
 

 

 
Genetic Algorithm for Process Sequencing 

Modelled as the Travelling Salesman 

Problem with Precedence Constraints 
 

 

by 

NORAINI MOHD RAZALI 

BEng., MEng. 

 

 

A thesis submitted for the degree of  

Doctor of Philosophy 

 

 

School of Mechanical and Manufacturing Engineering 

Faculty of Engineering and Computing 

Dublin City University 

 

 

Supervisor 

Dr. John Geraghty 

 

 

August 2014 



 

 ii 

Declaration 

 

I hereby certify that this material, which I now submit for assessment on the 

programme of study leading to the award of Doctor of Philosophy is entirely my own 

work, and that I have exercised reasonable care to ensure that the work is original, and 

does not to the best of my knowledge breach any law of copyright, and has not been 

taken from the work of others save and to the extent that such work has been cited and 

acknowledged within the text of my work. 

 

 

     ………………………… 

Noraini Mohd Razali 

ID No:  58114262 

August 2014 

 

 

   

       

 

 

 

 

 



 

 iii 

Publications 

This work has been disseminated through the following publications. 

 

 

 

Conference papers and presentations: 

 

 N. M. Razali and J. Geraghty, Biologically inspired genetic algorithm to minimize 

idle time of the assembly line balancing, Third World Congress on Nature and 

Biologically Inspired Computing (NaBIC2011), 19 – 21 Oct 2011, Salamanca 

University, Spain. Conference proceedings, pp 105-110, 2011 

 

 N. M. Razali and J. Geraghty, Genetic Algorithm Performance with Different 

Selection Strategies in Solving TSP, The 2011 International Conference of 

Computational Intelligence and Intelligent Systems (ICCIIS11), 6 – 8 July 2011, 

London, United Kingdom. Conference proceedings, volume 2, pp 1134-1139, 2011 

 

 N. M. Razali and J. Geraghty, Selection Strategies for Genetic Algorithm to Solve 

Travelling Salesman Problem, SIAM conference on Computational Science & 

Engineering (CSE11), 28 Feb – 4 March 2011, Grand Sierra Resort & Casino, 

Reno, Nevada, USA 

 

 N. M. Razali and J. Geraghty, Performance comparison between different GA 

selection strategies in solving TSP instance, 24th European Conference on 

Operational Research, 11 – 14 July 2010, Lisbon, Portugal 

 

 

Posters: 

 

 N. M. Razali and J. Geraghty, Genetic Algorithms Performance Between Different 

Selection Strategy in Solving TSP, UMIES 2010 UK-Malaysia-Ireland Engineering 

Science Conference, 23 – 26 June 2010, Queens University, Belfast, Northern 

Ireland 

 

 

 

 

 

 

 

 

 

 



 

 iv 

Dedication 

 

 

 

 

 

 

 

 

 

 

 

TO MY BELOVED SON 

(MUHAMMAD IZMEER) 

 
 

 

 

 
 

 

 

 

 

 

 

 



 

 v 

Acknowledgments 

 

I am grateful to Almighty Allah for the fulfilment of my desire to finish this 

thesis. I would not have been able to complete this research without the aid and support 

of many people over the past three years. I must first express my gratitude towards my 

supervisor, Dr. John Geraghty, for his continuous support, guidance and understanding 

which contributed greatly to the successful completion of this thesis. I am deeply 

indebted to my colleagues Saba and Anna Rotundo for assisting me with coding in 

MATLAB. This research would not have been possible without the financial assistance 

of Skim Latihan Akademik Bumiputera (SLAB), The Ministry of Higher Education of 

Malaysia, and the Universiti Malaysia Pahang (UMP). I express my gratitude to those 

sponsors. Finally, I would like to thank my parents for their endless love and pray, 

though physically far away, have been with me all along in the spirit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 vi 

Abstract 

This thesis addresses process sequencing subject to precedence constraints 

which arises as a subproblem in scheduling, planning and routing problems. The 

process sequencing problem can be modelled as the Travelling Salesman Problem with 

Precedence Constraints (TSPPC).  In the general Travelling Salesman Problem (TSP) 

scenario, the salesman must travel from city to city; visiting each city exactly once and 

wishes to minimize the total distance travelled during the tour of all cities. TSPPC is 

similar in concept to TSP, except that it has a set of precedence constraints to be 

followed by the salesman. The exact methods that are used to find an optimal solution 

of the problem are only capable of handling small and medium sizes of instances. 

Genetic algorithms (GA) are heuristic optimization techniques based on the principles 

and mechanisms of natural evolution and can be used to solve larger instances and 

numerous side constraints with optimal or near-optimal solutions. However, the use of 

a conventional genetic algorithm procedure for TSP, with an order-based 

representation, might generate invalid candidate solutions when precedence constraints 

are involved. In this thesis, a new GA procedure is developed which includes 

chromosome’s repairing strategy based topological sort to handle the precedence 

constraints and to generate only feasible solution during the evolutionary process. The 

procedure to select the task in sequence is based on the “earliest position” techniques. 

This procedure is combined with a roulette wheel selection, linear order crossover and 

inversion mutation. The effectiveness and the stability of the proposed GA are then 

evaluated against a wide range of benchmark problems and the solutions are compared 

with the results obtained from research results published in the relevant literature. The 

results from the computational experiments demonstrate that the proposed GA 

procedure developed in this thesis is capable to tackle large-size problem and reach for 

optimal solutions.  The developed GA procedure improved the performance of the 

algorithm with less number of generations and less convergence time in achieving 

optimal solutions. The genetic operators used are capable to always introduce new fitter 

offspring and free from being trapped in a local optimum. Therefore it can be stated 

that the proposed genetic algorithm is efficient to solve process sequencing modelled as 

the travelling salesman problem with precedence constraints. This result will greatly 

help to solve many real world sequencing problems especially in the field of assembly 

line design and management. 



 

 vii 

Table of Contents 

 
Declaration ...................................................................................................................... ii 

Publications .................................................................................................................... iii 

Dedication ........................................................................................................................iv 

Acknowledgments ............................................................................................................ v 

Abstract ............................................................................................................................vi 

 

CHAPTER 1: INTRODUCTION 

1.1 Background of the study ....................................................................................... 1 

1.2 Motivation of the study ........................................................................................ 2 

1.3 Objectives of the study ......................................................................................... 3 

1.4 Scope of the study ................................................................................................ 3 

1.5 Research process flow .......................................................................................... 4 

1.6 Outline of the thesis .............................................................................................. 5 

 

CHAPTER 2: LITERATURE REVIEW 

2.1 Travelling salesman problem (TSP) ..................................................................... 7 

 2.1.1    Overview of TSP history………………………………………………...9 

 2.1.2    The complexity of TSP…………………………………………………11 

 2.1.3    TSP variations and applications………………………………………..12 

 2.1.4    TSP with precedence constraints (TSPPC)…………………………….15 

 2.1.5    TSPPC application in manufacturing industry…………………………18 

2.2 Optimisation techniques ..................................................................................... 20 

 2.2.1    Single & multi-objective optimisation…………………………………21 

 2.2.2    Exact methods………………………………………………………….22 

 2.2.3    Heuristics methods……………………………………………………..23 



 

 viii 

2.3 Genetic algorithm operation, representation, operators and parameters ............ 28 

 2.3.1    Genetic algorithm operation……………………………………………30 

 2.3.2    Chromosome representation……………………………………………31 

 2.3.3    Evaluation and selection………………………………………………..32 

 2.3.4    Reproduction of generations……………………………………………37 

 2.3.5    Genetic algorithm parameters…………………………………………..43 

2.4 Research hypothesis ........................................................................................... 45 

 

CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Genetic algorithm procedure for TSP ................................................................. 47 

 3.1.1    PROX algorithm………………………………………………………..48 

 3.1.2    RBOX algorithm……………………………………………………….53 

 3.1.3    TSOX algorithm………………………………………………………..53 

3.2 Design of experiment for GA parameter setting ................................................ 54 

3.3 GA procedure for TSP with precedence constraints .......................................... 55 

 3.3.1    Route repair using topological sort technique………………………….56 

 3.3.2    Review of Moon’s procedure to solve TSPPC…………………………61 

3.4 Proposed GA procedure for TSPPC ................................................................... 69 

3.5 Analysis of algorithm to solve TSPPC ............................................................... 75 

 

CHAPTER 4: COMPUTATIONAL EXPERIMENTS & RESULTS  

4.1 Experimental set-up and assumptions ................................................................ 78 

4.2 Objectives of the experiment .............................................................................. 79 

4.3 Computational experiments for TSP .................................................................. 80 

 4.3.1    Complete enumeration for five-city problem…………………………..80 

 4.3.2    Solution for five-city with PROX algorithm…………………………...82 

 4.3.3    Benchmark problem from TSPLIB…………………………………….84 

4.4 Computational experiments for TSPPC ............................................................. 91 



 

 ix 

4.4.1    TSPPC test problem……....……………………………………………92 

 4.4.2    TSPPC application examples…………………………………………106 

 

CHAPTER 5: DISCUSSIONS 

5.1 TSP Experiments .............................................................................................. 118 

5.2 TSPPC Experiments ......................................................................................... 122 

5.2.1     Individual Fitness diversity ................................................................. 125 

 5.2.2     CPU Time ............................................................................................ 127 

 

CHAPTER 6: CONCLUSION & FUTURE WORK 

6.1  Conclusions ...................................................................................................... 129 

6.2 Summary of contributions ................................................................................ 130 

6.3  Suggestions for future work ............................................................................. 131 

 

References .................................................................................................................... 133 

 

Appendices 

APPENDIX A-1 ........................................................................................................... 140 

APPENDIX A-2 ........................................................................................................... 141 

APPENDIX A-3 ........................................................................................................... 144 

APPENDIX A-4 ........................................................................................................... 149 

APPENDIX A-5 ........................................................................................................... 155 

APPENDIX A-6 ........................................................................................................... 156 

APPENDIX A-7 ........................................................................................................... 157 

 

 

 

 



 

 x 

List of Tables 

 
Table 2.1: Milestones in TSP instance solution [25] ...................................................... 10 

Table 2.2: Summary of methods to solve TSPPC .......................................................... 26 

Table 2.3: Example of scaled rank with different SP values .......................................... 36 

Table 3.1: Comparison between PROX, RBOX and TSOX algorithm ......................... 54 

Table 3.2: Traveling time between nodes ....................................................................... 58 

Table 3.3: Priority representation ................................................................................... 65 

Table 3.4: Selection of tasks using ‘priority’ technique ................................................. 66 

Table 3.5: Chromosomes (i.e. priority) in the initial population .................................... 66 

Table 3.6: Chromosomes after repairing process ........................................................... 66 

Table 3.7: Selection of tasks using the “earliest position” technique ............................. 73 

Table 3.8: Chromosomes in the initial population ......................................................... 74 

Table 3.9: Chromosomes after repairing process ........................................................... 74 

Table 3.10: Summary of Moon and the proposed algorithm .......................................... 76 

Table 4.1: Result for five-city problem with complete enumeration solution ............... 82 

Table 4.2: Distance matrix for five-city problem ........................................................... 83 

Table 4.3: GA parameters setting for PROX algorithm ................................................. 85 

Table 4.4: GA parameters setting for RBOX algorithm ................................................. 87 

Table 4.5: GA parameters setting for TSOX algorithm ................................................. 89 

Table 4.6: Quality of solution (Best solution) comparisons for TSPLIB problem ........ 91 

Table 4.7: Iteration time for TSPLIB problem using three different algorithms ........... 91 

Table 4.8: Transition time matrix for test problem 1 ..................................................... 93 

Table 4.9: GA parameters setting for test problem 1 ..................................................... 93 

Table 4.10: Summary of results for test problem 1 ........................................................ 94 

Table 4.11: Cost matrix for Test problem 2 ................................................................... 95 

Table 4.12: GA parameters setting for test problem 2 ................................................... 95 



 

 xi 

Table 4.13: Summary of results for test problem 2 ........................................................ 96 

Table 4.14: Transition time matrix for test problem 3 ................................................... 97 

Table 4.15: GA parameter settings for test problem 3 ................................................... 98 

Table 4.16: Summary of results for test problem 3 ........................................................ 99 

Table 4.17: GA parameters setting for proposed algorithm ......................................... 100 

Table 4.18: Results of experiment with proposed algorithm ....................................... 101 

Table 4.19: GA parameter settings for Moon’s algorithm ........................................... 102 

Table 4.20: Results of experiment with Moon’s algorithm .......................................... 102 

Table 4.21: Summary of results for test problem 4 ...................................................... 103 

Table 4.22: Summary of results for 100 tasks & 141 precedence constraints ............. 105 

Table 4.23: Cost matrix for gearbox assembly ............................................................. 108 

Table 4. 24: Summary of results for test problem 4 ..................................................... 109 

Table 4.25: Disassembly cost matrix for hand phone product ..................................... 112 

Table 4.26: Summary of results for test problem 4 ...................................................... 113 

Table 4.27: Optimal solution for Gunther problem ...................................................... 115 

Table 4.28: Summary of results for gunther problem .................................................. 116 

Table 5.1: Percentage of relative error for all TSP instances ....................................... 119 

Table 5.2: Summary of results for all TSPPC test problems ........................................ 123 

 

 

 

 

 

 

 

 



 

 xii 

List of Figures 

 
Figure 1.1: Flowchart of the research process .................................................................. 5 

Figure 2.1: Example of undirected graph for five-city TSP ............................................. 8 

Figure 2.2: Example of Hamiltonian path problem ........................................................ 13 

Figure 2.3: Example of TSP with precedence relationships ........................................... 15 

Figure 2.4: Illustration of Pareto front for a bi-objective optimisation problem [61] .... 21 

Figure 2.5: Illustration of fitness landscape [77] ............................................................ 28 

Figure 2.6: Basic operation of genetic algorithm ........................................................... 30 

Figure 2.7: General procedure of genetic algorithm [27, 90] ......................................... 31 

Figure 2.8: Selection method with tournament mechanism ........................................... 33 

Figure 2.9: Illustration of roulette wheel selection ......................................................... 34 

Figure 2.10: (a) proportionate fitness and (b) rank-based fitness ................................... 37 

Figure 3.1: Flow chart of GA for TSP ............................................................................ 48 

Figure 3.2: Procedure for PROX algorithm ................................................................... 49 

Figure 3.3: Procedure for fitness evaluation ................................................................... 51 

Figure 3.4: Procedure for proportional roulette wheel selection .................................... 51 

Figure 3.5: Procedure for linear order crossover ............................................................ 52 

Figure 3.6: Procedure for rank-based Roulette Wheel selection .................................... 53 

Figure 3.7: Procedure for tournament selection ............................................................. 53 

Figure 3.8: Flowchart of GA for TSPPC ........................................................................ 56 

Figure 3.9: Example of directed graph ........................................................................... 57 

Figure 3.10: Feasible path generation algorithm ............................................................ 59 

Figure 3.11: Topological sort – first step ....................................................................... 59 

Figure 3.12: Topological sort – second step ................................................................... 60 

Figure 3.13: Topological sort – third step ...................................................................... 60 

Figure 3.14: Topological sort – fourth step .................................................................... 60 



 

 xiii 

Figure 3.15: Topological sort – fifth step ....................................................................... 61 

Figure 3.16: Topological sort – sixth step ...................................................................... 61 

Figure 3.17: Procedure of Moon’s algorithm ................................................................. 62 

Figure 3.18: Flowchart of Moon’s algorithm ................................................................. 63 

Figure 3.19: Procedure of moon crossover [6] ............................................................... 68 

Figure 3.20: Procedure of the proposed GA for TSPPC ................................................ 70 

Figure 3.21: Flowchart of the proposed GA for TSPPC ................................................ 71 

Figure 3.22: Precedence diagram ................................................................................... 72 

Figure 3.23: Comparisons of Moon’s Approach and Proposed Approach .................... 77 

Figure 4.1: Location for 5-city problem ......................................................................... 81 

Figure 4.2: Optimal solution for five-city problem with PROX algorithm .................... 83 

Figure 4.3: City location for burma14, bay29, dantzig42 and eil51 ............................... 84 

Figure 4.4: Optimal tour & performance graph for burma14 with PROX algorithm .... 85 

Figure 4.5: Optimal tour & performance graph for bay29 with PROX algorithm ......... 86 

Figure 4.6: Optimal tour & performance graph for dantzig42 with PROX algorithm ... 86 

Figure 4.7: Optimal tour & performance graph for eil51 with PROX algorithm ........... 86 

Figure 4.8: Optimal tour & performance graph for burma14 with RBOX algorithm .... 87 

Figure 4.9: Optimal tour & performance graph for bay29 with RBOX algorithm ........ 88 

Figure 4.10: Optimal tour & performance graph for dantzig42 with RBOX algorithm 88 

Figure 4.11: Optimal tour & performance graph for eil51 with RBOX algorithm ........ 88 

Figure 4.12: Optimal tour & performance graph for burma14 with TSOX algorithm ... 89 

Figure 4.13: Optimal tour & performance graph for bay29 with TSOX algorithm ....... 90 

Figure 4.14: Optimal tour & performance graph for dantzig42 with TSOX algorithm . 90 

Figure 4.15: Optimal tour & performance graph for eil51 with TSOX algorithm ......... 90 

Figure 4.16: Precedence diagram for test problem 1 ...................................................... 92 

Figure 4.17: Performance graph for test problem 1 ....................................................... 94 

Figure 4.18: Precedence diagram for test problem 2 ...................................................... 95 



 

 xiv 

Figure 4.19: Performance graph for test problem 2 ....................................................... 96 

Figure 4.20: Precedence diagram for test problem 3 ...................................................... 97 

Figure 4.21: Performance graph for test problem 3 ....................................................... 99 

Figure 4.22: Precedence diagram for test problem 4 .................................................... 100 

Figure 4.23: Performance graph for test problem 4 ..................................................... 103 

Figure 4.24: Precedence diagram for 100 tasks & 141 precedence constraints ........... 104 

Figure 4.25: Performance graph for 100 tasks & 141 precedence constraints ............. 105 

Figure 4.26: 200 tasks & 241 precedence constraints .................................................. 106 

Figure 4.27: 500 tasks & 587 precedence constraints .................................................. 106 

Figure 4.28: Assembly parts for gearbox [45] .............................................................. 108 

Figure 4.29: Precedence diagram for gearbox product ................................................ 108 

Figure 4.30: Performance graph for Application Example 1 ....................................... 109 

Figure 4.31: Disassembly components for hand phone product [44] ........................... 111 

Figure 4.32: Disassembly precedence diagram for hand phone product ...................... 111 

Figure 4.33: Performance graph for Application Example 2 ....................................... 112 

Figure 4.34: Precedence diagram for Gunther problem [122] ..................................... 115 

Figure 4.35: Performance graph for Application Example 3 ....................................... 117 

Figure 5.1: Performance comparisons between PROX, RBOX and TSOX for burma14 

………………………………………………………………………………………..120 

Figure 5.2: Performance comparison between PROX, RBOX and TSOX for bay29 .. 120 

Figure 5.3: Performance comparisons between PROX, RBOX and TSOX for dantzig42 

………………………………………………………………………………………..121 

Figure 5.4: Performance comparisons between PROX, RBOX and TSOX for eil51 .. 121 

Figure 5.5: Iteration time comparisons between PROX, RBOX and TSOX algorithm 

………………………………………………………………………………………..122 

Figure 5.6: Standard deviation vs. generations graph for test problem 3 ..................... 126 

Figure 5.7: Standard deviation vs. generations graph for test problem 4 ..................... 126 

Figure 5.8: CPU time vs. number of generations ......................................................... 127 



 

 xv 

Figure 5.9: CPU time vs. number of tasks .................................................................... 128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 xvi 

Nomenclature 
 

i  :   city i 

j  :   city j 

V  :   set of node 

R  :   set of arc 

cij  :   cost or distance from city i to city j 

xij  :   tour from city i to city j 

n  :   number of cities 

C  :   cost matrix 

vi  :   vertex i 

vj  :   vertex j 

E  :   relative error 

Pi  :   selection probability for city i 

fi  :   fitness value of city i 

fj  :   fitness value of city j 

N  :   number of string 

Ti  :   Task or processing time 

Tid  :   Total idle time 

m  :   number of workstation 

CT  :   Cycle time 

DOE  :   Design of experiment 

GA  :   Genetic algorithm 

TSP  :   Travelling Salesman Problem 

TSPPC  :   Travelling Salesman Problem with precedence constraints 

ATSP  :   Asymmetric Travelling Salesman Problem 

STSP  :   Symmetric Travelling Salesman Problem 

MTSP  :   Multi Travelling Salesman Problem 



 

 xvii 

AGV  :   Automated Guided Vehicle 

VRP  :   Vehicle Routing Problem 

DARP  :   Dial-a-Ride Problem 

SOP  :   Sequencing Ordering Problem 

PDTSP :   Pick-up and delivery problem 

PC  :   Precedence constraints 

NP-hard :   Non-deterministic polynomial hard 

ALB  :   Assembly line balancing 

EOL  :   End-of-life 

MOTSP :   Multi-objective travelling salesman problem 

TS  :   Topological sort 

SP  :   Selective pressure 

Ts  :   Tournament selection 

Pos  :   Position of an individual in the population 

PMX  :   Partially mapped crossover 

OX  :   Order crossover 

LOX  :   Linear order crossover 

CX  :   Cycle crossover 

IM  :   Inversion mutation 

pop_size :   Population size 

ngener  :   maximum number of generation 

Pc  :   Probability of crossover 

Pm  :   Probability of mutation 

l  :   Chromosome length 

PROX  :   Combination of roulette wheel selection, LOX and IM 

TSOX  :   Combination of tournament selection, LOX and IM 

RBOX  :   Combination of rank based roulette wheel selection, LOX and IM 

 

 



 

 1 

Chapter 1 

Introduction 

 

1.1 Background of the study 

The travelling salesman problem (TSP) is a classical model for various process 

sequencing and production scheduling problems. Many production scheduling 

problems can be reduced to a simple concept that there is a salesman who must travel 

from city to city, visiting each city exactly once and returning to the home city [1].  It is 

possible for the salesman to select the orders of the cities visited so that the total 

distances travelled in his tour is as small as possible which will apparently save him 

time and money [2]. Obtaining a solution to the problem of a salesman visiting n cities 

while minimizing the total distance travelled is one of the most studied combinatorial 

optimization problems [3]. It is called combinatorial optimisation because the optimum 

solution consists of a certain combination of variables from the finite pool of all 

possible variables e.g. optimal arrangement, grouping, ordering, or selection of discrete 

objects in finite number [4]. The  TSP problem is well known to belong to the class of 

Non-deterministic Polynomial hard (NP-hard) problems [5].  

The fundamental concept of travelling salesman problem with precedence 

constraints (TSPPC) is similar to TSP, except that it has a set of precedence to be 

followed by the salesman [6]. When a process can only be performed after another 

process was performed, TSPPC model can then be utilised. The TSPPC is mimicking 

the real problem in life; where there is always some order to be followed in performing 

the jobs [6]. In the context of manufacturing, process sequencing and production 

scheduling problem is the most frequent application that is modelled as travelling 

salesman problem with precedence constraints [7]. Besides sequencing and scheduling, 

robot path planning for assembly or material handling can also be modelled as TSPPC 

in order to find the shortest route [8-10]. 

 



 

 2 

1.2 Motivation of the study 

The study on TSPPC is interesting as their concept can be applied to solve many 

scheduling and routing problems both in manufacturing and service industry.  In the 

manufacturing industry, the problems are mostly dealing with process sequencing 

which arises as a subproblem in scheduling, routing and process planning.  The process 

sequencing problem may be regarded as a generalization of the TSP with precedence 

constraints. TSPPC is harder to solve than the general TSP because the model 

formulations are complex and the algorithm for solving these models are difficult to 

implement [6]. Since the TSPPC belongs to the class of NP-hard problem, the optimal 

solution to the problem cannot be obtained within a reasonable computational time for 

large size instance [6]. For an algorithm that cannot execute in polynomial time the 

term Non-deterministic Polynomial time is used, meaning that the execution time 

needed by the algorithm is not a polynomial function of the problem size [11]. There 

are many manufacturing optimization problems that are NP-hard, including vehicle 

routing problems, bin packing problems and scheduling problems [12]. 

TSPPC is difficult to solve efficiently by conventional optimization techniques 

when its scale is very large. The earliest research on TSPPC problem was solved using 

exact methods such as branch-and-bound and dynamic programming. However the 

exact methods that guarantee to find the optimal solution of the problem are only 

capable of handling small and medium size of instances [13]. In addition, the size of the 

instances that are practically solvable is rather limited and the computational time 

increases rapidly with the instance size. The memory consumption of exact algorithms 

can also be very large and lead to the early termination of a program. Therefore it is 

necessary to develop more efficient algorithms for solving TSPPC problems.  

Approximate or heuristic methods such as genetic algorithms, tabu search and 

simulated annealing do not guarantee the optimal solution [14], but empirically they 

have often been shown to return high quality solutions in short computation time.  The 

genetic algorithm (GA) has powerful performance for solving combinatorial 

optimization problems, especially for sequencing problems such as TSP and flow shop 

scheduling [3, 15-17]. However, the use of conventional GA procedure for TSP with 

order-based representation might generate invalid candidate solution when applying to 

TSPPC problem. The infeasible sequences might be produced after crossover and 



 

 3 

mutation operations. A method to handle precedence constraints should be integrated in 

the GA procedure in order to generate only feasible solution during the evolutionary 

process. Hence, a study to develop an efficient genetic algorithm to obtain feasible and 

optimal solution of TSPPC is needed.  

 

1.3 Objectives of the study 

The aims of this study can be summarized as follows:  

1. To study the components and the procedure of genetic algorithm to solve TSP 

and TSPPC. 

2. To propose an efficient genetic algorithm for TSPPC that promising feasible 

and optimal solution.  

3. To compare and verify the efficiency of the proposed algorithm with the 

existing algorithm (i.e. Moon’s algorithm) through computational experiment. 

4. To apply the proposed algorithm to different sequencing problems benchmark 

from the literature. 

 

1.4 Scope of the study 

The study will focus on solving process sequencing in an assembly line. This 

problem is categorized as an NP-hard problem that can be formulated as the travelling 

salesman problem with precedence constraints (TSPPC). Prior to solve TSPPC, several 

experiments on TSP instances with different GA parameters and operators will be 

carried out as part of the preliminary research towards the development of the GA 

framework for TSPPC. 

The proposed optimisation algorithm in this study deals only with the genetic 

algorithm method. Therefore, the performance of the proposed algorithm is not 

compared with other heuristic methods such as tabu search, simulated annealing, ant 

colony or neural network.  

In this study, the result of the proposed algorithm will be compared with another 

algorithm that solved similar applications, which is for process sequencing problem. 



 

 4 

The proposed algorithm is not compared with other algorithms for different 

applications. A data on process sequencing from the related journals will be used to test 

the efficiency and the stability of the proposed algorithm.  

In this study, the parameters used in conducting computational experiments are 

based on parameters that are reported in available scientific literatures and trial runs of 

the model. Simple design of experiments is also performed to obtain the best 

combination of parameters in finding optimal solutions. 

 

1.5 Research process flow 

The study is conducted under two main stages. The first stage is to study and 

examine the genetic algorithm procedure that is used to solve general TSP. At this 

stage, various genetic operators and parameters are explored. Understanding the coding 

used for programming the TSP in MATLAB environment is very crucial at this stage. 

New proposed algorithms to solve TSP are developed which benchmark from 

numerous research works. Various numerical experiments are then carried out to 

investigate the performance of the proposed algorithm to obtain the optimal solution to 

TSP problem. All the experiments will be performed in MATLAB software version 

2009b. 

 The next stage is to use the proposed algorithm in the first stage and modify the 

procedure according to TSPPC limitation, and also to study previous methods that are 

used to solve TSPPC in solving sequencing problem. In this stage, the previous related 

TSPPC algorithm is modelled and simulated to ensure the algorithm is working as 

reported in the literature. Then, the algorithm limitations are identified. 

 A new improved algorithm for TSPPC is developed as the proposed solution to 

reduce some of the limitations of the previous method. In order to verify the efficiency 

and the stability of the proposed method, computational experiments of different test 

problems are performed. The performance (i.e. number of generations and iteration 

time to converge on the optimal solution) of the proposed algorithm is compared with 

the previous developed method. The results of the optimal solution obtained from the 



 

 5 

proposed algorithm are also compared with the results reported in the relevant 

published paper. Figure 1.1 presents an overall picture of the research process. 

 

Figure 1.1: Flowchart of the research process 

 

1.6 Outline of the thesis 

The thesis contains an introductory chapter which gives a brief introduction on 

TSP and TSPPC. The chapter also discusses the motivation of the study leading to the 

objectives and scope of the study.  The remainder of the thesis is organized as follows; 

Chapter 2: Literature review introduces the background knowledge of TSP which 

includes a detailed introduction of TSP, TSP related problems, TSPPC and their 

applications in different areas. The chapter also covers optimization techniques of exact 

Start 

Study genetic algorithm procedure 

and MATLAB coding to solve TSP 

Study previous method and 

identify limitation of TSPPC 

Develop new improved 

algorithm for TSPPC 

Computational experiments 

to compare performance 

Better performance?  

End 

No 

Yes 



 

 6 

and heuristic methods to solve TSPPC problem and gives the definition of NP-hard and 

the theory of computational complexity. The general knowledge of genetic algorithm 

operation, representation, operators, and parameters are also described in this chapter. 

Chapter 3: Research methodology initially describes in detail the development of the 

GA procedure to solve TSP. Then this procedure is further used as a framework to 

solve TSPPC with some modifications in representation and genetic operators. A 

previous method that solved similar TSPPC problem is also benchmarked and modelled 

and the development process of the proposed GA to solve TSPPC is discussed in detail.   

Chapter 4: Computational experiments and results provide computational experiment 

for TSP and TSPPC. It starts with a computational experiments objectives and set-up. 

The proposed algorithms are tested through various experiments and the results 

obtained by the proposed methods are reported and compared with the results obtained 

in related published paper.  

Chapter 5: Discussion focuses on the observations and overall findings from the 

experiments.   

Chapter 6: Conclusions and future work concludes and summarizes the research 

achievements and contributions, and finally suggest the directions for future research.  

 

 

 

 

 

 

 



 

 7 

Chapter 2 

Literature Review 

 

The travelling salesman problem (TSP) concept is very easy stated, however it 

is hard to solve because classified as NP-hard problem. The importance of TSP and 

why it is hard to solve and the method to solve them will be explained in this chapter. 

The chapter starts with giving informal and formal description of the TSP, overview of 

TSP history and the complexity of TSP. The TSP related problem which is TSP with 

precedence constraints (TSPPC), the application and the techniques to solve them are 

briefly explained. Finally, a general concept of genetic algorithm operation, 

representation, operators, and parameters are given in more detail.  

 

2.1 Travelling salesman problem (TSP) 

TSP can be described as a salesman who starts the journey from his home city, 

visiting each city exactly once and then return to his home city. It is possible for the 

salesman to select the order of his visits so that the total of the distances travelled in his 

tour is as small as possible [2]. In this case, the problem is to minimise the total 

distance over the set of all tours or in terms of the graph theory, to find a Hamiltonian 

cycle of minimal length in a fully connected graph [18]. By a proper choice and 

scheduling of the tour, the salesman can often gain so much time to cover as many 

locations as possible without visiting a location twice [2]. Figure 2.1 shows an example 

of the simple TSP diagram. 

A formal mathematical definition of the TSP is given as follows [19-20]: Let G 

= (V, E) be a graph (directed or undirected) and F be the family of all Hamiltonian 

cycles (tours) in G. For each edge e  E a cost (weight) ce is prescribed. Then the TSP 

is to find a tour (Hamiltonian cycle) in G such that the sum of the costs of the edges of 

the tour is as small as possible. Without loss of generality, assume that G is a complete 

graph. Let the node set V = (1, 2, …, n). The matrix C = (cij)nxn, is called the cost matrix 

(also referred to as the distance matrix or weight matrix), where the (i, j)
th

 entry cij 



 

 8 

corresponds to the cost of the edge joining node i to node j in G. The integer 

programming formulation for TSP is given as follows [19];  

Minimise 
1 1

n n

ij ij

i j
j i

c x
 



  
 

(2-1) 

Subject to   

1

1
n

ij

i

x


  j = 1, 2, …, n; i ≠ j. (2-2) 

1

1
n

ij

j

x


  i = 1, 2, …, n; i ≠ j. (2-3) 

1i j iju u nx n     i, j = 2, 3, …, n; i ≠ j.   (2-4) 

All 0 or 1ijx  , All 0iu   and is a set of integers 

Here variables xij represent the tour of the salesman travels from city i to city j. 

The cost or distance between city i and city j is denoted as cij. The objective function 

(2-1) is simply to minimise the total cost or distance travelled in a tour. Constraint set 

(2-2) and (2-3) ensures, respectively that the salesman enter and leaves each city 

exactly once. Constraint set (2-4) is to avoid the presence of sub-tour [19].  

 

 

 

 

Figure 2.1: Example of undirected graph for five-city TSP 

 

 

 

 

1

2

3 4

5

1

2

3 4

5



 

 9 

2.1.1 Overview of TSP history  

The TSP has a long history and is a relatively old problem, and this history can 

help in the understanding of the problem and in understanding why it remains a 

significant problem. The TSP was documented as early as 1759 by Euler, whose 

interest was in solving the knight’s tour problem [2]. A correct solution would have a 

knight visit each of the 64 squares of a chess-board exactly once on its tour. The 

concept of TSP was also treated by the Irish mathematician, Sir William Rowan 

Hamilton and by the British mathematician, Thomas Penyngton Kirkman in 1800s. 

Hamilton’s Icosian Game was a recreational puzzle based on finding a Hamiltonian 

cycle. The general form of the TSP appears to be studied by Karl Menger in 1930s. 

Menger called TSP the “Messenger Problem”, a problem encountered by postal 

messengers as well as by many travellers. The problem was later promoted by Hassler 

Whitney and Merill Flood. Flood was motivated to work on the TSP problem so as to 

reduce the costs for school bus routes in his district [21].  

George Danzig, Ray Fulkerson and Selmer Johnson in their paper “Solution of a 

large-scale travelling salesman problem” proposed a novel method for solving instances 

of the TSP using linear programming [2, 22]. They used this technique to solve a 

problem containing 49 cities in the USA. Danzig, while working at the RAND 

Corporation, developed a technique to optimise solutions for combinatorial problems 

called the Simplex Algorithm. This algorithm was refined and later named the cutting-

plane method. The cutting-plane method has been successfully applied to a wide range 

of problems in the combinatorial field [23]. During the 1960’s the cutting plane method 

was adapted by Land and Doig to form the branch-and-bound searching technique. The 

branch-and-bound technique was applied to the TSP by Little et al. in 1963 [2]. The 

RAND Corporation’s reputation helped to make the TSP a well known and popular 

problem. The TSP also became popular at that time due to the new subject of linear 

programming and attempts to solve combinatorial problems [24]. 

Since the late 1980’s the Centre for Research on Parallel Computation (CRPC) 

at Rice University has examined the travelling salesman problem [23]. David 

Applegate, Robert Bixby and William Cook have examined a number of very large 

scale TSP problems. The problems evaluated were TSP problems in the region of 3000 



 

 10 

– 15000 cities and were evaluated on super computers and large parallel computer 

systems. The technique that was implemented was the cutting-plane method [23]. 

As a discrete optimisation problem, the TSP is very difficult to solve optimally 

in polynomial time, despite its simplicity. Over the last two decades, with the increase 

of computing, the developments of efficient algorithms have contributed to the progress 

made in solving the TSP [10]. The growths of research in earlier time concentrated to 

solve larger instances of problems. It started with 49 cities and then increased to 24,978 

cities in 2004 [25]. The milestone of the growth of instance is shown in Table 2.1. A 

library of TSP (TSPLIB) data sets is maintained at the University of Heidelberg by 

Professor Gerhard Reinelt [26]. TSPLIB is a library of sample instances for the TSP 

and related problems from various sources and of various types.  

