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Abstract 

 

In this work, the composition of rosin and resin samples was studied using novel 

capillary electrophoretic methods. Rosins are complex natural products which can 

have a tendency to crystallise when used in the soldering industry, causing problems 

in certain applications. The current tests for tendency to crystallise are not always 

accurate and there is no existing rapid screening method for the identification of a 

suitable batch of rosin. Thus far the resin acids present in rosins are generally 

analysed by GC-MS requiring derivatisation which is unable to separate all of the 

acids in question. In this work capillary electrophoresis methods for the analysis of 

the acid and neutral fractions of rosin samples were developed and applied to natural 

and modified rosin samples to investigate possible links between the presence and 

concentration of any compound and the rosin’s tendency to crystallise. A CE method 

was developed for the separation of nine resin acids for the first time. The 

simultaneous determination of nine neutral compounds present in rosin samples 

including terpenes and alcohols was also reported. The presence of neoabietic acid 

and elevated concentrations of abietic acid in rosin samples was found to indicate 

crystallisation of the rosin sample. The association constants of the inclusion 

complexes formed between the terpenes present in rosin samples and the 

cyclodextrins used for their analysis were investigated by affinity capillary 

electrophoresis. The surfactant-cyclodextrin interactions were found to be more 

significant than initially hypothesised. A rapid screening method for rosin samples 

was developed which could be used by industries to determine the suitability of a 

rosin batch for a particular use prior to purchasing.  
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1.1 Background  

 

In industry, rosins are used in a variety of products including paints, varnishes and 

solder flux. They have been known to randomly crystallise which causes problems in 

the products they are used in. This crystallisation tendency has not yet been linked to 

a specific part of their composition. Rosins are composed of around 90% acidic 

material and 10% neutral components. In this work, capillary electrophoresis (CE) 

and high-performance liquid chromatography (HPLC) were used to characterise the 

acidic and non-acidic part of rosins and to investigate any relationship between the 

composition of different rosins and their tendency to crystallise. 

 

1.2 Rosins  

 

Rosins, also known as colophony, are natural compounds. Pine oleoresin is a mixture 

of oils and non-volatiles secreted from trees. When the volatile resin components 

have been distilled off, rosin is the remaining solid material [1]. There are several 

types of rosin, depending on the part of the tree it is sourced from. Gum rosin is 

tapped from live pine trees, tall oil rosin is a by-product from paper pulp and wood 

rosin is extracted from tree stumps [2, 3]. Rosins have a variety of uses in industry, 

including paints, varnishes, adhesives, cosmetics and drug coating [4]. Gum and 

wood rosin are also used in solder flux [5]. Rosins are extracted from pine trees in 

many locations geographically, including China, France, America, Indonesia, Russia, 

Scandinavia and Portugal [2]. Their composition depends on their geographical 

location and the type of rosin. Joye and Lawrence observed that tall oil and wood 

rosins contained more abietic and dehydroabietic acid than gum rosins. They also 

note that rosins from America contain half the amount of pimaric acid as rosins from 

France [6]. Rosins samples are insoluble in water while some of their components 

are water soluble at higher pH values. Rosins are soluble in alcohol, benzene, ether, 

glacial acetic acid, oils, alkali hydroxides and turpentine [7].  

There are many papers reporting health issues related to working with and around 

rosins as they are a known sensitizer when oxidised [2, 8-11], and related to 

conditions such as asthma [2, 8, 12] and contact dermatitis [3] 
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1.2.1 Rosin composition 

 

Rosin consists mainly of resin acids (90%) which are diterpene monocarboxylic 

acids. The other 10% consists of neutral compounds which are mainly terpenic and 

can include alcohols, esters, aldehydes and hydrocarbons [1, 7, 13].  The first 

literature on the composition of rosins was reported by Baupe et al. in 1826 [14]. In 

1926 it was confirmed that the resin acids were not in the form of acid anhydride as 

had been previously reported [14]. Their structures compose of a hydrophobic 

skeleton with hydrophilic carboxyl groups attached [15]. 

 

1.2.1.1 Acidic compounds 

 

Of the acidic compounds, 90% are isomeric abietic acids and 10% are dihydroabietic 

acid and dehydroabietic acid [7].  The isomeric abietic acids form two groups; 

abietic acids with conjugated double bonds (40-60%) and pimaric acids with non-

conjugated double bonds (9-27%) [3, 16] (see Table 1-1). The abietic acids contain 

an isopropyl group while the pimaric acids have a methyl and vinyl group. Their pKa 

values range from 5.7-7.25 [1, 31, 84]. 

 

Table 1-1 Some of the components reported to be present in rosins [6, 11, 17]  

Abietic-type acids Pimaric-type acids Neutral compounds 

Abietic acid (ABA) Δ
(8,9)

 Isopimaric acid Isolongifolene 

Dehydroabietic acid (DHA) Pimaric acid (PIM) 3-Carene 

Dihydroabietic acid Elliotinoic acid Aromadendrene 

Palustric acid (PAL) Sandaracopimaric acid 

(SAN) 

α-Terpineol 

Neoabietic acid (NEO) Isopimaric acid (ISO) Camphene 

Levopimaric acid (LVO) Dihydropimaric acid Longifolene 

Dihydropalustric acid Tetrahydropimaric acid α-Pinene 

Tetrahydroabietic acid  β-Pinene 

7-oxo-dehydroabietic acid 

(7-OXO) 

 4-Allylanisole 
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1.2.1.2 Neutral compounds 

 

Compared to reports on the acidic composition of rosins, there are less reports on the 

composition of the neutral component of rosins. Zinkel et al. list α-terpineol, 4-

allylanisole and longifolene as the main neutral components [1], however, the 

majority of reports on the neutral components of rosins deal with the aldehydes 

present. At soldering temperatures (over 200°C), the fumes produced when rosins 

break down contain aldehydes. GC-FID and GC-MS were used to analyse these 

aldehydes and ketones [18-20]. Aldehydes including formaldehyde, hexanal, 

acetaldehyde and cyclohexane carboxaldehyde were observed. Using a 2-

hydroxymethylpiperidine derivatizing agent, Smith et al. saw increased sensitivity 

over Guenier’s method (2,4-dinitrophenylhydrazine was the derivatizing agent), 

allowing the identification of more aldehydes and their derivatives. Formaldehyde 

and acetaldehyde were identified as being the predominant aldehydes present using 

TLC [21]. Genge et al. used MS with a heated inlet system and showed the presence 

of compounds of mass 314 to 320 that were not acids. They reported 6 to 13% of the 

rosin to be neutral, agreeing with the papers primarily reporting on the acidic 

compounds [17].   

More recently, analysis of Indonesian pine trees by GC-MS reported the main 

terpenoids present to be α-pinene, β-pinene and 3-carene [22]. Some of the neutral 

compounds found to be present in rosins are listed in Table 1-1. 

 

1.2.2 Rosin crystallisation 

 

Rosins are mainly composed of resin acids, and can have a tendency to crystallise in 

the form of material seeding/precipitating out of solution [1, 23]. For the purpose of 

this thesis, the terms ‘crystallisation’ and ‘crystals’ refer to this precipitate. The 

crystals are water insoluble and alkali. This crystallisation causes problems in the 

production of soaps and varnishes, and by affecting the viscosity of solder pastes 

which are used in circuits [24]. Crystallisation generally occurs at random and has 

not yet been linked to a specific part of the composition of rosins, however, several 

papers and patents note that a high acidic content leads to a higher tendency to 
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crystallise [25, 26]. Stinson and Lawrence claim that higher abietic acid (ABA) 

content leads to a higher tendency to crystallise [27]. Fiebach and Grimm note that a 

higher tendency to crystallise is linked to fewer isomers present [28]. Zinkel notes 

that ABA contents above 30% leads to higher tendencies to crystallise. The species 

of pine and processing conditions the rosins were prepared under affects this 

tendency [1]. 

 

 

Figure 1-1 A rosin sample which crystallised. 

 

Studies have been carried out attempting to understand why some rosin tends to 

crystallise more readily than others [24]. There are also several US patents for non-

crystallising rosins and methods for inhibiting this crystallisation [26, 29]. Methods 

used in patents to try and make non-crystallising rosin are modifying the rosin by 

treating it with heat, chemicals or both [24].  

There is no standardised method for determining the crystallisation of rosins. The 

“acetone test” is generally used by companies, where some rosin sample is simply 
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placed in a beaker of acetone and left unagitated for a period of time. Whether or not 

crystals form, how long they take to form and the amount of crystals that form all 

indicate tendency to crystallise [1]. The resin acid balance (RAB) test is also used 

(see section 4.3.3), but is only suitable for gum rosin samples, and is not always 

accurate. 

Some of the work in this thesis was carried out in collaboration with an industrial 

partner, Henkel Ireland Operations and Research Ltd., Tallaght Business Park, 

Whitestown, Tallaght, Dublin 24, Ireland. Adhesive technologies make 50% of 

Henkel sales, including the solder material they produce which contains rosin. Their 

estimated global market for solder paste in 2012 was 46 million euros, and rosin 

batches returned or scrapped due to crystallisation issues was ~1%, costing roughly 

460 thousand euro each year. There are also additional associated costs in sales and 

technical support for customers affected by the issues, and in the R & D department 

in trying to resolve the issues and identify suitable rosin batches.  

 

1.2.3 Rosin reactions and modification  

 

In industry, rosins are often modified for use in consumer products to improve a 

certain desired property, such as colour, solubility or oxidation resistance. This 

avoids some problems caused by gum rosin, such as discolouration when its double 

bonds are oxidised, and crystallisation. Modification shifts the resin acid ratio by 

causing ABA to be converted, primarily to dehydroabietic acid (DHA) and dihydro- 

and tetrahydroabietic acids [1]. This improves the resistance of the rosin to oxidation 

as DHA is aromatic and much harder to oxidise.  

1.2.3.1 Oxidation 

While pimaric type acids are not easily oxidised, abietic type acids oxidise easily in 

air due to the conjugated double bond [30]. This can be avoided by 

disproportionation, polymerisation, hydrogenating the bond to saturate it, or 

dehydrogenating it to increase unstauration which makes a stable aromatic ring,  
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1.2.3.2 Isomerisation.  

Many of the components in rosins are isomers of each other. Pimaric acid (PIM) is 

an optical isomer of sandaracopimaric acid (SAN) (see Figure 1-2) [31].   

 

 

Figure 1-2 Structures of pimaric and sandaracopimaric acid 

 

A reported 23-40% of the acid part of commercial oleoresins is levopimaric acid, 

which when converted to gum rosin is almost completely isomerised to ABA, PAL 

and Neoabietic acid (NEO) [32]. Palustric acid (PAL) was first isolated from gum 

rosin by Loeblich et al. in 1954. It is an intermediate product when levopimaric acid 

is isomerised to abietic acid (ABA) (see Figure 1-3). Quicker modification can result 

in less isomerisation and so more levopimaric acid (LVO) present. NEO and PAL 

also isomerise to LVO but at a slower rate [1]. 

 

 

Figure 1-3 Structures of levopimaric, palustric and abietic acid 

 

NEO is another isomer of levopimaric acid [33, 34]. 
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1.2.3.3 Dimerisation.  

A method of rosin modification used to improve stability is dimerisation, as the 

number of double bonds is decreased. Abietic acid, the main constituent of rosin, can 

be dimerised (see Figure 1-4). This is in order to produce polymerised rosin which is 

more resistant to oxidisation than unmodified rosin [35]. 

 

 

Figure 1-4 Dimerisation of abietic acid, adapted from [35] 

 

The dimerisation reaction can be controlled so the extent of dimerisation is 

controlled, allowing for the production of partially-dimerised rosins. 

 

1.2.3.4 Disproportionation.  

Abietic acid is disproportionated to dehydroabietic acid (DHA) and dihydroabietic 

acid (Figure 1-5), which are more stable towards oxidation and result in a high 

softening point [1, 13, 30, 34]. Uses for disproportionated rosins include adhesives, 

paper sizing (the addition of a water-repellent layer to paper) and tackifiers (they 

give ‘stickiness’ to adhesives) [1, 36]. 
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1.2.3.5 Hydrogenation.  

ABA is also hydrogenated to dihydroabietic acid or tetrahydroabietic acid [30]. This 

improves resistance to discolouration and oxidation [1]. Hydrogenated rosin uses 

include cosmetics, tackifiers and plasticizers [36]. 

 

Figure 1-5 Disproportionation and hydrogenation of abietic acid 

 

1.2.3.6 Other modifications.  

Rosins can also be modified by esterification of the carboxylic acid to form different 

rosin esters depending on the colour, odour and viscosity requirements. Rosin esters 

are used in chewing gum [1]. Fumaric and maleic acids anhydrides are also used to 

modify rosins [37]. These acidified rosins are often used in inks and varnishes. 
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1.3 Soldering 

 

Soldering is one of the areas affected by rosin crystallisation, as it causes the solder 

paste to become ‘crumbly’ in texture and unsuitable for use. 

1.3.1 Definition 

 

Soldering is defined by the American Welding Society as “a group of welding 

processes which produces coalescence of materials by heating them to a suitable 

temperature and by using a filler metal having a liquidus not exceeding 450° and 

below the solidus of the base materials.” Simply speaking, it is the joining of 

materials together by heating them and a solder material which can be in liquid, 

paste or wire form. The solder joins the materials by wetting action. Wu describes 

wetting as “the behaviour of a liquid towards a solid surface with a contact” [38]. 

The joints are said to be wet when the solder leaves an unbroken, permanent film on 

them. Wetting occurs due to interactions between the solder atoms and the metal 

atoms which are stronger than the interactions between the solder atoms themselves.  

The solder forms an alloy with the metal it is joining. Wetting is affected by the 

solder material and the ease at which it forms alloys with the materials to be joined. 

The fluidity of the solder when heated and its ability to flow into narrow spaces by 

capillary action is also important. A good soldering material has good wetting action, 

flowability/spread, and capillary action [39]. 

Paste is about 90% of Henkel’s solder business. The solder weight comprises of 88% 

metal and 12% flux, but because of their densities it is 50:50 metal:flux by volume. 

Of the 12% flux, 40-50% is a polar solvent with a high boiling point, 40-50% is 

rosin, ~6% is an activator and ~3% gelling agent. 

 

1.3.2 Process 

 

The basic steps of soldering are 1) fitting of the joints together, 2) the precleaning 

stage, 3) application of the flux, 4) application of heat and 5) application of the 

solder. The solder is first allowed to wet the surfaces. Then the space between the 

materials is filled with solder. The joint is then cooled and the flux residue is 

removed if necessary. As some fluxes contain a corrosive acid used to remove 
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oxides, their residue needs to be removed so it does not cause damage. Some 

examples of solders include tin alloys and zinc alloys e.g. tin-antimony solders [39].  

 

1.3.3 Solder flux 

 

Flux has several purposes; it removes oxides and other surface impurities from the 

metals surface and a small amount of the flux remains at the joint to prevent the 

metal from reforming oxides [39-41]. It is displaced by the solder so the solder forms 

an alloy with the base metal, and it mixes with the solder, lowering surface tension in 

order to further aide wetting [42]. Oxides are removed from the surface through 

chemical reactions between the flux and the oxide e.g. the oxide can be reduced to a 

soluble product.  

Depending on the classification i.e. military, industry etc. fluxes are grouped in 

several ways. US federal specification QQ-S-571 E 1986 named four groups of flux, 

rosin flux (R), mildly activated rosin flux (RMA), activated rosin/resin flux (RA) 

and non-rosin flux (AC) [43]. Since then, standards J-STD-004 and 004B have 

become the standards rosins must follow [44]. Developed by the Assembly and 

Joining Processes Committee of the IPC (previously the Institute for Interconnecting 

and Packaging Electronic Circuits), J-STD-004 separates fluxes into 4 groups; 

rosins, resins (i.e. synthetic resins), organic and inorganic fluxes. It also notes the 

flux’s activity level and whether or not they contain a halide. The European standard, 

ISO 9454-1 groups fluxes into resins, organic and inorganic [45]. 

 

1.3.3.1 Rosin flux  

 

Rosin quality is graded by its colour, with the palest, water-white (WW), being the 

purest quality. This rosin is inactivated (R) and is a very weak acid. It is non-

corrosive [1]. At soldering temperatures it liquefies and the acids present become 

chemically active. A liquid solution of it is normally prepared in an organic solvent 

which evaporates off [18].  

Activators, such as polar organic compounds or halides, can be added to rosins to 

increase their efficiencies as fluxes at removing oxides [43]. Activated rosins leave 
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corrosive residues behind after soldering which need to be removed.  Non-activated 

rosins are non-corrosive and their residue does not need to be removed unless 

required for appearance [39, 40]. Properties which make rosins good fluxes include 

their non-conductivity, non-corrosiveness and good heat conduction. Rosins can 

absorb leftover activator residue. The alloys formed by the solder and base material 

can affect the viscosity of rosins [46]. 

Non-activated rosin fluxes can be used for electrical components on copper as what 

little residue they leave can easily be removed by organic or semi- aqueous solvents 

if necessary. They are considered in the no-clean flux category. Mildly activated 

rosin flux is used on surfaces with more oxides as it has greater activity. Residue 

removal is not always required, unless a halide activator is involved.  If cleaning is 

required an organic solvent first removes the non-polar rosin then a polar solvent 

removes the activator residue. Activated rosin/resin fluxes contain higher 

concentrations of activators. Because of this they are more corrosive and can be used 

on nickel and iron-based alloys too. Their residue must always be removed by the 

same method as for RMA [18].  
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1.4 Current rosin analysis methods 

 

The focus of this work is the analysis of rosin samples. Resin acids are the main 

components of rosin and are also present in other natural samples. There have been 

reports of many different analytical techniques used for the characterisation of 

rosins, however, the analysis of the resin acids are generally applied to materials 

other than rosin e.g. paint varnish, including GC [3, 47-54], pyrolysis-GC-MS [55, 

56], CE [31, 57-59], HPLC [3, 31] and TLC [48]. The first application of CE to the 

analysis of resin acids investigated pulp mill effluents [31]. Various binding media 

known to contain resin acids were analysed by CE and GC [57].  

 

1.4.1 Gas Chromatographic methods of rosin analysis 

 

GC is one of the most common methods of analysing the resin acids, generally in the 

form of their methyl esters [49, 51-53]. In 1959 Hudy was the first to report the use 

of GC for resin acid methyl ester analysis [47]. While separation of the resin acid 

methyl esters was achieved, Hudy reported problems with the thermal isomerisation 

of the LVO and PAL methyl esters on the column due to the high temperatures 

required (260-300°C). There was also a report of analysis using just MS for rosin 

analysis [17]. Genge analysed the resin acid methyl esters using a mass spectrometer 

over a 2 h run time. Some isomerisation was observed in the mass spectra but did not 

cause problems with analysis. Joye and Lawrence published several papers on the 

use of GC for the analysis of the acid fraction of rosins from various pine species 

using a thermal conductivity detector [49, 50, 60]. In a 35 min analysis time they 

separated the methyl esters of ISO, DHA, ABA and NEO, with LVO and PAL 

coeluting while also experiencing some isomerisation of LVO as described in section 

1.2.3.2 (acid full names in Table 1-1). They quantified what percentage of the acidic 

fraction each acid methyl ester corresponded to. In separate papers, Nestler and 

Zinkel also used GC with a thermal conductivity detector for resin acid methyl ester 

analysis [52]. Nestler and Zinkel identified the methyl esters of NEO, DHA, ABA, 

ISO, PIM and those of LVO and PAL which did not separate. Selectivities reported 

for the acid methyl esters ranged from 0.75-1.86 [52].  

Open-tubular column GC with an FID was used to separate and identify the methyl 

esters of PIM, SAN, PAL, ISO, DHA, ABA, and NEO in suitable and unsuitable 
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samples of rosin flux. A higher percentage of DHA was the only noticeable 

difference in the bad flux.  As seen in Figure 1-6, resolution (Rs) values of Rs>2 

were achieved, however, the analysis time is over 120 min [51].  

 

Figure 1-6 Chromatogram of a rosin flux sample analysed by open-tube-column GC-

FID. Numbers indicate acids as follows; PIM (3), DHA (4), PAL (5), ABA (6), SAN (8) 

ISO (10), NEO (11), adapted from [51]. 

 

Since then GC has been used for the analysis of resin acids in many compounds, 

including rosin samples, varnishes and old binding media. A derivatisation method 

combining ethyl esters from the carboxylic groups and trimethylsilyl ethers from the 

hydroxyl groups of resin acids was used for their analysis by GC-MS [53]. The ethyl 

esters of PIM, SAN, ISO, DHA, NEO, 7OXO and ABA were identified. LVO and 

PAL were not separated, and secondary derivatisation products were found to form 

which is not desirable in an analytical technique. In a paper analysing the resin acids 

present in various resins used in paintings they improved on the sensitivity in a 

pyrolysis-GC-MS method using trimethylsilylation derivatisation, and while some 

pyrolysis products were observed, this derivatisation greatly reduced the number of 

secondary products [55]. 

GC-MS and LC-MS were investigated as comparative techniques for the analysis of 

resin and fatty acids in paper mill water [61]. LODs for the GC method were found 

to be 0.004-0.1 µg L
-1

 while the LODs for the LC method were 0.9-3 µg L
-1

. The 

lower LODs and better selectivity achieved with GC-MS was not unexpected as the 

derivatization of a sample can result in less baseline noise as any possible 

contaminants are no longer seen. On the other hand, the required sample 

derivatization can be seen as a disadvantage as Latorre found the derivatives to be 

unstable with short lives which led to less reproducible results. The GC method had 

long analysis times (~40 min) but saw the separation of the trimethylsilyl esters of 

PIM, SAN, ISO, PAL, DHA, and ABA. While LC-MS showed good sensitivity and 



15 

 

a slightly shorter run time (27 min), it did not achieve separation of the resin acid 

peaks except for DHA in agreement with Luong’s findings [31]  

 

1.4.2 Capillary electrophoresis 

 

Luong et al. developed what they believe to be the first application of CE to the 

analysis of resin acids [31]. Using a 30 mM sulfobutylether -β-cyclodextrin (SBCD) 

20 mM methyl- β-cyclodextrin (MECD) in 20 mM borate buffer pH 9.25, they 

analysed a standard mix of ABA, DHA, ISO, LVO, NEO, PAL, PIM and SAN, 

along with three chlorinated congeners (see Figure 1-7). PAL and LVO were 

successfully separated which had not previously been achieved by GC-MS. PIM and 

SAN could not be baseline separated, and 7OXO was not studied.  

  

 

Figure 1-7 Electropherogram of resin acids analysed by CE. Numbers indicate acids as 

follows; 12-Chlorodehydroabietic acid (1 or 9), 14-Chlorodehydroabietic acid (1 or 9), 

12,14-Chlorodehydroabietic acid (2), PIM (3), DHA (4), PAL (5), ABA (6), LVO (7), 

SAN (8) ISO (10), NEO (11), adapted from [31]. Buffer consisted of 20 mM MECD 20 

mM SBCD in 20 mM sodium borate at pH 9.25, bubble cell capillary length was 47 cm 

(40 cm effective length) 50 μm I.D., 250 μm I.D. at detection window, UV detection at 

214 nm, voltage at 15 kV. 

 

No resolution values were published; however Figure 1-7 shows that baseline 

resolution values was not achieved for all of the acids. The LOD reported was 5 ppm 

or higher for the acids. They theorised that the cyclodextrins form inclusion 
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complexes between the hydrophobic CD cavity and the isopropyl part of the abietic 

type acids and the vinyl/methyl part of the pimaric type acids [31]. 

Rosins were previously used in binding and varnishes for paintings. Analysis of resin 

acids present in old paintings has been carried out using methods including GC-MS 

and CE [31, 54, 62]. Findeisen et al. further developed the work of Luong et al. to 

analyse resin acids in old painting samples [59]. A standard mix of ABA, DHA, ISO, 

LVO, NEO, PAL, PIM and larixol acetate was separated, with SAN still coeluting 

with PIM. Reducing the CD concentration to 10 mM SBCD 6.6 mM MECD and 

adjusting various CE conditions reduced the analysis time by almost 7 min. Six acid 

peaks were identified on a rosin electropherogram but not quantified (Figure 1-8).   

 

 

Figure 1-8 Electropherogram of a rosin sample analysed by CE. Buffer consisted of 6.6 

mM MECD 10 mM SBCD 20 mM borate buffer at pH 9.25, Capillary 48.5 cm (40 cm 

to detector), 50 μm I.D., injections at 100 mbar s
-1

, 25 kV, temperature at 20°C, 

detection at 200, 250 and 270 nm. Labels indicate acids as follows; Neoabietic acid 

(NABA), Pimaric acid (PIA), Dehydroabietic acid (DABA), Palustric acid (PAA), 

Abietic acid (ABA), Isopimaric acid (IPIA) [59]. 

 

Findeisen contributed to a second paper where Dell’Mour et al. compared CE and 

GC for the analysis of resin acids present in binders in museum objects [57]. A rosin 
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sample was analysed using 20 mM MECD 30 mM SBCD in 20 mM borate buffer 

pH 9.25 (see Figure 1-9). Capillary was 48.5 cm (40 cm effective length), separation 

at 15 kV after 100 mbar s
-1

 injections. UV detection was at 200, 250 and 270 nm. 

None of the six acids identified were quantified. 

 

Figure 1-9 Electropherogram of a rosin sample analysed by CE. Buffer consisted of 20 

mM MECD 30 mM SBCD 20 mM borate buffer at pH 9.25, Capillary 48.5 cm (40 cm 

to detector), 50 μm I.D., injections at 100 mbar s
-1

 , 15 kV, temperature at 20°C, 

detection at 200, 250 and 270 nm.  Numbers indicate acids as follows; NEO (1), LVO 

(2), PIM (3), ISO (4), PAL (5), larixol acetate (6),  DHA (7), ABA (8) [57] 

 

In the work by Dell’Mour et al., 7-oxo-dehydroabietic acid (7OXO) and 

sandaracopimaric acid (SAN) were not analysed. NEO, PIM, ISO, PAL, DHA and 

ABA peaks were identified in the electropherogram of a rosin sample. They found 

CE to give comparable resolution values and analysis times to those of GC. As 

expected due to the limited detection path lengths of the capillaries, the detection 

limits of the acids in CE were found to be higher. The CE detection limit of DHA 

(400 pg µL
-1

) is higher than that of the GC (250 pg µL
-1

) however, sample 

preparation procedures for the CE method were much simpler, with samples being 

dissolved in methanol as opposed to the derivatization required in GC. 
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1.4.3 Liquid Chromatography 

 

There have been very few attempts at the analysis of rosin samples by HPLC. 

Sadhra et al. first reported the use of gradient HPLC for the separation of resin acids 

from a 0.42% w/v rosin sample in methanol using a C18 column and a methanol-

water mobile phase (see Figure 1-10).  

 

 

Figure 1-10 Chromatogram of a rosin sample analysed by HPLC [3]. 

 

A combination of 3 HPLC methods, MS, IR and NMR were used to identify 5 acid 

peaks in a rosin sample electropherogram although they were not baseline-

separated. The LVO and ABA peaks could not be separated [3]. 

Luong et al. compared their CE method and HPLC method for resin acid analysis. A 

C18 column with a 90:10 ACN:water mobile phase was used but resulted in the 

separation of just DHA, with the other acids coeluting in two peaks (see Figure 

1-11). In comparison, seven peaks were resolved by their CE method, those of DHA, 

PAL, ABA, NEO, LVO and ISO. More optimisation was carried out on the CE 

method so it is possible that further optimisation of the HPLC method could improve 

this separation [31].  
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Figure 1-11 Chromatogram of a resin acid mix analysed by HPLC. The column was an 

LC-PAH column (4.6 mm x 5 cm, 3 μm), mobile phase consisted of 65:35 MeOH:1% 

acetic acid, detection at 214 nm, Numbers indicate acids as follows; 12-

Chlorodehydroabietic acid (1 or 9), 14-Chlorodehydroabietic acid (1 or 9), 12,14-

Chlorodehydroabietic acid (2), PIM (3), DHA (4), PAL (5), ABA (6), LVO (7), SAN (8), 

ISO (10), NEO (11) [31]. 

 

Reversed phase HPLC was used to determine a mixture of ABA, NEO, PAL, LVO, 

and DHA (Figure 1-12). A C18 column was used with a 5% acetic acid 85:10 

methanol (MeOH):water mobile phase. DHA was found to elute much earlier than 

the other 4 acids which coeluted from 23-26 min [63].  
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Figure 1-12 Chromatogram of 4 resin acids analysed by HPLC, C18 column (4.6 cm x 

25 cm, 5 μm), mobile phase consisted of 5% acetic acid 85:10 MeOH:water, detection 

at 240, 268, 282 and 300 nm [63]. 

 

Multiwavelength analysis was used by a diode-array detector (DAD) in order to 

identify the resin acids as again LC was not successful at separating them at a single 

wavelength. The use of LC-MS was also reported for resin acid analysis in river 

water. While individual LODs of 0.25-0.4 µg L
-1

 were achieved for ABA, DHA, 

ISO, and PIM with good reproducibility, only DHA was sufficiently separated 

within the 15 min run time [64].  

DHA, ABA and 7OXO were analysed in various cosmetic products containing rosin 

by HPLC-UV with an SPE sample clean-up [65]. They reported LODs of 7-19 μg g
-

1
. Using a urea-embedded column, PIM was detected but not baseline resolved from 

ABA and so not quantified.  
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1.4.4 Summary of analytical methods 

 

From a review of the literature it was found that the majority of papers on rosin 

analysis use GC. While good separation, sensitivity and selectivity are achieved 

using GC, a derivatization step is required for the non-volatile resin acids which is 

time consuming and renders the samples unusable for further use. It can also result in 

the formation of other unwanted derivatisation products which interfere with 

analysis. LC has the advantage of allowing the sample to be injected directly onto 

the column without the need for derivatization. HPLC analysis times have been 

shown to be shorter than GC times (30-55 min compared to 35-120 min) and 

sensitivity is comparable. Better resolution has been seen using GC but the potential 

for HPLC method optimisation has not been fully explored as there has not yet been 

much analysis of rosin samples using HPLC. In the few investigations carried out so 

far, CE has shown better resolution than LC at shorter analysis times than both GC 

and LC (rosin and resin analysis so far ranging from 5-17 min). While GC and LC 

tend to have better precision, CE is also advantageous in its low sample and buffer 

volume requirements. The buffer is generally aqueous and so does not consume high 

amounts of organic solvents, and separations take place in a simple open tube in 

place of an expensive column. These all contribute to inexpensive analysis, and the 

cost of a CE system is comparable to that of a GC instrument (without MS) [57]. 

Like LC, sample derivatization is not necessary and the sample is injected straight to 

the capillary. In addition to this, as it is not a chromatographic separation technique, 

it will provide different separations and thus different information that can be used in 

conjunction with LC. The LODs reported for the resin acids by GC-MS and LC-MS 

methods were in the ng L
-1

 and μg L
-1

 range while the CE-UV and HPLC-UV LODs 

ranged from 0.4-19 mg L
-1

. This highlights the greater sensitivity achieved using MS 

compared to a UV detector. Low sensitivity is also a disadvantage of CE analysis. 

This is due to the low sample amount injected, and the small detector path length.  

Changing the detector type is an obvious way to improve on this sensitivity e.g. CE-

MS, other options include increasing the path length e.g. by using a bubble cell 

capillary, or by incorporating a preconcentration technique such as sample stacking 

or sweeping into the method. 
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LC has not been successful in the separation of most of the resin acids. GC-MS has 

been proven to be an effective technique for separating most of the resin acids but 

with a derivatisation step required. CE has also proved effective at separating most 

of the resin acids but with room for more optimisation. 

 

1.5 Capillary Electrophoresis 

1.5.1 Theory of Electrophoresis 

 

Electrophoresis is used to separate different species according to their velocities 

under an external electric field. This electrophoretic velocity is described in 

Equation 1; 

Ee                Equation 1 

Where ν is the velocity of the ion (ms
-1
), μe is the electrophoretic mobility (m

2
V

-1
s

-1
) 

and E is the electric field strength (Vm
-1

). Each ion has this characteristic property 

known as electrophoretic mobility which means it moves when in an electric field. It 

is proportional to its charge and inversely proportional to its friction coefficient and 

described in Equation 2 [66]; 

r

q
e




6
              Equation 2 

Where q is the charge on fully dissociated ions, η is the viscosity of the solution and 

r is the Stokes’ radius (hydrodynamic radius) of the ion [66]. Both size and charge 

affect analytes mobility; smaller and more highly charged ions travel faster. The 

movement of analytes is also affected by the electroosmotic flow (EOF) which is 

described in Equation 3; 






4
EO                Equation 3 

Where μEO is the electroosmotic mobility, ε is the dielectric constant of the medium, 

ζ is the zeta potential and η is the viscosity. The apparent mobility (μapp) of an 
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analyte is the vector sum of the electrophoretic mobility and electroosmotic mobility 

(see Equation 4);  

EOeapp                      Equation 4 

Separations are generally characterised by resolution and efficiency. Resolution (Rs) 

measures the separation between two peaks. It is calculated using Equation 5 [67]: 

)(
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            Equation 5 

Where t1 and t2 are the retention times of the two peaks and w1 and w2 are the peak 

widths of the peaks at half peak height.  

The efficiency of a column describes its ability to give sharp peaks. It is measured by 

the number of theoretical plates (N). A higher N value means higher efficiency. 

Capillary efficiency can be calculated using Equation 6 [68]: 

2

2/1

)(54.5
W

t
N R             Equation 6 

Where tR is the retention time and W1/2 is the peak width at half peak height. It is 

also described as the height equivalent of a theoretical plate (HETP) in Equation 7 

[66]. 

HETP = L/N                Equation 7 

Where L is the capillary length and N is the number of theoretical plates. 

The theory of capillary zone electrophoresis (CZE) and its instrumentation has been 

described extensively in many reviews and books [66, 68-73]. The focus of the 

theory covered in this thesis refers to relevant methods of CE used, MEKC, 

MEEKC and cyclodextrin modified CE.  
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1.5.2 Micellar electrokinetic chromatography  

 

In CZE, analytes are separated by their electrophoretic mobilities. Neutral analytes 

have no charge and therefore no electrophoretic mobility and so cannot be separated 

by conventional CZE. In order to separate neutral compounds by CE, techniques 

such as micellar electrokinetic chromatography (MEKC) are used [66, 74, 75].  

 

Figure 1-13 Illustration of a micelle. 

