

Hardware Acceleration of Network

Intrusion Detection and Prevention

by

Brendan Cronin, B.E., M.Eng.

A thesis submitted in partial fulfilment of the requirements

for the Degree of Doctor of Philosophy

(Electronic Engineering)

Supervised by Dr. Xiaojun Wang

Dublin City University

School of Electronic Engineering

January 2014

i

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Doctor of Philosophy is entirely my own

work, that I have exercised reasonable care to ensure that the work is original, and

does not to the best of my knowledge breach any law of copyright, and has not been

taken from the work of others save and to the extent that such work has been cited and

acknowledged within the text of my work.

Signed:

ID number:

Date:

ii

Acknowledgements

I would like to thank my supervisor Dr. Xiaojun Wang for his excellent guidance,

advice and encouragement throughout my time in Dublin City University. I am also

grateful to all my colleagues in the Network Processing Group for their support and

help, in particular Yachao and Xiaofei. Thanks also to Dr. Olga Ormond, Research

Officer with the Network Innovations Centre, for her assistance with my work.

I delivered the taught postgraduate module HDL and High Level Logic Synthesis in

2010 and 2011 under the supervision of the module coordinator, Dr. Wang. I would

like to thank Dr. Wang, and Dr. Noel Murphy, head of the School of Electronic

Engineering at the time, for giving me this opportunity. Teaching this module gave me

a more in depth knowledge of VHDL, Verilog and FPGA design which helped me

greatly in the development of prototype designs for evaluation of my research.

I would like to dedicate this thesis to my late parents, Teresa and Patrick, who actively

encouraged my learning and education from an early age. I must include special

mention for my godfather and uncle, Denis, who has always been a great support

throughout my time in school and university.

Finally, these last four years of study would have been very difficult without the love,

patience and support of Ilaria.

iii

Table of Contents

Declaration .. i

Acknowledgements .. ii

Table of Contents .. iii

List of Figures ... ix

List of Tables .. xii

List of Acronyms and Abbreviations .. xiv

Abstract ... xix

List of Publications .. xx

Chapter 1 - Introduction ... 1

1.1. Background .. 1

1.1.1. Growth of the Internet .. 1

1.1.2. Energy Consumption .. 1

1.1.3. Internet Security ... 1

1.2. Motivation .. 3

1.3. Intrusion Detection and Prevention .. 3

1.3.1. Classification .. 3

1.3.2. Detection Methods ... 4

1.3.3. Modes ... 4

1.3.4. NIDS Sensor Location ... 5

1.3.5. NIPS Sensor Location .. 6

1.4. Research Goals ... 7

1.5. Contributions .. 9

1.6. Thesis Organisation .. 10

iv

Chapter 2 - Background .. 12

2.1. Automata Theory ... 12

2.1.1. Formal Languages .. 12

2.1.2. Regular Languages ... 14

2.1.3. Perl Compatible Regular Expressions .. 18

2.1.4. Construction of NFA from regex ... 21

2.1.5. NFA to DFA conversion .. 24

2.1.6. Trie ... 25

2.2. Network Intrusion Detection and Prevention Systems 26

2.2.1. Snort ... 26

2.2.2. Snort Rules ... 26

2.2.3. Suricata ... 28

2.2.4. Bro .. 28

2.2.5. Market Trends .. 29

2.3. Platforms .. 30

2.3.1. Commodity Hardware .. 30

2.3.2. Custom Hardware... 30

2.4. Summary .. 32

Chapter 3 - TCP/IP Reassembly .. 34

3.1. Theory of IP Fragmentation and TCP Segmentation 35

3.1.1. TCP Connections ... 35

3.1.2. The need for IP fragmentation ... 38

3.1.3. Path MTU Discovery ... 39

3.1.4. IP Reassembly .. 40

3.1.5. TCP Segmentation ... 40

v

3.2. Handling of Reassembly in different Operating Systems 41

3.2.1. Simple Insertion and Evasion Attacks ... 41

3.2.2. Creation of connection session... 43

3.2.3. TCP Stream Reassembly – Connection Window................................. 43

3.2.4. Overlapping Fragments or Segments ... 44

3.2.5. TCP Stream – RST Validity Check ... 45

3.2.6. TCP Stream – Timestamp Validity Check ... 46

3.2.7. TCP Stream – Handling of repeated SYN segment 46

3.3. Target-based Reassembly and Normalisation .. 47

3.4. TCP/IP Reassembly in Software .. 48

3.4.1. Snort ... 48

3.4.2. OISF Suricata ... 51

3.5. TCP/IP Reassembly in Hardware... 53

3.5.1. TCP Processing Engine .. 55

3.5.2. Non-TCP Processing Engine.. 62

3.5.3. Software on CPU ... 63

3.5.6. Evaluation and comparison with related work 64

3.6. Conclusion and Future Work ... 66

Chapter 4 - Multi-match Header Classification ... 68

4.1. Characteristics of NIDS Rule Sets ... 68

4.2. Proposed Architecture .. 70

4.2.1. Pre-processing .. 70

4.2.2. Top-level Architecture ... 71

4.3. Algorithms ... 71

4.3.1. Introduction .. 71

vi

4.3.2. Hypercuts ... 72

4.3.3. EGT-PC .. 72

4.3.4. ART (Allotment Routing Table) .. 81

4.4. Related Work ... 84

4.4.1. Bit Vector – TCAM architecture.. 84

4.4.2. Field-Split parallel Bit Vector architecture .. 87

4.5. Comparison .. 89

4.6. Conclusion ... 90

Chapter 5 - Pattern Matching Methods ... 91

5.1. Fixed String Matching ... 91

5.1.1. Precise Matching .. 91

5.1.2. Imprecise Matching (with false positives) ... 94

5.2. Regular Expression Matching .. 95

5.2.1. DFA-based solutions .. 95

5.2.2. NFA-based solutions .. 98

5.2.3. Imprecise Matching Finite Automata .. 101

5.2.4. Alphabet Reduction .. 103

5.2.5. Multi-stride Automata .. 104

5.2.6. Commodity versus Speciality Hardware .. 104

5.3. Conclusion ... 105

Chapter 6 - Constrained Repetitions in Regular Expressions 107

6.1. Constrained Repetitions in Snort Rule Set ... 107

6.2. Bit-Parallel (BP) Architectures .. 108

6.3. Glushkov NFA ... 109

6.4. Counting Glushkov NFA ... 110

vii

6.5. Bit Parallelism .. 115

6.5.1. Standard G-NFA .. 115

6.5.2. Counting G-NFA .. 122

6.5.3. Counting G-NFA for single symbol elements 125

6.6. Implementation .. 125

6.6.1. Hardware Architecture ... 125

6.6.2. Bitmask Generation Software .. 132

6.7. Performance Results... 135

6.7.1. Synthesis and simulation .. 135

6.7.2. Memory requirements .. 137

6.7.3. Memory and power savings ... 137

6.7.4. Extending to multiple counting blocks .. 138

6.8. Related Work ... 138

6.9. Conclusion ... 144

Chapter 7 - Pattern Overlap in case of Constrained Repetitions 146

7.1. Counting Overlap Issue .. 146

7.2. Counting GlushKov NFA with Overlap Handling................................. 149

7.3. Implementation .. 154

7.3.1. Hardware Architecture ... 154

7.3.2. Software ... 157

7.4. Performance Results... 157

7.5. Related Work ... 159

7.6. Conclusion ... 160

Chapter 8 - Conclusions and Further Work ... 161

8.1.1. TCP/IP Reassembly ... 161

viii

8.1.2. Multi-match Packet Header Classification .. 162

8.1.3. Regular Expression DPI ... 162

8.2. Future Directions .. 163

8.2.1. Improving Performance ... 163

8.2.2. Fixed String Pre-Filter ... 164

8.2.3. Improving Power Efficiency .. 164

8.2.4. Mobile Internet DPI ... 165

References ... 166

ix

List of Figures

Figure 1. Possible locations for NIDS in enterprise network .. 5

Figure 2. Example of NIPS placement in enterprise network .. 7

Figure 3. Example NIDPS Architecture... 8

Figure 4. NFA equivalent to example regular grammar .. 16

Figure 5. Example of right-linear grammar and corresponding automaton 18

Figure 6. Equivalent left-linear grammar and corresponding automaton 18

Figure 7. Thompson Construction – glueing together automata 22

Figure 8. Thompson NFA for regex (a|b)*ca ... 22

Figure 9. Marked Glushkov NFA for RE =(a1|b2)*c3a4 .. 24

Figure 10. NFA to DFA conversion of (a|b)*ca using Subset Construction 25

Figure 11. Trie for set of strings P={bale, ball, bark} ... 26

Figure 12. Snort rule syntax (only some rule options are shown) 27

Figure 13. Hybrid software-hardware processing .. 35

Figure 14. TCP Header .. 35

Figure 15. TCP 3-way handshake .. 36

Figure 16. TCP data segment transmission .. 37

Figure 17: Example of IP packet fragmentation .. 39

Figure 18: Example of insertion attack .. 42

Figure 19. TCP Segment overlap ... 45

Figure 20: SNORT Architecture .. 48

Figure 21: Snort TCP reassembly flowchart .. 50

Figure 22: Suricata TCP reassembly flowchart (non-inline mode) 52

Figure 23. TCP/IP reassembly and DPI architecture on Xilinx FPGA 54

Figure 24. TCP Processing Engine .. 56

Figure 25. External memory packet buffers ... 56

Figure 26. TCP Connection Record ... 57

Figure 27. Connection Lookup flow chart ... 60

x

Figure 28. Reassembly flow chart .. 61

Figure 29. Non-TCP Fragment Tracker Record .. 63

Figure 30: Overall proposed NIDS Scheme... 70

Figure 31. Example basic Grid-of-Tries .. 74

Figure 32. Example basic Grid-of-Tries with backtracking... 75

Figure 33. Example basic Grid-of-Tries with Switch pointers 76

Figure 34. Example EGT using jump pointers... 77

Figure 35: Example EGT with path compression .. 78

Figure 36. Alternative EGT-PC implementation ... 79

Figure 37: EGT-PC Multi-match Architecture .. 79

Figure 38. Source IP address & port number trie for example rule set 81

Figure 39. All 3-bit prefixes mapped into complete binary tree 82

Figure 40. Multi-level ART for example rule set .. 83

Figure 41. Multi-match architecture using ART .. 84

Figure 42. Overall BV-TCAM architecture ... 85

Figure 43. Tree bitmap for example rule set .. 87

Figure 44. Multi-match using FSBV algorithm ... 87

Figure 45. FSBV scheme for example rule set .. 88

Figure 46. Aho-Corasick – automaton for set of patterns P={lrle, le, rk} 92

Figure 47. Example boolean function and corresponding OBDD 99

Figure 48. Example StriDFA for patterns “reference” & “replacement” with tag ‘e’102

Figure 49. Example of construction of abstracted DFA by state removal 103

Figure 50: The G-NFA for RE = ((ABA|C)B*)A ... 109

Figure 51: G-NFA for marked sub-pattern .. 110

Figure 52. FirstBlk states for example Counting G-NFA .. 112

Figure 53. FinalBlk and IncrementBlk states in example Counting G-NFA 113

Figure 54. Counting G-NFA for regex /((ABA|CB)B*){min,max}A/ 114

Figure 55: SNORT regular expression symbol count distribution............................. 120

xi

Figure 56. High level view of BP G-NFA algorithm ... 121

Figure 57. High level view of BP Counting G-NFA algorithm 124

Figure 58. High level view of Counting G-NFA for single symbol repetition 125

Figure 59: Proposed overall IDS architecture on NetFPGA platform 127

Figure 60: Regex DPI Handling Module hardware architecture 128

Figure 61: Payload Buffer scheme used in evaluation ... 129

Figure 62: Outline of Regex Processing Engine (PE) .. 131

Figure 63: Counting Block Mechanism for regex with up to n-1 symbols 132

Figure 64: Power Consumption as a function of throughput 137

Figure 65. Distribution of Snort regexes based on no. of constrained repetitions 138

Figure 66. CES tile mesh for example regex ... 140

Figure 67. CCR Interconnections ... 140

Figure 68. DPICO block diagram .. 142

Figure 69. Counting G-NFA for single symbol repetition elements 152

Figure 70: Regex Engine Architecture ... 155

Figure 71: Counting G-NFA FSM ... 156

xii

List of Tables

Table 1. Chomsky Hierarchy ... 14

Table 2. State Transition Table for example regular grammar 16

Table 3. Regex operator precedence .. 17

Table 4. Important PCRE Syntax and Semantics... 20

Table 5. Snort regex anchors .. 21

Table 6. Reassembly Policies – segment data favoured when overlap occurs 44

Table 7: Target-based checking of RST segment .. 46

Table 8: Example Snort rule .. 68

Table 9: Statistical information for Snort 2.8 rule set (January 2010) 69

Table 10: Example Rule Set ... 73

Table 11. Example rule set with port ranges .. 80

Table 12. Example rule set with port prefixes ... 80

Table 13. Simple example rule list ... 83

Table 14. Example rule set ... 85

Table 15. Example rule set for 4-bit field .. 88

Table 16: Comparison of Algorithms .. 89

Table 17: Snort Rule Set Statistics ... 108

Table 18: Constrained repetition quantifier syntax .. 108

Table 19: Snort Constrained Repetition Statistics (v2.9.3.1, 18.09.2012 snapshot) .. 108

Table 20. Values of Follow' for each state x of example Counting G-NFA 112

Table 21. Mapping between DFA state bitmask and equivalent NFA states............. 116

Table 22. Follow Table indexed by NFA state index for RE = ((A1B2A3|C4)B5*)A6 116

Table 23. FOLLOW_ACTIVE indexed by Active bitmask .. 118

Table 24. Horz. partitioning by 2 of FOLLOW_ACTIVE .. 118

Table 25. ENTER table for RE = ((A1B2A3|C4)B5*)A6 ... 119

xiii

Table 26. Input string ABABBA with RE=((ABA|C)B*)A (no anchor) 122

Table 27. Rewriting of constrained quantifiers .. 132

Table 28. ENTER and FOLLOW tables as generated by modified CCP software ... 134

Table 29. FOLLOW_ACTIVE tables .. 134

Table 30: Virtex5 TX240T Device Utilisation .. 136

Table 31: Virtex7 1140T Device Utilisation .. 136

Table 32: Comparison of dynamic memory-based hardware architectures 144

Table 33: Counter Overlap in case of regex /ab[abc]{3}d/ 147

Table 34. Handling counter overlap with multiple counter instances 147

Table 35. Handling counter overlap with differential counters 148

Table 36: Bit serial FIFO to track overlap in case of regex /ab[abc]{3}d/ 150

Table 37: Virtex5 TX240T Device Utilisation .. 158

Table 38: Virtex7 1140T Device Utilisation .. 159

xiv

List of Acronyms and Abbreviations

AMBA ─ Advanced Microcontroller Bus Architecture

API ─ Application Programming Interface

ART ─ Allotment Routing Table

ASIC ─ Application Specific Integrated Circuit

AXI ─ Advanced eXtensible Interface

BDD ─ Binary Decision Diagram

BP ─ Bit Parallel

BRAM ─ Block RAM

BSD ─ Berkeley Software Distribution

BV ─ Bit Vector

CAM ─ Content Addressable Memory

CCP ─ Champarnaud - Coulon – Paranthoën

CCR ─ Character class with Constraint Repetition

CD
2
FA ─ Content Addressed Delayed Input DFA

CES ─ CCR regExp Scanner

CPU ─ Central Processing Unit

CX-NFA ─ CAM-based eXtended NFA

DCE/RPC ─ Distributed Computing Environment / Remote Procedure Calls

DDR ─ Double Data Rate

DF ─ Don’t Fragment

DFA ─ Deterministic Finite Automaton

DMA ─ Direct Memory Access

DMZ ─ DeMilitarised Zone

xv

DoS ─ Denial of Service

DPI ─ Deep Packet Inspection

DPICO ─ DPI COmpact

DRAM ─ Dynamic Random Access Memory

D
2
FA ─ Delayed Input DFA

EGT-PC ─ Extended Grid-of-Tries with Path Compression

ET ─ Emerging Threats

FA ─ Finite Automaton

FIFO ─ First In First Out

FPGA ─ Field Programmable Gate Array

FSBV ─ Field-Split parallel Bit Vector

FSM ─ Finite State Machine

Gb/s ─ Gigabits per second

GB/s ─ Gigabytes per second

GPU ─ Graphics Processing Unit

GW ─ Gigawatt

G-NFA ─ Glushkov NFA

HIDS ─ Host-based Intrusion Detection System

HIPS ─ Host-based Intrusion Prevention System

HTTP ─ HyperText Transfer Protocol

H-FA ─ History-based FA

ICMP ─ Internet Control Message Protocol

IDS ─ Intrusion Detection System

IDPS ─ Intrusion Detection and Prevention System

IET ─ Institution of Engineering and Technology

xvi

ioctl ─ input/output control

IP ─ Internet Protocol, or, Intellectual Property

IPS ─ Intrusion Prevention System

ISN ─ Initial Sequence Number

ITU ─ International Telecommunication Union

IXP ─ Internet eXchange Processor

I/O ─ Input/Output

KMP ─ Knuth-Morris-Pratt (algorithm)

LAN ─ Local Area Network

LSB ─ Least Significant Bit

MAC ─ Media Access Control

Mb/s ─ Megabits per second

MF ─ More Fragments

MSB ─ Most Significant Bit

MSS ─ Maximum Segment Size

MTU ─ Maximum Transmission Unit

NAT ─ Network Address Translation

NBA ─ Network Behavioural Analysis

NGFW ─ Next Generation FireWall

NGIPS ─ Next Generation Intrusion Prevention System

NIC ─ Network Interface Card

NIDS ─ Network Intrusion Detection System

NIPS ─ Network Intrusion Prevention System

NFA ─ Nondeterministic Finite Automaton

NFP ─ Network Flow Processor

xvii

NPU ─ Network Processing Unit (Network Processor)

OBDD ─ Ordered Binary Decision Diagrams

OISF ─ Open Information Security Foundation

OS ─ Operating System

PAF ─ Protocol Aware Flushing

PAWS ─ Protection Against Wrapped Sequence numbers

PCI ─ Peripheral Component Interconnect

PCRE ─ Perl Compatible Regular Expression

PDN ─ Packet Data Network

PDU ─ Protocol Data Unit

PE ─ Processing Engine

PHP ─ PHP: Hypertext Preprocessor

PL ─ Programmable Logic

PLPMTUD ─ Packetization Layer Path MTU Discovery

PMTUD ─ Path MTU Discovery

P2P ─ Peer to Peer

RAM ─ Random Access Memory

RE ─ Regular Expression

regex ─ Regular Expression

RFC ─ Request For Comments

RX ─ Receive

SDRAM ─ Synchronous Dynamic Random-Access Memory

SMB ─ Server Message Block

SPAN ─ Switched Port ANalyzer

SRAM ─ Static Random Access Memory

xviii

TCAM ─ Ternary CAM

TCP ─ Transmission Control Protocol

TCP/IP ─ Transmission Control Protocol/Internet Protocol

TFO ─ TCP Fast Open

TOE ─ TCP/IP Offload Engine

TW ─ Terawatt

TX ─ Transmit

UDP ─ User Datagram Protocol

VHDL ─ VHSIC Hardware Description Language

VHSIC ─ Very High Speed Integrated Circuit

VLAN ─ Virtual Local Area Network

VRT ─ Vulnerability Research TeamTM (Sourefire)

XFA ─ Extended FA

XST ─ Xilinx Synthesis Technology

xix

Abstract

Network Intrusion Detection and Prevention Systems (NIDPS) are important elements

of network security. Their role is to monitor internet traffic for malicious content and,

on detection, generate an alert message and/or block the offending traffic. Potential

attacks are described in a database of rules known as the rule set, where each rule

consists of an IP header part and a payload signature part. The payload signature can

be in the form of a fixed string and/or regular expression. This thesis studies the three

main stages of these systems, namely TCP/IP reassembly, multi-match header

matching and Deep Packet Inspection (DPI).

TCP/IP reassembly is a necessary prerequisite to DPI as attack patterns may span

more than one IP fragment or TCP segment. Either target-based reassembly or traffic

normalisation is required in order to overcome insertion/evasion attacks. This thesis

builds upon existing research by outlining an FPGA-based architecture that handles

the common case of reassembling in-sequence data streams in hardware and the much

rarer out-of-sequence data streams in software.

Multi-match header matching involves the matching of each packet header against

the header section of all rules. This differs from the single-match classification used in

routers where there is a single highest priority match per packet. The strategy adopted

in this thesis was to adapt a number of single match algorithms to perform multi-

matching and to compare their performance with existing solutions. Existing solutions

typically involve the use of Ternary Content Addressable Memory (TCAM) and

therefore suffer from disadvantages such as high cost, high energy consumption, and

low storage efficiency. Algorithmic solutions, which use SRAM instead of TCAM,

can therefore have an advantage. The adapted algorithms were implemented in C code

and evaluated in terms of speed and energy efficiency on an ARM processor.

DPI is particularly challenging due to the number and complexity of regular

expressions. This thesis builds on existing research into Bit-Parallel hardware

architectures. The main contribution is an extension for the efficient handling of the

constrained {min,max} repetition syntax, including a solution to the issue of counter

overlap. This allows for the handling of many additional regular expressions that

would otherwise be unsuitable. The design was implemented in VHDL and evaluated

using the Xilinx tool set. A comprehensive review of the most significant research

works in the DPI field is also provided.

xx

List of Publications

Journal Papers

Cronin, B. and Wang, X. Hardware Acceleration of Regular Expression Repetitions in

Deep Packet Inspection, IET Information Security, Vol.7, No.4, 2013, pp.327-335,

doi:10.1049/iet-ifs.2012.0340.

Cronin, B. and Wang, X. Pattern Overlap in Bit-Parallel Implementation of Regular

Expression Repetition Quantifiers, Inderscience International Journal of Security and

Networks, Vol. 8, No. 4, 2013, pp.231-238, doi:10.1504/IJSN.2013.058154.

Conference Paper

Cronin, B. and Wang, X. Algorithmic Multi-match Packet Classification in Network

Intrusion Detection Systems, Proceedings of 2010 China-Ireland International

Conference on Information and Communications Technologies (CIICT2010), Wuhan,

China, 10-11 Oct., 2010. pp.150-156.

Chapter 1 - Introduction

1

Chapter 1 - Introduction

1.1. Background

1.1.1. Growth of the Internet

Recent years have witnessed rapid growth in both internet penetration and bandwidth

due to huge improvements in telecommunication infrastructure, the proliferation of

competitively priced computers and internet-capable mobile devices, and the reduced

cost of internet access resulting from increased competition. The number of

individuals using the internet has increased from 1 billion in 2005 to over 2.7 billion

in 2013 (ITU, 2013). Cisco (2013) estimates that global internet traffic has increased

from 2,000 GB/s in 2007 to 12,000 GB/s in 2012 and forecasts that this will increase

to 35,000 GB/s by 2017, equivalent to 1 zettabyte per year, mainly driven by

increased video traffic. Business IP traffic is expected to triple between 2012 and

2017, mainly due to the increased use of high quality video communications.

1.1.2. Energy Consumption

The increase in energy consumption associated with expanding internet use has

become a concern because of the associated economic and environmental costs.

Raghavan and Ma (2011) estimated that the power consumed globally by the internet

in 2011 was between 170 and 307 GW, in other words between 1.1 and 1.9% of the

total 16TW used by the world population. Although this may seem like a small

fraction, it is equivalent to the power output of over 350 typical nuclear reactors.

Raghavan and Ma argue that we should apply the internet to reducing other forms of

energy consumption (e.g. video conferencing versus travel) in addition to making the

internet itself more efficient. According to Lanzisera et al. (2012), network equipment

consumed about 1% of buildings electricity in the USA in 2008 and was increasing at

a rate of approximately 6% per annum, with most of this consumption occurring in

offices and residences rather than data centres. They found that office building

networking equipment is one of the largest energy consumers, accounting for 40% of

the total in 2008.

1.1.3. Internet Security

Approximately 7.6 million new unique pieces of malware were detected by the AV-

Test Institute (2013) for the month of June 2013. In other words, a new malware was

Chapter 1 - Introduction

2

created every 0.35 seconds. The ever increasing penetration and speed of the internet

means that these viruses can spread even faster. The MyDoom worm was one of the

fastest spreading email worms ever. Within a few hours of its first appearance in

January 2004, it had slowed the internet by 10% and average web page load times by

50% (Jones 2006). The worm spread as an email attachment, and spammed itself to

addresses listed in computer’s address books when the attachment was clicked on. It’s

estimated that 10% of email messages, sent in the hours immediately after its first

appearance, contained the worm. Consultancy firm mi2g (2004) estimated the

economic losses caused by MyDoom at $38.5 billion, although this figure has been

disputed by others. Another famous worm, Sasser, appeared in April 2004. Unlike

MyDoom, it was not transmitted via email. It instead exploited a buffer-overrun flaw

in unpatched versions of Microsoft Windows 2000 and XP which allowed it to take

control of the infected computer (Vamosi 2004). It then scanned local networks and

the internet for other computers to infect. It caused French satellite communications to

be shut down, the cancellation of several Delta flights and the shutdown of many

computer systems worldwide. The economic damage is estimated at between $14.8

and $18.1 billion (ThinkQuest 2004). The virus was created by a German student who

released it on his 18
th

 birthday.

Mobile internet traffic is currently growing rapidly due to the recent surge in

smartphone take-up and the rollout of 4G networks. Smartphones are particularly

attractive to cyber criminals as owners regularly use them for personal tasks such as

online purchases, email and social media – all involving the use of sensitive personal

information such as usernames, passwords and credit card details (Ruggiero and Foote

2011). They also pose an easier target than PCs as many users do not recognise the

need to install or enable security software on their smartphones. Many naively believe

that surfing the internet on their phone is safer than on their PC. NQ Mobile (2013)

found that mobile malware attacks increased 163% in 2012, with 95% of all attacks

targeting the Android OS.

The conventional way of defending against malware attacks is to use end-host based

solutions such as patches to vulnerable operating systems and applications, anti-virus

software and firewalls. The main issue with these approaches is that there is a time lag

between the appearance of a virus, the availability of a software patch and virus

database update, and finally the actual update of the end-hosts. Given the speed with

Chapter 1 - Introduction

3

which some viruses can spread, this time lag can be more than sufficient for many

systems to be infected. Moreover, the repeated updating of end-host software is an

added maintenance cost for businesses, which also disrupts the normal work of

computer users.

1.2. Motivation

Given the issues with end-host security software, a more attractive approach is to

block the malware in the network before it arrives at the end-hosts. This is known as

intrusion prevention. In the case of office networks, this is typically performed at the

edge of the network, just inside the firewall. It can also be performed internally to

protect a particularly important segment of the network. In the case of the mobile

internet, next generation security gateways would block attacks at the Gi/SGi interface

between the 3G/4G network and the external PDN.

In addition to matching against the TCP/IP header, this type of Network Intrusion

Prevention System (NIPS) needs Deep Packet Inspection (DPI) in order to analyse

packet payloads for the presence of malicious content. Existing hardware systems

commonly use energy inefficient TCAM to perform pattern matching. The ever

increasing number and complexity of attack signatures and traffic speeds will lead to

such systems becoming a significant consumer of power in the enterprise network.

Due to customer demand, there is a growing requirement to design more efficient

systems that miminise the use of energy inefficient technologies such as TCAM. The

challenge is therefore to find hardware solutions which can accelerate, in an energy

efficient manner, the analysis of network traffic for particular header values and the

presence of complex attack signatures.

1.3. Intrusion Detection and Prevention

The NIPS is one member of a larger family of what are known as Intrusion Detection

and Prevention Systems (IDPS).

1.3.1. Classification

IDPS can be classified in the following categories:

 Host-based – this system is a software agent installed on an individual computer.

In addition to monitoring all incoming and outgoing traffic for attacks such as a

virus, a worm or hacking activity, it also monitors applications running on the

Chapter 1 - Introduction

4

computer for suspicious behaviour. Although host-based agents provide additional

security features compared to network-based systems, they can be more difficult to

administer because of their distributed nature

 Network-based – this system is a standalone system which monitors all traffic into

and out of a network. It can also be used to monitor internal network traffic. It can

be either a dedicated hardware system from a networking equipment vendor or a

software program running on an off-the-shelf server. One of the most well-known

network-based software solutions is the open-source Snort (Roesch et al. 2012).

 Wireless – this system monitors wireless network traffic and the associated

wireless networking protocols for suspicious activity.

1.3.2. Detection Methods

IDPS use one or a combination of the following techniques to detect attacks:

 Signature-based – attacks are described in a large database of attack signatures

known as the rule set

 Anomaly-based – attacks are detected by comparing the current activity with pre-

defined “normal” activity. Such systems have the advantage that they can detect

attacks hidden within encrypted traffic, but often suffer from a high number of

false positives, i.e. incorrectly generating an attack alert notification. Note that a

network-based system that uses anomaly-based detection is also known as a

Network Behavioural Analysis (NBA) System

 Stateful protocol analysis – the state of network, transport and application

protocols are tracked and the activity compared with correct protocol behaviour in

order to detect attacks. Some signature-based systems provide the ability to

specify stateful signature-based rules, e.g. flowbits keyword in Snort allows a

number of rules to be linked together in order to track state across multiple

datagrams in a single transport layer session; flow:established keywords restrict

application of the rule to established sessions only.

1.3.3. Modes

IDPS can be split into two types based on their mode of operation:

Chapter 1 - Introduction

5

 Passive – An Intrusion Detection System (IDS) is passive in that it only monitors

traffic for attacks and generates an alert and logs an event on detection

 Reactive – An Intrusion Prevention System (IPS) is reactive in that it can be

configured to perform an action on detection of a particular attack.

In the case of an NIPS, such an action could be to block the connection carrying

the malicious traffic. Snort can function as an NIPS by running it in inline mode.

Although an NIPS is a very powerful solution, it suffers from a couple of issues.

Firstly, false positives can result in valid, and perhaps critical, connections being

dropped. Secondly, processing overload or DoS attacks can result in valid traffic

being dropped or attacks left through.

The action perform by a Host-based IPS (HIPS) depends on the exact detection

technique used – e.g. it could prevent code being executed, block a network

connection, stop inappropriate file access.

1.3.4. NIDS Sensor Location

The most common location for an NIDS system is inside an enterprise’s firewall so as

to reduce its incoming traffic workload and exposure to DoS attacks. The firewall is

the first line of defence which is configured to block all incoming connections on

ports which have not been opened. The NIDS will monitor traffic passed by the

firewall for attack patterns, e.g. a virus inside HTTP connection traffic.

On detection of potential malicious traffic by the NIDS, the event is typically logged

on the management server and an alert sent to the console.

Figure 1. Possible locations for NIDS in enterprise network

Chapter 1 - Introduction

6

Figure 1 shows an example enterprise network with NIDS systems placed in a

number of locations:

 NIDS outside the firewall in order to detect attacks against the firewall

 NIDS in DMZ (demilitarised zone) to detect attacks against web/mail servers, etc.

Each server should also run a HIDS agent for increased security

 NIDS in the internal network to detect internal attacks and external attacks that

firewall left through.

An NIDS is a passive system that sniffs packets from the network. It can be

connected to the network using a hub, ethernet tap or via the SPAN port of a switch.

In the case of a switch, it may be possible to mirror a number of ports to the SPAN

port using a VLAN. The disadvantages of the SPAN port are that the total VLAN

traffic may exceed the bandwidth of the port and, the performance of the switch may

be degraded. Bandwidth is typically more of an issue when the NIDS is used to

monitor internal network traffic since the traffic throughput is likely to be much

higher than that found at the gateway to the external internet. Finally, some

networking equipment vendors have switches and firewalls with built-in NIDS

functionality.

1.3.5. NIPS Sensor Location

An NIPS system is an inline sensor which the monitored traffic must flow through. It

is typically deployed on secure side of the firewall in order to reduce its workload. As

time goes on, the line between firewall and IPS is becoming blurred as more and more

firewall vendors provide IPS functionality as part of next generation firewall systems.

The NIPS can be configured to carry out various actions on detection of a particular

attack or undesirable traffic, e.g.:

 drop packets containing an attack pattern

 block the corresponding transport layer connection. This could be done inline or

by automatically reconfiguring the firewall

 reset the transport layer connection

 reconfigure router to redirect offending connection traffic to a honey pot

Chapter 1 - Introduction

7

 throttle the bandwidth used by undesirable traffic (e.g. P2P file sharing, suspected

DoS attack, etc.)

 run a script written by the NIPS administrator – script gives a lot of flexibility to

automatically reconfigure third-party networking equipment.

Figure 2 shows an example enterprise network with two NIPS systems. One is

positioned just inside the firewall to detect any attacks that manage to get through it.

The second is used to protect a particularly important segment of the network against

internal intrusions, e.g. finance department, labelled segment 1.

Figure 2. Example of NIPS placement in enterprise network

1.4. Research Goals

This thesis focuses on the three primary parts of an NIDPS system, namely TCP/IP

reassembly, multi-match header classification and regular expression (regex) DPI, as

highlighted in grey in Figure 3. Depending on the requirements of the DPI stage

implementation, the multi-match header classification stage may run either in series or

in parallel with the DPI stage. When placed in front of the DPI, the header

classification stage acts as a pre-filter which reduces the number of rules that need to

be processed at the DPI stage for a particular connection flow. However, some DPI

algorithms cannot take advantage of this as they always examine every rule for every

packet, and, in this case, it makes more sense to run the header classification in

parallel. In the parallel architecture, a negative header match will result in a fast

overall negative match decision which will cut short the processing in the DPI block

for that particular connection flow.

Chapter 1 - Introduction

8

IP

traffic
Reassembly of

IP fragments &

TCP segments

Header

Classification

Fixed String

DPI

Regular

Expression

DPI

Match

Decision

Making
Action

Data

stream

Matching

Rules

Figure 3. Example NIDPS Architecture

The overall goal of this thesis is to propose new, or extend existing, algorithms and

architectures that lead to systems that can handle higher traffic throughputs, greater

numbers and complexity of attack signatures, while keeping power consumption to a

minimum. The specific goals in each area are as follows:

 Improve on existing hardware acceleration techniques for the acceleration of

TCP/IP reassembly in the context of DPI:

Existing hardware-based designs typically drop out-of-order TCP segments in

order to force the originating host to resend. Dropping packets in this way is not

ideal as network performance is adversely affected. This leads to the thesis goal

of outlining a hardware-based architecture that avoids unnecessary packet

dropping.

 Develop and evaluate algorithmic solutions to the problem of multi-match

header matching:

Hardware-based NIDPS typically use TCAM-based technology to perform

TCP/IP header matching. The strategy adopted in this thesis is to adapt a number

of single match algorithms to perform multi-matching and to compare their

performance with existing solutions. Such algorithms can use SRAM instead of

TCAM and should therefore be less expensive and more energy efficient.

 Survey existing research work on DPI, with a particular focus on regular

expression matching:

A review of the most significant research in the area of DPI will be of use to

other researchers looking to improve the state of the art.

 Extend Bit-Parallel (BP) hardware architecture from existing research to

include improved handling of constrained {min,max} repetition syntax:

Chapter 1 - Introduction

9

Constrained repetition syntax is commonly used in DPI regular expressions.

Existing BP architectures handle such repetitions by unrolling of the repetition

with the result that the regex is often unsuitable for processing because of its

excessive length. The goal is to modify the BP architecture based on the

Glushkov NFA so that it can handle these repetitions without unrolling, thereby

greatly increasing the number of DPI signatures that can be handled.

1.5. Contributions

The main contributions of this thesis are summarised as follows:

TCP Segment Reassembly

The importance of IP fragment and TCP segment reassembly in DPI systems is

examined and the reassembly functionality of open source software NIDPS is

analysed. Existing research solutions to hardware acceleration of TCP/IP reassembly

do not fully handle all cases of out-of-sequence packets. This thesis outlines an

FPGA-based architecture that handles the common case of reassembling in-sequence

data streams in hardware and the much rarer out-of-sequence data streams in software.

Multi-match Packet Classification

A number of algorithmic approaches to multi-match classification which use SRAM

instead of TCAM are evaluated and compared in terms of throughput performance and

energy efficiency. These algorithms are mainly for single-match classification and so

have to be adapted for multi-match. The adapted algorithms were implemented in C

code and evaluated on an ARM simulation platform. The EGT-PC and ART

algorithms were found to be a suitable alternative to TCAM. Although these

algorithms do not currently match the performance of existing bit vector based

algorithms, such as FSBV and StrideBV, due to the commonality of field values in

recent rule sets, this may change in the future.

Deep Packet Inspection

While extensive research has been conducted into algorithms for performing fixed

string and general regex matching, the majority has ignored some of the more

complicated regex syntax such as constrained repetition quantifiers and back

references. This thesis describes a hardware architecture for handling regexes

containing constrained repetitions. The issue of pattern overlap affecting the handling

Chapter 1 - Introduction

10

of these repetitions is then examined and, a First-In-First-Out (FIFO) queue based

solution is described for susceptible regexes. The algorithms were implemented in

VHDL and evaluated using the Xilinx tool set and the open-source NetFPGA (Naous

et al., 2008) research platform as the target.

The impact of this work is that the handling of many regexes that would otherwise

be unfeasible due to their unrolled length can now be efficiently and correctly handled

by the BP architecture based on the Glushkov NFA. This enables the hardware

acceleration of over half the regexes found in recent Snort rule sets. The remainder

could be handled by extracting suitable sub-expressions and using the BP system as an

imprecise pre-filter followed by full verification of any positive matches in software.

The design evaluated in this thesis matches against all regexes in parallel. An

alternative approach would be to use multi-match header and fixed string matching as

pre-filters so as to greatly reduce the number of regexes to match against per packet.

The counting block algorithm outlined in this thesis could equally be used in such a

design. Such an approach would allow for regex data to be stored in external SRAM,

thereby allowing for the storage of a much larger number of regexes. Such a design

would give high throughput through the use of pipelining and parallel processing of

packets.

Hardware acceleration of regex matching for DPI is a very challenging task. It is

hoped that the contributions of this thesis will be useful to other researchers looking to

further advance the state of the art.

1.6. Thesis Organisation

The remainder of this thesis is structured as follows:

 Chapter 2: Background

This gives background information useful for a better understanding of the thesis.

Operation of the open-source NIDPS, Snort, is looked at and the rule syntax

examined. Some of the mathematical concepts related to the finite automaton

representation of regexes are described.

 Chapter 3: TCP/IP Reassembly

Most research articles on signature-based NIDPS do not mention TCP/IP

reassembly. This chapter looks at what is an essential element of any NIDPS as

Chapter 1 - Introduction

11

attack patterns may be split over multiple IP fragments or TCP segments.

Moreover, target OS–based reassembly is necessary in order to avoid attack

evasion. An FPGA-based design is outlined for the acceleration of this

reassembly.

 Chapter 4: Multi-match Header Classification

This chapter describes the adaption and evaluation of a number of single-match

packet classification algorithms for multi-match classification. Multi-match header

classification is needed in NIDPS because a number of rules may match the header

of the incoming IP packet.

 Chapter 5: Pattern Matching Methods

This chapter looks at the general theory of both fixed string and regex matching in

DPI and related research.

 Chapter 6: Constrained Repetition Handling Algorithm

A counter-based algorithm and a corresponding Bit-Parallel (BP) hardware

architecture are presented for the more efficient processing of regexes which

include constrained repetitions.

 Chapter 7: Dealing with Pattern Overlap in the case of Constrained Repetitions

This chapter describes how certain regexes which include constrained repetitions

are not suitable for the counter-based algorithm as they are susceptible to a pattern

overlap issue. A FIFO-based mechanism to deal with the issue is outlined and

evaluated.

 Chapter 8: Conclusion and Future Work

A summary is presented of the results achieved in the preceding chapters and

possible directions for future research are discussed.

Chapter 2 – Background

12

Chapter 2 - Background

This chapter provides a brief introduction to those aspects of automata theory that are

helpful for a better understanding of the thesis. An overview is also provided of some

of the main open source and commercial NIDPS, including a discussion of the recent

trend for IPS functionality to be included in next generation firewall products. The

choice of platform for an NIDPS product has a significant impact on achievable

performance and price. All the various commodity and custom hardware platforms,

suitable for an NIDPS implementation, are examined.

2.1. Automata Theory

2.1.1. Formal Languages

Alphabet

An alphabet, denoted by the symbol Σ, is a finite, nonempty ordered set of symbols.

e.g.:

 Σ = {a,b,...z} is the set of all lower-case letters

 Σ = {00,01,02,...FF} is the set of 256 symbols that can be represented by 8-

bit values (using hexadecimal representation).

Strings

A string is a finite sequence of symbols from a particular alphabet. e.g. bxsf is a string

from the alphabet Σ = {a,b,...z}. An empty string, denoted by ε, has zero occurrences

of symbols from Σ.

Exponential notation is used to express the set of all strings of a particular length

from an alphabet, e.g.

If Σ = {0,1}, then Σ
2
 = {00, 01, 10, 11}.

Σ
0
 = { ε }, regardless of the alphabet.

Σ
*
 = { ε , 0, 1, 00, 01, 10, 11, 000, 001,}, the set of all strings over Σ.

