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Abstract

Cancer, a class of diseases, characterized by abnormal cell growth, has demonstrably high

impact on human life: complex lifestyle changes, caused by malignancy, affect not only

patients, but also family and friends. Cancer development has been linked to genetic and

epigenetic abnormalities that affect the regulation of key genes that control cellular mech-

anisms. These alterations, which target stem cells, may be different or less immediately

adverse from one person to another, as various risk factors are cumulative and variable in

effect. However, a major issue in cancer research is the lack of precise information on tu-

mour pathways; therefore the delineation of these and of the processes underlying disease

proliferation is an important area of investigation.

Here, we present a hybrid computational model following a multi-scale approach, which

has been developed for colorectal cancer dynamics by linking information from micro-

molecular to cellular and tissue levels, (e.g. epigenetic events, stem cells, intestinal crypts).

The current work aims to i) investigate genetic and epigenetic interdependencies leading to

colon cancer initiation and progression; ii) to analyse influence of different risk factors at

both molecular and cellular levels during cancer development; iii) to examine aberrant DNA

methylation variation in malignant intestinal systems; iv) to evaluate the effect of inhibiting

methylation modifications in abnormal colon crypts over time; and v) to assess the impact

of deregulations in intestinal crypt dynamics with respect to tumour development. Given its

crucial role in cancer development, DNA methylation is the main feature of the colorectal

cancer model.

Computational modelling is performed at different levels. A network-based model,

xvii



namely the Epigenetic-Genetic (E-G) Network Model, has been developed to explore in-

terdependencies between genetic and epigenetic events, recorded at different stages of col-

orectal cancer, (with a focus on gene relationships and tumour pathways). Micro-molecular

modifications are studied in relation to ageing and gender, considered to be major risk

factors in cancer development. Further, an agent-based model, AgentCrypt, with agents

representing three cell types: stem, progenitor and differentiated cells in the colon (and

with addition of a Paneth cell group in small intestine), has been developed to describe the

dynamics of the intestinal crypt. Comparative analysis on methylation variation between

colon and small intestine crypts during cancer initiation and under carcinogen influence is

performed. A further extension concentrates on analysing the impact of potential inhibitors

on methylation level in the intestinal crypt. Finally, a logistic model, LogisticCrypt, (focus-

ing on cell division, differentiation and apoptosis rates and on cell competition related to

the intestinal crypt space), has been built to provide information on the crypt structure at

specific time points and to investigate time-intervals to occurrence of major crypt phenom-

ena (such as ‘crypt fission’ and the ‘bottleneck effect’), due to deregulations in intestinal

cell number.

Keywords: Epigenetic and Genetic events; gene relationship; tumour pathway; car-

cinogen; methylation inhibitor; stem cell dynamics; colon crypt; small intestine crypt;

cross-comparative analysis; hybrid computational model; Bayesian network; agent-based;

logistic model.
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Chapter 1

Introduction

1.1 Motivation

Colorectal cancer, (CRC), is the third most common cancer type world-wide, [Ferlay et al.,

2014], accounting for around 8.6% and 13% of all new cancer cases in the US (2013),

[SEER, 2013b], and UK (2010), [Cancer Research UK, 2014b], respectively. In addition, it

has been reported to be the second leading cause of cancer-related deaths for the combined

sexes in US (2013) and UK (2011), accounting for around 15% and 10% of all cancer deaths

in these countries. In Ireland, CRC is the second most common cancer type, accounting for

around 2,270 new cases diagnosed in 2009, [Irish Cancer Society, 2014], with a total of

around 37,000 new cases identified during 1994-2011, [National Cancer Registry Ireland,

2014]. It is also the second most common cancer-related cause of death, [BowelScreen,

2014].

Epigenetic events, or the micro-molecular interactions that influence gene expression

without altering the DNA sequence, have been detected (i) in the earliest stages of cancer

initiation, (ii) in the ageing process and also (iii) in response to cellular stress. Over recent

decades, diverse studies have shown that epigenetic modifications are reversible, [Yoo and

Jones, 2006; Dworkin et al., 2009], and have revealed the potential of using this informa-

tion in developing possible treatments for incipient cancer stages, [McCabe et al., 2012].

Therefore, understanding these phenomena, which are also considered markers for tumour
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initiation, [Baylin and Jones, 2011], may increase the success of cancer therapy in affected

patients. In addition, in the context of recent efforts on personalised medicine and targeted

treatments, a novel research direction concentrates on the identification of intra-individual

epigenetic variation linked to cancer predisposition and development, i.e. epigenome-wide

association studies, (EWASs). However, a major challenge of the EWASs is acquiring repet-

itive assays from the same individuals, particularly from internal tissues.

Given time and cost implications for laboratory experimentation and human epigenome

studies, a range of computational models and tools has been developed over recent years, to

help scientists and clinicians to better understand the impact of malignant molecular events

on tumour pathways and to investigate new strategies that can be applied in cancer treat-

ment, (e.g. [McCabe et al., 2012]). However, although extensive biocomputational work

has been performed, to date, understanding of the interdependencies between genetic and

epigenetic mechanisms leading to cancer initiation and progression is still limited. There-

fore, given the current accessibility of genome-wide approaches, epigenetic-related experi-

mental datasets require bioinformatics and computational approaches to assist in data anal-

ysis, hypothesis validation and results interpretation.

1.2 Scope and contribution

1.2.1 Research Objectives

This work aims to develop a simplified computational prototype of CRC dynamics, in order

to explore aberrant mechanisms in CRC at different layers, i.e. micromolecular, cellular

and tissue levels, and to identify critical events that can be used as potential targets for

CRC therapy. A healthy intestinal crypt is characterised by specific relationships between

cell division, differentiation and apoptosis rates in order to maintain homeostatic1 control

over time, [Eisenhoffer et al., 2012]. Consequently, interest centres on how modifications

in these indicators can affect crypt dynamics and subsequent tumour development. Dis-
1homeostatic = characteristic related to the potential of a biological system, (e.g. an organism or cell) to

conserve the internal stability, [Merriam-Webster, 2014].
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ease phenotype has been associated with modifications of the DNA methylation (DNAm)

patterns and it has been suggested that genome-wide analysis on DNAm variation can in-

form on tumour predisposition, [Rakyan et al., 2011]. Interdependencies exist between

genetic and epigenetic events in malignant conditions and data on their occurrence and on

signalling pathways in CRC have become increasingly available, (Chapter 3). Ageing and

gender are considered major risk factors in tumour development, (Chapter 2). Abnormal

micro-molecular modifications have been found to be accumulative in different systems

over time, [Fraga et al., 2007], and gender differences have been reported for CRC devel-

opment, [Ogino et al., 2006b]. In addition, external factors such as chemical radiation and

environmental features are known to induce deregulation in biological system dynamics

leading to tumour initiation and progression, (Section 2.6.2). Nevertheless, the reversibil-

ity property is of interest and several epigenetic drugs are already in use for blood cancer

therapy, (Section 2.7). Thus, the main Research Objective of this Thesis is:

To build a model base for investigation of methylation level variation at cellular and

tissue levels in human intestinal systems, with respect to i) genetic - epigenetic inter-

dependencies, ii) patient characteristics, iii) potential methylation inhibitors and iv)

carcinogen2 influences during CRC initiation and progression, and to evaluate quan-

titatively the impact of deregulations on crypt dynamics with regard to tumour devel-

opment.

The current work aims to establish plausibility of this information linkage for monitoring

and prediction. Subsidiary research objectives include:

RO. 1. To quantify the impact of genetic and epigenetic interdependencies on the methy-

lation level in CRC development and to estimate the influence of ageing and gender

with respect to methylation level in abnormal colon cells;

RO. 2. To evaluate quantitatively methylation level variation in intestinal tissues under dif-

ferent external conditions during cancer initiation and progression;
2A carcinogen is a substance or an agent causing cancer.
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RO. 3. To assess the effect of deregulation on intestinal crypt dynamics with regard to

tumour development.

1.2.2 Contribution

Clearly, cancer is a complex process generated by abnormal genetic and epigenetic interde-

pendent modifications in cellular mechanisms that exhibit different dynamics. Therefore,

one formalism was never likely to be adequate and a joint network, agent-based and lo-

gistic approach has been implemented. The Colorectal Cancer Model contains three main

computational components, namely:

I. Epigenetic-Genetic (E-G) Network Model, which explores i) the interdependencies

between genetic and epigenetic events, recorded at different CRC stages, and ii) the

way in which these are influenced by patient characteristics, (e.g. ageing, gender).

II. AgentCrypt Model, an agent-based model on crypt dynamics, which handles crypt

intra- and inter-dependencies and performs a comparative analysis on DNAm level

between the colon and small intestine tissues. Potential carcinogens are also consid-

ered and their impact on tumour pathways examined. Moreover, a set of potential

methylation inhibitors, (defined by different prevention patterns of de novo methyla-

tion modifications over time), is investigated in abnormal intestinal crypts.

III. LogisticCrypt, a logistic model on crypt structure at specific time points, which fo-

cuses on cell division, differentiation and apoptosis rates and on cell competition re-

lated to crypt space.

The structure of the Colorectal Cancer Model and the relationships between model com-

ponents are illustrated in Figure 1.1. Specifically, E-G Network incorporates on patient

features and provides information on cell methylation level at specific time, which may be

considered as input data for AgentCrypt. In addition, cell population dynamics are investi-

gated in abnormal intestinal systems following both bottom-up and top-down approaches.

The CCM components described in the Thesis can be used in personalised medicine

for CRC development. Specifically, they can be used for prediction (the E-G Net-
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Figure 1.1: Structure of the Colorectal Cancer Model
The relationships between model components may refer to R1) average methylation level
for gene network / intestinal cell; R2) patient features; R3) intestinal crypt dynamics, ex-
plored following bottom-up and top-down approaches.

work and the LogisticCrypt) and exploration of tumour dynamics, (all three). The

AgentCrypt provides a framework for DNAm variation in comparative analysis of in-

testinal tissues and can be viewed as a proof of concept in EWASs. In addition, the

AgentCrypt can be extended for investigation of intra- and inter-individual epigenetic

variation in other cancer types, (e.g. liver, lung).

1.3 Thesis structure

Chapter 2 provides a brief introduction to Epigenetics and CRC mechanisms and considers

three system layers, namely i) micromolecular, ii) cellular and iii) tissue levels. In Chapter

3, the basis for different computational models and databases developed for investigation

of key-questions related to CRC dynamics, are reviewed. In addition, the importance and

challenges of the multi-scale modelling approach are highlighted.

An initial version of the E-G Network model was presented in Roznovăţ and Ruskin

[2013a]. This has been extended to include information on signalling pathway information

and refinements of different sets of dynamics, (such as those involved in the methylation

level update process), and is described in Chapter 4. Inclusion of ageing and gender influ-
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ences in E-G Network was presented in Roznovăţ and Ruskin [2013c]. Methods proposed

for cancer progression decision, details of implementation extensions and results obtained

are described in Chapter 5. The AgentCrypt and the LogisticCrypt model components are

presented in Chapters 6 and 7, respectively. (An earlier version of AgentCrypt and prelim-

inary results on epigenetic inhibitor and carcinogen influences during CRC development

were outlined in Roznovăţ and Ruskin [2013b].) Finally, Chapter 8 summarises the main

findings and limitations of the overall Colorectal Cancer Model and proposes future re-

search directions.

Appendix A provides a “Glossary” of key terms in the Biology of intestinal cancer sys-

tems, (which appear in text with the following format: apoptosis˜). These are gathered

together for ease of reference in the text. Extended information related to CRC features,

(e.g. key-genes, major types, age-group classification), is included in Appendix B. The

lists of i) Epigenetics resources, ii) the several databases on cancer mechanisms and iii)

BN-generator software, which were interrogated for the Colorectal Cancer Model develop-

ment, with addition of iv) a gene group included in this thesis, (with information on gene

symbol and names according to the GeneCards database, [Safran et al., 2010]), are tabulated

in the Appendix C. Detailed information on the mathematical calculation of the relation-

ships between cell division, differentiation and apoptosis rates within the intestinal crypt,

(Chapter 7), is provided in Appendix D. Finally, Appendix E provides a list and summary

abstracts of publications arising from this work.
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Chapter 2

Biological background

2.1 Introduction

Colorectal cancer (CRC) has been a major area of focus of research for years due to its

impact on human health. According to statistical studies, CRC is the third most common

cancer type, after lung and breast cancers, and global numbers of new cases and deaths

associated with it in 2012 have been estimated at around 1.3 million and 0.7 million, re-

spectively, [Ferlay et al., 2014]. Over the last two decades, it has been shown that both ge-

netic and epigenetic events can stimulate abnormal micromolecular modifications, leading

to cancer development. A major characteristic of cancerous systems, making them difficult

to understand and investigate, is cancer diversity; in effect, given no two individuals are the

same, then no two cancers are the same, [Hutchinson, 2011]. However, in order to explore

the aberrant phenomena involved in cancer initiation and progression, features of normal

biological systems must be well-understood. To this end, an overview of mechanisms ob-

served at micro-molecular, cellular and tissue levels in both normal and abnormal systems,

(with a focus on the intestinal system and CRC development), is provided in this chapter.

The first section briefly introduces principles of Genetics for reference in the rest of this

Thesis. Secondly, the nature of epigenetic events and their involvement in cancer develop-

ment are introduced, (Section 2.3), and are followed by a description of the intestinal crypt

structure and dynamics, (Section 2.4). A summary of malignant system features is given in
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Section 2.5, and information related to CRC initiation and progression, (e.g. CRC types,

risk factors), is presented briefly in Section 2.6. Finally, an overview of cancer therapies

involving epigenetic events is included, (Section 2.7).

2.2 A brief introduction to Genetics

The cell is the basic structural and functional unit of the biological systems. Its functions are

encoded by genes, which are segments of DNA. DNA, (or deoxyribonucleic acid) is well-

known to the public due to recent research breakthroughs, (as well as popular TV culture),

and is the macromolecule that contains genetic information, (inherited from both parents).

The DNA helix form has been regularly illustrated and consists of two strands of nucleotides

formed from a nucleobase, a sugar and a phosphate chemical compound. The primary

nucleobases are adenine (A), cytosine (C), guanine (G) and thymine (T), which form A-T

and C-G base pairs. RNA, (ribonucleic acid), is a macromolecule, involved in gene coding,

regulation and expression. It has a single strand form with A, C, G and uracil (U), which

replaces the thymine nucleobase from DNA. The proteins are large molecules performing

the functions encoded by genes, (e.g. cell division, differentiation). This transcription

& translation process is usually summarised by the Central Dogma of molecular biology,

[Crick, 1970]:

DNA→ RNA→ protein (from chains of amino acids).

Histones are proteins that package the DNA sequence in nucleosome, (i.e. basic units),

which are grouped and form chromatin. Chromatin be found in two forms in cells, namely

heterochromatin, (highly condensed chromatin, characterised by low levels of gene tran-

scription), and euchromatin, (less compacted, characterised by high levels of gene tran-

scription). Chromosomes are pairs of organized DNA packages in cells, where deletions or

duplications of parts of chromosomes are possible, resulting in a state called chromosomal

instability.
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Two types of genes have been identified in the human genome1, namely the non-coding

RNA genes, (briefly presented in subsection 2.3.3), and protein-coding genes. Gene expres-

sion is dictated by its promoter2 and regulatory elements, located typically at distant regions

from the gene body.

Mutations, (i.e. abnormal modifications of the DNA sequence), can occur with high

rates during the cell cycle, primarily during division, (when DNA is replicated and genetic

information is transmitted from mother to daughter cells). However, there are several mech-

anisms that protect cells from mutation. The DNA repair mechanism, dictated by the DNA

repair genes3, is active constantly in normal systems to identify such aberrant changes and

correct them. If mutations can not be corrected, two major actions can be induced in nor-

mal systems, namely i) programmed cell death, (i.e. apoptosis), or ii) senescence, i.e. when

a cell is not considered to undergo further divisions and dies eventually. However, in ab-

normal systems, a mutated cell can escape from these mechanisms and continue division,

(often with faster dynamics), leading to tumour development. This occurs due to dereg-

ulation of the expression patterns of three major gene types, namely tumour suppressor

genes˜, (TGS), proto-oncogenes˜ and DNA repair genes. A TSG is a gene that protects

a cell from progressing increasingly along the path to cancer and its inactivation leads to

disease predilection because if correct expression of the protein is inhibited, the apoptosis

of abnormal cells cannot be dictated, [Desper et al., 1999]. Initially, a normal cell con-

tains proto-oncogenes, which can become oncogenes˜ in tumour cells due to mutation or

epigenetic activation, [Vogelstein and Kinzler, 2004]. Oncogenes can induce aberrant cell

proliferation. Aberrant modifications of the DNA repair genes are associated with failure

of correcting the DNA sequence errors that arise before cell division.
1The human genome, i.e. the complete set of DNA information found in a human body, has 23 pairs of

chromosomes and approximative 20,000 protein-coding genes.
2Promoter is a segment of the DNA sequence, usually located just before a gene. In the transcription

process, it acts as a binding site for RNA polymerase (an enzyme that synthesises RNA from DNA template)
and transcription factors, (proteins binding to specific DNA sequences). Generally, a gene contains a single
promoter; however, recently, genes with two promoters have been also identified.

3Example: MLH1 gene, with its aberrant expression leading to genomic instability and cell proliferation,
Table B.1.

9



2.3 Epigenetic Mechanisms in Normal and Malignant Systems

Although cells share essentially the same genetic information within a body, various cell

types exist and these show highly diversified gene expression patterns reflecting different

functionalities. Over recent decades, biological research has focused on studying epigenetic

phenomena, i.e heritable changes in chromatin structure that do not include modifications in

DNA sequence, but affect gene expression, [Allis et al., 2007]. Conversely, the ‘all-genetic’

paradigm, which considers that phenotype is influenced only by genotype and environment,

has been abandoned in favour of this detailed description, which includes epigenetic mech-

anisms, (i.e. an additional layer of gene regulation, as illustrated in Figure 2.1).

Major epigenetic mechanisms that have been identified as assisting gene regulation

within a body are i) DNA methylation, ii) histone modification, and more recently, iii)

small non-coding RNAs. These mechanisms form part of the epigenome˜4, which has rapid

dynamics compared to the genome, and can be influenced by cell environment, [Alegrı́a-

Torres et al., 2011]. Epigenetic events have been detected in the earliest stages of different

malignancies and act as biomarkers˜5 for cancer initiation, [Baylin and Jones, 2011]. Ad-

ditionally, their unique reversibility property, (not shared by genetic mutations, [Yoo and

Jones, 2006; Dworkin et al., 2009]), is already exploited in some therapy regimes, (Section

2.7). Therefore, understanding of epigenetic alterations can give improved insight on the

way in which aberrant modifications characterize cancer initiation and progression.

2.3.1 DNA methylation

DNA methylation (DNAm) is a molecular process that involves the addition of a methyl

group to a cytosine ring, [Bestor, 2000; Bird, 2002]. In addition, adenine methylation has

been reported recently in prokaryotes6; however, this modification has been observed less in
4Epigenome includes the totality of epigenetic information in an organism.
5In Genetics/Epigenetics, a biomarker can refer to an event, (or a modification), associated with risk to

disease development. Biomarkers can be used for identification of overall tumour occurrence, but also of
specific tumour stages and subtypes, and can help in tumour prognosis, informing on tumour response, and in
treatment selection.

6A prokaryote is a simplistic organism, composed from a single cell that has no distinct nucleus, [Merriam-
Webster, 2014].
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mammals, ([Aguilar and Craighead, 2013] and references therein). The DNAm process is

driven by the DNA methyltransferase (DNMT) family of enzymes7, (reviewed in [Carey

et al., 2011]). Specifically, de novo methylation is catalysed by DNMT3A, DNMT3B

and DNMT3L, while DNMT1 is involved in maintaining DNAm patterns during DNA

replication. Recently, other cytosine patterns, (i.e. 5-hydroxymethylcytosine (5hmC), 5-

formylcytosine (5fC) and 5-carboxylcytosine (5caC), 8), have been also identified and po-

tentially associated with the intermediate states during the DNA demethylation process,

[Kriaucionis and Heintz, 2009; Ito et al., 2011; Pfaffeneder et al., 2011].

In cancer development, aberrant DNAm patterns have been found in two distinct forms:

hypo-(H-) and hyper-(H+) methylation. DNA hypomethylation, an epigenetic event spe-

cific to cancer initiation, is associated with proto-oncogene activation, [Bjornsson et al.,

2004; Allis et al., 2007], and chromosomal instability, [Herman and Baylin, 2003]. Both of

these can promote cell proliferation and lead to an increase in cell predisposition to muta-

tions. Of particular interest in cancer research are those ‘CpG islands’ from the promoter

region of different TSGs. A CpG island is a genomic region of at least 200 base pairs, con-

taining a high frequency of CG dinucleotides, (the CG percentage > 50%, i.e. cytosine and

guanine comprise more than half of the total nucleotides present), and with the Observed-to-

Expected (OE) CpG ratio9 > 60%, [Gardiner-Garden and Frommer, 1987]. Normally un-

methylated, CpG islands become targets for DNA hypermethylation during pathogenesis,

commonly leading to unscheduled gene silencing, [Herman and Baylin, 2003; Bjornsson

et al., 2004; Allis et al., 2007; Meissner et al., 2008].
7Enzymes refer to biological molecules that act as catalysts in biochemical reactions.
85hmC, 5fC and 5caC are DNA methylation variants resulted from sequential processes of methylation

cytosine (5mC) oxidation, (regulated by the Tet (ten eleven translocation) protein group), as illustrated by the
following relationships:

5mC oxidation−−−−−−→ 5hmC oxidation−−−−−−→ 5fC oxidation−−−−−−→ 5caC, (dictated by Tet proteins).

9The OE CpG ratio is calculated based on formula proposed in Gardiner-Garden and Frommer [1987]:

OE =
CG number

C number ×G number
× Sequence length. (2.1)
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2.3.2 Histone modifications

Similar to DNAm, modification of histones influences changes in chromatin structure,

[Jenuwein and Allis, 2001]. There are five known families of histones H1/H5, H2A, H2B,

H3 and H4, grouped into two categories: the core group, (H2A, H2B, H3, H4) and the

linker histones, (H1 and H5), [Ito, 2007]. In addition, several variations of these histones

have been identified and denoted collectively as histone variants, (e.g. H2A.X, H3.3), (re-

viewed in [Sarma and Reinberg, 2005]). Histone modification (HM) may be cumulative and

may take a number of forms, including methylation, acetylation, phosphorylation, ubiquity-

lation, and sumoylation, [Kouzarides, 2007; Suganuma and Workman, 2008]. The histone

modification nomenclature10 is usually by histone name, (e.g. H1, H3, H4), followed by

the amino acid abbreviation and position in the protein, (e.g. K9 for Lysine at position

9), [Turner, 2005]. The type and number of modifications, (e.g. Me3 for trimethylation),

can be specified also, [Turner, 2005]. For example, H3K27me3 refers to trimethylation of

histone at lysine 27, [Cedar and Bergman, 2009].

Two of the most studied histone modifications are histone methylation and acetylation,

where addition/removal of specific chemical compounds are driven by different protein

families, including the histone methyltransferase (HMT)/ demethylases (HDM), and acetyl-

transferases (HAT)/ deacetylases (HDAC) respectively. Histone acetylation is characterised

by rapid changes in the acetyl state at specific lysine part and histone methylation is defined

as addition of maximum three methyl groups to lysine and arginine residues˜11.

The effect of HM depends on both the histone and the modification types. For ex-

ample, H3K27me3 and H4K20me2 have been associated with transcriptionally inactive

genome regions, (i.e. gene repression), while both acetylation and methylation on H3K4

have been linked to transcriptionally active chromatin, (i.e. gene activation), [Kouzarides,

2007]). Moreover, the trimethylation and acetylation of H3K9 have been associated with

gene silencing and activation, respectively, [Koch et al., 2007].
10The Brno nomenclature is a standard system used for histones and histone modification notation.
11A residue is a small remainder from a substance, resulted following a chemical/ physical process applied

to the considered substance.
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2.3.3 Small non-coding RNAs

Small non-coding RNAs (sncRNAs), (including the three major categories: small interfering

RNA (siRNA), micro RNA (miRNA) and piwi-interacting RNA (piRNA)), are involved in

different developmental phases and are considered to have a major role in protecting cells

against various external influences such as viral infection, [Carthew and Sontheimer, 2009;

Ghildiyal and Zamore, 2009; Mattick et al., 2009]. The sncRNAs are also implicated in

directing the patterns of other epigenetic events, such as DNA methylation, [Carthew and

Sontheimer, 2009; Ghildiyal and Zamore, 2009; Mattick et al., 2009].

MicroRNAs, (or miRNAs), are small sequences of RNA, (∼ 19 - 22 nucleotides), which

are involved in the cell cycle, (e.g. division, differentiation, apoptosis). They can act as

TSGs or oncogenes and can be abnormally down- or up-regulated during disease develop-

ment, [Negrini et al., 2009], as a consequence also of aberrant DNA methylation patterns,

[Yang et al., 2009]. Over recent years, it has been shown that miRNAs can be considered

biomarkers for malignant tumour stages, (including for CRC, [Schetter et al., 2011]).

2.3.4 Interplay between DNA methylation and Histone modification

It has been recently established that DNA methylation and histone modifications can influ-

ence one another, [Vaissière et al., 2008; Cedar and Bergman, 2009; Ikegami et al., 2009].

In Cedar and Bergman [2009], authors reported that histone acetylation depend on un-

methylated DNA, leading to an open chromatin structure, while non-acetylated histones

are associated with DNA methylation, determining more compact chromatin. It was also

observed that DNA methylation level can be increased by histone methylation, [Cedar and

Bergman, 2009]. Moreover, DNAm was found to inhibit some histone modifications, such

as H3K4 methylation, [Cedar and Bergman, 2009].

In addition, different dynamics have been reported for DNAm and HM. For instance,

DNAm is considered to be highly stable in nature, while HM occurrence can follow a much

faster dynamic, (for example, histone deacetylase is a rapid mechanism).
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2.4 The Intestinal Crypt

The intestinal crypt is considered to be the structural and functional unit of the intestinal

tissues, (e.g. colon, small intestine). The small intestine and colon crypts present a number

of both similarities and differences with respect to their structure, (e.g. cell location, number

and cycle duration). The intestinal crypt cell population consists of stem, progenitor and

differentiated cells in the colon, with the addition of the Paneth cell group in the small

intestine.