 

In MEKC, charged surfactant molecules are added to the buffer. When they reach 

their ‘critical micelle concentration’ (CMC) the surfactants form aggregates in 

roughly sphere shapes with diameters of 3-6 nm called micelles which act as a 

pseudo-stationary phase for the neutral analytes to partition in and out of. The 

surfactants hydrophilic heads are on the outside of the micelle and their hydrophobic 

tails point inwards (see Figure 1-13).   
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Figure 1-14 Diagram showing the mechanism of MEKC. 

Terabe et al. first used micellar separation in capillary electrophoresis and named it 

MEKC [76]. Sodium dodecyl sulphate (SDS), an anionic surfactant, is the most 

commonly used, is widely available and is inexpensive. The anionic micelles have a 

negative charge and move against the electroosmotic flow (EOF) towards the anode. 

However, the EOF has a higher velocity so they have a net movement towards the 

cathode (see Figure 1-14). Analytes in the sample partition between the hydrophobic 

centre of the micelles and the aqueous solution. The extent to which analytes 

partition into the micelle depends on the analytes hydrophobicity, hydrogen bonding 

and ionic attractions. 

 

1.5.3 Microemulsion electrokinetic chromatography  

 

Microemulsion electrokinetic chromatography (MEEKC) was first reported by 

Watari et al. in 1991 [77]. It is similar to MEKC in that it uses a pseudo stationary 

phase but in this case the additive is a mixture of nano-sized oil droplets in an 

aqueous buffer (O/W) which is stabilized by the addition of a surfactant and a co-

surfactant (see Figure 1-15). The surfactants also reduce the surface tension of the 

droplet. Other forms of MEEKC include water in oil (W/O), bicontinuous (B.C.) and 

ionic liquids in water (IL/W) [78]. Analytes are separated based on their mobilities 

and their level of partitioning into the microemulsions (MEs). The ME droplets 

diameters are less than 10 nm so they are optically transparent and slightly bigger 

than micelles [79].  
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Figure 1-15 Illustration of a microemulsion, adapted from [78]. 

 

The SDS molecules coat the surface of the droplet. Because of the charge repulsion 

of the SDS surfactants, a co-surfactant, usually a short-chain alcohol such as 1-

butanol, is necessary to reduce the surface tension and allow the droplets to hold 

their structure. The combination of the surfactant and co-surfactant reduce the 

surface tension between the oil and water to zero and allows the emulsion to form. 

Although the microemulsions are negatively charged and travel towards the anode, 

the EOF is stronger and carries them towards the cathode. Separation can be affected 

by the choice and concentration of the oil and surfactant, and other optional additives 

including organic solvents and cyclodextrins. Cetyltrimethylammonium bromide 

(CTAB) is a cationic surfactant that has been used in MEEKC. It can be particularly 

useful if the analyte is cationic and ion-pair reactions are occurring with negatively 

charged microemulsions. The use of CTAB results in a reversal of the EOF. Neutral 

surfactants can also be used but are generally more useful in separating charged 

analytes [79]. Combinations of surfactants have also been reported several times 

[78]. 



27 

 

1.6 Cyclodextrins in CE separations 

 

Cyclodextrins (CD) are often used as an additive in CE buffers for chiral separations. 

However, cyclodextrins can also be used to be separate cis- and trans- isomers (their 

electrophoretic mobilities are the same but they interact differently with the 

cyclodextrins) and compounds based on their hydrophobicity. The addition of 

charged cyclodextrins means longer elution times and higher currents. CDs are 

sometimes used in addition to micelles in MEKC to further optimise separation.  

 

Figure 1-16 Structures of (A) α-cyclodextrin, (B) β-cyclodextrin and (C) γ-cyclodextrin. 

(D) and (F) show β-CD in 3D viewed from the side and top, (E) highlights the position 

of the primary and secondary hydroxyl groups in β-CD. 



 

28 

 

1.6.1 Cyclodextrins 

 

Cyclodextrins (CDs) are cyclic oligosaccharides consisting of 6 (α), 7 (β) or 8 (γ) α 

1, 4-linked glucopyranose units [80] (see Figure 1-16). They are crystalline, 

homogenous and non-hydroscopic. The glucose units orientate themselves in a chair 

conformation and the cyclodextrin molecule forms a truncated cone shape with a 

hydrophobic inner cavity. The outer surface is hydrophilic due to the presence of 

hydroxyl groups. The three native CDs have the same cavity depth but different 

widths (properties shown in Table 4-1). Due to their shape and surface chemistries, 

they easily form dynamic inclusion complexes with a wide range of compounds. 

They have a range of uses in analytical chemistry, from additives to background 

electrolytes in CE, to chemically bonded stationary phases in HPLC. As well as 

inclusion complexes, CDs can also form water soluble micelle-like aggregates that 

interact with compounds [81]. 

Natural CDs are insoluble in water so there are many synthetic derivatives including 

methyl, hydroxyl and ether CDs which are more water soluble. Commercially 

available CDs can be neutral, e.g. methyl-β-cyclodextrin; positively charged, e.g. 2-

hydroxy-3-trimethylammoniopropyl β-cyclodextrin; or negatively charged, e.g. 

sulfobutylether-β-cyclodextrin. The primary hydroxyl groups are on carbon 6 on the 

narrow rim of the CD while the secondary hydroxyls are on the larger rim on 

carbons 2 and 3. These hydroxyl groups are chemically modified to form derivatized 

CDs. Neutral cyclodextrins elute with the EOF [80]. CDs are UV transparent; 

however, they can cause a small shift in UV lambda max due to electron and 

chromophore shielding. They also increase the fluorescent intensity of the guest 

molecule due to the apolar cavity [80]. 

 

1.6.2 Cyclodextrin inclusion complexes 

 

Inclusion complexes are not formed by covalent bonds, but by physical forces such 

as hydrophobic interactions, hydrogen bonding and van der Waals forces between 

the ‘host’ and the ‘guest’ molecules. The guest molecule must be sterically 

compatible with the cavity of the CD (the host molecule in this case) and the 

thermodynamic interaction between the analyte, CD and solvent must favour the 

complex forming [82]. The guest molecule must also have greater affinity for the CD 
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cavity than for the background electrolyte. When the cyclodextrins form inclusion 

complexes, water molecules are displaced by the more non-polar guest molecule.  

Interactions occur by; 1) Van der Waal forces, 2) H-bonding can occur (not always) 

between guest and cyclodextrin cavity, 3) strain on the cyclodextrin ring is relaxed 

after inclusion complexes are formed (only applies to α-CD and is not the most 

important) and 4) interactions between (a) the guest molecule and the cyclodextrin 

cavity and (b) the displaced water and the rest of the water are more energetically 

favoured than interactions between (c) the water and the cyclodextrin cavity and  (d) 

the guest molecule and water [80]. These dynamic inclusion complexes form and 

break slower as the size of the guest molecule increases, and quicker if the guest 

molecule is ionised [80].  

The association constant of inclusion complexes is a means of quantifying the 

strength and stability of the complex formed. This information could potentially be 

used to predict behaviour of the complexes and aid in the optimisation of CD-

modified buffers. Affinity capillary electrophoresis is a quick and simple method 

used for the determination of association constants. 
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1.7 Electrophoresis versus chromatography 

 

In chromatography, analytes separate based on their partitioning between stationary 

and mobile phases. In electrophoresis, charged analytes separate based on 

differences in their mobilities in an electric field. As the two techniques separate 

analytes based on different properties, the resulting chromatograms and 

electropherograms will appear different even when analysing the same sample as the 

migration order, analysis time and peak shapes may all differ. 

One of the advantages of CE over HPLC is its greater efficiencies, which results in 

better resolution of peaks. The reason CE separation results in better efficiencies is 

that it experiences less band broadening than peaks in LC separations. The Van 

Deemter equation illustrates the different causes of band broadening experienced in 

chromatographic separations (see Equation 8). 

    
 

 
              Equation 8 

H is the height equivalent of a theoretical plate. Two of the three terms which 

contribute to band broadening in chromatography which affects theoretical plate 

height and therefore efficiency are not present in CE. The A term is the contribution 

of Eddy diffusion to band broadening. This is not an issue in CE as there is a single 

path while in HPLC the packed particles allow for different paths to be taken. The B 

term is the contribution of longitudinal diffusion to band broadening and is observed 

in CE and HPLC. The C term is the mass- transfer contribution to band broadening. 

It does not occur in CZE as the separation happens in a single moving phase as 

opposed to partitioning between a stationary and mobile phase as seen in LC [68]. μ 

indicates the linear flow rate of the mobile phase, showing that longitudinal diffusion 

decreases as the flow rate in increased while the opposite is true for mass transfer 

and eddy diffusion is unaffected by it.  

There are several contributing factors to the diffusion which can lead to band 

broadening in CE. At low voltages, molecular diffusion is the main cause of band 

broadening, and causes peak dispersion (also known as peak variance). The main 

sources of peak dispersion are temperature, sample plug volume and analyte-wall 

interactions. The sample plug length can contribute to band broadening if above 3% 
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of the capillary. At high voltages, Joule heating can cause the flow profile to become 

parabolic. Joule heating results from the resistance of the solution to the current 

flow. Temperature increases, causing higher current which increases the temperature, 

so a cooling system removes the heat. The cooling system is at the capillary surface 

so the middle of capillary is at a slightly higher temperature. However, this is not a 

problem with capillary diameters under 100 μm [66]. 

Another reason for the higher efficiencies achieved with CE relative to HPLC is the 

flow profiles. In HPLC a mechanical pump pushes the mobile phase through the 

system causing a parabolic flow profile where resistance occurs at the column walls 

and there is a ‘drag’ where the analytes at the centre are traveling slightly faster. In 

CE the EOF pulls the buffer through the capillary with a flat flow profile which 

results in narrower peaks. The EOF is caused by an overall negative charge on the 

walls of fused silica capillaries due to the ionised silanol groups (SiO
-
) that begin to 

exist when the pH rises above pH 3. Cations in the solution are attracted to the 

capillary wall and form a double layer. One is tightly bound by electrostatic forces 

and called the stern layer, the second, called the diffuse layer, is loosely bound. The 

diffuse layer of cations moves towards the cathode when an electric field is applied 

and drags the buffer and analytes with it. This almost uniform velocity of liquid 

across is due to the small diameter of the capillary. HPLC column diameters are 2.1-

4.6 mm compared to 20-100 μm capillary diameter. The small diameter also means 

joule heating is dealt with efficiently so high voltages can be used.  

Although HPLC has been more exhaustively developed with many mobile and 

stationary phases available, due to the nature of its separation higher efficiencies are 

achieved with CE separation. CE is an orthogonal technique to HPLC and can be 

used to extract different information.    
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1.8 Conclusion  

 

The components of rosin samples which cause their crystallisation have not yet been 

confidently identified. GC analyses of resin acid methyl esters have identified the 

majority of the acid components while little research has been carried out on the 

neutral groups present in rosins. As HPLC and CE do not require a sample 

derivatization step, they have proven to be a quicker and simpler method for rosin 

analysis. The two complementary techniques use different separation mechanisms 

and will both be investigated for the analysis of the composition of both the acidic 

and neutral fractions of rosin samples. Different modes of CE are easily 

interchangeable and provide a range of separation mechanisms for analyte analysis. 

Rosin composition varies depending on their source. The developed separation 

methods will be applied to different rosin and resin samples to investigate any 

differences in the presence and concentration of analytes. 

 

1.9 Aims and objectives 

 

The aim of this work is to further the understanding of the composition of rosin 

samples using analytical techniques. The objectives are to develop a CE and/or 

HPLC method for the separation of some of the acidic components found in rosin 

and to develop another CE and/or HPLC method for the separation of some of the 

neutral components found in rosin. Different rosin and resin samples will be 

analysed using these methods. Other objectives include investigating any 

relationship between the composition of different rosins and their tendency to 

crystallise, and investigating the association constants of the inclusion complexes 

formed between cyclodextrins and some of the compounds present in rosins. 
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  Chapter 2

 

 

 

 

Development of a cyclodextrin-based capillary electrophoresis 

method for the separation of nine resin acids 
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2.1 Introduction 

 

Rosin consists mainly of resin acids (90%) which are tricyclic diterpene 

monocarboxylic acids. Of the acids, 90% are isomeric abietic acids and 10% are 

dihydroabietic acid and dehydroabietic acid [7, 83]. The isomeric abietic acids form 

two groups: abietic acids with conjugated double bonds (40-60%) and pimaric acids 

with non-conjugated double bonds (9-27%) [3, 16]. The abietic acids have an 

isopropyl group on carbon 7 while the pimaric acids instead contain a methyl and 

vinyl group. Their pKa values range from 5.7-7.25, therefore at high pH they will be 

predominately ionised [1, 31, 84]. While an exact reason for rosin crystallisation has 

not yet been shown, it has been reported that higher acid concentrations- abietic acid 

in particular- result in a higher tendency to crystallise [26, 27]. 

The majority of reports on the resin acids present in rosins analyse the methyl ester 

derivatives of the acids using GC-MS and generally do not apply the method to rosin 

samples [6, 17, 47]. In this chapter, both HPLC and CE were investigated as 

alternative separation methods for the acids present in rosin samples. 

 

2.1.1 HPLC 

 

 HPLC has been investigated for the analysis of resin acids but thus far only four 

have been successfully separated. As discussed in section 1.4.3, the use of gradient 

HPLC was reported for the separation of resin acids from rosin sample using a C18 

column and a gradient methanol-water mobile phase. Five acid peaks were 

identified; however, LVO and ABA were not baseline-separated [3]. HPLC with an 

SPE sample clean-up and UV detection was used to analyse DHA, ABA and 7-

oxodehydroabietic acid (7OXO) in various cosmetic products containing rosin [65]. 

In this study a reverse-phase amide column was used for rosin separation, as it is 

particularly suited for the separation of polar compounds. Several solvents were 

investigated as an optimum mobile phase and the solvent: water ratio was optimised. 

The addition of an acid and a base to the mobile phase to improve efficiencies was 

investigated. The addition of cyclodextrins to the mobile phase to improve separation 

was also explored. 
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2.1.2 Capillary electrophoresis (CE) 

 

Few studies described in the literature apply CE methods to rosin sample analysis. 

While comparing CE and GC for the separation of binders in museum objects, 

Dell’Mour et al. analysed a rosin sample using a cyclodextrin-modified buffer [57]. 

Six acid peaks were identified in the rosin electropherogram, however, none were 

quantified. A standard mixture of abietic-, dehydroabietic- (DHA), neoabietic- 

(NEO), levopimaric, pimaric- (PIM), isopimaric- (ISO), and palustric acid (PAL) 

was separated with a 15 min run-time. The analysis of rosin was not the principle 

aim of that study so the method was not optimised. CE was reported to give 

comparable resolution values and analysis times to those achieved using GC. While 

the reported CE detection limit is higher than that of the GC, sample preparation 

procedures are simpler and no derivatisation is required.  

In this chapter, the development of a new CE method is reported for the separation of 

nine resin acids in modified and unmodified rosin samples, where previously they 

could not be separated. The use of various buffers, cyclodextrin types and 

concentrations were investigated. Calibration curves were created to determine the 

concentrations of abietic-, dehydroabietic-, neoabietic-, pimaric-, isopimaric-, 

levopimaric-, sandaracopimaric- (SAN), palustric- and 7-oxo-dehydroabietic acid 

(7OXO) (structures shown in Figure 2-1) in the rosin samples.  



 

36 

 

 

Figure 2-1 Chemical structures of the resin acids  

Table 2-1 Acids as denoted in Figure 2-1 

Letter in 

Figure 2-1 

Acid LogD at pH 

7.4
a
 

Molecular 

weight (g mol
-1

) 

A Abietic acid (ABA) 3.79 302.45 

B Neoabietic acid (NEO) 3.99 302.45 

C Dehydroabietic acid (DHA) 3.65 300.44 

D 7-Oxodehydroabietic acid 

(7OXO) 

3.75 314.17 

E Palustric acid (PAL) 3.93 302.45 

F Levopimaric acid (LVO) 3.87 302.45 

G Pimaric acid (PIM) 3.92 302.45 

H Isopimaric acid (ISO) 3.89 302.45 

I Sandaracopimaric acid  3.92 302.45 
a
LogD values calculated by ACD Labs 
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In CE separations, the pH of the buffer is important as it affects the EOF and so the 

technique itself. It is also important as it affects the charge of ionisable analytes. The 

Brønsted-Lowry definition of an acid names it as a substance with a tendency to lose 

a proton. In basic pH conditions, the resin acids lose a proton and so are charged. 

This gives them an electrophoretic mobility (see Equation 2) so they do not depend 

on the EOF for mobility and can separate according to their mass-to-charge ratios. 

Basic compounds would be in their charged states at acidic pH. pKa is the negative 

logarithm of the acid dissociation constant, Ka. When the pH of the buffer is equal to 

the pKa of the analyte, 50% of the analyte will be charged and 50% uncharged. 

When the pH of the buffer is more than 2 units higher than the analytes pKa they will 

be predominantly charged. 

 

2.1.3 Aims  

 

The aim of this research is to investigate analytical techniques for the separation of 

nine resin acids found in rosin samples. The objectives are to investigate the use of 

both HPLC and CE as potential separation methods for the analysis of modified and 

unmodified rosin samples, and to optimise a method for the separation of a mixture 

of nine resin acids for future application to modified and unmodified rosin samples.  
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2.2 Experimental 

2.2.1 Instrumentation 

 

HPLC analysis was carried out on an Agilent 1100 HPLC system (Agilent 

Technologies Ireland Ltd., Unit 3, Euro House, Euro Business Park, Little Island, 

Cork, Ireland). The system uses a DAD (range 190-600 nm) and a fluorescent 

detector (excitation range is 200-700 nm and emission range is 280-900 nm). The 

software used was Agilent Chemstation. The column used was a Supelco Ascentis 

RP-Amide column (15 cm x 4.6 mm, 3 μm particles). CE analysis was carried out on 

an Agilent Capillary Electrophoresis System G1601A (Agilent Technologies Ireland 

Ltd., Euro Business Park, Little Island, Cork, Ireland). The CE system uses a DAD 

which has a range of 191-599 nm. Peaks were integrated using the Agilent 3D-CE 

Chemstation software. Capillaries used were 58 cm (49.5 cm effective length) fused 

silica capillaries, 50 μm inner diameter (CMScientific, Silsden, BD20 0DL, UK). 

The pH meter used was a HI2211 pH/ORP meter (Hanna Instruments, Rhode Island, 

USA) with a Calomel reference electrode (Metrohm AG, Switzerland).  

 

2.2.2 Reagents 

 

All reagents used were of analytical grade, including anhydrous sodium phosphate 

monobasic, sodium tetraborate, disodium tetraborate,  phosphate buffered saline 

solution (PBS), Tris(hydroxymethyl)aminomethane, trizma
®
 hydrochloride, 2-(N-

morpholino)ethanesulfonic acid (MES), sodium acetate, N-cyclohexyl-3-

aminopropanesulfonic acid (CAPS), acetic acid, N-[Tris(hydroxymethyl)methyl]-3-

aminopropanesulfonic acid (TAPS), (2-hydroxypropyl)- γ-cyclodextrin (HPγCD), 

methyl- β-cyclodextrin (MECD), boric acid, acetonitrile (ACN), acetic acid, sodium 

dodecyl sulphate, sodium hydroxide (NaOH), methanol (MeOH) and hydrochloric 

acid (HCl) and were purchased from Sigma Aldrich Ireland Ltd. (Vale Road, 

Arklow, Wicklow, Ireland). Sulfobutylether -β-cyclodextrin (SBCD) was donated by 

CyDex Pharmaceuticals, Inc. (Ligand Pharmaceuticals, Inc. 11119 North Torrey 

Pines Road, Suite 200 La Jolla, CA 92037). Rosin samples were donated by Henkel 

Ireland Ltd., Dublin, Ireland. Abietic acid, dehydroabietic acid, 7-oxo-dehydroabeitic 

acid, palustric acid, neoabietic acid, levopimaric acid, pimaric acid, 
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sandaracopimaric acid and isopimaric acid were purchased from Dynacare-Gamma 

Medical laboratory Partnership (previously Orchid Cellmark), Canada. Buffers were 

prepared using deionised water (18.2 MΩ cm
-1

). 

 

2.2.3 HPLC separation conditions 

 

Unless stated otherwise, separations were carried out at a flow rate of 1 mL min
-1

 

with 20 μL injections. UV detection was at 254 nm and fluorescence excitation was 

at 250 nm with emission at 410 nm. The mobile phase consisted of 0.1% acetic acid 

97:3 ACN: water. The mobile phase was filtered through a 0.45 µm nylon membrane 

and sonicated before use. Methanol blanks were run between each sample. The 

column was stored in ACN overnight at room temperature. 

 

2.2.4 CE separation conditions 

 

CE separations, were carried out at 20 kV with hydrodynamic injections of 4 s at 50 

mbar and the temperature was 25°C. Measurement wavelengths were 240 nm for 

ABA and NEO, 265 nm for PAL and 200 nm for the rest of the resin acids. 

Separations were all repeated 3 times. New capillaries were conditioned with 0.1 M 

NaOH (30 min), water (30 min) and buffer (30 min). A pre-injection rinse consisted 

of 2 min MeOH, 3 min 0.1 M NaOH and 3 min buffer. 

 

2.2.5 Sample and buffer preparation 

 

Resin acid standards were prepared by dissolving the acids in methanol. The resin 

acid calibration standards were prepared by diluting the highest concentration 

sample. Gum rosin samples (sample RA in Table 5-2) were prepared fresh every day 

at 0.1% w/v by dissolving them in methanol.  

Tris buffers were prepared to the required concentration and pH by mixing 

appropriate amounts of tris HCl and tris base in distilled water following the Sigma-

Aldrich tris buffer mixing table e.g. a 20 mM tris buffer at pH 8 was prepared by 

mixing 1.776 g L
-1

 tris HCl and 1.06 g L
-1

 tris base. All buffers were filtered through 

a 0.2 μm nylon membrane filter. Buffers containing cyclodextrins were sonicated for 

15 min. 
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2.3 Results and discussion 

2.3.1 HPLC method development 

 

The only paper found to report the HPLC analysis of rosin samples used a C18 

column with a methanol-water mobile phase [3]. Since little separation of resin acids 

has been achieved using a C18 column, and the majority of compounds present in 

rosins are either polar or neutral, a reversed phase amide column was selected as it 

contains polar amide groups which allow the polar compounds to be retained on the 

column longer and so gives improved separation. 

An initial analysis with an acetonitrile (ACN):water mobile phase resulted in a mass 

of peaks, then three more distinct peaks coeluting (see Figure 2-2). ACN was chosen 

for use in the mobile phase as the column must be stored in ACN. 

 

 

Figure 2-2 Chromatograms of 1.1% w/v rosin in MeOH samples, mobile phase consists 

of ACN:water at (a) 100:0, (b) 90:10, (c) 80:20, (d) 70:30, (e) 60:40, (f) 50:50 and (g) 

40:60, pH 7.2, 20 μL injections at 1 mL min
-1

, detection at 254 nm. 
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As the ratio of ACN decreased, peak 2 was found to elute later (80 min in a 50:50 

ACN: water mobile phase compared to 30 min in a 90:10 ACN: water mobile 

phase). While the elution time of peak one remained relatively constant, its 

efficiency greatly decreased as ACN decreased (see Table 2-2) An ACN percentage 

greater than 80% gave shorter analysis times. This was expected as the hydrophobic 

analytes present will interact more with the mobile phase as the aqueous percentage 

is reduced. The resolution between the last two peaks improved with increasing 

concentration, while the resolution between peaks 1 and 2 decreased (see Table 2-2). 

Resolution and efficiency values were calculated using equations 5 and 6. 

 

Table 2-2 Calculated resolution and efficiency values for Figure 2-2 

Mobile phase Peak 1  Peak 2  Peak 3 

ACN: water N
a
 Rs N Rs N 

100:0 1866 2.6 1131 1.1 1204 

90:10 471 6.0 1584 0.7 561 

80:20 475 6.4 944 0.7 398 

70:30 78 5.1 1629 0.5 2399 
a
) N is the number of theoretical plates per column 

While the 70:30 ACN: water mobile phase resulted in the highest efficiency values 

for peaks 2 and 3, the resolution value between them was the lowest achieved.  

As methanol (MeOH) has a different elution strength than ACN, an investigation 

was carried out using a MeOH:water mobile phase with the RP-Amide column. 

When the percentage of methanol in the mobile phase was less than 80%, the 

pressure rose above the system limit.  
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Figure 2-3 Chromatograms of 1.1% w/v rosin in MeOH samples, mobile phase (a) 

100% MeOH, (b) 90:10 MeOH:water and (c) 80:20 MeOH:water, 20 μL injections at 1 

mL min
-1

, UV detection at 254 nm. 

Higher percentages of methanol in the mobile phase resulted in the partial resolution 

of a higher number of peaks. The three chromatograms in Figure 2-3 show three 

coeluting peaks towards the end of the run time. The resolution between these peaks 

increased slightly with decreasing methanol concentration and while the N values for 

one of the peaks also improved with decreasing concentration, the opposite is true 

for the first peak (see Table 2-3).  
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Table 2-3 Calculated resolution and efficiency values for Figure 2-3 

 Peak 1  Peak 2  Peak 3 

Mobile phase (ACN: water) N Rs N Rs N 

100:0 4970 0.5 1467 0.7 1724 

90:10 1263 0.7 943 0.6 1596 

80:20 878 0.8 1420 0.7 2167 

 

The resolution values achieved were less than those found when using ACN: water 

mobile phases with the RP-Amide column while the N values were similar so this 

was not considered for further optimisation. 

As mobile phases containing upwards of 90% ACN gave higher resolution and 

efficiency values, further investigations were carried out using mobile phases with 

ACN concentration varying from 91-100%. As can be seen in Figure 2-4, the peak 

seen at 6.5 min when the mobile phase is 91:9 ACN: water split into two peaks when 

the percentage of ACN increased as the strength of the mobile phase increased. The 

resolution between these peaks increased with increasing ACN. This increase in 

mobile phase strength was also seen in the decrease in the resolution between these 

and peak 3, although it remains above 1.5. The efficiency of the 1
st
 peak decreased 

with increasing ACN. The mobile phase used in further analysis was 97:3 ACN: 

water. The resolution and efficiency values in Table 2-4 refer to the peaks labelled 1 

through 4 in Figure 2-4. 

Table 2-4 Resolution and efficiency values for the chromatograms in Figure 2-4 

Mobile 

phase 

Peak 1  Peak 2  Peak 3  Peak 4 

ACN: 

water 

N Rs N Rs N Rs   N 

99:1 835 1.3 2264 3.6 1870 1.5 3365 

98:2 1111 1.2 1194 2.5 938 1.1 1175 

97:3 1344 1.1 1330 2.9 1039 1.1 1328 

96:4 2735 1.2 1592 3.4 1314 1.2 1487 

95:5 4480 1.1 1830 3.9 1452 1.3 1782 

94:6 4101 0.9 2161 4.5 1699 1.5 3184 

93:7 4484 0.6 1796 4.7 1752 1.5 2888 

92:8   1796 5.0 1814 1.3 2252 

91:9   1868 5.0 1495 1.2 1869 
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Figure 2-4 Chromatograms of 1.1% w/v rosin in MeOH samples analysed at different 

% ACN mobile phases, 20 μL injections at 1 mL min
-1

, UV detection at 254 nm. 
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2.3.1.1 Optimisation of mobile phase pH 

 

Further investigations were carried out to determine the optimal mobile phase 

composition (see Figure 2-5). The addition of 0.1% acetic acid was also investigated 

as the addition of acid to a mobile phase can improve sensitivity by improving peak 

shape and retention by suppressing silanol activity. They also reduce unwanted 

interactions between polar compounds and the stationary phase [85] 

 

 

Figure 2-5 Chromatograms of 1.1% w/v rosin in MeOH samples, mobile phase consists 

of (a) 0.1% acetic acid 95:5 ACN:water, (b) 95:5, (c) 90:10, (d) 85:15, (e) 80:20 

ACN:water, 20 μL injections at 1 mL min
-1

, UV detection at 254 nm. 

 

If the pH of the mobile phase is equivalent to the pKa of the analytes, then half of the 

analytes will be protonated and the other half unprotonated which can result in broad 

or multiple peaks. Adjusting the pH to approximately two units below the pKa of an 

acid ensures that the acids are 99% protonated. A 95:5 ACN:water mobile phase 

containing 0.1% acetic acid was prepared and rosin sample analysed. The resolution 

and efficiency values compared with those of 95:5 ACN:water were noticeably 
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higher (see Table 2-5), and the peaks were much sharper. The pKa’s of the resin 

acids present in rosins range from 5.7-7.25 [1, 31, 84]. The pH of the 97:3 

ACN:water mobile phase was found to be pH 7.2 while the addition of 0.1% acetic 

acid lowered it to pH 3.6. The addition of acetic acid to the mobile phase caused the 

protonation of the acids where before some may still have been charged. This 

resulted in sharper peaks, as shown in Figure 2-5. 

 

Table 2-5 Resolution and efficiency values for Figure 2-5 

Mobile phase Peak 1  Peak 2  Peak 3 

ACN: water N Rs N Rs N 

80:20 551 6.6 2049 0.9 807 

85:15 703 4.7 1178 0.8 814 

90:10 1752 5.2 1531 1.0 801 

95:5 1612 3.8 1348 1.1 1194 

95:5 acetic acid 4621 6.3 3719 1.8 7363 

 

As the addition of 0.1% acetic acid to the mobile phase resulted in better efficiencies, 

several other acids were investigated to see if they could improve the separation of 

the rosin samples. 
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Figure 2-6 Chromatograms of a resin acid mixture analysed at 97:3 ACN:water mobile 

phase containing 0.1% (a) trifluoroacetic acid, (b) formic acid or (c) acetic acid, pH 3.6, 

20 μL injections at 1 mL min-1, UV detection at 254 nm. 

 

Although slightly higher resolution and efficiency values were achieved for the last 

two peaks in the acid mixture chromatogram, no further separation of the acids 

coeluting in these peaks was accomplished.  

 

Table 2-6 Resolution and efficiency values for last two peaks in the chromatograms in 

Figure 2-6 

 N Resolution N 

Acetic acid 3449 1.6 5727 

Formic acid 5124 1.9 8586 

TFA 6434 2 10119 
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2.3.1.2 Fluorescence detection 

 

The HPLC system also has a fluorescence detector running simultaneously to the 

UV detector which can be used in the identification of certain fluorescent 

compounds. 

 

 

Figure 2-7 Chromatograms of 1.1% w/v rosin in MeOH samples, mobile phase consists 

of ACN:water at (a) 100:0, (c) 95:5, (d) 90:10, (e) 85:15, (f) 80:20, (g) 70:30 and (b) 

0.1% acetic acid ACN:water 95:5, 20 μL injections at 1 mL min
-1

, fluorescence 

excitation was at 250 nm and emission at 410 nm. 

 

Increased ACN concentration decreased the elution time of the two peaks as the 

elution strength of the mobile phase was increased. This resulted in decreasing 

resolution values; however, the resolution values remained above 1.5. The efficiency 

values also decreased with increasing ACN concentration. The peaks in Figure 2-7 

may be the peaks of dehydroabietic acid and 7-oxo- dehydroabietic acids which are 

both noted as fluorescent in literature [86]. A mobile phase with a lower ratio of 

ACN would be optimal for the separation using fluorescence detection, but as more 
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of the sample analytes are detected by UV, a 97:3 ACN: water mobile phase was 

used in further studies. 

 

Table 2-7 Resolution and efficiency values for chromatograms in Figure 2-7 

Mobile phase Peak 1  Peak 2 

ACN: water N Rs N 

70:30 9433 3.3 11003 

80:20 5869 3.2 7845 

85:15 4678 2.7 5687 

90:10 2866 2.2 5045 

95:5 2314 1.8 3891 

95:5 0.1% acetic acid 2525 1.8 3551 

100:0 2626 1.6 3810 

 

 

2.3.1.3 Rosin types 

 

Analysis so far was carried out on a sample of natural gum rosin. Rosins are 

sometimes modified for use in industry so samples of modified rosins, acid-modified 

hydrogenated rosin and disproportionated rosin (as seen in Figure 1-5), were 

analysed. A batch of natural gum rosin known to crystallise was also analysed to 

investigate how its chromatogram varied from that of gum rosin used in industry. As 

can be seen in Figure 2-8, the chromatograms of the modified rosins are very 

different from those of the gum rosins indicating a different composition. In both the 

disproportionated and acid-modified rosin, the peak of highest area is seen at around 

6.6 min which was identified by peak spiking as DHA. In the disproportionated rosin 

sample, the peak area of this peak is more than twice the area of the same peak when 

seen in gum rosin samples. This is expected as ABA is disproportionated to DHA 

and dihydroabietic [34, 87]. The peak seen at 4 min in the disproportionated rosin 

chromatogram could correspond to dihydroabietic, or it may be the presence of 

7OXO. The acid modified rosin also shows a peak at the same migration time as the 

7OXO standard (standards in Figure 2-9). Abietic acid becomes a mix 

of dihydroabietic acid and tetrahydroabietic acid when hydrogenated [87]. 

Unfortunately, standards for these two acids were unattainable. 
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Figure 2-8 Chromatograms of 0.1% w/v rosin samples analysed using a 0.1% acetic 

acid 97:3 ACN: water mobile phase, 20 μL injections at 1 mL min
-1

, UV detection at 

254 nm. (a) Disproportionated rosin, (b) acid-modified hydrogenated rosin, (c) 

‘crystallising’ gum rosin and (d) gum rosin. 

 

While the gum rosin chromatograms are relatively similar, in the ‘crystallising’ rosin 

– a rosin which forms a precipitate - the last two peaks have lower signal intensities 

than in the good gum rosin chromatogram, in particular the last peak 
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Rosin gum samples were spiked with acids in order to identify the peaks currently 

being separated. Standards of the compounds were prepared and rosin samples were 

spiked to identify the compound groups, and the compounds themselves. Acid 

standards were analysed individually in order to identify which acids are eluting in 

which peak in the rosin electropherograms. 

 

Figure 2-9 Chromatograms of 0.1% w/v resin acid standards in methanol analysed at 

0.1% acetic acid 97:3 ACN:water mobile phase, 20 μL injection at 1 mL min
-1

, UV 

detection at 254 nm. 

