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ABSTRACT 
 

Laser-fabricated microchannels in glass offer a wide range of bioengineering and 

telecommunication applications. A 1.5 kW CO2 laser with 10.6 µm wavelength was used in this 

study to fabricate micorchannels on the surface of soda-lime glass sheets. A thermal model of the 

process was developed based on transient heat conduction due to a pulsed heat input. The 

resulting equation predicted the temperature distribution in the regions surrounding the laser 

focus. Temperature – time curves were drawn from those equations, which were useful in 

estimating the thermal history in the processed samples. The temperature distribution was also 

used to predict the channel geometry (based on the vaporisation temperature of glass). Most of 

the laser power used was consumed in bringing the glass to the vaporisation temperature. The 

model was able to predict the channel width, depth and surface roughness. These laser-fabricated 

channel characteristics were measured and compared to the results obtained from the thermal 

model. The laser power, frequency, pulse width and translation speed were the control 

parameters in both studies; hence a direct comparison was established between the model and the 

experimental results. 
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1. INTRODUCTION 

 

Glasses absorb laser radiation in a way that depends highly on the incident wavelength [1, 

2], most transparent materials are opaque in the visible region but absorb strongly at or near 10 

µm, which makes CO2 laser very efficient for machining these materials [1, 3]. Laser-induced 

plasma will also enhance the coupling of laser radiation to the material’s surface raising its 

temperature to the vaporising temperature at about 3500C [4], which is sufficient to ablate the 

material from the irradiated region. This can be accomplished despite the fact that glasses may in 

some cases reflect up to 30% of the incident laser radiation [3]. Micro-channel fabrication, on the 

surface or in the bulk of glass sheets is widely used in various applications such as 

telecommunication, optical and bio-medical engineering [5, 6]. Some studies [7, 8] have 

investigated irradiating glass samples repeatedly along the same path to investigate the effect of 

the amount of radiation deposition on the microchannel fabrication. However, such studies use 

mainly fixed operating parameters. 

If thermal modelling of the laser heat deposition is used, then it is possible to estimate the 

resulting effects on the materials [1, 9]. It can be useful to estimate the temperature ranges and 

thermal stresses that the material is expected to experience beforehand. This study covered the 

modelling and the production of single microchannels. However, the concepts and results 

presented are extendible to cover other 2D and 3D microchannels. The model and principles 
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presented in this paper are also applicable to metallic material processing and heat treatment 

using pulsed laser irradiation. 

 

2. THE THERMAL MODEL 

 

Heat conduction problems in a medium can be expressed in terms of partial differential 

equations of temperature with respect to space and time. The general form of the heat conduction 

equation, provided that there is no heat generation in the medium and that all the thermal 

properties are constants [10]: 
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where,  (kg/m
3
), cp (J/kg.C), k (W/m.C) are the density, heat capacity and thermal 

conductivity of the material respectively. If the medium is moving with a constant velocity U 

parallel to the x-axis, as shown in figure 1, then equation (1) becomes [10]: 
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where,  (m
2
/s) is the thermal diffusivity of the material, equal to  k / cp. 

 

 
Figure 1: Heat point source in the surface of the workpiece. 

 

 

Solving equation (2) gives a transient heat or temperature distribution in the medium in the 

form T(x,y,z,t). However, the solution is not unique to all cases and depends on a number of 

assumptions, initial conditions and boundary conditions. The assumptions made in this work for 

the solution are: 

1- The initial temperature is equal to the ambient temperature T(x,y,z,0) = To. 

2- The medium is a slab of two parallel planes and heat enters from one plane at z = 0. This 

solution is a heat conduction one, it requires that there is no heat losses from the medium at its 

two planes, i.e. 0/  zT . 

3- There are no phase changes in the medium. Although the solution does not explicitly include 

the latent heat effects, it is still useful in estimating the penetration of the melting isotherms 

under the conditions of melting via conduction [1]. 

4- The medium is a semi-infinite solid, meaning that the temperature variations in the region of 

interest do not affect the temperatures in regions considered to be far a way from it, such as the 



bottom plane. This assumption has been verified by applying the same conditions on different 

thicknesses and getting the same result. 