2.4.1 Crypt Structure and Dynamics

Normal stem cells are undifferentiated cells that can divide in an unlimited way, in order

to produce new stem cells, or differentiate into specialized cells, [Reya and Clevers, 2005].

Additionally, they have the property of conserving epigenetic patterns during cell division

and transmitting these from generation to generation, [Probst et al., 2009]. A stem cell

can divide either asymmetrically, (when a stem cell and a progenitor cell are born), or

symmetrically, when two identical stem cells are produced, after which it is replaced by the

daughter stem cell, [Humphries and Wright, 2008]. The lifecycle duration for a stem cell is

linked to the time period for cell division, which has been determined to be approximately

seven days for the human colon, [Potten et al., 2003; Frank, 2007], and five days for the

small intestine, [Potten et al., 2003], respectively. The stem cell compartment is found at the

base of the colonic crypt, [Bock, 2012], or proximate to the crypt base in the small intestine,

[Clevers and Bevins, 2013]. Progenitors, which are located in the crypt to the left and right

of the stem cell group, are more specialized than stem cells and undergo a limited number

of divisions, while differentiated cells, (i.e. enterocytes, goblet and endocrine cells), occupy

the upper part of the colon crypt and represent fully-specialized cells, [Khalek et al., 2010;

Vaiopoulos et al., 2012].

In normal conditions, i.e. in healthy phenotypes, a major difference between the struc-

tures of the colon and small intestine crypts is given by the presence of Paneth cells at the

base of the small intestine crypt, [Sancho et al., 2003], and their absence from the colon
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crypt, [Nicolas et al., 2007], as illustrated in Figure 2.2. Paneth cells are differentiated cells

that protect the stem cell group within the small intestine crypt against bacterial infections,

[Umar, 2010]. Although Paneth cells can be observed sometimes in the ascending12 colon,

their presence in this tissue has been associated with a certain disease stage, [Humphries

and Wright, 2008]. Unlike progenitors and differentiated cells that migrate to the top of the

intestinal crypt, Paneth cells move closer to crypt base, [Kim et al., 2005]. The Paneth cell

cycle has been determined to be equal to around 20-30 days, [Sancho et al., 2003; Clevers

and Bevins, 2013].

Figure 2.2: Simplified structure of a) colon and b) small intestine crypts - Comparison
Cells are illustrated by rectangles with different shading patterns: i) stem cell (dark-shaded
rectangle) at the base/ close to the base of colon and small intestine crypts, respectively; ii)
progenitor cells, (grid pattern shading), to left and right of stem cell group; iii) differenti-
ated cells, (unshaded rectangle), at the top of the crypts; iv)Paneth cells, (diagonal-hashed
shading), occur only at the base of the small intestine crypt. Image adapted from McDonald
et al. [2006].

In addition, differences between the small intestine and colon crypts have been reported

with regard to cell numbers. While the colon crypt contains around 16 - 19 stem cells,

[Brittan and Wright, 2004; Khalek et al., 2010], within a total of 2000 cells, [Nicolas et al.,

2007; Khalek et al., 2010; Vaiopoulos et al., 2012], the small intestine crypt is shorter, with
12The colon has four major subdivisions: the ascending, the transverse, the descending, and the sigmoid

colon, ([Fritsch and Kühnel, 2008], page 202).
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1-6 stem cells within a total of around 250 cells, [Sancho et al., 2003]. Abnormal cell

population growth, (as a consequence of deregulation in cell cycle control mechanisms),

has been associated with tumour pathways, [Humphries and Wright, 2008; Jin et al., 2009],

and aberrant augmentation in the Paneth cell group has been related to Crohn’s disease, (a

major type of inflammatory bowel disease˜13 linked to increased risk for intestinal cancer

development, [Canavan et al., 2006; Clevers and Bevins, 2013]).

2.4.2 Intra- and inter-crypt influences

Intercellular communication can occur between adjacent cells through ‘gap junctions’,

(regulated by the connexin family). The connexin gene is considered to have a tumour

suppressor property and downregulation of its expression, caused by aberrant epigenetics

events, has been linked to deregulation in cell division, differentiation and apoptosis in

several human cancer types, (reviewed in Vinken et al. [2009]).

Inter-crypt interactions have been reported also in the colon epithelium14, where an

aberrant crypt can influence its neighbours’ homeostasis˜, (i.e. the balance or stable state

that characterises the internal environment of a normal biological system), by inducing

deregulation in the local environment, [Humphries and Wright, 2008].

2.5 Malignant Systems: a brief overview

Cancer is caused by the deregulation of key genes that control cellular mechanisms, such

as division, differentiation, apoptosis, and movement. Cellular processes are directly regu-

lated by TSG and proto-oncogenes, (denoted as ‘gatekeepers’). The activity of a TSG can

be reduced in malignant cells by genetic mutations, insertions and deletions or epigenetic

silencing, a condition that causes failure of apoptosis within abnormal cells, [Vogelstein

and Kinzler, 2004]. In addition, aberrant oncogene activation can increase the formation of
13Inflammatory Bowel Diseases refer to disorders of the Gastrointestinal tract that cause intestine inflam-

mation. Crohn’s disease and ulcerative colitis are two major types of inflammatory bowel diseases, [Canavan
et al., 2006; Clevers and Bevins, 2013; Merriam-Webster, 2014].

14Epithelium is one of the four major animal tissue types, (together with connective, muscle and nervous),
and is characterised by high cell division rate and small intercellular gaps. The epithelium ensures functions of
e.g. tissue protection, hormone secretion, nutrient absorption, sensation detection, [Merriam-Webster, 2014].
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those proteins that dictate excessive cell growth, while alterations of DNA repair or care-

taker genes allow a rapid accumulation of modifications in other genes that control the cell

cycle, [Michor et al., 2004]. Finally, abnormal modifications of another gene category, i.e.

landscaper genes, lead to increased cell susceptibility to malignant transformation, [Michor

et al., 2004]. A simplified representation of interdependencies between genetic and epige-

netic mechanisms and the influence of several risk factors in biological systems leading to

cancer development is illustrated in Figure 2.3.

Figure 2.3: Malignant system features - Simplified representation
Aberrant genetic and epigenetic modifications of different genes deregulate the cell cycle
causing abnormal cell proliferation and lead to cancer development. Tumour pathways are
influenced also by different risk factors, such as ageing, gender, lifestyle and environmental
features, (discussed in subsection 2.6.2). Reprinted by permission from Macmillan Pub-
lishers Ltd: Nature Reviews Cancer, ([Timp and Feinberg, 2013]), copyright (2013).
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Signalling pathways Of particular interest in cancer research are those genes involved in

signalling pathways. By definition, a signalling pathway (SP) is a chain of molecules that

work together to control cell functions. An aberrant event recorded for the first molecule

of a SP will induce abnormal activation on the second one. This process is repeated for

all molecules of the SP and results, after activation of the last molecule in the chain, in

loss of cell function. Studies of signalling pathways can help in the design of targeted

therapeutic strategies that enable slowing down or halting of the malignant cellular modifi-

cations. Some of the well-known analyses of signalling pathways in cancer research include

WNT/β-catenin, [Clevers, 2006], TGF-β, [Derynck et al., 2001], MAPK, Eph/Ephrin and

Notch, [De Matteis et al., 2013]. Mutations in these pathways have a high impact on the

development of various cancer types, (such as colon, breast, ovary, lung cancer, leukaemia),

in both hereditary and sporadic˜15 forms, [Derynck et al., 2001; Clevers, 2006]. A com-

prehensive database of curated signalling pathways involved in human cancer development

is the KEGG PATHWAY database, [Kanehisa et al., 2014].

Stem Cell hypothesis In recent years, the Cancer Stem Cell hypothesis, which postulates

that the initiation and progression of cancer are associated with accumulation of aberrant

genetic and epigenetic modifications within stem or stem-like cells, has become increas-

ingly accepted as a plausible tumorigenesis hypothesis, [Boman and Wicha, 2008; Clevers,

2011; Papailiou et al., 2011]. Conversely, diminishing scientific support has been given

to the traditional hypothesis of cancer development, which considers that every cell within

the malignant population has the ability to promote disease, [Khalek et al., 2010; Molina-

Pea and lvarez, 2012; Vaiopoulos et al., 2012]. Stem-like cells are abnormal cells that are

changed during disease development and present similar characteristics to a normal stem

cell, in terms of proliferation capacity and transgenerational epigenetic information trans-

mission, [Johannes et al., 2009].

15Cancer sporadic refers to cases when individuals develop cancer, without having inherited DNA modifica-
tions that can increase malignancy risk.
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Cancer Stages Cancer staging denotes the severity and degree of tumour development

and extension, and provides a guideline for the medical profession in terms of identifying

suitable treatment required. Thus, Overall Stage Grouping is a system used to describe

cancer progression and classifies tumours/ disease status as I, II, III, and IV (as well as

0), where the most advanced cancer stage is denoted by IV. Stage 0 is referred to also as

‘carcinoma in situ’. Defined as a cell having high potential to become abnormal, carcinoma

in situ corresponds e.g. to ductal carcinoma in situ of breast cancer, to Bowen’s disease

in skin melanomas, or to adenoma16 phenotypes in CRC. In addition, the designations

carcinoma and invasive carcinoma correspond to Stages I, II, III, while metastasis refers

to the Stage IV tumour phase, where cancer has spread throughout the body or to another

organ. Thus, a tumour can progress from carcinoma in situ, to invasive carcinoma and,

potentially, to metastasis.

2.6 Colorectal Cancer (CRC)

CRC development is a complex multi-step process associated with deregulations of both

genetic and epigenetic events targeting stem cells in colon and rectal tissues. A brief de-

scription of several CRC features is included in this section. Information on CRC initiation

and progression phases is provided, together with a summary of several key-genes identi-

fied in CRC and an overview of both sporadic and hereditary CRC forms. Further, ‘crypt

fission’ and the ‘bottleneck effect’, two major intestinal crypt phenomena, for which an

increase in occurrence rate has been associated with CRC development risk, are also de-

scribed. Finally, the impact of several risk factors for CRC initiation and progression is

discussed.

Benign to Malignant in CRC development Initially, cell growth rate increases in several

crypts leading to polyp˜ formation at epithelium’s surface. Polyps are considered to be be-
16Colon adenoma = phenotype characterised by benign modifications in colonic epithelium, which can be-

come malignant if not removed, leading to colon cancer.
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nign˜17, (i.e. Stage 0), but one type, (namely the colon adenomatous polyps), may increase

their size and become cancerous over time, if not removed. Once presenting malignant˜

characteristics, adenoma is referred as adenocarcinoma. As the disease progresses, cancer

cells accumulate aberrant changes that facilitate cell proliferation within polyps and even-

tually migration. At Stage I, more of the inner colonic epithelium is involved, and in Stage

II, the tumour affects nearby tissues, but not the lymph˜ nodes; tumour extension to these

is thus specific to Stage III. Finally, CRC can invade other organs, such as the liver and

lungs18, leading to metastasis˜. In addition, recurrent˜ CRC includes those cases when

malignant modifications reappear after treatment, affecting parts of the colon, rectum or

other organs.

Key genes in CRC development Information on the characteristics of several key-genes

identified in CRC development is provided in Table B.1, in Appendix B, together with

principal references. The list includes TP5319, (a TSG with crucial role in cell cycle control

and whose mutation/deletion was detected in more than 50% of human diseases [Knudson,

2001]), APC20, (abnormally changed in the earliest CRC stages [Suehiro et al., 2008]),

RASSF1A21, KRAS22, BRAF23 and MGMT24, (highly mutated and hypermethylated in

CRC, [Grady and Markowitz, 2002; Suehiro et al., 2008; Dworkin et al., 2009; Ahmed

et al., 2013]), MCC25 and MLH126, (in which alterations were associated with sporadic

and hereditary forms of CRC, respectively, [Niv, 2007; Fukuyama et al., 2008]).

Sporadic and Hereditary forms of the CRC CRC presents in both sporadic and heredi-

tary forms, [Cunningham et al., 2010; Al-Sohaily et al., 2012; De Matteis et al., 2013]. Most

cases are sporadic, (≈ 85% of total cases, [Half et al., 2009]), with major groups associated
17While benign refers to non-cancerous modifications/ features, malign indicates cancer presence.
18The liver and lungs are the most-affected organs by colorectal metastasis
19TP53: Tumour Protein p53, [Safran et al., 2010]
20APC: Adenomatous Polyposis Coli, [Safran et al., 2010]
21RASSF1A: Ras-associated domain family member 1, [Safran et al., 2010]
22KRAS: v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog, [Safran et al., 2010]
23BRAF: v-raf murine sarcoma viral oncogene homolog B
24MGMT: O6-methylguanine-DNA methyltransferase, [Safran et al., 2010]
25MCC: Mutated In Colorectal Cancers, [Safran et al., 2010]
26MLH1: MutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli), [Safran et al., 2010]
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with i) chromosomal instability, (CIN), and ii) hypermethylation at CpG islands of differ-

ent gene promoters, (i.e. the CpG Island Methylator Phenotype (CIMP)). The hereditary

category includes primarily i) Familial Adenomatous Polyps (FAP), ii) Lynch syndrome, (or

Hereditary nonpolyposis colorectal cancer (HNPCC)), and iii) MYH-Associated Polyposis,

(MAP), which has been recently detected and presents similar characteristics to FAP. Major

characteristics of the CRC types are briefly summarised also in Table B.2, in Appendix B.

2.6.1 Major intestinal crypt phenomena

Two major phenomena, which are exhibited in the intestinal crypt cycle, are ‘crypt fission’,

(i.e. longitudinal crypt division, producing two daughter crypts, [McDonald et al., 2006]),

and the ‘bottleneck effect’. Crypt fission, (caused by doubling the stem cell number at the

crypt base, [Jin et al., 2009]), is considered to be a rare event in normal intestinal tissue,

with time to occurrence estimated to be around 25 years for the human colon, [Graham

et al., 2011]. Increased crypt fission incidence is considered to facilitate tumour expansion,

[Brittan and Wright, 2004], and has been linked to colon adenoma risk, [Preston et al., 2003;

Chen et al., 2005; Humphries and Wright, 2008]. Over an intermediate time-interval, (ap-

proximately 8.2 years for normal human intestinal tissue), the stem cell number decreases

to a single stem cell, which is capable of regenerating the entire crypt, [Yatabe et al., 2001;

Brittan and Wright, 2002; Sancho et al., 2003; de Lau et al., 2006; van der Flier and Clevers,

2009]. Denoted as the ‘bottleneck effect’, this phenomenon also has been suggested to be a

tumour promotion mechanism, given that - if mutated, the original stem cell transmits the

abnormal changes to the entire cell population during cell division. Due to a growth advan-

tage bestowed by mutations on an aberrantly changed stem cell, there is a higher probability

for a crypt to be populated with cells descending from a mutated stem cell rather than from

a normal one, [Leedham and Wright, 2008]. However, if the mother-stem cell is a normal

cell, a healthy crypt will be regenerated.
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2.6.2 Risk factors for CRC development

Cancer is considered to be a class of diseases that affects mostly older people, [Christensen

et al., 2009], (e.g. more than 60% of diagnosed cancer cases are people aged 65 years and

more), and is rarely found in children and young adults, [Cancer Research UK, 2014a]. As

shown in Figure 2.4, CRC incidence increases during ageing, for both genders. CRC pre-

disposition is also influenced by other characteristics, such as gender, [Brenner et al., 2007],

personal and familial cancer history, [American Cancer Society, 2013], physical activity,

diet, [Cancer Research UK, 2014d], and environmental factors, [Hou et al., 2012]. These

features are referred as ‘risk factors for cancer development’, with potential to increase the

chance for an individual to develop malignant tumours. Risk factors are typically denoted

personal, (i.e. can not be changed), and external (i.e. lifestyle-related) categories; several

of those associated with CRC development are discussed further.

Figure 2.4: CRC incidence rate world-wide for both genders, i.e. males (blue color) and
females (red color). The incidence rate of CRC development increases during ageing. In
addition, male predisposition to CRC can be observed. Source: GLOBOCAN 2012 - In-
ternational Agency for Research in Cancer (IARC) - http://globocan.iarc.fr/, [Ferlay et al.,
2014].
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Personal risk factors Due to influence on molecular signals (genetic and epigenetic),

ageing is considered to be a major risk factor in cancer initiation and progression, [Fraga

and Esteller, 2007]. Studies have reported that DNA methylation and histone modifications

accumulate progressively over time, e.g. Fraga et al. [2007]. CRC incidence increases

markedly after age 50, with the highest rate observed between the ages 65-75, [SEER,

2013a]. Four age groups, distinguished in cancer statistics, are given, (e.g. [SEER, 2013a;

Cancer Research UK, 2014a; Ferlay et al., 2014]), based on common features observed in

tumour initiation and progression, (with a focus on CRC incidence rate˜). These are age

ranges (0 - 14) + (15 - 29): children and young adults; (30 - 49): adults in middle-age; (50

- 74): older adults; (75+): elders. The Table describing characteristics of these groups is

given in Appendix B, (see Table B.3), and includes key study references.

Moreover, in recent decades, a range of experiments has been developed to investigate

age-related methylation leading potentially to abnormal methylation patterns and malig-

nant tumour development. A list of genes, identified as sensitive to age-related methylation

in different cancer types, include, for example, insulin-like growth factor II (IGF2), myo-

genic differentiation 1 (MYOD1), paired box 6 (PAX6), tumor protein p73 (TP73), secreted

frizzled-related protein 1 (SFRP1) genes in CRC, Hypermethylated in Cancer 1 (HIC-1)

gene in prostate and brain tumours, and estrogen receptor (ER) and N33 in colon and liver

diseases, (Issa and Ahuja [2000]; Teschendorff et al. [2010]).

In addition, gender has been reported in the literature as important in colon cancer

initiation, [Brenner et al., 2007]. Studies have shown that the risk of developing colon

cancer is greater for males than for females, [Ogino et al., 2006b; Cancer Research UK,

2014a], with an approximate 5-year difference between genders suggested for initiation of

CRC screening, [Brenner et al., 2007; Frank, 2007], (illustrated in Figure 2.4).

According to Knudson [2001], multiple successive ‘hits’ are required to transform a

normal cell into an abnormal one: fewer mutations are thus needed to produce malignancies

if some changes are already inherited. The impact of heredity in cancer can be measured

by the familial relative risk ratio27 coefficient. Heritable tendencies have been identified
27The highest RR was reported for breast cancer (RR=2.02), followed immediately by those for lung (RR
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for cancers of the colon, breast, lung and others, [Risch and Plass, 2008], as well as for

skin melanomas, [Hemminki et al., 2003]. While familial cancer is less common than

spontaneous manifestations, genetic patterns are gradually being established, which may

contribute to the identification of those at greater risk.

Finally, individual characteristics such as personal history of CRC and the presence of

inflammatory bowel disease, are also associated with an increased risk of CRC develop-

ment, [Canavan et al., 2006; Burt et al., 2010; Baumgart and Sandborn, 2012].

External risk factors The significant impact of viral and bacterial infections on human

tumours has been highlighted in many recent studies, [Carrillo-Infante et al., 2007; Samaras

et al., 2010]. Viruses, such as human papilloma (HPV), hepatitis B, and Epstein-Barr have

been associated with cancer initiation, [Carrillo-Infante et al., 2007], due to their capacity to

damage normal cell control in the infected organisms by inducing unscheduled cell growth

and by avoiding apoptosis. In Perrin et al. [2010], the authors have shown that Helicobacter

pylori plays a key role in gastric cancer development owing to aberrant increase of DNA

methylation level in gastric cells. Further, in Antonic et al. [2013], the authors reviewed

several bacteria (e.g. Streptococcus bovis, Helicobacter pylori) and viruses, (e.g. John

Cunningham virus (JC virus)), which have been associated with the CRC phenotype. The

involvement of the Fusobacterium bacteria also in CRC was recently suggested, [Kostic

et al., 2012; Antonic et al., 2013; McCoy et al., 2013].

Discussions on the impact of environment and lifestyle on cancer development have

also featured in the literature, [Hou et al., 2012; Cancer Research UK, 2014g]. For instance,

tobacco usage has been associated with a fifth of all cancer cases in the UK, according to a

report published in December 2011, [Cancer Research UK, 2014f], and is considered to be

a major risk factor in the development of malignancies, [Giovannucci, 2001; Sasco et al.,

2004; Mucha et al., 2006; Zisman et al., 2006; Irigaray et al., 2007]. In addition, excessive

alcohol consumption increases the probability of developing different cancer types, such as

oral cavity, pharynx, oesophagus, liver, breast cancer, and is considered to be a high risk

≈2.00) and prostate cancer with RR=1.89 (Risch and Plass, 2008).
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factor in colon cancer, [Zisman et al., 2006], where it has been associated with aberrant

changes in DNA methylation, [Davis and Uthus, 2004]. Moreover, lifestyle characteristics

such as lack of physical activity, high fat diet, have been associated with an increased risk

of CRC development also, [Slattery et al., 2003; Irigaray et al., 2007; Watson and Collins,

2011].

Finally, chemicals such as arsenic and cadmium have been highlighted as carcinogens28

for CRC since exposure to these substances can induce epigenetic alterations in cells, (e.g.

global DNA hypomethylation), leading to colon cancer, [Hou et al., 2012]. In consequence,

studying the impact of risk factors on different molecular mechanisms can improve under-

standing of tumour pathways and aid in the search for treatment strategies, but is a major

challenge.

2.7 Epigenetic therapies

Although first postulated by Waddington in 1942, epigenetic alterations have only become

a focus of interest in cancer research relatively recently, due to their potential use in diag-

nostics and cancer therapy. Epigenetic drugs may be useful not only for cancer, but also

for other human diseases, (e.g. neurodegenerative disorders˜, [Abel and Zukin, 2008; Ur-

dinguio et al., 2009]). The aim is to find small chemical compounds that can bind specific

epigenetic modifications, inhibit their function and reverse the epigenetic process, [Min-

ucci and Pelicci, 2006]. Based on usage and activity, epigenetic inhibitors are classified

into five major groups including: (i) DNMT, (ii) HMT, (iii) HDAC, (iv) HAT and (v) HDM

Inhibitors.

Epigenetic drugs already approved by U.S. Food and Drug Administration include

inhibitors for DNMT (e.g. vidaza and decitabine) and HDAC, (e.g. vorinostat and ro-

midepsin), which are used for blood cancer, [Kaminskas et al., 2005; Richon, 2006; Rodrı́guez-

Paredes and Esteller, 2011]. Additional drugs, which target for example HDM, HAT, HMT,

are currently undergoing clinical and preclinical trials, (Lohse et al. [2011]; Santer et al.
28Carcinogen: an agent with direct involvement in causing cancer
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Figure 2.5: Epigenetic drugs and their epigenetic targets in cancer therapy. Note: suffix ‘i’
refers to ‘inhibitor’, (e.g. DNMTi = inhibitor for DNA methyltransferases, (DNMT)) and
SIRTi refer to sirtuins inhibitors, a class of HDACi. Reprinted by permission from Macmil-
lan Publishers Ltd: Nature Medicine, (Rodrı́guez-Paredes and Esteller [2011]), copyright
(2011).

[2011]; McCabe et al. [2012], respectively), illustrated in Figure 2.5.

Epigenetic therapy is an active research area in pharmaceutical companies, where the

focus is on development of both active formulations and strategies that aim to minimize

the potential side-effects of epigenetic drug usage and extend patient survival, [Azad et al.,

2013]. In addition, the combination of epigenetic therapy with other cancer treatment ap-

proaches, (e.g. standard chemotherapy˜), is anticipated to have an high impact on cancer

mechanisms, [Azad et al., 2013]. Efforts are also ongoing currently for identification of

combined epigenetic drug treatment that can be applied in a large number of malignant

tumours as well as to other disorders with epigenetic alterations, [Stein, 2014].
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2.8 Summary

Figure 2.6: Overview of cancer mechanisms discussed

This chapter focused on presenting the biological background (on Epigenetics and CRC

dynamics), which is fundamental to understanding the features to be represented in the

development of appropriate computational models. Specifically, the aberrant mechanisms

leading to CRC development were discussed for three major system layers, (illustrated in

Figure 2.6), and including:

• micromolecular, (e.g. genetic and epigenetic events, signalling pathway);

• cellular, (e.g. cell cycle, stem cell property);

• tissue, (e.g. the intestinal crypt).

In addition, the influence of different risk factors, (e.g. ageing, lifestyle characteristics),

was briefly reviewed in relation to CRC initiation and progression. The mechanisms de-
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scribed in this Chapter can be applied to other cancer types as well. For example, heredity

has been reported to have a high impact on breast and lung tumours; for lung, the risk of

malignancy development can be increased by around 50% for people having a sibling or

a parent diagnosed with lung cancer, with the risk marked in the former compared to the

latter cases, [Cancer Research UK, 2014e]. Having a first degree female relative affected by

breast cancer can double the chance of tumour development. In these conditions, screening

tests are recommended to start several years earlier than for groups with no such familial

history, [American Cancer Society, 2013; Cancer Research UK, 2014c; NICE - National

Institute for Health and Care Excellence, 2014].

Major types of CRC, (e.g. sporadic, FAP), and the cancer staging system were also

summarised. The state-of-art with respect to therapies based on epigenetic inhibitors, to-

gether with the challenges of epigenetics-based strategies in cancer treatment, were briefly

outlined. The overview of major aspects of cancer, its development and treatment, is nec-

essarily limited but aims to provide the platform required to motivate and inform the com-

putational approach.

29



Chapter 3

Modelling background and context

3.1 Introduction

Cancer research has become a multi-disciplinary area involving collaboration among ex-

perts from a large array of scientific fields including biology, medicine, physics, chemistry,

psychology, engineering and not least mathematics and computer science. The term of ‘P6’

- i.e. Participatory, Personalised, Predictive, Preventive, Psychocognitive and Public1 - has

been proposed for describing the recent perspective of cancer medicine, [Bragazzi, 2013].