Chapter 2 – Background

13

Languages

If Σ is an alphabet, and Σ
*
 , then L is a language over Σ. In other words, L is a set

of strings chosen from Σ
*
. Formal languages are treated in the same way as

mathematical sets and so set theory operations such as union and intersection can be

applied. It can be defined using an automaton or formal grammar system.

Formal languages are often used to define computer programming languages.

Grammars

A formal grammar consists of

 a finite set of non-terminal variable symbols that can be rewritten as a sequence of

symbols

 a finite set of terminal symbols, Σ, the alphabet of the language, that cannot be

rewritten – hence “terminal”

 a finite set of rewrite/derivation rules X → Y, (i.e. X directly derives Y),

where X and Y consist of non-terminals and/or terminals

 a start variable, S, which is an element of the set of non-terminals

Chomsky (1956) categorised formal grammars into four classes, as shown in Table

1, by restricting the forms of X and Y.

Chapter 2 – Background

14

Table 1. Chomsky Hierarchy

 Language Grammar Automaton
Rewrite rule

restriction
*

3 Regular

Regular

(Right-linear or

Left-linear)
 †

NFA or DFA

A→a

and

A→aB (or A→Ba)
†

and

A→ ε

2 Context-free Context-free
Push-Down

Automaton
A→α

1 Context-sensitive Context-sensitive

Linear-

Bounded

Automaton

α Aβ→ α µβ

0 Unrestricted/Free
Recursively

enumerable

Turing

Machine
α → β

* A and B represent single non-terminal variables, a represents a single terminal symbol

and, greek letters represent strings of terminals and non-terminals. α and β can be empty.

† See section 2.1.2 for explanation of left-linear and right-linear grammars

2.1.2. Regular Languages

Regular Grammars

Strictly regular grammars generate regular languages and can be represented by finite

state automata. The rewrite rules are restricted to having a left-hand side consisting of

a single non-terminal and a right-hand side consisting of a single terminal possibly

followed by a single non-terminal in the case of a right-linear grammar, or it can

alternatively be preceded by a single non-terminal in the case of a left-linear grammar.

Left and right-linear rules cannot be mixed in the same regular grammar. The rule S→

ε is allowed, provided the start variable, S, does not appear on the right-hand side of

any rule. Left and right-linear grammars are discussed further at the end of this

section.

An Extended Regular grammar is similar to a regular grammar except that in the rule

A→aB (or A→Ba), a can be a string of terminals. It can be shown that any extended

regular grammar can be also expressed as an equivalent strictly regular grammar.

Chapter 2 – Background

15

A regular grammar is said to be non-deterministic if it includes two rules A→aB and

A→a or two rules A→aB and A→aC. Otherwise it is said to be deterministic.

Finite State Automata

A finite automaton is a 5-tuple (Q, Σ, q0, F, δ) where

 Q is a finite set of states (circles in state diagram).

 Σ is a finite set of symbols called the alphabet.

 q0 ∈ Q is the start state (state with incoming arrow not connected to any other state

in the state diagram).

 F Q is the finite set of accept or final states (double circles in state diagram).

 δ is the transition relation, indicating where to go for a given state and input

symbol. In the same way as for regular grammars, a finite state automaton is said

to be non-deterministic if there exist states for which the same input symbol

results in more than one transition. The transition function can therefore be

defined:

o for a Non-deterministic Finite Automaton (NFA)

δ : Q × (Σ ∪ {ε}) → P(Q)

where P(Q) is the power set (set of all subsets) of Q.

× denotes Cartesian product, the set of all ordered pairs from two sets.

This is a multi-valued transition function, i.e. for a given state and input

symbol, there can be more than one transition.

o for a Deterministic Finite Automaton (DFA)

δ : Q × Σ → Q

This is a single valued transition function.

It can be shown that the languages accepted by finite automata are regular languages.

Therefore any language represented by a regular grammar can also be represented by

an equivalent finite automaton.

Consider the following regular grammar in which {a,b} is the alphabet of the

language and q0 ,q1 are non-terminal variables

 q0→aq0 q0→bq1 q1→a q1→aq1

Chapter 2 – Background

16

Now if q2 is added as a non-terminal variable corresponding to accept or final state

of the equivalent NFA, the regular grammar can be rewritten as

 q0→aq0 q0→bq1 q1→aq2 q1→aq1 q2→ ε

The state transition table and the state diagram of the equivalent NFA are shown in

Table 2 and Figure 4, respectively. q0 is the start state and q2 is the accept state. Note

that state q1 has two outgoing edges with the same symbol, i.e. this is an NFA.

Table 2. State Transition Table for example regular grammar

Input Symbol

State

a b

q0 {q0} {q1}

q1 { q1,q2} ∅ (null)

q0

b
q1 q2

a

a a

Figure 4. NFA equivalent to example regular grammar

NFA vs. DFA

In the case of DFA, for each state, q, and input symbol, α, there is exactly one

transition leaving state q. This includes transitions to the null state, which are typically

omitted from state diagrams. Therefore a DFA has at most one edge leaving state q

labelled with the symbol α.

In the case of an NFA, there may be multiple transitions for each combination of

state and input symbol. It can also include transitions for the empty string, ε, i.e. it can

transition from one state to another without consuming any input symbol.

It can be shown that any regular language L is accepted by a DFA if and only if it is

also accepted by an NFA. In other words, DFA and NFA are equivalent in what they

express and it is always possible to convert between them. It should also be noted that

a DFA is in fact a special case of an NFA.

Chapter 2 – Background

17

Regular Expressions

A regex, r, is an algebraic formula which represents the language L(r) of the regex, i.e.

a set of strings in Σ
*
. The fundamental operators used in regexes are:

 Union/Alternation: If r1 and r2 are regexes then r1|r2 is also a regex.

 Concatenation: If r1 and r2 are regexes, then r1r2 is also a regex.

 Kleene Closure: If r is a regex, then r* is also a regex.

Two regexes over the same alphabet are equivalent if, and only if, their respective

languages are equal sets. It can be shown that every language defined by a finite state

automaton can also be expressed as an equivalent regex, e.g. FA in Figure 4 can

alternatively be expressed as the equivalent regex a*ba*a .

Some example regexes:

 a|b* denotes { ε, a, b, bb, bbb,}.

 (b|c)* denotes all strings made up of only the symbols b and c, plus the empty

string.

 (ab|c)d denotes { ε, abd, cd }.

Regex operator precedence, as outlined in Table 3, is relatively simple. The most

important point is that concatenation has higher priority than alternation.

Table 3. Regex operator precedence

Precedence Operator Description

Highest () Parentheses and other grouping operators

 *, +, ?, {min,max}, etc. Repetition

 ^xyz Concatenation

Lowest | Alternation

Right versus Left Linear (Regular) Grammars

A right-linear grammar generates the strings of the language (i.e. the words) from left

to right, whereas a left-linear grammar generates the words from right to left. Any left-

linear grammar can be converted to an equivalent right-linear grammar and vice versa.

Figure 5 and Figure 6 show the right-linear and left-grammars, respectively,

corresponding to the regex x*yz*, along with their equivalent automata.

Chapter 2 – Background

18

S
y

A
z

x z ε

Right-linear grammar:

S→xS | yA

A→zA | ε

Regex: x*yz*

Finite automaton:

Figure 5. Example of right-linear grammar and corresponding automaton

SA

x z

ε

Left-linear grammar:

S→Sz | Ay

A→Ax | ε

Regex: x*yz*

Finite automaton:

y

Figure 6. Equivalent left-linear grammar and corresponding automaton

2.1.3. Perl Compatible Regular Expressions

PCRE is a regex library written in C which implements pattern matching based on the

syntax and semantics used in Perl 5.The library is used by a number of open source

programs, including Apache HTTP server, PHP and Snort.

Snort PCRE syntax

The pcre keyword in Snort allows PCRE regexes to be written in the following

format:

pcre:[!]"(/<regex>/|m<delim><regex><delim>)[ismxAEGRUBPHMCOIDKYS]"

;

 A regex is usually delimited using “/”. However, it is possible to use almost any

other special character, provided it is preceded by the letter “m” (meaning match).

 Prefixing the regex with an exclamation mark negates its meaning. e.g. the regex

/foo/ matches any string that contains “foo”, whereas the regex !/foo/ matches any

string that does not.

 The regex may be followed by a list of modifiers, ismxAEGRUBPHMCOIDKYS,

some of which are Snort specific extensions. Three of the most common modifiers

are:

Chapter 2 – Background

19

o i – case insensitive matching

o s – single line mode, i.e. the dot wildcard metacharacter ,“.”, is to match

everything including new line (otherwise new line is excluded)

o m – multi-line mode. This affects the operation of the start and end anchors,

“^” and “$”, respectively. By default the input string is treated as a single line

and the anchors apply to the start and end of the string. However, in multi-line

mode, the “^” and “$” anchors additionally apply immediately after and

before, respectively, any newline in the input stream.

 The PCRE syntax and semantics most commonly used in Snort is described in

Table 4.

Regex anchors

An anchor is a type of zero-width assertion that specifies a position in the input string

where a match must occur. Assertions do not actually consume any characters. The

most important anchors used in Snort rules are described in Table 5.

For example, the multi-line start-anchored regex /^hello/m would find a match in the

strings “helloworld” and “world\nhelloworld”, but not in “worldhelloworld”.

Similarly, the multi-line end-anchored regex /world$/m would find a match in

“goodbyeworld” and “world\ngoodbye”, but not in “goodworldgoodbye”.

Chapter 2 – Background

20

Table 4. Important PCRE Syntax and Semantics

Operator Type Example Meaning

Literals

a 4 % Letters, digits, other characters

\^ \?
Special characters must be preceded by \ to cancel their special

meaning

\n \t \r New line, tab, carriage return

\xa3 Hex code

Anchors and

assertions

^
Regex must match at start of string, or after a new line in multi-

line mode

$
Regex must match at end of string, or before a new line in multi-

line mode

\b
Word boundary – matches before and after an alphanumeric

sequence (matched by \w character class)

Character

Classes

[acEoi] Any character in the list will match

[^acEoi] Any character apart from those in list will match

[a-fA-F0-9] Any hex character (dash indicates a range of characters)

.

Dot means any character except new line.

If single line mode modifier is specified, then new line is also

allowed.

\s Any space character [\t\r\n]

\w Any word character [A-Za-z0-9_]

\d Any digit [0-9]

\h Any horizontal whitespace character [\t]

\S \W \D \H Inverse of above four

Repetition

(applied to

preceeding

regex element)

+ 1 or more

* 0 or more

? 0 or 1

{10} Exactly 10

{10,} 10 or more

{,10} Up to 10

{5,10} Between 5 and 10

Counting is “greedy” by default. i.e. System tries to find the longest match

before backtracking if necessary. It can be made “lazy” by appending “?” after

the count – i.e. system first tries to complete a match using the shortest number

of repetitions, before then trying longer ones.

Alternation | either,or, e.g. a|b means a or b

Grouping () Parentheses allow an operator to be applied to a part of a regex,

rather than a single element.

This also creates a back-reference. Each group is numbered from

left to right from 1.

Back-references \n where n

is a number

\2 is a back-reference to the 2
nd

 matched group. Note that it

signifies the matched fixed string that was matched and not the

regex group.

Lookahead

Assertion

(?=regex) Zero-width positive lookahead. (Note: Lookahead assertions do

not consume characters – i.e. matching position is not moved)

e.g. /foo(?=bar)/ will match foo if it is followed by bar.

(?!regex) Zero-width negative lookahead.

e.g. /foo(?!bar)/ will match if foo is found and is not followed by

bar.

Lookbehind

Assertion

(?<=regex) Zero-width positive lookbehind.

e.g. /(?<=foo)bar/ will match bar if it is preceded by foo.

(?<!regex) Zero-width negative lookbehind.

e.g. /(?<!foo)bar/ will match if bar is found and it is not

preceded by foo.

Chapter 2 – Background

21

Table 5. Snort regex anchors

Anchor
Multi-line

mode
Description

^ Disabled The match must occur at the beginning of the string.

^ Enabled

The match must occur at the beginning of the string or line,

i.e. at beginning or immediately following any newline

character.

$ Disabled The match must occur at the end of the string.

$ Enabled
The match must occur at the end of the string or line, i.e. at

end or immediately before any newline character.

\b -

The match must occur on a word boundary, i.e. between a

word and a non-word character. Word characters consist of all

alphanumeric characters and underscores.

2.1.4. Construction of NFA from regex

Several algorithms have been proposed for the construction of a finite automaton from

a regex. The algorithms differ in their level of complexity, in whether or not the result

is deterministic, and in whether or not there are ε-transitions. The two best known

classic methods are the Thompson (1968) construction algorithm and the Glushkov

(1961) construction algorithm (equivalent to McNaughton-Yamada (1960) method).

The Thompson method is simpler and produces an NFA with at most 2m states and at

most 4m transitions, where m is the number of characters (from alphabet) in the regex

– i.e. linear relationship. It does, however, have ε-transitions. The Glushkov method

produces an NFA with exactly m+1 states but up to O(m
2
) transitions. It has the

advantage of not generating ε-transitions, but the construction takes longer compared

to the Thompson method. It also has the important property that all transitions into a

particular state are for the same character.

Chapter 2 – Background

22

Thompson NFA

ϵ a

R1

R2

R1 R2

R1

R2

R1

R2

ϵ

ϵ

ϵ

ϵ

R1

R1

ϵϵ

ϵ

ϵ

R=ϵ (empty string) R=a (single character)

R=R1R2 (concatenation) R=R1|R2 (alternation)

R=R1* (Kleene Closure)

ϵ

Figure 7. Thompson Construction – glueing together automata

The Thompson method first constructs a tree representation of the regex before

computing, at each node of the tree, an automaton that recognises the language

represented by the subtree at that node. ε-transitions are used to “glue” these automata

together to eventually produce the overall NFA. Figure 7 illustrates how the sub-

automata are glued together and Figure 8 shows the NFA constructed from regex

(a|b)*ca.

0
ϵ

1

2 3

4 5

6 7

a

b

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

8
ϵ

9
c

10
ϵ

11
a

Figure 8. Thompson NFA for regex (a|b)*ca

Chapter 2 – Background

23

Glushkov NFA

The Glushkov construction method was first explicitly described by Berry and Sethi

(1986) and is explained in detail by Navarro and Raffinot (2002). Consider the

example regex RE=(a|b)*ca. The positions of the characters in the regex are marked

with a number to give the marked expression RE =(a1|b2)*c3a4. Note that the bar over

RE signifies that it is the marked form of the regex.

Using the following notation:

 L(RE) represents the language of RE , i.e. all the strings accepted by RE . In the

case of the example, L(RE) = {c3a4, a1c3a4, b2c3a4, a1a1c3c4, b2b2c3a4, a1b2c3a4,

b2a1c3a4,... }

  represents the marked character alphabet

 * is the regex operator meaning that the preceding symbol or sub-pattern is

repeated zero or more times

 * represents all possible combinations of characters in the alphabet (can be null)

 {1...m})REPos( represents the set of positions in RE

 αy is the indexed character at position y

the following definitions are made:

)}RE L(u*, αu), RE Pos(x) = {xREFirst(x |

i.e. the set of initial positions of L(RE).

In the case of the example, }2,1{)REFirst(


)}RE L(*, uαu), RE Pos(x) = {xRELast(x |

i.e. the set of positions in RE with index x whose corresponding character αx

forms a string from the language of RE when prefixed by some combination of

characters from the alphabet. In other words this is the set of final, or accept, states

of the automaton which, when reached, indicate a match has been found.

In the case of the example, }4{)RELast(


)}RE L(v α*, uαv u), RE Pos(yx) = {yREFollow(yx  ,|,

i.e. for a given position x in RE , the set of positions in RE with index y for which

the combination of the two characters αx followed by αy form a substring of some

Chapter 2 – Background

24

string from the language of RE . In other words, for each position x, x)REFollow(,

is the set of positions reachable from x.

In the case of the example

o Follow(RE ,1)={1,2,3}

o Follow(RE ,2)={1,2,3}

o Follow(RE ,3)={4}

 EmptyRE has value {ε} if ε belongs to L(RE) and ∅ otherwise.

There is a transition from state x to y in the automaton if y ∈ Follow(RE ,x). The

resulting marked Glushkov automaton is shown in Figure 9. The Glushkov automaton

is then simply obtained by removing the position indices from the marked automaton.

0 1 2 3 4
a1

b2

b2

c3

a1 a1

b2

c3 a4

Figure 9. Marked Glushkov NFA for RE =(a1|b2)*c3a4

The Glushkov construction algorithm, in the same way as the Thompson algorithm,

makes use of a tree representation of the regex, where each node ν of the tree

represents a sub-expression REν of the overall regex RE. First(ν), ast(ν) and Emptyν

are calculated for each node ν, starting at the leaves and working back towards the

root of the tree. A global variable Follow(x) is maintained for each position in RE and

this is updated at each node. Full details of the recursive algorithm can be found in the

textbook by Navarro and Raffinot (2002).

2.1.5. NFA to DFA conversion

Every language that can be described by an NFA can also be described by an

equivalent DFA. In practice, a DFA usually has around the same number of states as

an NFA but with more transitions. However, in the worst case, the smallest equivalent

DFA can have 2
n
 states compared to the n states of the smallest NFA.

The classic method to convert an NFA to a DFA is known as the subset construction

or powerset construction (Rabin and Scott, 1959). Each single state in the equivalent

Chapter 2 – Background

25

DFA corresponds to a set of states in the NFA. The algorithm, as illustrated in Figure

10 for the Thompson NFA of Figure 8, is as follows:

 The DFA start state is the set of NFA states reachable by an ε-transition.

 Starting with the DFA start state, repeat the following for every new DFA state

created until no more new states can be found:

o For each character from the alphabet of the language, compute the set of states

reachable from the DFA state – this set of states constitutes a new state.

 The final or accept states in the DFA are those whose set of NFA states contains at

least one final state from the NFA.

2.1.6. Trie

A trie (from retrieval) is a multi-way ordered data tree structure which can be used for

storing strings. All strings that branch from the same node share the same prefix.

Figure 11 shows the trie for the set of strings P={bale, ball, bark}.

{0,1,2,4,7,8}

{3,6,7,8} {5,6,7,8}

{9,10}

a b

c
c

c

b

a

a

b

{11}

a

Transition Table

DFA State,

q
δ(q,a) δ(q,b) δ(q,c)

{0,1,2,4,7,8} {3,6,7,8} {5,6,7,8} {9,10}

{3,6,7,8} {3,6,7,8} {5,6,7,8} {9,10}

{5,6,7,8} {3,6,7,8} {5,6,7,8} {9,10}

{9,10} {11} ∅ ∅

{11} ∅ ∅ ∅

Figure 10. NFA to DFA conversion of (a|b)*ca using Subset Construction

Chapter 2 – Background

26

0 1 2

5

3 6

4 7
b a

r k

l

e

l

Figure 11. Trie for set of strings P={bale, ball, bark}

A trie is actually a deterministic acyclic automaton which recognises the

corresponding set of strings. Tries are important in string matching.

2.2. Network Intrusion Detection and Prevention Systems

2.2.1. Snort

Snort is probably the best known network-based NIDPS software and is used as the

reference point for the architectures proposed in this thesis. It can be run in three

different modes:

 NIDS

 NIPS (inline mode)

 Sniffer mode – like tcpdump

2.2.2. Snort Rules

Snort is a signature-based NIDPS. Sourcefire Vulnerability Research TeamTM (VRT)

rules are the official rules for Snort. Updates to the VRT database are made

immediately available to users who have availed of the paid subscription service and

are released free of charge to all registered users after 30 days. (Note: Sourcefire is

currently in the process of being acquired by Cisco). An alternative rule set provider

company to Sourcefire is Emerging Threats Pro LLC. It maintains two rule sets,

ETopen which is free, and ETpro which is a paid subscription service. The ET and

VRT rules have the same format and it is possible to load both rule sets on the same

Snort installation.

Users can also write their own rules. Snort rules have two parts, the rule header and

the rule options, as shown in Figure 12.

Chapter 2 – Background

27

Rule Header

The rule header defines the criteria for matching against packet headers and the action

to be taken on finding a match. The criteria consists of the protocol type, the source

and destination IP addresses and port numbers and, whether the rule is unidirectional

(->) or bidirectional (<>).

Rule

Header: {

[alert, log, pass, activate, dynamic, drop, reject, sdrop]

[ip, icmp, tcp, udp]

[any, <Source IP address subnet>]

[any, <port>]

[->, <>]

[any, <Destination IP address subnet>]

[any, <port>]

([content:, msg:, flags: pcre:, byte_test:, flowbits:])
Rule

Options:

Figure 12. Snort rule syntax (only some rule options are shown)

alert is the most commonly used action and results in the generation of an alert

message and the logging of the packet. The other actions are described by Roesch &

Green (2012) in the Snort manual along with a description of how to create custom

user-defined actions.

Rule Options

The rule options follow the rule header and are enclosed in a pair of parentheses.

There may be one or more options separated by a semicolon. A rule matches only

when its header and all of its options match, i.e. logical AND. The following are some

of the more important rule options, full details of which can be found in the Snort

manual:

 content – the content keyword defines a fixed string to be searched for in the

packet payload. This fixed string can be text and/or bytecode. A single rule can

contain multiple content keywords, e.g.

alert tcp any any -> any 90 (content: "Some string";)

alert tcp any any <> 10.1.1.0/24 88 (content:"|3c

ff|G|01|H";)

Chapter 2 – Background

28

 msg – this defines the message to use when signalling an alert or when logging a

packet, e.g.

alert tcp any any -> 10.1.1.0/24 53 (msg:"Some string attack

attempt"; content:"Some string";)

 flags – this checks if the specified TCP flags are present in the packet.

 pcre – this allows patterns to be specified as PCRE regexes.

 byte_test – this checks the value of a byte, at a specified offset in the packet

payload, using less than, greater than, equals, bitwise AND or bitwise OR

operator.

 flowbits – the flowbits keyword allows rules to track TCP state, effectively linking

rules together, e.g.

alert tcp any 143 -> any any (content:"IMAP login";

flowbits:set,logged_in, flowbits:noalert)

alert tcp any any -> any 143 (msg:"IMAP lsub";

content:"LSUB"; flowbits:isset,logged_in;)

A positive match in the first rule sets the user defined logged_in state name but

generates no alert because the noalert keyword is specified. The second rule

checks if the logged_in state name is set.

2.2.3. Suricata

The open-source software Suricata was developed as a multi-threaded alternative to

Snort (Open Information Security Foundation, n.d.). Although the code is original,

many architectural concepts were borrowed from Snort, and it can use the same rule

sets. A performance comparison of Snort and Suricata is not straightforward as it very

much depends on the rule sets, the test traffic and any optimisation settings used.

White et al. (2013) found that Suricata performs better than Snort, even for a single

core. Albin and Rowe (2012) observed no significant speed advantage of Suricata

over Snort except on processors with a large number of cores.

2.2.4. Bro

Bro (Paxon, 1999; Sommer, 2011) is an open-source UNIX-based NIDS and network

traffic analysis system. Its detection mechanism is activity-based with some support

for anomaly detection. The Bro system consists of two parts, the event engine and the

policy scripts. The C++ engine analyses the traffic and generates neutral events which

do not necessarily indicate an attack. These events are then processed by the policy

Chapter 2 – Background

29

scripts written in the Bro scripting language which may result in logging to a file,

email notification, execution of another script, etc. This scripting language gives a lot

of flexibility but the scripts that are provided with Bro by default typically need

significant customisation.

2.2.5. Market Trends

Gartner recently produced a report (Young and Pescatore, 2012) on how the IPS

market is evolving. It found that IPS functionality is increasingly being absorbed into

Next Generation Firewall (NGFW) products, although standalone next generation IPS

(NGIPS) products are still available. Commercial stand-alone IPS systems include:

 The McAfee (an Intel subsidiary) Network Security Platform includes a range of

models capable of high speed performance via a load-balanced cluster. It supports

both string and regex DPI and can read Snort rules.

 HP Tipping Point IPS is available as a standalone hardware IPS, as IPS blades for

use in HP switches and, as a software version. It supports both string and regex

matching and provides tools for importing Snort rules.

 Sourcefire Inc. (in the process of being acquired by Cisco), the commercial

manager of the open-source Snort software, has an NGIPS product which runs on

its FirePOWER hardware platform.

 Cisco stand-alone IPS products include the 4300 and 4500 series appliances, plus

blades for adding IPS capability to Cisco routers. IPS software is also available for

the Cisco IOS platform. Cisco IPS systems cannot read Snort rules.

NGFW systems which include next generation IPS capability include:

 Cisco Adaptive Security Appliances.

 Sourcefire has a NGFW solution that can run on the same FirePOWER platform

as its NGIPS.

 Checkpoint’s Software Blade Architecture allows customers to select and combine

firewall, VPN, IPS, anti-spam, etc., as part of a single NGFW system.

 Palo Alto Networks provides IPS functionality, including hardware acceleration,

as part of its NGFW platforms.

 Fortinet’s FortiGate Network Security Platform incorporates a wide range of

security technologies including firewall, VPN, IPS, etc. FortiGate has its own rule

format which is quite similar to that of Snort.

Chapter 2 – Background

30

2.3. Platforms

2.3.1. Commodity Hardware

Commodity hardware has the advantage of comparatively low cost and its

performance may be adequate for many applications. Companies entering into IDS

product development may prefer to use commodity rather than specialised hardware in

order to reduce time-to-market, keep development costs down and deliver a more

maintainable product. Such companies might see the use of specialised hardware as a

second step reserved for the development of higher performance products once the

commodity-based products have gained a market foothold.

Commercial Off-The-Shelf (COTS) Server

Most deployments of software-based NIDPS, such as Snort and Suricata, are on

standard servers. Multi-core servers can be used to take advantage of the multi-

threaded architecture of Suricata.

Graphics Processing Unit (GPU)

The highly parallel architecture of GPUs makes them effective for many complex

algorithms. Their relatively low cost has prompted much research into their use for

offloading of regex matching from the CPU (Antonello et al., 2012). Vasiliadis et al.’s

(2009) GPU-based DPI system uses fixed string pre-filtering software running on the

CPU in order to reduce the amount of regex matching that needs to be performed by

the GPU. Payloads that match in the pre-filter are forwarded along with a regex

identifier to the GPU for regex matching. Zu et al. (2012) evaluated an NFA design on

an NVIDIA GTX-460 GPU.

2.3.2. Custom Hardware

ASIC

Application Specific Integrated Circuits (ASIC) have numerous advantages when it

comes to implementing complicated network processing algorithms as they give the

great design flexibility, thereby allowing very high traffic speeds, consuming

relatively little power and having a small footprint. Unfortunately, these advantages

come at a cost. ASIC development is slow and very expensive. The high costs include

library and design software licences, manufacturing and engineering design. The

Chapter 2 – Background

31

extensive testing required and slow manufacturing process result in a long project

timescale. ASICs are inflexible in that they cannot be updated with bug fixes or

improved algorithms.

FPGA

Field Programmable Gate Arrays (FPGA) provide a flexible design platform without

the high cost of ASIC fabrication. Time-to-market is also reduced as the development

timescale is much shorter. In terms of performance, an FPGA is typically much slower

than an ASIC, but much faster than a CPU. The highly parallel nature of an FPGA

makes it suitable for the multi-pattern matching involved in intrusion detection.

An FPGA consists of a mix of configurable embedded SRAM (Block RAM), Clock

Managers, high speed transceivers and I/Os, and logic blocks, all of which can be

wired together via a configurable interconnect fabric. A memory interface is also

provided for interfacing the FPGA with external DRAM or SRAM. Some FPGA’s

include a hard core processor, e.g. Xilinx Virtex 5 includes a PowerPC 440 processor.

Alternatively, a soft core processor can typically be generated using the vendor’s

design tools.

Besides reduced cost and development time, FPGA’s also have the important

advantage of being reconfigurable, thereby allowing systems to be updated with new

improved designs. Designs can also be ported to newer improved FPGAs when they

become available.

TCAM

A Content Addressable Memory (CAM) is a special type of memory which returns the

address of the first memory location that contains a supplied piece of data. The entire

CAM is searched in just one clock cycle. A standard CAM is binary in that it can only

search for ones and zeros. A Ternary CAM (TCAM) additionally allows bits to be

masked as Don’t Care. One of the most common uses of TCAMs is in IP routers,

where the Don’t Care bits are used to mask out some of the address bits in order to

represent a subnet. The main disadvantages of TCAM are its high cost and high power

consumption due to the extensive circuitry required for the parallel search.

 Another disadvantage of TCAM from an NIDPS design perspective is that it only

returns the first match rather than all matches. Yu and Katz (2004) describe how this

Chapter 2 – Background

32

issue can be overcome for IP header multi-matching. Yu et al. (2004) propose how

TCAM can be used for multi-pattern fixed string matching. Long patterns are split

into multiple parts and so occupy several TCAM locations. One TCAM search is

performed for each byte in the incoming packet payload. A full match is declared if all

sub-patterns match in the correct order. Meiners et al. (2010) describe how TCAM can

also be used for regex matching. They use a number of techniques to reduce the

TCAM space required by the minimised DFA and to maximise the matching speed.

Network Processor

A network processor (NPU) is a software programmable device with multiple cores or

engines. It differs from a standard multi-core processor in that it includes a number of

optimised network processing features such as pattern matching and queue

management. NPU vendors typically supply an API (Application Programming

Interface) as a software library to simplify the development of application software to

control the engines and hardware acceleration features, e.g. Netronome supplies an

IPS/IDS Application Kit (Netronome, 2012) for the NFP and IXP processors.

2.4. Summary

The functionality of the architectures proposed in this thesis is designed to emulate

that of Snort, the well-known open-source NIDPS. Snort uses a database of rules,

known as the rule set, to list all the attacks it must search for in the network traffic.

Each rule consists of a header and an options part. The header part lists the header

values to be searched for in the IP packets’ IP and TCP/UDP headers, while the

options part includes fixed string and/or regex patterns to be searched for in the packet

payload. This thesis looks in detail at both multi-match header and regex matching.

Regexes can be equivalently expressed as finite automata (FA) or regular grammar,

and represent what are known as regular languages. Finite automata are widely used in

regex-matching implementations, and can be categorised as either deterministic

(DFA) or non-deterministic (NFA). Both forms are equivalent and a DFA is actually

just a special case of an NFA. Several different algorithms exist for the construction of

an FA from a regex and for the conversion between NFA and DFA forms. The

essential difference between the behaviour of a DFA and an NFA is that an NFA can

have multiple concurrently active states whereas a DFA only has one state active at a

time. Intuitively, a DFA typically needs many more states that the equivalent NFA,

Chapter 2 – Background

33

and therefore it occupies significantly more memory. An NFA implementation is more

suited to platforms, such as an FPGA or ASIC, that can efficiently handle its parallel

nature. A DFA, on the other hand, is typically used in processor-based software

implementations that have access to a large amount of memory.

Besides open-source NIDPS such as Snort, there are several commercial products

available. Although a number of these products are standalone NIDPS, there is a

growing trend to include this functionality in next generation firewall systems.

Chapter 3 – TCP/IP Reassembly

34

Chapter 3 - TCP/IP Reassembly

In order to correctly analyse network traffic, NIDPS systems must reassemble any IP

fragments or TCP segments before examining the reconstructed data flow for attack

patterns. This reassembly must exactly match that on the target destination host, as

otherwise an attacker may evade detection. Different operating systems have subtle

differences in their implementations of IP fragment and TCP segment reassembly and

so an NIDPS must select the reassembly procedure to use based on the OS of the

target host, i.e. target-based reassembly. An alternative approach is for the NIDPS to

normalise the traffic, by removing any ambiguities, before forwarding to the

destination.

Performing TCP/IP tracking and reassembly in software at high traffic speeds places

a very heavy work load on the processor due to the amount of memory copying and

the potentially huge number of flows that need to be tracked. TCP Offload Engine

(TOE) technology is available to reduce the load on server CPUs by shifting TCP

layer processing to the Network Interface Card (NIC). Several commercial hardware

IP cores are available as building blocks for ASIC and FPGA designs, e.g. from

Intilop Corp. (2012) and PLDA (2012). However, these solutions are aimed at end

host systems and are not suitable for performing connection tracking and reassembly

in DPI solutions on intermediate hosts.

Most existing research proposals on TCP/IP reassembly for NIDPS are either fully

software based, such as the work of Novak and Sturges (2007), or fully hardware

based, such as the works of Necker et al. (2002) and Schuehler and Lockwood (2004).

In this thesis, a hybrid architecture is described which splits the processing between a

slow path and a fast path, as shown in Figure 13. The fast path handles the most

frequent tasks that can take advantage of the parallelism of hardware logic, while the

slow path handles the less frequent but more involved tasks that are more suitable for

software implementation. The outlined architecture is based on the Xilinx Zynq-7100

System on Chip (SoC) with built-in hard dual-core ARM processor, but is equally

applicable to any suitable FPGA or ASIC device with an internal or external CPU and

sufficient internal memory.

This chapter first covers the main points of the theory of IP fragmentation and TCP

segmentation, including the dependency on OS type, followed by an overview of the

Chapter 3 – TCP/IP Reassembly

35

reassembly functionality included in the open source software NIDPS systems, Snort

and Suricata. Finally, the hardware acceleration system is presented. This system is

designed to emulate as much as possible the reassembly functionality of Snort.

Slow Path

(Software on CPU)

Fast Path (FPGA

Programmable Logic)

Classify

packet
IP traffic

N
ew

 T
C
P
 c
on

ne
ct
io
n

or

IP
 fr

ag
m

en
t s

tre
am

Software

H
ol
e

de
te

ct
ed

 in

re
as

se
m

bl
y
st
re

am

Existing TCP connection or
fragment stream

Reassemble into

pseudo-packets
DPI

Manage

Connection

Records

Figure 13. Hybrid software-hardware processing

3.1. Theory of IP Fragmentation and TCP Segmentation

3.1.1. TCP Connections

Three-way handshake

Source port Destination port

Sequence number

Acknowledgement number

TCP header

length
Window size

Checksum Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

C
W
R

E
C
E

Reserved

Figure 14. TCP Header

The establishment of a TCP connection between a client and a server is performed

using the three-way handshake, as illustrated in Figure 15. First the client’s TCP layer

sends a TCP segment to the server with the SYN flag set, the sequence number set to a

randomly generated Initial Sequence Number (ISN) and, optionally, the Maximum

Chapter 3 – TCP/IP Reassembly

36

Segment Size (MSS) set to the largest segment size it can handle. The server receives

the request and responds with a TCP segment with both the SYN and ACK flags set,

the sequence number set to its own randomly generated ISN, the acknowledge number

set to the sequence number it expects to receive next from the client, i.e. the received

number plus one, and, optionally, the MSS it can handle. The connection is completed

by the client responding to the server’s reply with a segment with the ACK flag set, its

sequence number incremented by one and the acknowledge number set to the

sequence number is expects next from the server, i.e. the sequence number just

received plus one. If no MSS is included in a SYN segment, then the default value of

536 bytes is assumed. Once the connection is established, both client and server send

TCP segments at the lesser MSS of the two nodes.

Figure 15. TCP 3-way handshake

Sequence and Acknowledgment numbers

Each byte of data in TCP is assigned a sequence number. During the 3-way

handshake, the sequence number is set to the ISN when the SYN flag is, and the first

Chapter 3 – TCP/IP Reassembly

37

byte of data is numbered ISN + 1. The Acknowledgement number is valid if the ACK

flag is set, and it contains the value of the next sequence number that the sender of the

acknowledgement expects to receive. Note that once a connection is established and

data is being transmitted, the ACK flag is always set. Figure 16 illustrates how the

values of sequence and acknowledgement numbers are set during data transmission.

Note that an ACK segment without any data does not result in the next sequence

number being increased. Things to observe from Figure 16 are that multiple segments

can be acknowledged with one ACK segment, that the ACK is cumulative, and that

data can be included in the same segment as an acknowledgement.

Figure 16. TCP data segment transmission

TCP uses a sliding window flow control algorithm for the fast and efficient transfer

of data. The window is the maximum amount of data that can be sent without waiting

for an ACK. The size of the window is based on the size of the receiver’s available

buffer space for the connection, and it can be dynamically adjusted in an ACK

segment. If transmitted data is not acknowledged within a certain time, it is

retransmitted. TCP sequence numbers are used in the receiver’s TCP layer to

Chapter 3 – TCP/IP Reassembly

38

distinguish retransmitted data and to reassemble out-of-order and overlapping

segments.

3.1.2. The need for IP fragmentation

IP fragmentation occurs in a network node if the size of the packets exceeds the

Maximum Transmission Unit (MTU) of the outgoing interface. IP Fragmentation at

intermediate nodes is usually avoided by using the technique of Path MTU Discovery

(PMTUD) that determines the minimum MTU for the entire path from source to

destination node. As the UDP protocol does not perform payload fragmentation, the

most common occurrence of IP fragmentation is in the case of UDP traffic on source

nodes. The TCP protocol, however, does perform fragmentation, which is known as

TCP segmentation, if the data size is greater than the MSS. The MSS value usually

ensures that fragmentation is avoided at the IP layer in the case of TCP traffic.

The following IP header fields are used in fragmentation

 Identification field: this value is the same in each fragment of a particular

datagram

 Flags field: The MF (More Fragments) bit is set in all fragments apart from the

last; the DF (Don’t Fragment) bit is used to prevent fragmentation of an IP packet

 Fragment Offset field: contains the offset, in 8-byte units, of this fragment in the

original datagram, and, as a result, the data portion of each datagram, apart from

the last, must be a multiple of 8 bytes in length

 Total Length field: contains the size of the fragment, including the header (same as

any IP packet)

Chapter 3 – TCP/IP Reassembly

39

IP

Header

IP

Header

IP

Header

IP

Header

IP

Header

Total Len=516

MF=1

OFFSET=0

Total Len=516

MF=1

OFFSET=62

Total Len=516

MF=1

OFFSET=124

Total Len=432

MF=0

OFFSET=186

Say we need to transmit 1900 bytes of data when the

MTU is 520 bytes and the IP header length is 20.

MTU data = 520 – 20 = 500 bytes

But fragment offset needs to be divisible by 8, so use

MTU data of 496.

Fragment 1: Data len=496. Offset=0

Fragment 2: Data len=496. Offset=496/8=62

Fragment 3: Data len=496. Offset=62+62=124

Fragment 4: Data len=412. Offset=124+62=186

496 496 496 412

Figure 17: Example of IP packet fragmentation

3.1.3. Path MTU Discovery

Path MTU Discovery (PMTUD) (Mogul and Mooring, 1990) is a technique

commonly used to avoid unnecessary IP fragmentation. It allows each node to

determine the minimum MTU on the path to each destination in its routing table.

PMTUD is a continuous process as dynamic routing may result in a decrease in the

PMTU due to a different path being used. PMTUD works by setting the Don’t

Fragment (DF) bit in the header of outgoing IP packets. When the packet reaches a

node along the path that is unable to forward the packet because it is larger than the

MTU of its outgoing interface, then that node will drop the packet and notify the

sender using an ICMP Destination Unreachable – Datagram too big message. This

message includes the next-hop MTU which allows the sender to try again with a

smaller packet. This process is repeated until the packet successfully travels the full

path to the destination.

Chapter 3 – TCP/IP Reassembly

40

Unfortunately, PMTUD frequently does not work because the ICMP messages are

often blocked by firewall configuration. Packetization Layer Path MTU Discovery

(PLPMTUD) (Mathis and Heffner) is a more robust alternative that does not require

the use of ICMP messages. It uses a transport layer protocol, such as TCP, to probe

the path with progressively larger packets. Another method is a “hack” known as MSS

clamping. This involves configuring a router or firewall to lower the MSS of all TCP

connections passing through. MSS clamping should only be used as a last resort as it

can cause problems for some protocols.

The TCP layer of a host calculates the MSS by subtracting the fixed lengths of the IP

and TCP headers from the PMTU, i.e. PMTU minus 40. The length of IP or TCP

options is not considered in the calculation. It is up to the sender of a TCP segment to

ensure that it reduces a segment’s data length to compensate for any IP or TCP

options fields. The MSS used for a particular connection is negotiated during the 3-

way handshake. With functioning PMTUD or PLPMTUD, IP fragmentation is only

necessary on the sending host in the case of non-TCP datagrams, typically UDP, that

are too large to fit in a single IP packet.

3.1.4. IP Reassembly

Reassembly is a complex task due to the fact that fragments may arrive out of order

having followed different routes to the destination. Packet reordering in routers is now

rare as most use connection-level parallelism instead of packet-level-parallelism

(Dharmapurikar and Paxon, 2005). Fragments may also be retransmitted and their

payloads may even overlap. Unfortunately, the standards do not specify what to do in

the case of overlapping fragments, duplicate fragments, and duplicate fragments

received after the packet has already been reassembled and consequently, different OS

implementations differ in which copy of the data they give precedence to when

reassembling the packet.