Based on these assumptions, equation (2) can be solved for a pulsed laser source, with a 

pulse repetition frequency (PRF) given in pulses per second (Hz). The incident laser beam is 

modelled as a time-dependent point heat source at (0,0,0). The solution of equation (2), shown in 

equation (3), is based on the impingement of temperature harmonics on a slab of material [9, 10]. 
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where, P(t) is the time dependent power input,  is the fundamental frequency of the power 

input = 2.PRF, and r is the radial distance from the power source = 222 zyx  . 

The square root taken in equation (3) must be the positive real part. A pulsed laser power 

input as the one shown in figure 2 is to be used. This power source has a period to = 1/PRF and is 

given in the interval -½ to ≤ t < ½ to by 

 
where, Po (W) is the average power and τ (s) is the pulse width. 

 

 
Figure 2: The pulsed power input given by equation (4). 

 

Then it is possible to express this power signal in terms of a Fourier series of the form 
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in which, 
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thus, 

P(t) =  

Po to / τ  | t | < ½ τ  

0  ½ τ < | t | < ½ to 

Po to / 2τ otherwise 
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Substituting 5 into 3 gives 
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which when taking the real parts of the exponential and the square root gives 
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where, )/()8(Si 2Uto , is Simon’s number that characterises a periodic solution with period 

to and was substituted in equation (3), and 2/]Si11[Sn 22n . 

Other methods of obtaining solutions similar to equation (6) are given using Fourier 

series and Laplace transform [10]. Equation (6) was used to calculate the temperature 

distribution in the workpiece, T(x, y, z, t), based on the power, PRF, pulse width and sample 

material translational speed as the process parameters. 

 

3. EXPERIMENTAL WORK 

 

Two millimetre thick commercial soda-lime glass sheets were used in this work. A 1.5 kW 

CO2 laser beam was focused using a 127 mm focal length lens to a spot diameter of 

approximately 90 m on the surface of the samples and delivered via a nozzle with an air jet at 

one bar. Channels of 15 mm in length were produced. The laser power (P), pulse repetition 

frequency (PRF), pulse width (τ) and scanning speed (U) were chosen as the process control 

parameters. After producing the channels the samples were later on the same day water washed 

and air jet dried. A gold coating was then applied in order to facilitate laser scanning of the 

samples. A three dimensional profile for each channel was generated by scanning a 50 m length 

section of each channel at a resolution of 1.95 m in the lateral directions (x and y) and 0.5 m 

in the height direction (z) [11]. Each channel was scanned at the same position, 10 mm from the 

start of the channel. The channel parameters measured from these profiles were chosen to be the 

width (m), the depth (m) and the surface roughness, Ra, (m). Three measurements were 

made and averaged for each parameter. The surface roughness (Ra), taken along the same 

direction as the channel axis, was measured along the bottom of the channel and half way up 

either side of the channel. The Ra measurement can be particularly significant in fluid flow and 



wave guide applications. All measurements were performed using a software code built 

specifically for this study. 

 

3.1 Process considerations 

The weight percentage of soda-lime components used in this work were taken as 73%SiO2 

-15%Na2O-7%CaO-4%MgO-1%Al2O3. The density was taken as  = 2500 kg/m
3
, the heat 

capacity was taken as Cp = 870 J/kg.°C and the thermal conductivity as k = 1.06 W/m.°C, which 

give a thermal diffusivity value of  = 4.8736×10
-7

 m
2
/s [2]. Based on the laser intensity range 

used in this work (0.3 - 0.5 MW/cm
2
), the plasma formed is a laser-supported combustion 

plasma (LSC). During the initial stages of the pulse, LSC plasma starts to form, shielding up to 

90 % the incident power from the target [4]. However, as the plasma begins to expand radially, 

the coupled energy increases to 50% [4, 12]. The radiative losses in this plasma scheme are 

typically 15 to 20% of the incident power. There is a significant amount of energy consumed to 

raise the glass to its melting and consequently to its vaporisation temperature. These amounts of 

energies are called the latent heat of melting and vaporisation, respectively. Simple calculations 

can show the amount of energy needed to raise the focal volume to the vaporisation temperature. 