Computational and mathematical models can help by crossing the boundaries of in vivo

and in vitro experiments caused by the complexity of the features, specific to malignant

systems, and can facilitate understanding of the aberrant mechanisms involved in tumour

pathways. Cancer dynamics exhibit a range of spatial and temporal scales; for example,

while micromolecular modification can occur at nanosecond scales, cancer development

needs several years or decades, [Deisboeck et al., 2011]. Computational simulations can

permit exploration of carcinogenesis specifics in real-time, thus, contributing to advances

in cancer research.
1participatory = keeping the patient continuously informed with regard to their disease status and avail-

able treatment options; personalised = the therapeutic program tailored to individual patient characteristics;
predictive = predicting disease initiation and progression based on e.g. DNAm level information, (discussed
in Section 3.4; preventive = informing on risk of tumour development based on different individual features,
(e.g. familial cancer history), and monitoring their healthy state; psycho-cognitive = providing qualified guid-
ance and psychological support to patients; public = sharing information related to diseases and treatments on
Internet through specialised websites and organizations.
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This chapter provides a review of computational approaches in Cancer Epigenetics and

aims to establish the potential for development of hybrid multi-scale models for genetic and

epigenetic dynamics in CRC. An overview of the major topics discussed here is illustrated

in Figure 3.1, and the structure of this chapter is as follows. A brief description of the

Cancer research context, (including recent world-wide initiatives, several commonly-used

technologies and methods for DNAm and HM analysis and a set of Genetics and Epigenet-

ics resources), is included in Section 3.2. Concept formalism and examples are provided for

several computational and mathematical approaches, (including Bayesian Network, Agent-

based, Logistic and Multiscale modelling), used to investigate aberrant modifications at

different scales, (i.e. micromolecular, cellular and tissue levels), leading to disease devel-

opment, (Section 3.3). These modelling approaches were considered from the perspective

of their applicability to human intestinal systems. In addition, epigenome-wide associated

studies - a recent trend in Cancer Epigenetics research - is addressed in Section 3.4. Fi-

nally, several issues for Computational Epigenetics, which are noted to arise in the context

of CRC initiation and progression, are indicated in Section 3.5, and the Thesis focus stated.

A brief summary is given in Section 3.6.

3.2 Cancer Research context: brief presentation

3.2.1 World-wide projects on Genetics and Epigenetics

Following complete sequencing of the Human Genome, the investigation of the Human

Epigenome has become a major area of interest in Cancer research, [Collins et al., 2003;

Eckhardt et al., 2004; Jones and Martienssen, 2005; Esteller, 2006]. The Human Epigenome

Pilot Project2, which revealed information on DNAm patterns in human chromosomes 6,

20 and 22 in different tissues, [Eckhardt et al., 2006], established the feasibility for devel-

oping Epigenome projects at large scale. Since then, a considerable number of large-scale

initiatives, aimed at detection and interpretation of the epigenetic markers in normal and
2The Human Epigenome Pilot Project was launched as a scientific collaboration between the Wellcome

Trust Sanger Institute (United Kingdom), Epigenomics AG (Germany) and The Centre National de Gnotypage
(France), in early 2000. url: http://www.epigenome.org/index.php?page=pilotproject.
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Figure 3.1: Overview of major topics related to Cancer Systems discussed in Chapter 3
The i) Input and ii) Output components correspond respectively to i) Research Questions
& Objectives given the Biological context, (i.e. Chapters 1 and 2), and ii) Main findings,
(addressed in Chapter 8).

malignant human systems, has been launched. Several of these world-wide efforts are pre-

sented briefly in the next paragraphs and information on a list of Epigenetics resources

consulted for this Thesis is included in Table C.1, (Appendix C).

Large amounts of epigenetic data are becoming available and a recent direction in can-

cer research is represented by the identification of common genetic and epigenetic features

among various cancer types and the integration of such micromolecular modifications in

strategies for tumour progression, diagnosis and treatment, [Ashworth and Hudson, 2013].

For example, the Encyclopaedia of DNA Elements (ENCODE)3 project focuses on the anal-

ysis of the functional elements, (e.g. histone modification), in the human genome, while the
3ENCODE project started in 2003 funding from the National Human Genome Research Institute; url:

http://encodeproject.org/ENCODE/
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Roadmap Epigenomics Project4 and the BLUEPRINT Epigenome Consortium5 aim to ex-

plore the epigenetic landscape in stem cells and blood tissues, respectively, [Bernstein et al.,

2010; Adams et al., 2012; ENCODE Project Consortium, 2012]. In addition, epigenome

studies in 250 cell types are being conducted under the direction of the International Human

Epigenome Consortium (IHEC)6 and comprehensive analyses on micromolecular modifica-

tions in around 50 cancer types have been performed by the International Cancer Genome

Consortium (ICGC)7, [Jones et al., 2008; Hudson et al., 2010]. Moreover, through the

The Cancer Genome Atlas (TCGA)8 efforts, detailed characterisations are available for

the genetic and epigenetic markers involved in a wide array of human cancers, includ-

ing the ovarian, lung, colorectal, breast, endometrial, and renal malignancies, as well as for

acute myeloid leukemia, (e.g. Cancer Genome Atlas Research Network [2011, 2012a,b,c,

2013a,b,c]). As an illustration: from these data, a set of 127 significantly mutated genes in

malignant systems has been identified in a study on 12 cancer types, (described in Kandoth

et al. [2013]).

Translational medicine, which aims to reduce the gap between research and real treat-

ment options and to improve the collaboration between academia and industry in order to

achieve this, is another recent direction in Cancer Research. The Innovative Medicines Ini-

tiative (IMI)9 is considered the largest initiative between private and public sectors within

Europe and contains around 47 projects, including OncoTrack, among others, [Kamel et al.,

2008]. The OncoTrack10 project combines information on genetic and epigenetic events

specific to CRC with diverse computational modelling strategies targeted to identification

of biomarkers that can be used in personalised therapy regimes and also in prognostic strate-

gies for CRC, [Elsner, 2011].

These world-wide initiatives also involve rapid advances in high-throughput technolo-
4Roadmap Epigenomics Project: url: http://www.roadmapepigenomics.org/
5BLUEPRINT-Epigenome Consortium (2011): url: http://www.blueprint-epigenome.eu.
6IHEC: (launched in 2010); url: http://ihec-epigenomes.net/.
7ICGC (launched in 2008): url:https://icgc.org/.
8TCGA Project (launched in 2005); url: http://cancergenome.nih.gov/.
9IMI was launched in 2008 under the European Union and the European Federation of Pharmaceutical

Industries and Associations; url: http://www.imi.europa.eu/content/home.
10OncoTrack: url: http://www.oncotrack.eu/.
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gies, (e.g. microarrays and next-generation sequencing (NGS)), used for genomics and

epigenomics data analysis; thus, information on micromolecular events at genome-wide

scale is now more accurate and more efficiently-obtained (from both cost and duration per-

spectives) than several years ago. However, differences between microarrays and NGS are

evident and any choice of technology must consider limitations and advantages of applica-

tion type. For example, while NGS can explore larger areas in shorter time-periods than

microarrays, the former are more expressive than the latter, [Metzker, 2009]. Excellent

recent reviews of the features of these technologies are included in Harrison and Parle-

McDermott [2011]; Rivera and Ren [2013]; Soon et al. [2013] and references therein, and

an overview of NGS-based technologies applied to epigenetic events patterns is illustrated

in Figure 3.2. While full discussion of epigenetic technologies is beyond the scope of this

Thesis, the next subsection aims to provide a summary of the most common techniques

applied to investigate DNA methylation (DNAm) and histone modification (HM).

Figure 3.2: A summary of the NGS-based technologies developed for epigenetics analyses
over the recent years. Reprinted from Cell, Vol. 155 (1), Rivera, C.M. and Ren, B., Mapping
Human Epigenomes, Pages No. 39-55, Copyright (2013), with permission from Elsevier.

3.2.2 Techniques and methods for DNA methylation and histone modification

assay

Given their importance both in normal human system operation, (e.g. cell differentiation),

and abnormally perturbed systems, (e.g. cancer), DNAm and HM have been intensively

studied from both quantitative and qualitative perspectives over recent years, [Coleman and

Rivenbark, 2006; Soon et al., 2013]. Several of the principal technologies used to explore
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these epigenetic mechanisms are described in the next paragraphs.

Methods for DNA methylation analysis DNAm analysis is highly dependent on the

goal of the study, so that methods applied focus on two major directions, namely gene

specific and genome-wide methylation, [Esteller, 2007; Shen and Waterland, 2007]. A

classical method for global DNA methylation quantification is High-performance liquid

chromatography, (HPLC). Although highly-reproducible, HPLC requires large amounts of

DNA, [Oakeley, 1999], so a most important development in DNAm analysis (and in can-

cer epigenetics), was the ‘bisulfite’ approach. Specifically, unmethylated cytosine from a

DNA sequence is transformed to the corresponding uracil base after sodium bisulfite appli-

cation and can be separated further by methylated cytosine, [Esteller, 2007]. In addition,

the bisulfite treatment combined with e.g. the polymerase chain reaction, (bisulfite PCR)

can approximate global DNAm levels using relatively little DNA, [Esteller, 2007], and can

measure PMR (the percentage of methylated reference or degree of methylation) for a spe-

cific gene in malignant systems, [Ogino et al., 2006a]. A quantitative real-time PCR method

(MethyLight) was introduced to assay the promoter methylation degree for different genes,

(such as MGMT, MLH1, CDKN2A:p16 in colon cancer), [Ogino et al., 2006a]. Alterna-

tively, the PMR average (PMRA) measurement can be applied in some experiments, where

PMR values for a specific gene show variation across multiple runs, [Coleman and Riven-

bark, 2006]. Recently, genome-wide DNAm investigations have proved possible through

NGS-based methods such as reduced representation bisulfite sequencing (RRBS), MethylC-

seq, methylated DNA immunoprecipitation, (MeDIP-seq), which benefit from the paralleli-

sation strategies specific to NGS technologies, (reviewed in Rivera and Ren [2013]; Soon

et al. [2013]).

Methods for Histone modification analysis Two major approaches used for HM anal-

ysis are I) Mass Spectrometry, which requires histone digestion, (reviewed in Witze et al.

[2007]), and II) Chromatin immunoprecipitation (ChIP), which can be applied for i) gene-

specific analysis, e.g. ChIP-qPCR, or ii) genome-wide analysis, e.g. ChIP-chip, (ChIP
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combined with microarrays), ChIP-Seq, (i.e. ChIP combined with NGS technologies). Of

fairly recent introduction, ChIP-Seq is considered a powerful and efficient technique given

its fast processing-time and genome-accessibility features, (reviewed in Schones and Zhao

[2008]).

Large amounts of data on genomics and epigenomics are being generated in Cancer re-

search and collective efforts are being made to integrate this information in specialised

resources, with a view to dissemination through the scientific community. Several of these

important databases related to cancer mechanisms are reported in the next subsection.

3.2.3 Databases on genetic and epigenetic events

Over the last few decades, databases that focus on aspects of tumour pathways have in-

creasingly been developed and populated. These include major resources such as i) Gene

Expression Omnibus (GEO)11, ii) KEGG PATHWAY12, and smaller dedicated efforts, de-

veloped by localised groups, such as iii) Embryonic Stem Cells Database, (ESCDb)13 and

iv) StatEpigen14, and some of them are briefly described in the next paragraphs as such data

constitute the primary support for information on cancer mechanisms, considered for the

Colorectal Cancer Model presented in this Thesis. Information on a more comprehensive

list of databases consulted for the current project is included in Table C.2, (in Appendix C).

GEO is a large public repository on genomic and epigenomic data generated by high-

throughput technologies and contains two major components, namely GEO DataSets, (stor-

ing both original and curated data), and GEO Profiles, (providing only curated information).

Data retrieval is facilitated by an advanced searching system that integrates attributes such

as author, studied organism, type of the applied technology and targeted gene name.

KEGG PATHWAY is a database-component from the Kyoto Encyclopedia of Genes

and Genomes (KEGG) resource, containing data on pathways involved in different human
11GEO is developed by the National Center for Biotechnology Information, US.
12KEGG PATHWAY is developed by the Kanehisa Laboratories, Japan.
13ESCDb is developed at the Bioinformatics, Algorithmics, and Data Mining Research Group, Estonia, [Jung

et al., 2010]. url:http://biit.cs.ut.ee/escd/
14StatEpigen was developed by SCI-SYM Research Center, Dublin City University, Ireland.
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diseases. KEGG resource includes a collection of databses that provide information at

molecular, gene and system levels in addition to data on drug and human diseases, (e.g.

KEGG GENE, KEGG DRUG, KEGG DISEASE, reviewed in Kanehisa et al. [2014]).

StatEpigen is a manually - curated database that has been designed to provide specific

information on conditional relationships between genetic and epigenetic events affecting

various genes at different pathology phenotype levels, [Barat and Ruskin, 2010]. Although

currently specialised to colon cancer research, StatEpigen also contains data on other cancer

types, (such as stomach, lung, liver).

In this section, an overview of the context, world-wide of Cancer Epigenetics research

in recent years, was provided. In addition to improving technologies and generating mi-

cromolecular event data, a number of computational and mathematical models has been/ is

being developed in order to explore human cancerous systems. The next section elaborates

on some of these modelling approaches, applied to biological systems, but specifically as

these can be used to address CRC development.

3.3 Previous Model development and related analyses

Computational and mathematical approaches can be applied to translate biological ques-

tions into formal algorithmic languages and to explore various hypotheses related to both

normal and abnormal biological systems. This can help understand the aetiology of com-

plex diseases and their evolution and to propose new research directions and therapeutic

strategies. Major classes of mathematical and computational models include i) discrete

versus continuous (depending on the way of changing variable states, i.e. at specific time

points or continuously over time), ii) static versus dynamics, (given by system property of

evolving over time), iii) deterministic versus stochastic (probabilistic) models; (if a model

does not include any probabilistic component is considered deterministic; otherwise, it is a

stochastic model). Stochastic models are used for prediction and estimation, (given that the

outcome is random), and are developed using methods such as Markov chain, Monte Carlo,
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Bayesian network, (reviewed in Wilkinson [2009]).

Various modelling approaches, (including construction of Boolean and artificial neu-

ral networks; support vector machines and K-nearest neighbours; Bayesian methods and

decision trees; agent-based and multi-scale modelling), have been applied previously to

investigate the complexity of tumour phenomena, (reviewed in e.g. Bock and Lengauer

[2008]; Tracqui [2009]; Lowengrub et al. [2010]; Lim et al. [2010]; Rejniak and Anderson

[2011]; De Matteis et al. [2013]; Johnson et al. [2013]; Wang et al. [2014]). Details for

several of these, (including Bayesian network, agent-based, logistic and multi-scale mod-

els), are presented briefly in this section, as these constitute the basis for the computational

components developed in this Thesis. Specifically, in targeting the ultimate objective of

investigating colorectal tumorigenesis by linking microscopic effects to macroscopic out-

comes, the Bayesian network is the fundamental layer of the E-G Network Model, (Chap-

ters 4 and 5), the agent-based model approach describes the dynamics of the AgentCrypt

model, (Chapter 6), and logistic modelling features have been integrated in LogisticCrypt,

(Chapter 7). Examples of models, based on similar principles, that have been applied to

other biological systems are also provided.

3.3.1 Bayesian Network

Concept formalism A Bayesian network, (BN), is effectively a probabilistic graphical

model that describes joint and conditional probability distributions for a set of variables X

= (x1, x2, .., xm). Formally, P(xi | xj) is interpreted as the probability of xi given xj , (xi,

xj ∈ X), [Heckerman, 1998; Lucas et al., 2004]. The network is graphically represented

by a directed acyclic graph, where each node represents a variable or group of variables.

A directed edge, (i.e. an arrow), between two nodes signifies conditional dependence be-

tween the variables, [Heckerman, 1998; Lucas et al., 2004]. Additionally, the absence of

an arrow between two nodes indicates that no reliable information is available on the con-

ditional relationship between those variables, [Lucas et al., 2004]. A node ni is defined to

be the parent for node nj if there is a direct influence between ni and nj , illustrated by an

arrow ni −→ nj in graph, (with the set of parents for the node nj denoted as Parents(nj)).
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Consequently, the node nj is referred as a child for ni. The probability values of the con-

ditional dependencies between a node child and its parents are defined by a conditional

probability table. A BN follows the Markov assumption such that a variable depends only

on its parents, i.e. is independent of the rest of the variable set. Thus, the formula used to

describe the joint probability among a set of variables, X = (x1, x2, .., xm), can be simplified

as follows:

P (X) =
∏

i=1,m

P (xi | Parents(xi)) (3.1)

where the index i = 1..m runs over all m nodes in the BN. An example of a (very simple) BN

for a set of five variables, (A, B, C, D, E), is illustrated in Figure 3.3. Considering formula

3.1, the probability for the given variable set is:

P (A,B,C,D,E) = P (C| A)× P (D| A, B)× P (E| D)× P (A)× P (B) (3.2)

Figure 3.3: An example of a small Bayesian network

The BN approach can encode conditional relationships between genes, allowing in-

tuitive representation for input data, as well as handling noisy and incomplete data sets,

(common to biological systems). In addition, BN can handle continuous, (non-integer) val-

ues in the [0, 1] range, while a Boolean network can integrate only discrete (and binary)

values. However, during framework development for any realistic problem, a BN requires

initial knowledge of many probabilities, [Heckerman, 1998], and it is limited by exclusion
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of cycles, (see definition); so that, during development, methods for cycle avoidance and

removal must also be considered. Nevertheless, ab initio models based on BN-approaches

have been developed to investigate diverse research questions and hypotheses. Some exam-

ples follow.

Examples of BN models BN models have been applied successfully in different fields

requiring diagnosis or forecasting, e.g. Heckerman et al. [1995]; Lucas et al. [2004], and

where prior knowledge on data causality was available. In biomedicine and bioinformatics,

such approaches have been used for prediction of i) protein-protein interactions in yeast

and in other model systems, based on both homogeneous and heterogenous data types, (e.g.

Jansen et al. [2003]; Troyanskaya et al. [2003]; Browne et al. [2009]); ii) functionality for

a newly-identified set of proteins in the Drosophila system, [van Bemmel et al., 2013], and

iii) mutation interdependencies in different cancer types, [Gerstung et al., 2009], amongst

others. In addition, BNs have been constructed to study conditional relationships between

different protein types found in chromatin, (e.g. van Steensel et al. [2010]), in various his-

tone modifications, (e.g. in S. cerevisiae, [Cui et al., 2011]), between histone methylation

and gene expression, (e.g. Yu et al. [2008]), between gene expression levels, [Friedman

et al., 2000; Hartemink et al., 2002; Pe’er et al., 2002], and to compare HM and DNAm pat-

terns at CpG islands, (e.g. Kim and Jung [2009]; Lv et al. [2010]). The BN approach has

been applied also for improving protein-protein interaction prediction using Gene Ontology

hierarchies, [Wang et al., 2010], for estimating DNAm levels using data from experiments

based on the methylated DNA immunoprecipitation technologies, [Down et al., 2008], as

well as for identifying miRNA profiles specific to certain cancer types based on compara-

tive analysis of 51 solid cancers and leukaemia, and corresponding samples from normal

tissues, [Volinia et al., 2010]. Moreover, BN models have been used to address cancer

type-specific hypotheses; for instance, in breast cancer, for predicting microcalcifications

15, (e.g. Burnside et al. [2006]), assisting mammography results and investigating cancer

risk development, (e.g. Rubin et al. [2004]; Cruz-Ramı́rez et al. [2007]; Maskery et al.
15Tiny abnormal flecks that usually appear in the female human breast and can be a cancer indicator
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[2008]).

3.3.2 Cellular Automata & Agent-based Model

Given the relationship between Cellular Automata and Agent-based Modelling, the compu-

tational approach is described for both as follows.

Concept formalism The Cellular automaton (CA) is a discrete model usually visualised

as a set of identical cells, which are distributed on a one, two or many-dimensional grid

and can be found in a discrete and finite number of states. At each time-step, every cell

changes its state as a result of a transition rule, which takes into account its previous state

and information received from its neighbours. One well known and early 2D CA appli-

cation is Conway’s “Game of Life”, where cells can be found in two states, namely alive

and dead, and have eight neighbours each, [Conway, 1970]. In this example, the state of

a cell is decided based on the number of its neighbours; for example, a live cell with less

that two neighbours dies, while one with exactly two lives. Obliviously, there are many

interpretations of this Game and the basic concept was used at an early stage to describe

e.g. competition among species, different models of propagation and similarly, (e.g. Sil-

vertown et al. [1992]; Sirakoulis et al. [2000]). Abundant examples occur in nature, in

seashell patterns, leaf gas exchange and other plant dynamics, in physical phenomena such

as avalanche and sandpiles formation, (e.g. Peak et al. [2004]; Kronholm and Birkeland

[2005]; Cervelle et al. [2007]; Coombes [2009]). Indeed the question has also been raised

at to whether The Universe is a CA and there are a number of supporters of CA-physics.

Importantly, the cellular automata concept has also found many applications in information

theory and at Biology - Computer Science interface, whether e.g. in database searching,

in evolutionary & genetic algorithms, in detection of errors, (reviewed in Ganguly et al.

[2003]). CA models are deterministic models and a significant extension was introduction

of stochastic CA, where rules are updated based on probabilities. Stochastic CA models

have been developed recently to describe e.g. cell dynamics and infection spread, [Garijo

et al., 2012; Duan et al., 2013]). In consequence, the flexibility of the CA approach for
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multi units/ cells is well-established.

An extension to CA concepts, agent-based modelling (ABM) refers to the representation

of a system by its constituent basic units to which attributes can be assigned. ABM is a

discrete and dynamic approach that describes interactions between individuals, taking into

account also their features and environment influences. Specifically, ABM can be applied

to heterogeneous complex systems, described by the following typical characteristics: i)

large number of different types of entities, (denoted as agents); ii) agent interaction, (or

‘social’ ability): agents can exchange different types of information, (e.g. information on

their location, internal state); iii) agent autonomy, (decision-making capability): agents can

operate without intervention from user, i.e. they have a degree of self-determination with

respect to their actions; iv) agent reactivity: agents can respond to stimuli received from

their environment, (e.g. can change their position) and v) agent adaptation: agents follow

an adaptive process, (or self-learning capability), [Bandini et al., 2009; Macal and North,

2010] and references therein.

In biology, there is often a need to describe basic processes that direct individual ac-

tions, (e.g. cell division, migration), and to aggregate these in order to understand higher

level dynamics, (e.g. tumour spread to other locations). ABM provides a natural manner

to characterise complex heterogeneous system behaviours following a bottom-up approach

and can also integrate emergent phenomena. In addition, ABM is flexible as agents can

be both ‘rational’ and ‘adaptive’, (can evolve) and can generate new hypotheses. Disad-

vantages of ABM include the need of detailed knowledge of individual behaviour as well

as of assumptions on which behaviour aspects are crucial for overall system investigation

and which can be ignored. In addition, considerable computational expertise is required for

ABM development and significant time has to be allocated for computational simulation

run, given that large systems of e.g. thousands or million of agents can be also modelled

using this approach.
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Examples Over recent decades, CA, (extended form to permit more than two possible

states for cells) and ABM methods have been applied to explore dynamics of different

biological systems including immune systems response to viral infections including HIV16

and M. tuberculosis, (e.g. Mannion et al. [2000]; Ruskin et al. [2002]; Segovia-Juarez

et al. [2004]; Perrin et al. [2006a,b]), drug dissolution, (e.g. Barat et al. [2006]; Bezbradica

et al. [2014]), and human tumour growth, (reviewed in Hwang et al. [2009] and references

therein). In addition, ABMs have been built to analyse e.g. cell dynamics in systems with

different calcium concentrations, [Walker et al., 2004], abnormal stem cell proliferation

caused by APC mutation, [Boman et al., 2001], aberrant methylation and gastric cancer

initiation induced by bacterial infection, [Perrin et al., 2010], and intestinal crypt dynamics,

[Pitt-Francis et al., 2009]. An excellent review for intestinal crypt and CRC applications,

drawing on these modelling techniques, is provided in De Matteis et al. [2013].

3.3.3 Logistic Model

The growth rate of a biological population in an ‘ideal’ environment, (e.g. no limitations of

food or space), is proportional to population size, i.e. a certain number of new individuals

is produced per unit of time. In general, this rate is described by simple differentiation

equations, (first and second order), with population size represented by e.g. exponential

forms, (unconstrained natural growth):

dP/dt = r × P (3.3)

P (t) = P0 × ert

where P = population as a function of time t, P0 = population at time t = 0, and r = the

proportionality constant. In a logistic model, the aim is to define the relations between

the constituent elements in terms of how these affect e.g. growth or decline, constraints

given by e.g. limited space and food resources. Inter- and intra-specific competitions refer,

respectively, to interactions between more than one and within one species using the same
16HIV = human immunodeficiency virus
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resources. Consequently, in the present instance, we define i) intra-specific competition in a

population of cells as relationships between current and maximum cell population size, and

ii) inter-specific competition between more cell type populations in the intestinal crypt as

relationships between current and maximum cell numbers of the whole crypt, (i.e. between

space, currently-occupied by compound cell populations, and crypt capacity). Of interest,

from the viewpoint of work presented here, is the potential to use logistic model to explore

deregulations of cell population size over time leading to increased incidence of major crypt

phenomena such as ‘crypt fission’ and the ‘bottleneck effect’, (Section 2.6), associated with

CRC development risk.

Concept formalism The population with intra-specific competition has been described

mathematically by the density-dependent coefficient, (DDC), [Sinclair and Pech, 1996],

using equation 3.4

DDC =
K −N
K

(3.4)

where N is the population size at a certain time, K is denoted as the carrying capacity (and

represents the maximum allowed size for a species within a specific environment, i.e. has

a constant value in a specific environment), [Hui, 2006]. The rate of population growth

in a system with intra-specific competition is given by the product r × DDC, where r is

the population growth rate in a similar system without intra-specific competition; DDC is

calculated as for Equation (3.4), and takes a value in the [0, 1] range, (given N ≤ K).

Thus, by including the DDC, the population growth rate slows down as population size (N)

increases, i.e. the growth rate depends on the density of the population.

Examples Mathematical models have been built to examine abnormal crypt dynamics,

(reviewed in Van Leeuwen et al. [2006] and references therein), [Nowak et al., 2002; John-

ston et al., 2007], for cell migration mechanisms, (e.g. Simpson et al. [2007] and references

therein), and to investigate stem cell growth, determined by de-regulation in methylation

patterns over time, [Yatabe et al., 2001]. Moreover, considering cancer as a heterogeneous
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complex system (having multiple species), a class of mathematical models, which focuses

on both intra- and interspecific competitions, has been applied in studies for gene therapy,

[Tsygvintsev et al., 2013], tumour-immune cell relationship, [Nagy, 2004], carcinogene-

sis mutations, [Foryś, 2009], and colonic crypt population growth, [Smallbone and Corfe,

2014].

