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Abstract 

The semiconductor industry has played a crucial role in societal development over the 

past several decades. Plasma etching is a key processing step employed in Integrated 

Circuit (IC) fabrication. In order to improve product yield, Optical Emission 

Spectroscopy (OES) is widely used to monitor the etching process. OES generates 

high-dimensional data, which has a large information capacity but also has significant 

information redundancy. Based on plasma OES characteristics, two novel data analysis 

methods are proposed in this thesis: the Internal Information Redundancy Reduction 

(IIRR) method for dimension and redundancy reduction and Similarity Ratio Analysis 

(SRA) for fault detection. By identifying peak wavelength emissions and the 

correlative relationships between them, IIRR outputs a subset of the original variables. 

Data dimensionality is reduced significantly by IIRR with minimal information loss. 

The SRA method is intended for early-stage fault detection in plasma etching 

processes using real-time OES data as input. The SRA method can help to realise a 

highly precise control system by detecting abnormal etch-rate faults in real-time during 

an etching process, so less energy and materials will be wasted by faulty processing. 

Generally, previous research on OES measurements of plasma etching has largely 

focused on particular target applications and has used methods that rely on 

transforming the original data into an abstract variable space. In contrast, our approach 

operates directly in the original variable space allowing a more direct and easier 

interpretation of the dimension reduced data.  
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CHAPTER 1. Introduction 

1.1 Research Motivation 

The semiconductor industry has played a crucial role in economic and societal 

development over the past several decades, since the invention of the Integrated Circuit 

(IC). The plasma etching process is one of the most important processes for IC 

fabrication. In order to understand and properly control the plasma etching process, 

plasma monitoring methods are essential. Optical Emission Spectroscopy (OES) is one 

of the most popular and powerful plasma monitoring technologies and is widely used 

in IC manufacturing, however, OES data is normally very high in dimensionality and 

volume, and data analysis and processing methods are required. More effective OES 

data processing methods could provide significant benefits for prediction of crucial 

system parameters, system condition monitoring, amongst other etch process control 

applications. Two particular OES data related topics are studied in this thesis: 

dimensionality reduction and Fault Detection (FD).  

1.2 Plasma Etching 

The plasma etching procedure is one of the most important steps in IC Manufacturing. 

A typical chamber for plasma etching in IC fabrication is presented in Figure 1-1. 

Silicon wafers are placed in the chamber. A chemical gas is pumped into the chamber, 

and then plasma is generated from the gas by supplying microwave energy. After that, 

plasma is accelerated toward wafers by the Radio Frequency (RF) source. Finally, the 

surfaces of wafers are etched by interaction with the accelerated plasma. Of course, a 

real plasma etching process is much more complex than this abstract model. Typically, 
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a multistep etching process is used in a practical IC manufacturing procedure, in which 

a multiple-layer IC structure is realized. 

 
Figure 1-1. Structure of a plasma etching chamber. MF =Microwave Frequency; RF = 

Radio Frequency.  

The ideal etching process is demonstrated in Figure 1-2(b), while Figure 1-2(a) shows 

the wafer before etching. The ideal etch should be anisotropic (vertical) whereby the 

wafer surface under the mask remains and all of other surface is removed by the 

etching. But practically, the plasma etching process suffers certain problems. Figure 

1-2(c) and Figure 1-2(d) show two undesirable etching results. These scenarios are 

examples of problems which restrict the development of IC devices towards much 

smaller critical dimensions with high aspect ratios. Christophe Cardinaud, Marie-

Claude Peignon, and Pierre-Yves Tessier summarised all of these problems from four 

aspects [1]: selection of the mask and substrate, profile control of the pattern, damage 

to the material, and etching rate control. They also concluded that the choice of the 

plasma chemistry and chemical species is an important factor for anisotropic etching, 

as well as surface temperature, pressure and so on. In other research [2], Thomas F. 

Edgar and his colleagues mentioned that the etch process is often operated empirically, 

while there are hundreds of individual operations which impact on the final result. 

Unfortunately, there is only little understanding of the underling physics and chemistry 
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in industrial IC fabrication and all of these problems are big challenges for research in 

plasma etching. 

 
Figure 1-2. Ideal etching process & two etching problems  

1.3 Optical Emission Spectrometer 

OES is one of the commonly used plasma diagnostic technologies. Physically, a 

chemical element or chemical compound demonstrates optical emission, when it 

makes a transition from a high energy state to a lower one. It is an important physical 

characteristic that different chemical species have different emission spectra. By 

observing the optical emission spectrum, OES can help to identify chemical species 

and monitor the changes of their ratios compared to the entire plasma in the chamber. 

Figure 1-3 shows OES sensor deployment in a plasma etching chamber. It measures 

the optical emission of plasma through a window in the chamber. OES provides an 

indirect measurement of the plasma process.  

A typical set of time-series OES measurements for a complete etching process is 

presented in Figure 1-4. It provides intensity measurements of 2048 wavelengths from 

200 nm to 1100 nm. High dimensionality and information richness can be observed 

here.  
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Figure 1-3. Deployment of OES 

 
Figure 1-4. A sample of OES measurement in time series for an etching process 

1.4 Research Topics 

Due to the abundant information of OES and the immediate relationship with the 

etching process, OES is widely applied and studied in IC fabrication. Two research 

topics are addressed in this thesis: dimensionality reduction and fault detection.  

1.4.1 Dimensionality Reduction 

High dimensionality is the main research challenge for most OES-based data analysis. 

Such high dimensionality provides a huge information capacity, which is the main 

strength compared with the other sensor data. In the meanwhile, problems are also 

raised [3], such as useful information being sparse in a high dimension space. This can 

weaken the statistical significance of the information. From a physical perspective, this 

problem is caused by the fact that many different chemical species are included in 

plasma etching and each chemical species has multiple possible spectral emissions. 
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The performance of any application based on statistical inference from spectral data 

can be compromised consequently. By reducing dimensionality, a number of benefits 

can be achieved. Firstly, the computational efficiency of applications which take OES 

data as input is increased. Calculation accuracy is also improved with smaller 

dimension by excluding irrelevant information (e.g. noise). Secondly, important 

variables can be more easily identified from a smaller dimension dataset. It helps to 

understand interesting phenomena behind these variables [4]. In the context of an OES 

monitoring system in plasma etching, important variables can be specific wavelengths. 

It is valuable to find underling information on the chemical species, which causes 

system variance. This important usage is described as feature extraction [5]. 

1.4.2 Fault Detection 

IC manufacturing has two major development trends. Firstly, more and more 

transistors can be built per wafer [6]. Secondly, larger diameter wafers will be used to 

increase the IC yield. Compared with current 300 mm diameter wafers, 450 mm 

diameter wafer technology is proposed as a main-stream product in the future [7]. This 

development requires that IC fabrication needs more precise process control 

mechanisms year by year, especially in fault detection. As one of the most important 

steps in IC fabrication, plasma etching impacts the quality of the final product output 

significantly. By detecting system faults in the etching process, four major advantages 

for the overall IC fabrication process are realised [8]: improvement of process quality, 

decrease of equipment downtime, improvement of wafer quality, and less usage of 

testing wafers. 
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1.5 Research Contribution 

In this thesis, two methods are proposed for dimensionality reduction and fault 

detection (FD), evaluated separately with OES dataset from two IC manufactories. 

Discussion of the proposed methods and the corresponding contributions are presented 

in the remainder of this section.  

1.5.1 Dimensionality Reduction 

Dimension reduction has matured as a research area in the last several decades. It is a 

common topic across multiple disciplines, such as statistics, visualisation and 

information theory [9]. However, most of the research on the topic is based on general 

mathematical models, which ignore particular features of optical emission, such as the 

significance of peak wavelengths. They also have difficulty in finding important 

variables. Therefore, the Internal Information Redundancy Reduction (IIRR) method is 

proposed for OES dimension and redundancy reduction. IIRR operates directly in the 

original variable space, identifying peak wavelength emissions and the correlative 

relationships between them. Instead of creating new variables like the other methods 

(e.g. Principal Component Analysis (PCA)), IIRR picks up a subset of the original 

variables. So it is easier to find important variables in the original data. This set of 

variables has a much smaller size than the original data, but there is no significant 

information loss in the new variable set. This is proved by uncompromised prediction 

accuracy of etch rate using the IIRR output variable subset. In the future, IIRR can be 

easily extended to satisfy more detailed requirements. For example, further data 

dimension reduction can target certain system variables after processing data with 

IIRR, such as etch rate or etch line width.  
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1.5.2 Similarity Ratio Analysis for Fault Detection 

Traditional FD technologies have two common problems: high computational cost and 

long-time delay. Because of requirements for real-time monitoring and non-intrusive 

sensing, the OES dataset is widely used for FD as a potential replacement for 

traditional FD technologies. However, most current research can only realize FD after 

the etching process completes. Some existing methodologies are able to detect faults at 

an early-stage with a single spectral scan, but they are limited to using only a small 

fixed set of time points.  

In order to solve these research gaps, the Similarity Ratio Analysis (SRA) for Fault 

Detection method is proposed. Compared with previous methods, SRA can detect 

faults at an early stage of the etching process. In this way, less energy and materials 

will be wasted by faulty processing. The spectrum scans are also not limited to certain 

time points, so the FD system can be more flexible because the timetable for the OES 

sampling can be adjusted based on real-time system feedback. According to the result 

of the demonstrating dataset, this method gives an alarm for a system fault at about the 

6
th

 second in a 45 second faulty etching process. 

1.6 Thesis Structure  

Chapter 2 provides a background survey on our research topics. Firstly, the plasma 

etching process is introduced. Secondly, popular monitoring technologies are 

presented, including their basic mechanisms and underlining theories. Thirdly, 

comprehensive literature reviews are grouped and presented based on two different 

classifications of strategies. Relevant papers are classified and discussed based on their 

algorithm types initially and then based on their research targets. Finally, two real 
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experimental industrial datasets are discussed. These two manufacturing datasets are 

used as demonstrating datasets for our proposed methods in the following chapters.  

Chapter 3 presents the IIRR method for dimension and redundancy reduction. The 

method is described in detail for a general data model at first. Then customized designs 

are provided based on specific features of two different demonstration datasets. 

Besides the main high dimension problem, wavelength saturation and non-uniformed 

time scale problems are described, as well as corresponding solutions. Finally, the 

model output is validated by the VM method with both demonstration datasets.  

Chapter 4 presents the novel SRA method for early-stage fault detection in the plasma 

etching processes. First of all, the SRA method is introduced generally. Then detailed 

descriptions are provided, followed by results on the real IC manufacturing dataset. 

Finally, a conclusion is given at the end of the chapter to summarize the SRA method.  

Chapter 5 gives a summary on all proposed methods. Potential future work is also 

discussed. 
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CHAPTER 2. Background 

The development of IC technology has been in line with Moore’s law [6], which 

predicts the growth over time in both the number of transistors per chip and the 

expected cost of production. The International Technology Roadmap for 

Semiconductor (ITRS) is a well-known document set, which is published every year 

and identifies key challenges, roadblocks and industry standards [7]. As indicated in 

recent ITRS (2012) updates, a transition to 450 mm diameter wafer improves 

productivity significantly in IC manufacturing. The manufacturing cost of each    of 

IC would be decreased by use of these larger diameter wafers. However more 

dedicated and precise process control mechanisms are required to preserve yield 

integrity. Hence the design of control mechanisms has been a popular research topic in 

IC manufacturing, driven by this practical manufacturing requirement. 

Typically, ICs are constructed through three major processes: imaging, deposition, and 

etching. A photo of the desired circuit configuration is transferred onto the surface of 

silicon wafers in the steps of imaging and deposition. Then the IC chips are created on 

these silicon wafers in the step of etching. Our research focuses on the etching 

procedure. It is one of the most important processes enabling IC fabrication on wafers. 

A more detailed description of the etching process is given in the following section of 

this chapter. 

2.1 Plasma Etching 

The etching procedure is described in detail in this section. There are two types of 

etching technologies: wet etching and dry etching. In wet etching, the wafer is 

immersed in a liquid solution. In dry etching, plasma or a vapour phase etchant are 
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sputtered onto the wafer. Normally, wet etching is the simplest etching technology. A 

suitable combination of etchant and mask material leads to a good quality of etching, 

and it costs less than dry etching. However, dry etching can achieve higher resolution. 

Plasma etching is one of the most developed dry etching technologies in current IC 

manufacturing.  

Plasma is a gas consisting of atoms, molecules and charged particles. The charged 

particles include positive ions and negative electrons, which are created by a collision 

between atoms (or molecules) and a charged particle (ion or electron). This procedure 

is termed ionization. It is normally achieved by using an RF power source in a vacuum 

system. In Figure 2-1, this procedure is demonstrated with an incoming electron e
-
 and 

a neutral particle including an atom i
+
 and an electron e

-
. The collision between them 

frees the positive atom and negative electron from the neutral particle. A plasma gas is 

generated at the end, including two electrons and one ion. In IC manufacturing, this 

plasma gas is used to etch the targeted parts of material surface to build an electronic 

circuit.  

 
Figure 2-1. Demonstration of plasma generation. 

When the energy used for the ionization is not large enough to break the atom, the 

atom will be activated to a higher energy state. However, the high energy state is not 

stable, and it will return back to a lower energy state. In this energy decay procedure, 

optical emissions will be observed [10]. There is an important physical theory that 

different chemical elements and compounds have different emission spectra. By 

observing the emission spectrum, chemical elements or compounds can be identified. 
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A combined spectrum of    and   is illustrated in Figure 2-2. Existence of these two 

particles is proved by high intensity values at three particular wavelengths in this 

figure. Relevant ratios between particles can also be uncovered. The OES monitoring 

technology which will be described later is based on this phenomenon.  

 
Figure 2-2. Optical emission spectrum of    and  . 

2.2 Plasma Monitoring Technology 

In order to understand the plasma etching process, effective plasma monitoring 

methods are necessary for data collection. The etching process is a very complex 

function of multiple process parameters, and these key parameters are understood 

poorly. Different monitoring strategies are based on various characteristics of the 

etching process, such as changes in radio frequency or temperature in the chamber. 

External sensors are normally deployed for data collection. Generally, there are two 

types of plasma diagnostic sensors that can be differentiated based on their impact on 

the etching process: intrusive sensors and non-intrusive sensors. Intrusive sensors 

normally give direct measurements on targeted parameters, but they also affect the 

process. For example, an electric current meter can reduce the current slightly during 

measurement. On the other hand, non-intrusive sensors do not have this weakness. 

Acoustic sensors and microwave sensors are two examples of this approach. However, 
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non-intrusive sensors introduce more background noise compared to intrusive sensors. 

In the rest of this section, OES which produces the data for our research is first 

introduced, and then the other widely used plasma monitoring technologies are 

discussed. 

2.2.1 Optical Emission Spectroscopy 

OES is a non-intrusive plasma diagnostic technology. All of our research is based on 

OES data. In physics, a chemical element or chemical compound produces optical 

emission, when it makes a transition from a high energy state to a lower one due to 

relaxation processes. It is an important physical characteristic that different chemical 

species have different emission spectra. By observing the optical emission spectra, 

OES helps to identify chemical species and monitor the changes of their ratios 

compared with the entire plasma in the chamber. Figure 2-3 outlines the OES sensor 

structure showing the two most important components: the diffraction grating and the 

Charged Coupled Device (CCD). When the emitted light hits the grating from the light 

source, the grating redirects the light based on their wavelengths. Light with different 

wavelengths will diffract to different parts of the CCD detector, where the intensity of 

each wavelength is converted to digital signals for further processing.  

