

q0 {q0} {q1} 

q1 { q1,q2} ∅ (null) 

q0

b
q1 q2

a

a a

 

Figure 4. NFA equivalent to example regular grammar 

NFA vs. DFA 

In the case of DFA, for each state, q, and input symbol, α, there is exactly one 

transition leaving state q. This includes transitions to the null state, which are typically 

omitted from state diagrams. Therefore a DFA has at most one edge leaving state q 

labelled with the symbol α. 

In the case of an NFA, there may be multiple transitions for each combination of 

state and input symbol. It can also include transitions for the empty string, ε, i.e. it can 

transition from one state to another without consuming any input symbol. 

It can be shown that any regular language L is accepted by a DFA if and only if it is 

also accepted by an NFA. In other words, DFA and NFA are equivalent in what they 

express and it is always possible to convert between them. It should also be noted that 

a DFA is in fact a special case of an NFA. 
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Regular Expressions 

A regex, r, is an algebraic formula which represents the language L(r) of the regex, i.e. 

a set of strings in Σ
*
. The fundamental operators used in regexes are: 

 Union/Alternation: If r1 and r2 are regexes then r1|r2 is also a regex. 

 Concatenation: If r1 and r2 are regexes, then r1r2 is also a regex. 

 Kleene Closure: If r is a regex, then r*  is also a regex. 

Two regexes over the same alphabet are equivalent if, and only if, their respective 

languages are equal sets. It can be shown that every language defined by a finite state 

automaton can also be expressed as an equivalent regex, e.g. FA in Figure 4 can 

alternatively be expressed as the equivalent regex a*ba*a . 

Some example regexes: 

 a|b* denotes { ε, a, b, bb, bbb, ....}. 

 (b|c)* denotes all strings made up of only the symbols b and c, plus the empty 

string. 

 (ab|c)d denotes { ε, abd, cd }. 

Regex operator precedence, as outlined in Table 3, is relatively simple. The most 

important point is that concatenation has higher priority than alternation. 

Table 3. Regex operator precedence 

Precedence Operator Description 

Highest () Parentheses and other grouping operators 

 *, +, ?, {min,max}, etc. Repetition 

 ^xyz Concatenation 

Lowest | Alternation 

Right versus Left Linear (Regular) Grammars 

A right-linear grammar generates the strings of the language (i.e. the words) from left 

to right, whereas a left-linear grammar generates the words from right to left. Any left-

linear grammar can be converted to an equivalent right-linear grammar and vice versa. 

Figure 5 and Figure 6 show the right-linear and left-grammars, respectively, 

corresponding to the regex x*yz*, along with their equivalent automata. 
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S
y

A
z

x z ε

Right-linear grammar:

S→xS | yA

A→zA | ε

Regex: x*yz*

Finite automaton:

 
Figure 5. Example of right-linear grammar and corresponding automaton 

SA

x z

ε

Left-linear grammar:

S→Sz | Ay

A→Ax | ε

Regex: x*yz*

Finite automaton:

y

 
Figure 6. Equivalent left-linear grammar and corresponding automaton 

2.1.3. Perl Compatible Regular Expressions 

PCRE is a regex library written in C which implements pattern matching based on the 

syntax and semantics used in Perl 5.The library is used by a number of open source 

programs, including Apache HTTP server, PHP and Snort. 

Snort PCRE syntax 

The pcre keyword in Snort allows PCRE regexes to be written in the following 

format: 

pcre:[!]"(/<regex>/|m<delim><regex><delim>)[ismxAEGRUBPHMCOIDKYS]"

; 

 

 A regex is usually delimited using “/”. However, it is possible to use almost any 

other special character, provided it is preceded by the letter “m” (meaning match). 

 Prefixing the regex with an exclamation mark negates its meaning. e.g. the regex 

/foo/ matches any string that contains “foo”, whereas the regex !/foo/ matches any 

string that does not. 

 The regex may be followed by a list of modifiers, ismxAEGRUBPHMCOIDKYS, 

some of which are Snort specific extensions. Three of the most common modifiers 

are: 
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o i – case insensitive matching 

o s – single line mode, i.e. the dot wildcard metacharacter ,“.”, is to match 

everything including new line (otherwise new line is excluded) 

o m – multi-line mode. This affects the operation of the start and end anchors, 

“^” and “$”, respectively. By default the input string is treated as a single line 

and the anchors apply to the start and end of the string. However, in multi-line 

mode, the “^” and “$” anchors additionally apply immediately after and 

before, respectively, any newline in the input stream. 

 The PCRE syntax and semantics most commonly used in Snort is described in 

Table 4. 

Regex anchors 

An anchor is a type of zero-width assertion that specifies a position in the input string 

where a match must occur. Assertions do not actually consume any characters. The 

most important anchors used in Snort rules are described in Table 5. 

For example, the multi-line start-anchored regex /^hello/m would find a match in the 

strings “helloworld” and “world\nhelloworld”, but not in “worldhelloworld”. 

Similarly, the multi-line end-anchored regex /world$/m would find a match in 

“goodbyeworld” and “world\ngoodbye”, but not in “goodworldgoodbye”.  
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Table 4. Important PCRE Syntax and Semantics 

Operator Type Example Meaning 

Literals 

a 4 % Letters, digits, other characters 

\^ \? 
Special characters must be preceded by \ to cancel their special 

meaning 

\n \t \r New line, tab, carriage return 

\xa3 Hex code 

Anchors and 

assertions 

^ 
Regex must match at start of string, or after a new line in multi-

line mode 

$ 
Regex must match at end of string, or before a new line in multi-

line mode 

\b 
Word boundary – matches before and after an alphanumeric 

sequence (matched by \w character class) 

Character 

Classes 

[acEoi] Any character in the list will match 

[^acEoi] Any character apart from those in list will match 

[a-fA-F0-9] Any hex character (dash indicates a range of characters) 

. 

Dot means any character except new line. 

If single line mode modifier is specified, then new line is also 

allowed. 

\s Any space character [ \t\r\n] 

\w Any word character [A-Za-z0-9_] 

\d Any digit [0-9] 

\h Any horizontal whitespace character [ \t] 

\S \W \D \H Inverse of above four 

Repetition 

(applied to 

preceeding 

regex element) 

+ 1 or more 

* 0 or more 

? 0 or 1 

{10} Exactly 10 

{10,} 10 or more 

{,10} Up to 10 

{5,10} Between 5 and 10 

Counting is “greedy” by default. i.e. System tries to find the longest match 

before backtracking if necessary. It can be made “lazy” by appending “?” after 

the count – i.e. system first tries to complete a match using the shortest number 

of repetitions, before then trying longer ones. 

Alternation | either,or, e.g. a|b means a or b 

Grouping () Parentheses allow an operator to be applied to a part of a regex, 

rather than a single element. 

This also creates a back-reference. Each group is numbered from 

left to right from 1. 

Back-references \n where n 

is a number  

\2 is a back-reference to the 2
nd

 matched group. Note that it 

signifies the matched fixed string that was matched and not the 

regex group. 

Lookahead 

Assertion 

(?=regex) Zero-width positive lookahead. (Note: Lookahead assertions do 

not consume characters – i.e. matching position is not moved)  

e.g. /foo(?=bar)/ will match foo if it is followed by bar.  

(?!regex) Zero-width negative lookahead. 

e.g. /foo(?!bar)/ will match if foo is found and is not followed by 

bar. 

Lookbehind 

Assertion 

(?<=regex) Zero-width positive lookbehind. 

e.g. /(?<=foo)bar/ will match bar if it is preceded by foo.  

(?<!regex) Zero-width negative lookbehind. 

e.g. /(?<!foo)bar/ will match if bar is found and it is not 

preceded by foo. 
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Table 5. Snort regex anchors 

Anchor 
Multi-line 

mode 
Description 

^ Disabled The match must occur at the beginning of the string. 

^ Enabled 

The match must occur at the beginning of the string or line, 

i.e. at beginning or immediately following any newline 

character. 

$ Disabled The match must occur at the end of the string. 

$ Enabled 
The match must occur at the end of the string or line, i.e. at 

end or immediately before any newline character. 

\b - 

The match must occur on a word boundary, i.e. between a 

word and a non-word character. Word characters consist of all 

alphanumeric characters and underscores. 

2.1.4. Construction of NFA from regex 

Several algorithms have been proposed for the construction of a finite automaton from 

a regex. The algorithms differ in their level of complexity, in whether or not the result 

is deterministic, and in whether or not there are ε-transitions. The two best known 

classic methods are the Thompson (1968) construction algorithm and the Glushkov 

(1961) construction algorithm (equivalent to McNaughton-Yamada (1960) method). 

The Thompson method is simpler and produces an NFA with at most 2m states and at 

most 4m transitions, where m is the number of characters (from alphabet) in the regex 

– i.e. linear relationship. It does, however, have ε-transitions. The Glushkov method 

produces an NFA with exactly m+1 states but up to O(m
2
) transitions. It has the 

advantage of not generating ε-transitions, but the construction takes longer compared 

to the Thompson method. It also has the important property that all transitions into a 

particular state are for the same character. 



Chapter 2 – Background 

 
22 

Thompson NFA 
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Figure 7. Thompson Construction – glueing together automata 

The Thompson method first constructs a tree representation of the regex before 

computing, at each node of the tree, an automaton that recognises the language 

represented by the subtree at that node.  ε-transitions are used to “glue” these automata 

together to eventually produce the overall NFA. Figure 7 illustrates how the sub-

automata are glued together and Figure 8 shows the NFA constructed from regex 

(a|b)*ca. 
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Figure 8. Thompson NFA for regex (a|b)*ca 
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Glushkov NFA 

The Glushkov construction method was first explicitly described by Berry and Sethi 

(1986) and is explained in detail by Navarro and Raffinot (2002). Consider the 

example regex RE=(a|b)*ca. The positions of the characters in the regex are marked 

with a number to give the marked expression RE =(a1|b2)*c3a4. Note that the bar over 

RE signifies that it is the marked form of the regex. 

Using the following notation: 

 L( RE ) represents the language of RE , i.e. all the strings accepted by RE . In the 

case of the example, L( RE ) = {c3a4, a1c3a4, b2c3a4, a1a1c3c4, b2b2c3a4, a1b2c3a4, 

b2a1c3a4,... } 

   represents the marked character alphabet 

 * is the regex operator meaning that the preceding symbol or sub-pattern is 

repeated zero or more times 

 *  represents all possible combinations of characters in the alphabet (can be null) 

 {1...m})REPos(   represents the set of positions in RE  

 αy is the indexed character at position y 

the following definitions are made: 

 )}RE L(u*, αu ), RE Pos(x ) = {xREFirst( x |  

i.e. the set of initial positions of L( RE ).  

In the case of the example, }2,1{ )REFirst(  

 
)}RE L( *, uαu ), RE Pos(x ) = {xRELast( x |

 

i.e. the set of positions in RE  with index x whose corresponding character αx 

forms a string from the language of RE  when prefixed by some combination of 

characters from the alphabet. In other words this is the set of final, or accept, states 

of the automaton which, when reached, indicate a match has been found. 

In the case of the example, }4{ )RELast(
 

 
)}RE L(v α*, uαv u), RE Pos(yx ) = {yREFollow( yx  ,|,

 

i.e. for a given position x in RE , the set of positions in RE with index y for which 

the combination of the two characters αx followed by αy form a substring of some 
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string from the language of RE . In other words, for each position x, x )REFollow( ,  

is the set of positions reachable from x. 

In the case of the example 

o Follow( RE ,1)={1,2,3} 

o Follow( RE ,2)={1,2,3} 

o Follow( RE ,3)={4} 

 EmptyRE has value {ε} if ε belongs to L(RE) and ∅ otherwise.  

There is a transition from state x to y in the automaton if y ∈ Follow( RE ,x). The 

resulting marked Glushkov automaton is shown in Figure 9. The Glushkov automaton 

is then simply obtained by removing the position indices from the marked automaton. 

0 1 2 3 4
a1

b2

b2

c3

a1 a1

b2

c3 a4

 

Figure 9. Marked Glushkov NFA for RE =(a1|b2)*c3a4 

The Glushkov construction algorithm, in the same way as the Thompson algorithm, 

makes use of a tree representation of the regex, where each node ν of the tree 

represents a sub-expression REν of the overall regex RE. First(ν),  ast(ν) and Emptyν 

are calculated for each node ν, starting at the leaves and working back towards the 

root of the tree. A global variable Follow(x) is maintained for each position in RE and 

this is updated at each node. Full details of the recursive algorithm can be found in the 

textbook by Navarro and Raffinot (2002). 

2.1.5. NFA to DFA conversion 

Every language that can be described by an NFA can also be described by an 

equivalent DFA. In practice, a DFA usually has around the same number of states as 

an NFA but with more transitions. However, in the worst case, the smallest equivalent 

DFA can have 2
n
 states compared to the n states of the smallest NFA. 

The classic method to convert an NFA to a DFA is known as the subset construction 

or powerset construction (Rabin and Scott, 1959). Each single state in the equivalent 
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DFA corresponds to a set of states in the NFA. The algorithm, as illustrated in Figure 

10 for the Thompson NFA of Figure 8, is as follows: 

 The DFA start state is the set of NFA states reachable by an ε-transition. 

 Starting with the DFA start state, repeat the following for every new DFA state 

created until no more new states can be found: 

o For each character from the alphabet of the language, compute the set of states 

reachable from the DFA state – this set of states constitutes a new state. 

 The final or accept states in the DFA are those whose set of NFA states contains at 

least one final state from the NFA. 

2.1.6. Trie 

A trie (from retrieval) is a multi-way ordered data tree structure which can be used for 

storing strings. All strings that branch from the same node share the same prefix. 

Figure 11 shows the trie for the set of strings P={bale, ball, bark}. 

 

{0,1,2,4,7,8}

{3,6,7,8} {5,6,7,8}

{9,10}

a b

c
c

c

b

a

a

b

{11}

a

 

 

 

Transition Table 

DFA State, 

q 
δ(q,a) δ(q,b) δ(q,c) 

{0,1,2,4,7,8} {3,6,7,8} {5,6,7,8} {9,10} 

{3,6,7,8} {3,6,7,8} {5,6,7,8} {9,10} 

{5,6,7,8} {3,6,7,8} {5,6,7,8} {9,10} 

{9,10} {11} ∅ ∅ 

{11} ∅ ∅ ∅ 

    

Figure 10. NFA to DFA conversion of (a|b)*ca using Subset Construction   
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Figure 11. Trie for set of strings P={bale, ball, bark} 

A trie is actually a deterministic acyclic automaton which recognises the 

corresponding set of strings. Tries are important in string matching. 

2.2. Network Intrusion Detection and Prevention Systems 

2.2.1. Snort 

Snort is probably the best known network-based NIDPS software and is used as the 

reference point for the architectures proposed in this thesis. It can be run in three 

different modes: 

 NIDS 

 NIPS (inline mode) 

 Sniffer mode – like tcpdump 

2.2.2. Snort Rules 

Snort is a signature-based NIDPS. Sourcefire Vulnerability Research TeamTM (VRT) 

rules are the official rules for Snort. Updates to the VRT database are made 

immediately available to users who have availed of the paid subscription service and 

are released free of charge to all registered users after 30 days. (Note: Sourcefire is 

currently in the process of being acquired by Cisco). An alternative rule set provider 

company to Sourcefire is Emerging Threats Pro LLC. It maintains two rule sets, 

ETopen which is free, and ETpro which is a paid subscription service. The ET and 

VRT rules have the same format and it is possible to load both rule sets on the same 

Snort installation. 

Users can also write their own rules. Snort rules have two parts, the rule header and 

the rule options, as shown in Figure 12.  
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Rule Header 

The rule header defines the criteria for matching against packet headers and the action 

to be taken on finding a match. The criteria consists of the protocol type, the source 

and destination IP addresses and port numbers and, whether the rule is unidirectional 

(->) or bidirectional (<>). 

Rule 

Header: {
 

 

[alert, log, pass, activate, dynamic, drop, reject, sdrop] 

[ip, icmp, tcp, udp] 

[any, <Source IP address subnet>] 

[any, <port>] 

[->, <>] 

[any, <Destination IP address subnet>] 

[any, <port>] 

 

([content:, msg:, flags: pcre:, byte_test:, flowbits:]) 
Rule 

Options: 

Figure 12. Snort rule syntax (only some rule options are shown) 

alert is the most commonly used action and results in the generation of an alert 

message and the logging of the packet. The other actions are described by Roesch & 

Green (2012) in the Snort manual along with a description of how to create custom 

user-defined actions. 

Rule Options 

The rule options follow the rule header and are enclosed in a pair of parentheses. 

There may be one or more options separated by a semicolon. A rule matches only 

when its header and all of its options match, i.e. logical AND. The following are some 

of the more important rule options, full details of which can be found in the Snort 

manual: 

 content – the content keyword defines a fixed string to be searched for in the 

packet payload. This fixed string can be text and/or bytecode. A single rule can 

contain multiple content keywords, e.g. 

alert tcp any any -> any 90 (content: "Some string";) 

alert tcp any any <> 10.1.1.0/24 88 (content:"|3c 

ff|G|01|H";) 
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 msg – this defines the message to use when signalling an alert or when logging a 

packet, e.g. 

alert tcp any any -> 10.1.1.0/24 53 (msg:"Some string attack 

attempt"; content:"Some string";) 

 flags – this checks if the specified TCP flags are present in the packet. 

 pcre – this allows patterns to be specified as PCRE regexes. 

 byte_test – this checks the value of a byte, at a specified offset in the packet 

payload, using less than, greater than, equals, bitwise AND or bitwise OR 

operator. 

 flowbits – the flowbits keyword allows rules to track TCP state, effectively linking 

rules together, e.g. 

alert tcp any 143 -> any any (content:"IMAP login"; 

flowbits:set,logged_in, flowbits:noalert)  

alert tcp any any -> any 143 (msg:"IMAP lsub"; 

content:"LSUB"; flowbits:isset,logged_in;) 

A positive match in the first rule sets the user defined logged_in state name but 

generates no alert because the noalert keyword is specified. The second rule 

checks if the logged_in state name is set. 

2.2.3. Suricata 

The open-source software Suricata was developed as a multi-threaded alternative to 

Snort (Open Information Security Foundation, n.d.). Although the code is original, 

many architectural concepts were borrowed from Snort, and it can use the same rule 

sets. A performance comparison of Snort and Suricata is not straightforward as it very 

much depends on the rule sets, the test traffic and any optimisation settings used. 

White et al. (2013) found that Suricata performs better than Snort, even for a single 

core. Albin and Rowe (2012) observed no significant speed advantage of Suricata 

over Snort except on processors with a large number of cores. 

2.2.4. Bro 

Bro (Paxon, 1999; Sommer, 2011) is an open-source UNIX-based NIDS and network 

traffic analysis system. Its detection mechanism is activity-based with some support 

for anomaly detection. The Bro system consists of two parts, the event engine and the 

policy scripts. The C++ engine analyses the traffic and generates neutral events which 

do not necessarily indicate an attack. These events are then processed by the policy 
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scripts written in the Bro scripting language which may result in logging to a file, 

email notification, execution of another script, etc. This scripting language gives a lot 

of flexibility but the scripts that are provided with Bro by default typically need 

significant customisation. 

2.2.5. Market Trends 

Gartner recently produced a report (Young and Pescatore, 2012) on how the IPS 

market is evolving. It found that IPS functionality is increasingly being absorbed into 

Next Generation Firewall (NGFW) products, although standalone next generation IPS 

(NGIPS) products are still available. Commercial stand-alone IPS systems include: 

 The McAfee (an Intel subsidiary) Network Security Platform includes a range of 

models capable of high speed performance via a load-balanced cluster. It supports 

both string and regex DPI and can read Snort rules. 

 HP Tipping Point IPS is available as a standalone hardware IPS, as IPS blades for 

use in HP switches and, as a software version. It supports both string and regex 

matching and provides tools for importing Snort rules. 

 Sourcefire Inc. (in the process of being acquired by Cisco), the commercial 

manager of the open-source Snort software, has an NGIPS product which runs on 

its FirePOWER hardware platform.  

 Cisco stand-alone IPS products include the 4300 and 4500 series appliances, plus 

blades for adding IPS capability to Cisco routers. IPS software is also available for 

the Cisco IOS platform. Cisco IPS systems cannot read Snort rules. 

NGFW systems which include next generation IPS capability include: 

 Cisco Adaptive Security Appliances. 

 Sourcefire has a NGFW solution that can run on the same FirePOWER platform 

as its NGIPS. 

 Checkpoint’s Software Blade Architecture allows customers to select and combine 

firewall, VPN, IPS, anti-spam, etc., as part of a single NGFW system. 

 Palo Alto Networks provides IPS functionality, including hardware acceleration, 

as part of its NGFW platforms. 

 Fortinet’s FortiGate Network Security Platform incorporates a wide range of 

security technologies including firewall, VPN, IPS, etc. FortiGate has its own rule 

format which is quite similar to that of Snort. 
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2.3. Platforms 

2.3.1. Commodity Hardware 

Commodity hardware has the advantage of comparatively low cost and its 

performance may be adequate for many applications. Companies entering into IDS 

product development may prefer to use commodity rather than specialised hardware in 

order to reduce time-to-market, keep development costs down and deliver a more 

maintainable product. Such companies might see the use of specialised hardware as a 

second step reserved for the development of higher performance products once the 

commodity-based products have gained a market foothold. 

Commercial Off-The-Shelf (COTS) Server 

Most deployments of software-based NIDPS, such as Snort and Suricata, are on 

standard servers. Multi-core servers can be used to take advantage of the multi-

threaded architecture of Suricata. 

Graphics Processing Unit (GPU) 

The highly parallel architecture of GPUs makes them effective for many complex 

algorithms. Their relatively low cost has prompted much research into their use for 

offloading of regex matching from the CPU (Antonello et al., 2012). Vasiliadis et al.’s 

(2009) GPU-based DPI system uses fixed string pre-filtering software running on the 

CPU in order to reduce the amount of regex matching that needs to be performed by 

the GPU. Payloads that match in the pre-filter are forwarded along with a regex 

identifier to the GPU for regex matching. Zu et al. (2012) evaluated an NFA design on 

an NVIDIA GTX-460 GPU. 

2.3.2. Custom Hardware 

ASIC 

Application Specific Integrated Circuits (ASIC) have numerous advantages when it 

comes to implementing complicated network processing algorithms as they give the 

great design flexibility, thereby allowing very high traffic speeds, consuming 

relatively little power and having a small footprint. Unfortunately, these advantages 

come at a cost. ASIC development is slow and very expensive. The high costs include 

library and design software licences, manufacturing and engineering design. The 
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extensive testing required and slow manufacturing process result in a long project 

timescale. ASICs are inflexible in that they cannot be updated with bug fixes or 

improved algorithms.  

FPGA 

Field Programmable Gate Arrays (FPGA) provide a flexible design platform without 

the high cost of ASIC fabrication. Time-to-market is also reduced as the development 

timescale is much shorter. In terms of performance, an FPGA is typically much slower 

than an ASIC, but much faster than a CPU. The highly parallel nature of an FPGA 

makes it suitable for the multi-pattern matching involved in intrusion detection. 

An FPGA consists of a mix of configurable embedded SRAM (Block RAM), Clock 

Managers, high speed transceivers and I/Os, and logic blocks, all of which can be 

wired together via a configurable interconnect fabric. A memory interface is also 

provided for interfacing the FPGA with external DRAM or SRAM. Some FPGA’s 

include a hard core processor, e.g. Xilinx Virtex 5 includes a PowerPC 440 processor. 

Alternatively, a soft core processor can typically be generated using the vendor’s 

design tools. 

Besides reduced cost and development time, FPGA’s also have the important 

advantage of being reconfigurable, thereby allowing systems to be updated with new 

improved designs. Designs can also be ported to newer improved FPGAs when they 

become available.  

TCAM 

A Content Addressable Memory (CAM) is a special type of memory which returns the 

address of the first memory location that contains a supplied piece of data. The entire 

CAM is searched in just one clock cycle. A standard CAM is binary in that it can only 

search for ones and zeros. A Ternary CAM (TCAM) additionally allows bits to be 

masked as Don’t Care. One of the most common uses of TCAMs is in IP routers, 

where the Don’t Care bits are used to mask out some of the address bits in order to 

represent a subnet. The main disadvantages of TCAM are its high cost and high power 

consumption due to the extensive circuitry required for the parallel search. 

 Another disadvantage of TCAM from an NIDPS design perspective is that it only 

returns the first match rather than all matches. Yu and Katz (2004) describe how this 
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issue can be overcome for IP header multi-matching. Yu et al. (2004) propose how 

TCAM can be used for multi-pattern fixed string matching. Long patterns are split 

into multiple parts and so occupy several TCAM locations. One TCAM search is 

performed for each byte in the incoming packet payload. A full match is declared if all 

sub-patterns match in the correct order. Meiners et al. (2010) describe how TCAM can 

also be used for regex matching. They use a number of techniques to reduce the 

TCAM space required by the minimised DFA and to maximise the matching speed. 

Network Processor 

A network processor (NPU) is a software programmable device with multiple cores or 

engines. It differs from a standard multi-core processor in that it includes a number of 

optimised network processing features such as pattern matching and queue 

management. NPU vendors typically supply an API (Application Programming 

Interface) as a software library to simplify the development of application software to 

control the engines and hardware acceleration features, e.g. Netronome supplies an 

IPS/IDS Application Kit (Netronome, 2012) for the NFP and IXP processors. 

2.4. Summary 

The functionality of the architectures proposed in this thesis is designed to emulate 

that of Snort, the well-known open-source NIDPS. Snort uses a database of rules, 

known as the rule set, to list all the attacks it must search for in the network traffic. 

Each rule consists of a header and an options part. The header part lists the header 

values to be searched for in the IP packets’ IP and TCP/UDP headers, while the 

options part includes fixed string and/or regex patterns to be searched for in the packet 

payload. This thesis looks in detail at both multi-match header and regex matching. 

Regexes can be equivalently expressed as finite automata (FA) or regular grammar, 

and represent what are known as regular languages. Finite automata are widely used in 

regex-matching implementations, and can be categorised as either deterministic 

(DFA) or non-deterministic (NFA). Both forms are equivalent and a DFA is actually 

just a special case of an NFA. Several different algorithms exist for the construction of 

an FA from a regex and for the conversion between NFA and DFA forms. The 

essential difference between the behaviour of a DFA and an NFA is that an NFA can 

have multiple concurrently active states whereas a DFA only has one state active at a 

time. Intuitively, a DFA typically needs many more states that the equivalent NFA, 
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and therefore it occupies significantly more memory. An NFA implementation is more 

suited to platforms, such as an FPGA or ASIC, that can efficiently handle its parallel 

nature. A DFA, on the other hand, is typically used in processor-based software 

implementations that have access to a large amount of memory. 