10.0 10.5

0

1000

2000

3000
ABA

m
A

U

4.0 4.5 5.0

7OXO

5.5 6.0 6.5 7.0

DHA

8 10 12 14

0

20

40

60 ISO

m
A

U

10 11 12

LVO

11 12

NEO

9.5 10.0 10.5 11.0 11.5

0

500

1000

1500 PAL

m
A

U

10 11 12

Time (min)

PIM

Time (min)

9 10 11 12

SAN

Time (min)



 

52 

 

Figure 2-9 shows chromatograms for the separation of the acid standards. They were 

found to vary greatly in migration time and peak intensity. While 7OXO and DHA 

elute at 4.2 and 6.5 min respectively, the other acids all elute from 10.2-11.7 min. 

There are small impurities seen in some chromatograms e.g. LVO, but this could be 

the presence of some of the other isomeric acids as isomers. PIM and ISO 

chromatograms both show two peaks of almost equal intensity. As the acid group 

contains a carbonyl, it is possible that the acids undergo tautomerization. Luong et 

al. also reported ISO displaying two peaks when analysed by HPLC [31]. The two 

peaks elute at the same migration times but both peaks are at a much higher intensity 

for pimaric acid, and the second peak is greater while the first one is in isopimaric 

acid. Isopimaric, dehydroabietic, pimaric and sandaracopimaric acid all have 

intensities of less than 100 mAU while all the other acids have intensities of 700-

3500 mAU. 

 

Figure 2-10 Chromatograms of (a) 0.1% w/v rosin in methanol sample and (b) a 0.01% 

w/v resin acid mixture analysed at 0.1% acetic acid 97:3 ACN:water mobile phase, 20 

μL injection at 1 mL min
-1

, UV detection at 254 nm. Numbers indicate acids as follows, 

(1) 7-oxodehydroabietic acid, (2) dehydroabietic acid, (3) neoabietic acid, (4) abietic 

acid, (5) palustric acid, (6) levopimaric acid, (7) sandaracopimaric acid, (8) isopimaric 

acid and (9) pimaric acid. 
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An acid mixture standard was prepared containing the nine resin acids in MeOH at 

0.01% w/v. This was analysed by HPLC and the chromatogram overlayed with that 

of a gum rosin sample (see Figure 2-10 b). The acid standard mixture showed four 

peaks at 4.2, 6.8, 10.8 and 11.9 min. As there are nine acids present in the mixture, 

clearly several are coeluting. The last two peaks in the mixtures are similar to those 

seen in the rosin chromatograms although in the acid mixture the last peak has a 

greater absorbance than the second last. 7OXO elutes first at 4.2 min followed by 

DHA at 6.6 min. These two are the only of the acids to contain an aromatic ring, 

leaving them less polar than the other acids. They would be expected to elute before 

the others as the RP-Amide column retains more polar compounds longer. The rest 

of the acids then coelute in two peaks at 10.4 and 11.5 min. While the presence of an 

aromatic ring was sufficient to separate 7OXO and DHA, the interactions of the 

other acids with the stationary and mobile phase was not suitably differential enough 

to result in different retention times. The structures of these acids are very similar, 

varying only in the position of a double bond, and in the presence of either an 

isopropyl group or a methyl and vinyl group. SAN and PIM are optical isomers and 

so would not be expected to be separated without the use of chiral HPLC. 

Spiking the rosin samples with the acids confirmed that all except DHA and 7OXO 

were coeluting as the two peaks seen at the end of the chromatogram. 7OXO and 

DHA spiked rosins corresponded to peaks in the rosin chromatogram seen at 4.2 and 

6.6 min (see Figure 2-11). 
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Figure 2-11 Chromatograms of 0.1% w/v rosin in methanol samples (a) spiked with 

7OXO (1), (b) spiked with DHA(2) and (c) an unspiked rosin sample analysed at 0.1% 

acetic acid 97:3 ACN:water mobile phase, 20 μL injection at 1 mL min
-1

, UV detection 

at 254 nm. 

 

As expected due to the separation, when spiked with the rest of the acids, the last two 

peaks in the chromatogram increased.  

While HPLC separates analytes based on how they partition between a mobile and a 

stationary phase, CE separates analytes based on their electrophoretic mobilities and 

so it can separate mixtures that HPLC cannot. Some modes of CE such as MEKC 

allow the use of both electrophoretic and chromatographic separation mechanisms 

through the use of a pseudo-stationary phase. As a successful separation of the 

mixture of nine resin acids has not been achieved using HPLC, the use of CE was 

investigated. 
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2.3.2 CE method development 

 

Due to the reported capacity of CE to separate analytes unable to be separated using 

LC by using different separation mechanisms, CE was then investigated for the 

analysis of rosin samples. Unmodified gum rosin samples prepared in 0.1% w/v in 

methanol were analysed using a range of common CE buffers at concentrations from 

10-50 mM as listed in Table 2-8. 

 

Table 2-8 Buffers used in initial CE study 

Buffer pH 

Phosphate 2, 3.3, 7, 10, 12 

Acetate 3, 4, 6 

Tetraborate 9.2 

PBS 7.4 

Tris 8 

MES 6 

Caps 10 

 

Buffers at each pH were also prepared with and without cyclodextrins (CDs) 

(concentrations ranging from 5-30 mM). The addition of α-cyclodextrin (α-CD) and 

sulphated β-cyclodextrin (sβ-CD) provided little separation. As many of the 

compounds present in rosins such as some of the isomeric resin acids have very little 

structural difference, the use of more derivatized CDs were investigated. The 

functional groups available on their outside can allow for more interaction. When 

more than one CD is present, the main processes in competition are those between 

the two different complexes rather than between the free and complexed analyte 

[88]. 

Several papers showing the determination of some of the acids present in rosins 

report achieving superior separation using methyl β-cyclodextrin (MECD) and 

sulfobutylether β-cyclodextrin (SBCD), structures shown in Figure 2-12) [31, 59].  
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Figure 2-12 Structures of methyl β-cyclodextrin (MECD) and sulfobutylether β-

cyclodextrin (SBCD). 

 

SBCD is an anionic CD and MECD is neutral (Figure 2-13). Gum rosin samples 

were analysed by the CE buffers described in Table 2-8 containing MECD and 

SBCD. CD concentrations ranged from 1-10 mM. Each buffer was prepared with 

MECD and SBCD on their own to observe any separation effects. With all the 

buffers, the presence of methyl-β-cyclodextrin, a neutral CD, did not achieve 

separation of the components of the rosin sample. The use of SBCD alone in the 

buffer results in the sample eluting later, also with little separation. This was 

expected as SBCD is a negatively charged cyclodextrin [89] which would migrate 

against the EOF. This study supports observations in literature that on their own, 

neutral and charged cyclodextrin have weaker separation strengths than when present 

in a buffer in combination [90]. When there is a charged and a neutral CD present, 

sometimes the charged CD does not contribute to the separation of the analytes, but 

rather allows the selectivity of the neutral CD to be shown [88].  
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Figure 2-13 Schematic of a capillary containing neutral and charged cyclodextrins 

 

The CE system can record at up to 5 different wavelengths simultaneously so 

detection in this study was carried out at 200, 214, 240, 265 and 310 nm. These 

wavelengths were chosen from various papers noting these as the maximum 

absorbance wavelengths for several of the compounds found in rosin [31, 59, 63, 91-

93]. The separation parameters were 20 mM buffer concentration, 4 s injections at 50 

mbar, 20 kV at 25°C. 

A 20 mM phosphate buffer was prepared at pH 2.8. At this low pH the EOF is 

negligible so the components in the sample elute due to their electrophoretic mobility 

alone. The sample elutes with no separation at 25 min. The addition of cyclodextrins 

to a buffer increases elution time as the sample spends time interacting with the 

negatively charged cyclodextrin which travels against the EOF. Therefore, there 

were no further studies carried out using phosphate buffer at pH 2.8. Phosphate 

buffers at pH 7 and pH 12 were then prepared. 

Figure 2-14 demonstrates the use of different detection wavelengths for 

identification purposes as different compounds absorb at different maximum 

wavelengths. When the rosin sample was analysed with 10 mM MECD 10 mM 

SBCD in 20 mM phosphate buffer pH 7 the maximum peak was at 7 min at 200 and 

214 nm, while at 240 and 265 nm the maximum peak was at 7.1 min. Some peaks 

were found at all wavelengths, such as those at 7.1 and 7.7 min. Many other peaks 

did not appear at all wavelengths. 200 and 214 nm electropherograms shared more 

peaks, while 240 and 265 nm electropherograms had some peaks in common that the 
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other wavelengths did not. There were peaks at 6.8 and 7.2 min which appear at 200 

and 214 nm but not at 240 and 265 nm. These could belong to compounds with 

double bonds which have UV absorbance at shorter wavelengths, such as terpenes 

(214 nm) [90]. 

 

 

Figure 2-14 Electropherograms of 0.1% w/v rosin sample in methanol analysed in 

positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C and 50 

mbar 4 s injection times. Detection at (a) 200 nm, (b) 214 nm, (c) 240 nm and (d) 265 

nm. Buffer consists of 10 mM MECD 10 mM SBCD in 20 mM phosphate buffer (1) pH 

12 and (2) pH 7. 

 

The peak at 7.1 min has stronger absorbance at 240 nm. There are many reports in 

literature of abietic acid having a maximum UV absorbance at around 240 nm [59, 

63, 92, 93]. This was confirmed by running an abietic acid standard. Other resin 

acids are reported to have maximum wavelengths around this region too, such as 

neoabietic acid (252 nm) [63], palustric acid (266 nm) [63, 92], levopimaric acid 

(270 nm) [19, 25, 59, 63] and dehydroabietic acid (268 and 276 nm) [63, 92]. These 

were confirmed by running acids standards in a UV spectrometer.  
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When the rosin sample was analysed with 10 mM MECD, 10 mM SBCD in 20 mM 

phosphate buffer pH 12, there were more than 9 partially resolved peaks seen in the 

electropherogram. Several peaks were visible at all wavelengths, such as those at 8.8, 

10.1 and 11 min. The peak with highest intensity was seen at 9.9 min at 200 nm. 

Analysis using a 10mM MECD 10 mM SBCD at both pH 7 and pH 12 showed more 

peaks in the electropherogram than analysis with a 5 mM MECD 5 mM SBCD and 

gave comparable resolution values and slightly better efficiency values. Increasing 

buffer concentration increases the buffering capacity and can impede unwanted 

capillary wall interactions. 

Figure 2-15 shows the electropherogram of the rosin sample analysed using an 

acetate buffer. 

 

Figure 2-15 Electropherograms of 0.1% w/v rosin sample in methanol analysed in 

positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C and 50 

mbar 4 s injection times. Buffer consists of (1) 5 mM MECD 5 mM SBCD in 20 mM 

acetate buffer pH 4 and (2) 10 mM MECD 10 mM SBCD in 20 mM acetate buffer pH 

4. Detection at (a) 200 nm, (b) 214 nm, (c) 240 nm and (d) 265 nm. 
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From this investigation peak fronting was visible at all wavelengths. Fronting can 

occur when the motilities of the analyte ions are faster than those of the buffer [94, 

95]. At 310 nm there were no peaks observed. This suggests that the compounds 

detected around 310 nm are present in the rosin sample in very low concentrations. 

When the 0.1% rosin sample was analysed by 10 mM MECD 10 mM SBCD in 20 

mM acetate buffer pH 4 only five peaks were resolved, despite there being upwards 

of 35 known compounds present in rosin. 

 

As CAPS ([3-(cyclohexylamino)-1-propane sulfonic acid]) buffer is a zwitterionic 

buffer [96], a much higher buffer concentration can be used compared to more 

common buffers without creating excessive Joule heating which increases current. 

Since the 20 mM CAPS buffer was producing practically no current compared to the 

other buffers of equal concentration, a 50 mM CAPS buffer was also investigated for 

rosin analysis.  

 

 

Figure 2-16 Electropherograms of 0.1% w/v rosin sample in methanol analysed in 

positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C and 50 

mbar 4 s injection times. Buffer consists of 10 mM MECD 10 mM SBCD 50 mM CAPS 

buffer pH 10. Detection at (a) 200 nm, (b) 214 nm, (c) 240 nm and (d) 265 nm. 

 

From this study (Figure 2-16) approximately 11 peaks were seen when a rosin 

sample was analysed with 10 mM MECD 10 mM SBCD in 50 mM CAPS pH 10. 

The peak at 8.3 min was seen in all electropherograms but was at its highest intensity 

at 240 nm. This corresponds to abietic acid, whose max wavelength is around 240 
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nm [92]. When the CD concentrations were decreased to 5 mM, resolution and 

efficiencies decreased.  

 

 

Figure 2-17 Electropherograms of 0.1% w/v rosin sample in methanol analysed in 

positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C and 50 

mbar 4 s injection times. Buffer consists of (1) 1 mM MECD 1 mM SBCD in 20 mM 

borate buffer pH 9 and (2) 5 mM MECD 5 mM SBCD in 20 mM borate buffer pH 9. 

Detection at (a) 200 nm, (b) 214 nm, (c) 240 nm, (d) 265 nm and (e) 310 nm. 

 

Using 1 mM MECD 1 mM SBCD in 20 mM borate buffer pH 9 for rosin separation 

results in little separation as seen in Figure 2-17. When using a 5 mM MECD 5 mM 

SBCD in 20 mM borate buffer, the rosin sample had improved separation, resolution 

and efficiency values. The peak at 11 min was at its highest intensity at 240 nm, 

which corresponds to abietic acid [92]. 
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The pKa of MES buffer is 6.1 so a MES buffer was prepared at pH 6 to investigate 

its use as a suitable buffer (Figure 2-18). 

 

 

Figure 2-18 Electropherograms of 0.1% w/v rosin in methanol sample analysed in 

positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C and 50 

mbar 4 s injection times. Buffer consists of (1) 5 mM MECD 5 mM SBCD in 20 mM 

MES buffer pH 6 and (2)10 mM MECD 10 mM SBCD in 20 mM MES buffer pH 6. 

Detection at (a) 200 nm, (b) 214 nm, (c) 240 nm and (d) 265 nm. 

 

The peak at 5.8 min was at its highest intensity at 240 nm, possibly corresponding to 

abietic acid. There were peaks at 5.51 and 6.05 min that are seen at all the 

wavelengths. Using a 10 mM MECD 10 mM SBCD MES buffer, there was also a 

peak visible at all the wavelengths with its strongest intensity at 240 nm 

corresponding to abietic acid [92]. 
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Tris has a pKa of 8.1 according to product specification so a tris buffer at pH 8 was 

prepared to investigate its use as a suitable buffer.  

 

 

Figure 2-19 Electropherograms of 0.1% w/v rosin in methanol sample analysed in 

positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C and 50 

mbar 4 s injection times. Buffer consists of 10 mM MECD 10 mM SBCD in 20 mM 

Tris buffer pH 8. Detection at (a) 200 nm, (b) 214 nm, (c) 240 nm and (d) 265 nm. 

 

In the electropherogram for the rosin sample analysed using the 10 mM MECD 10 

mM SBCD tris buffer (Figure 2-19), the peak at 8.3 min whose intensity was highest 

at 240 nm is the ABA peak. As was seen with the phosphate buffers, there was a 

large peak with much stronger intensities at 200 and 214 nm at 8.2 min and the last 

migrating peaks was visible at all wavelengths. As with the majority of buffers, 

resolution was improved for the sample when analysed with 10 mM CD compared to 

5 mM CD, and the efficiency values were also higher.  

As the tris buffer can be used at a pH sufficient to keep the acids in their charged 

state, and based on the best resolution and efficiency values, and which 

electropherogram showed the most peaks, the optimum buffer was chosen to be 10 

mM MECD 10 mM SBCD in 20 mM Tris buffer pH 8. Up to 16 fully resolved and 

coeluting peaks were observed and the resolution and efficiency values can be seen 

in Table 2-9. 
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Table 2-9 Resolution and efficiency values for a rosin sample analysed using a 10 mM 

MECD 10 mM SBCD 20 mM tris buffer pH 8, detection at 200 nm. 

Peak 

number 

Resolution 

(Rs) 

Efficiency 

(N) 

1  117296 

2 2.1 116444 

3 2.0 54556 

4 1.5 109746 

5 1.2 74731 

6 1.1 183787 

7 0.9 136849 

8 1.1 128026 

9 1.0 397578 

10 0.5 105846 

11 1.6 260678 

12 0.8 125566 

13 1.1 126793 

14 0.8 122454 

15 0.3 127579 

16 1.0 104118 

17 1.0 113254 

18 1.1 65439 

19 0.8 252765 

20 0.4 302284 

 

The optimum separation conditions were found to be a 4s injection time at 50 mbar, 

20 kV separation voltage, positive polarity and a temperature of 25°C. Further 

studies analyse 0.1% w/v gum rosin in methanol samples using a 10 mM MECD 10 

mM SBCD 20 mM tris buffer at pH 8. 
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2.3.3 Buffer additive study 

 

A 20 mM tris buffer at pH 8 containing 10 mM MECD 10 mM SBCD was found to 

give the highest number of resolved peaks so far. Buffer additives were then further 

investigated.  

2.3.3.1 SDS-tris buffer 

As micellar electrokinetic chromatography is also used for the separation of 

compounds according to their hydrophobicity, SDS as a buffer additive was briefly 

investigated. 

 

Figure 2-20 Electropherogram of 0.1% w/v rosin sample analysed in positive polarity, 

20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s injection 

times. Buffer consists of 50 mM SDS in 20 mM tris buffer pH 8. Detection was at 200 

nm. 

A rosin sample was analysed using a 50 mM SDS in 20 mM tris buffer at pH 8. As 

can be seen in Figure 2-20, the separation was not comparable with the separation 

achieved with a CD-tris buffer. The rosin separated into 4 masses of peaks compared 
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to the up to 20 partially resolved peaks obtained using a CD-tris buffer. The low 

analysis wavelength may be contributing to the significant baseline noise. 

2.3.3.2 Cyclodextrin concentration variation 

As the addition of cyclodextrins to the CE run buffer resulted in separation, the 

effect of varying the concentration of one cyclodextrin relative to the other was 

investigated. Numerous publications report that a combination of a neutral and a 

charged cyclodextrin added to a buffer greatly increase separation when compared to 

either one added on its own [31, 90]. The neutral CD provides the structural 

difference for compounds to separate while the charged CD provides mobility. Thus 

far all buffers contained equal concentrations of MECD and SBCD. A short study 

was carried out to see if varying the ratio of their concentration relative to each other 

improved separation. Tris buffers containing 10 mM SBCD and 1-10 mM MECD 

were prepared and rosin samples in MeOH were analysed. 

 

 

Figure 2-21 Electropherograms of 0.1% w/v rosin sample analysed in positive polarity, 

20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s injection 

times. Buffer consists of 20 mM tris buffer pH 8 containing 10 mM SBCD and varying 

concentrations of MECD from 1 mM to 10 mM. Detection at 200 nm. 
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As seen in Figure 2-21, the electropherogram changes over the range of cyclodextrin 

concentration ratios investigated in terms of resolution and efficiency (Table 2-10). 

When the concentration of MECD was increased, the analysis times decreased. This 

could suggest that the analytes favour interacting with MECD over SBCD, and do so 

when it is available thus reducing their interactions with SBCD which would result 

in later migration times as the SBCD travels against the EOF. When there is more 

MECD present in the buffer, the analytes can interact more with this neutral 

cyclodextrin which moves with the EOF. Higher elution times were seen when 1 

mM MECD 10 mM SBCD was used in the buffer which suggests that the lack of 

MECD leads to the compounds interacting more with the negatively charged SBCD. 

The earlier elution times make the 10 mM MECD concentration more attractive as a 

separation method. While both buffers show a similar number of coeluting and 

baseline resolved peaks, the efficiencies are much greater for the peaks seen using 10 

mM MECD 10 mM SBCD tris buffer compared to those of the 1 mM MECD 10 

mM SBCD buffer tris buffer. The higher MECD concentration results in 13 peaks 

with efficiencies over 100000 while all but three of the peaks in the 1 mM MECD 

buffer are fewer than 100000. In comparison with HPLC, 10119 was the highest 

efficiency achieved in this chapter, while the majority of efficiency values were an 

order of magnitude less. 

 

Table 2-10 Resolution and efficiency values for the peaks seen in Figure 2-21 

SBCD conc. 

(mM) 

MECD conc. 

(mM) 

Average Rs SD Average 

N 

SD 

10 1 1.3 0.4 58247 44556 

10 2 1.3 0.9 62913 39656 

10 3 1.4 0.6 78401 37703 

10 4 1.7 2.0 100427 35096 

10 5 1.4 0.9 132104 70671 

10 6 1.6 1.5 92247 32254 

10 7 1.2 0.7 79070 28823 

10 8 1.7 1.6 150030 54648 

10 9 1.7 1.7 102745 37289 

10 10 1.8 1.5 141051 46515 
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A 1:1 concentration ratio of MECD: SBCD was selected for further analysis, using a 

10 mM MECD 10 mM SBCD in 20 mM tris buffer at pH 8. The cyclodextrin ratio is 

consistent with literature reports. Luong et al. also came to the conclusion that the 

concentration of MECD and SBCD had to be at or near equal in order to optimise 

separation [31]. 

2.3.4 Resin acid standards and mixture 

 

In order to develop a CE method specifically for the separation and quantification of 

acids in rosin samples, acid standards were analysed using the 10 mM MECD 10 

mM SBCD in 20 mM tris buffer at pH 8 both individually (see Figure 2-22) and as a 

mixture (see Figure 2-23). 

 

 

Figure 2-22 Electropherograms of acid standards analysed in positive polarity, 20 kV, 

capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s injection times. 

Buffer consists of 10 mM MECD 10 mM SBCD in 20 mM tris buffer pH 8. Detection at 

wavelengths as described in legend. 
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All of the acids were detected at 200 nm, some more strongly than others, as 

expected. DHA demonstrates the strongest absorbance at 200 nm, at least twice that 

of the next strongest absorbing acid, 7OXO. It shows weaker absorbance at 214 nm 

and practically none at the other wavelengths. It also elutes at the same time as the 

7OXO standard which could pose problems in their separation. The ABA standard 

absorbs most strongly at 240 nm as reported in literature [92]. 7OXO absorbs 

strongly at both 200 and 214 nm. It also has a small absorbance at 310 nm while 

most of the acids show no absorbance at this wavelength. ISO only absorbs at 200 

and 214 nm. LVO acid absorbs strongest at 200 nm, followed by 265 nm. Like 

7OXO, it has a small absorbance at 310 nm. NEO shows strongest absorbance at 240 

and 265 nm. PAL absorbs strongest at 265 nm. There are some impurities also seen 

in its electropherogram. PIM and SAN only show UV absorbance at 200 and 214 

nm.  

 

Figure 2-23 Electropherogram of a 0.01% w/v resin acid mixture analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s 

injection times. Buffer consists of 10 mM MECD 10 mM SBCD in 20 mM tris buffer 

pH 8. Wavelengths are (a) 200 nm, (b) 214 nm, (c) 240 nm, (d) 265 nm and (e) 310 nm. 

Numbers indicate (1) 7OXO, (2) DHA, (3) NEO, (4) ABA, (5) PAL, (6) LVO, (7) SAN, 

(8) ISO and (9) PIM. 
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As seen in Figure 2-23, some of the acids were found to coelute. The acids different 

spectral properties were used to aid their identification in this electropherogram. The 

nine resin acids were not all baseline resolved so further optimisation of the buffer 

was necessary. Resolution values are seen in Table 2-11. NEO was the first peak to 

migrate so its resolution value is taken from the following peak. 

Table 2-11 Average resolution values for 10 mM MECD 10 mM SBCD in 20 mM tris 

buffer pH 8 separations 

NEO SAN LVO PIM ISO PAL DHA 7-

OXO 

ABA 

0.5 0.5 0.2 1.9 1.6 1.1 0.9 0.9 2.4 

 

2.3.5 (2-Hydroxypropyl)-γ-cyclodextrin modified buffer  

 

As changing the concentration of MECD, the neutral cyclodextrin, was found to 

affect peak efficiency and resolution (see Table 2-10), the use of a different neutral 

cyclodextrin was investigated as an alternative additive for the separation of the resin 

acids. 

(2-Hydroxypropyl)-γ-cyclodextrin (HPγCD) is a neutral cyclodextrin with a larger 

cavity width than that of MECD (from 0.6-0.65 nm to 0.75-0.83 nm). A 20 mM tris 

buffer at pH 8 was prepared with 10 mM HPγCD and 10 mM SBCD and the resin 

acid mixture and standards analysed (see Figure 2-24 and Figure 2-25). 
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Figure 2-24 Electropherograms of acid standards analysed in positive polarity, 20 kV, 

capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s injection times. 

Buffer consists of 10 mM HPγCD 10 mM SBCD in 20 mM tris buffer pH 9. Detection 

at wavelengths as described in legend. 
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Figure 2-25 Electropherograms of a 0.01% w/v resin acid mixture analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s 

injection times. Buffer consists of 10 mM HPγCD 10 mM SBCD in 20 mM tris buffer 

pH 9. Wavelengths are (a) 200 nm, (b) 214 nm, (c) 240 nm and (d) 265 nm. Numbers 

indicate (1) 7OXO, (2) DHA, (3) NEO, (4) ABA, (5) PAL, (6) LVO, (7) SAN, (8) ISO 

and (9) PIM. 

As shown in Figure 2-25 eight peaks are seen at 200 nm, two coeluting at 17.5 min 

and two coeluting at 15.7 min. While it is not obvious at 200 nm that the peak at 15.7 

min is coeluting, at 240 and 265 nm two peaks are seen in its place. The migration 

order of the acids is different from that when MECD was used in the buffer. DHA 

and PAL, the peaks at 15.7 min, now have very close migration times while 7OXO 

is now found to migrate last. PIM, NEO, LVO and SAN are now separated, and PIM 

is the acid which migrates from the capillary first. 
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2.3.5.1 Cyclodextrin concentration 

 

The concentration of the charged cyclodextrin, SBCD, was modified and the mixture 

of the nine resin acids analysed. Figure 2-26 shows that as  the concentration of the 

charged cyclodextrin decreases, the migration times of the acids decrease as 

expected as they are being pulled towards the anode and away from the detector less. 

However, little improvement was seen in the separation of the nine peaks.  

 

Figure 2-26 Plot of acid migration times versus SBCD concentration. Resin acid 

mixtures were analysed in positive polarity, 20 kV, capillary 58 cm (49.5 cm to 

detector), 50 μm i.d., 25°C, 50 mbar 4 s injection times. Buffer consists of 20 mM tris 

buffer pH 9 containing 10 mM HPγCD and varying concentrations of SBCD from 1 

mM to 10 mM.  

 

As can be seen in Figure 2-27, by varying the concentration of the neutral 

cyclodextrin a more selective effect is observed rather than simply affecting the 

migration times. While the first four peaks remain separated at each concentration, 

DHA and PAL were often found to coelute as were ISO and ABA. The resolution 

values are seen in Table 2-12. The majority of resolution values are above 1.5 with 

the buffer containing 5 mM HPγCD 10 mM SBCD resulting in the baseline 

resolution of eight of the resin acids. However, the resolution between the PAL and 

DHA peak is 1.3 so further buffer optimisation was carried out. 
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Figure 2-27 Electropherograms of a 0.01% w/v resin acid mixture analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s 

injection times. Buffer consists of 20 mM tris buffer pH 9 containing 10 mM SBCD and 

varying concentrations of HPγCD from 1 mM to 10 mM. Detection at 200 nm. 

Numbers indicate (1) 7OXO, (2) DHA, (3) NEO, (4) ABA, (5) PAL, (6) LVO, (7) SAN, 

(8) ISO and (9) PIM. 
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Table 2-12 Resolution values for the electropherograms seen in Figure 2-27. 

10 mM SBCD 

HP-y-CD 

(mM) 

Peaks 1-

2 

P2-3 P3-4 P4-5 P5-6 P6-7 P7-8 P8-9 

1 16.5 6.5 2.1 3.3 1.9 1.5  2.6 

2 14.5 9.1 2.6 3.8 2.1 1.1  3.8 

3 20.9 9.8 2.8 5.5 2.6 1.4  3.3 

4 14.8 8.8 2.9 5.3  3.3 0.6 4.8 

5 18.3 13.1 6.4 13.9 1.3 5.4 1.7 4.5 

6 24.0 15.2 4.3 11.1 0.9 3.1  7.1 

7 25.4 12.6 4.2 8.9 1.1 3.6  7.4 

8 23.5 11.2 5.0 8.9 0.9 3.6  6.2 

9 20.6 11.9 4.0 8.3 0.9 5.1  8.1 

10 17.7 12.0 3.9 8.7 1.1 5.1  7.3 

 

2.3.5.2 Tris buffer pH 

 

A high pH is required in order for the analytes to remain in their charged form (pKa 

values range from 5.7-7.25 [1, 31, 84]). Analysis using a tris buffer over a range of 

pH 7.2-9 was investigated for further optimisation of the separation method (see 

Figure 2-28). 

Table 2-13 Resolution, efficiency and RSD values for electropherograms of varying tris 

pH in Figure 2-28, n=3 

Peak PIM NEO LVO SAN PAL DHA ISO ABA 7OX

O 

Resolution         

pH 

7.2 

 25.3 13.4 6.6 13.4  7.7 1.4 5.4 

pH 8  16.1 14.9 5.2 15.3 0.9 4.5  7.5 

pH 9  12.5 11.3 3.7 8.6 0.8 3.5 1.7 5.3 

Efficiency         

pH 

7.2 

26787

5 

31045

1 

24720

8 

17995

4 

18413

9 

 13847

5 

6895

0 

19258

5 

pH 8 18349

9 

21495

1 

25509

9 

18273

5 

31240

1 

16512

2 

69278  16260

8 

pH 9 19496

8 

18408

5 

13704

2 

14719

0 

72125 96405 10670

3 

9902

4 

80366 

RSD (%)         

pH 

7.2 

0.54 1.25 0.77 0.98 0.94  1.32 1.65 1.06 

pH 8 0.31 0.39 0.35 0.39 0.41 0.34 0.31  0.32 

pH 9 0.42 0.45 0.50 0.50 0.57 0.57 0.57 0.76 0.73 
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A change in migration order was observed for some of the acids at different pH 

values as the degree to which they are ionized was affected. At pH 7.2, PAL and 

DHA coeluted and were followed by ABA and ISO. At pH 8, PAL migrates before 

DHA however ABA and ISO now coelute. At pH 9, these four acids migrate in the 

order PAL, DHA, ISO and ABA. PAL and DHA are still not completely baseline 

resolved. The migration order of the other acids did not change with the pH of the 

buffer. Luong et al. also observed a change in the migration order of the acids 

influenced by the buffer pH. They reported that the solubilities of the resin acids 

increased as pH increased. The acids were found to be more soluble in a buffer 

containing neutral MECD at pH 7, but at pH 9 several of the acids were reported to 

be more soluble in the charged SBCD [31]. As seen in Table 2-13 there was good 

reproducibility of the migration times at pH 9; 0.42-0.76% relative standard 

deviation (RSD). As pH 9 resulted in at least partial separation of all the acids in the 

mixture, it was chosen for further optimisation. 

 

 

Figure 2-28 Plot of acid migration times versus tris buffer pH.  Resin acid mixtures 

were analysed in positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm 

i.d., 25°C, 50 mbar 4 s injection times. Buffer consists of 20 mM tris buffer at pH 9, pH 

8 and pH 7.2 containing 10 mM SBCD 5 mM HPγCD. 
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2.3.5.3 Tris buffer concentration 

 

The optimisation of concentration of the buffer was investigated over the range 10-

50 mM for further optimisation of the separation (see Figure 2-29).  

Table 2-14 Resolution, efficiency and RSD values for electropherograms with varying 

concentrations of tris in Figure 2-29, n=3 

Peak PIM NEO LVO SAN PAL DHA ISO ABA 7OX

O 

Resolution         

10 

mM 

 18.1 17.6 5.1 10.9 1.2 4.1 2.0 6.7 

20 

mM 

 12.5 11.3 3.7 8.6 0.8 3.5 1.7 5.3 

50 

mM 

 9.4 8.5 3.1 7.5 1.2 3.4 1.5 5.2 

Efficiency         

10 

mM 

29920

3 

40336

2 

31256

3 

20784

2 

10966

4 

17287

3 

10550

2 

10787

3 

15094

0 

20 

mM 

19496

8 

18408

5 

13704

2 

14719

0 

72125 96405 10670

3 

99024 80366 

50 

mM 

71076 10431

4 

55249 82287 45774 53785 72715 83750 52718 

RSD (%)         

10 

mM 

1.27 1.45 1.50 1.51 1.71 1.70 1.79 1.87 2.14 

20 

mM 

0.42 0.45 0.50 0.50 0.57 0.57 0.57 0.76 0.73 

50 

mM 

1.17 1.47 1.95 2.08 2.68 2.57 2.89 2.92 3.15 

 

At lower tris concentrations the migration times were found to be less reproducible 

than 20 mM tris (1.3-2.1% RSD, n=3) and at higher concentration the peaks became 

broader decreasing efficiencies (see Table 2-14). Although resolution values were 

higher at 10 mM, PAL and DHA were still not baseline resolved and the resolution 

values for all other peaks at 20 mM tris were above 1.5. 20 mM tris also had the 

most reproducible migration times and was determined as the optimum 

concentration. 
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Figure 2-29 Electropherograms of resin acid mixture analysed in positive polarity, 20 

kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s injection times. 

Buffer consists of (a) 50 mM, (b) 20 mM and (c) 10 mM tris buffer at pH 9 containing 

10 mM SBCD 5 mM HPγCD. Detection at 200 nm. Numbers indicate (1) 7OXO, (2) 

DHA, (3) NEO, (4) ABA, (5) PAL, (6) LVO, (7) SAN, (8) ISO and (9) PIM. 
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2.3.5.4 Effect of organic modifier 

 

The acid mixture was analysed using buffers containing 10-30% MeOH. The 

addition of a solvent changes the equilibrium between the host-guest complexes by 

affecting the affinity of the analyte for the CD and so changes the complexes 

mobilities. The separation was improved with the presence of MeOH up to 30% as 

the PAL and DHA peaks were now baseline separated. At 30% MeOH the ISO and 

DHA peaks began to coelute (see Figure 2-30). 

 

Figure 2-30 Plot of acid migration times versus the percentage of MeOH in the buffer.  