 
Figure 2-3. Illustration of a typical OES sensor with diffraction grating and CCD.  
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OES measurements are normally high in dimension and redundancy, due to two 

reasons. Firstly, one chemical element has more than one possibility of optical 

emission, because electrons can be in different states which contain different energy 

amounts. Secondly, not every chemical element contributes to the OES output is 

highly relevant or important to the output of the etching process. Aside from these 

problems, OES has two major advantages: large capacity for abundant information and 

the immediate relationship with the etching process. These advantages are not easily 

achieved by the other methods, so OES is widely applied to IC fabrication [11]. Much 

research has focussed on the OES measurements for multiple purposes, such as 

estimation of crucial system parameters [12, 13] and endpoint detection [14, 15]. Also 

there are other research purposes such as [16], where a 2048-dimensition OES dataset 

was condensed into principal components. Then system variations of the plasma etch 

process were tracked by the changes of principal component directions. So research on 

these OES problems is crucial for plasma monitoring [5]. More detailed description on 

the state of the art in this area is presented in section 2.3. 

2.2.2 Langmuir Probe 

The use of a Langmuir probe is an intrusive plasma diagnostic method. The probe is 

immersed into plasma as in Figure 2-4, and it determines the electron temperature, 

electron density, and electric potential of the plasma [17]. The most significant 

limitation of a Langmuir probe is the effect on the chamber environment. The inserted 

probe changes the temperature, density, and potential of the plasma, so measurement 

bias exists. Also, these three plasma characteristics are highly relevant to an IC 

fabrication, so the probe will affect the etching process consequently. The Langmuir 

probe is still used and studied widely [18, 19], because it provides the most direct 

measurements of plasma physical characteristics.  
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Figure 2-4. Deployment of Langmuir probe 

2.2.3 Plasma Impedance Monitor 

Plasma behaves like an electronic device with impedance in an RF circuit, which is 

connected for acceleration of plasma. Figure 2-5 illustrates a typical plasma chamber 

with Plasma Impedance Monitor (PIM) sensors. The measured plasma impedance 

variance results from chemical and physical changes in the plasma chamber [20]. It is a 

non-intrusive diagnostic method for plasma monitoring. The PIM monitor reads 

current and voltage, and calculates impedance from the circuit. These electrical 

parameters have been shown to relate to the outputs of the etching process. In [21], a 

real-time model was demonstrated using PIM signals. It is used to maintain a 

consistent plasma electron density, in order to improve the result of plasma etching. In 

[22], Pascal Dubreuil and Djaffar Belharet also used PIM to develop a real time 

endpoint detection model, during plasma etching of structured bulk materials.  

http://dl.acm.org/author_page.cfm?id=81375613749&coll=DL&dl=ACM&trk=0&cfid=288360885&cftoken=64072813
http://dl.acm.org/author_page.cfm?id=81467671782&coll=DL&dl=ACM&trk=0&cfid=288360885&cftoken=64072813
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Figure 2-5. Deployment of PIM 

2.2.4 Mass Spectrometer 

A mass spectrometer is designed to identify the elemental composition of a material 

sample. The mass spectrometer generates charged molecules or molecule fragments by 

ionizing chemical compounds, and then mass-to-charge ratios of these chemical 

compounds are measured. Finally, the chemical species are determined by comparing 

with known masses. Mass spectrometry is widely used in multiple disciplines, like 

chemistry and biology. For example, protein mass spectrometry data was used for 

automatic extraction of biomarkers in [23]. The mass spectrometer does not give direct 

observation to plasma unlike OES, because the ionizing process can affect the etching 

process. So the mass spectrometer is normally deployed to monitor exhaust gas, to 

give indirect information about the plasma, Figure 2-6. The mass spectrometer also has 

its own usage that helps to improve understanding of the etching process [24]. One 

benefit of the mass spectrometer is its relatively easier identification of chemical 

species than OES. According to a United States Patent [25], mass spectrometry is 

successful in endpoint detection of etching during semiconductor fabrication.  



CHAPTER 2 Background 

 

- 16 - 

 
Figure 2-6. Deployment of mass spectrometer 

2.2.5 Other Monitoring Methods 

Besides multivariable plasma monitoring technologies such as PIM and OES, single 

process-state monitoring technologies are also used in some cases, and they are 

relatively easy to implement compared to multivariable techniques. In [26], the radio-

frequency reflected power was used as an efficient method for end-point detection in 

etching process. In [27], changes of direct-current (DC) voltage were used in the 

detection of etching end-point. In [28], the use of DC current measurement was proven 

to be a significant improvement in signal-to-noise ratio for etching process monitoring 

compared with OES. In [29], the temperature of the wafer pad was used to monitor 

etching variations. In [30], the etch end-point was determined by monitoring the 

chamber pressure. 

2.3 Survey of Existing Work 

The state of the art of our research area is discussed comprehensively in this section. 

Literature relevant to our two research objectives (dimensionality reduction, and FD) is 

reviewed respectively.  
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2.3.1 Approaches to Dimensionality Reduction 

In this thesis, the first reviewed research topic is dimensionality reduction. Dimension 

reduction is a popular research area across multiple disciplines. In [9], dimension 

reduction techniques were described from various viewpoints. From the statistical 

aspect, it involves regression methods. From the visualisation aspect, dimension 

reduction is necessary to transfer high dimension dataset to 2D/3D plot. From the 

information theory aspect, it relates to the efficiency of data transmission and storage. 

Principal Component Analysis (PCA), factor analysis (FA), stepwise regression, and 

cluster analysis are the commonly used techniques in this research area.  

2.3.1.1 Principal Component Analysis 

PCA is one of the oldest and best known multivariate analysis techniques. The key in 

PCA is to decrease the dimension of a dataset when there are large numbers of 

interrelated variables [31]. This is achieved by an orthogonal linear transformation 

from the original variables into new uncorrelated variables. These new variables are 

named principal components (PCs).  

A mathematical description about PCA is presented below.  

Given a     data matrix X
 
(n observations with m variables), a     principal 

component matrix C
 
is calculated by Equation (2-1) where L

 
is a     loading 

matrix.  

      (2-1) 
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In order to find suitable a loading matrix for PCA, singular value decomposition is 

commonly used, as in Equation (2-2), where S is a rectangular     diagonal matrix 

and both the     matrix U and the     matrix V are orthogonal unit vectors.  

         (2-2) 

Then covariance matrix X
T
X can be written as:  

           . (2-3) 

Eigenvector factorisation of the square matrix X
T
X can be expressed as Equation (2-4), 

where   is the eigenvector and   is the eigenvalue which can be calculated easily. By 

comparing to Equation (2-3), the columns of L can be identified as eigenvectors of 

X
T
X and the diagonal elements of S can be identified as square roots of the 

eigenvalues.  

          
 

(2-4) 

In [32], a diagnostic method was proposed to estimate wafer state line-width reduction 

with OES measurements. PCA was used for dimensionality reduction. This approach 

was verified on an experimental aluminium etch data set from a Lam 9600 plasma 

etcher. PLS was also included in a comparison with PCA. The authors concluded that 

both of them could offer simplicity and good accuracy under certain circumstances. 

In [33], a chamber state model was developed to quantify and predict etching 

performance. OES was used as a real-time sensor and several etch characteristics were 

examined. These characteristics were etching rate, within-wafer uniformity, and 

aspect-ratio dependent etching. Three data reduction technologies were used in this 

study: ordinary least-squares regression, PCA, and PLS. The ordinary least-square 
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helped to select certain wavelengths based on species identification. Then PCA and 

PLS were compared for elimination of the correlation among selected wavelengths. 

PLS used fewer parameters to achieve the same result as PCA. The results also 

indicated that about 87% variation of etching rate and 95% variation of within-wafer 

uniformity could be predicted successfully with this model, but only 65% variation of 

aspect-ratio dependent etching could be explained.  

In [34], PCA was used for dimensionality reduction as a pre-process for fault detection 

in a plasma etching process. By examining variable loadings to each PC, a subset of 

wavelengths was determined which were the most relevant to the monitoring objective. 

After this selection, only three wavelengths were retained.  

In [35], PCA was used for endpoint detection in a plasma etching process, as well as 

an expanded hidden Markov model. PCA helped reduce the dimension of the OES 

dataset. The output of PCA increased the gap between classes in fault detection.  

SPCA 

A significant characteristic of standard PCA is that every PC is usually linear 

combinations of all original variables. In some scenarios, reasonable explanations of 

PCs are useful to understand the targeted process. For example, each variable could 

correspond to a specific gene in biology. So the explanations of the PCs would be 

much easier if these components are only constituted by fewer variables [36]. The 

same applies to research of plasma etching with OES. Each wavelength represents a 

certain chemical species. Identifying fewer important wavelengths can contribute to a 

better understanding of the chemical reactions in a plasma chamber. SPCA was 

developed to solve this problem. SPCA uses sets of sparse vectors as weights in the 

linear combinations, which still represent most of the variance in the original dataset. 
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There are multiple ways to implement SPCA mathematically, such as SCoTLASS [37], 

EN-SPCA [38], and sPCA-rSVD [39]. The application of SPCA is relatively new in 

the research of plasma etching. 

In [40], the application of SPCA to clustering and feature selection problems was 

studied. Compared with standard PCA, SPCA was able to isolate relevant variables 

more efficiently with less computational cost.  

In [41], a subset of key wavelengths was determined by SPCA from 2046 variable 

OES datasets. EN-SPCA was the implementation method used in this research. A 

trade-off between explained variance and a sparse representation was described as a 

key consideration in SPCA. One weakness of SPCA was also highlighted based on a 

grouping effect that exists in the selection of variables. The grouping effect means that 

EN-SPCA would give equal weights to highly correlated variables. This phenomenon, 

which was not ideal for variable selection, could be helpful in identification of related 

variables. 

2.3.1.2 Factor Analysis 

Factory Analysis (FA) is another statistical method used to transform an observed 

dataset into new coordinates, similarly to PCA. While PCA tries to combine variables 

into a small number of PCs, FA tries to identify the structure underlying the original 

variables, where latent factors are the elements building up the structure. The 

fundamental of FA is explained as follows. Suppose there are   observable random 

variables,   ,   , ... ,   with means   ,   , ... ,   and   observations for each variable. 

Suppose     is constant and    are unobserved random variables, where           and 

         , where    . Suppose we have  
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                          (2-5) 

where    are independently distributed error terms with zero mean and finite variance, 

        and           
 . For each variable   , we could get the sample mean and 

sample variance, denoted by   ̅ and   . Standardization gives  

 
    

      ̅

  
 (2-6) 

By minimizing the mean square error E, factors     and loadings     will be obtained 

by giving a best fit to the data.  

 

  ∑ [∑      
 

 ∑      

 

]

 

      

 (2-7) 

One of the biggest differences between PCA and FA is that all observed variance is 

analysed in PCA, but only the shared variances are analysed in FA. Generally speaking, 

there are two types of FA based on the assumptions made: Exploratory Factor Analysis 

(EFA) and Confirmatory Factor Analysis (CFA). EFA seeks to determine the number 

of latent factors and the relationship between variables and factors. On the other hand, 

CFA seeks to validate the presumed factor structure and find the relationship between 

factors. Multiple model estimation methods are available, like the principle component 

method, principal factor method, and maximum likelihood [42]. 

In [43], a comparison of fault detection in a semiconductor etching process was 

provided between PCA and FA. Several sensor systems were used. Measured data 

included gas flow rates, power, and OES measurements. Strengths and weaknesses of 

these methods were presented on a set of benchmark fault detection problems. 
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According to the results, FA worked better than the other methods, but PCA might be 

the best choice in practice, because of its simplicity. 

In [44], the application and misapplication of FA were described in marketing research. 

In order to verify the feasibility of FA on certain datasets, a number of examination 

methods were listed. These methods included examination of correlation matrix, 

plotting the latent roots obtained from matrix decomposition, and so on. A number of 

problems with this approach were also revealed, like the effects of extracting too few 

or too many factors on the factor stability after rotation. The identification of 

interpretable factors and simple structure were defined as the fundamental aims of a 

FA strategy.  

In [45], FA was applied to 28 groundwater samples in the coastal black-foot disease 

area of Taiwan. A two-factor model was constructed which contained about 80% of 

the total groundwater quality variation. The first factor was interpreted as seawater 

salinization, while the second one was interpreted as arsenic pollution. Geographical 

distribution of these factors was also presented via maps. It was found that over-

pumping was the major cause of groundwater salinization and arsenic pollution in that 

area.  

In [46], an instrument development research cycle was completed by gathering new 

data to test the validity and reliability of an end-user computing satisfaction (EUCS) 

instrument. A CFA method was used. The results provided confirmation on the ability 

of the EUCS instrument for measuring and explaining user satisfaction. Five factors of 

EUCS were listed: content, accuracy, format, ease of use, and timelines.  



CHAPTER 2 Background 

 

- 23 - 

2.3.1.3 Stepwise Regression 

Stepwise regression is a way to select a best subset of independent variables for 

prediction of dependent variables. An iterative strategy is implemented in an automatic 

procedure. Normally, multiple runs are necessary, and each run has a criterion (e.g. 

achieve a certain level of fit goodness of the model) to check when the whole process 

should stop. The criterion is chosen to ensure a minimum selection of independent 

variables with acceptable regression result. F-test and t-test are two options for the 

criterion.  

There are three main approaches for stepwise regression based on how regression 

starts: Forward Selection Regression (FSR), Backward Elimination Regression (BER), 

and Bidirectional Elimination Regression (BDER). In FSR, no variable is in the model 

at the beginning. Addition of each variable is tested using a model comparison 

criterion such as selecting the variable which improves the model the most. The 

variable which improves the model the most is added. This process will repeat until a 

certain threshold is reached, for example when there is no improvement from every 

additional variable. A general workflow of FSR is presented in Figure 2-7. In BER, all 

candidate variables are included at the beginning. The variable which has the least 

effect on regression is removed from the process for the next run. The BER process 

will stop having reached a certain threshold, similarly to FSR. In BDER, the ideas of 

FSR and BER are combined together. Variables are added in sequence to the model. A 

variable will be retained if it improves the regression result, and then all variables 

already in the model will be retested. The variables which do not contribute 

significantly are removed from the model [13]. 
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Figure 2-7. Workflow of a general FSR 

In [47], FSR and forward selection component analysis (FSCA) were introduced as 

well as PCR and PLS in the context of semiconductor manufacturing research. All of 

them were used to identify key process characteristics and predict etch rate from high-

dimension datasets. FSCA was based on FSA and is similar to the PCA theory. Instead 

of finding a minimum subset of variables for prediction, FSCA returns a set of 

orthogonal components from a minimum subset of variables, which represent the 

variance of original data. The OES dataset was used for analysis in this research. Six 

statistical moments were used to reduce the high dimensionality of the dataset. These 

statistics were kurtosis, mean, skewness, variance, maximum, and minimum. 

According to comparative results, FSCA and FSR were more effective than PCA and 

PLS for feature selection.  

In [48], FSCA was used to determine a minimum set of wafer sites for plasma etching 

process monitoring. A VM approach was also proposed to reconstruct a complete 

wafer profile from the optimal wafer sites. There were 316 wafer samples for analysis. 

These samples were randomly grouped into two parts for training and testing 

respectively. This random organization was designed to reduce the impact of temporal 

variation between successive samples. Initially, PCA was used to determine the level 
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of redundancy in the historical dataset. Further FSCA was applied if high information 

redundancy was confirmed by PCA. Then a VM model was created on the optimal 

wafer sites for prediction of unmeasured sites. An R
2
-fit of over 97% was achieved for 

prediction of all sites. Finally, a 3D wafer profile could be constructed by combining 

the values of the actual and the VM sites. 

In [49], an input-clustering based FSR methodology was provided for VM model 

building in highly correlated input spaces. Max Separation Clustering (MSC) was used 

to pre-process data. A reduced set of representative variables were selected after the 

MSC process. Comparable modelling results were gained from three other modelling 

technologies: ridge regression, LASSO, and Forward Selection Ridge Regression 

(FSRR). This VM model was tested on a dataset of semiconductor plasma etch. Over 

2000 wafer samples were included, and each sample consisted of 4 statistics of the 

OES measurements. The statistics were mean, variance, skewness, and kurtosis. 50% 

of the samples were used for training; 25% for validation; and the last 25% for testing. 

According to results, the best performance was achieved by the model with FSR.  