Besides open-source NIDPS such as Snort, there are several commercial products 

available. Although a number of these products are standalone NIDPS, there is a 

growing trend to include this functionality in next generation firewall systems.  
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Chapter 3 - TCP/IP Reassembly 

In order to correctly analyse network traffic, NIDPS systems must reassemble any IP 

fragments or TCP segments before examining the reconstructed data flow for attack 

patterns. This reassembly must exactly match that on the target destination host, as 

otherwise an attacker may evade detection. Different operating systems have subtle 

differences in their implementations of IP fragment and TCP segment reassembly and 

so an NIDPS must select the reassembly procedure to use based on the OS of the 

target host, i.e.  target-based reassembly. An alternative approach is for the NIDPS to 

normalise the traffic, by removing any ambiguities, before forwarding to the 

destination. 

Performing TCP/IP tracking and reassembly in software at high traffic speeds places 

a very heavy work load on the processor due to the amount of memory copying and 

the potentially huge number of flows that need to be tracked. TCP Offload Engine 

(TOE) technology is available to reduce the load on server CPUs by shifting TCP 

layer processing to the Network Interface Card (NIC). Several commercial hardware 

IP cores are available as building blocks for ASIC and FPGA designs, e.g. from 

Intilop Corp. (2012) and PLDA (2012). However, these solutions are aimed at end 

host systems and are not suitable for performing connection tracking and reassembly 

in DPI solutions on intermediate hosts. 

Most existing research proposals on TCP/IP reassembly for NIDPS are either fully 

software based, such as the work of Novak and Sturges (2007), or fully hardware 

based, such as the works of Necker et al. (2002) and Schuehler and Lockwood (2004). 

In this thesis, a hybrid architecture is described which splits the processing between a 

slow path and a fast path, as shown in Figure 13. The fast path handles the most 

frequent tasks that can take advantage of the parallelism of hardware logic, while the 

slow path handles the less frequent but more involved tasks that are more suitable for 

software implementation. The outlined architecture is based on the Xilinx Zynq-7100 

System on Chip (SoC) with built-in hard dual-core ARM processor, but is equally 

applicable to any suitable FPGA or ASIC device with an internal or external CPU and 

sufficient internal memory. 

This chapter first covers the main points of the theory of IP fragmentation and TCP 

segmentation, including the dependency on OS type, followed by an overview of the 
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reassembly functionality included in the open source software NIDPS systems, Snort 

and Suricata. Finally, the hardware acceleration system is presented. This system is 

designed to emulate as much as possible the reassembly functionality of Snort. 
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Figure 13. Hybrid software-hardware processing 

3.1. Theory of IP Fragmentation and TCP Segmentation 
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Figure 14. TCP Header 

The establishment of a TCP connection between a client and a server is performed 

using the three-way handshake, as illustrated in Figure 15. First the client’s TCP layer 

sends a TCP segment to the server with the SYN flag set, the sequence number set to a 

randomly generated Initial Sequence Number (ISN) and, optionally, the Maximum 
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Segment Size (MSS) set to the largest segment size it can handle. The server receives 

the request and responds with a TCP segment with both the SYN and ACK flags set, 

the sequence number set to its own randomly generated ISN, the acknowledge number 

set to the sequence number it expects to receive next from the client, i.e. the received 

number plus one, and, optionally, the MSS it can handle. The connection is completed 

by the client responding to the server’s reply with a segment with the ACK flag set, its 

sequence number incremented by one and the acknowledge number set to the 

sequence number is expects next from the server, i.e. the sequence number just 

received plus one. If no MSS is included in a SYN segment, then the default value of 

536 bytes is assumed. Once the connection is established, both client and server send 

TCP segments at the lesser MSS of the two nodes. 

 

Figure 15. TCP 3-way handshake 

Sequence and Acknowledgment numbers 

Each byte of data in TCP is assigned a sequence number. During the 3-way 

handshake, the sequence number is set to the ISN when the SYN flag is, and the first 
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byte of data is numbered ISN + 1. The Acknowledgement number is valid if the ACK 

flag is set, and it contains the value of the next sequence number that the sender of the 

acknowledgement expects to receive. Note that once a connection is established and 

data is being transmitted, the ACK flag is always set. Figure 16 illustrates how the 

values of sequence and acknowledgement numbers are set during data transmission. 

Note that an ACK segment without any data does not result in the next sequence 

number being increased. Things to observe from Figure 16 are that multiple segments 

can be acknowledged with one ACK segment, that the ACK is cumulative, and that 

data can be included in the same segment as an acknowledgement.  

 

Figure 16. TCP data segment transmission 

TCP uses a sliding window flow control algorithm for the fast and efficient transfer 

of data. The window is the maximum amount of data that can be sent without waiting 

for an ACK.  The size of the window is based on the size of the receiver’s available 

buffer space for the connection, and it can be dynamically adjusted in an ACK 

segment. If transmitted data is not acknowledged within a certain time, it is 

retransmitted. TCP sequence numbers are used in the receiver’s TCP layer to 
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distinguish retransmitted data and to reassemble out-of-order and overlapping 

segments.     

3.1.2. The need for IP fragmentation 

IP fragmentation occurs in a network node if the size of the packets exceeds the 

Maximum Transmission Unit (MTU) of the outgoing interface. IP Fragmentation at 

intermediate nodes is usually avoided by using the technique of Path MTU Discovery 

(PMTUD) that determines the minimum MTU for the entire path from source to 

destination node. As the UDP protocol does not perform payload fragmentation, the 

most common occurrence of IP fragmentation is in the case of UDP traffic on source 

nodes. The TCP protocol, however, does perform fragmentation, which is known as 

TCP segmentation, if the data size is greater than the MSS. The MSS value usually 

ensures that fragmentation is avoided at the IP layer in the case of TCP traffic. 

The following IP header fields are used in fragmentation 

 Identification field: this value is the same in each fragment of a particular 

datagram 

 Flags field: The MF (More Fragments) bit is set in all fragments apart from the 

last; the DF (Don’t Fragment) bit is used to prevent fragmentation of an IP packet 

 Fragment Offset field: contains the offset, in 8-byte units, of this fragment in the 

original datagram, and, as a result, the data portion of each datagram, apart from 

the last, must be a multiple of 8 bytes in length 

 Total Length field: contains the size of the fragment, including the header (same as 

any IP packet) 
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Fragment 1: Data len=496. Offset=0

Fragment 2: Data len=496. Offset=496/8=62

Fragment 3: Data len=496. Offset=62+62=124

Fragment 4: Data len=412. Offset=124+62=186 

496 496 496 412

 

Figure 17: Example of IP packet fragmentation 

3.1.3. Path MTU Discovery 

Path MTU Discovery (PMTUD) (Mogul and Mooring, 1990) is a technique 

commonly used to avoid unnecessary IP fragmentation. It allows each node to 

determine the minimum MTU on the path to each destination in its routing table. 

PMTUD is a continuous process as dynamic routing may result in a decrease in the 

PMTU due to a different path being used. PMTUD works by setting the Don’t 

Fragment (DF) bit in the header of outgoing IP packets. When the packet reaches a 

node along the path that is unable to forward the packet because it is larger than the 

MTU of its outgoing interface, then that node will drop the packet and notify the 

sender using an ICMP Destination Unreachable – Datagram too big message. This 

message includes the next-hop MTU which allows the sender to try again with a 

smaller packet. This process is repeated until the packet successfully travels the full 

path to the destination.  
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Unfortunately, PMTUD frequently does not work because the ICMP messages are 

often blocked by firewall configuration. Packetization Layer Path MTU Discovery 

(PLPMTUD) (Mathis and Heffner) is a more robust alternative that does not require 

the use of ICMP messages.  It uses a transport layer protocol, such as TCP, to probe 

the path with progressively larger packets. Another method is a “hack” known as MSS 

clamping. This involves configuring a router or firewall to lower the MSS of all TCP 

connections passing through.  MSS clamping should only be used as a last resort as it 

can cause problems for some protocols. 

The TCP layer of a host calculates the MSS by subtracting the fixed lengths of the IP 

and TCP headers from the PMTU, i.e. PMTU minus 40. The length of IP or TCP 

options is not considered in the calculation. It is up to the sender of a TCP segment to 

ensure that it reduces a segment’s data length to compensate for any IP or TCP 

options fields. The MSS used for a particular connection is negotiated during the 3-

way handshake. With functioning PMTUD or PLPMTUD, IP fragmentation is only 

necessary on the sending host in the case of non-TCP datagrams, typically UDP, that 

are too large to fit in a single IP packet. 

3.1.4. IP Reassembly 

Reassembly is a complex task due to the fact that fragments may arrive out of order 

having followed different routes to the destination. Packet reordering in routers is now 

rare as most use connection-level parallelism instead of packet-level-parallelism 

(Dharmapurikar and Paxon, 2005). Fragments may also be retransmitted and their 

payloads may even overlap. Unfortunately, the standards do not specify what to do in 

the case of overlapping fragments, duplicate fragments, and duplicate fragments 

received after the packet has already been reassembled and consequently, different OS 

implementations differ in which copy of the data they give precedence to when 

reassembling the packet. 

3.1.5. TCP Segmentation 

The value of a TCP’s connection MSS usually ensures that fragmentation is avoided 

at the IP layer when carrying TCP traffic. The TCP layer on the source node is 

responsible for segmenting the data stream received from the application layer and 

adding a TCP header to create a TCP segment. This process is known as TCP 

segmentation or packetisation. The TCP layer on the destination node then 
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reassembles the data as it streams it to the application layer. This reassembly includes 

reordering and validating of segments as well as handling of duplicates and overlaps. 

A short note on terminology: all TCP traffic is in the form of TCP segments (from 

the segmented data stream); this is somewhat different to the IP layer where an IP 

fragment refers to a chunk of the data portion (or the corresponding IP packet 

containing that chunk) of a larger IP packet that was split up. 

TCP header fields relevant to segmentation/reassembly 

 Sequence number field: identifies the position of the first byte of data in this 

segment in the overall data stream 

 Acknowledgment number field: is only valid if the ACK flag is set. It identifies the 

position of the byte in the overall data stream that the sender of the ACK is 

expecting to receive next  

 Flags:  

o ACK: indicates that the Acknowledgment number is significant 

o SYN: this flag is set in the first packet from both client and server 

o FIN: no more data, close connection 

o plus a few other less significant flags 

3.2. Handling of Reassembly in different Operating Systems 

3.2.1. Simple Insertion and Evasion Attacks 

These attacks involve either sending an IP fragment or a TCP segment that is accepted 

by the NIDPS but dropped by the target host, or vice versa. One example would be 

where the attacker sends a FIN TCP segment with an invalid header which is dropped 

by the target host, but is accepted by the NIDPS, resulting in the NIDPS removing its 

record of the connection. The attacker can then send the malicious content in 

subsequent segments which would typically be ignored by the NIDPS since it no 

longer has a record of the connection, but the target host may accept the malicious 

content and thus be affected. Another example would be where the malicious content 

is spread over several segments, with the invalid segment in the middle. If the invalid 

segment is accepted by the NIDPS, it may not detect the malicious content, as the data 

contents of the invalid segment disguise the attack pattern. In the example shown in 

Figure 18, the attacker spreads the attack over six segments of a TCP connection. The 
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attacker, however, sends two versions of segment 4, the first containing part of the 

attack and the second carrying a harmless pattern. If the NIDPS uses the second 

version, then its pattern matching engine will not detect the attack. Whether or not the 

destination host is successfully attacked depends on its operating system. A Linux 

host, for example, would discard the old version of segment 4 and use the new 

harmless segment, and so would not be affected. A Windows host, on the other hand 

would discard the new duplicate segment and use the old segment, and so the attack 

would be successful. 

Seg1 A

Seg2 T

Seg3 T

Seg4 A

Seg5 C

Seg6 K

Client

WindowsA T T A C K

Server

A T T X C K Linux

X

A

à  what server application layer receives depends on 

its TCP layer implementation, i.e. it depends on the OS

Network

A T T A C KX

NIDS Monitor:

Is the data ATTACK or 

ATTXCK ?? We need to 

know how the TCP layer of 

this TCP connection’s 

server is implemented

Windows favours the old data

Linux favours the new data

Seg4 X

 

Figure 18: Example of insertion attack 

To avoid these attacks the NIDPS must take account of the following points: 

 How duplicate fragments and segments are dealt with depends on the 

implementation, i.e., on the destination OS. 

 Check for invalid combinations of code bit flags (SYN, ACK, etc.). 

 Check for valid checksum. 

 Many implementations (apart from Linux) only accept data if a code bit flag is set. 

 Some implementations (apart from MacOS) do not handle data in a SYN segment. 

 TCP options are handled differently by different operating systems, e.g. handling 

of PAWS (Protection Against Wrapped Sequence numbers), as described in RFC 

1323. 
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3.2.2. Creation of connection session 

An NIDPS has numerous options on how to implement connection session creation, 

the two main ones being: 

 Require 3-way handshake. 

 Synchronize on data segments (this has the advantage that existing connections 

can be detected by the NIDPS after it starts up). 

Both options need to be implemented carefully in order to avoid potential attacks 

(Ptacek and Newsham, 1998). 

3.2.3. TCP Stream Reassembly – Connection Window 

The NIDPS must handle the connection “window” in the same way as the target host. 

The window is the maximum number of bytes of data the receiver will accept from the 

sender without generating an ACK. The receiver discards any data received past the 

window. The receiver informs the sender of the new window size in an ACK segment. 

According to RFC 793, the receiver should not shrink the sender’s window, i.e. move 

the right window edge to the left. It can, of course, reduce the window size to a 

minimum equal to the existing window size minus the amount of data acknowledged 

by this ACK. However, RFC 793 also states that senders must be robust against 

window shrinking. 

Window shrinking presents a difficult problem because the instant in time at which 

the NIDPS detects changes in the window size is delayed with respect to the change 

on the target, e.g. there is a short interval of time between generation of an ACK 

segment on the target and its receipt by the NIDPS and during this interval the NIDPS 

is still using the old window size and is therefore vulnerable to an insertion attack. 

Fortunately, TCP window shrinking has been avoided in most TCP/IP stack 

implementations.   
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3.2.4. Overlapping Fragments or Segments 

Table 6. Reassembly Policies – segment data favoured when overlap occurs 

Start of new 

segment 

compared to 

start of old 

End of new segment 

compared to end of 

old 

Segment 

Labels from 

Figure 19 

Data selected by target OS
*
 

New Old New Old 

New starts 

before old 

New ends before old J B 

Linux 2.4+ 

Linux 2.2 

Windows/BSD 

Vista 

Solaris 

 

New ends same as 

old 
M E 

Linux 2.4+ 

Linux 2.2 

Windows/BSD 

Solaris 

Vista 

New ends after old L D 

Linux 2.4+ 

Linux 2.2 

Windows/BSD 

Solaris 

Vista 

New starts 

same as old 

New ends before old P H 

Windows/BSD 

 

Vista 

Linux 2.4+ 

Linux 2.2 

Solaris 

New ends same as 

old 
K C 

Linux 2.2 

Windows/BSD 

Solaris 

Vista 

Linux 2.4+ 

New ends after old Q I 

Linux 2.4+ 

Linux 2.2 

Windows/BSD 

Solaris 

Vista 

New starts 

after old 

New ends before old N F 

 Vista 

Linux 2.4+ 

Linux 2.2 

Windows/BSD 

Solaris 

New ends same as 

old 
O G 

 Vista 

Linux 2.4+ 

Linux 2.2 

Windows/BSD 

Solaris 

New ends after old J A 

Solaris 

 

Vista 

Linux 2.4+ 

Linux 2.2 

Windows/BSD 

*Windows signifies all Microsoft Windows versions released before Vista. More recent 

versions of Microsoft Windows probably exhibit the same reassembly behaviour as Vista, but 

this has not yet been verified. Others that behave like Windows include Win2003 Server, 

BSD, MacOS, HPUX10 & IRIX. HPUX11 has the same behaviour as Solaris. Linux 2.4+ 

signifies Linux 2.4 and newer. 
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Figure 19. TCP Segment overlap 

It is possible for an attacker to send several IP fragments with the same identification 

and offset but different data, or several TCP segments with the same sequence number 

but different data. Which fragment or segment is accepted by the destination host is 

OS dependent. Similarly, it’s possible for fragments/segments to partially overlap, and 

again, which data is used by the destination is OS dependent. The NIDPS system must 

match the target host behaviour in order to correctly detect any attacks (Novak and 

Sturges, 2007). The different ways in which TCP segments can overlap are illustrated 

in Figure 19 and the corresponding reassembly policies, based on target OS, are 

outlined in Table 6.   

3.2.5. TCP Stream – RST Validity Check 

RFC 793 states that, in all states except SYN-SENT, all RST segments are validated 

by checking their sequence numbers. A reset is valid if the sequence number is in the 

window.  However, different operating systems actually differ in how they validate a 

RST. Table 7 shows how Snort and Suricata validate RST segments when not in the 

SYN-SENT state. 
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Table 7: Target-based checking of RST segment 

Target OS Policy RST validity check 

HPUX11 RST sequence no. >= expected sequence no. 

Linux, 

Solaris 

RST sequence no. + payload len. >= last acknowledgement no. 

AND 

RST sequence no. < expected sequence no. + window size 

BSD, 

HPUX11, 

IRIX, 

MacOS, 

Windows, 

Win2003, 

Vista 

RST sequence no == expected sequence no.  

3.2.6. TCP Stream – Timestamp Validity Check 

The TCP timestamp is used by the PAWS algorithm in order to reject old duplicate 

segments. Handling of the timestamp depends on the target OS: 

 HPUX11 ignores timestamps for out of order segments. 

 Old Linux (2.2 and earlier), Windows & Vista allow the 3 way handshake to use a 

zero timestamp whereas Linux and Win2003 do not. 

 Linux accepts timestamps that are off by one. 

 Old Linux, all Windows OS and Solaris allow a 0 timestamp value, others do not. 

 Solaris stops using timestamps if it receives a segment without a timestamp on a 

stream where timestamps were in use. 

3.2.7. TCP Stream – Handling of repeated SYN segment 

 All Windows operating systems reset the connection if the sequence number of the 

repeated SYN segment is the next expected sequence number, otherwise the 

repeated SYN segment is dropped. 

 MacOS always ignores a repeated SYN segment. 

 Every other OS resets the connection if the SYN segment is not a retransmission 

of the original, i.e. if the sequence number of this SYN segment does not match 

the initial sequence number of the connection. Otherwise the repeated SYN 

segment is dropped. 
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3.3. Target-based Reassembly and Normalisation 

In order to avoid the possibility of evasion or insertion attacks, an NIDPS must either 

perform target-based reassembly (Novak and Sturges, 2007) or traffic 

normalisation/scrubbing (Malan et al., 2000). 

Target-based reassembly requires the NIDPS to be aware of the OS type of every 

destination node in the network it is protecting. In the case of the well-known open-

source software NIDPS systems Snort and Suricata, the OS must be configured 

manually for each destination IP address or subnet. Unfortunately, this approach is not 

ideal as reconfiguration of the NIDPS may be overlooked when nodes are added or 

removed and, it does not scale well for large networks. Dynamic Host Configuration 

Protocol (DHCP) servers also need to be carefully configured so that subnets are split 

by OS type. Active mapping (Shanker and Paxon, 2003) and passive OS 

fingerprinting (Taleck, 2003) are two techniques used for the automatic discovery of 

the target OS. The active mapping method involves sending specially built probe 

packets to target hosts and inferring how the OS performs reassembly from the format 

of the response packets. The downsides of this method are that the probe packets may 

be dropped by the destination nodes or blocked by a firewall and, it requires 

integration with any DHCP servers in the protected network.  The passive OS 

fingerprinting method infers how the OS performs reassembly by monitoring the 

destinations’ responses to fragmented traffic from the source. Problems with this 

technique are the added workload of monitoring the traffic and that the correct 

destination reassembly policy is only discovered after some fragmented traffic has 

already passed through. All of the above methods become more complicated if 

Network Address Resolution (NAT) occurs between the NIDPS and any destination 

node in the protected network.  

Malan et al. (2000) proposed a protocol scrubber aimed at converting ambiguous 

traffic flows into well-behaved flows. The simplistic approach to normalization is to 

buffer all unacknowledged data for every connection and to compare retransmitted 

data against that in storage. A more efficient scheme is to store hashes of the 

unacknowledged data.  Vutukuru et al. (2008) proposed such a hash-based system 

which is able to correctly handle retransmissions which are not aligned with the 

original segments boundaries. 
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3.4. TCP/IP Reassembly in Software 

The following is an analysis of how the open source Snort and Suricata software 

NIDPS systems perform IP packet and TCP fragment reassembly. An abstract 

illustration of the Snort software stack, operating in passive NIDS mode, is given in 

Figure 20. 

3.4.1. Snort 

Packet Decoder

Outputs

Detection Engine

Preprocessors

R
e

a
s
s
e

m
b

le
d

 

p
s
e

u
d

o
 p

a
c
k
e

ts

O
ri
g

in
a

l 
P

a
c
k
e

t

Packet Stream

P
a

c
k
e

t 
C

a
p

tu
re

SNORT

Frag3Stream5

 

Figure 20: SNORT Architecture 

Packet Decoder 

The Packet Decoder receives captured frames and adds pointers to critical data 

locations – the ethernet header, IP header, TCP header and payload. It also carries out 

some simple validity checks. 

Frag3 & Stream5 pre-processor 

The Snort preprocessor modules, Frag3 and Stream5, are responsible for IP 

defragmentation and TCP segment reassembly, respectively. The numbers at the end 

of the pre-processor names are used to differentiate these new versions from previous 

major versions which are now deprecated. The reassembled pseudo-packets generated 

by these modules are injected back into the Packet Decoder so that they can be 

processed by other preprocessors as appropriate. Both the pseudo-packets and original 



Chapter 3 – TCP/IP Reassembly 

 
49 

packets are analyzed by the DPI engine. The Frag3 module reassembles fragments 

into a single IP pseudo-packet with a maximum size of 65535 bytes. The Stream5 

module, by default, operates footprint-based flushing which results in the generation 

of a pseudo-packet once its footprint reaches the flush point limit. The footprint is the 

amount of data in the connection flow’s list of segments that has been acknowledged 

by the destination. Each TCP connection stream’s flush point is, by default, a pseudo-

random number in order to make it more difficult for an attacker to avoid detection by 

having the attack data span the boundary between two pseudo-packets. 

Stream5 also performs session tracking for TCP, UDP and ICMP. Both 

preprocessors generate alerts for certain fragment/segment-based attacks. 

Different reassembly policies can be configured on a per IP subnet basis, i.e. one 

particular target subnet can be configured to have a Linux reassembly policy, another 

to have a Windows Vista policy, etc. 

Pseudo-packets 

Each TCP session has two lists, one for the direction towards the client, and one for 

the direction towards the server, in which it queues received segments. When an ACK 

arrives, Stream5 checks if the flushing condition has been satisfied and, if so, 

constructs the pseudo-packet. 

The flush points used are contained in an array of 64 elements and can be 

 static values between 128 and 256 bytes 

 all elements 192 bytes 

 random values between 128 and 256 bytes (default) 

Each newly created session takes a flush-point value from this array, and the next 

session will take the following value, etc.  

The acknowledgment number of the ACK is compared to the sequence number of 

the first queued segment, and if the difference is greater than or equal to the flush 

point, a pseudo-packet is generated. Queued segments (that have been ACKed) are 

then copied into the pseudo-packet. If there are missing segments, then the pseudo-

packet will only contain the segments up to the first gap, and subsequent segments 

will be dropped. The pseudo-packet structure has an IP packet buffer size of 65535 

bytes. Pseudo-packets are injected into the detection engine (in the same way as the 
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original packets). Note that the stream is also flushed when a connection is about to 

close, and any remaining ACKed segments are merged into a pseudo-packet. 
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Figure 21: Snort TCP reassembly flowchart 
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Footprint-based flushing is the default in Snort. Protocol Aware Flushing (PAF) was 

added as a configurable alternative in Snort version 2.9.1 in order to allow reassembly 

of complete PDUs for HTTP, SMB and DCE/RPC protocols up to a configured 

maximum length. PAF support for FTP was added in version 2.9.2. For example, PAF 

guarantees a single HTTP request per pseudo-packet in the case of a HTTP request 

that spans several TCP segments and also in the case of a TCP segment that contains 

data from more than one HTTP request. PAF involves stateful analysis of the TCP 

data stream in order to pinpoint the start and end of each protocol’s PDU. The user 

can configure a maximum PDU length between zero (PAF disabled) and 63780 which 

Snort then adds to a value from the flush point array to give the actual flush point 

value for a particular flow. If the length of the reassembled PDU is less than the flush 

point, then the pseudo-packet will consist of a single PDU, otherwise it will be split. 

The higher the configured maximum PDU length, the better the detection accuracy. 

This comes at the cost of increased packet latency and the default value of 16k was 

found to be a good compromise. 

3.4.2. OISF Suricata 

Suricata, also includes a target-based TCP reassembly engine which has many 

similarities to that of Snort. 

One difference from Snort is that all analysis is conducted on pseudo-packets when 

operating in IDS non-inline mode, i.e. reassembled TCP segments that have been 

acknowledged. 

Important structures in software (non-inline mode) 

 Flow is associated with each 4-tuple of the source & destination IP addresses and 

the source & destination TCP port numbers. 

 TcpSession is created for each new TCP connection and a reference is made to it 

in the Flow structure, i.e. there are 2 Flows for each TcpSession, one for each 

direction. 

 For every packet received, the Flow is looked up in a hash table, and, if none is 

found, a new Flow is created. 

 For each TCP segment received, the TCP stream code checks if the Flow structure 

refers to a TcpSession. If not, a new TcpSession is allocated. 
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 Application analysis layer checks each Packet’s Flow structure to see if it contains 

the application layer protocol (i.e. was set on analysis of an earlier packet on the 

same flow). If not found, it determines the protocol type (e.g. HTTP) from 

analysing the application layer header and saves this protocol type in the Flow 

structure. So the application protocol type only needs to be worked out for the first 

packet in the flow. 
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Figure 22: Suricata TCP reassembly flowchart (non-inline mode) 
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TCP Stream Inline Mode 

Suricata can be run in IPS mode by combining it with iptables and NetFilter. In this 

mode, you can enable TCP inline streaming. In inline mode, the TCP reassembly 

engine does not wait for ACKs before reassembling segments. Instead it effectively 

normalises the TCP traffic, and payload inspection is performed on a sliding window 

basis. 