Resin acid mixtures in MeOH were analysed in positive polarity, 20 kV, capillary 58 

cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s injection times. Buffer consists 

of 10-30% MeOH 20 mM tris buffer at pH 9 containing 10 mM SBCD 5 mM HPγCD.  

 

15% MeOH was considered optimum as it resulted in baseline separation of the nine 

acids with good reproducibility of their migration times (0.2-1.2% RSD, n=3), good 

resolution values (2.3-18.3) and good efficiencies (60613-241875) (see Table 2-15). 

The separation of the nine resin acids using the optimum buffer; 15% MeOH 5 mM 

HPγCD 10 mM SBCD 20 mM tris buffer at pH 9, is seen in Figure 2-31. 
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Table 2-15 Resolution, efficiency and RSD values for electropherograms with varying 

MeOH percentages in Figure 2-30, n=3 

Pea

k 

PIM NEO LVO SAN PAL DHA ISO ABA 7OX

O 

Resolution         

10

% 

 11.2 16.9 5.6 16.4 2.8 2.8 2.0 8.1 

15

% 

 10.2 15.3 5.1 18.3 3.3 3.2 2.3 9.8 

20

% 

 10.7 17.2 5.7 23.8 4.9 3.0 3.9 13.3 

30

% 

 6.3 13.1 2.6 19.1 3.8  5.0 10.3 

Efficiency         

10

% 

21712

8 

25708

4 

34675

2 

29297

7 

17595

2 

19727

7 

74669 46518 19566

0 

15

% 

20878

6 

20353

6 

22661

4 

24187

5 

18607

8 

16566

4 

10434

7 

60613 14512

6 

20

% 

38314

6 

26718

3 

29640

1 

37736

5 

25713

5 

24043

3 

14597

9 

14717

3 

18041

7 

30

% 

17295

0 

19715

2 

15021

6 

88905 17253

1 

26994  20279

6 

71009 

RSD (%)         

10

% 

0.98 0.88 0.98 1.01 1.13 1.18 1.14 0.96 1.30 

15

% 

0.14 0.40 0.66 0.82 1.52 1.01 0.91 1.18 1.13 

20

% 

0.60 0.70 0.82 0.86 0.94 0.97 1.02 1.00 1.05 

30

% 

2.19 2.16 1.96 2.11 1.61 1.35  1.35 1.03 

 

A 20 mM tris buffer at pH 9 containing 15% MeOH 5 mM HPγCD 10 mM SBCD 

resulted in the baseline resolution of the nine resin acids for the first time. The use of 

a γ cyclodextrin in place of a β cyclodextrin resulted in a different migration order 

and baseline resolution all the acids, possibly due to the increased cavity size of the 

larger cyclodextrin. The elution order of the acids in a mixture was found to be PIM, 

NEO, LVO, SAN, PAL, DHA, ISO, ABA, 7OXO. The higher molecular weight of 

7OXO results in it eluting last. 
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Table 2-16 Resolution, efficiency, peak asymmetry and RSD values for Figure 2-31, 

n=3 

Peak ID N Rs As Migration time (min) RSD (%) 

PIM 208786  2.4 8.6 0.1 

NEO 203536 10.2 2.8 9.4 0.4 

LVO 226614 15.3 2.2 10.7 0.7 

SAN 241875 5.1 0.9 11.2 0.8 

PAL 186078 18.3 0.2 13.1 1.5 

DHA 165664 3.3 0.3 13.6 1.0 

ISO 104347 3.2 0.2 14.1 0.9 

ABA 60613 2.3 0.8 14.5 1.2 

7OXO 145126 9.8 0.3 16.5 1.1 
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Figure 2-31 Electropherogram of a 0.01% w/v resin acid mixture analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s 

injection times. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 20 mM 

tris buffer pH 9. Wavelengths are (a) 200 nm, (b) 214 nm, (c) 240 nm and (d) 265 nm. 

Numbers indicate (1) 7OXO, (2) DHA, (3) NEO, (4) ABA, (5) PAL, (6) LVO, (7) SAN, 

(8) ISO and (9) PIM. Detection at 200 nm. 

Some of the peaks show some tailing, as seen by the peak asymmetry factor (As) in  
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Table 2-16. This may be a result of the mobility of the buffer ions being greater than 

the mobility of the analyte ions. Tailing can also result from interactions between the 

analytes and the capillary walls [73]. Good reproducibility of the migration times is 

achieved, less than 1.3% RSD, n=3. This reproducibility is seen in Figure 2-32. 

 

 

Figure 2-32 Repeat electropherograms of the resin acid analysed in positive polarity, 20 

kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s injection times. 

Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 20 mM tris buffer pH 9, 

detection at 200 nm. 
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2.3.6 Resin acid calibrations 

 

Using the optimum buffer and separation conditions, calibration curves for the nine 

resin acids were constructed using triplicate analysis of five different concentrations 

of each acid at 5, 10, 50, 100 and 1000 mg L
-1

. The use of corrected peak area (peak 

area/migration time) compensates for any run to run shift in migration times. It is 

also used because as a result of the detection being online, the analytes which pass 

the detector later are moving slower and so their peaks are broader than earlier 

migrating analyte [97]. All calibration curves were found to be linear over the range 

tested and LODs varied from 0.15-1.24 mg L
-1

 (see Figure 2-33 and Table 2-17). 

LODs were calculated from as 3 times the baseline noise. 

 

 

Figure 2-33 Calibration curves for the resin acids. 

 

The method shows greatest sensitivity towards DHA, as seen by comparing the 

slopes of the curves. As seen in Table 2-17 there is good linearity observed for the 

acids over the range 5-1000 mg L
-1
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Table 2-17 Linearity and LOD values for the nine resin acids 

Acid Analysis 

wavelength (nm) 

R
2
 (n=3) LOD  

(mg L
-1

) 

Line equation 

ABA 240 0.99 0.15 y=0.0541x-0.076 

7-OXO 200 0.99 0.25 y=0.1154x+0.2792 

ISO 200 1 0.73 y=0.047x-0.0194 

PIM 200 0.99 0.65 y=0.0375x-0.0801 

SAN 200 0.99 0.48 y=0.0742x-0.4241 

LVO 200 1 1.24 y=0.0429x-0.0488 

DHA 200 1 0.25 y=0.2149x-0.5548 

PAL 265 0.99 0.35 y=0.0242x-0.1538 

NEO 240 0.99 0.79 y=0.0826x-0.603 

 

Luong et al. achieved LODs of 5 ppm (5 mg L
-1

) for resin acids using CE-UV at 214 

nm for their separation and Dell’mour et al. reported the LOD of DHA to be 400 pg 

μL
-1

 (0.4 mg L
-1

),   comparable to those seen in this work [31, 57]. 

Axelsson et al. compared GC-FID and HPLC/ESI-MS as methods for the 

determination of 7OXO, DHA and ABA in air samples. They reported LODs of 0.42 

ng m
-3

, 5.2 ng m
-3

 and 9.4 ng m
-3

 respectively using LC/MS, which are lower than 

those achieved by GC-FID (24, 115 and 89 ng m
-3

) [98].  

The LODs achieved by Axelsson et al. are an order of magnitude lower than those 

reported for this CE method, highlighting one of the drawbacks of CE; its sensitivity. 

The sensitivity of CE relative to other analytical methods is quite low due to the very 

small optical path length in the detector which is usually UV, and the minute sample 

volume injected (nanolitres). However, CE also offers certain advantages over other 

techniques. Minimal sample preparation was necessary while for GC-FID 

derivatization of the analytes was required. The amount of sample and buffer 

consumed is much lower than the volume of mobile phase used in HPLC, and the 

high efficiency values achievable using CE allow for the baseline separation of nine 

resin acids in the same analysis time that Axelsson et al. separate three. 
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2.4 Conclusions 

 

The crystallisation of rosins in certain industrial applications is an on-going problem 

and the specific composition of rosins which tend to crystallise has not yet been 

defined. In this work, an effective method was developed for the separation of nine 

resin acids, abietic-, neoabietic-, dehydroabietic-, pimaric-, isopimaric-, levopimaric-

, sandaracopimaric-, palustric- and 7-oxo-dehydroabietic acid using CE.  

A reversed-phase HPLC method using an amide column and an ACN:water mobile 

phase with 0.1% acetic acid was found to be unable to separate the resin acids with 

the exceptions of DHA and 7OXO. The very similar structures of the remaining 

acids resulted in them coeluting in two peaks. The CE method resulted in improved 

separation and higher efficiency. As a chromatographic approach to the separation of 

the analytes present in rosin samples achieved less baseline resolution than the 

orthogonal electrophoretic approach, the CE method was the focus of further 

optimisation for the analysis of rosin samples. 

 It was found that a range of buffers investigated containing no cyclodextrins did not 

achieve separation. A tris buffer containing a charged and a neutral cyclodextrin, 

MECD and SBCD, resulted in the separation of several of the acids but LVO, SAN 

and NEO coeluted, as did DHA and 7OXO. When MECD was replaced by a γ 

cyclodextrin, HPγCD, the nine resin acids were separated using a 15% MeOH 5 mM 

HPγCD 10 mM SBCD in 20 mM tris buffer at pH 9. LODs of 0.15-1.25 mg L
-1

 were 

reported. For the first time a CE method was able to separate PIM, SAN and 7OXO, 

as well as the other important resin acids present in rosins. 

The CE method allows for the first time a simple and rapid separation of a mixture of 

nine resin acids present in rosin samples. It is also the first use of CE for the 

quantification of resin acids in rosin samples. This method can then be applied to 

modified and unmodified rosin samples in order to screen for the presence and 

concentration of acids in each sample. CE provides an alternative separation method 

with high efficiencies and fast resolution to the use of GC which requires a sample 

derivatisation step. CE can also be used to analyse non-volatile compounds. 
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  Chapter 3

 

 

 

 

A capillary electrophoresis method for the separation of terpenes 

and other neutral compounds in rosin samples 
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3.1 Introduction 

 

While rosins consist mainly of acidic compounds, they also contain roughly 10% 

neutral compounds, including terpenes, terpene alcohols and aldehydes [1, 36, 57]. 

Longifolene, terpineol and 4-allylanisole make up 50-60% of the volatiles present in 

gum rosins [1]. Terpenes are natural hydrocarbons formed by the head to tail joining 

of at least two isoprene units. They are grouped based on their number of isoprene 

units e.g. monoterpenes contain two and sesquiterpenes three. They are primarily 

found in nature in plants such as pine trees and are the main component of turpentine 

and many essential oils. Terpenes are generally found in low concentrations in 

samples, are soluble in organic solvents but insoluble in water [99]. Terpenes known 

to be present in rosins include monoterpenes such as camphene, 3-carene, α- and β- 

pinene and sesquiterpenes such as longifolene and aromadendrene (see Figure 3-2) 

[23, 100].  

To the author’s knowledge, there are limited publications of the determination of the 

neutral fraction of rosins. In various other natural samples terpenes are generally 

analysed by GC, often with a flame ionisation detector (FID) or with mass 

spectrometry (GC-MS) with analysis times of 25-60 min reported [99, 101, 102]. 

HPLC is also used for terpene analysis but to a lesser extent, usually when the 

separation of more polar compounds cannot be achieved by GC [99, 103, 104]. 

Capillary electrophoresis (CE) is an alternative separation technique for the rapid 

determination of neutral components. As neutral analytes do not have their own 

electrophoretic mobility, charged compounds including cyclodextrins, micelles and 

microemulsions are used in the separation medium as pseudo-stationary phases 

providing mobility to the neutrals as they interact. Such modified CE methods can 

provide a rapid and simple method for the analysis of neutral compounds. 

In this chapter, HPLC, cyclodextrin-CE (CD-CE), micellar electrokinetic 

chromatography (MEKC) and microemulsion electrokinetic chromatography 

(MEEKC) were studied for the separation of a mixture of nine compounds including 

monoterpenes, sesquiterpenes, a phenylpropene and a monoterpene alcohol. These 

were chosen as they have all been detected in rosin samples. 
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3.1.1 HPLC 

 

Although GC is most often used for the analysis of the volatile terpenes, HPLC has 

been used for their separation, usually with CDs either included in the mobile phase 

or bonded to the stationary phase [104]. HPLC was used for the separation of α-

pinene, β-pinene, camphene and limonene while determining the association 

constants they form with cyclodextrins. Only the presence of α-CD in the 0.1% 

orthophosphoric acid 55:45 water:methanol (MeOH) mobile phase resulted in the 

separation of the chiral enantiomers [104]. Capillary liquid chromatography was 

used to separate α- and β-pinene in an acetonitrile (ACN):water mobile phase 

without the need for CD additives [103].  

 

3.1.2 CE 

 

CE is becoming a more widely used method for the analysis of neutral compounds 

due to the ease of changing the mode of separation i.e. a different additive such as a 

CD or micelles are placed in the buffer, compared to other techniques where a new 

column may be required, which is costly. Both MEKC and MEEKC have been used 

for the analysis of terpenes. Their hydrophobic nature allows them to partition easily 

into micelles and microemulsions. The same can be said for the use of CDs in CE. 

MEKC was used for the determination of monoterpenes in marjoram plants. A buffer 

containing 10% ACN 10 mM NaH2PO4, 6 mM Na2B4O7, 50 mM SDS, 7 mM γ -

cyclodextrin at pH 8 resulted in the separation of camphene, α pinene and β pinene 

among other terpenes. α-Terpineol was also separated from other monoterpene 

alcohols and determined by this method [105]. Camphene, α-pinene, β-pinene and 

limonene were separated with the addition of 5 mM α-CD and 6.5 mM sulphated β-

CD to a 10 mM phosphate buffer at pH 3.3 [90]. Cao et al. investigated the use of 

oil-in-water and water-in-oil MEEKC methods for the analysis of five diterpenoids 

[106]. 

The analysis of terpenes, including 3-carene, α- and β-pinene, present in pepper 

extracts by capillary electrochromatography (CEC) was reported. The 50 mM 

ammonium acetate/ACN (10:90 v/v) mobile phase at pH 6 separated 11 compounds 

with a run time of 25 min [107]. 
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Figure 3-1 Structures of the neutral analytes in planar geometry. Letters indicate (a) 3-

carene, (b) 4-allylanisole, (c) α-pinene, (d) aromadendrene, (e) terpineol, (f) β-pinene, 

(g) camphene, (h) isolongifolene and (i) longifolene. 
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Figure 3-2 Structures of the neutral analytes in 3D. Letters indicate (a) 3-carene, (b) 4-

allylanisole, (c) α-pinene, (d) aromadendrene, (e) terpineol, (f) β-pinene, (g) camphene, 

(h) isolongifolene and (i) longifolene. 
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3.1.1 Aims 

 

The aim of this research is to investigate analytical techniques for the separation of 

some of the neutral compounds found in rosin samples. The objectives are to 

investigate the use of HPLC and several CE modes which involve the use of pseudo-

stationary phases for the separation of the analytes, and to optimise a method for the 

separation of a mixture of nine terpenes and other neutral compounds for future 

application to rosin samples. 
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3.2 Experimental 

3.2.1 Instrumentation 

 

HPLC analysis was carried out on an Agilent 1100 HPLC system (Agilent 

Technologies Ireland Ltd., Unit 3, Euro House, Euro Business Park, Little Island, 

Cork, Ireland). The system uses a DAD (range 190-600 nm) and a fluorescence 

detector (excitation range is 200-700 nm and emission range is 280-900 nm). The 

software used was Agilent Chemstation. The column used was a Supelco Ascentis 

RP-Amide column (15 cm x 4.6 mm, 3 μm particles). CE analysis was carried out on 

an Agilent Capillary Electrophoresis System G1601A (Agilent Technologies Ireland 

Ltd., Unit 3, Euro House, Euro Business Park, Little Island, Cork, Ireland). The CE 

system uses a DAD which has a range of 191-599 nm. Peaks were manually 

integrated using the Agilent 3D-CE Chemstation software. Capillaries used were 58 

cm (49.5 cm effective length) fused silica capillaries, 50 μm inner diameter 

(CMScientific, Silsden, BD20 0DL, UK). The pH meter used was a HI2211 pH/ORP 

meter (Hanna Instruments, Rhode Island, USA) with a calomel reference electrode 

(Metrohm AG, Switzerland).  

 

3.2.2 Reagents 

 

All reagents used were of analytical grade, including anhydrous sodium phosphate 

monobasic, sodium tetraborate, disodium tetraborate,  

Tris(hydroxymethyl)aminomethane, trizma
®
 hydrochloride, (2-hydroxypropyl)- γ-

cyclodextrin (HP-γ-CD), methyl- β-cyclodextrin (MECD), β-cyclodextrin, boric 

acid, ACN, acetic acid, sodium dodecyl sulphate, 1-butanol, heptane, ethyl acetate, 

cyclohexane, isopropanol, sodium hydroxide (NaOH), MeOH and hydrochloric acid 

(HCl) and were purchased from Sigma Aldrich Ireland Ltd. (Vale Road, Arklow, 

Wicklow, Ireland). Sulfobutylether -β-cyclodextrin (SBCD) was donated by CyDex 

Pharmaceuticals, Inc. (Ligand Pharmaceuticals, Inc. 11119 North Torrey Pines Road, 

Suite 200 La Jolla, CA 92037). Camphene, α-pinene (98% purity), β-pinene (98%), 

α-terpineol (97%), 4-allylanisole (98%), longifolene (99%), isolongifolene (98%), 

aromadendrene (97%), 3-carene (99%) and rosin samples were donated by Henkel 

Ireland Ltd., Dublin, Ireland.  
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3.2.3 HPLC separation conditions 

 

Unless stated otherwise, separations were carried out at a flow rate of 1 mL min
-1

 

with 20 μL injections. UV detection was at 254 nm and fluorescence excitation was 

at 250 nm with emission at 410 nm. The mobile phase consisted of 0.1% acetic acid 

97:3 ACN: water. The mobile phase was filtered through a 0.45 µm nylon membrane 

and sonicated before use. Methanol blanks were run between each sample. The 

column was stored in ACN overnight at room temperature. 

 

3.2.4 CE separation conditions 

 

CE separations, unless stated otherwise, were carried out at 20 kV and the 

temperature was maintained at 25°C. Separations were all repeated 3 times. Pre-

injection rinse consisted of 3 min 0.1 M NaOH, 3 min water and 5 min buffer. The 

optimum injection time was found to be 2 s, however, injections under 3 s are 

subject to instrumental injection pressure and voltage variability. In order to avoid 

this but have the same injection volume, hydrodynamic injections of 20 s at 5 mbar 

were carried out. Detection was set at 200 nm. 

 

3.2.5 Sample and buffer preparation 

 

In sections 3.3-3.3.4.4 the terpene mixture consists of 4-allylanisole, β-pinene, α-

pinene, camphene, 3-carene, isolongifolene, α-terpineol, aromadendrene and 

longifolene at 0.01% v/w dissolved in 100% MeOH. From section 3.3.4.5 onwards 

they were dissolved in MeOH and diluted to 0.01% with 5 mM β-CD 10 mM SDS 

50 mM tris buffer at pH 8.  

Tris buffers were prepared to the required concentration and pH by mixing 

appropriate amounts of tris HCl and tris base in distilled water following the Sigma-

Aldrich tris buffer mixing table e.g. a 50 mM tris buffer at pH 8 was prepared by 

mixing 4.44 g L
-1

 tris HCl and 2.65 g L
-1

 tris base. All buffers were filtered through a 

0.2 μm nylon membrane filter. MEKC buffers were prepared by dissolving 

appropriate amounts of SDS and CDs in the tris buffer and were sonicated for 15 

min. MEEKC buffers were prepared by mixing appropriate amounts of surfactant, 



 

95 

 

oil and co-surfactant in tris buffer e.g. a 6% butanol 4% SDS 1% ethyl acetate buffer 

in 10 mM tris at pH 8 was prepared by mixing 370 μL butanol, 0.2 g SDS and 55 μL 

ethyl acetate in 5 mL tris buffer and sonicated for 30 min. 

3.3 Results and Discussion 

 

Both HPLC and CE were investigated for their ability to separate a mixture of 

neutral compounds, with more success found using the CE methods. MEEKC, 

MEKC and CD-MECK all showed varying degrees of separation of the mixture with 

CD-MEKC giving the eventual optimised method. As the specific cause of rosin 

crystallisation is not known, the analysis of the neutral components of rosin could 

potentially provide information on any links between their presence and 

concentration and the rosins tendency to crystallise. 

 

3.3.1 HPLC method 

 

The HPLC method developed in chapter 3 was used to analyse terpene standards 

individually and in a mixture to investigate if it was more suitable for terpene 

separation than for acids.  
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Figure 3-3 Chromatograms of (a) 0.1% w/v gum rosin in MeOH and (b) 0.1% terpene 

mixture analysed at 0.1% acetic acid 97:3 ACN: water mobile phase, 20 μL injection at 

1 mL min
-1

, UV detection at 254 nm. Numbers indicate acids as follows: (3) neoabietic 

acid, (4) abietic acid, (5) palustric acid, (6) levopimaric acid, (7) sandaracopimaric acid, 

(8) isopimaric acid and (9) pimaric acid. 

 

The terpene mixture containing 4-allylanisole, β-pinene, α-pinene, camphene, 3-

carene, isolongifolene, α-terpineol, aromadendrene and longifolene in MeOH was 

analysed using an RP-Amide column with a 0.1% acetic acid 97:3 ACN:water 

mobile phase (see Figure 3-3). 

The terpenes were found to elute earlier than the acids. This was expected as they are 

less polar and the RP-amide column retains polar compounds longer. The terpene 

standards were then analysed separately. 
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Figure 3-4 Chromatograms of 0.01% terpene mixture overlaid with single terpene 

standards. Samples analysed at 0.1% acetic acid 97:3 ACN:water mobile phase, 20 μL 

injection at 1 mL min
-1

, UV detection at 254 nm. (a) terpene mix, (b) 4-allylanisole, (c)  

isolongifolene, (d) 3-carene, (e) β-pinene,  (f) terpineol, (g) camphene, (h) longifolene 

and (i) α-pinene. 

 

As can be seen in Figure 3-4, when the individual terpene standards were overlaid 

with the chromatogram of the standard mixture it became clear that the 3 peaks 

corresponded to 4-allylanisole and isolongifolene. As 4-allylanisole contains an 

aromatic ring it was expected to have stronger signal intensity due to the conjugated 

bonds present which increase absorption intensity [108]. The other terpenes have 

much lower peak areas. The initial peak at 1.7 min is the MeOH peak.   

 

3.3.2 CE method development 

 

Initial CE separations had shown more potential than HPLC separations. As a variety 

of CE modes including CD-CE and MECK were suited to the separation of neutrals, 

the use of CE for the analysis of terpenes in rosin samples was then investigated.  
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3.3.2.1 Capillary Zone Electrophoresis (CZE) 

 

The mixture of nine neutral compounds reported to be present in rosin samples was 

analyed using a simple CZE method. 

 

 

Figure 3-5 Electropherogram of a 0.01% w/v terpene mixture in MeOH analysed in 

positive polarity, 20 kV, capillary 58 cm (50 cm to detector), 50 μm i.d., 25°C, 50 mbar 

2 s injection times, detection at 200 nm. Buffer consists of 20 mM tris pH 8. 

 

As expected, the nine compounds coelute owing to their neutral nature, they all 

migrate with the EOF (see Figure 3-5). They do not possess electrophoretic 

mobilities and so cannot be separated by this CE mode. LogP is the logarithmic form 

of the octanol-water coefficient (P), which is the ratio of analytes solubility in 

octanol and in water. The higher the LogP value, the more hydrophobic the analyte. 

As seen in Table 3-1, all the analytes of interest are hydrophobic and so will partition 

into the hydrophobic cavities of cyclodextrins, microemulsions and micelles. 
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Table 3-1 Compounds as denoted in Figure 3-2. 

Analyte Formula Molecular 

weight  

(g mol
-1

) 

LogP
a
 Compounds 

 α-Terpineol C10H18O 154.25 2.79±0.36 Monoterpene 

alcohol 

 p-Allylanisole C10H12O 148.20 3.15±0.22 Phenylpropene 

 β-Pinene C10H16 136.23 4.37±0.24 Monoterpene 

 α-Pinene C10H16 136.23 4.37±0.24 Monoterpene 

 Camphene C10H16 136.23 4.37±0.24 Monoterpene 

 3-Carene C10H16 136.24 4.37±0.24 Monoterpene 

 Isolongifolene C15H24 204.36 6.15 Sesquiterpene 

 Longifolene C15H24 204.36 6.17 Sesquiterpene 

 romadendrene C15H24 204.36 6.41 Sesquiterpene 

a
LogP values for neutral compounds determined experimentally or predicted by 

ACD/Labs 

 

3.3.2.2 Cyclodextrin-modified capillary electrophoresis (CD-CE) 

 

As the addition of CDs to a tris buffer had successfully separated nine resin acids as 

described in chapter two, the same CD-CE method using a 15% MeOH 5 mM HP-γ-

CD 10 mM SBCD in 20 mM tris buffer pH 9 was applied to the terpene mixture (see 

Figure 3-6). 

 

http://www.chemspider.com/Molecular-Formula/C10H12O
http://www.chemspider.com/Molecular-Formula/C10H14
http://www.chemspider.com/Molecular-Formula/C10H14
http://www.chemspider.com/Molecular-Formula/C10H14
http://www.chemspider.com/Molecular-Formula/C10H14
http://www.chemspider.com/Molecular-Formula/C15H24
http://www.chemspider.com/Molecular-Formula/C15H24
http://www.chemspider.com/Molecular-Formula/C15H24
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Figure 3-6 Electropherogram of a 0.01% w/v terpene mixture in MeOH analysed in 

positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 

20 s injection times, detection at 200 nm. Buffer consists of 15% MeOH 5 mM HP-γ-

CD 10 mM SBCD in 20 mM tris pH 9. 

Using this particular buffer, the majority of the terpenes coelute. Two were separated 

and eluted before the others at 10.5 and 12.7 min. While the acids separated under 

these conditions, terpenes do not have functional groups to interact with the 

hydroxyls on the CDs and so may interact less with the CDs than the acids [109]. It 

was found that many of the analytes formed double peaks on elution. This peak 

splitting can be explained by the use of methanol as the sample matrix, as noted by 

Stapf et al. [110]. When an analyte is prepared in an organic solvent, the equilibrium 

constant of the analyte-cyclodextrin complex is different for the complex in the 

organic sample plug and in the aqueous buffer. This leads to two mobilities and 

therefore two peaks for the analyte. In order to combat this peak splitting, the sample 

should be prepared in a matrix as similar as possible to the separation buffer. As the 

terpenes are not very water soluble, they were first dissolved in methanol and then 

diluted with the tris buffer. This resulted in samples with the same terpene 

concentration as in Figure 3-6 but with the sample matrix now 80:20 

buffer:methanol.  
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Figure 3-7 Electropherogram of a 0.01% w/v terpene mixture in 80:20 buffer:methanol 

analysed in positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 

25°C, 5 mbar 20 s injection times, detection at 200 nm. Buffer consists of 15% MeOH 5 

mM HP-γ-CD 10 mM SBCD in 20 mM tris pH 9. 

 

As seen in Figure 3-7, there is no longer peak splitting in the two separated peaks 

while the later coeluting mass of peaks show more baseline resolution and defined 

peaks. The nine neutrals were not all separated using this method so other CE 

methods were investigated.  

When this method was used for the separation of the less hydrophobic acids, peak 

splitting was not observed. This may be because more hydrophobic analytes have a 

higher tendency to show peak splitting. Ràfols et al. noted that while the chemical 

structure and functional groups also played a part, analytes hydrophobicity was the 

principle property contributing to peak-splitting [111]. 
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3.3.3 Microemulsion electrokinetic chromatography  

 

MEEKC is a mode of CE which uses microemulsions (ME), usually oil droplets, as a 

pseudo-stationary phase in the background electrolyte to provide a means of 

separation for analytes based on their hydrophobicities. Although MEKC is a more 

commonly used technique and generally considered before MEEKC, the use of oil 

droplets in MEEKC results in a larger area for analytes to interact with and is 

considered less rigid than a micelle with easier partitioning into the hydrophobic 

phase [78]. There are several parts to the microemulsion (ME) composition which 

can be optimised in MEEKC allowing for many opportunities to further improve 

separation methods or adjust them for specific analytes. In general a high pH is used 

in order to benefit from a strong EOF. 

 

 

Figure 3-8 Schematic of a capillary during MEEKC of neutral analytes. 

 

Figure 3-8 shows the neutral analytes partition in and out of the hydrophobic MEs. 

As the MEs are negatively charged their mobility is towards the anode, however, the 

EOF is stronger and so the net direction is towards the cathode. The analytes which 

spend more time in the MEs will elute later. 
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Figure 3-9 Electropherogram of a 0.01% w/v terpene mixture analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s 

injection times, detection at 200 nm. Buffer consists of 6% 1-butanol, 3% SDS, 0.6% 

heptane in 10 mM borate buffer pH 8. 

 

For the initial separation of a mixture of nine neutral analytes, a borate buffer was 

prepared at pH 8 and with a typical ME composition; 6% 1-butanol, 3% SDS and 

0.6% heptane [79]. As can be seen in Figure 3-9 analysis times were almost 30 min 

and reproducibility of this electropherogram was found to be poor. The separation of 

the nine analytes was also not achieved. In order to shorten analysis time a short-end 

injection approach to MEEKC was explored. 

In short-end injection the sample vial was placed at the outlet (cathode) end and 

injection was performed at negative pressure. The polarity was then reversed for the 

separation so the sample would move towards the other end of the capillary (now the 

cathode) and pass the detector. 
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Figure 3-10 Electropherogram of a 0.01% w/v terpene mixture analysed in negative 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, -5 mbar 20 s 

injection times, detection at 200 nm. Buffer consists of 6% 1-butanol, 3% SDS, 0.6% 

heptane in 10 mM borate buffer pH 8. 

 

As seen in Figure 3-10, the migration was reduced from 30 to 4 min, however, little 

separation of the analytes was observed. 

 

3.3.3.1 Low pH MEEKC  

 

In order to reduce the EOF a pH 2 buffer was prepared. As the MEs were prepared 

with negatively charged SDS, they have their own mobility towards the anode. The 

polarity was reversed so the anode was then located at the detector end of the 

capillary. 
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Figure 3-11 Electropherogram of a 0.01% w/v terpene mixture analysed in negative 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s 

injection times, detection at 200 nm. Buffer consists of (a) 6% 1-butanol, 3% SDS, 

0.6% heptane in 10 mM phosphate buffer pH 2 and (b) 10% MeOH 6% 1-butanol, 3% 

SDS, 0.6% heptane in 10 mM phosphate buffer pH 2.  

 

Figure 3-11  shows the electropherogram of the terpene mixture using a pH 2 

phosphate buffer with and without MeOH. The analysis time was shorter than with a 

pH 8 borate buffer and more reproducible. The addition of MeOH showed no 

improvement in separation and the analysis time was increased. The various 

parameters for optimisation of the MEs were then investigated within normal range 

of use.  

3.3.3.2 Surfactant concentration 

 

The incorporation of the surfactant is reported to affect the stability, size and charge 

of the ME. SDS is an anionic surfactant and the most commonly used in MEEKC. Its 

charge gives mobility to the MEs so the separation of neutral compounds is possible. 

The concentration of SDS was varied from 2 to 6% while keeping the oil, co-

surfactant and buffer concentrations constant (Figure 3-12). Concentrations of lower 

than 2% have been reported to lead to poor reproducibility and the possible collapse 

of the droplets. Higher surfactant concentration was found to increase the charge 

density on the ME and so increases the capacity factor for neutral analytes [79]. 
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Figure 3-12 Plot of migration times versus the percentage of SDS in the buffer. The 

terpene mixture was analysed in negative polarity, 20 kV, capillary 58 cm (49.5 cm to 

detector), 50 μm i.d., 25°C, 5 mbar 20 s injection times,. Buffer consists of 6% 1-

butanol, 0.6% heptane and 2-6% SDS in 10 mM phosphate buffer pH 2. 

 

When the concentration is increased to 4 and 5% the first peak begins to separate 

into two coeluting peaks. However, when it is further increased to 6%, the separation 

deteriorates. This may be due to the high current resulting from the higher SDS 

concentration (the current increased from 50 μA with 2% SDS to 100 μA with 6% 

SDS). Generally, increasing SDS concentration increases analysis time, however, 

since negative polarity is being used, higher concentrations of SDS result in quicker 

mobilities towards the detector. 

Table 3-2 Resolution values for the electropherograms in Figure 3-12. 

2% SDS 3% SDS 4% SDS 5% SDS 

  0.3 0.4 

1.8 0.3 3.1 3.1 

0.5 3.3 0.6 0.5 

2.9 0.3 4.1 3.8 

0.7 2.3 0.9 0.4 

 

As seen in Table 3-2, slightly greater resolution values are seen with 4% SDS 

compared with 5% SDS so this concentration was used in further analysis. 
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3.3.3.3 Oil type and concentration 

 

Long chain alkanes including 1-hexane and 1-heptane are the most often used oil 

types. Water-insoluble cyclohexane and water-soluble ethyl acetate were also 

investigated. 

 

 

Figure 3-13 Electropherogram of a 0.01% w/v terpene mixture analysed in negative 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s 

injection times, detection at 200 nm. Buffer consists of 6% 1-butanol, 4% SDS and 

0.6% (a) heptane, (b) ethyl acetate and (c) cyclohexane. 

 

Three different oils were shown in Figure 3-13. As expected, there was little 

difference in analyte selective effect [112].  As ethyl acetate showed a further 

coeluting shoulder on the first peak it was chosen for future analysis. Ethyl acetate 

has lower interfacial tension than the long chained alkanes and so can form a stable 

ME with a lower surfactant concentration if necessary [78]. 

There are conflicting reports on whether or not the oil concentration has a significant 

effect on separation efficiency [78]. While in general the oil concentration has not 
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shown an effect on separation [78, 79, 113, 114], Cao et al. varied the concentration 

of cyclohexane from 0.3-1.2% and observed a decrease in separation resolution 

when the concentration was increased [106]. Oledzka et al. also reported 

deterioration in separation when n-octane was increased [115]. 

 

Figure 3-14 Plot of migration times versus the percentage of ethyl acetate in the buffer. 

The terpene mixture was analysed in negative polarity, 20 kV, capillary 58 cm (49.5 cm 

to detector), 50 μm i.d., 25°C, 5 mbar 20 s injection times. Buffer consists of 6% 1-

butanol, 4% SDS and 0.6-2% ethyl acetate in 10 mM phosphate buffer pH 2. 