In [50], stepwise regression was used to identify tools with large contributions to the 

overall variance in a high yield plasma process. An indicator variable was used to mark 

whether a tool was involved at a certain step of the process. For example, the variable 

was assigned a “1” if a tool was used in the current step. Otherwise, the variable was 

“0”. The indicator variable was taken as the input of the model. High information 

redundancy was contained in the indicator variable, so PCR was applied to remove 

redundancy before stepwise regression. Compared with analysis of variance, stepwise 

regression had a better result. It provided a holistic view of the process with a 

consideration of the relationship between steps. This relationship was normally 
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ignored by transitional analysis of variance. But stepwise regression is relatively more 

difficult to implement and less efficient in computational calculations.  

2.3.1.4 Cluster Analysis 

In terms of dimension reduction, the goal of cluster analysis is to group variables based 

on their features, and then use the groups to represent the original dataset. A large 

amount of works have been done in this area, and famous clustering methods include 

Expectation Maximization (EM), K-means [51] and so on. The EM approach tries to 

find a set of Gaussian distributions which can represent the given data set the best. The 

K-means approach separates samples into k groups which give the minimum sum of 

distances from the samples to their own group centres. Given a set of observations 

(             ), the observations will be divided into   groups   

{            }  where    . The K-means objective is to find the following partition 

  

 

        ∑ ∑ ‖     ‖

     

 

   

 (2-8) 

where    is the mean of the     cluster.  

Both of these two well-known methods suffer from the same local minima problem 

[52] in which the clustering procedure halts on finding a local minima close to the 

initial starting point, and so does not find the best global solution. In terms of the other 

clustering methods, most cluster analysis methods share the following common 

problems [53]. Firstly, users should manually decide the number of groups for most 

methods, but this number is always difficult to determine. Secondly, there are a huge 

amount of different clustering methods and each of them almost gives substantially 
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different results. Sometimes even the same method does not give consistent results (e.g. 

a K-mean approach which starts with different initial points). Hence, stability is an 

issue of most clustering methods. 

In [54], a comparison between cluster analysis and PCA was provided in the synoptic 

meteorology research area, in which PCA gave better results or performance than 

clustering methods in most cases.  

In [55], the K-means clustering method was used along with a linear discriminant 

analysis technique for dimension reduction. K-means clustering was used to find 

different clusters, and then linear discriminant analysis helped for cluster selection. By 

comparing with other common-used clustering methods, the proposed method was 

proved to give the best clustering accuracy, according to the experimental results. 

In [56], K-means clustering was combined with PCA. A strong relationship between 

K-means and PCA was disclosed. By testing them together with different 

combinations, PCA was proved to be a suitable solution to determine cluster indicators 

for K-means clustering.  

2.3.1.5 Summary 

There is relatively little research focusing on dimension and redundancy reduction of 

OES datasets. Among the few examples, dimension reduction techniques are used to a 

lesser or greater extent in the works. Most of these reviewed methods are based on 

general mathematical models, which ignore particular features of the OES data in 

plasma etching, such as the remarkable role of peak wavelengths. They also have 

difficulty in finding important variables. SPCA could be a potential solution, but the 

grouping effect is its weakness, as mentioned above. The proposed IIRR method of 
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this thesis is created to address these research gaps. IIRR focuses on dimensionality 

reduction of the OES dataset. Instead of building new variables (e.g. using PCA), IIRR 

works directly on the original variable domain, which will benefit key variable 

identification for further analysis.  

2.3.2 Approaches to Fault Detection 

Traditional FD techniques have two common problems: high implementation cost and 

a long-time delay between fault occurrence and fault detection. For example, the 

Scanning Electron Microscopy (SEM) is used to measure etch depth, and then etch rate 

is calculated by the depth divided by the total etch time. The etch rate is a popular 

statistic to assess the process and wafer quality. However, this method impacts the 

testing wafer for SEM measurements, which introduce a large cost. It also needs to 

wait for the end of the etching process, so a long-time delay is involved. The typical 

time delay to get the etching result with traditional metrologies was demonstrated in 

[57]. It often takes hours or even days to get the result. During that time period, 

thousands of wafers can be damaged if the detected fault persists in the process. Due to 

these problems, the OES dataset has been widely studied for FD in the past decades. 

OES has two important features: real-time monitoring and non-intrusion. However, it 

has its own problems too. Like other research with OES data, the OES FD strategy 

suffers from the problem caused by OES high dimensionality. Time series OES 

measurements from a healthy and a faulty etching process are demonstrated 

respectively in Figure 2-8. Panel (a) represent time series OES of a healthy etching 

process, while panel (b) represents time series OES of a faulty etching process. It is 

difficult to tell the difference between them by a simple observation, so data 

processing is always required to dig useful information from the raw OES data. 

Additionally, there are other problems associated with the OES approach to FD.  
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In [58], the author mentioned that etch quality could be affected significantly by small 

variations in equipment and process step phase. In other words, small variations in 

OES could be important information which should be extracted out. Considering the 

OES background noise with similar small variation, it is difficult to separate them from 

each other for FD. 

In [59], process shift was discussed as another common problem. A typical scenario of 

this problem is presented and discussed in the result and discussion section of this 

chapter based on a manufacturing dataset, which we name D1. The process shift can 

lead to multiple monitoring problems. For example, more false alarms could be 

triggered.  

Due to these challenges, a large number of research interests are attracted to FD with 

OES. However, most of them share some common problems which are discussed in 

the following paragraphs. Popular methods include PCA, support vector machine 

(SVM), pattern recognition, ICA, and ANN.  

 
Figure 2-8. Comparison of time series OES between healthy and faulty samples. Panel 

(a) represents the time series OES measurements of a healthy etching process. Panel 

(b) represents the time series OES measurements of a faulty etching process. There is 

no easily observable significant difference.  
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2.3.2.1 Principal Component Analysis 

PCA is commonly used in multiple research areas including dimensionality reduction 

which has been discussed in a previous section. PCA is a well-known tool for fault 

detection, too. In PCA, most variance is accumulated in the first few principal 

components. By examining these principal components, faulty samples could be easily 

discriminated.  

In [60], an U.S. patent describes a method of monitoring the status of plasma in a 

chamber with OES. Real-time OES measurements were compared with reference data 

via PCA. The presence of foreign material faults could be determined by this 

comparison and the cause of the failures could also be uncovered. The method was 

also successful in the detection of other etching faults, such as faulty equipment, 

chamber wall conditioning, and so on.  

In [34], a PCA model was built for fault detection in a plasma etching process. First 

PCA was used to reduce data dimension. Then PCA was used again for fault detection 

on remaining wavelengths. According to the result, this model was easy to implement 

and it could also help with fault classification as well as FD.  

In [43], a comparison of fault detection in a semiconductor etching process was 

provided between PCA and FA. Several sensor systems were used. Measured data 

included gas flow rates, power, and OES measurements. The strengths and weaknesses 

of these methods were presented for a set of benchmark fault detection problems. 

According to the results, FA worked better than the other methods, but PCA might be 

the best choice in practice, because of its simplicity. 
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In [8], two PCA problems were discussed for FD. Firstly, the nonlinearity 

characteristics of semiconductor plasma processes make the traditional PCA approach 

difficult to implement. Secondly, PCA normally needs two control charts for the fault 

detection: T2 and SPE. This would increase operation cost significantly, compared 

with one single chart. 

2.3.2.2 Independent Component Analysis 

Independent Component Analysis (ICA) has a similar information transformation 

strategy as PCA and FA. While PCA and FA are based on second order statistics, ICA 

involves higher order statistics. ICA normally has more meaningful results than PCA 

and FA, but the ICA result is even better if the data is pre-processed by PCA first [61]. 

ICA assumes a statistical model that the multivariate dataset is a mixture of 

independent components, and ICA is the analysis to find out these hidden components. 

ICA is widely used for feature extraction and signal separation by capturing the 

essential structure of the data.  

In [62], detailed algorithms for ICA were described. ICA is rarely mentioned in plasma 

etching research, but it is a common technique in other multivariable data analysis 

research areas.  

In [63], ICA was applied on electroencephalographic data collected from sensors 

attached to the human scalp. According to the results, several conclusions were made. 

First of all, the ICA training was not sensitive to seed selection. Secondly, ICA might 

be used to separate obvious artificial variables from the others. Thirdly, overlapping 

data could also be segregated by ICA.  



CHAPTER 2 Background 

 

- 32 - 

In [64], a modified ICA method was proposed. The method was demonstrated using 

two different datasets from a wastewater treatment system and semiconductor etching 

system respectively. Like most of the other research, faults can only be detected after 

the whole process completes. Problems with ICA were also described, for example, it 

was always difficult to pick the component number and order in practice for ICA.  

2.3.2.3 Artificial Neural Network 

Artificial Neural Network (ANN) is a mathematical model which is inspired by 

biological neural networks. ANN includes a group of artificial neurons and also 

interconnections between them. Normally, an adaptive system changes its structure 

during a learning phase. This learning phase aims at providing the most matched 

outputs according to desirable values. ANN is studied as a solution to a variety of 

problems, such as pattern recognition, prediction and control. There are two ANN 

types according to two different connection patterns: feed-forward ANN and feedback 

ANN. Feed-forward ANN has no loops, while feedback ANN has loops. Applications 

of ANN are present in many research areas and it works successfully for different 

purposes. 

In [65], a FD method was proposed using the ANN. Two sensors were involved: the 

OES and the Residual Gas Analysis (RGA) sensor. The OES measured optical 

emission at 2048 different wavelengths. The RGA gained 200 atomic masses for each 

measurement. PCA was used to reduce the OES dimension as a pre-processing step. 

This method could only detect faults after collecting data for the whole duration of the 

process. 

In [34], a single OES scan was used for fault detection and classification at eight fixed 

time points. PCA was used in this case, but only low FD accuracy was obtained. 
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Therefore, the author concluded that a single OES scan could not provide a reliable FD 

service.  

In [66], a ANN method was designed for real-time monitoring in 300mm 

semiconductor manufacturing processes. A piecewise linear ANN and a fuzzy ANN 

were both included. The former ANN was use to approximate the drift trend, which 

was inevitable. The latter ANN was used to study the influence of process recipe on 

fabrication outcome. Random noise was discussed in this research, which had a 

significant effect on the accuracy of VM. 

2.3.2.4 Other Methods 

In [67], a Support Vector Machines (SVM) based method was used for FD in a 

reactive ion etching system with OES. For each OES measurement, 2048 wavelengths 

were measured from 186.58 nm to 746.85 nm. Instead of using a full set of 

wavelengths, 35 important wavelengths were selected by the PCA and then the average 

values of wavelength intensity were calculated as the input to the support vector 

machine. 100% detection accuracy was achieved with no false alarm. The problems of 

ANN were also discussed in this context. The authors argued mainly that it was very 

difficult to obtain faulty samples for the ANN training procedure. 

In [58], a new fault detection and classification method was proposed for monitoring 

of chamber state in real time. Input data was produced by an impedance plasma sensor, 

which included key system parameters including voltage and electric current. In a 

training phase, a library was created to store patterns of faulty samples. By comparing 

with this library, faulty samples were identified and classified.  
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In [57], a pattern recognition method was used for FD with OES. By calculating a 

matching rate between the testing sample and a library representing healthy samples, a 

fault could be detected successfully. Originally, the matching rate took all the OES 

scans of a complete etching process as inputs, so the fault could only be detected at a 

post-process phase. Additionally, the authors did not give necessary discussion about 

some important parts of this method. For example, the authors built the library for 

healthy samples using average intensity plus/minus 3 standard deviations. But they did 

not discuss why 3 standard deviations were used. 

2.3.2.5 Summary 

In general, most methodologies only realise FD after finishing the whole etching 

process. A few methodologies are able to detect faults at an early stage with a single 

spectral scan, but the time when the spectra are taken is normally limited to a few 

specific time points. For example, the method proposed in [57] could potentially be 

adjusted to take individual scans as input, however, there is still the problem that it 

would only take OES measurements at a few specific time points as input. Due to these 

research gaps, the SRA method is proposed in this thesis to achieve reliable early-stage 

fault detection. Additionally, the SRA method is not limited to certain pre-defined time 

points, so the flexibility of the FD system is increased.  

2.4 Experimental Industrial Dataset 

All our research is based on two time-series OES datasets, denoted D1 and D2. These 

two datasets are collected from the plasma etching process in two different IC 

manufacturing factories separately. Different IC factories have different gaseous 

recipes and system configurations for plasma generation and control. They also use 

different sensors. Because of these reasons, D1 and D2 represent different plasma 
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etching procedures and have different data structures and features. In the discussion 

that follows, for either dataset, a sample is defined as time-resolved spectrum scans for 

a complete etching process on one wafer. 

2.4.1 Demonstrating Dataset D1 

 
Figure 2-9. Illustration of dataset D1. Panel (a) presents etch rate measurements of all 

samples. Panel (b) represents OES measurements of sample A. panel (c) represents 

OES measurements of sample B. 

The dataset D1 comprises 1750 samples, and each sample includes a set of time series 

OES and one etch rate measurement. In Figure 2-9, etch rates of all samples are 

presented in panel (a). Two samples are highlighted and relevant OES measurements 

are presented in panel (b) and (c) respectively. The OES measurements are acquired 

from a 2-step etching process, and relevant etch rate is acquired at the end of the 

etching process by measuring the etch depth and etch time. The USB4000 Miniature 

Fibre Optic Spectrometer is used to measure the optical emission. Important features of 

this sensor are presented in Table 2-1 along with additional parameters that are used in 

my research, such as the sensor signal-to-noise ratio. Every spectrum scan includes 

optical intensity measurements at 2048 different wavelengths from 178 nm to 874 nm. 
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About 50 seconds are needed to finish the whole etching process. About 25 seconds 

are needed for each etching step. Different gaseous recipes are used in different 

etching steps. Gaseous species in the two steps include noble gases, fluorine and 

chlorine based compounds. There is a routine cleaning procedure between these two 

steps. It removes residue from the step 1 before step 2. However, no cleaning is ideal, 

and there will always remain some by-products on the chamber wall. This practical 

problem is one of the major causes of variance in the process output. The etch rate 

measurement which is included in every sample is common metrology data used to 

describe the output quality of an etching process. It is difficult to measure, so it is 

impracticable to use it for any efficient and timely process control system. There are 

two major research challenges associated with this dataset: a wavelength saturation 

problem and variance in the sampling time points between process runs. 

Corresponding solutions are described with the proposed IIRR method for dimension 

reduction in Chapter 3.  

Wavelength range: Grating dependent 

Optical resolution: ~0.1-10.0 nm FWHM (grating dependent) 

Signal-to-noise ratio: 300:1 (at full signal) 

A/D resolution: 16 bit 

Dark noise: 50 RMS counts 

Integration time: 3.8 ms - 10 seconds 

Dynamic range: 3.4 x 106 (system), 1300:1 for a single acquisition 

Stray light: <0.05% at 600 nm; 0.10% at 435 nm 

Table 2-1. USB 4000 Spectrometer Specifications [68]. 

 Wavelength Saturation Problem 

Saturated wavelengths can be observed as dark red flats on the top of Figure 2-10. 

This is caused by the limitation of the spectrometer when optical intensity is larger 

than the maximum measurement value of the spectrometer. Compared with other 

intensities below the limitation, the measurements on the dark red flat does not 

provide the true optical intensity value. 



CHAPTER 2 Background 

 

- 37 - 

 
Figure 2-10. Illustration of saturation problem in OES measurements. 

 Variance of Sampling Time 

All samples represent a similar etching process, but the time when each spectrum scan 

is taken and the sampling frequency varies from sample to sample. The estimated 

Probability Mass Function (PMF) plot of time intervals of all samples is presented to 

explain this problem in Figure 2-11. The time interval is calculated by the time stamp 

of one spectrum scan minus the time stamp of its previous consecutive spectrum scan 

in the same sample. Based on the calculation result, about 85% of time intervals are 

between 0.76 second and 0.77 second, and the rest intervals are between 0.776 second 

to 0.789 second. Additionally, the time when OES measurements start is also different 

across samples. Therefore, different samples have their spectrum scans at slightly 

different time points. In this case, particular data processing is necessary to normalize 

all samples in order to have the same time scale.  
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Figure 2-11. PMF of time intervals between consecutive spectra for all samples. 