3.5. TCP/IP Reassembly in Hardware 

The overall hardware architecture of the proposed NIDPS system based on a Xilinx 

FPGA, such as the Zynq-7100 All Programmable SoC, is shown in Figure 23. The 

grey modules are Xilinx IP (Intellectual Property) cores while the white modules 

represent custom logic. All cores are connected using the Advanced eXtensible 

Interface 4 (AXI4) interconnect fabric which is the fourth generation of the Advanced 

Microcontroller Bus Architecture (AMBA) from ARM. Use of AXI4 effectively 

enables plug-and-play of IP cores on Xilinx FPGAs, simplifying the integration of 

cores from various sources (Sundaramoorthy et al, 2010). 
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Figure 23. TCP/IP reassembly and DPI architecture on Xilinx FPGA 

IP header and TCP/UDP checksums are validated by the Xilinx AXI Ethernet core 

and invalid packets are dropped. The Proto Lookup module is responsible for 

differentiating between TCP and non-TCP traffic which are streamed to two separate 

cores for processing. Each packet is prepended with an Ethernet port number field 

which is later used by the Port Lookup core to route the packet to the correct output 

Ethernet port. The TCP Processing Engine (PE) core carries out combined reassembly 

of all IP fragments and TCP segments into pseudo-packets which are then streamed to 

the DPI core. The Non-TCP PE handles all non-TCP traffic, reassembling any IP 

fragments into pseudo-packets. All the original packets, provided they are not dropped 

by the reassembly system, are also streamed to the DPI core. 
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In Snort, if the pseudo-packet generated by the Frag3 module contains TCP 

segments, it will be injected into the Stream5 module for TCP segment reassembly. It 

is therefore possible that the same payload data may be present in two pseudo-packets, 

one generated by Frag3 and one generated by Stream5, as well as in the original 

packet. In the hardware architecture proposed here, however, only one pseudo-packet 

is generated because TCP segment and IP fragment reassembly are carried out in 

combination in the TCP PE. 

3.5.1. TCP Processing Engine 

The operation of the TCP PE is illustrated in Figure 24. The scheme for storing 

packets in external memory, which is derived from the mbuf system used in the BSD 

Unix operating system, is shown in Figure 25. All mbufs are of the same fixed size for 

simplicity. Packets that are too large to fit in a single mbuf are spread over several 

mbufs in an mbuf chain using the next pointer. All packets for a particular connection 

flow are stored in an mbuf queue which is a list of mbuf chains linked using the 

next_pkt pointer. Each mbuf header also includes a len field which specifies the 

amount of data stored in that particular mbuf. The addresses of all free mbufs are 

stored in an FPGA FIFO primitive which is initialized by software running on the 

CPU. Buffers are allocated by the TCP PE on receipt of a packet and freed once the 

packet is flushed to the DPI core for inspection. 

The first operation of the TCP PE is to store each received IP packet in an mbuf 

chain in external memory. The packet’s IP addresses and TCP port numbers are then 

used to look up the matching connection record in Block RAM which is then updated. 

The Reassembly module passes the mbuf queue to the Flush module once the queue’s 

footprint has exceeded the configured flush point. Once an mbuf has been flushed to 

the AXI4 Stream, its address can be returned to the FIFO of free mbufs. Note that all 

the original, non-reassembled, packets are streamed to the DPI core in order that the 

original TCP header can be analyzed. This matches the behavior of the Snort software 

system. The CPU can, however, drop out-of-sequence packets under certain 

circumstances, which are outlined later. 



Chapter 3 – TCP/IP Reassembly 

 
56 

Store 

packet
AXI4-Stream

A
X

I4
Conn. 

Lookup

Flush 

packets

A
X

I4
-S

tr
e

a
m

External 

Memory mbufs

FIFO of free mbufs

Re-

assembly

BRAM 

Conn. 

Records

A
X

I4

Interrupt 

to CPU

FIFO of mbuf addresses & conn 

records (conns with holes)

Read by CPU

31 2

mbuf

address

1. mbuf address + IP  addresses + port numbers

2. conn. record

3. mbuf address (chain of mbufs to flush)

DPI

CPU

CPU

CPU

p
s
e

u
d

o
-p

a
c
k
e

t

FIFO of mbuf 

addresses (new conns)

AXI4-Stream
original packet

 

Figure 24. TCP Processing Engine 
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Figure 25. External memory packet buffers 
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Figure 26. TCP Connection Record 

TCP connections records, as shown in Figure 26, are stored in internal Block RAM 

(BRAM), which is accessible via the AXI4 interconnect. These records are created 

and deleted by software running on the CPU. There is a single connection record for 

each unique 4-tuple of the IP addresses and port numbers. As each record corresponds 

to a bidirectional traffic flow, there are separate sections for each direction of flow. 

Each section contains the IP expected fragment offset and TCP expected sequence 

number for the next packet received in a particular flow, the amount of data 

acknowledged by the receiver, and the addresses of the first and last mbuf chain in 

that flow’s mbuf queue in external memory. Each flow’s flush point is configured by 

software when the connection record is created. The expected fragment offset and/or 

sequence number fields are updated, as appropriate, following the receipt of each new 

packet on the flow. The new packet’s mbuf chain is linked to the last mbuf chain in 

the queue, if any, and the mbuf fields in the connection record are updated 

appropriately. If there is an existing queue, this simply involves reading the mbuf 

chain – last chain address from the record, incrementing it to obtain the next_pkt 
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location, and updating this with the address of the new packet’s mbuf chain address. 

The mbuf chain – last chain field can then be updated to the same value. The Amount 

acknowledged field is updated on receipt of packets on the opposing flow. The Base 

sequence number field, which contains the TCP sequence number of the first TCP 

segment in the mbuf queue, allows quick recalculation of the segment queue footprint 

when the amount of acknowledged data increases. The identification field stores the 

last IP header’s Identification value. It is used to validate that the second and 

subsequent fragments in a flow belong to the same reassembled packet. If a packet is 

received with a non-zero fragment offset and a mismatching identification, it is sent to 

the CPU for processing as there is a hole in the reassembled data stream. 

The Last time seen is a hardware generated timestamp which is updated every time a 

packet is received on the connection. The same current time can also be read by 

software in order to initialize the field on creation of the connection record. The 

timestamp is used by software to remove connections which have been inactive for a 

pre-configured amount of time. The Connection flags field includes the following 

single bit flags  

 DIVERT_TO_CPU indicates that any traffic on this connection is to be dealt with 

by software on the CPU 

 WAITING_FOR_FRAG_IN and WAITING_FOR_FRAG_OUT indicate that the 

mbuf queue of the corresponding flow is waiting for an IP fragment in order to 

allow completion of IP defragmentation 

 CHECK_PAWS_IN and CHECK_PAWS_OUT indicate whether or not PAWS 

(Protection Against Wrapped Sequence numbers) timestamp checking is to be 

performed 

Connection Lookup 

The most obvious way to perform connection lookup using the 4-tuple of the two IP 

addresses and two TCP port numbers is to use a Xilinx Content Addressable Memory 

(CAM) core. The CAM index can then be mapped to the connection record address 

using a simple array type table. As this 4-tuple lookup is simply a single match, fixed 

string lookup, it may be more efficient to use a design based on the Aho-Corasick 

(1975) algorithm which is suitable for FPGA implementation (Kennedy et al., 2010). 
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The operation of the Connection Lookup module is summarized in Figure 27. If no 

matching connection is found for a packet originating from the internal network then 

handling is handed over to the CPU in order to create a connection record.  Note that 

in order to be robust against Denial of Service attacks such as a SYN flood, packets 

originating from the external network do not trigger the creation of a new record. Such 

packets are passed directly to the DPI core without undergoing reassembly. If, on the 

other hand, a matching connection is found and the packet is not a TCP SYN, SYN-

ACK, FIN or RST, and it has a valid PAWS timestamp, then the connection record is 

passed to the Reassembly block to determine if the opposing data stream is ready to be 

flushed. Otherwise, or if the DIVERT_TO_CPU override flag is set, handling of the 

connection is passed over to software running on the CPU.  
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Figure 27. Connection Lookup flow chart 
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Figure 28. Reassembly flow chart 



Chapter 3 – TCP/IP Reassembly 

 
62 

Reassembly 

The Reassembly module, the functionality of which is summarized in Figure 28, is 

responsible for handling the reassembly of both IP fragments and TCP segments. It 

first checks that the received TCP segment’s IP fragment offset and sequence number 

match the expected value of the corresponding flow in the connection record. A 

mismatch indicates a special condition, such as a duplicate, overlapping 

fragment/segment or a hole in the data stream. When a mismatch is detected, handling 

of the connection is handed over to software running on the CPU. If the offset and 

sequence numbers are as expected, then the mbuf is inserted into the mbuf queue 

linked list and the connection record information is updated. 

The Acknowledge number in the header of the received TCP segment may result in 

the increase of the Amount acknowledged field for the opposing flow. The opposing 

flow is therefore checked to see if its mbuf queue is ready to be flushed as a pseudo-

packet. If no more IP fragments are required and the queue’s footprint has reached the 

flush point, then flushing can proceed. The footprint is simply the Amount 

acknowledged minus the Base sequence number. 

Flushing of Packets 

The Flush module converts an mbuf queue into an IP pseudo-packet with a single TCP 

header which is streamed to the DPI core via the AXI4-Stream interface. It can be 

triggered by both the Reassembly module and the CPU. 

3.5.2. Non-TCP Processing Engine 

The Non-TCP PE is simpler than its TCP equivalent. It monitors all non-TCP traffic 

for IP fragments by checking the header’s MF flag and fragment offset. On detection 

of a fragment, it uses the 4-tuple of the source & destination addresses, protocol type 

and identification field to look up the corresponding fragment tracker record, as 

illustrated in Figure 29. If no record is found, then the mbuf address is sent via a FIFO 

to the CPU for processing. Software running on the CPU creates the fragment tracker 

record and updates the TCAM or search algorithm data to enable reassembly of the 

fragment stream in hardware. 

Fragment tracking for a particular fragment flow is handed back to the CPU on 

detection of a hole in the reassembled data stream. 
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Figure 29. Non-TCP Fragment Tracker Record 

3.5.3. Software on CPU 

The functionality of the software running on the CPU is mainly based on that of Snort. 

The tasks it performs include 

 TCP connection record creation based on receipt of TCP segments from the 

internal network. Connections can be created on receipt of SYN, SYN-ACK and 

data segments. The latter is known as midstream pickup in Snort Stream5. Each 

connection record is configured with a pseudo-random flush point. 

 Non-TCP fragment tracker record creation based on receipt of an IP fragment 

carrying a non-TCP protocol. 

 Update of the CAM or search algorithm data. 

 Handles TCP RST and FIN segments, closure of connection and deletion of 

connection record. 

 Target-based handling of segments/fragments that are out of order, duplicates or 

overlapping, or have unexpected PAWS timestamps. 

 Timing out of inactive TCP connection & IP fragment records and, freeing up of 

associated memory. 

3.5.4. Race condition 

A race condition can occur if software on the CPU creates a new connection or 

fragment tracker record and disables the DIVERT_TO_CPU flag while there are other 

packets from the same connection flow in the mbuf FIFO awaiting processing by the 

CPU. If a new packet were then received by the hardware PE, it would incorrectly 

detect a hole in the data stream and therefore enable the DIVERT_TO_CPU flag. The 
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likelihood of this condition can be minimized by having the software only disable the 

flags of all the newly created records once it has emptied the FIFO. 

3.5.5. Handling high processor load 

If the load on the CPU becomes too high, then out-of-order TCP segments will be 

dropped, thereby forcing the source to resend. It will also drop out-of-order segments 

from a connection if the corresponding mbuf queue becomes excessively long. 

The system is robust to a TCP SYN flood DoS attack because connection records are 

only created based on traffic from the internal network. However, the creation of IP 

fragment tracker records based on the receipt of fragments from the external network 

makes the system vulnerable to IP fragment DoS attacks. Such a scenario is unlikely if 

the incoming traffic has already been firewalled. Nevertheless, a limit must be 

imposed on the number of mbufs used for reassembly of IP fragments received from 

the external network. 

3.5.6. Evaluation and comparison with related work 

Given that all packets are stored in external memory, the memory architecture is 

critical to achieving high traffic throughput. The Zynq-7100’s integrated DDR 

memory controller can be configured to provide 16-bit or 32-bit wide access at up to 

1333Mb/s per pin in the case of DDR3 (Xilinx, 2013), giving a total maximum 

memory throughput of 42.66Gb/s if 32-bit wide access is used. The controller is 

multi-ported, allowing shared access to the memory from the CPU and the 

Programmable Logic (PL). It has four 64-bit AXI slave ports – one dedicated to the 

CPU, two dedicated to the PL, and one accessed via the AXI4 Interconnect. These 64-

bit ports can operate at up to half the maximum DDR3 frequency, i.e. 666MHz. 

Assuming all traffic is written to, and read from, SDRAM once, the maximum 

theoretical traffic throughput is 21.33 Gb/s. If the system has two Ethernet ports, then 

the maximum port throughput is 10.5 Gb/s, making it feasible to use 10G ports. This 

theoretical maximum throughput is dependent on the PL design achieving timing 

closure through the use of pipelining, and maximum use being made of the available 

memory bandwidth. The Zynq-7100 device has approximately 3MB of internal 

memory, sufficient space for almost 36,000 TCP connection records. However, in 

practice some of this memory will be required for other purposes such as FIFOs. 
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Related work includes the research done by Necker et al. (2002), who describe how 

TCP/IP reassembly and tracking can be performed on an FPGA as part of an NIDS. 

Their design, which uses the Xilinx Virtex 2000E, can process a single TCP flow at 

3.2Gb/s and is capable of being extended to handle up to 30 flows. Schuehler and 

Lockwood (2002,2004) describe a high performance TCP flow monitor called TCP-

Processor which is capable of handling 8 million bidirectional TCP flows at 2.5Gb/s. 

Rather than perform packet reordering, their design simply drops out of order packets, 

thereby forcing the source to resend. This simplifies the design and makes it more 

robust against attacks, but increases the amount of network traffic. An alternative 

design involves buffering the packets of a particular connection until a missing packet 

arrives and the “hole” is filled. Only then can the payload data be streamed to the DPI 

engine for inspection. However this buffering makes the system vulnerable to an 

attack in which an adversary tries to overflow the buffer by injecting a high number of 

packets on a particular connection following a hole and/or by opening a very large 

number of connections containing holes. Dharmapurikar and Paxon (2005) describe 

an architecture which performs reordering but is robust in the face of these attacks. 

They observed that the most common case of out-of-order packets is a single hole in 

one direction of the connection. Their design limits each connection to a single hole 

and applies a limit to the buffer usage of each connection. In order to resist an 

adversary who opens multiple connections with holes, it limits the number of 

connections with holes to just one per client. The design also includes a randomised 

eviction policy to be used when the buffer reaches capacity. The issue of insertion and 

evasion attacks is avoided by normalising the traffic in order to remove any 

ambiguities. 

The architecture described in this thesis handles the most common case, of TCP 

connections without any holes in the reassembled stream, directly in hardware without 

any software intervention. In normal cases, only TCP connection setup and tear-down 

are handled in the CPU. Once any special case occurs, such as an out-of-order or 

duplicate segment, then handling is passed to the CPU. Because both the external 

SDRAM and internal BRAM are shared between the PL (Programmable Logic) and 

CPU, only a reference to the TCP connection record and to the latest packet buffer 

needs to be passed to the CPU to instigate the handover. If the CPU becomes 

overloaded due to an excessive number of TCP connections with holes, then the 

hardware can be configured to directly drop any out-of-order segments, i.e. revert to 
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the Schuehler & Lockwood proposal. The architecture, unlike previous proposals, also 

handles IP fragment reassembly in hardware. 

Existing research confirms that out-of-order packets are relatively rare.   Based on 

the analysis of traffic traces from the Sprint backbone network in 2002, Jaiswal et al. 

(2007) found that about 4% of packets on TCP connections were out-of-sequence. 

Studies by Murray & Koziniec (2012) and by Zhao et al. (2012) found that the 

proportion of out-of-sequence packets was well under 1%. These figures back up the 

design decision to handle streams with out-of-sequence packets in the slow path. 

3.6. Conclusion and Future Work 

This chapter explains why TCP/IP reassembly is a necessary prerequisite to accurate 

DPI in NIDPS systems. A description is given of the theory of the reassembly of IP 

fragments and TCP segments and of how this is implemented in the open source 

NIDPS Snort and Suricata. Passive NIDS systems need to perform target-based 

reassembly in order to detect insertion and evasion attacks. Inline NIPS systems can, 

on the other hand, normalise the traffic in order to remove any ambiguities. 

Implementing TCP/IP reassembly in hardware is a challenging task due to decision-

making required to reorder packets, avoid buffer overflow in the face of DoS attacks, 

and track the states of a potentially huge number of connections.  

The proposed hardware-based reassembly system takes advantage of the fact that 

out-of-sequence packets are rare under normal circumstances by carrying out target-

based reassembly of the affected streams in software while dealing with the normal in-

sequence streams directly in FPGA programmable logic. The proposed system is 

capable of handling the traffic from two 10G Ethernet ports and up to 36,000 

concurrent TCP connections. The latter number could be increased by using an FPGA 

device with a larger amount of internal memory. The main contribution of this 

research work is that it improves on existing schemes by dealing with out-of-order and 

overlapping IP fragments and TCP segments, avoiding the need to drop packets in 

order to force the originating host to resend.   

The proposed system uses footprint based flushing, the default setting in Snort. 

Further research is required to determine if the PAF feature is suitable for hardware 

implementation. The recently proposed TCP Fast Open (TFO) extension (Cheng et al., 

2013) also needs to be looked at. The current TCP specification allows clients to 
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include data in the SYN segment but in practice only the Mac OS has accepted data in 

a SYN segment (Novak and Sturges, 2007). TFP, however, allows SYN segments to 

contain data in addition to allowing servers to send data to the client before 

completion of the 3-way handshake. The design proposed in this thesis sends such 

SYN+data segments, received from the external network, to the DPI core without 

performing reassembly as the connection record is only created on receiving the first 

segment from the internal network. Full reassembly of TFO data streams is for future 

consideration. 

Other future work includes investigating the possibility of handling most out-of-

sequence packets in hardware, with only the ambiguities caused by duplicate and 

overlapping packets being dealt with in software. The design also needs to be 

extended to support IPv6 in addition to IPv4. 
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Chapter 4 - Multi-match Header Classification 

The most commonly proposed solutions to multi-match classification are TCAM-

based and, as a result, suffer from several disadvantages such as higher cost, high 

energy consumption, and low storage efficiency. This thesis examines alternative 

algorithmic solutions that can use SRAM in place of TCAM. A number of well-

known single-match packet classification algorithms were adapted and their multi-

match classification performance compared in terms of memory requirements, energy 

consumption and packet processing speed. These were then compared with two 

existing multi-match solutions. 

NIDPS designs are generally split into a header-based multi-match classification stage 

and a payload-based Deep Packet Inspection (DPI) stage. These stages can be in 

parallel or in series. In the multi-match classification stage, the header of the incoming 

IP packet is compared against the 5-tuple header section of all rules. In a series 

architecture the payload sections of all the resulting matching rules are then compared 

against the packet payload in the follow-up DPI stage. 

Multi-match classification differs from the single-match classification used, for 

example, in routers, in that it must return all matching rules as opposed to just the 

single highest priority match. 

4.1. Characteristics of NIDS Rule Sets 

Table 8: Example Snort rule 

Header  alert tcp $EXTERNAL_NET 6666:7000 -> $HOME_NET any 

Options  content:"|3A|"; offset:0; content:" 302 "; content:"=+"; metadata:policy 

security-ips drop; classtype:policy-violation; sid:1790; rev:5; 

Snort rules are made up of two parts, the rule header and the rule options, as shown in 

the example rule in Table 8. Only the rule header is relevant to multi-match header 

classification. The two most important Snort variables are $EXTERNAL_NET and 

$HOME_NET. $HOME_NET has a default value of any and can optionally be set to 

the network or networks being protected. In this analysis it is assumed to be a single 

subnet. $EXTERNAL_NET is typically left at its default value of any or can be set to 

!$HOME_NET  if $HOME_NET is not set to its default value of any. In this analysis it 

is assumed that $EXTERNAL_NET is set to its default value. The example rule header 

of Table 8 specifies a protocol type of “any” (i.e. wildcard), source IP address of 
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$EXTERNAL_NET, a source port in the range 6666 to 7000, a destination IP address 

of $HOME_NET and a destination port of “any” (i.e. wildcard). 

As shown in Table 9, the Snort rule set downloaded from www.snort.org, in January 

2010, contains a total of 8454 rules. A combination of Linux shell scripts and software 

implemented in C code was used to analyse the rule set in order to extract the 

information given in this table. It was found through this analysis that there are only 

743 unique rule headers. Snort rules can specify port fields in a number of ways, 

including lists of individual ports, negations, etc. The classification algorithms 

evaluated require the fields to be specified as either single ranges or single prefixes 

and therefore the Snort rules need to be converted into this format. This conversion 

results in an increase in the number of unique rule headers to 797 in the case of port 

ranges and 1273 in the case of prefixes. 

Table 9: Statistical information for Snort 2.8 rule set (January 2010) 

 
Unprocessed 

rule set 

After expansion 

of port fields to 

single ranges 

After expansion 

of port ranges to 

prefixes 

Total number of rules 8454 − − 

No. unique header 5-tuple 

combinations 
743 797 1273 

No. unique Source 

addresses 
8 8 8 

No. unique Destination 

addresses 
12 12 12 

No. unique Source ports 216 225 285 

No. unique Destination 

ports 
420 412 508 

No. unique Protocol types 4 4 4 

No. unique Address pair 

combinations 
− 21 21 

No. unique Port pair 

combinations 
− 621 1028 

On examination of the compressed set of 1273 rules (with ports expressed as 

prefixes), it is observed that there are only 8 unique source address prefixes, 12 unique 

destination address prefixes and 21 unique combinations of these two fields. The 

statistics given in Table 9 have a significant impact on the performance of the 

algorithms evaluated in this chapter. The relatively low numbers of unique IP 

addresses, for example, means that only a very small TCAM would suffice for IP 
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address matching. The low numbers of unique ports relative to the overall number of 

rules means that a compressed bit vector can be used to represent the rules for each 

field, thereby reducing the amount of memory required. The relative number of unique 

ports versus addresses also influences the assignment of these fields to dimensions in 

multi-dimensional algorithms such as EGT-PC discussed in section 4.3.3. 

4.2. Proposed Architecture 

4.2.1. Pre-processing 

The Snort rule set first needs to be compressed into a set which only contains unique 

5-tuple header combinations. If the original rule set contains rules numbered i=1..N, 

then each of the rules in the compressed set will have an associated list of one or more 

original rule numbers with values in the range 1 to N. The mapping from compressed 

rule to original rules and the retrieval of the associated rule option are performed in 

the follow-up stage of the proposed scheme as shown in Figure 30. 

Multi-match Classification

based on compressed rule set

Mapping of compressed rule

numbers to original rule

numbers

Retrieval of rule options &

DPI

Packet Headers

Matching compressed

rule numbers

Matching original

rule numbers

Action
 

Figure 30: Overall proposed NIDS Scheme 
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4.2.2. Top-level Architecture 

This thesis looks into possible solutions for the multi-match classifier, i.e. the first 

block of the scheme shown in Figure 30. This block takes the IP packet header as 

input and outputs a bit vector of length equal to the number of compressed rules, i.e. 

1273 bits in the case of the Snort rule set used. 

4.3. Algorithms 

4.3.1. Introduction 

Ternary Content Addressable Memory (TCAM) provides the most straightforward 

hardware solution to single-match packet classification. However, its high cost and 

high power consumption led to extensive research into several alternative algorithmic 

solutions (Taylor, 2005), including the decision tree–based algorithms Hypercuts 

(Singh et al., 2003), Extended Grid of Tries with Path Compression (EGT-PC) 

(Baboescu et al., 2003; Srinivasan et al., 1998), and Allotment Routing Table (ART) 

(Hariguchi, 2002), each of which is analysed in this thesis. Each algorithm was 

implemented in C code and adapted for multi-match classification. Existing open 

source single-match software was reused where possible.  

Evaluation of software implementations was carried out using sample packet header 

sets generated using ClassBench (Hoffman and Strooper, 1997) based on the 

compressed Snort rule set. 

Estimates of energy consumption per packet, as presented later in Table 16, were 

obtained by simulating the software implementation on a StrongARM SA-1100 using 

Sim-Panalyzer (Mudge et al., 2004). The following typical configuration parameters 

were used: 

 clock frequency 200 MHz 

 5% clock skew 

 voltage 1.8 V 

 16 Kbyte instruction cache 

 8 Kbyte data cache 

 180 nm process technology 

The software was built with compiler optimization enabled. 
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In order to fairly compare the energy efficiency of the software and hardware 

implementations, the power figures were normalised according to the approach 

outlined by Kinane (2006). The power P in a process L with voltage V can be 

normalized to a reference process L′ with voltage V′ using the following formula: 

V

V

L

L
PP










 


2

 

All power figures given in this chapter are for a device using 65nm technology with 

a core voltage of 1V, i.e. L′ = 65nm and V′ = 1. 

4.3.2. Hypercuts 

Hypercuts, a well-known single-match algorithm, was the first to be evaluated using 

existing C and VHDL single-match implementations from the author’s MEng research 

work as the starting point. It has the advantage that it needs little change for use in 

multi-match classification other than modifying it to return all matches from the linear 

search of a leaf node’s rule list. Unfortunately, Hypercuts was quickly ruled out as a 

possible multi-match solution because of two serious disadvantages that quickly 

became apparent: 

 The high degree of overlap in the rule set results in a memory explosion. 

 Leaf nodes generally contain a large number of rules resulting in a lengthy linear 

search. 

4.3.3. EGT-PC 

The EGT-PC (Baboescu et al., 2003; Srinivasan, 1998) algorithm is based on a 

structure called the grid-of-tries. 

Basic Grid-of-Tries 

A trie is basically a binary search tree where each branch leaving a node is labelled 

with 0 or 1. The prefix corresponding to a particular leaf node is the concatenation of 

all of the bits encountered on travelling from the root to that leaf node. A grid-of-tries 

is used for two dimensional (i.e. two field) matching. For each two dimensional rule, 

nodes in the first dimension trie have a pointer to the root of a corresponding second 

dimension trie. Nodes in the 2
nd

 dimension trie contain a list of rules corresponding to 

the node. 
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Table 10: Example Rule Set 

1
st
 Dimension 2

nd
 Dimension Rule 

0111* 000* R1 

0111* 00* R2 

0111* 1* R3 

0* 001* R4 

0* 00* R5 

0* * R6 

* * R7 

An example 2-dimensional rule set and the corresponding basic grid-of-tries are 

shown in Table 10 and Figure 31, respectively. This rule set results in three second 

dimension tries in addition to the usual single first dimension trie. Each successive 

second dimension trie corresponds to a shorter first dimension prefix. The 1
st
 second 

dimension trie corresponds to the first dimension prefix 0111, the 2
nd

 to 0* and the 

third to *. The search algorithm involves finding the longest prefix match in the 1
st
 

dimension and then using a pointer stored at that node to jump to the 2
nd

 dimension 

trie where the matching rules are found at each node traversed until the longest 

matching prefix is found. e.g. (0000, 0001) would match “0” in the 1
st
 dimension, the 

matching node of which is linked to the second 2
nd

 dimension trie. “00” would match 

in that trie, giving R5, R6, R7 as the matching rules.  In single match packet 

classification, each rule has a cost, and the single matching rule is that which has the 

lowest cost. 

