
Detection and Classification of Anomalous Events in Water Quality Datasets Within a

Smart City-Smart Bay Project

Dian Zhang∗†, Timothy Sullivan†, Ciprian Briciu-Burghina†, Kevin Murphy†, Kevin McGuinness∗,
Noel E. O’Connor∗, Alan Smeaton∗, and Fiona Regan†

∗CLARITY: Centre for Sensor Web Technologies, Dublin City University, Glasnevin, Dublin 9
† MESTECH: Marine and Environmental Sensing Technology Hub, Dublin City University, Glasnevin, Dublin 9

Email: dian.zhang2@mail.dcu.ie, tim.sullivan@dcu.ie
ciprian.briciu@dcu.ie, kevin.murphy@dcu.ie, kevin.mcguinness@dcu.ie

noel.oconnor@dcu.ie,alan.smeaton@dcu.ie,fiona.regan@dcu.ie

Abstract—Continual measurement is key to understanding sud-
den and gradual changes in chemical and biological quality of
water, and for taking reactive remedial action in the case of
contamination. Monitoring of water bodies will increase in future
within Europe to comply with legislative requirements such as the
Water Framework Directive and globally owing to pressure from
climate change. Establishing high quality long-term monitoring
programs is regarded as essential if the implementation of perti-
nent legislation is to be successful. However, conventional discrete
sampling programs and laboratory-based analysis techniques can
be costly, and are unlikely to provide timely and reliable estimates
of true ranges of deterministic physicochemical variability in a
water body with marked temporal or spatial variability. Only
continual or near continual measurements have the capacity to
detect ephemeral or sporadic events, thus providing the potential
for on-line event detection and classification. The aim of this work
is to demonstrate the potential role of continuous data acquisition
in decision support as part of a smart city project. In this work,
a multi-modal smart sensor network system framework for large
scale estuarine and marine water quality monitoring is proposed.
The application of a number of evolving techniques that allow
automated detection and clustering of events from data generated
by in situ sensors within environmental time series datasets is
described. We provide examples of how change in the range of
variables such as turbidity and salinity might be detected and
clustered to provide the end user with greater ability to detect
the onset of environmentally significant events. Finally, we discuss
the acquisition of data from in situ water quality sensors and its
utility within the framework a smart city-smart bay integrated
project.

Keywords–Continuous water monitoring estuary, marine, deci-
sion support, turbidity, salinity, anomaly detection, robust online
clustering, pixel-based adaptive segmentation.

I. INTRODUCTION

Automated collection and storage of datasets related to
environmental water quality is now becoming commonplace,
however, challenges remain in automated detection of impor-
tant events within these datasets and thus determination of the
value and ecological significance of collected data for use in
decision support systems [1]. This challenge can only increase
as the vision of futuristic smart cities containing integrated
sensing networks becomes a reality. In situ sensors capable of
continually sampling chemical and physical parameters offer
the potential to reduce costs, provide timely information and
improved representation of long-term trends in the fluctuations
of pollutant concentrations [2]. In situ in the context of
environmental sensing means in place or in direct contact with
the medium of interest, as opposed to methods such as remote

sensing where no contact is made between the sensor and the
analyte. Indeed, the ideal aquatic monitoring system of the near
future might consist of a network of sensors deployed at key
locations, capable of autonomous operation in the field for a
year or more [3][4]. Despite the increasing range of techniques
available, continuous on-line in situ, measurement systems
remain largely limited by both poor sensor performance and a
lag in availability and application of suitable data analytics.
Thus, while measurement and detection methods exist for
many environmental pollutants in the laboratory, continuous
monitoring on a cost effective basis in the field remains a
challenge for these reasons.

A. The Ideal System

The ideal monitoring system of the near future might con-
sist of sensor networks deployed at key locations, capable of
near autonomous operation in the field over long time frames
(annual to decade time scales). The components necessary to
achieve this measurement of multiple parameters, simultane-
ously and in real-time are available [5]. However, it is clear that
as a scientific community, we need to improve the quality and
reduce the cost of sensors for many of the desired parameters
(for example most nutrients, microbial contaminants), while
using simplified devices in robust embedded networks to make
this ideal truly achievable. Another consideration is that a
common platform for data validation and sensor verification
has yet to be universally implemented to improve data quality.
Data collected from monitoring stations can be communicated
by wireless technology prior to statistical processing and inter-
pretation by expert systems. Indeed wireless data transmission,
and the concept of wirelessly networked sensors in particular,
has however become one of the most dynamic and important
areas of multi-disciplinary research [6][7]. Real time alerts can
be raised to relevant personnel, perhaps through an alarm sent
to smartphones or e-mail, when trends for any constituent
of interest breaches particular thresholds (for example En-
vironmental Quality Standards (EQS)) are detected. Notified
personnel can then intercept serious pollution incidents or
lead an appropriate response. Detected individual outliers can
be combined into event-based information to support the
identification of impacts from environmental threats. Events
can be further clustered into groups based on some kind of
similarity matrix to assist scientists in identifying commonality
between groups.