 

Table 2.1: Milestones in TSP instance solution [25] 

Year Researchers 
Size of instances 

(cities) 

1954 G. Dantzig, R. Fulkerson, and S. Johnson 49 

1971 M. Held and R.M. Karp 64 

1975 P.M. Camerini, L. Fratta, and F. Maffioli 67 

1977 M. Grötschel 120 

1980 H. Crowder and M.W. Padberg 318 

1987 M. Padberg and G. Rinaldi 532 

1987 M. Grötschel and O. Holland 666 

1987 M. Padberg and G. Rinaldi 2,392 

1994 D. Applegate, R. Bixby, V. Chvátal, W. Cook 7,397 

1998 D. Applegate, R. Bixby, V. Chvátal, W. Cook 13,509 

2001 D. Applegate, R. Bixby, V. Chvátal, W. Cook 15,112 

2004 
D. Applegate, R. Bixby, V. Chvátal, W. Cook, K. 

Helsgaun 
24,978 

 



 

 11 

2.1.2 The complexity of TSP 

Although TSP is conceptually simple, it is difficult to obtain an optimal 

solution. The main difficulty of this problem is because the immense number of 

possible tours: (n-1)!/2 for symmetric n cities tour [27]. As the number of cities in the 

problem increases, the number of permutations of valid tours is also increasing e.g. for 

5 cities is 12, 7 cities is 360 and for 10 cities is 181,440 possible permutations.  It is 

possible to think of the TSP as a complete graph with n nodes where each edge of the 

graph is assigned a weight. These weights represent the distance or cost of moving 

from one node to another. The objective is to find a minimum distance Hamiltonian 

cycle of the graph [2, 28]. From a combinatorial view point one might ask how many 

Hamiltonian cycles must be examined in order to find a minimum cost circuit. 

Computing a possible tour of the graph, it is required to start at a particular node, from 

this node it is possible to visit any one of n-1 other nodes, and following the next move, 

any of n-2 other nodes, etc., the total number of circuits is therefore (n-1)!. However as 

it is possible to visit any circuit in the reverse cyclic order, then it would require         

(n-1)!/2 examinations of different circuits to compute the minimum distance 

Hamiltonian circuit [15]. It is this factorial growth that makes the task of solving the 

TSP immense even for modest n sized problems.  

Non-deterministic Polynomial hard (NP-hard) problem 

It can be said that the high attractiveness of the TSP is because it is classified as 

Non-deterministic Polynomial hard (NP-hard) problem, where the amount of 

computation required increases exponentially with the number of cities. This reason 

probably one of the important factors which attract researchers to study TSP [1]. In 

computer science, polynomial time refers to the running time of an algorithm that is the 

number of computation steps a computer requires to evaluate the algorithm. Polynomial 

time algorithms are said to be “fast”. Most familiar mathematical operations such as 

addition, subtraction, multiplication and division, as well as computing square roots, 

powers, and logarithms, can be performed in polynomial time.  

An algorithm is a set of step-by-step instructions that, when executed in the 

order specified, will solve a certain problem. A problem is considered ‘easy’ if it can be 

solved by an algorithm that runs in polynomial time. On the other hand, a problem is 

considered ‘hard’ if it cannot be solved in polynomial time [11]. They are the basis of 



 

 12 

the computational complexity theory of problems that was developed. Polynomial 

algorithms are of polynomial order, for example O(n
2
) or O(n

3
log(n)), whereas 

exponential algorithms are of higher order, for example O(2
n
) or O(n!). The solution 

times of exponential algorithms increase much more rapidly than the solution times of 

polynomial algorithms. The information on the speed of polynomial and exponential 

(non-polynomial functions) time algorithms can be referred from [11].  

Non-deterministic polynomial-time (NP) defined as the class of problems that 

can be verified in polynomial time, in other words, the problems for which that can be 

checked by a polynomial time algorithm. Deterministic means that each step in a 

computation is predictable. It is possible to guess the solution (by some non-

deterministic algorithm) and then check it, both in polynomial time [29]. If we had a 

machine that can guess, we would be able to find a solution in some reasonable time. 

Today nobody knows if some faster exact algorithm exists. Many people think that 

such an algorithm does not exist and so they are looking for some alternative methods, 

such as approximate algorithms.  

 

2.1.3 TSP variations and applications  

Several variations of the TSP that are studied in the literature have been 

originated from various real life or potential applications, and these variations can be 

reformulated as a TSP. Generally, the TSP is classified as a symmetric travelling 

salesman problem (STSP), asymmetric travelling salesman problem (ATSP), and multi 

travelling salesman problem (MTSP).  

Symmetric TSP – Hamiltonian path and Euclidean distance 

The most common problem in TSP is the shortest Hamiltonian path problem 

[2], which relate to a graph theory. Graph theory is one of the earliest problems still 

prominent in combinatorial mathematics [18]. A graph is a finite set of vertices which 

are joined by edges. A cycle in a graph is a set of vertices of the graph which is possible 

to move from vertex to vertex, along the edges of the graph, so that all vertices are 

encountered exactly once and finish where it started. If a cycle contains all the vertices 

of the graph, it is called Hamiltonian (from the name of the 19
th

 century Irish 

mathematician, Sir William Rowan Hamilton). The TSP for a graph with specified edge 



 

 13 

lengths is the problem of finding a Hamiltonian cycle of shortest length [2, 16]. Here, 

the graph’s vertices correspond to the cities and the graph’s edges correspond to 

connections between cities.  

An example of the Hamiltonian path problem is presented in Figure 2.2. In this 

figure, the node represents assembly processes, where the process A until F can be 

performed in any order. For example, the assembly process needs to be started and 

finished in station O. The engineer needs to consider all possible paths to determine the 

shortest route for this problem. The Hamiltonian path problem is also known as 

“symmetric TSP” [16] because the distance for example between A to B and B to A is 

equal. The distance between the two points in the below diagram can be determined by 

Euclidean distance formulation [28]. 

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

A

B

F

D

E

C

O

 

Figure 2.2: Example of Hamiltonian path problem 

A direct application of the symmetric TSP is in the drilling problem of printed 

circuit board [30]. In order to connect a conductor on one layer with a conductor on 

another layer, or to position the pins of integrated circuits, holes have to be drilled 

through the board. The holes may be of different sizes. In order to drill two holes of 

different diameters consecutively, the head of the machine has to move to a toolbox and 

change the drilling equipment. This is quite time consuming. Thus it is clear that one 

has to choose some diameters, drill all holes of the same diameter, change the drill, and 

drill the holes of the next diameter. Thus, this drilling problem can be viewed as a 

series of TSP. The distance between two cities is given by the time it takes to move the 



 

 14 

drilling head from one position to the other and the aim is to minimize the travel time 

for the machine head.  

Asymmetric TSP 

The asymmetric travelling salesman problem is when the cost of travelling from 

node A to node B is not the same as the cost from node B to node A [16]. This can be 

solved in the same way as the standard TSP if certain edge weights that ensure there is 

a Hamiltonian cycle in the graph are applied. For example, let consider the Figure 2.2 

as the nodes that need to be visited by an automated guided vehicle (AGV) to load and 

unload materials for work stations. Let assume the speed of AGV for moving forward 

and backward are different. Therefore travelling time from node A to B for moving 

forward is different with travelling time from B to A with moving backward. In this 

case, engineer need to decide the fastest travelling time to visit all nodes. Minimising 

the makespan on a single machine with sequence-dependent setup times is an example 

of application of asymmetric TSP. When setup times are dependent on the sequence, 

minimising makespan becomes equivalent to minimising the total setup time. If the 

setup times for all pairs of jobs are indifferent to their sequencing order when scheduled 

consecutively, the scheduling problem is equivalent to a symmetrical TSP, otherwise, it 

is equivalent to an asymmetrical TSP [31]. 

Multi-salesman TSP 

The multi-salesman problem is the same as Hamiltonian problem, except that it 

has more than one salesman [16]. The scheduler need to decide where to send each 

salesman, so that every city is visited exactly once and each salesman returns to the 

original city [32]. For example, let consider the problem in Figure 2.2 as a layout of the 

manufacturing process, where two similar AGV need to serve six stations (A, B, C, D, 

E, F). The first AGV will start and finish the job from (0, 0) and the second AGV need 

to start and finish the job from (8, 8). Both of AGVs need to serve three stations each 

other. In this case, the AGVs need to find the shortest route to serve three stations and 

return to the starting point. The minimum total distance for both AGVs is considered as 

the best route. Another application of MTSP is for school bus routing scheduling in 

which the objective of the scheduling is to obtain a bus loading pattern such that the 

number of routes is minimized, the total distance travelled by all buses is kept at 

minimum, no bus is overloaded and the time required to traverse any route does not 



 

 15 

exceed a maximum allowed policy [33]. Apart from that, scheduling sequence-

dependent setup times and makespan minimisation on parallel machine has been 

considered by Guinet [34] and this problem is similar to a vehicle routing problem 

which can be modelled as multi-travelling salesman problem.   

 

2.1.4 TSP with precedence constraints (TSPPC) 

Basic TSP has neither constraint nor priority given to any cities. The TSP with 

precedence constraints (TSPPC) is one in which a set of n nodes and distances for each 

pair of nodes are given, the problem is to find a tour from node 1 to node n of minimal 

length which takes given precedence constraints into account. In TSPPC some order of 

cities is given and we ought to visit cities in that order only. TSPPC differs from 

traditional TSP whereby in TSPPC, there is no need to return to the original city. 

TSPPC becomes more important because in real life problems we always have to 

follow some orders. An example of TSPPC is shown in Figure 2.3. Each precedence 

constraint requires that some node i have to be visited before some other node j [35]. In 

a directed graph, the vertices (circles) represent activities or tasks and the edges 

represent the precedence relations between activities [6]. The task dependencies deal 

with the relationships between giving tasks and how they affect each other. The four 

types of task dependencies are Finish-to-start in which predecessor task must be 

finished before the successor can start, Start-to-finish in which successor task can finish 

only after the predecessor task has started, Start-to-start in which two tasks can start 

simultaneously and Finish-to-finish in which two tasks must finish at the same time 

[36]. The TSPPC in this study is classified as Finish-to-start types of task dependencies. 

 

 

 

 

Figure 2.3: Example of TSP with precedence relationships 

1

2 3

4

6

5

7

81

2 3

4

6

5

7

8



 

 16 

The term of the travelling salesman problem with precedence constraints 

(TSPPC) was formerly used by Kusiak and Finke in 1987 to solve machine scheduling 

problem using the exact method. In 2002, Moon et al. introduced more efficient method 

to solve TSPPC instances. In some researches, other terms are also used to represent 

TSPPC problem such as precedence constraint routing problem [37], precedence 

constraint travelling salesman problem (PCTSP) [35], Asymmetric TSP with 

precedence constraint (ATSP-PR) also referred to as sequencing ordering problem 

(SOP) with precedence constraint [38-39], pickup and delivery with time window and 

precedence constraint [40], Dial-a-ride problem (DARP), and directed vehicle routing 

problem (DVRP) [10]. 

The sequential ordering problem (SOP) with precedence constraints was first 

formulated by Escudero in 1988 to design heuristics for a production planning system. 

It consists of finding a minimum weight Hamiltonian path on a directed graph with 

weights on the arcs and the nodes, subject to precedence constraints among nodes [38]. 

Gambardella and Dorido [39] modelled the problem by considering a complete graph P 

= (V, R) with node set V and arc set R, where nodes correspond to jobs 0,… i, …, n.. To 

simplify the explanation, reconsider the previous diagram in Figure 2.3. The nodes set 

V consist of (1, 2, 3, 4, 5, 6, 7, 8). Precedence constraints given by set R which contain 

[(1,3), (1,4), (2,3), (3,6), (4,5), (5,8), (6,7), (7,8)]. This set is ascertained from arc (i, j)   

 R if job i has to precede job j in any feasible solution. Each arc (i, j) is associated a 

cost tij. This cost represents the required waiting time between the ends of job i and the 

beginning of job j. Each of node i is associated a cost pi  R, which represents the 

processing time of job i [39]. Given this definition, the TSPPC can be stated as the 

problem of finding a job sequence subject to the precedence constraints which 

minimise the total makespan. There is therefore equivalent to the problem of finding a 

feasible Hamiltonian path with minimal cost under precedence constraints given by set 

R [39]. 

Moon [6] has used the two-commodity network flow model to formulate 

TSPPC. In this formulation, ijc is the travel distance from vertex iv  to jv  and s is the 

first selected vertex in the graph. Commodity p is supplied by ( 1)n  units at a selected 

starting node and used by one unit at each node that is not the starting node while 

commodity q is consumed by ( 1)n  units at the starting node and supplied by one unit 



 

 17 

at the other nodes. Here n is the number of nodes or cities. Three variables are used for 

the two-commodity network model: p

ijx  is the quantity of commodity p from vertex iv  

to jv  and q

ijx  is the quantity of commodity q from vertex iv  to jv .  

1    if vertex  is visited immediately after vertex ,

0    otherwise,
ij

j i
x


 


 

The two-commodity network flow model for the TSPPC can be described as follows: 

Minimise 
 

 
1 1

1

1

n n
p q

ij ij ij

i j
i j

c x x
n 






  (2-5) 

Subject to  

1 1

1    for  = ,

1       otherwise,

n n
p p

ij ji

j j

n i s
x x

 


  


   (2-6) 

 

1 1

1    for  = ,

1             otherwise,

n n
p p

ij ji

j j

n i s
x x

 

 
  


   (2-7) 

 
1

1   ,
n

p q

ij ij

j

x x n i


     (2-8) 

 1     and ,p q

ij ij ijx x n x i j     (2-9) 

  
1 1

1    for ,
n n

p p

uj vj u v v

j j

x x v v v s
 

      (2-10) 

0    and ,p

ijx i j   (2-11) 

0    and ,q

ijx i j   (2-12) 

 0,1     and ijx i j.   (2-13) 

The objective function (2-5) is to obtain the total travel distance for all vertices, 

and the sum of commodities p  and q  between vertices iv  to jv  on any feasible 

sequence (i.e. 1ijx  ) is equal to 1n  (i.e. 1p q

ij ijx x n   ). Constraints (2-6) and (2-11) 

are used to ensure the feasibility of flow of commodity p while constraints (2-7) and (2-

12) are for feasibility of commodity q . Constraint (2-8) ensures a feasible tour, i.e. 

feasible sequence. Constraint (2-9) explains that, if 1ijx  , the sum of 



 

 18 

commodities p and q between iv  and jv  be 1n . Constraint (2-10) is for the 

precedence relationship between vertices.  

 

2.1.5 TSPPC application in manufacturing industry 

The travelling salesman problem with precedence constraints has wide 

applications in manufacturing industry. In manufacturing, the TSPPC can be modelled 

to represent assembly process [6]. In the real world, the assembly process of a product 

has a certain order that must be followed. The assembly process cannot be completed 

by disobeying precedence rules. The weight in the assembly process to be modelled as 

TSPPC can be a transition time or travelling distance between one process to another 

process. Commonly, the objective of implementing TSPPC as assembly process is to 

find the minimum makespan, minimum travelling time or minimum travelling distance 

[6]. Apart from assembly process, the TSPPC can also be used to model disassembly 

process. The disassembly optimisation problem was formulated as a precedence-

constrained asymmetric TSP by Sarin et al. [41]. Generally, once electronic products 

reach their end-of-life (EOL), they are sent to one of the EOL processes (i.e. 

remanufacturing, reuse, recycling or disposal) for environmental protection purpose 

[42]. In most of the processes, a certain level of disassembly may be necessary in order 

to extract components of the products. Therefore, optimal disassembly sequences are 

very important in order to increase the efficiency of the disassembly process and must 

be generated in order to help minimise the disassembly complexity and time [43]. 

Disassembly planning focus on disassembly sequence planning which aims to achieve a 

feasible disassembly sequence with minimum cost or time [44]. 

Another application of TSPPC in manufacturing system is for planning and 

scheduling purpose. The assembly planning problem is to generate the sequences for 

the assembly machines that transform the assembly operation from an assembly 

operation to an assembly product [45]. In scheduling, a finite set of jobs is processed on 

a finite set of machines. Each job is characterized by fixed order of operation, where it 

needs to process on specific machine for a specific duration before another process can 

be performed [8, 46]. A schedule is an assignment of operations to time slots on the 

machine.  The objective of scheduling is to minimise the maximum completion time of 



 

 19 

jobs [8]. In this case, the processes are modelled as node and the processing time as 

weight. The processing order is modelled as precedence constraints in TSPPC [35]. 

When a proper schedule is produced, better production management is achieved. In job 

shop production, the demand of products varies and sometimes unpredictable [47]. 

Therefore, an optimisation tool that has faster response and the ability to find the 

optimum configuration in a shorter time is required. By generating an optimum 

schedule in shorter time, the time to start production can be reduced [48]. 

The TSPPC also can be modelled to represent a vehicle routing problem (VRP) 

in manufacturing [1, 49]. This application is related to material handling system that 

uses automated guided vehicle (AGV) to deliver and pick up the work pieces. For this 

purpose, a work piece needs to be transported from one station to another station by 

following the precedence rule. The AGV has to find the shortest path to perform 

delivery and pick up of work pieces on the selected stations. It needs to find the shortest 

path because each time the AGV starts working, the number and location of workpieces 

to be delivered and picked up is different. Therefore, the AGV needs to identify 

destinations and the shortest path to be followed [1]. The vehicle operators require 

timely solutions due to their dynamic working environment. If the system can generate 

the shortest path in shorter time, the AGV can perform the works earlier. It gives huge 

benefits to the overall manufacturing system because each process can start earlier.  

In many real manufacturing situations, setup operations such as cleaning or 

changing tools, are not only often required between jobs but they are also strongly 

dependent on the immediately preceding process on the same machine [6]. Sometimes, 

the setup times are modelled as set up costs, which are then minimised. The idea is that 

setup costs and setup times are related, so that minimising setup costs will lead to 

minimised makespan. Minimising the makespan on a single machine with sequence 

dependent setup times is equivalent to the travelling salesman problem [31]. The TSP is 

solved where the distances between cities represent the sequence dependent setup times 

between jobs. This result in a sequencing of jobs that yields a schedule when combined 

with the processing times and sequence dependent setup times. Bitran & Gilbert [50] 

developed a travelling salesman problem based heuristic to minimise total setup costs 

on parallel machines where the setup costs are not only sequence dependent but can be 

divided into two classes that vary in magnitude and degrees. The classes generally 

correspond to major setup times and minor setup times. Factory managers must decide 



 

 20 

which products to make in which periods, and the exact production sequence and 

production quantities, in order to minimise the sum of setup and inventory holding 

costs. Gilmore and Gomory [51] modelled and solves sequence-dependent setup time 

as a TSP. In sequence-dependent setup time, the distance between cities is the setup 

times between the jobs [52]. The path between cities i and j is in fact the setup time of 

the machine to change from the job i to the job j. Setup time can be defined as the time 

required to prepare the necessary resource (e.g. machines, people) to perform a task 

(e.g. job, operation). For example, in the printing industry, a setup time is required to 

prepare the machine for cleaning which depends on the color of the current and 

immediately following jobs. When setup times are dependent on the sequence, 

minimising makespan becomes equivalent to minimising the total setup time. 

Minimising the makespan on each single machine with sequence dependent setup time 

is equivalent to a Travelling Salesman Problem, which is strongly NP-hard [53].  

There are also some of the examples that cannot be transformed to the TSP and 

TSPPC, but share some characteristics of the TSP, or in which the TSP comes up as a 

sub-problem [54]. Since many applications can be modelled as TSP and TSPPC, it has 

attracted many researchers from different field such as mathematics, operational 

research, artificial intelligence and Physics [55]. The TSP problem has also been used 

during the last years as a comparison basis for improving several optimisation 

techniques, such as genetic algorithm [6, 35, 56], simulated annealing [57], Tabu search 

[8], local search [12, 58], and ant colony [9, 39].  

 

2.2 Optimisation techniques 

Optimisation involves a mathematical formulation in order to get the ‘best’ 

solution for the problem [4]. The terminology ‘best’ solution implies that there is more 

than one solution can be obtained and the solutions are not of equal value. Optimisation 

tools should be used for supporting decisions rather than for making decisions, i.e. 

should not substitute decision-making process [59]. The input to the process to be 

optimised consists of variables and the process or function is known as the cost 

function, objective function, or fitness function; and the output is the cost or fitness. An 

optimisation problem is either a maximisation problem or minimisation problem with 

an associated set of instances. In the case of TSP, the optimisation become 



 

 21 

minimisation as the objective is to minimise the total travelling distance or minimise 

the cost. 

 

2.2.1 Single & multi-objective optimisation 

Most travelling salesman problems discussed in the previous sections are 

dealing with only one objective optimisation which is minimising the travelling 

distance or cost. However, many real-world decision making problems need to achieve 

several objectives such as maximising profits while minimising cost and maximising 

customer satisfaction (e.g. on time delivery) while minimising on hand inventories, 

minimise risks, maximise reliability, maximise performance, minimise deviations from 

desired levels, etc [60]. Unlike single objective optimisation, the solution of multi-

objective problem is not a single point, but a family of points known as the Pareto-

optimal set, Pareto front, non-dominated or non-inferior solutions [59, 61-62]. The 

illustration of Pareto front in multi-objective optimisation is depicted in Figure 2.4. 

 

Figure 2.4: Illustration of Pareto front for a bi-objective optimisation problem [61] 

In the above diagram, by assuming minimisation problem, the Pareto front is the 

boundary between the points P1 and P2 of the feasible set F. Solutions S1 and S3 are 

non-dominated Pareto optimal solutions. Solution S2 is not Pareto-optimal as solution 

S1 has simultaneously smaller values for both objectives, and solution S1 should be 

accepted rather than solution S2. Therefore the aim of multi-objective optimisation is to 

obtain a representative set of non-dominated solutions [61].  

Gholamian [63] studied multi-objective travelling salesman problem (MOTSP) 

and the system has been developed for them. MOTSP solutions can be represented as a 

P1 

P2 S1 

S2 

S3 



 

 22 

sequence of cities with related objective values. In his study, a bi-objective model is 

developed with opposite goals (maximum profit and minimum distance) for 8 cities 

problem. Multi-objective problems find applications in many areas, e.g. in production 

scheduling, project scheduling, production facility design, vehicle routing, supply chain 

management and many others [60]. As this study is only dealing with single objective 

optimisation which is minimisng the travelling distance, the multi-objective 

optimisation concept will not be discussed in more detail. 

 

2.2.2 Exact methods 

A brute force approach to solving an instance of a TSP is simply to list all the 

feasible solutions, evaluate their objective functions, and pick the best. However, this 

approach of complete enumeration is likely to be inefficient because of the vast number 

of possible solutions. Therefore many algorithms are developed to solve TSP 

efficiently. Most of the researchers state that there are two possible approaches of 

optimisation algorithm that can be classified as exact and heuristic (approximate) 

method. The exact methods will generate all possible solutions, while the heuristic 

methods only generate solutions according to evolution algorithm. It means that 

heuristic methods do not generate all solutions for the problem and do not guarantee the 

optimal solution.  

Exact methods like branch-and-bound and dynamic programming are seen to be 

an effective solution of combinatorial optimisation problems and they have particular 

advantages and disadvantages. These methods always lead to the optimal solution [59]. 

On the other hand there exists a limit on problem size for exact methods. An advantage 

of exact methods for satisfaction problems is that they are able to show that instances 

cannot have solutions [12]. In the early development of the algorithm for the TSP, 

many researchers focusing on the exact method to solve TSP instance. In 1950s, 

George B. Dantzig, D. R. Fulkerson, and S. M. Johnson provided step by step 

application of the Dantzig-Fulkerson-Johnson for a 10-city example using linear 

programming. At the beginning 1960s, R. Bellman used the TSP as an example of a 

combinatorial problem that can be solved via dynamic programming [64]. Then, in 

1970s, R.M. Karp and M. Held introduced branch-and-bound algorithm and solved 42-



 

 23 

city instance of Dantzig, Fulkerson and Johnson, the 57-city instance of Karg and 

Thomson, and 64-city random Euclidean instance [21].  

The research on TSPPC which started in the early 1980s until the end of 1990s 

was focusing to solve the problem by using exact methods. Kusiak and Finke [65] 

developed a branch-and-bound algorithm for solving the single-machine scheduling 

problem with sequence-dependent setup times and precedence constraints. A lower 

bound was determined by solving a network formulation. Fischetti and Toth [66] also 

used branch-and-bound algorithms in which they proposed an additive approach to 

compute the lower bounds of TSPPC sequences. On the other hand, Savelsbergh and 

Sol [49] applied dynamic programming to solve dial-a-ride problem (DARP) modelled 

as TSPPC where a vehicle should transport a number of passengers. Each passenger 

should be transported from a given location to a given destination. Mingozzi et al. [40] 

presented dynamic programming strategies for the TSP with time window and 

precedence constraints. They developed a dynamic programming algorithm based on 

state space relaxation procedures for computing lower bounds to use in the branch-and-

bound scheme. Fagerholt and Christiansen [67] consider a TSPPC with time window 

and allocation to solve the bulk ship scheduling problem using dynamic programming.  

 

2.2.3 Heuristics methods 

One of the drawbacks of exact methods for the TSP is that they usually take a 

long time to solve the problem or prove that no solutions exist in the case of satisfaction 

problems. Thus, it can only handle smaller size problems [68]. Heuristics or 

approximate methods were developed to find the near optimal solution for larger 

dimension problems within a reasonable CPU time. The term heuristics derive from the 

Greek heuriskein meaning to find or discover [69]. Heuristic algorithms have become a 

popular alternative to exact algorithms mainly because of their ability to handle more 

complex problems, larger size problems, and the numerous side constraints [13].  

The most widely and successfully applied heuristic algorithms are local search 

algorithm. The general schemes to improve local search algorithms are called 

metaheuristics [12]. A metaheuristics is defined to be a general heuristic method which 

is used to guide an underlying local search algorithm towards promising regions of the 



 

 24 

search space containing high quality solutions [70]. The metaheuristics algorithm has 

often been inspired by analogies to naturally occurring phenomena like the physical 

annealing of metals or biological evolution. The most famous metaheuristics include 

genetic algorithm [71], simulated annealing [57], tabu search [72] and ant colony [39]. 

Zanakis and Evans [73] describe heuristics as simple procedures designed to 

provide good but not necessarily optimal solutions to difficult problems, easily and 

quickly. Typically, a heuristic for the TSP and VRP is categorized as either a tour 

construction algorithm, which involves gradually building a solution at each step, or a 

tour improvement algorithm, which improves upon a feasible solution [13]. The survey 

based on 442 articles revealed that heuristics are used more frequently in the area of 

production and job shop scheduling where mathematical programming solutions are 

rather cumbersome. 

Psaraftis [37] develop k-interchange procedures to perform local search to solve 

Dial-a-Ride problem (DARP) with the objective of minimising the length of the tour 

travelled by a vehicle to service a number of customers from a distinct origin to a 

distinct destination. The DARP is a TSPPC in which the precedence constraints exist 

between the origin and destination of each customer on a feasible Dial-a-Ride tour. On 

the other hand, Escudero [74] performed a local search that uses 3 and 4-change based 

procedures to solve production planning system in the flexible manufacturing system 

(FMS).  

Renaud et al. [10] proposed a heuristic method for the pickup and delivery 

problem which is formulated as the TSPPC model. The problem of pickup and delivery 

travelling salesman problem (PDTSP) was transformed into TSPPC by considering 

pickup customers as line-haul customers (i.e. one way journey from terminal to 

terminal) and delivery customers as back-haul customers (i.e. return journey to the 

original destination). Consequently, all pickup customers will be visited before visiting 

any delivery customers. Thus, this problem can be solved as TSPPC [10]. Basically, the 

heuristic algorithm that proposed by Renaud is composed of two phases. The first 

phase, called ‘Double Insertion’ heuristic, inserts each delivery customer 

simultaneously with the associated pickup customer. The second phase called the 

‘Deletion and Re-insertion heuristic’, as an improvement procedure that uses 

improvement heuristic [10]. 



 

 25 

Gambardella and Dorigo [9] presented ant colony system to solve sequential 

ordering problem (SOP). The SOP which was first formulated by Escudero [74] can be 

stated as the problem of finding a job sequence that minimises the total makespan 

subject to the precedence constraint. The most distinctive feature ant colony 

optimisation is the management of pheromone trails that are used, in conjunction with 

the objective function, to construct new solution. Gambardella and Dorigo have 

designed a constructive algorithm called ACS-SOP in which a set of artificial ants 

builds feasible solutions to the SOP and a local search specialized for the SOP, and the 

resulting algorithm called the Hybrid Ant System for the SOP (HAS-SOP).  

Hurink and Knust [8] were applied TSPPC to solve a scheduling problem, with 

the objective to determine a feasible schedule which minimises the makespan. They 

proposed Tabu search algorithm for scheduling a single robot in job-shop environment. 

In their problem, a single machine scheduling, which arises as a sub-problem in a job-

shop environment was considered. The jobs additionally have to be transported 

between the machines by a single transport robot. Each job consists of a chain of 

operations which have to be processed in this order. With each operation, a dedicated 

machine is associated with which the operation has to be processed without pre-

emption for a given duration.  

Moon et al. [6] formulated the TSPPC as a network model. They use a 

topological sort (TS) technique, which is defined as an ordering of vertices in a directed 

graph. They proposed a new crossover for genetic algorithm (GA) which named moon 

crossover to solve TSPPC. The proposed algorithm was applied to process sequencing 

problem, which mainly applied to allocate assembly task in work stations [6]. They 

found that, the proposed algorithm came out with a better solution for the larger size 

problem compared to the traditional GA. Therefore, they conclude that their proposed 

GA is an efficient method for the TSPPC [6]. The proposed approach was then applied 

to solve process planning and scheduling in a multi-plant [56] with the objective to 

determine optimal schedule of machine assignments and operations sequences of all 

parts so that the makespan is minimised.  

 Table 2.3 shows the chronology of TSPPC related problems solved with 

different methods. 

 



 

 26 

Table 2.2: Summary of methods to solve TSPPC 

Researcher Year Method Application 

Moon, Kim, Choi and Seo 2002 Genetic algorithms Process sequencing 

Hurink and Knust 2002 
Local search + 

Tabu search 
Robot scheduling 

Gambardella and Dorigo 2000 
Local search + Ant 

Colony 

Sequential ordering 

problem 

Renaud and Boctor 2000 Heuristic search Pick up & delivery 

Fagerholt and Christiansen  2000 
Dynamic 

programming 

Bulk ship 

scheduling 

Mingozzi, Bianco and 

Ricciardelli 
1997 

Dynamic 

programming 
Dial-a-ride 

Savelsberg and Sol 1995 
Dynamic 

programming 
Dial-a-ride 

Fischetti and Toth 1989 branch-and-bound 
Vehicle routing 

problem 

Escudero  1988 
Heuristic + Local 

search 

Production planning 

in FMS 

Kusiak and Finke  1987 branch-and-bound Machine scheduling 

Psaraftis 1983 
Heuristic + Local 

search 
Dial-a-ride 

 

Evaluation of the performance of a heuristic 

Silver [75] described that two main measures of performance exist to evaluate 

the performance of a heuristic method. First, comparing the obtain value of the 

objective function to the achievable by the optimal solution or some other benchmark 

procedure, which mentioned in Dannenbring, 1977 [76]. Then, second, the 

computational requirements in terms of computational effort and memory consumption 

for realistic sized problems. A natural question arising for approximate or heuristic 

algorithms is how close, in the worst case, is the returned solution to the optimum. To 



 

 27 

indicate the quality of the returned solution, the relative error is defined as follows 

[12]: 

The relative error of a feasible solution y with respect to an instance x of an 

optimisation problem П is defined as 

  
 

( ) ( )
( , )

max ( ), ( )

opt x f y
E x y

opt x f y


                (2-14) 

The relative error is close to 0 if the feasible solution is close to the optimum. 

Conversely, the relative error is close to 1 if the feasible solution is far from the optimal 

solution. 

Global and local optima 

The significance of using any heuristic method is to get a global optimum (best 

minimum) solution instead of local optima (suboptimal minimum). A global optimum 

is the point in the search space with the highest fitness value while a local optimum is a 

point whose fitness is higher than all its near neighbours but lower than that of the 

global optimum [77]. By plotting the fitness for a two-dimensional search space, a 

fitness landscape can be obtained as illustrated in Figure 2.5. The landscape is smooth 

or correlated if neighbouring points in the search space have a similar fitness and it is 

rugged if neighbouring points have very different fitnesses. Rugged landscapes 

typically have large numbers of local optima. Although exhaustively evaluating the 

fitness of each point in the search space will always reveal the optimum, this is usually 

impracticable because the hugeness of the search space [77]. Thus, the essence of all 

the heuristic optimisation techniques is to determine the optimum point in the search 

space by examining only a fraction of all possible candidates as in the case of genetic 

algorithm.  

A fitness landscape such as in Figure 2.5 is a convenient medium for displaying 

the GA’s performance. However, fitness functions for real world problems cannot be 

easily represented graphically. Instead, performance graph is used. Since GA is 

stochastic, their performance usually varies from generation to generation. As a result, 

a curve showing the average performance of the entire population of chromosomes as 



 

 28 

well as a curve showing the performance of the best individual in the population is a 

useful way of examining the behaviour of a GA over the chosen number of generations.  

 

Figure 2.5: Illustration of fitness landscape [77] 

 

2.3 Genetic algorithm operation, representation, operators and 

parameters 

The genetic algorithm is an optimisation technique, based on natural evolution, 

developed by John Holland in 1975 at the University of Michigan. This technique 

imitates the biological evolution theory; whereby the concept of “survival of the fittest” 

exists. GA provides a method of searching which does not need to explore every 

possible solution in the feasible region to obtain a good result [47]. In nature, the fittest 

individuals are most likely to survive and mate, therefore the next generation should be 

fitter and healthier because they were bred from healthy parents. This same idea is 

applied to a problem by first ‘guessing’ solutions and then combining the fittest 

solutions to create a new generation of solutions which should be better than the 

previous generation [16]. 

In 1992 John Koza has used genetic algorithms to evolve programs to perform 

certain task. He called his method “genetic programming” [78]. Since then, many 

versions of evolutionary programming have appeared with varying degrees of success. 

The first researcher to tackle the travelling salesman problem with genetic algorithm 

was Brady in 1985. His example was followed by Grefenstette et al., Goldberg and 

Lingle, Oliver et al., and many others [27]. In the recent years, many researchers [3, 79-

86] focused on developing more efficient GA to solve TSP related problems by further 

optimising the parameters, evaluating the best combination of operators and developing 



 

 29 

a mechanism to produce new fitter offspring in the standard GA procedure. Surveys of 

GA for TSP are compiled by Potvin [87] and Larranaga [27].  

Genetic algorithm is different from other heuristic methods in several ways. The 

most important difference is that a GA works with a population of possible solutions at 

each iteration process, while other metaheuristic methods like Tabu search and 

simulated annealing use a single solution in their iterations [88]. GA can quickly scan 

vast solution set so that bad candidate solutions do not affect the end solution 

negatively as they are simply discarded. GA technique is robust and can deal 

successfully with a wide range of difficult problems. It does not require derivatives or 

auxiliary information. The use of an objective function to determine the quality of a 

solution is the only information to guide the search. GA does not guarantee to find the 

global optimum solution to a problem, but it is generally good at finding acceptably 

good solutions to problems acceptably quickly especially for a large-size instances. 