3.3.4 Multi-scale modelling

Concept formalism Multi-scale modelling have attracted increased attention in recent

years as further improvements in computing power have offered the potential to view sys-

tems rather than just components of these. As such, the Systems Biology approach to cancer

research, with the ultimate aim of facilitating investigation and treatment of malignancy is

gaining momentum. Multi-scale descriptions span the micromolecular level, (i.e. genetic

and epigenetic landscape), through molecular and cellular levels, (e.g. signalling pathway

and cell division mechanisms, respectively), to macroscopic scales, (where tumour develop-

ment can be observed), [Deisboeck et al., 2011]. Thus, major advantages of the multi-scale

modelling approach include the possibility of including experimental data at all system

levels, exploring inter-scale phenomena interactions and testing drug effects on the whole

body or organ. Although considered a powerful approach, multi-scale computational mod-

elling presents many major challenges, including the complexity of different temporal and

spatial scales as well as multiple parameters required for system description. Specifically,

both rapid dynamics and small spaces, (with alterations that can occur at nanosecond scales

inside cell nucleus), and low dynamics and large spaces, (e.g. metastasis affecting more

than one tissue, phenotype change over years or even decades), must be accommodated.

Given these demands, different modelling strategies have been used to describe biological

phenomena at various scales. Specifically, network-based models have been developed to

characterise the micromolecular level, ordinary differential equations have been used for

investigations at molecular levels, while both partial differential equations and the agent-

based modelling approach have been applied for exploring mechanisms at cellular level.

Finally, continuous models have been built to describe cell population dynamics at tissue
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level. In consequence, “one size fits all” is an unlikely hypothesis.

Examples Multi-scale models have been developed to explore e.g. the therapeutic impact

of cytostatic agent use in cancer development [Ribba et al., 2006], tumour angiogenesis17,

dynamics of avascular tumour progression over time, alterations during the development of

lung, breast and prostate cancers and brain tumours, (reviewed in Mantzaris et al. [2004];

Peirce [2008]; Tracqui [2009]; Deisboeck et al. [2011]; Chakrabarti et al. [2012] and ref-

erences therein). In CRC research, multi-scale computational models have been developed

for exploring e.g. the aberrant crypt foci18 expansion in both normal and abnormal colon

systems, or relationships between Wnt signalling pathway, cell neighbour influences and

cell cycle activity in intestinal crypts, [Van Leeuwen et al., 2009; Figueiredo et al., 2013].

In a recent multi-scale model for Epigenetics research, [Przybilla et al., 2014], the authors

conclude that alterations in gene transcription and epigenetic inheritance mechanisms may

be a cause of decline observed during ageing in hematopoietic stem cells. In consequence,

developments are exciting, but non-trivial to achieve.

3.3.5 Complexity of Interdependent Epigenetic Signals in Cancer Initiation

The Colorectal Cancer Model, described in this Thesis, was proposed as part of the Com-

plexity of Interdependent Epigenetic Signals in Cancer Initiation, (CIESCI), project, a sci-

entific collaboration between three main partners: the Centre for Scientific Computing and

Complex Systems Modelling, (SCI-SYM)19, School of Computing, Dublin City Univer-

sity, the Bellvitge Institute for Biomedical Research, (IDIBELL)20, Barcelona, (Spain), and

the Bioinformatics, Algorithmics, and Data Mining Research Group (BIIT)21, Institute of

Computer Science and Estonian Biocenter, University of Tartu, (Estonia). The CIESCI

project aimed to investigate interdependencies between epigenetic events related to can-
17angiogenesis = formation of new blood vessels from vessels that exist already; it has been associated to

benign to malign transformation.
18Aberrant crypt foci is a colon tissue phenotype prior to adenomas occurrence that detected with screening

methods.
19SCI-SYM: url: http://sci-sym.dcu.ie/.
20IDIBELL: url: http://www.idibell.cat/.
21BIIT: url: http://biit.cs.ut.ee/.
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cer initiation, incorporating three main elements: i) laboratory experiments (carried out at

IDIBELL); ii) data mining (establishing pipeline and analysis of new data at BITT); iii)

computational models (developed at SCI-SYM).

The SCI-SYM contribution to this project is also linked to other projects on computa-

tional modelling for molecular events in malignant diseases as well as in-depth bioinfor-

matics investigations of curated data from primary and secondary sources, (represented by

the StatEpigen database described in Section 3.2.3). In the former, an agent-based model

was developed by DCU and collaborators to determine the risk of gastric cancer from con-

sideration of the aberrant DNA methylation level induced in cells, following infection with

Helicobacter pylori, [Perrin et al., 2010]. In addition, a framework has been built to give

better insights on interdependencies between micromolecular events, (such as DNAm and

HM), in abnormal situations, [Raghavan and Ruskin, 2011].

Computational and mathematical modelling has been promoted strongly as a powerful

field in Cancer Epigenetics research, [Bock, 2012]. Given recent technological progress,

computational models are needed to explore features of biological systems, which incor-

porate large amounts of data, and to highlight evidence of tumour development. Several

modelling approaches were outlined here, (with a focus on intestinal tumours), demonstrat-

ing that investigation can be performed at single or multiple scales, for specific or general

systems. In additional to offering new insights, results from computational analyses of

initial queries can indicate new therapy strategies and research directions.

3.4 Epigenome-Wide Association Studies

One such new direction is that of EWASs or Epigenome-Wide Association Studies. Major

features and limitations of EWASs are briefly reviewed in what follows, providing mo-

tivation for the cross-comparative computational analysis on DNAm in intestinal tissues,

(Chapter 6).

EWASs aim to detect genome-wide differences in epigenetic marks that can be corre-
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lated with predispositions to cancer development, [Rakyan et al., 2011; Verma, 2012; Mill

and Heijmans, 2013]. Given that DNAm has been reported to be more stable in nature

than histone modification, [Cedar and Bergman, 2009], and that a range of high-throughput

technologies has been developed for DNAm analysis, EWASs have focused mainly on iden-

tification of DNAm differences that can be associated with disease phenotype, [Verma,

2012]. DNAm patterns specifically characterise tissues, [Rakyan et al., 2011], and varia-

tions, reported on measurements performed between tissues within the same individual, (i.e.

intra-individual, inter-tissue), are noted to be much larger than those recorded on the same

tissues, for a group of individuals, (i.e. inter-individual, intra-tissue), [Mill and Heijmans,

2013]. While considered to be a highly promising development, with regard to epigenetic

variation as a cancer biomarker, the EWAS approach faces several difficulties, not least

sample selection. Intrinsic limitations apply to collection of samples from the same group

of patients, especially from internal tissues. In consequence, integrated samples from more

accessible tissues such as blood or buccal, (e.g. Lowe et al. [2013]; Shenker et al. [2013];

Petersen et al. [2014]), have been used to examine the different biological hypotheses to

date. For instance, an association between body-mass index and methylation level varia-

tions has been reported in a recent study performed on blood and adipose tissues, [Dick

et al., 2014]. Thus, given accessibility, white blood count is one of the most commonly

used tissues in EWASs; however, in this case, cell heterogeneity must be considered during

interpretation of DNA methylation analysis findings, [Paul and Beck, 2014]. Another ma-

jor challenge for EWAS viability is selection of the most significant patient-category for a

given research question, (i.e. based on personal characteristics such as ageing and gender,

as well as lifestyle features such as chemical exposure and tobacco usage), [Verma, 2012].

As an illustration from one such study, white blood cell samples for a group of breast and

colon cancer patients, (described in Shenker et al. [2013]), were assessed to investigate the

impact of smoking on epigenetic alterations during cancer development.

Computational modelling offers some possibilities of overcoming these restrictions as

examination of a range of epigenetic patterns and variations in internal tissues over time can

be simulated from available data. The potential for computational comparisons on intra-
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and inter-tissue DNAm variation in the intestinal systems is discussed in the next section.

3.5 Limitations and proposed focus

Although Cancer Epigenetics research is gaining ground, computational models that assim-

ilate information on epigenetic alterations in human malignancies are still relatively few.

One reason for this is that in silico investigations of the epigenetic mechanisms are per-

formed usually for ‘generic’ biological systems. While exploration of common features

among malignancies provides an overview of the tumour pathways, the advantages of can-

cer type-specific models would be development of personalised treatment strategies (aimed

at improvement in therapy efficiency and reduction of drug adversity). Such extended mod-

els would also permit information on individual characteristics (such as ageing and gender)

and on environmental features (such as chemical radiation and tobacco usage) to be in-

cluded. Further, given the EWASs problems with internal tissue sample collections, no

comparison on epigenetic variation (in human intestinal systems) is currently available (or

known of). Small intestine cancer incidence is considerable lower than that of CRC, with a

global 2014 estimate of around one-sixteenth the number of new cases compared with the

latter, [SEER, 2013a,b]. While this difference is partially explain by the presence of toxic

residuals at colorectal level, as well as morphological differences between intestinal tissues,

(e.g. high colon cell division rate), the ways in which tissue-specific mechanisms affect epi-

genetic patterns leading to disease development are not well understood yet. Finally, while

contribution of epigenetic therapy is already recognised in some treatment strategies for

blood cancers and, potentially, for solid tumours, (Section 2.7), the analysis of the impact

of methylation inhibitors in CRC systems over time is still limited despite preliminary work.

Given these limitations on the state-of-the-art, a computational model following a hy-

brid approach, (BN, agent-based and logistic), is proposed in this Thesis to investigate

human CRC dynamics, with a focus on DNAm level modifications for three main system

layers. These are: i) micromolecular, (genetic and epigenetic mechanisms), ii) cell (crypt

inter- and intra-communications), and iii) cell population, (crypt phenomena). The influ-
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Figure 3.4: Simplified representation of the relationships between the Colorectal Cancer
Model developed in this Thesis and other CIESCI-related work developed at SCI-SYM

ences of individual characteristics, environmental features and potential epigenetic inhibitor

presence are also considered. Moreover, a theoretical comparison between human colon

and another gastrointestinal tract tissue, (small intestine), for DNAm changes in both nor-

mal and abnormal systems is also undertaken. The relationship between the dynamic CRC

model proposed here and other CIESCI-related projects, developed in SCI-SYM, are illus-

trated in Figure 3.4. Specifically, input data on micromolecular events affecting different

genes in CRC are drawn from the StatEpigen database, while information on DNAm and

HM levels can be provided by the micromolecular framework described in Raghavan and

Ruskin [2011]. Moreover, given similarities between the stomach and colon crypt struc-

tures, the agent-based model on gastric cancer described in Perrin et al. [2010] can be used

as a proof of concept for CRC dynamics, (Chapter 6).

Although toolkits for developing BN, agent-based and multi-scale models exist, the

computational models for CRC dynamics described within the next chapters follow ab ini-

tio developmental strategies. Both commercial and free tools, (e.g. Analytica, BayesiaLab,
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Chordalysis, GeNIe), have been developed for generating BN-based applications over re-

cent decades. (A larger list of these tools is included in Table C.3, in Appendix C.)

The gRain package from Bioconductor also provides functionality for generating BNs,

[Højsgaard, 2012]. In addition, a comprehensive review of toolkits available to generate

ABM, (including major ABM-frameworks such as Repast22, NetLogo23 and Swarm24), is

provided in Nikolai and Madey [2009]. Authors have considered several criteria for clas-

sification including i) programming language used for model implementation, ii) operating

system (OS) needed for running the framework, iii) licence options, iv) customer/user sup-

port availability and v) application domain, (e.g. biological, social, educational systems).

However, although such tools are widely-used, (e.g. GeNIe has around 2000 users), their

applicability is less good for specialised studies where for instance, integration of heteroge-

neous data types or different dynamics among the variable sets are needed. An analysis of

these software solutions potential, (for both BN and ABM), including known limitations,

[Nikolai and Madey, 2009], plus other issues, parallelisation options, were considered. This

indicated that such toolkits were not suited for the purpose of this study, since the computa-

tional components of the Colorectal Cancer Model need to have the same configuration set

with respect to the programming language used, (e.g. C++), to permit simulation running

on both Windows and Linux OS, inclusion of additional libraries, (e.g. MPI25), and con-

nectivity of developed components. Open-source software for building multi-scale models

also exists. For instance, Charste26 is a platform developed in C++, supported by Linux,

and tailored to modelling i) cardiac behaviour and ii) cell population dynamics related to

cancer development with an initial focus on CRC, [Mirams et al., 2013]. However, although

Charste has been used to develop several multi-scale models for CRC, (e.g. Van Leeuwen

et al. [2009]; Fletcher et al. [2012]), it does not provide functionality suitable for describing

genetic-epigenetic interdependencies at the micromolecular scale.
22Repast url: http://repast.sourceforge.net/
23NetLogo: url: https://ccl.northwestern.edu/netlogo/
24Swarm: url: http://savannah.nongnu.org/projects/swarm
25Message Passing Interface (MPI) is a standardized library for message-passing and includes functions that

permit code paralellisation.
26Charste stands for Cancer, Heart and Soft Tissue Environment, url: http://www.cs.ox.ac.uk/chaste/.
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3.6 Summary

This chapter builds on the biological background summarised in Chapter 2 to describe com-

putational and mathematical modelling approaches used to investigate abnormal biological

systems. To address gaps, the development of a hybrid computational model for human

CRC dynamics is proposed, to be developed for three main layers, (namely micromolec-

ular, cellular and tissue levels). The next chapters describe the components of the model

framework, starting with the Bayesian network for genetic and epigenetic events in CRC.

52



Chapter 4

Epigenetic-Genetic (E-G) Network

Model

4.1 Introduction

The E-G Network Model, the development of which is described in this chapter, is a novel

framework for genetic and epigenetic events observed at different stages of colorectal can-

cer development, with a focus on gene relationships and tumour pathways. Specifically, the

E-G Network targets the first research objective of our research, i.e. “To quantify the impact

of genetic and epigenetic interdependencies on the methylation level in CRC development

and to estimate the influence of ageing and gender with respect to methylation level in ab-

normal colon cells”, (Subsection 1.2.1). The E-G Network is the first component of the

overall Colorectal Cancer Model (as illustrated in Figure 4.1) and its potential connection

with other components developed during this research is discussed in Chapter 8. Given the

advantages of Bayesian networks, (subsection 3.3.1), this approach can be used to describe

abnormal micromolecular events and their interdependencies in the CRC context. The gene

framework integrates empirical data on conditional relationships between molecular signals

found in CRC development, obtained from the StatEpigen database, [Barat and Ruskin,

2010]. In addition, information on signalling pathways involved in CRC development, (e.g.
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Figure 4.1: Structure of the Colorectal Cancer Model - focus on the E-G Network model
The relationships between model components may refer to R1) average methylation level
for gene network / intestinal cell; R2) patient features; R3) intestinal crypt dynamics, ex-
plored following bottom-up and top-down approaches.

Wntβ catenin, MAPK), is included from the KEGG Pathway database, [Kanehisa et al.,

2014], and available literature. Known to have a crucial role in cancer development, DNA

methylation and how it changes constitute the main objective of the E-G Network Model.

The base E-G Network is described in this chapter, (with its extensions presented in

Chapter 5). Specifically, the data set and gene framework structure, together with an

overview of the interdependencies between the gene network layers, are detailed in Sections

4.2 and 4.3. The algorithm proposed for the identification of the most plausible pathways

in a given gene network is introduced in Section 4.4. The expressions for gene methylation

update and major assumptions made in model formulation, (such as the value-ranges con-

sidered for DNA methylation for the cancer stages), are specified in Sections 4.5 and 4.6.

The network dynamics and the main contributions and limitations of the E-G Network are

also discussed.

4.2 Data set

The E-G framework consists of a network built to represent gene relationships, based on

empirical statistical data from StatEpigen. The gene relationships are designated: simple,
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(recording incidence of a micromolecular event affecting a gene, given the phenotype of the

analysed samples), and conditional, (giving pairwise affected gene dependence at certain

cancer stages). These data are used to inform the set of conditional interdependencies for

the Bayesian network, (see Figure 4.2). In general, the conditional relationships (CR) from

StatEpigen are expressed mathematically by:

CR(G2, G1, e2, e1, s, c) = P ((G2, e2)|(G1, e1), s, c) (4.1)

i.e. the probability of an event e2 to occur for gene G2 given the presence of the event e1

for gene G1, in the stage s of cancer type c. Similarly, a simple relationship (SiR) is the

probability that event e occurs for gene G at stage s of cancer type c, i.e.

SiR(G, e, s, c) = P ((G, e), s, c) (4.2)

Moreover, in the current thesis, a conditional relationship between two molecular events,

observed for the same gene, is referred to as a ‘self-relationship’ (SeR), being expressed

mathematically by:

SeR(G, e2, e1, s, c) = P ((G, e2)|(G, e1), s, c) (4.3)

i.e. the current micromolecular modification e2 depends on the previous event e1 ob-

served for the same gene G. This is illustrated by an example for the APC gene, a tumour-

suppressor gene (TSG) that is found to be frequently mutated and/or hypermethylated in the

very early stages of colon cancer, (see Subsection 2.6). From the StatEpigen data, [Barat

and Ruskin, 2010]:

P (APC mutation | APC H+, adenoma, colon) = 0.538 (4.4)
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which determines

SeR(APC, mutation, H+, adenoma, colon) = 0.538 (4.5)

The numerical values are subject to refinement as further data become available and the

network itself can be subjected to ‘stress-testing’ to determine its reliance on given values,

(i.e. sensitivity analysis).

4.3 Gene framework structure

Structured in three main layers, (micromolecular events, gene relationships and cancer

stages), the E-G Network explores the effect on phenotype of a number of key genetic and

epigenetic factors. These include DNA methylation, (both hyper and hypomethylation),

and histone modifications, combined with tumour pathway information relating to genetic

mutations and gene expression.

While colon cancer is the initial focus, the gene framework is designed to be extended

to other types of cancer. Therefore, more general terms, such as ‘carcinoma in situ’ or ‘in-

vasive carcinoma’ have been used to denote colon cancer stages, instead of more disease-

specific usage. Thus, the gene framework recognizes ‘healthy’ state and three main cancer

stages: carcinoma in situ, invasive carcinoma and metastasis. The interdependence be-

tween current and extended framework levels is illustrated in Figure 4.2, interpreted as

follows:

• The lowest level is that of the micromolecular events, (hyper-/ hypomethylation, mu-

tations, gene expression, histone modification and histone variants), and contains

information seen as ‘external’ input for the gene network. For example, resources

such as GEO, ENCODE, KEGG or COSMIC, (Chapter 3), can be interrogated here

for data on DNA methylation, gene expression and histone modification levels and

for information on mutation and signalling pathways.

• The mid-layer is that of the gene relationships and is represented by the Bayesian
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network, (built based on input from StatEpigen database).

• The final layer is that of ‘cancer initiation and progression’, giving information on

outputs at the network cancer stage. This layer includes three sublevels: carcinoma

in situ, invasive carcinoma and metastasis.

Information on risk factor influence, (such as ageing, gender, heredity, environmental fea-

tures, viral and bacterial infection) in cancer development and the stem cell property should

be ideally integrated in the extended gene framework.

Figure 4.2: Dynamics of the E-G Network Model
The middle layer describes gene relationships associated with three types of cancer, generi-
cally labelled C1, C2, and C3, where G1 to G10 substitute for actual gene labels. Risk factor
influence is also illustrated. Legend: empty circle: gene found in one cancer type, circle
with hatch-shading and grid patterns: gene found in two or three cancer types, respectively.
Edge: gene relationship.

According to the construction methods presented in subsection 3.3.1, a connected graph

is built of genes as nodes, (represented by circles in Figure 4.2). The conditional rela-
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tionship between two genes is denoted by an arrow between the nodes that include those

two genes. Information on conditional gene relationships can be taken from e.g. StatEpi-

gen database, which provides data on genetic and epigenetic interdependencies at different

stages of various cancer types, [Barat and Ruskin, 2010]. Additionally, the node shading

indicates gene affiliation to one or more types of cancer. For example, gene G3, (illustrated

by an empty circle), has been observed in cancer type C1, (e.g. NR3C11 in colon cancer,

[Barat and Ruskin, 2010]). The circle with hatched shading, (e.g. G7), indicates a gene seen

in two types of cancer, such as C2 and C3, (e.g. RASSF1A in lung and stomach cancer), and

finally, a gene that has been identified as being abnormally changed in three cancer types,

(such as KRAS in colon, lung and stomach), is illustrated graphically by a circle with grid

pattern, (e.g. G6). An example of the biological data from StatEpigen that feeds into the

gene layer in Figure 4.2 is shown in Table 4.1; the definition of symbols for these genes

are presented in Table C.4, according to information from the GeneCards Database, [Safran

et al., 2010].

Table 4.1: Genes involved in different genetic and epigenetic events (hypermethylation
(H+), gene expression (GE), mutation (Mut)) in colon, lung and stomach cancer phenotypes

Group
from table

Genes Colon Cancer
(C1)

Lung Cancer
(C2)

Stomach Can-
cer (C3)

G1 CRABP1 Present (H+)
G2 NORE1 Present (H+)
G3 NR3C1 Present (H+)
G4 MLH1 Present (H+; GE)
G5 MGMT Present (H+; GE)
G6 KRAS Present (Mut) Present (Mut) Present (Mut)
G7 RASSF1A Present (H+) Present (H+)
G8 APC Present (H+; Mut)
G9 TP53 Present (Mut; GE)
G10 CDKN2A:P14 Present (H+)

1NR3C1: nuclear receptor subfamily 3, group C, member, [Safran et al., 2010]
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4.4 The d-plausible pathways in gene network - different routes

of cancer development

With respect to pathways linking gene changes, we refer to d-plausible pathways which

consist of sets of inter-related gene modifications that can occur in the gene network with

higher probabilities than a threshold value, calculated based on ‘d’ attribute and the network

structure, (as shown further). Their detection in the E-G Network Model is of particular

interest since they can be studied in association with known signalling pathways for CRC

development, (subsection 2.5). For example, if some genes from a SP are found to lie on a

plausible pathway in a given gene network, then there is a high chance that this SP will be

activated.

In the connected gene network, each node has been labelled with one of three position

attributes: i.e. as a start, middle or final node, based on its position in the current acyclic

graph2. An initial definition of the ‘parent’ and ‘child’ nodes was given (subsection 3.3.1).

Similarly, a gene Gi is defined to be a parent for a gene Gj in the gene network if there

is a conditional relationship CR(Gj , Gi, ej , ei, s, c) in the analysed data, where ei, ej are

the molecular events observed, respectively, for Gi, and Gj at the stage s of cancer type c,

(i, j are indices with value range from 1 to the total number of genes in network). Further,

the gene Gj is referred to as a child for Gi. Hence, a start node is a gene that has no

parents in the gene framework, while a final node is a gene that does not have any children.

Subsequently, a middle node illustrates a gene that has both parents and children, i.e. can

be either argument in two or more different conditional relationships for the given gene

network. Furthermore, if the assumption is made that a pathway is a directional connection

of graph edges, beginning at a start node and containing zero or more middle nodes and

ending in a final node, [Sedgewick and Wayne, 2011], it is relatively easy to determine all

pathways in the gene network. Given this result, the decision on which pathway is more

plausible is made by comparing the pathway score value and the d-Network Threshold

2The gene network is a Bayesian network, which is defined as a directed acyclic graph, where edges describe
dependencies between a set of variables, represented by nodes. The edge weights are given by the values of
conditional probabilities among the set of variables, (subsection 3.3.1).
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(dNT). These are computed as follows.

Pathway score calculation The pathway focuses on the relationships between the ge-

netic and epigenetic changes observed for different genes, (i.e. excluding the ‘self-gene’

relationships, where the molecular event depends on the previous status of the same gene).

The total probability of a set of independent events is given by P = Πn
i=1 Pei , where Pei

= probability of an independent event ei from the considered set, [Heckerman, 1998; Lu-

cas et al., 2004]. Based on this, the probability of a pathway in the gene network can be

given by the product of all compound, conditional gene relationship probabilities and the

simple relationship probability for the start gene. In addition, logarithm in base 10 (log10)

is applied in order to facilitate calculation, (i.e. use sum instead of product). Therefore,

the pathway score is defined as the sum of all logarithms of the compounds, conditional

gene relationship probabilities and the simple relationship probability for the start gene,

multiplied by the pathway contribution coefficient. This last quantity is equal to the ratio

between the pathway length, (n = the number of genes found in the current pathway), and

the total number of network genes, (V). The score of the kth pathway in the gene network

is described by the following expression, (with the variables of interest included in Table

4.2):

SCORE(k) = [log10(SiR(Gk
St, e

k
St, s, c))+

n∑
i=1,j=1

(log10(CR(Gk
i , G

k
j , e

k
i , e

k
j , s, c))]×n/V

(4.6)

Table 4.2: Definition of variables for pathway score calculation, expression (4.6)

Variable name Variable description
Gk
St the start gene of the kth pathway from the network;

ekSt the molecular event corresponding to the Gk
St gene;

Gk
i , Gk

j the ith, jth gene respectively of the kth pathway;
eki , ekj the molecular event corresponding respectively to the Gk

i , to the
Gk
j genes;

n the number of all genes found in the kth pathway;
V the total number of the network genes;
s the stage of cancer for the current pathway;
c the type of cancer for the kth gene pathway.
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D-network definition A d-network in the E-G Network Model is defined to be a network

that has the same structure with a given gene network, (initially built by the E-G Network

Model), with the constraint that all its edges have the same weight value, equal to d, (d ∈ [0,

1]). These weights indicate that the value of every simple or conditional gene relationship

in d-network is equal to d, i.e.:

SiR(Gi, ei, s, c) = d (4.7)

CR(Gi, Gj , ei, ej , s, c) = d (4.8)

∀ Gi, = gene in network, Gj = parent of the gene Gi, i.e. Gj ∈ Parents(Gi), ei, ej = events

corresponding to Gi and Gj , respectively, i, j ∈ [1, V], V = total number of genes from

network, s = cancer stage, c = cancer type. In order to determine the dNT value, the score

for every pathway from the d-network is calculated based on expression (4.6). The highest

value from all these computed scores is assigned as the dNT parameter, which is used in the

decision step.

The d-network was defined in this way in order to highlight the impact of gene pathway

length rather than the compound edge weight values. In real systems, the plausibility of

e.g. three micro-molecular events occurring under specified conditions is higher than that

for say 100 events. For example, if two pathways, Path1 and Path2, with 3 and 100 genes,

respectively, are identified in a d-network of V genes in total, the pathway score, (calculated

with expression (4.6), are:

SCORE(Path1) = (log10d+ log10d)× 2/V = 22/V × log10d; (4.9)

SCORE(Path2) = (log10d+ ..+ log10d)× 99/V = 992/V × log10d. (4.10)

Because log10 d ≤ 0, ∀ d ∈ [0, 1]⇒ SCORE(Path1) > SCORE(Path2). Thus, the shorter

pathway has a higher score (is more plausible) than the longer pathway. Considering this,

comparison with a threshold, based on the former, would provide more accurate information
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on pathway plausibility than using the latter.