B. The Future: improved signal processing including both on-
line and off-line data analytics

Implementation of advanced and user-friendly event-
detection software to distinguish between normal conditions
and anomalous events is critical if data provided by the ideal
sensing system is to be used effectively. Data-driven estimation
models with sequential probability updating have been sug-
gested for this purpose [8] and implemented in various forms
(see for example CANARY [9][10][11]). Detection of water
security threats arising either from intentional or unintentional
sudden contamination events implemented in Contamination
Warning Systems (CWS) is of particular importance, and it has
been suggested that in the region of thirty-three contaminants
(pesticides, insecticides, metals, bacteria, etc.) can be utilised
as indicators of intentional water contamination [12]. While
widespread detection of all thirty-three variables using low-
cost autonomous sensor systems is far from achievable at
present, the potential advantages of automated early warning
systems based on multivariate analysis of datasets collected by
such systems are clear. Moreover, considerable expenditure of
research effort is required to further develop improved data
analytics platforms for the ideal sensing system, including
forecasting, modelling and event detection platforms or Early
Warning Systems (EWS) [13]. The rapid growth of “big
data” provided by social media, concomitant with improved
computing capacity has spurred research interest into novel
data analytics techniques. Datasets provided by in situ sensing
in its current form are at present not approaching the scale
of those provided by social networking scenarios, however, as
the vision of internet-scale sensing heralded by the develop-
ment of improved sensing becomes reality, such datasets may
become widespread. Detection of anomalous events within
these datasets would be of widespread interest and a num-
ber of Artificial Intelligence (AI) methods, such as artificial
neural networks (ANN) and support vector machines (SVM),
have already been utilised for this purpose (see for example
[14][15][16] and [17] for a critical review of ANN usage in
this regard). Generally, these techniques have been used to
classify water quality data into normal and anomalous classes
after supervised learning training. Other data-mining methods,
such as K-means classification and the multivariate nearest-
neighbour (MV-NN) algorithms, combining different water-
quality parameters and location information, are also used for
protecting drinking water systems [18]. Data-fusion methods
have been used to combine various types of information, for
example, operational data or data from multiple monitoring
stations [19] or sensors [20] to improve the detection of water-
contamination events while reducing the potential number
of false positives. Other approaches have proposed combin-
ing residuals for water-quality parameters with autoregressive
(AR) models or other methods (see for example [20][21]). An
extension of this is to use some form of pattern recognition
and matching to detect and and create a multivariate library of
known events. A newly detected event can then be matched
to the library of historical events to determine if similar
events have occurred previously. If so, information gained
from historical events can be used to analyse the causes and
impacts of current ongoing events. Event clustering would be a
typical approach to this problem and has been implemented in
several such systems (for example CANARY uses a trajectory
clustering-based pattern matching approach). However, exist-

ing systems such as CANARY, are focusing on contamination
event detection for drinking water systems which are very
different from marine or estuarine environments. Drinking
water systems normally have a closed supply chain and dare
not affected by many factors such as weather, tide, season,
dam release, etc., in contrast to open water bodies. A key
challenge for on-line automated analysis of environmental
datasets lies in dealing with the peculiarities of these datasets
themselves, in which missing values are common, disjointed
measurement methodologies and techniques are followed or in
which large-scale uncertainty can exist due to sensor perfor-
mance issues. Successful development of useful early warning
systems and other on-line data analytics methods for in situ
sensing platforms must be capable of dealing with these issues.
Particular issues of current early warning systems include high
proportion of false alarms and false negatives in practical
applications, unacceptable computational demands and lack of
on-line detection [22].

This work outlines the potential for continuous water
quality monitoring in decision support as part of a Smart Bay
component [23][24] in the broader context of a connected
Smart City project in Dublin. Over the coming years, the
SmartBay project will see the expansion of a multi-modal
sensor and data network in Dublin Bay for detection of
pollution and flood events among others. The latter will consist
of a number of sensor deployments, including visual sensing
systems, modelling and integration of additional available
data sources (for example data provided by citizen moni-
toring). Datasets collected over the course of the SmartBay
project can be utilised for other applications depending on
user requirements or emerging applications, with particular
emphasis on water in the city, port and coastal areas. In this
paper, real data collected from pilot sites in Dublin Bay using
continuous autonomous multi-parameter sensing systems are
used to demonstrate how machine-learning techniques such
as robust online clustering (ROC) and a modified pixel-based
adaptive segmentation (MoPBAS) approach can be utilised for
such purposes. These techniques will be discussed in terms of
anomaly detection, event construction and classification, and
the resulting opportunities for development of decision support
systems. We show how use of a multi-modal data system
demonstrates potential for low-cost sensing in complex aquatic
environments such as estuaries. Data from water quality sen-
sors are evaluated and analysed along with data from grab
samples, with the latter supporting the observations of trends
from water quality monitoring systems. Scenarios presented
provide examples of the potential value of such a monitoring
system in building a SmartBay infrastructure. The rest of the
paper is organised as follows. Section II presents the proposed
multi-modal smart sensor network framework for marine en-
vironmental monitoring. Section III introduces the pilot site
and the deployment of instruments. The implementation of
anomaly detection, abnormal event construction and clustering
is described in Section IV and the experiment results are shown
in Section V. The conclusion of the paper is in Section VI.