Two important characteristics of the genetic algorithm which are exploitation and 

exploration [88]; Exploitation is the ability to find good solutions quickly by make use 

of knowledge found at points previously visited to help find better points, whereas 

exploration describes the behaviour of maintaining a set of diverse individuals, which is 

to investigate new and unknown areas in the search space. GA is also well suited for 

parallel computers [89]. 

Despite some of the very best advantages, the problem with GA is that the 

genes from a few comparatively highly fit (but not optimal) individuals may rapidly 

come to dominate the population, causing it to converge on a local maximum. Once the 

population has converged, the ability of the GA to continue to search for better 

solutions is effectively eliminated. Crossover of almost identical chromosomes 

produces little that is new. Only mutation remains to explore entirely new ground, and 

this simply performs a slow, random search. For such cases, some of the conventional 

methods outperform the GA, quickly finding the minimum while the GA is still 

analyzing the costs of the initial population [89]. For problems that are not too difficult, 

other methods may find the solution faster than the GA. There is also a problem that 

can occur with GA known premature convergence which means that an individual that 

is fitter than others at earlier stages may dominate on the reproduction process leading 

to a local optimum convergence rather than a more thorough search that could lead to a 

global optimum [89]. GA also tends to be computationally expensive especially when 



 

 30 

using large population size. To use the GA, the solution to the problem is represented 

as a chromosome. Therefore, a method to encode the problem solutions as 

chromosomes must be well designed. 

 

2.3.1 Genetic algorithm operation 

The GA operation is based on the Darwinian principle of survival of the fittest 

and it implies that the ‘fitter’ individuals are more likely to survive and have a greater 

chance of passing their ‘good’ genetic features to the next generation [71, 90]. Figure 

2.6 illustrates the basic operation of GA while the general procedure is given in Figure 

2.7. In the standard or basic procedure of GA [27, 90-91], an initial population is 

created containing a predefined number of individuals (i.e. solutions). Each individual 

has an associated fitness measure, typically representing an objective value. The 

concept that fittest (or best) individuals in a population will produce fitter offspring is 

then implemented in order to reproduce the next population. Selected individuals are 

chosen for reproduction (by crossover and mutation) at each generation, with an 

appropriate crossover and mutation factor to randomly modify the genes of an 

individual. The algorithm identifies the individuals with the optimising fitness values, 

and those with lower fitness will naturally get discarded from the population. Once 

crossover and mutation is done, a new generation is formed and the process is repeated 

until some stopping criteria have been reached [92]. A comprehensive explanation on 

the genetic algorithm operation can also be referred to Netnevitsky [93] and 

Michalewicz [94]. 

 

 

 

 

 

Figure 2.6: Basic operation of genetic algorithm 

OLD

POPULATION

OLD

POPULATION

SELECTIONSELECTION

FITNESS 

EVALUATION

FITNESS 

EVALUATION

NEW 

POPULATION

NEW 

POPULATION

CROSSOVERCROSSOVER MUTATIONMUTATION

OLD

POPULATION

OLD

POPULATION

SELECTIONSELECTION

FITNESS 

EVALUATION

FITNESS 

EVALUATION

NEW 

POPULATION

NEW 

POPULATION

CROSSOVERCROSSOVER MUTATIONMUTATION



 

 31 

 

Begin GA 

   Initialize population, P 

          For generation_count < k do 

           Evaluate P (i) 

      Begin 

                     Select parents from the population 

          Produce children by crossover from selected parents 

                     Mutate the individuals 

          Increment generation_count 

                End 

                 Return the best solution 

End GA 

 

Figure 2.7: General procedure of genetic algorithm [27, 90] 

 

2.3.2 Chromosome representation  

In genetic algorithm, each individual i.e. chromosome, that is a member of the 

population represents a potential solution to the problem [92]. A chromosome is a 

string of gene positions, where each gene position holds an allele value that constitutes 

a part of the solution to the problem. The allele value of a gene's position represents an 

element from a finite alphabet. Before a genetic algorithm can be put to work on any 

problem, a method is needed to encode potential solutions to that problem in a form 

that a computer can process. One common approach is to encode solutions as binary 

strings: sequences of 1’s and 0’s. Another similar approach is to encode solutions as 

arrays of integers or decimal numbers, or to represent chromosomes as strings of 

letters. The virtue of all these methods is that they make it easy to define operators that 

cause the random changes in the selected candidates [95].  

There are a number of possible chromosome representations, due to a vast 

variety of problem types. Larranaga [27] reviewed and compiled the different types of 

representations, crossover and mutation operators used in the GA. Although many 

types of representation have been developed, there will be only one representation type 



 

 32 

which is most commonly used for TSP will be discussed in this thesis, that is path 

representation.  

Path representation 

The path representation also called permutation representation [70] is probably the 

most natural representation of a TSP tour [27]. In this representation, the n cities that 

should be visited are put in order according to a list of n elements, so that if the city i is 

the j-th element of the list, city i is the j-th city to be visited. This representation allows 

a great number of crossover and mutation operators to have been developed. In TSP, 

there are a number of cities, where each pair of cities has a corresponding distance. The 

aim is to visit all the cities such that the total distance travelled will be minimised. 

Obviously, a solution, and therefore a chromosome which represents that solution to the 

TSP, can be given as an order, that is, a permutation, of the cities [96].  

 

2.3.3 Evaluation and selection  

A mechanism to select individual in population for reproduction to create new 

offspring or to transfer a part of the existing population to the next generation is 

needed. It is possible to perform the task of selection completely in a randomised 

fashion. This selection mechanism will eventually cause the algorithm to reach global 

minimum/maximum. However, using this scheme, convergence of the population will 

almost be impossible, and termination will take a considerably long time [3]. The 

selection strategy addresses on which of the chromosomes in the current generation will 

be used to reproduce offspring in hopes that the next generation will have even higher 

fitness. A number of selection techniques exist including elitist, tournament, Roulette 

Wheel and rank-based Roulette Wheel [97-98]. The differing selection techniques all 

develop solutions based on the principle of survival of the fittest. Fitter solutions are 

more likely to reproduce and pass on their genetic material to the next generation in the 

form of their offspring [90]. However, the worse members of the population still have a 

small probability of being selected, and this is important to ensure that the search 

process is global and does not simply converge to the nearest local optimum. 

 



 

 33 

Elitist selection 

Elitism is a general concept to favour the top individuals and to ignore the 

remaining ones [99]. Individuals in the population are sorted according to their fitness 

values. The best n individuals are included in the selection process and the remaining 

individuals are discarded. This selection method is widely used because of its speed of 

convergence. However, it should be used carefully, in order not to encounter premature 

convergence [46].  

Tournament selection 

In tournament selection technique, n individuals are selected from the larger 

population, and the selected individuals compete against each other. The individual 

with the highest fitness wins and will be included in the mating pool. The tournament 

selection also gives a chance for all individuals to be selected and thus it preserves 

diversity, although keeping diversity may degrade the convergence speed [3]. The 

number of individuals competing in each tournament is referred to as tournament size, 

commonly set to 2 (also called binary tournament). Figure 2.9 illustrates the mechanism 

of tournament selection. The tournament selection has several advantages which 

include efficient time complexity, especially if implemented in parallel, low 

susceptibility to takeover by dominant individuals, and no requirement for fitness 

scaling or sorting [3, 25].  

 

 

 

 

 

Figure 2.8: Selection method with tournament mechanism 

In the above example, the tournament size, Ts is set to three, which mean that 

three chromosomes competing each other. Only the best chromosome among them is 

selected to reproduce.  In tournament selection, larger values of tournament size lead to 

higher expected loss of diversity [25, 100]. The larger tournament size means that a 



 

 34 

smaller portion of the population actually contributes to genetic diversity, making the 

search increasingly greedy in nature. There might be two factors that lead to the loss of 

diversity in regular tournament selection; some individuals might not get sampled to 

participate in a tournament at all while other individuals might not be selected for the 

intermediate population because they lost a tournament.  

Roulette Wheel selection 

In keeping with the ideas of natural selection, it assumes that stronger 

individual, that is, those with higher fitness values, is more likely to mate than the 

weaker ones. One way to simulate this is to select parents with a probability that is 

directly proportional to their fitness values. This method is called the roulette wheel (or 

proportional Roulette Wheel) method [97]. The idea behind the roulette wheel selection 

technique is that each individual is given a chance to become a parent in proportion to 

its fitness. The chances of selecting a parent can be seen as spinning a roulette wheel 

with the size of the slot for each parent being proportional to its fitness. Obviously, 

those with the largest fitness (slot sizes) have more chance of being chosen. Consider a 

roulette wheel with a number of slices on it, each of which has an associated width as 

shown in Figure 2.10. 

2D

3C

1B

4A

Fitness valueChromosomes

A

B
C

D

spin

Selection 

probability

Roulette wheel

D

B

A

A

Sampling pool

2D

3C

1B

4A

Fitness valueChromosomes

A

B
C

D

spin

Selection 

probability

Roulette wheel

D

B

A

A

Sampling pool

 

Figure 2.9: Illustration of roulette wheel selection 

If a ball is put on this wheel and the wheel is rotated, the ball will finally stop on 

one of the slices, most probably on one of the widest ones. However, all slices have a 

chance, with a probability that is proportional to its width. By repeating this each time 

an individual needs to be chosen, the better individuals will be chosen more often than 

the poorer ones, thus fulfilling the requirements of survival of the fittest. The basic 

advantage of roulette wheel selection is that it discards none of the individuals in the 

population and gives a chance to all of them to be selected [101]. Therefore, diversity 

in the population is preserved.  



 

 35 

Let f1, f2,…, fn be fitness values of individual 1, 2,…, n. Then the selection probability, 

Pi for individual i is define as, 

1

i
i n

jj

f
p

f





 

(2-15) 

However, Roulette Wheel selection has few major deficiencies. Outstanding 

individuals will introduce a bias in the beginning of the search that may cause a 

premature convergence and a loss of diversity. For example, if an initial population 

contains one or two very fit but not the best individuals and the rest of the population 

are not good, then these fit individuals will quickly dominate the whole population and 

prevent the population from exploring other potentially better individuals. Such a 

strong domination causes a very high loss of genetic diversity which is definitely not 

advantageous for the optimisation process. On the other hand, if individuals in a 

population have very similar fitness values, it will be very difficult for the population to 

move towards a better one since selection probabilities for the fit and unfit individuals 

are very similar. 

Rank-based Roulette Wheel selection 

Baker [102] proposed rank-based Roulette Wheel selection in which the 

probability of a chromosome being selected is based on its fitness rank relative to the 

entire population. Rank-based selection schemes first sort individuals in the population 

according to their fitness and then computes selection probabilities according to their 

ranks rather than fitness values. Hence rank-based selection can maintain a constant 

pressure in the evolutionary search where it introduces a uniform scaling across the 

population and is not influenced by super-individuals or the spreading of fitness values 

at all as in proportional selection. Rank-based selection uses a function to map the 

indices of individuals in the sorted list to their selection probabilities. Although this 

mapping function can be linear (linear ranking) or non-linear (non-linear ranking), the 

idea of rank-based selection remains unchanged [77]. The performance of the selection 

scheme depends greatly on this mapping function. 

For linear rank-based selection, the biasness could be controlled through the 

selective pressure SP, such that 2.0 ≥ SP ≥ 1.0 and the expected sampling rate of the 

best individual is SP, the expected sampling rate of the worst individual is 2-SP and the 



 

 36 

selective pressure of all other population members can be interpreted by linear 

interpolation of the selective pressure according to rank. Consider n the number of 

individuals in the population, Pos is the position of an individual in the population 

(least fit individual has Pos=1, the fittest individual Pos=n) and SP is the selective 

pressure. Instead of using the fitness value of an individual, the rank of individuals is 

used. The rank of an individual may be scaled linearly using the following formula 

[103],  

( 1)
( ) 2 2.( 1).

( 1)

Pos
Rank Pos SP SP

n

 
    

 

 

                       (2-16) 

Table 2.5 contains the fitness values of the individuals for two different values of the 

selective pressure assuming a population of 11 individuals and a minimisation problem. 

Table 2.3: Example of scaled rank with different SP values 

Individual 

fitness value 
Rank 

Scaled rank with 

SP=2.0 

Scaled rank with 

SP=1.1 

1 1 2.0 1.1 

3 2 1.8 1.08 

4 3 1.6 1.06 

7 4 1.4 1.04 

8 5 1.2 1.02 

9 6 1.0 1.00 

10 7 0.8 0.98 

15 8 0.6 0.96 

20 9 0.4 0.94 

30 10 0.2 0.92 

95 11 0 0.9 

 

Rank-based selection schemes can be computationally expensive because of the 

need to sort populations. Once selection probabilities have been assigned, sampling 

method using roulette wheel is required to populate the mating pool. Rank-based 

selection scheme helps prevent premature convergence due to “super” individuals, 

since the best individual always assigns the same selection probability, regardless of its 

fitness value [104]. However this method can lead to slower convergence, because the 

best chromosomes do not differ so much from other ones. The difference between 



 

 37 

Roulette Wheel selection with proportionate fitness and rank-based fitness is depicted 

in Figure 2.11. 

 

                       
     (a)                (b) 

 

Figure 2.10: (a) proportionate fitness and (b) rank-based fitness 

 

2.3.4 Reproduction of generations  

Reproduction is the crossover of two chromosomes to produce a new offspring 

that has genes from both parents. In nature, although it may be much more complicated, 

crossover basically occurs as follows: chromosomes of both parents are randomly 

divided from the same gene positions into a number of segments and the corresponding 

segments are exchanged and copied to the chromosome of the newly created offspring. 

Therefore, the offspring inherit traits from the both parents [105]. In the genetic 

algorithm, special techniques for permutation-based chromosomes are deployed, which 

ensure that, when applied on two permutation-based chromosomes, the chromosomes 

of the resulting offspring are also valid permutations.  

Crossover mechanism 

Some of the most popular generic permutation-based crossover techniques in 

genetic algorithm are partially mapped crossover (PMX), order crossover (OX) and 

cycle crossover (CX) [20, 48]. 

Partially mapped crossover (PMX) 

The partially mapped crossover was suggested by Goldberg and Lingle [106]. 

The main purpose of a crossover operator is to create offspring that inherits traits from 



 

 38 

both parents. PMX passes on ordering and value information from the parent tours to 

the offspring tours. A portion of one parent’s string is mapped onto a portion of the 

other parent’s string and the remaining information is exchanged. For example, 

consider chromosomes which represent TSP are given as follows: Parent 1, P1 = (1 2 3 

4 5 6 7 8) and Parent 2, P2 = (3 7 5 1 6 8 2 4). On this two parent chromosomes, a two 

cut points are randomly selected. Suppose that the first cut point is selected between the 

third and the fourth gene, and the second one between the sixth and seventh gene.  

 P1 = 1 2 3|4 5 6|7 8 

 P2 = 3 7 5|1 6 8|2 4 

The substrings between the cut points are called the mapping sections. In this example, 

the mapping section is 4-1, 5-6 and 6-8. Now the segments (mapping section) between 

cut points are swapped. The mapping section of the first parent is copied into the 

second offspring (O2), and the mapping section of the second parent is copied into the 

first offspring (O1), become; 

O1 = * * *|1 6 8|* * 

O2 = * * *|4 5 6|* * 

Then we can fill further tour cities (from the original parents), for which there is no 

conflict;  

O1 = * 2 3 1 6 8 7 * 

O2 = 3 7 * 4 5 6 2 * 

The first * in the offspring O1 would be 1 which is the same as the first element of 

parent P1. However there was a conflict (visiting city 1 twice) and hence is replaced by 

4, because of the mapping 1-4. The last * of offspring O1 would be an 8, which is 

already present. Because of the mappings 8-6, and 6-5, it is chosen to be a 5. Hence; 

O1 = 4 2 3 1 6 8 7 5 

O2 = 3 7 8 4 5 6 2 1 

The PMX crossover exploits important similarities in the value and ordering 

simultaneously when used with an appropriate reproductive plan [94]. The absolute 

positions of some strings of both parents are preserved. 



 

 39 

Order crossover (OX) 

The order crossover was proposed by Davis [107]. Besides keeping traits from 

parents, order crossover (OX) also takes relative order of allele values into account 

while performing the crossover operation [16]. The OX exploits a property of the path 

representation, that the order of cities (not their positions) is important. It constructs an 

offspring by choosing a subtour of one parent and preserving the relative order of the 

cities of the other parent. For example, consider the following two parent tours;  

P1 = 1 2 3 4 5 6 7 8 

P2 = 2 4 6 8 7 5 3 1  

Suppose that we select a first cut point between the second and the third gene and a 

second one between the fifth and the sixth gene. Hence; 

P1 = 1 2|3 4 5|6 7 8 

P2 = 2 4|6 8 7|5 3 1  

The offspring is created in the following way. First, the tour segments between the cut 

points are copied into the offspring, which gives 

O1 = * *|3 4 5|* * * 

O2 = * *|6 8 7|* * *  

Next, starting from the second cut point of one parent, the rest of the city are copied in 

the order in which they appear in the other parent, and omitting the city that are already 

present. Reaching the end of the parent string, we continue from its first position. Now 

the sequence of the cities in the second parent from the second cut point is 5 – 3 – 1 – 2 

– 4 – 6 – 8 – 7. After removal of cities 3, 4 and 5, which are already in the first 

offspring, we get 1 – 2 – 6 – 8 – 7. This sequence is placed in the first offspring, 

starting from the second cut point, which gives; 

O1 = 8 7|3 4 5|1 2 6  

The sequence of the cities in the first parent from the second cut point is 6 – 7 – 8 – 1 – 

2 – 3 – 4 – 5. After removal of cities 6, 8 and 7, which are already in the second 

offspring, we get 1 – 2 – 3 – 4 – 5. This sequence is placed in the second offspring, 

starting from the second cut point, which gives; 



 

 40 

 O2 = 4 5|6 8 7|1 2 3  

The OX crossover exploits a property of the path representation, that the order of cities 

(not their positions) is important, i.e., the two tours 6 – 7 – 8 – 1 – 2 – 3 – 4 – 5 and 1 – 

2 – 3 – 4 – 5 – 6 – 7 – 8 are identical.  

Linear order crossover (LOX) 

Linear order crossover (LOX) is a modified version of the order crossover 

operator proposed by Falkenauer and Bouffix [108]. Recall that the order crossover 

operator treats the chromosome as a circular string, in which it wraps around from the 

end of the chromosome back to the beginning. This circular assumption may not play a 

big role in the TSP. As such, the LOX operator treats the chromosome as a linear 

entity. For this operator, the swap occurs in the same fashion as it occurs in the OX 

operator, but when sliding the parent values around to fit in the remaining open slots of 

the child chromosome, they are allowed to slide to the left or right. This allows the 

chromosome to maintain its relative ordering and at the same time preserve the 

beginning and ending values. In the below example, after the values are swapped, there 

are two open spaces in the front of the chromosome and three open spaces at the end. 

The algorithm then goes through Parent 1 and finds the first two values that were not 

part of the swap, in this example they are 5 and 4. These values are shifted left to fill 

the first two chromosome locations. The final three locations are filled in a similar 

manner.  

P1 = 3 9|5 4 6 2|7 1 8 

P2 = 7 4|3 8 9 2|1 5 6 

O1 = * *3 8 9 2 * * * 

O2 = * *5 4 6 2 * * * 

O1 = 5 4 3 8 9 2 6 7 1 

O2 = 7 3 5 4 6 2 8 9 1 

Cycle crossover (CX) 

The cycle crossover (CX) operator was proposed by Oliver et al. [107]. It 

attempts to create offspring in such a way that each city and its position come from one 

of the parents. For example, the following chromosomes are considered as the parent. 



 

 41 

P1 = 1 2 3 4 5 6 7 8 

 P2 = 2 4 6 8 7 5 3 1 

Opposite to PMX and OX, the chromosomes are not spitted to form segments to swap. 

The first element of the offspring is equal to be either the first element of the first 

parent tour or the first element of the second parent tour. Hence, the first element of the 

offspring has to be 1 or 2. Suppose it is chosen to be 1, 

 O1 = 1 * * * * * * * 

Since every city in the offspring should be taken from one of its parents (from the same 

position), we do not have any choice now, the next city to be considered must be city 2, 

as the city from the parent 2 just “below” the selected city 1. In Parent 1 this city is at 

position ‘2’, thus 

O1 = 1 2 * * * * * * 

Following this rule, the next cities to be included in the first offspring are 4 and 8. Note, 

however, that the selection of city 8 requires selection of city 1, which is already on the 

list, thus we have completed a cycle. 

O1 = 1 2 * 4 * * * 8 

The remaining cities are filled from the other parent; 

 O1 = 1 2 6 4 7 5 3 8 

The same procedure also applied to Offspring 2 gives, 

 O2 = 2 4 3 8 5 6 7 1  

As it can be seen from the resulting offspring, each string value at each position comes 

from one of the parents. 

Mutation mechanism 

In order to avoid from getting stuck onto a local minimum and to avoid 

premature convergence, population diversity is required to be kept up to some extent 

[77]. In the genetic algorithm, this is achieved by the help of a mutation mechanism, 



 

 42 

which causes some sudden changes on the traits of individuals according to a 

predefined mutation probability parameter [93]. A new offspring can be achieved by 

different ways either by flipping, inserting, swapping or sliding the allele values at two 

randomly chosen gene positions.  

The inversion mutation (flipping) operator [71, 91] randomly selects two cut 

points in the chromosome, and it reverses the subtour between these two cut points. 

Suppose that the first cut point is chosen between city 9 and city 5, and the second cut 

point between the sixth and seventh city. For example, consider the tour 

Parent:      3 9|5 4 6 2|7 1 8 

This result in 

Offspring: 3 9 2 6 4 5 7 1 8 

The insertion mutation [7, 94] operator selects a gene at random and then 

inserts it at a random position. Suppose that the insertion mutation operator selects city 

5, removes it, and randomly inserts it after city 7. For example, consider again the tour 

Parent:      3 9 5 4 6 2 7 1 8 

Hence, the resulting offspring is 

 Offspring: 3 9 4 6 2 7 5 1 8 

The displacement mutation [94] operator first selects a subtour at random. This 

subtour is removed from the tour and inserted in a random place. For example, consider 

the tour represented by 

 Parent:      3 9 5 4 6 2 7 1 8 

Suppose that the tour (5 4 6) is selected. Hence, after the removal of the subtour we 

have (3 9 2 7 1 8), and suppose we randomly select city 7 to be the city after which the 

subtour is inserted. This result in 

 Offspring: 3 9 2 7 5 4 6 1 8 



 

 43 

The exchange mutation [109] operator, also known as reciprocal exchange 

mutation or swapping [91, 94, 107] randomly selects two cities in the tour and 

exchanges them. For example, consider the tour represented as below and suppose that 

third and the eighth city are randomly selected.  

Parent:      3 9 5 4 6 2 7 1 8 

This result in 

 Offspring: 3 9 7 4 6 2 5 1 8  

 

2.3.5 Genetic algorithm parameters 

One of the main difficulties in building a practical GA is in choosing suitable 

values for parameters such as population size, crossover rate, and mutation rate. De 

Jong’s guidelines are still widely followed which is to start with a relatively high 

crossover probability (0.6-0.7), relatively low mutation probability (typically set to 1/l 

for chromosomes of length l), and a moderately sized population (50-500) [110]. 

However, the selections of parameter values are very depend on the problem to be 

solved [77]. 

Population size 

The population size is the number of candidate solutions in any one generation. 

The decision as to what is an appropriate population size has undergone significant 

amounts of research. Some researchers believe that genetic algorithm should be 

constructed with sufficiently large populations so as to enhance the search diversity 

[20, 111]. Others believe that small populations combined with higher numbers of 

generations allows for a more controlled search for optimal solutions [3, 112]. 

Goldberg [113] has evaluated the role of population size extensively and noted that 

with the increased size of the population the chances of initializing to an optimal 

solution are greatly improved. However this has the desirable effect of increasing the 

length of time for each generation to be computed. He also derived population sizes 

that are relatively small for short chromosomes and increase exponentially with 

chromosome length. Reeves [69] investigated the minimum practical population size in 



 

 44 

a GA and suggested that small populations suffice when chromosomes are binary, 

while coding over alphabets of higher cardinality requires larger populations. The 

population size has to increase exponentially with the complexity of the problem (i.e. 

the length of the chromosome) in order to generate best solutions. A large population is 

quite useful, but it demands excessive costs in terms of both memory and time.  

Crossover and mutation probability 

 These parameters control the frequency of reproduction. Crossover probability 

is how often will be crossover occurred in each generation. If there is no crossover, 

offspring is an exact copy of parents, but this does not mean that the new generation is 

the same. If there is a crossover, offspring is made from parts of parents’ chromosome. 

Mutation probability is how often will be part of chromosome mutated. If there is no 

mutation, the offspring is taken after crossover or copy without any changes. If 

mutation is performed, part of a chromosome is changed [114].  

Termination criteria 

Termination is the criterion by which the genetic decides whether to continue searching 

or to stop the search. Generally, defining stopping criteria is a hard task, like defining 

population size, because we have no idea of the true performance of the GA on a 

specific problem. If we let the algorithm continuously run, it will waste time and it will 

only revisit all the previous solutions. The stopping criterion of the GA should be 

related to the specific problem. There are a number of termination method can be used 

to stop the evolution process. The GA run can be terminated using different criteria 

such as when a best-so-far solution does not improve for a specific number of 

generations, a pre-determined solution quality is obtained, the population reaches a 

lower limit of diversity that indicate convergence, or a maximum length of CPU time is 

reached. The most frequently used stopping criterion is a specified number of 

generations [88] in which the algorithm stop once a pre-specified number of 

generations is reached. 

 Number of generations – a termination method that stops the evolution when the 

user-specified maximum number of generations. If the algorithm has terminated 

due to a maximum number of generations, a satisfactory solution may or may 

not have been reached.  



 

 45 

 Evolution time – a termination method that stops the evolution when the elapsed 

evolution time exceeds the user-specified maximum evolution time. By default, 

the evolution is not stopped until the evolution of the current generation has 

completed, but this behaviour can be changed so that the evolution can be 

stopped within a generation. 

 Fitness threshold – a termination that stops the evolution when the best fitness 

in the current population becomes less than the user-specified fitness threshold 

and the objective is set to minimise the fitness.  

 Population convergence – a termination method that stops the evolution when 

the population is deemed as converged (say 95%). The population is deemed as 

converged when the average fitness across the current population is less than a 

user-specified percentage away from the best fitness of the current population.  

Generational Gap 

It is possible that an individual with the highest fitness value in a generation 

may not survive selection process. A parameter called the generation gap was defined 

to control the fraction of the population to be replaced in each generation. This means 

that a certain percentage of the population with the best fitness values is kept and 

preserve for the crossover process. The GA is said to have a generation gap of 1 if the 

reproduction replaces the entire population with a new population [115]. 

If the GA has been correctly implemented, the population will evolve over 

successive generations so that the fitness of the best and the average individual in each 

generation increases/decreases towards the global optimum. The term convergence 

refers to the progression towards increasing uniformity. A gene is said to have 

converged when 95% of the population share the same value [116].  

 

2.4 Research hypothesis  

The previous section reviewed the concept of the TSP and TSPPC and the 

genetic algorithm technique that can be used to solve them. However, the use of the 

genetic algorithm approach to solve TSP, with a traditional representation scheme 

might generate invalid candidate solutions when precedence constraints are involved. 



 

 46 

To handle precedence constraints, Moon et al. [6] proposed new encoding scheme 

based on topological sort, which is defined as an ordering of vertices in a directed 

graph. The procedure to select the task to be placed in sequence is performed by 

comparing the available tasks based on higher priority. The priority of tasks is 

generated randomly for initial population and is used to generate the priority for the 

other population. The proposed encoding scheme will not generate infeasible 

chromosomes because it only generates priority of tasks as chromosomes.  

Some of the challenges that may arise in solving TSPPC efficiently are related 

to parameter tuning and maintaining population diversity. Running GA requires setting 

a number of parameters. However, finding settings that work well on a specific 

problem is not a trivial task. Poor settings lead to inferior results while good settings 

require time-consuming trials to find. The degree of success of GA on a given problem 

also depends largely on their ability to balance between exploration and exploitation 

during the search process. Population diversity plays an important role in achieving this 

balance, since high diversity directs the search towards the exploration of unvisited 

regions of the search space whereas low diversity focuses the search on specific regions 

to exploit possibly good solutions. This population diversity is much related to the 

mechanism of crossover and mutation used in the procedure.  Moon et al. proposed 

new crossover technique called moon crossover, which they claimed more effective 

than conventional order crossover. Although the Moon’s algorithm ensures that the 

optimal solution exists, it is assumed that there will be computationally expensive to 

achieve because the Moon’s algorithm requires comparing the higher priority before 

deciding to select the next task. Therefore, it takes longer time and more generations to 

come out with an optimal solution. 

In the next chapter, a new GA procedure which integrates chromosome 

repairing strategy such as done by Moon et al. will be developed. This algorithm must 

be able to handle the precedence constraints and to generate only feasible solution (i.e. 

legal tour) during the evolutionary process. The algorithm that will be developed in this 

thesis is also expected to be more efficient than the algorithm developed by Moon et al. 

with improvement in the number of generations and iteration time to come out with an 

optimal solution. In addition, the algorithm should be able to solve larger TSPPC 

instances with optimal or near optimal solution.  



 

 47 

Chapter 3 

Research Methodology 

 

This chapter describes the genetic algorithm procedure that will be used to find 

the optimal solution for TSP and TSPPC.  The development of the procedure is carried 

out in two stages. The first stage is to develop the genetic algorithm procedure for TSP. 

Then this procedure is used as a framework to solve TSPPC with some modifications in 

the representation stage. The second stage is to benchmark and to model the previous 

method that solves similar problem to solve TSPPC. Finally, the development process 

of the new proposed genetic algorithm to solve TSPPC is described in detail.   

 

3.1 Genetic algorithm procedure for TSP 

In this stage three different genetic algorithms to solve TSP will be developed. 

The first proposed algorithm employs a combination of proportional Roulette Wheel 

selection mechanism for parent selection and linear order crossover with an inversion 

mutation for producing the offspring at every generation. This algorithm is called 

PROX. In contrast with PROX, the second proposed algorithm will use the different 

selection mechanism which is rank-based Roulette Wheel while using similar crossover 

and mutation operation as in PROX, thus it is called RBOX algorithm. As for the third 

proposed algorithm, it employs tournament selection mechanism to select individuals 

for the mating process in which it is called TSOX algorithm. In TSOX, again LOX and 

IM is used for crossover and mutation operation. The difference procedure between 

them is only in the process of parent selection for reproduction. The general GA 

procedure to solve TSP can be viewed as a flow chart given in Figure 3.1. There are 

three main steps involved in the GA procedure for TSP which is Initialization & 

Representation, Evaluation & Selection and Generation of offspring. 

 

 



 

 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Flow chart of GA for TSP 

 

3.1.1 PROX algorithm 

In PROX algorithm, the letter ‘PR’ is used to denote proportional Roulette 

Wheel selection while letter ‘OX’ is to denote linear order crossover. The PROX 

algorithm starts with supplying important information to the GA program such as the 

location of the cities, distance, time or cost incurred between the cities, and the GA 

parameters such as maximum number of generations, population size, the probability of 

crossover and the probability of mutation. The algorithm will generate an initial 

Start

Evaluate fitness of each 

chromosome in the 

population

Are optimization 

/ termination 

criteria met?

Parents selection for next 

generation

Crossover of

Parents chromosome

Mutation of

chromosome

Stop

Generate initial random 

population

Yes 

No 

In
it
ia

liz
a
ti
o
n
 &

 R
e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 &

 S
e
le

c
ti
o
n

G
e
n
e
ra

ti
o
n
 o

f 
o
ff

s
p
ri
n
g

Set GA parameters 

New population

Start

Evaluate fitness of each 

chromosome in the 

population

Are optimization 

/ termination 

criteria met?

Parents selection for next 

generation

Crossover of

Parents chromosome

Mutation of

chromosome

Stop

Generate initial random 

population

Yes 

No 

In
it
ia

liz
a
ti
o
n
 &

 R
e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 &

 S
e
le

c
ti
o
n

G
e
n
e
ra

ti
o
n
 o

f 
o
ff

s
p
ri
n
g

Set GA parameters 

New population



 

 49 

random population of chromosomes in which path also called permutation is used as a 

chromosome representation. Then the algorithm continues with evaluating the fitness of 

each chromosome according to the fitness function, and selecting the best 

chromosomes as parents for reproduction according to selection mechanism.  

In every generation, the offspring (i.e. new chromosomes) are produced by a 

combination of linear order crossover and inversion mutation mechanism with specified 

probability of crossover (Pc) and probability of mutation (Pm). A new set of 

chromosomes where the size is equal to the initial population size (pop_size) is 

evolving. The procedure is repeated until the maximum number of generations (ngener) 

is reached. The procedure of the PROX algorithms is described in Figure 3.2. 

 

Procedure: PROX algorithm 

Begin 

     Step 1: Initialization & Representation  

     Step 1.1: Set GA parameters and the problem information  

     For i 1 to pop_size do 

Step 1.2: Generate random initial population (x1,…xN) with N strings   

     End For 

     While number of generation < ngener do 

Step 2: Evaluation & Selection 

Step 2.1: Calculate the fitness value of each chromosome in i 

Step 2.2: Select chromosomes in i as parents using Roulette Wheel selection 

scheme and preserve best 10% of pop_size 

Step 3: Generation of Offspring 

Step 3.1: With probability Pc, select chromosomes in step 2.2 and apply linear 

order crossover 

Step 3.2: With probability Pm, select chromosomes in step 3.1 and apply 

inversion mutation 

     End While 

     Return new population of chromosomes  

End procedure 

 

Figure 3.2: Procedure for PROX algorithm 

Step 1: Initialization & representation 

The purpose of initialization step is to establish an initial chromosome population. The 

initial chromosome is very useful to create a new chromosome which is known as 

offspring in the next generation. 



 

 50 

Step 1.1: Set GA parameters and the problem information 

The problem information such as the location of the cities or the distance matrix for a 

particular TSP is the most important input to the GA program. The distance or cost 

matrix also can be automatically generated by supplying the location of the cities in the 

GA program. The GA parameters such as population size, the termination criteria (i.e. 

maximum number of generations), the probability of crossover and probability of 

mutation must be set earlier in the program. The decision to what values of each of the 

parameters to be used in the experiment is obtained by trial run or by implementing the 

design of experiment (DOE).  

Step 1.2: Generate random initial population 

In order to create an initial chromosome population, random permutation method is 

used. The random permutation method creates initial chromosome by generating 

numbers between 1 and the total of string, N in random sequence. Therefore, if the 

chromosome population size, pop_size is 10, it means there are 10 sets of chromosomes 

which consists of a number from 1 to N in random sequence. Here, the number of 

strings, N represents the number of cities. 

Step 2: Evaluation & selection 

The evaluation of the chromosome is performed by measuring the fitness of each 

chromosome. Selection is then performed to choose the chromosome to be re-generated 

for the next generation. A generation gap of 0.9 is applied in which new population will 

compose 90% of new chromosomes and 10% of the best old chromosome.  

Step 2.1: Evaluation 

Every chromosome is evaluated by calculating the fitness value using a fitness function 

given in (2-1). 

If the distance between the cities is known for n cities location, we can calculate the 

total distance (fitness value) of each tour (chromosome) in the population. The 

procedure of fitness evaluation of each chromosome in the population is given in 

Figure 3.3. 



