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Abstract:

Biological intelligences often consist of many di�erent, complex systems working
together, rather than a single mechanism capable of solving every problem. It may
be that arti�cial intelligence requires a composition of multiple, diverse systems;
perhaps more than any one individual or one research group can create or even
understand.

This dissertation presents an architecture for hosting and e�ciently running user-
submitted programs (�minds�) intended to solve particular problems (�worlds�), and
to facilitate the assembly of these problem-solving minds into larger scale systems
of �hybrid� minds which query an existing set of minds (which we call �subminds�)
for their suggested actions. These subminds may be hosted on the same machine or
remotely, across the Internet. They may have been written by many di�erent authors,
with each program intended either as a complete solution to the problem, or with
an eye toward its re-use in a modular fashion. Even if a program is written and
intended as a complete, independent solution to the problem, that need not preclude
its inclusion in a larger, hierarchical hybrid program. In other words, the architecture
presented forms a platform for building hybrid arti�cial intelligence systems using
other people's code.

The dissertation also presents and evaluates a method for automatically combin-
ing minds (which may have been written by di�erent authors) for use in a hybrid
mind, by performing a statistical analysis of the observed performance of each mind
program in a collection of minds submitted by third parties competing to solve two
di�erent types of problem.
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Chapter 1

Introduction

A primary task of intelligence is to provide a control system capable of performing

the right actions at the right time. Although many successful control systems can be

expressed in a simple way, it may be that complex biological intelligence is funda-

mentally hierarchical in nature. This dissertation suggests an approach to building

intelligent hierarchical control systems, using a partially-automated method to ana-

lyse the activity of existing programs and determine which kinds of behaviour are

important, and which existing programs to use as building blocks.

This chapter discusses the basic motivation behind this research before introdu-

cing some basic terminology. Then we will attend to the research questions which

de�ne the scope of this dissertation, before describing at a high-level the primary

contributions made. Finally, an overview will be presented of the remaining chapters

of this dissertation, along with a roadmap for readers interested in speci�c aspects

of the work.

1.1 Motivation � Decentralising A.I.

There is evidence that human and other biological intelligent systems are composed

of many components working in concert, rather than one single mechanism capable

of solving any problem [Samuels, 2006]. A number of authors have proposed that

in the realm of arti�cial intelligence, as problems and solutions grow in scale and

complexity, a decomposition and distribution of their solutions into component parts

will follow [Maes, 1989; Brooks, 1990].

15



It is certainly possible to combine a set of individual programs together to create

a more complex hybrid program. But how can this be done e�ectively, and which

component programs should be selected to constitute important areas of expertise

in solving the problems at hand?

1.2 Hybrid arti�cial intelligence

The idea of arti�cial intelligence as many di�erent programs co-operating together

is perhaps talked about more often than implemented. When such systems are con-

structed, the various subprograms are often linked in an ad-hoc way, often requiring

the author of the hybrid program to understand or even modify the internal workings

of other people's programs.

Sometimes the complexity and required learning curve for building upon or in-

terfacing with other people's programs is so great that the only �hybrid� programs

that arise are written by the same author.

In other cases, the roles of di�erent modules are carefully designed, with each

part or subprogram representing a well-de�ned aspect of the overall system's beha-

viour, and perhaps interfacing with each other in a restricted way which limits the

interchangeability of programs.

This dissertation explores a di�erent way of constructing large hybrid programs

� by building them from a selection of third-party programs, which each attempt to

solve the same overall problem in di�erent ways.

1.3 The World-Wide Mind

This section introduces the basic terminology used throughout the dissertation. A

much more detailed discussion will follow in chapter 2.

This work, and that which preceded it (see chapter 4 for details of the previ-

ous work), envisages that certain types of problem can be expressed as computer

programs called worlds.

Once a world is made public, anybody can then write programs designed to solve

the problem presented by the world. We call these programs minds, and hierarchical

programs which build upon the expertise of several minds are termed hybrid minds.

16



To make this possible, an architecture and software platform � the World-Wide

Mind (W2M) project � was created which allows world and mind programs to be

submitted by anybody and made available as services on the Internet.

The fundamental ideas and terminology of the World-Wide Mind project are

discussed in greater depth in chapter 2, and an outline of the research goals and the

structure of this dissertation is presented.

1.4 Research questions

Let us de�ne the scope of this dissertation by asking some questions. We shall return

to these later.

1. How can a hierarchy of minds be supported and built from the programs of

many authors?

2. Is it useful to build these hierarchical hybrid minds?

3. Can this process of building hybrid minds be automated in some way, and is

it productive to do so?

This dissertation attempts to answer each of these questions by extending the W2M

architecture and building a platform to support large hybrids, and by devising and

evaluating a method for constructing these hybrids.

1.5 Contributions

The primary contributions presented in this dissertation include:

1. the World-Wide Mind 2.0 architecture,

2. a partially-automated method for building hybrid minds using minds written

by many di�erent authors, and

3. the collection of a large number of minds and several worlds, written by many

authors.

The World-Wide Mind 2.0 architecture was designed and realised as a working plat-

form which was used successfully by a large number of authors to develop and test
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their mind programs. Some of these authors had very little experience in computer

programming and yet produced functional and e�ective hybrid minds.

The method proposed in this dissertation of building hybrid minds was tested

in two test environments: an animal behaviour simulation (Tyrrell09) and a chess

problem (ChessWorldG). It is shown to succeed in the �rst, but not the second.

1.6 Dissertation structure

This dissertation consists of two distinct parts. The �rst part looks at the develop-

ment of an architecture capable of supporting the development and testing of large

hybrid minds, and the second part focuses on how these large hybrid minds might

be created. To save time for readers with speci�c interests, this section provides a

list of the remaining chapters in this dissertation as well as a roadmap which serves

as a quick guide to important parts of the work.

1.6.1 List of chapters

The remainder of this dissertation is laid out as follows:

� Chapter 2 de�nes the core terms used throughout this dissertation, and de�nes

the research gap this work intends to �ll.

� A summary of related work is presented in chapter 3, addressing a series of

topics relevant to this dissertation, ranging from cloud computing to modular

intelligent systems to fast network communication and state synchronisation

techniques.

� In chapter 4 the concepts, implementation details and technical limitations of

previous work on the World-Wide Mind software platform are discussed.

� Chapter 5 presents some of the work done as part of the contribution of this

research to produce a World-Wide Mind version 2.0, which would make the

creation of large hybrid minds practical.

� In chapter 6, we look at the problem of constructing a larger-scale �hybrid�

mind which delegates to other mind programs in an attempt to combine the

individual expertise of each submind. A novel method is presented of selecting
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subminds by ranking their performance against a set of metrics representing

particular aspects of the problem environment. This method is experimentally

validated and the results are discussed.

� These ideas are extended in chapter 7, which presents a partially-automated

method of estimating the relative importance of each metric. This knowledge is

used to select a small set of e�ective subminds which together represent expert

performance in terms of these metrics. The method is tested in the same

problem environment as in chapter 6 and experimental results are discussed in

two di�erent test environments.

� Chapter 8 identi�es some possibilities for future research.

� Finally, in chapter 9 we will revisit the main contributions of this research.

1.6.2 Roadmap

As a prerequisite, readers should begin with chapter 2 which de�nes the terminology

used throughout the thesis.

For those interested in the architecture and technical implementation of the

World-Wide Mind, which allows minds and worlds to be hosted as services on the

Internet and provides a facility for minds to call each other, consult chapters 4 and 5.

Those looking for more detail regarding the World-Wide Mind platform as it exists

today might like to read appendices D, E, F and G.

Chapters 6 and 7 explore how best to construct a hybrid mind from a large set

of minds written by other authors, either through manual or partially-automated

means.
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Chapter 2

Terminology

2.1 Introduction

This chapter attempts to clarify exactly what is meant by the core terms used in this

dissertation, and then de�nes the research gap I seek to address, and how I intend

to address it.

2.2 Worlds

A world represents a type of problem to be solved. Some problems are called episodic

environments, where one task is to be performed which is independent of previously

completed tasks [Russell and Norvig, 2003]. In these environments, the solution takes

the form of a single answer; for example:

� a travelling salesman problem, whose solution will be an ordered sequence of

nodes to visit,

� a 2D maze problem, where the solution is a complete sequence of moves leading

from the start position to the goal, or

� a part-picking robot problem, where the input is an image of a part and the

solution is a decision on whether to accept or reject the part.

More commonly however � at least in the types of problems I envisage being modelled

and simulated on this platform � solutions will consist of a series of interactive steps,

alternately sensing and acting. These problems are referred to as non-episodic or

sequential environments. Some examples of this type of problem are:
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� a game of poker, where the player has several turns where an action can be

taken, such as raising the bet, calling or folding one's hand,

� a predator-prey simulation, where at each step, the predator attempts to �nd

or capture the prey while the prey attempts to escape, and

� a game of chess, where two players take alternate turns to capture each other's

pieces and ultimately force a checkmate, while minimising the capture of their

own pieces and protecting their king.

A world is de�ned by the set of con�gurations or states which are possible in that

world. Some or all of the state of the world may be perceivable by an agent at any

given moment.

2.3 States

To e�ectively solve the problems presented by all but the simplest worlds, some form

of sensory input must be available. The set of sensory percepts made available by

the world at any given moment will be called the state. Note that the state visible

to the agent may only be a subset (or even an erroneous subset) of the true and

complete state of the world.

Some examples of simple world states are given in �gure 2.1 on the following

page. The �rst picture depicts a game of Tic-tac-toe, where the X player holds a

favourable position.

The second picture represents a player's hand in a game of blackjack, in which

the best move is probably to stick (i.e. not to ask for any more cards).

A �nal example shows a �ctional, simulated foreign exchange price chart over

some �xed interval, with the exchange rate recorded at discrete points in time.

The sensory inputs provided by the world at each timestep may be complete, as

in the game of chess or Tic-tac-toe, where the position of every piece is known at all

times � although the opponent's strategy is not necessary known.

Other worlds may provide only a partial observation of the complete state, as in

the game of poker, for example, where each player can only see a subset of the cards

in play, including their own cards but not those held by other players [Russell and

Norvig, 2003, p. 41].
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State

Action [2,1] Hit Sell

Afterstate

Score Won in 3 moves Bust: -$10 Final pro�t: +155 pips

Figure 2.1: Examples of the state information that might be presented by three
di�erent worlds, possible actions to take in each state, and a score summarising the
overall outcome of each run. Also shown are the afterstates generated in the world
by taking each suggested action (no e�ect is visible in the currency simulation).

2.4 Actions

By observing the current state of a world, an action may be chosen which will advance

the world to a new state which is (hopefully) closer to the desired end goal than the

previous state.

The action to be taken can often be expressed by a scalar value (for example, the

symbols hit or sell in the blackjack game and currency exchange simulation � these

could just as easily be replaced with a �xed range of integers; perhaps +1 for buy,

-1 for sell and 0 for do-nothing in the currency simulation).

The action might also take the form of any integer quantity � for example, the

currency simulation might interpret a positive integer N as a request to buy N units

of an instrument, and negative value -N as a request to sell N units, and a value of

zero to signify do-nothing.

Other worlds may require a multi-dimensional action (for example the player's

next move [2,1] in Tic-tac-toe, although it might also be represented as a single
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Figure 2.2: An image representing a single timestep in the Cops and Robbers world,
a simple control problem. Users can freely create and upload new worlds to our
server � this is one of many worlds provided and made available automatically. The
mechanisms to facilitate this are described in chapter 5. This image shows a textual
representation of the perceived state, as well as a dynamic graphical rendering of
this state implemented by the world designer (this is the topic of appendix E). In
the bottom right, the action taken from this state is shown (-1, which in this world
signi�es that the cop will move left and perhaps catch the robber if he happens
to randomly move to the right), and beneath it a score of 1, which represents the
number of actions the cop has taken so far.

integer x in the range 1 ≤ x ≤ 9, or a selection from any nine discrete symbols).

And still other worlds might require actions in the form of a vector of continuous

real numbers � perhaps representing applied forces or desired actuator rotations.

2.5 Scores

After each action is taken in the world, and at the end of a run, a scoring function

is used by the world to generate a vector of score information, summarising various

aspects of the run performed. Some example scores are given in �gure 2.1, where

a Tic-tac-toe game might end with �X won in 3 moves�, or perhaps simply �x,3�.

Similarly, a chess game might produce at the end a score vector of the form �black,20�

indicating that black won in 20 moves.

On the other hand, the score information can be arbitrarily detailed since it is

de�ned by the world author, and may include (in the chess example) details such as

how many of the opponents pawns were captured, or how often each player was in
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check.

It may be possible to gather or infer this meta-information by observing every

state seen during a run and making a record of how often various events occur in

the world. This requires that the important events are both observable by the mind

and discrete enough to be easily measured and counted � for example, in a game of

chess, if we know one of our pieces P was previously in position X, but on the next

turn position X contains one of the opponent's pieces Q, then we can deduce that

our P was captured by the opponent's Q in position X.

However, in a more complicated world, there may be many important events

which are not recorded in the score vector and which are not trivial to detect from

the observed state. For example, the observable state in a game of robot soccer

might consist solely of raw data from unreliable ultrasonic sensors. The �eld of rein-

forcement learning (RL) is concerned with a related problem � learning an optimal

control policy with only a scalar reinforcement signal for guidance1. This requires the

ability to automatically discover which parts of the state are important and in which

contexts, and to determine how what proportion of a reward or punishment should

be assigned to recently-executed actions (known as the temporal credit assignment

problem [Singh and Sutton, 1996; Sutton and Barto, 1998a]).

2.6 Goals

It is important to di�erentiate actions from goals. In some situations, multiple actions

may satisfy the same goal � for example, when travelling from point A to point B,

there may be many possible routes of equal length, so executing any sequence of

actions that takes us to point B in the minimum number of steps could be said to

satisfy the same goal.

Some problem worlds consist of multiple con�icting goals, where the problem-

solving agent must prioritise the available options and act opportunistically where

possible.

For example, consider a naïve approach to the game of chess, where we care

about only two goals:

1In contrast to supervised learning methods, which learn from a series of known-correct input
and output examples or exemplars.
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1. Protect my pieces.

2. Capture as many of the opponent's pieces as possible.

It is not always clear when a particular goal should take priority when con�icts

between them arise � it may be possible to capture more than one piece given the

current state of the chessboard, and it may also be the case that capturing an op-

ponent's piece results in one of the agent's own pieces being captured.

If the score information provided by a world is complete enough, it will provide

enough data for the important goals to be inferred. By carefully examining the

recorded score information, as well as the data about the states visited and actions

taken, it is possible to estimate the relative importance of each goal and to identify

the most successful mind programs for each goal. This is an important topic to which

I will return in chapters 6 and 7.

2.7 Minds

A mind is an action-selecting program which interacts with an instance of a world

in the manner described in section 2.8.

At each discrete timestep, an instance of a mind accepts a perceived state of the

world, performs some computation and then returns a suggested action to be taken

in the world.

It is important to note that a general representation of states and actions is not

sought here � rather, it is left up to the author of a world to specify how states

and actions should be described. Because the structure of the state and action

representation is speci�ed by each world, minds written for a particular world can

pass the state information to another mind, possibly hosted on a remote machine,

and receive a suggested action from that mind. Minds that call other minds to

get suggested actions are called hybrid minds in this work, and the methods of their

creation is the main focus of this thesis dissertation. When a hybrid mindA delegates

to a mind B in this way, then mind B is called a submind.
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2.8 The action-selection loop

An instance of a world will perform a loop, carrying out the following steps re-

peatedly:

1. At each discrete timestep, the world produces a set of sensory inputs, repres-

enting the subset of the current state visible to the virtual agent. This state is

passed to the mind which controls the virtual agent in the world.

2. After passing the currently visible state to the mind, the world waits for the

mind to present an action to be performed from the current state.

3. Carrying out the requested action takes the world to a new state, re�ecting

the changes caused by the mind's requested action, as well as by any simulated

agents or phenomena modelled in the world. The process repeats in this fashion

until a terminating state is reached, or some other arbitrary condition is met

(for example, a predetermined limit of timesteps has been reached).

This type of interaction loop characterises the action selection problem [Maes, 1989].

In the real world, the world changes asynchronously and independent of any

agent's action selection process. In real-time environments, time spent making de-

cisions can have a signi�cant impact on the situations that arise (inaction can be

considered an action, in this sense). However, this need not be the case when work-

ing with simulated or arti�cial problems, although some limit must be set to avoid

computational resources being wasted on requests which take excessively long or

may never complete (for more details on the practical implications of this, see sec-

tion 5.6.8.1).

In this work, real-time action selection is not considered � it may be an interesting

possibility for future research due to its relevance in situated robot applications.

2.9 Hybrid minds

Because minds written for a particular world can query each other for suggested

actions, it is possible to construct a large hybrid mind which consults several sub-

minds, each embodying a particular expertise in solving the problem presented by

the world.
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In some cases, a hybrid mind might combine two subminds and perform better

than each of its subminds might do individually.

For example, in the context of a chess world, mind A might be a master of the

opening moves of a game, achieving and maintaining a strong position quickly, but

might perform poorly in closing the game and achieving a checkmate.

On the other hand, mind B might perform poorly in the early stages of the

game, but constitute an expert at achieving checkmate when the circumstances are

suitable.

It stands to reason, then, that given this knowledge, one could create a hybrid

mind C which has no logic or intelligence of its own, other than to determine whether

the current state of the chess board is in the early stages of the game or in a situation

where checkmate might be achieved. With some simple heuristics, the hybrid mindC

might delegate to either submind A or B and achieve a success that neither submind

could individually attain.

Although the subminds may not be written with the intent to be subminds, or

to solve a speci�c subproblem of the world in a modular way, it may still be possible

to analyse a collection of minds and determine which goals are most important, and

which minds are best at ful�lling each of those goals.

2.10 Massively multi-author hybrid arti�cial intelligence

The primary focus of this dissertation is on the construction of large-scale arti�cial

intelligence systems. This topic elicits several important questions, such as:

� How should such systems be built � all locally by one team in one research

facility, or by a multitude of authors possibly worldwide?

� If such systems are to be built by geographically dispersed authors, then will

they need to understand speci�c and detailed application programming inter-

faces (APIs) for every component of the system?

� Where and how should such a system be compiled or assembled?

This author proposes a minimal API where mind authors can utilise the expertise of

minds written by other authors without needing to understand their inner workings
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in great detail.

A centralised hosting of minds and worlds online is proposed, whereby anyone

can add new worlds and minds and evaluate them at any time, and each mind is

automatically made available for use in larger hybrid minds.

This dissertation describes a partially automated method of analysing a problem

environment � referred to here as a world as de�ned above � so that an analysis and

evaluation can be performed on mind programs which solve instances of the problem

world.

With the help of this analysis, modular hybrid minds may be created that refer

to multiple individual minds, taking advantage of their individual areas of expertise

to better solve problems. These hybrid minds, assembled from the resulting set of

subminds, are tested and demonstrated in this instance to perform better than the

individual subminds.

To make it possible to gather a set of minds and worlds written by many di�erent

users, to evaluate their performance, and to use this collection of minds to create

hierarchical hybrid minds, a supporting software system was developed, called the

World-Wide Mind platform.

This platform extended and improved upon an earlier implementation (this will

be described in section 4.1), automating the process of uploading new minds and

worlds, signi�cantly improving scalability and the speed at which runs can be carried

out, and providing a means for worlds to generate graphical representations of each

state which can be viewed in a web browser without requiring users to install software.

The technical challenges, design and implementation details of the World-Wide

Mind platform are outlined in chapter 5.

2.11 Limitations of this framework

This high-level model represents problems and solutions as worlds and minds which

interact in the ways described above, providing a powerful framework for expressing

and solving many types of problems.

Can we �t all problems into this framework? No. Worlds which require hu-

man interaction at runtime (for example, an interactive chat bot) are not currently
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supported by this framework, nor is it possible to run multiple minds together in a

single instance of a world � something which would be an interesting possibility for

future research into competitive game-playing strategies, for example. Similarly, the

discrete timestep-based nature of the architecture makes it di�cult or impossible to

model continuous and/or real-time environments.

However, the framework attempts to make it possible to represent a broad range

of problem types and solutions � for example, one student implemented and uploaded

a 3D �rst-person shooter game as a world.

Chapter 8 identi�es some of the technical limitations of the work and addresses

some possibilities for further avenues of research.

2.12 Research gap: Automated hybrid building

There is signi�cant research into the development of models for cognitive processes,

and of distributed, modular arti�cial intelligence systems, as will be discussed in

chapter 3. However, little work appears to have been done on the subject of taking

existing programs, built by many people to function individually, and assembling

them together into larger �hybrid� programs. And more importantly, to achieve this

hybrid-building through automated, or partially automated means.

To our knowledge, there are currently no other projects which attempt to build

and evaluate large programs from many third-party subminds in the manner explored

in this dissertation. This appears to represent a gap in previous research, where

potentially fruitful results might be found.

To help address this gap, this dissertation attempts to develop a method of

pro�ling existing programs written by many authors and selecting some of them to

function as expert subminds in a hybrid mind program.

If the selection of subminds is performed adequately, then the set of chosen

subminds will collectively represent the most important domain knowledge, and the

resulting hybrid mind should be able to leverage the best characteristics of each

submind and perform better than any of the individual programs (unless one of the

programs is already an optimal solution to the problem � then the best the hybrid

can do is to match that submind's performance).
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2.13 Research aims

In support of the research questions developed in section �1.4, we can divide the

practical aims of this research into the following three areas:

� Firstly, an architecture and operational platform must be developed which is

capable of hosting mind and world programs online as services, and which

provides a framework for high-speed communication between these programs,

either locally, on a single machine or remotely, across multiple machines on the

Internet.

� Secondly, it seeks to establish whether hybrid minds can be built which consult

existing minds and which can in some cases outperform those minds. Third-

party mind programs submitted by users are gathered and their performance

analysed to help answer this question.

� Finally, it asks how this building of hybrid minds can be done, and develops and

evaluates a method of selecting a small number of task-speci�c experts from

the many possible subminds which could be consulted for suggested actions.

This is achieved through a statistical analysis of the performance of each mind

in the world.
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Chapter 3

Related Work

3.1 Introduction

This dissertation covers a range of topics. In this chapter, we will �rst look at

similarities between this work and other research into cognitive architectures and

modular intelligent systems, as well as the construction of programs as a composition

of other programs. The idea of minds and worlds as services available on the Internet

bears some similarity with the cloud computing and service-oriented architecture

(SOA) domains.

As explained in chapter 5, the implementation of mind and world services as Java

web services incurred a sizeable penalty on the throughput of messages. During the

redesign of the messaging and communication architecture, several papers in the �eld

of networked computer games provided some insight into the considerations involved,

and some of these will be discussed here.

The development of a method for constructing hybrid minds � covered in chapter 6

and chapter 7 � requires an examination of the literature on statistical methods for

determining the strength and direction of correlations between the recorded perform-

ance aspects of a mind program solving a problem and an overall success heuristic

or quality function.

3.2 Modular intelligence

The concept of combining many weaker subprograms to create a strong hybrid mind

bears some similarity with ensemble learning methods [Sollich and Krogh, 1995] in
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machine learning. In ensemble learning, a set of weak learners are combined to make

better predictions collectively. In this work, the subminds are programs written by

humans which usually aim to solve the target problem on their own.

The learning element is a three-part process performed o�ine, consisting of:

1. an analysis of the individual performances of each mind,

2. ranking the minds using a variety of metrics, and

3. selecting a number of minds to use in the construction of higher-level hybrid

minds.

3.3 Cognitive architectures and distributed minds

A large body of work exists on the subject of computational cognitive architectures,

spanning a variety of viewpoints from neuroethology to practical algorithmic meth-

ods, and several important contributions in the literature are discussed here.

Several cognitive architectures were proposed speci�cally to help answer questions

in the analysis and modelling of human and animal behaviour. We do not propose a

cognitive architecture in this sense, but rather a platform on which these cognitive

architectures could be implemented.

However, there is some overlap in many of the ideas, and the architectures and re-

search described in this section gave some insight into the basic principles underlying

the project.

3.3.1 The Society of Mind

Minsky's Society of Mind [Minsky, 1986] presents and develops a wide range of ideas

and theories of cognition. Among the many topics covered in Minsky's work are learn-

ing, language, short- and long-term memory storage and retrieval, and perception

and classi�cation of objects according to detected features, as well as often-debated

philosophical issues, such as the nature of consciousness and whether it is an illusion.

Although the cognitive model developed in the Society of Mind is intended as a

possible explanation for human intelligence, it provides some insight into the pos-

sibilities for future arti�cially intelligent systems. Most of the proposed mechanisms
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are conceptual and abstract in nature, without being rooted in any particular model

of animal neurobiology.

One idea introduced by the work is that while human memories may seem to use

computer-like information storage and retrieval systems (albeit sometimes lossy and

unreliable ones), the reality may be that recalling an experience or feeling involves

replicating the �state of mind� we held at that moment.

As a possible theory of memory, Minsky suggests the k-line, or knowledge line.

When a new event is experienced or a problem is solved, a new k-line is created to

represent that experience. That k-line connects all of the mental agents which were

active at that moment, and when re-activated at a later point in time, triggers those

agents once more to recreate a similar mental state.

By way of distinguishing human intelligence from the intelligence exhibited by

most other animals, Minsky suggests that re�ective thinking � that is, a meta-

cognitive process, or thinking about one's own thoughts � is a capability possessed

by humans which allows them to consider and modify their behaviour in ways not

demonstrated by other animals.

Some elements of the work were inspired by observations and experiments in

child behavioural psychology. It was also stimulated and informed by a success-

ful e�ort to construct a physical robot capable of solving problems in the Blocks

world (a world previously demonstrated in a symbolic context by Winograd's fam-

ous SHRDLU natural language system [Winograd, 1972]), using machine vision to

interpret images from an installed camera.

3.3.2 CogA�

One ambitious project called CogA� [Sloman, 2002] aims to understand and explain

how cognitive architectures can work at many di�erent levels of abstraction.

Cognitive processes are viewed as a spectrum of virtual machines in a layered

architecture, operating in a hierarchical fashion. This layered view is a general theme

shared by much of the literature on the subject of animal and machine cognition.

In CogA�, a high-level distinction is drawn, distinguishing di�erent types of

mental processes:

� Reactive processes, which are directly triggered when certain situations are
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Figure 3.1: A layered view from the �virtual� level down to the physical machine
level. The CogA� project tries to address processes which operate at di�erent levels
of abstraction.

perceived. In biological minds, these are frequently associated with ancient

mechanisms developed by some evolutionary pressure (for example, a fear of

snakes or spiders operating at the re�ex level). Some animals � for example,

insects or mold � might operate solely via reactive processes, without employing

any higher-level cognitive mechanisms [Sloman and Chrisley, 2003]. However,

many creatures following simple reactive behaviours can collectively produce

complex behaviours, for example, when insects carry out very large group tasks

such as nest-building.

CogA� describes an example �alarm� mechanism which provides a reactive

capability.

� Deliberative processes, able to hypothesise and consider possible future

events or actions. The costs, risks, possible gains and their likelihoods are

estimated so that e�ective decisions can be made. By their nature, deliberative

processes can be expensive in terms of time or computational resources. To

help mitigate the possibility of a deliberative mechnanism being interrupted

repeatedly by perceptual inputs and alarms, CogA� proposes an attention

�lter mechanism with a dynamically varying threshold.
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� Re�ective or meta-management processes, which can understand and

describe other internal states and processes. These processes can help detect

and modify one's faulty behaviours, noticing when one is �thinking in circles�.

They might also provide an insight into whether the actions taken recently

have served the desired goal, or indeed whether the desired goals need to be

re-evaluated.

The general notion of these categories of mental processes has much in common with

the ideas proposed in the Society of Mind and other works. Using these divisions,

the CogA� generic schema is represented as a 3x3 grid, allowing mechanisms and

mental states to be further categorised by their role in perceiving, producing actions

or �central processing�.

Following on from CogA�, the H-CogA� project attempts to translate these

insights into a model based on human behaviour and psychology. The CoSy and

Cogx projects implemented the architecture in a physical robot.

The resulting model attempts to provide an implementation of a�ective states

(emotions and attitudes) as well as both high-level goal selection (in H-CogA�, goals

can be generated anywhere, from reactive processes such as hunger management to

re�ective processes like an ethical self-monitoring mechanism) and perception, and

low-level action selection and motor control.

3.3.3 Uni�ed Theories of Cognition

Newell argues in [Newell, 1990] that a uni�ed theory of cognition is of critical im-

portance to large-scale A.I. systems integration, and that such a theory must provide

a complete explanation of how intelligent creatures can react to sensory inputs (per-

ception), how they select and ful�ll goals � down to the level of motor control � and

how they can learn and store knowledge about their world.

This last consideration follows on from earlier work on the physical symbol system

hypothesis, an issue which has spawned considerable debate and opposing viewpoints.

3.3.4 The Soar architecture

As an example model of cognition, Newell presents a symbolic cognitive architecture

called Soar [Laird et al., 1987]. Underlying the Soar architecture is an assumption
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that structured, symbolic representations of knowledge in various forms, as well as

methods of reasoning with that knowledge are necessary for a complete spectrum

of cognition and behaviour or �general intelligence�. For this reason, Soar provides

several models of memory � working memory, as well as procedural, episodic and

semantic long-term memories.

Helgason notes in [Helgason, 2013] that Soar is not designed for real-time oper-

ation, as it does not contain a central mechanism for focusing attention, yet it relies

on synchronous processing of events.

More recent extensions to the Soar architecture allow for a form of sub-symbolic

processing, intended for visual perception of object features [Lathrop and Laird,

2007].

3.3.5 CLARION

Another cognitive architecture, CLARION (Connectionist Learning with Adaptive

Rule Induction ON-line) [Sun and Zhang, 2006] is designed primarily to explain

human behaviour and psychological phenomena. CLARION draws a distinction

between implicit and explicit processes. This dichotomy bears some resemblance to

the fundamental division between subsymbolic and symbolic reasoning in arti�cial

intelligence.

An example given of an explicit reasoning process is rule-based decision-making,

an explicit process which is straightforward to implement in software.

Examples of implicit processes include similarity-based reasoning, which is presen-

ted as a fundamental way of thinking in human behaviour, and an associative memory

which stores knowledge in a distributed way as a network of �microfeatures�, which

link to symbolic or explicit �chunk� nodes representing higher-level concepts in an-

other architectural layer. The notion of an associative memory composed of many

distributed features is reminiscent of the �k-lines� proposed in the Society of Mind.

This architecture attempts to model other interesting types of mental phenom-

ena, such as �discovery� tasks, where sudden insights are produced through gradual

exposure to information. Modelling of this kind of e�ect can give an insight into the

nature and role of intuition in human behaviour.
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3.3.6 Global workspace theory

In cognitive science, the frame problem refers to the problem of determining what

e�ects one's actions will have on the world without needing to explicitly model the

e�ects those actions will not have [McCarthy and Hayes, 1969]. Shanahan proposes

a cognitive architecture based on global workspace information �ow theory, in part

as a practical answer to the frame problem of cognitive science [Shanahan, 2006].

The architecture attempts to provide a working model of consciousness, emotion

and imagination, and distinguishes between conscious and non-conscious information

processing, having many cognitive processes running in parallel and competing to

in�uence a constantly-running serial thread. Internal simulation is proposed as a

mechanism for anticipation and planning processes, and a�ect plays a role in the

selection of actions, both in reality and during internally simulated interactions with

the world.

The architecture is implemented from a connectionist neuronal viewpoint, as op-

posed to some of the other cognitive architectures, such as Soar, which rely mainly on

symbolic reasoning. The analogical function of neuron maps allows for more straight-

forward spatial reasoning than was a�orded by traditional logic-based approaches.