II. MULTI-MODAL ABNORMAL EVENT DETECTION AND
CLASSIFICATION FRAMEWORK FOR SMART-BAY

MONITORING SYSTEM

In order to fully utilise the above ideal system, a novel
multi-modal smart sensor network framework for marine en-



vironmental monitoring is proposed. Figure 1 illustrates an
overview structure of the system. The framework consists of
three layers, a wireless sensor network (WSN) layer, backend
smart system layer and a decision-making layer. The WSN
layer contains observation sites that are equipped with various
numbers and type of sensors. The smart system layer has two
main components. The data repository collects data generated
from all sensors and creates a truly multi modality data pool.
The smart system processes these data sets using state-of-the-
art machine learning techniques to convert raw sensor mea-
surements into organised knowledge that can be understood
by operators. The operators can then make decisions based on
this information to avoid or reduce negative impacts. Moreover,
the operators can then send feedback to the WSN to indicate
whether the current deployed sensor network is sufficient to
monitor and subsequently model the observation sites. The
overall architecture of the deployments made around Dublin
bay is shown schematically in Figure 1.

Figure 1. A schematic outlining the architecture of the proposed multi-modal
smart monitoring system, including treatment of the data and the feedback
mechanisms for decision-making.

This architecture is flexible and extendable allowing other
sites and data sources to be added without overly increasing
complexity. The data from in situ sensors at Dublin Bay can
be complemented with data from external sources, for example
weather forecasts, whereas other sensing modalities (such as
visual sensing) can also provide information on human activ-
ities, allowing distinction between anthropogenic and natural
re-suspension events. The system can also send real time alerts
to operators, so that they can react quickly to avoid or limit
negative impacts. In terms of data analysis, the system can be
formed as data collection, data process and information stages.
The data collection process involves deploying and maintaining
the wireless sensor networks, where the data processing level
converts raw data into information easily interoperated by
operators. The information stage maintains a large indexed
content based archive, which allows the user to browse and
query events.

III. MONITORING LOCATION AND PILOT SYSTEM
DEPLOYED

The following describes Dublin Bay, the site used as the
location for this study, along with the equipment used for
collection of continuous monitoring data at the site.

A. Test Site

Dublin Bay (latitude: 53◦20’39”, longitude: -6◦12’59”)
is located on the lower Liffey Estuary Dublin Ireland in
a busy port environment (see Figure 2). The estuary is a
diverse ecosystem with many micro-environments that include
benthic communities, fish and shellfish, seabird populations
and marine mammals [25][26]. The area is also a zone of
passage for salmon and sea trout migrating to and from feeding
and spawning areas [27]. The topography of the estuary has
been greatly modified, and is constrained by walls along its
whole length and is regularly dredged to remove accumulated
sediments. The working site is located in the upper part of the
Estuary, where the ship traffic is less intensive. Average water
depth in the area is approximately 8m and the width of the
channel is approximately 260m. Due to the large amount of
activity at the site and its importance from an environmental
and ecological perspective, the site was equipped with a multi-
parameter in situ sensor along with a visual sensing system.

Figure 2. Overview of the Dublin Bay area, indicating the location of the
deployed pilot system , which provided the datasets used in this work. Dublin
Bay image source: Google Maps. Retrieved: 2014-04-11

B. Instrumentation

A multi-parameter sonde (YSI 6600EDS V2-2), equipped
to measure turbidity (Nephelometric Turbidity Units(NTU)),
optical dissolved oxygen (mgL−1/%saturation), temperature
(◦C), conductivity (mScm−1), depth (m) and telemetry system
(EcoNet) was purchased from YSI Hydrodata UK. The sonde
was deployed at a depth of 2.5m from the water surface, and
data was collected since 1st of Oct 2010 with a sampling
interval of 15mins. Temperature, dissolved oxygen and salin-
ity were checked using a ProPlus handheld multi-parameter
instrument (YSI Hydrodata UK) and turbidity was validated
using a portable turbidity meter Turb R© 430 IR (VWR Ireland).
Both hand held instruments were calibrated in the laboratory



prior to site visits as per manufacturer’s protocols. Site visits
were undertaken fortnightly in winter and weekly in spring.
Copper tape and mechanical wipers (for the optical oxygen
and turbidity sensors) were used to control biofouling of sensor
systems.

IV. METHODOLOGY

To detect and cluster environmental events, anomalous
sensor readings (also referred as outliers) need to be extracted
from a continuous data stream. These abnormal sensor mea-
surements are then grouped into events based on proximity
in time. A set of features is extracted that is characteristic of
different anomalies and is used to assign individual events.
Each event might have different temporal characteristics; so to
compare their similarities, a bag-of-words approach is adopted
to encode these features as constant length descriptors. Each
feature set of the detected anomalies is matched against a pre-
defined codebook and the closest matching codeword is used
to represent the feature. The event is then represented by the
frequency of occurrence of each word. Once the feature vector
of the event is constructed, a clustering method is applied to
group these events into subclasses based on their similarities.
Figure 3 shows the flow diagram of the proposed framework.
Each step of the proposed framework is introduced in detail
as follows.

Figure 3. Flow diagram of the proposed system framework

A. Anomaly Detection

To detect abnormal events, we first need to detect un-
usual sensor measurements in the data stream. An unusual or
anomalous sensor measurement, is defined as a sensor read-
ing that differs considerably from recent observations. Thus,
an anomaly can be detected by modelling previous sensor
measurement trends. To achieve this, we have modified the
pixel-based adaptive segmenter (MoPBAS) method originally
proposed by Martin Hofmann et al. for image segmentation
[28]. A non parametric water quality background trend model
is built based on a history of recently observed sensor readings.
The classification of an unusual reading depends on a decision
threshold, which is adapted based on the variations in the
data stream. The model is updated over time according to the
dynamics of the measurements. In the following, we describe
the process by which the MoPBAS method is used to detect
abnormal sensor readings.