 

 51 

Procedure: Fitness evaluation 

     For p  1 to pop_size do 

Calculate d, the distance between the last city and the starting city (closed loop) 

For k  2 to n do (n is the number of genes i.e. number of cities) 

Calculate the distance between city k-1 to k and add d to get the total 

distance 

End For 

Return fitness value (i.e. total distance) for each chromosome in p 

     End For 

End Procedure 

 

Figure 3.3: Procedure for fitness evaluation 

Step 2.2: Selection 

The selection process is performed by applying the proportional Roulette Wheel 

method. The probability of an individual to be selected is simply proportionate to its 

fitness value. The procedure for proportional Roulette Wheel is given in Figure 3.4.  

Procedure: proportional Roulette Wheel selection 

     While population size < pop_size do 

Generate pop_size random number (R) 

Calculate cumulative fitness, total fitness and sum of proportional fitness (Sum) 

 Spin the wheel pop_size times 

 If Sum < R then 

     Select the first chromosome, otherwise, select jth chromosome 

 End If 

     End While 

     Return chromosomes with fitness value proportional to the size of selected wheel  

     section 

End Procedure 

 

Figure 3.4: Procedure for proportional roulette wheel selection 

Step 3: Generation of offspring 

The new chromosomes (i.e. offspring) are produced through two different mechanisms 

which is crossover and mutation. The two selected parent chromosomes are first mating 

by crossover techniques and produced two new offspring. These two new offspring is 

then mutated in order to further improve their genetic material. 

 

 



 

 52 

Step 3.1: Crossover 

The crossover operation required two parent chromosomes of the population to 

create two new chromosomes. In PROX, linear order crossover is used to create two 

new offspring. The procedure for linear order crossover is presented in Figure 3.5. 

Procedure: Linear order crossover 

     Begin 

 N = total number of strings 

 Select two chromosomes; Pa = a1,a2,…aN; Pb = b1,b2,…bN 

 Get two crossover points randomly between 1 to N; swap_sect 

 Offspring 1; osp1 = swap_sect in Pb 

 Offspring 2; osp2 = swap_sect in Pa 

 While length of osp1 ≠ N 

  osp1 = <osp1, the remaining unselected string from Pa> 

  osp2 = <osp2, the remaining unselected string from Pb> 

 End While 

End Procedure 

 

Figure 3.5: Procedure for linear order crossover 

As an example, assume that the parent chromosomes are Pa = [3 9 5 4 6 2 7 1 8] and 

Pb = [7 4 3 8 9 2 1 5 6]. The crossover point is then selected randomly between second 

and third string and between sixth and seventh string. The selected sections are then 

swapped. Thus, the swap_sect are osp1= [3 8 9 2] and osp2 = [5 4 6 2]. Then the 

remaining unselected string form Pa is filled in Offspring 1, which finally produce osp1 

= [5 4 3 8 9 2 6 7 1]. Similarly the procedure is applied to Offspring 2 by selecting the 

remaining string from Pb. Therefore, osp2 = [7 3 5 4 6 2 8 9 1].   

Step 3.2: Mutation 

Mutation operation is performed in a single chromosome to create a single new 

chromosome. Here, inversion mutation is applied to an individual after going through a 

crossover process. The inversion mutation procedure starts by selecting two cut points 

randomly in the chromosome. Then, the section of these genes is reversed (flip left to 

right) to create a new chromosome.  For example the chromosome [7 3 5 4 6 2 8 9 1] is 

mutated becoming [7 3 8 2 6 4 5 9 1]. 

 



 

 53 

3.1.2 RBOX algorithm 

In RBOX algorithm, the letter ‘RB’ is used to denote rank-based Roulette 

Wheel selection while letter ‘OX’ is used for linear order crossover. RBOX algorithm 

uses a similar procedure as in PROX. In RBOX, rank-based selection is used instead of 

proportional selection. The procedure of rank-based Roulette Wheel selection is 

presented in Figure 3.6. 

Procedure: rank-based Roulette Wheel selection 

     While population size < pop_size do 

Sort population according to rank (from highest to lowest value) 

Assign fitnesses to the individuals according to linear rank function 

Generate pop_size random number (R) 

Calculate cumulative fitness, total fitness and sum of proportional fitness (Sum) 

Spin the wheel pop_size times 

If Sum < R then 

   Select the first chromosome, otherwise, select jth chromosome 

End If 

     End While 

     Return chromosomes with fitness value proportional to the size of selected  

     wheel section  

End Procedure 

 

Figure 3.6: Procedure for rank-based Roulette Wheel selection 

 

3.1.3 TSOX algorithm 

In TSOX the tournament selection is applied in the selection stage in which 

letter ‘TS’ is used to denote tournament selection and letter ‘OX’ is for linear order 

crossover. The procedure of tournament selection is presented in Figure 3.7. 

Procedure: Tournament selection 

     While population size < pop_size do 

Set the tournament size, Ts 

Pick Ts random individuals from the population 

From those Ts individuals, pick one with the best fitness 

If the same individual chosen as both parents, discard the second one 

     End While 

     Return chromosome with the best fitness among Ts chromosomes 

End Procedure 

 

Figure 3.7: Procedure for tournament selection 



 

 54 

Table 3.1 shows a comparison between PROX, RBOX and TSOX algorithm. As 

mentioned before, the difference between them is only in the selection strategy used for 

reproduction. However, each procedure requires different parameters setting for 

different size of problems. 

Table 3.1: Comparison between PROX, RBOX and TSOX algorithm 

Operators PROX RBOX TSOX 

Representation Path/permutation Path/permutation Path/permutation 

Selection method 
Proportional 

Roulette Wheel 

Rank-based Roulette 

Wheel with selection 

pressure, SP=1.1 

Tournament with 

tournament size, 

Ts=2 

Crossover method Linear order  Linear order  Linear order  

Mutation Method Inversion Inversion Inversion 

Generation gap 

(replacement 

strategy) 

0.9 0.9 0.9 

 

3.2 Design of experiment for GA parameter setting 

The value of each GA parameter can be obtained through the design of 

experiments. A screening design is normally performed at the beginning of an 

investigation when the experimenter wants to characterise a process. In this case, 

characterising means to determine the main factors and investigate the changes of the 

response by varying each factor. Due to its characteristic of identifying significant main 

effects, rather than interaction effects, screening designs are often used to analyze 

designs with a large number of input factors. However, from the literature survey, there 

are four main factors (input variables) which usually affecting the quality of the 

solution (output variable). They are population size, the probability of crossover, 

probability of mutation and the maximum number of generations. To simplify and 

reduce the experimentation process and time, the usual practice is to first perform a trial 



 

 55 

run experiment based on the combination of these four factors. For more precise 

results, full factorial design of experiments with 2 or 3 levels can then be used.  

However, in this thesis, statistical analysis such as analysis of variance is not being 

discussed. This is because the main concern of the study is not optimising the GA 

parameters; the DOE table is only used to assist the experiments.   

 

3.3 GA procedure for TSP with precedence constraints 

In the preceding section, three different GA procedures have been developed for 

solving TSP. The three GA procedures were PROX, RBOX and TSOX. The proposed 

procedures should be able to solve any size of TSP instance. The proposed procedures 

could also be used to solve TSP with precedence constraint (TSPPC). However, 

modification in representation stage should be made in order to be practical for TSPPC 

applications. Repair operation such as done by Moon et al. [6] to encounter precedence 

constraint in process sequencing and Pongcharoen et al. [117] for scheduling 

production problem is needed to ensure all chromosomes in the population are valid 

tours which do not violated the precedence constraint added to the tours. In the next 

stage, the topological sort techniques which can be used to repair the infeasible 

chromosomes generated during the evolution process will be first reviewed. The 

topological sort technique has been used by Moon et al. in their work. Then the overall 

GA procedure to solve TSPPC developed by Moon et al. is critically reviewed. Figure 

3.8 illustrates the GA process flow with the repair process denoted by “Route repair” 

which will be added in the GA procedure developed in the first stage for solving 

TSPPC.  

 

 

 

 

 



 

 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Flowchart of GA for TSPPC 

 

3.3.1 Route repair using topological sort technique 

Since the chromosomes in the initial population are all randomly generated, the 

possibility of which generated chromosomes are infeasible due to the breaking of one 

or more precedence constraints is greater. The procedure of repairing chromosome in 

the initial population as well as after crossover and mutation operation is necessary 

Start

Evaluate fitness of each 

chromosome in the 

population

Are optimization 

/ termination 

criteria met?

Parents selection for next 

generation

Crossover of

Parents chromosome

Mutation of

chromosome

Stop 

Generate initial random 

population

Yes 

No 

Route repairIn
it
ia

liz
a
ti
o
n
 &

 R
e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 &

 S
e
le

c
ti
o
n

G
e
n
e
ra

ti
o
n
 o

f 
o
ff

s
p
ri
n
g

New population

Set GA parameters 

Start

Evaluate fitness of each 

chromosome in the 

population

Are optimization 

/ termination 

criteria met?

Parents selection for next 

generation

Crossover of

Parents chromosome

Mutation of

chromosome

Stop 

Generate initial random 

population

Yes 

No 

Route repairIn
it
ia

liz
a
ti
o
n
 &

 R
e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 &

 S
e
le

c
ti
o
n

G
e
n
e
ra

ti
o
n
 o

f 
o
ff

s
p
ri
n
g

New population

Set GA parameters 



 

 57 

before going through the evaluation process. The approach to overcome generating 

invalid sequence is based on a topological sort (TS), which allows the GA to generate 

only valid solutions in each generation. Every precedence graph has at least one 

topological sort. The topological sort is a node ordering in a directed graph such that if 

there is a path from a node vi and a node vj, then vj appears after vi in the ordering [6]. 

In a directed graph, the nodes represent tasks and the edges represent the precedence 

relations between tasks. More than a single sequence of tasks can be derived from a 

directed graph using the topological sort technique.  

The procedure to sort nodes consists of selecting and storing any node that has 

no incoming edges. Then the nodes and all the edges leading out from the node are 

removed from the graph. Thus the path (vi, vj) in the directed graph shows that node vi 

must be executed or scheduled before node vj. If there is more than one node that has 

no incoming edges, a few ways can be performed in order to select the node such as by 

random selection, comparison of the lower number of nodes and comparison of higher 

number of nodes. Then, the edges that start from the selected nodes are removed. This 

procedure is repeated until all nodes are selected. An example of directed graph to 

represent the precedence constraints are illustrated in Figure 3.9 and the travelling time 

between nodes is represented by Table 3.2. 

 

 

 

 

 

Figure 3.9: Example of directed graph 

 

 

 

v1

v2

v3

v6

v4

v5v1

v2

v3

v6

v4

v5



 

 58 

Table 3.2: Traveling time between nodes 

Nodes v1 v2 v3 v4 v5 v6 

v1 - 7 5 6 10 9 

v2 7 - 14 6 10 8 

v3 5 14 - 16 16 10 

v4 6 6 16 - 10 6 

v5 10 10 16 10 - 12 

v6 9 8 10 6 12 - 

 

As an example, let the directed graph in Figure 3.9 represent an assembly 

process of a product. The vertex v1 to v6 represent the process number. The travelling 

time between one process to another process is given in Table 3.2. For example, the 

travelling time from v1 to v2 is 7 seconds. The objective of this problem is to minimise 

the travelling time for this assembly process. An optimum assembly sequence must be 

obtained from the problem. The sequence is considered complete if the sequence visits 

all the vertices (processes) and is considered feasible if the sequence does not violate 

the precedence constraints. 

A topological sort technique can be used to obtain all the feasible paths in a 

directed graph. Nevertheless, more than a single sequence of vertices can be derived 

from a directed graph using the topological sort technique. In order to find a feasible 

path from directed graph, first, create a list of the start node. The start node is the nodes 

that have no incoming edges. After that, the start node is inserted into a queue. Then 

during the selection process, a selected node is removed from the queue and stored in 

sequence. Then, the edges that start from selected nodes are removed. This procedure is 

repeated until all nodes are selected. A procedure to generate a feasible path from a 

directed graph using a topological sort is described in Figure 3.10, and the example of 

step by step repairing technique is illustrated in Figure 3.11 to Figure 3.16. 

 

 



 

 59 

 

Procedure: Feasible path generation 

   input: directed graph 

   While (any vertex remains) do 

 if every vertex has a predecessor, then the network is infeasible: stop 

 else pick a vertex v randomly with no predecessors 

      queue    v; 

      delete v and all edges leading out of v from the directed graph; 

   End While 

End Procedure 

 

Figure 3.10: Feasible path generation algorithm 

For the above example, there are a few feasible sequences that can be generated 

from the given graph. For the first step, the start node for this problem is v1, because it 

is the only node without incoming edge. Therefore, this node is selected to be stored in 

sequence as shown in Figure 3.11. 

 

 

 

 

queue: v1 

sequence: v1 

 

Figure 3.11: Topological sort – first step 

Then, the incoming edges on v2, v3 and v6 from v1 are removed. As a result, v2, 

v3 and v6 have no incoming edges. So, these nodes are selected to be stored in a queue. 

Selection of a node to be stored in sequence must be performed by one of the methods 

that were described earlier. In this example, selection of nodes is performed randomly 

from queue because it can derive many feasible sequences from the problem above. 

 

 

v1

v2

v3

v6

v4

v5v1

v2

v3

v6

v4

v5



 

 60 

 

 

 

 

queue: v2, v3, v6 

sequence: v1, v6 

 

Figure 3.12: Topological sort – second step 

Referring to Figure 3.12, v6 is randomly selected to be stored in sequence. 

Therefore node v6 is deleted as shown in Figure 3.13. The other two nodes without 

incoming edges which are v2 and v3 are stored in the queue. Next, v3 is randomly 

selected as the next sequence. 

 

 

 

queue: v2, v3 

sequence: v1, v6, v3 

 

Figure 3.13: Topological sort – third step 

When v3 was selected, this node and outgoing edge are removed from directed 

graph. Therefore the remaining node without incoming edge is only v2 and this node is 

selected as the next node in sequence. 

 

 

 

queue: v2 

 sequence: v1, v6, v3, v2  

 

Figure 3.14: Topological sort – fourth step 

v2

v3

v6

v4

v5

v2

v3

v6

v4

v5

v2

v3

v4

v5

v2

v3

v4

v5

v2 v4

v5

v2 v4

v5



 

 61 

After v2 and the outgoing edges from v2 were removed, the available nodes for selection 

are v4 and v5. 

 

 

 

queue: v4, v5 

 sequence: v1, v6, v3, v2, v5 

 

Figure 3.15: Topological sort – fifth step 

By using the random selection procedure, v5 is selected and stored in the next position 

of sequence as presented in Figure 3.15. Finally, v4 is selected to complete the selection 

as can be seen in Figure 3.16. 

 

queue: v4 

 sequence: v1, v6, v3, v2, v5, v4 

 

Figure 3.16: Topological sort – sixth step 

From this procedure the final feasible sequence is (v1, v6, v3, v2, v5, v4). Because the 

selection is random, another feasible sequence can also be derived from the directed 

graph such as (v1, v3, v6, v2, v4, v5). However, notice that the total assembly times for 

both sequences are different. In the first sequence, the total assembly time is 9 + 10 + 

14 + 10 + 10 = 53 seconds whereas for the second sequence, the total assembly time is 

5 + 10 + 8 + 6 + 10 = 39 seconds. In this case, the second sequence is better than the 

first sequence because it minimizes assembly time.  

 

3.3.2 Review of Moon’s procedure to solve TSPPC 

Due to the existence of precedence constraints among tasks, an arbitrary 

permutation may yield an infeasible order. In Moon’s work, an encoding scheme for 

genetic algorithm based on topological sort was proposed. Moon has also introduced a 

new efficient crossover operator in producing offspring. The procedure of the Moon’s 

v4

v5

v4

v5

v4



 

 62 

algorithm can be divided into three main steps which are Initialization & 

Representation, Evaluation & Selection, and Generation of offspring. The procedure 

and the flowchart of Moon’s algorithm implementation can be generated as in Figure 

3.17 and Figure 3.18 respectively. 

Procedure: Moon’s algorithm 

Begin 

 

     Step 1: Initialization & Representation 

     Step 1.1: Set GA parameters and the problem information  

     For i 1 to pop_size do 

Step 1.2: Generate random permutation of priority (x1,…xN) with N strings   

     End For 

 

   While number of generation < ngener do 

     While population < pop_size do 

       While length of chromosome < N do 

Step 1.3 Route repair 

Step 1.3.1: Check and store available task without incoming edge in available         

                  set 

      Step 1.3.2: Compare the priority of available task 

 Step 1.3.3: Select and store task with highest priority in updated sequence 

 Step 1.3.4: Remove edge from selected task 

        End While 

     End While 

  

Step 2: Evaluation & Selection 

Step 2.1: Calculate fitness value of each chromosome in i 

Step 2.2: Select chromosomes in i as parents using Roulette Wheel selection  

               scheme  

Step 3: Generation of Offspring 

Step 3.1: With probability Pc, select chromosomes in step 2.2 and apply moon  

               crossover 

Step 3.2: With probability Pm, select chromosomes in step 3.1 and apply  

               Exchange mutation 

 

  End While 

End procedure 

 

Figure 3.17: Procedure of Moon’s algorithm 

 

 

 



 

 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Flowchart of Moon’s algorithm 

 

Start

Evaluate fitness 

value

Are optimization 

/ termination 

criteria met?

Selection 

(Roulette wheel)

Crossover 

(Moon)

Mutation 

(Exchange)

Stop

Generate random pop_size

chromosome with N string

Yes 

No 

Check available tasks 

without predecessor

Compare priority for 

available tasks

Select the task with higher 

priority

Remove outgoing edge 

from selected task

New 

population of 

priority

Chromosome 

length = N?

Set GA 

parameter

Population

= pop_size?

Yes 

Yes 

No 

No 

In
it
ia

liz
a
ti
o
n
 &

 R
e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 &

 S
e
le

c
ti
o
n

G
e
n
e
ra

ti
o
n
 o

f 
o
ff

s
p
ri
n
g

Route repair with 

Topological sort

Start

Evaluate fitness 

value

Are optimization 

/ termination 

criteria met?

Selection 

(Roulette wheel)

Crossover 

(Moon)

Mutation 

(Exchange)

Stop

Generate random pop_size

chromosome with N string

Yes 

No 

Check available tasks 

without predecessor

Compare priority for 

available tasks

Select the task with higher 

priority

Remove outgoing edge 

from selected task

New 

population of 

priority

Chromosome 

length = N?

Set GA 

parameter

Population

= pop_size?

Yes 

Yes 

No 

No 

In
it
ia

liz
a
ti
o
n
 &

 R
e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 &

 S
e
le

c
ti
o
n

G
e
n
e
ra

ti
o
n
 o

f 
o
ff

s
p
ri
n
g

Route repair with 

Topological sort



 

 64 

Step 1: Initialization & representation 

Step 1.1: Set GA parameters  

The GA parameters such as population size, maximum number of generations, the 

probability of crossover and probability of mutation are set earlier in the program. 

Step 1.2: Generate random initial population 

The chromosomes as many as the population size are generated randomly. Each 

chromosome is represented as a string of integers. Each digit of the string means the 

priority of the gene and ranges between one to the number of genes. Therefore, for 

every chromosome, there are N strings which represent the priority for each node. The 

maximum number of generations for computational experiment is also set at this stage. 

The maximum number of generations determines the termination of the iteration. When 

the number of generations is equal to the maximum number of generations, the program 

will be terminated immediately. 

Step 1.3: Route repair 

Route repair in the Moon’s algorithm is based on topological sort. The topological sort 

procedure in the Moon’s algorithm is detail explained in Step 1.3.1 until Step 1.3.4.  

Step 1.3.1: Checking available tasks 

In order to derive a unique sequence from precedence graph, a priority assignment 

technique to assign a differentiated priority to each vertex is used by Moon. Moon uses 

a priority rule to select a node (task) when two or more of them have no preceding 

tasks. This is accomplished by applying an order-based genetic algorithm in which the 

chromosome represents the priority list. Thus, the chromosome has N genes, each one 

holding a different value between 1 and N, representing one of the N tasks or nodes 

from the graph in Figure 3.9.  Table 3.3 shows an example of a chromosome that can be 

used to optimise the priorities for the tasks shown in the graph of Figure 3.9.  

 

 



 

 65 

Table 3.3: Priority representation 

Vertex v1 v2 v3 v4 v5 v6 

Priority 5 2 6 4 1 3 

In the above table, the second row represents the selection priority in case the available 

task has multiple vertices with no incoming edges. The priority for each vertex is 

generated at random within [1, N] exclusively, where N is the number of vertices or 

processes. As an example to generate a feasible path from the representation scheme, 

the precedence graph in Figure 3.9 is considered. In the graph, the first node to be 

selected is v1, since this is the only node with no predecessor. Then, v1 is stored in the 

queue and v1 and the edges v1-v2, v1-v3 and v1-v6 are removed. As a result of removing 

the edges, the processes that have no predecessor are now v2, v3 and v6. These vertices 

(v2, v3 and v6) are then moved into the queue as available set as shown in Table 3.4. 

Step 1.3.2: Comparing priority of available task 

Now, there are three vertices in the available set which are v2, v3 and v6. The 

comparisons of priority for these vertices are performed by referring to Table 3.3. 

Based on this table, the priority factor for v2, v3 and v6 are 2, 6 and 3 respectively.  

Step 1.3.3: Selecting task with higher priority 

Vertex v3 is selected as the next position in sequence since its priority is higher than v2 

and v6. Thus, the updated sequence is now (v1, v3) as appeared in Table 3.4. 

Step 1.3.4: Removing edge 

As a result of selecting v3, the outgoing edge from v3, which is v3-v5 is removed from 

directed graph. Now the available sets left are v2 and v6, and v6 is selected as its priority 

is higher than v2. Therefore the new updated sequence is now consists of (v1, v3, v6). 

Repeating Step 1.3.1 to Step 1.3.4, a final feasible path is obtained. In this case, the 

final feasible path is (v1, v3, v6, v2, v4, v5) which is uniquely obtained from the priority 

string of [5 2 6 4 1 3]. Table 3.4 summarizes the chronological sequence of selection to 

create a feasible path for the given priority. Table 3.5 and 3.6 are the example of the 12 

random initial chromosomes and chromosomes after repairing process, respectively.  



 

 66 

Table 3.4: Selection of tasks using ‘priority’ technique 

Path      : [v1, v2, v3, v4, v5, v6] 

Priority : [5    2    6   4   1   3] 

available set updated sequence 

v1 [v1] 

v2, v3, v6 [v1, v3] 

v2, v6 [v1, v3, v6] 

v2 [v1, v3, v6, v2] 

v4, v5 [v1, v3, v6, v2, v4] 

v5 [v1, v3, v6, v2, v4, v5] 

 

Table 3.5: Chromosomes (i.e. priority) in the initial population 

5 2 6 4 1 3 

5 2 6 1 4 3 

4 3 2 6 1 5 

4 2 3 6 1 5 

1 4 6 5 3 2 

5 4 1 3 2 6 

3 5 2 4 1 6 

2 5 1 6 3 4 

1 6 4 5 2 3 

2 6 5 1 3 4 

5 1 6 3 4 2 

4 1 3 6 5 2 

 

Table 3.6: Chromosomes after repairing process 

1 3 6 2 4 5 

1 3 6 2 5 4 

1 6 2 4 3 5 

1 6 3 2 4 5 

1 3 2 4 5 6 

1 6 2 4 3 5 

1 6 2 4 3 5 

1 2 4 6 3 5 

1 2 4 3 6 5 

1 2 3 6 5 4 

1 3 6 2 5 4 

1 3 6 2 4 5 

 

 

 

 

 



 

 67 

Step 2: Evaluation & selection  

Step 2.1: Calculate fitness value 

The fitness value for each chromosome in the population is calculated based on the 

objective function. In this case, the objective function is similar with TSP, with the 

objective to minimize the total traveling distance; however, the calculation will exclude 

the distance between the last city to the start city (i.e. salesman does not return to the 

starting city).  

Step 2.2: Parent selection 

Moon also uses a Roulette Wheel selection technique in order to select parents for 

crossover.  

Step 3: Generation of offspring 

Step 3.1: Crossover 

A new crossover operator was proposed by Moon. The proposed crossover is called the 

moon crossover because it is very similar to the change of the moon such as waxing 

moon – half moon – gibbous – full moon. For example, the sub-tour can be compared 

to the waxing moon or half moon. The procedure of the moon crossover operator is 

described in Figure 3.19.  

 

 

 

 

 

 

 



 

 68 

Procedure: moon crossover 

   Begin 

 Initialization: osp  null, k  0 

Select two random chromosomes pa and pb, pa = g1 g2 g3…gJ and pb = q1 q2 

q3…qJ 

Select two genes from pa at random 

osp  the substring between gi and gj selected from pa 

if the length of osp = J then end  

else sub_pb  the remaining substring results from the deleting genes which are 

already selected from pa 

end if  
while (length of osp ≠ J) do 

 if i = 1 then i = J+1; 

  i  i – 1; 

  k  k + 1, k = 1, 2, …, length of sub_pb; 

  if gi ≠ qk, then osp  <osp, gi, qk>; 

  else gi = qk, then osp  <osp, gi>; 

 else if j = J then 

  i  i – 1; 

  k  k + 1, k = 1, 2, …, length of sub_pb; 

  if gi ≠ qk, then osp  <qk, gi, osp>; 

  else gi = qk, then osp  <gi, osp>; 

 else 

  i  i – 1; 

  k  k + 1, k = 1, 2, …, length of sub_pb; 

  if gi ≠ qk, then osp  <gi, osp, qk>; 

  else gi = qk, then osp  <gi, osp>; 

 end if 

end while 

end procedure 

 

Figure 3.19: Procedure of moon crossover [6] 

In Figure 3.19, osp is the first offspring that is generated from crossover. The second 

offspring that is generated is denoted by sub_pb. The variable gi refers to a string in the 

first parent chromosome while qi refers to string in the second parent. 

Suppose that two chromosomes are pa = [7 4 8 2 3 5 1 6] and pb = [3 6 1 4 8 2 5 7]. 

First, we select the substring from pa at random. In this example, the substring is 

selected as osp = [4 8]. Then, we can obtain sub_pb = [3 6 1 2 5 7] from pb. 

Next, g2 = 4 and q1 = 3 because i  3 – 1 and k  0 + 1. In this case, the number 3 

refers to the third position in the first offspring, osp. Therefore, the number on second 

position from pa and the number on the first position from pb are selected, which are 4 



 

 69 

and 3. The number 4 already exist in osp, so we cannot add these cities into the first 

offspring, osp. Therefore the first offspring becomes osp = [4 8 3].  

In the same way, add g1, q2, and the first offspring becomes osp = [7 4 8 3 6]. Now the 

next string is g8 = 6 and q3 = 1, and the osp = [7 4 8 3 6 1]. The next iteration comes out 

with g7 = 1 and q4 = 4. Both values already exist in osp, thus the values are ignored. 

The value of g6 = 5 and q5 = 8 is also ignored because they already exist in osp. Then, 

g5 = 3 and q6 = 2 have produced osp = [7 4 8 3 6 1 2]. Finally, q7 is picked and the 

offspring becomes osp = [5 7 4 8 3 6 1 2]. For the second offspring, the selected osp in 

earlier iteration which is [4 8] is combined with sub_pb. Then it produced the second 

offspring as [3 6 1 2 5 7 4 8].  

Step 3.2: Mutation 

The exchange (swap) mutation operator is used by Moon. The exchange mutation 

scheme is selecting two genes in a chromosome at random and swapping between 

them. For example, the parent chromosome is given as [7 4 8 2 3 5 1 6]. Then two 

strings are selected randomly, which are 8 and 1. The selected strings are then swapped 

each other that produces new offspring as [7 4 1 2 3 5 8 6].  

 

3.4 Proposed GA procedure for TSPPC 

The proposed GA procedure for TSPPC is a modified PROX algorithm which 

integrates topological sort techniques in the procedure in order to obtain feasible 

solution subject to precedence constraints. In TSPPC, the precedence constraints 

require that certain nodes must precede certain other nodes in any feasible directed tour. 

For this reason, the use of conventional genetic algorithm procedure for TSP, with an 

order-based representation, might generate invalid candidate solutions. To overcome 

this problem, Moon’s work is benchmarked which incorporated the topological sort 

technique in the GA procedure to handle the constraints and to generate only the 

feasible solution during the evolutionary process. The proposed TSPPC procedure 

maintains the main steps which are Initialization & Representation, Evaluation & 

Selection and Generation of offspring as in the GA procedure for general TSP. The 

only difference is in the representation stage. The chromosomes in the initial population 



 

 70 

as well as the offspring chromosomes created from the reproduction process need to be 

repaired before going through the evaluation process. The procedure and the flowchart 

of the proposed algorithm are presented in Figure 3.20 and Figure 3.21 respectively. 

 

Procedure: Proposed algorithm  

Begin 

 

     Step 1: Initialization & Representation 

     Step 1.1: Set GA parameters and the problem information  

     For i 1 to pop_size do 

Step 1.2: Generate random permutation of sequence (x1,…xN) with N strings   

     End For 

 

   While number of generation < ngener do 

     While population < pop_size do 

       While length of chromosome < N do 

Step 1.3 Route repair 

Step 1.3.1: Check and store available task without incoming edge in available 

set 

 Step 1.3.2: Select and store task in earlier position in updated sequence 

 Step 1.3.3: Remove edge from selected task 

        End While 

     End While 

  

Step 2: Evaluation & Selection 

Step 2.1: Calculate fitness value of each chromosome in i 

Step 2.2: Select chromosomes in i as parents using Roulette Wheel selection 

scheme  

Step 3: Generation of Offspring 

Step 3.1: With probability Pc, select chromosomes in step 2.2 and apply linear 

order crossover 

Step 3.2: With probability Pm, select chromosomes in step 3.1 and apply 

inversion mutation 

 

  End While 

End procedure 

 

Figure 3.20: Procedure of the proposed GA for TSPPC 

 

 

 



 

 71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21: Flowchart of the proposed GA for TSPPC 

 

Start

Evaluate fitness 

value

Are optimization 

/ termination 

criteria met?

Selection 

(Roulette wheel)

Crossover 

(Linear order)

Mutation 

(Inversion)

Stop

Generate random pop_size

chromosome with N string

Yes 

No 

Check available tasks 

without predecessor

Select task in earliest 

position of chromosome

Remove outgoing edge 

from selected task

New 

population of 

sequence

Chromosome 

length = N?

Set GA 

parameter

Population

= pop_size?

Yes 

Yes 

No 

No 

In
it
ia

liz
a
ti
o
n
 &

 R
e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 &

 S
e
le

c
ti
o
n

G
e
n
e
ra

ti
o
n
 o

f 
o
ff

s
p
ri
n
g

Route repair with 

Topological sort

Start

Evaluate fitness 

value

Are optimization 

/ termination 

criteria met?

Selection 

(Roulette wheel)

Crossover 

(Linear order)

Mutation 

(Inversion)

Stop

Generate random pop_size

chromosome with N string

Yes 

No 

Check available tasks 

without predecessor

Select task in earliest 

position of chromosome

Remove outgoing edge 

from selected task

New 

population of 

sequence

Chromosome 

length = N?

Set GA 

parameter

Population

= pop_size?

Yes 

Yes 

No 

No 

In
it
ia

liz
a
ti
o
n
 &

 R
e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 &

 S
e
le

c
ti
o
n

G
e
n
e
ra

ti
o
n
 o

f 
o
ff

s
p
ri
n
g

Route repair with 

Topological sort



 

 72 

Step 1: Initialization & representation 

Step 1.2: Generate random initial population  

For initial population, the random permutation method is used to generate 

chromosomes. The integer from 1 to N, which is the number of tasks, is generated in 

random sequence. The number of chromosome generated is depending on the size of 

population, pop_size. These sequences normally did not satisfy the precedence 

constraint. Therefore, the infeasible chromosomes must be repaired using the 

topological sort technique.  

Step 1.3: Route repair 

Route repair in the proposed algorithm for TSPPC is based on the topological sort 

technique and is explained in Step 1.3.1 through Step 1.3.4. 

Step 1.3.1: Check available task 

Initially, a chromosome is generated randomly and may not feasible. For example the 

chromosome structure represented as [4 1 3 6 5 2] in Figure 3.22 is infeasible because it 

did not satisfy the precedence constraint. In order to repair the chromosome become 

feasible solution, tasks without predecessor are selected and store in available set. In 

this example, task 1 is the only task without predecessor and therefore task 1 is selected 

and being stored in sequence. Then the outgoing edges of task 1, which is task 2, 3 and 

6, are removed. As a result, the new available set consist of task 2, 3 and 6 as displayed 

in Table 3.7.  

 

 

 

Figure 3.22: Precedence diagram 

 

 

1

2

3

6

4

51

2

3

6

4

5



 

 73 

Step 1.3.2: Select task in earliest position on chromosome 

In the proposed GA for TSPPC, the selection of task to be stored in sequence is based 

on the “earliest position” found in the chromosome. By referring to the available set [2 

3 6], task number 3 is firstly found in the chromosome [4 1 3 6 5 2]. Therefore, task 3 is 

selected as the second string to be stored in sequence and the updated sequence is now 

consists of [1 3].  

Step 1.3.3: Remove edges from selected task 

When task 3 is selected to be stored in sequence, the outgoing edge of this task should 

be removed. Therefore, the edge 3  5 is removed, and the new available set is 

consisting of [2 6]. Again, based on ‘earliest position’ selection of task approach, task 6 

is first appeared before task 2 in the chromosome [4 1 3 6 5 2] and therefore task 6 is 

selected to be placed in updated sequence. The selection procedure is repeated until the 

length of the sequence is equal to N. The final feasible path that is generated from this 

approach is [1 3 6 2 4 5]. Table 3.7 shows the selection of task based on “earliest 

position” in generated sequence. An example of initial population with pop_size=12 

and repaired chromosomes for this population are shown in Table 3.8 and Table 3.9, 

respectively. 

Table 3.7: Selection of tasks using the “earliest position” technique 

Chromosome: 4 1 3 6 5 2 

available set updated sequence 

1 [1] 

2, 3, 6 [1 3] 

2, 6 [1 3 6] 

2 [1 3 6 2] 

4, 5 [1 3 6 2 4] 

5 [1 3 6 2 4 5] 

 

 

 

 



 

 74 

Table 3.8: Chromosomes in the initial population 

4 1 3 6 5 2 

4 1 3 5 6 2 

6 3 2 4 1 5 

4 2 3 6 1 5 

1 4 6 5 3 2 

5 4 1 3 2 6 

3 5 2 4 1 6 

2 5 1 6 3 4 

1 6 4 5 2 3 

2 6 5 1 3 4 

5 1 6 3 4 2 

5 1 6 3 4 2 

 

Table 3.9: Chromosomes after repairing process  

1 3 6 2 4 5 

1 3 6 2 4 5 

1 6 3 2 4 5 

1 2 4 3 6 5 

1 6 3 2 4 5 

1 3 2 5 4 6 

1 3 2 5 4 6 

1 2 6 3 5 4 

1 6 2 4 3 5 

1 2 6 3 5 4 

1 6 3 2 5 4 

1 6 3 2 5 4 

      

Step 2: Evaluation & selection 

Step 2.1: Calculate fitness value 

The fitness value of each chromosome in the population is evaluated using the fitness 

function in Equation (2-1). This equation is still valid for TSPPC with excluding the 

distance of returning to the starting city. 

Procedure: Fitness evaluation 

     For p  1 to pop_size do 

d = 0 (salesman does not return to the starting city) 

For k  2 to n do (n is the number of genes i.e. number of city) 

Calculate the distance between city k-1 to k and add d to get the total 

distance 

End For 

Return fitness value (i.e. total distance) for each chromosome in p 

     End For 

End Procedure 

 



 

 75 

Step 2.2: Parent selection 

The Roulette Wheel selection is used to select parent chromosomes to be re-generated 

for the next chromosome. By using the proportional Roulette Wheel, all individuals are 

given a chance to be selected and the chances of the fitter individual to be selected as a 

parent for crossover are higher.  