2.4.2 Demonstration Dataset D2 

Dataset D2 is obtained from a different plasma etching process. This etching process is 

used for formation of a write pole mask. Three etching steps are included, as in Figure 

2-12. In etching step 1 as in Figure 2-12(a), layer 1 is etched by CF4 plasma, Ar and 

O2. In etching step 2 and 3 shown in Figure 2-12(b), the gaseous recipe includes O2 

plasma, Ar and SO2. After all three etching steps, the mask for write pole formation is 

built. Then, an ion milling process is conducted to etch into the write pole material 

based on the mask. A write pole with designed shape will be gained at the end as in 

Figure 2-12(c), after removing the mask by a lift-off process.  

There are two separate sets of consecutive OES measurements for each sample. The 

first OES measurement set OES1 comes from etching step 1, while the second OES 

measurement set OES2 comes from etching step 2 and 3. Comparing with the 

spectroscopy for D1, a different OES sensor is used for data collection, Spectrometer 

SD1024D [69]. 1201 wavelength measurements are obtained for each spectrum scan 

from 200 nm to 800 nm. Unlike D1, all samples of D2 start OES measure at 0.05 

second, and time intervals of OES sampling is always 0.10 seconds, consistently. 
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Figure 2-12. Illustration of etching process for dataset D2. Panel (a) represents the 

etching step 1. Panel (b) represents etching 2 and 3. Panel (c) represents the final write 

pole after all etching steps.  

Instead of being interested in vertical etch rate, D2 focuses on two line width (LW) 

measurements of the mask after finishing all etching steps. LW is another important 

etch parameter which is highly relevant to the IC chip quality. Ideal etching should be 

anisotropic (vertical), but actual processing also etches into the layer wall horizontally, 

which impacts LW of resist layers. Therefore, it is valuable to figure out the influence 

of plasma etching on LW. The first LW value included in this dataset is the Top LW 

Bias (TLWB), which is calculated from Top LW measurement 2 (TLW2) minus Top 

LW measurement 1 (TLW1), as in Equation (2-9). TLW1 is acquired after etching step 

1 and before step 2. TLW2 is acquired after etching step 3. The second LW 

measurement included in the dataset is Bottom LW (BLW). Based on two different 

target values of BLW (0.112 µm and 0.114 µm), all 20 samples can be separated into 

two groups. The first group with 14 samples has target BLW value 0.112 µm, and the 

second group with the remaining 6 samples has target BLW value 0.114 µm. Relevant 

analysis in my research is processed on each group separately. Like etch rate in D1, 

LW is also difficult to measure. In Figure 2-13, dataset D2 is illustrated with all LW 

values and OES of two demonstration samples. Panel (a) presents TLWB values of all 

20 samples. Panel (b) presents BLW values of all 20 samples, as well as target values. 

Panel (c) represents OES measurements of Sample A in etching step 1, while Panel (d) 
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represents OES measurements of Sample A in etching step 2 and 3. Panel (e) 

represents OES measurements of Sample B in etching step 1, while Panel (f) 

represents OES measurements of Sample B in etching step 2 and 3. 

                (2-9) 

 
Figure 2-13. Illustration of dataset D2. Panel (a) presents TLWB of all 20 samples. 

Panel (b) presents BLW of all 20 samples. Panel (c) represents OES measurements of 

Sample A in etching step 1, while Panel (d) represents OES measurements of Sample 

A in etching step 2&3. Panel (e) represents OES measurements of Sample B in etching 

step 1, while Panel (f) represents OES measurements of Sample B in etching step 2&3. 

Like D1, saturated wavelength measurements can be observed as dark red flats on the 

top of Figure 2-14. This is also caused by the spectrometer limitation that optical 

intensity cannot be measured when the value is bigger than the maximum 

measurement value of spectrometer. Compared with other intensities below the 

maximum, the measurements on the dark red flat cannot provide true optical intensity 

values. 
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Figure 2-14. Illustration of saturation problem in OES measurements. It caused by the 

spectrometer reaching its maximum measurement value. 
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CHAPTER 3. Internal Information Redundancy Reduction 

3.1 Introduction 

A novel dimension and redundancy reduction method, which we call Internal 

Information Redundancy Reduction (IIRR), is proposed for multivariable datasets. 

These datasets are based on information obtained from OES in a plasma etching 

process. OES provides real-time information on the spectral content of light emitted 

from processing plasma. This sensor type is normally high in information redundancy. 

By reducing the data dimension, expected benefits include improvement of 

computational speed and rapid identification of important variables. Compared with 

existing methods in the literature, IIRR operates directly in the original variable space, 

so it is easier to identify important variables. Additionally, the method could be reused 

and extended easily to other application domains.  

The core IIRR model comprises three sub-steps: Absolute Peak Selection (APS), the 

Iterative Ranking Process (IRP) and Optimized Peak Selection (OPS). APS filters 

variables based on peak wavelength characteristics. Then IRP and OPS reduce the 

number of wavelengths in the data further based on the linear relationship between 

variables. A new statistic, Mean Determination Ratio (MDR), is created to quantify the 

information loss after dimension reduction. IIRR is demonstrated on two real 

manufacturing datasets, D1 and D2. Practical problems such as wavelength saturation 

and non-uniform time scales are also discussed and addressed here. In order to 

quantify the information loss in the IIRR dimension reduction procedure, the original 

OES data and dimension-reduced IIRR output are used separately to predict the etch 

rate, and their prediction accuracies are compared. 
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3.2 Core Method 

The proposed method is a dimension reduction method with 3 sub-steps: APS, IRP, 

and OPS, as shown in Figure 3-1.  

 
Figure 3-1. Workflow of IIRR. 

At the beginning of IIRR, APS identifies peak wavelength variables in the input OES 

dataset  . The output of APS for a time point    is the set of wavelength indices for 

which peaks in wavelength intensity occur, at time point   , during any of the   

process runs. Formally, the output of APS is the collection of sets of peak wavelength 

indices (Equation (3-1)) 

  ̂  〈 ̂    ̂      ̂  
〉        ̂  

 {  {       }     } 

(3-1)  

   is a peak wavelength intensity at time    in at least one process run. Next, the IRP 

algorithm takes each set of peak wavelengths  ̂  
 and ranks each peak wavelength 

variable in the set based on how well it can be predicted from other peak intensity 

values in  ̂  
. Peaks that are poorly predicted by others are assumed to hold more 

significant information and are ranked more strongly. Repeating the procedure for each 

time point, the output of IRP (Equation (3-2)) is a dataset of the same dimensions as  ̂ 

containing wavelength indices in order of ranking,  

  ̂  〈 ̂    ̂      ̂  〉 

  ̂                〈          〉  
(3-2) 
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                                    ̂  
 

Finally, at each time point   , the OPS algorithm calculates a measure of how well the 

first   top-ranked peak wavelength variables can predict the full set of original 

wavelength variables. An aggregate statistical measure Mean Determination Ratio 

(MDR) is used to summarize the prediction quality for different  . A minimal value of 

  is determined under a constraint on the MDR value. The procedure is repeated at 

each time point and the final output of OPS is a time series of the minimized peak 

wavelength sets, denoted  ̃. The details of these three stages of the IIRR procedure are 

given in the subsections below. 

3.2.1 Step 1 - Absolute Peak Selection 

In the context of physics, optical emission is triggered by energy transition from high 

electronic states to low electronic states in atoms and molecules. The same atoms can 

even have various frequency combinations of light based on multiple states the 

electrons can have, so a plasma etching process will have a very complex optical 

emission output with high information redundancy. Any OES sensor will also 

introduce errors and noises into samples. However, intensities of emissions are 

concentrated on certain more pronounced wavelengths than the others, and these peak 

wavelengths stand out from the others.  

Absolute Peak Selection (APS) operates independently at each time point    and, for 

each process sample, identifies a wavelength variable as a peak wavelength if its 

intensity is greater than the intensities of neighbouring wavelengths plus the bias value 

B. B is calculated based on Equation (3-3), where      is the maximum optical 

intensity of the sensor and SNR is the signal-to-noise ratio of the sensor. Let      
 be 
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the set of wavelength intensity values {             } measured at time point    

during process run  . Then peak wavelengths within this set are identified by Equation 

(3-4). Having found  ̂    
 for all process runs          , all peak wavelength 

variables are then aggregated as explained in Equation (3-5).  

 
  

    

   
 (3-3) 

  ̂    
 {                         } (3-4) 

 
 ̂  

 ⋃ ̂    

 

 

 
(3-5) 

Finally, iterating this procedure at each time point, the complete output of APS is 

 ̂  〈 ̂    ̂      ̂  
〉  The rationale for this aggregation in the above equation is that 

the data gathered from each process run is an independent sample of an (ostensibly) 

fixed etching procedure, thus the process state should be similar for all samples at the 

same time point, but different samples could have different peak selection results 

because of measurement variance. Hence, aggregation can achieve data reduction 

without significant loss of information content by retaining all potential peaks, even if 

some of them only exist in a few samples.  

Peak wavelength detection methods have been studied and used widely in biomarkers 

identification for pathology analysis, including mass spectrometry [70] and mass-to-

charge ration measurements [23], but they are rarely applied to plasma process data. 

PCA, SPCA and FA are common methods used in dimension reduction of plasma OES, 

but all of them focus only on mathematical characteristics of OES [35, 41]. Compared 

with these methods, APS is designed to focus particularly on physical features of the 

OES data. Another remarkable advantage is that data dimension is reduced by filtering 
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wavelengths, instead of by combining original wavelengths. It is helpful for important 

wavelength identification in the further processes after IIRR.  

The pseudo code for this algorithm is given below.  

Procedure APS 

FOR every training sample 

FOR spectrum scan at every time point 

FOR every wavelength 

IF its intensity is larger than intensity of wavelengths on the left and the 

right sides plus spectrometer bias 

mark the current wavelength as a peak; 

ENDIF 

ENDFOR 

ENDFOR  

ENDFOR 

3.2.2 Step 2 - Iterative Ranking Process 

The Iterative Ranking Process (IRP) process is designed to reduce the number of 

possible peak combinations. Without IRP, a huge amount of peak combinations would 

slow down the subsequent OPS process.  

Each set of peak wavelength intensity samples  ̂  
 is treated separately by IRP, as 

follows. For each wavelength intensity variable       ̂  
, an ordinary least squares 

linear regression is performed as in Equation (3-6). 

    =                                                  (3-6) 

      are the regression coefficients and    the error term. IRP then calculates the 

coefficient of determination (the R
2
 value) of the prediction     of   , denoted by   . 
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The lowest ranked wavelength in  ̂  
 is then identified as having the largest R

2
 value 

(Equation (3-7)). 

         | ̂  
|           

   ̂  

      (3-7) 

The ranking number assigned to wavelength   is equal to the total number of peaks in 

 ̂  
. This wavelength   is then removed from the pool of peak wavelengths and the 

process is repeated on the new set  ̂  
   to yield the next ranked wavelength (rank 

number | ̂  
|    . The process repeats until only one wavelength remains in the pool, 

which is assigned the highest ranking (rank number 1). The complete output of the IRP 

process (for the time point   ) is then the ordered set of wavelength indices (Equation 

(3-8)). This IRP process is repeated for each time point to yield the final output as 

Equation (3-9). 

  ̂                〈          〉  

                                    ̂  
 (3-8) 

  ̂  〈 ̂    ̂      ̂  〉 (3-9) 

The workflow of IRP is presented in Figure 3-2. Initially, all peaks are put into a pool. 

In each round, the peak which has the strongest relationship with the remaining peaks 

in the pool is removed from the next round. The relationship is quantified by the R
2
 

value of linear regression of the given peak on the others. The whole process will end, 

if there is no peak left in the pool. Ranks of peaks are determined by the sequence in 

which peaks are removed from the pool. The later a peak is removed from the process, 

the higher rank it will have. 
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Figure 3-2. Workflow of IRP. 

Another potential ranking strategy was also tested, in which a peak is not removed 

from the pool. So there are no multiple iterative rounds and all peaks can be ranked 

only based on R
2
 values in one round. This was found to lead to an unreliable result. In 

a highly redundant dataset, most variables are very likely to having strong 

relationships with the rest when the number of variables is large. In that case, a lot of 

R
2
 values could be very close to each other. It is even possible to have a lot of perfect 

R
2
 with a value of 1. This phenomenon can be observed in the result of IRP in 

demonstration sections. The first few peaks removed have R
2
 value 1. So it is risky to 

rank all variables only based on the very similar R
2
. The multi-round IRP also has this 

problem in the first few rounds, but R
2
 values will be distinguished from each other in 

the last few rounds after highly redundant variables are removed. Therefore, IRP could 

provide more reliable ranking results for high-ranking variables at least, compared 

with the other strategies. 

Pseudo code of IRP is presented below. 

Put all peaks in pool 
peaks

Ranked peaks

For every peak in the pool, predict it from the

others, and record the accuracy (R2) of

prediction.

Find the peak with the biggest R2. record the

peak, and remove it from the pool.

Does the pool have peaks?

no
yes
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Procedure IRP 

Put all peaks in a pool 

WHILE there are peaks in the pool 

FOR every peak in the pool     

 Predict it from the other peaks in the pool; 

 Record prediction accuracy (R
2
); 

ENDFOR 

Record the peak with the largest R
2
; 

Remove this peak from the pool; 

ENDWHILE 

Peaks are ranked based on the sequence in which peaks is removed from the pool; 

 

3.2.3 Step 3 - Optimal Peak Selection 

Having ranked peak wavelength variables using IRP, the OPS procedure selects a top-

ranked subset of the peak variables. The number of peaks in this subset is minimized 

under the constraint that the prediction of all wavelength variables by the subset of 

peak variables meets a specified prediction quality target. Formally, let  ̂   be the 

ranked set of peak wavelength indices 〈          〉, for time point   , and let    be 

the size of this set. For each   {        }, the OPS procedure regresses wavelength 

intensity variable      {       }  on the set of peak wavelength variables 

〈   
    

      
〉, to yield prediction    , and calculates how well     predicts    by way 

of the R
2
 value denoted     . (Similarly to the IRP procedure, an ordinary least squares 

linear regression is used). An aggregate measure of how well the set of peak variables 

〈   
    

      
〉  predicts the full set of wavelength variables {             }  is 

calculated, by way of the Mean Determination Ratio (MDR) metric, defined by 

Equation (3-10). MDR is created to quantify the information loss after dimension 

reduction, so different combinations of variables can be compared with each other via 

corresponding MDR values. 
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∑     

 
   

 
 (3-10) 

Finally, an optimal value of  , denoted   ̌, is determined (as explained below), which 

selects the final reduced set of peak wavelength variables      〈   
    

      ̌ 
〉 for 

this time point   .  

Empirically, I have found that as   is initially decreased from its maximum value of   , 

the prediction quality (MDR value) remains at a high value and decreases very slowly. 

Eventually, as   approaches 0, the MDR begins to drop off quickly. This pattern will 

be demonstrated with two test datasets D1 and D2 in the following sections. Thus, we 

have chosen to use a threshold on the slope of      to determine the optimal value   ̌ 

that gives a small variable set but with still high     value, that is, in the OPS 

procedure   is decreased from its maximum value until the following condition 

satisfied (Equation (3-11)).  

                          (3-11) 

           is chosen to achieve a desired trade-off between prediction quality and the 

number of remaining peak variables. The above process is repeated for each time point 

to yield the final output of the IIRR procedure as  ̃  〈      
 
         〉  

Pseudo code of OPS is presented below. 
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Procedure OPS 

Put all peaks in a pool.  