1) Background Trend Model and Anomaly Classification:
To classify a new incoming value I(t), a sensor reading trend
model B(t) is built. B(t) is defined by an array of N recently
observed values.

B(t) = {B1(t), ..., Bk(t), BN (t)} (1)

In [28], incoming values are classified based on the total
number of distances between input value I(t) and all elements
in B(t) that are smaller than threshold T (t). We found that
just comparing the minimum distance with the threshold is
sufficient to differentiate the measurements.

I(t) =

{
1, if min( dist(I(t), Bk(t)) ) > T (t)
0, otherwise (2)

If the input value is classified as normal (I(t) = 0), it can be
used for updating the background trend model. The update
probability depends on the learning rate L(t).

2) Update of the Decision Threshold: When monitoring
water quality of estuarine waters, there can be periods of time
where large variations occur in measured variables, such as
after heavy rainfall, and time periods with little change or
fluctuation. Ideally, for periods of high variability, the threshold
T (t) should be increased and for stable conditions, T (t) should
be decreased. To quantify this dynamic, the mean dmin(t) of
the previous N minimum distances between input values and
trend model are calculated as the measure of the trend varia-
tions. For instance, assuming the water quality measurements
remain constant, dmin(t) will be zero. In contrast, dmin(t)
will be higher for more dynamic backgrounds. The decision
threshold can then be adapted as follows:

T (t) =

{
T (t)× (1− Tinc/dec), if T (t) > dmin(t)× Tscale

T (t)× (1 + Tinc/dec), otherwise
(3)

where Tinc/dec is a static value that controls the threshold
update rate and Tscale is also a fixed parameter, which stretches
dmin(t) to the same range as T (t). Tlower and Tupper, which
are also fixed values, control the upper and lower bounds of
the threshold, thus the threshold will not grow out of range.

3) Update of the Learning Rate: Another important pa-
rameter of MoPBAS is the trend model learning rate Lt. Water
quality measurements have characteristics that are significantly
different from image segmentation data. Values measured by
in situ sensors are typically very noisy, have lower sampling
rates (in terms of minutes compares to fraction of a second in
the image processing domain) and vary from a baseline (they
change gradually due to “global” effects, such as wind, tide
etc.). Unlike background modelling in the image processing
domain, in which foreground objects will be slowly merged
into the background if it no longer moves, water quality
parameters will usually return to a baseline level after an event.
Thus, we normalise (R(t)/Rupper) and invert the learning rate
proposed in the original PBAS method. Here, the learning rate
is defined as follows:

R(t) =

{
R(t) + Linc

dmin(t))
, if anomaly = true

R(t)− Ldec

dmin(t))
, if anomaly = false

(4)

L(t) = 1−R(t)/Rupper (5)

Where Linc and Ldec are fixed values that control the
increasing and decreasing intervals. The variation in R(t) is
limited by an upper and lower bound: Rlower < R(t) <
Rupper. The learning rate also depends on the background
dynamics (dmin(t)). When an event occurs, measured values



provided by the sensor will usually deviate greatly from the
baseline level. Thus, the trend model should be updated slowly
or not updated at all. In contrast, after an event occurs, sensor
readings will usually stabilise or return to the baseline, and the
trend model should be updated quickly. When an anomaly is
first detected (dmin(t) is small), R(t) increases rapidly, thus
the learning rate L(t) decreases sharply. However, dmin(t) will
become large quickly when multiple anomalous readings are
detected, which results in R(t) and indeed L(t) remaining
constant or only changing slightly. When sensor readings
stabilise or return to a normal range, dmin(t) becomes small
and L(t) will increase.

4) Update of the Trend Model: Updating the trend model,
B, is essential to capture global effects, such as tide or
wind. The learning rate L(t) is used as the update probability
and an element in the trend model is randomly chosen and
replaced by the incoming value. However, this process is
only performed when no anomalous values are detected. This
allows the incoming sensor measurement to be “learned” and
incorporated into the trend model. In the original PBAS, a
randomly chosen neighbouring pixel is also updated, however,
as there is no “neighbour” (image data is 2D as opposed to
1D water quality data) and this step is not performed.

5) Distance Calculation: Rather than using common dis-
tance metrics, such as Euclidean distance, we use the root of
the absolute square difference (RASD) to calculate the distance
between incoming value and the ith element in the trend
model.

Di(t) =
√
|I(t)2 −Bi(t)2| (6)

Figure 4 shows the ratio between our distance metric and
the 1-D Euclidean distance (for illustration purposes, the input
I(t) range is set from 5 to 104 in steps of 1, background
Bi(t) is set to 5). It can be seen from the graph that when the
distance is large, the output is approximately equal to the 1-
D Euclidean distance. However, the output is enhanced when
the different between I(t) and Bi(t) is small. This is a key
factor when calculating the background dynamic dmin(t), as
it smooths the effect of an event to dmin(t). Thus, the value
of dmin(t) will not increase rapidly when an event occurs as
shown.

Figure 4. Demonstration of the ratio between RASD distance metrics and
1-D Euclidean distance, the inner graph shows RASD distance method, which
enhances small distances, smoothing the variation of the background dynamics
dmin(t).