Decision on d-plausible pathway If the score of kth gene pathway, SCORE(k), is higher

than the assigned dNT value, then the kth gene pathway is considered a d-plausible pathway

in the gene network. We illustrate with an example.

Example on d-plausible pathway calculation A simple network of four genes, found in

the carcinoma stage of colon cancer, (consisting of APC, MLH1, MCC , CDKN2A:p16)

is represented in Figure 4.3. This network is based on data taken from StatEpigen, [Barat

and Ruskin, 2010], on the simple and conditional relationships in which this set of genes

is implicated. The weight information is given by the empirical probability value of the

gene relationships, (e.g. the weight of the edge between the nodes, MLH1 and APC genes,

is 0.688, equal to the probability of finding APC hypermethylated3 in CRC, given MLH1

hypermethylated, [Barat and Ruskin, 2010]). This set of gene relationships is given by:

P (CDKN2A : p16 HpM+ | carcinoma, colon) = 0.249; (4.11)

P (MLH1 HpM+ | carcinoma, colon) = 0.140;

P (APC HpM+ | CDKN2A : p16 HpM+, carcinoma, colon) = 0.244;

P (APC HpM+ | MLH1 HpM+, carcinoma, colon) = 0.688;

P (MCC HpM+ | APC HpM+, carcinoma, colon) = 0.269;

P (MCC HpM+ | CDKN2A : p16 HpM+, carcinoma, colon) = 0.794,

where CDKN2A:p16, MLH1, APC and MCC are genes involved in CRC development,

(Chapter 2), and HpM+ = hyermethylation.

The three distinct pathways that can be identified in this gene network together with

their score values4, (computed for each of these pathways using expression (4.6)), are:

1. Pathway 1: CDKN2A:p16→MCC;
3Hyper- and hypomethylation refer to increase and decrease, respectively, of methylation.
4Given that probabilities ∈ [0, 1], log10 of these takes values ≤ 0.
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Figure 4.3: Example of a small gene network for carcinoma, colon cancer. Legend: cir-
cle: gene in CRC, edge: conditional relationship between micro-molecular events affecting
different genes.

SCORE (Pathway 1) = [SiR(CDKN2A:p16, HpM+, carcinoma, colon) + CR(MCC,

CDKN2A:p61, HpM+, HpM+, carcinoma, colon)] × 2/4 =

= [log10(0.249) + log10(0.794)] × 2/4 = -0.351;

(Given that two genes are involved in Pathway 1, out of four genes in the gene net-

work, the contribution coefficient for Pathway 1 is equal to 2/4.)

2. Pathway 2: CDKN2A:p16→ APC→MCC;

SCORE (Pathway 2) = [SiR(CDKN2A:p1, HpM+, carcinoma, colon) + CR(APC,

CDKN2A:p1, HpM+, HpM+, carcinoma, colon) + CR(MCC, APC, HpM+, HpM+,

carcinoma, colon)] × 3/4 =

= [log10(0.249) + log10(0.244) + log10(0.524)] × 3/4 = -1.122;

(Three genes are found in Pathway 2, out of four genes in the gene network; thus,

contribution coefficient = 3/4.)

3. Pathway 3: MLH1→ APC→MCC;

SCORE (Pathway 3) = [SiR(MLH1, HpM+, carcinoma, colon) + CR(APC, MLH1,

HpM+, HpM+, carcinoma, colon) + CR(MCC, APC, HpM+, HpM+, carcinoma,

colon)] × 3/4 =
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= [log10(0.140) + log10(0.688) + log10(0.524)] × 3/4 = -0.972.

(Since three genes are included in Pathway 3, out of four genes in the gene network,

contribution coefficient = 3/4.)

The dNT must then be calculated for these gene pathways based on d value. Two

examples of dNT calculation are given, where d value is considered, sequentially, higher

and lower than the average of edge weight values, included in the gene network from Figure

4.3. Given that the average is ≈ 0.44, in the first example, a value of e.g. d = 0.60 was

assigned, (0.60 > 0.44), and in the second example, e.g. d = 0.40, (0.40 < 0.44). Other

choices for d values are, of course, possible and this parameter needs to be considered for

a sensitivity analysis. For example, d value can be chosen closer to the maximum and

minimum of the edge weight values, (i.e. extreme values) in the gene network. However,

if d is set to a high value (closer to maximum), the dNT will have a high value, which will

reduce the number of plausible pathways (example 3, with d = 0.70). If d value is taken

to be small, the threshold dNT will be low, allowing a high number of plausible pathways,

(example 4, d = 0.10). Thus, an optimal d value should be decided based on biological

questions - whether the interest is in the behaviour of the majority or in features exposed

only by a ‘peak’ of gene pathways.

Example 1, d = 0.60. In the d-network, with d = 0.60, SCORE values were computed

for all three pathways following the arrows in gene network, (Figure 4.3):

1. SCORE(0.60-Pathway1) = (log10 0.60 + log10 0.60) × 2/4 = - 0.22;

2. SCORE(0.60-Pathway2) = (log10 0.60 + log10 0.60 + log10 0.60) × 3/4 = -0.49;

3. SCORE(0.60-Pathway3) = (log10 0.60 + log10 0.60 + log10 0.60) × 3/4 = -0.49.

As result, -0.22 is assigned to dNT since it is the highest computed value. Given this ex-

ample, none of the identified pathways for the gene network from Figure 4.3 are d-plausible

pathways, with d = 0.60, because their score values are lower than that of the dNT, (-0.351

< -0.22, -1.122 < -0.22, -0.972 < -0.22).
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Example 2, d = 0.40. The score values computed for all identified pathways in a d-

network, where d = 0.40, are:

1. SCORE(0.40-Pathway1) = (log10 0.40 + log10 0.40) × 2/4 =-0.39;

2. SCORE(0.40-Pathway2) = (log10 0.40 + log10 0.40 + log10 0.40) × 3/4 = -0.89;

3. SCORE(0.40-Pathway3) = (log10 0.40 + log10 0.40 + log10 0.40) × 3/4 =- 0.89.

Given that -0.39 is the highest value from all computed, it is assigned to dNT, (when

d = 0.40). Considering the values identified for Figure 4.3, the Pathway 1 is detected as

d-plausible, (d = 0.40), because its score value is higher than that of dNT, (i.e. -0.351 >

-0.39).

Example 3, d = 0.70. The score values are computed for all identified pathways in a

d-network, where d = 0.70:

1. SCORE(0.70-Pathway1) = (log10 0.70 + log10 0.70) × 2/4 =-0.15;

2. SCORE(0.70-Pathway2) = (log10 0.70 + log10 0.70 + log10 0.70) × 3/4 = -0.34;

3. SCORE(0.70-Pathway3) = (log10 0.70 + log10 0.70 + log10 0.70) × 3/4 =- 0.34.

Given that -0.15 is the highest value from all computed, it is assigned to dNT, (when d

= 0.70, higher than average = 0.44). Considering the values identified for Figure 4.3, none

of the pathways shown are d-plausible pathways.

Example 4, d = 0.10. The score values are computed for all identified pathways in a

d-network, where d = 0.10:

1. SCORE(0.10-Pathway1) = (log10 0.10 + log10 0.10) × 2/4 = -1;

2. SCORE(0.10-Pathway2) = (log10 0.10 + log10 0.10 + log10 0.10) × 3/4 = -2.25;

3. SCORE(0.10-Pathway3) = (log10 0.10 + log10 0.10 + log10 0.10) × 3/4 = -2.25.

Given that -1 is the highest value from all those computed, it is assigned to dNT, (when

d = 0.10). Considering the values identified for Figure 4.3, Pathway 1 and Pathway3 are

65



detected as d-plausible, (d = 0.10), since -0.351> -1 and -0.972> -1, i.e. their score values

higher than that of dNT, (d = 0.10).

This section presented an algorithm for identification of the d-plausible pathways in

the gene network, which can describe qualitatively pathways in gene networks, (i.e. to de-

cide whether they are plausible). We need to consider the initialization and update steps

for methylation level inside the gene network in order to investigate quantitatively DNA

methylation differences that can be induced by associated micromolecular events, includ-

ing mutation, hyper-/ hypomethylation, histone acetylation/ methylation during cancer de-

velopment.

4.5 DNA methylation

In the E-G Network model, gene methylation5 level update is a complex process, influenced

by a combination of at least five factors: cancer stage, gene relationship type, the nature of

the micromolecular events, signalling pathways and histone modifications. The next two

subsections describe how initial gene methylation levels are set and the expressions applied

to update the methylation level in the gene framework.

4.5.1 Methylation initialization step

Hypermethylation of CpG islands found in TSG promoter6 is typically associated with gene

silencing leading to tumour progression, where methylation increase depends also on the

cancer stage. For example, gene TP53 is thought to have a higher promoter methylation

level in CRC metastasis than in an incipient stage such as polyps. In E-G Network, the

gene methylation level is expressed as the PMRA7 value for that gene, i.e. ∈ [0, 100],

(Subsection 2.3.1). For example, if the PMRA value for the MGMT gene in a specific CRC

stage is reported to be equal to 33.13, [Ogino et al., 2006b], then, the MGMT methylation
5Note: In E-G Network, we refer to ‘gene promoter methylation level’ using the simplified formulation of

‘gene methylation level’, i.e. the word ‘promoter’ is implicit. Analogous, ‘methylation level’ is used instead of
‘promoter methylation level. However, when confusions can occur, the word ‘promoter’ is explicitly specified.

6Promoters are DNA sequences that indicate the locus where gene transcription begins, (usually located
upstream from transcript start sites).

7PMRA = average of PMR, where PMR = degree of methylation.
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level corresponding to the same CRC stage inside the gene framework is taken to be equal

to 33.13. In an ideal gene framework, initial methylation level values are known for every

compound gene at each cancer stage. However, such data are not always available; there-

fore, in the E-G Network, four value-ranges have been chosen to assign initial methylation

levels based on the given stages, (included in Table 4.3).

Table 4.3: Initial methylation ranges (PMRA values) for cancer stages

Raw Cancer stages Methylation ranges
1 Healthy 0 - 0.50
2 Carcinoma in situ 8.00 - 8.50
3 Invasive carcinoma 18.00 - 18.50
4 Metastasis 65.00 - 65.50

These value ranges were chosen based on the assumption that variation in DNAm level

is higher as tumour progresses. Specifically, from Table 4.3, it can be inferred that methyla-

tion level in the healthy phenotype is characterised by range [0, 8), (i.e. difference ' 8), in

carcinoma in situ by range [8, 18), (with difference ' 10), in invasive carcinoma by range

[18, 65), (i.e. difference ' 47) and finally, in metastasis by range [65, 100], (i.e. difference

' 35). Larger methylation variation seems to be permitted for invasive carcinoma than

for metastasis. However, ‘invasive carcinoma’ term is used to refer to three cancer stages

within the Overall Stage Grouping System8, namely Stage I, II and III, (Section 2.5). Thus,

methylation level difference for each of these stages is around 15 - 16, i.e. higher than that

considered for carcinoma in situ, and obviously, lower than that for metastasis. However,

other values can be considered as well, and a sensitivity analysis is planned for these value

ranges, (Chapter 8). In addition, the gene framework provides functionality for handling

external input to gene methylation level. Thus, the values specified in Table 4.3 can be

adjusted if additional or modifying information on methylation level becomes available.

During this step, the methylation level value for each gene is randomly-generated within

the determined ranges, according to the cancer stage information provided by gene rela-

tionships in StatEpigen, [Barat and Ruskin, 2010]. For example, suppose the following two
8Overall Stage Grouping is a system where cancer development is described by Roman numbers, (from I to

IV), in addition to 0, which is considered the least advanced cancer stage, (Section 2.5).
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gene relationships occur in the network:

i) P(MGMT H+ | KRAS mutation, carcinoma in situ, colon) = 0.282;

ii) P(APC H+ | TP53 mutation, invasive carcinoma, colon) = 0.688.

where both relation values are indicated by StatEpigen. Thus, the initial methylation level

for the MGMT and KRAS genes will be a value in the 8.00 - 8.50 range, since this rela-

tionship was observed in carcinoma in situ, (row 2 in Table 4.3). Additionally, for APC

and TP53 genes, the methylation level is initially higher in this case because the second

relationship was observed in invasive carcinoma, (so value within the range given by row 3

in Table 4.3).

In conclusion, values within ranges from Table 4.3 are assigned to methylation level

only when new genes are introduced in the gene network. However, it is also important to

know how methylation level changes for genes that already exist in the gene network, i.e.

how gene methylation level is updated over time.

4.5.2 Methylation update step

In nature, modifications of the gene promoter methylation level do not follow a clear pattern

of occurrence. Given this, the assumption that methylation modifications appear at every

gene promoter in every cell during every cell division seems unrealistic. Therefore, in

the E-G Network, the update of the gene promoter mehtylation level is considered to be a

probabilistic event. In model terms, the methylation update step for a gene G is performed

only if a probability value R, (randomly-generated within [0, 1] range), is higher than the

value of the threshold ‘TH DNAM(G)’, calculated using expression (4.12). Of course,

every gene relationship in which a gene G is involved in the gene network can contribute to

gene G methylation updates. For example, if there are three gene relationships containing

the APC gene, three independent methylation update events for the APC gene are possible;

in consequence, three sets of Rk and TH DNAMk(G), k∈ {1, 3}, values will be calculated.

In addition, if the gene G is involved in a signalling pathway, whose deregulations contribute

to CRC development, there is a higher chance for G to be affected in the given network;

thus, the threshold value TH DNAMk(G) decreases. Specifically, TH DNAMk(G) value is
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given by 1 minus the value of the kth gene relationship in which gene G is involved in the

given network together with the value of a model input parameter, denoted as the signalling

pathway coefficient, (SIG), which indicates that the gene G has been observed in a signalling

pathway.

TH DNAMk(G) = 1− Pk(G)− SIG(G) (4.12)

where:

SIG(G) =


model input value, (constant for all genes in network) , with non− zero

value, if the gene G is known to form part from a signalling pathway;

0, otherwise.

Pk(G) is equal to the value of gene relationships where gene G is involved and can be given

by StatEpigen database. Specifically, Pk(G) represents:

• The probability of the kth conditional relationship that includes the gene G, if this

is a middle or an end gene. It represents the incidence of a molecular event for the

current gene, given the molecular events observed for its kth parent within the gene

network.

• The simple relationship probability of the gene G, if this is a start gene;

• The ‘self-relationship’ probability if the gene G is inside a ‘self-updating’ methyla-

tion step.

So, if the Rk value is higher than that of the TH DNAMk(G), then the methylation level

of a gene G is updated, using the following expression, (with variables of interest included

in Table 4.4):

M ′(G) = M(G)±Wk(G)× Parent(G)

(E + S)
(4.13)

In expression (4.13), the sign ’+’ or ’-’ is assigned according to the observed molec-

ular event present in the gene relationship: ’+’ corresponds to hypermethylation, ’-’ to

hypomethylation. For mutation, a random variable, internal to the network, decides whether
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Table 4.4: Definition of variables used in the update methylation level step, Expression
(4.13))

Parameter name Parameter description
M’(G) DNAm of gene G in the next Time-step;
M(G) DNAm of gene G in the current Time-step;
Parent(G) the number of the gene G parents (considered equal to 1 if G is a

start gene or belongs to a ‘self-relationship’).
E total number of edges from network;
S total number of ‘self-relationships’ from network, considered

zero in a non ‘self-relationship’ update step;
Wk a random value within range [10−3, 10−2] for hyper and

hypomethylation, or [5×10−4, 10−3] for mutations; these ranges
differ between hyper/hypomethylation and mutations, because
the former events affect methylation level directly, while the latter
can induce subsequent changes in methylation level. Therefore,
the Wk coefficient represents the contribution of the kth parent
to the new gene methylation level, based on the molecular event
history observed for the current gene.

’+’ or ’-’ is chosen, i.e. as to whether mutation causes an increase or decrease in methyla-

tion level. Based on expression (4.13), methylation level is updated at time T+1 based on its

value at time T and the several other factors. The number of parent genes, (i.e. Parent(G)),

indicates how a gene is connected to the rest of the genes in the network. This information

can be useful to identify the highly-connected genes, (‘hub genes’), and in analysis of their

disease contribution, in comparison with the other genes. Additionally, the ratio 1 / (E+S)

shows the strength of the gene network. For example, in a small network, (with fewer edges

and ‘self-relationships’ in the graph), the methylation level will be updated to a higher value

than in a larger network. As a result, the former network will register a faster progression

in tumour development than the latter.

4.6 Histone modification and the relationship with DNA methy-

lation

Similarly to DNAm, the histone acetylation or methylation levels are also considered to be

dependent on cancer stage, [Yoo and Jones, 2006]. In order to achieve similar representa-
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tion of DNAm and HM levels in the gene framework, histone modification levels are also

expressed as average methylation/ acetylation percentage values, (Section 2.3). Initially,

randomly-generated values within the ranges given in Table 4.5 are assigned to HM level,

according to the cancer stage of the entire gene network. Histone modification is less stable

in nature than DNam level, [Cedar and Bergman, 2009]. Considering this, lower differ-

ences between the value-ranges are taken for HM than for DNAm level initialization based

on cancer stages, (Table 4.3). The E-G Network provides also functionality for integration

of initial HM levels from external resources and the value-ranges from Table 4.5 can be

refined if information becomes available. However, this model requires prior information

on DNAm level in order to estimate HM level. A sensitivity analysis for these value-ranges

is also considered, (Chapter 8).

Table 4.5: Initial histone acetylation and methylation ranges (average percentage values)
based on cancer stage

Cancer stages Initial histone ranges
Healthy 0.010 - 0.019
Carcinoma in situ 0.020 - 0.032
Invasive carcinoma 0.033 - 0.075
Metastasis 0.076 - 0.090

The interplay between DNAm and HM, (discussed in Subsection 2.3.4), has also been

considered in the E-G Network Model. Thus, in addition to the data drawn from StatEpi-

gen, [Barat and Ruskin, 2010], the methylation level of a gene G is updated using expression

(4.14), (adapted from that given by Raghavan and Ruskin [2011]), which links the methy-

lation and acetylation of the core histones H3 and H4 to DNAm:

M ′(G) =


M(G)±Mean×R, if (M(G)±Mean×R) ≥ 0

0, otherwise.
(4.14)

where: M’(G) = DNAm of the gene G in the next Time-step; M(G) = DNAm of the gene

G in the current Time-step; R = random number (∈ [10−5, 10−4]). The sign ‘+’ or ‘-’,
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corresponding to methylation level increase or decrease, respectively, is decided by a ran-

dom variable, internal to the network. Mean is the average of acetylation and methylation

of the histones H3 and H4. Given that acetylation is less stable in nature than methylation,

the E-G model assumes that a percentage of the histone acetylation level can be lost during

a cell cycle, (i.e. between two successive model iterations); thus, only the remainder is

considered for Mean calculation:

Mean =
p×Ace+Me

2
(4.15)

where Ace, Me = acetylation, methylation level of histones H3 and H4; p ∈ [0, 1] is a

randomly-generated value.

The ‘feedback’ from DNAm to HM, i.e. the DNAm contribution to histone evolution

inside a gene G, is described by expression (4.16). Histone modification level at time T+1

is updated based on i) histone acetylation/ methylation level at time T, ii) changes occurring

during this time interval and iii) methylation level of gene G, (at promoter locus):

H ′E(G) =


HE(G)± [WE(G) +M(G)×R], if HE(G)± [WE(G) +M(G)×R] ≥ 0;

0, otherwise.
(4.16)

where: E = acetylation or methylation for the current histone; HE’(G) = the histone acetyla-

tion or methylation level (governed by event E) in the next Time-step; HE(G) = the histone

acetylation or methylation level (due to event E) in the current Time-step; R = random num-

ber (∈ [10−5, 10−4]); M(G) = DNAm of the gene G; WE(G) = the weight ratio for the event

E based on the cancer stage where gene G was indicated and is given by the product of two

randomly-generated values Perc and RW , i.e. WE(G) = Perc × RW , with Perc ∈ [0, 1] (i.e.

a percentage), and RW ∈ Table 4.5, which indicates that HM update rate is also dependent

on cancer stages). Again, ‘+’ or ‘-’ sign is randomly determined.

Similar to the gene methylation updates based on the relationships data, (subsection

4.5.2), the updates of DNAm and HM (based on their interdependency) are also considered

72



to be probabilistic events. Thus, expressions (4.14) and (4.16) are applied only if the value

of a randomly-generated probability Rand is higher than that of a threshold TH HM, which

is provided as a model input parameter, (expression 4.17). A sensitivity analysis will include

also the TH HM parameter.

Rand ≥ TH HM (4.17)

Following the objective to investigate genetic and epigenetic interdependencies during

cancer development, DNAm and HM update steps are studied combined in the methylation

cycle, which represents the process of updating network methylation level over time.

4.7 Network dynamics

Given its overall importance, the DNAm update step is taken as the fundamental time-step

for the gene framework, as a whole. The gene methylation level change, from simple and

conditional relationships, is referred to as the STATIC UPDATE. Similarly, the methyla-

tion update, based on any ‘self-relationship’, is labelled as the DYNAMIC UPDATE. The

DNAm updates, based on HM, are labelled as the DNA METH UPDATE step, while the

evolution of histones, given the DNAm level, is referred to as the HIST MODIF UPDATE

step. Chronologically, a network methylation cycle starts with one DNA METH UPDATE

step, followed by a STATIC UPDATE phase, which is combined with one DYNAMIC UPDATE

iteration. Since DNAm has been reported to be more stable in nature than HM, [Cedar and

Bergman, 2009], different dynamics are needed to handle HM events in the E-G Network

Model. Hence, the methylation cycle ends with ‘m’ HIST MODIF UPDATE iterations, (m

> 1). The steps of the methylation cycle are briefly illustrated in the simplified Figure 4.4.

In the figure, MG denotes the methylation level of a generic gene G and H3,4 refers to

the methylation and acetylation of the histones 3 and 4 corresponding to gene G. The dual

influences between HM and DNAm are specified by the relationships (D1) and (D4). Addi-

tionally, the methylation level of the G gene is updated according to its conditional relation-

ships with other network genes (G’), (relationship (D2), Figure 4.4). A ‘self-relationship’

is also considered to contribute to the new methylation level of the gene G, (relationship
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Figure 4.4: Dynamics of the methylation cycle of a generic gene G, in the E-G Network
Model
Specifically, the D1 relationship refers to the DNA METH UPDATE step, D2 and D3 in-
dicate STATIC UPDATE and DYNAMIC UPDATE phases respectively, and finally, D4
illustrates HIST MODIF UPDATE iteration. Legend: MG: methylation of the gene G pro-
moter; G‘: the genes from the network which are found in conditional relationship with the
gene G; H3,4: average methylation and acetylation of the histones 3 and 4 corresponding
to gene G.

(D3), Figure 4.4).

The gene network is allowed to evolve over time for a number of methylation cycles, (∈

[102, 104]), and at the end of the simulation, the gene network is checked to ascertain if it

is still in the initial cancer stage or has advanced, in which case the new stage is identified.

The length of the simulation is determines by methylation cycle duration. Specifically, the

gene network mimics dynamics of human colon stem cells, for which, methyation cycle was

approximated to stem cell division time, i.e. around seven days, (Section 2.4). Thus, while

a number of 102 iterations can be approximated to 2 years, ( 100 iterations
52 iterations/year ≈ 1.92 years),

a number of 104 iterations indicates ≈ 190 years. This extreme value is considered in order

to analyse conditions when cancer evidence is not marked. Moreover, the E-G Network

has been developed with potential for extension to other cell types, (such as progenitor

and differentiated cells), or other tissue types, (such as the small intestine). Lifetime of

both progenitor and differentiated cells is shorter than that of the stem cell; for example,

if progenitor cycle is approximated to 2 days, a number of 104 would correspond to ≈ 55
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years, (104 iterations × 2days
1iteration = 20000 days ≈ 55 years), which is realistic with respect

to human lifetime. Or, for example, if the gene network describes stem cell dynamics in a

small intestine system, (with stem cell division cycle ∼5 days), the iteration number range

[102, 104], can be approximated to 1.37 - 137 years. Thus, two approaches can be used

to set simulation time in the E-G framework. Specifically, these refer to: a) when gene

networks are allowed to evolve over time until cancer progresses to a specific stage and b)

when an iteration number, (calculated based on information on stem cell lifecycle duration)

is taken and cancer development assessed at the end of simulation.

Implementation of the E-G Network model The E-G Network is an object-oriented

framework written using C++. It also uses Visual Leak Detector, [CodePlex, 2014], to

detect plausible memory leaks in the code. System entities specific to the gene network,

including histones, genes, micromolecular events, gene relationships and the gene network

itself, are described by individual classes. In addition, functionality is provided for inte-

gration of information on patient features and for processing biological data from external

resources, which are considered model input. Details on the E-G Network implementation

is given in Section 5.3.3, following presentation of the extended E-G Network, (including

the decision methods considered for cancer development and ageing/ gender influences into

the model).

4.8 Discussion

The E-G Network, presented in this chapter, itself has a multi-layered structure, which con-

siders three important elements involved in cancer development: molecular signals (genetic

and epigenetic), gene relationships and the transitions between cancer stages.

The main contribution of the model is the introduction of an integrated framework to

analyse different micromolecular events and their interdependencies, with respect to their

impact on DNAm level measured at gene promoter location. An algorithm has been pro-

posed for detecting the most plausible tumour pathways in a given gene network based on
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genetic and epigenetic interdependencies observed at different CRC stages. This informa-

tion can be further combined with signalling pathway data and integrated into an extended

analysis on tumour routes. For example, given alterations of the generic gene G, what is

the likelihood that the Wnt signalling pathway will be affected? An answer can be given

using the ‘plausible pathway’ algorithm. If information on pathways between the gene G

and any genes involved in the Wnt pathway exists, then these genes can be connected in

a network, and the score of the pathway between them can be calculated. The immediate

question is clearly how to interpret the significance of this score value in the given network:

for instance, how different is a score of -0.33 from -0.31 or from -0.35? Secondly, the

‘methylation cycle’ has been introduced to represent the process of updating the gene pro-

moter methylation level based on information on five component elements: network cancer

stage, gene network structure, signalling pathways, HM and nature of the molecular event

observed for specific genes. For a given gene network, the methylation level of a gene G

can be updated according to information on micromolecular interdependencies affecting the

gene itself and the genes to which G is connected in the network. Information on signalling

pathway can also be considered. Thus, if two genes, known to be part of the same signalling

pathway, are connected in a gene network, abnormalities in one gene increase the chance of

the second gene being affected by genetic and epigenetic mechanisms involved. In addition,

both DNAm and HM levels are taken to be influenced by cancer stages. Based on the dual

relationships between these epigenetic patterns, (reported in literature), a set of expressions

has been proposed for updating DNAm and HM levels over time.