3.1.5. TCP Segmentation

The value of a TCP’s connection MSS usually ensures that fragmentation is avoided

at the IP layer when carrying TCP traffic. The TCP layer on the source node is

responsible for segmenting the data stream received from the application layer and

adding a TCP header to create a TCP segment. This process is known as TCP

segmentation or packetisation. The TCP layer on the destination node then

Chapter 3 – TCP/IP Reassembly

41

reassembles the data as it streams it to the application layer. This reassembly includes

reordering and validating of segments as well as handling of duplicates and overlaps.

A short note on terminology: all TCP traffic is in the form of TCP segments (from

the segmented data stream); this is somewhat different to the IP layer where an IP

fragment refers to a chunk of the data portion (or the corresponding IP packet

containing that chunk) of a larger IP packet that was split up.

TCP header fields relevant to segmentation/reassembly

 Sequence number field: identifies the position of the first byte of data in this

segment in the overall data stream

 Acknowledgment number field: is only valid if the ACK flag is set. It identifies the

position of the byte in the overall data stream that the sender of the ACK is

expecting to receive next

 Flags:

o ACK: indicates that the Acknowledgment number is significant

o SYN: this flag is set in the first packet from both client and server

o FIN: no more data, close connection

o plus a few other less significant flags

3.2. Handling of Reassembly in different Operating Systems

3.2.1. Simple Insertion and Evasion Attacks

These attacks involve either sending an IP fragment or a TCP segment that is accepted

by the NIDPS but dropped by the target host, or vice versa. One example would be

where the attacker sends a FIN TCP segment with an invalid header which is dropped

by the target host, but is accepted by the NIDPS, resulting in the NIDPS removing its

record of the connection. The attacker can then send the malicious content in

subsequent segments which would typically be ignored by the NIDPS since it no

longer has a record of the connection, but the target host may accept the malicious

content and thus be affected. Another example would be where the malicious content

is spread over several segments, with the invalid segment in the middle. If the invalid

segment is accepted by the NIDPS, it may not detect the malicious content, as the data

contents of the invalid segment disguise the attack pattern. In the example shown in

Figure 18, the attacker spreads the attack over six segments of a TCP connection. The

Chapter 3 – TCP/IP Reassembly

42

attacker, however, sends two versions of segment 4, the first containing part of the

attack and the second carrying a harmless pattern. If the NIDPS uses the second

version, then its pattern matching engine will not detect the attack. Whether or not the

destination host is successfully attacked depends on its operating system. A Linux

host, for example, would discard the old version of segment 4 and use the new

harmless segment, and so would not be affected. A Windows host, on the other hand

would discard the new duplicate segment and use the old segment, and so the attack

would be successful.

Seg1 A

Seg2 T

Seg3 T

Seg4 A

Seg5 C

Seg6 K

Client

WindowsA T T A C K

Server

A T T X C K Linux

X

A

à what server application layer receives depends on

its TCP layer implementation, i.e. it depends on the OS

Network

A T T A C KX

NIDS Monitor:

Is the data ATTACK or

ATTXCK ?? We need to

know how the TCP layer of

this TCP connection’s

server is implemented

Windows favours the old data

Linux favours the new data

Seg4 X

Figure 18: Example of insertion attack

To avoid these attacks the NIDPS must take account of the following points:

 How duplicate fragments and segments are dealt with depends on the

implementation, i.e., on the destination OS.

 Check for invalid combinations of code bit flags (SYN, ACK, etc.).

 Check for valid checksum.

 Many implementations (apart from Linux) only accept data if a code bit flag is set.

 Some implementations (apart from MacOS) do not handle data in a SYN segment.

 TCP options are handled differently by different operating systems, e.g. handling

of PAWS (Protection Against Wrapped Sequence numbers), as described in RFC

1323.

Chapter 3 – TCP/IP Reassembly

43

3.2.2. Creation of connection session

An NIDPS has numerous options on how to implement connection session creation,

the two main ones being:

 Require 3-way handshake.

 Synchronize on data segments (this has the advantage that existing connections

can be detected by the NIDPS after it starts up).

Both options need to be implemented carefully in order to avoid potential attacks

(Ptacek and Newsham, 1998).

3.2.3. TCP Stream Reassembly – Connection Window

The NIDPS must handle the connection “window” in the same way as the target host.

The window is the maximum number of bytes of data the receiver will accept from the

sender without generating an ACK. The receiver discards any data received past the

window. The receiver informs the sender of the new window size in an ACK segment.

According to RFC 793, the receiver should not shrink the sender’s window, i.e. move

the right window edge to the left. It can, of course, reduce the window size to a

minimum equal to the existing window size minus the amount of data acknowledged

by this ACK. However, RFC 793 also states that senders must be robust against

window shrinking.

Window shrinking presents a difficult problem because the instant in time at which

the NIDPS detects changes in the window size is delayed with respect to the change

on the target, e.g. there is a short interval of time between generation of an ACK

segment on the target and its receipt by the NIDPS and during this interval the NIDPS

is still using the old window size and is therefore vulnerable to an insertion attack.

Fortunately, TCP window shrinking has been avoided in most TCP/IP stack

implementations.

Chapter 3 – TCP/IP Reassembly

44

3.2.4. Overlapping Fragments or Segments

Table 6. Reassembly Policies – segment data favoured when overlap occurs

Start of new

segment

compared to

start of old

End of new segment

compared to end of

old

Segment

Labels from

Figure 19

Data selected by target OS
*

New Old New Old

New starts

before old

New ends before old J B

Linux 2.4+

Linux 2.2

Windows/BSD

Vista

Solaris

New ends same as

old
M E

Linux 2.4+

Linux 2.2

Windows/BSD

Solaris

Vista

New ends after old L D

Linux 2.4+

Linux 2.2

Windows/BSD

Solaris

Vista

New starts

same as old

New ends before old P H

Windows/BSD

Vista

Linux 2.4+

Linux 2.2

Solaris

New ends same as

old
K C

Linux 2.2

Windows/BSD

Solaris

Vista

Linux 2.4+

New ends after old Q I

Linux 2.4+

Linux 2.2

Windows/BSD

Solaris

Vista

New starts

after old

New ends before old N F

 Vista

Linux 2.4+

Linux 2.2

Windows/BSD

Solaris

New ends same as

old
O G

 Vista

Linux 2.4+

Linux 2.2

Windows/BSD

Solaris

New ends after old J A

Solaris

Vista

Linux 2.4+

Linux 2.2

Windows/BSD

*Windows signifies all Microsoft Windows versions released before Vista. More recent

versions of Microsoft Windows probably exhibit the same reassembly behaviour as Vista, but

this has not yet been verified. Others that behave like Windows include Win2003 Server,

BSD, MacOS, HPUX10 & IRIX. HPUX11 has the same behaviour as Solaris. Linux 2.4+

signifies Linux 2.4 and newer.

Chapter 3 – TCP/IP Reassembly

45

A

J

DB

K L

C

M

E F

N

G H I

O P Q

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21Sequence Number:

Original “old” segments:

Subsequent “new” segments:

Figure 19. TCP Segment overlap

It is possible for an attacker to send several IP fragments with the same identification

and offset but different data, or several TCP segments with the same sequence number

but different data. Which fragment or segment is accepted by the destination host is

OS dependent. Similarly, it’s possible for fragments/segments to partially overlap, and

again, which data is used by the destination is OS dependent. The NIDPS system must

match the target host behaviour in order to correctly detect any attacks (Novak and

Sturges, 2007). The different ways in which TCP segments can overlap are illustrated

in Figure 19 and the corresponding reassembly policies, based on target OS, are

outlined in Table 6.

3.2.5. TCP Stream – RST Validity Check

RFC 793 states that, in all states except SYN-SENT, all RST segments are validated

by checking their sequence numbers. A reset is valid if the sequence number is in the

window. However, different operating systems actually differ in how they validate a

RST. Table 7 shows how Snort and Suricata validate RST segments when not in the

SYN-SENT state.

Chapter 3 – TCP/IP Reassembly

46

Table 7: Target-based checking of RST segment

Target OS Policy RST validity check

HPUX11 RST sequence no. >= expected sequence no.

Linux,

Solaris

RST sequence no. + payload len. >= last acknowledgement no.

AND

RST sequence no. < expected sequence no. + window size

BSD,

HPUX11,

IRIX,

MacOS,

Windows,

Win2003,

Vista

RST sequence no == expected sequence no.

3.2.6. TCP Stream – Timestamp Validity Check

The TCP timestamp is used by the PAWS algorithm in order to reject old duplicate

segments. Handling of the timestamp depends on the target OS:

 HPUX11 ignores timestamps for out of order segments.

 Old Linux (2.2 and earlier), Windows & Vista allow the 3 way handshake to use a

zero timestamp whereas Linux and Win2003 do not.

 Linux accepts timestamps that are off by one.

 Old Linux, all Windows OS and Solaris allow a 0 timestamp value, others do not.

 Solaris stops using timestamps if it receives a segment without a timestamp on a

stream where timestamps were in use.

3.2.7. TCP Stream – Handling of repeated SYN segment

 All Windows operating systems reset the connection if the sequence number of the

repeated SYN segment is the next expected sequence number, otherwise the

repeated SYN segment is dropped.

 MacOS always ignores a repeated SYN segment.

 Every other OS resets the connection if the SYN segment is not a retransmission

of the original, i.e. if the sequence number of this SYN segment does not match

the initial sequence number of the connection. Otherwise the repeated SYN

segment is dropped.

Chapter 3 – TCP/IP Reassembly

47

3.3. Target-based Reassembly and Normalisation

In order to avoid the possibility of evasion or insertion attacks, an NIDPS must either

perform target-based reassembly (Novak and Sturges, 2007) or traffic

normalisation/scrubbing (Malan et al., 2000).

Target-based reassembly requires the NIDPS to be aware of the OS type of every

destination node in the network it is protecting. In the case of the well-known open-

source software NIDPS systems Snort and Suricata, the OS must be configured

manually for each destination IP address or subnet. Unfortunately, this approach is not

ideal as reconfiguration of the NIDPS may be overlooked when nodes are added or

removed and, it does not scale well for large networks. Dynamic Host Configuration

Protocol (DHCP) servers also need to be carefully configured so that subnets are split

by OS type. Active mapping (Shanker and Paxon, 2003) and passive OS

fingerprinting (Taleck, 2003) are two techniques used for the automatic discovery of

the target OS. The active mapping method involves sending specially built probe

packets to target hosts and inferring how the OS performs reassembly from the format

of the response packets. The downsides of this method are that the probe packets may

be dropped by the destination nodes or blocked by a firewall and, it requires

integration with any DHCP servers in the protected network. The passive OS

fingerprinting method infers how the OS performs reassembly by monitoring the

destinations’ responses to fragmented traffic from the source. Problems with this

technique are the added workload of monitoring the traffic and that the correct

destination reassembly policy is only discovered after some fragmented traffic has

already passed through. All of the above methods become more complicated if

Network Address Resolution (NAT) occurs between the NIDPS and any destination

node in the protected network.

Malan et al. (2000) proposed a protocol scrubber aimed at converting ambiguous

traffic flows into well-behaved flows. The simplistic approach to normalization is to

buffer all unacknowledged data for every connection and to compare retransmitted

data against that in storage. A more efficient scheme is to store hashes of the

unacknowledged data. Vutukuru et al. (2008) proposed such a hash-based system

which is able to correctly handle retransmissions which are not aligned with the

original segments boundaries.

Chapter 3 – TCP/IP Reassembly

48

3.4. TCP/IP Reassembly in Software

The following is an analysis of how the open source Snort and Suricata software

NIDPS systems perform IP packet and TCP fragment reassembly. An abstract

illustration of the Snort software stack, operating in passive NIDS mode, is given in

Figure 20.

3.4.1. Snort

Packet Decoder

Outputs

Detection Engine

Preprocessors

R
e

a
s
s
e

m
b

le
d

p
s
e

u
d

o
 p

a
c
k
e

ts

O
ri
g

in
a

l
P

a
c
k
e

t

Packet Stream

P
a

c
k
e

t
C

a
p

tu
re

SNORT

Frag3Stream5

Figure 20: SNORT Architecture

Packet Decoder

The Packet Decoder receives captured frames and adds pointers to critical data

locations – the ethernet header, IP header, TCP header and payload. It also carries out

some simple validity checks.

Frag3 & Stream5 pre-processor

The Snort preprocessor modules, Frag3 and Stream5, are responsible for IP

defragmentation and TCP segment reassembly, respectively. The numbers at the end

of the pre-processor names are used to differentiate these new versions from previous

major versions which are now deprecated. The reassembled pseudo-packets generated

by these modules are injected back into the Packet Decoder so that they can be

processed by other preprocessors as appropriate. Both the pseudo-packets and original

Chapter 3 – TCP/IP Reassembly

49

packets are analyzed by the DPI engine. The Frag3 module reassembles fragments

into a single IP pseudo-packet with a maximum size of 65535 bytes. The Stream5

module, by default, operates footprint-based flushing which results in the generation

of a pseudo-packet once its footprint reaches the flush point limit. The footprint is the

amount of data in the connection flow’s list of segments that has been acknowledged

by the destination. Each TCP connection stream’s flush point is, by default, a pseudo-

random number in order to make it more difficult for an attacker to avoid detection by

having the attack data span the boundary between two pseudo-packets.

Stream5 also performs session tracking for TCP, UDP and ICMP. Both

preprocessors generate alerts for certain fragment/segment-based attacks.

Different reassembly policies can be configured on a per IP subnet basis, i.e. one

particular target subnet can be configured to have a Linux reassembly policy, another

to have a Windows Vista policy, etc.

Pseudo-packets

Each TCP session has two lists, one for the direction towards the client, and one for

the direction towards the server, in which it queues received segments. When an ACK

arrives, Stream5 checks if the flushing condition has been satisfied and, if so,

constructs the pseudo-packet.

The flush points used are contained in an array of 64 elements and can be

 static values between 128 and 256 bytes

 all elements 192 bytes

 random values between 128 and 256 bytes (default)

Each newly created session takes a flush-point value from this array, and the next

session will take the following value, etc.

The acknowledgment number of the ACK is compared to the sequence number of

the first queued segment, and if the difference is greater than or equal to the flush

point, a pseudo-packet is generated. Queued segments (that have been ACKed) are

then copied into the pseudo-packet. If there are missing segments, then the pseudo-

packet will only contain the segments up to the first gap, and subsequent segments

will be dropped. The pseudo-packet structure has an IP packet buffer size of 65535

bytes. Pseudo-packets are injected into the detection engine (in the same way as the

Chapter 3 – TCP/IP Reassembly

50

original packets). Note that the stream is also flushed when a connection is about to

close, and any remaining ACKed segments are merged into a pseudo-packet.

CheckFlushPolicy

PacketCallback

Segment list footprint

>= flush point ?

yes

PCAP

PreProcess

Stream5ProcessFrag3Defrag HttpInspect . . .

Stream5ProcessTCP

ProcessTCP

flush_ackd

flush_to_seq

More than 1

segment to flush?

yes

Create pseudo- packet

Recursive call
 Segment list footprint is the

difference between the seq.

no. of 1st segment in list and

the last acknowledged seq.

no. for that flow of traffic

flush_stream

Closing connection ?
yes

no

 Each application layer

preprocessor, such as

HttpInspect, checks the port

numbers to see if it needs

to examine the payload

Don’t flush

 No need to flush a single

segment as single segments

will be picked up by all

preprocessors regardless

Don’t flush

Figure 21: Snort TCP reassembly flowchart

Chapter 3 – TCP/IP Reassembly

51

Footprint-based flushing is the default in Snort. Protocol Aware Flushing (PAF) was

added as a configurable alternative in Snort version 2.9.1 in order to allow reassembly

of complete PDUs for HTTP, SMB and DCE/RPC protocols up to a configured

maximum length. PAF support for FTP was added in version 2.9.2. For example, PAF

guarantees a single HTTP request per pseudo-packet in the case of a HTTP request

that spans several TCP segments and also in the case of a TCP segment that contains

data from more than one HTTP request. PAF involves stateful analysis of the TCP

data stream in order to pinpoint the start and end of each protocol’s PDU. The user

can configure a maximum PDU length between zero (PAF disabled) and 63780 which

Snort then adds to a value from the flush point array to give the actual flush point

value for a particular flow. If the length of the reassembled PDU is less than the flush

point, then the pseudo-packet will consist of a single PDU, otherwise it will be split.

The higher the configured maximum PDU length, the better the detection accuracy.

This comes at the cost of increased packet latency and the default value of 16k was

found to be a good compromise.

3.4.2. OISF Suricata

Suricata, also includes a target-based TCP reassembly engine which has many

similarities to that of Snort.

One difference from Snort is that all analysis is conducted on pseudo-packets when

operating in IDS non-inline mode, i.e. reassembled TCP segments that have been

acknowledged.

Important structures in software (non-inline mode)

 Flow is associated with each 4-tuple of the source & destination IP addresses and

the source & destination TCP port numbers.

 TcpSession is created for each new TCP connection and a reference is made to it

in the Flow structure, i.e. there are 2 Flows for each TcpSession, one for each

direction.

 For every packet received, the Flow is looked up in a hash table, and, if none is

found, a new Flow is created.

 For each TCP segment received, the TCP stream code checks if the Flow structure

refers to a TcpSession. If not, a new TcpSession is allocated.

Chapter 3 – TCP/IP Reassembly

52

 Application analysis layer checks each Packet’s Flow structure to see if it contains

the application layer protocol (i.e. was set on analysis of an earlier packet on the

same flow). If not found, it determines the protocol type (e.g. HTTP) from

analysing the application layer header and saves this protocol type in the Flow

structure. So the application protocol type only needs to be worked out for the first

packet in the flow.

AppLayerParse

AppLayerHandleTCPData

AppLayerDetectGetProto

App. Proto. stored in flow?

StreamTcpReassembleAppLayer

StreamTcpReassemble-

HandleSegmentUpdateACK

no

yes

Copies & concatenates ACKed

segments into a 4096 byte buffer

which is passed to the next layer

StreamTcpReassemble-

HandleSegment

StreamTcpPacket

3.StreamTcp

TCP Session Handling

TM Threads

1.ReceivePcap 2.DecodePcap 4.Detect
5.Various logging

functions

SigMatchSignatures

DetectEngines-

InspectPayload

Figure 22: Suricata TCP reassembly flowchart (non-inline mode)

Chapter 3 – TCP/IP Reassembly

53

TCP Stream Inline Mode

Suricata can be run in IPS mode by combining it with iptables and NetFilter. In this

mode, you can enable TCP inline streaming. In inline mode, the TCP reassembly

engine does not wait for ACKs before reassembling segments. Instead it effectively

normalises the TCP traffic, and payload inspection is performed on a sliding window

basis.

3.5. TCP/IP Reassembly in Hardware

The overall hardware architecture of the proposed NIDPS system based on a Xilinx

FPGA, such as the Zynq-7100 All Programmable SoC, is shown in Figure 23. The

grey modules are Xilinx IP (Intellectual Property) cores while the white modules

represent custom logic. All cores are connected using the Advanced eXtensible

Interface 4 (AXI4) interconnect fabric which is the fourth generation of the Advanced

Microcontroller Bus Architecture (AMBA) from ARM. Use of AXI4 effectively

enables plug-and-play of IP cores on Xilinx FPGAs, simplifying the integration of

cores from various sources (Sundaramoorthy et al, 2010).

Chapter 3 – TCP/IP Reassembly

54

Ethernet

PHY

Ethernet

PHY

Xilinx AXI

Ethernet MAC

Xilinx AXI

Ethernet MAC

Non-TCP P.E.

TCP

P.E.
A

X
I4

-S
tr

e
a

m

2 x Xilinx

AXI

Interconnect

Cores

(AXI4-Lite

core and

AXI4 core)

Xilinx AXI

DDR3

Memory

Controller

Internal

BRAM

AXI

Interrupt

Ctrl.

Processor

Core

Port 0 Port 1

DPI

Core

Proto Lookup

A
X

I4

A
X

I4

A
X

I4

G
M

II

G
M

II

G
M

II

G
M

II

A
X

I4
-S

tr
e

a
m

A
X

I4
-S

tr
e

a
m

AXI4

AXI4-Lite

AXI4-Lite

AXI4-Lite

AXI4

AXI4-Lite

AXI4

A
X

I4
-S

tr
e

a
m

A
X

I4
-S

tr
e

a
m

A
X

I4
-S

tr
e

a
m

Port

Lookup

AXI4-Stream

A
X

I4
-S

tr
e

a
m

External
DDR3 SDRAM

AXI4-Stream

O
ri
g

in
a

l
p

a
c
k
e

t

pseudopacket

p
s
e

u
d

o
p

a
c
k
e

t

A
X

I4
-S

tr
e

a
m

AXI4-Stream
Original packet

Figure 23. TCP/IP reassembly and DPI architecture on Xilinx FPGA

IP header and TCP/UDP checksums are validated by the Xilinx AXI Ethernet core

and invalid packets are dropped. The Proto Lookup module is responsible for

differentiating between TCP and non-TCP traffic which are streamed to two separate

cores for processing. Each packet is prepended with an Ethernet port number field

which is later used by the Port Lookup core to route the packet to the correct output

Ethernet port. The TCP Processing Engine (PE) core carries out combined reassembly

of all IP fragments and TCP segments into pseudo-packets which are then streamed to

the DPI core. The Non-TCP PE handles all non-TCP traffic, reassembling any IP

fragments into pseudo-packets. All the original packets, provided they are not dropped

by the reassembly system, are also streamed to the DPI core.

Chapter 3 – TCP/IP Reassembly

55

In Snort, if the pseudo-packet generated by the Frag3 module contains TCP

segments, it will be injected into the Stream5 module for TCP segment reassembly. It

is therefore possible that the same payload data may be present in two pseudo-packets,

one generated by Frag3 and one generated by Stream5, as well as in the original

packet. In the hardware architecture proposed here, however, only one pseudo-packet

is generated because TCP segment and IP fragment reassembly are carried out in

combination in the TCP PE.

3.5.1. TCP Processing Engine

The operation of the TCP PE is illustrated in Figure 24. The scheme for storing

packets in external memory, which is derived from the mbuf system used in the BSD

Unix operating system, is shown in Figure 25. All mbufs are of the same fixed size for

simplicity. Packets that are too large to fit in a single mbuf are spread over several

mbufs in an mbuf chain using the next pointer. All packets for a particular connection

flow are stored in an mbuf queue which is a list of mbuf chains linked using the

next_pkt pointer. Each mbuf header also includes a len field which specifies the

amount of data stored in that particular mbuf. The addresses of all free mbufs are

stored in an FPGA FIFO primitive which is initialized by software running on the

CPU. Buffers are allocated by the TCP PE on receipt of a packet and freed once the

packet is flushed to the DPI core for inspection.

The first operation of the TCP PE is to store each received IP packet in an mbuf

chain in external memory. The packet’s IP addresses and TCP port numbers are then

used to look up the matching connection record in Block RAM which is then updated.

The Reassembly module passes the mbuf queue to the Flush module once the queue’s

footprint has exceeded the configured flush point. Once an mbuf has been flushed to

the AXI4 Stream, its address can be returned to the FIFO of free mbufs. Note that all

the original, non-reassembled, packets are streamed to the DPI core in order that the

original TCP header can be analyzed. This matches the behavior of the Snort software

system. The CPU can, however, drop out-of-sequence packets under certain

circumstances, which are outlined later.

Chapter 3 – TCP/IP Reassembly

56

Store

packet
AXI4-Stream

A
X

I4
Conn.

Lookup

Flush

packets

A
X

I4
-S

tr
e

a
m

External

Memory mbufs

FIFO of free mbufs

Re-

assembly

BRAM

Conn.

Records

A
X

I4

Interrupt

to CPU

FIFO of mbuf addresses & conn

records (conns with holes)

Read by CPU

31 2

mbuf

address

1. mbuf address + IP addresses + port numbers

2. conn. record

3. mbuf address (chain of mbufs to flush)

DPI

CPU

CPU

CPU

p
s
e

u
d

o
-p

a
c
k
e

t

FIFO of mbuf

addresses (new conns)

AXI4-Stream
original packet

Figure 24. TCP Processing Engine

next
next_pkt

len

NULL

NULL

NULL

NULLNULL

next
next_pkt

len

1st part

of 1st

packet

2nd part

next
next_pkt

len

1st part

of 2nd

packet

next
next_pkt

len

2nd part

of 2nd

packet

next
next_pkt

len

3rd part

Figure 25. External memory packet buffers

Chapter 3 – TCP/IP Reassembly

57

Connection Records

External IP address

Internal IP address

External port no. Internal port no.

Expected sequence no.

mbuf queue – 1st chain

Connection flags

Exp. frag offset

mbuf queue – last chain

Expected sequence no.

mbuf queue – 1st chain

mbuf queue – last chain

032

Amount acknowledged

Amount acknowledged

Flush point

Flush point

Base sequence no.

Base sequence no.

Incoming

flow

Outgoing

flow

Last time seen

PAWS timestamp

PAWS timestamp

Identification

Exp. frag offset Identification

Figure 26. TCP Connection Record

TCP connections records, as shown in Figure 26, are stored in internal Block RAM

(BRAM), which is accessible via the AXI4 interconnect. These records are created

and deleted by software running on the CPU. There is a single connection record for

each unique 4-tuple of the IP addresses and port numbers. As each record corresponds

to a bidirectional traffic flow, there are separate sections for each direction of flow.

Each section contains the IP expected fragment offset and TCP expected sequence

number for the next packet received in a particular flow, the amount of data

acknowledged by the receiver, and the addresses of the first and last mbuf chain in

that flow’s mbuf queue in external memory. Each flow’s flush point is configured by

software when the connection record is created. The expected fragment offset and/or

sequence number fields are updated, as appropriate, following the receipt of each new

packet on the flow. The new packet’s mbuf chain is linked to the last mbuf chain in

the queue, if any, and the mbuf fields in the connection record are updated

appropriately. If there is an existing queue, this simply involves reading the mbuf

chain – last chain address from the record, incrementing it to obtain the next_pkt

Chapter 3 – TCP/IP Reassembly

58

location, and updating this with the address of the new packet’s mbuf chain address.

The mbuf chain – last chain field can then be updated to the same value. The Amount

acknowledged field is updated on receipt of packets on the opposing flow. The Base

sequence number field, which contains the TCP sequence number of the first TCP

segment in the mbuf queue, allows quick recalculation of the segment queue footprint

when the amount of acknowledged data increases. The identification field stores the

last IP header’s Identification value. It is used to validate that the second and

subsequent fragments in a flow belong to the same reassembled packet. If a packet is

received with a non-zero fragment offset and a mismatching identification, it is sent to

the CPU for processing as there is a hole in the reassembled data stream.

The Last time seen is a hardware generated timestamp which is updated every time a

packet is received on the connection. The same current time can also be read by

software in order to initialize the field on creation of the connection record. The

timestamp is used by software to remove connections which have been inactive for a

pre-configured amount of time. The Connection flags field includes the following

single bit flags

 DIVERT_TO_CPU indicates that any traffic on this connection is to be dealt with

by software on the CPU

 WAITING_FOR_FRAG_IN and WAITING_FOR_FRAG_OUT indicate that the

mbuf queue of the corresponding flow is waiting for an IP fragment in order to

allow completion of IP defragmentation

 CHECK_PAWS_IN and CHECK_PAWS_OUT indicate whether or not PAWS

(Protection Against Wrapped Sequence numbers) timestamp checking is to be

performed

Connection Lookup

The most obvious way to perform connection lookup using the 4-tuple of the two IP

addresses and two TCP port numbers is to use a Xilinx Content Addressable Memory

(CAM) core. The CAM index can then be mapped to the connection record address

using a simple array type table. As this 4-tuple lookup is simply a single match, fixed

string lookup, it may be more efficient to use a design based on the Aho-Corasick

(1975) algorithm which is suitable for FPGA implementation (Kennedy et al., 2010).

Chapter 3 – TCP/IP Reassembly

59

The operation of the Connection Lookup module is summarized in Figure 27. If no

matching connection is found for a packet originating from the internal network then

handling is handed over to the CPU in order to create a connection record. Note that

in order to be robust against Denial of Service attacks such as a SYN flood, packets

originating from the external network do not trigger the creation of a new record. Such

packets are passed directly to the DPI core without undergoing reassembly. If, on the

other hand, a matching connection is found and the packet is not a TCP SYN, SYN-

ACK, FIN or RST, and it has a valid PAWS timestamp, then the connection record is

passed to the Reassembly block to determine if the opposing data stream is ready to be

flushed. Otherwise, or if the DIVERT_TO_CPU override flag is set, handling of the

connection is passed over to software running on the CPU.

Chapter 3 – TCP/IP Reassembly

60

CAM

4-tuple

Lookup

From

internal

port?

yes

Map to

Conn.

Record

Address

CAM

idx

Conn.

found?no

yes

Hand over

processing

to software

yes

no

DIVERT_TO_

CPU ?

yes

no

SYN, SYN-

ACK, FIN or

RST?

Trigger

Reassembly

no

Assert DIVERT_TO_CPU

flag & hand over

processing to software

Wait for new

segment to

process

Time stamp

Conn. Rec.

PAWS

timestamp <

Value in Conn.

Rec.?

no

yes

Send

packet

to DPI

Figure 27. Connection Lookup flow chart

Chapter 3 – TCP/IP Reassembly

61

yes

Assert

DIVERT_TO_CPU flag

& handover

processing to software

IP frag. offset =

expected value

?

TCP seq. no. =

expected value

?

MF (More

Fragments) flag

set?

Opposing flow

TCP flush point

reached

?

no

no

yes

no

yes

Update Connection Record fields for flow

corresponding to this segment:

 Expected frag. Offset, identification & seq. no.

 PAWS timestamp

 mbuf queue address fields

 Base seq. no. if this is first segment in queue;

Update for opposing flow field:

 Amount acknowledged;

Send original packet to DPI core via AXI4-Stream

Pass opp. flow mbuf

chain to Flush module

Wait for new

segment to

process

Set

WAITING_FOR_FRAG

flag

yes

no

Opposing flow

WAITING_FOR_FRAG

?

Clear

WAITING_FOR_FRAG

flag

yes

no

Frag. Offset=0

OR Id matches

yes

no

Figure 28. Reassembly flow chart

Chapter 3 – TCP/IP Reassembly

62

Reassembly

The Reassembly module, the functionality of which is summarized in Figure 28, is

responsible for handling the reassembly of both IP fragments and TCP segments. It

first checks that the received TCP segment’s IP fragment offset and sequence number

match the expected value of the corresponding flow in the connection record. A

mismatch indicates a special condition, such as a duplicate, overlapping

fragment/segment or a hole in the data stream. When a mismatch is detected, handling

of the connection is handed over to software running on the CPU. If the offset and

sequence numbers are as expected, then the mbuf is inserted into the mbuf queue

linked list and the connection record information is updated.

The Acknowledge number in the header of the received TCP segment may result in

the increase of the Amount acknowledged field for the opposing flow. The opposing

flow is therefore checked to see if its mbuf queue is ready to be flushed as a pseudo-

packet. If no more IP fragments are required and the queue’s footprint has reached the

flush point, then flushing can proceed. The footprint is simply the Amount

acknowledged minus the Base sequence number.

Flushing of Packets

The Flush module converts an mbuf queue into an IP pseudo-packet with a single TCP

header which is streamed to the DPI core via the AXI4-Stream interface. It can be

triggered by both the Reassembly module and the CPU.

3.5.2. Non-TCP Processing Engine

The Non-TCP PE is simpler than its TCP equivalent. It monitors all non-TCP traffic

for IP fragments by checking the header’s MF flag and fragment offset. On detection

of a fragment, it uses the 4-tuple of the source & destination addresses, protocol type

and identification field to look up the corresponding fragment tracker record, as

illustrated in Figure 29. If no record is found, then the mbuf address is sent via a FIFO

to the CPU for processing. Software running on the CPU creates the fragment tracker

record and updates the TCAM or search algorithm data to enable reassembly of the

fragment stream in hardware.

Fragment tracking for a particular fragment flow is handed back to the CPU on

detection of a hole in the reassembled data stream.

Chapter 3 – TCP/IP Reassembly

63

Source IP address

Destination IP address

Proto Identification

mbuf queue – 1st chain

Exp. frag offset

mbuf queue – last chain

032

Last time seen

Conn. flags

Figure 29. Non-TCP Fragment Tracker Record

3.5.3. Software on CPU

The functionality of the software running on the CPU is mainly based on that of Snort.

The tasks it performs include

 TCP connection record creation based on receipt of TCP segments from the

internal network. Connections can be created on receipt of SYN, SYN-ACK and

data segments. The latter is known as midstream pickup in Snort Stream5. Each

connection record is configured with a pseudo-random flush point.

 Non-TCP fragment tracker record creation based on receipt of an IP fragment

carrying a non-TCP protocol.

 Update of the CAM or search algorithm data.

 Handles TCP RST and FIN segments, closure of connection and deletion of

connection record.

 Target-based handling of segments/fragments that are out of order, duplicates or

overlapping, or have unexpected PAWS timestamps.

 Timing out of inactive TCP connection & IP fragment records and, freeing up of

associated memory.

3.5.4. Race condition

A race condition can occur if software on the CPU creates a new connection or

fragment tracker record and disables the DIVERT_TO_CPU flag while there are other

packets from the same connection flow in the mbuf FIFO awaiting processing by the

CPU. If a new packet were then received by the hardware PE, it would incorrectly

detect a hole in the data stream and therefore enable the DIVERT_TO_CPU flag. The

Chapter 3 – TCP/IP Reassembly

64

likelihood of this condition can be minimized by having the software only disable the

flags of all the newly created records once it has emptied the FIFO.

3.5.5. Handling high processor load

If the load on the CPU becomes too high, then out-of-order TCP segments will be

dropped, thereby forcing the source to resend. It will also drop out-of-order segments

from a connection if the corresponding mbuf queue becomes excessively long.

The system is robust to a TCP SYN flood DoS attack because connection records are

only created based on traffic from the internal network. However, the creation of IP

fragment tracker records based on the receipt of fragments from the external network

makes the system vulnerable to IP fragment DoS attacks. Such a scenario is unlikely if

the incoming traffic has already been firewalled. Nevertheless, a limit must be

imposed on the number of mbufs used for reassembly of IP fragments received from

the external network.

3.5.6. Evaluation and comparison with related work

Given that all packets are stored in external memory, the memory architecture is

critical to achieving high traffic throughput. The Zynq-7100’s integrated DDR

memory controller can be configured to provide 16-bit or 32-bit wide access at up to

1333Mb/s per pin in the case of DDR3 (Xilinx, 2013), giving a total maximum

memory throughput of 42.66Gb/s if 32-bit wide access is used. The controller is

multi-ported, allowing shared access to the memory from the CPU and the

Programmable Logic (PL). It has four 64-bit AXI slave ports – one dedicated to the

CPU, two dedicated to the PL, and one accessed via the AXI4 Interconnect. These 64-

bit ports can operate at up to half the maximum DDR3 frequency, i.e. 666MHz.

Assuming all traffic is written to, and read from, SDRAM once, the maximum

theoretical traffic throughput is 21.33 Gb/s. If the system has two Ethernet ports, then

the maximum port throughput is 10.5 Gb/s, making it feasible to use 10G ports. This

theoretical maximum throughput is dependent on the PL design achieving timing

closure through the use of pipelining, and maximum use being made of the available

memory bandwidth. The Zynq-7100 device has approximately 3MB of internal

memory, sufficient space for almost 36,000 TCP connection records. However, in

practice some of this memory will be required for other purposes such as FIFOs.

Chapter 3 – TCP/IP Reassembly

65

Related work includes the research done by Necker et al. (2002), who describe how

TCP/IP reassembly and tracking can be performed on an FPGA as part of an NIDS.

Their design, which uses the Xilinx Virtex 2000E, can process a single TCP flow at

3.2Gb/s and is capable of being extended to handle up to 30 flows. Schuehler and

Lockwood (2002,2004) describe a high performance TCP flow monitor called TCP-

Processor which is capable of handling 8 million bidirectional TCP flows at 2.5Gb/s.

Rather than perform packet reordering, their design simply drops out of order packets,

thereby forcing the source to resend. This simplifies the design and makes it more

robust against attacks, but increases the amount of network traffic. An alternative

design involves buffering the packets of a particular connection until a missing packet

arrives and the “hole” is filled. Only then can the payload data be streamed to the DPI

engine for inspection. However this buffering makes the system vulnerable to an

attack in which an adversary tries to overflow the buffer by injecting a high number of

packets on a particular connection following a hole and/or by opening a very large

number of connections containing holes. Dharmapurikar and Paxon (2005) describe

an architecture which performs reordering but is robust in the face of these attacks.

They observed that the most common case of out-of-order packets is a single hole in

one direction of the connection. Their design limits each connection to a single hole

and applies a limit to the buffer usage of each connection. In order to resist an

adversary who opens multiple connections with holes, it limits the number of

connections with holes to just one per client. The design also includes a randomised

eviction policy to be used when the buffer reaches capacity. The issue of insertion and

evasion attacks is avoided by normalising the traffic in order to remove any

ambiguities.

The architecture described in this thesis handles the most common case, of TCP

connections without any holes in the reassembled stream, directly in hardware without

any software intervention. In normal cases, only TCP connection setup and tear-down

are handled in the CPU. Once any special case occurs, such as an out-of-order or

duplicate segment, then handling is passed to the CPU. Because both the external

SDRAM and internal BRAM are shared between the PL (Programmable Logic) and

CPU, only a reference to the TCP connection record and to the latest packet buffer

needs to be passed to the CPU to instigate the handover. If the CPU becomes

overloaded due to an excessive number of TCP connections with holes, then the

hardware can be configured to directly drop any out-of-order segments, i.e. revert to

Chapter 3 – TCP/IP Reassembly

66

the Schuehler & Lockwood proposal. The architecture, unlike previous proposals, also

handles IP fragment reassembly in hardware.

Existing research confirms that out-of-order packets are relatively rare. Based on

the analysis of traffic traces from the Sprint backbone network in 2002, Jaiswal et al.

(2007) found that about 4% of packets on TCP connections were out-of-sequence.

Studies by Murray & Koziniec (2012) and by Zhao et al. (2012) found that the

proportion of out-of-sequence packets was well under 1%. These figures back up the

design decision to handle streams with out-of-sequence packets in the slow path.

3.6. Conclusion and Future Work

This chapter explains why TCP/IP reassembly is a necessary prerequisite to accurate

DPI in NIDPS systems. A description is given of the theory of the reassembly of IP

fragments and TCP segments and of how this is implemented in the open source

NIDPS Snort and Suricata. Passive NIDS systems need to perform target-based

reassembly in order to detect insertion and evasion attacks. Inline NIPS systems can,

on the other hand, normalise the traffic in order to remove any ambiguities.

Implementing TCP/IP reassembly in hardware is a challenging task due to decision-

making required to reorder packets, avoid buffer overflow in the face of DoS attacks,

and track the states of a potentially huge number of connections.

The proposed hardware-based reassembly system takes advantage of the fact that

out-of-sequence packets are rare under normal circumstances by carrying out target-

based reassembly of the affected streams in software while dealing with the normal in-

sequence streams directly in FPGA programmable logic. The proposed system is

capable of handling the traffic from two 10G Ethernet ports and up to 36,000

concurrent TCP connections. The latter number could be increased by using an FPGA

device with a larger amount of internal memory. The main contribution of this

research work is that it improves on existing schemes by dealing with out-of-order and

overlapping IP fragments and TCP segments, avoiding the need to drop packets in

order to force the originating host to resend.

The proposed system uses footprint based flushing, the default setting in Snort.

Further research is required to determine if the PAF feature is suitable for hardware

implementation. The recently proposed TCP Fast Open (TFO) extension (Cheng et al.,

2013) also needs to be looked at. The current TCP specification allows clients to

Chapter 3 – TCP/IP Reassembly

67

include data in the SYN segment but in practice only the Mac OS has accepted data in

a SYN segment (Novak and Sturges, 2007). TFP, however, allows SYN segments to

contain data in addition to allowing servers to send data to the client before

completion of the 3-way handshake. The design proposed in this thesis sends such

SYN+data segments, received from the external network, to the DPI core without

performing reassembly as the connection record is only created on receiving the first

segment from the internal network. Full reassembly of TFO data streams is for future

consideration.

Other future work includes investigating the possibility of handling most out-of-

sequence packets in hardware, with only the ambiguities caused by duplicate and

overlapping packets being dealt with in software. The design also needs to be

extended to support IPv6 in addition to IPv4.

Chapter 4 – Multi-match Header Classification

68

Chapter 4 - Multi-match Header Classification

The most commonly proposed solutions to multi-match classification are TCAM-

based and, as a result, suffer from several disadvantages such as higher cost, high

energy consumption, and low storage efficiency. This thesis examines alternative

algorithmic solutions that can use SRAM in place of TCAM. A number of well-

known single-match packet classification algorithms were adapted and their multi-

match classification performance compared in terms of memory requirements, energy

consumption and packet processing speed. These were then compared with two

existing multi-match solutions.

NIDPS designs are generally split into a header-based multi-match classification stage

and a payload-based Deep Packet Inspection (DPI) stage. These stages can be in

parallel or in series. In the multi-match classification stage, the header of the incoming

IP packet is compared against the 5-tuple header section of all rules. In a series

architecture the payload sections of all the resulting matching rules are then compared

against the packet payload in the follow-up DPI stage.