WHILE MDR difference compared with previous one is smaller than the threshold 

AND there are peaks in the pool 

 Predict every wavelengths intensity of original dataset from all peaks in the pool; 

 Calculate MDR value; 

 Remove the peak with the lowest rank from the pool; 

ENDWHILE 

IF there is no peak in the pool 

 Output the last peak in the pool; 

ELSE 

 Output the peaks remaining in the pool; 

ENDIF 

 

3.3 Demonstration on Dataset D1 

In this section, the IIRR method is demonstrated on the manufacturing OES dataset D1. 

A detailed description about D1 can be found in Section 2.4.1. A sample is defined as 

an OES time-series across a complete etching process. An etch rate measurement is 

also associated with every sample. The OES measurements are the only input of the 

model, while the etch rate is used for model validation. The validation assesses 

whether the model output keeps necessary information. The etch rate is a useful metric 

for monitoring etching process, but it is difficult to measure directly. Conversely, the 

OES measurements are relatively easier to attain from the etching process. By finding 

the relationship between the OES variables and the etch rate, multiple target 

applications can be accomodated, such as virtual metrology and fault detection of etch 

rate.  
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Figure 3-3. PMF of etch rates for (a) training group; (b) testing group for 

demonstrating dataset D1. Training and testing groups present similar distributions 

here which means that they includes similar types of samples.  

All samples are divided into a training group and a testing group. Both groups have the 

same sample size, 450 samples. These two groups have similar etch rate distribution as 

shown in Figure 3-3. This training and testing organization strategy could make the 

two groups share similar OES features relevant to etch rate. Otherwise, missing 

features from testing to training would lead to failed modelling. Two dominant values 

of etch rates can be observed in the figure. Smaller etch rates are around 69 arb. units, 

while higher ones are around 74 arb. units. This difference is caused by a regular 

process of preventative maintenance in the plasma chamber during collection of the 

sample set.  

3.3.1 Pre-processes 

The previous description of the IIRR method is based on a generalized purpose of 

dimension reduction, but each particular dataset has its own unique features, and 

additional data preparation and post-processing of the data are required. In this section, 

two pre-processes are described. They are wavelength desaturation and time series 

normalization. These two pre-processes are relevant to two particular problems of 
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experimental industrial dataset D1 respectively: the wavelength saturation problem and 

variance problem of sampling time. Detailed description of these two problems can be 

found in the experimental data description section in Chapter 2.  

3.3.1.1 Pre-process 1: Wavelength Desaturation 

The wavelength desaturation process is designed to solve a problem caused by the 

limited range of measurement of the spectrometer. If wavelength intensity exceeds the 

maximum measurable value, the spectrometer only reads the maximum value. So this 

type of incorrect measurement is removed from the data. 

 
Figure 3-4. Illustration of OES measurements (a) before and (b) after desaturation for 

demonstrating dataset D1. 

The result of wavelength desaturation is demonstrated on a partial OES data set in 

Figure 3-4. Saturated measurements can be observed as dark red flats on the top of 

Figure 3-4(a). It is risky to remove such measurements, because they also carry 

information. For example, such values could tell that actual intensity is too large to 

measure at least. However, it is proved by the final validation result (the high 

prediction accuracy of system parameters after dimension reduction) that such 

information is not important. The most reasonable explanation is that saturated 
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wavelengths are redundant to other wavelengths. This explanation is quite consistent 

with the fact that a chemical element can emit multiple wavelengths.  

The proposed approach is simply to remove all wavelength variables at each time point 

that exhibit saturation, where the test for saturation is Equation (3-12). For each 

wavelength   and any sample,    is the intensity value under test,      is the 

maximum optical intensity of the sensor and   is the sensor bias which is estimated as 

Equation (3-3) with an SNR of 300:1 at full signal for the spectrometer, from [68]. 

                                            (3-12) 

Figure 3-4(b) shows the result of removal of the saturated intensity values. Over the 

full dataset, 241 of the 2048 wavelengths are removed. 

3.3.1.2 Pre-process 2: Time Series Normalization 

 
Figure 3-5. Original and normalized time series of wavelength (585.93 nm) from (a) 

sample 213 and (b) sample 525 for demonstrating dataset D1. 

Each etching process run outputs a time series of spectral intensity scans, however, the 

sequence of timestamps from one process run to another is not necessarily identical. 

As the IIRR method needs to group all samples at a given time point during its data 
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processing stages, the timestamps need to be aligned to a normalized time scale. The 

time between samples averages approximately 0.7 seconds and, over all process 

samples, the minimum final time stamp is 40.14 seconds. We set the normalized time 

scale to have 1 second intervals, with the final timestamp at 40 seconds. Having set the 

time scale, the values in each time series (process run) are transformed by linearly 

interpolating the wavelength intensity values between the points either side of exact 1 

second intervals. The process is illustrated in Figure 3-5 below with two representative 

samples from the data. 

3.3.2 IIRR Output 

3.3.2.1 Step 1 - Absolute Peak Selection 

A peak selection result is demonstrated on one spectrum scan at one time point at 6 

seconds in Figure 3-6. Originally, there are 2048 wavelengths from 178 nm to 874 nm. 

After the APS process, 48 outstanding peak wavelengths are marked in this figure. A 

similar APS process is applied independently on every spectrum scan at each 

normalized time point. Different time points have different peak sets. Physically, it is 

consistent with the etching process feature that the process is changing over time. 

 
Figure 3-6. Illustration of the APS output for demonstrating dataset D1. 
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In Figure 3-6, some peaks which are apparent to human eyes are not picked out by the 

APS algorithm. For example, an unselected peak is identified by a green arrow in the 

plot. Due to the criterion (Equation (3-4)) for peak selection in APS, such a peak is not 

selected out because intensities of its neighbour wavelengths are not significantly 

lower than its own intensity. In other words, such a peak is not discriminative enough 

compared with nearby wavelengths. Potentially, this phenomenon could imply a 

potential limitation of APS that APS cannot pick up all peaks. Hence, the current APS 

method will be studied and optimized further in future. However, based on the 

successful dimensionality reduction result which will be discussed later, it is still safe 

to say that the current version of APS is sufficient for the task, at least for 

demonstrating dataset.  

Time 

(sec.) 

Wavelength 

Nu. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Time 

(sec.) 

Wavelength 

Nu. 

0 - 4 0 21 113 

5 22 22 84 

6 49 23 77 

7 49 24 76 

8 52 25 76 

9 52 26 77 

10 51 27 76 

11 52 28 76 

12 53 29 78 

13 47 30 79 

14 48 31 84 

15 49 32 83 

16 45 33 77 

17 44 34 62 

18 45 35 49 

19 64 36 38 

20 111 37 - 40 0 

Table 3-1. Remaining peak wavelength numbers at each time point after the APS 

process for D1. 

 

Generally speaking, APS reduces the number of wavelengths from 2048 to less than 

100 at each single time point, as in Table 3-1. There are no peaks from 0 seconds to 4 

seconds, nor from 37 seconds to 40 seconds. It is also consistent with a plasma etching 
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feature that the physical reaction is weak at the beginning and the end of the process. 

At the other time points, the minimum non-zero number of peaks is 22 and maximum 

number is 113. 

3.3.2.2 Step 2 - Iterative Ranking Process 

Peaks are ranked by IRP for each normalized time point respectively. IRP is an 

iterative process. The peak which has the strongest relationship with the remaining 

peaks is removed from the next round. Ranks of peaks are based on the sequence in 

which each peak is removed. Figure 3-7 represents the relationship between removed 

peaks in each round and the relevant remaining peaks in the pool. Results are 

demonstrated at four normalized time points: 6 seconds, 18 seconds, 20 seconds and 

34 seconds respectively. This relationship is quantified by the R
2
 value of linear 

regression between variables.  

 
Figure 3-7. R

2
 of regression of the remaining peaks on the removed peaks in each IRP 

iteration round (a) at time 6 seconds, (b) at time 18 seconds, (c) at time 20 seconds, 

and (d) at time 34 seconds, as a function of remaining peak numbers for demonstrating 

dataset D1. 
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All the other IRP results share similar shapes to those shown in Figure 3-8. Generally, 

for all results, the R
2
 values are close to value 1 and do not change significantly, as the 

number of remaining peaks decreases at the beginning. This implies that peaks that are 

removed at the beginning is highly correlated with the rest of peaks. It also proves the 

existence of mathematical redundancy between wavelengths. Eventually, the R
2
 value 

will drop quickly when the remaining peaks number is small. This suggests that peaks 

with high ranks have more independent information than the others. 

 
Figure 3-8. R

2
 plot of removed peaks in IRP as a function of remaining peak numbers 

for demonstrating dataset D1. 

3.3.2.3 Step 3 - Optimal Peak Selection 

The MDR values and relevant MDR slopes with different sizes of candidate peak sets 

are presented in Figure 3-9 for all time points, based on the peak ranking list from IRP. 

The MDR remains at a high level and does not change significantly, when the number 

of peaks is relatively large. With the last few peaks, MDR drops significantly, as in 

Figure 3-9(a). The change in MDR is quantified by MDR slopes in Figure 3-9(b). By 

setting a slope threshold with a small value, peaks which do not have a significant 

impact on MDR can be removed. In order to give a clearer view, detailed results are 
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demonstrated at four normalized time points in Figure 3-10: 6 seconds, 18 seconds, 20 

seconds and 34 seconds respectively. By setting the MDR slope threshold to 0.01, the 

first peak set whose MDR value is larger than the threshold is marked as a star. The 

relevant slope value is also drawn as a straight line in each subplot. The MDR slope 

threshold value of 0.01 is chosen empirically. If this value is too large, the model 

would contain too much irrelevant information. If this value is too small, the model 

would potentially lose some of important information.  

 
Figure 3-9. (a) MDR and (b) MDR slope plot as a function of remaining peak numbers 

for demonstrating dataset D1. 

The number of remaining peaks at each time point is given in Table 3-2. 224 

wavelengths are retained in total, of which there are only 64 distinguishable 

wavelengths. There is no peak outputted from the previous APS process from 0 to 4 

seconds and from 37 to 40 seconds, so there are also no peaks outputted in this process 

for these time periods. In the other time periods, the number of peaks is reduced further 

by APS. The maximum number of peaks is 10. This maximum occurs at multiple time 

points: 10-11 seconds, 13-15 seconds, 23 seconds and 28 seconds. Minimum non-zero 

peak number is 1. This occurs at time points: 5 seconds and 36 seconds. 
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Figure 3-10. The MDR values of different sizes of candidate peak sets (a) at time 6 

seconds, (b) at time 18 seconds, (c) at time 20 seconds, and (d) at time 34 seconds for 

dataset D1. 

Time 

(sec.) 

Number of 

Wavelengths 

  

Time 

(sec.) 

Number of 

Wavelengths 

0 - 4 0 21 6 

5 1 22 8 

6 2 23 10 

7 7 24 7 

8 8 25 10 

9 8 26 8 

10 10 27 8 

11 10 28 10 

12 9 29 7 

13 10 30 4 

14 10 31 2 

15 10 32 4 

16 11 33 3 

17 9 34 3 

18 10 35 2 

19 10 36 1 

20 6 37 - 40 0 

    Total  224 

Table 3-2. Remaining numbers of peak wavelengths at each time point after the OPS 

process, for demonstration dataset D1.  

In Figure 3-11, the number of wavelengths in the original dataset and resulting number 

of remaining wavelengths after the IIRR process are illustrated with spectrum scans at 
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four time points: 2 seconds, 8 seconds, 14 seconds, and 36 seconds. After the APS 

process of the IIRR procedure, all wavelength numbers decrease significantly from the 

original 2048 wavelengths to about 60 wavelengths for these four samples. After the 

process of IRP and OPS as the last two steps, the wavelength numbers decreased 

further to less than 10 wavelengths. Concerning measurements over all time points, 

APS only retains on average 47.7073 peaks of the 2048 total wavelengths. After 

further IRP and OPS processes, the number of peaks is reduced to 5.4634 on average. 

 
Figure 3-11. Number of wavelengths of original data, the APS output, and IRP+OPS 

output for dataset D1. 

3.3.2.4 Final Output 

Information redundancy is reduced by IIRR for each time point. Finally all important 

peaks from different time points are combined together. This is the final output of the 

whole IIRR process. A sample of OES measurements before and after the IIRR 

process is presented in Figure 3-12. Dimension is reduced significantly. Based on 

dimension reducing results at all time points, only about 0.2668% wavelength 

measurements are retained in the end. A list of these important wavelengths could 

potentially help identify underling chemical species which play the most important 

roles at each time point during the etching process. 
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Figure 3-12. (a) Sample of original OES, (b) sample of peaks after IIRR for a complete 

etching process in dataset D1. 

3.3.3 Validation 

In order to assess whether IIRR retains the most useful information from the original 

dataset, etch rate is predicted from the original full OES data and the IIRR reduced 

output data separately. If similar prediction accuracy can be achieved, it would be safe 

to conclude that IIRR keeps enough information for etch rate prediction, at least. 

Wavelengths (or peaks) from different time points are treated as independent 

parameters for prediction. Three popular prediction methods are tested to provide a 

regression-independent result. These methods are MLR, PLS, and ANN.  

Relevant statistical results are presented in Table 3-3. The MAPE values are also 

provided, as well as R
2
 values. MAPE is quoted as a percentage, which is more direct 

and easier to understand than R
2
. As shown by Table 3.3, all three measures provide 

very high prediction accuracy using IIRR reduced data. The prediction accuracy is in 

fact improved by IIRR, compared with the original dataset, as measured by MLR and 

PLS. With MLR, the IIRR prediction accuracy achieves an R
2
 value 0.9439 on the 

testing dataset, higher than the R
2
 value of 0.9329 achieved using the original dataset. 

With PLS, the IIRR prediction accuracy achieves an R
2
 value of 0.9705 on the testing 
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dataset, compared to a lower R
2
 value of 0.9676 when using the original dataset. This 

is better than the result of MLR, which is most likely due to the fact that PLS is 

generally more suitable than MLR when the data dimension is large and there is high 

redundancy [71].  

Regression 

Method 
With/out IIRR 

Train Test 

R
2
 MAPE R

2
 MAPE 

MLR 
IIRR 0.9930 0.0024 0.9430 0.0070 

Original 0.9944 0.0021 0.9329 0.0074 

PLS 
IIRR 0.9802 0.0041 0.9705 0.0051 

Original 0.9805 0.0041 0.9676 0.0053 

ANN 
IIRR 0.9710 0.0042 0.9049 0.0084 

Original Too many input variables to calculate 

Table 3-3. Etch rate prediction accuracy comparison between original OES and IIRR 

output with a minimum MDR threshold, for dataset D1. 

The PLS prediction result is presented for the training dataset and testing dataset 

separately in Figure 3-13. With ANN, the IIRR prediction accuracy also achieves a 

high R
2
 value of 0.9049. There is no prediction result given for ANN with the original 

full OES, because the number of input parameters is too large to process with the ANN 

algorithm. 

 
Figure 3-13. Etch rate prediction with PLS for dataset D1. 
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3.4 Demonstration of Methods for Dataset D2 

In this section, the IIRR method is demonstrated for the second manufacturing OES 

dataset D2. A detailed description about D2 can be found in Section 2.4.2.  

In dataset D2, instead of using etch rate prediction to validate the IIRR output, BLW 

measurements of write pole are used. BLW is another important feature which affects 

the IC chip quality significantly. Ideal etching should be anisotropic (vertical), but the 

actual process also etches into the layer wall horizontally, which impacts BLW of 

resist layers. Therefore, BLW is a highly relevant and important effect in plasma 

etching processes. Based on two different target BLW values (0.112 µm and 0.114 

µm), 14 samples with the same target BLW value of 0.112 µm are used here for 

demonstration. All 14 samples are divided equally into a training group and a testing 

group. Both groups have 7 samples. Corresponding BLW values are presented in 

Figure 3-14 for training and testing groups respectively. Similarly to etch rate in 

dataset D1, the BLW data is used only for the IIRR validation in dataset D2, but is not 

part of the input dataset for the IIRR reduction procedure. A more detailed description 

of dataset D2 can be found in the background Chapter of this thesis. 