A limitation of basic E-G Network is the absence of methods to evaluate malignant

tumour development in the gene network. In addition, information on the influence of

risk factors, such as ageing and gender, in CRC initiation and progression is also lacking.

Considered a major risk factor in cancer development due to its influence on genetic and

epigenetic events, (subsection 2.6.2), the argument for inclusion of ageing, in any realistic

gene framework, is strong. In model terms, this can be linked to methylation level updates,

given the progressive accumulation of DNA methylation and histone modifications over

time, [Fraga et al., 2007]. Moreover, specific genes (such as ER, IGF2) that have been iden-
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tified to be more sensitive to age-related methylation must be considered in this context.

Given its reported influence on CRC initiation, specific account should also be taken of

gender in any extended genetic/epigenetic framework. In consequence, the extended E-G

Network Model, (described in the next chapter), integrates methods to asses cancer initia-

tion and progression based on genetic and epigenetic information and focuses on analysis

of ageing/gender impact on micromolecular events during CRC development.
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Chapter 5

Extensions to E-G Network Model

5.1 Introduction

Following on from the limitations, notated in the prototype E-G Network Model, (Chapter

4), analysis methods for tumour progression, (as recorded by the E-G Network), and the

way in which different risk factors, (such as ageing and gender), influence the dynamics

of tumour initiation, are the main topics addressed in this chapter. Considered a major

risk factor in cancer development, we report on the incorporation of ageing in the E-G

Network model, as well as gender, as the influence of which is also implicit in colon cancer

initiation, (Subsection 2.6.2). In addition, information on a set of genes that have been

reported to be sensitive to age-related methylation in CRC development, (e.g. IGF2, ER),

[Issa and Ahuja, 2000; Teschendorff et al., 2010], is also explored and integrated into the

gene framework. The work presented aims to investigate the abnormal modifications from

carcinoma in situ to invasive carcinoma, colon cancer, by addressing questions, such as: i)

What differences are to be expected in tumour progression for males and females of similar

age? ii) What is the impact of aberrant modification in the promoter of a gene, such as IGF2,

that is considered to be sensitive to age-related methylation, (Subsection 2.6.2)? We address

these questions through case studies which aim to exploit the potential of extended E-G

Network Model. These case studies are based on synthetic patients, with profiles generated

by recourse to methods for methylation level initialization based on cancer stages, (Section
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4.5).

The methods, proposed for assessment of tumour progression in the gene network, are

presented in Section 5.2 and two case studies, which illustrate the contribution of ageing

and gender in tumourigenesis, are described in Section 5.3. Implementation details for the

extended E-G Network and ongoing parallelisation development are also presented. The

results obtained for each case study are reported in Section 5.4. Finally, a summary on the

inclusion of the ageing and gender influences in the E-G Network and any limitations are

given and the need for cell and tissue level modelling is highlighted.

5.2 Cancer progression evaluation

This subsection introduces the methods used to analyse tumour progression in the E-G

Network. The gene network is rated as being in ‘healthy’ state or in one of the three possible

cancer stages (namely carcinoma in situ, invasive carcinoma and metastasis), using two

methods:

A. Calculation of the average network methylation1 level, (network score);

B. Calculation of the percentage of highly methylated genes (due to influence of current

genetic and epigenetic events).

Firstly, the average network methylation level, network score, (Method A from above),

is tested against predefined methylation values (PMRA2 values) based on the cancer stage,

(Table 5.1), in order to assess the initial cancer stage of the gene network. Further, the

network score is computed after every methylation cycle and tested against these value-

ranges. For example, a network score of 18 indicates that the network is in carcinoma in

situ stage. If its score is 54 after a number of methylation cycles, then the gene network is

considered to be in invasive carcinoma, meaning that the tumour has progressed over the

time period, (mimicked by simulation). The value-ranges from Table 5.1 are inferred from
1Similarly to the base E-G Network, (Chapter 4), the word ‘promoter’ is implicitly considered in formulation

‘gene methylation level’, which stands for ‘gene promoter methylation level’. When confusions can occur, the
word ‘promoter’ is specified explicitly.

2PMRA: Average percentage of methylated reference
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those used for DNAm level initialization step3, (Section 4.5), and considered for sensitivity

analysis, (Chapter 8).

Table 5.1: Cancer stage decision based on average promoter methylation level (PMRA
values) of the entire network

Average of network
methylation level

Cancer stages

0 - (<) 8 Healthy
8 - (<) 18 Carcinoma in situ
18 - (<) 65 Invasive carcinoma
65 - 100 Metastasis

Method (A) is, however, limited by its sensitivity to outlier genes; a single gene with

a high promoter methylation level can significantly increase the network score. Based on

this observation, method (B), the gene percentage method, was derived to evaluate cancer

stage. Here, the decision on network cancer stage is made in two steps: first, the highest

promoter methylation level (PMRA values) is determined in the gene network and second,

the percentage of genes that contain this methylation level is compared with two reference

(percentage) values, e.g. 20% and 80%, (Table 5.2).

Table 5.2: The relationship between percentage of highly methylated genes and cancer stage
(methylation level is given by PMRA values)

DNAm level 0 - (<) 20% 20 - (<) 80% 80% - 100%
0 - (<) 8 Healthy Healthy Healthy
8 - (<) 18 Healthy Carcinoma in situ Invasive carcinoma
18 - (<) 65 Carcinoma in situ Invasive carcinoma Metastasis
65 - 100 Invasive carcinoma Metastasis Metastasis

According to information from Table 5.2, if the highest methylation level in a gene net-

work is between 8 and 18, observed in less than 20% of total gene number, the gene network

is still considered to be in a ‘healthy’ stage, even if this range is accounted to be specific

to carcinoma in situ. However, if the same highest methylation level is recorded for more

than 80% of the total gene number, the respective gene network is in the invasive carci-
3The value-ranges used to initialize DNA methylation level are included in Table 4.3. In choosing these

values, the major assumption was that higher variation in DNAm level is observed as tumour progresses, e.g.
from 0 - 8 in ‘healthy’ phenotype, to 65 - 100 in metastasis.
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noma stage already, and does not represent carcinoma in situ. Similarly, for example, if the

highest methylation level ≈ 50 is ‘measured’ for around 12% and 82%, respectively, of all

genes included in two gene networks, the first network is the carcinoma in situ stage, while

the second network is already marked into metastasis. The values-ranges from DNAm level

are similar to those included in Table 5.1. A sensitivity analysis is necessary to investigate

these value-ranges; for example, methylation level intervals can be equilibrated, e.g. 0 -

33%, 33 - 67%, 67 - 100% or extended more, e.g. 0 - 5%, 5 - 95%, 95 - 100%.

The ‘network score’ and ‘percentage of highly methylated genes’ methods can be com-

bined if needed. For example, if the focus is on the epigenetic, (or methylation), landscape

of the entire cell, the first method may have a higher weight on the tumour progression

decision. Contrary, if the interest is on a specific set of genes, the second method may be

considered more applicable for purposes of analysis.

Discussion on cancer progression

The flow chart from Figure 5.1 is a schematic representation of the way in which tumour

progression is decided inside the E-G Network Model.

Initially, the network includes gene relationships within the lowest cancer stage. If sev-

eral gene relationships containing the same genes, but in different cancer stages, are found

in StatEpigen, the ones from the most advanced cancer stage are kept in a repository for

further refinement. After each methylation cycle, the network is rated, using the methods

described in the previous subsection. At this step, the gene network can be updated if it has

progressed to a more advanced cancer stage. Some of the actual gene relationships may be

overwritten, (by updated information for similar relationships from the repository). Addi-

tionally, new gene relationships corresponding to the current cancer stage can be included.

The gene framework is allowed to evolve over time, in order to register its ‘potential’ for

cancer progression.
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Figure 5.1: Schematic view of tumour progression possibilities in the E-G Network model

5.3 Implementation

The E-G Network enables analysis of methylation level changes for the entire gene network

over time and gives information on cancer initiation and progression. Given that epigenetic

patterns can be inherited through cell generations, [Probst et al., 2009], the DNAm level

was analysed after every stem cell division step, [Boman and Wicha, 2008; Clevers, 2011;

Papailiou et al., 2011]. Therefore, for the case studies described in this chapter, the major

considerations were that the gene network should mimic the molecular modifications inside

an (adult) colon stem cell and that the time step was realistic: for a methylation cycle is

the interval between two successive stem cell divisions, which was estimated to be equal to

around seven days, [Potten et al., 2003; Frank, 2007], (Section 2.4).
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The ageing and gender impact on micromolecular events

The influence of an individual’s age and gender with respect to genetic and epigenetic mod-

ifications over time was handled as follows. An AG parameter was proposed to describe the

impact of these factors on DNAm dynamics, with values inferred from available literature,

(e.g. Ferlay et al. [2014]). Given that a mutation event is considered to have lower impact

on DNAm level than hypo- and hypermethylation events, the ageing and gender influences

on mutation occurrence probabilities are described by a randomly-generated value, RMut,

lower than the corresponding AG parameter values. The AG parameter set has the same

value for a given gene network in its entirely, (as individual characteristics are constant for

a given cell), and is integrated into the DNAm level update step, (Section 4.5). Specif-

ically, the AG parameter affects the threshold of the micromolecular event probabilities,

(introduced in expression (4.12)), as shown below:

TH DNAMk(G) = 1− Pk(G)− SIG(G)−AG(ageing, gender) (5.1)

Thus, in addition to its dependence on the gene relationship probability values and to

the gene characteristics forming part of a signalling pathway, (i.e. Pk(G) and SIG(G)),

the probability threshold that permits micromolecular modifications on a given gene G,

TH DNAMk(G), is also influenced by individual’s age and gender.

Similarly, the influence of individual characteristics has been also considered with re-

spect to the DNAm-HM relationships, (Section 4.6). In model terms, the constant value of

the TH HM threshold, (used in expression (4.17) for updating DNAm and HM level based

on their interdependencies), has been replaced by a parameter based on ageing and gender.

Thus, the dual-relation HM and DNAm updates are now permitted only if the randomly-

generated Rand value is higher than that given by the TH HM parameter for a specific

ageing-gender group, i.e.:

Rand ≥ TH HM(ageing, gender) (5.2)
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Genes sensitive to age-related methylation

Research, [Issa and Ahuja, 2000; Teschendorff et al., 2010], has also identified a specific

group of genes known to be sensitive to age-related methylation and this information can

be incorporated into E-G Network. In model terms, a coefficient, denoted as ‘sensitive to

an age-related methylation’, (SAM), was considered to affect the value of the probability

threshold that permits DNAm level modifications in the gene network. Thus, methylation

modification probability of a gene sensitive to age-related methylation is higher than that

of a gene without this feature. In addition, a coefficient, denoted as ‘age-sensitive gene’,

(ASG), was introduced to target to the individual age at which such age-related methylation

modifications can be observed. Therefore, the methylation update step expression becomes:

TH DNAMk(G) = 1− Pk(G)− SIG(G)−AG(ageing, gender)− SAM (5.3)

where

SAM

 ∈ (0, 1), if Ageing ≥ ASG;

0, otherwise.

Network settings common to both case studies

In section 2.6, four major age groups were identified and described based on the risk of

CRC development. For both case studies described in this chapter, ten core age groups

were taken, (starting at age 38 going in 5 year steps to age 83: 38, 43, 48, 53, 58, 63, 68,

73, 78, 83). In addition, an example of AG parameter values, defined for the hypo- and

hypermethylation events, is provided in Table 5.3. Both age groups and value-ranges were

chosen based on literature which reported that CRC risk starts increasing at around 40 (in

hereditary CRC, [Cunningham et al., 2010]) and has its peak between 65 and 75, [Schole-

field, 2002]. The age-range was chosen in this way in order to span and slightly extend this

age range (from 40 to 75+), with the network ‘age 38’ viewed as one control sample, where

tumour progression is not influenced by ageing impact on genetic and epigenetic modifi-

cations, and the network for ‘age 83’ is another control sample, where ageing damps cell

dynamics, and consequently, aberrant changes involved in tumour development, [Campisi,
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2003].

Authors have suggested that the 5-year interval is important in analysis of gender dif-

ferences reported in CRC development, [Frank, 2007; Brenner et al., 2007], and we have

followed this for the exploration here although in practice, of course, any time step could

have been chosen to investigate age profile overall. Indeed, in choosing a slightly extended

upper and lower bound for the age range considered, we have deliberately allowed for some

fuzziness in terms of whether age-difference is specific to a particular age-range or observed

more generally.

Table 5.3: Example of AG parameter values for different groups of individuals, based on
age-gender characteristics

Age-groups Male Female
<40 0 0
40 - 44 0.10 0
45 - 49 0.10 0.10
50 - 54 0.17 0.10
55 - 59 0.25 0.17
60 - 64 0.35 0.25
64 - 69 0.35 0.35
70 - 74 0.27 0.35
75 - 79 0.23 0.27
80+ 0.23 0.23

Note: The values from Table 5.3 are inferred from different statistical reports on CRC

incidence, e.g. GLOBOCAN 2012, [Ferlay et al., 2014], Cancer Research UK, [Cancer Re-

search UK, 2014b]. In model terms, the gene relationship probabilities in the gene network

are affected during the DNAm update step.

Analogously, an example for the TH HM parameter is included in Table 5.4, with

age/gender patterns taken for TH HM parameter value choice similar to those followed

for AG parameter value selection. The ASG value was set to 50 years, given that the spo-

radic CRC incidence was reported to increase after this age, [Issa et al., 1994]. Research

has indicated that abnormalities of signalling pathways can have high impact on cancer de-

velopment, (decided in the gene network based on methylation level, (Section 5.2)). Values

of 0.05 and 0.10 were taken for SAM and SIG based on tuning parameters: the probability
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of an event occurring for a gene G found in a signalling pathway was taken to increase with

maximum 0.50 the initial probability taken from StatEpigen database, (expression 5.3).

This extreme value is obtained when the gene network represents a male, age 60 - 70, (or

female, age 65- 75), e.g. AG = 0.35, and gene G is also sensitive to age-related methylation,

(e.g. SAM = 0.05), i.e. AG(age, gender) + SAM + SIG = 0.50. Other values are, of course,

also possible and sensitivity analysis for these parameters is planned, (Chapter 8).

Table 5.4: An example of the TH HM parameter for different groups of individuals, based
on age-gender characteristics

Age-groups Male Female
<40 0.60 0.60
40 - 44 0.55 0.60
45 - 49 0.55 0.55
50 - 54 0.48 0.55
55 - 59 0.39 0.48
60 - 64 0.39 0.39
64 - 69 0.28 0.39
70 - 74 0.28 0.28
75 - 79 0.37 0.28
80+ 0.37 0.37

Note: Similar to the values in Table 5.3, the values from Table 5.4 are inferred from dif-

ferent statistical reports on CRC incidence, e.g. GLOBOCAN 2012, [Ferlay et al., 2014],

Cancer Research UK, [Cancer Research UK, 2014b]. In model terms, they describe the

probability thresholds for permitting HM updates, based on DNAm - HM interdependen-

cies.

Initially, tumours of all patients were considered to be in carcinoma in situ. The goal

of the simulations was the investigation of instances when the gene networks moved to

the next cancer stage, invasive carcinoma. The focus was on promoter hypermethylation

information, and in order to decide on tumour progression, the average methylation level

for the entire gene network has been analysed, (using the network score method described

in Section 5.2). Therefore, an increase in the average methylation level of the gene network

can be associated with tumour development. The features of each case study are described

below.
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5.3.1 Case study 1 on ‘Combined ageing and gender influence’

Genes such as APC, MGMT, MLH1, KRAS, TP53 are considered to be key-genes in CRC,

given the impact on tumour development of any changes, (Section 2.6). Based on this

information, four different gene networks were built according to the following criteria:

1. The first network, (‘APC-TP53’ network), was created including data on conditional

relationships between micromolecular events affecting APC, TP53 and other genes.

2. The second network, (‘KRAS-BRAF’ network), included the conditional relation-

ships between KRAS and BRAF and other genes.

3. The third network, (‘APC-MGMT’ network), utilised the conditional relationships

between APC, MGMT and other genes.

4. The fourth network, (‘APC-MLH1’ network), incorporated the conditional relation-

ships between APC, MLH1 and other genes.

The network size in each case was similar in terms of the number of nodes and edges,

which were in the range 9 - 15 and 10 - 18 respectively. The graphical data visualisation

was created using Cytoscape, [Smoot et al., 2011], and network structures are illustrated in

Figure 5.2. The study was designed to analyse 100 patient profiles for each gender, (with 10

male and 10 female profiles generated for every age subgroup) and for every gene network.

These patients are wholly synthetic, generated from set of possible parameter values

given in Table 4.3, (Section 4.5). Specifically, this case study focused on the following

questions:

1. What is the relationship between younger and older patients regarding rapidity of

tumour progression, (advance to the next cancer stage)?

2. Is there a marked difference between males and females in terms of methylation level

observed over time?
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5.3.2 Case study 2 on ‘Gene sensitive to age-related methylation’

In order to analyse the impact of aberrant methylation of gene sensitive to age-related

methylation, two gene networks, namely ‘APC-BRAF’ and ‘APC-IGF2’, were built from

empirical data on relationships between APC and other genes, (e.g. MLH1, TP53), with

a focus on promoter hypermethylation information. The major difference between the two

was, thus, the replacement of the BRAF gene with the IGF2 gene, (since the latter is con-

sidered as being potentially sensitive to age-related methylation, [Issa and Ahuja, 2000]).

The conditional relationships between these key genes and others in the ‘APC-BRAF’ and

‘APC-IGF2’ networks were also taken into account.

a) ‘APC-BRAF’ network

b) ‘APC-IGF2’ network

Figure 5.3: Structure of the ‘APC-BRAF’ (a) and the ‘APC-IGF2’ (b) gene networks. The
IGF2 gene is considered to be sensitive to age-methylation, therefore the focus was on
the ageing impact on the methylation level deregulations inside a cell, (mimicked by the
network), with aberrant modifications of the IGF2 gene. The networks were built using
conditional gene relationships data from the StatEpigen database. Legend: Circle - gene in
network, Edge - gene relationship.
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The network structures are illustrated in Figure 5.3. Similar to the previous case study,

100 patients profiles have been generated for each gender for both gene networks, (i.e.

synthetic patients).

5.3.3 Implementation details of the E-G Network

Class description and diagram

The E-G Network model is an object oriented framework (written using C++), where the

major classes are the following, (with the class diagram illustrated in Figure 5.4):

• BayesianNetwork - This is considered the main class of the E-G Network model as

it encodes the gene network functionality and assures the communication between

the model core and external applications. For instance, preprocessing of the biolog-

ical data, (i.e. removing duplicates from the initial data and those relationships re-

ported to have zero probability), loading an individual’s characteristics, building the

gene graph, resolving the potential circuits, evaluating the gene network, calculating

the gene pathway scores, processing ‘cellular divisions’, are several of the actions

performed by the BayesianNetwork objects. Among other elements, a BayesianNet-

work object contains a NetworkSettings object and a collection of GeneRelationship

objects.

• NetworkSettings - All characteristics presented by an individual, (e.g. ageing, gender,

heredity, viral and bacterial infection), are loaded into a NetworkSettings object and

transmitted to the BayesianNetwork in one step.

• GeneRelationships class - connects information on gene relationships from StatEpi-

gen database, [Barat and Ruskin, 2010], (encoded by the GeneEvent class), and gene

characteristics, (e.g. gene name, gene sensitivity to ageing, methylation level), which

are encoded by the Gene class. In addition, the class initializes the gene methylation

level based on cancer stage information.
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Figure 5.4: Class diagram for the E-G Network model. The dark-shaded diamond shape
indicates the composition relationship between classes, (i.e. the component lifecycle is
controlled by the container-class: if the latter is destroyed, the former is destroyed as well).
For example if a BayesianNetwork object is destroyed, the instances representing the com-
pound graph elements (nodes and edges) are also destroyed. In addition, the relationship
between the numbers of instances of classes is represented, when information on precise
ratio between those instances is known (e.g. Gene and GeneRelationship classes), by pre-
cise integer values; otherwise, when a variable number of compound instances is contained
within a class, (e.g. GeneRelationship and BayesianNetwork classes), the ’*’ sign is used.

• GeneEvent - This handles causal relationships between two molecular events, (e.g.

hyper/hypomethylation, mutation), affecting two genes of a certain ‘cancer stage,

cancer type’ pair. It represents the information from StatEpigen database.

• Gene - This encodes information on gene characteristics, (e.g. name, type - tu-

mour suppressor, oncogene, caretaker; methylation level), and information on ‘self-

relationship’, (Section 4.2), and on signalling pathways that include it. Moreover, it

‘communicates’ with H3 and H4 histone regarding modifications.
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• Histone - This class handles information on H3 and H4 histones and provided func-

tionality for the initialization and update of their modifications, (e.g. acetylation and

methylation), also based on the dual relationship between the DNAm and HM, (Sec-

tion 4.7).

Finally, the doxygen tool, [van Heesch, 2008], was used to generate code documenta-

tion, which can be accessed online, at the following url:

http://www.computing.dcu.ie/ iroznovat/documentation/html/index.html.

Parallelisation strategies for the E-G Network

The case studies for the E-G Network integrated gene networks of modest size (nodes in

range 9 - 15 and edges in 10 - 18, respectively) and analysed ageing and gender influences

for a total of 1000 ‘patients’ with respect to cancer initiation, (i.e. transition between car-

cinoma in situ and invasive carcinoma). Given these settings, serial simulation took around

114 min. However, the aim is to evaluate risk factor impact on methylation level changes

in larger system size, (e.g. ∼ 100 genes), for larger patient number, (e.g. 103 for each

age/gender group per network), for longer time-periods, (e.g. to explore modifications be-

tween carcinoma in situ and metastasis), and for larger gene network set, (i.e. to mimic cell

population dynamics). In addition, given the main objective of our research to investigate

CRC dynamics in multi-scale systems, (Section 1.2.1), parallelisation implementation is

clearly needed to reduce simulation running time. However, development of parallelisation

strategies is not trivial and the main challenge is minimization of compute node communi-

cation overhead.

The performance of a parallel algorithm can be evaluated by speedup (SP ) and efficiency

(EP ) values:

SP = TS/TP (5.4)

EP = SP /P (5.5)

where P = processor number, TS = execution time for serial algorithm, TP = execution
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time of the parallel algorithm with P processors. While linear speedup, (achieved when SP

= P), or efficiency = 1 is ideal, this is not generally obtained in complex systems, (where

high communication between compute nodes is needed to represent relationships between

compound entities). Thus, rigorous analysis of system dynamics is necessary prior im-

plementation of parallelisation algorithm. In the E-G Network, communication is handled

using MPI paradigm, (Message Passing Interface) and two parallelisation strategies have

been identified. These target i) the ‘patient’ groups analysis and ii) methylation level up-

date step, (Section 4.5).

In the ‘age/ gender’ case studies, given that no communication was needed among sys-

tems, the main thread allocated a node to each ageing/gender group, (i.e. in total, 20 nodes/

network), and collected results at the end of the simulation. In this case, temporal paralleli-

sation was used, (i.e. iterations for the gene networks run simultaneously), and efficiency

close to 1 was achieved. Specifically, efficiency ranked from 0.87 for the ‘KRAS-BRAF’

networks to 0.99 for the ‘APC-BRAF’ systems, (speedup and efficiency values for each

gene network are included in Table 5.5). This strategy can be used also for testing a group

of identical gene networks, i.e. for cell population, (discussed in Chapter 8).

Table 5.5: Speedup and Efficiency values for each gene network included in the ‘age/ gen-
der’ case studies

Gene network Serial run-
ning time

Parallelisation
running time

Speedup (20
nodes)

Efficiency

APC - TP53 807 sec 43 sec 18.76 0.93
KRAS - BRAF 2275 sec 128 sec 17.77 0.88
APC - MGMT 758 sec 38 sec 19.94 0.99
APC - MLH1 900 sec 48 sec 18.75 0.93
APC - BRAF 1109 sec 56 sec 19.80 0.99
APC - IGF2 1029 sec 54 sec 19.05 0.95

Note: Results from Table 5.5 are based on tests run on 20 nodes/network, with 10

‘patients’/ node.

The second parallelisation method targets division of the gene network into subnet-

works, (i.e. spatial parallelisation). The challenge here is characterisation of the optimal

subnetwork size, (with respect to both node (gene) and edge numbers). A solution can be
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given by detection of ‘hub’4 genes and splitting the gene network in the way in which ev-

ery ‘hub’ gene determines a subnetwork. An immediate derived approach is running every

gene on a compute node, given that no communication between genes is needed during

methylation level update step. However, in both cases, communication master/ slave is nec-

essary after every methylation cycle in order to inform on the new gene methylation level,

(required for calculation of e.g. the average network mehtylation level, used in cancer de-

cision methods, (Section 5.2)). In this case, a solution for overhead reduction can be given

by extending time-interval for information exchange between master/ slave, (e.g. at every

4, 10, .. iterations). This work is ongoing and given communication in the gene network,

linear speedup is again not expected. However, parallelisation implementation in the E-G

Network is possible and would facilitate extended model testing.

5.4 Results and discussion

Methylation level was seen to increase for every patient during the simulations. This is due,

in part, to the fact that the current study included mostly data on promoter hypermethylation.

According to the first decision method (described Section 5.2) on methylation level increase

in the gene network, any tumour therefore advanced to the next cancer stage for all patients

over the time period of the simulation. For an individual patient, the time taken to tumour

advance to invasive carcinoma was given by the methylation cycle number, measured during

the simulation. Further, for each age/gender group, the average of the methylation cycle

numbers, denoted as methylation cycle number average, (MCA), was calculated. The results

obtained are discussed below.

5.4.1 Results for case study 1 on ‘Combined ageing and gender influence’

The MCA number at which the tumour advanced to invasive carcinoma is illustrated in

Figure 5.5 for each of the four networks.
4A ‘hub’ gene is considered to be a strongly-connected gene in the network, (subsection 4.5.2).
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Gender influence

Some gender differences can be observed in the analysed networks, where MCA numbers

recorded for males from one age subgroup are similar to those of females from the next age

subgroup. For example, results from the ‘APC - TP53’ network show that the time taken

for tumour progression in a female of age 53 is closer to that for a male of age 48 than to

that of a male of age 53, (i.e. MCA numbers corresponding to the fourth female and third

male ageing subgroups, (10,032 and 10,024), are closer than those for the fourth female

and fourth male age subgroups, (10,032 and 9,662)). The same remark can be made, for

example, for the MCA numbers seen for males of 63 years and females of 68 years from

the ‘KRAS - BRAF’ network, (the 6th male and 7th female subgroup respectively), where

MCAFemale,68 ≈ 9.188, MCAMale,63 ≈ 9.206 and MCAMale,68 ≈ 8.694.