The basic grid-of-tries suffers from a memory blowup problem because each 2
nd

 

dimension trie must include the 2
nd

 dimension prefixes which correspond to shorter 1
st
 

dimension prefixes, e.g., the branch and rule corresponding to rule R4 in the second 

2
nd

 dimension trie must be replicated in the first 2
nd

 dimension trie.   
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Figure 31. Example basic Grid-of-Tries 

Backtracking 

The memory blowup issue can be avoided if each 1
st
 dimension node points to a 2

nd
 

dimension node which only includes rules with a 1
st
 dimension field which exactly 

matches the prefix of the 1
st
 dimension node. The grid-of-tries for the example rule set 

in Table 10 is shown in Figure 32. The search algorithm is modified to search all 2
nd

 

dimension tries associated with the matching 1
st
 dimension node and all its ancestor 

nodes, i.e. backtracking is used. e.g. (0111, 0010) matches “0111” in the 1
st
 dimension 

trie and “00” in the corresponding 2
nd

 dimension trie, giving R2 as a match; but “0” in 

the 1
st
 dimension is also a match, with the corresponding 2

nd
 dimension trie giving R6, 

R5 and R4 as matches; similarly, R7 is a match in the third trie. Therefore R2, R4, R5, 

R6, R7 are all matches. Although the backtracking system saves storage, it requires 

more time to search multiple second dimension tries. 
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Figure 32. Example basic Grid-of-Tries with backtracking 

Switch Pointers 

Srinivasan et al. (1998) describe how the need for backtracking can be eliminated, and 

thereby the search time improved, through the use of switch pointers. If the input is ( 

0111, 0010) in the example shown in Figure 33, then matching will fail at node x and 

the switch pointer will transfer the search directly to node y, avoiding the need to 

search the entire second 2
nd

 dimension trie from its root. The search will therefore 

return R2 and R4 as the matching rules. R5, R6 and R7, which could potentially be 

lower cost matches, are missed.  Srinivasan et al. (1998) solve this problem by 

maintaining a variable, storedFilter, in each node of the 2
nd

 dimension trie. Each node 

ν with 1
st
 dimension prefix P1 and 2

nd
 dimension prefix P2 has a variable 

storedFilter(ν) that stores the lowest cost rule having a 1
st
 dimension field which is a 

prefix of P1 and a 2
nd

 dimension field which is a prefix of P2. 
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Figure 33. Example basic Grid-of-Tries with Switch pointers 

Extended Grid-of-Tries (EGT) 

Baboescu  et al. (2003) describe how 2D search schemes can be extended to handle 

5-tuple packet classification by simply modifying the 2D scheme to return all rules 

(and not just the lowest cost rule) which match the IP source and destination address 

fields and then using a linear search to find which of those rules match the protocol 

type and port number fields. Their Extended Grid of Tries (EGT) algorithm uses jump 

pointers instead of switch pointers, as illustrated in Figure 34. Jump pointers are 

designed so that all matching rules are found and not just the lowest cost rule. If the 

node containing the jump pointer is associated with prefix P1, then the jump is to a 

node, in another second dimension trie, which has an associated prefix that is the 

longest matching prefix of P1 and contains at least one rule. Each node, with an 

associated rule, that be reached directly by a jump pointer, also includes a link to its 

closest ancestor node that has associated rules. This is to ensure that all matching rules 

can be efficiently retrieved when a matching node is arrived at via a jump pointer. 

If the input is (0111, 0010) in the example shown, then the matching will fail at node 

L2 (rule R2 matches) and a jump is made to L5 (rule R5 matches, link to L6 gives R6 

as a match). This trie is then traversed to node L4 (rule R4 matches), followed by 
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jump to L7 (R7 matches). The final list of all matching rules is then R2, R4, R5, R6 

and R7. 
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Figure 34. Example EGT using jump pointers 
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Figure 35: Example EGT with path compression 

EGT with Path Compression (EGT-PC) 

A further improvement in efficiency is obtained using path compression, first 

proposed by Morrison (1968) in the Patricia tree structure. This eliminates nodes with 

single branches and no associated rule list. The use of jump pointers combined with 

path compression is illustrated in Figure 35. 

EGT-PC – multi-match 

A grid-of-tries is suitable for performing multi-match classification because the 

single-match algorithm, in its basic format, finds all matches before performing a 

linear search to find the highest priority one. EGT-PC jump pointers could however, 

depending on the implementation, result in some matching rules being missed. This 

issue can be dealt with as shown in Figure 35 by having each node, with an associated 

rule, that be reached directly by a jump pointer, also include a link to its closest 

ancestor node that has associated rules. This is recursive in that each ancestor node 

may also, along with its own list of rules, include a link to an ancestor.  

A simpler and usually faster grid implementation is not to use links to ancestor 

nodes, but for each node that can be reached by jump pointers to include the rules that 

apply to its ancestors in its own list directly. For example, node L5 in includes Figure 

36 both rules R5 and R6.  
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Figure 36. Alternative EGT-PC implementation 

  

The architecture used for evaluating the EGT-PC algorithm for multi-match header 

classification consisted of three blocks running in parallel, as illustrated in Figure 37. 
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BVout
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address

Destination 

port

Protocol

 

Figure 37: EGT-PC Multi-match Architecture 

Two instances of the EGT-PC algorithm are used to classify the source address and 

port pair, and the destination address and port pair, respectively. Each EGT-PC 

block’s IP address is mapped to the 1
st
 dimension trie and the port number to the 2

nd
 

dimension trie. Note that all other pairings of address and port number were tested but 

those shown in Figure 37 were found to perform best in terms of both speed and 
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required memory. This is due to the relatively large number of unique port numbers 

compared to the number of unique IP addresses. A linear lookup is performed on the 

very small number of protocol types. Each block produces a bit vector with length 

equal to the number of compressed rules (1273 bits in the case analysed in Table 9). 

The three bit vectors are then ANDed together to give the overall output bit vector. 

Table 11. Example rule set with port ranges 

Source IP 

address 

Source port 

number 

Destination 

IP address 

Destination 

port number 

Protocol Rule 

No. 

10.0.0.0/24 3904:3919 52.1.1.0/24 992 TCP 1 

any 3904 any 992:1007 TCP 2 

10.0.0.0/16 any 52.1.1.4 any TCP 3 

10.0.0.0/16 3904 any any TCP 4 

 Consider the example rule set shown in Table 11. Note that each rule would also have 

an associated payload signature (fixed string and/or regex) which has been omitted for 

clarity. This rule set cannot be compressed any further as each header part is unique. 

The first step in generating the EGT-PC is to convert any port number ranges to 

prefixes, which can sometimes lead to rules having to be split into several rules, each 

corresponding to a particular sub-range. In this simple example, there is a one-to-one 

mapping from range to prefix, resulting in the rule set shown in Table 12. 

Table 12. Example rule set with port prefixes 

Source IP 

address 

Source port 

number 

Destination IP 

address 

Destination 

port number 

Protocol Rule 

No. 

0x0A0000* 0x0F4* 0x340101* 0x03E0 TCP 1 

* 0x0F40 * 0x03E* TCP 2 

0x0A00* * 0x34010104 * TCP 3 

0x0A00* 0x0F40 * * TCP 4 
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Figure 38. Source IP address & port number trie for example rule set 

The EGT-PC for the combination of source IP address and port number is shown in 

Figure 38. A similar EGT-PC would be constructed for the destination IP address and 

port number. Each EGT-PC implementation indicates the matching rules by asserting 

the corresponding bits in a rule number bit vector – there are 4 rules in this example, 

so the bit vector would consist of 4 bits. The bit vectors from the two EGT-PC and the 

linear protocol lookup are then combined as shown in Figure 37 to produce the overall 

bit vector. 

The evaluation was performed by adapting a single-match implementation originally 

available from the Packet Classification Repository (Singh and Baboescu, 2002). This 

implementation consists of single-bit first and second dimension tries with path 

compression. It does not use multi-bit tries which would give improved performance.  

4.3.4. ART (Allotment Routing Table) 

ART is a multi-bit trie–based routing table invented by Donald Knuth (Hariguchi, 

2002). The free single-match software implemented by Y. Hariguchi and D. Knuth 

was adapted to perform multi-match classification. 
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Description of single match ART algorithm 

The ART algorithm is based on the use of a table which can match against a 

configurable number of bits known as the address length. This table is shown in the 

form of a binary tree in Figure 39 for an address length of three. The number in 

brackets is known as the base index and is simply the table array index. 

[1] 

0/0 

[2] 

0/1 

[3] 

4/1 

[4] 

0/2 

[5] 

2/2 

[6] 

4/2 

[7] 

6/2 

[8] 

0/3 

[9] 

1/3 

[10] 

2/3 

[11] 

3/3 

[12] 

4/3 

[13] 

5/3 

[14] 

6/3 

[15] 

7/3 

Figure 39. All 3-bit prefixes mapped into complete binary tree 

The bottom row of the table contains what are known as the fringe nodes. These are 

the nodes which are accessed by the search algorithm using the simple formula (input 

+ 2
len

) or equivalently ( 1<<len + input ), where input is the 3-bit input to look up and 

len is the ART address length. Non-fringe nodes are used during rule deletion, as the 

rule being deleted from node must be replaced by the rule specified in the parent node.  

Large address lengths results in excessively large tables and so the address is 

typically split into multiple short addresses called strides. In multi-level ART, each 

fringe node contains a pointer to a table in the next level. This pointer will be NULL if 

there is no rule with a longer prefix than the one corresponding to the fringe node. The 

address length of each level of the multi-level ART algorithm is chosen to minimise 

the number of tables created from the particular rule set. 

Extending ART to perform multi-matching 

In order to perform multi-match lookups, each fringe node may correspond to multiple 

rules and it must also include all rules that apply to its ancestor nodes. Non-fringe 

nodes are therefore superfluous and may be omitted. An example multi-level ART is 

shown in Figure 40 for the simple IP address field rule list of Table 13. 



Chapter 4 – Multi-match Header Classification 

 
83 

Table 13. Simple example rule list 

Address Rule 

9.0.0.0/16 R1 

9.0.1.0/24 R2 

9.0.2.0/24 R3 

9.0.2.4/31 R4 

9.0.2.4/32 R5 
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Figure 40. Multi-level ART for example rule set 

If the IP header address being matched against is 9.0.1.5, then the first byte of the 

address, 9, is used to index the level 1 array, giving a pointer to a level 1 array. The 

second byte of the address, 0, is used to index this level 1 array, giving R1 as a match 

and also a pointer to a level 2 array. The third byte of the address, 1, is used to index 

this level 2 array, giving R2 as a match and no connecting pointer. The search then 

terminates with R1 and R2 as the two matching rules. 

The ART algorithm is used to perform matching separately on each IP address and 

port number field and the matching rules are found by ANDing together the output bit 

vectors as shown in Figure 41. 
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Figure 41. Multi-match architecture using ART 

4.4. Related Work 

Research into multi-match packet classification has to date mainly focused on TCAM-

based solutions as single-match algorithms have been regarded as unsuitable for 

multi-match classification due to the extensive intersections between rules in NIDS 

rule databases (Yu and Katz, 2004). TCAM-based solutions require additional logic to 

return all matches as TCAMs typically only return the single highest priority match 

(Yu et al., 2005). Song and Lockwood (2005) and Jiang and Prasanna (2009) 

researched algorithmic non-TCAM approaches, but both papers propose architectures 

which incorporate TCAM, albeit on a much smaller scale compared to solutions based 

entirely on TCAM. Both use bit vectors where each bit corresponds to a rule index. 

4.4.1. Bit Vector – TCAM architecture 

Song and Lockwood’s (2005) BV-TCAM (Bit Vector – TCAM) architecture, as 

illustrated in Figure 42, classifies each of the port numbers in parallel using a multi-bit 

trie to produce two bit vectors. The multi-bit trie that is used is based on the Tree 

Bitmap specified by Eatherton (1998), which is subject to patent. A small TCAM 

implementation, that can handle multiple matches, classifies the concatenation of 

source, destination address and protocol type to produce a third bit vector. A reduction 

in the number of TCAM entries is achieved by mapping the concatenation of IP 

addresses and protocol type in the rule set to a substantially shorter rule set containing 

only the unique triples. Consequently, the bit vector output from the TCAM has to be 
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decompressed, i.e. mapped to a wider bit vector corresponding to the original rule set. 

The three bit vectors are finally ANDed together to produce the final result. 
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(Stride 4)

Decompress

{Src IP addr, 
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Figure 42. Overall BV-TCAM architecture 

Many trie-based algorithms make use of prefix expansion and leaf pushing to 

improve performance. Prefix expansion (Srinivasan and Varghese, 1998) transforms a 

set of prefixes into an equivalent set with fewer prefix lengths in order to allow multi-

bit matching – as also used in ART algorithm. Leaf pushing involves pushing as much 

node information as possible out to the leaf (or fringe) nodes – as is the case in the 

multi-match extension of ART.  Eatherton’s (1998) Tree Bitmap avoids the need for 

prefix expansion and leaf pushing by using an indexing scheme that significantly 

reduces memory consumption. Each node in the multi-bit trie has two associated bit 

maps, an Internal Prefix Bitmap representing the prefixes associated with the node, 

and an Extending Paths Bitmap representing the child nodes that are present. 

Table 14. Example rule set 

Prefix Rule 

* 1 

11* 2 

00* 3 

0000 01* 4 

0000 1* 5 

0001 * 6 

Table 14 shows an example rule set, and the corresponding Tree Bitmap based on a 

4-bit stride length is shown in Figure 43. Each black dot represents a prefix from the 
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rule set. The three valid prefixes in the root multi-bit node are indicated by the 

asserted bits in the Internal Prefix Bitmap and the two valid branches to child nodes 

are indicated by the asserted bits in the Extending Paths Bitmap. In addition to these 

two bit maps, each multi-bit node also has two pointers, one to the first valid prefix’s 

rule bit vector and one to the first child node. The addresses of other rule bit vectors 

and child nodes are obtained by offsetting from these first addresses. 

The search algorithm is quite simple. Say the input port number is 0x10FF. The 

decimal value, P, of the first four bits, 1, is used to index the Extending Paths Bitmap 

– bit number 1 (the second from the left) is asserted, indicating that there is a valid 

child node. The number of 1s to the left of, and including, position P is then counted – 

there are two. The pointer to the child node is then obtained as 

stored_child_node_pointer + (2 × sizeof(node)). Before moving on to the child node, 

the Internal Prefix Bitmap is checked to see if there are any matching rules for the first 

four bits. In theory, this is done by successively removing bits from the right of P and 

indexing into the corresponding position in the internal bit map. In practice this can be 

done in parallel in hardware. In the example P=0001 (in binary). The rightmost bit is 

first removed, resulting in prefix 000*, which corresponds to position 8 in the internal 

bit map. Bit 8 is not asserted and so the search continues by removing the next bit 

from P, giving 00*, which corresponds to position 4 in the bitmap. Bit 4 is set and so a 

corresponding rule bit vector exists. The address of the bit vector is determined, in a 

similar fashion to the child node address, by offsetting from the address of the first 

rule bit vector. 
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Figure 43. Tree bitmap for example rule set 

4.4.2. Field-Split parallel Bit Vector architecture 

Jiang and Prasanna’s (2009) “Field-Split Parallel Bit Vector” (FSBV) splits the port 

number fields into single bits which are classified individually to produce a bit vector 

per bit. The two IP address fields and the protocol type field are classified using two 

TCAMs and a CAM, respectively, in a manner similar to that of the BV-TCAM 

architecture. All bit vectors are then ANDed together to give the overall result, as 

illustrated in Figure 44. 
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Figure 44. Multi-match using FSBV algorithm 
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Table 15. Example rule set for 4-bit field 

4-bit field match patterns 

(Bits numbered 3210) 

Rule 

01** R1 

0101 R2 

111* R3 

Table 15 and Figure 45 illustrate the FSBV scheme for a 4-bit field and a rule set 

consisting of three rules.  
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Figure 45. FSBV scheme for example rule set 

In the overall architecture shown in Figure 44, the FSBV scheme is used to match 

both port number fields, each consisting of 16 bits. A hardware implementation 

therefore requires 32 memories, each of depth 2, to store the rule bit vectors. Using 

FSBV for matching the port numbers is efficient because the numbers of unique 

source and destination port numbers present in the Snort rule set are much less than 

the total number of rules, as evident from Table 9. This enables significant 

compression of the rule bit vectors. Jiang and Prasanna chose TCAM and CAM to 

match the IP addresses and protocol type, respectively, because they can efficiently 

map the extremely small number of unique values of each. The bit vectors for each are 

stored in SRAM and indexed by the TCAM/CAM output. 



Chapter 4 – Multi-match Header Classification 

 
89 

4.5. Comparison 

Table 16 summarizes and compares the results for the three algorithms examined with 

estimated performance figures given by Song and Lockwood (2005) and Jiang and 

Prasanna (2009) for the BV-TCAM and FSBV systems. Based on these figures, the 

FSBV architecture uses relatively little memory, and its simplicity should result in an 

efficient FPGA solution. 

Table 16: Comparison of Algorithms 

 
Single-match algorithms adapted 

for multi-matching and evaluated 

on ARM platform 

Existing multi-match 

algorithms 

 Hypercuts EGT-PC ART BV-TCAM FSBV 

Memory (bytes per 

rule) 
465693 120 142 74* 17* 

Cycles per packet 109961 3824 658 13** 0.5* 

Normalised Energy 

(µJ/packet) 
6.85 0.55 0.15 0.01* 0.01* 

* Based on figures given by Jiang & Prasanna (2009). Note that both static (Virtex 5  XC5VFX200T device) and dynamic 

consumption are factored into the energy figures given here. 

** Based on figures given by Song and Lockwood (2005). 

The BV-TCAM and FSBV schemes use only a minimal amount of TCAM which 

accounts for a negligible proportion of the total energy consumption. As a result they 

are much more energy efficient than purely TCAM-based schemes and this is borne 

out by performance comparison results provided by Jiang and Prasanna (2009). 

FSBV also performs significantly better than the EGT-PC and ART solutions. This 

is because FSBV makes the most of the characteristics of the header sections of the 

Snort rule set by compressing the source and destination IP addresses into very small 

TCAMs and by splitting the port fields using the efficient FSBV technique. 

One possible issue with the FSBV scheme is its reliance on the characteristic that 

past Snort rule sets had a very small number of unique IP addresses. Ganegedara and 

Prasanna (2012) proposed the StrideBV algorithm that extends FSBV by applying bit 

splitting to the entire 5-tuple header, thereby avoiding the use of TCAM. However, 

instead of single-bit inspection, StrideBV uses multi-bit strides. Ganegedara and 

Prasanna explain that while StrideBV requires more memory per rule than FSBV, it is 

capable of handling higher traffic throughput with improved energy efficiency. Sanny, 

Ganegedara and Prasanna (2013) performed a detailed comparison between StrideBV 
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and TCAM based approaches by evaluating both on a Xilinx Virtex 7 device. They 

found that the StrideBV implementation performed much better in terms of 

throughput and power efficiency, at the cost of increased memory consumption. 

4.6. Conclusion 

A number of single match packet classification algorithms were adapted to perform 

multi-matching and their performance evaluated in terms of speed and energy 

consumption. It was found that some single match algorithms, such as Hypercuts, do 

not adapt well to multi-match classification because the high degree of overlap 

between rules results in an excessive storage requirement. The EGT-PC and ART 

algorithms adapted reasonably well to multi-matching. Although more efficient than a 

purely TCAM-based solution, their performance and efficiency does not match that of 

the FSBV algorithm. The memory efficiency of FSBV is due to the characteristics of 

recent Snort rule sets. The relatively low quantities of unique values of each header 

field in the rule set allows the bit vectors representing the rule set to be significantly 

compressed for each field. The resulting relatively short bit vectors makes 

implementation of FSBV feasible on FPGA devices. Unlike the BV-TCAM algorithm, 

FSBV is not subject to patent. Its relative simplicity lends itself to an FPGA 

implementation where the bit vectors can be stored in block RAM in order to 

maximise performance. 

The recent StrideBV extension to FSBV splits the entire 5-tuple header into multi-bit 

strides and does not use any TCAM. The main advantage of both algorithms is that 

they can be easily mapped onto high performance FPGA/ASIC architectures. 

Evaluation of StrideBV by Ganegedara and Prasanna (2012) found that, although it 

consumes additional memory, it can handle higher traffic speeds than the original 

FSBV scheme. 

FSBV and its multi-bit extension, StrideBV, appear to be the best approaches to 

multi-match packet classification in the case of hardware implementations. Further 

independent evaluation of the two approaches is required in addition to comparison 

with both TCAM and algorithm based implementations. It should be borne in mind 

that the performance of these algorithms is mainly due to the relatively low numbers 

of unique field values in recent rule sets. Should this change in future rule sets, it may 

render the implementation of these algorithms more challenging and give an 

advantage to algorithms such as EGT-PC and ART. 
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Chapter 5 - Pattern Matching Methods 

DPI is the examination of packet payloads for the presence of patterns, known as 

signatures, listed in a database of rules called the rule set. Signatures are typically in 

the form of fixed strings or regexes, or a combination of both. The use of regexes has 

become more common in recent years in order to describe increasingly complex 

attacks. 

5.1. Fixed String Matching 

5.1.1. Precise Matching 

The subject of fixed string matching has been well researched due to its importance in 

many applications such as internet search engines, parsers, word processors and 

digital libraries. It is important in signature-based NIDPS, as most rules contain at 

least one fixed string pattern to be matched. Although fixed string matching is not a 

focus of this thesis, the following is a brief overview in order to give a complete 

picture of the functionality of an NIDPS. 

The string matching problem can be simply stated – Given two strings T and P, of 

length m and n, respectively, determine if P occurs in T. A naive or brute-force search 

involves trying to match the pattern using a window size of length n and iterating 

through each position in T from left to right, resulting in a worst-case complexity of 

O(mn). Two classic single-string matching algorithms are Boyer-Moore (1977) and 

KMP (Knuth-Morris-Pratt, 1977). Both these algorithms also use a window of size n, 

but they use a skip or shift table to determine where to search next after each 

mismatch. The shifts used by the Boyer-Moore  algorithm are based on two rules 

known as the bad character shift rule and the good suffix shift rule. The first rule 

avoids the need to repeat unsuccessful comparisons against a target character and the 

latter ensures that the matching only aligns against target characters already 

successfully matched. The KMP algorithm similarly uses information learnt from 

partial matches to skip over alignments that are guaranteed not to result in match. The 

Boyer-Moore algorithm was later simplified by Horspool (1980) resulting in an 

algorithm that is easier to implement. The Boyer-Moore algorithm has a worst-case 

search time of O(m+n) if the pattern does not appear in the text and of O(mn) if it 

does. Its average search time is sub linear and improves with increasing pattern length.  

KMP is O(m+n) in both the average and worst case. Baeza-Yates and Gonnet (1992) 
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found that the average performance of Boyer-Moore-Horspool improves with 

increasing pattern length and is better than KMP for n > 3. These algorithms are 

unsuitable for multi-pattern matching as the search time increases linearly with the 

number of patterns. 

Two well-known multi-pattern matching algorithms are Aho-Corasick (1975) and 

Commenzt-Walter (1979). The Aho-Corasick algorithm is an extension of the KMP 

algorithm for a set of patterns. The algorithm, as illustrated by the example in Figure 

46, consists of three functions: 

 Goto function: a trie of the set of patterns. Let L(ν) denote the string produced by 

traversing the tree from the root to state ν. If ν is a node state L(ν) represents the 

prefix of one or more patterns and, if ν is a leaf state then L(ν) represents a search 

pattern. 
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when found
 

Figure 46. Aho-Corasick –  automaton for set of patterns P={lrle, le, rk} 

 Failure function: maps a state to another state when the Goto function reports a 

failure to match or a terminal state has been reached. The failure function for node 

ν is the state which is reached by the longest suffix of L(ν). This is basically a 

generalisation of the KMP algorithm. 

 Output function: The output function for state ν is 

o L(ν) if ν is a leaf node (i.e. represents a pattern) 

o Output(νfail) where νfail is the state reached by the failure link from ν. 

If n is the number of states in the automaton and nocc is the number of occurrences 

of a pattern in the string, then the search time complexity of the algorithm is O(n + 

nocc) when automaton transitions are stored in a transition table and, O(nlog|Σ| + 
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nocc) when the transitions are stored in a balanced tree  (Navarro and Raffinot, 2002, 

p.50). 

The Commentz-Walter algorithm combines ideas from both the Boyer-Moore and 

Aho-Corasick algorithms. For a string of length m and maximum pattern length lmax, 

its worst-case time complexity is O(mlmax). In practice, it is only faster than Aho-

Corasick for small numbers of search patterns. 

Both the Aho-Corasick and Commentz-Walter algorithms suffer from the fact that 

the memory requirement can increase exponentially as the number of patterns 

increases. This degrades software performance as the entire automaton cannot be 

stored in cache. A number of solutions have been proposed for this memory explosion 

problem, most of which involve the use of hash tables (Wu and Manber, 1994). The 

Wu-Manber algorithm is a multi-pattern variant of the Boyer-Moore algorithm which 

looks at the text in blocks of size B instead of single characters, i.e. it is a multi-stride 

algorithm. It makes use of three tables, the SHIFT, the PREFIX and the HASH tables. 

The SHIFT table stores the shift, or skip, values for each of the block characters, 

indexed by hashing their value. When a potential match is found, then the HASH and 

PREFIX tables are accessed to check for an actual match. Navarro and Raffinot (2002, 

pp.59-62) provide a detailed description accompanied by examples. The algorithm 

requires only O(k) memory space, where k is the number of patterns and is very fast 

on average. It was previously used in Snort but has been removed because its worst 

case performance makes it vulnerable to DoS attacks. Snort now uses the standard 

Aho-Corasick algorithm by default, but it can be configured to use other versions of 

the algorithm (Norton, 2004) which trade off memory versus speed. It also includes a 

binary trie–based algorithm, known as SFK Search, for systems with very low 

memory. 

Much research has been conducted into finding improved variants of the Aho-

Corasick algorithm, in particular for hardware implementation. The algorithms 

proposed by Tuck et al. (2004) reduce memory consumption through the use of 

bitmap nodes and path compression. Bitmaps reduce the number of transition pointers 

at states and path compression combines a series of successive states. Tan and 

Sherwood (2005) uses bit-splitting to split the Aho-Corasick automaton into eight 

separate automata, each operating on one bit from each input character, thereby 

reducing the maximum number of transitions from each state from 256 to just 2. 
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Kennedy et al. (2010) proposed an FPGA architecture, based on the Aho-Corasick 

algorithm, which uses multiple string matching engines operating in parallel. 

A well-known FPGA approach to string matching is to consider the string as a 

simple regex which can be represented by an NFA which is translated into FPGA 

logic (Sidhu and Prasanna, 2001). The main disadvantage of this method is the need to 

reprogram the FPGA whenever the set of strings changes. Moreover, it does not scale 

well as recent rule sets generate too much logic. 