 
Figure 3-14. BLW measurements of write pole for training group and testing group for 

dataset D2. 
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3.4.1 Pre-process 

 
Figure 3-15. Illustration of OES measurements (a) before and (b) after desaturation for 

dataset D2. 

Similarly to dataset D1, the wavelength saturation problem also exists in this dataset. 

However, D2 does not require time series normalization, as the spectrum scan of all 

samples starts at 0.05 seconds and has a fixed 0.10 second time-interval. 

The result of pre-process desaturation step is illustrated in. Partial time series OES 

measurements without the wavelength desaturation process are presented in Panel (a) 

of Figure 3-15. In Panel (b) of Figure 3-15, saturated wavelengths are removed from 

the raw data.  

3.4.2 IIRR Output 

3.4.2.1 Step 1 - Absolute Peak Selection 

The result of peak selection is demonstrated for one spectrum scan at time point 0.05 

seconds in Figure 3-16. Originally, there are 1201 wavelengths spanning 200 nm to 
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800 nm. After the APS process, 38 outstanding peak wavelengths are retained. 

Similarly, the APS process is applied independently to every spectrum scan at each 

time point for both OES1 (the first etching phase in process) and OES2 (the combined 

second and third etching phases in process).  

 
Figure 3-16. Illustration of the APS output on one spectrum scan for dataset D2. 

 
Figure 3-17. Number of peaks at all time points after APS process for (a) OES1 and 

(b) OES2, for dataset D2. 

Considering all of the other time points, APS reduces the number of wavelengths from 

1201 to less than 100 at a single time point for etching step 1 (OES1), from 1201 to 

less than 80 peaks for etching step 2+3 (OES2). Relevant results are presented in 

Figure 3-17 for all time points from the training dataset. Within these peaks, only 117 

different wavelengths could be found in OES1 and 99 different peaks wavelengths in 
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OES2. Combining results from both OES1 and OES2, 140 different wavelengths are 

identified by the APS process.  

3.4.2.2 Step 2 - Iterative Ranking Process 

Similarly to the demonstration for dataset D1, Figure 3-18 represents the relationship 

between removed peaks in each round and the remaining peaks in the pool.  

 
Figure 3-18. R

2
 of regression of the remaining peaks on the removed peaks in each IRP 

iteration round (a) at time 0.65 second, (b) at time 1.85 seconds, (c) at time 2.05 

seconds, and (d) at time 3.45 seconds, as a function of remaining peak numbers for 

demonstrating dataset D2. 

Results are demonstrated at four time points: 0.65 seconds, 1.85 seconds, 2.05 seconds, 

and 3.45 seconds from OES1 respectively. All the other IRP results share similar 

shapes, shown for OES1 and OES2 in Figure 3-19. Each curve represents a set of 

spectrum scans at the same time point. All curves share similar shapes. R
2
 values are 

almost equal to value 1 when there are more than about 5 remaining wavelengths in the 

pool. This implies a very high information redundancy between removed wavelengths 

and remaining wavelengths. When the number of remaining wavelengths is less than 

about 5, there is a significant decrease in the R
2
 value for all curves. This implies a low 
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information redundancy between removed wavelength and remaining wavelengths at 

this stage. Therefore, it is reasonable to rank wavelengths which are removed earlier 

with lower scores, and give high scores to the last few wavelengths. This result is 

consistent with the conclusion for dataset D1.  

 
Figure 3-19. R

2
 plot of removed peaks in IRP as a function of remaining peak numbers 

for demonstrating dataset D2 on (a) OES1 from etching step 1 and (b) OES2 from 

etching step 2&3. 

3.4.2.3 Step 3 - Optimal Peak Selection 

The MDR values and relevant MDR slopes with different sizes of candidate peak sets 

are presented in Figure 3-20, for all time points from OES1 and OES2, based on the 

peak ranking list from IRP. MDR remains at a high level and does not change 

significantly, when the number of peaks is relatively large. With the last few peaks, the 

MDR value drops significantly, as in Figure 3-20(a) for OES1 and (c) for OES2. The 

trend in MDR indicated by the MDR slope, in Figure 3-20(b) for OES1 and (d) for 

OES2. By setting a suitable threshold with a small value on the slope, peaks which do 

not have significant impact on MDR can be removed.  

In order to give a clearer view, detailed results are demonstrated at four individual time 

points, in Figure 3-21: 0.65 second, 1.85 seconds, 2.05 seconds, and 3.45 seconds from 

OES1. By setting the MDR slope threshold to 1.00e-5, the first peak set whose MDR 

value is larger than the threshold is found and marked as a star in the plot. This peak 
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set is the OPS output, as well as the IIRR final output. The relevant slope value is also 

drawn as a straight line in each subplot. According to the particular results at these four 

time points, all of them have five peaks selected out. Due to this small number of peak 

wavelengths, any further analysis will not be difficult, such as interpretation of 

wavelengths with respect to chemical species active in the plasma.  

 
Figure 3-20. (a) MDR and (b) MDR slope plot as a function of remaining peak 

numbers for dataset D2. 

 
Figure 3-21. The MDR values of different size of candidate peak sets (a) at time 0.65 

seconds, (b) at time 1.85 seconds, (c) at time 2.05 seconds, and (d) at time 3.45 

seconds, as a function of remaining peak numbers for dataset D2. 
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3.4.2.4 Final Output 

Information redundancy is reduced by IIRR for each time point respectively. Finally 

the outputted peaks from different time points are combined together, the same as the 

IIRR process for D1. A sample of OES measurements before and after the IIRR 

process is presented for OES1 (etching step 1) and OES2 (etching step 2&3) separately 

in Figure 3-22. Dimension is reduced significantly. Based on dimension reduction 

results at all different time points, only about 9 of 2048 wavelength measurements 

(0.4200%) remain at the end for both OES1 and OES2.  

 
Figure 3-22. OES1 from etching step 1 illustration (a) before IIRR and (b) after IIRR. 

OES 2 from etching step 2&3 illustration (c) before IIRR and (d) after IIRR for 

demonstrating dataset D2. 

All remaining wavelengths are listed in Table 3-4. This wavelength list could 

potentially help identify underling chemical species which play the most important 

roles at different etching steps. 

 OES1  OES2  

W
av

el
en

g
th

 

L
is

t 

(n
m

) 

773.50 772.00 

776.50 773.50 

778.00 776.00 

780.00 779.50 

786.50 786.50 

Table 3-4. Wavelength list of the final IIRR output for demonstrating dataset D2. 
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3.4.3 Validation 

For validation of the IIRR output, BLW is predicted from the original, full D2 OES 

dataset and the IIRR reduced output separately. As for dataset D1, wavelengths (or 

peaks) from different time points are treated as independent parameters for prediction 

for dataset D2. Unlike the demonstration on dataset D1, only two prediction methods 

(MLR and PLS) are tested, while ANN is excluded from this validation because the 

number of spectrum scans in each sample is too large an input for ANN. There are 556 

spectrum scans from OES1 and 1668 spectrum scans from OES2, and each spectrum 

scan has intensity measurements at 1201 different wavelengths. 

Relevant statistical results are presented in Table 3-5. MAPE and R
2 

values are 

provided. Using MLR and PLS, high prediction accuracy is achieved for the training 

dataset with or without the IIRR processing of data, but low prediction accuracy is 

obtained from the testing dataset. The average MAPE is about 0.1489 for all cases with 

or without IIRR process. Compared with D1 which has 900 samples, D2 only has 14 

samples in total, and 7 samples are used for training while the other 7 samples are used 

for testing. Each sample has intensity measurements on 1201 different wavelengths. 

Therefore, the number of variables for prediction is much larger than the number of 

samples. The over-fitting problem can occure in this situation, which could be a 

reasonable explanation for this poor prediction result. However, there is still no 

significant loss on prediction accuracy by using IIRR, even the absolute accuracy is 

not good. With MLR, the IIRR prediction accuracy achieves R
2
 a value of -1.1094 on 

the testing dataset, which is very close to the R
2 

value of -1.0346 achieved by the 

original dataset. With PLS, the IIRR prediction accuracy achieves an R
2
 value of -

2.4909 on the testing dataset, also very close to the R
2
 value of -2.4960 achieved by 

the original dataset.  
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Regression 

Method 

With/out 

IIRR 

Train Test 

R
2
 MAPE R

2
 MAPE 

MLR 
IIRR 0.9330 0.0081 -1.1094 0.1342 

Original 0.9806 0.0043 -1.0346 0.1292 

PLS 
IIRR 1.0000 5.4490e-15 -2.4909 0.1657 

Original 1.0000 7.9355e-14 -2.4960 0.1665 

Table 3-5. BLW prediction accuracy comparison between original OES and the model 

output with a minimum MDR threshold for demonstrating dataset D2. 

 
Figure 3-23. BLW prediction for testing dataset. Panel (a) represents MLR result on 

raw data without IIRR process. Panel (b) represents MLR result on IIRR output. Panel 

(c) represents PLS result on raw data without IIRR process. Panel (d) represents PLS 

result on IIRR output for demonstrating dataset D2. 

The MLR and PLS prediction results are also presented on testing dataset separately in 

Figure 3-23. Distribution of all predicted values is similar between the output of the 

original dataset and the output of IIRR. Therefore, it can be concluded that the IIRR 

does not have information loss for BLW prediction, at least on dataset D2.  
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3.5 Discussion & Conclusion 

The new dimension reduction method IIRR is presented and evaluated in this chapter. 

The method targets multivariable OES datasets in the IC fabrication etch process and it 

is demonstrated using two different manufacturing datasets D1 and D2.  

In order to assess whether IIRR retains useful information after dimension reduction, 

the original OES and the IIRR outputs are used separately to predict etch rates for 

dataset D1 and predict BLW for dataset D2 separately. Three different prediction 

methods are used to provide a regression-independent result, MLR, PLS, and ANN. 

For D1, all three of them provided very high prediction accuracy using the IIRR 

reduced dataset. Prediction R
2
 values are larger than 0.90 in all cases. IIRR also 

improved the MLR and PLS prediction accuracy, compared with the original dataset. 

So it can be concluded that useful information is kept and noise is removed by 

dimension reduction in IIRR. This conclusion is reliable at least for etch rate prediction 

in this case. For D2, there is still no significant loss on prediction accuracy by using 

IIRR, even though the absolute prediction accuracy is not good with either MLR or 

PLS. The poor prediction accuracy is expected, because there are only 14 samples in 

this dataset, too few to build a reliable prediction model. ANN is not tested with D1, 

because the number of input parameters is too large to process using a standard PC. It 

also can be concluded safely that IIRR does not have information loss for BLW 

prediction at least on dataset D2. As for results from both D1 and D2, there is no 

information loss from IIRR for etch rate prediction in D1 and BLW prediction in D2.  

Compared with the other research work (e.g. based on PCA, ICA, etc.), IIRR operates 

directly in the original variable space, identifying peak wavelength emissions and the 

correlative relationships between them. Instead of creating new variables, as is usual in 



CHAPTER 3 Internal Information Redundancy Reduction 

 

- 74 - 

other methods in the literature, IIRR picks up a subset of the original variables. This 

facilitates identification of important variables. Additionally, the result could be 

extended easily to different applications. For example, the dimension of OES 

measurements could be reduced further after IIRR, if the relationship with etch rate is 

considered as part of the input dataset. The new low-dimensional output would then be 

more tailored to system monitoring of etch rate.  

In order to provide a more comprehensive evaluation of IIRR, it is compared with two 

popular dimensionality reduction methods: PCA and FSCA. All of them are 

implemented for dataset D1. In the PCA implementation, Kaiser’s stopping rule 

(components whose latent variables are larger than 1 are retained) is used to identify 

up principal components. In FSCA, components are selected based on a cumulative 

variation explained [47] value of 0.99, that is the first few components whose 

cumulative variance exceed 0.99 are retained. 

Dimensionality reduction results, and the corresponding validation results (etching rate 

prediction with MLR), are presented in Table 3-6. IIRR retains the smallest number of 

variables, and gives the best etching rate prediction result (R
2
 value of 0.9430) on the 

testing data.  

Method Remaining Ratio 

after Dimension 

Reduction 

Train Test 

R
2
 MAPE R

2
 MAPE 

Original 100.0000% 0.9944 0.0021 0.9329 0.0074 

PCA 14.1935% 0.9954 0.0017 0.9410 0.0067 

FSCA 24.8011% 0.9956 0.0018 0.9260 0.0079 

IIRR 0.2668% 0.9930 0.0024 0.9430 0.0070 

Table 3-6. Comparison of etching rate prediction models with MLR based on original 

OES and different dimensionally reduction methods respectively for demonstrating 

dataset D1. 

It would always be better if IIRR could be tested on more datasets, in order to prove its 

stability and consistency. However, the datasets used in this thesis come from real 
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manufacturing processes, which are normally difficult to obtain because of a 

considerations of commercial confidentiality, so this thesis can only focus on these 

datasets. However, since IIRR works successfully on two different datasets which 

come from different etching processes, different sensor models, and different 

companies, it is still relatively safe to conclude that IIRR provides a stable and 

consistent solution for the dimensionality problem in OES datasets. 
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CHAPTER 4. Similarity Ratio Analysis 

4.1 Introduction 

Fault detection (FD) is a very important research objective highly relevant to the 

performance of the IC fabrication control systems. A successful FD mechanism can 

improve the IC fabrication process quality and decrease equipment downtime with 

small cost [8]. However, traditional FD technologies have two common problems: 

potentially high cost and long-time delay before a fault is detected. Because of real-

time monitoring and non-intrusion features, OES monitoring is widely used for FD as 

a potential replacement for traditional FD technologies. However, most current 

research only realizes FD after finishing the whole etching process. Few 

methodologies are able to detect faults at an early-stage with a single spectrum scan. 

However, there is some common limitation associated with these methods. For 

example, existing early-stage FD methods [57] can only take spectrum scans at certain 

pre-defined time points, which impacts the flexibility of the methods negatively.  

In order to address these problems, a novel Similarity Ratio Analysis (SRA) method is 

proposed in this thesis. Compared with previous research, the SRA method can detect 

faults at an early stage of the etching process. The OES data is also not limited to 

certain time points by the SRA, so the fault detection system can be more flexible 

because the timetable for the OES sampling can be adjusted based on real-time system 

feedback. System faults are detected by checking a new statistic Similarity Ratio (SR) 

produced with certain conditions. A confidence level is also provided as a reference for 

the system alarm triggered. According to the results using the example dataset (the real 

manufacturing OES dataset D1), this method can give an alarm for a system fault at 

about the 6
th

 second in a 45 second faulty etching process.  
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4.2 Method 

The SRA method is based on a supervised training framework. A training dataset is 

used to build a library for healthy samples. In the context of plasma etching, the 

sample is defined as a time series of the OES spectrum scan for a complete etching 

process on one wafer. In real time SRA fault detection, a single testing spectrum scan 

is compared with the library at relevant time points and corresponding SR values are 

calculated. Then a fault detection mechanism is implemented based on the SR values. 

In the rest of this section, the basic SRA framework is discussed first, followed by the 

description of the SRA method for fault detection.  

4.2.1 Library Calculation 

The SRA library is created to capture common features shared by all healthy samples. 

Each OES spectrum has intensity values at the same set of wavelengths, so a boundary 

function is computed for each wavelength individually. A detailed workflow of the 

SRA library building is presented in Figure 4-1.  
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Figure 4-1. Workflow of building the SRA library in SA framework. 

The boundary function describes the intensity range of healthy samples at certain 

wavelengths against time. Each wavelength has a pair of fitting functions to describe 

its upper boundary and lower boundary. All these functions of different wavelengths 

comprise the SRA library, as Equation (4-1). )(tUBFi
and )(tLBFi

represent the upper 

boundary function and the lower boundary function over time t  for the i
th

 wavelength, 

respectively. The total number of wavelengths is n . 
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Detailed calculation of boundary functions 
iUBF  and 

iLBF  for a single wavelength is 

illustrated in Figure 4-2. In our example dataset D1, each sample has a unique 
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timetable to take spectrum scans, but all training samples derive from the same type of 

healthy etching process. Artificial data from only two samples is presented in the 

figure to provide a clear description of the method. Spectrums from different samples 

are re-ordered by time. A moving window is applied and average intensity   and 

standard deviation  , for each wavelength, are obtained within each window. Upper 

and lower boundary values are calculated at     . m  is the standard score used 

which is determined by using a SR threshold (FD_Threshold) for fault detection from 

a given training dataset (more detailed discussion of this is in given in the results 

section). 