Ageing influence

For an analysis on the age influence, the results shown in Figure 5.5, were regrouped into

four major age groups: less than 50 years, (< 50), between 50 and 64 years, (50-64),

between 65 and 74 years, (65-74), and higher than 75 years, (75+), as shown in Figure

5.6. This rearrangement was carried out to reflect age impact on tumour development,

specifically reported in the cancer literature: CRC risk increases significantly after age 50,

has its peak between 65 and 75 years and decreases slowly after age 75, due to age-related

influence on cell dynamics, [Christensen et al., 2009; SEER, 2013a; Cancer Research UK,

2014a; Ferlay et al., 2014].

The age influence can be seen in cancer development for all gene networks. The MCA

numbers are lower for the ‘65-75’ and the ‘75+’ age groups showing that progression to

invasive carcinoma is faster for those age categories than for younger patients (i.e. of ‘<50

years’ and ‘50 - 64 years’). For example, in ‘APC-TP53’ networks, while the MCA numbers

for the ‘<50 years’ group were≈ 10,200, those specific to ‘65-75’ age group were≈ 8,800

for both genders.

However, the age difference was far less marked in the ‘APC-MLH1’ network. One

plausible cause is the network structure, (Figure 5.2). (The ‘APC - TP53’, ‘KRAS - BRAF’
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and ‘APC - MGMT’ networks are represented by a star structure with only one ‘hub’ gene,

while the ‘APC - MLH1’ has a star structure with two ‘hub’ genes). Additionally, net-

work size and gene relationships that depend on the ‘hub’ gene can impact on these results.

Clearly, this is a preliminary analysis and further tests are needed to analyse other depen-

dent networks (e.g. APC-KRAS, APC-MCC), with e.g. three ‘hub’ genes (such as APC,

MGMT and MLH1) and similar number for connected nodes, as well as those networks

where no. nodes is increased, (e.g. to 100+).

5.4.2 Results for case study on ‘Gene sensitivity to age-related methylation’

The results obtained do indicate that time taken for tumour progression in ‘APC-IGF2’ was

shorter than that for the ‘APC-BRAF’ network. Since the IGF2 gene is sensitive to age-

related methylation, its abnormal promoter methylation makes a higher contribution to the

total network methylation level. Similar to the analysis of age influence from the previous

case study, results obtained were grouped into the four major age-groups, suggested by

the literature (i.e. <50, 50-64, 65-74 and 75+ years, respectively), for each gender. The

overall comparison on the MCA numbers corresponding to the ‘APC-BRAF’ and ‘APC-

IGF2’ networks is illustrated in Figure 5.7, and detailed information is provided in Table

5.6.

Specifically, the ‘APC-IGF2’ networks moved to invasive carcinoma during shorter

time-periods than the ‘APC-BRAF’ networks, where time differences recorded for these

networks were around 725, 620, 550 and 620 methylation cycles for the four major age-

groups respectively. ‘Gender difference’ was illustrated also by results of ‘APC-BRAF’

and ‘APC-IGF2’ networks, where the lowest MCA number, (corresponding to the shortest

time of tumour to progress from Stage 0 to Stage 1), was found for the ‘65-74 years’ and

‘75+ years’ groups in males and females, respectively.
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Figure 5.7: Comparison of time, (MCA number), at which the ‘APC-BRAF’ and ‘APC-
IGF2’ gene networks move to Invasive Carcinoma. Results refer to male (top), and female
‘patients’, (bottom). Legend: Results for the ‘APC-BRAF’ network are shown in blue and
those for the ‘APC-IGF2’ network in yellow.

While results provide some support for age-sensitive gene contributing to cancer growth,

further tests on other genes exhibiting age-related methylation are clearly also necessary to

assess relative impact on disease progression. In addition, further tests including larger net-

work samples should facilitate investigation not only of weather these differences are sig-

nificant in the statistical sense between these age groups but biologically supported, given

deregulations of age-sensitive genes such as IGF2.
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Table 5.6: Detail on MCA number results corresponding to gender and age-groups: <50
years, 50-64 years, 65-74 years and 75+ years, for both ‘APC-BRAF’ and ‘APC-IGF2’ gene
networks.

Gender Age-Group APC - BRAF APC - IGF2
Male <50 years 10,001 9,277

50 - 64 years 9,571 8,948
65 - 74 years 9,177 8,622
75+ years 9,445 8,825

Female <50 years 10,049 9,320
50 - 64 years 9,734 9,069
65 - 74 years 9,334 8,761
75+ years 9,316 8,738

5.5 Summary

Two methods have been proposed for deciding whether cancer progression occurs, based on

methylation level: i) average network methylation level and ii) percentage of highly methy-

lated genes. In addition, parallelisation strategies have been identified for the extended E-G

Network and the need of parallelisation implementation in the context of more complex sce-

narios for the gene network was highlighted. Moreover, the influence of ageing and gender

with respect to genetic and epigenetic modifications induced over time has been modelled

using the following steps:

• Definition and incorporation of an Ageing-Gender (AG) parameter in the methylation

level update step of the basic E-G Network Model in order to represent the impact of

an individual’s ageing and gender on DNAm level.

• Definition of the TH HM function accounting for ageing and gender, to accommodate

the update of the histone modification patterns based on DNAm - HM interdependen-

cies.

• Increased probability of methylation modification occurrence permitted for those

genes, identified as sensitive to age-related methylation for individuals > e.g. 50

years of age.
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Obviously, values of these quantities can be further refined as new data become avail-

able. In order to investigate the impact of ageing and gender on DNAm level in CRC

initiation, a case study was performed and four gene networks were considered. These in-

cluded information on a set of key-genes in CRC development and a spectrum of age for

both genders. In a second case study, abnormal changes of the IGF2 gene were also consid-

ered in terms of the effect on gene network. Results obtained to date showed that tumour

progression rate does appear to differ across patient groups and is influenced by ageing,

gender and associated gene characteristics. This rate was found to be higher for older, (i.e.

‘65+ years’), than for younger patients, (i.e. ‘< 65 years’), for men than for women, and for

those presenting with an aberrant modification in the IGF2 gene compared to those with-

out. These conclusions are based on methylation cycle number analysis. The model can

be refined to include incorporation of these features as can be shown to reproduce effects

of ageing and gender on methylation for some genes in agreement with clinical studies.

Not all genes seemed to be similarly age-influenced despite being treated similarly, which

argues for further refinement being needed in the way in which the model accounts for age.

Of course, experimented data are limited to date on these features also, but the model does

permit exploration of ‘what if’ scenarios, which may help in identifying possible outcomes

for mapping also onto real patient data.

A clear limitation of the E-G network model is the lack of precise information on the

real length of the methylation cycle and consequently, this component is approximated to

the colon stem cell cycle, which lasts around seven days, [Potten et al., 2003]. For ex-

ample, based on current results, the average methylation cycle number is equal to ∼8,690

for the 75+ years old female in ‘APC - TP53’ network. According to the stated relation

between real time and methylation cycle, this represents ∼167 years, which is obviously

highly unrealistic as the time required by a tumour to progress between carcinoma in situ

to invasive carcinoma for the 75+ years old female group or represents essentially infinite

latency. This result is clearly due to simplistic information on abnormal molecular modi-

fications observed in a (small) gene network, (i.e. less than 20 genes), in which only the

influence of ageing and gender factors was considered. However, CRC predisposition is

101



influenced by other characteristics also, such as physical activity, diet, and environmental

factors, (Subsection 2.6.2). Exposure to chemicals such as arsenic and cadmium have been

reported to induce global DNA hypomethylation and histone modifications in cells leading

to colon cancer, [Hou et al., 2012]; in consequence, relevant environmental data should be

included in an extended analysis of tumour progression dynamics.

Another limitation is that the gene networks have mimicked only one stem cell, which is

obviously unrealistic for predicting cancer development. In addition, a cell communicates

with its neighbours through gap junctions, (regulated by the connexin family), and reduced

inter-cell communication has been reported also in CRC development, (associated with the

silencing of different connexin genes such as GJC1, due to promoter hypermethylation),

[Sirnes et al., 2011]. Thus, any realistic analysis of the DNAm levels must be extended to

cell populations and different cell types.

Recognition of the shortcoming in network-based methods of this type has motivated

the development of the AgentCrypt model, (described in the next chapter). This permits

DNAm variation to be investigated in the intestinal crypt over time and enables focus on

aberrant modifications within abnormal systems, exposed to potential carcinogens.
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Chapter 6

AgentCrypt - an Agent-based Model

of Intestinal Crypt Dynamics

6.1 Introduction

The AgentCrypt is an agent based-model which has been developed to investigate methyla-

tion variation in the human intestinal tissues under the influence of different environmental

conditions. These include e.g. carcinogen and methylation inhibitors and methylation pat-

terns are thus of interest during both cancer initiation and progression. The AgentCrypt

model addresses, therefore, the second major research objective proposed in this thesis,

namely “To evaluate quantitatively methylation level variation in intestinal tissues under dif-

ferent external conditions during CRC initiation and progression”, (Subsection 1.2.1), and

its position in the overall Colorectal Cancer Model is highlighted in Figure 6.1. In Chapters

4 and 5, methylation level modifications over time was investigated for a human colon stem

cell, (represented by the gene network in E-G Network Model). The AgentCrypt adds to

this work on the analysis of the methylation modifications at tissue level. The remainder

of the chapter is structured, as follows. Initially, deregulation of the crypt dynamics, which

can induce aberrant methylation patterns over time are explored for the colon crypt sys-

tems, (Section 6.2). Subsequently, and motivated by the need of computational analysis in
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Figure 6.1: Structure of the Colorectal Cancer Model - focus on the AgentCrypt model
The relationships between model components may refer to R1) average methylation level
for gene network / intestinal cell; R2) patient features; R3) intestinal crypt dynamics, ex-
plored following bottom-up and top-down approaches.

the context of EWAS research, (Section 3.4), AgentCrypt is extended to small intestine tis-

sue. This extension takes account of the similarities in and differences between the structure

and dynamics of the colon and small intestine crypts, (Section 2.4). A comparative anal-

ysis is performed on methylation differences characteristic of intestinal tumour initiation,

(Section 6.3). The impact of external factors, such as carcinogens and epigenetic inhibitors

on methylation level is also investigated, (Section 6.4), and an overview of AgentCrypt

implementation is provided in Section 6.5. Two case studies and the results obtained are

described in Section 6.6, and model findings are summarised in the final section. The case

studies aim i) to quantify the methylation variation in normal and abnormal crypts, (both

carcinogen-affected and unaffected), within the colon and small intestine tissues; and ii) to

investigate the effect of a set of potential methylation inhibitors with respect to methylation

modifications in intestinal crypt groups over time.
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6.2 AgentCrypt for Colon Crypt Dynamics during Cancer Ini-

tiation

As seen in Chapter 2, intestinal crypts contain several different cell types1 and have some-

what different structure dependent on tissue type. The crypt cells follow different cycles of

generation to death, and the number of cells of each type and the state achieved in the cell

cycle with respect to other cells determine the ‘health’ of the crypt system. The AgentCrypt

is a computational model, which employs the agent-based paradigm, and is used to the

structure and dynamics of the intestinal crypts, which include colon and small intestine

type. AgentCrypt focuses on the analysis of the DNAm modifications in intestinal sys-

tems, induced by deregulations in cellular mechanisms during cancer initiation. The ABM

features have been presented (Section 3.3.2), and the composition and dynamics of the in-

testinal crypt have been described (Subsection 2.4). Thus, the colon crypt can be modelled

using the ABM approach as follows:

1. the colon crypt consists of a large number of cells of different types: stem, progenitor

and fully-differentiated. It can be viewed, therefore, as a complex system with het-

erogeneous components. In model terms, the cells are the agents and the crypt itself,

together with its neighbours are the environment of the agents.

2. inter-cell influences are represented by agents interactions;

3. the cell ability to perform e.g. division, differentiation or apoptosis at a specific time

point is modelled as autonomously for each agent;

4. the influences of the mother-crypt neighbour, carcinogens and methylation inhibitor

are represented as agent reactivity, (i.e. its ability to respond to a stimulus received

from its environment);

5. finally, cell ageing is modelled in terms of the adaptive/ ‘self-learning’ ability of an

agent.
1Stem, progenitor and (fully-)differentiated cells are present in both colon and small intestine crypts. In

addition, Paneth cell population is located at the base of the small intestine crypt, (Figure 2.2).
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6.2.1 Colon Crypt Structure and Dynamics

Agent communication within the colon crypt mimics the interdependencies between three

cell types, namely, (a) stem cells, (Stem), (b) progenitor cells, (Prog), (c) fully-differentiated

cells, (Diff) , (Figure 6.2). Stem cells are located at the crypt centre, progenitor cells (i.e.

the transit cells) are present in stem cell group proximity, at both left and right sides and

finally, fully differentiated cells occupy the top of the crypt. Both progenitor and differen-

tiated cells migrate upwards during their lifetime. Additionally, due to the crypt structure,

interdependencies between cell-agent neighbours are considered in AgentCrypt and the ‘co-

efficient of influence’, ICoef(C’, C), is introduced as a model input parameter (to provide

characterisation of these cell inter-relations).

Figure 6.2: Structure and dynamics of a normal colon crypt - Simplified representation
Stem cells, (located at the crypt centre), can undergo symmetrical or asymmetrical division,
(when two new stem cells or a stem and a progenitor cells, respectively, are born, and
mother-stem cell is replaced by a daughter stem cell). Progenitor cells, (i.e. the transit
cells), can also divide, (with a higher rate than the stem cells), but relatively few times.
Finally, fully differentiated cells occupy the top of the crypt and can undergo apotosis, i.e.
effective removal from the crypt.
Image adapted from the Integrative Biology Project Office, Oxford University Computing
Laboratory. url: http://www.integrativebiology.ac.uk/colon-cryptic-dynamics.html
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Cell Cycle Cell cycle is defined to be the set of possible actions performed by agents

over time and generally includes updates of methylation level, cellular division, differentia-

tion and apoptosis. However, the cellular actions performed during a cycle depend on the

cell type. Specifically, in order to describe the way that cell methylation level evolves, the

‘methylation level update’ step is introduced into the crypt framework as a cell action per-

formed by all cell types within the colon crypt. In addition, different cell actions are defined

for each cell type, based on its characteristics, (summarised in Table 6.1). Thus, after the

methylation level step, which is mandatory for every cell, a stem cell can undergo division

or apoptosis, a progenitor cell can divide or differentiate, and the cycle of a differentiated

cell can terminate through apoptosis.

Table 6.1: Cell actions specific to each cell type within the colon crypt

Cell Type Cell Action Name Action in AgentCrypt Model
Stem cell symmetrical /

asymmetrical
division

Two stem cells / a stem and a progenitor cell,
respectively, are added to the colon crypt. The
mother stem cell is replaced by one daughter
stem cell, while the other daughter cell is lo-
cated to the left or right of the mother cell’s
initial position, within its cell type groups.

apoptosis, (i.e.
‘programmed
death’)

The stem cell is removed from the colon
crypt.

Progenitor cell cell division The progenitor cell is replaced by one of its
daughters after division; the two new progen-
itors are inserted on the same side of the crypt
as the mother cell, but migrate to the end of
the branch.

differentiation The progenitor cell loses its ability to divide
further, becoming a differentiated cell. Relo-
cated to the differentiated cell group.

Differentiated cell apoptosis The differentiated cell is removed from the
colon crypt.

6.2.2 Cell Ageing

Cell ageing, refers to the number of cell cycles since a cell was born and has also been

taken into account in the crypt framework. While a stem cell can continue to divide over an
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unlimited time period, a progenitor cell has time-limited proliferation capability, which de-

creases as the cell ages and eventually ceases, [Masutomi et al., 2003; Sharpless et al., 2004;

Liu and Rando, 2011; Schepers et al., 2011]. As a corollary, cell’s differentiation capability

increases over time. Cell ageing also influences the dynamics of apoptosis such that an

older differentiated cell will clearly have a higher chance of dying and being removed from

the crypt than a younger cell, [Sharpless et al., 2004; Liu and Rando, 2011; Schepers et al.,

2011]. In model terms, over a cell cycle, each cell C from a crypt generates random values,

(i.e. PC ∈ [0, 1]), for every specific action A that relates to that cell. (PC(A) thus represents

the probability of the cell C executing the action A, where A can be cell division, differen-

tiation or apoptosis). Threshold values, (TCellType ∈ [0, 1]), are considered for each cell

type to control actions taking place and are determined by the logistic functions introduced

in expressions (6.2) - (6.3), (calculation shown further). Thus, an action A can occur only

if PC(A) > TCellType(A). Given that a stem cell is replaced by one of its daughter cells in

normal systems during symmetrical division, cell ageing is considered to have no influence

on stem cell-agent actions and threshold values for stem cell division, (either symmetrical

or asymmetrical), are defined as model input parameters. However, given that progenitor

and differentiated cells have limited lifetime, their actions, (i.e. division, differentiation

and apoptosis), are considered to be influenced by cell ageing. Since logistic regression,

(described by logistic or sigmoidal functions), can estimate the probability of an event to

occur based on a set of independent variables, [Cramer, 2002], in model terms, a family

of sigmoidal functions, with the following general form, has been proposed to compute the

threshold values for progenitor and differentiated cell actions over time:

f(t) = 1/[1 + e±a(t−c)] (6.1)

where: t = current cell age (i.e. the number of cycles since the cell was born), sign

(+/-) indicates an increase/decrease in cell action probability over time. The parameter ‘c’

is associated with cell cycle duration, which is considered to be, in average, around 2.5

days for progenitor, (c = 2.5), and one day for differentiated cells, (c = 1), for the test cases
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reported here. However, other values are also possible and a sensitivity analysis for ‘cell

lifetime’ parameter is planned, (Chapter 8). Additionally, the parameter ‘a’ is linked to

the number of actions performed by cells. Thus, given that a progenitor can undergo both

division and differentiation, a = 2, whereas for differentiated cells, a = 1, (as apoptosis is the

single specific action for this cell type). Considering these parameter values and expression

(6.1), the threshold values for cell division and apoptosis in the test cases are calculated

using expressions (6.2) - (6.3), and are illustrated in Figure 6.3.

Figure 6.3: a) Progenitor division and b) Differentiated cell apoptosis over time
The progenitor division ability decreases over time, as the threshold increases with age.
In addition, the probability of a cell death increases given that the apoptosis threshold de-
creases during cell ageing.

For example, if a progenitor cell C1 generates a value PC1(Division) = 0.70 in the sec-

ond day since it was born, given that PC1(Division)> TPROG(Division), (with TPROG(Division)

' 0.27, calculated with expression (6.2)), cell C1 will perform division. However, if the

same value PC1(Division) = 0.70 is generated in e.g. the fourth day of cell C1 lifecycle,

given that PC1(Division) < TPROG(Division), (with TPROG(Division) ' 0.95), cell C1

will be unable to divide, so undergoes differentiation.

ProgDiv(t) =
1

1 + e(−2)×(t−2.5)
(6.2)
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DiffApoptosis(t) =
1

1 + e(t−1)
(6.3)

6.2.3 The Colon Crypt Group

For a real biological system, such as the colon, crypts are part of tissue structure and clearly

do not exist in isolation. Hence, observation on cancer initiation, made based on infor-

mation regarding abnormal modifications within a single crypt, would be unrealistic. In

consequence, the analysis of aberrant changes is extended to the Colon Crypt Group, which

considers a large number of crypts and can provide information on an increase in ‘tissue

area susceptibility’ to tumour development. The Colon Crypt Group is defined as a collec-

tion of n crypts found in the colon neighbourhood, where n > 0 is a model input parameter.

The main characteristics of the Colon Crypt Group are i) crypt intra- and inter-dependencies

and ii) carcinogen and methylation inhibitor influences, (which target equally every crypt

within the group). The main assumption made for the AgentCrypt model applied to these

groups is that crypt intra- and inter-dependencies, together with cell type, dictate methyla-

tion level dynamics within cells. As noted in Subsection 2.4.2, abnormal changes in con-

nexin gene expression can lead to deregulation of the cell cycle and influence on cell methy-

lation patterns. Crypt inter-influences have been also reported, [Humphries and Wright,

2008], and these are also, therefore, taken into account during the methylation level update

step in AgentCrypt. In addition, carcinogens are considered to have a direct impact on crypt

dynamics as these relate to cell division, differentiation and apoptosis; consequently, they

have indirect influence on methylation level modifications within cells. Very recently, pos-

sibilities for methylation inhibition have been explored, [Lohse et al., 2011; Santer et al.,

2011; McCabe et al., 2012], and AgentCrypt also proposes a mechanism for exploring the

methylation inhibitor influence in the human intestinal tissue. Outputs of the model are

information on the average DNAm level within cells in a Colon Crypt Group. A simplified

overview on the entities and relationships involved in this version of the AgentCrypt model

is illustrated in Figure 6.4.
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Figure 6.4: Colon Crypt Framework - Simplified Structure Representation
The focus of the AgentCrypt model is on the aberrant DNAm level within cells from the
colon crypt group. The dynamics of DNAm are dictated by cell and crypt interdependencies
and cell type. In addition, DNAm level is influenced indirectly by carcinogens, which have
a direct impact on cell dynamics. Different potential methylation inhibitors can be also
applied and their effect on DNAm can be explored.

6.2.4 Methylation level update within the Colon Crypt Group

Methylation levels in the model are taken to be values within the range [0, 1]2, where the

healthy phenotype is characterised by a high average methylation level in the cell, (i.e.

≈1), but decreases as cancer progresses. Initially, the crypt group is considered to be in

a healthy state and the methylation level for every cell is initialized as ‘healthy’, using

data from a study on genome-wide DNA methylation analysis of normal colon and colon

adenocarcinoma, performed in 22 pairs of colorectal cancer and adjacent tissues and 19

samples from healthy individuals, (GEO3 accession GSE42752, [Naumov et al., 2013]).
2Values from range [0, 1] correspond to the percentage of methylation level measured in a given sample.
3GEO = Gene Expression Omnibus database, [Barrett et al., 2013]
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Cancer is considered to have progressed if there is decrease in the average methylation

level calculated for the entire group.

Given that global hypomethylation has been associated with ageing, [Pogribny and

Vanyushin, 2010], cell methylation level in AgentCrypt is considered to decrease over time.

In model term, cell methylation level at time t+1 is given by cell methylation level at time

t, minus methylation level lost during this time interval, i.e.:

M ′(C) = M(C)−ML(C) (6.4)

where: M(C), M’(C) = methylation level of cell C in the current and next Time-step,

respectively. ML(C) represents methylation level value removed during the current update

step for cell C and is calculated based on three major elements, (given by crypt intra- and

inter-influences, (Section 2.4)):

1. methylation decrease specific to cell C at a given time, due to ageing, (a random value

DM ∈ [10−5, 10−4]);

2. the influence of the cell neighbours, (from both left and right sides), computed based on

neighbour cell methylation level, the ‘coefficient of influence’ (subsection 6.2.1), and a

randomly generated value, (R ∈ [5 × 10−2, 10−1]), which indicates that the influences

between same two cells can be variable over time. However, if the crypt is normal, no

neighbour-cell influences have been considered with respect to methylation level modi-

fications. (Expression (6.6) is proposed to calculate the cell neighbours influences.)

3. the influence of the Cr crypt neighbours, CNI(Cr). This is calculated based on the

average methylation level of crypt neighbours, AverMethyl(Cr’), and the Inter-Crypt

Coefficient, (model input parameter, ICC ∈ [10−3, 10−2]), which indicates individual

predisposition for intestinal tumour development. For example, ICC parameter has a

higher value for an individual presenting the inflammatory bowel syndrome4 than for an

individual with no such disease. The CNI(Cr) is computed using expression (6.7) and
4Inflammatory bowel syndrome has been associated with an increased risk of CRC development, (Section

2.4).
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has the same value for all cells of a given crypt Cr, i.e. every cell is affected in the same

way by the mother crypt neighbours.

Specifically, methylation level differences between two successive time-steps in colon

crypt group are described by expressions (6.5) - (6.7), (with variable defined in Table 6.2):

ML(C) = DM + Infl(Left, C) + Infl(Right, C) + CNI(Cr) (6.5)

Infl(C ′, C) =


R×M(C ′)× ICoef(C ′, C), if the colon crypt is abnormal;

0, otherwise.
(6.6)

CNI(Cr) = ICC ×
∑

CrNabr∈{NeighboursofCr}

AverMethyl(CrNabr) (6.7)

The dominant term here is that for Infl(C’, C), which can lead to considerable methy-

lation level differences between abnormal and normal cells. This would imply that the

environment of the cell influences methylation modification dynamics inside the cell.

Table 6.2: Variable definitions for methylation level update step

Parameter name Parameter description
ML the methylation value that will be removed during the cur-

rent update step;
DM ageing-related methylation decrease specific to cell C at a

given time, (a random value ∈ [10−5, 10−4]);
M(C’) methylation level of cell C’ in the current Time-step, (∈ [0,

1]);
ICoef (C’, C) coefficient of cell C’ influence on cell C; model input pa-

rameter with value ∈ [10−3, 10−2]
Infl(Left, C), Infl(Right,
C)

the methylation value that is added to cell C due to
left/right neighbour influences;

CNI(Cr) the neighbour-crypt influences on the Cr crypt;
R random value from [5 × 10−2, 10−1];
ICC the Inter-Crypt Coefficient, (model input parameter, with

a value from [10−3, 10−2]);
AverMethyl(Cr’) the average methylation level of the Cr’ crypt, (computed

based on the methylation level of every compound cell);
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While methylation level is conserved during cell division, methylation level changes occur

during cell differentiation, [Klug et al., 2010; Meissner, 2010; Kaaij et al., 2013], and the

parameter DiffMethCoef is introduced to indicate such modifications. Thus, methylation

level after cell C differentiation can be computed based on methylation level of cell C

before undergoing differentiation:

MDIFF (C) = MPROG(C)×DiffMethCoef (6.8)

where: MPROG(C), MDIFF (C) = methylation level of cell C before and after differenti-

ation step, respectively, and DiffMethCoef = the methylation value removed during cell

differentiation step, (model input parameter, with a value ∈ [0, 1]).