Step 3: Generation of offspring 

Step 3.1: Crossover 

Linear order crossover is used to generate two new offspring. This operator is the most 

frequently used for the crossover operation when the chromosome representation is 

ordinal [118]. This crossover operator can preserve both the relative positions between 

genes and the absolute positions relative to the extremities of parents as much as 

possible.  

Step 3.2: Mutation 

Mutation operation based on inversion (flip) as described in the GA procedure for TSP 

is applied in the chromosome after crossover process.  

 

3.5 Analysis of algorithms to solve TSPPC 

 The previous sections present details of two different algorithms which are 

Moon’s algorithm and the proposed algorithm. This section analyses the differences 

between algorithms which make it unique compared to each other. All algorithms 

consist of three main steps, which are Initialization & Representation, Evaluation & 

Selection and Generation of offspring. In the first step, the main different is 

chromosome definition. In the proposed algorithm, the chromosome is defined as a 

sequence of task, while in the Moon’s algorithm chromosome is defined as priority 

factor. However, initial chromosomes are created in a similar way, which is a random 

permutation method. In both algorithms, all chromosomes need to be repaired since the 

chances to generate feasible chromosome from random permutation is very low.  



 

 76 

 In the Moon’s algorithm, the task selection is based on the highest priority. The 

task with the highest priority in available set is selected to be in the next position in the 

task sequence. The use of priority factor in selecting task actually affects the time to 

generate the best solution. It is because the GA operators do not directly generate the 

solution, but it generates the permutation of priority. By generating the priority, the 

chances of chromosome to change and achieve an optimal solution are slightly slow. 

For the proposed algorithm, the selection of task is based on the earliest position found 

in the chromosome. Both algorithms still maintain genetic character in the task 

sequence because selection is performed based on an original chromosome as described 

earlier. However the Moon’s algorithm required an additional step to compare all 

available tasks and its priority before decided to select a task. Another difference is in 

the third step which is Generation of offspring. In the Moon’s algorithm, moon 

crossover is used, while for the proposed algorithm, the traditional linear order 

crossover operator that widely used in the conventional genetic algorithm is adapted. 

The mutation technique used is also different which is exchange (swap) mutation in 

Moon’s algorithm while inversion (flip) mutation is used for the proposed algorithm. 

Table 3.10 summarizes the differences between the two algorithms while Figure 3.23 

compares the two different approaches presented in the study. The differences are 

highlighted with yellow colours for Moon’s approach and green colours for the 

proposed approach. 

Table 3.10: Summary of Moon and the proposed algorithm 

Operators Moon  Proposed 

Representation 
priority factor as 

chromosome 
sequence of task as chromosome 

Task selection Based on the highest priority  
Based on the earliest position 

found on chromosome 

Parent selection Proportional Roulette Wheel Proportional Roulette Wheel 

Crossover method moon crossover Linear order crossover 

Mutation Method Exchange (swap) mutation Inversion (flip)  mutation 

Generation gap  0.9 0.9 



 

 77 

Moon’s Approach       Proposed Approach 

 

 

 

 

 

 

 

 

Figure 3.23: Comparisons of Moon’s Approach and Proposed Approach 

Start

Evaluate fitness 

value

Are optimization 

/ termination 

criteria met?

Selection 

(Roulette wheel)

Crossover 

(Moon)

Mutation 

(Exchange)

Stop

Generate random pop_size

chromosome with N string

Yes 

No 

Check available tasks 

without predecessor

Compare priority for 

available tasks

Select the task with higher 

priority

Remove outgoing edge 

from selected task

New 

population of 

priority

Chromosome 

length = N?

Set GA 

parameter

Population

= pop_size?

Yes 

Yes 

No 

No 

In
it
ia

liz
a
ti
o
n
 &

 R
e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 &

 S
e
le

c
ti
o
n

G
e
n
e
ra

ti
o
n
 o

f 
o
ff
s
p
ri
n
g

Route Repair

Start

Evaluate fitness 

value

Are optimization 

/ termination 

criteria met?

Selection 

(Roulette wheel)

Crossover 

(Moon)

Mutation 

(Exchange)

Stop

Generate random pop_size

chromosome with N string

Yes 

No 

Check available tasks 

without predecessor

Compare priority for 

available tasks

Select the task with higher 

priority

Remove outgoing edge 

from selected task

New 

population of 

priority

Chromosome 

length = N?

Set GA 

parameter

Population

= pop_size?

Yes 

Yes 

No 

No 

In
it
ia

liz
a
ti
o
n
 &

 R
e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 &

 S
e
le

c
ti
o
n

G
e
n
e
ra

ti
o
n
 o

f 
o
ff
s
p
ri
n
g

Route Repair

Start

Evaluate fitness 

value

Are optimization 

/ termination 

criteria met?

Selection 

(Roulette wheel)

Crossover 

(Linear order)

Mutation 

(Inversion)

Stop

Generate random pop_size

chromosome with N string

Yes 

No 

Check available tasks 

without predecessor

Select task in earliest 

position of chromosome

Remove outgoing edge 

from selected task

New 

population of 

sequence

Chromosome 

length = N?

Set GA 

parameter

Population

= pop_size?

Yes 

Yes 

No 

No 

In
it
ia

liz
a
ti
o
n
 &

 R
e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 &

 S
e
le

c
ti
o
n

G
e
n
e
ra

ti
o
n
 o

f 
o
ff
s
p
ri
n
g

Route Repair

Start

Evaluate fitness 

value

Are optimization 

/ termination 

criteria met?

Selection 

(Roulette wheel)

Crossover 

(Linear order)

Mutation 

(Inversion)

Stop

Generate random pop_size

chromosome with N string

Yes 

No 

Check available tasks 

without predecessor

Select task in earliest 

position of chromosome

Remove outgoing edge 

from selected task

New 

population of 

sequence

Chromosome 

length = N?

Set GA 

parameter

Population

= pop_size?

Yes 

Yes 

No 

No 

In
it
ia

liz
a
ti
o
n
 &

 R
e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 &

 S
e
le

c
ti
o
n

G
e
n
e
ra

ti
o
n
 o

f 
o
ff
s
p
ri
n
g

Route Repair



 

 78 

Chapter 4 

Computational Experiments & Results  

 

This chapter deals with computational experiments and results for TSP and 

TSPPC. The experiments consist of two parts which start off with TSP followed by 

TSPPC. The procedure of GA to solve TSP and TSPPC described in the previous 

chapter are used to obtain the optimal solution of several TSP and TSPPC instances. In 

the first part of the chapter, the known optimal solution problems taken from TSPLIB 

are used in the TSP experiments. The TSPPC experiments are then carried out in the 

second part of the chapter where the problems with known optimal solution as well as 

randomly generated problems are tested. To confirm that the proposed GA used in this 

thesis is a stable and robust approach, few TSPPC application examples benchmarked 

from relevant published papers are included in the experiments. The results of the 

experiments are further discussed in the next chapter.  

 

4.1 Experimental set-up and assumptions 

The GA parameter such as population size (pop_size), the probability of 

crossover (Pc), probability of mutation (Pm) and the maximum number of generations 

(ngener) used in the experiment are obtained from trial run and from a simple design of 

experiment (DOE). For all experiments, the population size used is set large enough to 

ensure it doesn’t stuck at a local optimum. The crossover rate is set relatively high 

which is ranging from 0.5 to 0.9 while mutation rate is set relatively low ranging from 

0.01 to 0.2. For known optimal solution problems, the choice of parameters setting are 

by trial and error in order to minimise the computation time, while for randomly 

generated problems, the DOE table is used to assist the experimentation. In the genetic 

algorithm, termination criterion is a must. For all experiments in this thesis, termination 

is performed when number of generation reached the maximum number of generations. 

The maximum number of generations (ngener) is set earlier in the program code. The 

computer numerical experiment set up is given as follows; 



 

 79 

 Computer hardware is fixed. Computational experiments will be performed on 

DELL with Intel Core 2 Duo 2.0 GHz CPU and 2.0 GB of RAM.  

 The algorithms are coded in MATLAB version 2009b. 

 

4.2 Objectives of the experiment 

In general, there are three objectives to be achieved in the experiments. The two 

main objectives are to get the optimal solution for TSP/TSPPC and to obtain the 

number of generations to come out with the optimal solution.  

Optimal solution 

The optimal solution can be the minimum value for minimisation problem or 

the maximum value of maximisation problem. In this computational experiment, the 

optimal solution will be the minimum distance/cost/time and the value is calculated 

from the objective function.  

Number of generations to come out with an optimal solution 

This figure indicates how many generations are required for the algorithm to 

achieve optimal solution for specific case study. For this objective, a smaller number 

indicates better algorithm, because it can produce optimal solutions with less number of 

generations. 

Iteration time to generate optimal solution 

The iteration time is an elapsed time between iteration. This is the time needed 

for an algorithm to complete one generation. In this thesis, the iteration time to generate 

optimal solution is called convergence time while the iteration time to complete the 

generations is called completion time. Theoretically, for larger maximum number of 

generations, longer completion time will be acquired. The algorithm that completes all 

generations in the fastest time does not represent the most efficient algorithm, until the 

optimal solution is achieved. An efficient algorithm will come out with the fastest 

iteration time to converge to the optimal solution. In actual application, users do not 

care the number of generations to achieve an optimal solution as long as the algorithm 



 

 80 

can produce optimal solutions in the shortest time. The time to compute for optimal 

solution will also increase when using large population size. The iteration time also 

very depend on the CPU used because different hardware condition will gives different 

performance, and therefore the same test machine is used for the whole experiments to 

reduce the variability.  

The third objective is not so critical in this computational experiment because 

the main target of this study is not developing the most efficient algorithm for 

TSP/TSPPC, and therefore no critical comparison is made to the algorithms that 

successfully developed by the other researchers. Besides, direct comparison of 

computation time is impossible due to different hardware and software used by the 

other researchers.  

 

4.3 Computational experiments for TSP 

 This section will concentrate on computational experiments that use the GA 

approach discussed in Chapter 3 to obtain the optimal solution for TSP instances. 

 

4.3.1 Complete enumeration for five-city problem 

Homaifar [119] states that one approach which would certainly find the optimal 

solution of any TSP is the application of exhaustive enumeration and evaluation. The 

procedure consists of generating all possible tours and evaluating their corresponding 

tour length. The tour with the smallest length is selected as the best, which is 

guaranteed to be optimal.   

The complete enumeration procedure is carried out for five-city problem by 

listing all possible tours and manually calculating the total distance of all possible tours. 

The objective is to obtain the minimum distance to complete the tour. The results of a 

complete enumeration will be used as a comparison basis in a later computational 

experiment and to build a confidence level that the GA performs well as an 

optimisation technique in finding optimal solutions. The location for 5-city problem is 

given in the 2-d coordinate system as depicted in the Figure 4.1.  



 

 81 

 

Figure 4.1: Location for 5-city problem 

The total permutation of 5 cities for symmetrical tour is (n-1)!/2, which gives 

(4*3*2*1)/2. Therefore 12 possible solutions or tours are identified. The 12 possible 

candidate solutions are as below; 

1. 1-2-3-5-4 = 4-5-3-2-1 (symmetrical tour) 7. 1-3-4-2-5 

2. 1-2-4-3-5 8. 1-3-2-5-4 

3. 1-2-5-3-4 9. 1-3-2-4-5 

4. 1-2-3-4-5 10. 1-3-5-2-4 

5. 1-2-5-4-3 11. 1-4-2-3-5 

6. 1-2-4-5-3 12. 1-4-3-2-5 

 

The distance, d is calculated using the Euclidean distance described in (2-5). Therefore, 

distance calculation for tour 1-2-3-5-4-1 (close path) is; 

2 2 2 2

1 2 1 2 3 2 3 2

2 2

1 1

2 2 2 2 2 2

2 2 2 2

( ) ( ) ( ) ( ) ....

      ( ) ( )

  (6 10) (7 7) (6 6) (4 7) (5 6) (10 4)

      (3 5) (4 10) (10 3) (7 4)

      16 9 37 40 58 27.0231

n n n n

d x x y y x x y y

x x y y 

        

   

           

       

    

  



 

 82 

 

The result of the distance for all permutations is presented in table 4.1. It shows that the 

minimum distance for five-city problem with complete enumeration is 21.2359 and the 

shortest tour is 1-3-4-2-5-1. 

Table 4.1: Result for five-city problem with complete enumeration solution 

Tour Total distance Tour Total distance 

1-2-3-5-4-1 27.0231 1-3-4-2-5-1 21.2359 

1-2-4-3-5-1 23.1564 1-3-2-5-4-1 25.1026 

1-2-5-3-4-1 23.8608 1-3-2-4-5-1 24.3981 

1-2-3-4-5-1 22.1555 1-3-5-2-4-1 26.1035 

1-2-5-4-3-1 21.4868 1-4-2-3-5-1 26.7721 

1-2-4-5-3-1 25.6500 1-4-3-2-5-1 22.6090 

 

4.3.2 Solution for five-city with PROX algorithm 

The five-city problem that's already been solved by the complete enumeration 

procedure will be tested in PROX algorithm. The PROX algorithm employs Roulette 

Wheel selection rule to select individuals for reproduction while the linear order 

crossover and inversion mutation are employed to produce individuals for the next 

generation. The location of the cities is similar as in Figure 4.1 while the distance 

matrix which is the distance between the cities generated by the algorithm is given in 

Table 4.2. The genetic parameters used in the experiment are as follows; pop_size=10, 

Pc=0. 5, Pm=0. 1 and ngener=20.  

 

 

 

 

 



 

 83 

Table 4.2: Distance matrix for five-city problem 

City 1 2 3 4 5 

1 0 4.0000 5.0000 7.6158 5.8310 

2 4.0000 0 3.0000 4.2426 3.1623 

3 5.0000 3.0000 0 3.0000 6.0828 

4 7.6158 4.2426 3.000 0 6.3246 

5 5.8310 3.1623 6.0828 6.3246 0 

 

The results for five-city problem produced by PROX algorithm are shown in 

Figure 4.2. The first diagram shows the optimal tour (1-3-4-2-5-1) that the salesman 

must travel with the minimum distance of 21.2359. The second diagram is a graph of 

best and average distance found in each generation. It shows that the algorithm is 

converged at the optimal solution as early as generation 1. With the small size of 

population, high probability of crossover and a small probability of mutation, the 

minimum distance found by GA is 21.2359 within 0.0075 seconds. The result obtained 

from PROX algorithm is exactly the same as calculated by complete enumeration. This 

proves that genetic algorithm based PROX is able to solve TSP in finding optimal 

solutions with the fastest time.  

2 4 6 8 10
4

6

8

10
Location for 5 cities Distance Matrix

1 2 3 4 5

1

2

3

4

5

5 10 15

5

10

15

12

34

5

Generation # 1  Distance: 21.2359

0 5 10 15 20
21

22

23

24

25

Generations

D
is

ta
n
c
e

Performance Graph

 

 
Best

Average

 

Figure 4.2: Optimal solution for five-city problem with PROX algorithm 

 



 

 84 

4.3.3 Benchmark problem from TSPLIB 

The TSP algorithms are now tested at several problems benchmarked from 

TSPLIB [26] in which the optimal solution is known. There are four problems called 

burma14, bay29, dantzig42 and eil51. The burma14, bay29, dantzig42 and eil51 have 

14, 29, 42 and 51 instances, respectively. The datasets of the instances are given in 

APPENDIX A-1. All problems are tested at three different algorithms developed in 

chapter 3, which are PROX, RBOX and TSOX. Due to time constraint, the parameter 

values used for all experiments are obtained through trial and error. The locations of the 

cities are shown in Figure 4.3. A complete coding for the computational experiment 

using PROX, RBOX and TSOX algorithms are presented in APPENDIX A-2.  

14 16 18 20 22 24 26
92

93

94

95

96

97

98

99
Location for burma14

0 200 400 600 800 1000 1200 1400 1600 1800 2000
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
Location for bay29

 

Location for burma14    Location for bay29 

0 20 40 60 80 100 120 140 160 180
10

20

30

40

50

60

70

80

90

100

110
Location for dantzig42

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70
Location for eil51

 

Location for dantzig42   Location for eil51 

Figure 4.3: City location for burma14, bay29, dantzig42 and eil51 

 



 

 85 

Results with PROX algorithm 

 The GA parameters setting used in each problem using PROX algorithm are 

shown in Table 4.3. Note that different parameters setting is required for different 

problems. The larger the problem size, the larger population size and maximum number 

of generations used to ensure better search process. Figure 4.4 through Figure 4.7 

presents the optimal tour and the performance graph (showing best and average 

distance found in each generation) for all problems tested.  

Table 4.3: GA parameters setting for PROX algorithm 

Problem pop_size Pc Pm ngener 

burma14 140 0.9 0.01 50 

bay29 600 0.9 0.01 150 

dantzig42 800 0.95 0.01 250 

eil51 1000 0.88 0.01 300 

 

14 16 18 20 22 24 26
92

93

94

95

96

97

98

99
Generation # 29  Distance: 30.8785

0 10 20 30 40 50
30

35

40

45

50

55

60

65

Generation

D
is

ta
n
c
e

Performance Graph

 

 

Best

Average

 

Figure 4.4: Optimal tour & performance graph for burma14 with PROX algorithm 



 

 86 

0 500 1000 1500 2000
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
Generation # 125  Distance: 9076.9829

0 50 100 150
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

4

Generation

D
is

ta
n
c
e

Performance Graph

 

 

Best

Average

 

Figure 4.5: Optimal tour & performance graph for bay29 with PROX algorithm 

 

0 20 40 60 80 100 120 140 160 180
10

20

30

40

50

60

70

80

90

100

110
Generation # 191  Distance: 744.4406

0 50 100 150 200 250
500

1000

1500

2000

2500

3000

Generation

D
is

ta
n
c
e

Performance Graph

 

 

Best

Average

 

Figure 4.6: Optimal tour & performance graph for dantzig42 with PROX algorithm 

 

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70
Generation # 165  Distance: 493.2433

0 50 100 150 200 250 300
400

600

800

1000

1200

1400

1600

1800

Generation

D
is

ta
n
c
e

Performance Graph

 

 

Best

Average

 

Figure 4.7: Optimal tour & performance graph for eil51 with PROX algorithm 

 



 

 87 

Results with RBOX algorithm 

In this experiment, the RBOX algorithm is tested for burma14, bay29, 

dantzig42 and eil51 using similar crossover and mutation operators as in PROX 

experiment. In contrast with PROX, RBOX use rank-based Roulette Wheel selection 

for parent selection. Table 4.4 shows the parameters used in the experiments. Figure 4.8 

through Figure 4.11 shows the optimal tour and the performance graph of all TSP 

instances run with RBOX algorithm.  

Table 4.4: GA parameters setting for RBOX algorithm 

Problem pop_size Pc Pm ngener 

burma 14 140 0.9 0.01 100 

bay 29 600 0.89 0.01 500 

dantzig42 800 0.79 0.1 1500 

eil51 1000 0.92 0.05 1500 

 

14 16 18 20 22 24 26
92

93

94

95

96

97

98

99
Generation # 70  Distance: 30.8785

0 20 40 60 80 100
30

35

40

45

50

55

60

65

Generation

D
is

ta
n
c
e

Performance Graph

 

 

Best

Average

 

Figure 4.8: Optimal tour & performance graph for burma14 with RBOX algorithm 



 

 88 

0 500 1000 1500 2000
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
Generation # 441  Distance: 9074.148

0 100 200 300 400 500
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

4

Generation

D
is

ta
n
c
e

Performance Graph

 

 

Best

Average

 

Figure 4.9: Optimal tour & performance graph for bay29 with RBOX algorithm 

 

0 20 40 60 80 100 120 140 160 180
10

20

30

40

50

60

70

80

90

100

110
Generation # 1442  Distance: 679.2019

0 500 1000 1500
500

1000

1500

2000

2500

3000

Generation

D
is

ta
n
c
e

Performance Graph

 

 

Best

Average

 

Figure 4.10: Optimal tour & performance graph for dantzig42 with RBOX algorithm 

 

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70
Generation # 1060  Distance: 443.7647

0 500 1000 1500
400

600

800

1000

1200

1400

1600

1800

Generation

D
is

ta
n
c
e

Performance Graph

 

 

Best

Average

 

Figure 4.11: Optimal tour & performance graph for eil51 with RBOX algorithm 

 



 

 89 

Results with TSOX algorithm 

The TSOX procedure also utilizes the same crossover and mutation technique to 

generate offspring. This time tournament method is used in the selection stage and it is 

again tested at burma14, bay29, dantzig42 and eil51. The setting of parameters for each 

experiment is chosen based on trial and error as in Table 4.5. The optimal tour, the 

average and the minimum distance found in each generation for all TSP instances are 

depicted in Figure 4.12 through Figure 4.15. 

Table 4.5: GA parameters setting for TSOX algorithm 

Problem pop_size Pc Pm ngener 

burma 14 140 0.9 0.01 50 

bay 29 600 0.9 0.01 100 

bantzig42 800 0.98 0.01 200 

eil51 1000 0.88 0.01 300 

 

14 16 18 20 22 24 26
92

93

94

95

96

97

98

99
Generation # 18  Distance: 30.8785

0 10 20 30 40 50
30

35

40

45

50

55

60

65

Generation

D
is

ta
n
c
e

Performance Graph

 

 

Best

Average

 

Figure 4.12: Optimal tour & performance graph for burma14 with TSOX algorithm 



 

 90 

0 500 1000 1500 2000
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
Generation # 53  Distance: 9076.9829

0 20 40 60 80 100
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

4

Generation

D
is

ta
n
c
e

Performance Graph

 

 

Best

Average

 

Figure 4.13: Optimal tour & performance graph for bay29 with TSOX algorithm 

 

0 20 40 60 80 100 120 140 160 180
10

20

30

40

50

60

70

80

90

100

110
Generation # 84  Distance: 695.4806

0 50 100 150 200
500

1000

1500

2000

2500

3000

Generation

D
is

ta
n
c
e

Performance Graph

 

 

Best

Average

 

Figure 4.14: Optimal tour & performance graph for dantzig42 with TSOX algorithm 

 

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70
Generation # 109  Distance: 476.489

0 50 100 150 200 250 300
400

600

800

1000

1200

1400

1600

1800

Generation

D
is

ta
n
c
e

Performance Graph

 

 

Best

Average

 

Figure 4.15: Optimal tour & performance graph for eil51 with TSOX algorithm 



 

 91 

Table 4.6 compares the best solution found for four TSP instances run with 

three different procedures. The iteration time (in sec) for the TSPLIB problems using 

different algorithms are summarized in Table 4.7. 

Table 4.6: Quality of solution (Best solution) comparisons for TSPLIB problem 

Problem Known optimal PROX RBOX TSOX 

burma 14 31 31 31 31 

bay 29 9074 9077 9074 9077 

dantzig42 679 744 679 695 

eil51 425 493 444 476 

 

Table 4.7: Iteration time for TSPLIB problem using three different algorithms  

Problem PROX RBOX TSOX 

burma14 0.208291 0.34826 0.231 

bay29 4.345619 14.31729 1.76294 

dantzig42 13.72937 83.80755 5.810677 

eil51 25.09628 133.6516 12.8272 

 

4.4 Computational experiments for TSPPC 

In this section, PROX algorithm which utilises proportional roulette wheel in 

the selection stage will be used for the whole TSPPC experiments. Although RBOX 

gives the highest quality solution, it seems to be computationally expensive. A 

modified PROX algorithm which integrates topological sort technique in the procedure 

is used to obtain feasible solutions for TSPPC. The topological sort technique is 

benchmarked from Moon’s work in order to repair infeasible chromosomes in the 

initial population as well as after reproduction process. The proposed GA procedure to 

solve TSPPC employs a proportional Roulette Wheel selection, linear order crossover 

and inversion mutation technique as in PROX algorithm.  The results of the 

experiments using the proposed TSPPC algorithm will be compared with the results of 

the Moon’s algorithm.  The moon’s algorithm uses a combination of Roulette Wheel 

selection, moon crossover and exchange mutation. Beside crossover and mutation, 



 

 92 

there is also different technique used in terms of selecting tasks in the representation 

stage as described in chapter 3. The main objective of the experiments is to obtain the 

feasible sequence of the tasks such that it does not violate the precedence relationships 

and the distance/cost/time of the complete order is minimised. In addition to that, the 

performance of the algorithm is also monitored through performance graph whereby 

efficient algorithm will produce optimal or near optimal solution with less number of 

generations and less iteration time.  

 

4.4.1 TSPPC test problem 

To confirm that the proposed algorithm is effective in solving TSPPC, three 

TSPPC problems with known optimal solution as well as randomly generated problem 

are tested. The two approaches i.e. proposed algorithm and Moon’s algorithm are 

compared with respect to the quality of the best solution and the number of generations 

to reach the best solution. The coding of the proposed algorithm and Moon’s algorithm 

are supplied in APPENDIX A-3 and APPENDIX A-4, respectively. 

 

a) Test problem 1: 6 tasks & 6 precedence constraints 

The first test problem consists of 6 tasks and 6 precedence constraints taken 

from Moon [6]. Figure 4.16 and Table 4.8 illustrates the precedence diagram of the 

problem and the transition time between the tasks, respectively. The GA parameters 

used in the experiment are presented in Table 4.9. Figure 4.17 displays the performance 

graph, indicating best and average transition time found in each generation for both 

algorithms.  

 

 

 

Figure 4.16: Precedence diagram for test problem 1 

1

2

3

6

4

51

2

3

6

4

5



 

 93 

 

Table 4.8: Transition time matrix for test problem 1 

 1 2 3 4 5 6 

1 - 7 5 6 10 9 

2 7 - 14 6 10 8 

3 5 14 - 16 16 10 

4 6 6 16 - 10 6 

5 10 10 16 10 - 12 

6 9 8 10 6 12 - 

 

Table 4.9: GA parameters setting for test problem 1 

Parameter pop_size Pc Pm ngener 

Proposed 12 0.6 0.1 20 

Moon 12 0.6 0.1 20 

 

 

The results of the experiment show that both algorithms are able to produce the 

optimal solution at the first generation. However, the computation time for the 

proposed algorithm is slightly better than the Moon’s algorithm.  The best tour found 

by both algorithms is [1-3-6-2-4-5] which is feasible and similar as reported on Moon’s 

work.  Table 4.10 summarizes the results obtained from the experiment. 

 



 

 94 

0 2 4 6 8 10 12 14 16 18 20
38

40

42

44

46

48

50

52

54

56

58

60

Generations

tr
a
n
s
it
io

n
 t

im
e

Performance Graph - 6 tasks & 6 PC

 

 

Best-Proposed

Best-Moon

Average-Proposed

Average-Moon

 

Figure 4.17: Performance graph for test problem 1 

 

Table 4.10: Summary of results for test problem 1 

 Gen# Best (sec) Convergence time 

(sec) 

Completion time 

(sec) 

Proposed 1 39 0.1786 0.2749 

Moon 1 39 0.2226 0.3286 

 

 

 

 

 

 



 

 95 

b) Test problem 2: 8 tasks & 9 precedence constraints  

The second experiment uses the asymmetric TSP data from Escudero [74] to 

obtain the minimum cost in the FMS scheduling. The set of problems which consists of 

8 tasks and 9 precedence constraints are shown in Figure 4.18, while the cost matrix is 

given in Table 4.11. Table 4.12 displays the GA parameters used in both experiments. 

For both experiments, similar settings of parameters are used except for the crossover 

rate. The probability of crossover used in the Moon’s experiment is set lower in order 

to get the optimal solution and similar task sequence as reported in the paper.  

 

 

 

 

Figure 4.18: Precedence diagram for test problem 2 

 

Table 4.11: Cost matrix for Test problem 2 

Cost 0 1 2 3 4 5 6 7 

0 - 0 0 0 - - - - 

1 - - 1 2 0.75 0 3 1 

2 0 4 - 5 3.25 4 6 0 

3 0 7 8 - 5.5 7 9 8 

4 - 2.75 2.5 2.25 - 2.75 5.25 2.5 

5 0 0 1 2 0.75 - 3 1 

6 - 10 11 12 10.75 10 - 11 

7 - 4 0 5 3.25 4 6 - 

 

Table 4.12: GA parameters setting for test problem 2 

 pop_size Pc Pm ngener 

Proposed 16 0.9 0.1 20 

Moon 16 0.6 0.1 20 

 

0 1 6 5

4

7

3

2

0 1 6 5

4

7

3

2



 

 96 

Both algorithms are able to achieve optimal cost of $21.25 with a feasible task 

sequence of [0-1-4-2-7-6-5-3]. Although they present similar quality of solution, 

however the proposed algorithm appears to be more effective as it uses less number of 

generations and less computation time compared to a Moon’s algorithm. The 

performance graph for the Moon and the proposed algorithm are illustrated in Figure 

4.19. Table 4.13 summarizes the results of the experiments. 

0 2 4 6 8 10 12 14 16 18 20
20

22

24

26

28

30

32

34

Generations

tr
a
n
s
it
io

n
 t

im
e

Performance Graph - 8 tasks & 9 PC

 

 

Best-Proposed

Best-Moon

Average-Proposed

Average-Moon

 

Figure 4.19: Performance graph for test problem 2 

 

Table 4.13: Summary of results for test problem 2 

 Gen# Best Cost ($) Convergence 

time (sec) 

Completion time 

(sec) 

Proposed 2 21.25 0.211 0.3063 

Moon  13 21.25 0.3319 0.3729 

 

 



 

 97 

c) Test problem 3: 20 tasks & 31 precedence constraints  

 The third experiment is again benchmarked from Moon’s work which involves 

TSPPC problem with 20 tasks and 31 precedence constraints. The precedence diagram 

concerning the tasks and the precedence relationship is depicted in Figure 4.20. The 

transition time between the tasks are given in Table 4.14. 

 

 

 

 

 

 

Figure 4.20: Precedence diagram for test problem 3 

 

Table 4.14: Transition time matrix for test problem 3 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 - 2 10 4 10 2 11 9 1 3 7 12 5 8 8 8 13 7 2 12 

2 2 - 12 12 4 6 2 8 6 7 14 10 11 9 2 6 13 14 1 3 

3 10 12 - 5 8 2 5 9 7 8 13 6 9 2 6 6 14 2 4 5 

4 4 12 5 - 6 6 11 12 5 11 4 5 11 1 3 10 17 10 14 14 

5 10 4 8 6 - 7 2 13 3 10 6 7 14 8 7 7 5 1 8 13 

6 2 6 2 6 7 - 2 6 14 6 9 3 7 13 13 3 13 10 13 3 

7 11 2 5 11 2 2 - 11 14 6 4 10 7 6 12 9 10 8 5 4 

8 9 8 9 12 13 6 11 - 14 14 3 11 1 1 3 10 6 5 14 14 

9 1 6 7 5 3 14 14 14 - 3 12 12 2 12 4 2 14 13 11 7 

10 3 7 8 11 10 6 6 14 3 - 8 4 8 5 4 4 3 6 12 11 

11 7 14 13 4 6 9 4 3 12 8 - 5 9 4 9 9 6 12 14 11 

12 12 10 6 5 7 3 10 11 12 4 5 - 7 6 10 13 7 1 6 8 

13 5 11 9 11 14 7 7 1 2 8 9 7 - 1 1 4 1 12 4 6 

14 8 9 2 1 8 13 6 1 12 5 4 6 1 - 4 9 12 4 9 13 

15 8 2 6 3 7 13 12 3 4 4 9 10 1 4 - 1 1 1 1 5 

16 8 6 6 10 7 3 9 10 2 4 9 13 4 9 1 - 8 5 2 14 

17 13 13 14 17 5 13 10 6 14 3 6 7 1 12 1 8 - 14 7 10 

18 7 14 2 10 1 10 8 5 13 6 12 1 12 4 1 5 14 - 5 6 

19 2 1 4 14 8 13 5 14 11 12 14 6 4 9 1 2 7 5 - 14 

20 12 3 5 14 13 3 4 14 7 11 11 8 6 13 5 14 10 6 14 - 

1

2

3

4

5

7

8

9

10

6

11

13

14

15

16

12

17

18

19

20

1

2

3

4

5

7

8

9

10

6

11

13

14

15

16

12

17

18

19

20



 

 98 

The problem is tested using proposed and Moon’s algorithm. The values of GA 

parameters as given in Table 4.15 are based on trial and error. In a usual practice, 

crossover rate is set relatively high while the mutation rate is set exceptionally low.  

Table 4.15: GA parameter settings for test problem 3 

 pop_size ngener Pc Pm 

Proposed 150 100 0.9 0.01 

Moon 150 100 0.75 0.01 

 The performance graph in Figure 4.21 demonstrates the best and the average 

transition time found by the algorithm in each generation. In both experiments, the best 

transition time reduced towards an optimal solution as the generation increased and 

finally converged at a certain generation.   

The known optimal solution for this problem is 61 sec and the proposed 

algorithm is also able to produce the same result at generation 39 and this is better than 

Moon’s algorithm which is converged at generation 76. The number of generations 

produced using the Moon’s algorithm in this thesis is different from the results reported 

in [6]. This is mainly because of the different parameters used and different length of 

coding/step involved in the program developed by Moon et al.  

The optimal tour obtained from both algorithms is [6-1-2-7-5-11-4-3-18-12-10-

9-16-17-8-14-13-19-15-20] which is feasible and similar as reported in the paper. The 

results of the experiments are summarized in Table 4.16. 



 

 99 

0 10 20 30 40 50 60 70 80 90 100

60

70

80

90

100

110

120

130

140

Generations

tr
a
n
s
it
io

n
 t

im
e

Performance Graph - 20 tasks & 31 PC

 

 

Best-Proposed

Best-Moon

Average-Proposed

Average-Moon

 

Figure 4.21: Performance graph for test problem 3  

 

Table 4.16: Summary of results for test problem 3 

 Gen# Best (sec) Convergence 

time (sec) 

Completion time 

(sec) 

Proposed 39 61 6.856 17.5 

Moon  76 61 15.75 20.83 

 

 

 

 

 

 



 

 100 

d) Test problem 4: 51 tasks & 71 precedence constraints 

The test problem 4 consists of 51 tasks and 71 precedence constraints in which 

the location of the task and the transition time are randomly generated within [1, 15].  

The precedence diagram of the problem is shown in Figure 4.22 while the transition 

time matrix is given in APPENDIX A-5. In order to assist the experimentation, full 

factorial DOE with 3 parameters each with 2 levels (2
3
) is implemented. Therefore, the 

total number of computational runs will be 8 runs for one replication. Due to the large 

population size used in the experiment, each simulation experiment runs only one time 

in order to reduce computational time and resources.  

 

 

 

 

 

 

 

 

Figure 4.22: Precedence diagram for test problem 4 

The experimental design and the range of the parameter's value considered for 

the proposed algorithm are shown in Table 4.17. The maximum number of generation 

is set to 200 for all the experiments. The DOE table along with the results obtained in 

each experiment is given in Table 4.18.  