 

The concentration of ethyl acetate was investigated from 1 to 2% (see Figure 3-14). 

As observed in most literature reports, in this study the concentration of oil had very 

little effect on separation. The oil concentration has little effect on the size of the 

ME, thought to be due to its flexible structure [112]. A pseudo-stationary phase with 

a more rigid structure such as a cyclodextrin could provide more selectivity through 

steric interactions, while the flexible ME does not. 

 

3.3.3.4 1-butanol concentration 

 

The co-surfactant coats and partitions into the oil droplet, reduces interfacial tension 

and increases the size of the ME, allowing more access to the hydrophobic core 

[112]. The use of 1-butanol as a co-surfactant is reported to result in a more stable 
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ME than those prepared with other co-surfactants including propanol and methanol 

[116]. 1-butanol, 2-hexanol and cyclohexanol tend to give good reproducibility. 

Pomponio et al. reported different analyte migration orders depending on the co-

surfactant used due to different selectivities. They also noted that cyclohexanol and 

2-hexanol resulted in good peak symmetry, with cyclohexanol giving the best 

resolution values [117]. 

 

Figure 3-15 Electropherogram of a 0.01% w/v terpene mixture analysed in negative 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s 

injection times, detection at 200 nm. Buffer consists of 4% SDS, 0.6% ethyl acetate and 

(a) 6% and (b) 5% 1-butanol. 

 

The concentration of 1-butanol was investigated at 5 and 6% but reducing the 

concentration was found to result in more coelution of the peak shoulders (see Figure 

3-15). This may be due to the smaller size and higher surface tension of the ME 

when there is less co-surfactant present. The change in migration time due to 1-

butanol is expected as it affects buffer viscosity and so affects the EOF [79]. 
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3.3.3.5 Organic additive 

 

As little separation was thus far achieved using MEEKC, isopropanol (IPA) was 

added to the MEEKC system to investigate if it improved selectivity by aiding 

solubility of the terpenes and potentially affecting their partition coefficient with the 

ME [112]. The addition of organic additives can also affect the physicochemical 

properties of the ME. Where some analytes are very water insoluble they will remain 

primarily in the micelle and be poorly resolved. The addition of organic solvent can 

improve resolution by reducing retention in the micelle. Less than 30% organic 

solvent is recommended in order to avoid disruption of the micelle. While the 

addition of MeOH to an MEEKC buffer had already been investigated, IPA was 

considered as it was suggested that it aided analytes in moving from the oil to buffer 

[78]. 

 

 

Figure 3-16 Electropherogram of a 0.01% w/v terpene mixture analysed in negative 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s 

injection times, detection at 200 nm. Buffer consists of 6% 1-butanol, 4% SDS, 1% 

ethyl acetate in 10 mM phosphate buffer pH 2, (a) 10% IPA and (b) 5% IPA. 
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When the concentration of IPA was increased there was high baseline noise and 

peaks were no longer separated (Figure 3-16), suggesting that the MEs had been 

disrupted which can happen with excessive amounts of organic additives as it makes 

the MEs unstable. Cao et al. found 10% ACN to be the highest amount that could be 

used while still avoiding demulsification [112]. 

From results obtained using MEEKC little separation of the nine neutral analytes 

was achieved. Therefore, MEKC was then investigated as an alternative separation 

technique. 

 

3.3.4 Micellar electrokinetic chromatography 

 

As previous attempts to separate the terpenes using a cyclodextrin based buffer and 

MEEKC were unsuccessful, an alternative CE mode was then investigated. In 

hindsight, MEKC should have been investigated before MEEKC (section 3.3.3). 

MEKC is an established technique for the separation of neutral and charged 

compounds. The use of a charged surfactant provides mobility to analytes which 

have no charge and therefore no electrophoretic mobility of their own. SDS is the 

most commonly used, cheaply available and one of the most effective surfactants 

reported in literature [75].  

A 20 mM tris buffer pH 8 was prepared and the concentration of SDS varied from 

10-50 mM. A 0.01% w/v terpene mixture was analysed with each buffer (see Figure 

3-17). SDS is an anionic surfactant. As expected, the lower SDS concentration 

resulted in shorter migration times as there was less SDS interacting with the 

terpenes and moving against the EOF. Increasing SDS concentration also increased 

the ionic strength of buffer, reducing the EOF which resulted in longer migration 

times [106]. 
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Figure 3-17 Electropherograms of a 0.01% w/v terpene mixture analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s 

injection times, detection at 200 nm. Buffer consists of 20 mM tris pH 8 containing (a) 

50 mM SDS, (b) 20 mM SDS and (c) 10 mM SDS. 

It was found that 50 mM SDS resulted in little separation. The 10 mM SDS buffer 

results in improved resolution values and the baseline resolution of more peaks than 

the 20 mM SDS 20 mM tris buffer and so was used for further buffer optimisation. 

Average resolution values for 10 mM SDS were 3.4, while 20 mM SDS resulted in 

only two peaks with resolution values above 1.5. SDS concentrations lower than 10 

mM resulted in decreased resolution and efficiency values. It was initially suspected 

that this was because the critical micelle concentration (CMC) had not been reached 

and micelles were not stably formed which resulted in less separation. The CMC of 

SDS in water has been reported as 8.1-8.4 mM; however, the CMC is affected by 

buffer composition [118]. CMC values in buffers are lower than in pure water e.g. 

CMC decreased from 8.08 mM in water to 1.99 mM in 50 mM phosphate buffer 

[119]. The CMC is decreased because the buffer ions neutralise the micelle charge 

which reduces electrostatic repulsions between the surfactant monomers by reducing 

the thickness of the ionic atmosphere around the monomers ionic heads, aiding 

micellisation [120]. It would be expected therefore that the CMC of SDS in a 20 mM 
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tris buffer is lower than its value in water, so lower than 8.1 mM. This suggests that 

the CMC had been reached as 10 mM was the lowest SDS concentration 

investigated.  

The concentration of the tris buffer was varied to observe if the increased buffer 

capacity would improve separation. The SDS concentration was kept at 10 mM 

(Figure 3-18). When the concentration of tris was increased from 20 to 50 mM, the 

migration time increased as expected. However, the baseline resolution of several 

peaks was increased to above 1.5 (see Table 3-3). When the concentration was 

further increased to 75 mM the migration time increased again, however there was 

not as significant an improvement in the resolution of the peaks. Also, the small 

peaks at 16 and 16.6 min seen in the 50 mM tris electropherogram are now coeluting 

in the 75 mM tris electropherogram. A 50 mM tris buffer was used for further 

studies. 

 

Figure 3-18 Electropherograms of a 0.01% w/v terpene mixture analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s 

injection times, detection at 200 nm. Buffer consists of 10 mM SDS in (a) 20 mM tris 

pH 8, (b) 50 mM tris pH 8 and (c) 75 mM tris pH 8. Numbers indicate (1) terpineol, (2) 

4-allylanisole and (3) aromadendrene. 
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Table 3-3 Resolution values for the peaks in electropherograms seen in Figure 3-18. 

Buffers all contain 10 mM SDS, 20 and 30 kV analysis using 10 mM SDS 50 mM tris 

20 mM tris 50 mM tris 75 mM tris 20 kV 30 kV 

1.2 2.5 0.9 2.3 1.7 

3.6 5.1 6.8 2.0 3.0 

1.8 2.7 1.7 2.9 2.4 

19.6 6.7 26.8 16.2 18.2 

1.3 13.4 1.8 1.2 1.2 

1.4 1.3 1.9 1.9 1.7 

2.3 2.0 3.8 1.3 0.8 

0.5 1.2 1.1 3.0 1.5 

1.2 2.5 5.0 0.8  

1.5 0.5  4.1 1.7 

 2.8    

 

A higher voltage was investigated with the 10 mM SDS 50 mM tris buffer pH 8 to 

investigate if shorter migration times could be achieved without a loss in resolution. 

While the migration times were reduced with a higher voltage, several resolution 

values were also reduced as a result (see Table 3-3) so 20 kV was used for further 

analysis. 

 

3.3.4.3 Buffer type 

 

Other buffers were investigated for the separation of the terpene mixture, however, 

none resulted in higher resolution than the tris buffer. An acetate buffer at pH 4 

resulted in too low an EOF. Little separation was achieved and run times were up to 

35 min. A phosphate buffer at pH 7.5 and a borate buffer at pH 9 were also 

investigated; however, the tris buffers resulted in a significantly higher number of 

resolved peaks than either of these.  
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3.3.4.4 CD-MEKC 

 

There have been several reports of the use of cyclodextrins both on their own and in 

combination with SDS in a CE buffer (see Figure 3-19) for the separation of 

monoterpenes, namely α-pinene, β-pinene, terpineol and camphene [105, 121, 122]. 

Several derivatized CDs were added to the SDS tris buffer to investigate if they 

would result in more separation than with SDS alone. 

 

Figure 3-19 Schematic of a capillary containing micelles and cyclodextrins. 

 

Little separation was achieved with the use of any of the derivatized CDs so the 

addition of native α, β and γ cyclodextrins to the SDS tris buffer was then examined 

for their use in separating the terpene mixture.  

All three native CDs were investigated as there have been mixed reports on the 

appropriate CD cavity size for some of the compounds in question. Rodrigues et al. 

used γ-CD in combination with SDS and ACN for the separation of camphene, α-

pinene and β-pinene [122]. However, α- and β-CD are more commonly reported for 

the separation of monoterpenes [102, 104, 121, 123, 124]. As seen in Figure 3-20, 

the addition of γ-CD results in very poor peak shapes. The cavity size may be too big 

to form stable inclusion complexes with the neutral analytes. While α-CD results in 

some peak separation, the β-CD buffer results in more baseline separation. α-CD has 

the smallest cavity size and so may be too small for a sterical fit with the analytes. 

Table 3-4 shows the resolution and efficiency values for the three cyclodextrins; β-

CD also results in the best efficiency values.  
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Figure 3-20 Electropherograms of a 0.01% w/v terpene mixture analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s 

injection times, detection at 200 nm. Buffer consists of 10 mM SDS 50 mM tris buffer 

pH 8 containing (a) 5 mM γ-cyclodextrin, (b) 5 mM β-cyclodextrin and (c) 5 mM α-

cyclodextrin. 
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Table 3-4 Resolution and efficiency values for the peaks shown in the 

electropherograms in Figure 3-20. 

 

 

α-CD  β-CD  γ-CD 

Rs N Rs N Rs N 

 2936  10728  3219 

1.6 4404 1.7 3110 2.0 16888 

3.7 78974 1.2 156155 3.0 41308 

14.6 11343 11.3 71652 6.6 40813 

0.9 19471 7.7 7365 1.0 4476 

2.0 18081 0.8 18256 1.1 1405 

0.4 82669 2.4 12933 1.4 1163 

2.2 6573 1.7 19885 0.9 1828 

  2.9 9926 3.3 3251 

  2.7 13417   

  2.4 12335   

 

The concentration of the β-CD in the buffer was varied over 1-5 mM and the terpene 

mixture analysed (Figure 3-21). It was found that as the concentration of β-CD is 

increased, the peak which migrated at 13 min began to separate into three separate 

peaks. However, the two peaks seen at 10 and 10.4 min in 1 mM β-CD were no 

longer seen as the concentration increased.  
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Figure 3-21 Electropherogram of a 0.01% w/v terpene mixture analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s 

injection times, detection at 200 nm. Buffer consists of (a) 5 mM, (b) 4 mM, (c) 3 mM, 

(d) 2 mM and (e) 1 mM β-CD in 10 mM SDS 50 mM tris. 

 

Although the 5 mM β-CD buffer had a 2 min longer run time than 4 mM, it had one 

more peak with resolution above 1.5 (see Table 3-5). For all buffers, the efficiencies 

were quite poor for CE separations with the exception of the peak at 7.9 min. When 

the CD concentration was further increased a deterioration of the separation was 

observed. The separation of the mixture using a 5 mM β-CD 10 mM SDS 50 mM tris 

buffer at pH 8 is shown in Figure 3-22. 
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Table 3-5 Resolution and efficiency values for the electropherograms seen in Figure 

3-21 where the β-CD concentration is varied. 

Efficiency values 

1 mM β-CD 2 mM β-CD 3 mM β-CD 4 mM β-CD 5 mM β-CD 

9178 4626 3943 3909 4567 

157654 108926 7392 4990 4401 

14018 9171   75029 

109615 98293 94863 93155 223043 

17690 14804    

20877 14604    

16799 10480 7374 9195 6863 

35587 25934 22121 27174 17380 

34602 17897 13819 18090 12089 

57261 33909 25787 24368 17264 

11872 13399 29113 19079 11427 

  12817 13159 15725 

  10379 19744 13106 

Resolution values 

1 mM β-CD 2 mM β-CD 3 mM β-CD 4 mM β-CD 5 mM β-CD 

2.8 2.9 2.5 1.9 1.6 

2.7 1.2 4.2 4.3 0.8 

3.4 4.0   13.1 

11.1 8.1 9.5 9.1 7.9 

0.9 0.8    

2.3 2.8    

0.9 0.9 0.9 1.3 0.8 

2.4 2.3 2.3 2.8 2.3 

0.7 0.8 1.0 1.5 1.7 

2.6 3.5 4.4 3.9 2.8 

  1.4 2.2 3.3 

  0.8 1.4 2.6 
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Figure 3-22 Electropherogram of a 0.01% w/v terpene mixture analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s 

injection times, detection at 200 nm. Buffer consists of 5 mM β-CD 10 mM SDS 50 mM 

tris buffer pH 8. Numbers indicate (2) 4 allylanisole, (3) camphene, (4) β-pinene, (5) 3 

carene, (6) α-pinene, (7) isolongifolene, (8) longifolene and (9) aromadendrene. 

 

The peaks were identified by spiking the mixture with 0.1% w/v standards (see 

Figure 3-22). Terpineol was not separated and 4-allylanisole produced several peaks. 

 

3.3.4.5 Peak splitting in MEKC 

 

In section 3.3.2.2, peak splitting was observed in CD-CE due to the sample being 

prepared in MeOH. At this stage individual terpene standards were prepared in 

methanol and analysed using the 10 mM SDS 50 mM tris pH 8 to investigate if the 

same was occurring with the MEKC buffer. It became apparent that several analytes 

were resulting in multiple peaks (see Figure 3-23).  
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Figure 3-23 Electropherograms of 0.01% w/v terpene standards in methanol analysed 

in positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 

mbar 20 s injection times, detection at 200 nm. Buffer consists of 10 mM SDS 50 mM 

tris pH 8. 

 

With regards to MEKC, the phenomenon of peak splitting has been primarily 

reported when the sample is prepared in an organic matrix [110, 111, 125]. When the 

sample is injected, micelles at either end of the sample plug begin interacting with 

the analytes and so two areas form containing high concentrations of analytes (see 

Figure 3-24 b). As the organic plug migrates more quickly than the analytes and 

micelles, it overtakes the complexes at the front of the plug which are disrupted 

(Figure 3-24 c). The analytes form new dynamic complexes at the front of the plug 

and migrate ahead of those at the end (Figure 3-24 d). Gradually, due to longitudinal 

diffusion, the organic solvent will no longer be concentrated enough in one area to 

disrupt the micelles and two separate peaks can be observed (Figure 3-24 e). Ràfols 

et al. found that naphthalene showed a split peak when the sample was prepared in 

more than 20% MeOH [111]. 
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Figure 3-24 Schematic showing how peak splitting occurs in MEKC 
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If it is necessary for the analytes to be dissolved in 100% organic solvent, increasing 

the concentration of the surfactant in the buffer so more MeOH is required to disrupt 

the micelle, or choosing a solvent which decreases the CMC of the surfactant can 

help avoid peak splitting [111]. Adjusting injection time has also been shown to 

affect peak splitting in the case of sweeping MEKC when micelles cannot be 

introduced as part of the sample matrix [125]. In this case, the terpene standards 

were prepared by dissolving them in 400 μL MeOH and diluting this to 0.005% 

using the SDS tris buffer (see Figure 3-25). 

 

 

Figure 3-25 Electropherograms of 0.01% w/v terpene standards in 1:5 MeOH:SDS tris 

buffer, analysed in positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 

μm i.d., 25°C, 5 mbar 20 s injection times, detection at 200 nm. 

Following this procedure it was found that a single peak is seen for each analyte, 

confirming the 100% organic sample solvent was the cause of the peak splitting. For 

all further work, samples were prepared in methanol and then diluted with the SDS 

tris buffer so that the final sample matrix was 1:5 MeOH:buffer.  
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Figure 3-26 Electropherogram of 0.005% w/v terpene mixture in 1:5 MeOH:SDS tris 

buffer, analysed in positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 

μm i.d., 25°C, 5 mbar 20 s injection times, detection at 200 nm. Buffer consists of 10 

mM SDS 50 mM tris pH 8. Numbers indicate (1) Terpineol, (2) 4 allylanisole, (3) 

camphene, (4) β-pinene, (5) 3 carene, (6) α-pinene, (7) isolongifolene, (8) longifolene 

and (9) aromadendrene. 

 

Table 3-6 Resolution, efficiency and migration time %RSD values for the 

electropherogram seen in Figure 3-26 and Figure 3-27, n=3 

10 mM SDS 50 mM tris pH 8 

N 8389

6 

14420

4 

19485

5 

259547 231077 287500 144632 64092 

Rs   11.3 38.7 3 5.8 1.3 1.3 4 

RSD 

(%) 

1.2 1.2 0.8 0.7 0.6 0.6 0.5 0.4 

5 mM β-CD 10 mM SDS 50 mM tris buffer pH 8 

N 4767

5 

52606 55994 9323

8 

4767

5 

9732

8 

10289

2 

9115

4 

45526 

Rs  6.6 12.8 2.2 5.6 4.8 8.3 11.1 7.2 

RSD 

(%) 

0.5 0.6 0.7 0.6 0.5 0.6 0.6 0.7 0.6 

 

Figure 3-26 shows the electropherogram of the terpene mixture prepared in 1:5 

MeOH:buffer. Terpineol and 4-allylanisole migrate first while the terpenes migrate 
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later, with longifolene and aromadendrene coeluting. The resolution and efficiency 

values are shown in Table 3-6.  

For the first time, all nine neutral analytes are baseline resolved. Terpineol and 4-

allylanisole have the lowest LogP values (see Table 3-1). The more hydrophobic 

terpenes were found to interact with the SDS more and so migrate later. The 

migration order has changed slightly with the addition of the β-CD. The first six 

analytes migrate in the same order however with the presence of the CD, longifolene 

now migrates before isolongifolene. This suggests that the longifolene has a higher 

affinity for the β-CD which reduces its interactions with the SDS micelles.  The 

optimum buffer for the separation of the neutral analyte mixture was 5 mM β-CD 10 

mM SDS 50 mM tris pH 8. 

 

Figure 3-27 Electropherogram of 0.005% w/v terpene mixture in 1:5 MeOH:β-CD SDS 

tris buffer, analysed in positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 

50 μm i.d., 25°C, 5 mbar 20 s injection times, detection at 200 nm. Buffer consists of 5 

mM β-CD 10 mM SDS 50 mM tris pH 8. Numbers indicate (1) Terpineol, (2) 4 

allylanisole, (3) camphene, (4) β-pinene, (5) 3 carene, (6) α-pinene, (7) isolongifolene, (8) 

longifolene and (9) aromadendrene. 
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3.3.5 Analysis of rosin samples for occurrence of neutral compounds 

 

Modified and unmodified rosin samples were then analysed using the optimised 

separation conditions described above (see Figure 3-28). All samples were prepared 

in a 1:5 MeOH:buffer matrix. This is the first report of the use of CE to analyse the 

neutral fraction of rosin samples. 

.  

Figure 3-28 Electropherograms of 0.1% (a) acid modified rosin, (b) disproportionated 

rosin, (c) bad gum rosin and (d) good gum rosin analysed in positive polarity, 20 kV, 

capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s injection times, 

detection at 200 nm. Buffer consists of 5 mM β-CD 10 mM SDS 50 mM tris pH 8. 
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As rosins are known to consist of 90% resin acids, a gum rosin sample was spiked 

with acid standards in order to identify which peaks corresponded to acids and which 

may correspond to the neutral analytes being analysed (see Figure 3-29). 

 

 

Figure 3-29 Electropherogram of a 0.1% w/v gum rosin sample analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s 

injection times, detection at 200 nm. Buffer consists of 5 mM β-CD 10 mM SDS 50 mM 

tris pH 8. Numbers indicate (1) 7OXO, (2) DHA, (4) ABA, (8) ISO and (9) PIM. 

 

Several of the resin acids were not baseline resolved using this separation buffer. 
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3.3.5.1 Terpene spiked rosin samples 

 

The rosin samples were spiked with the terpenes in order to investigate if they 

corresponded to any of the peaks in the rosin electropherograms. 

 

Figure 3-30 Electropherograms of (a) a gum rosin sample, (b) a terpineol spiked gum 

rosin sample and (c) a 4-allylanisole spiked gum rosin sample analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s 

injection times, detection at 200 nm. Buffer consists of 5 mM β-CD 10 mM SDS 50 mM 

tris pH 8. Stars indicate spikes. 

 

As seen in Figure 3-30, the terpineol spiked peak does not correspond to any of the 

peaks in the gum rosin electropherogram. The 4-allylanisole spike is seen at 6.25 

min coeluting with another peak.  
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Figure 3-31 Electropherograms of a gum rosin sample spiked with (a) camphene, (b) β-

pinene, (c) α-pinene, (d) 3-carene and (e) an unspiked gum rosin sample analysed in 

positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 

20 s injection times, detection at 200 nm. Buffer consists of 5 mM β-CD 10 mM SDS 50 

mM tris pH 8. Stars indicate spikes. 

 

Figure 3-31 shows the spike of camphene, β-pinene, α-pinene and 3-carene, all of 

which elute between 8 and 10 min. None of these spikes correspond to peaks in the 

gum rosin electropherogram.  
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Figure 3-32 Electropherograms of gum rosin samples spiked with (a) longifolene, (b) 

aromadendrene, (c) isolongifolene (d) an unspiked gum rosin sample analysed in 

positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 

20 s injection times, detection at 200 nm. Buffer consists of 5 mM β-CD 10 mM SDS 50 

mM tris pH 8. Stars indicate spikes. 

 

As seen with the other terpene spikes longifolene and isolongifolene do not 

correspond to any of the gum rosin peaks (Figure 3-32). The aromadendrene spike is 
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seen at the peak eluting at 14 min, however, it does not appear to be the sole 

component of that peak, it is coeluting with another compound. 

All of the analysed neutral compounds have been detected in rosin samples and some 

quantified [1, 23]. Zinkel et al. report that terpineol, 4-allylanisole and longifolene 

make up 50-60% of the volatile neutral compounds present [1]. Through analysis by 

GC-MS head space analysis, Hadi identified the presence of many of the neutral 

compounds in several rosin samples; however, none were found to be present in 

every rosin sample [23]. This highlights the fact that the neutral compounds being 

investigated in this work are not always present in the rosin sample. The spiked 

samples show where the neutral compounds peaks would be expected, showing that 

the compounds are not present in these particular rosin samples. 
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3.4 Conclusions 

 

As the main components of rosins are acidic, the majority of research on their 

composition investigates the acidic fraction and not the neutral fraction. The exact 

reason for rosin crystallisation is not yet known so it is worth investigating these 

neutral compounds to explore if their presence or concentration is linked to rosin 

crystallisation. In this work a novel CE method for the separation of nine neutral 

compounds including terpenes, alcohols and phenylpropenes was developed. 

HPLC was found to be unsuitable for the separation of these compounds. A range of 

CE methods were then investigated, including CZE, MEEKC, MEKC and CD-CE.  

The buffer pH, oil type and concentration, co-surfactant concentration, organic 

additive and surfactant concentration of the microemulsions used in MEEKC were 

all varied, however, little separation was achieved using this technique.  

In MEKC, the buffer type, concentration and SDS concentration was optimised and 

the use of cyclodextrins investigated. The addition of 5 mM β-CD to the MEKC 

buffer resulted in the baseline resolution of many peaks, however, some of those 

peaks were suspected to be resulting from peak splitting. 

The peak splitting was found to be as a result of the samples being prepared in 100% 

MeOH. When the sample preparation was changed to dissolution in MeOH and then 

dilution with the running buffer, peak splitting was avoided. With the neutral mix 

prepared this way, the MEKC buffer of 10 mM SDS 50 mM tris pH 8 resulted in the 

separation of all but longifolene and aromadendrene. As these particular compounds 

had previously been separated with the use of β-CD, it was reintroduced into the 

buffer. A buffer containing 5 mM β-CD 10 mM SDS 50 mM tris pH 8 resulted in the 

baseline separation of a mixture of α-pinene, β-pinene, camphene, 3-carene, 

terpineol, 4-allylanisole, longifolene, isolongifolene and aromadendrene for the first 

time. To the author’s knowledge, this is also the first report of the use of CE for the 

analysis of the neutral fraction of rosin samples. 

This work highlights some of the advantages of CE, its speed, versatility and 

robustness. Several CE techniques were investigated by changing the buffer 
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composition only, while the same range of investigation in another analytical 

technique may require different columns which can be costly. 

Both modified and unmodified rosin samples were analysed using the optimised CE 

conditions. The samples were spiked to confirm if any of the peaks in the rosin 

electropherograms corresponded to the neutral analytes. It was observed that the 

spiked peaks did not match any of the rosin peaks, indicating that the neutral 

analytes in question were not present in these particular rosin samples. 
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  Chapter 4

 

 

 

 

Investigation of cyclodextrin association constants with terpenes and 

other natural compounds by affinity capillary electrophoresis 
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4.1 Introduction 

 

The formation of inclusion complexes between cyclodextrins (CDs) and 

hydrophobic guest molecules forms the basis of many electrophoretic and 

chromatographic separations, including the methods developed in chapters 2 and 3. 

However, there are still gaps in the quantitative knowledge of the association 

constants of many cyclodextrin-analyte complexes. Investigating complexation 

constants can provide useful information on the fundamental behaviour of the 

inclusion complexes formed as several properties of analytes are affected when in a 

complex, including spectral properties, solubility, stability and reactivity [80, 82, 

126-129]. Information on the stability and stoichiometry of inclusion complexes can 

aide in the use of cyclodextrins to their full potential. In electrophoretic separations, 

this data can aid in the comprehension of analyte behaviour when CDs are added to 

the background electrolyte. The terms formation, association, binding, complexation 

and stability constant are all used in literature to describe the binding interactions 

[80, 127, 130, 131]. The term association constant will be used in this thesis. This 

work details the first report of the use of affinity capillary electrophoresis for the 

determination of the association constants of CD-terpene inclusion complexes.  

 

4.1.1 Determination of association constants 

 

In order to investigate association constants between analytes and complexing agents 

such as cyclodextrins, micelles or proteins, the analyte in question needs a 

measurable property that differs when in a complex and when free in solution such 

as mobility [132]. Many techniques have been employed for this including 

spectroscopy, potentiometry, mass spectrometry and chromatography [104, 124]. 

The simplest and most commonly used CE method for the determination of 

association constants is affinity capillary electrophoresis, where the effective 

mobility of the analyte is determined as the concentration of the cyclodextrin in the 

background electrolyte is varied [130, 133]. Three linearization plot types, double-, 

X- and Y-reciprocal plots, are generally used to express this data as they are 

considered one of the most convenient methods [132, 134-142]. Although the plots 

all contain the same equation in different forms, the resulting correlations will be 

affected differently by the variable, depending on where it is found in the equation. 
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The X-reciprocal fit is more affected by CD concentration variation as the dependent 

variable is on both axis. The Y-reciprocal plot has the independent variable on both 

axis, while data acquired at low cyclodextrin concentrations are emphasised by the 

double-reciprocal plot as deviations from linearity are masked [132, 136, 141]. Good 

linearity supports the 1:1 binding stoichiometry of the complexes [134, 141]. 

 

4.1.2 Cyclodextrins 

 

The properties of the native CDs are seen in Table 4-1. CD inclusion complexes 

usually form a stoichiometric ratio of 1:1 but this is not always the case [126, 143, 

144]. The larger γ-CD can form complexes in with two or more guest molecules in 

each CD cavity [145] e.g. Brocos et al. indicated the existence of complexes 

containing two SDS molecules per γ-CD [146] (see Figure 4-1) . The smaller α-CD 

has also been known to form a complex containing two CD molecules with one 

analyte molecule e.g. a 2:1 α-CD:camphene complex [147]. Sometimes the inclusion 

complex is formed with a hydrophobic section of the analytes as opposed to the 

entire structure [80, 148, 149].  

 

 

Figure 4-1 Schematic illustration of (a) 2:1 α-CD:α-pinene inclusion complex and (b) 

1:2 γ-CD:SDS molecule inclusion complex. 

  



 

137 

 

Table 4-1 Properties of the native CDs [82] 

 α-CD β-CD γ-CD 

Inner diameter 4.7-5.3 Å (0.47-0.53 

nm) 

6-6.5 Å 7.5-8.3 Å 

Outer diameter 13.7 Å 15.3 Å 16.9 Å 

Cavity depth 7-8 Å 7-8 Å 7-8 Å 

Cavity volume 174 Å
3
 262 Å

3
 427 Å

3
 

Solubility 14.5g/100mL water 1.85g/100mL 

water 

23.2g/100mL 

water 

Molecular 

weight (g M
-1

) 

972 1135 1297 

 

 

4.1.3 Cyclodextrin-Terpene inclusion complexes  

 

The structures of the terpene analytes are shown in Figure 3-2. While some 

terpenoids have functional groups e.g. the α-terpineol has a hydroxyl group, the 

terpenes do not and therefore lack charge transfer interactions, π-π, dipole, and 

hydrogen bonding. Terpenes are generally analysed by GC-FID or GC-MS, and are 

separated by GC using CD bonded stationary phases, by HPLC with CDs as 

additives in the mobile phase, or by CD-CZE [101, 104]. A combination of α-CD 

and sulphated β-CD were used to separate the bicyclic monoterpenes camphene, α-

pinene and β-pinene where the β-CD alone was not successful [121]. Rodrigues et al. 

found a combination of SDS, ACN and γ-CD was required to separate camphene, α-

pinene and β-pinene amongst other terpenes using CE (see Figure 4-2) as α- and β-

CD could not [122].  
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Figure 4-2 Electropherograms of (1) camphene, (2) β-pinene, (3) α-pinene and (4) γ-

terpinene. Separation at 20 kV, capillary 57 cm (50 cm to detector), 75 μm i.d., 25°C, 5 

mbar 20 s injection times, detection at 200 nm, buffer consists of 10 mM phosphate 6 

mM borate at pH 8 containing 50 mM SDS 5% ACN and (A) 10 mM α-CD or (B) 10 

mM γ-CD [122]. 

 

The formation constants of some terpenes were investigated using reverse-phase 

HPLC with α- and β-CD in the mobile phase. It was found that α-pinene, β-pinene 

and camphene tend to form a 1:2 guest:CD ratio with α-CD but a 1:1 ratio with β-CD 

[104]. A study by Asztemborska et al. also reported the formation of a 1:2 guest:CD 

ratio between α-pinene, β-pinene and camphene and α-CD [102]. The bicyclic 

structure of some of the terpenes may be too rigid to fully fit into an α-CD cavity. 

Ceborska et al. determined that camphene formed a 1:1 guest:CD ratio with β-CD 

using GC, NMR and X-ray crystallography studies [123]. Chatjigakis et al. found a 

1:1 guest:CD ratio between α-terpineol and β-CD using reverse-phase HPLC [124].  

To the authors’ knowledge, there are only a few reports of association constants 

reported in literature for terpene-cyclodextrin analytes. Association constants of 

6080, 6120 and 6040  M
-1

 for α-, β-pinene and camphene respectively with β-CD 

were determined by HPLC [104]. While others mentioned in the literature reported 

1:2 guest:CD complexes, Ciobanu et al. reported 1:1 complexes forming between α-

pinene, β-pinene and camphene and α-CD as well as with β-, γ-CD and MECD. 
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They used a static headspace GC titration method to determine stability constants of 

1778, 2588, 214 and 2395 M
-1

 for α-pinene with α-, β-, γ-CD and MECD 

respectively. β-pinene stability constants of 1018, 4587, 633 and 4450 M
-1

 with α-, 

β-, γ-CD and MECD respectively were reported. Camphene pinene stability 

constants of 598, 4825, 360 and 6625 M
-1

 with α-, β-, γ-CD and MECD respectively 

were reported. The methylated and native β-CD complexes gave the highest stability 

constants and complexation efficiencies [150]. MEKC was used to analyse neutral 

plant metabolites and reported the partition coefficient of terpineol into an SDS 

micelle as 785±48 [151]. 

 

4.1.4 Aims 

 

The aim of this research is to investigate the association constants of the inclusion 

complexes formed between resin acids, monoterpenes, sesquiterpenes and other 

neutral natural components found in natural rosin samples with cyclodextrins of 

different cavity sizes and modifications using affinity capillary electrophoresis and 

three linearization methods. The objectives are to record the mobilities of the 

analytes when analysed in buffers containing increasing concentrations of CD, and to 

plot the data using 3 linear plotting methods and calculate association constants. The 

effects of surfactant and cyclodextrin concentrations and the addition of methanol to 

the buffer will also be investigated. 
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4.2 Experimental 

 

4.2.1 Instrumentation 

CE instrumentation is as described in section 3.2.1. 

4.2.2 Reagents 

The reagents used are as described in section 3.2.2. In addition, α-, β- and γ-

cyclodextrin were purchased from Sigma Aldrich Ireland Ltd. (Vale Road, Arklow, 

Wicklow, Ireland). 

4.2.3 Separation conditions 

CE separation conditions are as described in section 3.2.4. 

4.2.4 Buffer and sample preparation 

 

Tris buffers were prepared to the required concentration and pH by mixing 

appropriate amounts of tris HCl and tris base in distilled water following the Sigma-

Aldrich tris buffer mixing table e.g. a 50 mM tris buffer at pH 8 was prepared by 

mixing 4.44 g L
-1

 tris HCl and 2.65 g L
-1

 tris base. The concentration of 10 mM SDS 

was kept constant in all buffers while the CD concentration was varied. All buffers 

were sonicated for 15 min and filtered through a 0.2 μm nylon membrane filter. 