Multi-match classification differs from the single-match classification used, for

example, in routers, in that it must return all matching rules as opposed to just the

single highest priority match.

4.1. Characteristics of NIDS Rule Sets

Table 8: Example Snort rule

Header alert tcp $EXTERNAL_NET 6666:7000 -> $HOME_NET any

Options content:"|3A|"; offset:0; content:" 302 "; content:"=+"; metadata:policy

security-ips drop; classtype:policy-violation; sid:1790; rev:5;

Snort rules are made up of two parts, the rule header and the rule options, as shown in

the example rule in Table 8. Only the rule header is relevant to multi-match header

classification. The two most important Snort variables are $EXTERNAL_NET and

$HOME_NET. $HOME_NET has a default value of any and can optionally be set to

the network or networks being protected. In this analysis it is assumed to be a single

subnet. $EXTERNAL_NET is typically left at its default value of any or can be set to

!$HOME_NET if $HOME_NET is not set to its default value of any. In this analysis it

is assumed that $EXTERNAL_NET is set to its default value. The example rule header

of Table 8 specifies a protocol type of “any” (i.e. wildcard), source IP address of

Chapter 4 – Multi-match Header Classification

69

$EXTERNAL_NET, a source port in the range 6666 to 7000, a destination IP address

of $HOME_NET and a destination port of “any” (i.e. wildcard).

As shown in Table 9, the Snort rule set downloaded from www.snort.org, in January

2010, contains a total of 8454 rules. A combination of Linux shell scripts and software

implemented in C code was used to analyse the rule set in order to extract the

information given in this table. It was found through this analysis that there are only

743 unique rule headers. Snort rules can specify port fields in a number of ways,

including lists of individual ports, negations, etc. The classification algorithms

evaluated require the fields to be specified as either single ranges or single prefixes

and therefore the Snort rules need to be converted into this format. This conversion

results in an increase in the number of unique rule headers to 797 in the case of port

ranges and 1273 in the case of prefixes.

Table 9: Statistical information for Snort 2.8 rule set (January 2010)

Unprocessed

rule set

After expansion

of port fields to

single ranges

After expansion

of port ranges to

prefixes

Total number of rules 8454 − −

No. unique header 5-tuple

combinations
743 797 1273

No. unique Source

addresses
8 8 8

No. unique Destination

addresses
12 12 12

No. unique Source ports 216 225 285

No. unique Destination

ports
420 412 508

No. unique Protocol types 4 4 4

No. unique Address pair

combinations
− 21 21

No. unique Port pair

combinations
− 621 1028

On examination of the compressed set of 1273 rules (with ports expressed as

prefixes), it is observed that there are only 8 unique source address prefixes, 12 unique

destination address prefixes and 21 unique combinations of these two fields. The

statistics given in Table 9 have a significant impact on the performance of the

algorithms evaluated in this chapter. The relatively low numbers of unique IP

addresses, for example, means that only a very small TCAM would suffice for IP

Chapter 4 – Multi-match Header Classification

70

address matching. The low numbers of unique ports relative to the overall number of

rules means that a compressed bit vector can be used to represent the rules for each

field, thereby reducing the amount of memory required. The relative number of unique

ports versus addresses also influences the assignment of these fields to dimensions in

multi-dimensional algorithms such as EGT-PC discussed in section 4.3.3.

4.2. Proposed Architecture

4.2.1. Pre-processing

The Snort rule set first needs to be compressed into a set which only contains unique

5-tuple header combinations. If the original rule set contains rules numbered i=1..N,

then each of the rules in the compressed set will have an associated list of one or more

original rule numbers with values in the range 1 to N. The mapping from compressed

rule to original rules and the retrieval of the associated rule option are performed in

the follow-up stage of the proposed scheme as shown in Figure 30.

Multi-match Classification

based on compressed rule set

Mapping of compressed rule

numbers to original rule

numbers

Retrieval of rule options &

DPI

Packet Headers

Matching compressed

rule numbers

Matching original

rule numbers

Action

Figure 30: Overall proposed NIDS Scheme

Chapter 4 – Multi-match Header Classification

71

4.2.2. Top-level Architecture

This thesis looks into possible solutions for the multi-match classifier, i.e. the first

block of the scheme shown in Figure 30. This block takes the IP packet header as

input and outputs a bit vector of length equal to the number of compressed rules, i.e.

1273 bits in the case of the Snort rule set used.

4.3. Algorithms

4.3.1. Introduction

Ternary Content Addressable Memory (TCAM) provides the most straightforward

hardware solution to single-match packet classification. However, its high cost and

high power consumption led to extensive research into several alternative algorithmic

solutions (Taylor, 2005), including the decision tree–based algorithms Hypercuts

(Singh et al., 2003), Extended Grid of Tries with Path Compression (EGT-PC)

(Baboescu et al., 2003; Srinivasan et al., 1998), and Allotment Routing Table (ART)

(Hariguchi, 2002), each of which is analysed in this thesis. Each algorithm was

implemented in C code and adapted for multi-match classification. Existing open

source single-match software was reused where possible.

Evaluation of software implementations was carried out using sample packet header

sets generated using ClassBench (Hoffman and Strooper, 1997) based on the

compressed Snort rule set.

Estimates of energy consumption per packet, as presented later in Table 16, were

obtained by simulating the software implementation on a StrongARM SA-1100 using

Sim-Panalyzer (Mudge et al., 2004). The following typical configuration parameters

were used:

 clock frequency 200 MHz

 5% clock skew

 voltage 1.8 V

 16 Kbyte instruction cache

 8 Kbyte data cache

 180 nm process technology

The software was built with compiler optimization enabled.

Chapter 4 – Multi-match Header Classification

72

In order to fairly compare the energy efficiency of the software and hardware

implementations, the power figures were normalised according to the approach

outlined by Kinane (2006). The power P in a process L with voltage V can be

normalized to a reference process L′ with voltage V′ using the following formula:

V

V

L

L
PP










 


2

All power figures given in this chapter are for a device using 65nm technology with

a core voltage of 1V, i.e. L′ = 65nm and V′ = 1.

4.3.2. Hypercuts

Hypercuts, a well-known single-match algorithm, was the first to be evaluated using

existing C and VHDL single-match implementations from the author’s MEng research

work as the starting point. It has the advantage that it needs little change for use in

multi-match classification other than modifying it to return all matches from the linear

search of a leaf node’s rule list. Unfortunately, Hypercuts was quickly ruled out as a

possible multi-match solution because of two serious disadvantages that quickly

became apparent:

 The high degree of overlap in the rule set results in a memory explosion.

 Leaf nodes generally contain a large number of rules resulting in a lengthy linear

search.

4.3.3. EGT-PC

The EGT-PC (Baboescu et al., 2003; Srinivasan, 1998) algorithm is based on a

structure called the grid-of-tries.

Basic Grid-of-Tries

A trie is basically a binary search tree where each branch leaving a node is labelled

with 0 or 1. The prefix corresponding to a particular leaf node is the concatenation of

all of the bits encountered on travelling from the root to that leaf node. A grid-of-tries

is used for two dimensional (i.e. two field) matching. For each two dimensional rule,

nodes in the first dimension trie have a pointer to the root of a corresponding second

dimension trie. Nodes in the 2
nd

 dimension trie contain a list of rules corresponding to

the node.

Chapter 4 – Multi-match Header Classification

73

Table 10: Example Rule Set

1
st
 Dimension 2

nd
 Dimension Rule

0111* 000* R1

0111* 00* R2

0111* 1* R3

0* 001* R4

0* 00* R5

0* * R6

* * R7

An example 2-dimensional rule set and the corresponding basic grid-of-tries are

shown in Table 10 and Figure 31, respectively. This rule set results in three second

dimension tries in addition to the usual single first dimension trie. Each successive

second dimension trie corresponds to a shorter first dimension prefix. The 1
st
 second

dimension trie corresponds to the first dimension prefix 0111, the 2
nd

 to 0* and the

third to *. The search algorithm involves finding the longest prefix match in the 1
st

dimension and then using a pointer stored at that node to jump to the 2
nd

 dimension

trie where the matching rules are found at each node traversed until the longest

matching prefix is found. e.g. (0000, 0001) would match “0” in the 1
st
 dimension, the

matching node of which is linked to the second 2
nd

 dimension trie. “00” would match

in that trie, giving R5, R6, R7 as the matching rules. In single match packet

classification, each rule has a cost, and the single matching rule is that which has the

lowest cost.

The basic grid-of-tries suffers from a memory blowup problem because each 2
nd

dimension trie must include the 2
nd

 dimension prefixes which correspond to shorter 1
st

dimension prefixes, e.g., the branch and rule corresponding to rule R4 in the second

2
nd

 dimension trie must be replicated in the first 2
nd

 dimension trie.

Chapter 4 – Multi-match Header Classification

74

0

1

1

1

0

0

0

1 0

0

1

First dimension

trie

Three second

dimension tries

Pointer to

second

dimension

trie

R2,R5

R1

R3

R5

R4

R7

R6,R7

R6,R7

1

R4

Root Node –

search starts here

Figure 31. Example basic Grid-of-Tries

Backtracking

The memory blowup issue can be avoided if each 1
st
 dimension node points to a 2

nd

dimension node which only includes rules with a 1
st
 dimension field which exactly

matches the prefix of the 1
st
 dimension node. The grid-of-tries for the example rule set

in Table 10 is shown in Figure 32. The search algorithm is modified to search all 2
nd

dimension tries associated with the matching 1
st
 dimension node and all its ancestor

nodes, i.e. backtracking is used. e.g. (0111, 0010) matches “0111” in the 1
st
 dimension

trie and “00” in the corresponding 2
nd

 dimension trie, giving R2 as a match; but “0” in

the 1
st
 dimension is also a match, with the corresponding 2

nd
 dimension trie giving R6,

R5 and R4 as matches; similarly, R7 is a match in the third trie. Therefore R2, R4, R5,

R6, R7 are all matches. Although the backtracking system saves storage, it requires

more time to search multiple second dimension tries.

Chapter 4 – Multi-match Header Classification

75

0

1

1

1

0

0

0

1 0

0

1

First dimension

trie

Three second

dimension tries

Pointer to

second

dimension

trie

R2

R1

R3

R6

R5

R4

R7

Figure 32. Example basic Grid-of-Tries with backtracking

Switch Pointers

Srinivasan et al. (1998) describe how the need for backtracking can be eliminated, and

thereby the search time improved, through the use of switch pointers. If the input is (

0111, 0010) in the example shown in Figure 33, then matching will fail at node x and

the switch pointer will transfer the search directly to node y, avoiding the need to

search the entire second 2
nd

 dimension trie from its root. The search will therefore

return R2 and R4 as the matching rules. R5, R6 and R7, which could potentially be

lower cost matches, are missed. Srinivasan et al. (1998) solve this problem by

maintaining a variable, storedFilter, in each node of the 2
nd

 dimension trie. Each node

ν with 1
st
 dimension prefix P1 and 2

nd
 dimension prefix P2 has a variable

storedFilter(ν) that stores the lowest cost rule having a 1
st
 dimension field which is a

prefix of P1 and a 2
nd

 dimension field which is a prefix of P2.

Chapter 4 – Multi-match Header Classification

76

0

1

1

1

0

0

0

1
0

0

1

First dimension

trie

Three second

dimension tries

Pointer to

second

dimension

trie

R2

R1

R3

R6

R5

R4

R7

1
switch

pointer

x

y

Figure 33. Example basic Grid-of-Tries with Switch pointers

Extended Grid-of-Tries (EGT)

Baboescu et al. (2003) describe how 2D search schemes can be extended to handle

5-tuple packet classification by simply modifying the 2D scheme to return all rules

(and not just the lowest cost rule) which match the IP source and destination address

fields and then using a linear search to find which of those rules match the protocol

type and port number fields. Their Extended Grid of Tries (EGT) algorithm uses jump

pointers instead of switch pointers, as illustrated in Figure 34. Jump pointers are

designed so that all matching rules are found and not just the lowest cost rule. If the

node containing the jump pointer is associated with prefix P1, then the jump is to a

node, in another second dimension trie, which has an associated prefix that is the

longest matching prefix of P1 and contains at least one rule. Each node, with an

associated rule, that be reached directly by a jump pointer, also includes a link to its

closest ancestor node that has associated rules. This is to ensure that all matching rules

can be efficiently retrieved when a matching node is arrived at via a jump pointer.

If the input is (0111, 0010) in the example shown, then the matching will fail at node

L2 (rule R2 matches) and a jump is made to L5 (rule R5 matches, link to L6 gives R6

as a match). This trie is then traversed to node L4 (rule R4 matches), followed by

Chapter 4 – Multi-match Header Classification

77

jump to L7 (R7 matches). The final list of all matching rules is then R2, R4, R5, R6

and R7.

0

1

1

1

0

0

0

1
0

0

1

First dimension

trie

Three second

dimension tries

Pointer to

second

dimension

trie

L2:R2

L1:R1

L3:R3

L6:R6

L5:R5

L6

L4:R4

L7:R7

Jump

pointer

Figure 34. Example EGT using jump pointers

Chapter 4 – Multi-match Header Classification

78

0

111

00 1 00

1

First Dimension Trie

Second

Dimension

Tries

L2:R2

Compressed

path

L3:R3

L6:R6

L5:R5

L6

L1:R1

L7:R7

0

L4:R4

Pointer to 2nd dim. trie

Jump pointer

Figure 35: Example EGT with path compression

EGT with Path Compression (EGT-PC)

A further improvement in efficiency is obtained using path compression, first

proposed by Morrison (1968) in the Patricia tree structure. This eliminates nodes with

single branches and no associated rule list. The use of jump pointers combined with

path compression is illustrated in Figure 35.

EGT-PC – multi-match

A grid-of-tries is suitable for performing multi-match classification because the

single-match algorithm, in its basic format, finds all matches before performing a

linear search to find the highest priority one. EGT-PC jump pointers could however,

depending on the implementation, result in some matching rules being missed. This

issue can be dealt with as shown in Figure 35 by having each node, with an associated

rule, that be reached directly by a jump pointer, also include a link to its closest

ancestor node that has associated rules. This is recursive in that each ancestor node

may also, along with its own list of rules, include a link to an ancestor.

A simpler and usually faster grid implementation is not to use links to ancestor

nodes, but for each node that can be reached by jump pointers to include the rules that

apply to its ancestors in its own list directly. For example, node L5 in includes Figure

36 both rules R5 and R6.

Chapter 4 – Multi-match Header Classification

79

0

111

00 1 00

1

First Dimension Trie

Second

Dimension

Tries

R2

Compressed

path

R3

R6

L5:

R5,R6

R1

R7

0

R4

Pointer to 2nd dim. trie

Jump pointer

Figure 36. Alternative EGT-PC implementation

The architecture used for evaluating the EGT-PC algorithm for multi-match header

classification consisted of three blocks running in parallel, as illustrated in Figure 37.

EGT-PC

EGT-PC

Linear

Search

BV1

BV2

BV3

BVout

Source

address

Source

Port

Destination

address

Destination

port

Protocol

Figure 37: EGT-PC Multi-match Architecture

Two instances of the EGT-PC algorithm are used to classify the source address and

port pair, and the destination address and port pair, respectively. Each EGT-PC

block’s IP address is mapped to the 1
st
 dimension trie and the port number to the 2

nd

dimension trie. Note that all other pairings of address and port number were tested but

those shown in Figure 37 were found to perform best in terms of both speed and

Chapter 4 – Multi-match Header Classification

80

required memory. This is due to the relatively large number of unique port numbers

compared to the number of unique IP addresses. A linear lookup is performed on the

very small number of protocol types. Each block produces a bit vector with length

equal to the number of compressed rules (1273 bits in the case analysed in Table 9).

The three bit vectors are then ANDed together to give the overall output bit vector.

Table 11. Example rule set with port ranges

Source IP

address

Source port

number

Destination

IP address

Destination

port number

Protocol Rule

No.

10.0.0.0/24 3904:3919 52.1.1.0/24 992 TCP 1

any 3904 any 992:1007 TCP 2

10.0.0.0/16 any 52.1.1.4 any TCP 3

10.0.0.0/16 3904 any any TCP 4

 Consider the example rule set shown in Table 11. Note that each rule would also have

an associated payload signature (fixed string and/or regex) which has been omitted for

clarity. This rule set cannot be compressed any further as each header part is unique.

The first step in generating the EGT-PC is to convert any port number ranges to

prefixes, which can sometimes lead to rules having to be split into several rules, each

corresponding to a particular sub-range. In this simple example, there is a one-to-one

mapping from range to prefix, resulting in the rule set shown in Table 12.

Table 12. Example rule set with port prefixes

Source IP

address

Source port

number

Destination IP

address

Destination

port number

Protocol Rule

No.

0x0A0000* 0x0F4* 0x340101* 0x03E0 TCP 1

* 0x0F40 * 0x03E* TCP 2

0x0A00* * 0x34010104 * TCP 3

0x0A00* 0x0F40 * * TCP 4

Chapter 4 – Multi-match Header Classification

81

0x0A00

0x0F4

Source IP address

Trie

Source

port Tries

R2

R3

R1 R4,R3

Pointer to 2nd dim. trie

Jump pointer

0x00

0x0F4
0x0F40

Start here

Figure 38. Source IP address & port number trie for example rule set

The EGT-PC for the combination of source IP address and port number is shown in

Figure 38. A similar EGT-PC would be constructed for the destination IP address and

port number. Each EGT-PC implementation indicates the matching rules by asserting

the corresponding bits in a rule number bit vector – there are 4 rules in this example,

so the bit vector would consist of 4 bits. The bit vectors from the two EGT-PC and the

linear protocol lookup are then combined as shown in Figure 37 to produce the overall

bit vector.

The evaluation was performed by adapting a single-match implementation originally

available from the Packet Classification Repository (Singh and Baboescu, 2002). This

implementation consists of single-bit first and second dimension tries with path

compression. It does not use multi-bit tries which would give improved performance.

4.3.4. ART (Allotment Routing Table)

ART is a multi-bit trie–based routing table invented by Donald Knuth (Hariguchi,

2002). The free single-match software implemented by Y. Hariguchi and D. Knuth

was adapted to perform multi-match classification.

Chapter 4 – Multi-match Header Classification

82

Description of single match ART algorithm

The ART algorithm is based on the use of a table which can match against a

configurable number of bits known as the address length. This table is shown in the

form of a binary tree in Figure 39 for an address length of three. The number in

brackets is known as the base index and is simply the table array index.

[1]

0/0

[2]

0/1

[3]

4/1

[4]

0/2

[5]

2/2

[6]

4/2

[7]

6/2

[8]

0/3

[9]

1/3

[10]

2/3

[11]

3/3

[12]

4/3

[13]

5/3

[14]

6/3

[15]

7/3

Figure 39. All 3-bit prefixes mapped into complete binary tree

The bottom row of the table contains what are known as the fringe nodes. These are

the nodes which are accessed by the search algorithm using the simple formula (input

+ 2
len

) or equivalently (1<<len + input), where input is the 3-bit input to look up and

len is the ART address length. Non-fringe nodes are used during rule deletion, as the

rule being deleted from node must be replaced by the rule specified in the parent node.

Large address lengths results in excessively large tables and so the address is

typically split into multiple short addresses called strides. In multi-level ART, each

fringe node contains a pointer to a table in the next level. This pointer will be NULL if

there is no rule with a longer prefix than the one corresponding to the fringe node. The

address length of each level of the multi-level ART algorithm is chosen to minimise

the number of tables created from the particular rule set.

Extending ART to perform multi-matching

In order to perform multi-match lookups, each fringe node may correspond to multiple

rules and it must also include all rules that apply to its ancestor nodes. Non-fringe

nodes are therefore superfluous and may be omitted. An example multi-level ART is

shown in Figure 40 for the simple IP address field rule list of Table 13.

Chapter 4 – Multi-match Header Classification

83

Table 13. Simple example rule list

Address Rule

9.0.0.0/16 R1

9.0.1.0/24 R2

9.0.2.0/24 R3

9.0.2.4/31 R4

9.0.2.4/32 R5

0
.

.

.

9

255

Rule Ptr

—

—

—

0

0

0

.

.

.

255

Rule Ptr

R1

— 0

0

.

.

.

255

Rule Ptr

—

—

0

0

1

2

R2

R3 0

.

.

.

Rule Ptr

—

—

0

0

4

5 R4

R4, R5

255

.

.

.

0

0

0

IPv4

address

Level 0

Level 1 Level 2

Level 3

Figure 40. Multi-level ART for example rule set

If the IP header address being matched against is 9.0.1.5, then the first byte of the

address, 9, is used to index the level 1 array, giving a pointer to a level 1 array. The

second byte of the address, 0, is used to index this level 1 array, giving R1 as a match

and also a pointer to a level 2 array. The third byte of the address, 1, is used to index

this level 2 array, giving R2 as a match and no connecting pointer. The search then

terminates with R1 and R2 as the two matching rules.

The ART algorithm is used to perform matching separately on each IP address and

port number field and the matching rules are found by ANDing together the output bit

vectors as shown in Figure 41.

Chapter 4 – Multi-match Header Classification

84

BV1

BV2

BV3
BVout

Source

address

Source

Port

Destination

address

Destination

port

Protocol

ART

ART

ART

ART

Linear

Search

BV4

BV5

Figure 41. Multi-match architecture using ART

4.4. Related Work

Research into multi-match packet classification has to date mainly focused on TCAM-

based solutions as single-match algorithms have been regarded as unsuitable for

multi-match classification due to the extensive intersections between rules in NIDS

rule databases (Yu and Katz, 2004). TCAM-based solutions require additional logic to

return all matches as TCAMs typically only return the single highest priority match

(Yu et al., 2005). Song and Lockwood (2005) and Jiang and Prasanna (2009)

researched algorithmic non-TCAM approaches, but both papers propose architectures

which incorporate TCAM, albeit on a much smaller scale compared to solutions based

entirely on TCAM. Both use bit vectors where each bit corresponds to a rule index.

4.4.1. Bit Vector – TCAM architecture

Song and Lockwood’s (2005) BV-TCAM (Bit Vector – TCAM) architecture, as

illustrated in Figure 42, classifies each of the port numbers in parallel using a multi-bit

trie to produce two bit vectors. The multi-bit trie that is used is based on the Tree

Bitmap specified by Eatherton (1998), which is subject to patent. A small TCAM

implementation, that can handle multiple matches, classifies the concatenation of

source, destination address and protocol type to produce a third bit vector. A reduction

in the number of TCAM entries is achieved by mapping the concatenation of IP

addresses and protocol type in the rule set to a substantially shorter rule set containing

only the unique triples. Consequently, the bit vector output from the TCAM has to be

Chapter 4 – Multi-match Header Classification

85

decompressed, i.e. mapped to a wider bit vector corresponding to the original rule set.

The three bit vectors are finally ANDed together to produce the final result.

BV1

BV2
BVout

Destination

port
Tree Bitmap

(Stride 4)

TCAM

BV3

Source

port
Tree Bitmap

(Stride 4)

Decompress

{Src IP addr,

Dest IP addr,

proto}

BVcomp

Figure 42. Overall BV-TCAM architecture

Many trie-based algorithms make use of prefix expansion and leaf pushing to

improve performance. Prefix expansion (Srinivasan and Varghese, 1998) transforms a

set of prefixes into an equivalent set with fewer prefix lengths in order to allow multi-

bit matching – as also used in ART algorithm. Leaf pushing involves pushing as much

node information as possible out to the leaf (or fringe) nodes – as is the case in the

multi-match extension of ART. Eatherton’s (1998) Tree Bitmap avoids the need for

prefix expansion and leaf pushing by using an indexing scheme that significantly

reduces memory consumption. Each node in the multi-bit trie has two associated bit

maps, an Internal Prefix Bitmap representing the prefixes associated with the node,

and an Extending Paths Bitmap representing the child nodes that are present.

Table 14. Example rule set

Prefix Rule

* 1

11* 2

00* 3

0000 01* 4

0000 1* 5

0001 * 6

Table 14 shows an example rule set, and the corresponding Tree Bitmap based on a

4-bit stride length is shown in Figure 43. Each black dot represents a prefix from the

Chapter 4 – Multi-match Header Classification

86

rule set. The three valid prefixes in the root multi-bit node are indicated by the

asserted bits in the Internal Prefix Bitmap and the two valid branches to child nodes

are indicated by the asserted bits in the Extending Paths Bitmap. In addition to these

two bit maps, each multi-bit node also has two pointers, one to the first valid prefix’s

rule bit vector and one to the first child node. The addresses of other rule bit vectors

and child nodes are obtained by offsetting from these first addresses.

The search algorithm is quite simple. Say the input port number is 0x10FF. The

decimal value, P, of the first four bits, 1, is used to index the Extending Paths Bitmap

– bit number 1 (the second from the left) is asserted, indicating that there is a valid

child node. The number of 1s to the left of, and including, position P is then counted –

there are two. The pointer to the child node is then obtained as

stored_child_node_pointer + (2 × sizeof(node)). Before moving on to the child node,

the Internal Prefix Bitmap is checked to see if there are any matching rules for the first

four bits. In theory, this is done by successively removing bits from the right of P and

indexing into the corresponding position in the internal bit map. In practice this can be

done in parallel in hardware. In the example P=0001 (in binary). The rightmost bit is

first removed, resulting in prefix 000*, which corresponds to position 8 in the internal

bit map. Bit 8 is not asserted and so the search continues by removing the next bit

from P, giving 00*, which corresponds to position 4 in the bitmap. Bit 4 is set and so a

corresponding rule bit vector exists. The address of the bit vector is determined, in a

similar fashion to the child node address, by offsetting from the address of the first

rule bit vector.

Chapter 4 – Multi-match Header Classification

87

P1

P2
P3

P5

P4

P6

Level 1 (root)

multi-bit node

Level 2 multi-bit

nodes

Internal prefix bitmap:

1 00 1001 00000000

Extending paths bitmap:

110000000000000000

Figure 43. Tree bitmap for example rule set

4.4.2. Field-Split parallel Bit Vector architecture

Jiang and Prasanna’s (2009) “Field-Split Parallel Bit Vector” (FSBV) splits the port

number fields into single bits which are classified individually to produce a bit vector

per bit. The two IP address fields and the protocol type field are classified using two

TCAMs and a CAM, respectively, in a manner similar to that of the BV-TCAM

architecture. All bit vectors are then ANDed together to give the overall result, as

illustrated in Figure 44.

BV1

BV2

BVout

Destination

port FSBV

TCAM

BV4

Source

port FSBV

Destination

IP address SRAM

TCAM
Source IP

address SRAM

CAM
Protocol

type SRAM

BV3

BV5

Figure 44. Multi-match using FSBV algorithm

Chapter 4 – Multi-match Header Classification

88

Table 15. Example rule set for 4-bit field

4-bit field match patterns

(Bits numbered 3210)

Rule

01** R1

0101 R2

111* R3

Table 15 and Figure 45 illustrate the FSBV scheme for a 4-bit field and a rule set

consisting of three rules.

R1 R2 R3

0

1

0

1

0

1

0

1

Bit 3

Bit 2

Bit 1

Bit 0

4 bit field

to match

1

0

0

1

1

1

1

1

0

1

1

1

0

0

0

1

1

1

1

1

1

0

0

0

Bit vectors
Match against

input 0101

110

AND

111

AND

110

111

AND

110

Output bit

vector

R1

match
R2

match

Both bits set to 1

indicates wildcard

Figure 45. FSBV scheme for example rule set

In the overall architecture shown in Figure 44, the FSBV scheme is used to match

both port number fields, each consisting of 16 bits. A hardware implementation

therefore requires 32 memories, each of depth 2, to store the rule bit vectors. Using

FSBV for matching the port numbers is efficient because the numbers of unique

source and destination port numbers present in the Snort rule set are much less than

the total number of rules, as evident from Table 9. This enables significant

compression of the rule bit vectors. Jiang and Prasanna chose TCAM and CAM to

match the IP addresses and protocol type, respectively, because they can efficiently

map the extremely small number of unique values of each. The bit vectors for each are

stored in SRAM and indexed by the TCAM/CAM output.

Chapter 4 – Multi-match Header Classification

89

4.5. Comparison

Table 16 summarizes and compares the results for the three algorithms examined with

estimated performance figures given by Song and Lockwood (2005) and Jiang and

Prasanna (2009) for the BV-TCAM and FSBV systems. Based on these figures, the

FSBV architecture uses relatively little memory, and its simplicity should result in an

efficient FPGA solution.

Table 16: Comparison of Algorithms

Single-match algorithms adapted

for multi-matching and evaluated

on ARM platform

Existing multi-match

algorithms

 Hypercuts EGT-PC ART BV-TCAM FSBV

Memory (bytes per

rule)
465693 120 142 74* 17*

Cycles per packet 109961 3824 658 13** 0.5*

Normalised Energy

(µJ/packet)
6.85 0.55 0.15 0.01* 0.01*

* Based on figures given by Jiang & Prasanna (2009). Note that both static (Virtex 5 XC5VFX200T device) and dynamic

consumption are factored into the energy figures given here.

** Based on figures given by Song and Lockwood (2005).

The BV-TCAM and FSBV schemes use only a minimal amount of TCAM which

accounts for a negligible proportion of the total energy consumption. As a result they

are much more energy efficient than purely TCAM-based schemes and this is borne

out by performance comparison results provided by Jiang and Prasanna (2009).

FSBV also performs significantly better than the EGT-PC and ART solutions. This

is because FSBV makes the most of the characteristics of the header sections of the

Snort rule set by compressing the source and destination IP addresses into very small

TCAMs and by splitting the port fields using the efficient FSBV technique.

One possible issue with the FSBV scheme is its reliance on the characteristic that

past Snort rule sets had a very small number of unique IP addresses. Ganegedara and

Prasanna (2012) proposed the StrideBV algorithm that extends FSBV by applying bit

splitting to the entire 5-tuple header, thereby avoiding the use of TCAM. However,

instead of single-bit inspection, StrideBV uses multi-bit strides. Ganegedara and

Prasanna explain that while StrideBV requires more memory per rule than FSBV, it is

capable of handling higher traffic throughput with improved energy efficiency. Sanny,

Ganegedara and Prasanna (2013) performed a detailed comparison between StrideBV

Chapter 4 – Multi-match Header Classification

90

and TCAM based approaches by evaluating both on a Xilinx Virtex 7 device. They

found that the StrideBV implementation performed much better in terms of

throughput and power efficiency, at the cost of increased memory consumption.

4.6. Conclusion

A number of single match packet classification algorithms were adapted to perform

multi-matching and their performance evaluated in terms of speed and energy

consumption. It was found that some single match algorithms, such as Hypercuts, do

not adapt well to multi-match classification because the high degree of overlap

between rules results in an excessive storage requirement. The EGT-PC and ART

algorithms adapted reasonably well to multi-matching. Although more efficient than a

purely TCAM-based solution, their performance and efficiency does not match that of

the FSBV algorithm. The memory efficiency of FSBV is due to the characteristics of

recent Snort rule sets. The relatively low quantities of unique values of each header

field in the rule set allows the bit vectors representing the rule set to be significantly

compressed for each field. The resulting relatively short bit vectors makes

implementation of FSBV feasible on FPGA devices. Unlike the BV-TCAM algorithm,

FSBV is not subject to patent. Its relative simplicity lends itself to an FPGA

implementation where the bit vectors can be stored in block RAM in order to

maximise performance.

The recent StrideBV extension to FSBV splits the entire 5-tuple header into multi-bit

strides and does not use any TCAM. The main advantage of both algorithms is that

they can be easily mapped onto high performance FPGA/ASIC architectures.

Evaluation of StrideBV by Ganegedara and Prasanna (2012) found that, although it

consumes additional memory, it can handle higher traffic speeds than the original

FSBV scheme.

FSBV and its multi-bit extension, StrideBV, appear to be the best approaches to

multi-match packet classification in the case of hardware implementations. Further

independent evaluation of the two approaches is required in addition to comparison

with both TCAM and algorithm based implementations. It should be borne in mind

that the performance of these algorithms is mainly due to the relatively low numbers

of unique field values in recent rule sets. Should this change in future rule sets, it may

render the implementation of these algorithms more challenging and give an

advantage to algorithms such as EGT-PC and ART.

Chapter 5 – Pattern Matching Methods

91

Chapter 5 - Pattern Matching Methods

DPI is the examination of packet payloads for the presence of patterns, known as

signatures, listed in a database of rules called the rule set. Signatures are typically in

the form of fixed strings or regexes, or a combination of both. The use of regexes has

become more common in recent years in order to describe increasingly complex

attacks.

5.1. Fixed String Matching

5.1.1. Precise Matching

The subject of fixed string matching has been well researched due to its importance in

many applications such as internet search engines, parsers, word processors and

digital libraries. It is important in signature-based NIDPS, as most rules contain at

least one fixed string pattern to be matched. Although fixed string matching is not a

focus of this thesis, the following is a brief overview in order to give a complete

picture of the functionality of an NIDPS.

The string matching problem can be simply stated – Given two strings T and P, of

length m and n, respectively, determine if P occurs in T. A naive or brute-force search

involves trying to match the pattern using a window size of length n and iterating

through each position in T from left to right, resulting in a worst-case complexity of

O(mn). Two classic single-string matching algorithms are Boyer-Moore (1977) and

KMP (Knuth-Morris-Pratt, 1977). Both these algorithms also use a window of size n,

but they use a skip or shift table to determine where to search next after each

mismatch. The shifts used by the Boyer-Moore algorithm are based on two rules

known as the bad character shift rule and the good suffix shift rule. The first rule

avoids the need to repeat unsuccessful comparisons against a target character and the

latter ensures that the matching only aligns against target characters already

successfully matched. The KMP algorithm similarly uses information learnt from

partial matches to skip over alignments that are guaranteed not to result in match. The

Boyer-Moore algorithm was later simplified by Horspool (1980) resulting in an

algorithm that is easier to implement. The Boyer-Moore algorithm has a worst-case

search time of O(m+n) if the pattern does not appear in the text and of O(mn) if it

does. Its average search time is sub linear and improves with increasing pattern length.

KMP is O(m+n) in both the average and worst case. Baeza-Yates and Gonnet (1992)

Chapter 5 – Pattern Matching Methods

92

found that the average performance of Boyer-Moore-Horspool improves with

increasing pattern length and is better than KMP for n > 3. These algorithms are

unsuitable for multi-pattern matching as the search time increases linearly with the

number of patterns.

Two well-known multi-pattern matching algorithms are Aho-Corasick (1975) and

Commenzt-Walter (1979). The Aho-Corasick algorithm is an extension of the KMP

algorithm for a set of patterns. The algorithm, as illustrated by the example in Figure

46, consists of three functions:

 Goto function: a trie of the set of patterns. Let L(ν) denote the string produced by

traversing the tree from the root to state ν. If ν is a node state L(ν) represents the

prefix of one or more patterns and, if ν is a leaf state then L(ν) represents a search

pattern.

0

3

1 4

2 5
r k

l

r

e

6
l

7
e

Failure

link

Output pattern

when found

Figure 46. Aho-Corasick – automaton for set of patterns P={lrle, le, rk}

 Failure function: maps a state to another state when the Goto function reports a

failure to match or a terminal state has been reached. The failure function for node

ν is the state which is reached by the longest suffix of L(ν). This is basically a

generalisation of the KMP algorithm.

 Output function: The output function for state ν is

o L(ν) if ν is a leaf node (i.e. represents a pattern)

o Output(νfail) where νfail is the state reached by the failure link from ν.

If n is the number of states in the automaton and nocc is the number of occurrences

of a pattern in the string, then the search time complexity of the algorithm is O(n +

nocc) when automaton transitions are stored in a transition table and, O(nlog|Σ| +

Chapter 5 – Pattern Matching Methods

93

nocc) when the transitions are stored in a balanced tree (Navarro and Raffinot, 2002,

p.50).

The Commentz-Walter algorithm combines ideas from both the Boyer-Moore and

Aho-Corasick algorithms. For a string of length m and maximum pattern length lmax,

its worst-case time complexity is O(mlmax). In practice, it is only faster than Aho-

Corasick for small numbers of search patterns.

Both the Aho-Corasick and Commentz-Walter algorithms suffer from the fact that

the memory requirement can increase exponentially as the number of patterns

increases. This degrades software performance as the entire automaton cannot be

stored in cache. A number of solutions have been proposed for this memory explosion

problem, most of which involve the use of hash tables (Wu and Manber, 1994). The

Wu-Manber algorithm is a multi-pattern variant of the Boyer-Moore algorithm which

looks at the text in blocks of size B instead of single characters, i.e. it is a multi-stride

algorithm. It makes use of three tables, the SHIFT, the PREFIX and the HASH tables.

The SHIFT table stores the shift, or skip, values for each of the block characters,

indexed by hashing their value. When a potential match is found, then the HASH and

PREFIX tables are accessed to check for an actual match. Navarro and Raffinot (2002,

pp.59-62) provide a detailed description accompanied by examples. The algorithm

requires only O(k) memory space, where k is the number of patterns and is very fast

on average. It was previously used in Snort but has been removed because its worst

case performance makes it vulnerable to DoS attacks. Snort now uses the standard

Aho-Corasick algorithm by default, but it can be configured to use other versions of

the algorithm (Norton, 2004) which trade off memory versus speed. It also includes a

binary trie–based algorithm, known as SFK Search, for systems with very low

memory.

Much research has been conducted into finding improved variants of the Aho-

Corasick algorithm, in particular for hardware implementation. The algorithms

proposed by Tuck et al. (2004) reduce memory consumption through the use of

bitmap nodes and path compression. Bitmaps reduce the number of transition pointers

at states and path compression combines a series of successive states. Tan and

Sherwood (2005) uses bit-splitting to split the Aho-Corasick automaton into eight

separate automata, each operating on one bit from each input character, thereby

reducing the maximum number of transitions from each state from 256 to just 2.

Chapter 5 – Pattern Matching Methods

94

Kennedy et al. (2010) proposed an FPGA architecture, based on the Aho-Corasick

algorithm, which uses multiple string matching engines operating in parallel.

A well-known FPGA approach to string matching is to consider the string as a

simple regex which can be represented by an NFA which is translated into FPGA

logic (Sidhu and Prasanna, 2001). The main disadvantage of this method is the need to

reprogram the FPGA whenever the set of strings changes. Moreover, it does not scale

well as recent rule sets generate too much logic.

TCAMs can perform parallel searches at high speed but pose two problems for

multi-pattern matching: (i) TCAM entries have a fixed length, unlike the string

patterns found in NIDS rule sets, and, (ii) TCAMs return the first matching entry and

not all matches. Yu et al. (2004) propose a solution which overcomes these two

difficulties. The number of TCAM lookups is of the order O(n) where n is the number

of input characters. Sung et al. (2005) present a jumping window scheme which

reduces the number of TCAM lookups to O(n/m) where m is the window size.

Although it gives very good matching performance, TCAM suffers from the problems

of relatively high cost and energy inefficiency.

5.1.2. Imprecise Matching (with false positives)

Dharmapurikar et al. (2004) describe a hardware-based technique using Bloom filters

(Bloom, 1970) for the detection of fixed strings in streaming data. A Bloom filter is a

randomised data structure which is “programmed” with strings using multiple hash

functions and is “queried” for a string’s presence based on multiple bits. A query can

result in a false positive but never a false negative. (A false positive is where the

matching result incorrectly indicates a match exists, whereas a false negative is where

the matching result incorrectly indicates a match does not exist). The main advantage

of this technique is that it is likely to only require a relatively small amount of

memory even for a very large set of patterns. The disadvantages are that multiple

bloom filters are required, one for each pattern length found in the rule set, and that all

possible matches must be fully checked for false positives. Song and Lockwood

(2005) propose a more efficient data structure called the Extended Bloom Filter in an

architecture that makes the most of an FPGA’s block RAM. Zhou and Wang (2010)

propose an FPGA implementation of multi-pattern string matching using parallel

engines based on the Counting Bloom Filter.

Chapter 5 – Pattern Matching Methods

95

Markatos et al. (2002) propose an algorithm based on the use of exclusion-based

matching. It basically breaks the patterns into several fixed-size bit strings and

searches for these without checking if they are in the correct sequence. If any of sub-

patterns does not match, then the entire pattern does not match. On finding a matching

sub-pattern, the system falls back on a standard algorithm, such as Boyer-Moore, in

order to check the full pattern.

5.2. Regular Expression Matching

Regexes are now a common form of signature as they allow the expression of

complex attacks which would be very difficult with plain fixed strings. It is well

known that a regex can be represented by a non-deterministic finite automaton (NFA)

or an equivalent deterministic finite automaton (DFA) (Hopcroft et al., 2006). DFAs

have the advantage of fast matching but can consume very large amounts of memory

in the case of certain forms of regexes or when some DFAs are combined. NFAs, on

the other hand, are memory efficient but can be very slow when a large number of

states are concurrently active. This time/space trade-off has led to much research into

improving the memory efficiency of DFA-based schemes, and, to a lesser extent, the

speed of NFAs.

5.2.1. DFA-based solutions

Regular Expression Rewriting

Yu et al. (2006) analysed the Snort rule set to identify the typical patterns that result in

large DFAs. They propose a number of rewrite rules for these types of patterns in

order to reduce the DFA size. Unfortunately, these rules can only be applied to a

relatively small number of regexes.