Much of the architecture is inspired by an understanding of biological brains, with

models of components such as the basal ganglia (for action selection) and amygdala

(as an a�ect generator).

3.3.7 On knowledge representation and building interfaces

The cognitive architectures described above make assumptions about how informa-

tion should be represented and communicated, and specify ways in which systems

should be organised and what their responsibilities are.

However, it may be the case that with fewer requirements and less restrictions

placed on mind authors, a greater level of participation and contribution from many

authors will be facilitated, and this assumption underlies much of the work outlined

in this dissertation and in the previous work discussed in chapter 4.

The approach taken in the World-Wide Mind is largely architecture- and imple-

mentation agnostic. One important goal of the W2M project is to minimise the tech-

nology barrier to entry for researchers, students and casual programmers to create
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and test their own worlds and minds freely [Walshe et al., 2004] and to evaluate and

reason about their programs. Consideration for the inclusion of complex mechanisms

present in existing modular architectures (e.g. k-lines in Society of Mind [?], alarms

and perceptual �lters in CogA� [Sloman, 2002]) and decisions about knowledge rep-

resentation is reserved for possible future work, if at all, as they would constrain the

solutions provided by mind authors. Rather, world and mind designers are free to

de�ne the world state and action representations, as well as the interactions between

subminds, in almost any way they see �t.

3.4 Other work on building modular intelligent systems

Apart from the cognitive architectures described above, of which there are many

more, there is a large body of research into other methods of building modular

intelligent systems. A small selection of these are discussed here in brief.

3.4.1 Hybrid minds created by O'Leary et al

The work described by O'Leary et al in [O'Leary et al., 2004] was carried out using

the World-Wide Mind v1.0 platform described in chapter 4, running a large set of

subminds in an implementation of Tyrrell's SE. This large pool of 505 potential

subminds (submitted by 234 di�erent authors) was narrowed down to a small set of

candidates using several strategies.

First, a manual analysis of the top-scoring mind on the scoreboard was performed,

creating a pro�le of what the authors believed were the most important aspects of

that mind's performance in the world (both positive and negative aspects were listed)

as follows. According to the authors, the exemplar mind:

� Survived for an average of 3,500 timesteps

� Often slept to extend its lifespan (which may cause it to miss potential mating

opportunities)

� Favoured drinking over eating (it doesn't eat enough)

� Cleaned itself e�ciently

� Did not su�er injury from animals or dangerous places
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� Never used its �move fast� directional actions, which may imply that it didn't

need to escape predators.

Based on this pro�le of the top-ranking mind, a series of ten hybrid minds were

created in a manner similar to the method proposed in chapter 6, but as a com-

plement to what the authors considered weaknesses in the exemplar mind. In one

hybrid mind, for example, they called the exemplar mind in all cases except when

an �eater� mind suggested an eating action � where the eater mind was chosen by

�nding a mind which ate non-toxic food every time it selected an eating action.

For nine of the ten hybrid minds proposed, the hybrid mind controller is simple

� it presents both the �main� submind and the specialist submind with the current

state at each step, and if the specialist submind suggests an action directly related

to its perceived expertise (for example, eating for the �eater� mind) then its action is

taken, otherwise the main submind's action is taken. The tenth hybrid was di�erent,

and instead implemented the �Drives� ASM, a simple algorithm which calculates

the drive or motivation level for each of several systems [Hull, 1943; Tyrrell, 1993].

The system with the highest drive is selected at each moment, although as noted

by Tyrrell in [Tyrrell, 1993], the method of combining multiple stimuli into a single

drive variable for each system is not speci�ed. This implementation of the Drives

ASM did not produce a successful hybrid mind.

Two possible issues with this type of modular mind composition were identi�ed:

1. Firstly, that unless all subminds are asked for an action in every state, some

subminds will have an incomplete picture of what happened before they were

called. This could have negative consequences in non-Markov worlds.

2. Second, if all minds are asked for an action at each timestep, then they may

presume that their action was followed, when only one mind's action can be

taken (except when several minds suggest the same action). This can also lead

to an incorrect understanding of the true world state.

The work by O'Leary et al di�ers from the methods presented here in several respects.

First, most of the hybrid minds created consisted of a �default� submind and exactly

one other mind which is called when certain conditions are met (for example, when

the second mind suggests an eating action). However, some of the hybrid minds
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they created were used as part of a larger, hierarchical hybrid mind � something not

done in this research. Also, the methods used by O'Leary to select subminds were

based on an ad hoc analysis of an exemplar mind, which may be subject to human

bias. This potential for bias is also present in the method which will be suggested

in chapter 6 of this dissertation, and is something which chapter 7 will attempt to

address in a more systematic way.

3.4.2 Behaviour-based A.I. and the subsumption architecture

At another extreme, compared to the general intelligence systems of Newell et al, is

Brooks' subsumption architecture [Brooks, 1990, 1991]. The work presents a case for

modular behaviour-based arti�cial intelligence, built in a layered fashion of sorts from

simple behaviour-generating components, but without using a structured, explicit

form of knowledge representation.

In Brooks' view of behaviour-based AI, raw sensor data directly represents the

world state, without an explicit conversion into a series of symbols. This contrasts

with the physical symbol system hypothesis espoused by [Newell and Simon, 1976].

The subsumption architecture was designed speci�cally with the intent that it be

used in real robots, at a time when much of the existing work into building intelligent

control systems was based on software implementations which operated on (perhaps

unrealistically convenient) symbolic descriptions of the simulated environment. In

fact, the robots produced from this research � starting with the wandering three-

layered, sonar-sensing �Allen� � were some of the �rst successful robots capable of

operating in the real world, reacting and moving more �uently than those which had

come before.

It is possible for world designers, when creating worlds in the World-Wide Mind,

to encode their states in a symbolic form (for example, in the Blocks world) or as

a large vector of perceived sensor data, and minds are free to interpret or translate

these percepts into other forms.

The fundamental idea explored in Brooks' subsumption architecture � of many

simple, modular agents seeking to control a single body � is one inspiration for this

work, and it may be possible and fruitful to use a subsumption-type approach in

designing the hybrid mind controller.
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3.4.3 Behavior-oriented design

In behavior-oriented design (BOD) [Bryson, 2002] (related, but not to be confused

with an earlier use of the term for a co-operative multi-agent arbitration system

[Steels, 1994]), action-generating behaviour modules are combined with a dynamic

planning system called POSH.

The planner arbitrates between the individual behaviours in the same sense that a

hybrid program does in the World-Wide Mind. The dynamic plans o�er a structured

way to perform this run-time high-level behaviour selection.

As with Brooks' subsumption architecture, this type of approach to generating

a modular problem-solving agent may be compatible with and complementary to

the techniques described in this dissertation. A methodology like behavior-oriented

design could be applied to develop the control system for a hybrid mind, after the

individual behaviours which lend themselves to overall success have been identi�ed

and ranked by performing the analysis described in chapter 7.

3.4.4 Hierarchical Q-learning

Reinforcement learning is concerned with the problem of learning an action-selection

policy from scratch [Russell and Norvig, 2003], with only a reward (or punishment)

signal for guidance. A powerful reinforcement learning method called Q-learning

[Watkins, 1989] was extended by Lin [1993] by training a set of learners, rather than

one monolithic structure. In HQL, each learner focuses on a di�erent area of the

state-action space, thus modularising the problem and its solution.

The learning process happens online � that is, through trial and error in the world

by suggesting actions and receiving rewards or punishments based on the immediate

outcome and its expected future value. In contrast, the learning aspect of the work

described in this dissertation happens o�ine when the performance of a collection

of minds is analysed.

3.4.5 W-learning

In W-learning [Humphrys, 1995, 1997], the hybrid mind controller learns a policy for

selecting among subminds (called agents in W-learning) rather than among possible

actions. W-learning draws on ideas from Brooks' subsumption architecture and
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combines the Q-learning [Watkins, 1989] online reinforcement learning algorithm

with a series of strategies for agent selection and competition.

The agents in W-learning are a set of Q-Learners, each with its own reward

function intended to facilitate learning a di�erent desired expertise. At each timestep

in the world, each agent produces a scalar value indicating the degree to which it

wishes to take control of the creature. The controller arbitrates between the agents,

and selects the agent which would be most unhappy if it were not selected, and the

winning agent's suggested action is then accepted.

3.4.6 Constructionist Design Methodology

Another approach to building large A.I. systems is the Constructionist Design Metho-

logy (CDM) [Thórisson et al., 2004], which was implemented in the form of a virtual

agent in an augmented-reality room equipped with wireless tracking sensors. In

CDM, the emphasis is on the modular design of the complete system. The function-

ality of the system is broken into distinct functional modules with clearly-separated

responsibilities, just as problems and solutions are tackled by the divide-and-conquer

approach in software engineering. As a result, the methodology can be used to con-

struct large systems which incorporate complex hierarchies of control and data �ow.

Although a methodology like CDM could be applied to the construction of com-

plex hybrid minds in the World-Wide Mind, an important issue we address is the

ability to construct a hybrid mind from subminds which were not designed explicitly

to co-operate or to embody separate, orthogonal functions within a larger solution.

3.4.7 Blackboard systems

An early attempt at building modular intelligent systems was the blackboard system

[Erman et al., 1980; Corkill, 1991], which was inspired by the idea of a group of human

experts brainstorming together. The blackboard represents a shared workspace for

partial solutions.

This high-level idea has been revisited in various systems since then, perhaps

most relevant in the multi-agent setting described by Corkill [2003].

One advantage of the blackboard system approach is that it provides a richer,

more strongly-de�ned structure for information sharing between the co-operating
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modules known as knowledge sources. Also, the task of adding a new module to an

existing blackboard system � perhaps dynamically � is more straightforward than

with directly connected modules.

As with CDM however, it is necessary that each collaborating module in a tra-

ditional blackboard system be designed in such a way as to play a part in the col-

laborative activity. Furthermore, the system does not lend itself to an explicitly

hierarchical organisation of behaviour-driven minds which is a fundamental aspect

of this work, and it is unlikely to be of use where the knowledge sources � minds �

return only actions, without supplementary meta-data which can be used by other

minds and by the control shell (the hybrid controller).

However, it should be possible to a implement a blackboard system as a hybrid

mind, where modules are represented as named subminds with specially-designed

getaction methods, and the blackboard is maintained by the hybrid controller and

passed to the subminds in place of the world state (the blackboard contains the input

state, as well as the shared repository of information created by knowledge sources).

Several cognitive architectures include blackboard systems as part of their design

� for example, Ymir, an architecture which integrates multimodal perception and

action, uses a blackboard as part of its distributed planning and control system

[Thórisson, 1999].

3.5 Competition and collaboration in mind-building

Cristianini discusses the problem that research in arti�cial intelligence has become

increasingly fragmented, with more work being done on narrow, focused topics and

less integration of ideas into larger systems [Cristianini, 2010].

Some collaboration and sharing exists within arti�cial intelligence research; for

example, a number of websites serve as repositories for machine learning code and

training datasets [Kantrowitz, 2009; Asuncion and Newman, 2009]. These repositor-

ies are useful, but the steps required to install or adapt an existing solution di�er in

each instance and there is little consistency in the types of programs and interfaces

provided.

Potential users must download the code and may need to modify it to compile on
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their own machine. The program will generally require adaptation to suit the inter-

face and/or problem structure they wish to solve, if indeed the program is suitable

for addressing the chosen problem.

One project titled RL-Glue [Tanner and White, 2009] attempts to alleviate this

problem by providing a common API, mainly focused on the reinforcement learning

community. The interfaces allow agents and problem environments to interoperate,

even if they are implemented in di�erent programming languages. RL-Glue is ex-

plicitly focused towards reinforcement learning research, but could be applied in a

more general sense.

Competitive environments such as RoboCup [Visser and Burkhard, 2007] and the

DARPA Grand Challenge [Buehler et al., 2009] are interesting in terms of encour-

aging the creation of intelligent programs, but the problem domains are speci�c and

there is no de�ned infrastructure for building and sharing hybrid minds.

3.5.1 Yet Another Robot Platform (YARP)

YARP is a platform for building modular robot control systems, aimed at reducing

the amount of infrastructure-level work that needs to be done in the process [Metta

et al., 2006]. It supports the software development process by providing an applica-

tion programming interface (API) oriented toward the building of humanoid robots,

including a library of image processing functions and interprocess communication

(IPC) methods for distributing processes across multiple compute resources.

The platform has been used successfully by several situated robots, including

COG and Kismet [Fitzpatrick et al., 2008].

A strength of YARP is that it facilitates an abstraction between control software

and the hardware on which it runs. This abstraction is one of the core themes of the

World-Wide Mind, which not only aims for hardware independence but also imposes

minimal constraints on state and action representation, and encourages a behaviour-

based design of minds. All of these factors promote modularity and re-usability of

programs.

YARP is capable of supporting �soft real-time� applications, something not con-

sidered in the design of the W2M.

One downside to robot-oriented platforms like YARP is the initial complexity
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involved in writing one's �rst programs. YARP is written in C++, presumably for

performance reasons, and does not provide simple high-level interfaces for getting

started on a solution to a particular problem, for building hierarchical programs

like the hybrid minds in W2M, or methods for easily evaluating and comparing the

e�ectiveness of one's programs at solving that problem.

3.5.2 Robot Operating System (ROS)

Another popular robot programming platform is ROS, which like YARP focuses on

the creation of abstraction layers between software and robot hardware, although

unlike YARP, ROS is not a realtime system [Quigley et al., 2009]. The ROS project

is more community-oriented than YARP, and supports robot builders by providing a

package management system for a variety of di�erent tasks, such as planning, gesture

recognition and simultaneous localisation and mapping (SLAM) [Engelhard et al.,

2011].

ROS is very much focused on the development of real robots, and is not dir-

ectly concerned with hierarchical control. However, it attempts to be architecture-

agnostic, using high-level abstractions such as topics and services for information

exchange between modules.

3.6 Cloud computing and the semantic web

From a software engineering perspective, the encapsulation of minds and worlds as

services on the Internet brings this work into the area of cloud computing and, more

speci�cally, service-oriented architecture (SOA).

SOA includes a notion of composing services [Rao and Su, 2005], either statically

or at runtime, based on various considerations.

In the original proposal for the World-Wide Mind [Humphrys, 2001b], these ser-

vices were intended to be implemented as web services, communicating with each

other through HTTP requests and responses. In this work, the web service-based

communications scheme has been replaced with a simple messaging protocol over

TCP, intended to reduce the latency of message transmissions between services (see

section 5.6.4).
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SOA generally relates to web services in particular, but the focus on interoper-

ability, and the potentially distributed nature of mind and world services has not

changed.

The idea of complex and intelligent agents that interact automatically and autonom-

ously with services (and perhaps each other) over the Web [Berners-Lee et al., 2001]

is not new. One possibility to achieve this is to have agents attempt to parse existing

webpages which are written for humans. This involves complicated parsing and is

prone to error, particularly when understanding of implicit context is required. The

alternative is to augment the existing web with semantically meaningful markup in-

tended for machines [Bryson et al., 2002]. This goal has perhaps not been achieved

in a widespread sense to date, but the possibility for a hierarchical composition of

agents on the Web is interesting and certainly overlaps some of the central themes

of the World-Wide Mind.

3.7 Fast communication in networked computer games

The development of multiplayer networked computer games spawned considerable

research into the problem of synchronising the simulated state between a remote

server and local client, both of which maintain an internal model of the world. The

goal is for state changes to be transmitted rapidly and for the remote and local models

of the state to be in close agreement, even in the presence of noise, unpredictable

transmission latency, or data packets which arrive out-of-order or go missing entirely.

3.7.1 Packet transmission protocols

Distributed interactive simulations and real-time multi-player network games fre-

quently use the user datagram protocol (UDP) [Gautier and Diot, 1998; Roehl, 1995]

for network data transmission in preference to the more commonplace transmission

control protocol (TCP).

The reason for this is that TCP provides a number of features which are intended

to maximise reliability of message delivery, at the cost of message throughput � for

example:

� automatically retransmitting packets which may have been lost
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� generating and checking sequence numbers to ensure messages are delivered in

order

� generating and testing checksums to protect against data corruption.

These features make TCP the protocol of choice for most purposes, but increase

the transmission latency and reduce the rate at which messages can be transmitted.

Because of this, some client-server implementations eschew the use of TCP in favour

of simple UDP transmission schemes, either re-implementing the required features

provided by TCP.

Other implementations allow packets to simply be lost or delivered out of order,

moving the responsibility of re-requesting missing or corrupted data to the next

level � the application layer. In some scenarios missing or corrupted data is ignored

completely. This is particularly common in the delivery of streaming video or audio,

where UDP is typically used as the transport protocol [Wu et al., 2001].

3.8 Techniques for synchronising state over unreliable

channels

Networked multiplayer games inevitably produce a measurable latency (or lag) between

issuing a command or input and seeing that action applied in the game world. This

latency must be minimised � at least in perceptive terms � for the player, who ex-

pects a game to respond to inputs in the same fashion and speed during multiplayer

online play as when playing in single-player mode.

3.8.1 Latency and responsiveness

For the player, then, there is a limited responsiveness threshold beyond which the

game becomes frustrating or uncomfortable to play � particularly in fast-paced

�twitch� action games like 3D �rst-person shooter games. Studies estimate this re-

sponsiveness threshold [Ferretti and Roccetti, 2005; Beznosyk et al., 2011] to be

between 100 and 200 milliseconds.

This level of responsiveness can be di�cult to meet, and may be unachievable

using TCP under certain conditions. The World-Wide Mind was not intended to
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address this problem, since the player is an arti�cial mind which may itself be hosted

on a remote server, or even composed of many subminds on di�erent remote servers.

However, overall throughput and completion time for runs is of concern, especially

when large, distributed hybrid minds are involved.

3.8.2 Hiding the e�ects of latency

Since the end-to-end connection latency between server and client cannot be com-

pletely eliminated, or reduced beyond what the laws of physics allow, a number of

techniques have been devised for hiding some of that delay from the player, by al-

lowing the local client to modify its internal state representation in accordance with

the game model. Errors � that is, divergences from the server's canonical model of

the simulation state � are corrected through the use of synchronisation algorithms

which reconcile those di�erences in client and server state based on newly-received

data.

In 1983, a DARPA research project named �SIMNET� [Kanarick, 1991] was ini-

tiated, which described and implemented an architecture for distributed interactive

simulations (DIS), to be used in collective training exercises for U.S. Army soldiers,

as well as in testing new combat vehicle designs.

Due to the focus of team training in SIMNET, the distributed aspect of sim-

ulations was a primary concern, and this led to the development of various tech-

niques for improving networked performance and hiding latency from the human

user. An important observation for the purposes of network performance was that,

for most simulations, the changes in state from one moment to the next are gen-

erally minute, compared to the complete state description. Because of this, it is

more bandwidth-e�cient to avoid transmitting redundant data, by sending only the

di�erences between the old and new state.

Another technique used in SIMNET was dead reckoning [Calvin et al., 1993],

which allows local clients to extrapolate new states between authoritative state up-

dates. To enable this, simulated world objects must carry a model of their behaviour

which can be used on the client side to simulate new states, and which is consistent

with the world model used by the server.

Information in the state updates, such as position, velocity and orientation are

48



used to inform the local models so that objects can simulate their movement and

behaviour within a certain degree of error. When this error threshold is exceeded,

the server sends an update packet with an authoritative de�nition of the object's

current and true attributes.

Although the use of dead reckoning is limited by the fact that it must be designed

into each world model, it nevertheless achieves very good responsiveness, and has

become a widely-used technique in multiplayer online games.

A simple scheme called local lag [Mauve et al., 2002, 2004] strikes a balance

between responsiveness and consistency of state, by deliberately inserting a delay

after each game event or user command is received. This provides some time for

incoming events to be re-ordered such that fewer inconsistencies occur.

However, since it is still possible for a game event to be received after the delay

period, this method must still apply a rollback and re-apply scheme to correct errors

when they do occur.

Some methods are designed to execute events without being sure that earlier mes-

sages are not due to arrive, and in the event that out-of-order messages are detected,

the inconsistencies in state are repaired. These algorithms are called optimistic syn-

chronisation algorithms.

One well-known technique arising from distributed systems research is the Time

Warp mechanism [Je�erson, 1985], which saves a copy of the current state after each

simulation event is received. When it is discovered that an event has been processed

before an earlier event is received, the state is rolled back to the latest copy before

the delayed event, and then all events received since then are re-applied in order

to generate a consistent state. Additionally, �anti-messages� are broadcast to cancel

any events that might have been issued while the simulation was in an inconsistent

state.

The problem with Time Warp is that the state snapshots are recorded for every

game event received � which might be tens of times per second, for every connected

client. This makes it unsuitable for massively-multiplayer real-time online games.

To address this problem, a method named trailing-state synchronisation was

presented in [Cronin et al., 2001], which requires that each game state server (of which

there could be several, in a redundant, mirrored con�guration) keeps multiple copies
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of the game state, each one corresponding to a di�erent point in time. The leading

state (events occurring right now) is compared with these older state snapshots to

identify inconsistencies. If an error is detected, the state can be rolled back to an

earlier, consistent copy and events and user inputs re-applied to bring the old state

up-to-date.

3.8.3 Limitations of latency-hiding techniques

These techniques are powerful and can make the di�erence between a simulation

being perceived by the human participant as responsive or completely unplayable.

While arti�cial minds have no such responsiveness demands, it may be the case that

some of these optimisations could improve the overall execution time of a run across

the network.

However, each of the techniques requires that the world model be modi�ed (for

example, to provide the basic facility to roll the world back to an earlier state and

re-apply a stream of updates) and for dedicated client code to be introduced which

provides a limited, local model of elements in the simulation, so that intermediate

states can be extrapolated while waiting for an authoritative state update from the

world, as in dead reckoning.

Furthermore, since these techniques rely on client-side approximations of the

world, it would be di�cult or perhaps impossible to provide a deterministic interface

between minds and worlds. For this reason, none of these techniques has been applied

to the World-Wide Mind architecture.

However, future work might bene�t from a further examination of these tech-

niques, for certain classes of world which could declare themselves to be tolerant of

�lossy� interactions.

3.9 Statistical methods

The �eld of computational statistics has grown so large and broad that no treatment

here can give more than a super�cial examination of a small number of methods

among many techniques which might be useful for our purposes.

Chapters 6 and 7 discuss methods for determining which of the attributes making
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up a score vector gives the strongest contribution to the overall, aggregate score.

One way to model and understand this relationship is to perform correlation

analysis on the collected data. Correlation is essentially the problem of determining

the degree to which two observed variables seem to be associated with one another

[Lowry, 2010], and it can be performed very quickly using several di�erent methods.

Principal component analysis [Jolli�e, 2002] has been used for dimensionality

reduction in �elds such as image compression [Du and Fowler, 2007], as well as for

variable selection [Westad et al., 2003].

3.10 Conclusion

This chapter has touched on a wide variety of subjects, encompassing di�erent areas

of research from distributed arti�cially intelligent systems and their construction, to

techniques for fast updates of shared state models over unreliable network connec-

tions in multiplayer computer games and military simulations.
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Chapter 4

Previous Work: the World-Wide

Mind, version 1.0

To help place some context on the work carried out during this period of research,

this chapter introduces and describes the previous work on the World-Wide Mind

project. First, the initial motivations behind the project are discussed, before the

basic communication model and high-level system architecture are introduced.

After this, a technical overview is presented of the important system components,

focusing on the local user interface for controlling runs in any world, and the server-

side mind and world hosting mechanisms. Finally, the chapter �nishes with a look

at some of the limitations to this previous work which the contributions described

in chapter 5 attempt to address.

4.1 The World-Wide Mind

Although there has been a great deal of research into speci�c techniques for problem-

solving and decision-making in the broad �eld of arti�cial intelligence, there has been

less integration of diverse methods together, and a certain degree of Balkanisation

in research focus.

TheWorld-Wide Mind (W2M) project aims to encourage greater cross-pollination

and diversity of problem-solving programs, while keeping the entry barrier for par-

ticipation low. The project is an attempt to scale up arti�cial intelligence by dis-

tributing problem-solving programs (which we refer to as �minds�) and problem en-
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vironments (which we call �worlds�) on the Internet, and by allowing minds to call

other minds freely and thus facilitate building hybrid minds from multiple minds

which may have been written by multiple authors, perhaps with no speci�c intent

for collaboration or reuse.

The project was started in 2001 to facilitate the integration of many diverse

components of agent minds into whole minds [Humphrys, 2001a], evolving out of

previous work in multi-mind intelligence [Humphrys, 1997].

4.2 Communication model

In this �1.0� design of the World-Wide Mind platform, minds and worlds are rep-

resented as web services, available on the Internet [O'Leary and Humphrys, 2003].

The interactions described in chapter 2 were accomplished by sending messages em-

bedded in web requests to mind or world services, and receiving reply messages in

response [Walshe et al., 2004].

For example:

� The getstate request message, when sent to an instance of a world service,

prompts the world to return the state (or an observable subset of the complete

state) in its response.

� Similarly, the getaction request, when sent along with an observed state s

to an instance of a mind service, prompts the mind to return an appropriate

action to be taken from that state.

In this sense, the aim was to make possible a genuinely �world-wide� mind system,

where anybody could set up a server for their minds and/or worlds, assigning to each

one a unique URL.

Once a mind had been created and hosted as a mind server somewhere on the In-

ternet, it could then be used by a hybrid mind through this URL. This opened up the

possibility of building distributed hierarchical hybrid minds online, each composed

of a multitude of mind programs written by multiple authors.

This notion of having large hybrid minds with components located all around the

world was one of the motivating ideas behind the work.
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4.3 Architecture of the World-Wide Mind v1.0

4.3.1 Software architecture

At a high level, the system architecture of the World-Wide Mind v1.0 consists of two

main components::

� the user interface (client),

� the world and mind services, hosted by a web application server (Apache Tom-

cat, in our case).

The user interface

The local client program, shown and described in section �4.6, allows users to initiate

and manage runs. The interface allows runs to be carried out and stepped through,

displaying the state and action taken at each timestep in the world.

The mind and world services

It was originally envisaged that minds and worlds would be implemented as stand-

alone web services, hosted on many di�erent physical server machines by their au-

thors.

An obvious use of the architecture was for teaching rather than research. To

require that students deal with the issues involved in bringing online and maintain-

ing their own web servers before they could even start writing their minds seemed

needlessly onerous.

A simple web application server was therefore set up to host minds submitted

by those students who did not wish or know how to implement their own servers.

Minds were submitted by users manually, via email to the server administrator. A

series of batch scripts were then called by the server administrator to produce a web

service from the submitted mind class. This process is discussed in further detail in

section �4.8. Scores from each run were collected manually and a HTML scoreboard

was updated using other batch scripts by the server administrator.

Although this reference server was implemented using Java and servlets, the ar-

chitecture itself is language-independent, since messages are sent between services
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over the Internet as XML. Minds and worlds can be hosted by any technology which

allows the creation of web services capable of constructing XML messages and send-

ing/receiving them as parameters to HTTP requests.

4.4 Interaction of mind and world

When an instance of a world and mind are created, a series of interactions is per-

formed in a continuous loop, until the run terminates (for example, when a chess

game is won, drawn or lost, or when a simulated animal dies or achieves its goal). At

the highest, most simpli�ed level, this action selection loop consists of three steps:

� getstate: The mind observes the currently visible state s of the world.

� getaction(s): The mind selects an action a to be taken in response to the

current state and presents it to the world.

� takeaction(a) : The world applies the selected action a and updates its in-

ternal state.

From the perspective of the controlling entity which initiates the run, which we call

the client (for example, the Java AWT program depicted in �gure 4.3), the basic

series of interactions is as follows, with the main loop (steps 3-5) shown in �gure 4.1.

1. The client sends a newrun message to the world, which creates an instance of

the problem world unique to this run.

2. The client sends a newrun message to the mind, which creates a mind instance

unique to this run.

3. The client sends a getstate message to the world instance, which responds by

returning the current observed state of the problem world. The observed state

may be partial (e.g. a simulated animal's sensory percepts, or the visible cards

in a simulated poker game) or complete, as in a game of chess.

4. This observed state is passed to a mind in a getaction message, which returns

a suggested action a to be performed in the world (for example, �0.8157�,

�Bxc2�, �turn-right� or �place the red block on top of the leftmost green block�).
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5. Action a is passed to the world in a takeaction message, which returns the

new state generated by applying the given action to the current state.

6. If the run has completed, then the world returns an endrun response instead,

including the score information which summarises the mind's performance on

this world instance.

7. If the client received an endrun response from the world, then it sends an

endrun request to the mind and terminates the loop. Otherwise, it received

the new state generated by taking action a, and continues the loop from step 4.

Figure 4.1: The basic interactions between the client, mind and world at each
timestep. Once the run has been started in the run, the client interface � a pro-
gram running on the user's machine � issues requests to and receives responses from
one world service and one or more mind services. Each service may be hosted on a
di�erent physical machine on the Internet. The numbers correspond to the interac-
tions discussed in section 4.4.

4.5 Society of Mind Markup Language (SOML)

In order to communicate with a mind or world service � possibly hosted on a remote

server � a message protocol is required. An XML-based description language was

developed to represent the messages which would be sent from the user's machine

(perhaps running the client program described in section �4.6) to the intended world

or mind services, and the messages received in response, as well as messages which

might be sent from one service to another. This description language was called

Society of Mind Markup Language, or SOML.
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An example SOML excerpt encoding a getaction request message is displayed

in �gure 4.2.

It was envisioned that users could create web forms for the purpose of generating

custom messages, since they were to be transmitted as HTTP requests and responses.

These custom messages could be used to represent knowledge or actions in a mind-

speci�c way, but the same information could be attached to a standard message such

as getaction.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <soml version="1.0" xmlns="http:// w2mind.org/soml"

3 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

4 xsi:schemaLocation=

5 "http:// w2mind.org/soml http:// w2mind.computing.dcu.ie

/services/soml_1_0.xsd">

6 <getaction type="request" runid="1354563031043">

7 <state>

8 12345,empty ,empty

9 </state>

10 </getaction >

11 </soml>

Figure 4.2: An SOML message sent to a mind service. This message represents
a getaction request, presenting the mind with an observed state of �12345, empty,
empty�. The �runid� parameter to the getaction tag represents a unique identi�er,
allowing the user to communicate with an individual instance of a mind which may
have its own internal state.

4.6 Client interface

To help initiate and control runs, a graphical client program was provided and ex-

ecuted on the user's local machine, acting as a middleman which sends messages

to the world and mind services and managed the responses. The client program is

shown in �gure 4.3.

4.7 Software API for writing minds and worlds

A simple application programming interface (API) de�ned several interfaces and base

classes which new minds and worlds extend to provide their own functionality.

Algorithm 4.1 shows a trivial mind which takes one of two possible discrete actions

based on the visible state and an internal counter initialised at the beginning of the
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Figure 4.3: The W2M 1.0 client interface, a Java AWT program written to initiate
and manage runs of mind services in a world service. The services are speci�ed by
URL, since a central theme of the project was to make possible the building of hybrid
minds from various submind services, possibly hosted on di�erent machines on the
Internet.

run.

4.8 The W2M 1.0 service platform

A software platform (which is referred to here as W2M 1.0, so as to distinguish it from

the newer W2M 2.0 platform described in chapter 5) was developed that would host

Java servlets representing mind and world services. Users submitted mind classes

by email to the server administrator, who then called a series of batch scripts which

performed the following functions:

� compile the Java source code for the submitted mind, producing bytecode class

�les, and

� generate servlet wrapper classes, derived from the mind name. The servlet

wrapper classes implement HTTP request methods, and install the newly-

generated servlet in a directory visible to the Apache Tomcat web application

server.