Terpene and acids samples were prepared by first dissolving in 100% MeOH, and 

then diluting with 10 mM SDS 50 mM tris buffer at pH 8.  

 

4.2.5 Data evaluation 

 

In order to correct for any changes in viscosity as the cyclodextrin concentration was 

increased, mobility ratios (M) were determined by mobility values using the 

following equation [152, 153]: 

                                          (1) 

Where μeof is the mobility due to EOF, μ is the mobility of the analyte and μnet is the 

net measured mobility of the analyte. 
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                           (2) 

When the mobility equation (2) is substituted into the mobility ratio equation (1) the 

following equation is observed: 

                             (3) 

Where teof is the migration time of the neutral marker and t is the migration time of 

the analyte [154]. These mobility ratios were used in place of mobility values when 

plotting the double, Y and X reciprocal plots.  

The 1:1 molecular association of an analyte (A) and a cyclodextrin (CD) can be 

described by the following equilibrium equation [126]: 

A+CD = ACD                    (4) 

Where K = the association constant (M
-1

), which describes the bonding affinity of 

two molecules at equilibrium. A and CD are the free analyte and cyclodextrin 

respectively and ACD is the inclusion complex formed. The experimentally 

measured mobility (μa) is a weighted average of the mobility of the free (μf) and 

complexed analyte (μc). At a given cyclodextrin concentration (mM), the mobility of 

the analyte is described in Eq. 5 [132, 136]: 

   
 

      
   

    

      
                    (5) 

In order to linearise the data, Eq.5 can be rearranged to suit three mathematical 

plotting models: double reciprocal, Y-reciprocal and X-reciprocal plots. This also 

allows the avoidance of necessitating the use of μc which is difficult to measure 

experimentally [136, 141]. 

Double reciprocal plot: 

 

       
 

 

(     ) 

 

   
 

 

       
                  (6) 

Plotting 1/(μa- μf) versus 1/[C] gives a double reciprocal plot where  

K=intercept/slope. 

Y-reciprocal plot: 
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(     )
 

 

(     )

   

 
 

 

(     ) 
              (7) 

Plotting [C] /( μa- μf) versus [C] gives a Y-reciprocal plot where K=slope/intercept. 

X-reciprocal plot: 

       

   
 

  (     )

 
 

        

 
                   (8) 

Plotting (μa- μf)/[C] versus (μa- μf) gives an X-reciprocal plot where K=-slope. 
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4.3 Results and discussion 

 

Association constants can indicate the binding strength of an inclusion complex, 

information which could potentially be used to predict any property changes the 

analytes might experience. The constants could also be used to select the appropriate 

cyclodextrin size for the analysis [134]. The appropriate CD size depends on 

favourable thermodynamic interactions, and a favourable steric fit depending on the 

size of the guest molecule and any functional groups present [82]. 

 

4.3.1 Initial separation 

 

A mixture of α-pinene, β-pinene, isolongifolene, aromadendrene, camphene, α-

terpineol, 4-allylanisole, longifolene and 3-carene was analysed in 10 mM SDS 50 

mM tris buffers at pH 8 containing 1-5 mM of α-, β-, γ-CD or MECD and in a buffer 

containing no CD. As the guest:CD ratio of many of these compounds with β- and γ-

CD was previously determined to be 1:1 [104, 123, 124], it was assumed the same 

was true for the other compounds of similar structure and hydrophobicity. As both 

the analytes and cyclodextrins are neutral, the presence of negatively charged SDS in 

the buffer was required to provide mobility to the analytes and allow separation; 

without it they would all coelute with the EOF. LogP is logarithmic form of the 

octanol-water partition coefficient (P). The logP values of the analytes range from 

2.79-6.4 (predicted values from ACD/Labs, see Table 3-1), indicating their 

hydrophobicity. Cyclodextrins and micelles demonstrate similar separation 

mechanisms, in that the interior of their structures are hydrophobic and allow 

interactions with hydrophobic analytes. Therefore, it is clear that the analytes will 

interact with the SDS micelles as well as the CDs. Figure 4-3e shows the separation 

of the analyte mixture in an SDS tris buffer without CD. The presence of SDS allows 

the separation of some of the neutral analytes. The concentration of SDS was kept 

constant throughout all the experiments; therefore any difference in mobilities was 

attributed to the change in cyclodextrin concentration [136].  
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While some properties such as the critical micelle concentration (CMC) are affected 

by analyte-buffer interactions [129], the complexation thermodynamics are not 

significantly affected by other interactions before complexation [136, 148]. Figure 

4-3 a-d shows the separation of the analyte mixture using buffers containing 5 mM 

of each CD. Figure 4-4 shows schematics of the proposed mechanisms involved in 

each separation. It is clear from the figure that there is analyte-CD interaction taking 

place as the migration times and migration order change with different CD types. 

The analytes appear to elute earlier due to the presence of neutral CDs as they spend 

less time in the negatively charged micelles travelling away from the detector so 

more interactions with the CDs result in shorter migration times. The migration order 

can change if a different CD cavity size is a better steric fit for certain analytes and 

result in more interaction with the CD while another analyte now interacts less. The 

association constants calculated by the three linearization methods for each CD 

concentration are shown in Table 4-2.  
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Figure 4-3 Electropherograms of the mixture of nine neutrals analysed in buffers 

composed of 10 mM SDS 50 mM tris pH 8 and 5mM (a) MECD, (b) γ-CD, (c) β-CD, (d) 

α-CD and (e) no CD. Separation at 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm 

i.d., 25°C, 5 mbar 20 s injection times, detection at 200 nm. Numbers indicate analytes 

as follows; (1) terpineol, (2) 4-allylanisole, (3) camphene, (4) β-pinene, (5) 3-carene, (6) 

α-pinene, (7) isolongifolene, (8) longifolene and (9) aromadendrene.  
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Figure 4-4 Schematic of proposed separation mechanisms for the electropherograms in 

Figure 4-3. 
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4.3.2 α-cyclodextrin 

 

The mobilities of the analytes were found to increase with an increase of α-CD 

concentration, consistent with their behaviour in the presence of other CD types (see 

Figure 4-5). Aromadendrene is an exception here as the CD concentration was found 

to have little effect on its mobility. However, the guest:CD binding ratio of the 

analytes was reported to be 1:2. This is due to the small inner diameter of the CD 

(4.7-5.3Å [82, 147]). The double-, Y- and X-reciprocal linearization plots cannot be 

applied as they are based on 1:1 stoichiometry complexes. 

 

Figure 4-5 Plots of mobility (cm
2
V

-1
s
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4.3.3 β-cyclodextrin 

 

The buffer containing β-CD was found to separate all of the analytes in the study 

(see Figure 4-3). The inner cavity of β-CD is 6-6.5 Å [82] which is more suitable to 

facilitate the size of the monoterpenes (the monoterpenes studied range from 5.8-6.6 

Å at their widest axis, sizes calculated in ChemDraw 3D) and other analytes, in 

particular cyclic aliphatic compounds [148]. 

 

Figure 4-6 Plots of mobility (cm
2
V

-1
s

-1
) versus β-CD concentration 
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The analyte mobilities were found to increase with increasing concentration of β-CD 

(see Figure 4-6), indicating that they spend less time migrating towards the anode 

with the SDS micelles (R
2
 values given in Table 4-2). The exception is 

aromadendrene, suggesting there is little or no interaction between aromadendrene 

and β-CD. This is unexpected as aromadendrene has the highest LogP value and so 

would be expected to interact with the hydrophobic inner cavity of the CD. 

Aromadendrene is a three-ringed structure with three methyl and one methylene 

groups. The lack of interaction may be due to steric hindrance, as the aromadendrene 

molecule is 7.5 Å across at its widest. Longifolene was found to migrate before 

isolongifolene in β-CD modified buffer, indicating that it interacts more with the 

CD, likely due to the double bond found on the exterior of its structure. The higher 

molecular weight sesquiterpenes are predictably the last to elute. However, terpineol 

and 4-allylanisole which have slightly higher molecular weights than the 

monoterpenes, elute before them. Terpenoid alcohols have been reported to be 

included more into β-CD than terpene hydrocarbons [80]. The hydrophilic hydroxyl 

group of terpineol would likely be orientated pointing out of the hydrophobic CD 

cavity [148]. The aromatic ring in the 4-allylanisole is para-substituted which may 

increase interactions with the CD cavity as an additional methyl group in the para 

position of phenethylamine increased its affinity to α- and β-CD four-fold [148]. 

Aromatic rings – except for imidazole interact more with β-CD than α-CD [148]. 

The methoxy group present in 4-allylanisole also contributes more to the association 

constant of a CD complex than a methyl group as suggested in another paper by 

Rekharsky et al. [155]. The migration order of the analytes was found to correlate 

with their LogP values (see Table 3-1); the lower the value the earlier the analytes 

migration time. This shows that, in this case, the analytes hydrophobicity is more 

significant than molecular weight in influencing their migration order. Studies found 

that LogP values generally did not correlate with CD complex stability [149]. 
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Table 4-2 Association constant values for analyte:CD complexes for the three 

linearization methods 

  

  

β-CD MECD γ-CD 

K (M
-1

) R
2
 K(M

-1
) 

a
 K (M

-1
) R

2
 K (M

-1
) R

2
 

Terpineol 

Double 

reciprocal  

113.9 0.934  121.2 0.999 242.3 0.708 

Y reciprocal  56.7 0.251  128.1 0.960 4.8 0.001 

X reciprocal  43.1 0.137  1235 0.930 -2.2 0.000 

4-allylanisole 

Double 

reciprocal 

77.4 0.914  30.4 0.997 213.7 0.756 

Y reciprocal  11.8 0.012  35.2 0.487 -8.2 0.003 

X reciprocal  2 0.000  295 0.363 -23.9 0.031 

Camphene  

Double 

reciprocal  

-56.5 0.987 6040 -94.9 0.998 -4.0 0.948 

Y reciprocal  -61.6 0.558  -83.8 0.870 -77.4 0.489 

X reciprocal  -65.5 0.674  -826 0.905 -89.2 0.791 

β-pinene 

Double 

reciprocal  

-65.7 0.989 6120 -112.2 0.997 -44.7 0.959 

Y reciprocal  -68.6 0.625  -96.9 0.870 -105.1 0.675 

X reciprocal  -71.8 0.729  -941 0.909 -118.4 0.930 

3-carene 

Double 

reciprocal  

-89.1 0.989  -144.1 0.994 -165.9 1.000 

Y reciprocal  -90.1 0.729  -122.4 0.864 -163.6 0.996 

X reciprocal -91.6 0.822  -1163 0.920 -163.7 1.000 

α-pinene 

Double 

reciprocal  

-113.4 0.993 6080 -146.4 0.995 -138.6 0.995 

Y reciprocal  -100.6 0.764  -126.7 0.883 -156.1 0.964 

X reciprocal  -101.2 0.821  -1206 0.937 -162.2 0.998 

Longifolene 

Double 

reciprocal  

-336.8 0.802  -588.9 0.529 -126.9 0.995 

Y reciprocal  -290.6 0.367  -573.8 0.653 -128.1 0.900 

X reciprocal  -204.2 0.890  -5647 0.869 -141.8 0.983 

Isolongifolene 

Double 

reciprocal  

-707.2 0.401  13.4 0.985 -570.7 0.357 

Y reciprocal -879.6 0.393  -19.7 0.142 279.5 0.021 
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X reciprocal -602.4 0.843  -240 0.250 -219.8 0.901 

Aromadendrene 

Double 

reciprocal  

-970.8 0.163  -418.5 0.592 -803.9 0.410 

Y reciprocal -943.7 0.239  468.6 0.220 518.3 0.106 

X reciprocal  -558.6 0.810  -3156 0.941 -269 0.769 

Abietic acid  

Double 

reciprocal  

338.1 0.984  -95.1 0.996 1034.9 0.998 

Y reciprocal  449.9 0.971  -77.0 0.825 1001.6 0.999 

X reciprocal  358.6 0.852  -769 0.892 1023.1 0.995 

Dehydroabietic acid 

Double 

reciprocal  

292.1 0.773   -214.5 0.943 553.0 0.865 

Y reciprocal  54.1 0.085   -174.8 0.675 369.1 0.833 

X reciprocal  19.6 0.012   -1639 0.911 302.8 0.510 

a) Association constant values found in literature [104] 

However, the association constants calculated from the double, Y and X reciprocal 

plots were negative values for all the neutral compounds except terpineol and 4-

allylanisole. This is unexpected as negative association constants generally indicate a 

lack of complexation between the CD and analytes. Contrary to this, the earlier 

migration times of the analytes and the improved separation of some of the analytes 

with increasing CD concentration support the hypothesis that the analytes are 

interacting with the CDs. The double bond in α-pinene is located in a ring, making it 

more rigid than its structural isomer β-pinene which may contribute to a more stable 

complex so a higher association constant would be expected [104]. Similarly, 3-

carene also contains a ring with a double bond and so its association constant would 

be expected to be higher than that of β-pinene [104]. β-CD has been shown to form 

more stable complexes with cycloalkanes compared to α- and γ-CD with higher 

association constants than their corresponding linear equivalents [80]. The constants 

formed between β- and γ-CD and cyclic compounds increases with an increasing 

number of carbons in the ring [80].  
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4.3.4 MECD 

 

As seen with β-CD, the analyte mobilities increased with increasing concentration of 

MECD (Figure 4-7), again indicating that the presence of CDs result in the analytes 

interacting less with the micelles. 

 

Figure 4-7 Plots of mobility (cm
2
V

-1
s

-1
) versus MECD concentration 
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In general, modification of a CD improves its solubility and interactions [82]. 

MECD has methyl groups substituted on carbons 2, 3 or 6 which converts some of 

the hydrophillicity of the CD cavity ends to a more hydrophobic nature [80]. The 

modification of CDs usually improves the separation of analytes, with a methylated 

CD possibly allowing for additional hydrophobic interactions. However, in this case 

the majority of analytes are terpenes which have no functional groups to interact 

with. As seen in Figure 4-3, the elution order of the analytes is the same with and 

without MECD present. 3-carene and α-pinene were found to coelute, unsurprising 

due to their similar structures which both contain a six-membered ring with a double 

bond. However, these two analytes separate in a buffer containing SDS without 

MECD suggesting that the CD is reducing the analytes interaction with the micelles. 

Another noticeable change is that longifolene and aromadendrene were separated 

with MECD present whereas SDS alone could not achieve this separation. The 

methyl groups on the CD provide more interaction for the analytes. When compared 

with the non-derivatized β-CD, it appears that the presence of the methyl groups has 

the effect of reducing the interactions between the CD and longifolene.  

As seen in Table 4-2, the association constants for the majority of the neutral 

compounds are negative. Terpineol and 4-allylanisole show the highest association 

constant from the X-reciprocal plots, 1235 and 295 M
-1

 respectively. In this case, 

isolongifolene also gives a positive value of 13.4 M
-1

 from the double reciprocal plot 

while the Y and X reciprocal plots give negative values. 

 

4.3.5 γ-cyclodextrin 

 

It was found that (Figure 4-3) there is little separation and poor peak shapes when a 

γ-CD buffer was used for analysis. The inner diameter of a γ-CD cavity is 7.5-8.3 Å 

[82], and while it is large enough to accommodate the analytes it is perhaps less 

sterically suitable as its large cavity can be unsuitable for complexing with a single 

guest molecule [80]. If the analyte is too small relative to the CD size it will not bind 

tightly, often seen with small organic compounds which form weaker complexes 

with γ-CD than with α-CD [88, 156]. An example is adamantane, which is too big to 

fully fit into α-CD but fits in both β- and γ-CD. The affinity for adamantane to β-CD 
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is rough 100 times higher than its affinity for α-CD, but its affinity decreases slightly 

for γ-CD [148]. 

However, it is also clear from Figure 4-3 that the migration times of the analytes 

have been reduced greatly, indicating that the analytes interactions with the micelles 

are being reduced. As stated earlier, micelle-like aggregates can be formed by the 

CDs [129]. It is also possible that more than one analyte is entering the CD cavity at 

one time, decreasing migration time but with little resolution or efficiency as γ-CD is 

known to form 1:2 guest:CD complexes [145]. The larger cavity width of γ-CD 

could also allow both an analyte and a surfactant molecule to enter the cavity at the 

same time [157] (see Figure 4-4d). Again terpineol and 4-allylanisole are the only 

neutrals to produce positive association constants. The analyte mobilities increased 

with increasing cyclodextrin concentration as seen in Figure 4-8. 
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Figure 4-8 Plots of mobility (cm
2
V

-1
s

-1
) versus γ-CD concentration 
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4.3.6 Comparison of acid and terpene association constants 

 

In order to compare how charged and neutral analytes interact with the CD types, 

abietic- (ABA) and dehydroabietic acid (DHA) were analysed in the buffers with 

varying CD concentration. To the authors’ knowledge, the stoichiometric guest:CD 

ratio of resin acids has not been reported previously. However, other terpenic acids 

including oleanolic acid were reported to form 1:1 guest:CD complexes with β-CD 

[158]. 

The acid:CD inclusion complexes form with the charged carboxyl group pointing out 

of the CD cavity still exposed to the aqueous buffer [148] and the isopropyl part of 

the acids in the cavity. This isopropyl group is about 4.3 Å in diameter and so can fit 

into the cavity of all three CD sizes. Dehydroabietic acid has an aromatic ring 

attached to the isopropyl group which can form a hydrogen bond with one of the 

hydroxyl groups on the CD. The acids are negatively charged at this high pH unlike 

the neutral compounds and so they will have their own mobility towards the anode. 

The association constants of the inclusion complexes formed between ABA and 

DHA and several different CD types are reported for the first time in Table 4-2. 

Unlike the terpenes, positive association constants are seen for the complexes formed 

between the two acids and the CDs. In general the double reciprocal plots show the 

highest values with the γ-CD forming higher association constants than the β-CD 

complexes. The values are higher than those for terpineol and 4-allylanisole. The 

fused three ring structure of the acids are larger than the neutral compounds 

investigated and so more suited to form inclusion complexes with the larger cavity 

where the terpenes could not. 

Negative association constants are seen for the acids with MECD. This must be due 

to the methyl groups on the β-CD as positive constants were seen for the complexes 

formed with the underivatised CD. 

The Y- and X-reciprocal plots of the acids with γ- and β-CD gave positive slopes 

where the terpenes gave negative slopes and vice-versa (see Figure 4-9). This 

indicates that the acids and neutral compounds interact with the CDs by different 

mechanisms, and that the Y- and X-reciprocal plots are less suited to analysing the 

data of the neutral association constants with CDs. 
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Figure 4-9 (A) Double, (B) Y and (C) X reciprocal plots for ABA. R
2
 values were (A) 

0.9983, (B) 0.9993 and (C) 0.9945. 
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4.3.7 Addressing the negative association constants 

 

In order to address the negative association constants, a higher CD concentration was 

investigated. Although other reports had determined association constants over 

similar and even smaller CD concentration ranges [132, 136], other papers suggest 

high CD concentrations are required [132, 137], therefore CD concentrations up to 

10 mM were then investigated to contribute more data points to the double, Y and X 

reciprocal plots. 

 

 

Figure 4-10 Electropherograms of the mixture of nine neutrals analysed at 20 kV, 

capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s injection times, 

detection at 200 nm. Buffers consist of 10 mM SDS buffer with (a) 10 mM, (b) 7 mM, 

(c) 6 mM and (d) 5 mM β-CD.  

 

From this study it was found that, rather than increased separation, the separation of 

the neutral mixture deteriorated as the CD concentration was increased (see Figure 

4-10).  
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Consideration was given to the fact that the micelles were being influenced by the 

increased presence of the CDs and possibly being disrupted. In order to investigate 

this possibility, the concentration of the SDS was increased to 20 mM and the neutral 

mixture analysed. The schematic in Figure 4-12 shows the proposed mechanism for 

the separation in Figure 4-11. 

 

 

Figure 4-11 Electropherogram of the mixture of nine neutrals analysed at 20 kV, 

capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s injection times, 

detection at 200 nm. Buffer consists of 10 mM β-CD 20 mM SDS 50 mM tris buffer pH 

8. Numbers indicate analytes as follows; (1) terpineol, (2) 4-allylanisole, (3) camphene, 

(4) β-pinene, (5) 3-carene, (6) α-pinene, (7) isolongifolene, (8) longifolene and (9) 

aromadendrene. 

 

As seen in Figure 4-11, when the SDS concentration was increased to 20 mM, 

separation of the analytes was achieved with a higher CD concentration where it had 

not been with 10 mM SDS. This confirms that, as the CD concentration was 

increased, the critical micelle concentration (CMC) was also increased and so the 

micelles were no longer being formed at the 10 mM SDS. This is in agreement with 
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a paper by Cifuentes et al. who reported the CMC of SDS in a 10 mM β-CD buffer 

to be 14.8 mM [118]. The resolution and efficiency values of the electropherogram 

are seen in Table 4-3.  

 

Figure 4-12 Schematic of the proposed mechanism for the separation shown in Figure 

4-11. 

 

Table 4-3 Resolution and efficiency values for the electropherogram in Figure 4-11 

Resolution 

(Rs) 

Efficiency 

(N) 

 121005 

19.1 159284 

13.9 70574 

2.1 120992 

3.2 141476 

3.6 102771 

3.8 111689 

10.5 108335 

9.0 64518 

 

Although micelles themselves will not partition into a CD cavity due to its 

hydrophilic outer surface, surfactant molecules (monomers) can form inclusion 

complexes with CDs. This increases the CMC as the CD cavity competes with the 

self-aggregation of the surfactants for monomers. When the surfactant concentration 

is below the CMC, the surfactant monomers and cyclodextrins form a complexation 

equilibrium (Figure 4-13 a). The concentration of surfactant is increased until it 

reaches the CMC and micelles can form (Figure 4-13 c). The CMC when CDs are 
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present is the combination of the concentration of surfactant monomers complexed 

with the CDs and the concentration of the free surfactants in equilibrium with the 

micellised surfactants. The analyte partitions into three phases; into the micelle, into 

the CD and in free solution [129, 159-162]. In this case the neutral analytes partition 

into the SDS micelles, the β-CD and the aqueous buffer. 

 

  

Figure 4-13 Schematic representation of buffer as SDS concentration is increased, 

adapted from [129]. 

 

In the same way that the CMC is increased by surfactant monomers partitioning into 

CDs instead of micellising, the presence of surfactant monomers in the CD cavities 

also reduces the interactions between analytes and CDs. α-CD forms mainly a 2:1 
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CD:surfactant complex while β-CD forms primarily 1:1 complexes with a much 

lesser amount (>10%) of 2:1 CD:surfactant formed. γ-CD can also form 1:2 

CD:surfactant complexes [143, 144, 146, 160]. This suggests that the greatest CMC 

increase is expected in the γ-CD modified buffer, followed by the β-CD modified 

and then the α-CD modified buffer as it complexes with less surfactant monomers 

[163]. The neutrals partition into the CDs less as surfactant monomers are also 

partitioning into them. 

Association constants for SDS-β-CD complexes have been reported from 210 to 

25600 M
-1 

[163]. However, the wide range of values reported do not address the 

formation of complexes other than the 1:1 complexes – with some techniques 

potentially not sensitive enough to detect the presence of lesser formed 2:1 

CD:surfactant complexes [146]. As there is such a wide range of association 

constants for SDS-CD complexes and so few reported constants for terpene-CD 

complexes it is difficult to say with certainty which complex will be favoured.  

As a higher SDS concentration resulted in separation even when higher CD 

concentration was used (Figure 4-11), buffers were prepared containing SDS 

concentrations from 5-30 mM to investigate how separation was affected.   

 

 

Figure 4-14 Plot of migration times versus the SDS concentration in the buffer. The 

neutral mixture was analysed at 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm 
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i.d., 25°C, 5 mbar 20 s injection times. Buffer consists of 5 mM β-CD 50 mM tris pH 8 

with 10-30 mM SDS. 

 

 

Figure 4-14 shows the migration times of the neutral analytes when the β-CD was 

kept constant at 5 mM and the SDS concentration varied. When the SDS was 

decreased to 5 mM SDS (10 mM having been used throughout the cyclodextrin 

concentration variation) there was no separation seen as this was clearly below the 

CMC. When the SDS concentration was increased the analytes migrate later as 

expected as the SDS moves against the EOF and the resolution was decreased for all 

analytes except terpineol and 4 allylanisole (see Table 4-4). 

 

Table 4-4 Resolution and efficiency values for the electropherogram as seen in Figure 

4-14. 

Resolution (Rs)    Efficiency (N)   

10 mM 

SDS 

15 mM 

SDS 

20 mM 

SDS 

30 mM 

SDS 

10 mM 

SDS 

15 mM 

SDS 

20 mM 

SDS 

30 mM 

SDS 

7.8 13.9 17.7 17.0 90880 102040 141028 192612 

15.6 19.8 20.4 20.6 56570 131726 239495 329846 

2.6 2.2 1.8 1.6 90727 100689 138851 388036 

5.4 6.9 4.0 4.6 108763 133513 167654 303166 

4.1 2.4 3.1 1.1 67344 167123 209201 307164 

8.5 4.7 3.0 2.5 89121 83464 189010 372545 

9.1 5.7 3.2 2.3 82232 79735 78515 147128 

6.0 3.7 2.1 1.6 67822 109592 128857 214358 

    40941 75615 105197 261396 

 

The γ-CD buffer was then prepared with a higher SDS concentration to investigate if 

earlier separations had been carried out containing SDS at a concentration lower than 

the CMC. 
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Figure 4-15 Electropherogram of the mixture of nine neutrals analysed at 20 kV, 

capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s injection times, 

detection at 200 nm. Buffer consists of 5 mM γ-CD 50 mM SDS 50 mM tris pH 8. 

 

Figure 4-15 shows the electropherogram of the separation of the mixture of neutrals 

by a tris buffer containing 5 mM γ-CD 50 mM SDS. In contrast with the separation 

using a 5 mM γ-CD 10 mM SDS tris buffer (see Figure 4-3b), the peaks are sharper 

and better resolved. The migration times are also longer, suggesting that in a buffer 

containing γ-CD the CMC was not reached at 10 mM SDS while at 50 mM SDS 

micelles have formed. They travel against the EOF as the analytes partition in and 

out, resulting in longer migration times. This is consistent with literature, as 

Bendazzoli et al. determined the CMC of SDS in a buffer containing 10 mM γ-CD to 

be 21.4 mM [163]. 

As the association constants were not giving positive values as expected from the 

separation, different possible causes were investigated. The present of the SDS was 

clearly more involved in the separation than initially hypothesised so the effect of the 

addition of alcohol on the separation was investigated. It was expected that as the 
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methanol percentage was increased it would increasingly disrupt the micelles as 

methanol has been reported to increase the CMC of SDS [143]. 

 

 

Figure 4-16 Electropherograms of the mixture of nine neutrals analysed at 20 kV, 

capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 20 s injection times, 

detection at 200 nm. Buffer consists of 5 mM β-CD 10 mM SDS 50 mM tris pH 8 with 

varying % of MeOH as described in figure. Numbers indicate analytes as follows; (1) 

terpineol, (2) 4-allylanisole, (3) camphene, (4) β-pinene, (5) 3-carene, (6) α-pinene, (7) 

isolongifolene, (8) longifolene and (9) aromadendrene. 

 

As seen in Figure 4-16, with 5% MeOH in the buffer there is slightly increased 

resolution for the last three peaks (longifolene, isolongifolene and aromadendrene) 

but as it is further increased the separation deteriorates with everything migrating at 

the EOF (the EOF migrates later with increased MeOH). This confirms that the 

MeOH has disrupted the micelles by increasing the CMC enough that 10mM is now 

below the CMC. Resolution and efficiency values are shown in Table 4-5. 
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Table 4-5 Resolution and efficiency values for the electropherogram as seen in Figure 

4-16 

Resolution  Efficiency (N)  

no MeOH 5% MeOH 10% MeOH no MeOH 5% MeOH 10% MeOH 

7.8 6.7 9.6 90880 171938 193801 

15.6 15.4 11.5 56570 39979 171553 

2.6 2.4 1.3 90727 54250 21125 

5.4 6.2 3.6 108763 67089 21626 

4.1 4.9 2.6 67344 89186 30151 

8.5 8.9 6.4 89121 62623 28326 

9.1 11.4 11.8 82232 50138 34210 

6.0 9.5 11.3 67822 81753 35675 

   40941 47155 21727 
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4.4 Conclusions  

 

Affinity capillary electrophoresis was used for the first time to investigate the 

association constants for a range of natural products present in rosins with α-, β-, γ- 

and methyl-β-CD. The mobilities of the analytes in buffers containing 10 mM SDS 

and 1-5 mM CD were recorded. However, when three different linearization plotting 

methods were applied to the data, negative association constants were obtained for 

the majority of the neutral analytes. As the electropherograms showed that separation 

was in fact being achieved, it was concluded that the presence and concentration of 

the CDs was not the only significant contributing factor to the separation of the 

mixture.  

The migration order of the neutral analytes correlated with their LogP values; the 

lower the value the shorter the analytes migration time. This shows that in this case 

the analytes hydrophobicity is more significant than molecular weight in influencing 

their migration order. However, the values could not be used to predict migration 

time as the analytes structures also affected their interactions with the CDs. 

The association constants of two resin acids were determined by the use of affinity 

capillary electrophoresis and the double-,Y- and X-reciprocal plotting methods and 

reported for the first time. Inclusion complexes with γ-CD gave the highest values, 

1035 and 553 M
-1

 for ABA and DHA respectively. The complexes formed with 

MECD were found to give negative association constants with the acids.  

The effects of surfactant and cyclodextrin concentration in the separation buffer were 

also investigated. It was found that as the CD concentration was increased, surfactant 

monomers partitioned into the CD cavities, resulting in the formation of less micelles 

when the SDS concentration was not increased accordingly. The CMC increased as 

the CD cavities competed with self-aggregation of SDS for surfactant monomers. 

This had resulted in the disruption of micelles and poor resolution. During the 

determination of the association constants of the charged acids, the acids had their 

own mobility whereas the neutral compounds depended on the micelles for mobility 

and so were affected more as the CMC was increased. For this reason, this method of 

association constant determination was successful for the acids but not the neutral 

terpenes. The addition of methanol to the buffer was also found to reduce separation 
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by increasing the CMC of SDS. The CD-SDS interactions were found to be more 

significant to the separations than initially hypothesised. 

Capillary electrophoresis was found to be a suitable method for the determination of 

association constants of charged analytes which provides quantitative information on 

the affinity of the analytes for the cyclodextrins. Association constant information 

could aid in the approach to optimising a separation method. The neutral analytes 

required the presence of a charged surfactant to provide mobility; however, the effect 

of the increased addition of CDs to the buffer inhibited the formation of micelles. 
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  Chapter 5

 

 

 

 

Application of developed separation methods to natural and 

modified samples of rosins and resins 

  



 

170 

 

5.1 Introduction 

 

5.1.1 Sources of natural samples 

 

Natural products are produced through secondary metabolism by plants and animals 

[69], for example resins are produced by pine trees. As described in section 1.2, 

when the volatile oils have been distilled from resin, rosin is the solid that remains. 

The volatile portion removed is known as turpentine [1]. Resins are also known to 

contain resin acids. 

Resins have a very wide range of applications in multiple industries including 

cosmetics, pharmaceuticals, glues, varnishes and adhesives. GC-MS and 

spectroscopic techniques are the most common analysis methods of natural resins 

[53, 164-166]. There are a few reports on the analysis of resins by CE [57, 59]. In 

this chapter the separation methods developed in chapters 2 and 3 are applied to a 

range of modified and unmodified rosins, and resin samples for the first time. 

 

5.1.2 Rosin crystallisation 

 

As described in section 1.2.2, problems can arise when natural rosin samples are 

used in industry. Their industrial applications include varnishes, adhesives and as 

solder flux. Reported issues in these areas are associated with the tendency of rosins 

to crystallise, which reduces the value of the raw material and may exclude it from 

certain applications. 

At present there are rough tests carried out by Henkel to predict an unmodified rosins 

tendency to crystallise, such as the resin acid balance test (described in section 5.3.3) 

and the acetone crystallisation test (section 5.2.5). However, batches which pass 

these tests can sometimes crystallise at a later period and even after inclusion in a 

product which can have a significant impact on its efficacy.  
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5.1.3 Aims 

 

The aim of this research is to investigate the composition of various natural and 

modified rosin and resin samples. The objectives are to apply the two separation 

methods developed in chapters 2 and 3 to the samples and to use spiked samples and 

multiwavelength analysis to identify specific acids in rosin and resin 

electropherograms. Calibration curves will be used to quantify the acids present. 

Links between the composition of rosins and their tendency to crystallise will be 

examined. The crystallisation of both modified and unmodified rosin samples will be 

investigated and any resulting precipitate analysed. 
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5.2 Experimental 

5.2.1 Instrumentation 

CE instrumentation is as described in section 3.2.1. 

5.2.2 Reagents 

 

The reagents used are as described in sections 2.2.2 and 3.2.2. In addition; rosin 

samples were donated by Henkel Ireland Ltd., (Dublin, Ireland). Music and cello 

rosins were purchased from Waltons, (69 South Great George’s street, Dublin 2, 

Ireland). Turpentine oil was purchased from O’Sullivan Graphic Supplies, (Camden 

Street, Dublin 2, Ireland). Balsam resin and venetian turpentine were purchased from 

K&M Evans art supplies, (Meetinghouse Lane, Dublin 7). Buffers were prepared in 

deionised water. 

 

5.2.3 Sample and buffer preparation 

 

For analysis by the acid method fresh samples were prepared daily at 0.1% w/v by 

dissolution in 100% methanol. For analysis by the neutrals method, samples were 

dissolved in 1:5 MeOH: 5 mM β-CD 10 mM SDS 50 mM tris buffer at pH 8.  

Tris buffers were prepared to the required concentration and pH by mixing 

appropriate amounts of tris HCl and tris base in distilled water following the Sigma-

Aldrich tris buffer mixing table e.g. a 50 mM tris buffer at pH 8 was prepared by 

mixing 4.44 g L
-1

 tris HCl and 2.65 g L
-1

 tris base. All buffers were filtered through a 

0.2 μm nylon membrane filter. Buffers were sonicated for 15 min. 

5.2.4 CE separation conditions 

 

For the acid method, CE separations are as described in section 2.2.4. For the terpene 

method, CE separations are as described in section 3.2.4. 
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5.2.5 Acetone test 

 

The acetone test described in a Henkel internal test method calls for 10 g of the rosin 

sample (free from powder) to be placed in 10 mL of acetone in a sealed jar at room 

temperature. 