 

 

 

Table 4.17: GA parameters setting for proposed algorithm  

2

3

4

5

6

7

8

9

10

11

12

14

15

16

17

18

13

21

22

23

24

25

20

26

19

28

29

30

31

27 32

33

34

35

36

40

41

42

43

46

37

38

45

47

48

39

44

49

50

51

1

2

3

4

5

6

7

8

9

10

11

12

14

15

16

17

18

13

21

22

23

24

25

20

26

19

28

29

30

31

27 32

33

34

35

36

40

41

42

43

46

37

38

45

47

48

39

44

49

50

51

1



 

 101 

Level -1 +1 

A (pop_size) 500 1000 

B (Pc) 0.6 0.9 

C (Pm) 0.001 0.2 

 

Table 4.18: Results of experiment with proposed algorithm  

Experiment A B C Gen# best 

1 -1 -1 -1 96 209 

2 +1 -1 -1 192 204 

3 -1 +1 -1 112 224 

4 +1 +1 -1 157 194 

5 -1 -1 +1 122 209 

6 +1 -1 +1 74 218 

7 -1 +1 +1 109 219 

8 +1 +1 +1 193 184 

 

From this experiment, it can be ascertained that the algorithm with a 

combination of large population size and high crossover rate as well as the high 

mutation rate had produced better outcomes. The final experiment (experiment number 

8) offers the best sequence of tour with minimum transition time. The sequence of this 

tour is 2-4-39-17-9-1-3-44-10-5-8-13-14-15-20-16-19-21-23-22-25-31-27-28-33-32-

30-49-6-11-40-45-24-18-36-12-7-26-38-37-48-50-47-29-34-41-35-42-46-43-51. This 

sequence confirmed that the chromosomes at the specified generation represent valid 

points in the search space, i.e. not violating the precedence constraints. The minimum 

total transition time is 184 sec and converged at generation 193. Thus, it can be 

expected that the quality of solution improves with the larger size of population and 

with a relatively high crossover and high mutation rate. The computation time to obtain 

the best solution is around 1358 sec (~ 22 minutes), which is still in an acceptable 

amount of time to spend. 



 

 102 

Similar experiments were also carried out using the Moon’s algorithm in order 

to investigate and compare the quality of solution and the performance of the algorithm 

with the proposed algorithm. The same parameters setting is applied as in the proposed 

algorithm (see Table 4.19).  

Table 4.19: GA parameter settings for Moon’s algorithm  

Level -1 +1 

A (pop_size) 500 1000 

B (Pc) 0.6 0.9 

C (Pm) 0.001 0.2 

 

Table 4.20: Results of experiment with Moon’s algorithm  

Experiment A B C Gen# best 

1 -1 -1 -1 150 268 

2 +1 -1 -1 163 256 

3 -1 +1 -1 83 277 

4 +1 +1 -1 72 265 

5 -1 -1 +1 101 272 

6 +1 -1 +1 50 282 

7 -1 +1 +1 51 279 

8 +1 +1 +1 95 270 

 

The results in Table 4.20 clearly show that the solution approaching minimum 

value with the utilization of high population size, low crossover rate and low mutation 

rate.  The best solution found from the experiment is 256 and converged at generation 

163. In order to check the feasibility of the solution from Moon’s algorithm, the tasks 

sequences generated is recorded which is 1-10-2-4-9-15-49-5-6-12-23-3-8-14-22-30-

13-19-20-17-21-27-28-33-32-29-34-41-25-31-16-11-24-18-36-35-42-46-39-40-44-45-

7-26-38-37-48-50-43-47-51.  

Figure 4.23 shows the performance graphs for 200 generations of 1000 

chromosomes. The transition times are plotted against the number of generations for 

the two experiments, i.e. experiment number 8 for the proposed algorithm and 

experiment number 2 for the Moon’s algorithm. It is observed that the ‘Best’ curves 



 

 103 

drop rapidly at the beginning of the run, but then as the population converges on the 

nearly optimal solution; it drops more slowly, and finally flattens at the end. The results 

of the computational experiments for both algorithms are summarized in Table 4.21. 

The iteration time for the proposed algorithm is larger than a Moon’s algorithm. This is 

because a large number of generations are being utilized to converge on the best 

solution. 

0 20 40 60 80 100 120 140 160 180 200

200

250

300

350

400

450

Generations

tr
a
n
s
it
io

n
 t

im
e

Performance Graph - 51 tasks & 71 PC

 

 

Best-Proposed

Best-Moon

Average-Proposed

Average-Moon

 

Figure 4.23: Performance graph for test problem 4 

 

Table 4.21: Summary of results for test problem 4 

 Gen# Best Convergence time 

(sec) 

Completion time 

(sec) 

Proposed  193 184 1358 1415 

Moon  163 256 1109 1357 

 

 



 

 104 

e) Test problem 5: Large-scale TSPPC 

To examine the robustness and the stability of the proposed approach, the 

experiment is carried out on three large-scale TSPPC instances. They are 100 tasks with 

141 precedence constraints, 200 tasks with 241 precedence constraints, and 500 tasks 

with 587 precedence constraints.  

The precedence diagram for 100 tasks and 141 precedence constraints is 

depicted in Figure 4.24. In order to speed up the computation time, smaller population 

size and maximum number of generation are used for both experiments (Moon’s and 

proposed algorithm). Note that the population size, maximum number of generation, 

the probability of crossover and probability of mutation are set similar for both 

algorithms. The parameter settings are as follows, pop_size=100, Pc=0.9, Pm=0.01 and 

ngener=400.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24: Precedence diagram for 100 tasks & 141 precedence constraints 

 

The performance graph in Figure 4.25 demonstrates the best and the average 

transition time found by the algorithms in each generation. For the proposed algorithm, 

100

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

17

18

19

20

21

22

23
27

26

25

24

32

34

33

35

42

41

43

48

36

37

38

39

40

44

99

45

46

29

28

31

50 51 55

54

53

52 63

64

65

66

67

68

69

70

71

72

73

77

75
62

59

78

79

80

81

8274

83

84
93

85

86

87

88 96

95

92

91

90

89

56

98

764947

16

30

57

97

94

58

60

61

100

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

17

18

19

20

21

22

23
27

26

25

24

32

34

33

35

42

41

43

48

36

37

38

39

40

44

99

45

46

29

28

31

50 51 55

54

53

52 63

64

65

66

67

68

69

70

71

72

73

77

75
62

59

78

79

80

81

8274

83

84
93

85

86

87

88 96

95

92

91

90

89

56

98

764947

16

30

57

97

94

58

60

61



 

 105 

the best and average transition time steadily reduced over generations. The results of 

the experiments are summarized in Table 4.22. 

0 50 100 150 200 250 300 350 400
400

450

500

550

600

650

700

750

800

850

Generations

tr
a
n
s
it
io

n
 t

im
e

Performance Graph - 100 tasks & 141 PC

 

 

Best-Proposed

Best-Moon

Average-Proposed

Average-Moon

 

Figure 4.25: Performance graph for 100 tasks & 141 precedence constraints 

 

Table 4.22: Summary of results for 100 tasks & 141 precedence constraints 

 Gen# Best Convergence time 

(sec) 

Completion time 

(sec) 

Proposed  176 441 470.6 1058 

Moon  381 559 950.6 1240 

 

Figure 4.26 and Figure 4.27 show the performance graph for 200 tasks with 241 

precedence constraints and 500 tasks with 587 constraints, respectively. The trends for 

both diagram are look similar in which the proposed algorithm always outperform 

Moon’s algorithm both in finding the best (minimum) transition time and average 

transition time. The precedence diagram for 200 and 500 tasks problems are given in 

APPENDIX A-6. 



 

 106 

0 10 20 30 40 50 60 70 80 90 100
85

90

95

100

105

110

Generations

tr
a
n
s
it
io

n
 t

im
e

 

 

Best-Proposed

Best-Moon

Average-Proposed

Average-Moon

 

Figure 4.26: 200 tasks & 241 precedence constraints 

0 10 20 30 40 50 60 70 80 90 100
230

235

240

245

250

255

260

Generations

tr
a
n
s
it
io

n
 t

im
e

 

 

Best-Proposed

Best-Moon

Average-Proposed

Average-Moon

 

Figure 4.27: 500 tasks & 587 precedence constraints 

 



 

 107 

4.4.2 TSPPC application examples 

In this section three examples of process sequencing problem in assembly line 

are demonstrated and solved using the proposed TSPPC algorithm.  The three examples 

are benchmarked from few published papers and have been simplified to reduce the 

complexity of the problem. The results of the process sequence and the optimal 

distance/cost/time obtain from the experiment are compared with the results reported in 

the published research papers which have used different optimisation approaches. The 

performance in terms of number of generations to attain optimal (best) solution is also 

compared with the Moon’s algorithm. 

 

a) Application example 1: Assembly sequence planning  

The study of designing an intelligent robot assembly system has been gaining 

tremendous of attention especially in automotive manufacturing. One of the 

fundamental research issues concerning intelligent assembly is the assembly planning. 

The assembly planning problem is to generate the sequences for the assembly machines 

that transform the assembly operation to the desired product. Generally, the assembly 

process is to attach two components together with a formed sub-object. But due to the 

geometric constraint of the product structure, it happens that some components have to 

be done before other components can be performed. This problem is similar to the job 

shop, or scheduling problem with precedence constraints between tasks [45]. Based on 

the preceding knowledge obtained in the planning state and the cost or resources 

arrangement between tasks and robots, the assembly scheduler is to find the best 

ordering of the assembly task.  

The objective of this example is to find the optimal ordering of gear box 

assembly which will minimize the total assembly cost. An exploded view of nine parts 

gearbox assembly and the precedence knowledge is given in Figure 4.28 and Figure 

4.29, respectively while the assembly cost between two liaisons is given in Table 4.23. 

The GA parameters for this problem are set as follows; pop_size=10, Pc=0.9, Pm=0.01 

and ngener=20. 

 



 

 108 

No Task Name 

 

1 Cap & drive gear 

2 Stepper wheel & cover 

3 Cover & base 

4 Clip & base 

5 Ring gear & base 

6 Small gear & base 

7 Middle gear & base 

8 Ratchet gear & base 

9 Drive gear & base 

 

Figure 4.28: Assembly parts for gearbox [45] 

 

 

 

 

Figure 4.29: Precedence diagram for gearbox product 

 

Table 4.23: Cost matrix for gearbox assembly 

Cost 1 2 3 4 5 6 7 8 9 

1 - 0.788 0.363 0.265 0.521 0.788 0.100 0.458 0.682 

2 0.788 - 0.458 0.228 0.168 0.265 0.682 0.228 0.100 

3 0.363 0.458 - 0.324 0.168 0.160 0.788 0.363 0.245 

4 0.265 0.228 0.324 - 0.394 0.363 0.458 0.510 0.228 

5 0.521 0.168 0.168 0.394 - 0.521 0.394 0.168 0.324 

6 0.788 0.265 0.160 0.363 0.521 - 0.100 0.458 0.682 

7 0.100 0.682 0.788 0.458 0.394 0.100 - 0.228 0.100 

8 0.458 0.228 0.363 0.510 0.168 0.458 0.228 - 0.265 

9 0.682 0.100 0.245 0.228 0.324 0.362 0.100 0.265 - 

 

2

5

6

7

8

9

3
1

4

2

5

6

7

8

9

3
1

4

 



 

 109 

0 2 4 6 8 10 12 14 16 18 20
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Generations

c
o
s
t

Performance Graph - gearbox

 

 

Best-Proposed

Best-Moon

Average-Proposed

Average-Moon

 

Figure 4.30: Performance graph for Application Example 1 

 The performance graph in Figure 4.30 shows that the GA has converged at 

generation 7 with minimum assembly cost of $1.755. The assembly sequence generated 

by the GA is [7 6 2 9 8 5 3 4 1]. These results are similar to the results reported in [45]. 

The summary of results obtained from the proposed and Moon’s algorithm are given in 

Table 4.24. 

Table 4. 24: Summary of results for test problem 4 

 Gen# Best Convergence time 

(sec) 

Completion time 

(sec) 

Proposed  1 1.755 0.1939 0.3087 

Moon  1 1.755 0.276 0.3874 

 

 

 



 

 110 

b) Application example 2: Disassembly sequence planning 

 Generally, once electronics products (e.g. refrigerators, washing machines, 

coffee machines, computers, printers, copiers, telephones, TV sets) reach their end-of-

life (EOL), they are sent to one of the EOL processes (i.e. remanufacturing, reuse and 

recycling) [42]. In order to perform remanufacturing, reusing and recycling, 

components and materials from EOL products must be obtained through the 

disassembly process. Disassembly is basically the process of systematic removal of the 

desired components or materials from the original assembly so that the components or 

materials are obtained in the desired form. Therefore, the disassembly sequence 

provides the order in which the components are disassembled. To ensure the maximum 

efficiency of the disassembly process, the disassembly sequence must be generated in 

such a way that the precedence relationship among the components is maintained and 

the disassembly complexity and time are minimised.  

The assembly sequence planning models and the disassembly sequence 

planning models are performed independently as two tasks without interaction. An 

assembly operation with a low cost may not correspond to a disassembly operation with 

the same level of low cost. For example, in order to achieve a low cost, two 

components may be assembled with a welding operation because of a shorter time and 

lower cost. They may be assembled with a screw with higher cost. However, in the 

disassembly operations, disassembling two welded components can cost more, but 

disassembling two screw-fixed components usually costs less. As a result, an assembly 

sequence with low costs may result in a disassembly sequence with high costs for the 

same product [44]. 

 Since assembly and disassembly operations are not necessarily reversible, there 

may be two different graphs representing the precedence relations for the same product, 

one corresponding to assembly and the other to disassembly operations. Usually, the 

minimum operation costs of disassembly sequence are used as an objective function. 

The cost items might include the disassembly operation cost to complete the 

disassembly operations, disassembly instability cost for maintaining the stability of the 

disassembled components, the accessibility cost to complete the disassembly 

operations, disassembly tool setup cost, and the cost for moving and handling needs for 

disassembly operations [44]. 



 

 111 

 In this example, the disassembly process of hand phone product is benchmarked 

from [44]. The GA parameters used in the study are as follows; pop_size=50, Pc=0.9, 

Pm=0.1 and ngener=50. Figure 4.31 and Figure 4.32 illustrate the assembly components 

of the product and the precedence knowledge of the product, respectively. The cost to 

disassemble from one component to another is not supplied in the paper and therefore it 

is generated randomly within [1, 10] as depicted in Table 4.25.  

No Component Name  

 

0 Upper case 

1 Screen cover 

2 Keyboard 

3 LCD panel 

4 Keyboard PCB 

5 Upper button 

6 Main PCB 

7 Structure frame 

8 Right button (1) 

9 Right button (2) 

10 Brand name label 

11 Battery container 

12 Bottom case 

 

Figure 4.31: Disassembly components for hand phone product [44] 

 

0

1

2

5

8

9

3

4

6

7

10

11

12

 

Figure 4.32: Disassembly precedence diagram for hand phone product 

 



 

 112 

Table 4.25: Disassembly cost matrix for hand phone product 

Cost 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 0 6.65 6.11 9.17 3.45 5.11 6.76 1.01 1.16 5.05 4.50 7.05 6.38 

1 8.92 0 7.70 2.90 8.52 4.36 9.34 8.18 4.69 1.96 1.94 1.04 8.82 

2 3.52 7.03 0 4.03 4.08 3.34 3.54 9.55 2.10 4.34 2.08 7.80 8.71 

3 2.94 9.89 5.84 0 5.86 7.31 6.86 7.52 5.49 5.59 3.55 6.03 3.41 

4 4.60 9.77 8.32 8.94 0 9.68 6.51 4.64 2.76 5.21 5.40 3.02 1.77 

5 1.67 3.45 7.11 9.97 2.36 0 1.84 1.97 1.36 1.72 2.10 5.06 8.45 

6 4.41 1.75 6.19 9.74 9.42 9.71 0 8.85 4.52 3.83 5.27 9.91 5.89 

7 5.84 4.03 5.48 7.09 7.55 1.87 7.89 0 3.72 5.82 5.65 3.19 1.36 

8 7.76 1.56 9.41 4.41 5.54 7.73 2.25 5.65 0 5.46 1.87 9.10 3.68 

9 6.70 1.35 5.53 2.14 9.28 3.80 5.97 2.09 1.01 0 7.27 8.61 2.26 

10 2.43 5.53 8.38 5.70 1.30 4.42 2.13 1.80 5.56 3.87 0 3.26 3.48 

11 2.89 2.02 6.57 9.50 2.37 6.44 9.10 3.79 4.76 1.07 4.55 0 7.47 

12 6.38 8.82 8.71 3.41 1.77 8.45 5.89 1.36 3.68 2.26 3.48 7.47 0 

 

0 5 10 15 20 25 30 35 40 45 50

40

45

50

55

60

65

Generations

c
o
s
t

Performance Graph - handphone

 

 

Best-Proposed

Best-Moon

Average-Proposed

Average-Moon

 

Figure 4.33: Performance graph for Application Example 2 

 

The computational results show that the proposed GA is able to generate 

feasible sequence without violating precedence constraints. The generated sequence 

obtained by the GA is [0 8 1 3 2 5 4 6 9 7 11 10 12] with minimum cost of $40.81. The 



 

 113 

trend of the best and the average curve in Figure 4.33 looks normal and it is implied 

that the genetic operators used in the proposed algorithm are effective. The summary of 

the results obtained from the experiments are summarized in Table 4.26. 

Table 4.26: Summary of results for test problem 4 

 Gen# Best Convergence time 

(sec) 

Completion time 

(sec) 

Proposed  17 40.81 0.7472 1.704 

Moon  34 40.81 1.718 2.329 

 

c) Application example 3: Assembly line balancing 

In the third example, a simple assembly line balancing (ALB) problem that uses 

the sequencing concept is presented. The purpose of performing task sequencing in this 

assembly line is to find the optimal sequence that comes out with minimum idle time. 

There are costs due to the idle times which represent unused capacities of workers and 

machines. An assembly line is a sequence of workstations, connected together by a 

material handling system, which is used to assemble components into a final product 

[14]. The assembly process consists of a sequence of tasks or work elements. The tasks 

in an assembly process are typically ordered. The assembly line balancing problem is to 

assign a set of tasks to workstation with some measure of performance to be optimized 

under the following restrictions: (i) each task is assigned to one and only one 

workstation, (ii) the precedence relationship among the tasks cannot be violated, and 

(iii) the sum of the task times of any workstation should not exceed the cycle time 

[120]. The purpose of balancing the line is to prevent the occurrence of bottlenecks in 

the final production line which will result in a stoppage and unnecessary accumulation 

of inventory [13].  

Since the task times allotted to workstations may be unequal, parts are produced 

at different speeds on the line. Accordingly, stations may either be starved or a queue 

may build up in front of a station. To regulate the flow of parts, assembly lines are 

often paced. In a paced line, each workstation is given a fixed amount of time called 

cycle time. The cycle time of an assembly line is predetermined by a desired production 

rate. Such production rate is set so that the desired amount of the end product is 



 

 114 

produced within a certain time period. Material handling systems are designed so that 

after every certain cycle time, the system indexes, advancing the part to the next 

station. If a workstation finishes in less than cycle time given, it is idle for the 

remaining period. The difference between the time required by any station to complete 

its operations and the cycle time is called the idle time of the station. It is conventional 

to take the sum of all station idle times, i.e. total idle time, as a measure of the 

efficiency of the design of a line. 

The ALB problem is usually presented by the precedence graph. Consider a 

precedence graph in Figure 4.32 which specifies the order or sequence in which the 

task must be performed. The number in each circle refers the task number, and the 

number above the circle refers the duration of the operation (task). The arrow 

represents directions of flow of operation. The variable of interest for the ALB consists 

of a number of tasks, processing time, precedence relationships, and the cycle time 

(CT). Several goals can be achieved such as to minimize the number of workstations 

(m), minimize the idle time (Tid), and maximize the line efficiency, E. Formulations of 

idle time and line efficiency are given in (4-1) and (4-2) respectively, where Ti is the 

processing/task time of the ith workstation.  

1

( )
m

id i

i

T CT T


 
 

      (4-1) 

1

/( )
m

i

i

E T mCT



 

(4-2) 

For ALB problem, the objective function is different from TSP, and it is not 

classified as TSP. However the proposed GA procedure can be used to generate the 

feasible sequence of the task and the objective function is developed to obtain the 

minimum idle time in the station.  

The example presents in this thesis use a benchmark data sets from Scholl [121] 

called Gunther problem which consists of 35 tasks and 45 precedence constraints as 

depicted in Figure 4.34. The total task time and the predetermined cycle time of the 

Gunther problem are 483 min and 60 min, respectively. The GA parameters setting 

used in the experiment are as follows; pop_size = 20, Pc = 0.9, Pm = 0.1, and ngener = 

50. The coding of the objective function is supplied in APPENDIX A-7.  The results in 



 

 115 

terms of the number of stations, total idle time, and the line efficiency are presented in 

Table 4.27. These results are compared with the results obtained by S. Suwannarongsri 

and D. Puangdownreong [122] which used Tabu search to simulate the same problem.  

 

 

 

 

 

 

Figure 4.34: Precedence diagram for Gunther problem [122] 

 

Table 4.27: Optimal solution for Gunther problem 

Optimal task sequence: 1,5,6,2,3,7,4,11,8,12,18,19,17,10,14,15,16,9,13,20,21, 

22,30,31,23,24,25,26,27,28,34,29,32,33,35 

Station Assigned Task Processing Time (min) Idle Time (min) 

1 
1,5,6,2,3,7 59 1 

2 
4,11,8 50 10 

3 
12,18,19,17 53 7 

4 
10,14,15 51 9 

5 
16,9 51 9 

6 
13,20,21 58 2 

7 
22,30,31,23,24 59 1 

8 
25,26,27,28,34,29,32 60 0 

9 
33,35 42 12 

Total Idle Time, Tid 57 

 

29

1

2 3 4 11

65

10

12
18 19

14

7

8 9

15 16

17

20

21

22 23

25

30

26

24

27

28

29

33

35

34

32
31

13

3

6 14

5 22 23
40

2

1

2

55

29

2

192

2

19 29

225

2

30

30

6

10

23

16 23

55
5

40
2

29

1

2 3 4 11

65

10

12
18 19

14

7

8 9

15 16

17

20

21

22 23

25

30

26

24

27

28

29

33

35

34

32
31

13

3

6 14

5 22 23
40

2

1

2

55

29

2

192

2

19 29

225

2

30

30

6

10

23

16 23

55
5

40
2



 

 116 

Based on equation (4-1), the total idle time, Tid = (60-59) + (60-50) + (60-53) + (60-51) 

+ (60-51) + (60-58) + (60-59) + (60-60) + (60-42) = 57 minutes 

The optimal number of workstations (m) obtained from GA are 9 stations, and the total 

processing time (Ti) is 483 minutes. Based from these data, the line efficiency, E can be 

obtained using equation (4-2). 

The line efficiency, E= (483/9*60) =89.44% 

 

Table 4.28: Summary of results for gunther problem 

 Suwannarongsri & 

Puangdownreong  
Proposed method 

Total idle time 117 min 57 min 

No. of station 10 9 

Line efficiency 80.5% 89.44% 

 

Table 4.28 shows the results comparison between the proposed GA used in this 

example and the results obtained from [122]. The utilization of 9 workstations gives a 

great reduction in idle time as well as improving the line efficiency. The idle time 

reduces 51.28% and line efficiency improves about 10% of the results reported from 

[122]. Therefore the proposed GA procedure use in this study outperforms the method 

used from the previous work. The proposed GA well address the number of tasks 

assigned for each workstation giving a minimum idle time in the workstation as well as 

minimizes the number of stations for a given cycle time. The result of such solution 

would be increased production efficiency. The performance of the proposed algorithm 

to come out with the minimum idle time is also compared with the Moon’s algorithm. 

The performance graph for both algorithms is depicted in Figure 4.35.  

 



 

 117 

0 5 10 15 20 25 30 35 40 45 50
50

60

70

80

90

100

110

120

130

140

150

Generations

id
le

 t
im

e

Performance Graph - gunther

 

 

Best-Proposed

Best-Moon

Average-Proposed

Average-Moon

 

Figure 4.35: Performance graph for Application Example 3 

 

 

 

 

 

 

 

 



 

 118 

Chapter 5 

Discussions 

 

In this chapter the results of the experiments as illustrated in the previous 

chapter are discussed. The discussion is divided into two sections. The first section 

discusses the results of TSP experiments while the second section discusses the results 

of TSPPC experiments. 

 

5.1 TSP Experiments 

The purpose of TSP experiments is to evaluate and to test the effectiveness of 

the GA procedure that uses different combination of genetic operators described in the 

methodology. This procedure is further modified to solve TSP with precedence 

constraints (TSPPC). All procedures developed for TSP in chapter 3 maintained the 

crossover and mutation techniques. The only difference in the procedure is the selection 

strategy used for parent selection.  

To indicate the quality of the returned solution, the relative error is calculated 

based on equation (2-14). The percentage of relative error of the best solution obtained 

with respect to the known optimal solution is presented in Table 5.1. The results from 

this table demonstrates that GA with rank-based Roulette Wheel selection (i.e. RBOX 

algorithm) is superior than that of a tournament and proportional Roulette Wheel where 

the results of RBOX algorithm do not give any error (0%) from the optimal solution for 

the three instances: burma14, bay29, and dantzig42, and less than 5% for eil51. TSOX 

algorithm apparently gives better results than PROX algorithm for larger size instances. 

 

 

 



 

 119 

Table 5.1: Percentage of relative error for all TSP instances 

Problem PROX (%) RBOX (%) TSOX (%) 

burma14 0 0 0 

bay29 0.003 0 0.003 

dantzig42 9.57 0 2.36 

eil51 16 4.47 12 

 

The performance graph in Figure 5.1 through Figure 5.4 shows the minimum 

distance found by the algorithm in each generation. As can be seen from the graphs, the 

distance reduced towards an optimal solution as the generation increased and finally 

converged at a certain generation.  For instance in dantzig42, it shows that the 

algorithm with TSOX and PROX algorithm converged at generation 82 and 195 

respectively, where there is no more improvement made after this generation. On the 

other hand RBOX algorithm is able to reach an optimal solution without premature 

convergence. Although with slower convergence, RBOX performs highly competitive 

in terms of solution quality, achieving minimum travelling distance.  

The graph in Figure 5.5 compares the iteration time between three different 

procedures. Obviously, RBOX algorithm consumes the largest iteration time, hence 

high computation time due to a large number of generations involved to complete the 

evolution process. The iteration time for TSOX algorithm is somewhat better than 

PROX algorithm in producing comparable results of minimum travelling distance. This 

indicates that in general tournament selection is superior to proportional Roulette 

Wheel selection in achieving a good quality solution with less computation time.  

It has been stated in the literature that individuals are selected for reproduction 

on the basis of their fitness, i.e., the fittest individuals have a higher likelihood of 

reproducing [71]. Selection determines which individuals will reproduce. The results of 

the experiments confirmed that the selection method can have an important impact on 

the effectiveness of a GA. 



 

 120 

Performance Graph (burma14)

0

10

20

30

40

50

60

0 20 40 60 80 100

Generation

D
is

ta
n

c
e PROX

TSOX

RBOX

 

Figure 5.1: Performance comparisons between PROX, RBOX and TSOX for burma14 

Performance Graph (bay29)

0

5000

10000

15000

20000

25000

0 50 100 150 200 250 300 350 400 450 500

Generation

D
is

ta
n

c
e PROX

TSOX

RBOX

 

Figure 5.2: Performance comparison between PROX, RBOX and TSOX for bay29 



 

 121 

Performance Graph (dantzig42)

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400

Generation

D
is

ta
n

c
e PROX

TSOX

RBOX

 

Figure 5.3: Performance comparisons between PROX, RBOX and TSOX for dantzig42 

Performance Graph (eil51)

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400

Generation

D
is

ta
n

c
e PROX

TSOX

RBOX

 

Figure 5.4: Performance comparisons between PROX, RBOX and TSOX for eil51 



 

 122 

Iteration time comparison

0

20

40

60

80

100

120

140

160

burma14 bay29 dantzig42 eil51

Instance

T
im

e
 (

s
e
c
)

PROX

RBOX

TSOX

 

Figure 5.5: Iteration time comparisons between PROX, RBOX and TSOX algorithm 

 

5.2 TSPPC Experiments 

The computational experiment for TSPPC was divided into two parts. In the 

first part of the experiment, three test problems with known optimal solution (test 

problem 1, test problem 2 and test problem 3) and one randomly generated test problem 

(test problem 4) were run at two different algorithms, i.e. proposed algorithm and 

Moon’s algorithm. The test problem with larger size instances (test problem 5) were 

tested in order to observe the behaviour of both algorithms. In the second part of the 

experiment, three simple application examples benchmarked from the published papers 

were tested to further demonstrate the effectiveness of the proposed algorithm. The 

proposed and the Moon’s algorithm were compared and the results were monitored in 

terms of optimal solution (denoted by ‘Best’), the number of generations to come out 

with the optimal solution (denoted by ‘Gen#’), the convergence time and the feasible 

sequence of the optimal solution. 

 



 

 123 

Table 5.2: Summary of results for all TSPPC test problems 

Test Problem 
Proposed Moon 

Gen# Best 

Convergence 

time (sec) Gen# Best 

Convergence 

time (sec) 

6 tasks & 6 PC 1 39 0.1786 1 39 0.2226 

8 tasks & 9 PC 2 21.25 0.211 13 21.25 0.3319 

20 tasks & 31 PC 39 61 6.856 76 61 15.75 

51 tasks & 71 PC 193 184 1358 163 256 1109 

100 tasks & 141 PC 174 441 1058 381 559 1240 

Application ex. 1 1 1.755 1.1939 1 1.755 0.276 

Application ex. 2 17 40.81 0.7472 34 40.81 1.718 

Application ex. 3 1 57 0.501 1 57 1.950 

 

The overall results of the experiment are summarized in Table 5.2. For test 

problem with known optimal solution, the results have shown that both algorithms were 

capable to achieve similar quality of solution as reported in the published papers. 

However the proposed algorithm has better results in terms of number of generations 

and computation time to converge on the optimal solution. For larger size problem (i.e. 

51 tasks & 71 PC, and 100 tasks & 141 PC), the proposed algorithm had produced a 

better quality of the solution compared to a Moon’s algorithm. The proposed algorithm 

was capable to generate optimal solutions with less number of generations and less 

convergence time for all test problems. For instance, the convergence time improved 

130% by using the proposed algorithm for test problem 3 (i.e. 20 tasks & 31 PC). This 

indicates that the proposed algorithm performs highly competitive in terms of solution 

quality and has better efficiency compared to a Moon’s algorithm.  

One of the factors that contribute to better efficiency is because the proposed 

algorithm used sequence of task as a chromosome. When the sequence of task as 

chromosome is straight away used, the changes in chromosome will directly affect to 

the similar element in the sequence of task. Therefore, the changes of sequence will 

directly follow the GA towards a better solution.  

The iteration time for the Moon’s algorithm to complete the evolution process 

(i.e. completion time) is much higher than the proposed algorithm. This result is 



 

 124 

associated with the use of a priority factor in the Moon’s algorithm. It requires longer 

iteration time to complete one generation because it needs to compare the highest 

priority for all available tasks before selecting them to be placed in sequence. It is 

believed that the ‘earliest position’ based task assignment technique that's used in the 

proposed algorithm can substantially improve the efficiency of the algorithm, 

particularly for large problem instances. The ‘earliest position’ based task assignment 

technique eliminates the procedure of comparing the priority with each of the tasks in 

the chromosome.  

For test problem 4 (51 tasks & 71 PC), the proposed algorithm had produced 

very encouraging result in terms of the quality of solution. Although slow convergence 

which requires longer computation time compared to a Moon’s algorithm, the quality 

of the solution is still promising. For larger problems, it may not be able to achieve the 

optimal solution, however near optimal solution with feasible tour is guaranteed. There 

is always a trade-off between computation time and the quality of solution. If quality of 

the solution is the main concern and computation time is still negotiable, then rank-

based selection strategy may be used to replace the roulette wheel selection.  

It is also observed that the ‘Average’ curve for Moon seems to be stagnant 

which was apparently being seen in all test problems.  This indicates that the crossover 

technique used in the procedure was not capable to introduce the new fittest offspring 

and therefore the search space contains almost identical individuals which have the 

same characteristics as their parents. Moon’s algorithm showed a very slow progress 

and finally fails to converge on the best/optimal solution.  

It can be said that the genetic operators used in the proposed approach are 

having the characteristics to exploit and explore. For all the experiments done, the 

progress of the curve in the performance graphs indicates that the combinations of 

linear order crossover and inversion mutation are able to preserve good chromosomes 

and add new chromosomes in the population. This is because in linear order crossover, 

the absolute positions of some elements of the first parent are retained and the relative 

positions of some elements of the second parent are also kept. This in turns will transfer 

the good characteristics of the parents to their offspring. The use of inversion mutation 

on the other hand provides sufficient variance in fitness across the population to drive 

further evolution. Based on analysis and survey, it is suggested that a GA for TSPPC 



 

 125 

should utilise the linear order crossover as this is simple to implement which is also the 

most appropriate and commonly crossover technique applied for TSP.  

The application examples presented in the last part of chapter 4 verified that the 

proposed algorithm was a stable and robust approach to solve TSPPC problem. The 

results of the experiments demonstrate that the genetic algorithm approach combined 

with a topological sort procedure can be applied for solving assembly and disassembly 

sequence as well as Assembly line balancing problems. The role of topological sort was 

to generate feasible task sequence while the GA was to further improve the quality of 

the solution. The computational results revealed that the proposed approach is superior 

to the Moon’s approach in both quality of the solution and computation time.  It is 

believed that a GA with these claimed results will become a robust tool for TSPPC and 

potential applications in manufacturing industry.  

 

5.2.1 Individual Fitness diversity 

In order to measure the diversity of the individual fitness in the population, the 

standard deviation is calculated and plotted. Figure 5.6 and Figure 5.7 shows the 

standard deviation versus the number of generations for test problem 3 (20 tasks & 31 

PC) and test problem 4 (51 tasks & 71 PC), respectively. The trends of the curves for 

both test problems are almost similar. The standard deviation for Moon’s algorithm 

does not decrease and looks slightly increase towards the generations. This indicates 

that the population diversity is maintained, however the algorithm does not introduce 

new fitter individuals in the population. On the other hand the standard deviation for 

the proposed algorithm steadily decreases towards the generations. This implies that the 

population diversity is reduced and the population contains a large number of fitter 

individuals. 

 



 

 126 

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Generations

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

 

 

proposed

moon

 

Figure 5.6: Standard deviation vs. generations graph for test problem 3 

0 20 40 60 80 100 120 140 160 180 200
10

20

30

40

50

60

70

80

Generations

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

 

 

proposed

moon

 

Figure 5.7: Standard deviation vs. generations graph for test problem 4 



 

 127 

5.2.2 CPU Time   

 

0 100 200 300 400 500

0

500

1000

1500

2000

2500

Generations

C
P

U
 t

im
e
 (

s
e
c
)

CPU Time vs. Generations

 

 

Proposed 6 Tasks

Moon 6 Tasks

Proposed 20 Tasks

Moon 20 Tasks

Proposed 51 Tasks

Moon 51 Tasks

Proposed 100 Tasks

Moon 100 Tasks

Proposed 200 Tasks

Moon 200 Tasks

 

Figure 5.8: CPU time vs. number of generations 

The graph in Figure 5.8 shows the CPU time versus the number of generations 

for 5 tasks, 20 tasks, 51 tasks, 100 tasks and 200 tasks problem size. From the graph, as 

the number of generation increases, the CPU time increases linearly. The trend is 

steadily increasing from 100 generations to 400 generations. Although the CPU time 

for Moon algorithm is slightly better compared to the proposed algorithm especially for 

large size problems, however this does not indicate that Moon algorithm produces 

better result at this particular number of generations. For all problems tested, the 

proposed algorithm achieved better quality of the solution (i.e. small transition time) 

compared to a Moon’s algorithm with almost similar CPU time.  Moon’s algorithm 

converges early and end up with trapping at a local optimum rather than global 

optimum, whereas the proposed algorithm continuously search for the best solution and 

does not trap at a local optimum. 