DFA Grouping

A simplistic DFA implementation is to amalgamate all of the DFAs, each

corresponding to a regex, into a single DFA. This, of course, typically results in a

memory explosion because of the interaction between the individual DFAs. Yu et al.

(2006) found that it is more efficient to group particular DFAs together and process

these groups in parallel, and they devised algorithms to perform this grouping. These

algorithms partition the regexes into groups such that the patterns in each group do not

adversely interact with each other. Interaction is defined as being present when the

Chapter 5 – Pattern Matching Methods

96

number of states of the composite DFA exceeds the sum of the number of states of the

individual DFAs. The grouping approach is particularly suited for implementation on

multi-core processors, where each composite DFA is assigned to a particular core.

Ideally the composite DFA needs to fit in the core’s local memory in order to avoid

contention between cores that would adversely affect performance. In the case of

single core general processors, the composite DFA would be assigned to particular

software process or thread. In this case the memory saving resulting from the grouping

approach is at the cost of an increase in the memory bandwidth requirement.

Delayed Input DFA (D
2
FA)

Kumar et al. (2006a) observed that many DFA states have similar sets of outgoing

transitions and so they propose the D
2
FA scheme which reduces the memory

requirement of a DFA by replacing redundant transitions common to a pair of states

with a single default transition. The disadvantage of D
2
FA is that multiple states can

be traversed when processing a single input symbol which degrades performance due

to the resulting increase in the number of memory accesses. In order to prevent

excessive memory bandwidth, a heuristic construction algorithm is used to limit the

length of default transition chains. This algorithm has a number of disadvantages

including the requirement for the user to provide an input parameter value which

depends on the particular rule set as well as relatively slow construction. Becchi and

Crowley (2007) propose a modified version of this scheme which improves its worst

case performance and simplifies the construction.

Content Addressed Delayed Input DFA (CD
2
FA)

Kumar et al. (2006b) propose the Content Addressed Delayed Input DFA (CD
2
FA)

which is equivalent to a D
2
FA in which the state numbers are replaced with content

labels. These content labels contain enough information to avoid unnecessary default

traversals, thereby resulting in improved performance. Kumar et al.’s experimental

evaluation shows that CD
2
FA uses 10% of the memory space required by a table

compressed DFA and can achieve twice the performance of an uncompressed DFA in

the case of systems with a small data cache.

Chapter 5 – Pattern Matching Methods

97

DFA Splitting

Kumar et al. (2007) observed that normal data streams typically only match the first

few symbols of a regex. They propose a cutting algorithm which splits a regex into

two parts based on the probability that the corresponding NFA state is visited during

the matching process. The most frequently visited states constitute the fast path

automaton and the remaining tail is processed as a slow path automaton. These tails

portions can be “put to sleep” by default and only woken up when the fast path

automaton detects a match, e.g. they can be stored in external memory and retrieved

when required. This system is vulnerable to a DoS attack in that an attacker can inject

large amounts of traffic that match the fast path signatures. Kumar et al. describe a

lightweight algorithm to counter these attacks. It uses anomaly counters to track the

number of fast path matches for each flow. The slow path then prioritises flows

having the lowest anomaly count.

History-based FA (H-FA)

Kumar et al. (2007) propose a history-based FA (H-FA). They observed that a state

explosion occurs in a DFA because it is very inefficient in following multiple partially

matching patterns. Their history-based approach consists of an automaton similar to a

DFA plus a history buffer. Unlike a standard DFA, multiple transitions for a particular

symbol can leave from a state, and which transition is taken is determined by

examining the contents of the history information stored in memory. This scheme

reduces the total amount of memory required, but can increase the worst case time

complexity.

Hybrid-FA

Becchi and Crowley (2007a) propose a Hybrid-FA consisting of a head-DFA and

multiple tail-NFAs. During construction of the Hybrid-FA, any nodes that would

result in a state explosion are retained as NFA nodes, while the remaining nodes are

transformed into DFA nodes. The tail-NFAs can be transformed into tail-DFAs for

improved performance in certain cases, e.g. dot-star terms.

Extended FA (XFA)

Smith et al. (2008) propose an extended FA (XFA) scheme which avoids the problem

of state explosion by using auxiliary variables. They present a model for augmenting a

Chapter 5 – Pattern Matching Methods

98

DFA with these variables and instructions to manipulate them. These are attached to

the nodes and edges of the DFA. Experimental results show very good performance

and efficient use of memory. However, XFA construction can be quite complicated

and may require manual intervention.

Delta Finite Automaton (δFA)

Ficara et al. (2008) also observed that many adjacent DFA states share several

common transitions. They propose a compressed representation for DFA, called Delta

Finite Automata, which only stores the differences between these adjacent states.

Unlike D
2
FA, δFA only requires one transition per single input symbol. However, the

difference between the current and next state must be computed on each state

traversal, resulting in a time complexity of O(|Σ|).

5.2.2. NFA-based solutions

The PCRE regex software library, used by both Snort and Suricata, performs NFA

style pattern matching. Nonetheless, less research has been conducted into NFAs than

DFAs because of the difficulty of handling a potentially large number of concurrently

active states and state traversals. However this issue can be circumvented by utilizing

the inherent parallelism of hardware.

PCRE software library (Snort and Suricata)

The standard matching algorithm used by Snort and Suricata performs a depth-first

search of an NFA-based pattern tree. In other words, it follows a single path through

the NFA until a mismatch occurs or an accept state is reached. In the case of a

mismatch, it checks all other transition branches at the current state before back

tracking to an earlier state with multiple transitions and tries the alternative transitions

at that point. Back tracking usually involves back tracking of both the NFA and the

current position in the input symbol stream. The PCRE library’s match function is

called recursively at each branch point in order to remember the state in case back

tracking to that state is required. Snort and Suricata provide configuration options that

place a maximum limit on the number of recursive calls and amount of backtracking.

Performance, however, can still be severely degraded in the face of a backtracking

attack that injects packets crafted to maximise the amount of backtracking that occurs.

Chapter 5 – Pattern Matching Methods

99

FPGA logic–based NFA

The most common method of implementing NFAs in hardware is to convert it into

FPGA logic gates and registers (Sidhu and Prasanna, 2001). The disadvantages of this

approach are that the logic needs to be re-synthesized whenever the rule set is updated

and large rule sets may result in more logic than is available on even the most high-

end FPGAs.

NFA-OBDD

Yang et al. (2010) propose a scheme in which Ordered Binary Decision Diagrams

(OBDD) are used to operate NFAs. Their evaluation was performed using a software

implementation that made use of the Cudd C++ based OBDD library. A Binary

Decision Diagram (BDD) is a data structure used to represent a boolean function, as

illustrated in the example shown in Figure 47. A BDD is said to be “ordered” if the

different variables (x1, x2, x3 in the example) appear in the same order in all paths

from the root. The OBDD is effectively a maximally reduced version of a standard

binary tree.

x1 x2 x3 f(x1,x2,x3) x1

x2 x2

x3 x3

1 0

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Figure 47. Example boolean function and corresponding OBDD

OBDDs can be used to represent a set of elements, such as a subset of the states of

an NFA. This could be regarded as a compressed version of the bit-parallel

representation discussed in Chapter 6. OBDDs can therefore be used to represent the

set of currently active states, the set of accept states, input symbols and transitions

between states. A transition is a triple (s, i, t) such that there is a transition labelled i

from state s to state t. These OBDDs can then be manipulated to determine the OBDD

representing the next set of currently active states following receipt of each input

Chapter 5 – Pattern Matching Methods

100

symbol and to check if an accept state has been reached. The operation to find the next

set of active states is effectively a boolean AND combination of the transition, active

and input symbol OBDDs. The authors found that the NFA-OBDD scheme

outperformed standard NFA implementations in the case of HTTP and FTP

signatures. NFA-OBDDs performed best when the set of currently active states was

large. Sinnappan and Hazelhurst (2001) describe how BDDs can be implemented as a

logic circuit on an FPGA and Yang et al. suggest that this method could also be used

for NFA-OBDDs.

FPGA/ASIC memory–based NFA schemes

The limitations of the logic-based approach have led to research into memory-based

hardware architectures which can be easily and quickly reconfigured. Examples of

such architectures include the bitmap-based approach for the Glushkov NFA (Lee,

2009) and the dynamic reconfigurable bit-parallel NFA architecture (BP-NFA)

(Kaneta et al., 2010). The first is based on the Bit Parallel Glushkov algorithm and the

second on the extended SHIFT-AND algorithm, both of which are detailed in a

textbook by Navarro and Raffinot (2002). Both algorithms utilize bit-parallelism (Wu

and Manber, 1992; Baeza-Yates and Gonnet, 1992). Bit-parallelism is a technique to

code multiple elements of information into a single bitmask which can then be

operated on simultaneously. In the case of regex matching, the bitmask stores the

active and inactive states.

Several methods exist for constructing an NFA from a regex of m characters

(excluding special symbols). The most common method is the Thompson (1968)

construction, which produces an NFA with between m+1 and 2m states. Its most

important property is that, apart from the ε-transitions, all transitions go from states i

to states i+1. This is exploited by Wu and Manber (1994) in their bit-parallel scheme.

Note that the BP Thompson algorithm is equivalent to the extended SHIFT-AND

algorithm. An alternative method is the Glushkov construction which has the

important advantage that it has only m+1 states, although this comes at the price of

not having the simple forward transitions of the Thompson NFA. The Glushkov NFA

also has the property that all incoming transitions arriving at a particular state node

have the same symbol label. This property, along with the minimal number of states,

gives the Glushkov construction the edge in bit parallel implementations (Navarro and

Raffinot, 2002).

Chapter 5 – Pattern Matching Methods

101

The bit-parallel representation of an NFA can be considered either as a bit-parallel

implementation of an NFA or as a DFA. Each possible value of the bitmask of

currently active and inactive NFA states, that these BP algorithms use, is effectively

the identifier of a DFA state. These BP schemes use the bitmask to index a table and

the resulting value, along with the current input symbol, gives the new bitmask value.

5.2.3. Imprecise Matching Finite Automata

StriFA

Wang et al. (2013) propose Stride FA (StriFA) for the acceleration of both fixed string

and regex matching. The algorithm can be implemented as either an NFA or a DFA

depending on which is most suitable for the platform used. Some of the matches found

by StriFA may be false positives, but the algorithm is designed to keep these to a

reasonable level. StriFA can therefore be used as a fast and efficient pre-filter to

greatly reduce the number of regexes against which to match in a follow-up FA which

does not produce false positives. In the case of a fixed string pattern, the first step in

the construction of the StriFA involves the selection of an appropriate tag character

from the string. The distances, known as stride lengths, between successive

occurrences of the tag character in the pattern are then used to construct the StriFA.

The construction from a regex is more involved, but the basic concept of tag

characters and stride lengths remains essentially the same. During matching, the

incoming data stream is converted to the corresponding tag length stream before being

fed into the StriFA matching engine.

Chapter 5 – Pattern Matching Methods

102

A B C D
2 2

2

3

2

E F

5

5 5

5 2

2

5

5

others

Rules R1: reference R2: replacement
22 3 5 2

Input string: referencexyzxyzreplacement
2 2 3 8 5 2

match match

Figure 48. Example StriDFA for patterns “reference” & “replacement” with

tag ‘e’

Consider the fixed string patterns R1=“reference” and R2=“replacement”. If

character tag ‘e’ is chosen then the corresponding stride lengths for R1 and R2 are 2-

2-3 and 5-2, respectively. The stride lengths are then used to construct a standard DFA

as illustrated in Figure 48, in which the transitions are labelled with the stride length.

Note that the states are labelled with letters rather than numbers in order to avoid any

confusion. During matching, the example input string referencexyzxyzreplacement is

converted to a stream of stride lengths 2-2-3-8-5-2 with 2-2-3 and 5-2 matching the

StriDFA.

Selection of an appropriate tag character is fundamental to the performance of

StriFA. Considering each pattern individually, the best tag is the character which

occurs most frequently. However, the incoming data stream needs to be converted into

a separate stride length stream for each different tag character. The strategy is

therefore to select a tag character that covers as many patterns in the rule set as

possible, with a minimum of three occurrences per pattern, and with the highest

average number of occurrences per pattern. Wang et al. found that StriFA gives a 10-

fold increase in speed and much lower memory consumption compared to traditional

NFA/DFA.

Chapter 5 – Pattern Matching Methods

103

DFA Abstraction

0 1

4

a

3
[c-e]

2
b

f

g

0

1

4
[c-e]

2
b

[f-g]
a

Abstracted DFA

(state 3 removed)

Original DFA for regex /abf|[c-e]g/

Figure 49. Example of construction of abstracted DFA by state removal

Cadambi et al. (2007) describe a method, which they term DFA abstraction, by which

a DFA can be reduced in size by removing some states, leading to a smaller DFA

which can produce false positives but no false negatives. Packets that match the

compacted DFA are checked by pattern matching against a follow-up FA, typically a

space efficient NFA implementation. Construction of the abstracted DFA is not

straightforward as the algorithm must ensure that removing a state does not result in

false negatives.

Figure 49 illustrates the concept of DFA abstraction in the case of regex /abf|[c-e]g/.

State 3 is removed from the original DFA and all its transitions changed to state 2.

The resulting DFA has no false negatives but has a number of patterns that will result

in false positives, namely abg, cf, df and ef.

5.2.4. Alphabet Reduction

The FA corresponding to regexes over an alphabet Σ can potentially have |Σ| outgoing

transitions per state. However, the alphabet can be reduced by translating it into a set

of equivalence classes. Two symbols are members of a particular class if the target of

their transition from a particular state is the same, and this is the case for all states in

the FA. Alphabet reduction can result in significant savings since regexes usually only

use a small subset of all possible symbols.

Chapter 5 – Pattern Matching Methods

104

5.2.5. Multi-stride Automata

Making an automaton multi-stride is a technique used to increase throughput by

reducing the memory bandwidth requirement, i.e. the automaton processes multiple

input symbols at the same time. Implementing multi-stride in isolation leads to an

unacceptable increase in the number of states. Brodie et al. (2006) explain how a

multi-stride DFA can be made feasible by applying optimisations to the memory

structures used. Becchi and Crowley (2008b) propose improved optimisations in the

form of alphabet reduction and default transition compression. Alphabet reduction

works due to the fact that increasing the stride results in only a small subset of the

entire alphabet being used. Similarly, as the stride is increased, the number of

transitions increases at a higher rate than the number of states, and so the fraction of

distinct transitions falls, allowing a greater degree of compression. Alphabet reduction

can be applied to both NFA- and DFA-based schemes, while default transition

compression is a DFA optimisation technique.

5.2.6. Commodity versus Speciality Hardware

Considerable research has been carried out into improving the performance of

solutions based on commodity hardware such as off-the-shelf servers and Graphics

Processing Units (GPU). Commodity hardware has the advantage of comparatively

low cost and its performance may be adequate for many applications. Companies

entering into IDS product development may prefer to use commodity rather than

specialised hardware in order to reduce time-to-market, keep development costs down

and deliver a more maintainable product. Such companies might see the use of

specialised hardware as a second step reserved for the development of higher

performance products once the commodity-based products have gained a market

foothold.

Yu (2006) explains how CPU-based software approaches such as Snort and Linux

L7-filter cannot cope with high traffic rates. Becchi et al. (2009) measured the

performance of DFA, NFA and Hybrid-FA implementations on network and general

purpose processors. They found that the 4-way AMD Opteron performed much better

than the Intel Xeon and IXP2800, with throughput of between 15 and 70 Mb/s in the

case of the NFA design, and between 151 and 534 Mb/s in the case of the Hybrid-FA.

Day & Burns (2011) compare the performance of the single threaded Snort software

and the multi-threaded Suricata software on multi core systems. They recommend

Chapter 5 – Pattern Matching Methods

105

using multiple instances of Snort on multiple cores rather than a single multi-threaded

instance of Suricata. Running multiple instances of Snort would require the use of

flow pinning in order to split the traffic between the Snort instances. Wun et al. (2009)

explain why running Snort on a multi core system may not provide the expected

improvement in worst case performance due to the fact that certain exceptional

packets may cause a bottleneck in the regex matching in one of the Snort instances.

Albin & Rowe (2012) evaluated Snort on a Dell Poweredge R710 dual quad-core

server where each CPI was an Intel Xenon E5630 operating at 2.4GHz. They found

that Snort was limited in its ability to scale beyond 200-300Mb/s throughput per

instance.

The highly parallel architecture of GPUs makes them effective for many complex

algorithms. Their relatively low cost has prompted much research into their use for

offloading of regex matching from the CPU (Antonello et al., 2012). Vasiliadis et al.’s

(2009) GPU-based DPI system uses fixed string pre-filtering software running on the

CPU in order to reduce the amount of regex matching that needs to be performed by

the GPU. Payloads that match in the pre-filter are forwarded along with a regex

identifier to the GPU for regex matching. The GPU-based system performs well

provided each payload only needs to be matched against a small number of regexes.

However, the performance drops significantly if a large number of regexes need to be

matched against each payload. Vasiliadis et al. measured a worst case throughput of

700Mb/s on their NVIDIA GeForce 9–based system. It must be noted that their DFA-

based design cannot handle certain complex PCRE syntax such as constrained

repetitions, and that regexes containing such syntax must be handled by Snort

software running on the CPU. Zu et al. (2012) evaluated an NFA design on an

NVIDIA GTX-460 GPU. They give throughput figures of in excess of 10 Gb/s, but

it’s unclear what type and length of regex it can handle.

5.3. Conclusion

DPI typically involves a combination of fixed string and regex matching. Regexes are

now commonly used in NIDS rule sets and can be modelled as NFA or DFA

automata. In general, NFA-based schemes typically require much less memory but are

slower, whereas DFA-based schemes require much more memory but are faster. Much

research has been conducted into improving the memory efficiency of DFA models

Chapter 5 – Pattern Matching Methods

106

using a variety of techniques and into improving the speed of NFA models by

exploiting hardware parallelism.

Software-based systems, such as Snort, are unable to perform DPI at the high traffic

speeds found in today’s networks, particularly where the NIDPS system is to be used

to monitor an enterprise network’s internal traffic. There is therefore a need to use

other technology such as GPUs or FPGA-based hardware to accelerate the DPI

functionality. A classic FPGA-based scheme is to synthesise an NFA representation of

the regexes as FPGA logic. The problem with this approach is that the FPGA

configuration needs to be resynthesised whenever the rule set changes, something

which can take a considerable amount of time and effort. The FPGA device also needs

to be reconfigured and, unless partial reconfiguration is supported, the system will be

offline during this procedure. A more suitable design is one in which the regex data is

stored in memory and so can be easily and quickly updated while the system is

operating. Bit-Parallel architectures based on NFA are an example of a memory-

centric approach. Although a significant amount of research (Lee, 2010; Kaneta et al.,

2010) has been conducted into such architectures, considerable opportunities remain

to improve on the handling of some of the more complicated regex syntax such as

constrained {min,max} repetitions and back references. New algorithms for the

handling of constrained repetitions are the subject of Chapters 6 and 7.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

107

Chapter 6 - Constrained Repetitions in Regular

Expressions

The continuous emergence of new attacks means an ever increasing number of rules

for NIDPS, and the increasing complexity of attacks has resulted in increased usage of

regex-based signatures. The need to match against very large numbers of complex

regexes at multi-gigabit traffic rates is too demanding for a software solution.

Moreover, the increasing use of more complex regex features such as constrained

repetition quantifiers and back references places even more intensive processing

demands on NIDPS systems. As a result, there is an increasing need to find efficient

hardware solutions that can handle large numbers of rules, including all the features of

Perl Compatible Regular Expressions (PCRE), at high bit rates.

The most common approach to implementing a standard NFA in hardware is to

convert it into FPGA logic gates and registers (Sidhu and Prasanna, 2001). The

disadvantage of this approach is that the logic needs to be re-synthesised whenever the

rule set is updated. This has led to research into memory-based FPGA and ASIC

architectures which can be easily reconfigured. One such system is the Bit-Parallel

(BP) architecture based on the Glushkov NFA. This chapter proposes a modification

to this architecture in order to more efficiently handle constrained {min, max}

repetitions. To enable handling by the standard BP system, these repetitions first need

to be unrolled, often resulting in an excessive memory requirement. The solution

presented here can deal with the repetition directly without unrolling, thereby making

it possible to handle regexes that would not be suitable for the standard system.

6.1. Constrained Repetitions in Snort Rule Set

Table 17 illustrates the ever increasing number of rules in the Snort rule set,

approximately half of which include at least one regex. In the September 2012

snapshot, roughly 19% of the unique regexes contain at least one constrained

repetition quantifier, the syntax of which is explained in Table 18. Table 19 shows the

statistics for the constrained repetitions present in the September 2012 Snort rule set.

Most of the repeated sub-expressions are single rather than multi symbol, and the

quantifier values can be quite high, with a maximum of 4 017.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

108

Table 17: Snort Rule Set Statistics

Snort version 2.8 2.9.0.0 2.9.3.1

Snort VRT rule set snapshot date 17.02.2010 07.01.2011 18.09.2012

Number of rules 8 454 9 852 23 170

Number of rules with string signature 8 273 9 686 22 762

Number of rules with regex signature 4 386 4 577 12 460

Number of unique regexes 3 697 3 892 5 555

Number of regexes with constrained repetitions 497 598 1 043

Table 18: Constrained repetition quantifier syntax

Syntax Meaning

R{num} Match R exactly num times.

R{min, max} Match R at least min times and at most max times.

R{min,} Match R at least min times. R{min,} can be rewritten as R{min}R*

R{,max} Match R at most max times. Equivalent to R{0,max}.

Table 19: Snort Constrained Repetition Statistics (v2.9.3.1, 18.09.2012

snapshot)

Number of unique regexes which contain constrained repetitions 1 043

Total number of constrained repetitions 2 030

Single symbol repeated sub-expr. (e.g. literal, meta-character, character class) 1887

Multi-symbol repeated sub-expression 143

Maximum quantifier value (i.e. value of {min, max}) for single symbol repetitions 4017

Maximum quantifier value for multi-symbol repetitions 499

6.2. Bit-Parallel (BP) Architectures

Existing bit-parallel algorithms handle constrained repetition quantifiers by unrolling

which is not efficient considering that recent SNORT rule sets contain a very high

number of such quantifiers, many of which have high min/max count values.

Examples of memory-based architectures include the bitmap-based approach for the

Glushkov NFA (Lee, 2009) and the dynamic reconfigurable BP-NFA (Kaneta et al.,

2010). The former is based on the BPGlushkov algorithm and the latter on the

extended SHIFT-AND algorithm, both of which are detailed by Navarro and Raffinot

(2002) and utilise bit-parallelism (Wu and Manber, 1992; Baeza-Yates and Gonnet,

Chapter 6 – Constrained Repetitions in Regular Expression Matching

109

1992). Although these algorithms can be considered to be NFA-based, the

representation is in fact a DFA because the bitmask of active NFA states, that these

algorithms use, represents the current equivalent DFA state.

6.3. Glushkov NFA

The fundamentals of the Glushkov construction method were presented in section

2.1.4. The following describes how state traversal functions.

Consider the example G-NFA shown in Figure 50 for the example regex

RE=((ABA|C)B*)A.

0 1 2 3 4 5
A B A B A

6

C

B

A

A

B

Figure 50: The G-NFA for RE = ((ABA|C)B*)A

Two important properties of the G-NFA are that:

 all the transitions into a particular state y are labelled with the same character αy

 it’s free of ε-transitions

The first property allows the construction of a table, Enter[σ], which gives the set of

states reachable by each character σ ∊ Σ. In the given example Enter[A]={1,3,6}, and

so on for each character. If Active is the set of currently active states, then the first set

of active states prior to reading any character is Active={0}, and all subsequent sets of

active states, for each input character, σ, are given by:

]Enter[)x),REFollow(Active

Activex





 (in the case of a regex with a start anchor

 }0{)((]Enter[)x),REFollow(Active

Activex





 in the case of regex without a start

anchor

where x is the index for each position in the marked regex, RE . (See section 2.1.3

for a detailed description of anchors and multi-line mode).

i.e., the new Active set is the union of sets of states reachable from all states currently

in the Active set intersected with states reachable by the current input symbol, σ. In

Chapter 6 – Constrained Repetitions in Regular Expression Matching

110

other words, the new Active is the set of states reachable from all currently active

states, subject to each element being reachable by the current input symbol, σ. In the

case of an unanchored regex, state 0 is held active. Note that in the case of a regex

with a start anchor and multi-line mode enabled, state 0 must also be held active when

a newline character is consumed.

6.4. Counting Glushkov NFA

The standard G-NFA construction algorithm handles constrained repetition

quantifiers, RE{min,max}, by unrolling. This results in a total of max×m states (where

m is the number of symbol positions in the sub pattern, RE), which is clearly

inefficient if max is large. Smith et al. (2008) and Kumar et al. (2007) propose how a

counter variable can be used to improve the storage efficiency of their DFA-based

algorithms. This thesis describes how this idea can be used in the case of a G-NFA by

constructing a modified counting form of it in which repeated sub-patterns do not

need to be unrolled.

Consider the example regex looked at earlier, but with the addition of a constrained

repetition, RE = ((ABA|C)B*){min,max}A, where min and max are non-negative

integers. In the example NFA, the repeated sub-pattern, CNTiRE = (A1B2A3|C4)B5*, is

part of what will be referred to as a counting block, with associated language L(
iCNTRE)

= {C4, A1B2A3, C4B5, A1B2A3B5, C4B5B5, A1B2A3B5B5, ... }. There may be multiple

constrained repetition quantifiers in a single regex resulting in c counting blocks,

CNTi, indexed i={1..c}. The first step in the NFA construction is as before, except that

transitions out of each counting block are omitted. The example counting block

contains marked positions 1 to 5 as shown in Figure 51.

0 1 2 3 4 5
A1 B2 A3 B5

6

C4

B5Counting Block

A6

B5

Figure 51: G-NFA for marked sub-pattern

Definitions of)RELast(and Enter[σ] are as before, but x)REFollow(, must be

redefined so as to omit transitions out of the counting block for each position, x,

Chapter 6 – Constrained Repetitions in Regular Expression Matching

111

within the block. In the example in Figure 51, }5{4, )REFollow(. Note that the G-NFA

state numbers correspond directly with the positions in the marked regex, RE , and so

the index, x, can be regarded equally as a position in the regex or as a state in the G-

NFA.

x)RE(wFollo ,
 is the set of positions in RE which are reachable from x, excluding

any transition from within a counting block to outside of the block. This can be

described mathematically as follows:























i

CNTCNTyx

CNTCNT

i

CNTyx

)REPos(xif}RE L(v α*, uαv u

),RE Pos(), xRE Pos(y{y

)REPos(xif)}RE L(v α*, uαv u), RE Pos(y{y

ii

ii

i

,),

|

,,,|

This definition is the same as the original), x REFollow(for all positions with

index x outside of a counting block. For positions with index x within a counting

block, x)RE(wFollo ,
 is the set of positions within that counting block for which

the combination of the two characters αx followed by αy form a substring of some

string from the language of
iCNTRE , where y is also the index of some position

within the same counting block.

Note: * is the set of all strings over the alphabet,  , of the language expressed by

the marked regex (see section 2.1.1 for details). In other words, * is the set of all

strings that can be formed from the characters accepted by the marked regex.

Table 20 lists the values of x)RE(wFollo , for each state x.

 x)RE(wFollo ,

Chapter 6 – Constrained Repetitions in Regular Expression Matching

112

Table 20. Values of Follow' for each state x of example Counting G-NFA

x x)RE(wFollo ,

0 {1,4}

1 {2}

2 {3}

3 {5}

4 {5}

5 {5}

6 Ø

The following definitions specific to each counting block, CNTi, can now be added:

 FirstBlk is the set of states within the counting block that can be reached by states

outside of the block. It is also the set of states that can be reached by the first

character of each repetition cycle. Mathematically, this can be expressed as:

)}RE L(u*, αu), RE Pos(x) = {xREFirstBlk(
iii CNTxCNTCNT |

i.e. the set of positions within the counting block with index x for which the

corresponding character αx forms a string from the language of the counting

block’s sub-regex when appended with some combination of characters.

In the example shown in Figure 52, FirstBlk = {1,4}

0 1 2 3 4 5
A1 B2 A3 B5

6

C4

B5Counting Block

A6

B5

= FirstBlk state

Figure 52. FirstBlk states for example Counting G-NFA

 FinalBlk is the set of states within the counting block where a decision is made on

repeating and/or transitioning out of the block. Mathematically, this can be

expressed as:

)}RE L(*, uαu)RE Pos(x) = {xREFinalBlk(
iii CNTxCNTCNT  ,|

Chapter 6 – Constrained Repetitions in Regular Expression Matching

113

i.e. the set of positions within the counting block with index x for which the

corresponding character αx forms a string from the language of the counting

block’s sub-regex when prefixed with some combination of characters.

 IncrementBlk is the set of states within the counting block where the counter is

incremented. In many cases, this will be identical to the set FinalBlk set. However,

in order to avoid incrementing the counter more than once per traversal of the

counting block, any states in FinalBlk that are reached via traversals through other

FinalBlk states must be excluded.

 ,)(,|
ii CNTCNT REFinalBlkxy) ={yRElk(IncrementB  ∄

)}RE L(α*, uα u
iCNTyx  ,

i.e. the set of positions within the FinalBlk set excluding those that are positions

which are reachable from other positions within the same set via a single or

multiple state traversal.

In the example, as shown in Figure 51, FinalBlk = {3,4,5}. State x=5 can only be

reached from other FinalBlk states and so is excluded from the IncrementBlk set,

giving IncrementBlk = {3,4}.

0 1 2 3 4 5
A1 B2 A3 B5

6

C4

B5Counting Block

A6

B5

= FinalBlk state

A6

A6

_ = IncrementBlk state

Figure 53. FinalBlk and IncrementBlk states in example Counting G-NFA

In some cases it is possible to compact the constructed G-NFA as illustrated in

Figure 54. The resulting NFA is not however a Glushkov NFA and is not suitable

for use in the Counting G-NFA algorithm as it may include FinalBlk states that

can be reached both directly and via other FinalBlk states. This would make it

impossible to create a valid IncrementBlk set.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

114

C4

0 1 2 7
A1 B2 A3

3 4
B6

B6
B6

A7

A7

6

C4

0 1 2 7

A1 B2 A3
3

B6

B6
B6

A7

A7

64
B5

5

(i) Counting G-NFA for regex /((A1B2A3|C4B5)B6*){min,max}A7/

(ii) Invalid Counting G-NFA for regex /((A1B2A3|C4B5)B6*){min,max}A7/

A7

= FinalBlk state _ = IncrementBlk state

Counting Block

Counting Block

Figure 54. Counting G-NFA for regex /((ABA|CB)B*){min,max}A/

 FollowBlk is the set of states outside of the counting block that are reachable from

states within the counting block. In the example in Figure 51, FollowBlk = {6}.

) =REFollowBlk(CNTi

)}RE L(v α*, uαv uREFinalBlkx)REPos(),yREPos(y{y yxCNTiCNTi  ,),(,|

i.e. the set of positions, with index y, outside of the counting block for which the

corresponding character αy preceded by a character αx corresponding to a position

x within the FinalBlk set, forms a substring of the language of the regex. In other

words,.

The counting block has a counter variable, cnti, with the following operations carried

out for every character read:

1) Reset the counter if no state within counting block is currently active:

0)( iCNT cntREPosActive
i



2) Increment counter when one of the states within the IncrementBlk set is active:

1 iiCNT cntcnt)RElk(IncrementBActive
i



3) Initialise Follow΄ to be the set of states reachable from x, omitting any transitions

from a position inside a counting block to outside:

Chapter 6 – Constrained Repetitions in Regular Expression Matching

115

),, xREFollow(x)RE(wFollo 

4) Now if the counting block counter is ≥ min then the Follow΄ set is updated to

include transitions from positions within the counting block to positions outside of

the block:

)REFollowBlk(x) RE(wFollox)RE(wFollo

cntREFinalBlk(x

i

i

CNT

iiCNT

,,

))min())((





5) Now if the counting block counter is less than max then the Follow΄ set is updated

to include transitions from the FinalBlk positions to the counting block’s entry

positions (FirstBlk):

)REFirstBlk(x) RE(wFollox)RE(wFollo

cntREFinalBlk(x

i

i

CNT

iiCNT

,,

))max())((





The definition of the next set of active states can now be redefined as

 }0{)((]Enter[)x),RE(wFolloActive

Activex





 in case of regex without start

anchor,

]Enter[)x),RE(wFolloActive

Activex





 (in case of regex with a start anchor.

As before, the new set of Active states is the union of the sets of positions reachable

from currently active positions intersected with states reachable with the current input

symbol, σ.

6.5. Bit Parallelism

6.5.1. Standard G-NFA

The G-NFA maps quite elegantly to a BP representation. The equivalent DFA states

are stored in a bitmask of length m+1, where each bit corresponds to an NFA state and

a particular bit has value 1 if that NFA state belongs to the DFA state. In other words,

each DFA state corresponds to a set of NFA states which are indicated by the bits set

to 1 in the DFA state bitmask. This is illustrated in Table 21 for m=2.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

116

Table 21. Mapping between DFA state bitmask and equivalent NFA states

DFA state index DFA state bitmask Set of equivalent NFA states

0 001 {0}

1 010 {1}

2 011 {0,1}

3 100 {2}

4 101 {0,2}

5 110 {1,2}

6 111 {0,1,2}

The following is a brief description of the bit-parallel algorithm for the standard G-

NFA, full details of which are explained by Navarro and Raffinot (2002) and Lee

(2009).

The main decision in this algorithm is how best to represent the set,

},..0{, mxx)REFollow( where x is the marked regex position index (or equally the

NFA state number) and m is the number of positions in the marked regex. The most

compact representation, as illustrated in Table 22 for the example G-NFA from Figure

50, is a table of m+1 rows, where each row is a bitmask of length m+1 representing

x)REFollow(, and x is the row index. The problem with this table is that in the worst

case scenario, when m+1 states are currently active, m+1 memory accesses are

required per input character, i.e. slow speed.

Table 22. Follow Table indexed by NFA state index for RE = ((A1B2A3|C4)B5*)A6

NFA state index x)REFollow(, set x)REFollow(, bitmask

6543210

0 {1,4} 0010010

1 {2} 0000100

2 {3} 0001000

3 {5,6} 1100000

4 {5,6} 1100000

5 {5,6} 1100000

6 {Ø} 0000000

Chapter 6 – Constrained Repetitions in Regular Expression Matching

117

At the other extreme, a table, FOLLOW_ACTIVE, could be created with 2
m+1

rows,

where each row is a bitmask of length m+1 representing Active)REFollow(, and Active

is the row index. This table only needs one access per input character, but occupies a

huge amount of memory for practical values of m. There is therefore the usual trade-

off between memory and speed with the best solution being a hybrid of the above two

approaches. The size of the FOLLOW_ACTIVE table can be reduced using a

horizontal partitioning scheme (Wu and Manber, 1992; Navarro and Raffinot, 2002,

p.119). Table 24 shows how the example table from Table 23 can be split into two

much shorter tables. The overall FOLLOW_ACTIVE bitmask is found by ORing

together the values obtained from the two separate tables.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

118

Table 23. FOLLOW_ACTIVE indexed by Active bitmask

for RE = ((A1B2A3|C4)B5*)A6

Active bitmask

6543210

FOLLOW_ACTIVE[Active]

6543210

0000000 0000000

0000001 0010010

0000010 0000100

0000011 0010110

0000100 0001000

0000101 0011010

...

1111111 (127 decimal) 1111110

Table 24. Horz. partitioning by 2 of FOLLOW_ACTIVE

for RE = ((A1B2A3|C4)B5*)A6

Active[3..0]

bitmask

3210

FOLLOW_

ACTIVE[Active[3..0]]

654 3210

Active[6..4]

bitmask

7654
*

FOLLOW_

ACTIVE[Active[6..4]]

654 3210

0000 000 0000 0000 000 0000

0001 001 0010 0001 110 0000

0010 000 0100 0010 110 0000

0011 001 0110 0011 110 0000

...

1111

(15 decimal)

111 1110 1111 110 0000

*
Extra bit added in order to have two equally sized partitions

The standard BPGlushkov algorithm consists of the following stored data for each

regex. The bitmask values given are for an 8-bit BP implementation, with example

RE=((ABA|C)B*)A.

 ACTIVE bitmask representing the set of currently active states, Active, and is

updated after the processing of each symbol. The Least Significant Bit (LSB) of

this bitmask is set to 1 prior to reading the first character, to represent initial state

0. In the case of a regex without a start anchor, this LSB will be held asserted

Chapter 6 – Constrained Repetitions in Regular Expression Matching

119

throughout the processing of the packet in order to detect the pattern at any

position in the payload.

 LAST bitmask representing the set,)RELast(, i.e. the ‘accept’ or final states of the

G-NFA. In the G-NFA for the example, RE=((ABA|C)B*)A, there is only one

‘accept’ state. LAST has the binary value 0100 0000. The ACTIVE and LAST

bitmasks are ANDed together after processing each symbol, and a non-zero result

indicates a match has been found.

 ENTER table, with a row for each symbol, σ, in the alphabet of the regex, where

each row corresponds to the set Enter[σ]. The table has 2
8
 = 256 entries, one for

each 8-bit input symbol, where each entry represents the states reachable on

processing of a symbol with value equal to the entry’s index. The ENTER table for

the example, RE=((ABA|C)B*)A, is shown in Table 25.

Table 25. ENTER table for RE = ((A1B2A3|C4)B5*)A6

Symbol. σ

Symbol in hex

 (8 bits) Enter[σ] set

ENTER[σ] bitmask

7654 3210

A 41 {1,3,6} 0100 1010

B 42 {2,5} 0010 0100

C 43 {4} 0001 0000

 all other hex

values between

00 and FF

{Ø} 0000 0000

On reading a new payload symbol, the algorithm looks up the corresponding entry

in the ENTER table to find which states can be reached with that particular symbol.

e.g. If the input symbol is B, then the ENTER bitmask is 0010 0100 has bits

numbered 2 and 5 set to 1, which means that states 2 and 5 are reachable with the

symbol B.

 FOLLOW_ACTIVE table, with a row for each possible value of the ACTIVE

bitmask. Such a table occupies (m+1)2
m+1

bits, which is usually too large. This can

be reduced by horizontally splitting it into k tables, giving a total occupied space

of k(m+1)2
(m+1)/k

bits. If there are s bits of available memory then k can be

calculated as follows

s = k(m+1)2
(m+1)/k

 l

 ()

Chapter 6 – Constrained Repetitions in Regular Expression Matching

120


()

 (())


()

 ()


()

Horizontal partitioning for the example, RE=((ABA|C)B*)A, is shown in Table

24.

On reading a new payload symbol, the algorithm uses the current value of the

ACTIVE bitmask to index the FOLLOW_ACTIVE table in order to find which

states can be reached.

Figure 55: SNORT regular expression symbol count distribution
(Snort 2.9.3.1, rule snapshot from 18.09.2012. Back-references & subroutine sub-patterns were not considered)

Figure 56 shows a simple high level view of the functionality of the BP G-NFA

algorithm. As shown in Figure 55Error! Reference source not found., a very large

roportion of SNORT regexes consist of less than 32 symbols. These can be

represented by a 32-bit bitmask. The search algorithm for m=31 and k=4 is then as

follows

ACTIVE ← 0x00000001 /*(0x denotes hex) Set LSB of 32-bit mask to

1*/

FOR σ ϵ Σ DO /* repeat for each input symbol (element of

alphabet)*/

 FOLLOW_SUM ←

FOLLOW_ACTIVE[3][ACTIVE(31..24)] |

FOLLOW_ACTIVE[2][ACTIVE(23..16)] |

FOLLOW_ACTIVE[1][ACTIVE(15..8)] |

FOLLOW_ACTIVE[0][ACTIVE(7..0)]

Chapter 6 – Constrained Repetitions in Regular Expression Matching

121

 ACTIVE ← FOLLOW_SUM & ENTER[σ]

 IF (ACTIVE & LAST)

 REPORT MATCH FOUND

 EXIT

 END IF

END FOR

REPORT NO MATCH FOUND

Find bitmask

representing set of

states reachable

from the currently

active states

ACTIVE

bitmask

Find bitmask

representing set of

states reachable

with current input

symbol

input

symbol

FOLLOW_ACTIVE

bitmask

ENTER

bitmask8

n

n

n

n=no. states in G-NFA = m+1, m=number of symbols in regex

One clock cycle

ACTIVE

bitmask

Bitwise

AND
n

FOLLOW_ACTIVE

ENTER

Bitwise

AND

LAST

bitmask OR

reduction Match

Figure 56. High level view of BP G-NFA algorithm

The bitmasks retrieved from the ENTER and FOLLOW_ACTIVE tables are ANDed

together to find the new value of the ACTIVE bitmask. This can be seen from Table

26 for the example regex, RE=((ABA|C)B*)A. As the regex has no start anchor, then

bit 0 is held asserted.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

122

Table 26. Input string ABABBA with RE=((ABA|C)B*)A (no anchor)

Inp.