 

5.3 Results and discussion 

 

5.3.1 Rosin samples 

 

Both natural and modified gum rosin samples were analysed using the optimised 

acid separation conditions described in chapter two (samples are listed in Table 5-1 

and Table 5-2). The acids present were identified by spiking the rosin samples and 

their content quantified. The acids’ different spectral properties were also exploited 

to aid in peak identification. The RSD values for the acids’ migration times were 

found to increase slightly to 1.7-3.2% when the method was applied to the natural 

samples compared to the values when applied to a standard mixture (0.2-1.2%). Peak 

shapes can be affected by the concentration of other analytes by electromigration 

dispersion. 

 

Table 5-1 Names of rosin and resin samples from sources other than Henkel 

Sample ID Name Source 

Music Music rosin Waltons music 

Cello Hidersine 3C Cello rosin Waltons music 

Turpentine oil Daler-Rowney turpentine 

oil 

O’Sullivan Graphic 

Supplies 

Venetian turpentine Sennelier Terebenthine de 

Venise 

K&M Evans art supplies 

Balsam resin Oudt-Hollandse Olie-

verwenmakerij Balsam 

Hars 

K&M Evans art supplies 



 

 

 

1
7
4
 

Table 5-2 Rosin samples provided by Henkel 

Sample ID Name Batch Acid value 

(mg KOH g
-1

) 

Softening point 

(°C) 

Notes CAS Rosin type 

YT201A YT-201 (A) 1310074 130.9 100  65997-05-9 Polymerised 

YT201B YT-201 (B) 1220465 123.0 100 Low acid value 65997-05-9 Polymerised 

YT201C YT-201 (C) 1320591 129.0 102 Low acid value 65997-05-9 Polymerised 

YT201D YT-201 (D) 1241218 139.0 101  65997-05-9 Polymerised 

YT201E YT-201 (E) 1220617 130.6 102 Close to lower 

specification limit 

65997-05-9 Polymerised 

YT201F YT-201 (F) 1310220 142.5 102  65997-05-9 Polymerised 

Dymerex Dymerex DB1107017

0 

146-158 132-142 Eastman,  65997-05-9  Fully-dimerised 

Poly-pale Poly-pale 650980A 130-155 138-151 Eastman,  65997-05-9  Partially 

dimerised 

Resine K10 Resine K10 1068860 146-158 132-142 Granel S.A.  65997-05-9  Dimerised 

RA RES132 Drum4 

IDH380627 

n.a.
1
 70-80 Good gum rosin 8050-09-7 Gum 

RB RES132 RN87444A n.a. 70-80 Good gum rosin 8050-09-7 Gum 

RC RES132 Drum46 

IDH380627 

n.a. n.a. Crystallising 8050-09-7 Gum 

RD RES132 Drum52 

IDH380627 

n.a. n.a. Crystallising 8050-09-7 Gum 

RES155 RES155/Disprosi

n A-100 

RN1009045

7 

n.a. 80 Marlin chemicals 

Ltd 

8050-09-7 Disproportionated 

Gresinox Gresinox 578M  n.a. n.a.  8050-09-7 Disproportionated 

A-mod RES134/KE-604 RN505101 n.a. 129 Marlin chemicals 

Ltd 

8050-09-7 Acid-modified 

hydrogenated 

rosin 
1
n.a.= not available
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5.3.1.1 Natural gum rosin samples 

 

Four gum rosin samples were analysed using the optimised CE method as described 

in chapter 2. These included two samples from batches successfully incorporated in 

industrial products (samples RA and RB) and two from batches known to crystallise 

(samples RC and RD). The acid peaks in the electropherograms were identified (see 

Figure 5-1) by spiking the rosin samples.  

 

 

Figure 5-1 Electropherograms of 0.1% w/v gum rosin sample RB, a non-crystallising 

rosin, analysed in positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm 

i.d., 25°C, 50 mbar 4 s injection times. Buffer consists of 15% MeOH 5 mM HPγCD 10 

mM SBCD in 20 mM tris buffer pH 9. Wavelengths are (a) 200 nm, (b) 214, (c) 240 nm, 

(d) 265 nm and (e) 310 nm. Numbers indicate (1) 7OXO, (2) DHA, (4) ABA, (5) PAL, 

(6) LVO, (8) ISO and (9) PIM. 
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The acid standard calibration curves (seen in section 2.3.6) were used to calculate the 

concentrations of the acids present in the rosin samples. In the non-crystallising rosin 

samples it was determined that ABA, DHA and ISO are present in greatest 

concentrations (see Table 5-3) with the ABA concentration being determined at 240 

nm and PAL at 265 nm. PIM, PAL and 7OXO are present in lower amounts. While 

some of the other acid peaks were also identified, they were present below their 

LODs and so could not be confidently quantified e.g. LVO. This is the first 

application of a CE method to rosin samples with the aim of quantifying the resin 

acids present. 

The resin acid concentrations relative to each other can vary between different pine 

tree species and between different trees of the same species [1]. Different batches of 

a single gum rosin can also have different relative acid concentrations due to 

different processing and storage conditions. This is seen in the concentration of ABA 

and PAL which varied by 33% and 40.8% respectively between non-crystallising 

samples RA and RB. The other acid concentrations were more constant. The 

concentrations of ABA and PAL are less consistent as the majority of LVO present 

in the oleoresin precursor is converted to ABA and PAL, hence the final 

concentration depends on the extent of isomerisation undergone within the individual 

rosins [32, 167]. Initially LVO is isomerised in equal measure to PAL and ABA and 

then PAL can be further isomerised to ABA [33]. While sample RA contained more 

DHA than ABA, the opposite was true for sample RB. The other peaks present in the 

electropherogram could be attributed to the neutral compounds present in rosin, such 

as terpenes and aldehydes. Derivatives of resin acids such as tetrahydroabietic acid 

may also be present [87]. Some NEO would be expected, but its absence can be 

explained by its possible isomerisation to ABA [13]. Together ABA and NEO 

generally comprise 10-20% of the resin acid fraction [1]. Rosin samples RA and RB 

contain 18.5 and 25.7% ABA, higher than expected for the RB sample. The 

crystallising samples were found to contain significantly higher concentrations of 

ABA (40.3 and 51.5%) than anticipated. PIM is normally 5-10% of the resin acid 

faction as seen here in the RC and RD samples [1]. However, the acid fractions of 

the non-crystallising samples were determined to contain 12.8 and 13.2% PIM (see 

Table 5-3). SAN is normally present as 3% or less of the acid fraction of rosins [1, 

49]. None of the gum rosin samples analysed were found to contain SAN. PAL 
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generally comprises around 20% of the acid fraction [1]. In these samples, the 

percentage of PAL ranged from 8.1-13.1%, lower than expected. 

 

Table 5-3 Average concentrations and standard deviations for gum rosin samples, n=3 

Non-crystallising gum rosin samples 

Acid Sample 

RA (mg L
-

1
) 

SD % of acid 

fraction 

Sample 

RB (mg 

L
-1

) 

SD % of acid 

fraction 

ABA
a
 34.5 2.3 18.5 45.9 4.9 25.7 

ISO 53.6 8.5 28.7 51.2 6 28.7 

PIM 23.8 3.2 12.8 23.5 2.1 13.2 

DHA 47.1 3.9 25.2 38.1 4.5 21.4 

PAL 24.5 1.2 13.1 14.5 0.6 8.1 

7OXO 3.1 0.4 1.7 5.1 0.2 2.9 

Crystallising rosin samples 

  

Acid Sample 

RC  (mg 

L
-1

) 

SD % of acid 

fraction 

Sample 

RD (mg 

L
-1

) 

SD % of acid 

fraction 

ABA 108.1 3 40.3 236.7 18.3 51.5 

ISO 51 1.3 18.9 75.3 6.4 16.4 

PIM 26.7 3.1 9.9 30.1 1.8 6.6 

DHA 34.9 0.4 12.9 33.1 1.9 7.2 

PAL
a
 21.7 0.8 8.1 40.3 1.5 8.8 

7OXO 5.7 0.8 2.1 2.4 0.6 0.5 

NEO
a
 20.5 1.9 7.6 41.5 2.2 9.0 

a
ABA and NEO determined at 240 nm, PAL determined at 265 nm, all others at 200 

nm 

The bar chart in Figure 5-2 highlights the concentration of ABA as the main 

composition difference of the samples; sample RD contains the highest concentration 

of ABA, with sample RC also containing more than twice the amount of ABA 

relative to samples RA and RB. Sample RD also contains higher concentrations of 

ISO, PAL and NEO. The concentrations of PIM, DHA and 7OXO are consistent in 

all the samples while NEO is only seen in samples RC and RD. 
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Figure 5-2 Acid concentration plots for samples RA-RD 

 

Figure 5-3 shows the electropherograms for sample RD, a rosin Henkel have 

classified as crystallising. Greater variations in the compositions of the two 

crystallising rosin samples were observed in comparison to the non-crystallising 

samples (see Table 5-3) suggesting that such samples possess a more uniform 

composition. As with the non-crystallising samples, 7OXO was present in the 

smallest quantities with 5.7 and 2.4 mg L
-1

 in samples RC and RD. The acids present 

in highest quantities in both samples were ABA and ISO. The concentrations of PIM 

and DHA were comparable in samples RC and RD. The concentrations of PIM are 

12.2% and 28.1% higher in samples RC and RD than in samples RA and RB. The 

RSD of the concentrations of ISO in samples RA, RB and RC is more consistent 

(1.2%). An increase of 48% is seen in the ISO concentration of sample RD. NEO 

was not identified in non-crystallising samples, however, it was present in notable 

amounts in both crystallising rosins. The presence of NEO could indicate a rosins 

tendency to crystallise. 
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Figure 5-3 Electropherograms of 0.1% w/v gum rosin sample RD, a crystallising rosin, 

analysed in positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 

25°C, 50 mbar 4 s injection times. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM 

SBCD in 20 mM tris buffer pH 9. Wavelengths are (a) 200 nm, (b) 214, (c) 240 nm, (d) 

265 nm and (e) 310 nm. Numbers indicate (1) 7OXO, (2) DHA, (3) NEO, (4) ABA, (8) 

ISO and (9) PIM. 

 

RD was determined to contain twice the amount of NEO compared to RC. The 

highest PAL concentration was observed in RD, while its concentration in sample 

RC was similar to that in the non-crystallising rosins. The DHA concentrations in 

samples RA and RB were higher than those of RC and RD, suggesting that lower 

DHA concentrations are linked to rosin crystallisation. The concentration of ABA 

shows the greatest difference between crystallising and non-crystallising samples, 

from 34.5 and 45.9 mg/L in samples RA and RB to 108.1 and 236.7 mg/L in samples 

RC and RD. Sample RC contained three times more ABA than sample RA and 

sample RD contained five times more ABA than sample RB. Both crystallising rosin 

samples contained more than 30% ABA (Table 5-3) which is consistent with 

Zinkel’s report that ABA contents above 30% is linked to a higher tendency to 

9 10 11 12 13 14 15 16 17 18

0

20

40

60
m

A
U

Time (min)

(a)

(b)

(c)

(d)

(e)

9

2

1

4
8

3



 

180 

 

crystallise [1]. Neither LVO nor SAN were found to be present above their LODs in 

any of the crystallising or non-crystallising samples.   

 

Figure 5-4 Repeat electropherograms a-e of gum rosin sample RB analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s 

injection times. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 20 mM 

tris buffer pH 9, detection at 200 nm. RSD (%) were found to be 0.4 (PIM), 0.2 (PAL), 

0.2 (DHA), 0.2 (ISO), 0.2 (ABA) and 0.2 (7OXO), n=5. Numbers indicate (1) 7OXO, (2) 

DHA, (4) ABA, (5) PAL, (8) ISO and (9) PIM. 

 

The reproducibility of the method when applied to a gum rosin sample is seen in 

Figure 5-4 with the migration times RSD values remaining <1%. Considering that 

reproducibility is generally noted as a disadvantage of CE, these RSD values are 

comparable if not lower than typical RSD values achieved using GC or HPLC. 
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The variations of acid concentrations between rosin samples were also evaluated 

using acid ratios. The ratio of acid concentrations was investigated because of the 

current rosin suitability predictor test (an internal Henkel method), the resin acid 

balance (RAB) test. GC-MS is utilised to determine pentafluorobenzyl derivatives of 

the acids and their concentrations are included in the Equation 9; 

[(PAL+NEO)/(DHA+ABA)]             Equation 9 

A value higher than one is indicative of a non-crystalizing gum rosin whereas a value 

under one predicts that crystallisation could be an issue. However, this test has only 

been validated for unmodified gum rosins and is not always accurate – rosins which 

have passed this test have been observed to crystallise at later stages of production. 

When this equation was applied to the concentrations determined using the CE 

method, the resulting values were 0.3, 0.2, 0.3 and 0.3 for rosin samples RA-RD. 

Similar values are seen for both the crystallising and non-crystallising rosins, 

indicating that this equation is not suitable for use with CE analysis of resin acids. 

Higher ABA concentrations and the presence of Neo was noted in crystallising 

rosins, and the ABA:NEO ratios in samples RC and RD were 5.3 and 5.7:1. 

In Table 5-4, ‘good’ rosin refers to a non-crystallising rosin and ‘bad’ rosin refers to 

one labelled by Henkel as crystallising. Some of the ratios highlight the differences 

between the ‘good’ and ‘bad’ rosin samples. The ABA:DHA, ABA:7OXO, 

ABA:PAL and ABA:PIM ratios show the higher ABA concentrations in the 

crystallising rosins (highlighted in Table 5-4). Only sample RD contains higher 

concentrations of PAL and NEO than DHA and their high concentrations are 

reflected in the PIM:NEO and PAL:7OXO ratios. Samples RA and RB have 

comparable concentration of ISO and DHA, while RC and RD have higher ISO 

concentrations.  The DHA:PIM ratios show how the DHA concentrations are slightly 

higher in samples RC and RD while PIM has increased. Samples RA and RB contain 

more ISO than ABA while the reverse is true for the crystallising rosins. The 

ISO:PIM, ABA:NEO, NEO:PAL and, to a lesser extent, ISO:PAL ratios remain 

consistent for all samples. The DHA:7OXO, PIM:7OXO and ISO:7OXO ratios show 

the similar concentrations of 7OXO in Samples RA and RD and in samples RB and 

RC. 
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Table 5-4 Acid concentration ratios of gum rosin samples 

 Good Rosin 

RA 

Good Rosin 

RB 

Bad rosin RC Bad rosin RD 

ABA:DHA 1:1.4 1.2:1 3.1:1 7.2:1 

ABA:7OXO 11:1 9:1 19:1 98:1 

ABA:PAL 1.4:1 3.2:1 5:1 5.9:1 

ABA:PIM 1.5:1 2:1 4:1 7.9:1 

DHA:PIM 2:1 1.6:1 1.3:1 1.1:1 

DHA:ISO 1:1.1 1:1.3 1:1.5 1:2.3 

ISO:PIM 2.3:1 2.2:1 1.9:1 2.3:1 

ABA:ISO 1:1.6 1:1.1 2.1:1 3.1:1 

DHA:7OXO 15.2:1 7.5:1 6.1:1 13.8:1 

DHA:PAL 1.9:1 2.6:1 1.6:1 1:1.2 

ISO:PAL 2.2:1 3.5:1 2.4:1 1.9:1 

ISO:7OXO 17.3:1 10:1 8.9:1 31.4:1 

PIM:PAL 1:1 1.6:1 1.2:1 1:1.3 

PIM:7OXO 7.7:1 4.6:1 4.6:1 12.5:1 

PAL:7OXO  7.9:1 2.8:1 3.8:1 16.8:1 

PIM:NEO   1.3:1 1:1.4 

7OXO:NEO   1:3.6 1:17.3 

NEO:PAL   1:1.1 1:1 

ABA:NEO   5.3:1 5.7:1 

DHA:NEO   1.7:1 1:1.3 

NEO:ISO   1:2.5 1:1.8 
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Figure 5-5 Bar plot of acid concentration ratios of gum rosin samples 

 

The acid concentration ratios from Table 5-4 are plotted in Figure 5-5. The higher 

ABA concentrations of the crystallising rosin samples RC and RD are seen in the 

ABA:DHA, ABA:ISO, ABA:PIM, ABA:PAL and ABA:7OXO ratios. The 

DHA:7OXO, ISO:7OXO and PIM:7OXO ratios do not appear to be linked to a 

crystallisation tendency as in all cases samples RB (non-crystallising) and RC 

(crystallising) have close values.  

As the ABA:7OXO ratio for sample RD is so high it is difficult to observe 

significant differences in the other ratios. Figure 5-6 highlights some of these ratios. 
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Figure 5-6 Bar plot of some of the acid concentration ratios of gum rosin samples 

 

Rosin samples RC and RD both have higher ABA:DHA and ABA:PIM ratios than 

the ‘good’ rosin samples highlighting the increase in ABA concentration in the ‘bad’ 

rosin samples. However, the DHA:7OXO and PIM:7OXO ratios did not appear to be 

indicative of the rosins tendency to crystallise as samples RB and RC had similar 

ratio values while RA and RD were more comparable.  
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5.3.1.2 Rosin blocks for musical instruments 

 

Another of the many applications of rosins is as a tool for influencing the friction of 

the bows of string instruments by rubbing a block of rosin along the bow strings. 

There are many suppliers of rosin block to music stores, each implying their own 

‘secret recipe’ of additions to the rosin which is never disclosed. Two different rosin 

blocks were obtained for analysis, named here as ‘music rosin’ and ‘cello rosin’. 

 

5.3.1.2.1 Music rosin 

 

The music rosin selected was a dark green block of rosin with no brand name (Table 

5-1). 

 

Figure 5-7 Electropherograms of 0.1% w/v music rosin sample analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s 

injection time. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 20 mM 

tris buffer pH 9. Wavelengths are (a) 200 nm, (b) 214, (c) 240 nm, (d) 265 nm and (e) 

310 nm. Numbers indicate (1) 7OXO, (2) DHA, (3) NEO, (4) ABA, (5) PAL, (6) LVO, 

(7) SAN, (8) ISO and (9) PIM. 
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Figure 5-7 shows the electropherogram of the music rosin. It is clear that the rosin in 

question is a natural gum rosin as opposed to a modified one. One of the main 

differences in this sample compared with samples RA and RB is the presence of 

NEO. NEO was found to be present in the crystallising samples RC and RD which 

suggests that this rosin may also have a tendency to crystallise. The NEO 

concentration was comparable to that of sample RC.  Another notable difference is 

the quantifiable presence of both LVO and SAN which were not found in any of the 

natural gum rosins. SAN made up less than 3% of the acid as expected [1]. The 

concentrations of acids present in music rosin are seen in Table 5-5. The RSD values 

for all concentrations were under 10%. The concentration of PIM in the music rosin 

was found to be almost twice that of the samples RA-RD. It is also higher than the 

expected 5-10% of the acid fraction [1]. The ABA and PAL concentrations found in 

music rosin were higher than those determined in sample RA, RB and RC while the 

DHA concentration fell within the range seen in the gum rosins. ABA makes up 51.2 

and 49.1% of the acid fraction of the music and cello rosin while it is generally 

reported to make up 10-20% of the acids with NEO [1]. As seen in the gum rosin 

samples, the percentage of the acid fraction comprised of PAL is lower than the 20% 

expected [1]. The ISO and 7OXO concentrations were greatly reduced, in the case of 

7OXO to 1 mg L
-1

 and less. At 20 mg L
-1

, the ISO concentration is at least half that 

found in the natural rosins. The acid concentration ratios are shown in Table 5-6. 

 

Table 5-5 Average concentrations and standard deviations for music and cello rosin 

samples, n=3 

 Music rosin Cello rosin 

Acid Conc. 

mg L
-1

 

SD Migration 

time RSD 

(%) 

% acid 

fraction 

Conc. 

mg L
-1

 

SD Migration 

time RSD 

(%) 

% acid 

fraction 

PIM 45.3 4.4 0.5 12.5 56.3 3.2 0.4 11.7 

NEO 21.9 0.3 0.5 6.1 37.5 1.4 0.7 7.8 

LVO 9.4 0.9 0.6 2.6 6.1 0.2 0.9 1.3 

SAN 10.5 1 0.6 2.9 11.4 0.5 0.8 2.4 

PAL 28.5 0.5 0.8 7.9 53.4 2 0.9 11.1 

DHA 40.4 1.2 0.8 11.1 52.3 2.3 0.8 10.9 

ISO 20.0 0.6 0.9 5.5 26.2 1.5 1.0 5.5 

ABA 185.9 5 1.0 51.2 235.9 9.9 1.4 49.1 

7OXO 0.9 0.1 1.6 0.2 1.0 0.2 0.8 0.2 
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Figure 5-8 Repeat electropherograms a-e of music rosin sample analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s 

injection times. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 20 mM 

tris buffer pH 9, detection at 200 nm. Numbers indicate (1) 7OXO, (2) DHA, (3) NEO, 

(4) ABA, (5) PAL, (6) LVO, (7) SAN, (8) ISO and (9) PIM. 

 

The reproducibility of the method when applied to the music rosin sample is seen in 

Figure 5-8 with the migration time RSD values in Table 5-5 remaining under 2%. 
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5.3.1.2.2 Cello rosin 

The cello rosin was an orange block of ‘Hidersine 3C Cello rosin’ (Table 5-1).  

 

 

Figure 5-9 Electropherograms of 0.1% w/v cello rosin sample analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s 

injection time. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 20 mM 

tris buffer pH 9. Wavelengths are (a) 200 nm, (b) 214, (c) 240 nm, (d) 265 nm and (e) 

310 nm. Numbers indicate (1) 7OXO, (2) DHA, (3) NEO, (4) ABA, (5) PAL, (6) LVO, 

(7) SAN, (8) ISO and (9) PIM. 

 

Again, it is clear from Figure 5-9 that the cello rosin is a natural gum rosin. The 

concentrations of acids determined are seen in Table 5-5. LVO and SAN are 

identified unlike in the gum rosin samples RA-RD, with a 35% lower LVO and a 

8.6% higher SAN concentration compared to that of the music rosin. The cello rosin 

was found to contain the highest concentrations of PIM, PAL and DHA at 56.3, 53.4 

and 52.3 mg L
-1

. The NEO and ABA concentrations are equivalent to those of 

sample RD, a crystallising rosin. As with the music rosin, this could suggest a 
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tendency of the cello rosin to crystallise. The concentrations of ISO is 31% higher 

than in the music rosin, but still considerably lower than the concentrations 

determined in the natural gum rosins.  

 

 

Figure 5-10 Repeat electropherograms a-e of cello rosin sample analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s 

injection times. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 20 mM 

tris buffer pH 9, detection at 200 nm. Numbers indicate (1) 7OXO, (2) DHA, (3) NEO, 

(4) ABA, (5) PAL, (6) LVO, (7) SAN, (8) ISO and (9) PIM. 

 

The reproducibility of the method when applied to the cello rosin sample is seen in 

Figure 5-10 with the RSD values in Table 5-5 remaining <2%. 
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Figure 5-11 Acid concentration plots for music and cello rosin samples 

 

The bar chart in Figure 5-11 also illustrates the differences in acid concentrations in 

the music and cello rosin. The main composition differences of the samples are the 

higher concentrations of PIM, NEO, PAL and ABA in the cello rosin samples. Only 

LVO is present in higher amounts in the music rosin sample. 

The acid concentration ratios of the music and cello rosin samples (Table 5-6) are 

similar to the gum rosin samples (Table 5-4), with the main differences seen in the 

ratios containing 7OXO. The ABA:LVO ratio shows the higher ABA and lower 

LVO concentration of the cello rosin. The lower LVO concentration in the cello 

rosin is reflected in the LVO:PAL, NEO:LVO, DHA:LVO and PIM:LVO which are 

double for the cello rosin sample. The ABA:NEO ratios are higher than those of 

rosin samples RC and RD, the music rosin in particular at 8.5:1. 

The ABA:DHA ratios of the music and cello rosin are higher for all except sample 

RD, which was the only gum rosin found to contain higher concentrations of ABA 

than the music and cello rosins. Many of the acid concentration ratios of the music 

and cello rosins are similar to those of rosin samples RC and RD. The DHA:PIM and 

ABA:PAL of the music and cello rosins and the PIM:PAL ratios of the cello rosin 

are all close to the acid ratio values of sample RD. The ABA:PIM, DHA:PAL and 
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PAL:NEO ratios of the music and cello rosins, and the DHA:NEO ratio of the music 

rosin are all close to the acid ratio values of sample RC. These similarities suggest 

that the music and cello rosins may share a source with rosin samples RC and RD, 

both crystallising rosin samples. 

 

Table 5-6 Acid concentration ratios of music rosin samples 

  Music rosin Cello rosin  Music 

rosin 

Cello rosin 

ABA:DHA 4.6:1 4.5:1 DHA:NEO 1.9:1 1.4:1 

DHA:ISO 2:1 2:1 ISO:NEO 1:1.1 1:1.4 

DHA:PIM 1:1.1 1:1.1 ABA:LVO 19.8:1 38.7:1 

ABA:ISO 9.3:1 9:1 PIM:LVO 4.8:1 9.2:1 

ABA:PIM 4.1:1 4.2:1 PIM:SAN 4.3:1 4.9:1 

ISO:PIM 1:2.3 1:2.2 ABA:SAN 17.7:1 20.7:1 

ABA:PAL 6.5:1 4.4:1 NEO:LVO 2.3:1 6.2:1 

ABA:7OXO 206:1 235:1 NEO:SAN 2.1:1 3.3:1 

DHA:PAL 1.4:1 1:1 DHA:LVO 4.3:1 8.6:1 

DHA:7OXO 44.9:1 52.3:1 DHA:SAN 3.9:1 4.6:1 

ISO:PAL 1:1.4 1:2 LVO:SAN 1:1.1 1:1.9 

ISO:7OXO 22.2:1 26.2:1 LVO:PAL 1:3 1:8.8 

PIM:PAL 1.6:1 1.1:1 LVO:ISO 1:2.1 1:4.3 

PIM:7OXO 50.3:1 56.3:1 LVO:7OXO 10.4:1 6.1:1 

PIM:NEO 2.1:1 1.5:1 ISO:SAN 1.9:1 2.3:1 

PAL:7OXO  31.7:1 53.4:1 SAN:PAL 1:2.7 1:4.7 

7OXO:NEO 1:24.3 1:37.5 SAN:7OXO 11.7:1 11.4:1 

PAL:NEO 1.3:1 1.4:1 ABA:NEO 8.5:1 6.3:1 
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Figure 5-12 Bar chart of acid concentration ratios of music and cello rosin samples 

 

The acid concentration ratios from Table 5-6 are plotted in Figure 5-12. The majority 

of ratios are the same magnitude as those of the gum rosin samples (Figure 5-5) with 

the ABA:7OXO ratios double those of sample RD.  
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Figure 5-13 Bar chart of some of the acid concentration ratios of music and cello rosin 

samples 

 

Some of the smaller ratios from Figure 5-12 are highlighted in Figure 5-13, showing 

that the cello and music rosin have several ratios of equal or very close values. While 

the cello rosin was found to contain higher concentrations of ABA and DHA than the 

music rosin sample, the ABA:DHA ratio was higher for the music sample. 
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5.3.1.3 Modified gum rosins 

 

In many industrial applications the use of gum rosin is desirable as they are a lot less 

viscous than modified rosins. However, in other cases the modification of gum rosin 

can improve a desired aspect of the rosin which would make it more suitable for that 

particular purpose. Disproportionated rosin is reported to have good resistance to 

oxidation, low brittleness, lighter colour and high thermal stability as much of the 

ABA is converted to DHA [1, 30, 34]. It is used in industries such as polymers 

where high DHA concentrations are required and the presence of ABA can be an 

inhibitor [13]. Polymerised rosins are prepared by dimerising the ABA [35]. They 

are reported to have a longer shelf-life and higher softening point and are used as 

additives in inks, coatings, rubbers and food additives [1]. They also have improved 

film-forming properties and so are being investigated for their use in drug delivery 

systems [168, 169]. Hydrogenation is shown to improve rosin colour and also 

decreases susceptibility to oxidation and as a result they are used in industries 

including adhesives and chewing gum [1]. 
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5.3.1.3.1 Acid modified hydrogenated rosin 

The acid modified hydrogenated rosin (A-mod) was a translucent solid. 

 

Figure 5-14 Electropherograms of 0.1% w/v acid modified rosin sample analysed in 

positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 

mbar 4 s injection times. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 

20 mM tris buffer pH 9. Wavelengths are (a) 200 nm, (b) 214, (c) 240 nm, (d) 265 nm 

and (e) 310 nm. Numbers indicate (2) DHA, (6) LVO and (9) PIM. 

 

As expected, no ABA peak was observed in the electropherogram for the A-mod 

rosin as hydrogenation is known to convert ABA to DHA and dihydroabietic acid or 

tetrahydroabietic acid [30] (Figure 5-14). The unidentified peaks which do not 

correspond to any of the resin acid standards are most likely those of the 

dihydroabietic or tetrahydroabietic acid of which standards could not be obtained. As 

seen in Table 5-7, the primary acid present is DHA at 131.3 mg L
-1

. PIM and LVO 

were also identified in smaller quantities. 
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Table 5-7 Average concentrations and standard deviations for modified rosin samples 

 A-mod Gresinox  RES155  

 Concentration  

(mg L
-1

) 

SD Concentration  

(mg L
-1

) 

SD Concentration  

(mg L
-1

) 

SD 

PIM 13.9 0.7 7.9 0.3 6.5 0.3 

LVO 20.2 1.9     

DHA 131.3 6.4 204.2 10.5 444.5 13.3 

 

The reproducibility of the method when applied to the A-mod rosin sample is seen in 

Figure 5-15. The RSD (%) values were 1.5, 1.7 and 2.3 for PIM, LVO and DHA 

respectively, n=5. 

 

 

 

Figure 5-15 Repeat electropherograms a-e of A-mod rosin sample analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s 

injection times. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 20 mM 

tris buffer pH 9, detection at 200 nm. Numbers indicate (2) DHA, (6) LVO and (9) 

PIM. 
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5.3.1.3.2 Disproportionated rosin Gresinox 

Gresinox, a disproportionated rosin, was a pale yellow solid. 

 

 

Figure 5-16 Electropherograms of 0.1% w/v Gresinox disproportionated rosin sample 

analysed in positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 

25°C, 50 mbar 4 s injection times,. Buffer consists of 15% MeOH 5 mM HPγCD 10 

mM SBCD in 20 mM tris buffer pH 9. Wavelengths are (a) 200 nm, (b) 214, (c) 240 nm, 

(d) 265 nm and (e) 310 nm. Numbers indicate (2) DHA and (9) PIM. 

 

Disproportionation favours the most thermally stable isomers, in this case DHA. As 

expected, all ABA in this rosin sample was converted to DHA (see Figure 5-16). 

This is seen by the high DHA concentration, 204.2 mg L
-1

 and the absence of ABA. 

A small amount of PIM is also present (Table 5-7). 
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Figure 5-17 Repeat electropherograms a-e of a gresinox rosin sample analysed in 

positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 

mbar 4 s injection times. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 

20 mM tris buffer pH 9, detection at 200 nm. Numbers indicate (2) DHA and (9) PIM. 

 

The reproducibility of the method when applied to the gresinox sample is seen in 

Figure 5-17. The RSD (%) values are 1.1 and 2.1% for PIM and DHA, n=5. 
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5.3.1.3.3 Disproportionated Rosin RES155 

RES155 is another batch of disproportionated rosin, modified in the same way as 

Gresinox and with the same CAS number. It was a slightly more translucent yellow 

than the Gresinox sample. 

 

 

Figure 5-18 Electropherograms of 0.1% w/v disproportionated rosin sample analysed 

in positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 

mbar 4 s injection times. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 

20 mM tris buffer pH 9. Wavelengths are (a) 200 nm, (b) 214, (c) 240 nm, (d) 265 nm 

and (e) 310 nm. Numbers indicate (2) DHA and (9) PIM. 

 

Consistent with Gresinox, DHA is the main acid present (see Figure 5-18). Although 

RES155 was modified in the same manner as the Gresinox sample, there are still 

differences in the concentrations of the acids found to be present. Its concentration in 

RES155 is 444.5 mg L
-1

 (see Table 5-7), more than double the amount found in 

Gresinox. This highlights the need for a rapid screening method to identify and 

quantify the acids present in rosin batches. For that particular purpose, this CE 

method could be suitable. 
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When these findings were presented to Henkel, it was remarked that RES155 was 

not suitable for use in some products because of its poor solubility. Moreover, 

Gresinox – which is modified in the same manner as RES155 – was much more 

soluble in the same solvents and its use in products was less restricted. Gresinox has 

less than half the amount of DHA present in RES155, indicating that it may be the 

presence of higher DHA concentrations that reduces the solubility of the rosin 

sample. 

 

 

Figure 5-19 Repeat electropherograms a-e of RES155 rosin sample analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s 

injection times. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 20 mM 

tris buffer pH 9, detection at 200 nm. (2) = DHA. 

 

The RSD values for the migration times of PIM and DHA in the RES155 samples 

were found to be 3.7% and 3.5%, n=5 (see Figure 5-19). 
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5.3.1.3.4 Dimerised rosins 

Three dimerised rosins, poly-pale (partially dimerised), resine k10 and dymerex 

(fully-dimerised) were analysed. As seen in Table 5-2, they all have the same CAS 

number as the polymerised rosins even though poly-pale is considered only partially 

dimerised, and has a different acid value and softening point to the two fully-

dimerised rosins. Poly-pale was an orange colour while dymerex and resine K10 

were pale amber. 

 

Figure 5-20 Electropherograms of 0.1% w/v (a) resine K10 fully-dimerised rosin 

sample and (b) partially dimerised poly-pale rosin sample analysed in positive polarity, 

20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s injection 

times. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 20 mM tris buffer 

pH 9. Detection at 200 nm. Numbers indicate (1) 7OXO, (2) DHA, (4) ABA, (8) ISO 

and (9) PIM. 