TCAMs can perform parallel searches at high speed but pose two problems for 

multi-pattern matching: (i) TCAM entries have a fixed length, unlike the string 

patterns found in NIDS rule sets, and, (ii) TCAMs return the first matching entry and 

not all matches. Yu et al. (2004) propose a solution which overcomes these two 

difficulties. The number of TCAM lookups is of the order O(n) where n is the number 

of input characters. Sung et al. (2005) present a jumping window scheme which 

reduces the number of TCAM lookups to O(n/m) where m is the window size. 

Although it gives very good matching performance, TCAM suffers from the problems 

of relatively high cost and energy inefficiency.  

5.1.2. Imprecise Matching (with false positives) 

Dharmapurikar et al. (2004) describe a hardware-based technique using Bloom filters 

(Bloom, 1970) for the detection of fixed strings in streaming data. A Bloom filter is a 

randomised data structure which is “programmed” with strings using multiple hash 

functions and is “queried” for a string’s presence based on multiple bits. A query can 

result in a false positive but never a false negative. (A false positive is where the 

matching result incorrectly indicates a match exists, whereas a false negative is where 

the matching result incorrectly indicates a match does not exist). The main advantage 

of this technique is that it is likely to only require a relatively small amount of 

memory even for a very large set of patterns. The disadvantages are that multiple 

bloom filters are required, one for each pattern length found in the rule set, and that all 

possible matches must be fully checked for false positives. Song and Lockwood 

(2005) propose a more efficient data structure called the Extended Bloom Filter in an 

architecture that makes the most of an FPGA’s block RAM. Zhou and Wang (2010) 

propose an FPGA implementation of multi-pattern string matching using parallel 

engines based on the Counting Bloom Filter. 
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Markatos et al. (2002) propose an algorithm based on the use of exclusion-based 

matching. It basically breaks the patterns into several fixed-size bit strings and 

searches for these without checking if they are in the correct sequence. If any of sub-

patterns does not match, then the entire pattern does not match. On finding a matching 

sub-pattern, the system falls back on a standard algorithm, such as Boyer-Moore, in 

order to check the full pattern. 

5.2. Regular Expression Matching 

Regexes are now a common form of signature as they allow the expression of 

complex attacks which would be very difficult with plain fixed strings. It is well 

known that a regex can be represented by a non-deterministic finite automaton (NFA) 

or an equivalent deterministic finite automaton (DFA) (Hopcroft et al., 2006). DFAs 

have the advantage of fast matching but can consume very large amounts of memory 

in the case of certain forms of regexes or when some DFAs are combined. NFAs, on 

the other hand, are memory efficient but can be very slow when a large number of 

states are concurrently active. This time/space trade-off has led to much research into 

improving the memory efficiency of DFA-based schemes, and, to a lesser extent, the 

speed of NFAs. 

5.2.1. DFA-based solutions 

Regular Expression Rewriting 

Yu et al. (2006) analysed the Snort rule set to identify the typical patterns that result in 

large DFAs. They propose a number of rewrite rules for these types of patterns in 

order to reduce the DFA size. Unfortunately, these rules can only be applied to a 

relatively small number of regexes. 

DFA Grouping 

A simplistic DFA implementation is to amalgamate all of the DFAs, each 

corresponding to a regex, into a single DFA. This, of course, typically results in a 

memory explosion because of the interaction between the individual DFAs. Yu et al. 

(2006) found that it is more efficient to group particular DFAs together and process 

these groups in parallel, and they devised algorithms to perform this grouping. These 

algorithms partition the regexes into groups such that the patterns in each group do not 

adversely interact with each other. Interaction is defined as being present when the 
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number of states of the composite DFA exceeds the sum of the number of states of the 

individual DFAs. The grouping approach is particularly suited for implementation on 

multi-core processors, where each composite DFA is assigned to a particular core. 

Ideally the composite DFA needs to fit in the core’s local memory in order to avoid 

contention between cores that would adversely affect performance. In the case of 

single core general processors, the composite DFA would be assigned to particular 

software process or thread. In this case the memory saving resulting from the grouping 

approach is at the cost of an increase in the memory bandwidth requirement. 

Delayed Input DFA (D
2
FA) 

Kumar et al. (2006a) observed that many DFA states have similar sets of outgoing 

transitions and so they propose the D
2
FA scheme which reduces the memory 

requirement of a DFA by replacing redundant transitions common to a pair of states 

with a single default transition. The disadvantage of D
2
FA is that multiple states can 

be traversed when processing a single input symbol which degrades performance due 

to the resulting increase in the number of memory accesses. In order to prevent 

excessive memory bandwidth, a heuristic construction algorithm is used to limit the 

length of default transition chains. This algorithm has a number of disadvantages 

including the requirement for the user to provide an input parameter value which 

depends on the particular rule set as well as relatively slow construction. Becchi and 

Crowley (2007) propose a modified version of this scheme which improves its worst 

case performance and simplifies the construction. 

Content Addressed Delayed Input DFA (CD
2
FA) 

Kumar et al. (2006b) propose the Content Addressed Delayed Input DFA (CD
2
FA) 

which is equivalent to a D
2
FA in which the state numbers are replaced with content 

labels. These content labels contain enough information to avoid unnecessary default 

traversals, thereby resulting in improved performance. Kumar et al.’s experimental 

evaluation shows that CD
2
FA uses 10% of the memory space required by a table 

compressed DFA and can achieve twice the performance of an uncompressed DFA in 

the case of systems with a small data cache.  
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DFA Splitting 

Kumar et al. (2007) observed that normal data streams typically only match the first 

few symbols of a regex. They propose a cutting algorithm which splits a regex into 

two parts based on the probability that the corresponding NFA state is visited during 

the matching process. The most frequently visited states constitute the fast path 

automaton and the remaining tail is processed as a slow path automaton. These tails 

portions can be “put to sleep” by default and only woken up when the fast path 

automaton detects a match, e.g. they can be stored in external memory and retrieved 

when required. This system is vulnerable to a DoS attack in that an attacker can inject 

large amounts of traffic that match the fast path signatures. Kumar et al. describe a 

lightweight algorithm to counter these attacks. It uses anomaly counters to track the 

number of fast path matches for each flow. The slow path then prioritises flows 

having the lowest anomaly count. 

History-based FA (H-FA) 

Kumar et al. (2007) propose a history-based FA (H-FA). They observed that a state 

explosion occurs in a DFA because it is very inefficient in following multiple partially 

matching patterns. Their history-based approach consists of an automaton similar to a 

DFA plus a history buffer. Unlike a standard DFA, multiple transitions for a particular 

symbol can leave from a state, and which transition is taken is determined by 

examining the contents of the history information stored in memory. This scheme 

reduces the total amount of memory required, but can increase the worst case time 

complexity.  

Hybrid-FA 

Becchi and Crowley (2007a) propose a Hybrid-FA consisting of a head-DFA and 

multiple tail-NFAs. During construction of the Hybrid-FA, any nodes that would 

result in a state explosion are retained as NFA nodes, while the remaining nodes are 

transformed into DFA nodes. The tail-NFAs can be transformed into tail-DFAs for 

improved performance in certain cases, e.g. dot-star terms. 

Extended FA (XFA) 

Smith et al. (2008) propose an extended FA (XFA) scheme which avoids the problem 

of state explosion by using auxiliary variables. They present a model for augmenting a 
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DFA with these variables and instructions to manipulate them. These are attached to 

the nodes and edges of the DFA. Experimental results show very good performance 

and efficient use of memory. However, XFA construction can be quite complicated 

and may require manual intervention. 

Delta Finite Automaton (δFA) 

Ficara et al. (2008) also observed that many adjacent DFA states share several 

common transitions. They propose a compressed representation for DFA, called Delta 

Finite Automata, which only stores the differences between these adjacent states. 

Unlike D
2
FA, δFA only requires one transition per single input symbol. However, the 

difference between the current and next state must be computed on each state 

traversal, resulting in a time complexity of O(|Σ|). 

5.2.2. NFA-based solutions 

The PCRE regex software library, used by both Snort and Suricata, performs NFA 

style pattern matching. Nonetheless, less research has been conducted into NFAs than 

DFAs because of the difficulty of handling a potentially large number of concurrently 

active states and state traversals. However this issue can be circumvented by utilizing 

the inherent parallelism of hardware. 

PCRE software library (Snort and Suricata) 

The standard matching algorithm used by Snort and Suricata performs a depth-first 

search of an NFA-based pattern tree. In other words, it follows a single path through 

the NFA until a mismatch occurs or an accept state is reached. In the case of a 

mismatch, it checks all other transition branches at the current state before back 

tracking to an earlier state with multiple transitions and tries the alternative transitions 

at that point. Back tracking usually involves back tracking of both the NFA and the 

current position in the input symbol stream. The PCRE library’s match function is 

called recursively at each branch point in order to remember the state in case back 

tracking to that state is required. Snort and Suricata provide configuration options that 

place a maximum limit on the number of recursive calls and amount of backtracking. 

Performance, however, can still be severely degraded in the face of a backtracking 

attack that injects packets crafted to maximise the amount of backtracking that occurs.  



Chapter 5 – Pattern Matching Methods 

 
99 

FPGA logic–based NFA 

The most common method of implementing NFAs in hardware is to convert it into 

FPGA logic gates and registers (Sidhu and Prasanna, 2001). The disadvantages of this 

approach are that the logic needs to be re-synthesized whenever the rule set is updated 

and large rule sets may result in more logic than is available on even the most high-

end FPGAs. 

NFA-OBDD 

Yang et al. (2010) propose a scheme in which Ordered Binary Decision Diagrams 

(OBDD) are used to operate NFAs. Their evaluation was performed using a software 

implementation that made use of the Cudd C++ based OBDD library. A Binary 

Decision Diagram (BDD) is a data structure used to represent a boolean function, as 

illustrated in the example shown in Figure 47. A BDD is said to be “ordered” if the 

different variables (x1, x2, x3 in the example) appear in the same order in all paths 

from the root. The OBDD is effectively a maximally reduced version of a standard 

binary tree. 

x1 x2 x3 f(x1,x2,x3) x1

x2 x2

x3 x3

1 0
 

0 0 0 1 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 

 

Figure 47. Example boolean function and corresponding OBDD 

OBDDs can be used to represent a set of elements, such as a subset of the states of 

an NFA. This could be regarded as a compressed version of the bit-parallel 

representation discussed in Chapter 6. OBDDs can therefore be used to represent the 

set of currently active states, the set of accept states, input symbols and transitions 

between states. A transition is a triple (s, i, t) such that there is a transition labelled i 

from state s to state t. These OBDDs can then be manipulated to determine the OBDD 

representing the next set of currently active states following receipt of each input 
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symbol and to check if an accept state has been reached. The operation to find the next 

set of active states is effectively a boolean AND combination of the transition, active 

and input symbol OBDDs. The authors found that the NFA-OBDD scheme 

outperformed standard NFA implementations in the case of HTTP and FTP 

signatures. NFA-OBDDs performed best when the set of currently active states was 

large. Sinnappan and Hazelhurst (2001) describe how BDDs can be implemented as a 

logic circuit on an FPGA and Yang et al. suggest that this method could also be used 

for NFA-OBDDs.  

FPGA/ASIC memory–based NFA schemes 

The limitations of the logic-based approach have led to research into memory-based 

hardware architectures which can be easily and quickly reconfigured. Examples of 

such architectures include the bitmap-based approach for the Glushkov NFA (Lee, 

2009) and the dynamic reconfigurable bit-parallel NFA architecture (BP-NFA) 

(Kaneta et al., 2010). The first is based on the Bit Parallel Glushkov algorithm and the 

second on the extended SHIFT-AND algorithm, both of which are detailed in a 

textbook by Navarro and Raffinot (2002). Both algorithms utilize bit-parallelism (Wu 

and Manber, 1992; Baeza-Yates and Gonnet, 1992). Bit-parallelism is a technique to 

code multiple elements of information into a single bitmask which can then be 

operated on simultaneously. In the case of regex matching, the bitmask stores the 

active and inactive states. 

Several methods exist for constructing an NFA from a regex of m characters 

(excluding special symbols). The most common method is the Thompson (1968) 

construction, which produces an NFA with between m+1 and 2m states. Its most 

important property is that, apart from the ε-transitions, all transitions go from states i 

to states i+1. This is exploited by Wu and Manber (1994) in their bit-parallel scheme. 

Note that the BP Thompson algorithm is equivalent to the extended SHIFT-AND 

algorithm. An alternative method is the Glushkov construction which has the 

important advantage that it has only m+1 states, although this comes at the price of 

not having the simple forward transitions of the Thompson NFA. The Glushkov NFA 

also has the property that all incoming transitions arriving at a particular state node 

have the same symbol label. This property, along with the minimal number of states, 

gives the Glushkov construction the edge in bit parallel implementations (Navarro and 

Raffinot, 2002). 
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The bit-parallel representation of an NFA can be considered either as a bit-parallel 

implementation of an NFA or as a DFA. Each possible value of the bitmask of 

currently active and inactive NFA states, that these BP algorithms use, is effectively 

the identifier of a DFA state. These BP schemes use the bitmask to index a table and 

the resulting value, along with the current input symbol, gives the new bitmask value.  

5.2.3. Imprecise Matching Finite Automata 

StriFA 

Wang et al. (2013) propose Stride FA (StriFA) for the acceleration of both fixed string 

and regex matching. The algorithm can be implemented as either an NFA or a DFA 

depending on which is most suitable for the platform used. Some of the matches found 

by StriFA may be false positives, but the algorithm is designed to keep these to a 

reasonable level. StriFA can therefore be used as a fast and efficient pre-filter to 

greatly reduce the number of regexes against which to match in a follow-up FA which 

does not produce false positives. In the case of a fixed string pattern, the first step in 

the construction of the StriFA involves the selection of an appropriate tag character 

from the string. The distances, known as stride lengths, between successive 

occurrences of the tag character in the pattern are then used to construct the StriFA. 

The construction from a regex is more involved, but the basic concept of tag 

characters and stride lengths remains essentially the same. During matching, the 

incoming data stream is converted to the corresponding tag length stream before being 

fed into the StriFA matching engine. 
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Figure 48. Example StriDFA for patterns “reference” & “replacement” with 

tag ‘e’ 

Consider the fixed string patterns R1=“reference” and R2=“replacement”. If 

character tag ‘e’ is chosen then the corresponding stride lengths for R1 and R2 are 2-

2-3 and 5-2, respectively. The stride lengths are then used to construct a standard DFA 

as illustrated in Figure 48, in which the transitions are labelled with the stride length. 

Note that the states are labelled with letters rather than numbers in order to avoid any 

confusion. During matching, the example input string referencexyzxyzreplacement is 

converted to a stream of stride lengths 2-2-3-8-5-2 with 2-2-3 and 5-2 matching the 

StriDFA. 

Selection of an appropriate tag character is fundamental to the performance of 

StriFA. Considering each pattern individually, the best tag is the character which 

occurs most frequently. However, the incoming data stream needs to be converted into 

a separate stride length stream for each different tag character. The strategy is 

therefore to select a tag character that covers as many patterns in the rule set as 

possible, with a minimum of three occurrences per pattern, and with the highest 

average number of occurrences per pattern. Wang et al. found that StriFA gives a 10-

fold increase in speed and much lower memory consumption compared to traditional 

NFA/DFA. 
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Figure 49. Example of construction of abstracted DFA by state removal 

Cadambi et al. (2007) describe a method, which they term DFA abstraction, by which 

a DFA can be reduced in size by removing some states, leading to a smaller DFA 

which can produce false positives but no false negatives. Packets that match the 

compacted DFA are checked by pattern matching against a follow-up FA, typically a 

space efficient NFA implementation. Construction of the abstracted DFA is not 

straightforward as the algorithm must ensure that removing a state does not result in 

false negatives. 

Figure 49 illustrates the concept of DFA abstraction in the case of regex /abf|[c-e]g/. 

State 3 is removed from the original DFA and all its transitions changed to state 2. 

The resulting DFA has no false negatives but has a number of patterns that will result 

in false positives, namely abg, cf, df and ef. 

5.2.4. Alphabet Reduction 

The FA corresponding to regexes over an alphabet Σ can potentially have |Σ| outgoing 

transitions per state. However, the alphabet can be reduced by translating it into a set 

of equivalence classes. Two symbols are members of a particular class if the target of 

their transition from a particular state is the same, and this is the case for all states in 

the FA. Alphabet reduction can result in significant savings since regexes usually only 

use a small subset of all possible symbols. 
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5.2.5. Multi-stride Automata 

Making an automaton multi-stride is a technique used to increase throughput by 

reducing the memory bandwidth requirement, i.e. the automaton processes multiple 

input symbols at the same time. Implementing multi-stride in isolation leads to an 

unacceptable increase in the number of states. Brodie et al. (2006) explain how a 

multi-stride DFA can be made feasible by applying optimisations to the memory 

structures used. Becchi and Crowley (2008b) propose improved optimisations in the 

form of alphabet reduction and default transition compression. Alphabet reduction 

works due to the fact that increasing the stride results in only a small subset of the 

entire alphabet being used. Similarly, as the stride is increased, the number of 

transitions increases at a higher rate than the number of states, and so the fraction of 

distinct transitions falls, allowing a greater degree of compression. Alphabet reduction 

can be applied to both NFA- and DFA-based schemes, while default transition 

compression is a DFA optimisation technique. 

5.2.6. Commodity versus Speciality Hardware 

Considerable research has been carried out into improving the performance of 

solutions based on commodity hardware such as off-the-shelf servers and Graphics 

Processing Units (GPU). Commodity hardware has the advantage of comparatively 

low cost and its performance may be adequate for many applications. Companies 

entering into IDS product development may prefer to use commodity rather than 

specialised hardware in order to reduce time-to-market, keep development costs down 

and deliver a more maintainable product. Such companies might see the use of 

specialised hardware as a second step reserved for the development of higher 

performance products once the commodity-based products have gained a market 

foothold.  

Yu (2006) explains how CPU-based software approaches such as Snort and Linux 

L7-filter cannot cope with high traffic rates. Becchi et al. (2009) measured the 

performance of DFA, NFA and Hybrid-FA implementations on network and general 

purpose processors. They found that the 4-way AMD Opteron performed much better 

than the Intel Xeon and IXP2800, with throughput of between 15 and 70 Mb/s in the 

case of the NFA design, and between 151 and 534 Mb/s in the case of the Hybrid-FA. 

Day & Burns (2011) compare the performance of the single threaded Snort software 

and the multi-threaded Suricata software on multi core systems. They recommend 
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using multiple instances of Snort on multiple cores rather than a single multi-threaded 

instance of Suricata. Running multiple instances of Snort would require the use of 

flow pinning in order to split the traffic between the Snort instances. Wun et al. (2009) 

explain why running Snort on a multi core system may not provide the expected 

improvement in worst case performance due to the fact that certain exceptional 

packets may cause a bottleneck in the regex matching in one of the Snort instances. 

Albin & Rowe (2012) evaluated Snort on a Dell Poweredge R710 dual quad-core 

server where each CPI was an Intel Xenon E5630 operating at 2.4GHz. They found 

that Snort was limited in its ability to scale beyond 200-300Mb/s throughput per 

instance. 

The highly parallel architecture of GPUs makes them effective for many complex 

algorithms. Their relatively low cost has prompted much research into their use for 

offloading of regex matching from the CPU (Antonello et al., 2012). Vasiliadis et al.’s 

(2009) GPU-based DPI system uses fixed string pre-filtering software running on the 

CPU in order to reduce the amount of regex matching that needs to be performed by 

the GPU. Payloads that match in the pre-filter are forwarded along with a regex 

identifier to the GPU for regex matching. The GPU-based system performs well 

provided each payload only needs to be matched against a small number of regexes. 

However, the performance drops significantly if a large number of regexes need to be 

matched against each payload. Vasiliadis et al. measured a worst case throughput of 

700Mb/s on their NVIDIA GeForce 9–based system. It must be noted that their DFA-

based design cannot handle certain complex PCRE syntax such as constrained 

repetitions, and that regexes containing such syntax must be handled by Snort 

software running on the CPU. Zu et al. (2012) evaluated an NFA design on an 

NVIDIA GTX-460 GPU. They give throughput figures of in excess of 10 Gb/s, but 

it’s unclear what type and length of regex it can handle. 

5.3. Conclusion 

DPI typically involves a combination of fixed string and regex matching. Regexes are 

now commonly used in NIDS rule sets and can be modelled as NFA or DFA 

automata. In general, NFA-based schemes typically require much less memory but are 

slower, whereas DFA-based schemes require much more memory but are faster. Much 

research has been conducted into improving the memory efficiency of DFA models 
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using a variety of techniques and into improving the speed of NFA models by 

exploiting hardware parallelism. 

Software-based systems, such as Snort, are unable to perform DPI at the high traffic 

speeds found in today’s networks, particularly where the NIDPS system is to be used 

to monitor an enterprise network’s internal traffic. There is therefore a need to use 

other technology such as GPUs or FPGA-based hardware to accelerate the DPI 

functionality. A classic FPGA-based scheme is to synthesise an NFA representation of 

the regexes as FPGA logic. The problem with this approach is that the FPGA 

configuration needs to be resynthesised whenever the rule set changes, something 

which can take a considerable amount of time and effort. The FPGA device also needs 

to be reconfigured and, unless partial reconfiguration is supported, the system will be 

offline during this procedure. A more suitable design is one in which the regex data is 

stored in memory and so can be easily and quickly updated while the system is 

operating. Bit-Parallel architectures based on NFA are an example of a memory-

centric approach. Although a significant amount of research (Lee, 2010; Kaneta et al., 

2010) has been conducted into such architectures, considerable opportunities remain 

to improve on the handling of some of the more complicated regex syntax such as 

constrained {min,max} repetitions and back references. New algorithms for the 

handling of constrained repetitions are the subject of Chapters 6 and 7.   
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Chapter 6 - Constrained Repetitions in Regular 

Expressions 

The continuous emergence of new attacks means an ever increasing number of rules 

for NIDPS, and the increasing complexity of attacks has resulted in increased usage of 

regex-based signatures. The need to match against very large numbers of complex 

regexes at multi-gigabit traffic rates is too demanding for a software solution. 

Moreover, the increasing use of more complex regex features such as constrained 

repetition quantifiers and back references places even more intensive processing 

demands on NIDPS systems. As a result, there is an increasing need to find efficient 

hardware solutions that can handle large numbers of rules, including all the features of 

Perl Compatible Regular Expressions (PCRE), at high bit rates.  

The most common approach to implementing a standard NFA in hardware is to 

convert it into FPGA logic gates and registers (Sidhu and Prasanna, 2001). The 

disadvantage of this approach is that the logic needs to be re-synthesised whenever the 

rule set is updated. This has led to research into memory-based FPGA and ASIC 

architectures which can be easily reconfigured. One such system is the Bit-Parallel 

(BP) architecture based on the Glushkov NFA. This chapter proposes a modification 

to this architecture in order to more efficiently handle constrained {min, max} 

repetitions. To enable handling by the standard BP system, these repetitions first need 

to be unrolled, often resulting in an excessive memory requirement. The solution 

presented here can deal with the repetition directly without unrolling, thereby making 

it possible to handle regexes that would not be suitable for the standard system. 

6.1. Constrained Repetitions in Snort Rule Set 

Table 17 illustrates the ever increasing number of rules in the Snort rule set, 

approximately half of which include at least one regex. In the September 2012 

snapshot, roughly 19% of the unique regexes contain at least one constrained 

repetition quantifier, the syntax of which is explained in Table 18. Table 19 shows the 

statistics for the constrained repetitions present in the September 2012 Snort rule set. 

Most of the repeated sub-expressions are single rather than multi symbol, and the 

quantifier values can be quite high, with a maximum of 4 017. 



Chapter 6 – Constrained Repetitions in Regular Expression Matching 

 
108 

Table 17: Snort Rule Set Statistics 

Snort version 2.8 2.9.0.0 2.9.3.1 

Snort VRT rule set snapshot date 17.02.2010 07.01.2011 18.09.2012 

Number of rules 8 454 9 852 23 170 

Number of rules with string signature 8 273 9 686 22 762 

Number of rules with regex signature 4 386 4 577 12 460 

Number of unique regexes 3 697 3 892 5 555 

Number of regexes with constrained repetitions 497 598 1 043 

Table 18: Constrained repetition quantifier syntax 

Syntax Meaning 

R{num} Match R exactly num times. 

R{min, max} Match R at least min times and at most max times. 

R{min,} Match R at least min times. R{min,} can be rewritten as R{min}R*  

R{,max} Match R at most max times. Equivalent to R{0,max}. 

Table 19: Snort Constrained Repetition Statistics (v2.9.3.1, 18.09.2012 

snapshot) 

Number of unique regexes which contain constrained repetitions 1 043 

Total number of constrained repetitions 2 030 

Single symbol repeated sub-expr. (e.g. literal, meta-character, character class) 1887 

Multi-symbol repeated sub-expression 143 

Maximum quantifier value (i.e. value of {min, max}) for single symbol repetitions 4017 

Maximum quantifier value for multi-symbol repetitions 499 

6.2. Bit-Parallel (BP) Architectures 

Existing bit-parallel algorithms handle constrained repetition quantifiers by unrolling 

which is not efficient considering that recent SNORT rule sets contain a very high 

number of such quantifiers, many of which have high min/max count values. 

Examples of memory-based architectures include the bitmap-based approach for the 

Glushkov NFA (Lee, 2009) and the dynamic reconfigurable BP-NFA (Kaneta et al., 

2010). The former is based on the BPGlushkov algorithm and the latter on the 

extended SHIFT-AND algorithm, both of which are detailed by Navarro and Raffinot 

(2002) and utilise bit-parallelism (Wu and Manber, 1992; Baeza-Yates and Gonnet, 
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1992). Although these algorithms can be considered to be NFA-based, the 

representation is in fact a DFA because the bitmask of active NFA states, that these 

algorithms use, represents the current equivalent DFA state. 

6.3. Glushkov NFA 

The fundamentals of the Glushkov construction method were presented in section 

2.1.4. The following describes how state traversal functions.  

Consider the example G-NFA shown in Figure 50 for the example regex 

RE=((ABA|C)B*)A. 

0 1 2 3 4 5
A B A B A

6

C

B

A

A

B

 

Figure 50: The G-NFA for RE = ((ABA|C)B*)A 

Two important properties of the G-NFA are that: 

 all the transitions into a particular state y are labelled with the same character αy 

 it’s free of ε-transitions 

The first property allows the construction of a table, Enter[σ], which gives the set of 

states reachable by each character σ ∊ Σ. In the given example Enter[A]={1,3,6}, and 

so on for each character. If Active is the set of currently active states, then the first set 

of active states prior to reading any character is Active={0}, and all subsequent sets of 

active states, for each input character, σ, are given by: 

 ]Enter[)x),REFollow(Active

Activex





 (   in the case of a regex with a start anchor  

 }0{)(( ]Enter[)x),REFollow(Active

Activex





   in the case of regex without a start 

anchor 

where x is the index for each position in the marked regex, RE . (See section 2.1.3 

for a detailed description of anchors and multi-line mode). 

i.e., the new Active set is the union of sets of states reachable from all states currently 

in the Active set intersected with states reachable by the current input symbol, σ.  In 
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other words, the new Active is the set of states reachable from all currently active 

states, subject to each element being reachable by the current input symbol, σ. In the 

case of an unanchored regex, state 0 is held active. Note that in the case of a regex 

with a start anchor and multi-line mode enabled, state 0 must also be held active when 

a newline character is consumed. 