Once the servlets were hosted by the application server, communication between

minds and worlds was then possible by sending HTTP requests; e�ectively converting
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Algorithm 4.1 An example of a simple mind.
import org.w2mind.net.*;

import simpleworld.*;

public class SimpleMind implements Mind {

int counter;

public void newrun () {

counter = 0;

}

public Action getaction (State s) {

TrafficLightState ts = new TrafficLightState(s);

if(ts.isLightGreen() || counter++ > 30)

return Actions.CROSS;

else

return Actions.WAIT;

}

}

minds and worlds into web services.

This scheme was �exible and convenient, since Tomcat takes care of network I/O

and automatically loads the appropriate classes when a servlet receives a request,

and �ts the motivation that di�cult network programming should be unnecessary

for a user to construct mind or world services and to make them available online.

4.8.1 Message encoding, transmission and decoding

When a message is sent from the user to a mind or world service (or from one instance

of a mind to another), these steps are followed. We will call the sender of the message

request the originator, for clarity:

1. The message from the originator is encoded into an XML document containing:

(a) The message type (for example, newrun or getaction).

(b) A �ag indicating that the document represents a request message.

(c) All the relevant data �elds � for example, the perceived world state as a

string of text.

(d) The run ID, or run identi�er, which was returned from the remote service

after it was initialised by a newrun message. The run identi�er is a token

which allows the appropriate instance of the remote service to be retrieved,

since the communication channel is based upon stateless web requests.
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i. If this message is a newrun request, the remote service will generate

a new run identi�er and return it embedded in the response message.

2. The resulting XML document is passed as a parameter in a HTTP request to

the web service speci�ed by the target service URL.

3. The remote service handler � in this case a Java web servlet wrapper class �

retrieves the XML document from the HTTP request parameter.

4. The remote service handler parses the received XML document and extracts

all the previously-speci�ed data �elds, constructing a new message object.

5. If a run identi�er was included with the message, the remote service handler

uses it to retrieve the intended instance of the remote service (a mind or world)

which was previously created and which should receive the message. In this

case, every instance is retrieved from disk when the message is sent to it, and

written to disk after the message has been handled.

To do this, an operation called serialisation is performed, which recursively

��attens� an object or data structure in memory and produces a string which

can be sent across a network connection or stored to a �le or database.

This string, when later deserialised, should produce an object identical to the

one which was originally serialised.

(a) If no run identi�er was included, and the message is a newrun request,

then a new instance of the remote service is created and assigned a new

run identi�er, which will be returned embedded in the response message

for use in future requests.

6. The message type is used to determine the appropriate method of the remote

service instance to call. If there are any relevant data �elds (for example,

containing the perceived state if the message is a getstate request), then they

are passed as parameters to the selected method.

7. The remote service instance � an instance of a mind or world � carries out the

required processing, and may or may not produce a result. For example, as can
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be seen in algorithm 4.1, handling a newrun message does not return a value,

but a getaction message does.

8. The remote service handler adds the returned value, if any, to a new message

object. This message is once again serialised to an XML document containing:

(a) The message type (for example, newrun or getaction).

(b) A �ag indicating that the document represents a response message.

(c) The value (if any) that was returned by the remote service instance.

(d) The newly-generated run identi�er, if the message was a newrun request.

9. The remote service handler serialises the service instance to disk, using the run

identi�er as a key, so that it can be retrieved when more messages are sent to

it in the future.

10. The resulting XML document is returned as a HTTP response to the origin-

ator's request, completing the exchange.

It should be clear that this process adds a signi�cant overhead to the time taken for

every exchange of messages. This is especially noticeable over long runs, which may

result in many thousands of messages being sent and received.

4.9 Limitations

The �rst implementation of the World-Wide Mind platform was capable of interfacing

minds with worlds and with other minds over the Internet, but performed very

slowly. Because of this, when the system was used for undergraduate assignments

in arti�cial intelligence courses, the majority of submitted minds were monolithic

programs which did not seek the advice of other minds to select actions.

This section describes some of the limitations in the previous design and imple-

mentation of the World-Wide Mind 1.0 platform which motivated the work described

in chapter 5.

To make the building of large hybrid minds a more plausible exercise, improving

the latency and throughput of messages was of major concern. Section �5.6 describes

what was done to minimise message sending overheads and increase the speed of runs

by several orders of magnitude.
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4.9.1 Minds and worlds as web services

In the initial W2M implementation, minds and worlds were represented as web ser-

vices, so that messages could be sent to any service using a simple HTTP request.

This a�orded some simplicity and transparency in distributing minds and worlds on

the Internet, and left the door open for interacting with mind and world services

manually by constructing HTTP requests in a web browser without needing special

software, although it was more practical to use a dedicated client program.

However, there is a time penalty to be paid for this �exibility, in terms of increased

latency between sending a message and receiving a response back, even if minimal

processing is carried out by the mind or world service.

The following factors contribute to this latency:

� The use of a web application server (Apache Tomcat), which introduces com-

putational and I/O overheads for features beyond those necessary for our pur-

poses, for example, authentication checking, �lter chains and logging.

� Every time a message is sent, it is encoded into a new XML document. This

could include very large data structures, such as the current state of the world

which might consist of a large number of recorded sensory perceptions.

� Similarly, upon receipt of an XML document it must be decoded to reconstruct

the original message. This repeated encoding and decoding of messages into

XML is computationally expensive.

� Using HTTP to wrap messages adds extra message headers and causes addi-

tional network transmissions.

� Each run consists of a unique mind and world instance interacting together for

a series of timesteps. Because HTTP requests are inherently stateless, it was

necessary to persist the mind and world instances to and from disk storage,

using a unique identi�er to retrieve and store the correct instances at every

timestep.

This process of serialising and recreating objects is expensive in terms of disk

access and computation time, since it happens so frequently. It would be faster

to store the world and mind instances in a hash table, but this could lead to
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excessive physical memory use � a potentially unbounded amount of memory

if runs do not terminate correctly and are not removed from the table.

Together, these factors add up to a signi�cant latency overhead for every message

sent and every response returned. However, some of these sources of latency are

avoidable in certain situations, and some can be eliminated entirely. Perhaps most

importantly, the serialisation of world and minds at every timestep which is very

costly.

4.10 Conclusion

Previous work on the World-Wide Mind project produced a server architecture which

represented worlds and minds as web servlets, each associated with a run by a run

identi�er.

This system worked, but due to the design of the Tomcat application server,

which o�ered many capabilities which are unnecessary for our purposes (such as

�lter chains, authentication etc), and inherently due to the wrapping of all messages

in XML and then transmitting them over stateless HTTP, the performance of the

system was rather slow � on the order of one second of overhead for every timestep.

These limitations and some resolutions applied in this work are addressed in

section �5.6, which describes the improvements made to the World-Wide Mind ar-

chitecture and implementation that enabled the research into hybrid mind creation

presented in chapter 6 and chapter 7.
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Chapter 5

W2M 2.0: An architecture to

enable massively multi-author

hybrid intelligence

5.1 Introduction

Chapter 4 discussed a software architecture and platform � which we call the World-

Wide Mind 1.0, to distinguish from this work � which was intended to make possible

the building of mind programs from a widely distributed set of submind services.

The 1.0 platform was implemented mainly by Ciarán O'Leary [O'Leary et al., 2004].

To address some of the limitations which were identi�ed in section �4.9, this

author designed a �World-Wide Mind 2.0� platform, building on the earlier work and

integrating with a front-end interface created by Mark Humphrys and Brian Monks

[Monks, 2010]. The work described in this chapter is an original contribution by

this author, except for the front-end interface by Humphrys and graphical rendering

system by Monks, a brief description of which can be found in appendix D and

appendix E. Together, these contributions form an entirely new system called W2M

2.0.

This chapter outlines the technical challenges and design of the W2M 2.0 software

platform and architecture and evaluates the contributions made by this work.

64



5.2 Purpose

The World-Wide Mind project was developed with the intent of hosting minds and

worlds as network services on a potentially large scale, and allowing these services

to communicate across the Internet.

In the W2M 1.0 model, it was assumed that users would generally host their mind

or world web services on their own servers, although a reference server was developed

capable of hosting a limited number of minds and worlds as Java servlets. The Java

programming language was chosen for several reasons: most importantly, it is the

language with which most of the immediately available participants (undergraduate

students) were familiar. It also enjoys considerable cross-platform independence and

is well-supported and mature.

The W2M 2.0 model moves away from the model of individually distributed

minds and worlds, and towards a model whereby automated World-Wide Mind serv-

ers each host a large number of mind and world services. These services are uploaded

to a server on the Internet by untrusted users, and must be managed carefully to

minimise the risk of damage from poorly-written or malicious programs. Considera-

tions regarding security issues are treated in section 5.6.8. The move toward a more

centralised model is discussed in section 5.6.1.

It is also important that the communications architecture and implementation

allow messages to be transmitted between mind and world services with as little delay

as possible, to allow problems and solutions to be tested and evaluated quickly, over

many runs. This latency was one practical limitation in previous research which is

addressed in this work.

Increasing the speed at which messages can be sent and received will make it

possible and practical to build hybrid minds which communicate directly with other

minds for suggested actions, as described in section �2.10. Details of the communic-

ations implementation are discussed in section �5.6.

To encourage more contributions and collaboration, a front-end web interface

was developed with certain requirements chosen such that only a minimal level of

commitment was required of users to write, submit and test their minds. Firstly, it

must be possible to upload and test minds and worlds automatically, without admin-
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istrator intervention as was necessary in the earlier proof-of-concept implementation

[O'Leary and Humphrys, 2003]. The front-end interface was developed by Mark

Humphrys with contributions by Brian Monks [Monks, 2010], and its features will

be discussed in the context of this work in appendix D, with a description of the

graphical rendering of world states in appendix E.

This facility is supplemented with an automated scoreboard system which ranks

the best performance scores of the uploaded minds for each hosted world. The web

interface provides a facility to explore all of the minds and worlds hosted on a server,

to upload new minds or worlds and delete old ones (provided the user has appropriate

ownership or permissions), to view the performance ranking of minds for a particular

world and to carry out runs of any mind in its associated world environment.

Where the world author has implemented the appropriate method, graphics can

be generated during a run, and displayed as the user steps through the list of states

seen and actions taken. To view the scoreboard and carry out runs of hosted minds,

all that is required is that the user has a working web browser.

5.3 Requirements

Following on from the discussion of the W2M 2.0's purpose, the following list sum-

marises the primary requirements of the W2M 2.0 which are relevant to this work

(front-end elements are excluded as they were contributed externally):

1. A server daemon should be created which can automatically load a Java archive

(JAR) �le containing classes constituting either a world or mind.

2. The server should make loaded worlds and minds available as a service on the

Internet.

3. Requests destined for any hosted world or mind service should be passed to

the appropriate service and responses returned, creating a new instance of a

service if necessary.

4. It should be possible to perform a run of a mind in a world rapidly online, with

minimal overhead in message decoding or processing.
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5. A carefully designed security model should prevent broken or malevolent ser-

vices from damaging the system or other services.

6. A generic scoreboard system should be designed which can persist to a database

each mind's best score in a world. This is intended to encourage competition

between mind authors.

7. It should be easy to create a new hybrid mind which calls other minds, possibly

written by multiple authors. This should be possible when the hybrid is running

on a W2M server or when run locally; otherwise it would be di�cult to test

and debug programs.

By ful�lling each of these requirements, we can then answer the �rst research question

posed in section �1.4. The remainder of this chapter describes the general architecture

decisions made to support the W2M 2.0 platform, and how each of these requirements

is satis�ed. As far as was practicable, the behaviour of every programmed feature or

optimisation was veri�ed through the use of unit tests, and the performance gains

(or losses) were checked through the use of targeted benchmarks.

5.4 Architecture of the World-Wide Mind 2.0

At a high level, the World-Wide Mind architecture consists of three components

whose interactions are summarised in �gure 5.2:

� the run logger,

� the user interface (client), and

� the W2MServer daemon program.

5.4.1 The run logger

A Java program called Runlogger manages the communication between the user and

a mind. An instance of this program is created when the user starts a run from

the web client, receiving as parameters the URLs for the selected mind and world

services.
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The program then starts to communicate with the mind and world via TCP

network sockets (although communication with the world now happens indirectly as

described in section 5.6.5).

As the run progresses, updates containing the states seen and actions taken by the

mind are collected and added to an XML log�le, which is then parsed and presented

by the web client upon completion of the run.

5.4.1.1 The run logger XML log

The structure of this XML document is explained with the following example. The

entire document is enclosed within a <soml> tag:

<?xml version="1.0"?>

<soml xml:lang="EN">

...

</soml>

Contained within the soml tags are an ordered series of <asyncrun> tags, de-

scribing the run. The �rst of these <asyncrun> tags contains metadata describing

the parameters of the run:

<asyncrun recipient="ImageMind">

<imagesdesired value="true"/>

<otherparticipant value="ImageWorld"/>

<runid value="1347293678374"/>

<steps value="0"/>

<world value="ImageWorld"/>

<worldHost>som://mbio-server.computing.dcu.ie</worldHost>

</asyncrun>

The meaning of these parameters is as follows:

recipient The name of the mind we wish to carry out the run.

otherparticipant, world The name of the world in which the mind will perform

the run.
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worldHost The URL of the server which hosts the desired world service.

runid An automatically generated run identi�er returned by the mind service, as-

sociating this run with a particular instance of the mind.

steps The maximum number of timesteps we wish the mind to take in the world

� once this number is reached, the run will be terminated. A value of zero

signi�es no speci�ed limit.

imagesdesired A �ag indicating whether or not the world should generate graphical

depictions of each state encountered by the mind.

After this, the remaining <asyncrun> tags describe the events seen during the run,

with each entry containing the timestep number (beginning with 1), and a world-

generated textual description of both the state seen by the mind and the score

achieved by the mind at that timestep, as well as the action taken by the mind in

response to that state, which will frequently be an integer value.

<asyncrun>

<action value="0"/>

<score value="0,0"/>

<state value="7,6"/>

<timestep value="1"/>

</asyncrun>

In this example from a world where a cop must catch a robber by moving left

or right on a one-dimensional looping path, the action �0� is taken which signi�es

�move one space left� (conversely, an action of �1� represents moving one space to the

right). The robber's movements are randomly generated, with the cop's movements

controlled by the mind.

The state value (7,6) describes the positions of the cop and robber respectively

on the track as an index, where position 0 is the leftmost space and position 7 is

the rightmost. Moves beyond the leftmost or rightmost space causes the character

to wrap around to the opposite end.

The score value (0,0) indicates the number of times that the robber was caught,

and the number of times it was due to the cop's action rather than by the robber
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entering our space, respectively -the robber's move is applied �rst. Thus, a score of

�10,8� would show that the robber had been caught 10 times, but only 8 times due

to the cop's action, having wandered into the cop's space twice.

5.4.2 The user interface

The local client program described in section �4.6 was designed to communicate

with remote mind and world services by means of HTTP web requests, which was

identi�ed as a signi�cant performance limitation in section �4.9. A new client was

created using the Java Swing graphical user interface toolkit, capable of communic-

ating over a much faster communications protocol. This protocol will be described

in section 5.6.2 and section 5.6.4.

In section 5.6.1 some bene�ts of moving to a more centralised architecture will

be explained, perhaps most importantly the ability to automate processes such as

uploading worlds and minds to the server and make them available as world or mind

services. To take advantage of these possibilities, this local client was again replaced,

this time by a web interface on the World-Wide Mind server machine. This front-end

allows users to initiate and manage runs, and provides a listable directory of worlds

and minds, as well as an automatically-generated scoreboard for each world.

The interface allows runs to be carried out and stepped through, displaying the

state and action taken at each timestep in the world, as well as a graphical view of

the current state, if the world provides one.

When a run completes without an error, an entry is added to the world's score-

board which is sorted according to the score de�nition provided by the world author.

The score attributes are treated as a sequential list in descending order of im-

portance, for the purposes of sorting and tie-breaking partially equivalent scores.

Worlds and minds can also be submitted by logged-in users through an upload

form, and deleted by the users who uploaded them. This user interface is presented

in greater depth in appendix D.

5.4.3 The W2MServer daemon

The server component is W2MServer, a backend program which hosts the mind and

world services. This daemon waits for incoming TCP connections (from an instance
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Figure 5.1: The �2.0� local client program for initiating runs of mind services in a
world. Both mind and world services may be on remote machines, so a URL is used
to locate each one and make a network connection. The protocol string �som:� is
used to denote World-Wide Mind service addresses, as the communication method
uses a custom network protocol (see section 5.6.4). This local client program was
later replaced with a centralised, web-based interface which facilitates a wider range
of interaction and collaboration. The server-side web interface is described in greater
detail in appendix D.
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Figure 5.2: Architecture diagram showing the main interactions between compon-
ents. The instance manager represents the web interface which allows the user to
interact with and upload new mind and world services. In this example, the user
starts a run with a hybrid mind which communicates with a submind located on a
separate server.

of Runlogger or from a remote machine) and passes them to the appropriate mind or

world service. Section 5.6.3 explains how mind and world service classes are found

and loaded by the service classloader.

5.5 Uploading and testing worlds and minds

The W2M 2.0 server and the provided API for writing worlds and minds are imple-

mented in Java for now. However, the communication protocol is designed so that

other languages could be used in the future to create and host worlds and minds.

Skeleton world and mind classes are provided which make the process of writing a

new mind or world easier.

5.5.1 Uploading worlds

To create a world and make it available on a W2M server, the user follows these

steps:

� Download the framework library �w2m.jar�, which contains classes that encap-

sulate network operations, as well as the Mind and World base classes.
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� Create a Java class which extends the World base class, whose classname will

be the world name as seen on the server.

� Implement the required methods: newrun, endrun, getstate, takeaction,

corresponding to the messages sent and received as described in section 4.4, as

well as the getscore method which will provide feedback on the performance

of the mind in this world instance at each timestep and at the end of the run.

� Assemble the compiled world class, and any external classes it may need, into

a JAR archive with a �lename of the format <worldname>.jar.

� Upload the world's JAR �le to the server via the web interface's world upload

form.

The world will appear in the list of available worlds, and a scoreboard will be gener-

ated after a mind completes a run in the new world.

5.5.2 Uploading minds

To create a mind and make it available online, the process followed by a user is to:

� Download the framework library archive (w2m.jar), which contains classes that

implement the required network communication functions, as well as the Mind

and World base classes.

� Download the library archive containing the world-speci�c classes needed to

describe the state and actions, if necessary.

� Create a Java class which implements the Mind interface, whose fully-speci�ed

class name will be used as the mind name when the server produces a score-

board or list of minds available for the target world.

� Implement the required methods: newrun, endrun and getaction, correspond-

ing to the messages sent and received as described in section 4.4 (see also 5.1

for an example of writing a hybrid mind which queries other minds for actions).

The mind can be tested o�ine before being uploaded to the server.

� Assemble the compiled mind class, and any external classes it may need, into

a JAR archive with a �lename of the format <mindname>.jar.
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� Upload the mind's JAR �le to the server via the problem world's upload form

for new minds. The mind will appear in the list of minds for that particular

world and can be run immediately, generating a new entry on the world's

scoreboard.

5.5.3 Running and testing minds

For the purposes of running and testing minds, the web interface allows users to step

forwards and backwards through the run, examining the states seen and actions taken

at each timestep, as well as viewing the raw XML message content for debugging

purposes.

The interface will display a graphical rendering of the current state of the world

if the author has implemented the requisite getimage() method. These and other

features of the web front-end interface are described in detail in appendix D and

appendix E.

5.6 Improvements

A number of limitations of the previous work were identi�ed in section �4.9, and

these are addressed here.

5.6.1 Moving from a peer-to-peer to a more centralised �islands�

architecture

The early Web was a model where data and services were largely hosted on authors'

individual sites. What became called �Web 2.0� was distinguished by, among other

things, centralised sites to host people's data. These sites also provided a range of

services for interacting with that data, either through web interfaces or programmat-

ically through well-de�ned public application programming interfaces (APIs).

For example, before the arrival of YouTube and other such portals for user-

submitted video, the standard model for producers was to host their video �les on

an HTTP or FTP server to which they had access and su�cient storage space. Unless

the producer had set up an embedded video player (which happened to work in that

user's browser), viewers downloaded videos as large �les, and hoped that they had
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the correct codecs installed to render the video and audio content.

When YouTube was established in early 2005, a new model of video production,

hosting and consumption became available and was successful, with the number of

videos viewed globally per day growing from 700 million in 2007 to 4 billion in 2012

[Hoÿfeld et al., 2013]. Moving from the older ad hoc distributed model to a more

centralised1 model o�ered a host of bene�ts � among them:

� Viewers only needed a web browser and one browser plugin (Adobe Flash

Player) to play any video uploaded to the site. No more downloading and

installing of proprietary codecs.

� Perhaps most importantly for the viewer, videos were streamed rather than

downloaded as single �les. This means that one can start watching a video

almost instantly after clicking a link, rather than waiting for a large �le to

download and opening it in a standalone player.

� Videos were automatically indexed and could be searched for by keywords and

category with date ranges and other constraints.

� A recommender system automatically provided links (and thumbnails) to videos

which may be of interest to the viewer.

In an attempt to gain similar bene�ts with the World-Wide Mind platform, and

recognising that network latency impacts heavily on the speed of runs, it seemed

appropriate to optimise the case where minds or worlds reside on the same machine

such that no network access or construction and parsing of XML need occur.

This encoding, sending and parsing overhead is signi�cant when a mind queries

a set of other minds to assist in selecting an action which is to be taken in a world.

Because the queries are executed in series, encoding messages to XML and back

and passing them through the network stack would add a noticeable latency to the

process and e�ectively penalise the use of many subminds, which is contrary to the

research objective of creating large scale hybrid minds.

1Centralised in the sense that YouTube serves as a global repository of sorts, with a uniform
interface where everyone can search for, watch and upload videos. To cope with the enormous
demands on bandwidth and to provide a reasonable quality of service (QoS), YouTube's internal
architecture consists of a network of caching servers and content delivery networks (CDNs) located
across the world [Gill et al., 2007; Hoÿfeld et al., 2013].
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5.6.2 Replacing the web application server

To remedy these performance issues, the web application server was replaced with

a daemon program, W2MServer. This daemon listens on a TCP port for incoming

network connections. When a connection is made, the daemon spawns a thread to

handle the incoming connection to a world or mind service hosted by W2MServer.

Connections can be made locally from an instance of the Runlogger program (part

of the client web interface which will be explained later), or from a remote machine,

which could represent a hybrid mind seeking to connect to a submind hosted on this

server.

5.6.3 Service classloader

To make a mind or world available as a service, two issues must be addressed:

1. Messages destined for the service must be received and processed accordingly.

2. There must be some method of packaging the mind or world's Java class along

with any other classes or �le resources it depends on.

3. There must be a way of loading the class(es) from the resulting package.

The �rst issue has already been addressed in section 5.4.3. The standard solution to

the second problem in Java is with Java archives (JARs), which are a compressed

archive �le format designed for storing Java classes and other required resources .

To solve the last problem, a custom classloader [Gong, 1998] is implemented which

attempts to load the class(es) pertaining to a world or mind in the appropriate JAR

�le, by looking for the �le <mindname>.jar or <worldname>.jar in the mind and

world service directories.

The classloader also attempts to make available the world API classes for mind

programs, to simplify the uploading and sharing of code. When a user starts a run of

a mind in a world, the world name is passed as a parameter in the newrun message

sent to the mind instance's ServiceProxy message-handling object, which attempts

to add the world's JAR �le to the mind's classpath, and to thus make accessible to

the mind all of the classes and interface de�nitions provided by the world author.

This is necessary when the State and Action classes are subclassed by the world
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author to provide an interface encapsulating the perceptions available and the types

of actions which can be performed by the mind.

Taken together with the communication daemon introduced in section 5.4.3, this

ful�lls the �rst three requirements described in section �5.3.

5.6.4 Custom network protocol

Once a thread has been created to handle an incoming connection, W2MServer must

use some scheme for marking the end of each message. Otherwise, the receiving

party will not know when a message has been completely received, and will block

inde�nitely when no more data needs to be read.

There are three ways of specifying the end of a message:

� Fixed size messages. By enforcing an exact size on all messages, and truncating

or padding any messages which do not �t, the recipient knows exactly how

many bytes to read from the network socket. This method is often used when

it is known in advance that messages will be small and/or all follow a structure

with static �elds and �xed �eld lengths. This is not suitable for our purposes,

since the contents and layout of data in each message depends for the most

part on the world author's de�nition of possible states and actions.

� Terminating messages by appending a delimiter symbol � that is, a sequence

of one or more characters which represents the end of a message. For example,

in textual con�guration �les, a newline symbol might represent the end of a

speci�ed rule or setting.

� Pre�xing each message with a �xed header section which includes a number

that speci�es the length of the ensuing message.

An advantage of delimited strings is that they are easy for humans to read, especially

in complicated message structures with multiple delimiters. For example, program

con�guration �les do not need to be parsed quickly, but would be inconvenient for

humans to read and write if it required a complex binary format, rather than a

syntax which relies on newlines and quote characters.

Some of the disadvantages of using symbols to delimit messages are:
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� The recipient of the message must search the message contents for the delimiter

symbol, one byte at a time, to know when enough data has been read from the

network socket or �le, and

� If the delimiter appears inside the message, then it must be escaped to prevent

the message from being incorrectly truncated at that point by the recipient.

Escaping the delimiter requires that the message be searched before sending,

and any occurrences of the delimiter replaced, usually by doubling the delim-

iter. For example, the backslash symbol is used as an escape character inside

strings in the C language. If the string should actually contain a backslash

symbol, then specifying it in the form "\" would cause it to be parsed as an

unterminated string � instead, the symbol must be written twice: "\\". This

means that the recipient of the message must also search for these sequences

and de-escape the received string by replacing doubled delimiters with their

single counterparts.

For these reasons, it can be signi�cantly faster to use a length pre�x rather than

delimiter symbols when sending strings which do not need to be read directly by

humans.

W2MServer therefore uses a simple protocol for sending and receiving XML mes-

sages over the network as length-pre�xed strings. When a message is ready for

transmission, its length in bytes plus four is calculated and written as a four-byte

integer header.

When reading a message from the network socket, the �rst four bytes are used

to determine the number of bytes to be read in total (for more technical detail, see

section �5.8).

00 00 00 4B <soml><getaction type="request"><state>x:147</state></getaction

↪→ ></soml>

Figure 5.3: A sample message (omitting some boilerplate headers and attributes in
the XML document) encoded for transmission over a network TCP stream. The �rst
four bytes signify the length of the message, giving a maximum message size of 232

bytes, or 4 gigabytes. In this example, the message itself is 71 bytes in length, and
the total transmission length of 75 (including the header) is encoded as a four-byte
value, expressed in hexidecimal as 0000004B.

By using stateful TCP connections, it is no longer necessary to serialise world
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and mind instances to �les on disk, and retrieve them when messages are received,

as explained in 4.9.1. Instead, when a message is sent to an instance of a world

or mind, a ServiceProxy object is created which lasts for the duration of the run,

and which passes messages to the appropriate world or mind instance, creating the

instance �rst if need be.

An alternative possibility would be to use one of a number of existing message

queue libraries, such as ZeroMQ or RabbitMQ [Hintjens, 2014; SpringSource, 2012],

which can provide a facility to send and receive messages between processes, via

shared memory systems or on top of TCP or UDP. Although these libraries are well-

designed and perform well in the general case, writing a simple, custom protocol for

our purposes a�orded greater control over the low level transmission mechanisms.

5.6.5 Asynchronous runs

The initial design of the World-Wide Mind envisioned all minds and worlds as web

services distributed on the Internet and communicating via XML requests and re-

sponses. However, there is an unavoidable latency involved in network communica-

tion, especially across the Internet.

To mitigate this, and because the use of a dedicated communication protocol

allows it, messages between services now avoid the network stack when the two

services are hosted on the same machine by the same server process [Mac Fhearaí

et al., 2011].

An asyncrun message2 was devised which, when received by a mind instance,

causes it to carry out a run directly with a world instance, sending asynchronous

updates of which states were seen and which actions were taken. This two-way

conversation between mind and world speeds up the communication loop signi�c-

antly, since the user now acts as an observer, receiving a stream of updates without

blocking the progress of the run, rather than as a middleman between the mind and

world instances. Updates to be returned to the user are added to a queue and sent

asynchronously, and should not impact signi�cantly the progress of a run.

The basic series of interactions for an asynchronous run is as follows, with the

2The asyncrun message was originally introduced as continuerun, and was renamed asyncrun

by Brian Monks, a collaborator on the World-Wide Mind project. This term may express more
precisely the intent of the message.
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main loop (steps 4-6) visible in �gure 5.4:

1. The client sends an asyncrun message to the mind, providing the name of the

intended world service and the hostname of the world server.

2. The mind initialises itself, and sends a newrun message to the world, which cre-

ates a world instance unique to this run. Note that this scheme was optimised

and simpli�ed somewhat in Brian Monks' research described in [Monks, 2010].

Before his design contributions, the client sent a newrun message to both the

mind and world before sending an asyncrun (or continuerun) message to the

mind.

3. The mind sends a getstate message to the world instance. The world instance

will respond to any getstate message by returning the current observed state

x of the world.

4. This observed state is passed to the mind in a getaction message, which

returns a suggested action a.

5. Action a is passed to the world in a takeaction message, which returns the

new state generated by applying the given action to the current state.

6. The mind appends the pair (x, a) representing the state seen and the action

taken to a queue where it will be sent asynchronously to the client, without

blocking the progress of the run.

7. If the run has completed, then the world returns an endrun response to the

mind instead, including the score information which summarises the mind's

performance on this world instance.

8. If the mind received an endrun response from the world, then it terminates the

loop. Otherwise, it received the new state generated by taking action a, and

continues the loop from step 4.

It should be noted that because of this asynchronous design, it is possible for a

very long and rapid run to exhaust the available space in Java's heap memory area

by adding large messages to the sending queue more quickly than they can be sent

over the network and removed from the queue. To mitigate this possibility, it may
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Figure 5.4: The interactions between client, mind and world in an asyncrun loop.
The mind and world communicate directly and the client receives an asynchronous
stream of updates containing state/action pairs, instead of serving as a middleman
between mind and world.

be wise to enforce a preset limit on the number of steps that can be executed in a

run. This can be done by making the runlogger count the number of timesteps that

have been processed and end the run if the count is greater than the de�ned limit.

Allowing a mind to communicate directly with the world suits the more cent-

ralised �distributed islands� approach taken in constructing a web interface to the

minds and worlds hosted by a server, and makes it possible to provide a browsable

directory of all submitted minds and worlds hosted on the server, with a scoreboard

for each world generated by user-de�ned score attributes.

These improvements greatly reduce the time taken required to perform a run of

a mind in a world, often by several orders of magnitude, especially when a mind and

world are hosted on the same server.

Taken together, the performance improvements described in this section and

section 5.6.4 satisfy the fourth requirement stated in section �5.3 (p. 66).

5.6.6 Scalability of large hybrid minds

While these measures are intended to greatly optimise speed in many cases, I expect

that it will sometimes be necessary to rely on mind services which do not exist on
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the same server.