The amount of heat required to reach the vaporisation temperature, Tv, equals Cp.(Tv - To) = 

870.(3427 - 22) = 2,962,350 J/kg. The amount of heat required to raise the temperature of the 

vapour to approximately 10 times the vaporisation temperature, Ts, was also calculated. This 

allowed an approximation of the energy required to ablate the material in order to form the 

channel, as per the procedure followed by other workers [4]. This energy was calculated as 

Cp.(Ts - Tv) = 870.(34270 - 3427) = 26,833,410 J/kg. The scale length of diffusion was obtained 

from, .DL , where  and τ  are the thermal diffusivity and the laser pulse width. The 

average pulse width used in this work was 1.53125 ms, so that LD = 27. 32 µm was the average 

depth affected by the heat wave diffused per a single pulse. The volumetric mass that will be 

affected by this heat wave can be calculated from, DLrm ... 2 , where r is the laser beam’s 

radius. The average heated mass, m, was equal to 4.345×10
-10

 kg. This mass was multiplied by 

the two latent heat of diffusion values calculated above, which gave the amount of energies 

required to bring this irradiated volume to its vaporisation temperature and then to being ablated. 

These were 1.287 mJ for heating the volume to its vaporisation temperature and 11.659 mJ for 

ablation. 

In this study the laser beam’s power, P, was varied between 18 and 30 W, and the pulse 

repetition frequency, PRF, was varied between 160 and 400 Hz, this resulted in minimum and 

maximum pulse energies of 45 and 187.5 mJ respectively. Table 1 lists the minimum and 

maximum pulse energies produced in this study and the minimum percentages of these needed 

for breakdown. 

 

Table 1: Relative breakdown energies. 

Expt. energy (mJ) % For heating % For ablating % Total 

45 2.86 25.91 28.77 

187.5 0.69 6.22 6.91 

 

The breakdown threshold energy, Eth, was observed at 45 mJ, which corresponded to a 

fluence, 2./ rEthth    = 707.55 J/cm
2
. A channel that was used to identify the breakdown 

threshold in this work is shown in figure 3 (a). The surface cracks in this figure were produced 

using P = 18 W, PRF = 400 Hz and U = 8.333 mm/s, which corresponds to the first row in table 

1. The structural changes in this image suggest that about 28% of the incident power was 



necessary to initiate ablation; the remainder of the power was shielded by the induced plasma. At 

higher fluences, wider and deeper structural changes, as shown in figure 3 (b), were produced. 

This channel was produced using P = 30 W, PRF = 160 Hz and U = 8.333 mm/s. These settings 

correspond to the second row in table 1. The larger dimensions in the channel in figure 3 (b) 

suggest that more than 6.91% of the energy was coupled to the sample. The larger pulse duration 

from the processing parameters to produce the channel in figure 3 (b) would be expected to 

allow time for the heat to diffuse and further energy to be coupled to the target [4, 12]. 

 

 
Figure 3: SEM image of channels produced at (a) minimum and (b) maximum fluence settings. 

 

Based on the total percentages in table 1, plasma shielding theory, radiative losses 

associated with the LSC plasma scheme, and simulation trial and error procedures on 

experimental data, an average 25% of the incident beam’s power was calculated as being 

delivered to the sample. This 25% of the incident power was used for solving the thermal 

mathematical model. Based on the pulse energy range shown in table 1, the mathematical model 

would in some cases, over-estimate or under-estimate the channel dimensions. This would not 

affect the predicted channel shape; however, it has implicitly reduced the complexity of analysis 

compared to taking phase changes into account in the mathematical model [1]. 

 

3.2 Method of calculations 

All the calculations and graphical displays were performed with a number software codes 

built for this study. To solve equation (6), the laser power source was assumed to be at (0,0,0) for 

all instances of time. Since the workpiece is translated in the x direction at a constant velocity of 

U, the x values change with time based on a Eularian coordinate, according to x = a + t*U, 

where, a, is the initial x location and, t, is the time elapsed since the beginning of translation [9]. 