6.4. Counting Glushkov NFA 

The standard G-NFA construction algorithm handles constrained repetition 

quantifiers, RE{min,max}, by unrolling. This results in a total of max×m states (where 

m is the number of symbol positions in the sub pattern, RE), which is clearly 

inefficient if max is large. Smith et al. (2008) and Kumar et al. (2007) propose how a 

counter variable can be used to improve the storage efficiency of their DFA-based 

algorithms. This thesis describes how this idea can be used in the case of a G-NFA by 

constructing a modified counting form of it in which repeated sub-patterns do not 

need to be unrolled. 

Consider the example regex looked at earlier, but with the addition of a constrained 

repetition, RE = ((ABA|C)B*){min,max}A, where min and max are non-negative 

integers. In the example NFA, the repeated sub-pattern, CNTiRE = (A1B2A3|C4)B5*, is 

part of what will be referred to as a counting block, with associated language L(
iCNTRE ) 

= {C4, A1B2A3, C4B5, A1B2A3B5, C4B5B5, A1B2A3B5B5, ... }. There may be multiple 

constrained repetition quantifiers in a single regex resulting in c counting blocks, 

CNTi, indexed i={1..c}. The first step in the NFA construction is as before, except that 

transitions out of each counting block are omitted. The example counting block 

contains marked positions 1 to 5 as shown in Figure 51. 

 

0 1 2 3 4 5
A1 B2 A3 B5

6

C4

B5Counting Block

A6

B5

 

Figure 51: G-NFA for marked sub-pattern 

Definitions of  )RELast( and Enter[σ] are as before, but x )REFollow( ,  must be 

redefined so as to omit transitions out of the counting block for each position, x, 
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within the block. In the example in Figure 51, }5{4, )REFollow( . Note that the G-NFA 

state numbers correspond directly with the positions in the marked regex, RE , and so 

the index, x, can be regarded equally as a position in the regex or as a state in the G-

NFA. 

x )RE(wFollo ,
 is the set of positions in RE which are reachable from x, excluding 

any transition from within a counting block to outside of the block. This can be 

described mathematically as follows: 

 

 























i

CNTCNTyx

CNTCNT

i

CNTyx

)REPos(xif}RE L(v α*, uαv u

),RE Pos(), xRE Pos(y{y

)REPos(xif)}RE L(v α*, uαv u), RE Pos(y{y

ii

ii

i

,),

|

,,,|

This definition is the same as the original ), x REFollow(  for all positions with 

index x outside of a counting block. For positions with index x within a counting 

block, x )RE(wFollo ,
 is the set of positions within that counting block for which 

the combination of the two characters αx followed by αy form a substring of some 

string from the language of 
iCNTRE , where y is also the index of some position 

within the same counting block. 

Note: * is the set of all strings over the alphabet,  , of the language expressed by 

the marked regex (see section 2.1.1 for details). In other words, * is the set of all 

strings that can be formed from the characters accepted by the marked regex. 

Table 20 lists the values of x )RE(wFollo ,  for each state x. 

 x )RE(wFollo ,
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Table 20. Values of Follow' for each state x of example Counting G-NFA 

x x )RE(wFollo ,  

0 {1,4} 

1 {2} 

2 {3} 

3 {5} 

4 {5} 

5 {5} 

6 Ø 

The following definitions specific to each counting block, CNTi, can now be added: 

 FirstBlk is the set of states within the counting block that can be reached by states 

outside of the block. It is also the set of states that can be reached by the first 

character of each repetition cycle. Mathematically, this can be expressed as: 

)}RE L(u*, αu ), RE Pos(x ) = {xREFirstBlk(
iii CNTxCNTCNT |  

i.e. the set of positions within the counting block with index x for which the 

corresponding character αx forms a string from the language of the counting 

block’s sub-regex when appended with some combination of characters. 

In the example shown in Figure 52, FirstBlk = {1,4} 

0 1 2 3 4 5
A1 B2 A3 B5

6

C4

B5Counting Block

A6

B5

= FirstBlk state

 

Figure 52. FirstBlk states for example Counting G-NFA 

 FinalBlk is the set of states within the counting block where a decision is made on 

repeating and/or transitioning out of the block. Mathematically, this can be 

expressed as: 

)}RE L( *, uαu )RE Pos(x ) = {xREFinalBlk(
iii CNTxCNTCNT  ,|  
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i.e. the set of positions within the counting block with index x for which the 

corresponding character αx forms a string from the language of the counting 

block’s sub-regex when prefixed with some combination of characters. 

 IncrementBlk is the set of states within the counting block where the counter is 

incremented. In many cases, this will be identical to the set FinalBlk set. However, 

in order to avoid incrementing the counter more than once per traversal of the 

counting block, any states in FinalBlk that are reached via traversals through other  

FinalBlk states must be excluded. 

  ,)(,|
ii CNTCNT REFinalBlkxy) ={yRElk(IncrementB  ∄ 

 )}RE L( α*, uα u
iCNTyx  ,  

i.e. the set of positions within the FinalBlk set excluding those that are positions 

which are reachable from other positions within the same set via a single or 

multiple state traversal. 

In the example, as shown in Figure 51, FinalBlk = {3,4,5}. State x=5 can only be 

reached from other FinalBlk states and so is excluded from the IncrementBlk set, 

giving IncrementBlk = {3,4}. 

0 1 2 3 4 5
A1 B2 A3 B5

6

C4

B5Counting Block

A6

B5

= FinalBlk state

A6

A6

_ = IncrementBlk state

 

Figure 53. FinalBlk and IncrementBlk states in example Counting G-NFA 

In some cases it is possible to compact the constructed G-NFA as illustrated in 

Figure 54. The resulting NFA is not however a Glushkov NFA and is not suitable 

for use in the Counting G-NFA algorithm as it may include FinalBlk states that 

can be reached both directly and via other FinalBlk states. This would make it 

impossible to create a valid IncrementBlk set. 
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C4

0 1 2 7
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3
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A7

64
B5

5

(i) Counting G-NFA for regex /((A1B2A3|C4B5)B6*){min,max}A7/

(ii) Invalid Counting G-NFA for regex /((A1B2A3|C4B5)B6*){min,max}A7/

A7

= FinalBlk state _ = IncrementBlk state

Counting Block

Counting Block

 

Figure 54. Counting G-NFA for regex /((ABA|CB)B*){min,max}A/ 

 FollowBlk is the set of states outside of the counting block that are reachable from 

states within the counting block. In the example in Figure 51, FollowBlk = {6}. 

) =REFollowBlk( CNTi  

)}RE L(v α*, uαv uREFinalBlkx)REPos(),yREPos(y{y yxCNTiCNTi  ,),(,|

 

i.e. the set of positions, with index y, outside of the counting block for which the 

corresponding character αy preceded by a character αx corresponding to a position 

x within the FinalBlk set, forms a substring of the language of the regex. In other 

words,. 

The counting block has a counter variable, cnti, with the following operations carried 

out for every character read: 

1) Reset the counter if no state within counting block is currently active: 

0)(  iCNT cntREPosActive
i

  

2) Increment counter when one of the states within the IncrementBlk set is active: 

1 iiCNT cntcnt)RElk(IncrementBActive
i

  

3) Initialise Follow΄ to be the set of states reachable from x, omitting any transitions 

from a position inside a counting block to outside: 



Chapter 6 – Constrained Repetitions in Regular Expression Matching 

 
115 

),, xREFollow(x )RE(wFollo   

4) Now if the counting block counter is ≥ min then the Follow΄ set is updated to 

include transitions from positions within the counting block to positions outside of 

the block: 

)REFollowBlk(x ) RE(wFollox )RE(wFollo

cntREFinalBlk(x

i

i

CNT

iiCNT

,,

))min())((




 

5) Now if the counting block counter is less than max then the Follow΄ set is updated 

to include transitions from the FinalBlk positions to the counting block’s entry 

positions (FirstBlk): 

)REFirstBlk(x ) RE(wFollox )RE(wFollo

cntREFinalBlk(x

i

i

CNT

iiCNT

,,

))max())((




  

The definition of the next set of active states can now be redefined as 

 }0{)(( ]Enter[)x),RE(wFolloActive

Activex





  in case of regex without start 

anchor,  

 ]Enter[)x),RE(wFolloActive

Activex





 (   in case of regex with a start anchor. 

As before, the new set of Active states is the union of the sets of positions reachable 

from currently active positions intersected with states reachable with the current input 

symbol, σ. 

6.5. Bit Parallelism 

6.5.1. Standard G-NFA 

The G-NFA maps quite elegantly to a BP representation. The equivalent DFA states 

are stored in a bitmask of length m+1, where each bit corresponds to an NFA state and 

a particular bit has value 1 if that NFA state belongs to the DFA state. In other words, 

each DFA state corresponds to a set of NFA states which are indicated by the bits set 

to 1 in the DFA state bitmask. This is illustrated in Table 21 for m=2. 
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Table 21. Mapping between DFA state bitmask and equivalent NFA states 

DFA state index DFA state bitmask Set of equivalent NFA states 

0 001 {0} 

1 010 {1} 

2 011 {0,1} 

3 100 {2} 

4 101 {0,2} 

5 110 {1,2} 

6 111 {0,1,2} 

The following is a brief description of the bit-parallel algorithm for the standard G-

NFA, full details of which are explained by Navarro and Raffinot (2002) and Lee 

(2009).  

The main decision in this algorithm is how best to represent the set, 

},..0{, mxx )REFollow(   where x is the marked regex position index (or equally the 

NFA state number) and m is the number of positions in the marked regex. The most 

compact representation, as illustrated in Table 22 for the example G-NFA from Figure 

50, is a table of m+1 rows, where each row is a bitmask of length m+1 representing 

x )REFollow( ,  and x is the row index. The problem with this table is that in the worst 

case scenario, when m+1 states are currently active, m+1 memory accesses are 

required per input character, i.e. slow speed. 

Table 22. Follow Table indexed by NFA state index for RE = ((A1B2A3|C4)B5*)A6 

NFA state index x )REFollow( , set x )REFollow( , bitmask 

6543210 

0 {1,4} 0010010 

1 {2} 0000100 

2 {3} 0001000 

3 {5,6} 1100000 

4 {5,6} 1100000 

5 {5,6} 1100000 

6 {Ø} 0000000 
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At the other extreme, a table, FOLLOW_ACTIVE, could be created with 2
m+1 

rows, 

where each row is a bitmask of length m+1 representing Active )REFollow( ,  and Active 

is the row index. This table only needs one access per input character, but occupies a 

huge amount of memory for practical values of m. There is therefore the usual trade-

off between memory and speed with the best solution being a hybrid of the above two 

approaches. The size of the FOLLOW_ACTIVE table can be reduced using a 

horizontal partitioning scheme (Wu and Manber, 1992; Navarro and Raffinot, 2002, 

p.119). Table 24 shows how the example table from Table 23 can be split into two 

much shorter tables. The overall FOLLOW_ACTIVE bitmask is found by ORing 

together the values obtained from the two separate tables. 
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Table 23. FOLLOW_ACTIVE indexed by Active bitmask 

for RE = ((A1B2A3|C4)B5*)A6 

Active bitmask 

6543210 

FOLLOW_ACTIVE[Active] 

6543210 

0000000 0000000 

0000001 0010010 

0000010 0000100 

0000011 0010110 

0000100 0001000 

0000101 0011010 

...  

1111111 (127 decimal) 1111110 

Table 24. Horz. partitioning by 2 of FOLLOW_ACTIVE 

for RE = ((A1B2A3|C4)B5*)A6 

Active[3..0] 

bitmask 

3210 

FOLLOW_ 

ACTIVE[Active[3..0]] 

654 3210 

Active[6..4] 

bitmask
 

7654
*
 

FOLLOW_ 

ACTIVE[Active[6..4]] 

654 3210 

0000 000  0000 0000 000  0000 

0001 001  0010 0001 110  0000 

0010 000  0100 0010 110  0000 

0011 001  0110 0011 110  0000 

... ... ... ... 

1111  

(15 decimal) 

111  1110 1111 110  0000 

*
Extra bit added in order to have two equally sized partitions 

The standard BPGlushkov algorithm consists of the following stored data for each 

regex. The bitmask values given are for an 8-bit BP implementation, with example 

RE=((ABA|C)B*)A. 

 ACTIVE bitmask representing the set of currently active states, Active, and is 

updated after the processing of each symbol.  The Least Significant Bit (LSB) of 

this bitmask is set to 1 prior to reading the first character, to represent initial state 

0. In the case of a regex without a start anchor, this LSB will be held asserted 
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throughout the processing of the packet in order to detect the pattern at any 

position in the payload. 

 LAST bitmask representing the set,  )RELast( , i.e. the ‘accept’ or final states of the 

G-NFA. In the G-NFA for the example, RE=((ABA|C)B*)A, there is only one 

‘accept’ state. LAST has the binary value 0100 0000. The ACTIVE and LAST 

bitmasks are ANDed together after processing each symbol, and a non-zero result 

indicates a match has been found. 

 ENTER table, with a row for each symbol, σ, in the alphabet of the regex, where 

each row corresponds to the set Enter[σ]. The table has 2
8
 = 256 entries, one for 

each 8-bit input symbol, where each entry represents the states reachable on 

processing of a symbol with value equal to the entry’s index. The ENTER table for 

the example, RE=((ABA|C)B*)A, is shown in Table 25. 

Table 25. ENTER table for RE = ((A1B2A3|C4)B5*)A6 

Symbol. σ 

Symbol in hex 

 (8 bits) Enter[σ] set 

ENTER[σ] bitmask 

7654 3210 

A 41 {1,3,6} 0100 1010 

B 42 {2,5} 0010 0100 

C 43 {4} 0001 0000 

 all other hex 

values between 

00 and FF 

{Ø} 0000 0000 

On reading a new payload symbol, the algorithm looks up the corresponding entry 

in the ENTER table to find which states can be reached with that particular symbol. 

e.g. If the input symbol is B, then the ENTER bitmask is 0010 0100 has bits 

numbered 2 and 5 set to 1, which means that states 2 and 5 are reachable with the 

symbol B. 

 FOLLOW_ACTIVE table, with a row for each possible value of the ACTIVE 

bitmask. Such a table occupies (m+1)2
m+1 

bits, which is usually too large. This can 

be reduced by horizontally splitting it into k tables, giving a total occupied space 

of k(m+1)2
(m+1)/k 

bits. If there are s bits of available memory then k can be 

calculated as follows 

s = k(m+1)2
(m+1)/k 

 l   
 

 (   )
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Horizontal partitioning for the example, RE=((ABA|C)B*)A, is shown in Table 

24. 

On reading a new payload symbol, the algorithm uses the current value of the 

ACTIVE bitmask to index the FOLLOW_ACTIVE table in order to find which 

states can be reached. 

 

Figure 55: SNORT regular expression symbol count distribution 
(Snort 2.9.3.1, rule snapshot from 18.09.2012. Back-references & subroutine sub-patterns were not considered) 

Figure 56 shows a simple high level view of the functionality of the BP G-NFA 

algorithm. As shown in Figure 55Error! Reference source not found., a very large 

roportion of SNORT regexes consist of less than 32 symbols. These can be 

represented by a 32-bit bitmask. The search algorithm for m=31 and k=4 is then as 

follows  

ACTIVE ← 0x00000001 /*(0x denotes hex) Set LSB of 32-bit mask to 

1*/ 

FOR σ ϵ Σ DO /* repeat for each input symbol (element of 

alphabet)*/ 

 FOLLOW_SUM ←  

FOLLOW_ACTIVE[3][ACTIVE(31..24)] | 

FOLLOW_ACTIVE[2][ACTIVE(23..16)] | 

FOLLOW_ACTIVE[1][ACTIVE(15..8)] | 

FOLLOW_ACTIVE[0][ACTIVE(7..0)] 
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 ACTIVE ← FOLLOW_SUM & ENTER[σ] 

 IF (ACTIVE & LAST) 

  REPORT MATCH FOUND 

  EXIT 

 END IF 

END FOR 

REPORT NO MATCH FOUND 

Find bitmask 

representing set of 

states reachable 

from the currently 

active states

ACTIVE 

bitmask

Find bitmask 

representing set of 

states reachable 

with current input 

symbol

input 

symbol

FOLLOW_ACTIVE

bitmask

ENTER

bitmask8

n

n

n

n=no. states in G-NFA = m+1, m=number of symbols in regex

One clock cycle

ACTIVE 

bitmask

Bitwise

AND
n

FOLLOW_ACTIVE

ENTER

Bitwise

AND

LAST

bitmask OR 

reduction Match

 

Figure 56. High level view of BP G-NFA algorithm 

The bitmasks retrieved from the ENTER and FOLLOW_ACTIVE tables are ANDed 

together to find the new value of the ACTIVE bitmask. This can be seen from Table 

26 for the example regex, RE=((ABA|C)B*)A. As the regex has no start anchor, then 

bit 0 is held asserted. 
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Table 26. Input string ABABBA with RE=((ABA|C)B*)A (no anchor) 

Inp. 

Sym. 

ENTER 

7654 3210 

FOLLOW_ 

ACTIVE 

[ACTIVE[7..4]] 

7654 3210 

FOLLOW_ 

ACTIVE 

[ACTIVE[3..0]] 

7654 3210 

FOLLOW_ 

ACTIVE 

7654 3210 

ACTIVE 

7654 3210 

ACTIVE AND 

LAST 

7654 3210 

     0000 0001 0000 0000 

A 0100 1010 0000 0000 0001  0010 0001 0010 0000 0011 0000 0000 

B 0010 0100 0000 0000 0001  0010 0111 0010 0000 0111 0000 0000 

A 0100 1010 0000 0000 0001 1110 0001 1110 0000 1011 0000 0000 

B 0010 0100 0000 0000 0111 0110 0111 0110 0010 0101 0000 0000 

B 0010 0100 0110 0000 0001 1010 0111 1010 0010 0001 0000 0000 

A 0100 1010 0110 0000 0001 0010 0111 0010 0100 0001 0100 0000 

Match found! 

6.5.2. Counting G-NFA 

This section explains how the standard bit parallel algorithm can be extended to 

implement the counting G-NFA by using a bitmask representation of the sets 

explained earlier. Each counting block has the following storage elements: 

 MIN: integer value, min. number of repetitions 

 MAX: integer value, max. number of repetitions 

 POS_CNT: bitmask indicating states contained in the counting block 

 CNT: integer value, number of times the pattern has been seen 

 INCREMENT_BLK: bitmask indicating states where counter value can be 

incremented 

 FIRST_BLK: bitmask indicating the entry states of the counting block 

 FINAL_BLK: bitmask indicating the exit states of the counting block, assuming 

counter has reached the required value 

 FOLLOW_BLK: bitmask indicating states outside the counting block which can be 

reached from within the block 

The following is the BP counting G-NFA search algorithm for m=31, k=4 

ACTIVE ← 0x00000001 /* Set LSB of 32-bit bitmask to 1 */ 

FOR σ ∊ Σ DO /* repeat for each input symbol */ 
FOLLOW_SUM ← 0x00000000 /* Zero 32-bit bitmask */ 

/* Consider each of the c counting blocks */ 

FOR i ϵ 1...c /* where c=no. of counting blks */ 

ACTIVE_IN_CNT_BLK ← ACTIVE & POS_CNT(i) 

IF (ACTIVE_IN_CNT_BLK) /* Counting blk state active? */ 

 /* Are we in one of the states where counter *  

 * must be incremented                       */ 

IF (ACTIVE_IN_CNT_BLK & INCREMENT_BLK(i)) 

CNT(i) ← CNT(i) + 1 
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 END IF 

     /* Are we in one of the states where we need to check  * 

  * if we can repeat or transition out of counting blk? */ 

 IF (ACTIVE_IN_CNT_BLK & FINAL_BLK(i)) 

IF (CNT(i) ≥ MIN(i)) /* Can we move onto next stage? */ 

  /* Allow transitions out of counting block */ 

FOLLOW_SUM ← FOLLOW_SUM | FOLLOW_BLK(i) 

END IF 

IF (CNT(i) < MAX(i)) /*Can we repeat this counting 

block?*/ 

  /* Allow transitions back to counting * 

   * block’s initial state(s)           */ 

FOLLOW_SUM ← FOLLOW_SUM | FIRST_BLK(i) 

END IF 

 ENDIF 

ELSE 

  /* No state active in this counting block, 

   * so reset the counter 

   */ 

  CNT(i) ← 0 

END IF 

END FOR 

/* Combine the set of follow states calculated in the counting 

* 

 * block section above with the standard horz.       

* 

 * partitioned FOLLOW_ACTIVE values         

*/ 

FOLLOW_SUM ← FOLLOW_SUM | 

FOLLOW_ACTIVE[3][ACTIVE(31..24)] | 

FOLLOW_ACTIVE[2][ACTIVE(23..16)] | 

FOLLOW_ACTIVE[1][ACTIVE(15..8)] | 

FOLLOW_ACTIVE[0][ACTIVE(7..0)] 

/* Calculate new set of active states by ANDing together  * 

 * the bitmask of states reachable from the currently     * 

 * active states with the bitmask of states reachable     * 

 * with the current input symbol          */ 

ACTIVE ← FOLLOW_SUM & ENTER[σ] 

IF (ACTIVE & LAST) /* Is one of the Accept states active? */ 

REPORT MATCH FOUND 

EXIT 

END IF 

END FOR 

REPORT NO MATCH FOUND 
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Figure 57. High level view of BP Counting G-NFA algorithm 

Figure 57 illustrates how the counting scheme is combined with the standard BP G-

NFA to produce the overall BP counting G-NFA algorithm. The large grey box 

represents the functionality that executes in one clock cycle of operation. Although in 

practice there can be multiple counting blocks, this simplified diagram just shows one. 

Comparison of the ACTIVE and LAST bitmasks in order to find a match has been 

omitted for clarity. 
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6.5.3. Counting G-NFA for single symbol elements 

The above algorithm can be simplified if the repeated element is just a single 

symbol. The INCREMENT_BLK, FIRST_BLK and FINAL_BLK bitmasks are not 

required, as POS_CNT indicates the single state contained in the counting block. 

Figure 58 illustrates this simplification of the algorithm. 
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reached min then 

set FOLLOWCNT_A to 

be all transitions out 

of blk, i.e. 

FOLLOW_BLK

If counter is less 

than max then 

set 

FOLLOWCNT_B to 

be this blk’s 

state, i.e 

POS_CNT 

ACTIVE bitmask 

and counter

Find bitmask 

representing set of 

states reachable 

with current input 

symbol by looking 

up ENTER table

Input

symbol

Increment block’s counter

Bitwise 

OR

FOLLOWCNT_A
FOLLOWCNT_B

FOLLOWCNT

Find bitmask representing set of 

states reachable from the 

currently active states (outside of 

cnting blk) by looking up 

FOLLOW_ACTIVE table

Bitwise 

OR

FOLLOW

bitmask

FOLLOWCNT

FOLLOW

_SUM
Bitwise 

AND

ENTER

bitmask

ACTIVE bitmask 

ENTER

bitmask

FOLLOW

bitmask

yes

no

One clock cycle

Set FOLLOWCNT 

bitmask to zero

8

n
n

n

n

n

(n=no. states in G-NFA = m+1, m=number of symbols in regex)

Counting Block part of algorithm Standard BP G-NFA algorithm

 

Figure 58. High level view of Counting G-NFA for single symbol repetition 

6.6. Implementation 

6.6.1. Hardware Architecture 

The target platform is the open-source NetFPGA-10G development PCI board based 

on the Xilinx Virtex-5 TX240T FPGA. This FPGA can operate at up to 550MHz and 

has significant internal memory in the form of 648 block RAMs of size 18Kb, giving a 

total of 11,664Kb, and 2,400Kb of distributed RAM. The aim is to make efficient use 

of this internal memory so as to maximize performance. 



Chapter 6 – Constrained Repetitions in Regular Expression Matching 

 
126 

The architecture, as illustrated in Figure 59, reuses several components of the 

NetFPGA reference pipeline (Naous et al., 2008). This pipeline has two buses, a 64-

bit wide packet bus and a register bus. Software running on the host can access the 

registers using ioctl calls. The register bus allows indirect modification of the contents 

of the block RAM used by the DPI implementation. The NetFPGA ethernet MAC 

queues, input arbiter, output port lookup and memory interface controller Verilog 

modules, are reused and are summarised as follows: 

 Ethernet MAC Queues – each ethernet MAC has a corresponding block RAM 

FIFO 

 Input Arbiter – selects which RX queue to service next 

 Output port lookup – longest prefix matching on destination IP address to 

determine the output ethernet port 

 Memory Interface Controller – NetFPGA project includes modules for interfacing 

to SRAM and DRAM 

 The following new modules are added: 

 Fixed String DPI – carries out fixed string matching on the packet payload 

 regex DPI – carries out regex matching on the packet payload 

 Multi-match header classification – classifies packet headers against IDS ruleset 

 Match Decision – combines results from the three NIDS classification modules. If 

any of the three matching modules reports no match found for a particular packet, 

then the matching can be terminated in the other two modules and processing of 

the next packet initiated 

 Packet Buffer Control – each incoming packet is buffered in memory until a match 

decision is made. Once the current packet matching has completed, the next packet 

header and payload is passed to the matching modules 

 Note that TCP/IP reassembly is not handled in this architecture 
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Figure 59: Proposed overall IDS architecture on NetFPGA platform 

 

The Regex DPI module, as illustrated in Figure 60, consists of many regex 

processing engines (PEs) operating in parallel, each handling a single regex which is 

stored in simple dual-port block RAM. The regex data can be dynamically updated by 

software running on an internal or external CPU. The maximum number of engines is 

limited by the available memory, logic and interconnects on the FPGA. 
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Figure 60: Regex DPI Handling Module hardware architecture  

The Engine Data Update Handler module is responsible for writing the regex data to 

the PE identified by the engine id input. This essentially involves decoding the engine 

id and asserting the appropriate write enable output. 

The Packet Buffer Handler module is responsible for buffering received payload 

symbols and handling handshaking communication with all PEs. It also monitors the 

match and no_match signals from all PEs in order to declare an overall match result. 

The Packet Buffer Handler module implemented in order to evaluate the design is 

shown in Figure 61. The payload data input is a 10-bit wide input signal consisting of 

8 bits of symbol data, a first-symbol-in-packet flag and a last-symbol-in-packet flag. 