Indeed this may be inevitable as hybrid minds are scaled up, since if we consider

a hybrid mind as a hierarchy where the mind calls n subminds, which themselves

call n other subminds, and so on up to some �xed depth d, then the total numberM

of minds in the tree structure (a perfect n-ary tree) will be
nd+1 − 1

n− 1
[Sawada, 2008],

and therefore exponential in the depth of the tree. For example, if a hybrid mind

M is composed of three subminds, each of which can itself call three subminds, then

we have M =
32+1 − 1

3− 1
=

27− 1

2
= 13 total minds. With n = 5 and d = 5 we have

3,906 minds, and for n = 6 and d = 6 we have a hierarchy of 55,987 total minds, even

if this situation seems rather unlikely. The situation is more complicated if graph-like

structures exist and several minds refer to the same submind, but nonetheless it is

clear that hybrid minds can quickly grow too large for one server alone to cope with.

The exponential problem of hierarchies is not new. The human brain has enorm-

ous low-level parallel connectivity, with the fan-in (connections to) and fan-out (con-

nections from) of neurons in the cortex reaching 10,000 [Furber et al., 2006]. While

neurons operate in the scale of milliseconds � a factor of 106 slower than the nano-

second scale of current day microprocessors [Thagard, 1998, p. 209] � this sheer

connectivity more than makes up for the di�erence on many tasks. However, in

terms of hierarchical structure, the cortex yields only 6 layers [Furber et al., 2006],

which tells us that an extended hierarchy takes us only so far. Although we do not

expect to see hybrid minds anywhere near as interconnected as any biological brain,

the possibility of having many (perhaps hundreds of) diverse specialties is exciting

and could certainly be of use in building large-scale complex minds.

The W2M 2.0 design operates e�ciently across the network, but transmission

latencies and encoding/decoding of XML messages will add an unavoidable time

penalty for every exchange of messages. This is cumulative and noticeable on long

runs.

In future, this problem may be partially addressed by using a more compact mes-

sage encoding. For example, the MessagePack binary serialisation format produces

signi�cantly less space overhead than XML, and can be encoded and decoded very

quickly [Furuhashi, 2012].

Some methods for synchronising the state of a distributed simulation over unre-
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liable communication channels are described in section �3.8, but they do not provide

a general method that would automatically work for all worlds. Another technique

which may help to minimise the e�ects of network latency is delta encoding [Mogul

et al., 1997], where rather than complete snapshots of the world state, only the

di�erences in state from one timestep to the next are transmitted.

5.6.7 Server-side world and mind database

As the W2M 1.0, was not designed with an intent for centralisation, there was no

structured storage system for metadata about the hosted worlds and minds. A

signi�cant improvement in the W2M 2.0 was simply to automate the processes of

uploading worlds and minds to a server and hosting them as network services; this

a�orded an opportunity to capture and maintain important metadata relating to the

mind and world services.

To make this possible, a server-side database was added which stores information

about all of the installed minds and worlds, including the following metadata:

1. Mind or world name (this also serves as the fully-speci�ed class name used to

create instances of the mind or world service).

2. The author of the mind or world.

3. The total number of runs performed by that world or mind.

4. For minds:

(a) The mind type � Mind for self-contained minds, Mind_M for hybrid minds

which may request actions from other minds. This is purely for descriptive

purposes, however, and does not in�uence the behaviour of the server.

(b) The fully quali�ed class name [Lindholm et al., 2013] of the world in

which the mind is designed to solve problems. This is required so that

the w2mServer daemon can load and make available the classes provided

in the appropriate world JAR �le. Otherwise, useful classes pertaining to

the world (for example, those which extend the State class with world-

speci�c accessors such as getPerceivedThirst() or isKingInCheck() which

facilitate minds to programmatically examine the current state) would be
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either have to be duplicated in the mind's JAR �le by its author, or the

mind would have to parse and query a generic string-based data structure

such as XML or JSON.

This database is operated on by both the front-end web interface and the back-end

server programs, and another database table records the scores achieved by each

mind during world runs, when they improve upon the best score so far for that

mind. This ful�lls the sixth requirement listed in section �5.3 (p. 66).

5.6.8 Robustness and security issues

The mind and world programs executed during each run consist entirely of code

submitted by users on the Internet. The source code may not be provided, since the

services are uploaded to the server � without administrative oversight � in the form

of Java archives that need only contain compiled bytecode classes, which are directly

executed by the W2MServer daemon.

The quality and intention of this third-party code cannot therefore be guaranteed

or audited, which leads to problems if programs are submitted which either fail to

terminate or attempt to cause damage to the server.

5.6.8.1 Non-terminating programs

Detection of in�nite loops, deadlocks and good or bad intentions of these user-

submitted programs is di�cult and cannot be guaranteed in all instances, since it

would require that the halting problem be decidable [Turing, 1936; Sipser, 2012].

Instead, the server daemon monitors and kills any service instance which takes

more than some �xed amount of time to respond to a message.

This heuristic will occasionally terminate runs engaged in lengthy but legitimate

computation, and must therefore be set at an appropriate threshold. Details of this

problem, and the heuristic solution implemented, will be discussed in section 5.8.4.

5.6.8.2 Security policy

It is impossible to know in advance or guarantee what sort of actions will be at-

tempted by the mind and world programs, which can be submitted to the server
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by anybody on the Internet. Like the problem of non-terminating programs, this

problem is not new, and a�ects any server which hosts third-party programs.

One solution to the problem is to simply disallow all calls to functions or methods

which might perform dangerous operations � for example, deleting or renaming �les

in the �lesystem. However, this would be a considerable limitation if a program

needed to perform those operations for genuine reasons.

Another less extreme solution is to de�ne a robust environment, called a sandbox,

in which the program's actions can be safely performed such that any accidental or

purposeful damage is limited to the contents of the sandbox.

In the W2M 2.0, a combination of sandboxing and restriction of API calls is used.

To help guard against the actions of malicious (or dangerously careless) programs,

Java's security manager is invoked with a policy that prevents minds and worlds

from carrying out certain activities, such as:

� reading and writing �les outside of certain temporary directories,

� making network connections directly, rather than through the provided inter-

faces and classes for accessing remote services, or

� accessing environment variables or Java's system properties.

The non-terminating program monitor, and the implementation of a robust security

policy together satisfy the �fth requirement speci�ed in section �5.3 (p. 66).

5.7 Writing and running hybrid minds

A fundamental idea motivating the World-Wide Mind is the possibility of creating

hybrid minds which consult other subminds at each timestep when deciding which

action to take, given the currently observable state.

5.7.1 Proxy interfaces for accessing remote mind and world services

In the W2M 1.0, if an author wanted their mind to call another mind hosted on

the same server (or a remote server), they were forced to write code to create and

decode XML messages in the SOML format (see section �4.5) and communicate

them over the Internet using HTTP. As a result of this complexity, many authors
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were discouraged and very few attempted to create hybrid minds. Those that were

created were extremely slow due to the design and implementation issues identi�ed

in section �4.9.

To facilitate the construction of hybrid minds in W2M 2.0, a simple API was

developed with the RemoteMind and RemoteWorld classes serving as proxy interfaces

to remote minds and worlds. These wrapper classes implement the same methods

speci�ed in the Mind and World interfaces, so using them is almost identical to using

a locally accessible mind or world, except that the user speci�es the desired service

name and the address of its hosting server.

The design and provision of these proxy interfaces are intended to make it easy

to re-use minds and worlds written by many authors, and in particular to make the

process of creating hybrid minds straightforward, rather than requiring users to write

complicated networking and parsing code as was necessary under the W2M 1.0. This

is intended to ful�ll the seventh requirement listed in section �5.3.

The important methods provided by the RemoteMind class are:

newrun instantiates a connection to a remote mind and calls its newrun method,

triggering any required initialisation (for example, a hybrid mind may construct

RemoteMind objects to access its own set of remote minds) therein.

endrun sends an end run request to the remote mind and terminates the connection.

getaction(s) passes the state s to the remote mind instance and receives its sug-

gested action.

asyncrun populates an asynchronous run request with the world service details and

passes it to the remote mind, which creates its own connection to the world

and carries out a run, passing back updates via an asynchronous queue.

And the important methods provided by RemoteWorld are:

newrun instantiates a connection to a remote world and calls its newrun method,

triggering any required initialisation therein.

endrun sends an end run request to the remote mind and terminates the connection.

getstate retrieves the current state of the remote world.
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Algorithm 5.1 A mind calling another mind. MindM delegates to w2m.LookupMind

for selection of each action.
import org.w2mind.net.*;

import org.w2mind.tyrrell.*;

public class MindM implements Mind {

String OTHER_MIND_NAME = "w2m.LookupMind";

String WORLD_NAME = "w2m.TyrrellWorld";

// specify the host server for the remote mind and world services

String REMOTE_SERVER = "som://w2mind.computing.dcu.ie";

// the remote mind proxy object

RemoteMind rm;

// when called at the beginning of a run, initialise mind proxy

public void newrun() {

rm = new RemoteMind(REMOTE_SERVER, OTHER_MIND_NAME, WORLD_NAME);

rm.newrun();

}

// perform any needed clean up at the end of a run

public void endrun() {

rm.endrun();

}

// called once per timestep. In this case, delegate to the submind.

public Action getaction(State s) {

return rm.getaction(s);

}

}

takeaction(a) causes the remote world to apply the chosen action a to its cur-

rent state and move to the next state. To cut down on unnecessary network

transmissions, the remote world also returns the new state.

These methods are equivalent to the messages described in section 4.4. A remote

mind instance can be created and accessed with code such as that shown in al-

gorithm 5.1.

If the world author has implemented the getimage method which renders a graph-

ical display of the world, then this will also be displayed at each timestep, at the

user's request. The user may not wish to do so, since rendering an image at every

timestep will inevitably slow down the execution of a run, often signi�cantly. For

example, running a simple mind �mater� in a modi�ed implementation of Tyrrell's

animal simulation world (introduced in 5.9.2 and described more completely in ap-
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Figure 5.5: A diagram showing the interactions between some of the important
classes used by the backend w2mServer program.

pendix B) without generating graphics took 0.77 seconds to complete 178 timesteps

in the world. Running the same mind while generating graphics at each timestep

required 14.6 seconds to complete 179 timesteps � a rate almost 20 times slower than

the no-graphics condition.

5.8 Implementation details

This section provides a brief explanation of the system design from a software en-

gineering perspective.

The diagram in �gure 5.5 shows some of the primary interactions between the

important classes used by the w2mServer daemon program.

When the w2mServer program is started, it invokes an instance of the Tcp-

SomlServer class, which listens on a TCP port for incoming network connections.

When an incoming connection is made, the connection object is passed to a new

thread of execution, managed by the TcpConnectionHandler class.
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5.8.1 TcpConnectionHandler

Each instance of TcpConnectionHandler pertains to a separate conversation with a

mind or world, ultimately represented by an implementation of either the Mind or

World interfaces, which each extend the base Service interface.

TcpConnectionHandler will listen on its connection's TCP socket for any data.

When any bytes are available, it reads as much as possible into a bu�er, and then

extracts the �rst four bytes which are used to specify the size N of an incoming

message. The socket is then read from until N-4 more bytes have been received.

This may require waiting for several network packets to arrive and appending bytes

from the bu�er to the message string.

The received message string is expected to be a document in SOML format,

representing a message sent to or between mind and world services (for more inform-

ation on SOML, see section �4.5). When the message string has been successfully

obtained from the socket, TcpConnectionHandler passes it to an instance of the

ForwardingListener class via its getResponseForMessage(s) method.

This method converts the received message string � a SOML document � to a

Message object, which encapsulates all the data relevant to a message being sent to

or from a mind or world service. The Message class is a map-type data structure,

with named keys (or �elds) and values.

For the most part, subclasses are used which extend the Message class with

convenience setter methods which populate �elds speci�c to the type of message

� for example, a NewRunRequest instance provides a setImagesDesired() method

which sets the imagesdesired �eld to contain a boolean value, but a NewRunRequest

will not, and a GetActionResponse will contain an �action� �eld and value.

Before a message reaches the mind or world instance, however, it is passed from

TcpConnectionHandler to the handleMessage(m) method of an instance of the Ser-

viceProxy class.

5.8.2 ServiceProxy

The ServiceProxy class processes incoming Message objects, initialising and calling

the appropriate methods on an instance of a world or mind service. When a message

arrives, its type property is queried and its value used to select the appropriate
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handler method by use of re�ection. For example, if the message type is �newrun�,

then the newrun() method is called.

The handler methods extract further parameters from the incoming message as

required � for example, the contents of the action �eld in the takeaction() method

� and call the actual methods implemented by the target service, which is created

and initialised �rst if necessary. This is where the mind or world service actually

performs its task � which is usually either suggesting an action or updating the world

model with a selected action.

When the call to the world or mind service's method returns, any return values

(for example, the suggested action, in response to a getaction request) are added

to a new response Message and returned to the ForwardingListener instance, which

transforms the message object back to a �attened XML representation, ready for

sending back by TcpConnectionHandler.

5.8.3 Synchronous and asynchronous communication

At the bottom of �gure 5.5, there are two arcs leading from the ServiceProxy class

to an abstract Service interface (which will be a concrete instance of either a world

or mind). One arc is labelled �sync�, and refers to normal, synchronous invocation of

the service's methods. The other arc, labelled �async (asyncrun)�, refers to the asyn-

chronous run process depicted in �gure 5.4 and described in detail in section 5.6.5.

When an asyncrun request message is received and passed to a mind service's

ServiceProxy instance, it creates a new thread which initialises both the mind service

and the intended world service. The world name and the Internet address of its

hosting server are de�ned by the world and worldHost �elds, respectively, of the

AsyncRunRequest message class.

The new thread spawned by ServiceProxy then carries out a complete run of the

mind in that world, adding at each timestep t the world state, score and the action

taken at timestep t-1 to an AsyncRunResponse message object.

These messages are added to a concurrent blocking queue structure, waited on

by the TcpConnectionHandler in its own execution thread. When it successfully

removes a message from the queue, it immediately converts it back to a string of

XML before sending it back over its TCP socket.
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After the �nal action has been taken, the response message from the world will

be an endrun response, rather than a takeaction response. When this happens, the

last state and score seen and the action taken by the mind will be included in the

AsyncRunResponse message, and a �ag will be set in the ServiceProxy indicating

that there will be no more messages to read.

When the TcpConnectionHandler tests this �ag and �nds that there are no more

messages to send, it sends a null message (a 4-byte header representing the integer

value 4), which is interpreted by the other side as a signal that the asynchronous run

has completed.

5.8.4 The problem of non-terminating calls

It is possible to submit minds and worlds which enter an in�nite loop when their

getaction(), takeaction() or other methods are called by a ServiceProxy object.

This will cause a signi�cant portion of processor time to be wasted, which slows

down other �genuine� computation.

Even if these methods call other methods which block, rather than �spinning�

and wasting CPU time, the objects and data structures created to manage the run

(including message transmission bu�ers as well as the entire world state and related

objects) will occupy memory, a limited resource.

When a separate Java interpreter process is started to handle a run, a virtual

machine is created and allocated a private heap space. If a run hangs � that is, never

completes � then its operating system process and the virtual machine's allocated

heap area will remain active and occupy memory wastefully.

As discussed in section 5.6.8.1, there is no general way to detect whether a pro-

gram will hang, or even whether a program is currently stuck in an in�nite loop.

This is not a new problem in computer science, and must be dealt with by web

service hosting providers, for example, whose servers execute third-party code under

less restrictive conditions than are imposed upon mind and world services hosted on

a W2M server.

Some hardware solutions exist which attempt to detect process crashes through

the use of instruction count heartbeats, and in�nite loop hang detectors (several

types are proposed and discussed in [Nakka et al., 2005]), but application of these

91



techniques is either di�cult or impossible in a high-level software platform, and where

a software implementation is possible the instrumentation would likely be costly in

compute time and memory overhead.

Another software-based approach attempts to tackle the problem by attaching

a monitor program named Jolt to a program which one suspects to be caught in

an in�nite loop [Carbin et al., 2011]. At the beginning of a loop iteration, Jolt

records the program's current state. On the next iteration, the new program state

is compared with the saved snapshot. If they are the same, then the program is

deemed to be stuck in an in�nite loop, and two options are provided: terminate the

program, or �escape� the loop by transferring control to the next instruction after the

looping instruction. To do this, Jolt requires a static instrumentation of the target

program's source code (adding special runtime calls which indicate the entry and

exit of every loop in the program's control �ow graph), before the monitor program

can be dynamically attached to the running target [Carbin et al., 2011]. However,

the system fails to detect in�nite loops where the program state changes between

iterations, and is intended only for single-threaded applications (a multi-threaded

program waiting in a spinlock, for example, can be mischaracterised as in an in�nite

loop).

Another limitation common shared by most of these techniques is that it's unclear

what happens when a mind or world is blocked while waiting on a response from a

remote submind, for example. We cannot instrument the remote service and detect

whether it is itself stuck in an in�nite loop.

The rise of virtualisation in server computing has provided one solution to the

problem of runaway processes using excessive CPU time: each user's virtual account

is allocated a �xed computation allowance. Rather than running directly on the

server's operating system level, the users' programs execute inside a virtual machine

which is isolated to some degree from other virtual machines running on the same

hardware [Oikawa et al., 2004]. This mitigates, but does not eliminate, the negative

e�ect caused to other users' programs. It's unclear how the user account speci�c

nature of the intervention might apply on the W2M; should limits be applied to

individual world and mind services, or to all programs uploaded by a particular user,

or to each instance of a world or mind service?
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Another solution is to set a �xed deadline after which a process or method call

is automatically terminated. This solves the problem of both CPU-hogging in�nite

loops and wasted memory used by non-terminating processes, but at the expense of

possibly terminating a process which would complete given enough time. This solu-

tion is inappropriate for web service providers, where well-behaved daemon programs

often need to run inde�nitely. However, this approach is taken in the W2M 2.0, since

it seems preferable to mistakenly terminate a slow run than to ignore a run stuck in

an in�nite loop and risk wasting a large amount of compute time and memory space

� an amount that would increase as more runs are initiated, eventually leading to

system failure.

Alternately, runs suspected of having entered a �hung� state might be added to

a �freeable� list to be terminated if and when a new job is ready to start and a large

number of runs are already in progress. This approach is akin to a garbage collection

system triggered only by a memory allocation request in a low-memory state (rather

than continuously or at periodic intervals), and may prevent the needless termination

of some (but not all) slow runs. The disadvantage of this sort of solution is that

each run may use a di�erent (and unpredictable) amount of computing resources,

and without arti�cially and carefully limiting each thread's compute capability, it

is possible for a single non-terminating run to signi�cantly impact performance by

hogging the CPU and available memory and by constantly accessing disk or network

resources.

To prevent an accumulation of these �hung� threads and processes, wasting both

CPU cycles and memory resources, the handleMessage() method of ServiceProxy

creates a Future object to encapsulate the computation, before submitting it to an

executor service which executes it in a separate thread. This is shown in algorithm

5.2.

This allows the computation to be interrupted and terminated with an error

message if a �xed completion deadline expires. Currently, this timeout � de�ned in

the TIME_OUT constant � is preset to 180 seconds, to minimise the risk of terminating

method calls which take a long time but do complete.
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Algorithm 5.2 The handleMessage() method, which schedules the real processing
of a message as a job to be executed with a timeout.
public Message handleMessage(final Message message) {

Callable<Message> job = new Callable<Message>() {

public Message call() throws Exception {

return handleMessageAsync(message);

}

};

Message response = null;

try {

Future<Message> future = executorService.submit(job);

response = future.get(TIME_OUT, TimeUnit.SECONDS);

} catch (Exception e) {

System.out.println("Timed out waiting for response to message: ["

+ message.toSOML() + "]");

e.printStackTrace();

response = message;

response.setAsResponse();

response.setStatus("400");

response.setStatusText(e.getStackTrace()[0].toString());

}

return response;

}

5.9 Evaluation of the W2M 2.0 platform

As far as the backend architecture and implementation of the W2M 2.0 platform are

concerned, each of the requirements listed in section �5.3 has been met. However,

it is important to evaluate the platform as a whole and ask whether it su�ciently

addresses its intended goals. Accordingly, this evaluation process includes:

� A comparative performance benchmark of the W2M 1.0 versus the W2M 2.0

systems,

� An analysis of the use in A.I. teaching assignments, where the W2M 2.0 plat-

form was used by a large number of authors to write minds (some of which are

hybrids, calling subminds written by other authors), and

� Analysis of a usability survey completed by some of those authors.

5.9.1 Performance benchmarks

The W2M 1.0 server design executed online runs of a mind in a simple world at

a speed of approximately 1 timestep per second, where the mind was hosted on a
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separate machine to the world, connected by a LAN. Under the same conditions, the

W2M 2.0 server implementation was able to complete runs at a speed of over 100

timesteps per second.

In the optimal performance scenario, running a mind in a simple world which

was hosted on the same machine resulted in an execution speed of 21,008 timesteps

per second on the same hardware, because the network stack and XML encoding/de-

coding steps could be avoided entirely for communication between mind and world.

5.9.2 A.I. teaching assignments

The W2M platform has been used to host several worlds and a large number of minds

submitted by undergraduate computer science students taking arti�cial intelligence

modules.

The problem environment was a modi�ed implementation of Tyrrell's simulated

environment [Tyrrell, 1993], a simulated animal behaviour problem where the mind

controls a creature living in a two-dimensional grid world with a rich set of features.

In the world, the simulated animal must satisfy a number of often con�icting goals,

such as foraging for food, �nding a mate, maintaining cleanliness and temperature.

A description of both Tyrrell's original world and the modi�ed version used in this

research can be found in appendix B. An instance of the world during a run is

depicted visually in �gure 5.6 on the following page.

The sensory input for this world is a large series of real numbers representing

internal perceptions such as perceived carbohydrate, fat and protein shortages, body

temperature or thirst, as well as external stimuli such as outside temperature and

perceived closeness of food sources or mates in each direction and in the current cell.

There is a degree of noise in the senses and a limited distance to external perceptions,

as well as a degree of randomness which makes the problem non-deterministic.

The world scoreboard provided a competitive measure of success by which stu-

dents could improve their submissions and search for suitable candidate subminds

for use in creating their own hybrid minds. For one assignment, an extra require-

ment was added that each student must submit at least one hybrid mind, even if it

relied only upon a �dummy� submind which did nothing useful. Some submissions

indeed consisted of a hybrid mind which carried its own action-selection logic, but
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Figure 5.6: A section of the visual rendering of a single state in a modi�ed imple-
mentation of Tyrrell's simulated environment (see appendix B). In the vicinity of the
simulated agent (�ME� in the image) controlled by the mind, several features (po-
tential mates, sources of drinking water, cereal food, and the animal's den) are easily
visible. Additionally, a large cluster of features in the bottom section is visible here,
but are not seen by the mind, whose sensory percepts only extend a �xed number of
grid cells.
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Figure 5.7: A hierarchy diagram of the top-scoring mind submitted by a user, Rob-
MindM. This mind combines ComboMind (created by another author) with Rob-
MateMind (created by RobMindM' s author).

delegated to a �sleep� mind when necessary � this submind would always return the

�sleep� action and was therefore super�uous.

However, many other hybrids took advantage of the collective expertise of mul-

tiple subminds, and at the end of the assignment period, nine of the top ten best-

scoring minds submitted during the assignment were hybrids. To help characterise

the behaviour of minds, a feature was added which records the names of any sub-

minds called by a hybrid mind. This allows us to examine the hierarchy tree for any

hybrid mind, although it does not capture the context in which those subminds were

called. The hierarchy tree for the top two minds on the scoreboard, RobMindM and

CowardlyMindFinal, are shown in �gure 5.7 and �gure 5.8 respectively.

The deepest hierarchy tree of the hybrids is that of CowardlyMindFinal, at four

layers deep. This suggests that the deeper hierarchies may have presented dimin-

ishing returns in performance, or were more di�cult to create, or more error-prone

for hybrid mind authors (recall the discussion of hierarchical scalability from both a

computational and biological standpoint in section 5.6.6).

5.9.3 Usability

This research intends to address the possibility of constructing hybrid minds by using

minds written by a potentially large number of people. If writing and testing minds
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Figure 5.8: A hierarchy diagram of the second-highest scoring mind submitted by
a user, CowardlyMindFinal. Note that this mind called the top-scoring mind, Rob-
MindM, at least once, but did not outperform that mind.

is unnecessarily di�cult, then users may be less inclined to participate by developing

and contributing their minds and worlds and by building upon the minds submitted

by others.

In an attempt to evaluate the overall usability of the W2M 2.0 platform, a survey

was put to the students who recently submitted minds in a competitive assignment

who wrote minds for a chess world (a description of this world can be found in

appendix C on page 187). Participation in the survey was anonymous and not

mandatory.

The questions were as follows:
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1. How long did it take you from �rst reading the documentation to uploading

your �rst Mind?

2. What could we have done to make that time shorter?

3. How easy did you �nd it to run a Mind?

(1 � Very easy, 2 � Easy, 3 � Medium, 4 � Hard, 5 � Very hard)

4. How easy did you �nd it to upload a Mind?

(1 � Very easy, 2 � Easy, 3 � Medium, 4 � Hard, 5 � Very hard)

5. (If applicable) How easy did you �nd it to call other people's Minds from your

code?

(1 � Very easy, 2 � Easy, 3 � Medium, 4 � Hard, 5 � Very hard)

6. (If applicable) How useful did you �nd it to call other people's Minds in order

to actually succeed at the problem?

(1 � Very useful, 2 � Useful, 3 � Medium, 4 � Not so useful, 5 � Not at all

useful)

7. If you have ever participated in a collaborative project (e.g. at work, or an open

source project) how would you compare the ease of calling other people's Minds

with the ease of calling other people's methods/functions in those projects?

8. If you noticed any bugs or problems with the system, please describe them.

9. Please describe any important features you would like to see added, if any.

10. What did you think of the chess problem? Can you suggest other interesting

problems and challenges that it would be good to have on the system?

Questions 3, 4, 5 and 6 use a �ve-point semantic di�erential scale � a rating scale

shown to be e�ective for measuring sentiment and attitude [Heise, 2010, p. 35] [Bab-

bie, 2012, p. 178] � and their responses are summarised in �gure 5.9. The remaining

questions are free-form and their responses will be grouped and summarised below.

A total of 23 responses to the survey were collected. The semantic di�erential

questions suggest that respondents generally found the process of running and up-

loading minds to be easy, although 22% of respondents considered these tasks to be
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Figure 5.9: Summarised survey results, in stacked bar format.

either �hard� or �very hard�. The free-form responses help to shed some light on this,

with several participants stating that the server had gone down close to a submission

deadline.

A total of 52% of 21 respondents considered the process of calling another mind

to be �hard� or �very hard�, while 32% of 19 respondents found this either �useful�

or �very useful� in practice.

Breaking down the free-form responses by frequency:

Q1 � How long did it take you from �rst reading the documentation to

uploading your �rst Mind?

Of 20 respondents to this question, eight gave a �gure of two weeks or more (excluding

one answer which was more precise yet perhaps less informative: �The time between

you showing us it in class for the assignment and the day before the assignment was

due�).
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Q2 � What could we have done to make that time shorter?

Of the 20 responses to this question, 11 focused on better documentation and in-

structions, while three cited a compatibility issue regarding Java class versions.

Q7 � If you have ever participated in a collaborative project (e.g. at

work, or an open source project) how would you compare the ease of

calling other people's Minds with the ease of calling other people's meth-

ods/functions in those projects?

Of the seven responses, three regarded it positively, one cited server problems, one

�just wanted to write my own original mind� and one took issue with this type of

behaviour-based re-use, stating:

�For our project the ability to call other people's minds wasn't particu-

larly useful as we didn't have access to individual methods such as their

evaluation functions. While accessing their single action method was

simple enough there wasn't a way to discern what their mind was doing.�

Q8 � If you noticed any bugs or problems with the system, please de-

scribe them.

Of the 16 responses to this question, ten highlighted the server problems close to the

submission deadline. One respondent pointed out that the security model prevented

him from running his mind online when it had worked o�ine (where the security

manager was not active).

Q9 � Please describe any important features you would like to see added,

if any.

Of seven responses, three suggested a redesign of the W2M server's web interface and

two asked for the ability to call other minds in an o�ine setting, for testing purposes.

While it is already possible to call remote minds, it may be that the added latency

caused the participants' hybrid minds to miss the 700ms time limit for each move in

the ChessWorldG world. Another possibility is to allow the JAR �les for submitted

minds to be downloaded and tested o�ine with some additional wrapper code.
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Q10 � What did you think of the chess problem? Can you suggest other

interesting problems and challenges that it would be good to have on the

system?

Seven of the 14 respondents to this question found the chess problem and the op-

ponent A.I. to be too challenging. Others suggested alternative problems including

2D Pong, Tetris, Checkers and Noughts and Crosses.

Summary

Due to the con�ation of several issues � in particular the server downtime and per-

ceived di�culty of the chess problem � it is di�cult to draw �rm conclusions from this

qualitative analysis. It is apparent from the comments regarding the chess problem

that this usability evaluation is partially task-dependent. Another approach which

may produce a more robust outcome is to perform a comparative study against a

similar system or methodology. This form of evaluation was applied by Gemrot et al.

[2012] to compare two approaches to the design of game-playing agents in the same

test environment: a traditional programming approach using the Java programming

language, and a reactive planner using a graphical editor to construct the agents.

It seems clear however that the process of uploading and running minds was

generally considered easy, although participants were less positive about the di�culty

and utility of building hybrid minds.

5.10 Conclusion

This chapter introduced the problems the World-Wide Mind 2.0 architecture at-

tempts to address and the solutions it provides, describing in brief the back-end

server implementation and the front-end user interface, which together provide not

only a starting point for exploration by mind and world designers, but also a frame-

work for the experiments described later in chapters 6 and 7.

Some of the technical challenges and methods used to reduce the latency, and

therefore improve the runtime performance of the server implementation were dis-

cussed. Limitations and possibilities for future work will be outlined in chapter 8.

Section �5.9 evaluated the system as a whole and validates the work as an answer
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to the �rst research question posed in section �1.4.
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Chapter 6

Semi-automated hybrid building

6.1 Introduction

The core novel application this architecture enables is the manual or automated or

semi-automated building of hybrid A.I. systems out of the code of multiple authors.

Chapter 5 described the software architecture and platform which hosts a number

of mind and world services, and which allows a mind to query other mind services

for suggested actions. While the subject of creating larger-scale hybrid minds using

the work of others has been discussed, the question of how this might be done has

not yet been addressed .

Let us recall the idea of a hybrid chess-playing mind, introduced in section �2.9

(page 26), which when asked for an action produces no move of its own, and delegates

instead to one of two expert subminds which specialise in di�erent tasks. The aim

in this chapter is to build a hybrid mind for a modi�ed version of Tyrrell's world

which outperforms any individual mind without directly suggesting its own actions.

Tyrrell's world will be discussed brie�y in section �6.2 and described in further detail

in appendix B.

This chapter describes a method which was developed for ranking existing minds

according to their performance in the world on several criteria. This method provides

an answer to the second research question posed in section �1.4.

By ranking the minds based on their performance on the most important subgoals

(for example, in the Tyrrell world environment, these goals might be mating and

minimising thirst), a set of subminds can be selected which constitute experts for
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each goal. The goals were selected and ordered based on human insight into their

relative importance to solving this particular problem. This may not be the best

approach, and can be vulnerable to bias � chapter 7 will introduce a method which

attempts to automate this goal selection and ordering step.

A series of experiments were performed with varying numbers of subminds, pro-

ducing a hybrid mind which outperformed the best student-submitted mind by a

margin of 10%.

This outcome indicates that even a simple approach to building hybrid minds

can yield useful results. A more in-depth statistical analysis may determine the

importance of each subgoal in a more objective and automated manner, and this is

the topic of chapter 7, which presents such a method and evaluates it in two di�erent

worlds.