 

3.2.1 Planar isotherms 

For each z-plane, the time and the y instances were needed to solve equation (6). Hence, a 

2D mesh in time and space (t, y) was constructed. The first element is the pulse duration, to = 

1/PRF, which also corresponds to the x-axis values, as mentioned earlier. The second element of 

the mesh was a sufficiently large value of y to cover half of the channel width, since the solution 

is symmetric about the y-axis, this also saved analysis time. Solving for a constant value of z and 

setting x = 0 when t = 0 produced the isotherms in that plane. The solution value at each mesh 

point was independent of the mesh size. Figure 4 shows the predicted isotherms of three pulses at 

plane z = 0 using P = 24 W, PRF = 228 Hz, τ = 1.53125 ms, and U = 5 mm/s. The mesh was 

generated for t = 0 to to = 0 - 1/228 = (0 – 4.375 ms) and y = 0 to 100 m. Iteration step sizes in 

(a) (b) 



the x-axis were 0.37 m. The step sizes in the y-axis were 1 m. The resulting isotherm was 

reflected about the y-axis to give the full channel width. The solution is periodic in time, so that 

solving for one pulse duration, to, was sufficient to calculate the thermal profile information 

which could then be repeated for the proceeding pulses. The temperature tended to infinity as y 

approached 0, so for this particular simulation the temperatures were truncated at 20,000 C. The 

data cursors on the isotherms in figure 4 show details of location and temperature (x,y,T) at two 

points. These points are of particular importance as they are on the isotherm of vaporisation at a 

temperature around 3500 C. 

 

 
Figure 4: Isotherms of three pulses at z=0, (a) top view, (b) 3D temperature profile. 

 

3.2.2 Thermal history 

Equation (6) can also be solved to predict the thermal history of specific points in the plane 

of interest. This can be useful in monitoring how the temperatures change at those points over a 

period of time which exceeds the pulse duration and enables the study the heating and cooling 

rates which can be useful in estimating the resulting microstructures due to laser irradiation. 

Figure 5 shows the thermal histories of the same sample as in figure 4, for four points at y = 10, 

150, 500 and 1000 m. The initial x coordinate was set so that it crossed the laser point source at 

t = 0.2 seconds. The temperatures were calculated for a total time of 2 seconds so at the 

traversing speed of 5000 µm/s the y points were a perpendicular distance of 9000 m behind the 

laser point source. 
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Figure 5: Thermal histories of 4 points on the surface of glass sheet. 



The maximum temperature at point y = 10 m occurred at the truncated 6,000 C. The 

maximum temperatures were reached at 0.21, 0.22, 0.34 and 0.73 seconds for the points y = 10, 

150, 500 and 1000 m, respectively.  This indicates that substantial time duration is required for 

the heat to be diffused as we move far from the heat source. The temperature falls below 3500 C 

as the y value becomes more than 130-150 m. This can also be noted from the isotherms in 

figure 4. It can also be noted that the cooling rates are different for the four points in figure 5, 

this may be used to predict the resulting microstructure in those regions. 

 

3.2.3 Channel 3D geometry 

As explained earlier in 3.2.1, the model calculation procedure was repeated for all values 

of z until the maximum levels of temperature fall below a desired value, usually ±Tv so that the 

channel geometry can be predicted. The geometry of the channel was predicted by obtaining the 

x, y and z coordinates at which the temperatures were at Tv from planar isotherms spaced 

approximately 1 m apart and ranged between z = 0 and the depth of the channel. The channel 

width, depth and surface roughness were also calculated from these predicted geometries using 

the same procedure performed on the experimental scans.  

 

4. Results and comparison 

 

The predicted values for channel width, depth and roughness are listed in table 2 with the 

corresponding experimental values. The results shown in table 2 were selected from a design of 

experiments that covered the range of processing parameters examined in another study [13]. 

These experimental values were taken to validate and compare them with the predicted values 

from the thermal mathematical model.The effects of P, PRF and U were studied on the resulting 

width and depth of the channels [14]. It was found that the P had a direct proportional effect, 

while PRF and U had an inverse proportional effect on the channel dimensions. 

 

Table 2: List of microchannel processing parameters including model  

and experimental values for channel width, depth and roughness. 
Ch. 

No. 