Buffer memory consists of two Block RAM (BRAM)–based FIFOs, each capable of 

holding 2048 10-bit symbols. Each FIFO contains only the payload data from one 

particular packet. Once a match is found for a particular packet, the remaining content 

of that packet is discarded by simply resetting the associated FIFO. 
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Figure 61: Payload Buffer scheme used in evaluation 

The Payload FIFO Writing FSM is responsible for writing received symbols into the 

appropriate FIFO. If the prog_full signal indicates that the FIFO is almost full, then 

the FSM will deassert the ready output signal. Once the last symbol of the payload has 

been written to a FIFO, it switches to writing to the other FIFO. If that FIFO is not 

empty, then it will deassert the ready flag and pause until it is. 

The Engine Handshaking FSM handles communication with all PEs and selects 

which payload FIFO to read from. The same payload symbols are fed to all PEs 

concurrently. The FSM must therefore wait for all PEs have asserted their req output 

signals, indicating that they are ready, before sending symbols from the FIFO to the 

PEs. Similarly, the FSM will only declare that no match has been found if all PEs 

assert their no_match outputs. It asserts the ack signal to indicate a valid symbol 

output signal. If any PE asserts its match output, the FSM will assert the overall match 

output signal and reset the FIFO in order to remove any remaining content from the 

successfully matched packet. The FSM switches FIFO once the overall match or 

no_match output has been asserted in order to read in the next packet to be processed 

by the PEs. 
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A simplified version of the logic present in each PE is illustrated in Figure 62 and a 

schematic for the counting block mechanism it uses is shown in Figure 63. This logic 

is a single symbol implementation of the algorithm outlined earlier. The logic used to 

handle regex features such as anchors and multi-line mode has been omitted for 

clarity. Each engine requires one BRAM for the ENTER table and one for each of the 

horizontally partitioned FOLLOW_ACTIVE tables. In the case of n=32, four BRAMs 

are required for a 4-way partition of the FOLLOW_ACTIVE table. Each Virtex5 

BRAM can be configured to be simple dual port of size 512x32, i.e. each 32-bit wide 

dual port BRAM has 512 rows. Simple dual port mode means that one port is used for 

reading and the other for writing, i.e. one port cannot be used for both. However, each 

engine only uses 256 rows per BRAM. Therefore, so as to maximise space efficiency, 

a quad-port “wrapper” can be added around each BRAM, where each port accesses 

one half of the memory. This is achieved by time division multiplexing the access to 

the BRAM which means the normally dual port memory is clocked at twice the rate of 

the rest of the design. This has the disadvantage of reducing the maximum frequency 

of operation of the design by 50%, as well as adding some additional logic. So it boils 

down to the usual time-space trade-off. Xilinx provides an application note on how to 

implement a quad-port BRAM (Sawyer and Defossez, 2002). 
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Figure 62: Outline of Regex Processing Engine (PE) 
(for regex with up to n-1 symbols) 

A single symbol is processed by a PE in each clock cycle. The input to the counting 

mechanism, as illustrated in Figure 63, is the current active bitmask. A 12-bit counter 

is used to in order to support a maximum counter value of 4095, the maximum value 

of max found in the regexes extracted from the Snort rule set used for the evaluation. 

The counting mechanism is active when the counting block state is active and, while 

active, its counter is incremented in each clock cycle. Otherwise the counter is cleared 

to zero. The output of the counting mechanism is the n-bit FOLLOWCNT bitmask that 

can have the following bits set: 

a) No bits set because the counter value is zero. 

b) Bit corresponding to counting block state, indicating that repetition is enabled. 

This occurs if the counter value is less than max. 

c) Bits corresponding to states, outside of the block, that are reachable from the 

counting block state, i.e. allowing transition out of the block. This occurs if the 

counter value is at least min. 

d) A combination of (b) and (c) if the counter is at least min and less than max. 
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The reader should refer to Figure 58 for a higher level view of the functionality 

outlined in Figure 63. 
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Figure 63: Counting Block Mechanism for regex with up to n-1 symbols 

6.6.2. Bitmask Generation Software 

Pre-processing software rewrites certain constrained quantifiers, as listed in Table 27, 

so that they can be handled by the counting G-NFA. R{0,max} needs to be rewritten 

because the counting block cannot handle a min of zero. R{num} at the end of a regex 

is rewritten as R{num-1,num-1}R as the regex accept state needs to be outside of the 

counting block. 

Table 27. Rewriting of constrained quantifiers 

Original   Rewritten 

R{num} R{num,num} 

R{min,} R{min,min}R* 

R{,max} or R{0,max} R?|R{1,max} 

R{num} located at end of regex R{num-1,num-1}R 
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Software is required to convert the Snort regexes into the Counting G-NFA and 

corresponding bitmasks. The CCP C program developed by Champarnaud et al. 

(2004) performs pattern matching based on the G-NFA. This software consists of two 

principal modules, the first generates the automaton from the user supplied regex 

pattern and the second uses the automaton to scan a user supplied text file for 

occurrences of the pattern. The first module was extended to handle most of the PCRE 

syntax found in Snort and a layer added to handle the conversion of the automata into 

tables of bitmasks for storage in BRAM. This layer also takes account of the single 

line mode and case insensitivity modifiers when generating the bitmasks. The anchor 

and multi-line mode modifier values, on the other hand, are programmed into a flags 

register in each PE so as to control its operation. 

Consider the example regex /abc{2,3}defghi/. The modified CCP algorithm will 

parse this regex and generate an ENTER and a FOLLOW table, LAST bitmask = 

0x00000400, in addition to extracting details of the counting block, i.e. POS_CNT = 

0x00000008 and FOLLOW_BLK = 0x00000010 bitmasks, MIN=2 and MAX=3 counter 

values. The generated ENTER table is indexed by each possible 8 bit symbol value 

and the FOLLOW table by each state’s position, as outlined in Table 28. 
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Table 28. ENTER and FOLLOW tables as generated by modified CCP 

software 

Input Symbol  ENTER  State position  FOLLOW 

0x00 0x00 00 00 00  0 0x00 00 00 02 

...etc... 0x00 00 00 00  1 0x00 00 00 04 

0x61 (ASCII ‘a’) 0x00 00 00 02  2 0x00 00 00 08 

0x62 (ASCII ‘b’) 0x00 00 00 04  3 0x00 00 00 00 

0x63 (ASCII ‘c’) 0x00 00 00 08  4 0x00 00 00 20 

0x64 (ASCII ‘d’) 0x00 00 00 10  5 0x00 00 00 40 

0x65 (ASCII ‘e’) 0x00 00 00 20  6 0x00 00 00 80 

0x66 (ASCII ‘f’) 0x00 00 00 40  7 0x00 00 01 00 

0x67 (ASCII ‘g’) 0x00 00 00 80  8 0x00 00 02 00 

0x68 (ASCII ‘h’) 0x00 00 01 00  9 0x00 00 04 00 

0x69 (ASCII ‘i’) 0x00 00 02 00  10 0x00 00 00 00 

.... etc... 0x00 00 00 00    

Table 29. FOLLOW_ACTIVE tables 

ACTIVE 

bits 7 to 0 

FOLLOW_ACTIVE 

[0] 

 ACTIVE 

bits 15 to 8 

FOLLOW_ACTIVE 

[1] 

0x00 0x00 00 00 00  0x00 0x00 00 00 00 

0x01 0x00 00 00 02  0x01 0x00 00 02 00 

0x02 0x00 00 00 04  0x02 0x00 00 04 00 

0x03 0x00 00 00 06  0x03 0x00 00 06 00 

0x04 0x00 00 00 08  0x04 0x00 00 00 00 

0x05 0x00 00 00 00  0x05 0x00 00 02 00 

0x06 0x00 00 00 0C  0x06 0x00 00 04 00 

0x07 0x00 00 00 0E  0x07 0x00 00 06 00 

0x08 0x00 00 00 00  etc...  

0x09 0x00 00 00 02    

etc...     

0x80 0x00 00 01 00    

0x81 0x00 00 01 02    

etc...     

0xff 0x00 00 01 EE  0xff 0x00 00 06 00 
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The new layer of software added to CCP then converts the FOLLOW table into four 

horizontally partitioned FOLLOW_ACTIVE tables, two of which are shown in Table 

29. The final step is to convert all tables and bitmasks into a format suitable for 

uploading into FPGA memory.  All the data is stored in a binary file based on the 

VHDL STD_LOGIC data type (Tang, 2000) which is suitable for reading by a VHDL 

test bench. This file is also suitable for reading by a microprocessor for programming 

of the DPI core via memory-mapped I/O. 

One serious problem with programming the BRAMs via the test bench is that it results 

in an excessively long simulation run time. One way of avoiding this issue is to hard 

code the BRAM data into the VHDL code using the INIT_xx generic attributes 

available in each Xilinx BRAM primitive (Xilinx, 2012a). Therefore, for simulation 

purposes, only non-BRAM data is stored in the binary data file that is loaded 

dynamically via the test bench, i.e. bitmasks such as FIRST, FINAL, POS_CNT, etc. 

In the case of BRAM data, i.e. ENTER and FOLLOW_ACTIVE tables, a VHDL 

package file is generated which contains an array indexed by the regex engine 

identifier. Each element of this array contains an array of five elements, where each 

element represents the contents of a single BRAM. Each of these BRAM data 

elements consists of an array of bit vectors, where each vector corresponds to an 

INIT_XX attribute. 

6.7. Performance Results 

6.7.1. Synthesis and simulation 

The design was implemented in VHDL for a bitmask length of 32 with the tables 

horizontally partitioned four times. Simulation and evaluation was performed with the 

Xilinx Virtex5 TX240T (Speed -2) as the target FPGA device. Longer bitmasks, and 

hence regex lengths, could have been implemented, but would occupy a significantly 

larger amount of memory. Doubling the bitmask length typically involves an increase 

in the storage requirement by a factor of 4. This is because both the number of 

horizontal partitions and the width of each table are doubled. It should be noted, 

however, that the majority of regexes are short, as shown in Figure 55.  

Sets of regexes, each containing a single constrained repetition and each having less 

than 32 states in the Counting G-NFA, were randomly chosen from the Snort rule set. 

The bitmask generation software was then used to convert these regexes into tables of 
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bitmasks for programming the FPGA BRAM. All tests were repeated with different 

sets of regexes and the results were found to be the same for a particular number of 

regexes. Payload data extracted from the Shmoo Group (2009) DEFCON traffic traces 

were used for the timing simulation. Power analysis was performed using the Xilinx 

XPower Analyzer. 

Table 30: Virtex5 TX240T Device Utilisation 

Resource 32 PEs 64 PEs 96 PEs 

Block RAM 28% 50% 75% 

Slices 11% 15% 39% 

Xilinx XST tool gave the maximum clock frequency as 201.5 MHz on the Virtex5 

and 220 MHz on the Virtex7 with corresponding throughputs of 1.6 Gb/s and 1.8 

Gb/s, respectively. Resource utilisation figures for the Virtex5 are given in Table 30. 

It can support a maximum of 128 PEs due to its limited BRAM. A higher end FPGA 

such as the Virtex7 1140T has 5.8 times more BRAM and so could handle up to 750 

PEs, as shown in Table 31. 

Table 31: Virtex7 1140T Device Utilisation 

Resource 256 PEs 512 PEs 736 PEs 

Block RAM 34% 68% 97% 

Slices 8% 14% 20% 

The current VHDL design uses only half of each BRAM. BRAM utilisation could be 

maximised at the cost of reduced maximum processing speed by clocking the BRAM 

at twice the rate of the PE and performing time division multiplexed reading of the 

BRAM. 

In order to minimise power consumption, the BRAM Write and Read Enable inputs 

were only asserted when updating the regexes and processing packets, respectively. 

This significantly reduces power consumption at lower packet throughput rates as 

illustrated in Figure 64 for an implementation with 96 PEs. 
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Figure 64: Power Consumption as a function of throughput 

Power consumption was also measured with different numbers of PEs in the 

implementation and was found to increase linearly with the number of PEs, rising 

from 2.8W with 8 PEs to 6.5W with 96, measured at maximum throughput. 

6.7.2. Memory requirements 

Each regex requires 5kbytes of BRAM. 2115 regexes from the Sep. 2012 rule set are 

compatible with the Counting G-NFA implementation and would require a total of 

10MB of BRAM. The Virtex 7 1140T has 7MB of BRAM and so two would be 

required to handle all compatible regexes assuming time division multiplexed reading 

was performed. 

6.7.3. Memory and power savings 

Consider the following regex from the Snort v2.9 rule set 

    RE=\S{998}\S 

where \S means any non-whitespace character. 

This RE requires only 3 states in the Counting G-NFA and can be easily handled in 

the 32-bit BP implementation which requires 5 Kbytes of BRAM per PE. Compare 

this to the standard G-NFA which would have 1000 states after unrolling of the 

repetition. A 1000-bit BP implementation with 10-bit horizontal partitioning would 

require 12 Mbytes of BRAM for just this regex! Clearly it is much more storage 

efficient to use the Counting G-NFA except for cases where the unrolled G-NFA has 

less than 32 states. The reduced memory results in significant power savings. 
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6.7.4. Extending to multiple counting blocks 

This single counting block implementation could be extended to handle the generic 

32-bit algorithm where each PE can have multiple counting blocks. For space 

efficiency, such an implementation would have a range of PE types, where each PE 

type has a different number of counting blocks. The relative numbers of each type 

would be determined by the typical distribution of regexes as a function of the number 

of constrained repetitions contained in each regex. Figure 65 shows such a distribution 

for the September 2012 snapshot of the Snort rule set. Table 17 showed that of the 

5555 unique regexes, 1043 contained constrained repetitions. As can be seen from the 

chart in Figure 65, the vast majority of these contain just one constrained repetition. 

 
Figure 65. Distribution of Snort regexes based on no. of constrained repetitions 

(v2.9.3.1, 18.09.2012 snapshot) 

6.8. Related Work 

Existing BP algorithms (Lee, 2010; Kaneta et al., 2010) handle constrained repetitions 

by unrolling, which is not efficient since the SNORT rule set contains a high number 

of such quantifiers, many of which have high min/max count values. This thesis 

describes how a counting design can be integrated into the BP architectures proposed 

in existing research. 

The majority of other research into the handling of constrained repetitions is based 

on the approach of converting the NFA into a static FPGA configuration bitstream as 

opposed to using memory-based architectures. The bitstream must be regenerated 

every time the rule set changes. Such regeneration can be quite time consuming for 
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large rule sets, often taking several hours. Moreover, reconfiguration of the FPGA 

device itself will require a short system downtime, which is not ideal. Regeneration of 

the bitmask tables for the BP G-NFA system is performed in software for each of the 

modified regexes and only the modified tables are reprogrammed on the FPGA. 

Depending on the number of regexes to be updated, the entire procedure should be a 

matter of seconds. 

Bispo et al. (2006) present a static FPGA configuration type system. It uses a shift 

register to deal with overlap but, unlike the system proposed in this thesis, it cannot 

handle constrained repetitions of multi-symbol sub-expressions. Faezipour and 

Nourani (2008) propose another static logic–based solution which adds support for 

multi-symbol repeated sub-expressions. They claim that they only need to deal with 

overlap if the repeated sub-expression is at the beginning of the regex. However 

overlap is also an issue when the sub-expression is located elsewhere in the regex. 

Yun and Lee (2009) present a similar solution but admit that it does not fully handle 

overlap. Long et al. (2010) add BRAM-based character matching to save logic 

resources.  

Pao (2009) and Wang et al. (2010) carried out research into NFA-based architectures 

which handle constrained repetitions without unrolling. Pao’s (2009) CX-NFA 

architecture stores its lookup tables in TCAM which typically increases cost and 

energy usage. Detailed evaluation figures are not provided. Wang et al. propose an 

NFA-based architecture, called CES (CCR regExp Scanner), which is suitable for 

FPGA synthesis. Its building blocks are Character Class with Constraint Repetition 

(CCR) modules and its operation is based on the fact that most regexes can be 

regarded as a sequence of character classes with repetitions, which are connected by 

concatenation and alternation operators, i.e. RE=CCR1CCR2CCRn. Each CCR 

module handles the matching of a single CCRi using a MIN-MAX algorithm which 

uses two counters (MINi, MAXi) to keep track of the minimum and maximum number 

of character repetitions that CCRi may have matched.  The second level of the system 

is the CES block or tile which consists of a mesh of interconnected CCRs as 

illustrated in Figure 66. By default, the interconnections are disabled and must be 

enabled using configurable bits in each CCR, as shown in Figure 67. A CCR can also 

be configured as bypassed in order to cope with an unbalanced alternation. 
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CCR11 CCR12 CCR13 CCR14

CCR21 CCR22 CCR23 CCR24

Unused CCR Normal CCR Bypass CCR

Activation Signal Bypass Signal

Unused connection

Example regex 

RE=CCR11(CCR12CCR13|CCR22)CCR14

 

Figure 66. CES tile mesh for example regex 
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Match 
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Figure 67. CCR Interconnections 

Unlike the BP scheme proposed in this thesis, CES only uses BRAM to handle 

character class recognition. The paths between CCRs within each CES tile are fixed at 

synthesis and the interconnections are enabled or disabled using the enable bits in 

each CCR. Each normal CCR represents an NFA state and so the states that are 

reachable from those currently active are determined by the enabled connection paths 

between CCRs within the CES tile mesh and associated match-found signal values. A 

fully flexible CES tile would require an excessive number of interconnections in order 

to handle all possible regex concatenations and alternations. As a workaround, Wang 

et al. suggest that the design be synthesised with a range of CES topologies, with a 

portion of CES tiles optimised for each particular type of regex. The proportion of 

each type of CES tile would be based on an analysis of recent rule sets. Another 

disadvantage of the CES architecture is that it can only handle constrained repetitions 
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of single symbol elements. Wang et al. synthesised their design for a Virtex-5 

LX110T FPGA and report a clock frequency of approx. 200MHz and throughput of 

1.6 Gb/s for a single 32 symbol regex implementation, very similar to that of the 

Counting G-NFA implementation presented in thesis.  

Kaneta et al.’s (2010) Virtex-5 LX300–based BP-NFA design shows similar 

performance characteristics to that of the Counting G-NFA BP implementation with a 

maximum clock frequency of 202 MHz for an implementation with 128 regexes. 

However, unlike the Counting G-NFA, the BP-NFA algorithm can only handle 

constrained repetitions by unrolling. Lee’s bitmap-based G-NFA (2009) gives a 

throughput of 4Gb/s, but this is for a simple implementation of just one regex and it 

also needs to unroll constrained repetitions. 

There has been less research into FPGA-based DFA implementations as NFAs are 

seen as more appropriate for the parallel nature and smaller memory size of FPGAs. 

Becchi (2009) discusses the potential for a memory centric FPGA-based DFA 

implementation where, in order to harness the parallelism of the FPGA, each BRAM 

would hold a single DFA. A number of DFAs could be combined into one DFA in 

order to increase the number of regexes per BRAM, provided there is not a state blow-

up as a result of the combination process. Hayes & Luo (2007) propose a system 

called DPICO (DPI COmpact) that uses a modified CAM-like structure, BRAM, and 

data packing to implement a compact DFA on an FPGA. Their first proposed 

improvement to a baseline DFA implementation is to combine multiple transitions 

between the same two states into a single default transition. All non-default transitions 

are referred to as labelled transitions. A modified CAM-like (mCAM) structure 

associated with each DFA state is used to look up labelled transitions. If no labelled 

transition is found, then the default transition, which is read from memory, is used.  

This mCAM scheme only produces a memory saving if the number of default 

transitions is relatively high. Otherwise, it would be better to use the standard method 

of storing all transitions in a 256-element array in memory indexed by the 8-bit 

transition label (i.e. symbol). The authors’ second proposal is to take the mCAM idea 

and to distribute the storage of transitions over multiple parallel BRAMs. Assuming 

sufficient BRAMs are available to cover the maximum number of labelled transitions 

per state plus one default transition, all of a state’s transitions can be read in one clock 

cycle. 
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Figure 68. DPICO block diagram 

 

A block diagram of the DPICO scheme is shown in Figure 68. Each BRAM outputs 

the data for a single transition, which may be either a labelled or default transition. 

The data for a labelled transition consists of the label and the next state pointer logical 

address. The data for a default transition consist of the next state pointer logical 

address, the match ID for the regex if this is an accept state and an offset to the last 

BRAM which holds transition data for this particular state. This offset is required to 

pinpoint the valid pieces of transition data when the number of this state’s transitions 

is less than the number of BRAMs. The labels of all valid labelled transitions received 

from the BRAMs must be compared to the input symbol in order to find a match. If a 
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match is found, then the transitions next state pointer address is used. Otherwise, the 

next state pointer from the default transition data is used. The next state pointer is a 

logical address which points to the default transition data of the next state. 

One of the main downfalls of the DPICO algorithm is that it needs to perform a 

comparison between the input symbol and a potentially large number of transition 

labels which will limit the maximum clock frequency achievable in an FPGA 

implementation. According to Hayes & Luo’s evaluation, if 16 BRAMs are sufficient 

to cover the maximum number of transitions, then the maximum throughput on a 

Virtex 4 FPGA is given as 789 Mb/s which increases to 2175 Mb/s in a pipelined 

design. The number of possible next-state transitions is likely to be excessively high if 

the DFA is constructed from regexes containing constrained repetitions with high 

counter values, making it unsuitable for this system. It is therefore difficult to make an 

accurate comparison between the DPICO and Counting G-NFA implementation as the 

DPICO memory requirements and performance depend very much on the form of the 

regex. Another possible issue with the DPICO scheme is that all DFAs need to be 

combined into a single DFA which may result in a state explosion. The resulting DFA 

may be too large to fit into the series of BRAMs. 
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Table 32 provides a summary of the supported features and performance of each of 

the dynamic memory-based architectures. 

Table 32: Comparison of dynamic memory-based hardware architectures 

Feature 

Countin

g G-

NFA 

BP-NFA 
Bitmap G-

NFA 

CX-

NFA 
CES 

  
(Kaneta et 
al.) 

(Lee) (Pao) 
(Wang et 
al.) 

No. of regexes in evaluated design 96 128 1 - 1 

FPGA device used for evaluation 
Virtex 5 

TX240T 

Virtex 5 

LX330 

Virtex-II 

XC2VP30 
- 

Virtex 5 

LX110T 

Clock freq. for 32 symbol regex (MHz) 201.5 202 - - 200 

Max. throughput (Gb/s) 1.6 1.6 4 - 1.6 

BRAM per regex symbol (bytes) 160 64 - 
TCAM

-based 
29 

No. Virtex 5 slices per regex symbol 4 3.8 - - 22 

Power cons. per regex at max 

throughput 
68mW - - - - 

BP-based solution? Yes Yes Yes No No 

Constrained repetitions without 

unrolling? 
Yes No No Yes Yes 

Full handling of counter overlap? No* - - Yes Yes 

Support for multi-symbol repetitions? Yes - - 
Unclea

r 
No 

*Full handling of counter overlap is added to the Counting G-NFA in Chapter 7. 

6.9. Conclusion 

Network Intrusion Detection Systems (NIDS) make extensive use of regexes as attack 

signatures. Such expressions can be handled in hardware using a bit-parallel (BP) 

architecture based on the Glushkov Non-deterministic Finite Automata (NFA). 

However, many expressions contain constrained {min,max} repetitions which first 

need to be unrolled so that they can be handled by the standard BP system. Such 

unrolling often leads to an excessive memory requirement which makes handling of 

such regexes unfeasible. This chapter has presented a solution, based on the standard 

BP architecture, which incorporates a counting mechanism that renders unrolling 

unnecessary. As a result, many regexes, which were previously unsuitable for the 

standard BP system, can now be efficiently handled. Unlike many other approaches, 

this architecture is dynamically reconfigurable thanks to its memory, rather than logic, 

-based engine. This is important as NIDS rule sets are regularly updated. It can also 

handle repetition of both single and multi-symbol sub-expressions. 
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The BP architecture presented in this chapter shows similar performance results to 

the CES architecture proposed by Wang et al. (2010) but is more flexible in that it 

does not use static interconnections between states and it can support multi-character 

repetitions. Another memory-centric FPGA architecture is DPICO as proposed by 

Hayes & Luo (2007). The main disadvantage of DPICO is the potentially large 

number of comparisons that need to be performed for every input symbol, which is 

likely to limit the maximum clock frequency. It is also unclear how DPICO would 

cope with the potentially large number of next state transitions associated with 

constrained repetitions. 

Besides the constrained {min,max} repetition examined in this chapter, other 

examples of complex regex syntax found in Snort rule sets  include back references 

and zero-width look-around assertions. Although the constrained repetition is 

relatively complex, its implementation in hardware is eased somewhat by the fact that 

the repeated sub-expression is usually a static value. Back references are more 

complicated because the pattern to match depends on what was actually matched 

earlier in the input string. This would not be easy to implement in hardware as both 

the length and value of the back-reference pattern only become known during the 

matching process for each input string. Look-around assertions would be difficult to 

handle in hardware because they involve pattern matching without the consumption of 

any symbols from the input string. Adding support for back reference and look-around 

assertion syntax to the BP architecture would be an interesting, albeit challenging, 

topic for future research.  



Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions 

 
146 

Chapter 7 - Pattern Overlap in case of 

Constrained Repetitions 

As described in the previous chapter, a counter-based mechanism can be used to 

handle constrained repetitions without the need for inefficient unrolling of the 

repeated sub-expression. However, most existing proposals do not fully handle what is 

known as the “overlap issue” which some regexes can be prone to. This chapter 

presents a memory-centric Bit Parallel hardware architecture that overcomes the issue 

of counter overlap through the use of a bit serial First-In-First-Out (FIFO) queue. The 

memory-centric rather than logic-centric nature of the design has the advantage of 

allowing dynamic updates to individual attack signatures. The proposed solution is 

targeted at ASIC and FPGA platforms and experimental results for a proof-of-concept 

design are presented. 

7.1. Counting Overlap Issue 

The BP G-NFA inherently handles most cases of pattern overlap. However, counter 

overlap occurs when there is a transition into the counting block while it is actively 

counting.  Analysis of recent SNORT rule sets shows roughly 30% of the constrained 

repetitions are susceptible to counter overlap. The following are examples of regexes 

that are susceptible: 

 Unanchored regex where the repeated sub-expression is at the start, e.g. /a{3}bcd/ . 

This can be rewritten as /^a{3}a*bcd/ so as to avoid the overlap issue. So there is 

no problem in this case. 

 Unanchored regex where the repeated sub-expression is preceded by a number of 

symbols, all of which overlap with the sub-expression, e.g. /ab[abc]{3}d/ or 

/a.(ab){2}c/ . 

 Overlap between the constrained repeated sub-expression and a preceding 

repetition where the two repetitions are separated only by symbols which also 

overlap. The preceding repetition can be *,?,+ or a constrained {min,max} 

quantifier where min max. Regex can be anchored or unanchored. e.g. 

/^xyz[ab]+[abc]{2}d/ or /xyz[ab]*.(ab){2}d/ .  

As an illustration of the issue, consider the example regex /ab[abc]{3}d/ . Reception 

of abababcd would cause a problem as the counter would be reset to zero after 
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receiving ababa and mismatch would occur on receiving the next b, as shown in Table 

33. 