6.2 Problem environment: Tyrrell's animal world

The most challenging problem environment currently installed as a world service on

the reference World-Wide Mind server is Tyrrell's simulated animal world, introduced

earlier in section 5.9.2. This simulation models a small animal in a dynamic and

hostile two-dimensional grid world, and attempts to serve as a testbed for examining

and evaluating di�erent action-selection mechanisms [Tyrrell, 1993].

The primary objective for the simulated animal is to mate as many times as

possible, but a large number of subproblems also require attending to if the animal

is to live long enough to achieve good genetic �tness. To this end, the animal's

lifespan (the number of simulated timesteps where the mind perceives the world and

selects actions, until the animal dies) is considered a secondary goal here, and is used

as a tie-breaker in the world scoreboard.

The set of sensory percepts available to the mind program in this world consist

of numbers representing levels of many homeostatic and external stimuli, and the

actions are chosen from a set of 35 high-level activities including drinking, cleaning,

sleeping, courting, mating and moving in one of the compass directions

Performing well in the world requires not only selection of appropriate actions,

but at a higher level, selection of appropriate goals among competing options.
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Rank Mind Mated Steps Runs Subminds Author

1 RobMindM 74 4567 10 2 rblestr
2 CowardlyMindFinal 63 3840 4 3 hands3
3 Mater 55 3380 2 1 murpha74
4 Bavaria 54 4306 1 1 dan
5 RTesterMind2 54 3836 0 1 rosshaugh
6 NeverMind 53 3294 6 3 rosshaugh
7 SFINALMIND2 52 4256 0 1 lawa3
8 CraigMind 52 3625 1 1 craig1928
9 TimiMind1 51 4086 0 None milansatala

Table 6.1: The top ten highest-scoring minds for a modi�ed Tyrrell animal world.
The score components speci�ed by the world author are �Mated� and �Steps�, and
the scoreboard automatically sorts entries in descending order. In the web interface,
clicking the numbers in the �Minds called� column will display the set of subminds
called (if any) by a mind.

Because of the complex nature of the problem and the requirement for goal selec-

tion as well as action selection, this world was selected for use in an undergraduate

A.I. course and implemented in Java by Ciarán O'Leary as part of his research

[O'Leary et al., 2004].

6.2.1 Use in student assignments

In this work, a modi�ed version of Tyrrell's simulated environment � called Tyrrell09

� is used which attempts to simplify the problem and reduce noise in the perceptual

and motor control systems. A more detailed description of Tyrrell's world and the

modi�ed environment can be found in appendix B.

A collection of over 100 minds was created and uploaded by undergraduate stu-

dents and their performances automatically evaluated. This set of minds was used

to perform the experiments in submind selection which are described in this chapter.

For one assignment, a requirement was added that every student must submit at

least one hybrid mind which delegates to one or more subminds.

A call graph feature was implemented to keep track of calls between minds, so

that the number of unique subminds called by a mind is saved and displayed alongside

its performance on the scoreboard for that world.

At the end of the assignment period, the scoreboard (see table 6.1) showed that

almost all of the top ten minds called at least one other submind during a run.
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6.3 Experimental setup

Following the use of the World-Wide Mind reference server as a hosting platform

for minds submitted by undergraduate students to compete against one another at

solving the Tyrrell world problem for several weeks, a large set of possible subminds

was gathered from those students who agreed to make their work available.

A set of programs and scripts was developed which runs every mind in this world

and records some of the output for later analysis. This recorded performance data

contained the scores achieved and states observed over three runs by each mind, and

this data was analysed for the purpose of creating a new hybrid mind which calls the

existing minds to achieve better scores without directly contributing any actions of

its own.

6.3.1 Experimental hypothesis and procedure

The best mind submitted to the system serves as a control benchmark against which

to evaluate the experimental hybrids. For a new hybrid to be considered successful,

it must perform better than the best existing mind � otherwise, it could just call the

best mind directly and contribute nothing of value.

To de�ne what it means to perform better than another mind, it must be noted

that the Tyrrell09 world is stochastic and there is a large degree of variability in

results � two runs of the same mind can produce signi�cantly di�erent outcomes.

To limit the impact of the stochastic nature of the world on the evaluation process,

each mind must be tested a large number of times and its performance treated as

an aggregate. A median and mean score were established for the control mind �

RobMindM � and for the most promising hybrid mind by running each in the world

for a large number of trials (N = 1000) and recording the results.

This enables us to de�ne the experimental hypothesis:

The mean score of the hybrid mind created in this chapter is signi�cantly

greater (better) than the mean score of the control mind.

To test this hypothesis, the following null hypothesis is de�ned:
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There is no signi�cant di�erence between the mean scores of the hybrid mind

in this chapter and of the control mind.

The chosen signi�cance criterion is that the probability of such a result arising by

chance must be less than 5% (p < 0.05). A t-test of the recorded samples from both

minds must return a p-value of less than 0.05 in order to reject the null hypothesis.

6.4 Selecting and ordering the di�erentiating score at-

tributes

At the end of a run in Tyrrell's world, a score vector is generated, summarising

the mind's performance at solving the problem. The attributes of this score vector

include the number of times the animal mated and the number of steps survived,

which are used by the world scoreboard to rank scores. Additionally, information is

produced regarding signi�cant events which happened during the run, such as how

many times the simulated animal drank water or slept.

Some of this data can be used to formulate an evaluation metric for classifying

the behaviour of individual minds. For example, the mind that eats the most food

could be considered to be an expert food �nder/eater, and the mind that mates more

than any other might be considered an expert mater.

If an ordering could be established of how each metric contributes to overall

success in solving the world problem, then a set of expert subminds would emerge

which might form part of an e�ective hybrid mind.

To test whether this is the case, a series of experiments was devised. The metrics

were ordered based on human insight into their signi�cance in solving the problem

� in chapter 7, a method of analysing the performance data to infer this importance

ranking in a more rigorous and automatic way will be demonstrated.

For each of the top N most important metrics (where the value of N varies

depending on the experiment, from 2 to 6), the mind which achieves the best score

for that particular attribute was found by parsing and sorting the complete set of

performance data.
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6.4.1 Experimental results

The results of the �rst experiments (shown in table 6.2) in selecting subminds by

data mining the score information alone were mixed.

This could indicate that some of the score information does not completely cap-

ture the simulated animal's condition and the subgoals needed for e�ective survival.

For example, a mind could score highly in eating food by simply �nding a food

source and engorging upon it and then sleeping until the run ends, but the simu-

lated animal may be hungry for 90% of the run. However, in the next chapter, a

more automated method of analysing the score data was successful in producing a

hybrid mind which contributes no direct actions of its own, yet outperforms all of

the individual subminds.

The next section discusses mining the data on a state-by-state basis to make

more informed decisions.

6.5 Mining the information on a state-by-state basis

Using the summary information contained in the score vector can be an e�ective way

of classifying and ranking the set of available minds. However, the performance of

the hybrid mind created by pro�ling the score data was not particularly impressive.

To improve on this, further experiments were performed, this time mining the data

captured on individual states encountered by each mind. This was more computa-

tionally intensive, but allows us to make more �ne-grained distinctions. For example,

instead of looking solely at the total amount of food eaten in the score summary,

we can take the animal's perceived hunger senses at each timestep and calculate the

sum. Weighting or squaring of the deviation from a healthy value (usually 0.5, in

this world) may help to produce a more e�ective �tness function, where maintaining

a consistently healthy level of hunger or thirst is rewarded more highly than quickly

reaching a very high level and then neglecting it.

6.6 The hybrid mind controller

Having created a list of expert subminds by establishing rankings for each important

score or state metric, a hybrid mind was created in each experiment which defers
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to one of the subminds based on a simple decision list. At each timestep in a

run, the hybrid mind's getaction method is called, which consists of a sequence of

condition-action rules making up the decision list. These rules correspond directly

to the metrics which are considered most important to the overall performance of a

mind and are executed in descending order of perceived importance. When a rule

is matched, the submind responsible for that metric is sent a getaction request and

will reply with a suggested action which can be taken by the hybrid mind without

processing any further rules, until the next getaction request is received and the rules

are tested again from the top.

Some example pseudocode for a hybrid mind based on a condition list structure

is shown in algorithm 6.1, and a concrete example in Java is included in section �H.2

on page 213.

Algorithm 6.1 Example pseudocode for a simple hybrid mind controller based on
a condition-action rule table.
function getaction()

if mate is nearby then return mating_mind.getaction()

if thirst > thirst_threshold then return drinking_mind.getaction()

if health < health_threshold then return survivor_mind.getaction()

else return mate_finder.getaction()

end

6.7 Experimental results

In these experiments, n subminds were selected (where n = 1..4) by walking through

the collected state information for each mind and classifying it according to sev-

eral simple �tness functions which maximise or minimise values, or which minimise

the deviation from an optimum level (often 0.5 in this world, but not always � for

example, cleanliness should be as close to 1 as possible).

6.7.1 Preliminary results

Some of the hybrids built using these subminds performed well, as can be seen in

the initial results in table 6.2, where a hybrid mind constructed from four existing

subminds achieved results superior to those of the existing minds.

The successful hybrid was capable of outperforming the subminds without need-

ing to know how to contribute its own actions in the world, although it is of course
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Subminds Analysis Max mates Max life Median mates Median life

1 4 State+score avg. 16 724 6 419

2 4 State (avg./step) 36 3269 23 2512

3 4 Score 52 3762 20 2264

4 2 State 70 4840 48 4358

5 4 State+score 72 4873 49 4213

6 2 Best existing mind 74 4567 - -

7 3 State 74 4877 48 4212

8 4 State 82 4797 49 4226

Table 6.2: Results of the preliminary experiments in constructing hybrids, ordered
by the maximum value of the �mated� primary score measure over several hundred
runs of each mind. The mind in row 6 was the existing best mind on the scoreboard,
included as a control. The mind in row 8 consisted of four subminds, selected by
evaluating the states seen to identify minds which constitute experts in four separate
behaviours relevant to the Tyrrell world.

possible for a hybrid mind to both delegate to subminds and issue actions directly

during a run.

On the basis of these results, the hybrid mind shown in row 8 of table 6.2 was

selected for a more thorough evaluation over N = 1000 runs.

6.7.2 Evaluation

The hybrid mind created in this chapter was run in the same world with the same

parameters as the subminds. The best, median and mean scores achieved by both

minds after N = 1000 runs are displayed in table 6.3, along with the standard

deviation in each score variable. The score data are summarised with boxplots of

the mated and lifespan score samples for both minds in �gure 6.1.

The performance of the hybrid mind created in this chapter is shown on column

3 of table 6.3, having outperformed all of the subminds submitted by users, without

ever needing to know how to act directly in the world.

To determine whether these results are signi�cant, Welch's t-test was performed1,

comparing the means of the existing best mind and the hybrid built by mining the

manually-selected state data. The results of these tests are as presented in table 6.4.

The outcome of the t-test allows us to reject the null hypothesis � that the

1Welch's t-test is used when the two samples may have unequal variances [Welch, 1947]. In any
case, the results for Student's t-test are almost identical to those of Welch's test for these samples.
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Figure 6.1: Boxplots of the performance in Tyrrell09 of the control mind and the
hybrid mind for the mated and lifespan score variables. The label control indicates
the best mind used as a benchmark against which the new hybrid mind is tested.
The label exp9 refers to the hybrid mind created in this chapter. This mind exhibits
better performance in the mated score variable than the control mind.
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Existing best mind State analysis

Subminds 2 4
max(mates) 74 78

median(mates) 43 49.5
mean(mates) 41.533 47.95
σ(mates) 12.53204 12.63523
max(life) 4848 4797

median(life) 4208 4254
mean(life) 3849 3942
σ(life) 1019.069 934.176

Table 6.3: The hybrid mind in the rightmost column was constructed by selecting
subminds according to a ranking of important variables from the world state. The
middle column shows the performance of the existing best mind submitted to the
server by a student.

(N = 1000) Manual state-mined hybrid

Mean mates 47.95
Existing best 41.533

p-value < 2.2× 10−16

Mean lifespan 3942.08
Existing best 3848.696

p-value 0.03279

Table 6.4: Results of t-tests for the hybrid mind. The mean for the �mated� score
variable is signi�cantly greater (better) than the mean recorded for the best existing
mind. For completeness, the �lifespan� variable is also included in the analysis and
is also signi�cantly greater, albeit with a lesser degree of con�dence.

di�erence in means between the hybrid mind and the control occurred by chance �

and therefore conclude that the hybrid mind is superior to the best existing third-

party mind.

6.8 Conclusion

This chapter dealt with the idea of constructing a hybrid mind by selecting from

a set of �subminds�, programs possibly written by third parties intended to solve

the same world problem. These results support the idea that a hierarchical hybrid

mind constructed in this way can be superior to the subminds from which it was

constructed, which was the second research question in section �1.4.
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6.8.1 Finding expert subminds

In choosing appropriate subminds for use in a hybrid mind, we can look for behaviours

carried out by successful minds which can be regarded as expert behaviours.

From all of the summary variables presented at the end of each run � the score �

and from the variables observed in each world state reached during a number of runs,

sets of these variables were chosen as metrics by which minds could be evaluated for

inclusion as an expert submind in a larger hybrid mind.

Once the appropriate metrics have been selected, and a ranking of minds es-

tablished for each one, a new hybrid mind can then be built, perhaps using the

condition-action rule template shown in algorithm 6.1.

6.8.2 Limitations of this approach

De�ning what constitutes expert behaviour, and ranking the relative worth of mul-

tiple behaviours, is critical to the construction of an e�ective hybrid mind. In the

experiments above, the metrics chosen, and the order in which the desired beha-

viours are prioritised were based on human judgement. To produce a hybrid mind

required a lengthy period of trial and error experimentation, in �nding the right set

of subminds and in developing a successful controller.

This process requires signi�cant experience with and understanding of the prob-

lem world, and can easily result in the selection of behaviours which might intuitively

seem important, but may in practice be ine�ective. A more objective, mathematical

method for making these decisions would be more generally useful, and this is the

topic of the next chapter.

Another possible limitation with any approach of the sort (this is discussed on

page 39 of this dissertation and by O'Leary et al. [2004]) is that a submind may

implement a memory that tracks parts of the observed state and/or actions taken �

relying on the implicit assumption that the submind is always in control, when in

fact it is not. Violation of this assumption may lead to a faulty understanding of the

world and therefore produce faulty behaviour.
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Chapter 7

Towards more automated hybrid

building

7.1 Introduction

The previous chapter presented a method for selecting appropriate subminds during

the construction of hybrid minds. This method requires an understanding of which

score and state attributes should be maximised or minimised, and in which order.

While useful results have been demonstrated using this method, it would be

better if the relative importances of these ranking metrics could be discovered al-

gorithmically.

The novel contribution of this chapter is an extension of the method introduced

in chapter 6 with a statistical approach to evaluating and ranking the various per-

formance metrics provided by the score vector in a more objective and automatic

way. The recorded state information was not used for the experiments described in

this chapter.

First, the primary techniques used to perform the analysis and selection of minds

are introduced. Then the experimental setup will be discussed and the experimental

and null hypotheses de�ned, before going into a more detailed treatment of the

experiments and the results, which show that the hybrid mind created using this

method is superior to the best of a number of minds submitted by multiple competing

authors. Finally, the conclusion section will discuss some limitations and general

observations.
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7.1.1 Statistical methods used

Several analytical methods are discussed in chapter 3 which may be of use in solving

this problem. For this work, two techniques are used to analyse the same dataset

used in chapter 6:

� Correlation analysis, which allows us to rank the relative importance of each

metric, relative to an objective measure of overall performance on the problem

at hand, and

� Principal Component Analysis (PCA), which allows us to look at the

dataset and reduce it to a smaller set of dimensions which explain a large

proportion of the total variance within the dataset.

Both of these techniques are brie�y explained, along with a discussion of how they

inform the selection of subminds for the purposes of building a larger hybrid mind.

7.2 On the importance of context

For an action-selection mechanism to perform adequately in a non-trivial environ-

ment, the appropriate exploitation of context is key. This is what distinguishes a

strategy of �always attempt to drink� from �attempt to drink if there is water present

and you are thirsty�. The �rst strategy is blind while the second demonstrates an

understanding of the context in which those actions are appropriate.

In the method proposed here, there are three places where context might be

considered:

� The subminds,

� The hybrid control mind, and

� The ranking and selection system.

Both the subminds and the hybrid controller directly sense the state of the world,

and therefore have access to the information needed to select context-appropriate

actions.

The ranking and selection system in this particular experimental setup can only

observe the performance of each mind after a run has been completed, and does
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not play a direct role in the selection of actions. Furthermore, to automatically

distinguish between these two types of activity � between inappropriate and context-

guided � is a di�cult task. The only attempt to do so in the ranking and selection

system is to weight the perceived importance of each behaviour with the tested mind's

overall performance measure, to help weed out minds which perform an �important�

action repeatedly and at inappropriate times.

How the subminds respond to context is up to the mind authors, and therefore

cannot be controlled by the method proposed here. This leaves the hybrid con-

trol mind with the responsibility of selecting the appropriate submind at the right

moments. There are numerous methods which could be used to design the hybrid

controller, and only two are used here � an ad-hoc condition-action list, and a rein-

forcement learning agent.

7.3 Method

The problem we are faced with is how to construct a hybrid mind which uses the

most successful behaviours represented among a large pool of possible subminds.

How can we classify behaviours as successful, and how can we select a small number

of subminds which constitute expertise in those behaviours?

This section summarises the approach taken in an attempt to answer these ques-

tions and produce a method for constructing a useful hybrid mind in a more auto-

mated way.

7.3.1 Rank the variables using correlation analysis

First, we attempt to rank the variables which are used to summarise the minds'

performance in the world score vector. These variables provide information about

how often certain conditions and events occurred, and how often each action was

taken during a run.

The ranking will be based not on how much variance is accounted for, but rather

to what degree each variable a�ects a scalar measure of success in the world. We

will use correlation analysis for this purpose in section 7.6.2.

Returning to the problem world used for these experiments � the Tyrrell simu-
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lated animal world � we de�ne our measure of success simply as the number of times

the simulated animal successfully mated. For other worlds, several important output

variables may be composed into a scalar value by means of a weighted sum function,

but in our case the value can be used directly.

7.3.2 Eliminate redundant variables

After the variables have been ranked in descending order by the strength of their cor-

relation with the success measure, there may be multiple variables present which ac-

count for the same behaviour. To reduce the number of variables (and subminds), two

methods are examined and evaluated: principal component analysis in section �7.8,

and a method which re-uses the correlation matrix to eliminate redundant variables

in section �7.9.

7.3.3 Construct the hybrid mind

After a small set of ranked, relatively independent variables has been created, each

variable is then used for two purposes:

1. To select a submind which represents expertise in the behaviour associated

with that variable. This is done by choosing the mind which maximises that

particular variable and designating it as the submind responsible for that be-

haviour.

2. The event measured by that variable is then used to devise a simple conditional

test, for use in the hybrid mind controller, which when triggered will request

and return a suggested action for the submind chosen in step 1.

The conditions are tested, where possible, in order of the underlying variable's ranked

correlation with the success measure.

7.4 Experimental setup

The experiments described in chapter 6 used a dataset gathered by running each

of the uploaded minds several times in the modi�ed Tyrrell world and saving a

record of the summary score vector produced after each run, which contains counts

of important events that occurred and actions which were taken in the world.
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7.4.1 Test scenarios

To evaluate the method proposed in this chapter from a more general perspective,

it will be tested in two worlds which are quite di�erent from each other:

Tyrrell09 � An animal behaviour simulation which models a small animal in a

complex two-dimensional grid world, where the goal is to increase the animal's

genetic �tness by �nding and mating with receptive partners. This world is

used to evaluate the method presented in section �7.3, by constructing and

testing a hybrid mind against the best of a large number of minds submitted

by many authors in a competitive assignment set in the Tyrrell09 world. A

more complete de�nition of this world can be found in appendix B.

ChessWorldG � A world which models the game of chess1. The mind plays as

white in each game, while the A.I. opponent provided by the world plays as

black. The �tness of each mind will be measured by the �survival moves�

variable; a count of the total moves made by the mind over �ve games. This

variable was used as a measure of �tness because only one of the student-

submitted minds was able to defeat the A.I. opponent, and the one successful

mind simply reused the world's A.I., a specialised open-source chess engine

called CuckooChess. For this reason, that mind is excluded from the analysis

and not used as part of the hybrid built here. A more complete description of

the world can be found in appendix C on page 187.

7.4.2 Experimental hypothesis and procedure

As in chapter 6, the best mind submitted to the system serves as a control benchmark

against which to gauge the e�ectiveness of the hybrid creation method proposed here.

A median and mean score were established for this mind � in the Tyrrell09 world,

RobMindM, and in the ChessWorldG world, � and for the new hybrid mind by

running each in the world for a large number of trials (N = 1000 for Tyrrell09 and

N = 100 for ChessWorldG) and recording the results.

1The motivation here was to test these methods in a world substantially di�erent to Tyrrell's
world, and ideally a world not created by myself. My initial choice was a third-party world imple-
menting the game of Minesweeper, but it was not appropriate due to a lack of subminds and the
fact that one submind appeared to provide an optimal solution, meaning there was no bene�t to
be gained by creating a hybrid mind for that world. At this point, chess was selected as the target
problem, using an open-source chess engine to implement the opponent.
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This enables us to de�ne the experimental hypothesis:

The mean score of the hybrid mind created through the method described

in this chapter is signi�cantly greater (better) than the mean score of the

control mind.

To test this hypothesis, the following null hypothesis is de�ned:

There is no signi�cant di�erence between the mean scores of the hybrid mind

created through the method described in this chapter and of the control

mind.

The chosen signi�cance criterion is that the probability of such a result arising by

chance must be less than 5% (p < 0.05). A t-test of the recorded samples from both

minds must return a p-value of less than 0.05 in order to reject the null hypothesis.

7.4.3 Collecting data

As discussed in chapter 6, over 100 mind programs were created for each world

and uploaded by undergraduate students during the assignment period. Each of

these minds was run and evaluated, and their best performances were recorded on a

scoreboard.

A small number of obviously broken minds were excluded for the purposes of

this analysis, leaving 120 mind programs for Tyrrell09 and 111 for ChessWorldG.

These were evaluated by running each mind in the Tyrrell09 world three times and

recording the resulting score. The ChessWorldG minds were run ten times each.

Several minds still failed to complete some or all of their runs before a preset

timeout in the evaluation script, and at the end of the data collection process, scores

for Tyrrell09 and ChessWorldG were gathered for 301 and 1093 runs respectively.

Note that due to the non-deterministic nature of Tyrrell09, the sample size for

each mind of N = 3 is likely to give an incomplete picture of their performance. This

was done for practical reasons, since a number of the minds are themselves hybrids

which take longer to complete runs, and several minds timed out during the data

collection process. However, for the experimental evaluation described later, a larger

number of trials (N = 1000 for Tyrrell09, N = 100 for ChessWorldG) was performed

to ensure statistically meaningful measurements.
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7.4.4 Constructing a hybrid mind

Based on a correlation analysis of the collected data, the 5 metrics most strongly

associated with success in the world were chosen. Then, the same dataset is used to

select the minds which scored highest under each of these metrics.

A hybrid mind is then constructed, using each of these subminds, based on a

simple condition-action list controller in the case of the Tyrrell09 world (see al-

gorithm 6.1 on page 110), or a Q(λ) reinforcement learning agent in the case of

ChessWorldG (this will be described in section �7.11).

7.5 Correlation analysis

The statistical analysis of correlation allows us to look for signs of a dependence

between two variables. Correlation is generally expressed in the form of a scalar

coe�cient in the range -1 to +1, where +1 indicates a perfect positive correlation,

-1 indicates a perfectly negative correlation (anticorrelation) and values in between

denote the strength of the association.

We will use correlation analysis to infer relationships between various aspects of

behaviour and overall success in the world. Correlation does not necessarily imply

a causal nature in these relationships, but it may serve as a useful heuristic for the

purpose of constructing hybrid minds.

7.6 Ranking the performance metrics automatically

In chapter 6, the performance metrics provided by the score vector and the recorded

states were manually reduced to a small set of important variables and ranked.

Although this produced good results, it would be useful to perform the reduction

and ranking processes automatically.

This section describes how correlation analysis is used to determine the statistical

dependence between each variable in the score vector and the overall success measure.

With that information, the variables are ranked in descending order and subminds

are selected which perform well at the behaviour represented by each variable.
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7.6.1 Measuring the correlations between performance metrics and

overall success

The Tyrrell world o�ers two important score measures by which to evaluate the

performance of a mind during a particular run:

1. the reproductive �tness of the simulated animal � that is, the number of times

the animal successfully mated, and

2. the lifespan of the animal � the total number of discrete timesteps for which

the animal survived.

For our purposes, we shall focus on the number of times the animal mated. As we

shall see, this is in�uenced somewhat by the animal's lifespan. In ChessWorldG, the

measure of �tness is the �survival moves� variable which counts the number of moves

made across each of the �ve games played by the mind.

Although in this instance we use only a scalar value as our success metric, in

other worlds, it may be useful to de�ne a �tness function which provides a heuristic

measure of overall success in solving the problem. A �tness function of this type

might be expressed as a weighted sum of important elements in the score vector, or

of some of the values observed in the states experienced during the run.

The R statistical analysis package [R Development Core Team, 2012] was used

to inspect the recorded performance data of each run, and to measure and rank the

correlations found between each score value and the �tness measure for that run �

for this world, the number of times the simulated animal successfully mated.

To perform this analysis, the data was prepared as a text �le in comma-separated

values (CSV) format. The �le can then be loaded into R:

scores = read.csv(file="scores.csv", head=TRUE, sep=",")

A matrix of correlations can then be calculated. R provides methods to derive the

Spearman, Kendall and Pearson coe�cients. In this case, we shall use the Spearman

rank correlation coe�cient, a statistical measure of the dependence between two

variables.

The Spearman coe�cient is a non-parametric measure which does not make an

assumption of linearity in the variables' relationship (as Pearson's correlation does)

� rather, it assumes that there is a monotonic relationship [Lowry, 2010].
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A monotonic relationship between two variables x and y means that either:

1. as the value of x increases, the value of y always increases, or

2. as the value of x increases, the value of y always decreases.

The magnitudes of the changes in x and y need not be related.

The robustness of Spearman's correlation under weaker assumptions is important

given that the behaviour of a given world is often unknown and complex. However,

it should be noted that all of these methods have di�culties measuring non-linear

relationships, and in these conditions will underestimate the degree of association

[Lieberson, 1964].

corrs = cor(scores, method="spearman")

A diagram summarising the correlations for Tyrrell09 is shown in �gure 7.1 on

the following page, with the ChessWorldG correlation matrix displayed in �gure 7.2.

7.6.2 Ranking the correlations

We wish to identify the elements within the score vector which have the greatest

positive impact on the overall performance of the mind. To do this, we can sort the

score attributes in descending order of the correlation strengths derived above.

These correlations can be ranked as follows, where -fitness represents the value

of the �mated� score variable in the Tyrrell09 world, or the �survival moves� variable

in ChessWorldG :

cs = data.frame(corrs)

sorted_corrs = cs[with(cs, order(-fitness)), ]

The �ve strongest and �ve weakest correlations obtained via this method are

listed for Tyrrell09 in table 7.1 and for ChessWorldG in table 7.2, excluding obser-

vations with missing values.

As one would expect, correlating a variable against itself produces a result of 1.

Therefore, a sensible �rst step in constructing an e�ective hybrid mind might be to

select one submind solely on the basis of achieving the best mating score.
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Figure 7.1: A graph summarising the correlation matrix for the Tyrrell world score
data. The size of each circle denotes the magnitude of the correlation between
the variables corresponding to that row and column. Blue circles denote positive
correlation and pink circles denote negative correlation.
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Figure 7.2: A graph of the correlation matrix for the ChessWorldG score data. The
size of each circle denotes the magnitude of the correlation between the variables
corresponding to that row and column. Blue circles denote positive correlation and
pink circles denote negative correlation.
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- mated

mated 1
court-mate 0.896437454

attempt-mate 0.887892958
move-north 0.730114876
move-south 0.706036127

... ...
look-southwest -0.283351808
look-southeast -0.283444079
look-north -0.284615951

freeze-in-place -0.287978008
look-northeast -0.29064326

Table 7.1: The �ve most positive and �ve most negative correlations obtained by the
Spearman method, using the dataset gathered from the minds submitted to solve
the Tyrrell09 problem.

- Survival.moves

Survival.moves 1.0000000
Invalid.moves 0.5651416

Captured.Queen 0.5250827
Captured.Pawn 0.4044723
Captured.Knight 0.3677592

... ...
Lost.Pawns -0.6742261
Lost.Rooks -0.7010840
Lost.Bishops -0.7624508
Lost.Knights -0.7632312
Lost.Queens -0.8289098

Table 7.2: The �ve most positive and �ve most negative correlations obtained by the
Spearman method, using the dataset gathered from the minds submitted to solve
the ChessWorldG problem.

From there, we can see that the �court mate� and �attempt mate� actions produce

strong correlations with overall reproductive success, as observed in this data.

7.6.3 Examining the Tyrrell09 data

At the bottom of table 7.1, we can see that the look-[direction] actions appear to

exhibit an inverse correlation with successful mating behaviour. A closer examination

of the dataset shows that the look-northeast action was performed only 248 times in

total across all runs of all the minds. In contrast, the action for attempting to mate

was performed 3,945 times.

It is possible, then, that only a small handful of mind programs performed the

look-northeast action, and that the overall e�ectiveness of those minds was poor. In
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fact, the look-north action was performed in only 39 of the 301 runs (13%), and in

those 39 observations the average reproductive �tness was a score of 2.1 successful

mating attempts, compared with 10.3 in the minds that did not perform the look-

north action.

This does not necessarily mean that the look-[direction] actions are inherently

counterproductive � rather, there is not su�cient evidence to con�rm that they are

useful, compared to other actions which were performed more frequently by successful

minds. These examples demonstrate that having a small number of observations of an

attribute across the total dataset can lead to faulty conclusions. This potential bias

may be mitigated by collecting more minds, or by constructing con�dence measures

for each variable.

Several actions and events proved to have a weaker than anticipated e�ect on the

performance of minds. For example, the relatively weak value of eating cereal food

is demonstrated and discussed brie�y in �gure 7.3.

Similarly, many minds are capable of achieving a long lifespan without mating

at all, which slightly weakens the correlation between lifespan and mating (see �g-

ure 7.4), although a longer lifespan enables more mating attempts to be made.

Other actions have a stronger in�uence on the performance of a mind. Shown in

�gure 7.5 is a graph of reproductive success against the number of times the mind

selected the �move north� action.

This analysis does not perfectly capture the relationship between the input and

output variables. In particular, many of the score attributes have a curvilinear

relationship with the output variable, where too little or too much damages the

simulated animal's performance.

For example, not drinking any water reduces the lifespan of an animal, but con-

versely drinking too much can also cause injury which will impact the animal's sur-

vival prospects. This non-linear relationship is explored in �gure 7.6.