Sym.

ENTER

7654 3210

FOLLOW_

ACTIVE

[ACTIVE[7..4]]

7654 3210

FOLLOW_

ACTIVE

[ACTIVE[3..0]]

7654 3210

FOLLOW_

ACTIVE

7654 3210

ACTIVE

7654 3210

ACTIVE AND

LAST

7654 3210

 0000 0001 0000 0000

A 0100 1010 0000 0000 0001 0010 0001 0010 0000 0011 0000 0000

B 0010 0100 0000 0000 0001 0010 0111 0010 0000 0111 0000 0000

A 0100 1010 0000 0000 0001 1110 0001 1110 0000 1011 0000 0000

B 0010 0100 0000 0000 0111 0110 0111 0110 0010 0101 0000 0000

B 0010 0100 0110 0000 0001 1010 0111 1010 0010 0001 0000 0000

A 0100 1010 0110 0000 0001 0010 0111 0010 0100 0001 0100 0000

Match found!

6.5.2. Counting G-NFA

This section explains how the standard bit parallel algorithm can be extended to

implement the counting G-NFA by using a bitmask representation of the sets

explained earlier. Each counting block has the following storage elements:

 MIN: integer value, min. number of repetitions

 MAX: integer value, max. number of repetitions

 POS_CNT: bitmask indicating states contained in the counting block

 CNT: integer value, number of times the pattern has been seen

 INCREMENT_BLK: bitmask indicating states where counter value can be

incremented

 FIRST_BLK: bitmask indicating the entry states of the counting block

 FINAL_BLK: bitmask indicating the exit states of the counting block, assuming

counter has reached the required value

 FOLLOW_BLK: bitmask indicating states outside the counting block which can be

reached from within the block

The following is the BP counting G-NFA search algorithm for m=31, k=4

ACTIVE ← 0x00000001 /* Set LSB of 32-bit bitmask to 1 */

FOR σ ∊ Σ DO /* repeat for each input symbol */
FOLLOW_SUM ← 0x00000000 /* Zero 32-bit bitmask */

/* Consider each of the c counting blocks */

FOR i ϵ 1...c /* where c=no. of counting blks */

ACTIVE_IN_CNT_BLK ← ACTIVE & POS_CNT(i)

IF (ACTIVE_IN_CNT_BLK) /* Counting blk state active? */

 /* Are we in one of the states where counter *

 * must be incremented */

IF (ACTIVE_IN_CNT_BLK & INCREMENT_BLK(i))

CNT(i) ← CNT(i) + 1

Chapter 6 – Constrained Repetitions in Regular Expression Matching

123

 END IF

 /* Are we in one of the states where we need to check *

 * if we can repeat or transition out of counting blk? */

 IF (ACTIVE_IN_CNT_BLK & FINAL_BLK(i))

IF (CNT(i) ≥ MIN(i)) /* Can we move onto next stage? */

 /* Allow transitions out of counting block */

FOLLOW_SUM ← FOLLOW_SUM | FOLLOW_BLK(i)

END IF

IF (CNT(i) < MAX(i)) /*Can we repeat this counting

block?*/

 /* Allow transitions back to counting *

 * block’s initial state(s) */

FOLLOW_SUM ← FOLLOW_SUM | FIRST_BLK(i)

END IF

 ENDIF

ELSE

 /* No state active in this counting block,

 * so reset the counter

 */

 CNT(i) ← 0

END IF

END FOR

/* Combine the set of follow states calculated in the counting

*

 * block section above with the standard horz.

*

 * partitioned FOLLOW_ACTIVE values

*/

FOLLOW_SUM ← FOLLOW_SUM |

FOLLOW_ACTIVE[3][ACTIVE(31..24)] |

FOLLOW_ACTIVE[2][ACTIVE(23..16)] |

FOLLOW_ACTIVE[1][ACTIVE(15..8)] |

FOLLOW_ACTIVE[0][ACTIVE(7..0)]

/* Calculate new set of active states by ANDing together *

 * the bitmask of states reachable from the currently *

 * active states with the bitmask of states reachable *

 * with the current input symbol */

ACTIVE ← FOLLOW_SUM & ENTER[σ]

IF (ACTIVE & LAST) /* Is one of the Accept states active? */

REPORT MATCH FOUND

EXIT

END IF

END FOR

REPORT NO MATCH FOUND

Chapter 6 – Constrained Repetitions in Regular Expression Matching

124

Any state in

counting blk

active?

Reset counting

block's counter

Any state in

FinalBlk bitmask

correspond to an

active state?

If counter has

reached min then

set FOLLOWCNT_A to

be all transitions out

of blk, i.e.

FOLLOW_BLK

If counter is less

than max then

set

FOLLOWCNT_B to

be blk's entry

states, i.e.

FIRST_BLK

ACTIVE bitmask

and counter

Find bitmask

representing set of

states reachable

with current input

symbol by looking

up ENTER table

Input

symbol

If state in IncrementBlk

bitmask corresponds to an

active state, then

increment block’s counter

Bitwise

OR

FOLLOWCNT_A
FOLLOWCNT_B

FOLLOWCNT

Find bitmask

representing set of

states reachable

from the currently

active states

(outside of cnting

blk) by looking up

FOLLOW_ACTIVE

table

Bitwise

OR

FOLLOW

bitmask

FOLLOWCNT

FOLLOW

_SUM
Bitwise

AND

ENTER

bitmask

ACTIVE bitmask

ENTER

bitmask

FOLLOW

bitmask

yes

no

One clock cycle

yes

Set FOLLOWCNT

bitmask to zero

no

8

n
n

n

n

n

(n=no. states in G-NFA = m+1, m=number of symbols in regex)

Counting Block part of algorithm Standard BP G-NFA algorithm

Figure 57. High level view of BP Counting G-NFA algorithm

Figure 57 illustrates how the counting scheme is combined with the standard BP G-

NFA to produce the overall BP counting G-NFA algorithm. The large grey box

represents the functionality that executes in one clock cycle of operation. Although in

practice there can be multiple counting blocks, this simplified diagram just shows one.

Comparison of the ACTIVE and LAST bitmasks in order to find a match has been

omitted for clarity.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

125

6.5.3. Counting G-NFA for single symbol elements

The above algorithm can be simplified if the repeated element is just a single

symbol. The INCREMENT_BLK, FIRST_BLK and FINAL_BLK bitmasks are not

required, as POS_CNT indicates the single state contained in the counting block.

Figure 58 illustrates this simplification of the algorithm.

Counting blk state

active?

Reset counting

block's counter

If counter has

reached min then

set FOLLOWCNT_A to

be all transitions out

of blk, i.e.

FOLLOW_BLK

If counter is less

than max then

set

FOLLOWCNT_B to

be this blk’s

state, i.e

POS_CNT

ACTIVE bitmask

and counter

Find bitmask

representing set of

states reachable

with current input

symbol by looking

up ENTER table

Input

symbol

Increment block’s counter

Bitwise

OR

FOLLOWCNT_A
FOLLOWCNT_B

FOLLOWCNT

Find bitmask representing set of

states reachable from the

currently active states (outside of

cnting blk) by looking up

FOLLOW_ACTIVE table

Bitwise

OR

FOLLOW

bitmask

FOLLOWCNT

FOLLOW

_SUM
Bitwise

AND

ENTER

bitmask

ACTIVE bitmask

ENTER

bitmask

FOLLOW

bitmask

yes

no

One clock cycle

Set FOLLOWCNT

bitmask to zero

8

n
n

n

n

n

(n=no. states in G-NFA = m+1, m=number of symbols in regex)

Counting Block part of algorithm Standard BP G-NFA algorithm

Figure 58. High level view of Counting G-NFA for single symbol repetition

6.6. Implementation

6.6.1. Hardware Architecture

The target platform is the open-source NetFPGA-10G development PCI board based

on the Xilinx Virtex-5 TX240T FPGA. This FPGA can operate at up to 550MHz and

has significant internal memory in the form of 648 block RAMs of size 18Kb, giving a

total of 11,664Kb, and 2,400Kb of distributed RAM. The aim is to make efficient use

of this internal memory so as to maximize performance.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

126

The architecture, as illustrated in Figure 59, reuses several components of the

NetFPGA reference pipeline (Naous et al., 2008). This pipeline has two buses, a 64-

bit wide packet bus and a register bus. Software running on the host can access the

registers using ioctl calls. The register bus allows indirect modification of the contents

of the block RAM used by the DPI implementation. The NetFPGA ethernet MAC

queues, input arbiter, output port lookup and memory interface controller Verilog

modules, are reused and are summarised as follows:

 Ethernet MAC Queues – each ethernet MAC has a corresponding block RAM

FIFO

 Input Arbiter – selects which RX queue to service next

 Output port lookup – longest prefix matching on destination IP address to

determine the output ethernet port

 Memory Interface Controller – NetFPGA project includes modules for interfacing

to SRAM and DRAM

 The following new modules are added:

 Fixed String DPI – carries out fixed string matching on the packet payload

 regex DPI – carries out regex matching on the packet payload

 Multi-match header classification – classifies packet headers against IDS ruleset

 Match Decision – combines results from the three NIDS classification modules. If

any of the three matching modules reports no match found for a particular packet,

then the matching can be terminated in the other two modules and processing of

the next packet initiated

 Packet Buffer Control – each incoming packet is buffered in memory until a match

decision is made. Once the current packet matching has completed, the next packet

header and payload is passed to the matching modules

 Note that TCP/IP reassembly is not handled in this architecture

Chapter 6 – Constrained Repetitions in Regular Expression Matching

127

Input Arbiter

Ethernet MAC Rx Queues

Packet Buffer Control

M
e

m
o

ry
 I
n

te
rf

a
c
e

 C
o

n
tr

o
lle

r

E
x
te

rn
a

l
M

e
m

o
ry

Multi-

match

Header

String

DPI

Match Decision

M
a

tc
h

in
g

ru
le

s

M
a

tc
h

in
g

ru
le

s

P
a

s
s
/

D
is

c
a

rd

M
a

tc
h

In
fo

 P
k
t

Output

Port

Lookup

Ethernet MAC Tx

Queues

DMA over PCI to

host

(Match info pkt)

R
e

a
d

y
 fo

r n
e

x
t p

k
t

Update

classification

tables via

register bus

(PCI from host)
Pkt

Pkt

Packet Buffer Control
P

o
rt

Pkt

regex

DPI

M
a

tc
h

in
g

ru
le

s

F
in

is
h

e
d

F
in

is
h

e
d

F
in

is
h

e
d

Figure 59: Proposed overall IDS architecture on NetFPGA platform

The Regex DPI module, as illustrated in Figure 60, consists of many regex

processing engines (PEs) operating in parallel, each handling a single regex which is

stored in simple dual-port block RAM. The regex data can be dynamically updated by

software running on an internal or external CPU. The maximum number of engines is

limited by the available memory, logic and interconnects on the FPGA.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

128

Engine Data

Update

Handler

Packet Buffering

Handler

request data

RegexEngine

Instance

Instance #N

Instance #0Packet

payload

data

Overall

match

result

payload

data & ack

match result

regex data

write enable

regex

data

engine id

write

enable

= single/common data flow

= flow replicated for each engine instance

Figure 60: Regex DPI Handling Module hardware architecture

The Engine Data Update Handler module is responsible for writing the regex data to

the PE identified by the engine id input. This essentially involves decoding the engine

id and asserting the appropriate write enable output.

The Packet Buffer Handler module is responsible for buffering received payload

symbols and handling handshaking communication with all PEs. It also monitors the

match and no_match signals from all PEs in order to declare an overall match result.

The Packet Buffer Handler module implemented in order to evaluate the design is

shown in Figure 61. The payload data input is a 10-bit wide input signal consisting of

8 bits of symbol data, a first-symbol-in-packet flag and a last-symbol-in-packet flag.

Buffer memory consists of two Block RAM (BRAM)–based FIFOs, each capable of

holding 2048 10-bit symbols. Each FIFO contains only the payload data from one

particular packet. Once a match is found for a particular packet, the remaining content

of that packet is discarded by simply resetting the associated FIFO.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

129

Engine

Handshaking

FSM

Packet

payload

data

1

0

M
U

X

10

10

ack

req

match

no_match

Payload FIFO

Writing FSM

FF

clk

CE

10

symbol

stream to

engines

handshaking

signals

to/from

engines

rd_en rstempty

Instance #1

Instance #0

Payload FIFO

2048x10bit
full

prog_full

wr_en dout

din

first last

1 1

ready

clk

clk clk

valid

sym

OR

bitwise

AND

bitwise

AND

bitwise

= flow replicated for each engine instance

match
no_match

Figure 61: Payload Buffer scheme used in evaluation

The Payload FIFO Writing FSM is responsible for writing received symbols into the

appropriate FIFO. If the prog_full signal indicates that the FIFO is almost full, then

the FSM will deassert the ready output signal. Once the last symbol of the payload has

been written to a FIFO, it switches to writing to the other FIFO. If that FIFO is not

empty, then it will deassert the ready flag and pause until it is.

The Engine Handshaking FSM handles communication with all PEs and selects

which payload FIFO to read from. The same payload symbols are fed to all PEs

concurrently. The FSM must therefore wait for all PEs have asserted their req output

signals, indicating that they are ready, before sending symbols from the FIFO to the

PEs. Similarly, the FSM will only declare that no match has been found if all PEs

assert their no_match outputs. It asserts the ack signal to indicate a valid symbol

output signal. If any PE asserts its match output, the FSM will assert the overall match

output signal and reset the FIFO in order to remove any remaining content from the

successfully matched packet. The FSM switches FIFO once the overall match or

no_match output has been asserted in order to read in the next packet to be processed

by the PEs.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

130

A simplified version of the logic present in each PE is illustrated in Figure 62 and a

schematic for the counting block mechanism it uses is shown in Figure 63. This logic

is a single symbol implementation of the algorithm outlined earlier. The logic used to

handle regex features such as anchors and multi-line mode has been omitted for

clarity. Each engine requires one BRAM for the ENTER table and one for each of the

horizontally partitioned FOLLOW_ACTIVE tables. In the case of n=32, four BRAMs

are required for a 4-way partition of the FOLLOW_ACTIVE table. Each Virtex5

BRAM can be configured to be simple dual port of size 512x32, i.e. each 32-bit wide

dual port BRAM has 512 rows. Simple dual port mode means that one port is used for

reading and the other for writing, i.e. one port cannot be used for both. However, each

engine only uses 256 rows per BRAM. Therefore, so as to maximise space efficiency,

a quad-port “wrapper” can be added around each BRAM, where each port accesses

one half of the memory. This is achieved by time division multiplexing the access to

the BRAM which means the normally dual port memory is clocked at twice the rate of

the rest of the design. This has the disadvantage of reducing the maximum frequency

of operation of the design by 50%, as well as adding some additional logic. So it boils

down to the usual time-space trade-off. Xilinx provides an application note on how to

implement a quad-port BRAM (Sawyer and Defossez, 2002).

Chapter 6 – Constrained Repetitions in Regular Expression Matching

131

OR

bitwise

LAST (register)
n

BRAM1

256×n

ENTER

Multiple BRAMs

256xn

FOLLOW_

ACTIVE
clk

8

8

Counting

Block

clk

1

MATCH

ACTIVE

FOLLOW_SUM

Packet byte

8

clk n

n

n

n

n

n

n

n

Figure 62: Outline of Regex Processing Engine (PE)
(for regex with up to n-1 symbols)

A single symbol is processed by a PE in each clock cycle. The input to the counting

mechanism, as illustrated in Figure 63, is the current active bitmask. A 12-bit counter

is used to in order to support a maximum counter value of 4095, the maximum value

of max found in the regexes extracted from the Snort rule set used for the evaluation.

The counting mechanism is active when the counting block state is active and, while

active, its counter is incremented in each clock cycle. Otherwise the counter is cleared

to zero. The output of the counting mechanism is the n-bit FOLLOWCNT bitmask that

can have the following bits set:

a) No bits set because the counter value is zero.

b) Bit corresponding to counting block state, indicating that repetition is enabled.

This occurs if the counter value is less than max.

c) Bits corresponding to states, outside of the block, that are reachable from the

counting block state, i.e. allowing transition out of the block. This occurs if the

counter value is at least min.

d) A combination of (b) and (c) if the counter is at least min and less than max.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

132

The reader should refer to Figure 58 for a higher level view of the functionality

outlined in Figure 63.

OR

bitwise

POS_CNT

(register)

active

12-bit

Counter

(0 to 4095)

clear_cnt

clk

1

12

NOR

bitwise

count

Comparator

≥MIN

(register)

FOLLOW_BLK

(register)
1

0

Comparator

<
MAX

(register) POS_CNT

(register)
1

0

FOLLOW_SUMCNT

12

12

1

1

M
U

X

M
U

X

n

1

1

n

n

n

n

n

n

n

Figure 63: Counting Block Mechanism for regex with up to n-1 symbols

6.6.2. Bitmask Generation Software

Pre-processing software rewrites certain constrained quantifiers, as listed in Table 27,

so that they can be handled by the counting G-NFA. R{0,max} needs to be rewritten

because the counting block cannot handle a min of zero. R{num} at the end of a regex

is rewritten as R{num-1,num-1}R as the regex accept state needs to be outside of the

counting block.

Table 27. Rewriting of constrained quantifiers

Original Rewritten

R{num} R{num,num}

R{min,} R{min,min}R*

R{,max} or R{0,max} R?|R{1,max}

R{num} located at end of regex R{num-1,num-1}R

Chapter 6 – Constrained Repetitions in Regular Expression Matching

133

Software is required to convert the Snort regexes into the Counting G-NFA and

corresponding bitmasks. The CCP C program developed by Champarnaud et al.

(2004) performs pattern matching based on the G-NFA. This software consists of two

principal modules, the first generates the automaton from the user supplied regex

pattern and the second uses the automaton to scan a user supplied text file for

occurrences of the pattern. The first module was extended to handle most of the PCRE

syntax found in Snort and a layer added to handle the conversion of the automata into

tables of bitmasks for storage in BRAM. This layer also takes account of the single

line mode and case insensitivity modifiers when generating the bitmasks. The anchor

and multi-line mode modifier values, on the other hand, are programmed into a flags

register in each PE so as to control its operation.

Consider the example regex /abc{2,3}defghi/. The modified CCP algorithm will

parse this regex and generate an ENTER and a FOLLOW table, LAST bitmask =

0x00000400, in addition to extracting details of the counting block, i.e. POS_CNT =

0x00000008 and FOLLOW_BLK = 0x00000010 bitmasks, MIN=2 and MAX=3 counter

values. The generated ENTER table is indexed by each possible 8 bit symbol value

and the FOLLOW table by each state’s position, as outlined in Table 28.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

134

Table 28. ENTER and FOLLOW tables as generated by modified CCP

software

Input Symbol ENTER State position FOLLOW

0x00 0x00 00 00 00 0 0x00 00 00 02

...etc... 0x00 00 00 00 1 0x00 00 00 04

0x61 (ASCII ‘a’) 0x00 00 00 02 2 0x00 00 00 08

0x62 (ASCII ‘b’) 0x00 00 00 04 3 0x00 00 00 00

0x63 (ASCII ‘c’) 0x00 00 00 08 4 0x00 00 00 20

0x64 (ASCII ‘d’) 0x00 00 00 10 5 0x00 00 00 40

0x65 (ASCII ‘e’) 0x00 00 00 20 6 0x00 00 00 80

0x66 (ASCII ‘f’) 0x00 00 00 40 7 0x00 00 01 00

0x67 (ASCII ‘g’) 0x00 00 00 80 8 0x00 00 02 00

0x68 (ASCII ‘h’) 0x00 00 01 00 9 0x00 00 04 00

0x69 (ASCII ‘i’) 0x00 00 02 00 10 0x00 00 00 00

.... etc... 0x00 00 00 00

Table 29. FOLLOW_ACTIVE tables

ACTIVE

bits 7 to 0

FOLLOW_ACTIVE

[0]

 ACTIVE

bits 15 to 8

FOLLOW_ACTIVE

[1]

0x00 0x00 00 00 00 0x00 0x00 00 00 00

0x01 0x00 00 00 02 0x01 0x00 00 02 00

0x02 0x00 00 00 04 0x02 0x00 00 04 00

0x03 0x00 00 00 06 0x03 0x00 00 06 00

0x04 0x00 00 00 08 0x04 0x00 00 00 00

0x05 0x00 00 00 00 0x05 0x00 00 02 00

0x06 0x00 00 00 0C 0x06 0x00 00 04 00

0x07 0x00 00 00 0E 0x07 0x00 00 06 00

0x08 0x00 00 00 00 etc...

0x09 0x00 00 00 02

etc...

0x80 0x00 00 01 00

0x81 0x00 00 01 02

etc...

0xff 0x00 00 01 EE 0xff 0x00 00 06 00

Chapter 6 – Constrained Repetitions in Regular Expression Matching

135

The new layer of software added to CCP then converts the FOLLOW table into four

horizontally partitioned FOLLOW_ACTIVE tables, two of which are shown in Table

29. The final step is to convert all tables and bitmasks into a format suitable for

uploading into FPGA memory. All the data is stored in a binary file based on the

VHDL STD_LOGIC data type (Tang, 2000) which is suitable for reading by a VHDL

test bench. This file is also suitable for reading by a microprocessor for programming

of the DPI core via memory-mapped I/O.

One serious problem with programming the BRAMs via the test bench is that it results

in an excessively long simulation run time. One way of avoiding this issue is to hard

code the BRAM data into the VHDL code using the INIT_xx generic attributes

available in each Xilinx BRAM primitive (Xilinx, 2012a). Therefore, for simulation

purposes, only non-BRAM data is stored in the binary data file that is loaded

dynamically via the test bench, i.e. bitmasks such as FIRST, FINAL, POS_CNT, etc.

In the case of BRAM data, i.e. ENTER and FOLLOW_ACTIVE tables, a VHDL

package file is generated which contains an array indexed by the regex engine

identifier. Each element of this array contains an array of five elements, where each

element represents the contents of a single BRAM. Each of these BRAM data

elements consists of an array of bit vectors, where each vector corresponds to an

INIT_XX attribute.

6.7. Performance Results

6.7.1. Synthesis and simulation

The design was implemented in VHDL for a bitmask length of 32 with the tables

horizontally partitioned four times. Simulation and evaluation was performed with the

Xilinx Virtex5 TX240T (Speed -2) as the target FPGA device. Longer bitmasks, and

hence regex lengths, could have been implemented, but would occupy a significantly

larger amount of memory. Doubling the bitmask length typically involves an increase

in the storage requirement by a factor of 4. This is because both the number of

horizontal partitions and the width of each table are doubled. It should be noted,

however, that the majority of regexes are short, as shown in Figure 55.

Sets of regexes, each containing a single constrained repetition and each having less

than 32 states in the Counting G-NFA, were randomly chosen from the Snort rule set.

The bitmask generation software was then used to convert these regexes into tables of

Chapter 6 – Constrained Repetitions in Regular Expression Matching

136

bitmasks for programming the FPGA BRAM. All tests were repeated with different

sets of regexes and the results were found to be the same for a particular number of

regexes. Payload data extracted from the Shmoo Group (2009) DEFCON traffic traces

were used for the timing simulation. Power analysis was performed using the Xilinx

XPower Analyzer.

Table 30: Virtex5 TX240T Device Utilisation

Resource 32 PEs 64 PEs 96 PEs

Block RAM 28% 50% 75%

Slices 11% 15% 39%

Xilinx XST tool gave the maximum clock frequency as 201.5 MHz on the Virtex5

and 220 MHz on the Virtex7 with corresponding throughputs of 1.6 Gb/s and 1.8

Gb/s, respectively. Resource utilisation figures for the Virtex5 are given in Table 30.

It can support a maximum of 128 PEs due to its limited BRAM. A higher end FPGA

such as the Virtex7 1140T has 5.8 times more BRAM and so could handle up to 750

PEs, as shown in Table 31.

Table 31: Virtex7 1140T Device Utilisation

Resource 256 PEs 512 PEs 736 PEs

Block RAM 34% 68% 97%

Slices 8% 14% 20%

The current VHDL design uses only half of each BRAM. BRAM utilisation could be

maximised at the cost of reduced maximum processing speed by clocking the BRAM

at twice the rate of the PE and performing time division multiplexed reading of the

BRAM.

In order to minimise power consumption, the BRAM Write and Read Enable inputs

were only asserted when updating the regexes and processing packets, respectively.

This significantly reduces power consumption at lower packet throughput rates as

illustrated in Figure 64 for an implementation with 96 PEs.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

137

Figure 64: Power Consumption as a function of throughput

Power consumption was also measured with different numbers of PEs in the

implementation and was found to increase linearly with the number of PEs, rising

from 2.8W with 8 PEs to 6.5W with 96, measured at maximum throughput.

6.7.2. Memory requirements

Each regex requires 5kbytes of BRAM. 2115 regexes from the Sep. 2012 rule set are

compatible with the Counting G-NFA implementation and would require a total of

10MB of BRAM. The Virtex 7 1140T has 7MB of BRAM and so two would be

required to handle all compatible regexes assuming time division multiplexed reading

was performed.

6.7.3. Memory and power savings

Consider the following regex from the Snort v2.9 rule set

 RE=\S{998}\S

where \S means any non-whitespace character.

This RE requires only 3 states in the Counting G-NFA and can be easily handled in

the 32-bit BP implementation which requires 5 Kbytes of BRAM per PE. Compare

this to the standard G-NFA which would have 1000 states after unrolling of the

repetition. A 1000-bit BP implementation with 10-bit horizontal partitioning would

require 12 Mbytes of BRAM for just this regex! Clearly it is much more storage

efficient to use the Counting G-NFA except for cases where the unrolled G-NFA has

less than 32 states. The reduced memory results in significant power savings.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

138

6.7.4. Extending to multiple counting blocks

This single counting block implementation could be extended to handle the generic

32-bit algorithm where each PE can have multiple counting blocks. For space

efficiency, such an implementation would have a range of PE types, where each PE

type has a different number of counting blocks. The relative numbers of each type

would be determined by the typical distribution of regexes as a function of the number

of constrained repetitions contained in each regex. Figure 65 shows such a distribution

for the September 2012 snapshot of the Snort rule set. Table 17 showed that of the

5555 unique regexes, 1043 contained constrained repetitions. As can be seen from the

chart in Figure 65, the vast majority of these contain just one constrained repetition.

Figure 65. Distribution of Snort regexes based on no. of constrained repetitions

(v2.9.3.1, 18.09.2012 snapshot)

6.8. Related Work

Existing BP algorithms (Lee, 2010; Kaneta et al., 2010) handle constrained repetitions

by unrolling, which is not efficient since the SNORT rule set contains a high number

of such quantifiers, many of which have high min/max count values. This thesis

describes how a counting design can be integrated into the BP architectures proposed

in existing research.

The majority of other research into the handling of constrained repetitions is based

on the approach of converting the NFA into a static FPGA configuration bitstream as

opposed to using memory-based architectures. The bitstream must be regenerated

every time the rule set changes. Such regeneration can be quite time consuming for

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

re
g

e
x
e
s

Number of constrained repetitions

Chapter 6 – Constrained Repetitions in Regular Expression Matching

139

large rule sets, often taking several hours. Moreover, reconfiguration of the FPGA

device itself will require a short system downtime, which is not ideal. Regeneration of

the bitmask tables for the BP G-NFA system is performed in software for each of the

modified regexes and only the modified tables are reprogrammed on the FPGA.

Depending on the number of regexes to be updated, the entire procedure should be a

matter of seconds.

Bispo et al. (2006) present a static FPGA configuration type system. It uses a shift

register to deal with overlap but, unlike the system proposed in this thesis, it cannot

handle constrained repetitions of multi-symbol sub-expressions. Faezipour and

Nourani (2008) propose another static logic–based solution which adds support for

multi-symbol repeated sub-expressions. They claim that they only need to deal with

overlap if the repeated sub-expression is at the beginning of the regex. However

overlap is also an issue when the sub-expression is located elsewhere in the regex.

Yun and Lee (2009) present a similar solution but admit that it does not fully handle

overlap. Long et al. (2010) add BRAM-based character matching to save logic

resources.

Pao (2009) and Wang et al. (2010) carried out research into NFA-based architectures

which handle constrained repetitions without unrolling. Pao’s (2009) CX-NFA

architecture stores its lookup tables in TCAM which typically increases cost and

energy usage. Detailed evaluation figures are not provided. Wang et al. propose an

NFA-based architecture, called CES (CCR regExp Scanner), which is suitable for

FPGA synthesis. Its building blocks are Character Class with Constraint Repetition

(CCR) modules and its operation is based on the fact that most regexes can be

regarded as a sequence of character classes with repetitions, which are connected by

concatenation and alternation operators, i.e. RE=CCR1CCR2CCRn. Each CCR

module handles the matching of a single CCRi using a MIN-MAX algorithm which

uses two counters (MINi, MAXi) to keep track of the minimum and maximum number

of character repetitions that CCRi may have matched. The second level of the system

is the CES block or tile which consists of a mesh of interconnected CCRs as

illustrated in Figure 66. By default, the interconnections are disabled and must be

enabled using configurable bits in each CCR, as shown in Figure 67. A CCR can also

be configured as bypassed in order to cope with an unbalanced alternation.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

140

CCR11 CCR12 CCR13 CCR14

CCR21 CCR22 CCR23 CCR24

Unused CCR Normal CCR Bypass CCR

Activation Signal Bypass Signal

Unused connection

Example regex

RE=CCR11(CCR12CCR13|CCR22)CCR14

Figure 66. CES tile mesh for example regex

1 1 0 0

Match

found

Enable bits

CCR1

CCR2

CCR3

CCR4

Activate

this CCR

Figure 67. CCR Interconnections

Unlike the BP scheme proposed in this thesis, CES only uses BRAM to handle

character class recognition. The paths between CCRs within each CES tile are fixed at

synthesis and the interconnections are enabled or disabled using the enable bits in

each CCR. Each normal CCR represents an NFA state and so the states that are

reachable from those currently active are determined by the enabled connection paths

between CCRs within the CES tile mesh and associated match-found signal values. A

fully flexible CES tile would require an excessive number of interconnections in order

to handle all possible regex concatenations and alternations. As a workaround, Wang

et al. suggest that the design be synthesised with a range of CES topologies, with a

portion of CES tiles optimised for each particular type of regex. The proportion of

each type of CES tile would be based on an analysis of recent rule sets. Another

disadvantage of the CES architecture is that it can only handle constrained repetitions

Chapter 6 – Constrained Repetitions in Regular Expression Matching

141

of single symbol elements. Wang et al. synthesised their design for a Virtex-5

LX110T FPGA and report a clock frequency of approx. 200MHz and throughput of

1.6 Gb/s for a single 32 symbol regex implementation, very similar to that of the

Counting G-NFA implementation presented in thesis.

Kaneta et al.’s (2010) Virtex-5 LX300–based BP-NFA design shows similar

performance characteristics to that of the Counting G-NFA BP implementation with a

maximum clock frequency of 202 MHz for an implementation with 128 regexes.

However, unlike the Counting G-NFA, the BP-NFA algorithm can only handle

constrained repetitions by unrolling. Lee’s bitmap-based G-NFA (2009) gives a

throughput of 4Gb/s, but this is for a simple implementation of just one regex and it

also needs to unroll constrained repetitions.

There has been less research into FPGA-based DFA implementations as NFAs are

seen as more appropriate for the parallel nature and smaller memory size of FPGAs.

Becchi (2009) discusses the potential for a memory centric FPGA-based DFA

implementation where, in order to harness the parallelism of the FPGA, each BRAM

would hold a single DFA. A number of DFAs could be combined into one DFA in

order to increase the number of regexes per BRAM, provided there is not a state blow-

up as a result of the combination process. Hayes & Luo (2007) propose a system

called DPICO (DPI COmpact) that uses a modified CAM-like structure, BRAM, and

data packing to implement a compact DFA on an FPGA. Their first proposed

improvement to a baseline DFA implementation is to combine multiple transitions

between the same two states into a single default transition. All non-default transitions

are referred to as labelled transitions. A modified CAM-like (mCAM) structure

associated with each DFA state is used to look up labelled transitions. If no labelled

transition is found, then the default transition, which is read from memory, is used.

This mCAM scheme only produces a memory saving if the number of default

transitions is relatively high. Otherwise, it would be better to use the standard method

of storing all transitions in a 256-element array in memory indexed by the 8-bit

transition label (i.e. symbol). The authors’ second proposal is to take the mCAM idea

and to distribute the storage of transitions over multiple parallel BRAMs. Assuming

sufficient BRAMs are available to cover the maximum number of labelled transitions

per state plus one default transition, all of a state’s transitions can be read in one clock

cycle.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

142

BRAM0 BRAM1 BRAMn-1

Mapping of Logical Address to BRAM Physical Addresses

Compare label of each

transition with input symbol
Select default transition

Match ID

Register

CLK

MUX

Next state pointer

T1 T2 Tn-1

Ti = data for single transition, either labelled or default

Next state pointer Label

Next state pointer
End

Offset

Match

ID

Labelled transition

Default transition

Figure 68. DPICO block diagram

A block diagram of the DPICO scheme is shown in Figure 68. Each BRAM outputs

the data for a single transition, which may be either a labelled or default transition.

The data for a labelled transition consists of the label and the next state pointer logical

address. The data for a default transition consist of the next state pointer logical

address, the match ID for the regex if this is an accept state and an offset to the last

BRAM which holds transition data for this particular state. This offset is required to

pinpoint the valid pieces of transition data when the number of this state’s transitions

is less than the number of BRAMs. The labels of all valid labelled transitions received

from the BRAMs must be compared to the input symbol in order to find a match. If a

Chapter 6 – Constrained Repetitions in Regular Expression Matching

143

match is found, then the transitions next state pointer address is used. Otherwise, the

next state pointer from the default transition data is used. The next state pointer is a

logical address which points to the default transition data of the next state.

One of the main downfalls of the DPICO algorithm is that it needs to perform a

comparison between the input symbol and a potentially large number of transition

labels which will limit the maximum clock frequency achievable in an FPGA

implementation. According to Hayes & Luo’s evaluation, if 16 BRAMs are sufficient

to cover the maximum number of transitions, then the maximum throughput on a

Virtex 4 FPGA is given as 789 Mb/s which increases to 2175 Mb/s in a pipelined

design. The number of possible next-state transitions is likely to be excessively high if

the DFA is constructed from regexes containing constrained repetitions with high

counter values, making it unsuitable for this system. It is therefore difficult to make an

accurate comparison between the DPICO and Counting G-NFA implementation as the

DPICO memory requirements and performance depend very much on the form of the

regex. Another possible issue with the DPICO scheme is that all DFAs need to be

combined into a single DFA which may result in a state explosion. The resulting DFA

may be too large to fit into the series of BRAMs.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

144

Table 32 provides a summary of the supported features and performance of each of

the dynamic memory-based architectures.

Table 32: Comparison of dynamic memory-based hardware architectures

Feature

Countin

g G-

NFA

BP-NFA
Bitmap G-

NFA

CX-

NFA
CES

(Kaneta et
al.)

(Lee) (Pao)
(Wang et
al.)

No. of regexes in evaluated design 96 128 1 - 1

FPGA device used for evaluation
Virtex 5

TX240T

Virtex 5

LX330

Virtex-II

XC2VP30
-

Virtex 5

LX110T

Clock freq. for 32 symbol regex (MHz) 201.5 202 - - 200

Max. throughput (Gb/s) 1.6 1.6 4 - 1.6

BRAM per regex symbol (bytes) 160 64 -
TCAM

-based
29

No. Virtex 5 slices per regex symbol 4 3.8 - - 22

Power cons. per regex at max

throughput
68mW - - - -

BP-based solution? Yes Yes Yes No No

Constrained repetitions without

unrolling?
Yes No No Yes Yes

Full handling of counter overlap? No* - - Yes Yes

Support for multi-symbol repetitions? Yes - -
Unclea

r
No

*Full handling of counter overlap is added to the Counting G-NFA in Chapter 7.

6.9. Conclusion

Network Intrusion Detection Systems (NIDS) make extensive use of regexes as attack

signatures. Such expressions can be handled in hardware using a bit-parallel (BP)

architecture based on the Glushkov Non-deterministic Finite Automata (NFA).

However, many expressions contain constrained {min,max} repetitions which first

need to be unrolled so that they can be handled by the standard BP system. Such

unrolling often leads to an excessive memory requirement which makes handling of

such regexes unfeasible. This chapter has presented a solution, based on the standard

BP architecture, which incorporates a counting mechanism that renders unrolling

unnecessary. As a result, many regexes, which were previously unsuitable for the

standard BP system, can now be efficiently handled. Unlike many other approaches,

this architecture is dynamically reconfigurable thanks to its memory, rather than logic,

-based engine. This is important as NIDS rule sets are regularly updated. It can also

handle repetition of both single and multi-symbol sub-expressions.

Chapter 6 – Constrained Repetitions in Regular Expression Matching

145

The BP architecture presented in this chapter shows similar performance results to

the CES architecture proposed by Wang et al. (2010) but is more flexible in that it

does not use static interconnections between states and it can support multi-character

repetitions. Another memory-centric FPGA architecture is DPICO as proposed by

Hayes & Luo (2007). The main disadvantage of DPICO is the potentially large

number of comparisons that need to be performed for every input symbol, which is

likely to limit the maximum clock frequency. It is also unclear how DPICO would

cope with the potentially large number of next state transitions associated with

constrained repetitions.

Besides the constrained {min,max} repetition examined in this chapter, other

examples of complex regex syntax found in Snort rule sets include back references

and zero-width look-around assertions. Although the constrained repetition is

relatively complex, its implementation in hardware is eased somewhat by the fact that

the repeated sub-expression is usually a static value. Back references are more

complicated because the pattern to match depends on what was actually matched

earlier in the input string. This would not be easy to implement in hardware as both

the length and value of the back-reference pattern only become known during the

matching process for each input string. Look-around assertions would be difficult to

handle in hardware because they involve pattern matching without the consumption of

any symbols from the input string. Adding support for back reference and look-around

assertion syntax to the BP architecture would be an interesting, albeit challenging,

topic for future research.

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

146

Chapter 7 - Pattern Overlap in case of

Constrained Repetitions

As described in the previous chapter, a counter-based mechanism can be used to

handle constrained repetitions without the need for inefficient unrolling of the

repeated sub-expression. However, most existing proposals do not fully handle what is

known as the “overlap issue” which some regexes can be prone to. This chapter

presents a memory-centric Bit Parallel hardware architecture that overcomes the issue

of counter overlap through the use of a bit serial First-In-First-Out (FIFO) queue. The

memory-centric rather than logic-centric nature of the design has the advantage of

allowing dynamic updates to individual attack signatures. The proposed solution is

targeted at ASIC and FPGA platforms and experimental results for a proof-of-concept

design are presented.

7.1. Counting Overlap Issue

The BP G-NFA inherently handles most cases of pattern overlap. However, counter

overlap occurs when there is a transition into the counting block while it is actively

counting. Analysis of recent SNORT rule sets shows roughly 30% of the constrained

repetitions are susceptible to counter overlap. The following are examples of regexes

that are susceptible:

 Unanchored regex where the repeated sub-expression is at the start, e.g. /a{3}bcd/ .

This can be rewritten as /^a{3}a*bcd/ so as to avoid the overlap issue. So there is

no problem in this case.

 Unanchored regex where the repeated sub-expression is preceded by a number of

symbols, all of which overlap with the sub-expression, e.g. /ab[abc]{3}d/ or

/a.(ab){2}c/ .

 Overlap between the constrained repeated sub-expression and a preceding

repetition where the two repetitions are separated only by symbols which also

overlap. The preceding repetition can be *,?,+ or a constrained {min,max}

quantifier where min max. Regex can be anchored or unanchored. e.g.

/^xyz[ab]+[abc]{2}d/ or /xyz[ab]*.(ab){2}d/ .

As an illustration of the issue, consider the example regex /ab[abc]{3}d/ . Reception

of abababcd would cause a problem as the counter would be reset to zero after

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

147

receiving ababa and mismatch would occur on receiving the next b, as shown in Table

33.

Table 33: Counter Overlap in case of regex /ab[abc]{3}d/

Symbol received Counter Activate counting block?

a

b

a 1 Yes

b 2

a 3 Yes. But already active=>overlap issue!

b Reset to 0

c 1

d Mismatch

Table 34. Handling counter overlap with multiple counter instances

in case of regex /ab[abc]{2,5}d/

Symbol

received

Cnt

1

Cnt

2

Cnt

3

Cnt

4
Description

a

b

a 1
Create counter instance 1 and activate

counting block.

b 2 Cnt1≥min, so allow transition out of block.

a 3 1
Create counter instance 2.

Cnt1≥min, so allow transition out of block.

b 4 2 Cnt1≥min, so allow transition out of block.

a 5 3 1
Create counter instance 3.

Cnt1≥min, so allow transition out of block.

b 4 2
Cnt1=max, so remove Cnt1.

Cnt2≥min, so allow transition out of block.

c 5 3 1
Create counter instance 4.

Cnt2≥min, so allow transition out of block.

b 4 2
Cnt2=max, so remove Cnt2.

Cnt3≥min, so allow transition out of block

d
Valid transition out of counting block to

accept state => match found.