Table 33: Counter Overlap in case of regex /ab[abc]{3}d/ 

Symbol received Counter Activate counting block? 

a   

b   

a 1 Yes 

b 2  

a 3 Yes. But already active=>overlap issue! 

b Reset to 0  

c 1  

d Mismatch  

Table 34. Handling counter overlap with multiple counter instances 

in case of regex /ab[abc]{2,5}d/ 

Symbol 

received 

Cnt 

1 

Cnt 

2 

Cnt 

3 

Cnt 

4 
Description 

a      

b      

a 1    
Create counter instance 1 and activate 

counting block. 

b 2    Cnt1≥min, so allow transition out of block. 

a 3 1   
Create counter instance 2. 

Cnt1≥min, so allow transition out of block. 

b 4 2   Cnt1≥min, so allow transition out of block. 

a 5 3 1  
Create counter instance 3. 

Cnt1≥min, so allow transition out of block. 

b  4 2  
Cnt1=max, so remove Cnt1. 

Cnt2≥min, so allow transition out of block. 

c  5 3 1 
Create counter instance 4. 

Cnt2≥min, so allow transition out of block. 

b   4 2 
Cnt2=max, so remove Cnt2. 

Cnt3≥min, so allow transition out of block 

d     
Valid transition out of counting block to 

accept state => match found. 

This issue can be solved by using multiple counter instances, as illustrated in Table 

34, but this can seriously degrade performance due to the number of memory accesses 

required to check and update all counter instances. An {m,n} quantifier may 

potentially require n concurrently active counter instances which would  occupy a 
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significant amount of memory and degrade performance due to the number of memory 

accesses per symbol processed. Becchi and Crowley (2008) observed that only two 

accesses are required if differential representation is used. The use of differential 

representation is illustrated by the example in Table 35. Only the true value of the 

oldest active counter is stored. All other counters are delta values between their true 

value and the value of the previously created instance. These delta values do not need 

to be incremented in each clock cycle and only need to be converted to the true value 

when the previously created counter instance is removed. Although differential 

representation reduces the amount of memory accesses, it does not solve the problem 

of the memory occupied. Similarly, the TCAM-based event queue feature proposed by 

Pao (2009) grows in length as the number of concurrent overlaps increases. 

Table 35. Handling counter overlap with differential counters 

in case of regex /ab[abc]{2,5}d/ 

Sym Cnt 1 Cnt 2 Cnt 3 Cnt 4 Description 

a      

b      

a 1    
Create counter instance 1 and 

activate counting block. 

b 2    
Cnt1≥min, so allow transition 

out of block. 

a 3 
3-1= 

2 
  

Create counter instance 2. 

Cnt1≥min, so allow transition 

out of block. 

b 4 2   
Cnt1≥min, so allow transition 

out of block. 

a 5 2 
5-(2+1) 

=2 
 

Create counter instance 3. 

Cnt1≥min, so allow transition 

out of block. 

b  
(5-2)+1 

=4 
2  

Cnt1=max, so remove Cnt1. 

Cnt2≥min, so allow transition 

out of block. 

c  5 2 
5-(2+1) 

=2 

Create counter instance 4. 

Cnt2≥min, so allow transition 

out of block. 

b   
(5-2)+1 

=4 
2 

Cnt2=max, so remove Cnt2. 

Cnt3≥min, so allow transition 

out of block 

d     

Valid transition out of 

counting block to accept state 

=> match found. 

The good news, however, is that most constrained repetition quantifiers found in the 

SNORT rule set are not subject to the overlap problem. In particular, repetition 
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quantifiers at the end of a regex always only require a single counter instance. 

Consider, for example, the regex /ab[abc]{4,6}/. This can be rewritten as /ab[abc]{4}/ 

as the repetition is at the end of the regex and there is nothing gained from matching a 

further two symbols when a match has already been found. Although overlapping 

patterns can occur, there is no benefit in having multiple counters because all counters 

will be reset to 0 whenever there is a mismatching symbol. 

7.2. Counting GlushKov NFA with Overlap Handling 

The storage of multiple counters as a solution to the overlap issue is not practical 

because of the worst case memory requirement. This thesis proposes a variant of the 

differential counter scheme which uses a bit serial FIFO to represent the differential 

counters in addition to a single counter instance which holds the oldest active counter 

value. For each input symbol processed, a 1 is written to the FIFO if this is the start of 

an overlapping pattern, and 0 otherwise. When the counter reaches its maximum 

value, the FIFO is repeatedly read until a 1 is encountered. The number of bits read is 

then subtracted from the counter value. So in the example shown in Table 36, two bits 

are read from the FIFO when the counter reaches its maximum value and so 2 is 

subtracted from the counter value of 3 to give a new counter value of 1. 

Each counting block has the following additional storage elements: 

 PRE_BLOCK: bitmask indicating states outside the counting block which have an 

outgoing transition into the counting block 

 FIFO: bitmask indicating occurrences of overlaps 
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Table 36: Bit serial FIFO to track overlap in case of regex /ab[abc]{3}d/ 

Step 
Input 

Symbol 

ACTIVE 

bitmask 

4 3210 

FOLLOW 

_SUM 

4 3210 

CNT 
Write 

to FIFO 

Read from 

FIFO 

FIFO 

contents 

   0 0010     

1 a 0 0011 0 0110 0 - - - 

2 b 0 0101 0 1010 0 - - - 

3 a 0 1011 0 1110 1 - - - 

4 b 0 1101 0 1010 2 0 - 0 

5 a 0 1011 1 0110 3 1 - 10 

6 Overlap Check 1 1110 3-2=1  10 - 

7 b 0 1101 0 1010 2 0 - 0 

8 c 0 1001 1 0010 3 1 - 10 

9 Overlap Check 1 1010 3-2=1 - 10 - 

10 d 1 0001 0 0010 0 - - - 

11  Match!      

 

Step 

 

Description 

1 
Following receipt of ‘a’, state 1 becomes active. State 0 also remains active 

because the regex is unanchored. 

2 Following receipt of ‘b’, state 2 becomes active. 

3 
Following receipt of ‘a’, states 1 and 3 becomes active. 

Counting block is now active and the counter CNT is incremented to 1. 

4 

Following receipt of ‘b’, states 2 becomes active (transition from state 1). 

CNT is incremented to 2.  

CNT ≤ 3 (max), so state 3 remains active. 

No overlap, so 0 written to FIFO. 

5 

Following receipt of ‘a’, state 1 becomes active. CNT is incremented to 3. 

Overlap situation detected, so 1 is written to FIFO. 

CNT has reached min, so transition out of counting block is enabled by 

setting bit 4 of FOLLOW_SUM bitmask to 1. 

CNT ≤ 3 (max), so state 3 remains active. 

CNT has reached max, so an overlap check is required. Bit 3 in 

FOLLOW_SUM bitmask is set to 0 in order to disable repetition. ACTIVE 

bitmask is kept unchanged while this check is performed. 
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6 

Overlap check performed by reading FIFO until bit=1 is reached. Two bits 

are read and so 2 is subtracted from the current CNT value to give a new 

value of 1. 

CNT ≤ 3 (max), so bit 3 is set back to 1 in FOLLOW_SUM bitmask in 

order to allow repetition. 

7 

Following receipt of ‘b’, state 2 becomes active (transition from state 1). 

CNT is incremented to 2.  

CNT ≤ 3 (max), so state 3 remains active. 

No overlap, so 0 written to FIFO. 

8 

Following receipt of ‘c’, CNT is incremented to 3. Overlap situation 

detected, so 1 is written to FIFO. 

CNT has reached min, so transition out of counting block is enabled by 

setting bit 4 of FOLLOW_SUM bitmask to 1. 

CNT ≤ 3 (max), so state 3 remains active. 

CNT has reached max, so an overlap check is required. Bit 3 in 

FOLLOW_SUM bitmask is set to 0 in order to disable repetition. ACTIVE 

bitmask is kept unchanged while this check is performed. 

9 

Overlap check performed by reading FIFO until bit=1 is reached. Two bits 

are read and so 2 is subtracted from the current CNT value to give a new 

value of 1. 

CNT ≤ 3 (max), so bit 3 is set back to 1 in FOLLOW_SUM bitmask in order 

to allow repetition. 

10 
Following receipt of ‘b’, state 4 becomes active. State 3 is inactive, so CNT 

is reset to zero. (A non-empty FIFO would be reset at this stage in order to 

empty it). 

11 ACTIVE and FINAL bitmasks are ANDed together and a match is detected 

  

Figure 69 shows a high level view of how counter overlap is dealt with in the 

modified BP Counting G-NFA scheme. Algorithm 1 gives the pseudo-code for a 32-

bit wide implementation (i.e. n=32) in which the FOLLOW_ACTIVE table is 

horizontally partitioned into four separate tables and the repeated sub-expression is a 

single symbol. 
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Figure 69. Counting G-NFA for single symbol repetition elements 

with overlap handling 
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ALGORITHM 1. 32-bit BP Counting G-NFA search algorithm with overlap handling 

Input: String,  , of input symbols,  .  

Output: Match and NoMatch signals.  

Active   First;  

OldActive   032; 

for each symbol   ∈     repeat /* Process each incoming symbol */ 

FollowSum   032;     

for idx 1 to NumCountingBlocks repeat /* Handle each constrained repetition in regex */ 

if (Active AND PosCnt(idx)) then 

if (Cnt(idx) then /* Counter value is non-zero? */ 

if (OldActive AND PreBlk(idx)) then /* Transition into counting block? */ 

Write(FIFO,1); 

else 

Write(FIFO,0); 

end if 

end if 

Cnt(idx)   Cnt(idx) + 1; 

if (Cnt(idx)   Min(idx)) then /* Allow transition out of counting block? */ 

FollowSum   FollowSum OR FollowBlk(idx); 

end if 

if (Cnt(idx) = Max(idx)) then 

z   0;  /* z is the number of bits read from FIFO */ 

repeat 

z   z+ 1; 

while (Read(FIFO)=0)); 

/* Now subtract number of bits read to get new counter value */ 

Cnt(idx)   Cnt(idx) - z; 

end if 

if (Cnt(idx) < Max(idx)) then /* Allow another repetition? */       

FollowSum   FollowSum OR PosCnt(idx); 

end if 

else 

Cnt(idx)   0; 
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Clear(FIFO); 

end if 

end for 

/* Combine the set of follow states calculated in the counting  block section above  * 

 * with the standard horizontally partitioned FOLLOW_ACTIVE values   */ 

FollowSum     FollowSum OR FollowActive[Active(31..24)] OR 

FollowActive[Active(23..16)] OR FollowActive[Active(15..8)] OR  

FollowActive[Active(7..0)]; 

OldActive   Active; 

/* Calculate new set of active states by ANDing together the bitmask of states * 

 * reachable from the currently active states with the bitmask of states reachable     * 

 * with the current input symbo l           */ 

Active   FollowSum AND Enter[ ]; 

if (Active AND Last) then /* Accept state reached? */ 

MatchFound   1; 

break 

end if 

end for  

if (MatchFound = 0) then 

NoMatchFound   1; 

end if 

7.3. Implementation 

7.3.1. Hardware Architecture 

The implementation outlined in the previous chapter was extended to include the 

FIFO-based counter overlap handling mechanism. The PE architecture was redesigned 

as an FSM, interfaced with BRAM for regex data storage and with a one bit wide 

FIFO for overlap tracking, as illustrated in Figure 70. 
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clk
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Figure 70: Regex Engine Architecture 

 The FSM implements the Counting BP G-NFA algorithm in addition to handling 

handshaking with the DPI packet buffer handler. The 2048x1 bit FIFO is used to deal 

with the overlap issue for constrained {min,max} quantifiers up to a max value of 

2048. One BRAM holds the ENTER table, while the other four hold the FOLLOW 

table horizontally partitioned four times. Regex related bitmask values such as MIN, 

MAX, POS_CNT, etc., are stored in registers within the FSM design. All these 

bitmasks, in addition to the BRAM contents, can be dynamically updated via the 

Engine Data Update Handler. Details of signals related to these updates are omitted 

from Figure 70 for clarity. 
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Figure 71: Counting G-NFA FSM 

The Counting G-NFA FSM is the key block in the DPI design. A simplified Moore 

style state diagram showing the states and events triggering each transition is outlined 

in Figure 71. The following is a summary of each state’s role: 

 S_REQ1_FIRST:  

o FSM remains in this state until the first symbol of a new payload is received 

o req flag is asserted to indicate that it is waiting for a symbol 

o ACTIVE is initialized to the value of the stored FIRST bitmask 

 S_REQ0: 

o input symbol signal is latched on transitioning into this state 

o req flag is deasserted 

o start-anchor and multi-mode regex flags are checked to see whether or not the 

FIRST states should be held active 

o most of the counting algorithm, as described in Algorithm 1, is performed. 

This involves  

 checking if any of the counting block states are now active 

 incrementing the CNT counter 
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 writing 1 or 0 to the overlap Bit FIFO to indicate counter overlap or no 

overlap, respectively 

 checking if CNT is less than MAX and, if so, ORing the value of POS_CNT 

into the FOLLOW bitmask, thereby allowing further repetition 

 checking if CNT is greater than or equal to MIN and, if so, ORing the value 

of FOLLOW_BLK into the FOLLOW  bitmask, thereby allowing 

transitions out of the counting block 

 resetting CNT to zero if none of the counting block states are active 

 S_REQ1:  

o req flag is asserted to indicate that it is waiting for the next symbol 

 S_OVERLAP_CHECK:  

o decrements CNT once MAX is reached, as per the algorithm outlined in 

Algorithm 1. This involves repeatedly reading the Bit FIFO until the output is 

‘1’ and decrementing CNT for every ‘0’ read 

 S_END_OF_PKT:  

 simply waits for processing of last symbol in payload to complete 

 S_MATCH:  

o asserts the match output signal 

 S_NO_MATCH:  

o asserts the no_match output signal 

7.3.2. Software 

The CCP program developed by Champarnaud et al. (2004), which had been extended 

to generate the Counting G-NFA bitmasks, was reused. 

7.4. Performance Results 

The design was implemented in VHDL and simulated with the Xilinx Virtex5 

TX240T (Speed -2) as the target FPGA. Sets of regexes, varying in size from 32 to 

736, were randomly chosen from the snapshot dated 18.09.2012 of the Snort v2.9.3.1 

rule set and converted into the appropriate FPGA BP format using the modified CCP 
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program. Payload data from Shmoo (2009) Group DEFCON traffic traces were used 

for the timing simulation and subsequent power analysis.  

The Xilinx XST tool gave the maximum achievable clock frequency as 116 MHz on 

the Virtex5 and 146 MHz on the Virtex7. This proof-of-concept design is quite a 

simple implementation which does not include packet pipelining. It processes one 

symbol every 9 clock cycles if there is no constrained repetition, and every 9.2 cycles 

on average when tested with the randomly chosen rule sets and traffic traces. This 

gives an average throughput of 101 Mb/s and 127 Mb/s on the Virtex5 and Virtex7, 

respectively. Adding pipelining to the design should, in theory, result in a nine-fold 

increase in throughput, giving 909 Mb/s and 1.14 Gb/s. However, this is likely to be 

somewhat lower in practice because the increased complexity of the design will 

probably reduce the maximum achievable clock frequency. 

Table 37: Virtex5 TX240T Device Utilisation 

Resource 32 PE instances 64 PE instances 96 PE instances 

Block RAM 25% 49% 74% 

Slices 12% 25% 38% 

Resource utilization figures for the Virtex5 and Virtex7 are shown in Table 37 and 

Table 38, respectively. The NetFPGA-10G platform can support a maximum of 128 

PEs due to the FPGA’s limited BRAM. The Virtex7 1140T can support a much larger 

number of PEs as it has substantially more BRAM. Power consumption with 96 PEs is 

approximately 6W on the Virtex5, and 3.1W on the Virtex7, at maximum throughput. 

These figures include both dynamic and quiescent (static) power consumption. The 

much lower consumed by the Virtex7 device ties in with Xilinx claims’ that the 7 

series FPGAs provide 50% power reduction compared to previous generation FPGAs 

(Xilinx, 2012b). 
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Table 38: Virtex7 1140T Device Utilisation 

Resource 256 PE instances 512 PE instances 736 PE instances 

Block RAM 25% 49% 74% 

Slices 12% 25% 38% 

7.5. Related Work 

The BP architecture has the advantage that it allows rules to be dynamically updated 

whenever a new threat emerges, as well as allowing the design to be implemented on 

both FPGA and ASIC. The more common logic-based design requires regeneration of 

the FPGA bit-stream whenever the rule set is updated. The logic-based system 

proposed by Bispo et al. (2006) uses a shift register to handle overlap of single symbol 

constrained repetitions. Faezipour and Nourani (2008) added support for multi-symbol 

repetitions but their algorithm does not appear to handle all cases of counter overlap. 

The problem of counter overlap has also been examined by those researching DFA-

based solutions. Becchi and Crowley (2008) propose a counting-DFA algorithm that 

uses multiple counter instances to overcome the overlap issue. Differential 

representation can be used in order to minimize the counter size.  Becchi (2009) also 

looks at how DFAs in general can be implemented using a memory-based FPGA 

design. The use of multiple counter instances, however, is more suited to a software 

implementation using dynamic memory allocation rather than to an FPGA design as 

the number of instances is potentially very high. 

CES (Wang et al., 2010) is a memory-centric NFA-based algorithm which can handle 

counter overlap using a stack of checkpoint counter registers. This method of handling 

overlap is similar to the differential counter representation suggested by Becchi and 

Crowley (2008) and may potentially occupy a significant amount of memory. CES 

can only handle single symbol repetitions and some regexes may be unsuitable due to 

an excessive number of interconnections between CCRs within the CES tile mesh. 
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7.6. Conclusion 

This chapter improves on the architecture presented in the previous chapter for the 

handling of constrained repetitions in regexes. The improved design overcomes the 

issue of counter overlap through the use of a bit serial First-In-First-Out (FIFO) queue, 

thereby allowing a greater number of regexes to be handled. This FIFO-based 

mechanism is much more space efficient than the use of multiple counter instances 

which are more suited to software implementation where dynamic memory allocation 

is available. The proposed solution is targeted at ASIC and FPGA platforms and 

experimental results are presented for a proof-of-concept design. 
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Chapter 8 - Conclusions and Further Work 

The last decade has seen enormous growth in the size of the internet and in the amount 

of services it offers. In recent years, much of this has been due to the meteoric rise in 

the use of smartphones and mobile applications. Many predict a much bigger increase 

in the coming years as cloud computing becomes even more significant and the 

Internet of Things becomes a reality. This growth is accompanied by an increase in 

the number and complexity of attacks. As a consequence, network security systems 

need to be more sophisticated while, at the same time, capable of handling ever 

increasing traffic rates. 

NIDPS systems allow attacks to be detected and blocked before they can enter the 

enterprise network or sensitive parts of the intranet. The three fundamental building 

blocks of such systems, namely TCP/IP reassembly, multi-match classification and 

DPI have been studied in this thesis. DPI can be further split into fixed string and 

regex matching. Fixed string DPI was not looked at in this thesis as it has already been 

well studied by many researchers. Regexes have become more important as they are 

used in the signatures that describe most new attacks. 

8.1.1. TCP/IP Reassembly 

Attack patterns may bridge the boundary between IP fragments and TCP segments in 

a particular TCP connection flow. It is therefore essential that the DPI is performed on 

the reassembled payload data stream rather than simply on the payload of individual 

packets. Performing TCP/IP reassembly on an intermediate network node, such as an 

NIDPS, is complicated by the fact that there are subtle differences in how destination 

nodes perform the reassembly. These differences are a result of different 

interpretations of the TCP/IP standards by the implementers of different operating 

systems. Therefore, in order for an NIDPS to reassemble an IP fragment or TCP 

segment in the same way as the destination node, it must be aware of the OS of the 

destination. Although there are methods available for the automatic detection of the 

destination’s OS, these are not always guaranteed to work. Manual configuration is 

often required, which is not ideal. An alternative, more maintainable, strategy is for 

the NIDPS to normalise traffic by removing any ambiguities which could be 

interpreted differently by different OS types. The downside is that a normaliser 
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actively changes the traffic and so needs to be very robust.  It may also break the 

operation of traceroute and PMTUD (Handley et al., 2001). 

TCP/IP reassembly is typically implemented in software due to the amount of 

decision making and connection tracking that is required. However, NIDPS systems 

need to handle much higher traffic rates than most end host systems. This has 

prompted research into implementing reassembly in hardware. Besides the need for 

target-based reassembly or traffic normalisation, an added complication is the 

handling of ‘holes’ due to of out-of-order and missing fragments or segments and the 

resultant buffering requirement. This thesis surveyed a number of solutions and 

compared the techniques used for dealing with ‘holes’ and ambiguities in the 

fragmented traffic. A hardware-based reassembly system was proposed that takes 

advantage of the fact that out-of-sequence packets are rare under normal 

circumstances by carrying out target-based reassembly of the affected streams in 

software while dealing with the normal in-sequence streams directly in FPGA 

programmable logic. 

8.1.2. Multi-match Packet Header Classification 

The most obvious ways to perform multi-match packet header classification in 

hardware involve the use of TCAM. This thesis investigated alternative algorithmic 

solutions that use SRAM instead of TCAM in order to save energy. Software 

implementations of a number of single match classification algorithms were modified 

to perform multi-matching and their performance evaluated and compared. The EGT-

PC and ART algorithms were found to perform quite well, but not as well as the very 

simple FSBV and StrideBV which perform well by virtue of the fact that the number 

of unique headers is quite low due to many rules sharing the same header.  

8.1.3. Regular Expression DPI 

While DPI has many applications, this thesis studied it in the context of NIDPS 

systems where regex matching is required in order to detect complex attacks. Regex 

matching also has other uses such as the matching of DNA and protein sequences, and 

text retrieval. 

This thesis focused on finding an improved hardware design for a bit-parallel 

memory-centric architecture based on the Glushkov-NFA which could handle 

constrained repetitions, one of the more complicated features of regex syntax. Such an 
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architecture has the advantage in that the regexes are stored in memory rather than 

hardcoded into the logic of the FPGA or ASIC, thereby enabling dynamic rule updates 

on live systems. The efficient handling of repetitions without unrolling of the repeated 

sub-expression leads to significant memory and hence energy savings. 

Unfortunately, the format of some regexes make them susceptible to the problem of 

overlapping patterns rendering a single counter inadequate for tracking the repetition. 

An additional FIFO-based mechanism, which is relatively easy to implement in 

hardware, was proposed to deal with this issue. Ideally, this additional mechanism 

should only be used for regexes susceptible to counter overlap. Pre-processing 

software should therefore be used to split the rule set’s regexes into three categories: 

 those without any constrained repetitions which can be handled by the basic BP 

processing engine 

 those with repetitions, but not susceptible to the overlap issue. These can be 

handled by engines which have the basic counting mechanism 

 those susceptible to overlap that need the FIFO-based mechanism 

Prototype designs with and without the overlap handling mechanism were 

implemented in VHDL and evaluated on the Xilinx Virtex5 and Virtex7 FPGAs. The 

designs performed quite well compared to other memory-based solutions. The 

relatively simple designs did not use any packet pipelining which should yield 

significant performance improvements. 

8.2. Future Directions 

This thesis has studied the various building blocks of an NIPDS system in relative 

isolation from each other. Looking at each in the context of a fully integrated solution 

may yield ideas on how to improve the performance and efficiency of each.  Use of 

packet pipelining to give improved throughput performance and clock gating to 

reduce energy consumption could also be looked at. Finally, the huge increase in 

mobile internet data has opened up new applications for DPI which could provide 

interesting follow-on research opportunities. 

8.2.1. Improving Performance 

The design used to evaluate the bit-parallel regex matching algorithm was a simple 

prototype implementation that did not include packet pipelining. The next step would 

be to extend the design to process multiple data streams in parallel. This would not 
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only improve performance, but would also allow handling of a much larger rule set on 

a single FPGA as the regex data could be stored in off-chip memory instead of in the 

limited internal BRAM. 

The performance could also be improved by performing multi-stride matching 

(Avalle et al. 2012), i.e. processing of multiple symbols in each iteration of the 

algorithm. Compression of the BP tables is required in order to make this feasible in 

practice. For example, many symbol combinations are equivalent in that they are 

always used together. However, this compression means that simple SRAM-based 

tables need to be replaced by more expensive and less energy efficient TCAM.  

8.2.2. Fixed String Pre-Filter 

Most Snort rules include both a fixed string and a regex pattern. Even if no fixed 

string is specified, it is usually possible to extract one or more fixed strings from the 

regex. To reduce the load on the regex matching part of the system it’s possible to pre-

filter the traffic using fixed string matching as follows: 

 traffic which does not match the fixed string is not forwarded for regex matching 

 traffic which does match is only checked against regexes from rules with a 

matching fixed string. Some regex matching algorithms cannot take advantage of 

this as they are constrained to match against all patterns, e.g. NFA implemented in 

FPGA/ASIC logic, multiple DFAs combined into a single or small number of 

DFAs  

The catch is that this should be performed on a reassembled PDU which can have a 

very large size (up to the maximum size of a socket buffer). The solution to this would 

be to reassemble IP fragments and TCP segments into pseudo-packets of a certain 

maximum length in a similar fashion to Snort. An added complication is that each 

Snort rule can contain multiple fixed string patterns and the pre-filter stage would 

need to logically AND the match results in these cases 

8.2.3. Improving Power Efficiency 

In a pipelined architecture incorporating a fixed string pre-filter, it would be possible 

to change the DPI stage design so that each engine is dynamically assigned a regex to 

process based on the matches found by the pre-filter. This could be done by 

associating an SRAM offset address with each regex and this offset is passed to each 
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processing engine. The clock signal to unused engines could be gated in order to save 

energy. 

More energy could be saved by using frequency scaling to dynamically adjust the 

clock frequency depending on the volume of traffic being processed. As most internet 

applications have a typical traffic distribution, application detection could be used to 

predict future traffic volumes. 

8.2.4. Mobile Internet DPI 

The roll-out of 4G, which is based on an all-IP core network, is opening up new 

possible applications for DPI such as mobile internet traffic management, Quality of 

Service and security. The role of DPI in this context is primarily to accurately detect 

the application corresponding to each traffic flow. This information can then be used 

to manage bandwidth, to allow operators to charge based on application, to provide 

itemised billing, etc.  For example, German company Ipoque (2013) recently 

announced that researchers at Intel Labs have integrated Ipoque’s Protocol & 

Application Classification Engine (PACE) DPI software library into a “smart pipe” 

server that can allocate bandwidth across multiple wireless networks to high priority 

applications. The smart pipe also allows for the seamless handover of VoIP 

connections between Wi-Fi and cellular networks. 

The ideal mobile DPI solution consists of both application detection and intrusion 

detection/prevention. The main focus of future work would be on finding more 

effective methods for application detection in hardware in order to provide fast yet 

energy and memory efficient solutions. It is likely that application detection would be 

performed using regex matching in the case of unencrypted traffic and behavioural 

analysis in the case of encrypted traffic. 
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