7.7 Selecting subminds

At this point, an ordering has been established by which we can relate each score

metric to the overall success of a mind. Using this information, we can rank the
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Figure 7.3: This graph links the amount of cereal food eaten with the reproductive
success of the simulated animal. The prevalence of noise in the graph, and the
presence of minds which scored across the entire range of the �mated� variable,
suggest that eating cereal food has only a small e�ect on the success of a mind � at
least in the mind programs collected and examined in this analysis. The estimated
probability of error (p) is low, due to the number of samples taken.
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Figure 7.4: A positive correlation is observed between the simulated animal's re-
productive success and the lifespan of the animal. The link is made weaker by the
presence of many minds which achieve a long lifespan without mating, since moving
around and mating causes signi�cant energy expenditure which must be replenished
by �nding food and water.
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Figure 7.5: In this graph, a positive correlation between the �move north� action and
reproductive success is seen. This may simply indicate that the more active animals
tend to �nd mates more frequently.
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Figure 7.6: This graph examines the relationship between drinking water and mating
score. Although the graph is quite noisy, it is apparent that drinking either too
little or too much water leads to a lower reproductive �tness in this world. Three
polynomial regression models �tted by the least squares method produced curves
which highlight the non-linear relationship between these score attributes. Each
curve in this diagram represents a polynomial of a di�erent degree.
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available subminds for their performance against the metrics which correlate strongly

with success in the world.

A slight problem is evident with this analysis. Referring again to the ranked

correlations for Tyrrell09 listed in table 7.1, there is a clear overlap between the

number of times the simulated animal successfully mated, and the number of times

it attempted both the court-mate and attempt-mate actions. Similarly, seven of the

next eight strongest correlations represent actions which move the animal in one of

eight possible directions by one cell on the two-dimensional world grid.

If we were to select �ve subminds based directly on the most in�uential �ve

metrics as listed in the table, for example, then only two behaviours would really be

addressed: mating and moving.

It is clear that within these score attributes which count events in the world and

actions taken, there exists a degree of redundancy. Perhaps by only accounting for

actions and events which appear to be relatively independent of each other, then the

highest ranked correlations may represent a wider spectrum of behaviour needed by

minds to solve the problems presented in this world.

Next, we will investigate whether principal component analysis can help to sep-

arate the variables and minimise this redundancy.

7.8 Principal Component Analysis (PCA)

A tool often used in exploratory data analysis is principal component analysis (PCA).

In PCA, a series of measurements over several dimensions is transformed into a set of

orthogonal and linearly uncorrelated components which attempt to represent most

of the variance within the dataset. This section explores the use of PCA to obtain

a reduced set of variables by which to evaluate and rank subminds for inclusion in a

hybrid mind such that holistic behaviour in Tyrrell09 world might be produced by

those subminds.

PCA is frequently used in certain types of �lossy� data compression, where it

is acceptable to lose a small amount of detail in exchange for a large saving in

the space required to represent the data. This technique of dimensionality reduc-

tion is employed in, for example, the JPEG2000 image compression format [Du and

132



Fowler, 2007]. In this context, the technique is often referred to as a Hotelling or

Karhunen�Loève transformation.

The technique is also commonly employed in exploratory analysis of a dataset,

where the relationships between variables, and the relative signi�cance of those re-

lationships is unknown.

When the analysis is performed, the result is a series of components (or dimen-

sions) sorted such that the �rst component accounts for the largest part of the vari-

ance observed in the dataset, the second component accounts for the second largest

portion of variance, and so forth.

Summing the variance represented by each component provides us with a cumu-

lative measure of variance, which allows us to set a stopping criterion � for example,

when 95% of the variance has been explained.

7.8.1 Principal component analysis of the Tyrrell world score data

In this step, we will perform a principal component analysis of the collected score

data in the Tyrrell world � the same dataset used in chapter 6.

When performing PCA, there are several methods which can be used depending

on the type of data being examined. In this case, a correlation matrix is used,

rather than a covariance matrix, and the data are mean-centred and scaled to unit

variance. This is so that variables measured on di�erent scales and taken from

di�erent distributions do not distort the calculations.

Additionally, variables which contain constant values (that is, where every meas-

urement of the variable produces the same result; typically zero in this instance) are

removed prior to performing the scaling and analysis operations. This reduces the

dimensionality of our dataset from 49 to 43 variables.

Performing the analysis on the score data produces a set of components whose

relative importances are summarised in table 7.3 on page 135.

The majority of the variance is accounted for by a small number of components

� the �rst 3 components represent 54.13% of the variance, the �rst 16 components

represent 90.67%, and the �rst 27 components represent 99.15%, respectively. This

pattern is highlighted by the scree plot in �gure 7.7.

When using PCA for dimensionality reduction, some criteria must be used to
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Figure 7.7: A scree plot of the �rst ten principal components derived from the score
data for Tyrrell09, showing that most of the variance is explained by the �rst few
components.

decide how many principal components should be taken. One common rule of thumb

is to take all the components whose eigenvalues are greater than 1 [Kaiser, 1960],

when the PCA is performed with a correlation matrix, as in our case.

The standard deviations listed in table 7.3 represent the square roots of the

eigenvalues, and show that the �rst ten components satisfy this condition.

7.8.2 Selecting a subset of variables

There is some redundant information contained within the variables of our dataset.

For example, the �court mate� and �attempt mate� actions are positively correlated

to each other and to the actual �mated� score value.

It is conceivable that some worlds might produce score and state vectors which

contain greater redundancy than this � for example, by completely duplicating cer-

tain score elements.

This raises the question: Now that we have established the principal components
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Standard deviation Proportion of Variance Cumulative Proportion

PC1 3.402321737 0.2692 0.2692
PC2 2.690120056 0.1683 0.4375
PC3 2.112627929 0.1038 0.5413
PC4 1.717686254 0.06862 0.60991
PC5 1.307308458 0.03975 0.64966
PC6 1.18663635 0.03275 0.6824
PC7 1.081106091 0.02718 0.70958
PC8 1.061777678 0.02622 0.7358
PC9 1.048370096 0.02556 0.76136
PC10 1.005172408 0.0235 0.78486
PC11 0.958171286 0.02135 0.80621
PC12 0.954520536 0.02119 0.8274
PC13 0.938438055 0.02048 0.84788
PC14 0.934439945 0.02031 0.86819
PC15 0.916750642 0.01954 0.88773
PC16 0.902045181 0.01892 0.90665
PC17 0.852216271 0.01689 0.92354
PC18 0.826033804 0.01587 0.93941
PC19 0.745020755 0.01291 0.95232
PC20 0.657591494 0.01006 0.96238
PC21 0.545807682 0.00693 0.9693
PC22 0.519198629 0.00627 0.97557
PC23 0.489900048 0.00558 0.98116
PC24 0.407530071 0.00386 0.98502
PC25 0.323009025 0.00243 0.98744
PC26 0.299246551 0.00208 0.98953
PC27 0.292100946 0.00198 0.99151
PC28 0.272918462 0.00173 0.99324
PC29 0.242446387 0.00137 0.99461
PC30 0.206409072 0.00099 0.9956
PC31 0.178276841 0.00074 0.99634
PC32 0.169777801 0.00067 0.99701
PC33 0.155280923 0.00056 0.99757
PC34 0.144839377 0.00049 0.99806
PC35 0.138836955 0.00045 0.99851
PC36 0.125266759 0.00036 0.99887
PC37 0.112928107 3.00E-04 0.99917
PC38 0.103047906 0.00025 0.99942
PC39 0.093464392 2.00E-04 0.99962
PC40 0.083541865 0.00016 0.99978
PC41 0.074575328 0.00013 0.99991
PC42 0.062035551 9.00E-05 1
PC43 1.51E-15 0 1

Table 7.3: A summary of the relative importance of each of the 43 principal com-
ponents representing the score dataset.
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in the data, how do we map the strongest of these components back to the original

variables which characterise our data?

One method is to look at the loadings or rotations for each component. In

principal component analysis, each component represents a linear transformation of

the original variables into a new co-ordinate system, expressed as a weighted linear

sum of the form:

PCn = rn,1V1 + rn,2V2 + ...+ rn,NVN

Here, rn,k represents the loading coe�cient applied to the original variable Vk as

part of the contribution to the principal component PCn.

Having obtained the components and loadings from PCA, we then select for each

component the variable with the highest absolute value which has not already been

chosen. This strategy is called method B4 by Jolli�e [2002]).

The desired outcome was a small number of variables which would be relatively

independent of one another, which could then be sorted by the strength of their

correlation with the overall �tness measure (the �mated� score value) and then used

to select appropriate subminds.

The loadings observed by running PCA against the dataset, however, do not

seem to be helpful in this regard, however. For example, the loadings for the �rst

three principal components are shown in table 7.4 on the following page.

By applying the B4 method with these values, the variables selected to represent

the �rst three components were action 26 (move northwest) for PC1, action 15 (look

south) for PC2 and action 3 (eat cereal food) for PC3. Following a similar process

for the next seven principal components gives us more variables, shown in table 7.5.

While the selected variables may account for a large proportion of the variance in

the dataset, they do not seem to be associated with successful behaviour in the world.

For example, one might expect to see either the �mated� variable, or the actions

associated with mating (the court and mate actions) in this subset of variables, on

the basis that our selected measure of success in the world is the number of times

that the simulated animal mated.

However, what is considered important in terms of successfully solving the prob-
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PC1 PC2 PC3

e.mated -0.18032999 0.048726304 -0.108211554
e.lifespan -0.184201693 0.075923672 -0.043815159
e.ate fruit -0.052100384 0.088486302 -0.309170297

e.ate toxic fruit -0.033501923 0.048782699 -0.171867524
e.ate cereal food -0.047863705 0.079506941 -0.258443161
e.ate toxic cereal -0.021909162 0.044480412 -0.138083732
e.drank water -0.170604864 0.023023315 -0.172802301
e.drank toxic -0.125221877 0.007234402 -0.124085452

a.sleep 0.013472972 0.113430966 0.056609683
a.rest -0.003176053 0.029368695 0.035962487
a.freeze 0.037129048 -0.097405162 -0.047075606

a.eat cereal -0.049590127 0.077649074 -0.338860327

a.eat fruit -0.052281697 0.090549266 -0.325985041
a.drink -0.155250917 0.005056609 -0.172288866
a.clean -0.149270878 -0.026322986 0.00704298
a.court -0.055526292 0.015677608 -0.02736446
a.mate -0.057632433 0.011869894 -0.035578131
a.pounce -0.015324684 0.020149622 -0.139381539

a.look around -0.019296913 0.053668579 -0.077083523
a.look N 0.105088958 -0.322093956 -0.132295199
a.look NE 0.105057003 -0.318991056 -0.127754423
a.look E 0.10580077 -0.322742046 -0.134789799
a.look SE 0.105611028 -0.321936813 -0.134403935
a.look S 0.105514741 -0.3235404 -0.136255115
a.look SW 0.106848317 -0.323028951 -0.133151461
a.look W 0.10569415 -0.321556265 -0.13461841
a.look NW -0.092732616 -0.028673339 0.072296007
a.move N -0.244935261 -0.022468664 -0.133176412
a.move NE -0.250291476 -0.035673587 -0.118912362
a.move E -0.241667587 -0.023741451 -0.136829854
a.move SE -0.237536573 -0.029705524 -0.071612001
a.move S -0.084669049 0.016394893 -0.042898005
a.move SW -0.254312776 -0.035544793 -0.119912409
a.move W -0.248995383 -0.030174852 -0.117975375
a.move NW -0.260388627 -0.059657058 -0.044148528
a.run N -0.208269629 -0.143788123 0.144083005
a.run NE -0.209010646 -0.169637221 0.181985854
a.run E -0.208349782 -0.169060853 0.187976977
a.run SE -0.209683492 -0.167315797 0.187857884
a.run S -0.210666418 -0.168512138 0.18297351
a.run SW -0.178037462 -0.142586077 0.177066125
a.run W -0.210181523 -0.164257761 0.181745995
a.run NW 0.038018808 -0.115842284 -0.072963862

Table 7.4: The loadings determined by principal components analysis of the Tyrrell
world score dataset, for the �rst three components. Variables pre�xed by �e.� indic-
ate events recorded in the score vector, while variables pre�xed with �a.� indicate
actions taken. The absolute maximum loading for each component is highlighted in
bold, giving the move northwest action for PC1, the look south action for PC2 and
the eat cereal food action for PC3.
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Component Variable

PC4 a.eat fruit

PC5 a.sleep

PC6 a.look NW

PC7 e.ate toxic cereal

PC8 a.look around

PC9 a.run NW

PC10 a.freeze

Table 7.5: The variables corresponding to the remaining principal components PC4-
PC10, selected without replacement by greatest absolute loading value.

lem presented by the world may not have a large impact on the statistical variance

present in the rest of the dataset.

A better approach for selecting important variables to be used in ranking sub-

minds while avoiding redundancy might be to examine the variable correlation matrix

and discard variables which are highly correlated with a variable which has already

been selected.

7.9 Using the correlation matrix to minimise redundancy

in variable selection

Another method to minimise the selection of redundant variables in the score data

might be to ignore variables which exhibit a greater statistical dependence with

already-selected variables than with the desired �tness measure.

That is to say, before a variable v is added to the �independent� set s (initially

empty), to test that the correlation strength R2 between v and every variable in s is

less than the correlation between v and the �tness measure (the value of the mated

score variable in the Tyrrell09 world).

An implementation of this method in the R language is shown in algorithm 7.1.

7.9.1 Reduced variable set for the Tyrrell09 world

Running this algorithm on the collected scores in our Tyrrell09 dataset produces a

list with the following score attributes:

� e.mated � The number of times the simulated animal successfully mated during

a run.
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Algorithm 7.1 A variable selection algorithm which attempts to avoid selecting
redundant variables by testing the correlation strength between a new variable and
the set of already-chosen variables against the correlation strength between the new
variable and the primary �tness measure. A small tolerance threshold corr_t is
added to avoid removing too many variables.

bui ld_independent_var l i s t <− f unc t i on ( c o r r s ) {
# f i r s t s o r t by dec r ea s ing c o r r e l a t i o n with primary f i t n e s s

measure
cor r s_sor ted <− c o r r s [ order ( c o r r s [ , " mated " ] , d e c r ea s ing=TRUE) , ]
s = c ( )
corr_t = 0.025

f o r ( nextVar iab le in rownames ( cor r s_sor ted ) ) {
corrOther = FALSE
f o r ( e x i s t i n g in s ) {

i f ( c o r r s [ e x i s t i n g , nextVar iab le ] > co r r s [ "mated" ,
nextVar iab le ]+corr_t ) {

corrOther = TRUE
break

}
}

i f ( l ength ( s ) == 0 | | ! corrOther ) {
s = c ( s , nextVar iab le )

}
}
return ( s )

}
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� a.court � The number of times the �court mate� action was taken.

� a.move N � The number of times the �move north� action was taken.

� a.clean � The number of times the �clean� action was taken.

� e.lifespan � The number of timesteps survived in the world.

� e.ate toxic fruit � The number of times the animal ate toxic fruit.

It is perhaps surprising that e.ate toxic fruit was selected, and not e.ate fruit. Look-

ing at the correlation matrix shows that the association between the e.ate fruit and

a.move N attributes was stronger (R = 0.453) than the association between e.ate

fruit and e.mated (R = 0.364). The correlation between e.ate toxic fruit and e.mated

was lower (R = 0.243) but still positive.

7.9.2 Reduced variable set for the ChessWorldG world

The same algorithm was run on the set of scores observed in ChessWorldG, with a

slight modi�cation to use the absolute correlation strength (regardless of direction).

This produced the following list of variables:

� Survival.moves � The total number of moves the mind made during the �ve

games played.

� Lost.Queens � The negative of the number of queens captured by the opponent.

The negative value is used so that the world scoreboard can rank minds in the

correct order � that is to say that, all other things being equal, a mind with a

score of zero for the Lost.Queens variable will be ranked higher than a mind

with a score of -10. However, this does not mean that a mind with a score

of zero in this metric is better � it might be zero because the mind made an

invalid move early in each game and forfeited immediately, and in fact this is

the case for two of the top �ve minds ranked by this metric.

� Invalid.moves � The negative of the count of illegal moves made by the mind.

� Captured.Queen � The total number of queens captured by the mind.

� Captured.Rook � The total number of rooks captured by the mind.
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As demonstrated in the Lost.Queens example above, ranking subminds directly on

the maximisation of these variables can sometimes select subminds which are poorly

designed or even broken. To help compensate for this e�ect, a weighted ranking is

performed, taking into account a proportion of each submind's overall success. In

this case, the e�ective score for a mind was given by the formula v +
f

50
, where v is

the value of the ranking variable and f is the value of the Survival.moves variable

for that mind..

The minds are selected without replacement, yielding the following minds in order

of the variables described above: Mind_M, AlphaBeta, Mindcall2, MiniMax, and

AggEvalBoard. After some testing however, the AggEvalBoard mind was found to fail

intermittently. Rather than replace it with the next best mind, the �Captured.Rook �

variable was dropped and four subminds were used.

7.10 Building the hybrid mind controller for Tyrrell09

As in section �6.6, a controller based on a decision list was used to select which of

the subminds to obey at each timestep.

The conditions were tested and ranked such that the �rst condition tested cor-

responds to the score element (in the reduced set produced in section �7.9) which

correlated most strongly with the �mated� score, and so forth in descending order of

correlation strength.

For example, in our hybrid, the conditions are evaluated and the appropriate

submind called as shown in pseudocode in algorithm 7.2.

In some cases, there is no obvious way to determine whether a particular beha-

viour is appropriate because there is no condition to test. An example of this is the

�move north� action and related movement behaviours. It may be possible to devise

an indirect condition which triggers the behaviour � for example, if the animal has

not moved for several timesteps in a row � but this would be somewhat subjective.

Another option is simply to move that behaviour to the default case, when no

other conditions have been met, as can be seen in the last line of algorithm 7.2.

If there were several such behaviours, a random selection might be performed to

choose one at any given timestep. Random selection is also used to arbitrate between
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Algorithm 7.2 A pseudocode implementation of the hybrid controller for the
Tyrrell09 world, which implements a simple condition list structure to determine
which submind to obey at any timestep.

i f s t a t e . getMateCourted ( ) > 0 then return mater . g e t a c t i on ( s t a t e )
e l s e i f s t a t e . getMatePercept ionSt imulus [ 0 ] > 0 then

return cour t e r . g e t a c t i on ( s t a t e )
e l s e i f sum( s t a t e . getMatePercept ionSt imulus ( ) ) > 0 then

return mater . g e t a c t i on ( s t a t e )
e l s e i f s t a t e . ge tPerce ivedAnima lClean l ine s s ( ) < 0 .5 then

return c l e ane r . g e t a c t i on ( s t a t e )
e l s e i f s t a t e . getAnimalHealth ( ) < 0 .9 then

return su rv ivo r . g e t a c t i on ( s t a t e )
e l s e i f s t a t e . getPerce ivedFatShortage ( ) > 0 .9 or

s t a t e . ge tPerce ivedProte inShor tage ( ) > 0 .9 or
s t a t e . getPerce ivedCarbohydrateShortage ( ) > 0 .9 then

return ea t e r . g e t a c t i on ( s t a t e )
// d e f au l t to best submind i f no other c ond i t i on s match
e l s e re turn mater . g e t a c t i on ( s t a t e )

multiple behaviours which are triggered by the same condition � as in the third line

of algorithm 7.2, between the mating and courting subminds.

It is important to note that although the hybrid mind examines the world state

to decide which submind should be obeyed at any given moment, it does not directly

issue any actions of its own. This need not be the case, of course � the hybrid

mind could select some actions directly and only defer to subminds when certain

circumstances are observed in the world state.

7.11 Building the hybrid mind controller for ChessWorldG

The process of building a hybrid mind controller for this world was less straightfor-

ward than for Tyrrell's world, where the task is to control a single actor with several

well-de�ned responsibilities, and there is no speci�c opponent which must be faced.

In chess, the player begins with 16 pieces which can each capture or be captured

by the opponent's pieces. Each piece has di�erent strengths and weaknesses, and a

correct policy is not obvious.

7.11.1 Using reinforcement learning to produce a hybrid controller

for ChessWorldG

Rather than attempt to hand-design the hybrid chess controller, a reinforcement

learning agent was constructed using the Elsy connectionist Q-learning framework
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Input representation Piece type

−1 Empty space
−5/6 White king
−4/6 White queen
−3/6 White rook
−2/6 White bishop
−1/6 White knight
0 White pawn
1/6 Black king
2/6 Black queen
3/6 Black rook
4/6 Black bishop
5/6 Black knight
1 Black pawn

Table 7.6: The mapping between neural network input representation and the cor-
responding piece (or space) on the chessboard.

[Kapusta, 2011], which uses feed-forward neural networks with eligibility traces to

learn an approximation to the Q-value function [Sutton and Barto, 1998b]. The

function of reinforcement learning is to learn an action-selection policy in response to

numeric rewards [Russell and Norvig, 2003], where a positive-valued reward is issued

for correct behaviour, a negative reward for poor behaviour and zero otherwise.

7.11.2 Choosing the reward function

The impact of the reward function is critical; a poorly-designed one can result in a

learner which never converges on a successful policy. In particular, rewards should

exceed a value of 1.0, as this could cause a failure of the learning element to converge

on optimal policy [Kapusta, 2011]. In this case, a reward of +1 is assigned for a win,

+0.5 for a draw, -1 for a loss, and zero in all other cases.

7.11.3 State input mapping

The convergence rate of a neural network for any particular function can be sensitive

to the description of the inputs, so some form of normalisation is usually performed

to help this process along [Bishop, 1995, p. 298]. For the ChessWorldG controller,

the set of inputs is a set of 64 numbers (one for each square of the board) in the range

[−1,+1]. The assignment of these numbers to chess pieces is de�ned in table 7.6.
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7.11.4 Action de�nition

Instead of learning to select moves directly, the reinforcement learning controller is

tasked with learning which of the four subminds it should obey at any particular

moment. Each of the four actions speci�es one of the subminds selected according

to their performance in the variables identi�ed in section 7.9.2.

7.11.5 Network architecture

The 64 input nodes connect to two hidden layers with 32 and 24 neurons respectively.

These feed into an output layer with four neurons each representing the expected

value of taking one of the available actions in the current state. Several variations

were tested, with more or fewer hidden layers and di�erent amounts of neurons in

each, before arriving at this con�guration.

Once the Q-values are estimated, the selection of actions is done using softmax

activation according to a Boltzmann distribution [Sutton and Barto, 1998b], which

selects actions probabilistically so that the �greedy� (best Q-value) action is most

likely to be chosen, and the apparent worst action is least likely to be chosen. This

is performed so that an e�ective balance can be struck between exploration and

exploitation while learning. At timestep t, action a will be selected with probability

eQt(a)/τ∑n
b=1 e

Qt(b)/τ

where τ is a temperature parameter, such that a high temperature produces

more uniform selection of actions and lower temperatures approach greedy selection.

Sometimes, a high temperature is used to begin with to encourage more exploration

of the action space, and gradually reduced towards greedy selection over time [Guo

et al., 2004]. Here, the initial temperature is set to 1.0 and decayed by a factor of

0.9 until it reaches a minimum value of 0.002.

Other important parameters for the learner are γ = 0.95, the discount factor

which represents the importance of future states in Q-learning, α = 0.1, which

represents the learning rate of the neural network which learns to approximate the

Q-value function, and λ = 0.5, which signi�es the eligibility trace forgetting rate.
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7.12 Experimental results

An analysis of the experimental outcomes in both the TyrrellWorld09 and Chess-

WorldG worlds follows, showing that the method proposed in this chapter produced

a successful hybrid mind in the �rst world but not in the latter.

7.12.1 Tyrrell09 results

The hybrid mind created through this process was run in the same world with the

same parameters as the subminds and the hybrid mind developed in chapter 6. The

best, median and mean scores achieved by each mind after N = 1000 runs are

displayed in table 7.7, along with the standard deviation in each score. The score

data are summarised with boxplots of the mated and lifespan score samples for each

mind in �gure 7.8.

Existing best mind Manual state analysis Score (auto)

Subminds 2 4 5
max(mates) 74 78 84

median(mates) 43 49.5 47
mean(mates) 41.533 47.95 46.478
σ(mates) 12.53204 12.63523 12.74472
max(life) 4848 4797 4840

median(life) 4208 4254 4205
mean(life) 3849 3942 3934
σ(life) 1019.069 934.176 868.9804

Table 7.7: The hybrid mind in column 4 was constructed by automatically selecting
and ranking important variables relevant to the world state in the Tyrrell09 world.
For comparison, the mind produced in chapter 6 by manually selecting important
state attributes is included in column 3. Column 2 shows the performance of the
existing best mind submitted to the server by a student.

The performance of the hybrid mind created in this chapter is shown on column

4 of the table, having outperformed all of the subminds submitted by users, without

ever needing to know how to act directly in the world.

These results are comparable with, but slightly inferior to those of the hybrid

mind built in chapter 6, and less human judgement is required. Note that the hybrid

mind in column 3 was created by mining the manually-selected state data, which

contains richer information than is provided by the world's score vector.

To determine whether these results are signi�cant, Welch's t-test was again per-
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Figure 7.8: Boxplots of the performance in Tyrrell09 of several minds for the mated
and lifespan score variables. The label control indicates the best mind used as a
benchmark against which the new hybrid minds are tested. The label exp9 refers to
the hybrid mind created in chapter 6, and exp11 refers to the hybrid created in this
chapter. Both of these minds exhibit better performance in the mated score variable
than the control mind. The other two minds, exp10 and exp12, were created using
the same submind selection method as exp11, but with di�erent controller designs
� neither of which is successful. The exp12 mind in particular demonstrates much
worse performance, with a lower median in both mated and lifespan scores, and a
much higher variance in lifespan compared to the other minds.
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(N = 1000) Manual state-mined hybrid Semi-auto score-mined hybrid

Mean mates 47.95 46.478
Existing best 41.533 41.533

p-value < 2.2× 10−16 < 2.2× 10−16

Mean lifespan 3942.08 3934.424
Existing best 3848.696 3848.696

p-value 0.03279 0.04308

Table 7.8: Results of t-tests for the hybrid minds produced for the Tyrrell09 world
in this and the preceding chapter. In both cases, the means for the �mated� score
variable are signi�cantly greater (better) than the means recorded for the best ex-
isting mind. For completeness, the �lifespan� variable is also included in the analysis
and is also signi�cantly greater, albeit with a lesser degree of con�dence.

(N=10) Existing best Hybrid with neuralQ(λ) controller

Median survival moves 211 200.5
Mean survival moves 205.8 198.9

Table 7.9: Results of evaluating the hybrid mind created for the ChessWorldG world.

formed, comparing the means of the existing best mind and the hybrid built using

automatic variable ranking. The results of these tests are as presented in table 7.8.

Additionally, the level of deviation from statistical normality of each set of samples

was checked with a Q-Q plot, shown in �gure 7.9.

The outcome of the t-test allows us to reject the null hypothesis � that the

di�erence in means between the hybrid mind and the control occurred by chance �

and therefore conclude that the hybrid mind is superior to the best existing third-

party mind.

7.12.2 ChessWorldG results

The experimental outcomes recorded for the ChessWorldG world are shown in table 7.9.

Possible explanations for a weaker result in ChessWorldG (compared to Tyrrell09)

include:

� The process of breaking chess into a large number of distinct behaviours was

not as obvious as the various behaviours and subproblems modelled in Tyrrell's

world.

� It was not as straightforward to detect �interesting� events in the state. Tyrrell's

world provides a rich set of sensory inputs as arrays of real-valued numbers

which can be tracked.
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Figure 7.9: Quantile-quantile (Q-Q) normality plots [Wilk and Gnanadesikan, 1968,
p. 5] of the score samples for the three tested minds in the Tyrrell09 world. For
the most part, the distributions of the mated variable samples are close to a normal
distribution, with a small degree of right-skew. The distributions of the lifespan
samples exhibit much stronger right-skew, mostly due to the large concentration of
samples achieving more than ≈ 4, 000 timesteps (the maximum theoretical lifespan
is 5,000 but none reach this).
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� Subminds did not specialise in particular behaviours � such as extreme defens-

iveness, or aggression, or attempting to achieve pawn promotion � instead, they

could be separated only into good and bad chess players. The reinforcement

learning agent's policy converged to rely mostly on two �strong� subminds from

the available four.

� The reinforcement learning algorithm may have become �stuck� in a local op-

timum. The application of domain-speci�c knowledge regarding chess may

help to redesign the controller to better avoid these optima and produce a

more successful policy.

� The input encoding (described in section 7.11.3) tried to cram too much inform-

ation into too few input nodes in the neural network, resulting in interference

which may have prevented the network from specialising on observed input. A

better approach might be to group the inputs into a 1-of-C encoding [Bishop,

1995], with each of the 64 chessboard squares taking an ordered series of 13

binary category variables corresponding to the possible piece types (or nothing)

that might inhabit that square. Each variable is given the value zero, except

for the one representing the piece located in that square, which is given a value

of one. This type of input mapping would result in a neural network with 832

inputs and would likely need a much larger number of hidden units than the

one used for these experiments.

As a result, the creation of a control program for the hybrid mind was non-trivial.

Rather than observing that a �trigger� sensory input has dropped below (or exceeded)

a simple threshold value as in Tyrrell's world, a more complicated analysis of the

state must be performed in order to select an appropriate submind for the current

state � a process which requires more domain knowledge.

7.13 Conclusion

This chapter built on the ideas presented in chapter 6, extending the approach by

using principal component analysis and correlation methods in an attempt to determ-

ine important and relatively orthogonal metrics, and to help select expert subminds
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for inclusion in a hybrid mind. The subset of variables produced using the PCA-

based method, although helpful for explaining variance in the dataset, was not useful

for the purposes of selecting subminds for use in a new hybrid mind. However, the

method based on correlation analysis and ranking yielded a series of plausible metrics

with which subminds could ranked and selected.

The method has proved to be useful in the Tyrrell09 world � a complex problem

environment with a large number of variables. The method was also tested for a

di�erent world, ChessWorldG, where it did not perform well. This suggests that the

proposed method of constructing hybrids is task-sensitive, and that it is not suited

to certain classes of problems; perhaps, where it is di�cult to decompose optimal

policy for the world into several distinct behaviours.

Taken together, these results help elucidate the third research question asked in

section �1.4.

7.13.1 Limitations

The results presented for Tyrrell09 are competitive with the hybrid minds created

through human insight. However, the design of the hybrid mind controller was

neither obvious nor trivial. Small changes in the controller which seemed like a

logical choice that would improve overall performance often resulted in poor results,

and it was necessary to go through several revisions and test them separately before

�nding one which appropriately harnessed the individual strengths of each submind.

It may be interesting to integrate the submind selection approach described here

with one of the systematic design methods for constructing modular control systems

described in chapter 3 such as POSH [Bryson, 2002].

A potential weakness of this method is that a variable which correlates strongly

with success may be dependent on a context which is not understood by the al-

gorithm. This is highlighted in section 7.9.2, where the Lost.Queens variable was

discovered to have a strong relationship with the �tness value for ChessWorldG �

the value of the Survival.moves variable � but the most highly-ranked minds ac-

cording to this metric were quite ine�ective. One approach to address this problem

might be to factor the primary �tness measure into every other score measure, so

that ine�ective minds will be weighted down and e�ective minds will be weighted up.
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This would a�ect the correlations of variables and accordingly should be performed

after the correlation analysis, when ranking the subminds, as is done here.

In a more general sense however, the problem of context-sensitivity of metrics re-

mains, and must be passed onto the hybrid controller. In e�ect, the method presented

here can help to discover what behaviours are important, while the controller must

specify when they are important, be it through a separate learning element or the

author's domain knowledge.
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Chapter 8

Future Work

This chapter discusses some possibilities for future work, extending from the research

described in earlier chapters. Section 8.1 looks at the possibility of extending the

W2M 2.0 architecture with several new features. Then, a series of lower-level en-

gineering changes is considered which could greatly improve performance and help

scalability. Finally, we look at work that either builds on the tools for hybrid build-

ing introduced in chapters 6 and 7, or attempts to bridge the gap with some of the

existing cognitive architectures described in chapter 3.