This issue can be solved by using multiple counter instances, as illustrated in Table

34, but this can seriously degrade performance due to the number of memory accesses

required to check and update all counter instances. An {m,n} quantifier may

potentially require n concurrently active counter instances which would occupy a

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

148

significant amount of memory and degrade performance due to the number of memory

accesses per symbol processed. Becchi and Crowley (2008) observed that only two

accesses are required if differential representation is used. The use of differential

representation is illustrated by the example in Table 35. Only the true value of the

oldest active counter is stored. All other counters are delta values between their true

value and the value of the previously created instance. These delta values do not need

to be incremented in each clock cycle and only need to be converted to the true value

when the previously created counter instance is removed. Although differential

representation reduces the amount of memory accesses, it does not solve the problem

of the memory occupied. Similarly, the TCAM-based event queue feature proposed by

Pao (2009) grows in length as the number of concurrent overlaps increases.

Table 35. Handling counter overlap with differential counters

in case of regex /ab[abc]{2,5}d/

Sym Cnt 1 Cnt 2 Cnt 3 Cnt 4 Description

a

b

a 1
Create counter instance 1 and

activate counting block.

b 2
Cnt1≥min, so allow transition

out of block.

a 3
3-1=

2

Create counter instance 2.

Cnt1≥min, so allow transition

out of block.

b 4 2
Cnt1≥min, so allow transition

out of block.

a 5 2
5-(2+1)

=2

Create counter instance 3.

Cnt1≥min, so allow transition

out of block.

b
(5-2)+1

=4
2

Cnt1=max, so remove Cnt1.

Cnt2≥min, so allow transition

out of block.

c 5 2
5-(2+1)

=2

Create counter instance 4.

Cnt2≥min, so allow transition

out of block.

b
(5-2)+1

=4
2

Cnt2=max, so remove Cnt2.

Cnt3≥min, so allow transition

out of block

d

Valid transition out of

counting block to accept state

=> match found.

The good news, however, is that most constrained repetition quantifiers found in the

SNORT rule set are not subject to the overlap problem. In particular, repetition

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

149

quantifiers at the end of a regex always only require a single counter instance.

Consider, for example, the regex /ab[abc]{4,6}/. This can be rewritten as /ab[abc]{4}/

as the repetition is at the end of the regex and there is nothing gained from matching a

further two symbols when a match has already been found. Although overlapping

patterns can occur, there is no benefit in having multiple counters because all counters

will be reset to 0 whenever there is a mismatching symbol.

7.2. Counting GlushKov NFA with Overlap Handling

The storage of multiple counters as a solution to the overlap issue is not practical

because of the worst case memory requirement. This thesis proposes a variant of the

differential counter scheme which uses a bit serial FIFO to represent the differential

counters in addition to a single counter instance which holds the oldest active counter

value. For each input symbol processed, a 1 is written to the FIFO if this is the start of

an overlapping pattern, and 0 otherwise. When the counter reaches its maximum

value, the FIFO is repeatedly read until a 1 is encountered. The number of bits read is

then subtracted from the counter value. So in the example shown in Table 36, two bits

are read from the FIFO when the counter reaches its maximum value and so 2 is

subtracted from the counter value of 3 to give a new counter value of 1.

Each counting block has the following additional storage elements:

 PRE_BLOCK: bitmask indicating states outside the counting block which have an

outgoing transition into the counting block

 FIFO: bitmask indicating occurrences of overlaps

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

150

Table 36: Bit serial FIFO to track overlap in case of regex /ab[abc]{3}d/

Step
Input

Symbol

ACTIVE

bitmask

4 3210

FOLLOW

_SUM

4 3210

CNT
Write

to FIFO

Read from

FIFO

FIFO

contents

 0 0010

1 a 0 0011 0 0110 0 - - -

2 b 0 0101 0 1010 0 - - -

3 a 0 1011 0 1110 1 - - -

4 b 0 1101 0 1010 2 0 - 0

5 a 0 1011 1 0110 3 1 - 10

6 Overlap Check 1 1110 3-2=1 10 -

7 b 0 1101 0 1010 2 0 - 0

8 c 0 1001 1 0010 3 1 - 10

9 Overlap Check 1 1010 3-2=1 - 10 -

10 d 1 0001 0 0010 0 - - -

11 Match!

Step

Description

1
Following receipt of ‘a’, state 1 becomes active. State 0 also remains active

because the regex is unanchored.

2 Following receipt of ‘b’, state 2 becomes active.

3
Following receipt of ‘a’, states 1 and 3 becomes active.

Counting block is now active and the counter CNT is incremented to 1.

4

Following receipt of ‘b’, states 2 becomes active (transition from state 1).

CNT is incremented to 2.

CNT ≤ 3 (max), so state 3 remains active.

No overlap, so 0 written to FIFO.

5

Following receipt of ‘a’, state 1 becomes active. CNT is incremented to 3.

Overlap situation detected, so 1 is written to FIFO.

CNT has reached min, so transition out of counting block is enabled by

setting bit 4 of FOLLOW_SUM bitmask to 1.

CNT ≤ 3 (max), so state 3 remains active.

CNT has reached max, so an overlap check is required. Bit 3 in

FOLLOW_SUM bitmask is set to 0 in order to disable repetition. ACTIVE

bitmask is kept unchanged while this check is performed.

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

151

6

Overlap check performed by reading FIFO until bit=1 is reached. Two bits

are read and so 2 is subtracted from the current CNT value to give a new

value of 1.

CNT ≤ 3 (max), so bit 3 is set back to 1 in FOLLOW_SUM bitmask in

order to allow repetition.

7

Following receipt of ‘b’, state 2 becomes active (transition from state 1).

CNT is incremented to 2.

CNT ≤ 3 (max), so state 3 remains active.

No overlap, so 0 written to FIFO.

8

Following receipt of ‘c’, CNT is incremented to 3. Overlap situation

detected, so 1 is written to FIFO.

CNT has reached min, so transition out of counting block is enabled by

setting bit 4 of FOLLOW_SUM bitmask to 1.

CNT ≤ 3 (max), so state 3 remains active.

CNT has reached max, so an overlap check is required. Bit 3 in

FOLLOW_SUM bitmask is set to 0 in order to disable repetition. ACTIVE

bitmask is kept unchanged while this check is performed.

9

Overlap check performed by reading FIFO until bit=1 is reached. Two bits

are read and so 2 is subtracted from the current CNT value to give a new

value of 1.

CNT ≤ 3 (max), so bit 3 is set back to 1 in FOLLOW_SUM bitmask in order

to allow repetition.

10
Following receipt of ‘b’, state 4 becomes active. State 3 is inactive, so CNT

is reset to zero. (A non-empty FIFO would be reset at this stage in order to

empty it).

11 ACTIVE and FINAL bitmasks are ANDed together and a match is detected

Figure 69 shows a high level view of how counter overlap is dealt with in the

modified BP Counting G-NFA scheme. Algorithm 1 gives the pseudo-code for a 32-

bit wide implementation (i.e. n=32) in which the FOLLOW_ACTIVE table is

horizontally partitioned into four separate tables and the repeated sub-expression is a

single symbol.

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

152

C
o

u
n

ti
n

g
 b

lk
 s

ta
te

a
c
ti
v
e

?

R
e

s
e

t
c
o

u
n

ti
n

g

b
lo

c
k
's

 c
o

u
n

te
r

&

e
m

p
ty

 o
v
e

rl
a

p

F
IF

O

If
 c

o
u

n
te

r
h

a
s

re
a

c
h

e
d

 m
in

 t
h

e
n

s
e

t
F

O
L

L
O

W
C

N
T

_
A
 t
o

b
e

 a
ll

tr
a

n
s
it
io

n
s
 o

u
t

o
f
b

lk
,
i.
e
.

F
O

L
L

O
W

_
B

L
K

If
 c

o
u

n
te

r
is

 l
e

s
s

th
a

n
 m

a
x
 t
h

e
n

 s
e

t

F
O

L
L

O
W

C
N

T
_

B
 t
o

 b
e

th
is

 b
lk

’s
 s

ta
te

,
i.
e

P
O

S
_
C

N
T

A
C

T
IV

E
 b

it
m

a
s
k

a
n

d
 c

o
u

n
te

r

F
in

d
 b

it
m

a
s
k

re
p

re
s
e

n
ti
n

g
 s

e
t
o

f

s
ta

te
s
 r

e
a

c
h

a
b

le

w
it
h

 c
u

rr
e

n
t
in

p
u

t

s
y
m

b
o

l
b

y
 l
o

o
k
in

g

u
p

 E
N

T
E

R
 t
a

b
le

In
p

u
t

s
y
m

b
o

l

In
c
re

m
e

n
t
b

lo
c
k
’s

 c
o

u
n

te
r

B
it
w

is
e

O
R

F
O

L
L

O
W

C
N

T
_

A

F
O

L
L

O
W

C
N

T
_

B

F
O

L
L

O
W

C
N

T

F
in

d
 b

it
m

a
s
k
 r

e
p

re
s
e

n
ti
n

g
 s

e
t
o

f

s
ta

te
s
 r

e
a

c
h

a
b

le
 f
ro

m
 t
h

e

c
u

rr
e

n
tl
y
 a

c
ti
v
e

 s
ta

te
s
 (

o
u

ts
id

e
 o

f

c
n

ti
n

g
 b

lk
)

b
y
 l
o

o
k
in

g
 u

p

F
O

L
L

O
W

_
A

C
T

IV
E

 t
a

b
le

B
it
w

is
e

O
R

F
O

L
L

O
W

b
it
m

a
s
k

F
O

L
L

O
W

C
N

T

F
O

L
L

O
W

_
S

U
M

B
it
w

is
e

A
N

D

E
N

T
E

R

b
it
m

a
s
k

A
C

T
IV

E
 b

it
m

a
s
k

E
N

T
E

R

b
it
m

a
s
k

F
O

L
L

O
W

b
it
m

a
s
k

y
e

s

n
o

S
e

t
F

O
L

L
O

W
C

N
T

b
it
m

a
s
k
 t
o

 z
e

ro

8

n
n

n

n

n

(n
=

n
o

.
s
ta

te
s
 i
n

 G
-N

F
A

 =
 m

+
1

,
m

=
n

u
m

b
e

r
o

f
s
y
m

b
o

ls
 i
n

 r
e

g
e

x
)

C
o

u
n

ti
n

g
 B

lo
c
k
 p

a
rt

 o
f
a

lg
o

ri
th

m
S

ta
n

d
a

rd
 B

P
 G

-N
F

A
 a

lg
o

ri
th

m

If
 o

v
e

rl
a

p
 s

it
u

a
ti
o

n

d
e

te
c
te

d
 (

i.
e

.
tr

a
n

s
it
io

n

in
to

 c
o

u
n

ti
n

g
 b

lo
c
k
)

th
e

n
 w

ri
te

 ‘
1

’
to

 s
e

ri
a

l

F
IF

O
,
o

th
e

rw
is

e
 ‘
0

’

R
e

a
d

 F
IF

O
 u

n
ti
l
‘1

’
is

 e
n

c
o

u
n

te
re

d
.

C
o

u
n

t
n

u
m

b
e

r
o

f
b

it
s
 r

e
a

d
.
D

e
c
re

m
e

n
t

c
o

u
n

te
r

b
y
 1

 o
n

 e
a

c
h

 b
it
 r

e
a

d

C
o

u
n

te
r

=
 m

a
x
?

If
 n

o
 ‘
1

’
w

a
s
 e

n
c
o

u
n

te
re

d
 &

 F
IF

O
 i
s

n
o

w
 e

m
p

ty
 t
h

e
n

 z
e

ro
 t
h

e
 c

o
u

n
te

r

S
e

t
F

O
L

L
O

W
C

N
T

_
A

to
 b

e
 a

ll
tr

a
n

s
it
io

n
s

o
u

t
o

f
b

lk
,
i.
e

.

F
O

L
L

O
W

_
B

L
K

If
 c

o
u

n
te

r
is

 n
o

n
-

z
e

ro
 t
h

e
n

 s
e

t

F
O

L
L

O
W

C
N

T
_

B
 t
o

b
e

 t
h

is
 b

lk
’s

 s
ta

te
,

i.
e

 P
O

S
_
C

N
T

n
o

y
e

s

C
o

u
n

te
r

o
v
e

rl
a

p
 h

a
n

d
lin

g

Figure 69. Counting G-NFA for single symbol repetition elements

with overlap handling

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

153

ALGORITHM 1. 32-bit BP Counting G-NFA search algorithm with overlap handling

Input: String, , of input symbols, .

Output: Match and NoMatch signals.

Active First;

OldActive 032;

for each symbol ∈ repeat /* Process each incoming symbol */

FollowSum 032;

for idx 1 to NumCountingBlocks repeat /* Handle each constrained repetition in regex */

if (Active AND PosCnt(idx)) then

if (Cnt(idx) then /* Counter value is non-zero? */

if (OldActive AND PreBlk(idx)) then /* Transition into counting block? */

Write(FIFO,1);

else

Write(FIFO,0);

end if

end if

Cnt(idx) Cnt(idx) + 1;

if (Cnt(idx) Min(idx)) then /* Allow transition out of counting block? */

FollowSum FollowSum OR FollowBlk(idx);

end if

if (Cnt(idx) = Max(idx)) then

z 0; /* z is the number of bits read from FIFO */

repeat

z z+ 1;

while (Read(FIFO)=0));

/* Now subtract number of bits read to get new counter value */

Cnt(idx) Cnt(idx) - z;

end if

if (Cnt(idx) < Max(idx)) then /* Allow another repetition? */

FollowSum FollowSum OR PosCnt(idx);

end if

else

Cnt(idx) 0;

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

154

Clear(FIFO);

end if

end for

/* Combine the set of follow states calculated in the counting block section above *

 * with the standard horizontally partitioned FOLLOW_ACTIVE values */

FollowSum FollowSum OR FollowActive[Active(31..24)] OR

FollowActive[Active(23..16)] OR FollowActive[Active(15..8)] OR

FollowActive[Active(7..0)];

OldActive Active;

/* Calculate new set of active states by ANDing together the bitmask of states *

 * reachable from the currently active states with the bitmask of states reachable *

 * with the current input symbo l */

Active FollowSum AND Enter[];

if (Active AND Last) then /* Accept state reached? */

MatchFound 1;

break

end if

end for

if (MatchFound = 0) then

NoMatchFound 1;

end if

7.3. Implementation

7.3.1. Hardware Architecture

The implementation outlined in the previous chapter was extended to include the

FIFO-based counter overlap handling mechanism. The PE architecture was redesigned

as an FSM, interfaced with BRAM for regex data storage and with a one bit wide

FIFO for overlap tracking, as illustrated in Figure 70.

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

155

clk

Counting G-NFA

FSM

RDADDR DO

9 32

BRAMs #1-4

Follow Tables

RDADDR DO

first

last

symbol

symbol
10

8

1

1

ack
req

match

no_match

clk

din wr_en doutrd_en

clk

Bit FIFO 2048x1 bits

BRAM #0

Enter Table

RDCLK

= flow replicated for each BRAM instance

9 32

empty

Figure 70: Regex Engine Architecture

 The FSM implements the Counting BP G-NFA algorithm in addition to handling

handshaking with the DPI packet buffer handler. The 2048x1 bit FIFO is used to deal

with the overlap issue for constrained {min,max} quantifiers up to a max value of

2048. One BRAM holds the ENTER table, while the other four hold the FOLLOW

table horizontally partitioned four times. Regex related bitmask values such as MIN,

MAX, POS_CNT, etc., are stored in registers within the FSM design. All these

bitmasks, in addition to the BRAM contents, can be dynamically updated via the

Engine Data Update Handler. Details of signals related to these updates are omitted

from Figure 70 for clarity.

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

156

Figure 71: Counting G-NFA FSM

The Counting G-NFA FSM is the key block in the DPI design. A simplified Moore

style state diagram showing the states and events triggering each transition is outlined

in Figure 71. The following is a summary of each state’s role:

 S_REQ1_FIRST:

o FSM remains in this state until the first symbol of a new payload is received

o req flag is asserted to indicate that it is waiting for a symbol

o ACTIVE is initialized to the value of the stored FIRST bitmask

 S_REQ0:

o input symbol signal is latched on transitioning into this state

o req flag is deasserted

o start-anchor and multi-mode regex flags are checked to see whether or not the

FIRST states should be held active

o most of the counting algorithm, as described in Algorithm 1, is performed.

This involves

 checking if any of the counting block states are now active

 incrementing the CNT counter

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

157

 writing 1 or 0 to the overlap Bit FIFO to indicate counter overlap or no

overlap, respectively

 checking if CNT is less than MAX and, if so, ORing the value of POS_CNT

into the FOLLOW bitmask, thereby allowing further repetition

 checking if CNT is greater than or equal to MIN and, if so, ORing the value

of FOLLOW_BLK into the FOLLOW bitmask, thereby allowing

transitions out of the counting block

 resetting CNT to zero if none of the counting block states are active

 S_REQ1:

o req flag is asserted to indicate that it is waiting for the next symbol

 S_OVERLAP_CHECK:

o decrements CNT once MAX is reached, as per the algorithm outlined in

Algorithm 1. This involves repeatedly reading the Bit FIFO until the output is

‘1’ and decrementing CNT for every ‘0’ read

 S_END_OF_PKT:

 simply waits for processing of last symbol in payload to complete

 S_MATCH:

o asserts the match output signal

 S_NO_MATCH:

o asserts the no_match output signal

7.3.2. Software

The CCP program developed by Champarnaud et al. (2004), which had been extended

to generate the Counting G-NFA bitmasks, was reused.

7.4. Performance Results

The design was implemented in VHDL and simulated with the Xilinx Virtex5

TX240T (Speed -2) as the target FPGA. Sets of regexes, varying in size from 32 to

736, were randomly chosen from the snapshot dated 18.09.2012 of the Snort v2.9.3.1

rule set and converted into the appropriate FPGA BP format using the modified CCP

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

158

program. Payload data from Shmoo (2009) Group DEFCON traffic traces were used

for the timing simulation and subsequent power analysis.

The Xilinx XST tool gave the maximum achievable clock frequency as 116 MHz on

the Virtex5 and 146 MHz on the Virtex7. This proof-of-concept design is quite a

simple implementation which does not include packet pipelining. It processes one

symbol every 9 clock cycles if there is no constrained repetition, and every 9.2 cycles

on average when tested with the randomly chosen rule sets and traffic traces. This

gives an average throughput of 101 Mb/s and 127 Mb/s on the Virtex5 and Virtex7,

respectively. Adding pipelining to the design should, in theory, result in a nine-fold

increase in throughput, giving 909 Mb/s and 1.14 Gb/s. However, this is likely to be

somewhat lower in practice because the increased complexity of the design will

probably reduce the maximum achievable clock frequency.

Table 37: Virtex5 TX240T Device Utilisation

Resource 32 PE instances 64 PE instances 96 PE instances

Block RAM 25% 49% 74%

Slices 12% 25% 38%

Resource utilization figures for the Virtex5 and Virtex7 are shown in Table 37 and

Table 38, respectively. The NetFPGA-10G platform can support a maximum of 128

PEs due to the FPGA’s limited BRAM. The Virtex7 1140T can support a much larger

number of PEs as it has substantially more BRAM. Power consumption with 96 PEs is

approximately 6W on the Virtex5, and 3.1W on the Virtex7, at maximum throughput.

These figures include both dynamic and quiescent (static) power consumption. The

much lower consumed by the Virtex7 device ties in with Xilinx claims’ that the 7

series FPGAs provide 50% power reduction compared to previous generation FPGAs

(Xilinx, 2012b).

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

159

Table 38: Virtex7 1140T Device Utilisation

Resource 256 PE instances 512 PE instances 736 PE instances

Block RAM 25% 49% 74%

Slices 12% 25% 38%

7.5. Related Work

The BP architecture has the advantage that it allows rules to be dynamically updated

whenever a new threat emerges, as well as allowing the design to be implemented on

both FPGA and ASIC. The more common logic-based design requires regeneration of

the FPGA bit-stream whenever the rule set is updated. The logic-based system

proposed by Bispo et al. (2006) uses a shift register to handle overlap of single symbol

constrained repetitions. Faezipour and Nourani (2008) added support for multi-symbol

repetitions but their algorithm does not appear to handle all cases of counter overlap.

The problem of counter overlap has also been examined by those researching DFA-

based solutions. Becchi and Crowley (2008) propose a counting-DFA algorithm that

uses multiple counter instances to overcome the overlap issue. Differential

representation can be used in order to minimize the counter size. Becchi (2009) also

looks at how DFAs in general can be implemented using a memory-based FPGA

design. The use of multiple counter instances, however, is more suited to a software

implementation using dynamic memory allocation rather than to an FPGA design as

the number of instances is potentially very high.

CES (Wang et al., 2010) is a memory-centric NFA-based algorithm which can handle

counter overlap using a stack of checkpoint counter registers. This method of handling

overlap is similar to the differential counter representation suggested by Becchi and

Crowley (2008) and may potentially occupy a significant amount of memory. CES

can only handle single symbol repetitions and some regexes may be unsuitable due to

an excessive number of interconnections between CCRs within the CES tile mesh.

Chapter 7 – Dealing with Pattern Overlap in case of Constrained Repetitions

160

7.6. Conclusion

This chapter improves on the architecture presented in the previous chapter for the

handling of constrained repetitions in regexes. The improved design overcomes the

issue of counter overlap through the use of a bit serial First-In-First-Out (FIFO) queue,

thereby allowing a greater number of regexes to be handled. This FIFO-based

mechanism is much more space efficient than the use of multiple counter instances

which are more suited to software implementation where dynamic memory allocation

is available. The proposed solution is targeted at ASIC and FPGA platforms and

experimental results are presented for a proof-of-concept design.

Chapter 8 – Conclusions and Further Work

161

Chapter 8 - Conclusions and Further Work

The last decade has seen enormous growth in the size of the internet and in the amount

of services it offers. In recent years, much of this has been due to the meteoric rise in

the use of smartphones and mobile applications. Many predict a much bigger increase

in the coming years as cloud computing becomes even more significant and the

Internet of Things becomes a reality. This growth is accompanied by an increase in

the number and complexity of attacks. As a consequence, network security systems

need to be more sophisticated while, at the same time, capable of handling ever

increasing traffic rates.

NIDPS systems allow attacks to be detected and blocked before they can enter the

enterprise network or sensitive parts of the intranet. The three fundamental building

blocks of such systems, namely TCP/IP reassembly, multi-match classification and

DPI have been studied in this thesis. DPI can be further split into fixed string and

regex matching. Fixed string DPI was not looked at in this thesis as it has already been

well studied by many researchers. Regexes have become more important as they are

used in the signatures that describe most new attacks.

8.1.1. TCP/IP Reassembly

Attack patterns may bridge the boundary between IP fragments and TCP segments in

a particular TCP connection flow. It is therefore essential that the DPI is performed on

the reassembled payload data stream rather than simply on the payload of individual

packets. Performing TCP/IP reassembly on an intermediate network node, such as an

NIDPS, is complicated by the fact that there are subtle differences in how destination

nodes perform the reassembly. These differences are a result of different

interpretations of the TCP/IP standards by the implementers of different operating

systems. Therefore, in order for an NIDPS to reassemble an IP fragment or TCP

segment in the same way as the destination node, it must be aware of the OS of the

destination. Although there are methods available for the automatic detection of the

destination’s OS, these are not always guaranteed to work. Manual configuration is

often required, which is not ideal. An alternative, more maintainable, strategy is for

the NIDPS to normalise traffic by removing any ambiguities which could be

interpreted differently by different OS types. The downside is that a normaliser

Chapter 8 – Conclusions and Further Work

162

actively changes the traffic and so needs to be very robust. It may also break the

operation of traceroute and PMTUD (Handley et al., 2001).

TCP/IP reassembly is typically implemented in software due to the amount of

decision making and connection tracking that is required. However, NIDPS systems

need to handle much higher traffic rates than most end host systems. This has

prompted research into implementing reassembly in hardware. Besides the need for

target-based reassembly or traffic normalisation, an added complication is the

handling of ‘holes’ due to of out-of-order and missing fragments or segments and the

resultant buffering requirement. This thesis surveyed a number of solutions and

compared the techniques used for dealing with ‘holes’ and ambiguities in the

fragmented traffic. A hardware-based reassembly system was proposed that takes

advantage of the fact that out-of-sequence packets are rare under normal

circumstances by carrying out target-based reassembly of the affected streams in

software while dealing with the normal in-sequence streams directly in FPGA

programmable logic.

8.1.2. Multi-match Packet Header Classification

The most obvious ways to perform multi-match packet header classification in

hardware involve the use of TCAM. This thesis investigated alternative algorithmic

solutions that use SRAM instead of TCAM in order to save energy. Software

implementations of a number of single match classification algorithms were modified

to perform multi-matching and their performance evaluated and compared. The EGT-

PC and ART algorithms were found to perform quite well, but not as well as the very

simple FSBV and StrideBV which perform well by virtue of the fact that the number

of unique headers is quite low due to many rules sharing the same header.

8.1.3. Regular Expression DPI

While DPI has many applications, this thesis studied it in the context of NIDPS

systems where regex matching is required in order to detect complex attacks. Regex

matching also has other uses such as the matching of DNA and protein sequences, and

text retrieval.

This thesis focused on finding an improved hardware design for a bit-parallel

memory-centric architecture based on the Glushkov-NFA which could handle

constrained repetitions, one of the more complicated features of regex syntax. Such an

Chapter 8 – Conclusions and Further Work

163

architecture has the advantage in that the regexes are stored in memory rather than

hardcoded into the logic of the FPGA or ASIC, thereby enabling dynamic rule updates

on live systems. The efficient handling of repetitions without unrolling of the repeated

sub-expression leads to significant memory and hence energy savings.

Unfortunately, the format of some regexes make them susceptible to the problem of

overlapping patterns rendering a single counter inadequate for tracking the repetition.

An additional FIFO-based mechanism, which is relatively easy to implement in

hardware, was proposed to deal with this issue. Ideally, this additional mechanism

should only be used for regexes susceptible to counter overlap. Pre-processing

software should therefore be used to split the rule set’s regexes into three categories:

 those without any constrained repetitions which can be handled by the basic BP

processing engine

 those with repetitions, but not susceptible to the overlap issue. These can be

handled by engines which have the basic counting mechanism

 those susceptible to overlap that need the FIFO-based mechanism

Prototype designs with and without the overlap handling mechanism were

implemented in VHDL and evaluated on the Xilinx Virtex5 and Virtex7 FPGAs. The

designs performed quite well compared to other memory-based solutions. The

relatively simple designs did not use any packet pipelining which should yield

significant performance improvements.

8.2. Future Directions

This thesis has studied the various building blocks of an NIPDS system in relative

isolation from each other. Looking at each in the context of a fully integrated solution

may yield ideas on how to improve the performance and efficiency of each. Use of

packet pipelining to give improved throughput performance and clock gating to

reduce energy consumption could also be looked at. Finally, the huge increase in

mobile internet data has opened up new applications for DPI which could provide

interesting follow-on research opportunities.

8.2.1. Improving Performance

The design used to evaluate the bit-parallel regex matching algorithm was a simple

prototype implementation that did not include packet pipelining. The next step would

be to extend the design to process multiple data streams in parallel. This would not

Chapter 8 – Conclusions and Further Work

164

only improve performance, but would also allow handling of a much larger rule set on

a single FPGA as the regex data could be stored in off-chip memory instead of in the

limited internal BRAM.

The performance could also be improved by performing multi-stride matching

(Avalle et al. 2012), i.e. processing of multiple symbols in each iteration of the

algorithm. Compression of the BP tables is required in order to make this feasible in

practice. For example, many symbol combinations are equivalent in that they are

always used together. However, this compression means that simple SRAM-based

tables need to be replaced by more expensive and less energy efficient TCAM.

8.2.2. Fixed String Pre-Filter

Most Snort rules include both a fixed string and a regex pattern. Even if no fixed

string is specified, it is usually possible to extract one or more fixed strings from the

regex. To reduce the load on the regex matching part of the system it’s possible to pre-

filter the traffic using fixed string matching as follows:

 traffic which does not match the fixed string is not forwarded for regex matching

 traffic which does match is only checked against regexes from rules with a

matching fixed string. Some regex matching algorithms cannot take advantage of

this as they are constrained to match against all patterns, e.g. NFA implemented in

FPGA/ASIC logic, multiple DFAs combined into a single or small number of

DFAs

The catch is that this should be performed on a reassembled PDU which can have a

very large size (up to the maximum size of a socket buffer). The solution to this would

be to reassemble IP fragments and TCP segments into pseudo-packets of a certain

maximum length in a similar fashion to Snort. An added complication is that each

Snort rule can contain multiple fixed string patterns and the pre-filter stage would

need to logically AND the match results in these cases

8.2.3. Improving Power Efficiency

In a pipelined architecture incorporating a fixed string pre-filter, it would be possible

to change the DPI stage design so that each engine is dynamically assigned a regex to

process based on the matches found by the pre-filter. This could be done by

associating an SRAM offset address with each regex and this offset is passed to each

Chapter 8 – Conclusions and Further Work

165

processing engine. The clock signal to unused engines could be gated in order to save

energy.

More energy could be saved by using frequency scaling to dynamically adjust the

clock frequency depending on the volume of traffic being processed. As most internet

applications have a typical traffic distribution, application detection could be used to

predict future traffic volumes.

8.2.4. Mobile Internet DPI

The roll-out of 4G, which is based on an all-IP core network, is opening up new

possible applications for DPI such as mobile internet traffic management, Quality of

Service and security. The role of DPI in this context is primarily to accurately detect

the application corresponding to each traffic flow. This information can then be used

to manage bandwidth, to allow operators to charge based on application, to provide

itemised billing, etc. For example, German company Ipoque (2013) recently

announced that researchers at Intel Labs have integrated Ipoque’s Protocol &

Application Classification Engine (PACE) DPI software library into a “smart pipe”

server that can allocate bandwidth across multiple wireless networks to high priority

applications. The smart pipe also allows for the seamless handover of VoIP

connections between Wi-Fi and cellular networks.

The ideal mobile DPI solution consists of both application detection and intrusion

detection/prevention. The main focus of future work would be on finding more

effective methods for application detection in hardware in order to provide fast yet

energy and memory efficient solutions. It is likely that application detection would be

performed using regex matching in the case of unencrypted traffic and behavioural

analysis in the case of encrypted traffic.

166

References

Aho, A.V. and Corasick, M.J. (1975). Efficient String Matching: An Aid to

Bibliographic Search. Communications of ACM, 18(6) pp.333-340.
DOI: http://dx.doi.org/10.1145/360825.360855

Albin, E. and Rowe, N.C. (2012). A Realistic Experimental Comparison of the

Suricata and Snort Intrusion-Detection Systems. 26th International Conference on

Advanced Information Networking and Applications Workshops (WAINA), pp.122-

127.
DOI: http://dx.doi.org/10.1109/WAINA.2012.29

Antonello, R., Fernandes, S., Kamienski, C., Sadok, D., Kelner, J., Gódor, I., Szabó,

G., and Westholm, T. (2012). Deep packet inspection tools and techniques in

commodity platforms: Challenges and trends. Elsevier Journal of Network and

Computer Applications, 35(6), pp.1863-1878.
DOI: http://dx.doi.org/10.1016/j.jnca.2012.07.010

Avalle, M., Risso, F. and Sisto, R. (2012). Efficient multistriding of large non-

deterministic finite state automata for deep packet inspection. 2012 IEEE

International Conference on Communications (ICC), pp.1079-1084.
DOI: http://dx.doi.org/10.1109/ICC.2012.6364235

AV-Test Institute (2013). Malware statistics. AV-Test Institute, Germany; Obtained

through the internet:
Web: http://www.av-test.org/en/statistics/malware/ [accessed 1 Oct. 2013]

Baboescu, F., Singh, S. and Varghese, G. (2003). Packet Classification for Core

Routers: Is there an alternative to CAMs? IEEE INFOCOM 2003. pp.53-63.
DOI: http://dx.doi.org/10.1109/INFCOM.2003.1208658

Baeza-Yates, R. and Gonnet, G.H. (1992). A new approach to text searching.

Communications of the ACM , 35(10), pp.74-82.
DOI: http://dx.doi.org/10.1145/135239.135243

Becchi, M. (2009). Data Structures, Algorithms and Architectures for Efficient

Regular Expression Evaluation. Ph.D. Dissertation, Technical Report Number

2009-55, Washington University, St. Louis, MO, USA. Advisor Patrick J. Crowley;

Obtained through the internet:
Web:http://cse.wustl.edu/Research/Lists/Technical%20Reports/Attachments/887/Michela

Becchi_Dissertation.pdf

[accessed 1 Oct. 2013]

Becchi, M. and Crowley, P. (2007a). A hybrid finite automaton for practical deep

packet inspection. In Proceedings of the 2007 ACM CoNEXT conference

(CoNEXT '07). Article 1, 12 pages.
DOI: http://dx.doi.org/10.1145/1364654.1364656

Becchi M. and Crowley, P. (2007b). An improved algorithm to accelerate regular

expression evaluation. Proceedings of the 3
rd

 ACM/IEEE Symposium on

Architecture for networking and communications systems (ANCS ’07), pp.145-154.
DOI: http://dx.doi.org/10.1145/1323548.1323573

Becchi, M. and Crowley, P. (2008a). Extending finite automata to efficiently match

Perl-compatible regular expressions. In Proceedings of the 2008 ACM CoNEXT

Conference (CoNEXT '08). Article 25, 12 pages.
DOI: http://dx.doi.org/10.1145/1544012.1544037

http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1109/WAINA.2012.29
http://dx.doi.org/10.1016/j.jnca.2012.07.010
http://dx.doi.org/10.1109/ICC.2012.6364235
http://www.av-test.org/en/statistics/malware/
http://dx.doi.org/10.1109/INFCOM.2003.1208658
http://dx.doi.org/10.1145/135239.135243
http://cse.wustl.edu/Research/Lists/Technical%20Reports/Attachments/887/MichelaBecchi_Dissertation.pdf
http://cse.wustl.edu/Research/Lists/Technical%20Reports/Attachments/887/MichelaBecchi_Dissertation.pdf
http://dx.doi.org/10.1145/1364654.1364656
http://dx.doi.org/10.1145/1323548.1323573
http://dx.doi.org/10.1145/1544012.1544037

167

Becchi, M. and Crowley, P. (2008b). Efficient Regular Expression Evaluation :

Theory to Practice. Proceedings of the 4
th

ACM/IEEE Symposium on Architecture

for networking and communications systems (ANCS’08), pp.50-59.
DOI: http://dx.doi.org/10.1145/1477942.1477950

Becchi, M., Wiseman, C. and Crowley, P. (2009). Evaluating regular expression

matching engines on network and general purpose processors. Proceedings of the

5th ACM/IEEE Symposium on Architectures for Networking and Communications

Systems (ANCS), pp.30-39.
DOI: http://dx.doi.org/10.1145/1882486.1882495

Berry, G. and Sethi, R. (1986). From regular expressions to deterministic automata.

Theoretical Computer Science, 48(1) pp.117-126.
DOI: http://dx.doi.org/10.1016/0304-3975(86)90088-5

Bispo, J., Sourdis, I., Cardoso, J.M.P. and Vassiliadis, S. (2006). Regular Expression

Matching for Reconfigurable Packet Inspection. Proceedings of the IEEE Int. Conf.

on Field Programmable Technology (FPT 2006), pp. 119-216.
DOI: http://dx.doi.org/10.1109/FPT.2006.270302

Boyer R.S. and Moore, J.S. (1977). A Fast String Searching Algorithm.

Communications of ACM, 20(10), pp.762-772.
DOI: http://dx.doi.org/10.1145/359842.359859

Bloom, B.H. (1970). Space/time trade-offs in hash coding with allowable errors.

Commun. ACM. 13(7), pp.422-426.
DOI: http://dx.doi.org/10.1145/362686.362692

Brodie, B., Cytron R. and Taylor, D. (2006). A Scalable Architecture For High-

Throughput Regular-Expression Pattern Matching. Proceedings of the

international symposium on Computer Architecture (ISCA’06), pp.191-202.
DOI: http://dx.doi.org/10.1145/1150019.1136500

Cadambi, S., Chakradhar, S.T. and Becchi, M. (2007). Fast and scalable process for

regular expression search, US Patent Application filed 2007, Pub. No. US

2008/0034427 A1
Web: http://www.freepatentsonline.com/20080034427.pdf

Champarnaud, J-M., Coulon, F. and Paranthoën, T. (2004). Compact and fast

algorithms for safe regular expression search. In Int. Journal of Computer

Mathematics, 81(4), pp.383-401.
DOI: http://dx.doi.org/10.1080/00207160310001650025

Software: http://elm.eeng.dcu.ie/~croninb/ccp/ccp-0.3.tar.gz

Cheng, Y., Chu, J., Radhakrishnan, S. and Jain A. (2013). TCP Fast Open. IETF

Internet Draft, 2013; draft-ietf-tcpm-fastopen-05; Obtained through the internet:
Web: https://ietf.org/doc/draft-ietf-tcpm-fastopen/ [accessed 1 Dec. 2013]

Chomsky, N. (1956). Three models for the description of language. IRE Transactions

on Information Theory. 2(3), pp.113-124
DOI: http://dx.doi.org/10.1109/TIT.1956.1056813

Cisco (2013). The Zettabyte Era – Trends and Analysis. White paper, Cisco Systems

Inc. May 29, 2013; Obtained through the internet:
Web: www.cisco.com

[accessed 1 Oct. 2013]

Commentz-Walter, B. (1979). A String Matching Algorithm Fast on the Average.

Lecture Notes in Computer Science. 71, pp.118-132.
DOI: http://dx.doi.org/10.1007/3-540-09510-1_10

http://dx.doi.org/10.1145/1477942.1477950
http://dx.doi.org/10.1145/1882486.1882495
http://dx.doi.org/10.1016/0304-3975(86)90088-5
http://dx.doi.org/10.1109/FPT.2006.270302
http://dx.doi.org/10.1145/359842.359859
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1145/1150019.1136500
http://www.freepatentsonline.com/20080034427.pdf
http://dx.doi.org/10.1080/00207160310001650025
http://elm.eeng.dcu.ie/~croninb/ccp/ccp-0.3.tar.gz
https://ietf.org/doc/draft-ietf-tcpm-fastopen/
http://dx.doi.org/10.1109/TIT.1956.1056813
http://www.cisco.com/
http://dx.doi.org/10.1007/3-540-09510-1_10

168

Day, D. and Burns, B. (2011). A performance analysis of snort and suricata network

intrusion detection and prevention engines. Proceedings of the 5th International

Conference on Digital Society (ICDS), pp.187-192; Obtained through the internet:
Web: http://www.thinkmind.org/download.php?articleid=icds_2011_7_40_90007

[accessed 1 Oct. 2013]

Dharmapurikar, S., Krishnamurthy, P., Sproull, T. and Lockwood, J.W. (2003). Deep

Packet Inspection Using Parallel Bloom Filters. Proceedings 11
th

 Symposium on

High Performance Interconnects (HotInterconnects). pp.44-51.
DOI: http://dx.doi.org/10.1109/CONECT.2003.1231477

Dharmapurikar, S. and Paxson, V. (2005). Robust TCP stream reassembly in the

presence of adversaries. Proceedings of the 14th conference on USENIX Security

Symposium, (SSYM'05), Vol. 14; Obtained through the internet
Web:https://www.usenix.org/events/sec05/tech/full_papers/dharmapurikar/dharmapurika

r.pdf

[accessed 1 Oct. 2013]

Dorfinger, P. Strohmeier, F., Moosbrugger, A., Gojmerac, I., Trammell, B., Boschi,

et. al. (2009). PRISM: Final monitoring applications specification and analysis,

Chapter 3; Obtained through the internet:
Web: http://telscom.ch/wp-content/uploads/Prism/FP7-PRISM-WP3.2-D3.2.3.pdf

[accessed 1 Oct. 2013]

Eatherton, W. (1998). Hardware-based Internet Protocol Prefix Lookups. M.S. thesis,

Electr. Eng. Dept., Washington Univ., St. Louis, MO, USA; Obtained through the

internet:
Web: http://www.arl.wustl.edu/~jst/studentTheses/wEatherton-1999.pdf

[accessed 1 Oct. 2013]

Faezipour, M. and Nourani, M. (2008). Regular Expression Matching for

Reconfigurable Constraint Repetition Inspection. Proceedings of the IEEE Global

Telecommunication Conf. (GLOBECOM). pp.1–5.
DOI: http://dx.doi.org/10.1109/GLOCOM.2008.ECP.403

Ficara, D., Giordano, S., Procissi, G., Vitucci, F., Antichi, G. and Di Pietro, A. (2008).

An improved DFA for fast regular expression matching. SIGCOMM Comput.