B. Anomalous Feature Extraction

To capture the similarity in anomalies detected, and for
further clustering of anomalous events, we need to extract a
set of features that are sufficiently discriminative to allow us to
classify unusual readings and subsequent events. The feature
set of an anomalous reading has the following components: the
difference between the previous sensor measurement I(t− 1)
and current sensor measurement I(t), current sensor measure-
ment I(t), the difference between current sensor measurement
I(t) and the next sensor measurement I(t+ 1), the minimum
distance between sensor measurement and trend model dmin,
and the distance between the minimum distance dmin and the
threshold T(t). The feature set f(anomaly) can be represented
as:

f = [I(t− 1)− I(t), I(t), I(t)− I(t+1), dmin, dmin − T (t)]

C. Event Constructing

Anomalies detected by the MoPBAS method are grouped
into events according to their temporal information. To achieve
this, agglomerative hierarchical clustering is applied. As shown
in Figure 5, consecutive anomalies are combined together into
a single event. Furthermore, if the gap between a new anomaly
and previous outlier is smaller than a threshold, Tgap, the
new anomalous value will be merged into the same event. In
contrast, if this gap is greater than Tgap, a new event will be
created.

Figure 5. Anomalies are grouped into events using agglomerative hierarchical
clustering based on their temporal information

D. Event Clustering

A Bag-of-Words approach is widely used in text document
classification [29], content-based image retrieval [30] and
image recognition tasks [31], where a document is represented
as a bag of its “words” or a bag of small image patches
(visual words) in the image processing domain. Most clas-
sification or clustering methods require a fixed number of
feature dimensions. However, for many tasks, such as text
document indexing, the number of features extracted from
each file are generally different. The Bag-of-Words method
represents these features by counting the frequency of occur-
rence of each “word” as the descriptor of the object. For text
document processing, a “word” generally means an entry in a
“codebook”, which is the combination of a single word in a



dictionary or a phrase. In the image processing domain, a word
(some times referred as a “visual word”) means a small image
patch or fragment. As each environmental event may contain
a different number of anomalous values, each outlier feature
set is represented by a “sensor word” in order to quantify
the similarities between events, and the frequency of their
occurrence is reconstructed as the descriptor of the event. To
create a codebook, K-means clustering is performed over a set
of training data. The centres of the learned clusters are then
defined as codewords. Each anomaly feature set in an event is
mapped to a certain codeword in the codebook and the event
can be represented by the histogram of the occurrence of the
codewords.

To divide events into groups, a clustering method known as
robust on-line clustering [32] is used. Clustering is the process
of dividing instances into groups in such a way that instances
in the same group are more similar than elements in other
groups. There are many common clustering methods that are
widely used such as K-Means or Mean-shift. Current research
indicates that there is no known single clustering method that
categorically out performs all others in all tasks. The benefit
of using robust on-line clustering in this context is that, unlike
K-Mean or Mean-Shift, this method is not sensitive to “noisy”
data. This is a key requirement for environmental monitoring
tasks where highly variable data could indicate a significant
event. Moreover, robust on-line clustering is an on-line method
that can be used to process a continuous data stream provided
by in situ sensors.

V. EXPERIMENTS AND RESULTS

This section describes the experiments that carried out
to evaluate the proposed system. The initial value of all
parameters in the proposed approach are also listed in this
section. As a proof of concept, we are focusing on salinity and
turbidity measurements, however, the same framework may be
applicable to other water quality parameters that have similar
time series characteristics.

A. Test Data

The dataset that is used for evaluating the proposed system
was collected from deployed remote water quality monitoring
systems in Dublin Bay between 1st Oct 2010 and 3rd May
2011 with a total number of 20529 measurements. The data
exhibits a wide variety of environmental events that include
short-term events such as rainfall as well as long term changes
in measurement related to seasonal effects.

B. Parameter Settings

MoPBAS methods consist of a multitude of tuneable
parameters, which can be used to control the sensitivity of
the anomaly detection process. To obtain an optimized set of
parameters for MoPBAS, the standards training, evaluation and
testing procedure needs to be carried out. However, a fully
annotated dataset, which is required for this process, is not
available at the time of this paper is written. Thus, the initial
parameter values used in these experiments are set based on
the nature of the environment and the knowledge gained from
on-site observation and site surveys. In our experiments, the
following values were used for salinity anomaly detection:

• N = 24: N is the number of elements of the trend
model B. Increasing N will reduce the sensitivity
of the system as there is high probability that there
might be an element that is close to the incoming
sensor reading. However, only the normal values will
be pushed into the trend model, thus further increases
in N only duplicates existing elements (elements in
the trend model are similar to each other). N is set to
24 (6 hours with 15 minutes sampling interval) in the
following experiments. This is based on the average
duration of change from high to low water or visa
versa.

• Tinc/dec = 0.02: The step of the threshold T in-
creases or decreases. Detection performance is not
very sensitive to this value and this value is increased
if the data exhibit a high degree of variability . This
value depends on three main factors, the duration of
an event, sampling rate and how fast sensor readings
stabilise after an event. The number of Tinc/dec should
allow an increase of T from minimum to maximum
longer than events and roughly the same length as
the time required for stabilisation. Setting Tinc/dec

to 0.02 gives 70 steps from Tupper to Tlower giving
approximately a 17 hour stabilisation period.