It is worth noting that there is no any pre-assumption on wavelength intensity 

distribution type here. Actually, it is difficult to find a given distribution which can be 

applied to intensity measurements for each wavelength and at each time point. 

However, according to Chebyshev’s inequality theory, formula  m can be applied, 

regardless of distribution type. For example, 89% of values are in the range of  3  

if they fit to a normal distribution. However, if the distribution type is arbitrary, we can 

still say that 75% of values are in the range  3  according to Chebyshev’s 

inequality. Hence, the boundary function can be used generally for any type of 

unknown distribution. 
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Figure 4-2. Illustration of boundary calculation for a single wavelength. Artificial data 

of two samples is demonstrated. A moving window is used to compute mean   and 

standard deviation   of intensity values inside the window. Upper and lower 

boundary values are calculated by     . Corresponding fitting functions are 

calculated with the piecewise linear interpolation. 

Corresponding fitting functions are calculated from these distributed boundary values 

using a piecewise linear interpolation. The window size is set to 1.0 second. The 

window is moving at a distance of half of its length, 0.5 second in this case, such that 

the left half of every window overlaps with the previous window and the other half 

overlaps with the next window. According to experimental results, such a design gives 

a smooth fitting function. This fits with the generic feature of plasma etching that 

wavelength intensity changes slowly throughout the whole process. A similar moving 

window method was also used to address the process shift problem in [59]. Detailed 

discussion of the window size and sigma number is given in the section Results and 

Discussion of this chapter. If spectrums scans from all samples are already well 
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synchronised, the moving window is not needed. In that case, intensity values of the 

same wavelengths are grouped by the timestamps and corresponding boundary values 

are calculated in the same way.  

Pseudo code for library calculation is presented below. 

Procedure libraryCalculation 

FOR every wavelength 

 Put intensity measurements at different time points into a single array; 

 Sort the measurements in time sequence; 

 FOR every time period of moving window 

  Calculate mean 


 and standard deviation   of all intensity measurements 

falling in the window; 

  Calculate upper bound value with     ; 

Calculate lower bound value with     ; 

 ENDFOR 

 Calculate upper boundary function based on all upper bound values at different 

time points; 

  Calculate lower boundary function based on all lower bound values at different 

time points; 

ENDFOR 

4.2.2 Similarity Ratio Calculation  

The Similarity Ratio (SR) calculation is based on a comparison between the 

boundaries in the SRA library and individual spectrum scans. Upper bound values and 

lower bound values are calculated for each wavelength, using boundary functions in 

the library as described previously. )(tUBFi  and )(tLBFi  are respectively the upper 

bound value and lower bound value for the i
th

 wavelength at time t . tiWL ,  is the actual 

intensity value of this wavelength at time t  for the process being monitored. A 

similarity indicator tiSI , is used to record whether this wavelength at time t is between 

the boundaries, as per Equation (4-2). The same procedure is repeated for all 



CHAPTER 4 Similarity Ratio Analysis  

 

- 82 - 

wavelengths. Dividing by the total number of wavelengths n , the tSR  value at time t  

for a full spectrum scan is outputted as per Equation (4-3). The potential range of SR is 

from 0% to 100%. For example, an SR value of 90% means that 90% of the 

wavelengths of the sample spectrum are similar to the healthy library.  
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Pseudo code for similarity ratio calculation is presented below. 

Procedure SR Calculation 

Set SI to 0;  

FOR each wavelength 

 Calculate upper bound value based on given time point; 

 Calculate lower bound value based on given time point; 

 IF wavelength intensity is in the range of lower bound value and upper bound value 

  SI = SI+ 1; 

ENDIF 

ENDFOR 

Calculate SR: is equal with SI divided by wavelength total number; 

 

4.2.3 Fault Detection Mechanism 

The workflow of the proposed SRA method is shown in Figure 4-3. The fault detection 

mechanism is implemented by comparing the tSR  value with a SR threshold 

(FD_Threshold). If the SR value is below the threshold, an alarm will be triggered at 

time t . The alarm will be sent to external applications, which would reply with 

necessary actions, such as stopping the gas supply to the processing chamber. For the 
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demonstration, the FD_Threshold is set to 90%. Detailed experimental results are 

presented in the next section. However, this threshold can also be adjusted to 

customise the FD service with different sensitivities. 

 
Figure 4-3. Workflow of Real-time FD with SRA. A SR value is computed for each 

real-time spectrum scan. A SR warning is triggered if the SR value is below SR 

threshold (FD _Threshold). The alarm will be sent to external applications, which 

would reply with necessary actions. 

Pseudo code for fault detection mechanism is presented below. 

Procedure FD 

IF SR is smaller than the threshold 

 Trigger an alarm; 

ENDIF 

4.3 Results and Discussion 

The SRA method is demonstrated on dataset D1. D1 is a real manufacturing dataset 

from an IC fabrication company. A 2-step etching process is monitored by an 

USB4000 Miniature Fibre Optic Spectrometer. A sample is defined as time-resolved 

spectrum scans for a complete etching process on one wafer. Every spectrum scan 

includes optical intensity measurements at 2048 different wavelengths from 178 nm to 
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874 nm. An etch rate measurement is also included with every sample. It is a common 

metrology dataset used to describe the output quality of an etching process. It is 

difficult to measure, so it is impracticable to use it for real time fault detection. In the 

demonstration, the etch rate is only used as a reference for selection of healthy samples 

and faulty samples for model validation. It is not needed after the SRA library is built. 

Actually, the SA model does not need such a precise etch rate measurement for 

training. Any brief information which can identify whether a sample is good or bad is 

sufficient, such as knowledge based on some practical experiments of the operators. 

This feature gives fewer constraints and more flexibility to the usage of the model.  

For the model training, 200 healthy samples with similar etch rate outputs are selected 

from dataset D1. The SRA library is built on these samples for a healthy etching 

process. For model testing, another 118 healthy samples are used, as well as 7 faulty 

samples. All healthy samples share similar etch rates around 69 arb. units. All faulty 

samples have etch rates around 54 arb. units. These faulty samples are determined 

from detailed post-processing defect analysis of the product. The distribution of etch 

rates is presented in Figure 4-4 as a PMF histogram. Healthy samples from training 

and testing datasets have similar distributions, while the faulty samples are 

distinguished from the healthy ones. In the following model examination, this data 

selection helps to validate whether the model triggers a positive alarm for the faulty 

samples, and does not trigger negative alarms for the healthy samples.  
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Figure 4-4. The PMF plot of etch rate values in training samples and testing samples 

respectively. Panel (a) represents the PMF of training samples, which only include 

healthy samples. Panel (b) represents the PMF of testing samples, which include 

healthy samples similar to the training samples and faulty samples. 

It is worth noting that first wafer effect is not taken into account for the current SRA, 

which might impact sensitivity of the SRA library. The first wafer effect means that 

the first wafer in each lot through the chamber normally gives relatively different 

etching results compared with the subsequent wafers, because the first wafer is 

normally processed in a transient chamber environment before the chamber reaches 

equilibrium. Hence, ideally, the first wafers should be processed separately from the 

others. However, due to the limited sample resource, this potential problem is left as 

future work, which will require more data.  

In the following section, the SRA library calculation result is presented at first. 

Corresponding fault detection results are presented at the end.  

4.3.1 Library Calculation Results 

In this section, the resulting SRA library derived from dataset D1 is presented. The 

process shift problem and two system control parameters (moving window size and 

sigma number) are first discussed. Finally a detailed view of the library is provided. 
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4.3.1.1 Survey of Process Shift & Moving Window Size 

Process shift is a very common practical problem in modelling of the plasma etching 

process. It is usually caused by small changes in a system variable [59]. It also can be 

caused by the sensor readings being taken at a different phases for different samples. It 

normally does not affect the overall properties of the output data, but it can lead to 

slightly different measurements at the same time point in different process samples. In 

Figure 4-5, process shift is illustrated at wavelength 253.29 nm for two samples from 

our data. These two samples have very similar etch rate values, about 67.548 arb. units 

for both of them. They also share very similar curve shapes, which imply similar 

etching features. But a relative shift in time can be observed between them. A 

significant modelling bias could be introduced by this shift, if the model assumed 

synchronised measurement time points in all samples.  

In the previous section on method description, a moving window is introduced to 

calculate boundary values based on the mean and standard deviation of the values 

falling within a window. This produces a smooth boundary function by focusing on 

only major features of the data. This is consistent with an etching feature that the 

whole chemical environment is changing slowly across the whole process. Considering 

the process shift problem, the moving window can also include all shifted values 

whose shifting distances are less than the window size. So the outputted boundary 

functions are capable of resolving the shift problem. Abnormal outliers are also 

excluded by this method, because boundary values are based on the most common 

sample scenarios represented by mean and standard deviation. Theoretically, the 

window size should be large enough to include all values at the same process phase, 

but too large a window size will lead to a reduction in detail in the time series 

information.  
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Figure 4-5. Illustration of process shift between two healthy samples with similar etch 

rate at wavelength 253.29 nm. Etch rate of both sample A and B are the same, 67.55 

arb. unit, which implies that a similar etching output quality is shared by them. Sharps 

of the two curves are similar to each other, but there are differences in time series. A 

clear time shift can be observed.  

In order to find a suitable window size, a comprehensive survey is conducted for the 

relevant time shift of all training sample time series. One sample is selected out as a 

reference. The other samples are compared against the reference sample with a cross-

correlation analysis, and the relevant shift time is calculated. Statistical results are 

presented in Figure 4-6. According to this plot and corresponding statistical results, 

86.43% of process shifts concentrate on the range from about -0.5 second to 0.5 second. 

Hence, most shift distances in the example dataset would be covered by using a 

window size of 1.0 second. In that case boundary values will be computed every 

second. Other methods to solve this misalignment problem (e.g. Dynamic time 

warping, covariance optimized warping [72] and linear time scaling) normally need to 

wait for complete time series data and are computationally expensive [73], so they 

cannot be easily used for early-stage FD, unlike the proposed moving window method. 
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Figure 4-6. The PMF plot of process shift time in training samples. 10.55% samples 

has shift distance less than 0.1 second, 51.26% shift distances are less than 0.5 second, 

86.43% shift distances are less than 1 second, 96.48% shift distances are less than 1.5 

seconds, and 99.50% shift distances are less than 2 seconds. 

4.3.1.2 Sigma Number Selection 

The SRA library is built with  m  boundaries for each wavelength from healthy 

training samples. For each wavelength,   is the average value of all intensities falling 

in the moving window, and   is the standard deviation. By choosing different sigma 

numbers m , different SRA libraries are tested and the corresponding minimum SR 

values of training samples are presented in Figure 4-7.  

 
Figure 4-7. Plot of minimum SR values for training samples with different sigma 

numbers in the boundary function. By setting a selection threshold (threshold 90% plus 

a safety margin of 5%), sigma number 7 is selected as the smallest sigma number 

whose corresponding minimum SR value of training samples is higher than 95%. 
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Because the SRA library is based on healthy training samples, the minimum SR values 

of these samples should be close to an SR value of 100% as far as possible. In that case 

the SRA library would more accurately represent healthy samples. On the other hand, 

the sigma number should not be too large as the library would then be too general to 

reliably distinguish between faulty and healthy samples. Hence, Figure 4-7 is used to 

decide a suitable sigma number based on selection of the threshold (FD_Threshold) for 

fault detection. This threshold is also used in the fault detection mechanim, as 

mentioned previously. In the following demonstration, the FD _Threshold is set to 90% 

plus a safety margin of 5% to increase the reliability of fault detection. The optimal 

sigma number is chosen to satisfy the following condition: choose the smallest integer 

sigma number whose minimum SR value is higher than FD_SRW_Threshold plus the 

safety margin. In that case, sigma number 7 is chosen with a minimum SR value of 

99.32% in the training data set. A range of other threshold values have also been tested, 

and none triggers a false alarm. Multiple true alarms are triggered with most threshold 

values, except for thresholds below 20% or above 95%, due to either a too specific or 

too general SRA library. 

4.3.1.3 Library View 

For each wavelength in the dataset D1, a pair of boundary functions (an upper 

boundary and a lower boundary) is built independently. 2048 pairs of boundary 

functions are created in total, and three of them are demonstrated in Figure 4-8.  
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Figure 4-8. Illustration of a real SRA library at three wavelengths. The three 

wavelengths are 363.68 nm, 540.07 nm, and 705.93 nm. The original full spectrum 

includes wavelengths from about 178 nm to 874 nm.  

In Figure 4-9, the SRA library function is illustrated at a single wavelength 486.46 nm, 

plus training and testing data. Intensity values at the same wavelength are shown in 

this figure from one training sample, one healthy testing sample and one faulty testing 

sample. The training sample and the healthy testing sample are within the boundaries, 

while the faulty testing sample has multiple intensity values which are outside the 

boundaries.  

 
Figure 4-9. Illustration of SRA library in time series on wavelength 486.46 nm.  
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Figure 4-10. SA Comparison with a partial testing spectrum. The partial spectrum 

includes wavelength intensity measurements from about 720 nm to 760 nm. Panel (a) 

is result based on a healthy sample. Panel (b) is results based on a faulty sample. 

Figure 4-10 gives another view on the comparison result between the library and 

testing data by looking at multiple wavelengths at a certain time point. At about the 

same time point of 10 seconds, one healthy testing and one faulty testing spectrum 

scan are compared with the SRA library separately over the wavelength range from 

720 nm to 760 nm. If a wavelength intensity measurement falls within the boundaries, 

it is marked in green. On the other hand, if a wavelength intensity is outside of the 

boundaries, it is marked in red. Considering the results for a complete spectrum scan, 

the healthy testing spectrum scan fit well to the SRA library, while the faulty testing 

spectrum scan is significantly different from the SRA library. Therefore, the ability of 

the SRA library to describe healthy sample and separate faulty samples is validated.  

4.3.2 Fault Detection Results 

In the previous section, surveys of the window size and sigma number decided suitable 

parameter values for this particular dataset: 1.0 second for the window size and 7 for 

the sigma number. In this section, using these values, the proposed fault detection 

method is evaluated. 
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4.3.2.1 Time-series SR 

Fault detection results are demonstrated with all healthy testing samples and a typical 

faulty testing sample in Figure 4-11. The other faulty samples are quite similar to this 

one. Each sample includes a SR time series for a complete etching process. The SR 

values of the healthy sample are drawn in green, and the SR values of the faulty 

samples are drawn in red. The fault detection threshold (FD_Threshold) is marked as a 

yellow straight line. All dots represent SR values which are above the threshold. The 

alarm is marked as a triangle. For the healthy samples which overlap in the figure, no 

alarm is triggered. According to an additional survey, 99.64% of the SR values are 

higher than 99.99% and the minimum SR value is 99.71%, which implies that the SRA 

library is carrying enough features for the entire etching process of healthy samples. 

For the faulty sample, multiple alarms can be observed. Beside the vertical SR axis on 

the left, an extra confidence level axis is also provided, calculated as 100% minus the 

SR value. This gives the user of the method extra information about the alarms 

triggered. The lower the SR value is, the higher the confidence the alarm is correct.  
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Figure 4-11. Fault detection result with optimal sigma number 7.All 118 healthy 

testing samples and one typical faulty testing sample are presented. For the healthy 

samples, no alarm is triggered. All of them overlap with each other and have similar 

SR values which are close to SR value 100%. For the faulty sample, multiple faulty 

alarms are triggered from an early-stage in the process. 