 

 128 

6 20 51 100 200

0

500

1000

1500

2000

2500

Tasks

C
P

U
 t

im
e
 (

s
e
c
)

CPU Time vs. Tasks for Moon Algorithm

 

 
Gen# 100

Gen# 200

Gen# 300

Gen# 400

6 20 51 100 200

0

500

1000

1500

2000

2500

Tasks

C
P

U
 t

im
e
 (

s
e
c
)

CPU Time vs. Tasks for Proposed Algorithm

 

 

Gen# 100

Gen# 200

Gen# 300

Gen# 400

 

Figure 5.9: CPU time vs. number of tasks 

In Figure 5.9, the CPU time is plotted against various problem sizes for different 

number of generations. The trend for proposed and Moon’s algorithm are about similar 

for all test problems. From the graphs, it can be seen that CPU time increases 

exponentially with the number of tasks. As the size of the problem increases, the CPU 

time increases tremendously. For instance, in the proposed algorithm, the CPU time at 

generation 100 increases from 0.369 seconds for 5 tasks problem to 536.729 seconds 

for 200 tasks problem. Likewise for Moon’s algorithm, the CPU time at generation 100 

increases from 0.547 seconds for 5 tasks problem to 482.958 seconds for 200 tasks 

problem. In this experiment, the population size is set similarly for both algorithms.  

 

 

 

 

 

 

 



 

 129 

Chapter 6 

Conclusions & Future Work 

 

This chapter concludes the research with respect to the research objectives and 

the main contributions of the research. Then, some potential avenues for further 

research are presented. 

 

6.1  Conclusions 

The aim of the study was to develop genetic algorithm in order to solve TSP 

subject to precedence constraints. An efficient algorithm must be able to generate 

feasible and optimal solution with less number of generations and fast iteration time.  In 

relation to the research objectives set at the beginning of the thesis, the study had 

successfully 

1. Covered the operation and components of GA and demonstrated the mechanism 

of each GA components 

2. Developed an efficient GA procedure for TSP and TSPPC in order to generate 

feasible and optimal solution 

3. Compared and verified the quality of solution and the performance of the 

proposed algorithm with a previously developed algorithm (i.e. Moon’s 

algorithm)  

4. Applied the proposed algorithm to various TSPPC problems benchmarked from 

related published papers 

Although Moon et al. claimed that their algorithm to solve TSPPC is efficient, 

however in comparison to the approach developed in this thesis; it requires a larger 

number of generations and longer computation time to obtain the optimal solution. This 

is because the Moon’s algorithm requires more steps to compare priorities before 

selecting the next task. Therefore, it takes longer time and more generations to come 

out with an optimal solution. The ‘earliest position’ based selection of task was 



 

 130 

implemented in the proposed algorithm which helped to reduce the iteration time, 

hence improve the GA performance. In addition, the utilisations of simple linear order 

crossover technique combined with inversion mutation were able to introduce new 

fitter individuals in the search space hence avoiding premature convergence.  

In conclusions, the proposed GA approach combined with a topological sort 

procedure developed in this thesis is effective in solving TSP subject to precedence 

constraints with the objective to minimise the cost/time/distance. The role of 

topological sort is to ensure only feasible solutions exist in the search space while the 

GA operators is to further improve the quality of the solution. The proposed GA 

approach has proved suitable for solving the TSPPC and it is obvious that it could be 

easily applied to all other types of process sequencing problem which can be modelled 

as TSPPC.  

 

6.2 Summary of contributions 

The contributions to this field cover the development of a GA procedure to 

solve TSPPC, the analysis and improvement of recently proposed algorithm, and the 

exploration of new applications of the specific sequencing problem. From the review 

and experimental work, the main contributions of the research can be summarized as 

follows; 

1. Developed TSPPC procedure – developed a clear genetic algorithm procedure 

for TSPPC in which route repair based topological sort is inserted in the 

procedure in order to generate only feasible chromosomes. 

2. Developed fitness evaluation procedure for TSPPC – the objective function to 

evaluate the fitness of each chromosome has been developed. 

3. Improved GA performance – the proposed algorithm has used ‘earliest position’ 

selection of tasks in order to reduce iteration time, hence improved GA 

performance.   

4. Improved quality of the solution – the proposed algorithm has used simple 

linear order crossover and inversion mutation to introduce new fitter 

chromosomes from generations to generations in order to prevent premature 

convergence. 



 

 131 

6.3  Suggestions for future work 

This thesis leads to a number of opportunities for future research. The 

contributions and observations made in this work also pose a number of interesting 

open questions for the specific research issues attacked in this thesis for the research in 

the field of optimisation, in general. The following are possible areas for further 

investigation that could prove profitable to the genetic algorithm community and also to 

other research areas. 

Apply different GA operators 

The proposed GA procedure in this thesis appears to find good solutions for the 

TSPPC, however it depends very much on the way the problem is encoded and which 

parent selection, crossover and mutation methods are used. It seems that the biggest 

problem with the GA devised for the TSPPC is that it is difficult to maintain structure 

from the parent chromosomes. Perhaps a better crossover or mutation routine that 

retains structure from the parent chromosomes would give a better solution that has 

already found for some TSPPC. Therefore, some further works could be conducted to 

investigate the efficiency and effectiveness of the various crossover and mutation 

operators introduced in the earlier chapter.  

Perform GA parameter study 

The quality of the solution and the performance of the proposed GA also 

depend on various control parameters such as the population size, the crossover rate, 

the mutation rate and the generation gap. The GA parameter study could be performed 

to investigate the main effect and interaction among the parameters towards the quality 

of the solution and the performance of the GA.  

Real world case study 

In this thesis, a demonstration of application examples is benchmarked and 

simplified from the published papers. In the future, real case study with real data 

collected from the industry could be conducted especially that relate with assembly and 

disassembly sequence planning and scheduling problem.  

 



 

 132 

Develop GA for MTSP with precedence constraints 

 In this thesis, a single salesman with precedence constraints is considered in the 

tour. In many real problem situations, more than a single salesman with multiple 

constraints present in the tour/operation. An example of the problem which considers 

more than one salesman is vehicle routing scheduling with precedence, time and 

capacity constraints. Another example is sequencing parallel machine with sequence 

dependent setup times and costs. Therefore, an efficient algorithm which can handle 

multiple salesmen with precedence constraints should be developed. 

Multi-objective optimisation  

It is also possible to consider multi-objective optimistion for TSPPC problem. 

This is an interesting subject to explore and a more realistic problem to be tackled as 

most of the real problems in manufacturing involve with more than one objective to be 

achieved such as maximising the profit while minimising the cost or maximising 

customer satisfaction (e.g. on time delivery) while minimising on-hand inventories. 

Such objectives are often conflicting in nature in that realizing improvements in one 

often requires accepting inferior solutions for others, i.e. a trade-off must be addressed. 

An example area of study is sequencing mixed-model assembly problem in a just in 

time (JIT) environment where the objectives of dependent setup times and production 

rate are considered simultaneously. Since the objective may conflict with each other, a 

sequence that can optimise both objectives at the same time may not exist. Therefore 

Pareto front must be constructed and can be used to assist the decision making. 

Furthermore, this type of problem is NP-hard, and obtaining multi-objective genetic 

algorithm is a practical option.  

 

 

 

 

 

 



 

 133 

References  

 

[1] T. P. Bagchi, et al., "A review of TSP based approaches for flowshop 

scheduling," European Journal of Operational Research vol. 169, pp. 816-854, 

2006. 

[2] E. L. Lawler, et al., The Traveling Salesman Problem: John Wiley & Sons 

1986. 

[3] S. Chatterjee, et al., "Genetic Algorithms and Traveling Salesman Problems," 

European Journal of Operational Research, vol. 93, pp. 490-510, 1996. 

[4] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, Second Edition ed.: 

John Wiley & Sons, Inc., 2004. 

[5] C. M. Reidys and P. F. Stadler, "Combinatorial Landscapes," SIAM review, 

Society for Industrial and Applied Mathematics, vol. 44, No. 1, pp. 3-54, 2002. 

[6] C. Moon, et al., "An efficient genetic algorithm for the traveling salesman 

problem with precedence constraints," European Journal of Operational 

Research, vol. 140, pp. 606-617, 2002. 

[7] K. Fagerholt and M. Christiansen, "A traveling salesman problem with 

allocation, time window and precedence constraints - an application to ship 

scheduling," International Transactions in Operational Research, vol. 7, pp. 

231-244, 2000. 

[8] J. Hurink and S. Knust, "A tabu search algorithm for scheduling a single robot 

in a job-shop environment," Discrete Applied Mathematics vol. 119, pp. 181-

203, 2002. 

[9] L. M. Gambardella and M. Dorigo, "An ant colony system hybridized with a 

new local search for the sequential ordering problem," Informs Journal on 

Computing, 2000. 

[10] J. Renaud, et al., "A heuristic for the pickup and delivery traveling salesman 

problem," Computers & Operations Research vol. 27, pp. 905-916, 2000. 

[11] M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the 

Theory of NP-Completeness. New York: W. H. Freeman and company. 

[12] T. G. Stutzle, "Local search algorithms for combinatorial problems-analysis, 

improvements, and new applications," PhD Thesis, Technical University 

Darmstadz, 1998. 

[13] G. Farber and A. Coves, "Overview on sequencing in mixed model flowshop 

production line with static and dynamic context," Universitat Politecnica De 

Catalunya, 2005. 

[14] B. Rekiek and A. Delchambre, Assembly line design: The balancing of mixed-

model hybrid assembly lines with genetic algorithms: Springer Series in 

Advanced Manufacturing, Springer-Verlag London Limited, 2006. 

[15] G. Mitchell, "Evolutionary Computation Applied to Combinatorial Optimisation 

Problems," PhD Thesis, School of Electronic Engineering, Dublin City 

University, 2007. 

[16] K. Bryant, "Genetic Algorithms and the Traveling Salesman Problem," Dept of 

Maths, Harvey Mudd College, 2000. 

[17] C. R. Reeves, "A Genetic Algorithm for Flowshop Sequencing," Computers & 

Operations Research, vol. 22, pp. 5-13, 1995. 

[18] M. T. Keller, "Knot theory: history and applications with a connection to graph 

theory," Thesis, Dept of Maths, North Dakota State University, 2004. 



 

 134 

[19] P. Ji and W. Ho, "The traveling salesman and quadratic assignment problems: 

integration, modeling and genetic algorithm," in Proceedings of International 

symposium on OR and its applications, 2005. 

[20] L. J. Schmitt, "Performance characteristics of alternative genetic algorithmic 

representation: An empirical study," European Journal of Operational Research 

vol. 108, pp. 551-570, 1998. 

[21] N. Cummings. 5/2/2010). A Brief History of TSP. Available: 

http://www.orsoc.org.uk/about/topic/news/article_news_tspjune.html 

[22] G. Dantzig, et al., "Solution of a large-scale traveling salesman problem," 

Operations Research Letters, vol. 2, pp. 393-410, 1954. 

[23] D. Applegate, et al., "Implementing the Dantzig Fulkerson-Johnson Algorithm 

for large traveling salesman problems," Mathematical programming vol. 97, pp. 

91-153, 2003. 

[24] A. Schrijver, "On the history of combinatorial optimization (till 1960)," 1998. 

[25] W. Cook. 13/4/2010). Milestone in the Solution of TSP Instances. Available: 

http://www.tsp.gatech.edu/history/milestone.html 

[26] G. Reneilt. 20/12/2009). TSPLIB Available: http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/ 

[27] P. Larranaga and C. M. H. Kuijpers, "Genetic algorithms for the traveling 

salesman problem: A review of representation and operators," in Artificial 

Intelligence Review. vol. 13, ed: Kluwer Academic Publishers, 1999, pp. 129-

170. 

[28] C. W. Ping, "A visual genetic algorithm tool, Masters Dissertation," Faculty of 

Computer Science and Information Technology, University of Malaya, 2006. 

[29] C. A. Tovey, "Tutorial on Computational Complexity," Informs Journal on 

Computing, vol. 32, pp. 30-61, 2002. 

[30] M. Grotschel and O. Holland, "Solution of large-scale symmetric travelling 

salesman problems," Mathematical Programming, vol. 51, pp. 141-201, 1991. 

[31] A. Allahverdi, et al., "A review of scheduling research involving setup 

considerations," The International Journal of Management Science, vol. 27, pp. 

219-239, 1999. 

[32] A. E. Carter, "Design and application of Genetic Algorithms for the multiple 

traveling salesperson assignment problem," PhD Thesis, Virginia Polytech 

Institute, 2003. 

[33] T. Bektas, "The multiple traveling salesman problem: an overview of 

formulations and solution procedures," The International Journal of 

Management Science, vol. 34, pp. 209-219, 2006. 

[34] A. Guinet, "Scheduling sequencing-dependent jobs on identical parallel 

machines to minimize completion criteria," International Journal of Production 

Research, vol. 31, pp. 1579-1594, 1993. 

[35] K. Kotecha and N. Gambhava, "Solving Precedence Constraint Traveling 

Salesman Problem Using Genetic Algorithm," in Proceedings of National 

Conference on Software Agents and embedded System, 2003. 

[36] R. K. Wysocki, Effective Project Management: traditional, agile, extreme, 5th 

ed. . Indianapolis: Wiley Publishing, 2009. 

[37] H. N. Psaraftis, "k-Interchange procedures for local search in a precedence-

constrained routing problem," European Journal of Operational Research, vol. 

13, pp. 391-402, 1983. 

[38] L. F. Escudero, "An inexact algorithm for the sequential ordering problem," 

European Jornal of Operational Research, vol. 37, pp. 236-249, 1988. 

http://www.orsoc.org.uk/about/topic/news/article_news_tspjune.html
http://www.tsp.gatech.edu/history/milestone.html
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/


 

 135 

[39] L. M. Gambardella and M. Dorigo, "HAS-SOP: Hybrid ant system for the 

sequential ordering problem," 1997. 

[40] A. Mingozzi, et al., "Dynamic programming strategies for the traveling 

salesman problem with time window and precedence constraints," Operations 

Research vol. 45, pp. 365-77, 1997. 

[41] S. C. Sarin, et al., "A precedence-constrained asymmetric traveling salesman 

model for disassembly optimization," IIE Transactions, vol. 38, pp. 223-237, 

2006. 

[42] E. Kongar and S. M. Gupta, "Disassembly sequencing using genetic algorithm," 

International Journal of Advanced Manufacturing Technology, vol. 30, pp. 497-

506, 2006. 

[43] P. Imtanavanich and S. M. Gupta, "Generating disassembly sequences for 

multiple products using genetic algorithm," Proceedings of the 2007 POMS-

Dallas Meeting, 2007. 

[44] Y. J. Tseng, et al., "Integrated assembly and disassembly sequence planning 

using a GA approach," International Journal of Production Research, vol. 48, 

pp. 5991-6013, 2009. 

[45] C. L. P. Chen, "AND/OR Precedence Constraint Traveling Salesman Problem 

and its Application to Assembly Schedule Generation," Department of 

Computer Science and Engineering, Wright State University, Dayton, OH, 

1990. 

[46] K. I. Srikanth and B. Saxena, "Improved genetic algorithm for the permutation 

flowshop scheduling problem," Computers & operations Research vol. 31, pp. 

593-606, 2004. 

[47] Z. Othman, "An integration approach in production scheduling using GA," PhD 

Thesis, Universiti Sains Malaysia, 2002. 

[48] C. Dimopoulos and A. Zalzala, "Recent developments in evolutionary 

computation for manufacturing optimization: Problems, solutions, and 

comparisons," IEEE Transactions on evolutionary computation, vol. 4, 2000. 

[49] M. W. P. Savelsberg and M. Sol, "The general Pickup and delivery problem," 

School of Industrial and systems eng. GIT, Atlanta, USA. 

[50] G. R. Bitran and S. M. Gilbert, "Sequencing Production on Parallel Machines 

with Two Magnitudes of Sequence Dependent Setup Costs," MIT Sloan School 

Working Paper, 1989. 

[51] P. C. Gilmore and R. E. Gomory, "Sequencing a one-state variable machine: a 

solvable case of the traveling salesman problem," Operations Research, vol. 12, 

pp. 655-679, 1964. 

[52] F. Yalaoui and C. Chu, "An efficient heuristic approach for parallel machine 

scheduling with job splitting and sequence-dependent setup times," IIE 

Transactions, vol. 35:2, pp. 183-190, 2010. 

[53] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems. New Jersey: 

Prentice Hall, 1995. 

[54] M. Junger, et al., "The Traveling Salesman Problem," in Handbooks in OR & 

MS. vol. 7, ed, 1995. 

[55] S. Minic and R. Krishnamurti, "The multiple TSP with time windows: vehicle 

bounds based on precedence graphs," Operations Research Letters vol. 34, pp. 

111-120, 2006. 

[56] C. Moon and Y. Seo, "Evolutionary algorithm for advanced process planning 

and scheduling in a multi-plant," Computers & Industrial Engineering vol. 48, 

pp. 311-325, 2005. 



 

 136 

[57] S. Kirkpatrick, et al., "Optimization by Simulated Annealing," Science, vol. 

220, pp. 671-680, 1983. 

[58] E. H. L. Aarts and J. K. Lenstra, Local search in combinatorial optimization: 

Princeton University Press, 2003. 

[59] D. Savic, "Single objective vs. Multiobjective optimization for integrated 

decision support," Centre for Water Systems, Department of Engineering 

School of Engineering and Computer Science, University of Exeter, UK. 

[60] A. Jaszkiewicz, "Genetic local search for multi-objective combinatorial 

optimization," European Journal of Operational Research, vol. 137, pp. 50-71, 

2002. 

[61] P. Ngatchou, et al., "Pareto Multi Objective Optimization," University of 

Washington, Seattle, Washington, USA2005. 

[62] H. Tamaki, et al., "Multi-objective optimization by Genetic Algorithms: A 

review," in Proc. 1996 IEEE ICEC, 1996, pp. 517–522. 

[63] M. R. Gholamian, et al., "A hybrid system for multiobjective problems - a case 

study in NP-hard problems," Knowledge-Based Systems, vol. 20, pp. 426–436, 

2007. 

[64] C. Malandraki and R. B. Dial, "A restricted dynamic programming heuristic 

algorithm for the time dependent traveling salesman problem," European 

Journal of Operational Research vol. 90, pp. 45-55, 1996. 

[65] A. Kusiak and G. Finke, "Modeling and solving the flexible forging module 

scheduling problem," Engineering Optimization, vol. 12, pp. 1-12, 1987. 

[66] M. Fischetti and P. Toth, "An additive bounding procedure for combinatorial 

optimization problems," Operations Research, vol. 37, pp. 319-328, 1989. 

[67] K. Fagerholt and M. Christiansen, "A traveling salesman problem with 

allocation, time window and precedence constraints - an application to ship 

scheduling," International Transactions in Operational Research vol. 7, pp. 

231-244, 2000. 

[68] Y. N. Chong, "Heuristic algorithms for routing problems," PhD Thesis, Curtin 

Univ. of technology, 2001. 

[69] C. R. Reeves, Modern heuristic techniques for combinatorial problems: John 

Wiley & Sons, Inc., 1993. 

[70] I. H. Osman and J. P. Kelly, Meta-heuristics: Theory and applications, 2nd 

Edition ed.: Springer-Verlag, 1996. 

[71] J. Holland, Adaptation in Natural and Artificial Systems: Ann Arbor: University 

of Michigan Press, 1975. 

[72] F. Glover, "Tabu Search-Part 1," ORSA Journal on Computing 

vol. 1, 1989. 

[73] S. H. Zanakis and J. R. Evans, "Heuristic methods and applications: A 

categorized survey," European Journal of Operational Research, vol. 43, pp. 

88-110, 1989. 

[74] L. F. Escudero, "On improving a solution to the ATSP with fixed origin and 

precedence relationships," Trabajos de investigacion operativa, vol. 3, pp. 117-

140, 1988. 

[75] E. A. Silver, "An overview of heuristic solution methods," The Journal of the 

Operational Research Society, vol. 55, pp. 936-956, 2004. 

[76] D. Dannenbring, "An Evaluation of Flow Shop Sequencing Heuristics," 

Management Science, vol. 23, pp. 1174–1182, 1977. 

[77] A. A. Hopgood, "Intelligent systems for engineers and scientists," ed: CRC 

Press, 2000. 



 

 137 

[78] J. R. Koza, Genetic programming: on the programming of computers by means 

of natural selection: MIT Press, 1992. 

[79] S.Wang and A. Zhao, "An Improved Hybrid Genetic Algorithm for Traveling 

Salesman Problem," College of Computer and Information Technology, Henan 

Normal University, Xinxiang, China2009. 

[80] G. Vahdati1, et al., "A New Approach to Solve Traveling Salesman Problem 

Using Genetic Algorithm Based on Heuristic Crossover and Mutation 

Operator," presented at the International Conference of Soft Computing and 

Pattern Recognition, 2009. 

[81] L. Zhang, et al., "Optimization and Improvement of Genetic Algorithms 

Solving Traveling Salesman Problem," College of Computer Science, Zhejiang 

University, Hangzhou, China2009. 

[82] F. Farhadnia, "A New Method Based on Genetic Algorithms for Solving 

Traveling Salesman Problem," presented at the International Conference on 

Computational Intelligence, Modelling and Simulation, 2009. 

[83] B. F. Al-Dulaimi and H. A. Ali, "Enhanced Traveling Salesman Problem 

Solving by Genetic Algorithm Technique (TSPGA)," in Proceedings of World 

Academy of Science, Engineering and Technology, 2008, pp. 2070-3740  

[84] G. Zhao, et al., "A genetic algorithm balancing exploration and exploitation for 

the travelling salesman problem," presented at the Fourth international 

conference on Natural Computation, 2008. 

[85] W. Youping, et al., "An advanced Genetic Algorithm for Traveling Salesman 

Problem," presented at the Third International Conference on Genetic and 

Evolutionary Computing, 2009. 

[86] S. S. Ray, et al., "New Operators of Genetic Algorithms for Traveling Salesman 

Problem," in Proceedings of the 17th International Conference on Pattern 

Recognition, 2004. 

[87] J. Y. Potvin, "Genetic Algorithms for the Traveling Salesman Problem," Annals 

of Operations Research, vol. 63, 1996. 

[88] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design. New York: 

Wiley, 1997. 

[89] M. Cepin, Assessment of Power System Reliability: Methods and Applications: 

Springer-Verlag London Limited, 2011. 

[90] K. Katayama and H. Sakamoto, "The efficiency of hybrid mutation genetic 

algorithm for the travelling salesman problem," Mathematical and Computer 

Modelling, vol. 31, pp. 197-203, 2000. 

[91] H. Youssef, et al., "Evolutionary algorithms, simulated annealing and tabu 

search: a comparative study," Engineering Applications of Artificial Intelligence 

vol. 14, pp. 167–181, 2001. 

[92] A. E. Carter and C. T. Ragsdale, "A new approach to solving the multiple 

traveling salesperson problem using genetic algorithms," European Journal of 

Operational Research vol. 175, pp. 246-257, 2006. 

[93] M. Netnevitsky, Artifial intelligence: A guide to intelligent systems. England: 

Pearson Education Limited, 2002. 

[94] Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs, 

2nd Edition ed.: Springer-Verlag, 1994. 

[95] A. Marczyk. 10/11/2010). Genetic Algorithms and Evolutionary Computation. 

Available: http://www.talkorigins.org/faqs/genalg/genalg.html 

[96] Y. J. Kim, et al., "A heuristic-based genetic algorithm for workload smoothing 

in assembly lines," Computers Ops Res. , vol. 25, pp. 99-111, 1998. 

http://www.talkorigins.org/faqs/genalg/genalg.html


 

 138 

[97] D. E. Goldberg and K. Deb, A comparative analysis of selection schemes used 

in genetic algorithms. Los Altos: in: G.J.E. Rawlins (Ed.), Foundations of 

Genetic Algorithms, Morgan Kaufmann, 1991. 

[98] A. P. J. Dreo, P. Siarry, E. Taillard, Metaheuristics for Hard Optimization; 

Methods and Case Studies: Springer Berlin Heidelberg 2006. 

[99] Y. K. Kim, et al., "Genetic algorithms for assembly line balancing with various 

objectives," Computers ind. Engng, vol. 30, pp. 397-409, 1996. 

[100] L. Gouveia and J. M. Pires, "The asymmetric travelling salesman problem and a 

reformulation of the Miller-Tucker-Zemlin constraints," European Journal of 

Operational Research, vol. 112, pp. 134-146, 1999. 

[101] T. Watanabe, et al., "Line balancing using a genetic evolution model," Control 

engineering Practice, vol. 3, pp. 69-76, 1995. 

[102] J. E. Baker, "Adaptive Selection Methods for Genetic Algorithms," presented at 

the Proceedings of the 1st International Conference on Genetic Algorithms, 

Hillsdale, NJ, USA, 1985. 

[103] C. Grosan and A. Abraham, Intelligent Systems: A modern Approach vol. 17: 

Springer-Verlag Berlin Heidelberg, 2011. 

[104] L. Y. Wan and W. Li, "An improved particle swarm optimization algorithm 

with rank-based selection," Proceedings of the seventh International 

Conference on Machine Learning and Cybernetics, 2008. 

[105] E. Parkinson, "Using improvement location and improvement preference to 

create meta-heuristic," PhD Thesis, City University, London, 2004. 

[106] D. B. Fogel, "An Evolutionary Approach to the Traveling Salesman Problem," 

Biology Cybernetic, vol. 60, pp. 139-144, 1988. 

[107] I. M. Oliver, et al., "A Study of Permutation Crossover Operators on the TSP " 

in Grefenstette, J. J. (ed) Genetic Algorithms and Their Applications, 

Proceedings of the Second International Conference, Hillsdale, New Jersey, 

1987. 

[108] I. Kaya and O. Engin, "A new approach to define sample size at attributes 

control chart in multistage processes: An application in engine piston 

manufacturing process," Journal of Materials Processing Technology vol. 183, 

pp. 38-48, 2007. 

[109] W. Banzhaf, "The "Molecular" Travelling Salesman," Biological Cybernetics 

vol. 60, pp. 139-1444:7-14, 1990. 

[110] M. Mitchell, An Introduction to Genetic Algorithms: MIT Press, 1996. 

[111] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine 

Learning: Addison-Wesley, 1989. 

[112] C. A. Coello and G. T. Pulido, "Multiobjective Structural Optimization using a 

Micro-Genetic Algorithm," Structural and Multidisciplinary Optimization, vol. 

30, pp. 388-403, 2005. 

[113] D. E. Goldberg, The Design of Innovation: Lessons from and for Competent 

Genetic Algorithms. Norwell, MA, USA: Kluwer Academic, 2002. 

[114] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms: 

Springer Berlin Heidelberg New York, 2008. 

[115] K. A. DeJong and J. Sarma, "Generation Gaps Revisited," George Mason 

University, USA1993. 

[116] D. Beasley, et al., "An Overview of genetic algorithms: Part 1, Fundamentals," 

University Computing, vol. 2, pp. 58-69, 1993. 

[117] P. Pongcharoen, et al., "Determining optimum Genetic Algorithm parameters 

for scheduling the manufacturing and assembly of complex products," Int. J. 

Production Economics vol. 78, pp. 311–322, 2002. 



 

 139 

[118] M. Mokhlesian, et al., "Economic lot scheduling problem with consideration of 

money time value," International Journal of Industrial Engineering 

Computations, vol. 1, pp. 121-138, 2010. 

[119] A. Homaifar, "A new approach on the travelling salesman problem by genetic 

algorithms," in Proceedings of the 5th International Conference on Genetic 

Algorithms, 1993, pp. 460-466. 

[120] U. Ozcan and B. Toklu, "Multiple-criteria decision-making in two-sided 

assembly line balancing: A goal programmingand a fuzzy goal programming 

models," Computers & Operations Research, vol. 36, pp. 1955-1965, 2009. 

[121] A. Scholl. 25/3/2011). Data of assembly line balancing problems. Available: 

www.assembly-line-balancing.de 

[122] S. Suwannarongsri and D. Puangdownreong, "Optimal assembly line balancing 

using tabu search with partial random permutation technique," International 

Journal of Management Science, vol. 3, pp. 3-18, 2007. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.assembly-line-balancing.de/


 

 140 

APPENDIX A-1  

 

TSP_LIB data for burma14, bay29, dantzig42 and eil51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bay29 

 

1150 1760 

630   1660 

40    2090 

750   1100 

750   2030 

1030  2070 

1650  650 

1490  1630 

790   2260 

710   1310 

840   550 

1170  2300 

970   1340 

510   700 

750   900 

1280  1200 

230   590 

460   860 

1040  950 

590   1390 

830   1770 

490   500 

1840  1240 

1260  1500 

1280  790 

490   2130 

1460  1420 

1260  1910 

360   1980 

 

 dantzig42 

 

170  85 

166  88 

133  73 

140  70 

142  55 

126  53 

125  60 

119  68 

117  74 

99   83 

73   79 

72   91 

37   94 

6    106 

3    97 

21   82 

33   67 

4    66 

3    42 

27   33 

52   41 

57   59 

58   66 

88   65 

99   67 

95   55 

89   55 

83   38 

85   25 

104  35 

112  37 

112  24 

113  13 

125  30 

135  32 

147  18 

147.5     36 

154.5     45 

157  54 

158  61 

172  82 

174  87 

burma14 

 

16.47     96.10 

16.47     94.44 

20.09     92.54 

22.39     93.37 

25.23     97.24 

22.00     96.05 

20.47     97.02 

17.20     96.29 

16.30     97.38 

14.05     98.12 

16.53     97.38 

21.52     95.59 

19.41     97.13 

20.09     94.55 

 

eil51 

 

37    52 

49   49 

52   64 

20   26 

40   30 

21   47 

17   63 

31   62 

52   33 

51   21 

42   41 

31   32 

5    25 

12   42 

36   16 

52   41 

27   23 

17   33 

13   13 

57   58 

62   42 

42   57 

16   57 

8    52 

7    38 

27   68 

 

30   48 

43   67 

58   48 

58   27 

37   69 

38   46 

46   10 

61   33 

62   63 

63   69 

32   22 

45   35 

59   15 

5    6 

10   17 

21   10 

5    64 

30   15 

39   10 

32   39 

25   32 

25   55 

48   28 

56   37 

30   40 

 

 



 

 141 

APPENDIX A-2 

 

function [opt_rte,ave,best]=TSP_PROX(city_location,pop_size,Pc,Pm,ngener) 

 

%Distance matrix calculation 

N=size(city_location,1); 

a=meshgrid(1:N); 

city_distance=reshape(sqrt(sum((city_location(a,:)-city_location(a',:)).^2,2)),N,N); 

 

%generate initial random chromosome 

ngenes=N; %number of genes in a chromosome 

chrom=zeros(pop_size,ngenes); 

for k=1:pop_size 

    chrom(k,:)=randperm(ngenes); 

end 

 

%fitness evaluation in the initial population 

ObjV=zeros(1,pop_size); 

for p=1:pop_size 

    d=city_distance(chrom(p,ngenes),chrom(p,1)); % closed path-same starting and ending point 

    for k=2:ngenes 

        d=d+city_distance(chrom(p,k-1),chrom(p,k)); 

    end 

    ObjV(p)=d;  

end 

 

best=min(ObjV); %minimum distance in the initial population 

ave=mean(ObjV); %average distance in the initial population 

 

for i=1:ngener 

    %Parent selection-proportional roulette wheel 

    proportional; 

     

    %Crossover mechanism-Linear order 

    points=round(rand(floor(numsel/2),1).*(ngenes-1))+1; 

    points=[points round(rand(floor(numsel/2),1).*(ngenes-1))+1]; 

    points=sort((points*(rand(1)<Pc)),2); 

    for j=1:length(points(:,1)) 

        swap_sect=newchrom(2*j-1:2*j,points(j,1)+1:points(j,2)); 

        remain_sect=newchrom(2*j-1:2*j,:); 

        for k=1:ngenes  

            for n=1:length(swap_sect(1,:)) 

                if newchrom(2*j-1,k)==swap_sect(2,n); 

                    remain_sect(1,k)=0; 

                end 

                if newchrom(2*j,k)==swap_sect(1,n); 

                    remain_sect(2,k)=0; 

                end 

            end 

        end 

        [a b c1]=find(remain_sect(1,:)); 

        [a b c2]=find(remain_sect(2,:)); 

        remain_sect=[c1; c2]; 

        newchrom(2*j-1:2*j,:)=[remain_sect(1:2,1:points(j,1)),... 

            flipud(newchrom(2*j-1:2*j,points(j,1)+1:points(j,2))),... 

            remain_sect(1:2,points(j,1)+1:length(remain_sect(1,:)))]; 

    end 

     

    %Mutation mechanism-Inversion (flip left to right) 

    for q=1:numsel 



 

 142 

        if rand(1)<Pm 

            points=sort((round(rand(floor(numsel/2),1).*(ngenes-1))+1)'); 

            newchrom(q,:)=[newchrom(q,1:points(1)),... 

                fliplr(newchrom(q,points(1)+1:points(2))),... 

                newchrom(q,points(2)+1:ngenes)]; 

        end 

    end 

     

    if pop_size-numsel %preserving a part of the parent chromosome population 

        [answ,Index]=sort(fitness); %sort the fitness of parent chromosome & preserving the  

        %best nind-numsel chromosomes 

        chrom=[chrom(Index(numsel+1:pop_size),:);newchrom]; 

    else %replacing the entire parent chromosome population with a new one 

        chrom=newchrom; 

    end 

     

    %Fitness Evaluation 

    ObjV=zeros(1,pop_size); 

    for p=1:pop_size 

        d=city_distance(chrom(p,ngenes),chrom(p,1)); 

        for k=2:ngenes 

            d=d+city_distance(chrom(p,k-1),chrom(p,k)); 

        end 

        ObjV(p)=d; 

    end 

    best=[best min(ObjV)]; %minimum distance in every generation 

    ave=[ave mean(ObjV)]; %average distance in every generation 

     

    [min_dist index]=min(ObjV); 

    opt_rte=chrom(index,:); %optimal route 

    [c d]=min(best); 

end 

 

subplot(1,2,1); 

rtes=opt_rte([1:ngenes 1]); 

plot(city_location(rtes,1),city_location(rtes,2),'r.-'); 

title(['Generation # ',num2str(d),'  Distance: ',num2str(min_dist)]) 

subplot(1,2,2); 

plot(0:ngener,best,0:ngener,ave); 

legend('Best','Average',0); 

xlabel('Generation') 

ylabel('Distance') 

title('Performance Graph'); 

 

sub-program: proportional 

 

fitness=(1./ObjV)'; 

numsel=round(pop_size*0.9); 

cumfit=cumsum(fitness); 

chance=cumfit(pop_size).*rand(numsel,1); 

Mf=cumfit(:,ones(1,numsel));  

Mt=chance(:,ones(1,pop_size))'; 

[selind,idx]=find(Mt < Mf & [zeros(1,numsel); Mf(1:pop_size-1,:)] <= Mt); 

newchrom=chrom(selind,:); 

 

sub-program: rank-based 

 

fitness=(1./ObjV)'; 

fitnessrank=sort(fitness); 

for f=1:pop_size 

    SP=1.1; %selection pressure 



 

 143 

    fitnessrank(f,:)=2-SP+(2*(SP-1)*(f-1)/(pop_size-1)); 

end 

 

cumfit=cumsum(fitnessrank); 

numsel=round(pop_size*0.9); 

chance=cumfit(pop_size).*rand(numsel,1);  

Mf=cumfit(:,ones(1,numsel));  

Mt=chance(:,ones(1,pop_size))'; 

[selind,idx]=find(Mt < Mf & [zeros(1,numsel); Mf(1:pop_size-1,:)] <= Mt); 

newchrom=chrom(selind,:); 

 

sub-program: tournament 

 

Tsize=2; %tournament size is 2 

N=pop_size/Tsize; 

M=1; 

s=0; 

while s<Tsize 

    ts=randperm(pop_size); 

    j=0; ii=0;  

    while j<pop_size/Tsize 

        j=j+1; 

        for k=1:Tsize 

            dists(k)=ObjV(ts(k+ii)); 