• Tupper = 12: The upper bound of the decision
threshold. Increasing this value will reduce the
sensitivity of anomaly detection, i.e., only large
variations will be classified as anomalies. This value
depends on the average of sensor measurements at
the site and how the user defines an outlier. At our
estuarine pilot site, the mean salinity value is 30.2
ppt over the length of the test dataset described.
Readings are generally stable and we define any
sudden changes with a magnitude greater than 2.5
ppt as an outlier. Thus, by mapping these values
to the distance calculation function, Tupper can be
calculated:

(Tupper ≈
√∣∣(Salaverage ± 2.5)2 − Sal2average

∣∣).
• Tlower = 3: The lower bound of the decision thresh-

old. Reducing this value will increase the sensitivity of
anomaly detection, smaller changes will be classified
as an anomaly. Similar to Tupper, any salinity changes
less than ±0.15 ppt are considered as noise. Thus
Tlower can be calculated from the same equation
above.

• Tscale = 3: This is the equilibrium factor, which
stretches dmin(t) to the same range as the threshold.
Figure 6 shows the distribution of salinity background
dynamics dmin(t). It appears that most of the dmin(t)
values are less than 1 (this variation is generally
attributed to sensor measurement error). Thus, to scale
the dmin(t) to the same range of T , Tscale is set to 3
(Tlower/1)

• Linc = 5: This is the trend model learning rate control
parameter R increasing interval. Figure 6 and Figure
7 show that most of the dmin(t) values of salinity and
turbidity are smaller than 2 and 3, respectively, thus,



we set this value to 5, which is large enough to give a
rapid decrease in the learning rate when an significant
event occurs.

• Ldec = 0.1: This is the trend model learning rate
control parameter R decreasing interval. The value
taken depends on the distribution of the background
trend dynamic. Thus, the dmin(t) varies between 0 and
3 when no events are happening. The chosen value of
0.1 results in a smooth increase in the trend model
updating probability.

• Rupper = 3: The upper bound of learning rate control
parameter R. The value taken approximately equals
the ratio between Linc and the majority of dmin(t)
values.

• Rlower = 0.1: The lower bound of the learning
rate control parameter R. This takes the form of a
small positive number to avoid negative probability.
The ratio of Rupper and Rlower defines how fast the
learning rate increases. For example, if dmin(t) is set
to a constant, the learning rate will reach a maximum
after 30 samples.

Figure 6. Histogram of salinity background dynamics

Figure 7. Histogram of turbidity background dynamics

As turbidity readings have different ranges and dynamics
when compared with salinity measurements, the definition of
a turbidity event are different. Some parameters need to be
adjusted. The following parameter values were changed for
turbidity anomaly detection: Tinc/dec = 0.05, Tscale = 4.5,
Tupper = 5 and Tlower = 1. Tinc/dec is modified because

the stabilisation period of turbidity is generally shorter than
salinity, which means that the decision threshold for turbidity
needs to be updated faster. Tupper and Tlower are calculated
using the same function. For turbidity, if the change is greater
than 5NTU , it will be considered as an anomaly and less
than 1NTU will be considered as noise. However, the model
updating control parameters, Linc, Ldec, Rupper and Rlower

remain the same. The number of elements of the trend model
B is also set to 24.

For the event construction and clustering purposes, the
parameters are the same for both salinity and turbidity. The
number of words in the codebook is set to 50. When con-
structing an event, Tgap is set to 1 to avoid noise. This means
that two anomalies are merged into the same event if the gap
between them is smaller than 2 samples.

There are a number of events that may cause rapid changes
in sensor readings, for example rainfall events, flood events,
shipping or contamination events. In the present work, the
number of clusters is set to 14, which is chosen as it represents
approximately twice the number of known events that may
occur at the testing site. However, the number of the cluster
centres is application dependant. Increasing this number will
further spilt the cluster into smaller sub groups.

C. Salinity Experiment Results

Applying the described MoPBAS anomaly detection to our
test dataset resulted in 947 out of 20529 measurements being
detected as anomalies. Figure 8 shows a 10-day window of
the anomaly detection results. The red dots indicate salinity
anomalies detected, while the blue line is the sensor measure-
ments and the green solid line is the closest matching entry in
the background trend model. As illustrated in Figure 8, most
of the abnormal salinity readings are detected accurately.

Figure 8. A 10-day window of the MoPBAS salinity anomaly detection
results.

Figure 9 demonstrates adaptation of the detection threshold
and background learning rate based on variation in the mean
minimum distance (dmin) between sensor measurements and
background trend model. The red line at the bottom represents
the background learning ratio. The decision threshold is shown
in blue and the minimum distance between sensor readings and
the best match entry in the model is shown in green.

In order to cluster events into groups based on their
similarity, detected anomalies are merged into events based on



Figure 9. Detection threshold, background trend model learning rate and
minimum distance between input value and best match element in model.

timestamps. From the 947 outliers detected, 261 events were
constructed in the test datasets using the MoPBAS method. For
each salinity anomaly detected, a set of features is extracted as
the feature vector of the sample. To normalise these features,
a 50-word codebook is created. Due to the limited dataset
available, the code book is built using all anomalies. However,
when more data is collected the codebook can be reused and
does not need to be rebuilt unless the setup of the deployed
system is modified or the monitoring site is greatly changed.
Thus, each anomalous value is normalised as a “word” and
the histogram of the occurrence of each word for each event
constructed is used as the feature set of the event.