8.1 Extending the W2M 2.0 architecture

8.1.1 Real-time environments

The architecture currently operates in a synchronous and non-realtime way. One

interesting research possibility would be to extend the W2M 2.0 architecture to

support real-time environments and thereby make possible tasks such as interacting

with a human � for example, a chatbot � and controlling a physical robot in the real

world.

How robot control with the W2M could be accomplished depends on where the

robot is situated:

1. A robot or other device that interacts with the real world is made available

for others to control by uploading minds either to a connected server machine,

or directly to the robot if it is running an onboard W2M server. Note that

the overhead of calling subminds � more speci�cally, remote subminds hosted
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elsewhere on the Internet � could pose issues regarding latency. If such a mind

is relied upon to issue low-level motor commands, then there's a chance that

a walking robot might fall over mid-stride thanks to gravity's immediacy, or a

driving robot may hit an obstacle before the mind even receives a proximity

warning from the robot's sensors. Also, allowing minds written by unknown

third parties to control your robot could lead to incorrect behaviour resulting

in damage to equipment or even injury in the real world, either by accident

or by intention. For obvious reasons, it would only be possible to have one

run executing in that �world� at a time. However, there have been controllable

robots online for some time [Taylor and Dalton, 1997; Stein, 2003], so it seems

unlikely that these are insurmountable problems.

2. Alternately, everybody who wishes to use a physical robot �world� could have

their own identical robot � or at least one with a compatible feature set and

physical characteristics which are close enough to allow reasonable portability

of minds between compatible robots. Authors could design and test their minds

on their own robot before uploading them to a central repository, or download

other authors' minds into their local robot. This presents issues for hybrid

minds � must one download the entire tree of subminds? � and does not solve

the problems of malicious or faulty behaviour in the third-party minds, but it

allows multiple �runs� at once since each lab has their own robot.

Having one's own robot does not solve the latency problem when the controller is

a hybrid mind which uses remote subminds. Some approaches to solve or mitigate

this problem might include:

� Having the hybrid mind take care of low-level control (akin to a biological

lifeform's nervous system), handling basic motor control and re�exes, while

subminds provide higher-level guidance and goal-directed behaviour.

� Having the hybrid mind provide a �default� behaviour as above, which the

subminds can override or interrupt with their own commands if they can be

provided to the hybrid controller before a hard deadline is passed (for example,

100 milliseconds after a state is observed). This approach loosely resembles that

taken by the subsumption architecture [Brooks, 1991].
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� Having subminds declare which parts of the sensory input they are interested

in � this might reduce the amount of information to be encoded, sent across

the network and parsed.

Each of these solutions has its own drawbacks, so it may be the case that hybrid

authors will only choose to work with subminds installed on the same server (or

robot).

8.1.2 Multi-mind environments

The current design allows only a single agent to interact directly with an instance of

a world. It might be interesting to allow multiple minds to interact with the same

world instance, since it would enable both collaborative and competitive behaviours

to be studied.

8.2 Technical improvements to the W2M 2.0 platform

The W2M 2.0 platform is an improvement in many ways over the previous work

discussed in chapter 4. However, some limitations are identi�ed here which could be

investigated and addressed in future.

8.2.1 Runlogger: single-threaded multi-process vs multi-threaded

single-process

In the current design, a Runlogger process is started every time a user initiates a run

via the web interface. This has important scalability implications: the number of

concurrent users starting runs is equal to the number of operating system processes

spawned.

8.2.2 Limitations of the single-threaded, multi-process design

There is a cost in terms of run-time (due to computation and disk I/O latency), and

of memory usage and latency, associated with spawning a process and initialising a

new Java virtual machine (JVM) instance, and allocating a new Java heap memory

area.
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Furthermore, load testing carried out on the Linux machine used to host the

World-Wide Mind server has demonstrated that the operating system scheduler can

enter a state where too many concurrent processes either slow the system to a crawl

or crash it entirely.

This phenomenon is known as swap death or thrashing [Denning, 1968], where

the memory paging system runs so low on available physical RAM that it must

constantly swap sections of allocated memory to disk, so as to make room for another

piece which needs to be loaded back into memory from disk, and the cycle is repeated

when the evicted block is then sought by a program.

8.2.3 Experiments with a multi-threaded Runlogger

An alternative implementation of the Runlogger program was created and tested by

Monks [Monks, 2010] which runs as a single instance daemon, spawning a new thread

to handle each run, rather than creating a completely new process every time, which

would cause the creation and destruction of a new Java virtual machine every time

as described above.

This modi�ed Runlogger demonstrated far better scalability as the number of

simulated users increased, and did not render the system inoperative as the process-

based model did.

It would seem appropriate to use this thread-based model to replace the current

Runlogger implementation, but it would require some major changes to the user

interface, which starts runs by passing the appropriate arguments (including the

URLs of the selected mind and world services) to a new instance of Runlogger. If

instead only a single instance of Runlogger was running as a background process, then

a di�erent method of passing arguments from the web interface would be required;

perhaps by adding requests to an interprocess message queue, with the Runlogger

daemon listening on the queue and starting threads to service requests as they arrive.

Several free, open-source implementations of message queues exist, such as ZeroMQ

and ActiveMQ, which are designed to provide high performance under heavy loads,

and could perhaps suit this purpose.
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8.2.4 Further optimisations: Bypassing the Runlogger

Avoidable indirection between Runlogger and W2MServer

The W2MServer and Runlogger programs exist as separate processes, and are there-

fore each associated with separate JVMs and cannot share memory directly, even

though they are running on the same host machine.

When an instance of Runlogger executes a run on a local instance of theW2MServer

daemon, it communicates by sending and receiving messages over the network, in the

same way a mind service would communicate with a W2MServer daemon running

on a remote machine.

Although network communication through a local TCP network socket is fast, it

is much slower than direct method invocation.

Merging a multi-threaded Runlogger and W2MServer

If Runlogger could be redesigned to run as a single process with multiple threads as

described in section 8.2.1, then it should be possible to remove Runlogger entirely

and merge its functionality completely into the W2MServer daemon.

The daemon would then have multiple listener threads:

� one to listen on TCP for incoming connections from remote services, and

� one to wait on a local message queue (or other e�cient and fast interprocess

communication (IPC) mechanism) for new run requests coming from the web

interface.

This would reduce I/O and memory load, and would in turn improve message

throughput and scalability, allowing more runs to be performed simultaneously, and

at higher speeds.

8.3 Building hybrid minds

8.3.1 Variable selection for hybrid building

An alternative to the algorithm for minimising the selection of redundant variables

proposed in section �7.9 may be to use unsupervised clustering methods such as
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Voronoi iteration [Lloyd, 1982] to group together similar variables into distinct cat-

egories.

It is noted in section 7.6.2 on page 123 that non-linear relationships may not

be treated properly by this type of correlation analysis, which tends to underes-

timate the association between variables with a non-monotonic curvilinear relation-

ship [Lieberson, 1964]. Future work might examine the use of non-linear regression

and prediction methods, such as locally-weighted smoothing [Cleveland and Devlin,

1988], to explore these relationships more deeply.

Finally, it may be fruitful to try local search (for example, genetic algorithms) or

a reinforcement learning approach to discover and optimise a mind selection policy.

8.3.2 Overlap with existing cognitive architectures

Some aspects of existing cognitive architectures and modular control systems (dis-

cussed in section �3.3) share similarities with the World-Wide Mind.

The Soar architecture provides a complete action-selection implementation [Laird

et al., 1987], and therefore would be well suited to exist as a self-contained mind

in the W2M. However, due to its reliance on several models of memory it may

not be straightforward to integrate Soar as one part of a hybrid mind, where its

proposed actions may not be followed and it may not even be allowed to perceive

the environment at every timestep.

In Soar, production rules propose, evaluate and select operators that are appro-

priate for the current situation. Since operators can generate external actions as

well as changing internal state, the function of Soar's rules is analogous to the role

of the hybrid controller in W2M. This opens up the possibility of implementing a

set of subminds either as action-generating operators or as higher-level actions in

Soar to produce a new type of hybrid controller which exploits Soar's well-developed

procedural knowledge, decision-making and meta-reasoning facilities. It may also be

possible to apply either Soar's chunking mechanism or the more recent reinforcement

learning extensions [Laird, 2008], or both together, to learn about the world and the

available subminds.

The World-Wide Mind also shares some fundamental ideas with Minsky's Society

of Mind [1986]. Since the Society of Mind is more of a loose collection of ideas regard-
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ing cognitive processes than a fully-speci�ed working system, there is the possibility

of taking subsystems from the Society of Mind and implementing them piecemeal

into a W2M system, perhaps to enable large-scale hierarchical learning � for example,

Minsky's concept of K-lines might be used to re-activate subminds relevant to a task

which has been performed before.
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Chapter 9

Conclusion

The aim of this research has been to improve collaboration and re-use in the building

of large hybrid A.I. systems from programs written by many di�erent authors � a

subject which has been neglected in current research.

The next section will examine the individual outcomes in the context of the three

key research questions asked in chapter 1.

9.1 Research questions and outcomes

In section �1.4, three research questions were proposed, which serve the basis for all

of the work and experiments performed and discussed in this dissertation. We will

now consider how we have succeeded in addressing each of these questions.

9.1.1 How can a hierarchy of minds be supported and built from

the programs of many authors?

To develop an answer to this question, an existing architecture � the World-Wide

Mind � was modi�ed and extended as described in chapter 5, and a functional server

implemented capable of hosting minds and worlds written by many di�erent au-

thors. The new architecture, called the World-Wide Mind 2.0, was validated from a

technical and usability perspective.
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9.1.2 Is it useful to build these hierarchical hybrid minds?

Chapter 6 proposed a method of assembling large hybrids from a set of possible

subminds manually selecting the important attributes by which subminds should be

ranked. This method was validated in a complex environment � the Tyrrell09 world

� and was able to signi�cantly improve upon the solutions of a large group of authors

who worked for several weeks to construct their mind programs. The hybrid mind

was able to do this without directly suggesting any actions of its own. This opens

up the possibility of a division of labour, where specialists create solutions to tasks,

and hybrid builders create hybrids from collections of specialist solutions.

9.1.3 Can this process of building hybrid minds be automated in

some way, and is it productive to do so?

The method described in chapter 6 was extended in chapter 7 to automatically

select the set of variables by which subminds should be ranked, through the use

of correlation analysis. This method of building complex, modular hybrid minds

was experimentally validated and shown to be successful in one test environment

(Tyrrell09) � achieving signi�cantly better scores in the test world than the existing

hand-built subminds � and unsuccessful in another test environment (ChessWorldG).

We suspect that chess requires more domain speci�c knowledge in order to build a

better hybrid. This could be integrated with the semi-automated approach in future

work.

9.2 Closing

This research has provided three contributions to the �eld of modular intelligence:

1. the World-Wide Mind 2.0 architecture, and

2. a partially-automated method for building hybrid minds using minds written

by many di�erent authors, and

3. a collection of worlds, minds and hybrid minds written by multiple authors.

The research described in this dissertation has provided evidence that the �rst con-

tribution � the World-Wide Mind2.0 architecture � enables the construction of multi-
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author hybrids in a way not easily possible under other existing systems. The bene�ts

of this will be fully seen as it scales to larger numbers of users and authors.

The second contribution presented a novel way of semi-automatically building

hybrid A.I. systems which also opens up a future vista of hybrid building which

until now was not possible, or at least very di�cult. Of course, not all automated

approaches will work on all problems, but this method has been successful in one

complex problem with multiple goals.
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Glossary

API Application Programming Interface, a set of symbols, functions and classes

which encapsulate the parts of a software library which can be used within

other programs

ASM Action-selection mechanism � an algorithm which receives a set of sensory

percepts pertaining to a simulated agent's current situation and selects an

appropriate action to be taken. Directly analogous to a Mind.

fully-speci�ed class name The fully-speci�ed name of a Java class, formed by ap-

pending the class name to the package speci�cation, if any.

For example, org.w2mind.net.ServiceProxy is the fully-speci�ed name for the

ServiceProxy class in the org.w2mind.net package.

IPC Inter-Process Communication, a set of mechanisms for exchanging data between

concurrently running execution threads.

RL Reinforcement Learning � A branch of arti�cial intelligence concerned with

learning an optimal control policy with only a reinforcement signal (a reward

or punishment for recent behaviour) for guidance.

SOA Service-oriented architecture: A high-level set of principles for building inter-

operable services

TCP Transmission Control Protocol, an Internet protocol for reliably delivering an

ordered stream of bytes across a network.

URL Uniform Resource Locator: A string which speci�es the address of a resource

on the Internet.
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Appendix B

Description of the �Tyrrell09�

world

Many of the experiments performed in the course of this research consisted of running

a mind in the Tyrrell09 world, an implementation of Tyrrell's simulated environment

(SE), a complex animal behaviour problem designed to serve as a useful testbed for

evaluating di�erent mechanisms of action-selection [Tyrrell, 1993]. O'Leary et al.

[2004] implemented Tyrrell's SE in the Java programming language, attempting to

stay as truthful to the original version as possible, complete with a graphical rep-

resentation of the world drawn with Java's Abstract Windowing Toolkit (AWT).

The Tyrrell09 world is a branch by this author of O'Leary's implementation, with a

small number of bug�xes and some changes to the world con�guration which attempt

to reduce noise and variability for the purpose of the experiments laid out in this

dissertation.

This appendix will give a brief overview and background of Tyrrell's world before

discussing the speci�c modi�cations made to the world for this research.

B.1 Overview

In Tyrrell's SE, a two-dimensional grid-based environment is described. This grid is

randomly populated with multiple features, including hazardous places and animals,

food and water sources, shelter and potential mates. A small omnivorous animal is

controlled by the action-selection mechanism (ASM), with one primary objective: to
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maximise the simulated animal's genetic �tness (speci�ed by the number of times it

successfully mates with another animal of its species).

The SE was designed to serve as a testbed for evaluating action-selection mech-

anisms in a complex and dynamic environment [Tyrrell, 1993]. To attain a su�cient

degree of di�culty for this purpose, the primary objective of increasing genetic �t-

ness is dependent on a number of subgoals, many of which represent a signi�cant

challenge by themselves. For example, the animal must �nd, court and attempt to

mate with a potentially receptive partner (attempting to mate with an unreceptive

partner can result in serious injury to the animal). Similarly, to survive for more

than a short duration (and therefore gain opportunities to mate), the animal must

eat non-toxic food, drink water, and avoid hazards such as toxic food, heatstroke,

dangerous places and predators.

To further increase the challenge for an ASM, the sensory perception of the animal

is restricted to a few grid squares in each direction and obscured with a degree of

random noise, and its ability to obey selected actions is made fallible.

The SE attempts to separate the problems of perception, navigation and motor

control from the task of action selection.

B.1.1 Perception

Sensory input is presented not as raw signals from nerve receptors, but as a set of la-

belled homeostatic and external stimuli, generally expressed in the form of real-valued

numbers of the range [0 − 1.0]. For example, perceived cleanliness is a homeostatic

variable de�ned such that a value of 1.0 means perfectly clean and 0 means max-

imally dirty. The variable's level is reduced over time by a pseudo-random process

(not in response to speci�c events in the world), and is increased when a cleaning

action is performed by the animal, at the cost of a decrement to the animal's health

in proportion with the degree of dirtiness (this damage can be understood as due to

parasite infestation or infection of wounds).

To further add to the environment's complexity, many features in the world are

dynamic. Light levels change, animals move about, and resources in the world (such

as a pool of water or a food source) change in quantity.
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Figure B.1: An image representing a single timestep in the Tyrrell world. The world
is rendered as a two-dimensional grid with coloured icons denoting various features
in the environment which are labelled in the legend on the top-right of picture. This
version of the world was tweaked to make it slightly more sparse and less dangerous
than the default con�guration � note the lack of dangerous places and predators on
the map.
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B.1.2 Navigation

A navigation mechanism is built into the simulated animal and presented to the

ASM as an extra set of sensory inputs � for example, in addition to a food perception

stimulus, there is also a food memory stimulus which re�ects the degree to which

the animal (fallibly) remembers food in its own square and in eight directions.

B.1.3 Motor control

The SE models a transformation from a labelled action (a number representing one

of 35 possible high-level actions the animal can perform) into a low-level system of

muscle contraction or motor impulses which execute the desired action. These actions

are chosen from a set of 35 possible behaviours including drinking, cleaning, sleeping,

courting, mating and moving in one of eight directions on the two-dimensional grid.

To increase realism and apparent non-determinism of the environment, actions

are error-prone, with a probability that the animal will not successfully execute the

action.

B.2 Di�erences from Tyrrell's original simulated envir-

onment

In the original implementation of Tyrrell's SE and (by de�nition, since it attempted

to be a faithful re-implementation) O'Leary's implementation as a World in the

World-Wide Mind 1.0 system, the SE was a very noisy environment. This was an

intentional design feature, as the goal of the SE was to provide a challenging test

of the various action-selection methods it would be used to evaluate. In his thesis

[Tyrrell, 1993], Tyrrell introduced a number of previous simulated environments that

were lacking the degree of complexity which he felt was necessary to properly exercise

an ASM. Citing one taxonomy for simulated environments by Wilson [1991], Tyrrell

designed his SE such that it presented a complex problem in terms of each of the

following concerns:

1. Average latency between a correct action being performed and its reward being

received,
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2. Consistency of rewards after performing the same action in response to the

same stimuli,

3. Regularity of features in the environment,

4. Degree of perceptual noise, and

5. Degree of noise in the reward function.

For the most part, Tyrrell's SE attempts to maximise the di�culty of each of these

�ve aspects in Wilson's taxonomy. However, the degree of noise presented and the

variance in performance by minds in Tyrrell's world was very high, which made

it more di�cult to reason about the performance of individual minds. For this

reason, in creating the Tyrrell09 world, I simpli�ed the environment by minimising

or removing entirely some features and increased the maximum view distance (from

3 squares in each direction to 6), as well as reducing to zero the likelihood of the

simulated animal performing an action other than the one speci�ed by the controlling

mind.

The creature's maximum lifespan is unchanged, but the likelihood of predators,

irrelevant animals and dangerous places appearing was reduced to near-zero. Noise

in sensory percepts was reduced as far as possible.

B.3 World con�guration �le

Many of the parameters underlying the world model can be altered through a con-

�guration �le. This encompasses all the changes made to the Tyrrell09 world, and

can be seen below.

# number of columns

org.w2mind.tyrrell.environment.ENV_ARR_COLS = 25

# number of rows

org.w2mind.tyrrell.environment.ENV_ARR_ROWS = 25

# number of squares distance that can be perceived

org.w2mind.tyrrell.environment.M_A_P = 6

org.w2mind.tyrrell.environment.MAX_ANIMAL_LIFESPAN = 10

org.w2mind.tyrrell.environment.RECOVERY_RATE = 0.003

# good perception

org.w2mind.tyrrell.environment.NIGHT_PERCEPTION_FACTOR = 1
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org.w2mind.tyrrell.environment.DUSK_PERCEPTION_FACTOR = 1

org.w2mind.tyrrell.environment.DAY_PERCEPTION_FACTOR = 1

org.w2mind.tyrrell.environment.LOOKING_DIRECTION_PERC_FACTOR = 1

# noise in actions

org.w2mind.tyrrell.environment.FAULTY_ACTION_PROB = 0

# can store features

org.w2mind.tyrrell.environment.MAP_SIZE = 100

# perfect memory

org.w2mind.tyrrell.environment.MEMORY_DECAY_FACTOR = 1

# navigation error

org.w2mind.tyrrell.environment.NAV_ERROR = 0

# for many of these:

# even if set to 0, they do not go all the way to 0, they just get

very sparse

org.w2mind.tyrrell.environment.INIT_NUM_CEREAL_FOOD = 5

org.w2mind.tyrrell.environment.INIT_NUM_COVER = 5

org.w2mind.tyrrell.environment.INIT_NUM_DANGEROUS_PLACE = 0

org.w2mind.tyrrell.environment.INIT_NUM_DEN = 1

org.w2mind.tyrrell.environment.INIT_NUM_FRUIT_FOOD = 5

org.w2mind.tyrrell.environment.INIT_NUM_IRRELEVANT = 0

org.w2mind.tyrrell.environment.INIT_NUM_LANDMARK = 5

org.w2mind.tyrrell.environment.INIT_NUM_MATE = 15

org.w2mind.tyrrell.environment.INIT_NUM_PREDATOR_1 = 0

org.w2mind.tyrrell.environment.INIT_NUM_PREDATOR_2 = 0

org.w2mind.tyrrell.environment.INIT_NUM_PREY = 5

org.w2mind.tyrrell.environment.INIT_NUM_SHADE = 5

org.w2mind.tyrrell.environment.INIT_NUM_WATER = 18

org.w2mind.tyrrell.environment.MAX_NUM_CEREAL_FOOD = 10

org.w2mind.tyrrell.environment.MAX_NUM_COVER = 10

org.w2mind.tyrrell.environment.MAX_NUM_DANGEROUS_PLACE = 0

org.w2mind.tyrrell.environment.MAX_NUM_DEN = 1

org.w2mind.tyrrell.environment.MAX_NUM_FRUIT_FOOD = 10

org.w2mind.tyrrell.environment.MAX_NUM_IRRELEVANT = 0

org.w2mind.tyrrell.environment.MAX_NUM_LANDMARK = 10

org.w2mind.tyrrell.environment.MAX_NUM_MATE = 20

org.w2mind.tyrrell.environment.MAX_NUM_PREDATOR_1 = 0

org.w2mind.tyrrell.environment.MAX_NUM_PREDATOR_2 = 0

org.w2mind.tyrrell.environment.MAX_NUM_PREY = 20

org.w2mind.tyrrell.environment.MAX_NUM_SHADE = 10

182



org.w2mind.tyrrell.environment.MAX_NUM_WATER = 22

org.w2mind.tyrrell.environment.MAX_NUM_TOXIC = 0

# the maximum number of any individual type of feature that is likely

to occur at any one time in the field of perception for the animal

org.w2mind.tyrrell.environment.MAX_NUM_SINGLE_PERC_FEATURE = 50

# minimum value of food or water , below which it is not worth the

animal eating or drinking from that source

org.w2mind.tyrrell.environment.MIN_WORTHWHILE_VALUE = 0.01

# maximum value of toxicity in food or water , above which it is not

worth the animal eating or drinking from that source

org.w2mind.tyrrell.environment.MAX_ACCEPTABLE_TOXICITY = 0.40

# time for which the animal should ignore water or a food type if it

has been visited recently with unsuccessful results

org.w2mind.tyrrell.environment.IGNORE_USELESS_TIME = 10

# minimum thickness of cover , below which it is not worth the animal

using the cover to hide in

org.w2mind.tyrrell.environment.MIN_WORTHWHILE_COVER = 0.30

org.w2mind.tyrrell.environment.DAY_LENGTH = 500

org.w2mind.tyrrell.environment.OPT_DRYNESS = 0.825

org.w2mind.tyrrell.environment.COVER_CLUSTER_SIZE = 12

org.w2mind.tyrrell.environment.DANGEROUS_PLACE_CLUSTER_SIZE = 3

org.w2mind.tyrrell.environment.FRUIT_FOOD_CLUSTER_SIZE = 5

org.w2mind.tyrrell.environment.IRRELEVANT_CLUSTER_SIZE = 8

org.w2mind.tyrrell.environment.PREDATOR_1_CLUSTER_SIZE = 1+r2.5

org.w2mind.tyrrell.environment.SHADE_CLUSTER_SIZE = 5

org.w2mind.tyrrell.environment.COVER_CLUSTER_WIDTH = 3

org.w2mind.tyrrell.environment.DANGEROUS_PLACE_CLUSTER_WIDTH = 1

org.w2mind.tyrrell.environment.FRUIT_FOOD_CLUSTER_WIDTH = 2

org.w2mind.tyrrell.environment.IRRELEVANT_CLUSTER_WIDTH = 0

org.w2mind.tyrrell.environment.PREDATOR_1_CLUSTER_WIDTH = 2

org.w2mind.tyrrell.environment.SHADE_CLUSTER_WIDTH = 2

org.w2mind.tyrrell.environment.C_F_RECUP_RATE = 0.2

org.w2mind.tyrrell.environment.F_F_RECUP_RATE = 0.3

org.w2mind.tyrrell.environment.WATER_RECUP_RATE = 0.03

# number of squares distance that predator 1 can perceive

org.w2mind.tyrrell.environment.M_P1_P = 2.5

# number of squares distance that predator 2 can perceive

org.w2mind.tyrrell.environment.M_P2_P = 3

org.w2mind.tyrrell.environment.MAX_MOVING_DISTANCE = 1.5
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org.w2mind.tyrrell.environment.MAX_MOVING_FAST_DISTANCE = 2.9

org.w2mind.tyrrell.environment.IRRELEVANT_DAY_APPEARANCE_PROB = 0.003

org.w2mind.tyrrell.environment.MATE_DAY_APPEARANCE_PROB = 0.07

org.w2mind.tyrrell.environment.PREDATOR_1_DAY_APPEARANCE_PROB = 0.003

org.w2mind.tyrrell.environment.PREDATOR_2_DAY_APPEARANCE_PROB = 0.0003

org.w2mind.tyrrell.environment.PREY_DAY_APPEARANCE_PROB = 0.008

org.w2mind.tyrrell.environment.IRRELEVANT_DUSK_APPEARANCE_PROB = 0.003

org.w2mind.tyrrell.environment.MATE_DUSK_APPEARANCE_PROB = 0.03

org.w2mind.tyrrell.environment.PREDATOR_1_DUSK_APPEARANCE_PROB = 0.004

org.w2mind.tyrrell.environment.PREDATOR_2_DUSK_APPEARANCE_PROB = 0.006

org.w2mind.tyrrell.environment.PREY_DUSK_APPEARANCE_PROB = 0.01

org.w2mind.tyrrell.environment.IRRELEVANT_NIGHT_APPEARANCE_PROB = 0

org.w2mind.tyrrell.environment.MATE_NIGHT_APPEARANCE_PROB = 0

org.w2mind.tyrrell.environment.PREDATOR_1_NIGHT_APPEARANCE_PROB =

0.0025

org.w2mind.tyrrell.environment.PREDATOR_2_NIGHT_APPEARANCE_PROB =

0.012

org.w2mind.tyrrell.environment.PREY_NIGHT_APPEARANCE_PROB = 0

org.w2mind.tyrrell.environment.IRRELEVANT_MOVE_PROB = 0.5

org.w2mind.tyrrell.environment.MATE_MOVE_PROB = 0.35

org.w2mind.tyrrell.environment.PREDATOR_1_MOVE_PROB = 0.5

org.w2mind.tyrrell.environment.PREDATOR_2_MOVE_PROB = 0.75

org.w2mind.tyrrell.environment.PREY_MOVE_PROB = 0.30

org.w2mind.tyrrell.environment.CEREAL_FOOD_NEAR_WATER_PROB = 0.2

org.w2mind.tyrrell.environment.COVER_NEAR_WATER_PROB = 0.8

org.w2mind.tyrrell.environment.DEN_NEAR_WATER_PROB = 0.8

org.w2mind.tyrrell.environment.FRUIT_FOOD_NEAR_WATER_PROB = 0.75

org.w2mind.tyrrell.environment.SHADE_NEAR_WATER_PROB = 0.4

org.w2mind.tyrrell.environment.CEREAL_FOOD_TO_WATER_DIST = 2

org.w2mind.tyrrell.environment.COVER_TO_WATER_DIST = 1

org.w2mind.tyrrell.environment.DEN_TO_WATER_DIST = 2

org.w2mind.tyrrell.environment.FRUIT_FOOD_TO_WATER_DIST = 2

org.w2mind.tyrrell.environment.SHADE_TO_WATER_DIST = 2

org.w2mind.tyrrell.environment.CEREAL_FOOD_REMOVE_CREATE_PROB =

0.00005

org.w2mind.tyrrell.environment.CEREAL_FOOD_CHANGE_CONDITIONS_PROB =

0.00002

org.w2mind.tyrrell.environment.CEREAL_FOOD_CHANGE_TOXICITY_PROB =

0.00005
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org.w2mind.tyrrell.environment.COVER_REMOVE_CREATE_PROB = 0.00002

org.w2mind.tyrrell.environment.COVER_CHANGE_THICKNESS_PROB = 0.00002

org.w2mind.tyrrell.environment.FRUIT_FOOD_REMOVE_CREATE_PROB = 0.00002

org.w2mind.tyrrell.environment.FRUIT_FOOD_CHANGE_CONDITIONS_PROB =

0.00002

org.w2mind.tyrrell.environment.FRUIT_FOOD_CHANGE_TOXICITY_PROB =

0.00005

org.w2mind.tyrrell.environment.SHADE_REMOVE_CREATE_PROB = 0.00001

org.w2mind.tyrrell.environment.SHADE_CHANGE_THICKNESS_PROB = 0.00005

org.w2mind.tyrrell.environment.WATER_REMOVE_CREATE_PROB = 0.0001

org.w2mind.tyrrell.environment.WATER_CHANGE_SIZE_PROB = 0.00002

org.w2mind.tyrrell.environment.WATER_CHANGE_TOXICITY_PROB = 0.00005

org.w2mind.tyrrell.environment.CEREAL_FOOD_EATEN_PER_TIMESTEP = 0.02

org.w2mind.tyrrell.environment.FRUIT_FOOD_EATEN_PER_TIMESTEP = 0.04

org.w2mind.tyrrell.environment.WATER_DRUNK_PER_TIMESTEP = 0.06

org.w2mind.tyrrell.environment.INIT_TIMESTEP_VALUE = 125

org.w2mind.tyrrell.environment.CEREAL_FOOD_TOXICITY_PROB = 0.05

org.w2mind.tyrrell.environment.FRUIT_FOOD_TOXICITY_PROB = 0.1

org.w2mind.tyrrell.environment.WATER_TOXICITY_PROB = 0.05

org.w2mind.tyrrell.environment.RAIN_TO_CLOUD_PROB = 0.240

org.w2mind.tyrrell.environment.RAIN_TO_SUN_PROB = 0.045

org.w2mind.tyrrell.environment.CLOUD_TO_RAIN_PROB = 0.180

org.w2mind.tyrrell.environment.CLOUD_TO_SUN_PROB = 0.180

org.w2mind.tyrrell.environment.SUN_TO_CLOUD_PROB = 0.240

org.w2mind.tyrrell.environment.SUN_TO_RAIN_PROB = 0.045

org.w2mind.tyrrell.environment.MIN_RAIN_TEMP = -1

org.w2mind.tyrrell.environment.MAX_RAIN_TEMP = 0.35

org.w2mind.tyrrell.environment.MIN_CLOUD_TEMP = -0.7

org.w2mind.tyrrell.environment.MAX_CLOUD_TEMP = 0.7

org.w2mind.tyrrell.environment.MIN_SUN_TEMP = -0.35

org.w2mind.tyrrell.environment.MAX_SUN_TEMP = 1

org.w2mind.tyrrell.environment.NIGHT_TEMP_INCR = -0.1

org.w2mind.tyrrell.environment.DUSK_TEMP_INCR = 0

org.w2mind.tyrrell.environment.DAY_TEMP_INCR = 0.1

org.w2mind.tyrrell.environment.FOOD_OPT_VALUE = 0.5

org.w2mind.tyrrell.environment.WATER_OPT_VALUE = 0.5

org.w2mind.tyrrell.environment.TEMPERATURE_OPT_VALUE = 0.5

org.w2mind.tyrrell.environment.MIN_OK_FAT = 0.25

org.w2mind.tyrrell.environment.MAX_OK_FAT = 0.75
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org.w2mind.tyrrell.environment.MIN_OK_CARBO = 0.25

org.w2mind.tyrrell.environment.MAX_OK_CARBO = 0.75

org.w2mind.tyrrell.environment.MIN_OK_PROTEIN = 0.25

org.w2mind.tyrrell.environment.MAX_OK_PROTEIN = 0.75

org.w2mind.tyrrell.environment.MIN_OK_WATER = 0.25

org.w2mind.tyrrell.environment.MAX_OK_WATER = 0.75

org.w2mind.tyrrell.environment.MIN_OK_TEMP = 0.25

org.w2mind.tyrrell.environment.MAX_OK_TEMP = 0.75

org.w2mind.tyrrell.environment.MAX_FAT_DECREMENT = 0.00135

org.w2mind.tyrrell.environment.MAX_CARBO_DECREMENT = 0.0018

org.w2mind.tyrrell.environment.MAX_PROTEIN_DECREMENT = 0.0009

org.w2mind.tyrrell.environment.MAX_WATER_DECREMENT = 0.0020

org.w2mind.tyrrell.environment.T_H_LENGTH = 5

org.w2mind.tyrrell.environment.R_H_LENGTH = 5

org.w2mind.tyrrell.environment.IRRELEVANT_PACK_CLOSENESS = 10

org.w2mind.tyrrell.environment.PREDATOR_1_PACK_CLOSENESS = 15

org.w2mind.tyrrell.environment.MAX_NUM_IRRELEVANT_PACKS = 30

org.w2mind.tyrrell.environment.MAX_NUM_PREDATOR_1_PACKS = 30

org.w2mind.tyrrell.environment.CEREAL_FOOD_FAT_RATIO = 0.27

org.w2mind.tyrrell.environment.CEREAL_FOOD_CARBO_RATIO = 0.55

org.w2mind.tyrrell.environment.CEREAL_FOOD_PROTEIN_RATIO = 0.18

org.w2mind.tyrrell.environment.FRUIT_FOOD_FAT_RATIO = 0.35

org.w2mind.tyrrell.environment.FRUIT_FOOD_CARBO_RATIO = 0.47

org.w2mind.tyrrell.environment.FRUIT_FOOD_PROTEIN_RATIO = 0.18

org.w2mind.tyrrell.environment.PREY_FAT_RATIO = 0.40

org.w2mind.tyrrell.environment.PREY_CARBO_RATIO = 0.3

org.w2mind.tyrrell.environment.PREY_PROTEIN_RATIO = 0.3

org.w2mind.tyrrell.environment.MAX_AN_TEMP_INCREASE = 0.1

org.w2mind.tyrrell.environment.MAX_AN_TEMP_DECREASE = 0.1
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Appendix C

Description of the �ChessWorldG�

world

As discussed in section 5.9.3 (p. 97), as part of an undergraduate arti�cial intelligence

course, students were tasked with writing minds to solve the chess problem presented

by the ChessWorldG world. This appendix describes that world in brief.