 

The different in compositions in the fully and partially dimerised rosins is evident in 

Figure 5-20. Dymerex and Resine K10, the fully-dimerised rosins, consist mainly of 

DHA and ABA. Resine K10 was also found to contain 0.7 mg L
-1

 7OXO. Dymerex 

contains more DHA than ABA while the opposite is true for Resine K10. The 

decrease in DHA is less than 10%, and it may have been converted to 7OXO, an 

oxidation product of DHA. The fully-dimerised rosins have similar 
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electropherograms to the polymerised YT201 rosin batches as expected (see Figure 

5-24), and this is reflected in the comparable DHA concentrations. Poly-pale, a 

partially-dimerised rosin, was found to also contain PIM and ISO, and a higher 

7OXO concentration (see Table 5-8). No NEO, PAL or LVO was expected to be 

detected, as the modification process would have caused them to isomerise to ABA. 

Table 5-8 Average concentration and standard deviation values for the dimerised rosin 

samples 

 Poly-pale  Dymerex  Resine K10 

 Concentration 

(mg L
-1

) 

SD Concentration 

(mg L
-1

) 

SD Concentration 

(mg L
-1

) 

SD 

PIM 15.5 0.3     

DHA 104.3 6.3 55.7 5.4 50.5 1.1 

ISO 28.7 0.1     

ABA 23.5 1.4 27.5 2.8 94.4 2.6 

7OXO 6.9 0.1   0.7 0.3 

 

The reproducibility of the method when applied to the polypale samples as seen in 

Figure 5-21 is shown by the migration time RSD values in Table 5-11. 

 

Figure 5-21 Repeat electropherograms a-e of polypale rosin sample analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s 

injection times. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 20 mM 

tris buffer pH 9, detection at 200 nm. Numbers indicate (1) 7OXO, (2) DHA, (4) ABA 

and (9) PIM. 

9 10 11 12 13 14 15 16 17

0

100

200

m
A

U

Time (min)

(a)

(b)

(c)

(d)

(e)

2

1
49



 

203 

 

 

Figure 5-22 Acid concentration plots for modified rosin samples 

 

A modified rosin is one which has been chemically modified by any of a variety of 

methods in order to improve a certain desirable feature such as resistance to 

oxidation. NEO, PAL and SAN were not found to be present in any of the modified 

rosin samples. The bar chart in Figure 5-22 illustrates the main composition 

differences of the samples. DHA was found to be present in the greatest 

concentration in RES155 sample. All of the modified rosins were found to have 

higher DHA concentrations than ABA except for Resine K10, while all except one 

gum rosin had more ABA than DHA (seen in Figure 5-2). Only the A-mod sample 

was found to contain LVO while only polypale was found to contain ISO. Both 

disproportionated rosins had comparable PIM concentrations while RES155 had a 

much higher DHA concentration. 

All the batches of the polymerised rosin, and the two fully-dimerised rosins were 

found to have comparable DHA concentrations, while the partially-dimerised rosin 

poly-pale contained smaller quantities of ISO and PIM. 
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The ABA:ISO and ABA:PIM ratios of polypale are similar to those of rosin samples 

RA and RB, while the ISO:PIM ratio is equivalent to that of sample RC. It is 

possible that the polypale rosin was sourced from the same region as samples RA 

and RB before modification. 

 

Table 5-9 Acid concentration ratios of modified rosin samples 

 Acid 

modified 

Gresinox RES155 Polypale Dymerex Resine 

K10 

ABA:DHA    1:4.4 1:2 1.9:1 

DHA:ISO    3.6:1   

DHA:PIM 9.5:1 25.9:1 68.4:1 6.7:1   

ABA:ISO    1:1.2   

ABA:PIM    1.5:1   

ISO:7OXO    4.2:1   

ISO:PIM    1.9:1   

PIM:7OXO    2.3:1   

ABA:7OXO    3.4:1  134.9:1 

PIM:LVO 1:1.5      

DHA:LVO 6.5:1      

 

The DHA:PIM ratios of the modified rosins illuminate their high DHA concentration 

relative to all other acids (see Table 5-9). 
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Figure 5-23 Bar chart of acid concentration ratios of modified rosin samples 

 

The acid concentration ratios from Table 5-9 are plotted in Figure 5-23. The 

ABA:7OXO ratio is greater than that of gum rosin sample RD but lower than those 

of the music and cello rosins. Resine K10 and Dymerex are modified in the same 

way however Dymerex was not found to contain 7OXO. The DHA:PIM ratios of the 

acid-modified hydrogenated, disproportionated rosins and polypale sample are 

higher than those of the gum rosin samples with that of the RES155 sample the 

highest seen out of all the rosin and resin samples. The acid-modified hydrogenated 

rosin was the only modified rosin samples found to contain LVO. The DHA:ISO 

ratio of the polypale sample is also higher than those of the gum rosin samples. 
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5.3.1.3.5 Polymerised rosin 

Six different batches (A-F) of polymerised rosin YT201 were analysed. The samples 

were a pale amber colour. Some were reported to have failed test specifications for 

product use. Test specifications included an acid value of 130-160 mg KOH g
-1

 and a 

softening point of 95-105°C. The individual batches values are seen in Table 5-2. 

The acid number is described as the amount of milligrams of KOH needed to 

neutralise free acids in a gram of chemical substance [170]. The acid number of a 

rosin indicates its acid content by measuring the carboxylic acid groups present. It is 

determined by ASTM Method D465. Rosins with high acid numbers have been 

noted as more inclined to be oxidised. While rosins do not melt, they become a 

viscous liquid when heated and a certain degree of softness as described in the 

ASTM ring and ball method gives their softening point. This can be important in 

selecting a rosin of a certain level of viscosity [1]. 

 

Table 5-10 Average concentrations, standard deviations and ABA:DHA concentration 

ratios for YT201 batches, n=3 

YT201 

batch 

DHA conc. 

(mg L
-1

) 

SD ABA conc. 

(mg L
-1

) 

SD ABA:DHA 

conc. ratio 

A 63.8 0.4 74.8 0.8 1.2:1 

B 57.5 3.4 62.5 3.4 1.1:1 

C 49.9 2.9 64.9 2.2 1.3:1 

D 47.2 4.1 113.5 12.9 2.4:1 

E 67.4 0.6 72.1 1.2 1.1:1 

F 50.2 0.2 120.9 1.6 2.4:1 
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Figure 5-24 Electropherograms of 0.1% w/v YT201C polymerised rosin sample 

analysed in positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 

25°C, 50 mbar 4 s injection times. Buffer consists of 15% MeOH 5 mM HPγCD 10 mM 

SBCD in 20 mM tris buffer pH 9. Wavelengths are (a) 200 nm, (b) 214, (c) 240 nm, (d) 

265 nm and (e) 310 nm. Numbers indicate (2) DHA and (4) ABA. 

 

Both DHA and ABA were found to be present in the polymerised rosin samples (the 

electropherogram of YT201C is seen in Figure 5-24). It is possible that the ABA 

peak may correspond to abietic acid dimer products resulting from the 

polymerisation process [35]. The electropherograms of all six batches are seen in 

Figure 5-25. The RSD of the DHA concentration in the YT201 batches was 13.5% 

while the ABA concentration varied by 27.6%, n=3. YT201B and YT201C failed the 

acid value test specification, and they were found to have the lowest ABA 

concentrations. YT201E also has a low ABA concentration and it was just above the 

lower specification limit of the acid value test. YT201D and YT201F had the highest 

ABA concentration, 113.5 and 120.9 mg L
-1

 (see Table 5-10). 
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The reproducibility of the method when applied to the YT201 polymerised rosin 

sample batches is shown by the migration time RSD values in Table 5-11. 

 

 

Figure 5-25 YT201 batches A-F analysed in positive polarity, 20 kV, capillary 58 cm 

(49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s injection times, detection at 200 nm. 

Buffer consists of 15% MeOH 5 mM HPγCD 10 mM SBCD in 20 mM tris buffer pH 9. 

 

Table 5-11 RSD values for the acids present in the dimerised rosin samples and YT201 

batches A-F, n=5 

RSD (%) PIM DHA ISO ABA 7OXO 

Poly-pale 0.7 1.2 0.9 1.1 1.1 

Dymerex  5.7  5.7  

Resine K10  2.4  2.8 2.7 

YT201A  2.3  2.5  

YT201B  4.3  4.9  

YT201C  2.8  3.0  

YT201D  3.4  3.5  

YT201E  7.1  7.3  

YT201F  3.9  4.4  
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Figure 5-26 Acid concentration plots for the polymerised YT201 rosin samples 

 

The bar chart in Figure 5-26 illustrates the differences in composition of the YT201 

batches. All have higher concentrations of ABA than DHA. The ABA:DHA ratio of 

the YT201 batches varies from 2.4-1.1 (see Table 5-10). This is within the range of 

the ABA:DHA ratios of the gum rosin samples, however, no other similarities are 

observed between the YT201 rosin samples and other rosins. 
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5.3.3 Resin samples 

 

Several resin samples were analysed using both the acid and terpene methods 

described in chapters two and three, demonstrating the potential of the separation 

methods for other natural products. The resin samples and sources are listed in Table 

5-1.  

5.3.3.1 Turpentine oil 

 

Turpentine is the volatile part of resin, and consists of hydrocarbons, terpene 

alcohols and ethers. The main components are reported to be α-pinene and β-pinene 

(30-40%) and 3-carene (~50%) [1]. Other analytes of interest known to be found in 

turpentine include 4-allylanisole (in very small amounts), camphene, terpineol, and 

longifolene.   A sample of turpentine oil, a clear liquid, was analysed using both 

the acid and terpene CE separation methods. 

 

Figure 5-27 Electropherograms of a 0.1% v/v turpentine oil analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, detection at 200 

nm. Sample prepared in MeOH, 50 mbar 4 s injection times, 15% MeOH 5 mM 

HPγCD 10 mM SBCD 20 mM tris buffer at pH 9.  
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When analysed with the acid method (see Figure 5-27), peak splitting is observed in 

the peaks at 15.9 and 17.8 min due to the sample being prepared in 100% MeOH as 

described in chapter 3. 

 

 

Figure 5-28 Electropherograms of a 0.1% v/v turpentine oil analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, detection at 200 

nm., 5 mbar 20 s injection times, buffer consists of 5 mM β-CD 10 mM SDS 50 mM tris 

pH 8. 

 

When analysed by the terpene method as shown in Figure 5-28, β-pinene coelutes at 

9.8 min while 3-Carene elutes in the main peak at 11 min.  
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5.3.3.2 Venetian turpentine 

 

Venetian turpentine is derived from larch trees (larix decidua). Its composition is 

very similar to that of rosin, with the exception of the presence of larixol and larixyl 

acetate. It has also been known to contain α-pinene, β-pinene, 3-carene, terpineol and 

longifolene [57, 171]. A sample of venetian turpentine, a viscous amber liquid, was 

analysed using both the acid and terpene CE separation methods. 

 

5.3.3.2.1 Acid method 

 

 

Figure 5-29 Electropherograms of a 0.1% v/v venetian turpentine in methanol, 

analysed in positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 

25°C, 50 mbar 4 s injection times, 15% MeOH 5 mM HPγCD 10 mM SBCD 20 mM 

tris buffer at pH 9. Wavelengths are (a) 200 nm, (b) 214, (c) 240 nm, (d) 265 nm and (e) 

310 nm. Numbers indicate (2) DHA, (3) NEO, (4) ABA, (5) PAL, (7) SAN and (8) ISO. 
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Figure 5-29 shows the venetian turpentine when analysed by the acid method. NEO, 

SAN, PAL, DHA, ISO and ABA were detected, and their concentrations shown in 

Table 5-12. Unlike the gum rosin samples, DHA was the acid present in the lowest 

concentration. The PAL concentration is over four times higher than the highest 

concentration found in a gum rosin sample. The ISO and NEO concentrations are 

comparable to that of the rosin samples while the ABA concentration is comparable 

to that of the crystallising gum rosins. It is likely that the unidentified peaks at 18.2 

and 20.4 min correspond to larixol and larixyl acetate which are known to be present 

in venetian turpentine [55, 59, 172]. 

In the analysis of old painting and varnish samples, DHA and 7OXO are frequently 

used as markers for venetian turpentine and little ABA is present as it has been 

converted to DHA and 7OXO [165]. However, little DHA and no 7OXO were 

expected here as a fresh sample of venetian turpentine was analysed. 

 

Table 5-12 Average concentrations and standard deviations for acids present in 

venetian turpentine, n=3 

 Venetian turpentine Balsam resin 

 Concentration 

(mg L
-1

) 

SD RSD (%) Concentration 

(mg L
-1

) 

SD RSD 

(%) 

NEO 38.2 1.5 3.9    

SAN 40.5 1.5 3.8    

PAL 174.6 8.7 4.9    

DHA 19.5 1.2 6.1 53.5 0.2 0.4 

ISO 77.1 2.9 3.8 43.8 6.1 13 

ABA 225.3 13.7 6.1 6.1 0.5 7.5 

PIM    27.4 0.9 3.6 

7OXO    14.6 0.9 6.8 

 

The reproducibility of the method when applied to the venetian turpentine sample is 

shown by the RSD values in Table 5-12 which are <5.2%. 

The resin acids present in various resins used in artwork have been analysed by GC-

MS. While the analysis time for the GC-MS method was shorter than this CE 

method (13 min compared to 22 min), it required the derivatisation of both 

carboxylic groups to ethyl esters and the hydroxyl groups to trimethylsilyl ethers. In 

addition, the LVO and PAL ethyl esters could not be separated [53].  
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5.3.3.2.2 Terpene method 

 

Figure 5-30 Electropherogram of a 0.1% v/v venetian turpentine in 1:5 MeOH:buffer, 

analysed in positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 

25°C, 5 mbar 20 s injection times, 5 mM β-CD 10 mM SDS 50 mM tris pH 8, detection 

at 200 nm. Numbers indicate (1) camphene, (2) β-pinene and (3) 3-carene. 

 

As seen in Figure 5-30, the electropherogram of venetian turpentine is very different 

when analysed by the terpene method. The acid peaks now elute in the 6-8.5 min 

range. Camphene, β-pinene and 3-carene were identified and again the mass of peaks 

at 15-16 min is likely to include larixol and larixyl acetate [55, 59, 172]. The 

concentration of 3-carene was found to be 406.9 mg L
-1

, higher than the amounts of 

acids present. The peaks at 18.2 and 20.4 min in Figure 5-29 may also correspond to 

3-carene. Camphene and β-pinene were found to be present in smaller amounts, 

153.1 and 181.7 mg L
-1

. 
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5.3.3.3 Balsam resin 

 

A sample of balsam resin, an amber solid, was analysed using both the acid and 

terpene CE separation methods from chapters 2 and 3. 

5.3.3.3.1 Acid method 

 

Figure 5-31 Electropherograms of a 0.1% v/v balsam resin in methanol, analysed in 

positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 

mbar 4 s injection times, 15% MeOH 5 mM HPγCD 10 mM SBCD 20 mM tris buffer 

at pH 9. Wavelengths are (a) 200 nm, (b) 214, (c) 240 nm, (d) 265 nm and (e) 310 nm. 

Numbers indicate (1) 7OXO, (2) DHA, (4) ABA, (8) ISO and (9) PIM. 

 

The electropherogram in Figure 5-31 shows the balsam resin analysed by the acid 

method. PIM, DHA, ISO, ABA and 7OXO were found to be present, while there are 

many other peaks not seen in the rosin electropherograms. As shown in Table 5-12, 

the balsam resin sample was found to have higher a DHA concentration than the 

venetian turpentine sample, and contained PIM and 7OXO where none was found in 

the other resin sample. A lower ISO concentration and only 6.1 mg L
-1

 of ABA were 

found in balsam resin.   

9 10 11 12 13 14 15 16 17

0

10

20

30

40

50

m
A

U

Time (min)

(a)

(b)

(c)

(d)

(e)

9

2

1
8

4



 

216 

 

5.3.3.3.2 Terpene method 

 

Figure 5-32 Electropherogram of 0.1% v/v balsam resin in 1:5 MeOH:buffer in 

positive polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 5 mbar 

20 s injection times, 5 mM β-CD 10 mM SDS 50 mM tris pH 8, detection at 200 nm. 

Numbers indicate (1) 7OXO, (2) DHA, (4) ABA, (8) ISO and (9) PIM. 

 

Figure 5-32 shows the balsam resin sample analysed by the terpene method. This 

confirms that many of the balsam resin peaks correspond to the resin acids.  

The acid concentration ratios of venetian turpentine and balsam resin are shown in 

Table 5-13. The ABA:DHA ratio of venetian turpentine is higher than all of the rosin 

samples. It was found to contain 225.3 mg L
-1

 ABA, which is less than that found in 

sample RD but the ABA:DHA ratio for RD was 7.2:1. The DHA:ISO also showed a 

higher ratio of ISO than found in the rosin samples. Again the ISO concentration is 

close to that found in sample RD but the DHA concentration found in venetian 

turpentine was lower. The ABA:ISO ratio is similar to that of sample RD while the 

ABA:PAL and DHA:PAL are similar to that of RA despite the PAL concentration in 

venetian turpentine being more than double that of concentrations in all rosin 
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samples. The ABA:NEO and ISO:NEO ratios are similar to those of samples RC and 

RD. There are not a sufficient amount of similar acid concentration ratios to link the 

venetian turpentine to a particular rosin sample and possible source.  

The low ABA concentration found in balsam resin is seen in its acid ratios. While 

the DHA:PIM ratio is similar to that of good rosin RA, as with the venetian 

turpentine sample there are no obvious links between the resin sample and any of the 

rosins. 

 

Table 5-13 Acid concentration ratios of resin samples 

  Venetian 

turpentine 

Balsam 

resin 

  Venetian 

turpentin

e 

Balsa

m 

resin 

ABA:DHA 11.6:1 1:8.8 NEO:PAL 1:4.6  

DHA:ISO 1:4 1.2:1 ABA:NEO 5.9:1  

DHA:PIM  1.9:1 DHA:NEO 1:1.9  

ABA:ISO 2.9:1 1:7.2 NEO:ISO 1:2  

ABA:PIM  1:4.5 ABA:SAN 5.6:1  

ISO:PIM  1.6:1 NEO:SAN 1:1  

ABA:PAL 1.3:1  DHA:SAN 1:2.1  

DHA:PAL 1:9  ISO:SAN 1.9:1  

DHA:7OX

O 

 3.7:1 SAN:PAL 1:4.3  

ISO:PAL 1:2.3  PIM:7OX

O 

 1.9:1 

ISO:7OXO  3:1    
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Figure 5-33 Bar chart for acid concentration ratios of resin samples 

 

The acid concentration ratios from Table 5-13 are plotted in Figure 5-33. The 

venetian turpentine has a higher ABA:DHA ratio than all of the rosin samples. The 

DHA:7OXO ratio of balsam resin and the ISO:PAL, DHA:NEO, DHA:SAN, 

NEO:SAN, ABA:SAN and NEO:PAL ratios of the venetian turpentine are the 

smallest of all the rosin and resin samples. The ISO:7OXO ratio of balsam resin is 

close to the that of the polypale sample. The ABA:NEO ratio is similar to those of 

rosin samples RC and RD. The ISO:SAN ratio of the venetian turpentine is equal to 

that of the music rosin while the SAN:PAL ratio is equal to that of the cello rosin.  
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5.3.4 Rosin crystallisation 

 

The acetone test was carried out on all of the modified and unmodified rosin samples 

to investigate which samples crystallised (see section 5.2.5 for the method). Non-

crystallising rosin should give an amber-clear liquid that can be agitated without 

crystals forming in a time limit of 4 h. A rosin batch which forms crystals under the 

allotted time is deemed a fail and is not used in production.  The speed and amount 

of crystals which form should be noted and are used to indicate the extent of the 

rosins tendency to crystallise.  The resulting precipitates were also analysed by CE.  

 

5.3.4.1 Natural gum rosins 

 

The non-crystallising gum rosin samples RA and RB gave amber-clear liquids that 

formed no crystals within the 4 h test period. The samples were left in their 

containers and two months later there was still no evidence of crystal formation.  

Both crystallising rosin samples also gave amber-clear liquids when dissolved in 

acetone. However, 15 min short of the 4 h test limit small crystals began to form in 

sample RD. Sample RC did not form any crystals in the 4 h test period. Over the 

next 24 h, crystals began to form in sample RC and continued to form in sample RD. 

25% (by weight) of sample RC was crystallised while 14% (by weight) of sample 

RD. Technically, sample RC would have passed the acetone suitability test and been 

approved for use in products. This highlights a common issue for Henkel where 

unsuitable samples enter the production phase. This is significant as especially in this 

instance the sample which passed screening formed a greater percentage of crystals 

than the sample which failed. This test also confirmed that samples RA and RB were 

non-crystallising rosins and samples RC and RD were crystallising rosins. Over the 

following two months no change was observed. 
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5.3.4.2 Music and Cello rosins 

 

The music rosin gave a dark green liquid when dissolved in acetone which was 

expected as the block itself was dark green. After the 4 h test period there were no 

crystals seen, however, the following day tiny crystals were observed on the walls of 

the jar container. Over the following 24 h more crystals formed until the liquid was 

27% (by weight) crystallised. The cello rosin gave a dark orange liquid and tiny 

crystals were observed to form on the jar within the 4 h test period. Over the 

following 24 h the amount and size of the crystals in the cello rosin solution 

remained the same, however, within a week the cello rosin had formed more crystals 

than the music rosin solution. The cello crystals remained the same over the 

following two months while the music rosin crystals gradually increased until 90% 

of the solution was crystallised. 

 

5.3.4.3 Modified rosins 

 

The A-mod rosin gave a clear liquid while the polymerised and dimerised rosins 

gave amber solutions ranging from clear (dymerex) to dark amber (YT201 batches B 

and E). None of the modified rosins formed crystals within in the 4 h test period, and 

indeed the majority of modified samples showed no change two months later. This 

was expected as the purpose of modifying rosins is to prevent their crystallisation. 

However, after 5 months the A-mod rosin sample was observed to have formed 

crystals. On analysis it was found that the crystals composed mainly of DHA with 

the average concentration 214 mg L
-1

. This is unexpected and emphasises the need 

for a screening method for rosin samples as simply modifying the gum rosin does 

not guarantee the avoidance of crystallisation. 
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5.3.4.4 Analysis of precipitate by CE 

 

The precipitate was dissolved at 0.15% in MeOH and analysed using the acid CE 

method (Figure 5-34). In all cases it is clear from the electropherograms that the 

crystals consist mainly of acids, concentrations seen in Table 5-14. 7OXO and LVO 

were not found to be present in any of the crystal samples. 

 

 

Figure 5-34 Electropherograms of a 0.15% v/v bad rosin crystals, analysed in positive 

polarity, 20 kV, capillary 58 cm (49.5 cm to detector), 50 μm i.d., 25°C, 50 mbar 4 s 

injection times, 15% MeOH 5 mM HPγCD 10 mM SBCD 20 mM tris buffer at pH 9. 

Wavelengths are (a) 200 nm, (b) 214, (c) 240 nm, (d) 265 nm and (e) 310 nm. Numbers 

indicate (2) DHA, (3) NEO, (4) ABA, (5) PAL, (7) SAN, (8) ISO and (9) PIM. 
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Table 5-14 Average concentrations and standard deviations for rosin crystals, n=3 

 Sample RC 

crystals 

Sample RD 

crystals 

Music rosin 

crystals 

Cello rosin 

crystals 

Aci

d 

Conc.  

(mg L
-1

) 

SD Conc.  

(mg L
-

1
) 

SD Conc.  

(mg L
-1

) 

SD Conc.  

(mg L
-1

) 

SD 

PI

M 

27 2.9 24.8 0.4 52.2 1.1 40.4 1.2 

NE

O 

66.3 5.7 57.6 0.6 46.7 1.1 42.2 1.6 

SA

N 

13.1 1.4 13.9 1.7     

PA

L 

86.5 9.5 84.9 2.2 66.7 1.1 69.9 6.5 

DH

A 

38 4 45.1 1.2 60.8 0.9 46.9 2.9 

ISO 144.3 14.

9 

163.4 7.4 44.2 2.8 29.7 1.7 

AB

A 

749.1 91.

6 

767.3 11.5 585.1 7.9 265.3 18.3 

 

The concentrations of the acids in the crystals formed by the two crystallising rosins 

are quite consistent. The biggest difference is the concentration of DHA and ISO 

which differ by 18.7% and 13.2% respectively between samples. The high ABA 

concentrations indicate that it is this acid with the highest tendency to crystallise. 

The lack of LVO indicates that it has isomerised to ABA. 
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Figure 5-35 Electropherograms of a 0.15% v/v (a) cello rosin crystals and (b) music 

rosin crystals, analysed in positive polarity, 20 kV, capillary 58 cm (49.5 cm to 

detector), 50 μm i.d., 25°C, 50 mbar 4 s injection times, 15% MeOH 5 mM HPγCD 10 

mM SBCD 20 mM tris buffer at pH 9. Detection at 200 nm. Numbers indicate (2) DHA, 

(3) NEO, (4) ABA, (5) PAL, (8) ISO and (9) PIM. 

 

The crystals that precipitated from the music and cello rosins were analysed and the 

resultant electropherogram is in Figure 5-35. There are several differences in the 

crystal composition of these samples. As with samples RC and RD no LVO or 

7OXO was found present. In addition, SAN was not detected in either sample. 

Compared to samples RC and RD, higher PIM and DHA concentrations were 

determined (see Table 5-14). Lower NEO and PAL concentrations were found in the 

music and cello rosin crystals. ISO and ABA showed the greatest decreases in 

concentration. All crystals showed ABA as the acid present in highest 

concentrations. The variation of DHA, ISO and ABA concentrations between cello 

and music is notable, with the music rosin crystals containing 55% more ABA. This 

suggests that either the cello and music rosins come from two different sources, or 

the supplier of rosin blocks for musical instruments modified it slightly, influencing 

its composition. 
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Figure 5-36 Acid plots of the precipitate from crystallising rosin samples 

 

As illustrated in Figure 5-36, ABA is the majority of the precipitate formed when 

rosin samples crystallise. The music and cello rosin precipitates contain significantly 

less ABA and ISO than the gum rosin sample precipitates. No LVO or SAN was 

found in the music and cello rosin precipitates, while they contained higher 

concentrations of PIM and DHA. 
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5.4 Conclusions   

 

A range of rosin and resin samples were analysed using the novel acid and terpene 

separation methods developed in chapters two, described in section 2.3.4.4 and 

chapter 3, described in section 3.3.4.5. The acids present were identified and 

quantified, and some differences and similarities of crystallising and non-

crystallising rosin samples were noted. 

Two crystallising and two non-crystallising rosin samples were analysed and several 

differences in their composition were noted. SAN and LVO were not detected in any 

of the gum rosin samples while NEO was only seen in the crystallising samples. In 

all gum rosins ISO and ABA were present in highest concentrations, with up to five 

times more ABA present in the crystallising samples. Some variation in acid 

concentration between similar samples was also observed. The crystallising samples 

contained slightly higher PIM and PAL concentrations, while the DHA 

concentration had decreased. The presence of NEO and elevated concentrations of 

ABA could be linked to a rosins tendency to crystallise. 

Two commercial rosins sold for use with string instruments were analysed and found 

to be gum rosins. These rosins were found to contain small amounts of LVO and 

SAN. They also both contained NEO, indicating that they could be crystallising 

rosins. The ABA concentrations were also closer to those of the crystallising gum 

rosins.  

Modified rosins including hydrogenated, disproportionated and polymerised rosin 

were also analysed using the acid separation method. In every case DHA was found 

to be the primary component as expected. The highest DHA concentrations were 

seen in the disproportionated rosin samples with smaller amounts of PIM present. 

LVO was also detected in the acid modified hydrogenated rosin. Varying 

concentrations of DHA and ABA were determined in different batches of one 

polymerised rosin. The difference in the composition of a partially-dimerised and a 

fully-dimerised rosin were highlighted by the presence of PIM, ISO and 7OXO, and 

higher DHA concentrations in a poly-pale rosin sample.  
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The acid concentration ratios of the music and cello rosin show many similarities to 

those of rosin samples RC and RD, the crystallising rosin samples. This suggests that 

they were sourced from a similar region, and may indicate a tendency of the music 

and cello rosins to crystallise. The acid concentration ratios of venetian turpentine do 

not indicate a common source with any of the gum rosin samples. Its ABA:DHA 

ratio was found to be higher than that off all the rosin samples. The high DHA 

concentration relative to the other acid in the modified rosin samples was highlighted 

in their acid concentration ratios. Some similarities between the ratios of the 

polypale sample and gum rosin samples RA and RB suggest it may have been 

sourced from the same region before modification. 

No resin acids were detected in turpentine oil, while analysis using the terpene 

separation method showed that 3-carene and β-pinene were present. Venetian 

turpentine was analysed by both the acid and terpene method and both resin acids 

and terpenes detected. It was found to contain lower concentrations of DHA than the 

rosin samples while PAL and ABA were present in highest concentrations. A balsam 

resin sample was also analysed by both methods and found to contain resin acids.  

The acetone crystallisation test was carried out on all natural and modified rosin 

samples. No crystals were formed by the non-crystallising rosin samples. Both 

crystallising gum samples resulted in crystals forming, however, one did so after the 

test period. This highlights that the test is a mere indicator and rosins which pass it 

can still go on to crystallise. The music and cello rosins both formed crystals, 

consistent with their acid composition which indicated they had a crystallisation 

tendency. Unexpectedly, the A-mod rosin sample was found to crystallise, 

highlighting that modifying the gum rosin does not guarantee the avoidance of 

crystallisation.  

The CE methods developed allow for a rapid and simple screening of many rosin 

samples. With the application of this separation method to more samples of 

crystallising rosins, further links between variations in the composition of these and 

non-crystallising rosin can be deduced. The application of the acid and terpene 

method to resin samples highlights the versatility of the method to other natural 

samples. 
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  Chapter 6

 

 

 

 

Conclusion 
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The aim of this work was to investigate the composition of rosin samples using 

capillary electrophoresis in order to provide an alternative separation technique to 

GC-MS, and to further investigate any links between the rosins composition and its 

tendency to crystallise. Figure 6-1 shows the general analytical protocol followed for 

the analysis of rosin composition.  

 

Figure 6-1 Flow chart of method development protocol 
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6.1 Acid separation method 

 

A CE method was developed for the separation of nine resin acids; abietic-, 

dehydroabietic-, neoabietic-, pimaric-, isopimaric-, levopimaric-, sandaracopimaric-, 

palustric- and 7-oxo-dehydroabietic acid, three of which had not been successfully 

separated previously by CE. The optimum buffer was found to be 15% MeOH 5 mM 

HPγCD 10 mM SBCD in 20 mM tris buffer at pH 9. This was the first report of the 

use of CE for the quantification of resin acids in rosin samples. This method offers a 

rapid screening method for rosin samples that could be used in place of sometimes 

lengthy and often requiring a derivatisation step GC-MS methods. The quick 

screening method allows companies who intend on purchasing rosin which is usually 

sold in bulk to quickly analyse a sample from the batch and see if it suitable for its 

intended purpose. 

 

6.2 Neutral separation method 

 

The simultaneous determination of nine neutral compounds present in rosin samples 

including monoterpenes, sesquiterpenes and alcohols was shown. A cyclodextrin-

modified MEKC method was used to separate α-pinene, β-pinene, camphene, 3-

carene, terpineol, 4-allylanisole, longifolene, isolongifolene and aromadendrene for 

the first time. The optimum buffer was found to be 5 mM β-CD 10 mM SDS 50 mM 

tris pH 8 in the first application of CE to the analysis of the neutral fraction of rosin 

samples.  
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Figure 6-2 Bar chart showing the concentration of DHA in rosin and resin samples 

6.3 Analysis of rosin and resin samples 

 

Rosin and resin samples were analysed using the separation methods described in 

sections 6.1 and 6.2. The novel methods were applied to a range of modified and 

unmodified rosin samples and the resin acids in the rosins quantified. Differences in 

the composition of crystallising and non-crystallising rosins were observed. The 

separation methods were also applied to resin samples showing their usefulness in 

the analysis of other natural products. As seen in Table 6-1, DHA is the only acid 

present in every sample as illustrated in Figure 6-2.  

  



 

231 

 

Table 6-1 Rosin and resin samples analysed, X indicates the presence of the acids in the 

various samples  

 ABA DHA ISO NEO PIM LVO PAL SAN 7OXO 

Good 

rosin 

X X X   X   X   X 

Bad rosin X X X X X   X   X 

Music  X X X X X X X X X 

Cello  X X X X X X X X X 

RES155   X     X         

Gresinox   X     X         

A-mod   X     X X       

YT201 

batches 

X X               

Dymerex X X               

Polypale X X X   X       X 

Resine 

K10 

X X             X 

Venetian 

turpentine 

X X X X     X X   

Balsam 

resin 

X X X   X       X 

 

Predictably, the modified rosin samples contained more DHA than the gum rosin 

samples as many modification techniques result in the formation of DHA. The 

highest concentrations were found in the disproportionated and hydrogenated rosin 

samples and the partially-dimerised polypale sample. The crystallising rosin samples 

RC and RC contained the lowest amounts of DHA of all the rosin samples while the 

venetian turpentine contained even less. 

 

6.4 Rosin crystallisation 

 

There were several differences in composition in crystallising and non-crystallising 

rosins noted. The concentration of ABA was found to be the main difference with 

crystallising rosin samples found to contain more than twice the amount of ABA 

compared to non-crystallising samples. The non-crystallising samples contained no 

NEO while it was present in both crystallising rosins. The non-crystallising samples 

also contained lower amounts of DHA. Both music rosins crystallised and were 

found to contain LVO and SAN which was not detected in any gum rosin samples. 
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This is another possible indicator of a tendency to crystallise. The A-mod sample 

was the only modified rosin sample to crystallise and the only one found to contain 

LVO which further supports this hypothesis. These methods can be used to analyse 

further rosin samples and build up a database of information on their compositions. 

 

6.5 Association constants 

 

The association constants of the inclusion complexes formed by cyclodextrins with 

some of the acids and neutral compounds found in rosin samples were investigated 

by affinity capillary electrophoresis. This method was found to be unsuitable for the 

determination of association constants of neutral compounds. The requirement of 

SDS in order to provide mobility to the neutral compounds resulted in SDS-CD 

interactions which meant that the change in complex mobility was not solely 

dependent on the CD concentration.  

In conclusion the work presented in this thesis has led to a novel, rapid and robust 

screening method for rosin acids, a novel separation method for terpenes and has led 

to an improved understanding of the analyte:host separation mechanisms. These 

analytical methods can be used by the industry that has funded the research to 

improve their management of rosins used in their processes. 
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