Figure 10. Example of how robust on-line clustering performs, note that for
illustration purposes the number of cluster centres is set to 4 (N = 4) and the
first 10 events (i = 10) are used.

TABLE I. CLUSTERING RESULTS, SHOWING THE NUMBER OF SIMILAR
EVENTS WITHIN EACH CLUSTER GROUP.

Clusters Number of events Events

Clusters 0 243 Event 0, 1, 19, 22 etc.
Clusters 1 4 Event 57, 90, 197, 211 etc.
Clusters 2 2 Event 7, 101
Clusters 3 2 Event 204, 256
Clusters 4 2 Event 132, 142
Clusters 5 1 Event 10
Clusters 6 1 Event 34
Clusters 7 1 Event 43
Clusters 8 1 Event 62
Clusters 9 1 Event 80

Clusters 10 1 Event 91
Clusters 11 1 Event 157
Clusters 12 1 Event 173
Clusters 13 1 Event 180

Figure 10 illustrates how similar events are merged into the
same cluster. At step 4 (i = 4), the cluster buffer is full. At step
5, the two most similar events, event 0 and 3 are merged. Event
2 and event 4 are grouped together when event 5 occurs. As
can be seen from the graph, when event 9 occurs it is assigned
to cluster 1, other events in cluster 1 ( events 2, 4, 8) are the
similar events to event 9, which happened in the past.

After applying the described clustering methods to the
whole dataset, a total of 14 clusters are created. The number of
events in each cluster is shown in Table I. Cluster 0 contains
the most number of events. Cluster 1 consists of 4 similar
events and there are 2 events in cluster 2, 3, and 4. Cluster 5
to cluster 13 only have 1 event in each.

Figure 11. Plot of the salinity measurements of the four events in cluster 1.

Figure 12. Cluster 2 consists of two events (event 7 and event 101).

Figure 13. Two events (event 204 and event 256) in cluster 3.



Figure 14. Comparison of salinity events in different clusters.

Figure 11 demonstrates the four events in cluster 1, the
results show that events are similar to each other within the
cluster. Figure 12 shows all the events in cluster 2 where it
can be see that two events do have similar variations. Figure
13 demonstrates events 204 and 256 contained within cluster
3. It can be seen that the two salinity events have a very
similar trend until the last two measurements, where event
256 has a small concave but event 204 remain flat. Figure 14
illustrates the difference between events in different clusters.
As can be seen from the graph, events within the same cluster
have similar trends but events in different clusters have very
different profiles.

D. Turbidity Experiments Results

Applying the same procedures to turbidity data, 2096
sensor measurements are classified as anomalies. Figure 15
demonstrates a 10-day subset of turbidity anomaly detection
results. The red dots are the turbidity anomalies detected, blue
line is the sensor measurements and the green solid line is
the closest matching entry in the background trend model. As
illustrated in Figure 15, the majority of the abnormal turbidity
readings are detected accurately.

Figure 15. A 10-day window of the MoPBAS turbidity anomaly Detection
Results.

Figure 16 demonstrates adaptation of the detection thresh-
old and background learning rate based on variation in the
mean minimum distance (dmin) between sensor measurements
and background trend model. As with detection of anomalies

in the salinity dataset, the classification threshold increases
when readings become highly variable and decreases when
measurements do not change rapidly. In contrast, the model
learning rate decreases sharply when events happen and in-
creases slowly when sensor readings are stable.

Figure 16. Detection threshold, background trend model learning rate and
minimum distance between input value and best matching element in the
background model.

Turbidity anomalies are grouped into events according
to their timestamps. For the whole dataset, 707 events are
constructed from a total number of 2096 classified anomalies.
Table II lists the clustering results and the turbidity events in
each cluster.

TABLE II. RESULTS OF TURBIDITY EVENT CLUSTERING, SHOWING
THE NUMBER OF SIMILAR EVENTS IN EACH CLUSTER GROUP.

Clusters Number of Turbidity Events Events

Clusters 0 691 Event 0, 1, 10, 21, 152 etc.
Clusters 1 4 Event 71, 644, 647, 697
Clusters 2 2 Event 124, 253
Clusters 3 1 Event 29
Clusters 4 1 Event 99
Clusters 5 1 Event 102
Clusters 6 1 Event 252
Clusters 7 1 Event 570
Clusters 8 1 Event 606
Clusters 9 1 Event 608
Clusters 10 1 Event 610
Clusters 11 1 Event 705
Clusters 12 1 Event 706
Clusters 13 1 Event 707

Figures 17 and 18 show all events in the corresponding
cluster where it can be seen that the events within the same
cluster have similar variations. Three out of four events in
cluster 1 have a spike shape at the beginning and then settle
down. Although, the event 697 does not have a spike shape
at the start but its overall trend is very similar to the settle
down period of the rest of the events in the cluster. As can be
seen in Figure 18, the two events are different in length. This
shows the advantage of bag-of-words approach, which encode
anomaly features as constant length descriptors. Figures 19 and
20 show that there is only 1 event in each cluster. However,
as illustrated in the figures, the two events have unique trends.



Figure 17. Plot of the turbidity measurements arising from events classified
as being in cluster 1.

Figure 18. Plot of the turbidity measurements from events in cluster 2.

Figure 19. Plot of the turbidity measurements from events in cluster 9.

Figure 20. Plot of the turbidity measurements from events in cluster 13.