Commun. 38(5), pp.29-40.
DOI: http://dx.doi.org/10.1145/1452335.1452339

Ganegedara, T. and Prasanna, V.K. (2012). StrideBV: Single chip 400G+ packet

classification, IEEE 13th International Conference on High Performance Switching

and Routing (HPSR), pp.1-6, 24-27.
DOI: http://dx.doi.org/10.1109/HPSR.2012.6260820

Glushkov, V.M. (1961). The Abstract Theory of Automata, Russian Mathematical

Surveys, 16, 1-53.
DOI: http://dx.doi.org/10.1070/RM1961v016n05ABEH004112

Handley, M., Kreibich C., and Paxson, V. (2001). Network Intrusion Detection:

Evasion, Traffic Normalization. Proc. 10
th

 USENIX Security Symposium; Obtained

through the internet:
Web: http://www.icir.org/vern/papers/norm-usenix-sec-01.pdf [accessed 1 Oct. 2013]

Hariguchi, Y. (2002). ART – Allotment Routing Table – A Fast Free Multibit Trie

Based Routing Table; Obtained through the internet:
Webpage: www.hariguchi.org/art [accessed 1 Oct. 2013]

Hayes, C.L. and Luo, Y. (2007). DPICO: a high speed deep packet inspection engine

using compact finite automata. Proceedings of the 3rd ACM/IEEE Symposium on

Architecture for networking and communications systems (ANCS). pp. 195-203
DOI: http://dx.doi.org/10.1145/1323548.1323579

http://www.thinkmind.org/download.php?articleid=icds_2011_7_40_90007
http://dx.doi.org/10.1109/CONECT.2003.1231477
https://www.usenix.org/events/sec05/tech/full_papers/dharmapurikar/dharmapurikar.pdf
https://www.usenix.org/events/sec05/tech/full_papers/dharmapurikar/dharmapurikar.pdf
http://telscom.ch/wp-content/uploads/Prism/FP7-PRISM-WP3.2-D3.2.3.pdf
http://www.arl.wustl.edu/~jst/studentTheses/wEatherton-1999.pdf
http://dx.doi.org/10.1109/GLOCOM.2008.ECP.403
http://dx.doi.org/10.1145/1452335.1452339
http://dx.doi.org/10.1109/HPSR.2012.6260820
http://dx.doi.org/10.1070/RM1961v016n05ABEH004112
http://www.icir.org/vern/papers/norm-usenix-sec-01.pdf
http://www.hariguchi.org/art
http://dx.doi.org/10.1145/1323548.1323579

169

Hoffman, D. and Strooper, P. (1997). Classbench: A Framework for Automated Class

Testing. Software Practice and Experience. 27(5).
DOI: dx.doi.org/10.1002/(SICI)1097-024X(199705)27:5%3c573::AID-SPE98%3e3.0.CO;2-3

Web: http://www.arl.wustl.edu/classbench/ [accessed 1 Oct. 2013]

Hopcroft, J.E., Motwani, R. and Ullman, J.D. (2006). Introduction to Automata

Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

Horspool, R.N. (1980). Practical fast searching in strings. Software: Practice and

Experience. 10(6), pp.501-506.
DOI: http://dx.doi.org/10.1002/spe.4380100608

Intilop Corp. (2012). 10 G Bit TCP Offload Engine (TOE) – Hardware IP Core, INT

20012. Top Level Product Specifications, 2012; Obtained through the Internet:
Web: http://www.intilop.com [accessed 1 Oct. 2013].

Ipoque (2013). Intel Labs using DPI from Ipoque. Case Study; Obtained through the

internet:
Web:

http://www.ipoque.com/sites/default/files/mediafiles/documents/CS_Intel_1308.pdf

[accessed 1 Dec. 2013].

ITU (2013). Key ICT indicators for developed and developing countries and the world

(totals and penetration rates). International Telecommunications Union (ITU),

Geneva, 27 Feb. 2013; Obtained through the internet:
Web: www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/ITU_Key_2005-2013_ICT_data.xls

[accessed 1 Oct. 2013].

Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J. and Towsley, D. (2007). Measurement

and Classification of Out-of-Sequence Packets in a Tier-1 IP Backbone.

IEEE/ACM Transactions on Networking (TON) 2007; 15(1), pp.54-66.
DOI: http://dx.doi.org/10.1109/TNET.2006.890117

Jiang, W. and Prasanna, V.K. (2009). Field-Split Parallel Architecture for High

Performance Multi-Match Packet Classification Using FPGAs. Proceedings of 21st

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '09).

pp.188-196.
DOI: http://dx.doi.org/10.1145/1583991.1584044

Jones, G. (2006). The 10 Most Destructive PC Viruses Of All Time, CRN Magazine,

5 July 2006; Obtained through the internet:
Web: www.crn.com/news/security/190300322/the-10-most-destructive-pc-viruses-of-all-time.htm

[accessed 1 Oct. 2013].

Kaneta, K., Yoshizawa, S., Minato, S., Arimura, H. and Miyanaga. Y. (2010).

Dynamic reconfigurable bit-parallel architecture for large-scale regular expression

matching. In Proceedings of the International Conference on Field-Programmable

Technology (FPT 2010), pp.21-28.
DOI: http://dx.doi.org/10.1109/FPT.2010.5681536

Kennedy, A., Wang, X. and Liu, B. (2008). Energy Efficient Packet Classification

Hardware Accelerator. Proceedings of 2008 IEEE International Parallel &

Distributed Processing Symposium (IPDPS 2008). pp.1-8.
DOI: http://dx.doi.org/10.1109/IPDPS.2008.4536216

Kennedy, A., Wang, X., Liu, Z. and Liu, B. (2010). Ultra-high throughput string

matching for Deep Packet Inspection. Proceedings of the Conference on Design,

Automation and Test in Europe (DATE '10). pp.399-404.
DOI: http://dx.doi.org/10.1109/DATE.2010.5457172

Kinane, A. (2006). Energy Efficient Hardware Acceleration of Multimedia Processing

Tools. PhD thesis, Dublin City University, Ireland. Advisor: Noel E. O’Connor.
Webpage: http://doras.dcu.ie/17985/

http://dx.doi.org/10.1002/(SICI)1097-024X(199705)27:5%3c573::AID-SPE98%3e3.0.CO;2-3
http://www.arl.wustl.edu/classbench/
http://dx.doi.org/10.1002/spe.4380100608
http://www.intilop.com/
http://www.ipoque.com/sites/default/files/mediafiles/documents/CS_Intel_1308.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/ITU_Key_2005-2013_ICT_data.xls
http://dx.doi.org/10.1109/TNET.2006.890117
http://dx.doi.org/10.1145/1583991.1584044
http://www.crn.com/news/security/190300322/the-10-most-destructive-pc-viruses-of-all-time.htm
http://dx.doi.org/10.1109/FPT.2010.5681536
http://dx.doi.org/10.1109/IPDPS.2008.4536216
http://dx.doi.org/10.1109/DATE.2010.5457172
http://doras.dcu.ie/17985/

170

Knuth, D.E., Morris, J. and Pratt, V.R. (1977). Fast Pattern Matching in Strings. SIAM

Journal on Computing. 6(2), pp.323-350
DOI: http://dx.doi.org/10.1137/0206024

Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P. and Turner, J. (2006a). Algorithms

to accelerate multiple regular expressions matching for deep packet inspection.

SIGCOMM Comput. Commun. Rev. 36(4), pp.339-350.
DOI: http://dx.doi.org/10.1145/1151659.1159952

Kumar, S., Turner, J. and Williams, J. (2006b). Advanced algorithms for fast and

scalable deep packet inspection. Proceedings of the 2006 ACM/IEEE symposium

on Architecture for networking and communications systems (ANCS '06). pp.81-

92.
DOI: http://dx.doi.org/10.1145/1185347.1185359

Kumar, S., Chandrasekaran, B., Turner, J. and Varghese, G. (2007). Curing regular

expressions matching algorithms from insomnia, amnesia, and acalculia.

Proceedings of the 3rd ACM/IEEE Symposium on Architecture for networking and

communications systems(ANCS '07). pp.155-164
DOI: http://dx.doi.org/10.1145/1323548.1323574

Lanzisera, S., Nordman, B. and Brown, R.E. (2012). Data network equipment energy

use and savings potential in buildings. Springer Energy Efficiency. 5(2), pp.149-

162.
DOI: http://dx.doi.org/10.1007/s12053-011-9136-4

Lee, T.H. (2009). Hardware Architecture for High-Performance Regular Expression

Matching. IEEE Transactions on Computers, 58(7), pp.984-993.
DOI: http://dx.doi.org/10.1109/TC.2008.145

Long, L.H., Hieu, T.T., Tai, V.T., Hung, N.H., Thinh, T.N., Anh Vu, D.D. (2010).

Enhanced FPGA-based architecture for regular expression matching in NIDS.

Proceedings International Conference on Electrical Engineering/Electronics

Computer Telecommunications and Information Technology (ECTI-CON) 2010,

pp. 666–670; Obtained through the internet:
Web: http://www.ecti-thailand.org/assets/papers/1083_pub_34.pdf [accessed 1 Oct.

2013].

McDonald, J. (1998). Defeating Sniffers and Intrusion Detection Systems. Phrack

Magazine, 8(54); Obtained through the internet:
Web: http://www.phrack.org/issues.html?issue=54&id=10 [accessed 1 Oct. 2013].

McNaughton, R., Yamada, H. (1960). Regular Expressions and State Graphs for

Automata. IRE Transactions on Electronic Computers, EC-9(1), pp.39-47.
DOI: http://dx.doi.org/10.1109/TEC.1960.5221603

Malan, G.R., Watson, D., Jahanian, F. and Howell, P. (2000). Transport and

application protocol scrubbing. Proceedings of the 19th Annual Joint Conference of

the IEEE Computer and Communications Societies (INFOCOM), 2000; 3:1381-

1390.
DOI: dx.doi.org/10.1109/INFCOM.2000.832535

Markatos, E., Antonatos, S., Polychronakis, M. and Anagnostakis, K. (2002).

Exclusion-based Signature Matching for Intrusion Detection. In Proceedings of

IASTED International Conference on Communications and Computer Networks

(CCN 2002); Obtained through the internet:
Web: http://www.ics.forth.gr/carv/papers/2002.CCN02.ExB.ps.gz

[accessed 1 Oct. 2013].

Mathis, J. and Heffner, J. (2007). Packetization Layer Path MTU Discovery. IETF

RFC 4821.
Web: http://www.ietf.org/rfc/rfc4821.txt

http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1145/1151659.1159952
http://dx.doi.org/10.1145/1185347.1185359
http://dx.doi.org/10.1145/1323548.1323574
http://dx.doi.org/10.1007/s12053-011-9136-4
http://dx.doi.org/10.1109/TC.2008.145
http://www.ecti-thailand.org/assets/papers/1083_pub_34.pdf
http://www.phrack.org/issues.html?issue=54&id=10
http://dx.doi.org/10.1109/TEC.1960.5221603
file:///C:/Users/bc/Desktop/PhDWork/dx.doi.org/10.1109/INFCOM.2000.832535
http://www.ics.forth.gr/carv/papers/2002.CCN02.ExB.ps.gz
http://www.ietf.org/rfc/rfc4821.txt

171

Meiners, C.R., Patel, J., Norige, E., Torng, E. and Liu., A.X. (2010). Fast regular

expression matching using small TCAMs for network intrusion detection and

prevention systems. In Proceedings of the 19th USENIX conference on Security

(USENIX Security'10). pp111-126; Obtained through the internet:
Web: http://www.usenix.org/events/sec10/tech/full_papers/Meiners.pdf

[accessed 1 Oct. 2013].

mi2g (2004). MyDoom becomes most damaging malware as SCO is paralysed. mi2g

news alert. 1 Feb. 2004; Obtained through the internet:
Web: http://www.mi2g.com/cgi/mi2g/press/010204.php [accessed 1 Oct. 2013].

Mogul, J. and Deering, S. (1990) Path MTU Discovery. IETF RFC 1191.
Web: http://www.ietf.org/rfc/rfc1191.txt

Morrison, D.R. (1968). PATRICIA—Practical Algorithm To Retrieve Information

Coded in Alphanumeric. Journal of the ACM, 15(4), pp.514-534.
DOI: http://dx.doi.org/10.1145/321479.321481

Mudge, T., Austin, T., Grunwald, D. (2004). Sim-Panalyzer: The SimpleScalar-Arm

Power Modeling Project; Obtained through the internet
Web: http://www.eecs.umich.edu/∼panalyzer/ [accessed 1 Jan. 2010]

Web: http://elm.eeng.dcu.ie/~croninb/multimatch/sim-panalyzer.htm [accessed 1 Oct.

2013]

Murray, D. and Koziniec, T. (2012). The state of enterprise network traffic in 2012.

18th Asia-Pacific Conference on Communications (APCC), 2012; 179-184.
DOI: http://dx.doi.org/10.1109/APCC.2012.6388126

Naous, J., Gibb, G., Bolouki, S. and McKeown N. (2008). NetFPGA: reusable router

architecture for experimental research. In Proceedings of the ACM workshop on

Programmable routers for extensible services of tomorrow (PRESTO '08). pp.1-7.
DOI: http://dx.doi.org/10.1145/1397718.1397720

Navarro, G. and Raffinot, M. (2002). Flexible Pattern Matching in Strings: Practical

On-Line Search Algorithms for Texts and Biological Sequences. Cambridge

University Press, New York, NY, USA.
ISBN: 0-521-81307-7

Necker, M., Contis, D. and Schimmel, D. (2002). TCP-Stream Reassembly and State

Tracking in Hardware. Proceedings 10th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM 2002). pp.286-287.
DOI: http://dx.doi.org/10.1109/FPGA.2002.1106687

Netronome (2012). Network Flow Management Software: IPS/IDS Application Kit;

Obtained through the internet:
Web: http://www.netronome.com

[accessed 1 Oct. 2013]

Norton, M. (2004). Optimizing Pattern Matching for Intrusion Detection, Sourcefire

Inc.; Obtained through the internet:
Web: http://pdf.aminer.org/000/309/890/optimizing_pattern_matching.pdf

[accessed 1 Oct. 2013]

Novak, J. and Sturges, S. (2007). Target-Based TCP Stream Reassembly. Sourcefire

Inc.; Obtained through the internet:
Web:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.9007&rep=rep1&type=pdf

[accessed 1 Oct. 2013]

NQ Mobile (2013). 2012 Security Report. NQ Mobile’s Security ab; Obtained

through the internet:
Web: http://www.nq.com/2012_NQ_Mobile_Security_Report.pdf

[accessed 1 Oct. 2013]

Open Information Security Foundation, n.d.;
Web: http://www.openinfosecfoundation.org/ [accessed 1 Oct. 2013]

http://www.usenix.org/events/sec10/tech/full_papers/Meiners.pdf
http://www.mi2g.com/cgi/mi2g/press/010204.php
http://www.ietf.org/rfc/rfc1191.txt
http://dx.doi.org/10.1145/321479.321481
http://www.eecs.umich.edu/∼panalyzer/
http://elm.eeng.dcu.ie/~croninb/multimatch/sim-panalyzer.htm
http://dx.doi.org/10.1109/APCC.2012.6388126
http://dx.doi.org/10.1145/1397718.1397720
http://dx.doi.org/10.1109/FPGA.2002.1106687
http://www.netronome.com/
http://pdf.aminer.org/000/309/890/optimizing_pattern_matching.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.9007&rep=rep1&type=pdf
http://www.nq.com/2012_NQ_Mobile_Security_Report.pdf
http://www.openinfosecfoundation.org/

172

Pao, D. (2009). A NFA-based programmable regular expression match engine. In

Proceedings of the 5th ACM/IEEE Symposium on Architectures for Networking

and Communications Systems (ANCS '09). pp.60-61.
DOI: http://dx.doi.org/10.1145/1882486.1882499

Paxson, V. (1999). Bro: a system for detecting network intruders in real-time.

Computer Networks: The International Journal of Computer and

Telecommunications Networking. 31(23-24), pp.2435-2463.
DOI: http://dx.doi.org/10.1016/S1389-1286(99)00112-7

PLDA. (2012) QuickTCP for Xilinx. Product Spec. 2012; Obtained through the

internet:
Web: http://www.plda.com/products/fpga-ip/xilinx/fpga-ip-tcpip/quicktcp-xilinx

[accessed 1 Oct. 2013].

Ptacek, T.H and Newsham, T.N. (1998). Insertion, Evasion and Denial of Service:

Eluding Network Intrusion Detection, Secure Networks Inc.
Web: http://insecure.org/stf/secnet_ids/secnet_ids.pdf

Rabin, M.O. and Scott, D. 1959. Finite automata and their decision problems. IBM J.

Res. Dev. 3(2), pp.114-125.
DOI: http://dx.doi.org/10.1147/rd.32.0114

Raghavan, B. and Ma, J. (2011). The Energy and Emergy of the Internet. Proceedings

of the ACM Workshop on Hot Topics in Networks (HotNets). Art. 9, 6 pages.
DOI: http://dx.doi.org/10.1145/2070562.2070571

Roesch, M., Green, C. and Sourcefire Inc. (2012), SNORT Users’ Manual (November

2012). Retrieved March 1, 2013 from http://manual.snort.org.

Ruggiero, P. and Foote, J. (2011). Cyber Threats to Mobile Phones. Carnegie Mellon

University, Paper produced for United States Computer Emergency Readiness

Team; Obtained through the internet:
Web: http://www.us-cert.gov/reading_room/cyber_threats_to_mobile_phones.pdf

[accessed 1 Oct. 2013].

Sanny, A., Ganegedara, T. and Prasanna, V.K. (2013). A Comparison of Ruleset

Feature Independent Packet Classification Engines on FPGA, IEEE 27th

International Parallel and Distributed Processing Symposium Workshops & PhD

Forum (IPDPSW), pp.124-133.
DOI: http://dx.doi.org/10.1109/IPDPSW.2013.249

Sawyer, N. and Defossez, M. (2002). Quad-Port Memories in Virtex Devices, Xilinx

Application Note 228; Obtained through the internet:
Web: http://www.xilinx.com/support/documentation/application_notes/xapp228.pdf

[accessed 1 Oct. 2013].

Schuehler, D.V. and Lockwood, J. (2002). TCP-Splitter: A TCP/IP flow monitor in

reconfigurable hardware. Proceedings of 10th Symposium on High Performance

Interconnects. pp.127-131.
DOI: http://dx.doi.org/10.1109/CONECT.2002.1039268

Schuehler, D.V. and Lockwood, J. (2004). A Modular System for FPGA-Based TCP

Flow Processing in High-Speed Networks. 4th International Conference on Field

Programmable Logic and Application (FPL), Springer LNCS 3203, pp.301-310.
DOI: http://dx.doi.org/10.1007/978-3-540-30117-2_32

Shankar, U. and Paxson, V. (2003). Active mapping: resisting NIDS evasion without

altering traffic. Proceedings of the 2003 Symposium on Security and Privacy, 2003;

44-61.
DOI: http://dx.doi.org/10.1109/SECPRI.2003.1199327

http://dx.doi.org/10.1145/1882486.1882499
http://dx.doi.org/10.1016/S1389-1286(99)00112-7
http://www.plda.com/products/fpga-ip/xilinx/fpga-ip-tcpip/quicktcp-xilinx
http://insecure.org/stf/secnet_ids/secnet_ids.pdf
http://dx.doi.org/10.1147/rd.32.0114
http://dx.doi.org/10.1145/2070562.2070571
http://manual.snort.org/
http://www.us-cert.gov/reading_room/cyber_threats_to_mobile_phones.pdf
http://dx.doi.org/10.1109/IPDPSW.2013.249
http://www.xilinx.com/support/documentation/application_notes/xapp228.pdf
http://dx.doi.org/10.1109/CONECT.2002.1039268
http://dx.doi.org/10.1007/978-3-540-30117-2_32
http://dx.doi.org/10.1109/SECPRI.2003.1199327

173

Shmoo Group, (2009). DEF CON 9.0 capture the flag contest data sets; Obtained

through the internet:
Web: http://ictf.cs.ucsb.edu/data/defcon_ctf_09/ [accessed 1 Feb. 2012].

Sidhu, R. and Prasanna, V.K. (2001). Fast Regular Expression Matching Using

FPGAs. In Proceedings of the the 9th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM '01). pp.227-238.
DOI: http://dx.doi.org/10.1109/FCCM.2001.22

Sinnappan, R. and Hazelhurst, S. (2001). A Reconfigurable Approach to Packet

Filtering. Proceedings of the 11th International Conference on Field-

Programmable Logic and Applications (FPL’01). pp.638-642.
DOI: http://dx.doi.org/10.1007/3-540-44687-7_70

Singh, S. and Baboescu, F. (2002). EGT-PC single-match implementation.
Web:

http://elm.eeng.dcu.ie/~croninb/multimatch/PacketClassficiationRepository/trie.c

Originally available from www.ial.ucsd.edu/classification

Singh, S., Baboescu, F., Varghese, G. and Wang J. (2003). Packet Classification

Using Multidimensional Cutting. Proceedings of the 2003 conference on

Applications, technologies, architectures, and protocols for computer

communications (SIGCOMM '03). pp.213-224.
DOI: http://dx.doi.org/10.1145/863955.863980

Smith, R., Estan, C., Jha, S. and Kong S. (2008). Deflating the big bang: fast and

scalable deep packet inspection with extended finite automata. SIGCOMM Comput.

Commun. Rev. 38(4), pp.207-218.
DOI: http://dx.doi.org/10.1145/1402958.1402983

SNORT Frag3 & Stream5 preprocessor documentation. README.frag3 and

README.stream5 located in doc folder of the source code tar-ball.
Web: http://www.snort.org/snort-downloads [accessed 1 Oct. 2013].

Sommer, R. (2011). The Open Source Bro IDS: Overview and Recent Developments.

CACR Higher Education Cybersecurity Summit, Presentation, April 2011;

Obtained through the internet:
Web: http://www.icir.org/robin/slides/Bro-CACR-Indianapolis.pdf [accessed 1 Oct.

2013].

Song, H. and Lockwood, J.W. (2005a). Efficient Packet Classification for Network

Intrusion Detection using FPGA. FPGA ’05: Proceedings of the 2005 ACM/SIGDA

13th international symposium on Field-programmable gate arrays. pp.238-245.
DOI: http://dx.doi.org/10.1145/1046192.1046223

Song, H. and Lockwood, J.W. (2005b). Multi-pattern Signature Matching for

Hardware Network Intrusion Detection Systems. IEEE Global Telecommunications

Conference GLOBECOM’05. vol.3, 5 pages.
DOI: http://dx.doi.org/10.1109/GLOCOM.2005.1577937

Srinivasan, V. and Varghese, G. (1998). Faster IP lookups using controlled prefix

expansion. ACM SIGMETRICS Performance Evaluation Review. 26(1), pp.1-10.
DOI: http://dx.doi.org/10.1145/277858.277863

Srinivasan, V., Varghese, G., Suri, S. and Waldvogel, M (1998). Fast and Scalable

Layer-4 Switching. Proceedings of the ACM SIGCOMM '98 conference on

Applications, technologies, architectures, and protocols for computer

communication. pp.191-202.
DOI: http://dx.doi.org/10.1145/285237.285282

Sundaramoorthy N, Rao N, Hill T. AXI4 Interconnect Paves the Way to Plug-and-

Play IP. Xilinx White Paper, 2010; WP379 (v1.0); Obtained through the internet:
Web: http://www.xilinx.com/support/documentation/white_papers/wp379_AXI4_Plug_and_Play_IP.pdf

[accessed 1 Dec. 2013]

http://ictf.cs.ucsb.edu/data/defcon_ctf_09/
http://dx.doi.org/10.1109/FCCM.2001.22
http://dx.doi.org/10.1007/3-540-44687-7_70
http://elm.eeng.dcu.ie/~croninb/multimatch/PacketClassficiationRepository/trie.c
http://www.ial.ucsd.edu/classification
http://dx.doi.org/10.1145/863955.863980
http://dx.doi.org/10.1145/1402958.1402983
http://www.snort.org/snort-downloads
http://www.icir.org/robin/slides/Bro-CACR-Indianapolis.pdf
http://dx.doi.org/10.1145/1046192.1046223
http://dx.doi.org/10.1109/GLOCOM.2005.1577937
http://dx.doi.org/10.1145/277858.277863
http://dx.doi.org/10.1145/285237.285282
http://www.xilinx.com/support/documentation/white_papers/wp379_AXI4_Plug_and_Play_IP.pdf

174

Sung, J., Kang, S., Y. Lee, T. Kwon, and B. Kim (2005). A Multi-gigabit Rate Deep

Packet Inspection Algorithm using TCAM. IEEE Global Telecommunications

Conference GLOBECOM’05. vol.1, 5 pages.
DOI: http://dx.doi.org/10.1109/GLOCOM.2005.1577667

Taleck G. Ambiguity Resolution via Passive OS Fingerprinting. (2003) Proceedings

of the International Conference on Recent Advances in Intrusion Detection (RAID),

Lecture Notes in Computer Science, Springer 2003; 2820:192-206.
DOI: http://dx.doi.org/10.1007/978-3-540-45248-5_11

Tan, L. and Sherwood, T. (2005). A High Throughput String Matching Architecture

for Intrusion Detection and Prevention. In Proceedings of the 32nd annual

international symposium on Computer Architecture (ISCA '05). pp.112-122.
DOI: http://dx.doi.org/10.1109/ISCA.2005.5

Tang, S. (2000). Using Binary Files in VHDL Test Benches. Application Note, Dept.

of Electrical and Computer Engineering, University of Alberta.
Web:http://www.ece.ualberta.ca/~elliott/ee552/studentAppNotes/2000_w/vhdl/BinaryFil

eTestbenching/binary.html

Taylor, D.E. (2005). Survey and Taxonomy of Packet Classification Techniques.

ACM Computing Surveys, 37(3), pp.238-275.
DOI: http://dx.doi.org/10.1145/1108956.1108958

ThinkQuest (2004). Sasser Worm. Oracle ThinkQuest, Cybercrime – Piercing the

darkness. Oct. 2004.
DOI:http://library.thinkquest.org/04oct/00460/sasser.html

Thompson, K. (1968). Programming Techniques: Regular expression search

algorithm. Communications of the ACM, 11(6), pp.419-422.
DOI: http://dx.doi.org/10.1145/363347.363387

Tuck, N., Sherwood, T., Calder, B. and Varghese, G. (2004). Deterministic memory-

efficient string matching algorithms for intrusion detection. INFOCOM 2004. 4,

pp.2628-2639. March 2004.
DOI: http://dx.doi.org/10.1109/INFCOM.2004.1354682

Vamosi, R. Sasser.a and Sasser.b prevention and cure. CNET Reviews, 3 May 2004.
Web: http://reviews.cnet.com/4520-6600_7-5133023-1.html

Vasiliadis, G., Polychronakis, M., Antonatos, S., Markatos, E.P. and Ioannidis, S.

(2009). Regular Expression Matching on Graphics Hardware for Intrusion

Detection. Proceedings of the 12th International Symposium on Recent Advances

in Intrusion Detection (RAID '09). pp.265-283.
DOI: http://dx.doi.org/10.1007/978-3-642-04342-0_14

Vutukuru, M., Balakrishnan, H. and Paxson, V. (2008). Efficient and Robust TCP

Stream Normalization. Proceedings of the 2008 IEEE Symposium on Security and

Privacy, 2008; 96-110.
DOI: http://dx.doi.org/10.1109/SP.2008.27

Wang, H., Pu, S., Knezek, G. and Liu, J-C. (2010). A modular NFA architecture for

regular expression matching. Proceedings of the 18th annual ACM/SIGDA

international symposium on Field programmable gate arrays (FPGA '10). pp.209-

218.
DOI: http://dx.doi.org/10.1145/1723112.1723149

Wang, X., Xu, Y., Jiang, J., Ormond, O., Liu, B. and Wang, X. (2013). StriFA: Stride

Finite Automata for High-Speed Regular Expression Matching in Network

Intrusion Detection Systems. IEEE Systems Journal, 7(3), pp.374,384.
DOI: http://dx.doi.org/10.1109/JSYST.2013.2244791

http://dx.doi.org/10.1109/GLOCOM.2005.1577667
http://dx.doi.org/10.1007/978-3-540-45248-5_11
http://dx.doi.org/10.1109/ISCA.2005.5
http://www.ece.ualberta.ca/~elliott/ee552/studentAppNotes/2000_w/vhdl/BinaryFileTestbenching/binary.html
http://www.ece.ualberta.ca/~elliott/ee552/studentAppNotes/2000_w/vhdl/BinaryFileTestbenching/binary.html
http://dx.doi.org/10.1145/1108956.1108958
http://library.thinkquest.org/04oct/00460/sasser.html
http://dx.doi.org/10.1145/363347.363387
http://dx.doi.org/10.1109/INFCOM.2004.1354682
http://reviews.cnet.com/4520-6600_7-5133023-1.html
http://dx.doi.org/10.1007/978-3-642-04342-0_14
http://dx.doi.org/10.1109/SP.2008.27
http://dx.doi.org/10.1145/1723112.1723149
http://dx.doi.org/10.1109/JSYST.2013.2244791

175

White, J.S., Fitzsimmons, T. and Matthews, J.N. (2013). Quantitative analysis of

intrusion detection systems: Snort and Suricata. Proc. SPIE 8757, Cyber Sensing

2013, 875704.
DOI: http://dx.doi.org/10.1117/12.2015616

Wu, S. and Manber, U. (1992). Fast text searching: allowing errors. Commun. ACM,

35(10), pp.83-91.
DOI: http://dx.doi.org/10.1145/135239.135244

Wu, S. and Manber, U. (1994). A fast algorithm for multi-pattern searching. Technical

Report TR94-17, Department of Computer Science, University of Arizona, 1994.
Web: ftp://ftp.cs.arizona.edu/reports/1994/TR94-17.ps

Wun, B., Crowley, P. and Raghunth, A. (2009). Parallelization of Snort on a multi-

core platform. Proceedings of the 5th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems (ANCS), pp.173-174.
DOI: http://dx.doi.org/10.1145/1882486.1882528

Xilinx (2012a). Virtex-5 FPGA User Guide. UG190 (v5.4) March 16, 2012, Obtained

through the internet:
Web: http://www.xilinx.com/support/documentation/user_guides/ug190.pdf

[accessed 1 Dec. 2013].

Xilinx (2012b). Xilinx 7 Series FPGAs: Breakthrough Power and Performance,

Dramatically Reduced Development Time. Xilinx 7 Series Product Brief; Obtained

through the internet:
Web: http://www.xilinx.com/publications/prod_mktg/7-Series-Product-Brief.pdf

[accessed 1 Dec. 2013].

Xilinx (2013). Zynq-7000 All Programmable SoC First Generation Architecture.

Preliminary Product Specification, 2013; DS190 (v1.6), Obtained through the

internet:
Web: http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-

Overview.pdf

[accessed 24 Dec. 2013]

Yang, L., Karim, R., Ganapathy, V. and Smith, R. (2010). Improving NFA-based

signature matching using ordered binary decision diagrams. Proceedings of the

13th international conference on Recent advances in intrusion detection

(RAID'10). pp.58-78.
DOI: http://dx.doi.org/10.1007/978-3-642-15512-3_4

Young, G. and Pescatore, J. (2012). Magic Quadrant for Intrusion Prevention

Systems. Gartner Research, 5 July 2012; Obtained through the internet:
Web: http://www.gartner.com/id=2073115 [accessed 1 Oct. 2013].

Yu, F. (2006). High Speed Deep Packet Inspection with Hardware Support. Ph.D.

thesis, University of California, Berkeley, CA, USA. Advisor: Randy Katz;

Obtained through the internet:
Web: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-156.pdf

[accessed 1 Jan. 2010].

Yu, F., Chen, Z., Diao, Y., Lakshman, T.V. and Katz, R.H. (2006). Fast and memory-

efficient regular expression matching for deep packet inspection. Proceedings of

the 2006 ACM/IEEE symposium on Architecture for networking and

communications systems (ANCS '06). pp.93-102.
DOI: http://dx.doi.org/10.1145/1185347.1185360

Yu, F. and Katz, R.H. (2004). Efficient Multi-Match Packet Classification with

TCAM. Proceedings 12
th

 IEEE Symposium on Hot Interconnects (HOTI’04).

pp.28-34.
DOI: http://dx.doi.org/10.1109/CONECT.2004.1375197

http://dx.doi.org/10.1117/12.2015616
http://dx.doi.org/10.1145/135239.135244
ftp://ftp.cs.arizona.edu/reports/1994/TR94-17.ps
http://dx.doi.org/10.1145/1882486.1882528
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/publications/prod_mktg/7-Series-Product-Brief.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://dx.doi.org/10.1007/978-3-642-15512-3_4
http://www.gartner.com/id=2073115
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-156.pdf
http://dx.doi.org/10.1145/1185347.1185360
http://dx.doi.org/10.1109/CONECT.2004.1375197

176

Yu, F., Katz, R.H. and Lakshman, T.V. (2004). Gigabit Rate Pattern-Matching Using

TCAM, Proceedings of the 12th IEEE International Conference on Network

Protocols (ICNP '04). pp.174-183.
DOI: http://dx.doi.org/10.1109/ICNP.2004.1348108

Yu, F., Lakshman, T.V., Motoyama, M.A. and Katz, R.H. 2005. SSA: A Power and

Memory Efficient Scheme to Multi-Match Packet Classification. Proceedings of

the 2005 ACM Symposium on Architectures for Networking and Communications

Systems (ANCS). pp.105-113.
DOI: http://dx.doi.org/10.1145/1095890.1095905

Yun, S. and Lee, K. (2009). Regular Expression Pattern Matching Supporting

Constrained Repetitions. Proceedings International Workshop on Reconfigurable

Computing: Architectures, Tools and Applications (ARC), (LNCS, 5453), pp. 300–

305
DOI: http://dx.doi.org/10.1007/978-3-642-00641-8_32

Zhao, Y., Yuan, R., Wang, W., Meng D., Zhang, S. and Li, J. (2012). A Hardware-

based TCP Stream State Tracking and Reassembly Solution for 10G Backbone

Traffic. IEEE 7th International Conference on Networking, Architecture and

Storage (NAS). pp.154-163.
DOI: http://dx.doi.org/10.1109/NAS.2012.24

Zhou, Y. and Wang, X. 2010. Efficient Pattern Matching with Counting Bloom Filter.

CIICT2010.
ISBN: 978-1-935068-30-3

Zu, Y., Yang, M., Xu, Z., Wang, L., Tian, X., Peng, K. and Dong Q. (2012). GPU-

based NFA implementation for memory efficient high speed regular expression

matching. Proceedings of the 17th ACM SIGPLAN symposium on Principles and

Practice of Parallel Programming (PPoPP). pp.129-140.
DOI: http://dx.doi.org/10.1145/2145816.2145833

http://dx.doi.org/10.1109/ICNP.2004.1348108
http://dx.doi.org/10.1145/1095890.1095905
http://dx.doi.org/10.1007/978-3-642-00641-8_32
http://dx.doi.org/10.1109/NAS.2012.24
http://dx.doi.org/10.1145/2145816.2145833

	Declaration
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Abstract
	List of Publications
	Chapter 1 - Introduction
	1.1. Background
	1.1.1. Growth of the Internet
	1.1.2. Energy Consumption
	1.1.3. Internet Security

	1.2. Motivation
	1.3. Intrusion Detection and Prevention
	1.3.1. Classification
	1.3.2. Detection Methods
	1.3.3. Modes
	1.3.4. NIDS Sensor Location
	1.3.5. NIPS Sensor Location

	1.4. Research Goals
	1.5. Contributions
	1.6. Thesis Organisation

	Chapter 2 - Background
	2.1. Automata Theory
	2.1.1. Formal Languages
	Alphabet
	Strings
	Languages
	Grammars

	2.1.2. Regular Languages
	Regular Grammars
	Finite State Automata
	NFA vs. DFA
	Regular Expressions
	Right versus Left Linear (Regular) Grammars

	2.1.3. Perl Compatible Regular Expressions
	Snort PCRE syntax
	Regex anchors

	2.1.4. Construction of NFA from regex
	Thompson NFA
	Glushkov NFA

	2.1.5. NFA to DFA conversion
	2.1.6. Trie

	2.2. Network Intrusion Detection and Prevention Systems
	2.2.1. Snort
	2.2.2. Snort Rules
	Rule Header
	Rule Options

	2.2.3. Suricata
	2.2.4. Bro
	2.2.5. Market Trends

	2.3. Platforms
	2.3.1. Commodity Hardware
	Commercial Off-The-Shelf (COTS) Server
	Graphics Processing Unit (GPU)

	2.3.2. Custom Hardware
	ASIC
	FPGA
	TCAM
	Network Processor

	2.4. Summary

	Chapter 3 - TCP/IP Reassembly
	3.1. Theory of IP Fragmentation and TCP Segmentation
	3.1.1. TCP Connections
	Three-way handshake
	Sequence and Acknowledgment numbers

	3.1.2. The need for IP fragmentation
	3.1.3. Path MTU Discovery
	3.1.4. IP Reassembly
	3.1.5. TCP Segmentation

	3.2. Handling of Reassembly in different Operating Systems
	3.2.1. Simple Insertion and Evasion Attacks
	3.2.2. Creation of connection session
	3.2.3. TCP Stream Reassembly – Connection Window
	3.2.4. Overlapping Fragments or Segments
	3.2.5. TCP Stream – RST Validity Check
	3.2.6. TCP Stream – Timestamp Validity Check
	3.2.7. TCP Stream – Handling of repeated SYN segment

	3.3. Target-based Reassembly and Normalisation
	3.4. TCP/IP Reassembly in Software
	3.4.1. Snort
	Packet Decoder
	Frag3 & Stream5 pre-processor
	Pseudo-packets

	3.4.2. OISF Suricata
	Important structures in software (non-inline mode)
	TCP Stream Inline Mode

	3.5. TCP/IP Reassembly in Hardware
	3.5.1. TCP Processing Engine
	Connection Records
	Connection Lookup
	Reassembly
	Flushing of Packets

	3.5.2. Non-TCP Processing Engine
	3.5.3. Software on CPU
	3.5.6. Evaluation and comparison with related work

	3.6. Conclusion and Future Work

	Chapter 4 - Multi-match Header Classification
	4.1. Characteristics of NIDS Rule Sets
	4.2. Proposed Architecture
	4.2.1. Pre-processing
	4.2.2. Top-level Architecture

	4.3. Algorithms
	4.3.1. Introduction
	4.3.2. Hypercuts
	4.3.3. EGT-PC
	Basic Grid-of-Tries
	Backtracking
	Switch Pointers
	Extended Grid-of-Tries (EGT)
	EGT with Path Compression (EGT-PC)
	EGT-PC – multi-match

	4.3.4. ART (Allotment Routing Table)
	Description of single match ART algorithm
	Extending ART to perform multi-matching

	4.4. Related Work
	4.4.1. Bit Vector – TCAM architecture
	4.4.2. Field-Split parallel Bit Vector architecture

	4.5. Comparison
	4.6. Conclusion

	Chapter 5 - Pattern Matching Methods
	5.1. Fixed String Matching
	5.1.1. Precise Matching
	5.1.2. Imprecise Matching (with false positives)

	5.2. Regular Expression Matching
	5.2.1. DFA-based solutions
	Regular Expression Rewriting
	DFA Grouping
	Delayed Input DFA (D2FA)
	Content Addressed Delayed Input DFA (CD2FA)
	DFA Splitting
	History-based FA (H-FA)
	Hybrid-FA
	Extended FA (XFA)
	Delta Finite Automaton (δFA)

	5.2.2. NFA-based solutions
	PCRE software library (Snort and Suricata)
	FPGA logic–based NFA
	NFA-OBDD
	FPGA/ASIC memory–based NFA schemes

	5.2.3. Imprecise Matching Finite Automata
	StriFA
	DFA Abstraction

	5.2.4. Alphabet Reduction
	5.2.5. Multi-stride Automata
	5.2.6. Commodity versus Speciality Hardware

	5.3. Conclusion

	Chapter 6 - Constrained Repetitions in Regular Expressions
	6.1. Constrained Repetitions in Snort Rule Set
	6.2. Bit-Parallel (BP) Architectures
	6.3. Glushkov NFA
	6.4. Counting Glushkov NFA
	6.5. Bit Parallelism
	6.5.1. Standard G-NFA
	6.5.2. Counting G-NFA
	6.5.3. Counting G-NFA for single symbol elements

	6.6. Implementation
	6.6.1. Hardware Architecture
	6.6.2. Bitmask Generation Software

	6.7. Performance Results
	6.7.1. Synthesis and simulation
	6.7.2. Memory requirements
	6.7.3. Memory and power savings
	6.7.4. Extending to multiple counting blocks

	6.8. Related Work
	6.9. Conclusion

	Chapter 7 - Pattern Overlap in case of Constrained Repetitions
	7.1. Counting Overlap Issue
	7.2. Counting GlushKov NFA with Overlap Handling
	7.3. Implementation
	7.3.1. Hardware Architecture
	7.3.2. Software

	7.4. Performance Results
	7.5. Related Work
	7.6. Conclusion

	Chapter 8 - Conclusions and Further Work
	8.1.1. TCP/IP Reassembly
	8.1.2. Multi-match Packet Header Classification
	8.1.3. Regular Expression DPI
	8.2. Future Directions
	8.2.1. Improving Performance
	8.2.2. Fixed String Pre-Filter
	8.2.3. Improving Power Efficiency
	8.2.4. Mobile Internet DPI

	References