C.1 Problem to be solved

In ChessWorldG, the game of chess with standard rules is modelled, with a chal-

lenging A.I. opponent. The game engine and opponent are both implemented by

CuckooChess [Österlund, 2014], an open-source library which provides a powerful

A.I. player using techniques such as quiescence search [Beal, 1990], futility pruning

[Heinz, 1998] and late move reductions [Levy et al., 1989].

C.2 Rules

C.2.1 Invalid moves

Invalid moves are treated as a forfeit � the current game will be counted as a loss and

the �Invalid moves� score will be decremented by one. This score starts at zero and

grows downwards so that, all other things being equal, a mind which made no invalid

moves will be ranked higher on the world scoreboard than a mind which made one

invalid move.
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C.2.2 Draws

There is no facility for the mind to request a draw, even after 40 moves, after which

in real chess either player can insist upon a draw.

C.2.3 Move time limit

To discourage solutions which perform extremely deep tree searches, a move time

limit of 700 milliseconds is enforced, after which the game is considered forfeit. For

the sake of fairness, the opponent A.I. player is restricted to 500 milliseconds' thinking

time. As a result, it is possible to exploit this fairness by having a mind re-use the

opponent A.I. code (included in the world JAR �le) with a time limit between 500

and 700 milliseconds.

C.2.4 Score

The score vector for ChessWorldG consists of the �elds described in table C.1.

C.3 State format

The board state is presented to the mind in a compact textual representation known

as Forsyth-Edwards Notation (FEN) . The starting position looks like this:

rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1

Each row of the board is separated by a forward slash, and lower-case letters

represent the black pieces with the mapping: r ⇒ rook, n ⇒ knight, b ⇒ bishop,

q ⇒ queen, k ⇒ king, p ⇒ pawn. White's pieces follow the same mapping but in

upper-case. Digits represent consecutive empty cells, so an empty row is indicated

by an 8. The board layout is followed by a space then either a �w� or �b� which

indicates whether white or black is to move. Then the availability of castling moves

is shown (in this case, both white and black can castle on kingside and queenside)

followed �nally by a turn counter.
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Field Description

Won The number of wins achieved by the mind.
Drew The number of draws achieved by the mind.

Avg. moves to win The negative of the total number of moves made in games
won by the mind.

Survival moves The total number of moves made in games lost by the
mind.

Invalid moves The negative of the total number of invalid moves made
by the mind.

Captured Queen The number of queens captured by the mind.
Captured Bishop The number of bishops captured by the mind.
Captured Knight The number of knights captured by the mind.
Captured Rook The number of rooks captured by the mind.
Captured Pawn The number of pawns captured by the mind.
Promoted Pawn The number of pawns promoted by the mind to queen �

no choice is given.
Castled The number of times the mind performed a castling move.

Enemy in Check The number of times the mind put the enemy in check.
Player in Check The negative of the number of times the enemy put the

mind in check.
Lost Queens The negative of the number of queens captured by the

enemy.
Lost Bishops The negative of the number of bishops captured by the

enemy.
Lost Knights The negative of the number of knights captured by the

enemy.
Lost Rooks The negative of the number of rooks captured by the

enemy.
Lost Pawns The negative of the number of pawns captured by the

enemy.

Table C.1: A description of each �eld included in the score vector for ChessWorldG.
Most of these values are calculated by parsing the state at each timestep in the world.
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Figure C.1: The state of the board at the beginning of a game.

C.4 Action format

The chessboard is numbered by cell, from zero in the bottom left (white rook) to 63

in the top right (black rook). Each move is speci�ed simply as the numeric value of

the source and destination indices. For example, moving a piece from the bottom

left corner of the board forward by one row is speci�ed by the string �0,8�.

C.5 Graphics

To reduce the learning curve for mind authors slightly, a graphical representation of

the board state was implemented with hand-drawn images for the chess pieces. The

starting state of the board is shown in �gure C.1.
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Appendix D

Front-end interface

D.1 Introduction

This appendix provides a brief description of the front-end interface and its primary

features, in the context of the architectural requirements which were the topic of

section �5.3 (p. 66).

A fundamental feature of the World-Wide Mind project is the ability to perform

online runs. This could be achieved by installing some software on the user's local

machine, for example, the client program shown in �gure 5.1 on page 71.

Another option is to implement all the functionality in a web-based interface

� this has the advantage of not requiring users to download any extra software to

explore the worlds and minds.

The front-end implementation was performed by Mark Humphrys, with some col-

laboration from Brian Monks and myself, and accordingly is included as an appendix

to the rest of the work in this dissertation.

D.2 Solutions chosen

Rather than expect users to download client-side software before being able to run

any mind in a world, we chose to implement a web-based interface, where runs are

carried out entirely on the server side and all user interface mediated through the

user's web browser.

This interface replaced the local Java Swing client interface and provides a num-

ber of capabilities that take advantage of the centralised server design discussed
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previously.

The move to a more centralised architecture makes it possible to automate certain

important functions which were implemented in an ad-hoc or manual fashion in the

previous work (for example, section �4.8 explains how users were required to email

their minds to an administrator who would then run batch conversion and execution

scripts).

D.3 Automated mind and world uploading

The manual work�ow for uploading minds, as described in section �4.8, was sustain-

able for a small number of users for a short period of time. It did, however, lead to

occasional delays while waiting for one's submitted mind to be processed and made

available on the server as a new web service.

One fundamental tenet espoused by contemporary �Agile� software engineering

methodologies is that the cycle of coding and testing should be short in duration

[Lindstrom and Je�ries, 2004], so that it can be performed frequently, or even con-

tinuously, with the programmer receiving almost instant feedback on the logical

errors that inevitably occur.

Therefore, it makes sense to minimise this code-to-test-output latency. In the

context of the World-Wide Mind, then, a major reduction in this latency was gained

by automating and simplifying the process of uploading minds and making them

ready for testing.

This was achieved by adding a form to the web interface (depicted in �gure D.1)

which allows users to describe and upload their mind and world JAR �les. When

these JAR �les are uploaded, records are added to the database containing the

information needed to support those minds and worlds as executable services, as

well as other metadata describing those services.

D.4 Browsing the available minds and worlds

The addition of a database makes it straightforward to enumerate the set of uploaded

mind and world services on a World-Wide Mind server. The front-end allows users

to browse through the list of worlds, providing information about each world, as well
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Figure D.1: The process of uploading a mind or world to a World-Wide Mind server
is now controlled by the end user. Once a working JAR �le is built, containing
the compiled mind or world classes, it can be submitted to the server via a web
form which places the JAR �le in the appropriate location and updates the server's
database of services.

Figure D.2: Part of the scoreboard for the Tyrrell world (a simulated animal beha-
viour problem, described more completely in appendix B), showing the best scores of
the four highest-scoring minds submitted, sorted by their performance on two metrics
de�ned by the world author: the number of times the simulated animal mated, and
the number of timesteps survived. The �minds called� link for each entry shows the
total count of the subminds called by each mind, if any. Clicking the numbers will
produce a listing which enumerates those subminds, allowing a recursive traversal of
their subminds in turn.
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as links to that world's automatically-generated scoreboard, and to the set of minds

uploaded with the intention of solving the problems posed by the world.

Similarly, for every mind, the interface provides a list of every submind it has

called (allowing one to explore the call graph of minds1), and links to a user-supplied

description page if one was supplied.

D.5 Initiating and controlling runs

D.5.1 Starting a run

The two �play� buttons shown on the right of a world scoreboard page (for example,

the one shown in �gure D.2) allow the user to initiate a run of a mind in that world.

These buttons serve as HTML links to the �run.php� page, taking three parameters:

� mind � The canonical name of the mind class,

� world � The canonical name of the world class, and

� images � A boolean �ag indicating whether the user wants images to be gen-

erated.

So, for example, clicking the button shown in the top right of �gure D.2 might cause

the browser to request the URL:

http://w2mind/sys/run.php?mind=JonnyMind1 &world=w2m.Tyrrell10 &images=true

By manually constructing an URL of this format, one can attempt to start a run

of a mind in the wrong world, which will most likely result in an error since the world

classes for states and actions will almost certainly be incompatible.

When browsing the list of minds or scoreboard for any world, the only minds

which are displayed are those speci�ed by the author as compatible with that world,

or which have successfully completed a run in that world in the past.

Once either one of the �play� buttons has been clicked, the web server initiates

a run by calling the run logger program (detailed in section 5.4.1), containing the

1In general, of course, one would expect this structure to be a tree rather than a graph, since a
cyclic dependency between two hybrid minds could potentially result in in�nite recursion.

194



parameters described above: the canonical names of the mind and world, and a �ag

specifying whether images should be generated by the world or not.

The call to the run logger blocks until the process is completed and the run is

completed, at which point either an error message will be returned, or a numeric

run identi�er is produced. This run identi�er is used to retrieve the XML log �le

(described in 5.4.1.1) containing all of the states seen by the mind during the run,

as well as the actions it took and the score at every timestep.

D.5.2 Stepping through a run

Once a run has completed and the XML log �le produced, the web front-end provides

an interface for examining and stepping through the states seen and corresponding

actions taken at every timestep.

Looking at the example XML output for one timestep of a run in ImageWorld :

<asyncrun>

<action value="1"/>

<score value="3,2"/>

<state value="6,7"/>

<timestep value="5"/>

</asyncrun>

At the completion of a run, the entire XML document is made available for

download. This can help in debugging some errors, but in general it is easier to work

with the data if the web interface parses the XML and presents the important �elds

(action, score and state) separately.

Shown in �gure D.3 is the presentation of the run at this timestep by the web

front-end. The value of each attribute is extracted from the XML document by the

web browser using asynchronous Javascript and XML (AJAX) methods, and presen-

ted by the interface in textual form, with the world state rendered visually if the

world implements the required drawing method and the user requested a graphical

run (for more detail on the graphical rendering system, see appendix E).

Beneath the rendered image are the controls for moving forward and backward

in time, either by single-stepping, or by jumping directly to the �rst, last or any
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Figure D.3: A run in ImageWorld, showing the extracted values of the score and
state at the �fth timestep in the world, and the action taken by the mind in response
to that state. The state description �6,7� describes the position of the cop and robber
agents, respectively, on a one-dimensional path. The action �1� in this world signi�es
�move right�.

arbitrary timestep.

D.6 Conclusion

In the previous work (chapter 4), minds and worlds were envisaged as web services

distributed on the Internet. Even if a mind and world were both hosted by the same

server, the mode of interaction when carrying out a run was for the user to act as a

middleman, receiving and forwarding on messages between the mind and world.

Chapter 5 discusses a switch in focus from these distributed web services toward

an �islands� type architecture, with centralised mind and world servers which can

start a run locally and issue updates to the remote user asynchronously. This allowed

runs to be performed much more quickly, and opened up possibilities to automate

important processes such as world and mind uploading and scoreboards for each

world.

This chapter outlined the main features of the web-based interface to the World-

Wide Mind server, which takes advantage of this switch in focus to provide a usable,

e�cient way of uploading and evaluating minds and worlds.
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Appendix E

Hosting graphical worlds

E.1 Introduction

An important facility for world designers and mind creators is the ability to generate

images which represent the state of the world at any given moment. Without a

graphical rendering of the world, mind writers are forced to make do with the textual

descriptions of state provided by the world, which for some worlds may consist of an

overwhelming volume of impenetrable numeric data.

In other worlds, the state visible to minds may only represent a partial snapshot

of the true world state, and in some worlds may purposely contain false information,

in an attempt to model environments where sensor noise is a real problem.

To illustrate both of these problems, consider a small fragment of the textual de-

scription of a single observed state at one timestep in the Tyrrell world (a description

of the world can be found in appendix B):
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...

perceivedAnimalCleanliness:0.2640972144091428;

nightProximity:0.5632035465923408;

animalVariance:0.0;

distanceFromDen:1.0;

foodPerceptionStimulus:[0.0,0.0,0.0,0.04733347679939349,0.0,0.0,0.0,0.0,0.0];

foodMemoryStimulus:[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0];

waterPerceptionStimulus:[0.0,0.37982594722763063,

0.0,0.0,0.0,0.0,0.0,0.0,0.5713010581724843];

waterMemoryStimulus:[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0];

shelterPerceptionStimulus:[0.0,0.0,0.0,0.0,0.0,0.0,0.8055555555555556,0.0,0.0];

matePerceptionStimulus:[0.0,0.0,0.0,0.0,0.0,0.0,0.3076923076923077,0.0,0.0];

denPerceptionStimulus:[0.0,0.0,0.0,0.0,0.0,0.0,0.46153846153846156,0.0,0.0];

...

This extract contains 11 out of a total of 35 sensory inputs, which includes arrays

of numeric data. Some of the salient items, highlighted above in red, correspond to

the features displayed in the visual representation depicted in �gure 5.6 on page 96.

Note that many of the features in the bottom part of the image are not visible

in the textual state description given above. Apart from making clear some of the

most important features in the world, the visual rendering also shows features which

are currently invisible to the mind because of the limited range of the senses.

In both of these cases, a well-crafted visual representation can be easier to work

with, making the most important information about the running mind's situation in

the world intuitively clear at a glance. This could serve as an important feature for

debugging errors and trying to gain a better understanding of the world model and

of the unexpected behaviours sometimes exhibited by minds.

E.2 Graphical rendering in previous work

In the earlier work on the World-Wide Mind software platform (see chapter 4), the

Tyrrell world was implemented with a built-in renderer which produced an image at

each timestep which represents the current state of the world. This implementation

was hardcoded, with no generic way in which worlds could provide graphics.
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E.3 A functional, generic graphical rendering system

In Monks' work [Monks, 2010], he added a method getimage() to the World class

(the abstract base class which all worlds extend). The getimage() method returns,

rather than one single image, a list which may contain one or more BufferedImage

objects, to facilitate some worlds where multiple images are generated at every

timestep.

E.3.1 Multiple images per timestep

Recall that a timestep represents all of the activity in the world between the mind

issuing an action and being ready to issue the next action. During this time, other

simulated agents and phenomena may cause changes to the world state. There could

be many of these �in-between� state updates, depending on the complexity of the

simulated environment.

Generating more than one image per timestep may be useful, then, in worlds

with multiple simulated opponents or entities, so that these �in-between� changes to

the state can be viewed one at a time rather than interleaved all at once.

This is important, for example, if one of several simulated entities reverts or

alters the result of an action performed by another entity earlier, but within the

same timestep.

The default implementation of this method is simply to return null (in other

words, to do nothing). This means that worlds which do not generate graphics do

not require the getimage() method to be re-implemented by the designer.

If a world does wish to produce graphics, then it must construct and draw its

own BufferedImage objects using the standard Java Advanced Windowing Toolkit

(AWT) classes [Niemeyer and Peck, 1998], and return them in a new list in response

to a getimage() method call.

E.3.2 Optional image generation and cleanup

As one can imagine, there is a computational cost to the generation, storage and

eventual transmission of these images, which will be generated once for each of po-

tentially thousands of timesteps in a run. To avoid wastefully generating images when
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Figure E.1: A user-submitted world simply entitled �Speed� demonstrates a graphical
rendering of the world state. The buttons beneath the image allow the user to
step forward and backward between states and, if applicable to the world, between
intermediate state representations within a single timestep.

none are desired by the user when performing a run, an imagesDesired parameter

�ag was added to the RemoteWorld class and to the run logger program.

As discussed in section F.4.2, the generation of large XML �les to record the states

seen and actions taken by minds can quickly consume a large amount of disk space,

particularly under heavy load from multiple users. The situation is exacerbated by

the creation of a large number of image �les per run. For this reason, generated

image �les are deleted one hour after their creation.
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Appendix F

W2M Server Usage

F.1 Introduction

TheWorld Wide Mind server-side system consists of front-end the (implemented with

PHP and Javascript/Ajax) and back-end (Java) components. This appendix brie�y

describes the W2M back-end setup, the locations of the source code, the program

and library JAR �les and how to operate them.

F.2 Overview

The components of the W2M server back-end are:

runlogger.jar, which is called by the web interface to initiate a run given appro-

priate parameters (the mind name, world name, URLs of the mind and world

server machines and a �ag indicating whether the user wishes graphics to be

generated or not).

w2mServer.jar, which starts the back-end server daemon running (on port 8228

unless speci�ed otherwise with the -tcp_port command line option).

F.3 Locations

F.3.1 Binaries

In the current con�guration, runlogger.jar is placed in the /data/development/ di-

rectory and w2mServer.jar in the /data/development/w2mtest directory. (There is
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no particular reason for them to be in two di�erent directories).

F.3.2 Source code

The relevant source code is currently available via SVN on the server machine at

http://mbio-server.computing.dcu.ie/repos/w2mind in projects named: w2mLib (the

generic library code), w2mServer, and w2mRunLogger. (The TyrrellWorld projects

are also hosted in this repository).

F.3.3 Building from source

In Eclipse, a �jardesc� �le is used to automate the process of constructing a JAR

from �les in the workspace. Right-clicking a JAR description �le (such as �runlog-

ger.jardesc� in the w2mRunLogger project) and selecting the �Create JAR� menu

option will build an executable JAR �le which can be placed in the appropriate

directory on the server machine.

F.4 Usage

F.4.1 Controlling the back-end daemon

The W2M server and run logger are expected to run under a user account which

allows access to mind and world �les in the following directories, respectively:

� /data/minds (unless changed with the -mind_path otherPath command

line option to w2mServer)

� /data/worlds (unless changed with the -world_path otherPath command

line option to w2mServer)

The TCP listener port used by the server daemon is by default set to port 8228.

This can be changed by passing the command line option -tcp_port portNum to

w2mServer.

Runlogger is called directly by the httpd process when a run is started. W2M

is controlled via the command sudo /etc/init.d/w2m-server {stop|start}. This script

issues the following commands to start or stop the backend server, which inherits

the permissions of the w2m-daemon user:
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#!/bin/sh

case "$1" in

start)

su -w2m -daemon -c '/data/development/java/bin/java

-jar /data/development/w2mtest/w2mServer.jar &'

echo "Starting W2M Server"

;;

stop)

W2M_PID=`ps -aef|grep java|grep w2mServer|awk '{print $2}'`

kill -9 $W2M_PID

echo "Killed W2M Server"

;;

*)

echo "Usage: $0 {start|stop}"

exit 1

;;

esac

Minds and worlds are placed in the /data/minds and /data/worlds directories

respectively, with the scoreboard entries being saved to an SQLite3 database at

/data/scores.db.

F.4.2 Cleaning up

When a run is executed by the run logger, an XML log�le is generated which contains

a record of every state seen and every action taken by the mind in that run. These �les

can become quite large, since hundreds or thousands of timesteps may be executed

per second - for example, a typical run in the Tyrrell world can take up to 10

megabytes of storage.

With multiple users testing their minds and competing with each other to achieve

the highest ranks on the scoreboard, these accumulated size of these logs can add up

quickly. And if the users ask that the world generate images representing the state

at every timestep, there is a danger of running out of storage space in a short length
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of time. If the available storage space is exhausted, then the server will come to a

complete halt, preventing any more runs from being completed.

To mitigate this danger, a recurring job can be speci�ed, to be executed peri-

odically by the �cron� daemon. The following example cron job speci�es that once

every hour (@hourly), any �les in the /data/development/logged-runs directory or

subdirectories should be deleted, if they were last modi�ed over an hour ago (-type

f -mmin +60).

This ensures that stale images and logs do not accumulate more than an hour's

worth of �les. However, it means that if a noteworthy run is observed by a user, it will

not be preserved. However, it is possible for the user to save the XML log generated

by the run logger, as well as the generated images, and perhaps more conveniently a

movie �le created by appending all of the images as individual frames.

@hourly find /data/development/logged-runs/

↪→ -type f -mmin +60

↪→ -exec rm {} 2>/dev/null \;
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Appendix G

Selected worlds written by third

parties

In late 2011 an assignment was set for undergraduate computer science students

taking an arti�cial intelligence module. As part of the assignment, the students were

required to build and demonstrate a problem world.

This appendix presents a brief description of a selection of those worlds, illus-

trating the range of problems that can be expressed as worlds, and the variety of

graphics that can be used to explain the states and events which occur.

G.1 World type

G.1.1 Models of puzzles

Mazeworld

Author : John Pendlebury

URL: http://w2mind.computing.dcu.ie/sys/world.php?world=MazeWorld

This world produces a randomly-generated two-dimensional maze to be solved

during each run. Solving the maze requires that the player moves to an adjacent

blank cell, in one of the four compass directions, until the cell containing a randomly-

placed ruby is reached.

The mind is allowed to make 500 moves before the run is terminated. The state

passed to the mind consists solely of a vector of four ordinals, symbolising the type

of block sensed on that side: free, wall, goal, etc.

205



Figure G.1: An instance of MazeWorld, with the player (the blue dot in the upper
middle) about to run out of time without having found the ruby (near the right
edge).

A sample mind was also uploaded which implements a simple strategy of always

following the left-hand wall. If the maze is simply connected � i.e. all walls are

connected together or to the outer boundary � then the controller is guaranteed to

eventually discover the exit.

If the maze is not simply connected, then the mind might encounter a loop and

circle it forever.

G.1.2 Models based on video games

Minesweeper

Author : Shane Stacey

URL: http://w2mind.computing.dcu.ie/sys/world.php?world=MinesweeperWorld

The classic computer game Minesweeper was implemented on a two-dimensional

grid, with the state encoded as a grid of integers, where -2 signi�es a blank (unknown)

cell, -1 signi�es a cell previously �agged by the player, and values in the range 0-8

indicate the number of mines which surround that cell in the grid.
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Figure G.2: The Minesweeper world, showing several mines �agged and detected in
adjacent cells.

Actions consist of a string in the form x,y,type where x and y specify a position

on the grid and type enumerates the following actions as integer values:

� �ag cell as safe � 0,

� �ag cell as a mine � 1,

� remove �ag � 2.

The score is derived by awarding or deducting points for correct or incorrect �agging

of mines, and for �nishing the game. If all the mines have been correctly �agged,

then the game ends with a positive score bonus.

If the player �ags as safe a cell which actually contains a mine, then the game is

terminated immediately and a penalty is applied.

Crimson Land

Author : Xiaodong Yu

URL: http://w2mind.computing.dcu.ie/sys/world.php?world=CrimsonLand6

Inspired by a PC video game of the same name, this world pits a hero against

successive waves of zombies in a two-dimensional environment. The state provided

to minds includes the x and y co-ordinates of the hero's position, as well as the type

(each class of zombie has its own radius and speed) and position of every zombie on

the playing �eld.
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Figure G.3: The Crimsonland world, showing various types of enemy surrounding
the player, as well as several dead zombies (marked by a red X).

The action submitted by a mind allows the hero to turn to a speci�ed angle and

take a step forward, and to �re one of three weapons � a handgun, shotgun or sniper

ri�e, each which di�erent characteristics.

An example mind, XDMind6, was uploaded which moves randomly and �res the

handgun at every timestep.

Miner World

Author : Dmitri Lerko

URL: http://w2mind.computing.dcu.ie/sys/world.php?world=MinerWorldUpdated

In MinerWorld, the mind controls a drill which can move around a two-dimensional

underground world in search of valuable minerals which can be sold later in exchange

for fuel (which drops at a rate dependent on the types of actions performed), repairs

and drill upgrades.

A graphical view of the world (shown in �gure G.4) follows the drill as it descends

and moves left or right.
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Figure G.4: A state in the procedurally-generated MinerWorld, close to the surface.

G.1.3 Models of complex or real-world problems

SoccerWorld2

Author : Chris Courtney

URL: http://w2mind.computing.dcu.ie/sys/world.php?world=SoccerWorld2

This world simulates a restricted model of football where each team has two

out�eld players and one goalkeeper. The players can jog or sprint in one of eight

cardinal directions, as well as perform a standing or sliding tackle, shoot at the goal,

pass to a teammate or, interestingly, call for a pass from the teammate. Each of

these actions can a�ect the player's stamina to varying degrees, and may prevent the

player from carrying out other actions for up to three timesteps.

Among the information passed to the mind in each observed state are:

� the positions and orientation of all players,

� the ball position,

� which player currently has the ball,

� distance to the goal,

� player fatigue, and
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Figure G.5: A possible scoring situation in SoccerWorld2, where both opposing
out�eld players have failed to tackle the attacking player.

� a factor representing how much pressure the player is under if they attempt

to shoot (this is derived from proximity to the opponents) and several other

variables.

The score for a mind is constructed from �ve measurements:

1. the number of goals scored by the mind's team,

2. goals conceded,

3. goals scored by the mind-controlled player (the teammate is not controlled by

the mind),

4. tackles won by the mind-controlled player, and

5. ball concessions (when the mind-controlled player is tackled and loses posses-

sion of the ball).

Chapters 6 and 7 describe methods to use this type of score (and state) information

to construct a hybrid mind from many minds which constitute experts in individual

elements of the score � for example, one mind might specialise in minimising the

number of goals conceded, while another mind may specialise in maximising the

number of tackles won.
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Figure G.6: The player's ship navigates the grid, nearing three pawn orbs.

3D Shooter AI World

Author : Oisin St John Kelly

URL: http://w2mind.computing.dcu.ie/sys/world.php?world=ShooterAI3D

The 3D Shooter AI world (�gure G.6) models a bounded grid terrain with a

player ship controlled by the mind. The goal is to �nd and shoot pawns while

avoiding aggressive hunter robots.

Additionally, to maximise performance in the world, the mind must also discover

and collect health and ammo, represented graphically by the small red and blue

cubes scattered around the grid.

This was the �rst submitted world to produce 3D graphics, opening up a range

of interesting possibilities for world builders.

G.2 Conclusion

A wide variety of worlds was submitted to the server by third-parties. Some of these

worlds provide no graphical rendering of the states encountered, and others provide

a graphical display of two- or three-dimensional scenes.

211



The range of worlds submitted to the server was quite varied, and the e�ort that

was spent in making a graphical display for many of the worlds is encouraging.
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Appendix H

Code Listings

H.1 Introduction

This appendix contains any lengthy code examples referenced in the main text.

H.2 A hybrid mind based on a condition list structure

1 import org.w2mind.net.Action;

2 import org.w2mind.net.RemoteMind;

3 import org.w2mind.net.RunError;

4 import org.w2mind.net.State;

5 import org.w2mind.tyrrell.TyrrellState;

6

7 public class Exp2Mind extends HybridExperiment {

8 RemoteMind mater , eater , drinker , survivor;

9 String materName , eaterName , drinkerName , survivorName;

10

11 public void setMaterName(String materName) {

12 this.materName = materName;

13 }

14

15 public void setEaterName(String eaterName) {

16 this.eaterName = eaterName;
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17 }

18

19 public void setDrinkerName(String drinkerName) {

20 this.drinkerName = drinkerName;

21 }

22

23 public void setSurvivorName(String survivorName) {

24 this.survivorName = survivorName;

25 }

26

27 /**

28 * This method is called at the beginning of a run ,

29 * so we initialise each of our subminds.

30 */

31 public void newrun () throws RunError {

32 mater = createAndPrepareSubmind(materName );

33 eater = createAndPrepareSubmind(eaterName );

34 drinker = createAndPrepareSubmind(drinkerName );

35 survivor = createAndPrepareSubmind(survivorName );

36 }

37

38 /**

39 * This method is called at the end of the run , so we

40 * clean up by calling the endrun () method in each of

41 * our subminds.

42 */

43 public void endrun () throws RunError {

44 try {

45 mater.endrun ();

46 eater.endrun ();

47 drinker.endrun ();

48 survivor.endrun ();

49 } catch (Exception e) {

50 e.printStackTrace ();

51 System.err.println(this.getClass (). getSimpleName ()
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52 + ": Error trying to end the run.");

53 }

54 }

55

56 /**

57 * This method is called on every timestep in the world ,

58 * so we perform some simple threshhold -based tests to

59 * decide which of our subminds should take control in

60 * response to this state.

61 */

62 public Action getaction(State state) throws RunError {

63 try {

64 final TyrrellState ts = new TyrrellState(state);

65 final double mateNearby =

66 sumVec(ts.getMatePerceptionStimulus ());

67

68 if (mateNearby > 0)

69 return mater.getaction(state );

70

71 final double maxHunger = 0.75;

72 if (ts.getPerceivedWaterShortage () > maxHunger)

73 return drinker.getaction(state );

74

75 if (ts.getPerceivedFatShortage () > maxHunger ||

76 ts.getPerceivedProteinShortage () > maxHunger ||

77 ts.getPerceivedCarbohydrateShortage () > maxHunger)

78 {

79 return eater.getaction(state );

80 }

81

82 if (ts.getAnimalHealth () < 0.8 ||

83 ts.getNightProximity () > 0.6)

84 {

85 return survivor.getaction(state );

86 } else {
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87 return mater.getaction(state );

88 }

89 } catch (Exception e) {

90 System.err.println(this.getClass (). getSimpleName ()

91 + ": Failed to get an action.");

92 e.printStackTrace ();

93 }

94 return null;

95 }

96 }
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