P 

(W) 

PRF 

(Hz) 
τ (ms) U (mm/s)  

Width 

(m) 

Depth 

(m) 
Ra (m) 

1 18 160 3.125 8.33 
Model 192.1 96.2 7.229 

Experiment 302 74 3.848 

% Difference 36.39 -30 -87.86 

2 24 228 1.531 5 
Model 265.9 132.98 3.615 

Experiment 267 148 4.495 

% Difference 0.41 10.14 19.58 

3 30 400 0.5 5 
Model 299.12 144.48 1.047 

Experiment 308 142 3.515 

% Difference 2.88 -1.75 70.21 

 

4.1 Channel parameters 
The maximum error in width prediction was 36.39 % in the case of channel 1. The 

maximum depth prediction error was -30 % for channel 1. Having the highest pulse energy, 

channel 1 prediction error agrees with the theory, outlined earlier that, at higher fluences, the 

delivered energy is larger than 25% of the incident laser beam. Furthermore on this case, both 

width and depth errors are in agreement indicating that the model is under-estimating the actual 

results. These prediction errors have not affected the accuracy of shape prediction as explained in 

the next section. The errors in roughness prediction are significantly high due to the small scale 

of the parameter being measured. Channel roughness values obtained from this study were in the 



range of 2 to 12 µm, and in reality this parameter depended on more than the control parameters 

considered above. In general more uniform channel shape and dimensional were found for the 

mid ranges of the processing parameters. This is represented in the fact the channel dimensions 

predicted for channel two were closer to those measured than for either of the other two 

channels. 

 

4.2 Channel morphology 

Figures 6, 8 and 10 show the predicated versus the experimental 3D geometry of channels 

1, 2 and 3 respectively. These profiles were found to repeat over the length of the channel in the 

model and experimental results. In each case therefore, the dimensions resulting from a single 

laser pulse were plotted. The viewing angle of the 3D view was modified to show most of the 

channel parameters for both the predicted and experimental channels. Figures 7, 9 and 11 show 

the side view of the same channels. The results represent the laser deposition propagating along 

the positive x-axis. All axes measurements were taken in µm and the length scale on these 

figures is the same for direct comparisons. The periodicity and good matching of channel 

dimensions in these profiles is evident from examination of figures 6 to 11. 

 

 
Figure 6: Channel 1, 3D views (a) predicted and (b) experimental scan. (units m). 

 

 

 
Figure 7: Channel 1, side views (a) predicted and (b) experimental scan. (units m). 

 



 
Figure 8: Channel 2, 3D views (a) predicted and (b) experimental scan. (units m). 

 

 

 
Figure 9: Channel 2, side views (a) predicted and (b) experimental scan. (units m). 

 

 

 
Figure 10: Channel 3, 3D views (a) predicted and (b) experimental scan. (units m). 

 



 
Figure 11: Channel 3, side views (a) predicted and (b) experimental scan. (units m). 

 

 

Figure 12 (a) shows the microscopic image of channel 1 and figure 12 (b) shows a 

simulated channel length equal to the length in the microscopic image for a direct morphological 

comparison. From the PRF and U setting used to produce this channel, it was expected that each 

laser pulse would cover a distance equal to U/PRF = 8.333/160  52 µm. It can be observed from 

figure 12 (a) that the channel consisted of an array of helical shapes that were periodic in nature. 

These shapes were concaved opposite to the laser ablation direction, which was from the left to 

the right of figure 12 (a). The separation between these shapes was, on average, around 50 µm. 

The simulated channel length contains a plot of 22 pulse shapes, and it conforms to the 

experimental result from the morphological perspective. The width scale of the simulated 

channel is half the length scale. 

 

 
Figure 12: Morphological comparison of channel 1. 

 

 

5. CONCLUSION 

 

Microchannels were produced using a direct writing single pass laser ablation technique 

rather than multiple laser passes, as was applied in previous work [8]. Due to the controllability 

of the profiles fabricated, these microchannels can be designed a priory in order to take 

advantage of specific channel dimensions in applications such as MEMS and cell growth. 

Thermal mathematical modelling, with input parameters of material physical properties, laser 

average power, pulse repetition frequency, pulse width and translational speed, is useful in 

visualising the expected channel shape and dimensions before channel fabrication. Moreover, 



such results may be helpful in picking the process control parameters, by viewing their effects on 

the channel geometry. Larger dimensional errors between predicted and experimental results 

were noted at the extremities of the parameter ranges investigated. However, even in these cases 

the model was still useful in determining the morphology of the fabricated channels. 
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