            Index(k)=ts(k+ii); 

         end 

         [Y,idx]=min(dists); 

         winners(j,:)=chrom(Index(idx),:); 

         ii=ii+Tsize; 

     end 

     s=s+1; 

     AA(M:N,1:num)=winners; 

     N=N+pop_size/Tsize; 

     M=M+pop_size/Tsize; 

end 

newchrom=AA; 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 144 

APPENDIX A-3 

 

%Proposed TSPPC algorithm for 20 tasks and 38 precedence constraints 

 

clear all; clc; 

 

tic 

 
trans_time = [ 0 2 10 4 10 2 11 9 1 3 7 12 5 8 8 8 13 7 2 12 

 2 0 12 12 4 6 2 8 6 7 14 10 11 9 2 6 13 14 1 3 

 10 12 0 5 8 2 5 9 7 8 13 6 9 2 6 6 14 2 4 5 

 4 12 5 0 6 6 11 12 5 11 4 5 11 1 3 10 17 10 14 14 

 10 4 8 6 0 7 2 13 3 10 6 7 14 8 7 7 5 1 8 13 

 2 6 2 6 7 0 2 6 14 6 9 3 7 13 13 3 13 10 13 3 

 11 2 5 11 2 2 0 11 14 6 4 10 7 6 12 9 10 8 5 4 

 9 8 9 12 13 6 11 0 14 14 3 11 1 1 3 10 6 5 14 14 

 1 6 7 5 3 14 14 14 0 3 12 12 2 12 4 2 14 13 11 7 

 3 7 8 11 10 6 6 14 3 0 8 4 8 5 4 4 3 6 12 11 

 7 14 13 4 6 9 4 3 12 8 0 5 9 4 9 9 6 12 14 11 

 12 10 6 5 7 3 10 11 12 4 5 0 7 6 10 13 7 1 6 8 

 5 11 9 11 14 7 7 1 2 8 9 7 0 1 1 4 1 12 4 6 

 8 9 2 1 8 13 6 1 12 5 4 6 1 0 4 9 12 4 9 13 

 8 2 6 3 7 13 12 3 4 4 9 10 1 4 0 1 1 1 1 5 

 8 6 6 10 7 3 9 10 2 4 9 13 4 9 1 0 8 5 2 14 

 13 13 14 17 5 13 10 6 14 3 6 7 1 12 1 8 0 14 7 10 

 7 14 2 10 1 10 8 5 13 6 12 1 12 4 1 5 14 0 5 6 

 2 1 4 14 8 13 5 14 11 12 14 6 4 9 1 2 7 5 0 14 

 12 3 5 14 13 3 4 14 7 11 11 8 6 13 5 14 10 6 14 0]; 

 
prec_data1 = [ 1 0 0 0 0 0 0 0 

 2 0 1 6 0 0 0 0 

 3 0 1 0 0 0 0 0 

 4 0 1 5 0 0 0 0 

 5 0 1 0 0 0 0 0 

 6 0 0 0 0 0 0 0 

 7 0 2 6 0 0 0 0 

 8 0 2 3 0 0 0 0 

 9 0 3 4 5 10 0 0 

 10 0 18 0 0 0 0 0 

 11 0 5 0 0 0 0 0 

 12 0 7 0 0 0 0 0 

 13 0 14 0 0 0 0 0 

 14 0 7 8 0 0 0 0 

 15 0 8 9 0 0 0 0 

 16 0 10 0 0 0 0 0 

 17 0 16 0 0 0 0 0 

 18 0 11 0 0 0 0 0 

 19 0 12 13 0 0 0 0 

 20 0 13 15 17 19 0   0 ]; 

 

[pn,pm]=size(prec_data1); 

rand('seed',1.4929e+009); %seed to set the same number every time run the program 

num=length(trans_time(1,:)); 

 



 

 145 

%genetic parameters 

pop_size=150;   

ngenes=num;  

Pc=0.6;  

Pm=0.1;  

ngener=100;  

 

%initialize random chromosomes 

chrom=zeros(pop_size,ngenes); 

for k=1:pop_size 

    chrom(k,:)=randperm(ngenes); 

end 

chrom; %chromosomes in the initial population 

 

% repairing chromosomes in the population taking into account precedence constraint route_repair; 

 

routtemp; %repaired chromosomes (feasible route) 

 

%Fitness evaluation  

ObjV=zeros(1,pop_size); 

for p=1:pop_size 

    d=0; %open path (different start and end point) 

    for k=2:ngenes 

        d=d+trans_time(routtemp(p,k-1),routtemp(p,k)); 

    end 

    ObjV(p)=d;  

end 

best=min(ObjV); 

ave=mean(ObjV); 

 

%genetic operators 

ccount=0; 

for i=1:ngener 

    %parent selection mechanism-proportional roulette wheel 

    fitness=(1./ObjV)'; 

    numsel=round(pop_size*0.9); 

    cumfit=cumsum(fitness); 

    chance=cumfit(pop_size).*rand(numsel,1); 

    Mf=cumfit(:,ones(1,numsel)); 

    Mt=chance(:,ones(1,pop_size))'; 

    [selind,idx]=find(Mt < Mf & [zeros(1,numsel); Mf(1:pop_size-1,:)] <= Mt); 

    newchrom=chrom(selind,:); 

     

    %Crossover mechanism-Linear order 

    point1=round(rand(floor(numsel/2),1).*(ngenes-1))+1; 

    point2=round(rand(floor(numsel/2),1).*(ngenes-1))+1; 

    points=[point1 point2]; 

    points=sort((points*(rand(1)<Pc)),2); 

    for j=1:length(points(:,1)) 

        swap_sect=newchrom(2*j-1:2*j,points(j,1)+1:points(j,2)); 

        remain_sect=newchrom(2*j-1:2*j,:); 

        for k=1:ngenes 

            for n=1:length(swap_sect(1,:)) 

                if newchrom(2*j-1,k)==swap_sect(2,n); 

                    remain_sect(1,k)=0; 

                end 

                if newchrom(2*j,k)==swap_sect(1,n); 

                    remain_sect(2,k)=0; 

                end 

            end 

        end 



 

 146 

        [a b c1]=find(remain_sect(1,:)); 

        [a b c2]=find(remain_sect(2,:)); 

        remain_sect=[c1; c2]; 

        newchrom(2*j-1:2*j,:)=[remain_sect(1:2,1:points(j,1)),... 

            flipud(newchrom(2*j-1:2*j,points(j,1)+1:points(j,2))),... 

            remain_sect(1:2,points(j,1)+1:length(remain_sect(1,:)))]; 

    end 

     

    %Mutation mechanism-Inversion (flip left to right) 

    for q=1:numsel 

        if rand(1)<Pm 

            points=sort((round(rand(floor(numsel/2),1).*(ngenes-1))+1)'); 

            newchrom(q,:)=[newchrom(q,1:points(1)),... 

                fliplr(newchrom(q,points(1)+1:points(2))),... 

                newchrom(q,points(2)+1:ngenes)]; 

        end 

    end 

    %creating a new population of chromosomes 

    if pop_size-numsel %preserving a part of the parent chromosome population 

        [answ,Index]=sort(fitness); %sort the fitness of parent chromosome & preserving the  

        %best nind-numsel chromosomes 

        chrom=[chrom(Index(numsel+1:pop_size),:);newchrom]; 

    else %replacing the entire parent chromosome population with a new one 

        chrom=newchrom; 

    end 

     

    route_repair; 

     

    ObjV=zeros(1,pop_size); 

    for p=1:pop_size 

        d=0; 

        for k=2:ngenes 

            d=d+trans_time(routtemp(p,k-1),routtemp(p,k)); 

        end 

        ObjV(p)=d; 

    end 

    best=[best min(ObjV)]; 

    ave=[ave mean(ObjV)]; 

    ccount=ccount+1; 

    time(ccount)=toc; 

    aan(ccount)=min(ObjV); 

     

    [min_time index]=min(ObjV); 

    opt_rte=routtemp(index,:); 

    [a b]=min(best); 

end 

 

toc 

 

figure('name','Performance Graph1'); 

plot(0:ngener,best,0:ngener,ave); 

legend('Best','Average',0); 

xlabel('Generations'); 

ylabel('transition time (sec)') 

title(['Generation # ',num2str(b),'  Transition time : ',num2str(min_time)]) 

 

figure('name','Performance Graph2'); 

plot(time,aan); 

xlabel('iteration time (sec)'); 

ylabel('transition time (sec)'); 

title(['best route: ',num2str(opt_rte)]) 



 

 147 

sub-program: route_repair 

 

routtemp=zeros(pop_size,ngenes); 

for f=1:pop_size 

    route=chrom(f,:);      

    prec_data=zeros(pn,pm); 

    prec_data(1:pn,1:pm)=prec_data_ori; 

    available=[]; 

     

    %check available for 1st loop 

    x=0; 

    for i=1:num  

        if prec_data(i,3)==0; 

            x=x+1; 

            available(x)=prec_data(i,1); 

        end 

    end 

     

    %select the route 

    bbreak=0; 

    for numroute=1:length(route(1,:)) 

        for numav=1:length(available(1,:)) 

            if available(numav)==route(numroute) 

                selected=route(numroute); 

                bbreak=1; 

                break 

            end 

        end 

        if bbreak==1; 

           break 

        end 

    end 

     

    route(numroute)=[]; 

    available(numav)=[]; 

     

    %write to first route 

    route2=zeros(1,num); 

    route2(1,1)=selected; 

    prec_data(route2(1,1),2)=1; 

 

    %loop for searching next available 

    for loop=2:num %n1 

        xx=length(available); 

        yd=length(route); 

        for j=1:yd 

            poss=0; 

            if isempty(available) || min(abs(available-route(j)))~=0  

                if prec_data(route(j),3)==0 

                    poss=1; 

                else 

                    s=4; 

                    while s<=pn && prec_data(route(j),s)~=0 

                        s=s+1; 

                    end 

                    s=s-3; 

                     

                    ss=1; 

                    while ss<=s && prec_data(prec_data(route(j),ss+2),2)==1 

                        ss=ss+1; 

                    end 



 

 148 

                    ss=ss-1; 

    

                    if ss==s 

                        poss=1; 

                    end 

                end 

            end 

             

            if poss==1 

                xx=xx+1; 

                available(xx)=route(j); 

            end 

        end 

             

        bbreak=0; 

        selected=[]; 

        for numroute=1:length(route(1,:)) 

            for numav=1:length(available(1,:)) 

                if available(numav)==route(numroute) 

                    selected=route(numroute); 

                    bbreak=1; 

                    break 

                end 

            end 

            if bbreak==1; 

                break 

            end 

        end 

         

        route(numroute)=[]; 

        available(numav)=[]; 

         

        %write to route 

        route2(1,loop)=selected; 

        prec_data(selected,2)=1; 

    end 

     

    routtemp(f,:)=route2; 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 149 

APPENDIX A-4 

 

%Moon’s algorithm for 20 tasks and 38 precedence constraints 

 

clear all; clc; 

 

tic 

 

trans_time; 

prec_data1; 

 

[pn,pm]=size(prec_data1); 

rand('seed',1.4929e+009); %seed to set the same number every time run the program 

num=length(trans_time(1,:)); 

 

%genetic parameters 

pop_size;  

ngenes=num;  

Pc; 

Pm; 

ngener; 

 

%initialize the population (not considering prec. constraint) 

chrom=zeros(pop_size,ngenes); 

for k=1:pop_size 

    chrom(k,:)=randperm(ngenes); 

end 

 

% repairing chromosomes in the population taking into account precedence constraint         

moon_repair; 

 

routtemp; 

 

%Fitness evaluation 

ObjV=zeros(1,pop_size); 

for p=1:pop_size 

    d=0; %open route (different start and end point) 

    for k=2:ngenes 

        d=d+trans_time(routtemp(p,k-1),routtemp(p,k)); 

    end 

    ObjV(p)=d; 

end 

best=min(ObjV); 

ave=mean(ObjV); 

 

%genetic operators 

ccount=0; 

for i=1:ngener 

    %Parent selection mechanism-proportional roulette wheel 

    fitness=(1./ObjV)'; 

    numsel=round(pop_size*0.9); 

    cumfit=cumsum(fitness); 

    chance=cumfit(pop_size).*rand(numsel,1); 

    Mf=cumfit(:,ones(1,numsel));  

    Mt=chance(:,ones(1,pop_size))'; 

    [selind,idx]=find(Mt < Mf & [zeros(1,numsel); Mf(1:pop_size-1,:)] <= Mt); 

    newchrom=chrom(selind,:); 

     

    %Crossover mechanism-moon crossover 

    point1=round(rand(floor(numsel/2),1).*(ngenes-1))+1; 



 

 150 

    point2=round(rand(floor(numsel/2),1).*(ngenes-1))+1; 

    points=[point1 point2]; 

    points=sort((points*(rand(1)<Pc)),2); 

    for j=1:length(points(:,1)) 

        swap_sect=newchrom(2*j-1:2*j,points(j,1)+1:points(j,2)); 

        remain_sect=newchrom(2*j-1:2*j,:); 

        Pa=remain_sect(1,:); 

        Pb=remain_sect(2,:); 

        if rand(1)<Pc 

            moon_cross; 

        end 

        c1=Pa; 

        c2=Pb; 

        remain_sect=[c1;c2]; 

        newchrom; 

        newchrom(2*j-1:2*j,:)=remain_sect(1:2,:); 

        remain_sect=[]; 

    end 

     

    %Mutation mechanism-exchange (swap position) 

    for q=1:numsel 

        if rand(1)<Pm 

            P=newchrom(i,:); 

            J=20; 

            sel=randint(1,2,[1 20]); 

            PP=P; 

            PP(sel(1))=P(sel(2)); 

            PP(sel(2))=P(sel(1)); 

            P=PP; 

            newchrom(i,:)=P; 

        end 

    end 

     

    %creating a new population of chromosomes 

    if pop_size-numsel %preserving a part of the parent chromosome population 

        [answ,Index]=sort(fitness); %sort the fitness of parent chromosome & preserving the  

        %best nind-numsel chromosomes 

        chrom=[chrom(Index(numsel+1:pop_size),:);newchrom]; 

    else %replacing the entire parent chromosome population with a new one 

        chrom=newchrom; 

    end 

     

    moon_repair; 

     

    ObjV=zeros(1,pop_size); 

    for p=1:pop_size 

        d=0; 

        for k=2:ngenes 

            d=d+trans_time(routtemp(p,k-1),routtemp(p,k)); 

        end 

        ObjV(p)=d; 

    end 

    best=[best min(ObjV)]; 

    ave=[ave mean(ObjV)]; 

    ccount=ccount+1; 

    time(ccount)=toc; 

    aan(ccount)=min(ObjV); 

     

    [min_time index]=min(ObjV); 

    opt_rte=routtemp(index,:); 

    [a b]=min(best); 



 

 151 

end 

 

toc 

 

figure('name','Performance Graph1'); 

plot(0:ngener,best,0:ngener,ave); 

legend('Best','Average',0); 

xlabel('Generations'); 

ylabel('transition time (sec)') 

title(['Generation # ',num2str(b),'  Transition time : ',num2str(min_time)]) 

 

figure('name','Performance Graph2'); 

plot(time,aan); 

xlabel('iteration time (sec)'); 

ylabel('transition time (sec)'); 

title(['best route: ',num2str(opt_rte)]) 

 

sub-program: moon_repair 

 

routtemp=zeros(pop_size,ngenes); 

for f=1:pop_size 

    route=chrom(f,:);    

    route_ori=route; 

    prec_data=zeros(pn,pm); 

    prec_data(1:pn,1:pm)=prec_data_ori; 

    available=[]; 

     

    %check available for 1st loop 

    x=0; 

    for i=1:num  

        if prec_data(i,3)==0; 

            x=x+1; 

            available(x)=prec_data(i,1); 

        end 

    end 

     

    %select the route 

    

    kk=route_ori(available); 

    [ax,bx]=max(kk); 

    selected=available(bx); 

    ax=1; 

    while ax<=length(route) && route(ax)~=available(bx) 

        ax=ax+1; 

    end 

    if route(ax)==available(bx) 

        route(ax)=[]; 

    end 

    available(bx)=[]; 

     

    %write to first route 

    route2=zeros(1,num); 

    route2(1,1)=selected; 

    prec_data(route2(1,1),2)=1; 

 

    %loop for searching next available 

    for loop=2:num %n1 

        xx=length(available); 

        yd=length(route); 

        for j=1:yd 

            poss=0; 



 

 152 

            if isempty(available) || min(abs(available-route(j)))~=0   

                if prec_data(route(j),3)==0 

                    poss=1; 

                else 

                    s=4; 

                    while s<=pn && prec_data(route(j),s)~=0 

                        s=s+1; 

                    end 

                    s=s-3; 

                     

                    ss=1; 

                    while ss<=s && prec_data(prec_data(route(j),ss+2),2)==1 

                        ss=ss+1; 

                    end 

                    ss=ss-1; 

    

                    if ss==s 

                        poss=1; 

                    end 

                end 

            end 

             

            if poss==1 

                xx=xx+1; 

                available(xx)=route(j); 

            end 

        end 

         

        selected=[]; 

        kk=[]; 

        kk=route_ori(available); 

        [ax,bx]=max(kk); 

        selected=available(bx); 

        ax=1; 

        while ax<=length(route) && route(ax)~=available(bx) 

            ax=ax+1; 

        end 

        if route(ax)==available(bx) 

            route(ax)=[]; 

        end 

        available(bx)=[]; 

         

        %write to route 

        route2(1,loop)=selected; 

        prec_data(selected,2)=1; 

    end 

    routtemp(f,:)=route2; 

end 

 

sub-program: moon_cross 

 

Pa; 

Pb; 

J=20; 

%crossover 

a=randint(1,1,[1,20]); 

if a==20 

    aa=[a-1 a]; 

else 

    aa=[a a+1]; 

end 



 

 153 

osp=[]; 

osp=Pa(aa); 

%osp=[7 2] 

ssub_Pb=osp; 

%creating sub_Pb 

sub=Pb; 

for ip=1:length(Pb(1,:)) 

    for ii=1:length(osp(1,:)) 

        ibreak=0; 

        if Pb(1,ip)==osp(1,ii) 

            ibreak=1; 

            sub(ip)=0; 

        end 

    end 

end 

in=0; 

 

for iii=1:length(sub(1,:)) 

    if sub(1,iii)>0 

        in=in+1; 

        sub_Pb(in)=sub(1,iii); 

    end 

end 

sub_Pb; 

 

k=0; 

i=0; 

%loop for osp 

i=length(osp(1,:))+1; 

while length(osp(1,:))<J 

    if i==1 

        i=J+1; 

        i=i-1; 

        k=k+1; 

        if Pa(i)~=Pb(k) 

            ap=Pa(i); 

            bp=Pb(k); 

            for ki=1:length(osp(1,:)) 

                if osp(ki)==Pa(i) 

                    ap=[]; 

                end 

                if osp(ki)==Pb(k) 

                    bp=[]; 

                end 

            end 

            osp=[osp ap bp]; 

        else 

            ap=Pa(i); 

            bp=Pb(k); 

            for ki=1:length(osp(1,:)) 

                if osp(ki)==Pa(i) 

                    ap=[]; 

                end 

                if osp(ki)==Pb(k) 

                    bp=[]; 

                end 

            end 

            osp=[osp ap]; 

        end 

    elseif k==J 

        i=i-1; 



 

 154 

        k=k+1; 

        if Pa(i)~=Pb(k) 

            ap=Pa(i); 

            bp=Pb(k); 

            for ki=1:length(osp(1,:)) 

                if osp(ki)==Pa(i) 

                    ap=[]; 

                end 

                if osp(ki)==Pb(k) 

                    bp=[]; 

                end 

            end 

            osp=[bp ap osp]; 

        else 

            ap=Pa(i); 

            bp=Pb(k); 

            for ki=1:length(osp(1,:)) 

                if osp(ki)==Pa(i) 

                    ap=[]; 

                end 

                if osp(ki)==Pb(k) 

                    bp=[]; 

                end 

            end 

            osp=[ap osp]; 

        end 

    else 

        i=i-1; 

        k=k+1; 

        if Pa(i)~=Pb(k) 

            ap=Pa(i); 

            bp=Pb(k); 

            for ki=1:length(osp(1,:)) 

                if osp(ki)==Pa(i) 

                    ap=[]; 

                end 

                if osp(ki)==Pb(k) 

                    bp=[]; 

                end 

            end 

            osp=[ap osp bp]; 

        else 

            ap=Pa(i); 

            bp=Pb(k); 

            for ki=1:length(osp(1,:)) 

                if osp(ki)==Pa(i) 

                    ap=[]; 

                end 

                if osp(ki)==Pb(k) 

                    bp=[]; 

                end 

            end 

            osp=[ap osp]; 

        end 

    end 

end 

Pa=osp; 

 

%representation of second offspring 

osp2=[sub_Pb ssub_Pb]; 

Pb=osp2



 

 155 

APPENDIX A-5 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

1 0 13 3 8 7 5 13 12 2 3 13 14 1 6 5 10 13 6 2 12 1 2 10 2 9 13 1 6 9 5 9 1 2 4 6 14 13 11 9 6 14 13 13 8 4 8 6 8 13 3 9

2 13 0 4 5 8 12 2 11 3 7 2 1 6 10 6 5 9 11 11 4 1 7 8 7 10 11 10 13 6 7 5 10 10 1 12 7 6 4 13 12 4 10 6 10 14 5 6 9 10 4 10

3 3 4 0 8 9 13 13 1 7 6 14 1 2 7 5 4 14 3 14 10 13 8 4 1 4 14 3 10 4 9 14 9 4 14 5 9 3 6 12 13 13 14 3 3 14 13 4 6 5 7 9

4 8 5 8 0 8 14 5 12 4 13 5 10 8 5 6 2 14 12 14 9 5 7 8 8 5 12 11 10 3 14 12 11 11 3 5 8 8 6 1 9 3 13 4 5 14 7 6 11 3 8 9

5 7 8 9 8 0 13 3 1 9 3 8 2 13 11 14 8 1 12 11 6 4 3 7 9 1 1 13 3 1 13 14 6 6 10 10 12 11 3 10 8 4 1 4 6 7 11 9 4 3 5 5

6 5 12 13 14 13 0 12 12 2 10 3 6 13 13 5 10 7 11 4 1 12 2 10 14 14 9 5 5 10 10 5 6 14 7 13 9 4 8 5 5 2 9 5 5 13 10 11 12 2 2 4

7 13 2 13 5 3 12 0 4 14 1 8 11 5 4 4 13 14 12 12 7 10 10 6 3 1 3 9 13 13 6 8 5 8 10 9 9 2 14 12 4 9 8 6 10 6 11 3 3 1 9 2

8 12 11 1 12 1 12 4 0 2 6 6 2 1 4 2 7 9 7 3 13 9 9 8 10 2 6 2 11 3 9 6 2 5 3 8 1 4 13 5 11 8 8 14 8 14 3 7 1 7 6 2

9 2 3 7 4 9 2 14 2 0 12 5 8 4 8 2 6 2 8 12 13 2 2 12 14 9 12 10 6 5 6 1 3 13 13 13 13 7 12 4 8 14 11 12 13 11 11 2 1 2 10 6

10 3 7 6 13 3 10 1 6 12 0 7 8 5 8 12 9 6 10 11 8 5 7 2 13 4 2 2 6 9 13 13 5 11 6 3 8 3 14 14 3 9 4 7 3 3 1 5 9 6 4 3

11 13 2 14 5 8 3 8 6 5 7 0 14 2 6 8 5 1 11 11 3 11 9 5 5 5 1 3 5 9 1 7 2 10 1 8 7 6 2 8 4 13 8 2 14 7 13 9 3 13 14 8

12 14 1 1 10 2 6 11 2 8 8 14 0 10 12 7 11 8 2 8 8 3 3 3 2 10 11 2 5 9 5 9 5 6 8 12 2 7 4 1 9 2 11 8 13 5 6 2 11 13 14 12

13 1 6 2 8 13 13 5 1 4 5 2 10 0 1 8 3 4 13 4 14 10 12 4 2 6 3 1 1 12 3 7 8 9 14 6 9 9 8 4 4 3 4 8 14 11 10 10 7 6 7 5

14 6 10 7 5 11 13 4 4 8 8 6 12 1 0 1 3 5 9 8 13 12 11 11 12 6 2 11 7 10 1 3 14 8 2 11 9 14 8 1 5 13 2 2 14 7 8 5 13 9 7 5

15 5 6 5 6 14 5 4 2 2 12 8 7 8 1 0 3 10 3 6 4 8 7 9 11 13 5 6 4 13 8 2 5 14 11 14 3 1 1 1 4 14 14 14 11 13 11 1 1 6 6 3

16 10 5 4 2 8 10 13 7 6 9 5 11 3 3 3 0 12 1 2 3 9 5 11 10 10 5 8 8 13 12 9 13 3 11 1 7 4 10 11 9 1 3 11 1 14 6 10 6 8 5 2

17 13 9 14 14 1 7 14 9 2 6 1 8 4 5 10 12 0 10 6 2 2 14 14 9 3 10 13 9 4 5 7 9 10 10 5 5 6 9 2 5 2 5 2 5 6 10 7 8 1 9 7

18 6 11 3 12 12 11 12 7 8 10 11 2 13 9 3 1 10 0 13 11 12 11 7 8 10 10 5 13 1 12 5 5 13 12 5 2 7 1 2 5 10 3 1 2 14 7 9 3 14 14 13

19 2 11 14 14 11 4 12 3 12 11 11 8 4 8 6 2 6 13 0 6 1 4 11 13 2 4 14 14 6 4 2 10 2 2 9 5 1 9 2 11 14 14 3 10 8 13 3 11 9 13 7

20 12 4 10 9 6 1 7 13 13 8 3 8 14 13 4 3 2 11 6 0 14 7 3 1 1 2 10 1 11 14 3 1 4 2 9 11 10 2 14 8 13 13 13 13 2 3 2 11 7 10 2

21 1 1 13 5 4 12 10 9 2 5 11 3 10 12 8 9 2 12 1 14 0 13 2 6 4 13 3 5 10 7 14 6 9 14 9 1 11 11 9 4 6 13 9 5 9 10 14 6 12 12 14

22 2 7 8 7 3 2 10 9 2 7 9 3 12 11 7 5 14 11 4 7 13 0 8 10 1 1 8 14 13 10 10 13 8 14 7 10 8 7 13 14 3 7 7 13 10 12 3 12 6 11 3

23 10 8 4 8 7 10 6 8 12 2 5 3 4 11 9 11 14 7 11 3 2 8 0 13 4 9 6 7 14 2 10 2 14 5 7 7 6 9 14 7 4 7 9 11 1 10 7 7 8 5 6

24 2 7 1 8 9 14 3 10 14 13 5 2 2 12 11 10 9 8 13 1 6 10 13 0 14 10 14 14 11 11 13 6 11 10 10 12 14 10 6 7 8 5 9 1 1 12 13 4 4 8 7

25 9 10 4 5 1 14 1 2 9 4 5 10 6 6 13 10 3 10 2 1 4 1 4 14 0 4 10 7 1 10 1 6 3 12 6 7 12 13 14 12 4 3 12 8 12 5 12 1 3 11 4

26 13 11 14 12 1 9 3 6 12 2 1 11 3 2 5 5 10 10 4 2 13 1 9 10 4 0 10 3 2 14 3 8 5 13 5 14 6 4 14 5 12 3 10 2 14 12 5 3 1 11 5

27 1 10 3 11 13 5 9 2 10 2 3 2 1 11 6 8 13 5 14 10 3 8 6 14 10 10 0 9 13 5 2 8 2 6 10 5 4 6 1 9 6 4 10 7 11 3 12 1 11 2 1

28 6 13 10 10 3 5 13 11 6 6 5 5 1 7 4 8 9 13 14 1 5 14 7 14 7 3 9 0 9 6 11 14 7 14 10 12 14 6 12 1 13 7 8 2 14 9 5 4 4 8 5

29 9 6 4 3 1 10 13 3 5 9 9 9 12 10 13 13 4 1 6 11 10 13 14 11 1 2 13 9 0 13 10 3 4 2 9 2 4 9 3 13 14 8 12 11 3 1 2 2 4 9 5

30 5 7 9 14 13 10 6 9 6 13 1 5 3 1 8 12 5 12 4 14 7 10 2 11 10 14 5 6 13 0 3 1 12 8 12 5 11 8 9 14 4 7 6 9 12 2 1 7 1 12 10

31 9 5 14 12 14 5 8 6 1 13 7 9 7 3 2 9 7 5 2 3 14 10 10 13 1 3 2 11 10 3 0 11 3 3 7 4 7 11 14 3 2 7 4 7 4 7 3 7 8 1 2

32 1 10 9 11 6 6 5 2 3 5 2 5 8 14 5 13 9 5 10 1 6 13 2 6 6 8 8 14 3 1 11 0 2 11 4 9 1 5 14 13 14 5 5 3 12 12 4 9 7 10 5

33 2 10 4 11 6 14 8 5 13 11 10 6 9 8 14 3 10 13 2 4 9 8 14 11 3 5 2 7 4 12 3 2 0 5 8 10 1 11 9 12 12 14 1 9 12 4 10 14 9 12 7

34 4 1 14 3 10 7 10 3 13 6 1 8 14 2 11 11 10 12 2 2 14 14 5 10 12 13 6 14 2 8 3 11 5 0 14 10 8 11 13 7 3 3 11 2 11 14 13 10 7 4 6

35 6 12 5 5 10 13 9 8 13 3 8 12 6 11 14 1 5 5 9 9 9 7 7 10 6 5 10 10 9 12 7 4 8 14 0 10 9 5 11 1 2 7 13 8 7 9 12 6 5 5 11

36 14 7 9 8 12 9 9 1 13 8 7 2 9 9 3 7 5 2 5 11 1 10 7 12 7 14 5 12 2 5 4 9 10 10 10 0 13 8 5 1 7 13 8 14 7 3 13 3 9 13 10

37 13 6 3 8 11 4 2 4 7 3 6 7 9 14 1 4 6 7 1 10 11 8 6 14 12 6 4 14 4 11 7 1 1 8 9 13 0 8 5 1 3 10 14 10 4 14 4 10 7 7 3

38 11 4 6 6 3 8 14 13 12 14 2 4 8 8 1 10 9 1 9 2 11 7 9 10 13 4 6 6 9 8 11 5 11 11 5 8 8 0 3 11 9 10 6 14 4 4 8 12 6 8 9

39 9 13 12 1 10 5 12 5 4 14 8 1 4 1 1 11 2 2 2 14 9 13 14 6 14 14 1 12 3 9 14 14 9 13 11 5 5 3 0 2 11 14 8 9 11 6 12 8 9 1 12

40 6 12 13 9 8 5 4 11 8 3 4 9 4 5 4 9 5 5 11 8 4 14 7 7 12 5 9 1 13 14 3 13 12 7 1 1 1 11 2 0 13 9 10 6 11 3 9 14 9 10 1

41 14 4 13 3 4 2 9 8 14 9 13 2 3 13 14 1 2 10 14 13 6 3 4 8 4 12 6 13 14 4 2 14 12 3 2 7 3 9 11 13 0 6 7 10 9 11 8 11 12 13 13

42 13 10 14 13 1 9 8 8 11 4 8 11 4 2 14 3 5 3 14 13 13 7 7 5 3 3 4 7 8 7 7 5 14 3 7 13 10 10 14 9 6 0 11 7 3 4 5 1 1 3 4

43 13 6 3 4 4 5 6 14 12 7 2 8 8 2 14 11 2 1 3 13 9 7 9 9 12 10 10 8 12 6 4 5 1 11 13 8 14 6 8 10 7 11 0 7 4 2 9 4 7 4 9

44 8 10 3 5 6 5 10 8 13 3 14 13 14 14 11 1 5 2 10 13 5 13 11 1 8 2 7 2 11 9 7 3 9 2 8 14 10 14 9 6 10 7 7 0 7 14 14 2 5 12 4

45 4 14 14 14 7 13 6 14 11 3 7 5 11 7 13 14 6 14 8 2 9 10 1 1 12 14 11 14 3 12 4 12 12 11 7 7 4 4 11 11 9 3 4 7 0 11 4 1 11 6 11

46 8 5 13 7 11 10 11 3 11 1 13 6 10 8 11 6 10 7 13 3 10 12 10 12 5 12 3 9 1 2 7 12 4 14 9 3 14 4 6 3 11 4 2 14 11 0 7 2 10 10 9

47 6 6 4 6 9 11 3 7 2 5 9 2 10 5 1 10 7 9 3 2 14 3 7 13 12 5 12 5 2 1 3 4 10 13 12 13 4 8 12 9 8 5 9 14 4 7 0 13 12 11 7

48 8 9 6 11 4 12 3 1 1 9 3 11 7 13 1 6 8 3 11 11 6 12 7 4 1 3 1 4 2 7 7 9 14 10 6 3 10 12 8 14 11 1 4 2 1 2 13 0 3 1 9

49 13 10 5 3 3 2 1 7 2 6 13 13 6 9 6 8 1 14 9 7 12 6 8 4 3 1 11 4 4 1 8 7 9 7 5 9 7 6 9 9 12 1 7 5 11 10 12 3 0 4 4

50 3 4 7 8 5 2 9 6 10 4 14 14 7 7 6 5 9 14 13 10 12 11 5 8 11 11 2 8 9 12 1 10 12 4 5 13 7 8 1 10 13 3 4 12 6 10 11 1 4 0 1

51 9 10 9 9 5 4 2 2 6 3 8 12 5 5 3 2 7 13 7 2 14 3 6 7 4 5 1 5 5 10 2 5 7 6 11 10 3 9 12 1 13 4 9 4 11 9 7 9 4 1 0  



 

 156 

APPENDIX A-6 

 

200 tasks & 241 precedence constraints 

 

 

 

 

 

 

 

 

 

500 tasks & 587 precedence constraints 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 157 

APPENDIX A-7 

 

%Fitness evaluation for ALB problem 

 

%idle is total idle time in the workstation 

%wst is a workstation 

%gtime is total task time in the workstation 

%seq is routtemp (task/operation sequence) 

%time is task time for each operation 

%ct is a pre-determined cycle time in the workstation 

 

[n,m]=size(seq); 

ITs=zeros(n,1); 

wst=zeros(2*n,m); 

gtime=zeros(n,1); 

for z=1:n, 

    temptime=zeros(1,m); 

    for j=1:m 

        temptime(1,j)=time(1,seq(z,j)); 

    end 

    [ITs(z,1),wst(2*z-1:2*z,:),gt]=idletime_ALB(seq(z,:),temptime,ct); 

    [s,t]=size(gt); 

    gtime(z,1:t)=gt; 

end 

ObjV=ITs'; 

best=min(ObjV); 

ave=mean(ObjV); 

 

sub-program: idletime_ALB 

 

function [idle,wst,gtime]=idletime_ALB(seq,time,ct) 

[n,m]=size(seq);  

temp=time(1,1);  

wst=zeros(2,m);  

wst(1,:)=seq; 

cg=0; 

cwst=1; 

cgrst=0; 

gtime=zeros(1,n);  

for r=2:m 

    temp=temp+time(1,r); 

    if temp>ct 

        cg=cg+1; 

        gtime(1,cg)=temp-time(1,r); 

        cgrst=cgrst+1; 

        wst(2,cwst:r-1)=cgrst*ones(1,r-cwst); 

        cwst=r; 

        temp=time(1,r); 

    end 

    if r==m 

       cg=cg+1; 

       gtime(1,cg)=temp; 

       cgrst=cgrst+1; 

       wst(2,cwst:r)=cgrst*ones(1,r-cwst+1); 

    end 

end 

idle=sum(ct-gtime); 