Figure 21. Illustration of the differences in turbidity readings between
assigned clusters.

Figure 21 illustrates the difference between events in dif-
ferent clusters. As can be seen from the graph, events within
the same cluster have similar trends but events in different
clusters have very different shapes.

E. Discussion

We have shown, using time series of both salinity and
turbidity, that the MoPBAS method is suitable for detection
of anomalous sensor readings. Updating the background trend
model provides the capacity to process both highly variable
data and gradual changes such as tide or seasonal effects. The
dynamic threshold and model update rate are appropriate for
detection of environmental events in estuaries. As can be seen
from Figures 9 and 16, the classification threshold is increased
when an anomaly is detected. This is due to the fact that after
an event occurs, there is usually a period of time where the
water body settles down. The in situ sensor measurements is
likely return to a similar trend or slightly offset compare to
sensor readings prior the occurrence of the event. During this
period, the sensor readings are typically highly variable and
alter in step changes rather than monotonic decreases. The
rapid increasing of the threshold during a event and slowly
decreasing after the event can reduce false positives. Another
advantage of use of this adaptive threshold is that the system
only detects large variations during periods of high fluctuation
while small changes will be captured during periods of relative
stability. In contrast, the background learning rate remains high
during stable periods and decreases rapidly when an anomaly
is detected. This is because the background model should
simulate the trend of the water quality parameters. However,
as the threshold is raised the input is likely to be classified
as normal even it is relatively different to the average trend.
So the model learning rate is increased and the trend model
will be updated as soon as the sensor readings are returning to
normal. One of the benefits of the proposed MoPBAS method
is ease of computation, meaning that that the process can be
potentially performed on site or event on chip. This provides
the opportunity to reduce the data transmission requirement,
in which only the information on anomalous events will be
sent back to a base station to enable a real-time alert system
and normal readings can be logged locally or discarded. This
could be a key factor for monitoring sites where the cost of
data transmission is very high. Moreover, data transmission
over long distance always consumes the majority of power in



WSNs. Thus, applying anomalous detection on site or on chip
can extends the deployment time of WSNs which are battery
dependant. This novel anomaly detection method inspired from
image processing domain provides the fundamental block of
creating a dynamic smart wireless sensor network. Above all,
it appears that MoPBAS is an suitable anomaly detection ap-
proach for wireless sensor networks in the marine environment.

Results in Figures 14 and 21 show that the clustering
successfully discriminates between events, assigning them to
clusters where events within the same cluster are relativity
similar to each other. Unique events are treated as new cluster
centres (such as clusters 9 and 13 in the turbidity clustering
example). This is a key advantage of using ROC clustering
method compare to other commonly used techniques. These
unique events are assigned as new cluster centres by ROC,
rather than noise in some methods such as K-Means. This
feature is very important from a water quality event detection
perspective as these events have no analogous events in the
past, and thus may be potentially of greater importance to
operators. These are the events that would then trigger an alert
when detected, thus allowing operators to react accordingly.
However, further analysis and determination of the causes
and effects of these events require fusion of information
from multiple data sources as proposed in the smart sensing
system in Figure 1. Another advantage of ROC method is
that it is computational inexpensive, which the classification of
abnormal events and the update of the model can be performed
in real-time. In addition, ROC method is easy to interpret and
its tree-like structure can can used to build an event indexing
and retrieving system. Defining the number of centres K in
ROC is crucial. In this paper, we assigned K equal to 14, which
is based on our site surveys and our assumption of the number
of possible abnormal event types that may occur at our pilot
site. However, finding a suitable K for marine environmental
monitoring requires large amount of data collected over long
time periods due to seasonal and weather effects.

VI. CONCLUSION

In this paper, we have demonstrated a novel system of
detection and clustering of events in time series datasets of
environmental turbidity and salinity measurements. We have
modified the pixel-based adaptive segmentation technique from
the image processing domain for this purpose and applied
robust on-line clustering for classification of events. We have
provided this in the context of a component of the proposed
framework for an automated sensor network as part of a future
smartbay-smartcity project. Such integrated in situ sensor
networks for environmental applications have the potential
to form a significant part of future smart city infrastructure.
However, the data generated from such systems must be
seamlessly integrated into the overall smart city-smart bay
system if they are to be used to full advantage. Use of the
generated data for automated data analytics including event
detection and classification must be an integral part of this
process if such systems are to become ubiquitous and useful
in decision support. We altered a state-of-the art background
modelling technique from the image processing domain to
built a background trend model to detect anomalous events
in commonly measured parameters from in situ sensor within
estuarine systems such as conductivity (derived salinity) and
turbidity, using real data generated with in the Dublin Smart

City: Smart Bay Network. Furthermore, we have shown the
utility of robust online clustering to classify detected events
based on their characteristics. The root environmental causes
of these events can now be ascertained and a significance
level assigned to these events (for example pollution, human
activity or storm events). We have demonstrated the utility
of this approach in Dublin Bay for detection of abnormal
events, and the potential of these techniques for classifying
and further enhancing decision support within this framework.
By combining the outcome of other parallel research work
such as ship traffic detection from visual sensor, the proposed
novel multi modality smart sensing system can potentially
provide a rich content based indexing and retrieval system to
assist the marine scientists better and easier understand and
modelling the marine ecosystem. Subsequently, the system can
support decision makers in construction of new policies to
better protect environmental and coastal resources.
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