It is noted that sigma number selection is an important factor which impacts the fault 

detecion results significantly. Accurate fault detection results presented in Figure 4-11 

validate that the method for sigma number selection (the smallest sigma number whose 

minimum SR value should be higher than FD_Threshold plus a safety margin.) is 

successful. If FD_Threshold is still set to 90% but sigma number 4 is chosen, for 

example, instead of the optimal value of 7, corresponding fault detection results are 

shown in Figure 4-12. The results show that incorrect sigma number selection leads to 

multiple false alarms (green triangles in plot) triggered by healthy samples. 
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Figure 4-12. Fault detection result with non-optimal sigma number of 4. All 118 

healthy testing samples and one typical faulty testing sample are presented. For the 

healthy samples, multiple warnings and alarms are triggered.  

In Figure 4-13, the FD results of all 7 faulty testing samples are shown. All of them 

have a similar SR curve shape. No alarm is triggered at the beginning of etching step 1, 

transition from step 1 to step 2, or at the end of the step. This phenomenon is 

consistent with the etching feature that optical emission is weak at these three time 

periods, so no significant difference can be found between samples. 
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Figure 4-13. SR values of all 7 faulty testing samples. 

The earliest first alarm is triggered at about 6.53 seconds in sample 4, and the latest 

first alarm is triggered at about 7.08 seconds in sample 3, as shown in Table 4-1. For 

each faulty sample, the average time of the first warning is about 6.75 seconds. 

Considering all faulty and healthy samples, early-stage fault detection is achieved with 

100% accuracy. 

Faulty Sample ID 1 2 3 4 5 6 7 Mean 

Time of 1
st
 Alarm (sec.) 6.81 6.56 7.08 6.53 7.00 6.55 6.73 6.75 

Table 4-1. Time of the first alarm triggered in 7 faulty samples. 

4.3.2.2 Post-process SR 

The average SR values for a complete etching process are also calculated based on the 

full SR time-series. The result is presented for training samples, healthy testing 

samples and faulty testing samples separately in Figure 4-14. All training samples and 

healthy testing samples have average SR values of around 98%. All faulty testing 

samples have average SR values of around 68%. Faulty samples can be easily 

identified from the healthy ones by using a simple threshold between them. Compared 
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with the SR time-series, a bigger SR gap provides a more reliable fault detection result 

overall. Using an average SR may be a good option, when early-stage fault detection is 

not required.  

 
Figure 4-14. The average SR value plot of an entire etching process with training and 

testing dataset. All training samples and healthy testing samples have average SR 

values around 98%. All faulty testing samples have average SR values around 68%. 

Faulty samples can be easily identified from the healthy ones by using a simple 

threshold (yellow line) between them. 

Since PCA is also commonly used for FD, a PCA-based method is implemented based 

on the same set of training and testing datasets for post-process FD, in order to give a 

comparison with the proposed SRA methods. In this approach, average wavelength 

intensities across an entire etching process are calculated for each wavelength and each 

sample. Then PCA is applied to the average wavelength intensities of training samples 

to get corresponding coefficients for PCA. Finally, PCs are calculated for all training, 

healthy testing and faulty testing samples. The first two PCs are presented in Figure 

4-15. Faulty samples are easily separated from the healthy ones in the plot. Hence, the 

PCA method also works in this case as well as the SRA method for post-process FD. 

However, PCA is not easily used for the other FD scenario: early-stage FD. In order to 

use PCA at each time point, samples need to have OES measurements at the same time 
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points, but the demonstrating dataset does not have that. In contrast, SRA does not 

have such a problem.  

 
Figure 4-15. Plot of the first two PCs from an alternative PCA method for FD. This 

PCA method is based on the same set of training and testing samples as SRA. 

4.4 SRA with IIRR 

Since a dimensionality reduction method IIRR is introduced in Chapter 3 and is 

proposed as a pre-processing step for OES data for a range of different application, in 

this section the SRA method is combined with IIRR and tested for fault detection 

purposes. Compared with the previous stand-alone SRA, a different training dataset is 

used to build the SRA library, but tested on the same 7 faulty samples. First IIRR is 

applied to the training dataset, and key wavelengths are identified. Then SRA is 

applied to the key wavelengths for fault detection, instead of using the entire original 

OES dataset. 

After the IIRR process, 64 key wavelengths are picked out from 2048 of the original 

wavelengths to represent the original dataset. In SRA, FD _Threshold is set to 90% 

plus a safety margin of 5%, the same as in the previous experiment. In the first step of 

SRA, sigma number 8 is selected to build the SRA library. Sigma number 8 is the 
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smallest sigma number, in this case, whose minimum SR value of training samples is 

higher than FD_SRW_Threshold plus the safety margin. The minimum SR value of all 

training samples is 0.9531. Hence, it is safe to say that training samples are well 

represented by the SRA library.  

Fault detection results for SRA with IIRR are presented in Figure 4-16 for all healthy 

and faulty samples. No negative alarm is triggered by healthy samples, and every 

faulty sample triggers multiple alarms.  

Compared to FD results for stand-alone SRA, SRA with IIRR provides very similar 

FD results. The first alarm time of faulty samples are presented in Table 4-2 for these 

two approaches respectively. The first alarm is triggered at almost the same time for 

both approaches. Hence, the IIRR-SRA method provides almost the same FD 

capability compared with the stand-alone SRA method.  

 
Figure 4-16. Fault detection result of IIRR-SRA. All healthy testing samples and faulty 

testing sample are presented. For the healthy samples, no alarm is triggered. All of 

them overlap with each other and have similar SR values which are close to SR value 

100%. For the faulty samples, multiple faulty alarms are triggered from an early-stage 

in the process. 
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In terms of difference in computational cost, IIRR-SRA expends extra time for 

dimensionality reduction, but it is only run once when building the SRA library. Once 

the library is built, the IIRR-SRA computation takes a much smaller number of 

wavelengths as input (64 key wavelengths of 2048 in this experiment), so IIRR-SRA 

can execute faster than stand-alone SRA in real-time FD.  

 
Faulty Sample ID 1 2 3 4 5 6 7 Mean 

Time of  

1
st
 Alarm 

(sec.) 

Stand-alone SRA 

(without IIRR) 
6.81 6.56 7.08 6.53 7.00 6.55 6.73 6.75 

IIRR- SRA 6.81 5.80 6.31 6.53 7.00 6.547 6.73 6.53 

Table 4-2. The first alarm time comparison with stand-alone SRA and SRA combined 

with IIRR. Similar FD results are gained. 

Additionally, since SRA is demonstrated on a different training dataset and good FD 

results are achieved, stability of the proposed SRA method is indicated. 

4.5 Discussion & Conclusion 

It has been shown that the proposed SRA method is effective and stable for early-stage 

fault detection with a real manufacturing OES dataset from a plasma etching process. 

For these types of processes, early-stage detection can help to reduce overall process 

cost. In our method, spectrum scans are not limited to certain time points but use all 

available time-domain data, where process shift is accounted for by using a windowing 

method. Based on a trade-off between the potential cost caused by false alarms and 

time delay before correct alarms are raised, users can customise the sensitivity of the 

model. 

OES datasets from real manufacturing processes are always difficult to obtain, due to 

commercial confidentiality considerations. Also dataset D2 does not have faulty 
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samples, so the SRA method is only demonstrated for dataset D1. However, stand-

alone SRA and IIRR_SRA are tested based on two different training sample sets, and 

both show successful FD results. Hence, it is still relatively safe to conclude that SRA 

is a stable and consistent solution for FD at least for OES datasets.    
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CHAPTER 5. Conclusions & Future Works 

Plasma etching is one of the most important processes for the IC fabrication in the 

semiconductor industry. In order to understand and control the etching process, OES is 

widely used. Compared with other diagnostic technologies, OES has the significant 

advantages of non-intrusion, real-time data and large information capacity. On the 

other hand, its high dimensionality leads to some challenges. One of the biggest 

challenges is the high information redundancy. According to these particular features 

of OES data, two research objectives are the focus in this thesis: dimensionality 

reduction and early-stage fault detection. Chapter 1 gives a brief introduction to our 

research motivation and objectives. Chapter 2 outlines the background of the whole 

research area from the following perspectives. Firstly, it describes the underlying 

principles of the plasma etching process from a physical perspective. Secondly, a 

comparison across available plasma diagnostic technologies is provided. Thirdly, 

comprehensive literature reviews are presented based on different algorithms and 

research objectives. Finally, two manufacturing datasets which are used for evaluating 

the methods proposed in the thesis are discussed. After Chapter 2, each research 

objective is discussed separately in Chapter 3 and 4. Chapter 3 focuses on a novel 

dimension and redundancy reduction method, IIRR. Chapter 4 proposes an early-stage 

fault detection method, SRA. The summary results of each research objective are 

presented separately in the sections below.  

5.1 IIRR Method for Dimension and Redundancy Reduction 

A new dimension reduction method is presented for dimension and redundancy 

reduction in Chapter 3, named IIRR. The dimension of OES data is reduced 
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significantly by considering both peak wavelength emissions and the correlative 

relationships between them. The IIRR method is demonstrated for two different 

manufacturing datasets. Additional data pre-processing methods are also proposed to 

address two particular problems associated with these two datasets, namely wavelength 

saturation and non-normalized process time scale. After applying the IIRR process, 

number of measurements in the original OES dataset is reduced to about 0.2668% for 

the first test dataset D1 and about 0.4200% for the second dataset D2. As validation, I 

show that prediction of an independent output variable (etch rate for D1 and BLW for 

D2) can be done very effectively with the reduced set of variables. It is safe to 

conclude that this method can effectively reduce the number of wavelength intensity 

measurements required to accurately represent the data, at least for prediction of these 

two particular system variables. In fact for dataset D1, prediction accuracy was slightly 

improved, compared to prediction with the full set of input variables. It is noted that 

IIRR operates in the original variable space, rather than a transformed variable space, 

which would make the method useful for OES analysis methods whose goal relates to 

physical interpretation of the process, for example in virtual metrology methods. We 

would also expect the method to be effective for application to high-dimensional 

spectral data from other processes, where the dataset represents a set of time series, 

each of which is an independent sample from the same fundamental process. Although 

the APS step of the algorithm is specific to OES datasets, the core method (IRP+OPS) 

could be expected to be effective for other (non-OES) high-dimensional time series 

datasets, where multiple independent samples of the same (repeatable) underlying 

process behaviour are available. However, there is a caveat here. As the IRP phase of 

the method ranks less correlated variables highly, there is a risk of biasing noise for 

inclusion in the final variable set. In this case, corresponding interpretation of non-
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peak data as noise and its effective reduction/removal by APS avoids this scenario. For 

data from other processes, some similar insight to the nature of the noise and an 

effective noise reduction method would be required, so that a high level of data 

reduction can be achieved. On the other hand, as the IRP/OPS method is ‘internal’ in 

nature, not guided/biased by a chosen output variable(s), it is conservative in terms of 

attempting to distinguish unexplained variation from noise. As a stand-alone method of 

preparing a universal reduced OES dataset, that can be applied to prediction of 

multiple different output variables of interest, this may be useful. 

5.2 SRA Method for Early-stage Fault Detection 

The Similarity Ratio Analysis (SRA) method is proposed for early-stage fault 

detection in Chapter 4. The SRA method is tested on a real manufactory dataset. 

Detailed discussion is provided on value selection of two configuration parameters 

based on this particular dataset, namely the moving window size and the sigma number 

for the SRA library building. Two SR value types are examined: time-series SR and 

post-process SR. The time-series SR represents SR values of each spectrum scan at 

individual time points, while the post-process SR is the average SR value of a 

complete etching process. Early-stage FD is achieved by the time-series SR, which 

detects faults at around 6 seconds from a 50 seconds etching process. Compared with 

the time series SR, the post-process SR distinguishes faulty samples from good ones 

more confidently. It is suitable for the scenario in which real-time FD is not needed 

and reliability of the FD service is emphasized. 

Most previous research only realizes FD after completing the whole etching process. 

Few previously proposed methods are able to detect faults using a single spectrum 

scan, and the time when the spectrum is measured is limited to certain time points. 
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Process shift is another practical problem, which is normally ignored in previously 

proposed methods. The SRA method addresses these problems. It accepts spectrum 

scans at various time points. System faults will be detected at an early stage of the 

etching process so that less energy and materials will be wasted in faulty process runs. 

A confidence level associated with the alarm is also provided as a reference. The users 

of the method are also given a choice to customize the sensitivity of the model, by 

adjusting the SR threshold and consecutive warning number to trigger an alarm. 

Additionally, SRA is further tested, when combined with IIRR, which also gives good 

FD results while requiring a smaller input dataset. 

5.3 Future Work 

5.3.1 Future Work for Dimension Reduction 

Future work relating to IIRR will investigate application of the method to other OES 

data sets. Additionally, it will also be considered how redundancy in the time domain 

can be reduced. In relation to the current OES plasma data, at least for certain periods 

of the process when it is less dynamic, the process is most likely over sampled and 

there is an opportunity for further data reduction without significant loss of important 

time domain information. Additionally, IIRR will be tested new datasets from different 

application domains in order to further test its stability and consistency. 

5.3.2 Future Work based on Similarity Ratio Analysis 

Future work based on SRA could include the following. 

First of all, fault classification will be realized based on the features of time-series SR 

from faulty samples, as shown in Figure 4-13. This could help to find the underlying 

reasons causing the system failure quickly, reducing the time for system repair.  
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Secondly, the SRA method will be tested with IIRR more extensively to further reduce 

input data size, giving faster system response actions.  

Thirdly, more system monitoring variables could be included in the SRA process, 

which would improve fault detection accuracy and give a more detailed profile of the 

etching process.  

Fourthly, the SRA Method could be extended to allow feature extraction. This would 

help to address a common problem in plasma processing procedures where chemical 

elements lead to differences from chamber to chamber. Compared with the state of the 

art, it would be much easier to identify key wavelengths with SRA. Other methods 

usually use a combination or derived statistical parameters from the original data, 

which are difficult to trace back to identify prevalent wavelengths in the OES output. 

For example, instead of counting how many wavelengths match the SRA library 

profile, as in Chapter 4 for fault detection, mismatching wavelengths can be outputted 

and interpreted as features which would help in the understanding of plasma 

physical/chemical changes more precisely. Such key wavelengths are illustrated in 

Figure 5-1(a) for one typical faulty sample in dataset D1. In Figure 5-1(b), dissimilar 

wavelengths from the same sample are illustrated at time point 9 seconds. Only 4 

wavelengths are marked as dissimilar wavelengths from the original 2048 wavelengths. 

These four wavelengths are 437.9 nm, 441.8 nm, 443.2 nm, and 486.5 nm. They are 

potentially associated with Ar
+
, O

+
, SiN, and Ar

+
 respectively. However, these 

highlighted particles are only selected based on very limited information from the 

etching procedure, which is protected under a consideration of commercial security, so 

they may not be correct, but they could none-the-less be good indicators for explaining 

the link between wavelength and chemical elements. Actually, this result has been 
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communicated to the company where the dataset D1 originated. They have confirmed 

the rationality of the result. 

 
Figure 5-1. Illustration of similarity analysis for feature extraction. It is based on 

window size 1.0 second and sigma number 40 for one typical faulty sample. Panel (a) 

represents dissimilar wavelengths for a complete etching process. Panel (b) represents 

dissimilar wavelengths at time point 9 seconds from the same sample. Four 

outstanding wavelengths are four wavelengths are 437.9 nm, 441.8 nm, 443.2 nm, and 

486.5 nm. 

Fifthly, instead of comparing an individual sample with the SRA library for key 

wavelength identification, two different SA libraries based on different sets of samples 

can be compared with each other. This approach could help to find key wavelengths 

which are statistically significantly different, by removing the effects of noise and rare 

events. The design of a proposed method is presented in Figure 5-2. By using the 

Bhattacharyya coefficient, the similarity of two sample sets can be quantified, and then 

dissimilar wavelengths identified.  

Finally, SRA could be tested with new datasets from different areas application 

domains, in order to further evaluate its stability and results consistency. 
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Figure 5-2. Work flow of dissimilarity analysis method for compassion of two sample 

sets. Pre-processing will help to reduce number of wavelengths in the final model 

output. 
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