6.3 Extension to the small intestine tissue

The small intestine and colon tissues share a number of features, which can be considered

also in terms of crypt structure (Section 2.4). Thus, AgentCrypt has been extended to mimic

and inspect the dynamics of the small intestine crypt during cancer initiation. The methy-

lation level in every cell within the small intestine crypt is initialized from study data on

genome-wide DNA methylation profiling, (GEO accession GSE50475, [Lay et al., 2014]).

In model terms, the major change is the inclusion of a Paneth cell group, where maximum

and minimum Paneth cell numbers, (i.e. MaxPanethNo and MinPanethNo), are additional

input parameters. Thus, the Paneth cell-agent, which can either migrate to the crypt base

or undergo apoptosis, is included as a fourth type in AgentCrypt. The progenitor cell cycle

is modified also to permit differentiation into Paneth cells and the relationship describing

cell-agent interdependencies is extended to integrate the Stem-Paneth and Paneth-Paneth

influences in addition to those considered for the colon crypt, (subsection 6.2.1). Moreover,

based on expression (6.1) and given that Paneth cell lifetime has been approximated to 20

days, [Sancho et al., 2003; Clevers and Bevins, 2013], the Paneth cell probability to undergo
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apoptosis during its cycle is described by:

PanethApoptosis(t) =
1

1 + e(t−20)
(6.9)

6.4 External influences

Influences of the external factors such as carcinogenes and methylation inhibitors have been

considered also in AgentCrypt and their impact on methylation level is explored through

intestinal crypt groups.

6.4.1 Carcinogens influences

Carcinogen influence permits molecular abnormalities to accumulate, (with faster dynamic),

and facilitates cell growth, [Papailiou et al., 2011]. In model terms, carcinogen presence is

associated with deregulations in crypt dynamics rather than in terms of direct impact on

methylation level. Thus, carcinogens affect threshold values characteristic of each cellular

action within AgentCrypt, by addition/subtraction of a percentage δ1 from the threshold

value, δ1 ∈ [0, 100], (an input parameter). Given that stem cell division and apoptosis are

rare events, threshold values characteristic to this cell group are fractionally modified by

the product fStem ×δ1 value, where fStem ∈ [0, 1], (an input parameter). Hence, under

the influence of carcinogens, the threshold value for cell division is lower than that within

a normal system, with complementary probability of cell proliferation increased. Similarly,

threshold values for apoptosis are increased in affected systems, leading to decrease in the

normal rate of cell death.

6.4.2 Methylation inhibitor activity

Epigenetic drugs are considered a promising option in cancer therapy and several methy-

lation and acetylation inhibitors are already being applied in blood cancer, (discussed in

Section 2.7). Therefore, the AgentCrypt model was extended also to investigate the influ-

ence of potential methylation inhibitors in the intestinal crypt over time.
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Major drug features are efficacy, (which represents the maximum response achieved

after drug application), and potency, (which measures drug amount needed to produce a

specific effect). These can be characterised by a drug response curve, which is represented

by a sigmoidal (or logistic) function and indicates relationship between drug dose and effect,

(i.e. response to treatment). A drug response curve is described typically by a slope factor

and EC50, or half maximal effective concentration, (representing drug concentration that

determines 50% efficacy). As a percentage, therefore, EC50 ∈ [0, 0.50]; thus, efficacy has a

value in [0, 1] range. If slope = 1, the drug response curve has a standard slope; otherwise,

it has a ‘variable slope’. In general, inhibitors are considered to have a standard slope.

In addition, information on time to ‘inflection point’ (IP), (when drug curve changes its

concavity, i.e. effect starts increasing or decreasing) is typically part of the drug response

curve description. Efficacy is illustrated therefore, by drug response curve peak, (the higher

the peak, the greater the efficacy), and potency is displayed by dose-response curve level at

a point on x-axis (a lower value of x for given response suggests greater potency), (Figure

6.5). The general form of logistic function, (expression (6.10)), can be adapted to describe

drug response curve, (expression (6.11)).

f(x) =
c

1 + e−Slope×x
(6.10)

DRC(t) =
EFF

1 + e−Slope×(t−IP )
(6.11)

where: t = time since drug/ inhibitor was applied, EFF is drug efficacy and EFF = 2× EC50,

Slope = slope of drug response curve, IP = inflection point of drug response curve, EC50 =

half maximal effective concentration.

In AgentCrypt, the presence of an inhibitor affects the methylation level update step

during a cell cycle, (given by expression (6.4)), and methylation modifications are gradually

blocked, since the inhibitor effect is considered dependent on the time elapsed since the drug

has been introduced to the system. Specifically, the inhibitor influence increases initially
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Figure 6.5: Drug Efficacy and Potency indicated by Drug response curve
High peak and left position of a drug reposnse curve indicate high efficacy and potency
Image adapted from:
http://classconnection.s3.amazonaws.com/370/flashcards/641370/png/untitled1321511264457.png

up to a maximum value, (i.e. reaches inhibitor efficacy), and maintains a constant level

for a specific time-period, (denoted as the Inhibitor Maximum Efficacy Time (IMET)), after

which, inhibitor effect decreases. In the model, inhibitors are considered to have standard

slope, (i.e. Slope = 1), as noted earlier. Based on these and expression (6.11), the effect of

a methylation inhibitor is characterised by a combination of two logistic functions, denoted

as the inhibitor response curve, (IRC), (expression 6.12), and IMET.

IRC(t) =


EFF

1+e−(t−IPINCR) , if t ≤ IMET, i.e. ‘increase’ phase ;

1− EFF
1+e−(t−IPDCR) , otherwise, (‘decrease’ phase).

(6.12)

where t is time (days) since the inhibitor was applied, EFF represents drug efficacy, calcu-

lated based on EC50, (with EFF = 2 × EC50), and IPINCR and IPDCR are inflection points

of drug effect (i.e. times at which inhibitor effect increases and decreases, respectively).

EC50, IPINCR and IPDCR are model input parameters and are also dominant terms here.
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Thus, IRC(t) value is closer to 0 if EC50 ≈ 0 and increases to 1 as EC50 increases. In

addition, a higher IPINCR value implies later IRC(t) increase, i.e. lower potency. Finally,

higher IPDCR implies prolonged effect of the drug.

Example: An example of methylation inhibitor influence is given for a set of three in-

hibitors during a time-period of around 90 days, (≈ one quarter of year). The effect of

the first inhibitor, I1, is taken to start increasing around seven days after application, (i.e.

IP1INCR = 7); for the second and third inhibitors, I2 and I3, the increase is taken around

fourteen and twenty one days, respectively, after application, (i.e. IP2INCR = 14, IP3INCR

= 21). In addition, while the same efficacy applies for inhibitors I1 and I2, a relatively low

value is assigned to efficacy of inhibitor I3, (e.g. EC150 = EC250 = 50%, EC350 = 40%).

Finally, IMET was taken≈ 50 days. The inhibitors described by these settings are given by

expression (6.13), and their effect over time-period of 90 days is illustrated in Figure 6.6.

Considering both efficacy and potency features, inhibitors I1 and I3 can be seen as the most

and least efficient, respectively, within this set. (Inhibitors I1 and I2 have similar efficacy,

but I1 has higher potency than I2. I3 has both efficacy and potency lower than I1).

Inhibitor1, (I1) : IP1INCR = 7 days, IP1DCR = 90 days,EC150 = 50%; (6.13)

Inhibitor2, (I2) : IP2INCR = 14 days, IP2DCR = 90 days,EC250 = 50%;

Inhibitor3, (I3) : IP3INCR = 21 days, IP3DCR = 90 days,EC350 = 40%.

Methylation modifications, ML, occur over time, and in intestinal systems with no in-

hibitors, methylation level is updated using expression (6.4), (subsection 6.2.4). In crypts

for which methylation inhibition applies, methylation level changes are reduced by a value

depending on strength of inhibitor effect: higher effect determines higher methylation re-

duction. Thus, in inhibitor-influenced systems, methylation level variation is given by

ML× (1− IRC(t)) and based on this and on expression (6.4), the expression for methy-
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Figure 6.6: Comparison between the effect of three potential inhibitors on methylation level
over a time-period of 90 days defined by the following settings: i) Inhibitor 1: IP1INCR =
7 days, IP1DCR = 90 days, (green); ii) Inhibitor 2: IP2INCR = 14 days, IP2DCR = 90 days,
(orange); iii) Inhibitor 3: IP3INCR = 21 days, IP3DCR = 90 days, (blue); iv) IMET ≈ 50
days. Inhibitor1 and Inhibitor3 can be considered the most and less efficient, respectively,
within this set.

lation level updates between two successive time-steps in the intestinal crypt becomes:

M ′(C) = M(C)−ML× (1− IRC(t)) (6.14)

where M’(C), M(C) = methylation level of cell C in the current and next Time-step, respec-

tively, and ML = methylation modification between current and next Time-step; t = time

since the inhibitor was applied and IRC(t) = inhibitor effect at time t. For example, if the

inhibitor effect at time t is maximum, i.e. IRC(t) = 1, methylation variation between times t

and t+1 is equal to zero, (expression 6.15). However, if no inhibitors are applied, i.e. IRC(t)

= 0, methylation variation achieves a maximum, (given by expression 6.4).

M ′(C) = M(C)−ML× (1− 1) = M(C)−ML× 0 = M(C)⇒M ′(C)−M(C) = 0

(6.15)
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Figure 6.7: Class diagram for the AgentCrypt model. The dark-shaded diamond shape in-
dicates the composition relationship between classes, (similar to the E-G Network Model,
Chapter 5), while the empty diamond indicates the aggregation relationship between
classes, i.e. the component lifecycle is not controlled by the container class: if the con-
tainer class is destroyed, aggregated instances are not destroyed - only the association be-
tween container class and compound instances is affected.

6.5 Implementation details of the AgentCrypt

Similar to the E-G Network, (Chapter 4), AgentCrypt code is object-oriented, implemented

using C++. Using the same programming language for developing both models facilitates

their connection and integration into a single multi-scale framework for CRC dynamics.

The AgentCrypt structure is represented by the following major classes, with their rela-

tionships shown in the class diagram (Figure 6.7):

• Cell - This class describes cell-agent characteristics, including the division, differen-

tiation and apoptosis functionality.

• Crypt - This class handles the functionality of the intestinal (both small intestine and

colon) crypts; a Crypt object contains a large number of Cell objects and can contain

a set of Inhibitor objects.

• CryptGroup - This class represents the tissue level in the AgentCrypt model and

mimics characteristics of the Intestinal Crypt Group. A CryptGroup object contains

a collection of Crypt objects. The CryptGroup class also offers functionality for
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handling information on individual characteristics, (i.e. the NetworkSettings class

from the E-G Network Model, (Section 5.3.3)).

• Inhibitor - This class encodes methylation inhibitor characteristics and describes

functionality for calculating inhibitor response curve values over time.

Similar to the E-G Network, the Mersenne Twister is used as the random number genera-

tor and Visual Leak Detector, [CodePlex, 2014], is integrated in AgentCrypt for detecting

plausible memory leaks in code. Finally, the code documentation is generated again with

the doxygen tool, [van Heesch, 2008], and can be accessed online at the following url:

http://www.computing.dcu.ie/ iroznovat/documentation/html/index.html.

6.6 Results and discussion

AgentCrypt was applied to analysis of DNA methylation modifications within both small

intestine and colon crypt groups, in healthy and malignant systems, (and under assumed

carcinogen influence). This case study was used to explore evolution of intestinal crypt

mechanisms. In addition, two ‘plausible’ methylation inhibitors, described in subsection

6.4.2, were considered in intestinal crypt systems and their impacts on methylation level

were investigated during cancer initiation. Input parameters are grouped as follows: a)

Table 6.3 contains information on cell numbers specific to colon and small intestine crypts,

respectively; and b) Table 6.4 contains information on intestinal crypt dynamics, such as

coefficient of influence introduced in subsection 6.2.1. The data are organized such that

information from Table 6.3 is tissue-specific, while data contained in Table 6.4 are common

to both colon and small intestine crypt groups. These values are derived from literature

(Section 2.4), or considered as potential input data sets; other values are possible as well

and a sensitivity analysis is certainly needed for every parameter, (discussed in Chapter 8).

Tissue-specific parameter values

The total cell number is approximated to 2000 cells and 260 cells in colon and small intes-

tine crypts, respectively, informing on InitCellNumber parameter value in intestinal sys-
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Table 6.3: Input parameter values on cell number for small intestine and colon crypts

Parameter name Value in the
colon

Value in the
small intes-
tine

InitCellNumber 2000 260
InitStemCellNumber 16 6
MaxTotalCellNo (2 × InitCellNumber) 4000 520
MaxStemNo (2 × InitStemCellNumber) 32 12
MinStemCellNumber 1 1
MinCellNumber
(PercMIN × InitCellNumber, PercMIN = 50%)

1000 130

InitPanethCellNumber 0 10
MaxPanethCellNumber (2 × InitPanethCellNumber) 0 20
MinPanethCellNumber
(PercMIN × InitPanethCellNumber, PercMIN = 50% )

0 5

InitProgCellNumber
(PercPROG × InitCellNumber, PercPROG = 25%)

500 65

MaxProgNo (2 × InitProgCellNumber) 1000 130
MinProgCellNumber
(PercMIN × InitProgCellNumber, PercMIN = 50% )

250 32

tems. In addition, stem cell group consists of around 16 - 19 cells in the colon, (e.g.

InitStemCellNumber = 16 in colon), and 1 - 6 cells in small intestine crypt, (e.g. Init-

StemCellNumber = 6). Major crypt phenomena, such as ‘crypt fission and the ‘bottleneck

effect’, were reported to occur over long time-periods in normal crypts. ‘Crypt fission’ is

characterised by cell population augmentation and was associated with doubling stem cell

number. The ‘bottleneck effect’ is represented by cell group reduction and decrease in stem

cell number up to a single stem cell. Based on these, it can be considered that MaxStemNo =

2 × InitStemCellNumber, MaxTotalCellNo = 2 × InitCellNumber and MinStemCellNum-

ber = 1. Paneth cells are present in a relatively small number at the base of small intestine

crypt and are absent from normal colon crypt. Given these, Paneth cell number in normal

systems, InitPanethCellNumber, is considered to be equal to zero in colon and close to stem

population size in small intestine crypt, (e.g. InitPanethCellNumber = 10 cells). Given no

precise information available on progenitor group size, the progenitor cell number in the

model is taken equal to a percentage of crypt cell population size, e.g. PercPROG = 25%.

Finally, similar to maximum cell numbers which are double of normal cell numbers, the
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minimum cell numbers are calculated as a percentage of normal cell population sizes, (e.g.

PercMIN = 50%).

Common parameter values

The parameter values from Table 6.4 are chosen based on several criteria, such as: i) the

system computational performance, (e.g. cell numbers in crypt), ii) a framework-defined

‘inter-cellular influence hierarchy’ based on cell type, (according to which, for example, the

influence of a stem cell on a progenitor is higher than the reverse and the influences between

cells of the same type are represented by a common value for the whole system), (i.e.

coefficient of influence), iii) ‘middle’ changes induced by carcinogens on cell dynamics,

(e.g. carcinogen influence ≈ 50%) and iv) low methylation level differences occurring

during cell differentiation.

Table 6.4: Input parameter values of intestinal crypt dynamics used in the AgentCrypt for
both small intestine and colon crypt

Parameter group Parameter name & value
Crypt number per group n = 10.
Threshold values TStem(SymDivision) = 0.99;

TStem(AsymDivision) = 0.94.
Cell cycle duration ProgCellCycle = 2.5;

DiffCellCycle = 1.
Methylation level change due to cell dif-
ferentiation

DiffMethCoef = 90%;

Carcinogen influence δ1 = 50%;
fStem = 0.1;

Coefficient of influence ICoef(Stem, Stem)= 0.002;
ICoef(Paneth, Paneth) = 0.002;
ICoef(Prog, Prog) = 0.002;
ICoef(Diff, Diff) = 0.002;
ICoef(Stem, Prog) = 0.003;
ICoef(Stem, Paneth) = 0.003;
ICoef(Prog, Stem) = 0.001;
ICoef(Prog, Diff) = 0.003;
ICoef(Diff, Prog) = 0.001;
ICoef(Paneth, Stem) = 0.001;
CYPT INTER COEF = 0.001.

Given that probabilities for stem cell division and apoptosis to occur are considerable
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low in normal systems, significant high values are assigned for stem cell action thresholds,

(e.g. TStem(SymDivision) = 0.99, TStem(AsymDivision) = 0.94). Stem cell cycle was ap-

proximated to seven and five days in human colon and small intestine, respectively, and

intestinal tissues are characterised by high cell turnover rate, (Section 2.4). Based on these,

lifetime was considered around 2.5 days for progenitors and one day for differentiated cells

in both crypt types. Given limited precise information on intestinal tissue dynamics, param-

eter values included in Table 6.4 are proposed for the test cases presented in this chapter.

However, alternative values are also possible and a sensitivity analysis is required to inves-

tigate system behaviour with various value-ranges for input parameters, (Chapter 8).

6.6.1 Case study on DNA methylation level variation during intestinal cancer

development

Initially, DNAm variation in the small intestine and colon crypt over time was considered.

Specifically, three major systems, namely i) the healthy crypt, ii) the aberrant crypt and iii)

the carcinogen crypt, were defined and incorporated in this test case. DNAm level changes

are permitted for all three crypt types, but intra-crypt communication was not considered

to affect cell methylation level in the healthy crypt case. Under carcinogen influence, cell

action threshold values are modified (δ1), as described in Section 6.4.1. Three groups of

10 crypts were defined for each system type, (i.e. healthy, aberrant and carcinogen crypt),

and a comparison of DNA methylation variation was performed for both small intestine and

colon tissues. The set of input parameters, that describe these systems, is given in Table 6.3

and 6.4.

The crypt groups were allowed to evolve over time, (simulation time of 550 iterations,

approximated to 1.5 years in colon tissue) and the analysis considered both intra- and inter-

tissue comparisons, (addressing elements of Research Objective 3, (Section 1.2.1)). Based

on individual crypt methylation level (given by the average methylation level of the com-

pound cells), the average methylation level was calculated for each crypt group, (illustrated

by Figure 6.8). This shows that although average methylation level values decreased for
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Figure 6.8: Comparison between methylation levels recorded in a) colon and b) small in-
testine
The average methylation level is calculated for each of the healthy, aberrant and carcinogen-
influenced crypt groups within both the small intestine and colon over a 550-day period.
The highest methylation level is recorded in the healthy crypt groups for both tissue types,
while the lowest methylation level (i.e. the highest decrease) is observed in the ‘carcinogen’
crypt groups.

each crypt group during the simulation, updates followed different patterns for healthy,

aberrant and carcinogen-influenced crypts. Differences between final and initial average

methylation levels are given in Table 6.5, for both colon and small intestine crypt groups.

Specifically, methylation differences observed are ≈1.58% in healthy, ≈7.44% in aberrant,

and ≈7.64% in carcinogen-affected systems in colon tissue, and ≈1.83%, ≈7.39% and

≈7.64% in corresponding crypt groups in the small intestine. The lowest methylation level

decrease over time was recorded for healthy crypts, (interpreted as changes in methyla-

tion level due to ageing), while the highest hypomethylation difference was observed in

the ‘carcinogens’ groups. The average methylation level within aberrant crypt groups de-

creased by≈5.85% in the colon and with≈5.55% in the small intestine in comparison with

that recorded for healthy systems. Differences in average methylation level decrease be-

tween carcinogen and healthy crypt groups were ≈6.05% in the colon and ≈5.81% in the
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small intestine. These results on the methylation level loss between the ‘aberrant - healthy’

and ‘carcinogen - healthy’ group-pairs indicate that while carcinogens do not have a di-

rect impact on epigenetic mechanisms, methylation patterns are differently affected in the

systems where these influences are present. In addition, results indicate an increase in av-

erage methylation level of the small intestine during the first week, (∼ 30 days, equivalent

to Paneth cell cycle duration, (Section 2.4)), a pattern not shown in the colon. A cause of

this phenomenon can be related to Paneth cell group presence in the small intestine and the

way in which crypt methylation level is influenced by cell dynamics. Specifically, although

cells initially have similar methylation level, the differentiated cell population will, after a

period of time, will contain lower methylation level than stem and progenitor cells, (due

to demethylation during differentiation). In addition, an increase in crypt methylation level

can occur between two successive time points when differentiated cells undergo apopto-

sis and stem/ progenitor cells divide, (transmitting accurate methylation information). In

the colon, given that the differentiated cell population is extended during every progenitor

differentiation, the decrease in methylation level is maintained over time. However, this

is not exhibited by the small intestine, where progenitors can differentiate also into Paneth

cells, resulting in no changes in differentiated cell population. In consequence, if several

differentiated cells die, an increase in crypt methylation level can be recorded.

Finally, relatively higher values were recorded in the colon, (though broadly compara-

ble), suggesting that colon may be more sensitive than small intestine tissue with respect

to methylation level dynamics induced by abnormal conditions. This is also an interesting

observation given that simulation time was relatively short in comparison with cancer devel-

opment time, (i.e. ≈1.5 years versus several decades). Thus, further tests should consider

longer time-periods for intra- and inter-tissue analysis of methylation level modifications.

6.6.2 Case study on methylation inhibitors influence

The impact of methylation inhibitors on intestinal crypt methylation level was analysed in

a second case study, in small intestine tissue, using inhibitors with the highest and lowest

effect from the set defined in expression (6.13), i.e. I1, (IP1INCR = 7 days, IP1DCR =
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Table 6.5: Difference between the Final and Initial Average Methylation Level, recorded
for Healthy, Aberrant and Carcinogen Crypts within the Colon and Small Intestine Groups

System Type Row Measurement Colon Small intestine
Healthy R1 Initial level 0.49997; 0.49988;

R2 Final level 0.48411; 0.48150;
R3 δR2−R1 -0.01586; -0.01838;

Aberrant R4 Initial level 0.49988; 0.49983;
R5 Final level 0.42546; 0.42589;
R6 δR5−R4 -0.07442; -0.07394;

Carcinogen R7 Initial level 0.49990; 0.49986;
R8 Final level 0.42349; 0.42338;
R9 δR8−R7 -0.07641; -0.07648.

90 days, EC150 = 50%), and I3, (IP3INCR = 21 days, IP3DCR = 90 days, EC350 = 40%).

Similar to the previous case study, methylation levels in the respective crypt groups was

initialized using data from GEO accession GSE50475 dataset. In addition, four crypt groups

were defined as follows:

• S1: normal crypt group, with no inhibitor applied;

• S2: abnormal crypt group, with no inhibitor applied;

• S3: abnormal crypt group with inhibitor I1 applied;

• S4: abnormal crypt group with inhibitor I3 applied;

These test systems were allowed to evolve over 90 days, (i.e. ∼ quarter year) and four

synthetic individuals were comprised in this case study. The average methylation level was

recorded for every system, (illustrated in Figure 6.9).

Results indicate that methylation level decreased in every system defined; however, dif-

ferent patterns of variation were observed, (average methylation changes for the simulation

are shown in Table 6.6). Specifically, the differences recorded between the final and initial

methylation level for each system are i) ≈ 1.65% in S1, (healthy crypt group), ii) ≈2.66%

in S2, (abnormal system with no inhibitor applied), iii) ∼ 1.75% in S3, (abnormal system

with inhibitor I1 applied) and iv) ≈2.06% in S4, (abnormal system with inhibitor I3 ap-

plied). Lowest and highest differences can be seen in systems S1 and S2, i.e. the normal
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Figure 6.9: Comparison between average methylation level in four different intestinal crypt
systems, over 90 ‘days’, where different methylation inhibitor patterns were applied. S1
(green) and S2 (red), refer to normal and abnormal systems, respectively, and are considered
to be ‘control groups’, given that no inhibitors were applied. Inhibitors I1 and I3 have been
applied in S3 (blue) and S4 (black), respectively.

and the abnormal systems with no inhibitor applied, respectively. Given that inhibitor I1

was observed to have a higher effect than inhibitor I3 over time, (Figure 6.6), the difference

for system S3 (with I1 applied), is less than that for S4, (with I3). Differences of ≈ 0.60

and 0.90% in average methylation level decrease over time can be seen among abnormal

systems, with and without inhibitors applied, i.e. S2 - S3: 2.66% - 1.75% ≈ 0.90% and S2

- S4: 2.66% - 2.06% ≈ 0.60%. As expected, methylation inhibition does result in lower

average methylation variation, which implies that some of epigenetic ‘control’ is possible

and this has clear therapeutic value. However, % changes are still small and one issue for

future work is how much deviation can be tolerated by the system before significant effects

are observed. In addition, future work is planned to target methylation analysis in systems,

where inhibitors are applied either sequentially, e.g. I1 then I3, or combined, e.g. I1+I3.
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Table 6.6: Difference between the Final and Initial Average Methylation Level in the set of
crypt groups

Crypt sys-
tem/Methylation
level

S1 (healthy) S2 (abnormal,
no inhibitors)

S3 (abnormal
+ I1)

S4 (abnormal
+ I3)

Initial
(Mi)

0.4999333 0.49989 0.4998907 0.499836

Final
(Mf )

0.4834276 0.4732609 0.4823474 0.4792197

Difference
(∆ = | Mf -
Mi)|

0.0165057 0.0266291 0.0175433 0.0206163

6.7 Summary

AgentCrypt focuses on DNAm level variation, induced during cancer initiation and pro-

gression, in cells within the small intestine and colon crypt groups. The main contribution

of AgentCrypt is to highlight methylation variation with respect to potential carcinogen and

inhibitor influence. The main entities in AgentCrypt consists of stem, progenitor and differ-

entiated cells in the colon, with the addition of the Paneth cell group in the small intestine.

AgentCrypt integrates rules for every cell type in order to describe specific actions related

to methylation update, cell division, differentiation and apoptosis. Considered to have a

major impact on the cell cycle, ageing was also included in AgentCrypt, with mathematical

expressions proposed to describe how progenitor, differentiated and Paneth cells undergo

division and apoptosis. The main assumption of AgentCrypt is that cell methylation level

can be influenced by both cell and mother-crypt neighbours in abnormal systems, due to

intra- and inter-crypt influences. However, no inter-cell influences on methylation level

were considered in ‘healthy’ crypts, (characterised by no alterations of inter-cellular gaps).

AgentCrypt implementation also considered carcinogen and methylation inhibitor in-

fluences. While methylation inhibitors have a direct impact on methylation modifications

over time, carcinogens influence cell division, differentiation and apoptosis, without affect-

ing methylation patterns directly. Fluctuations of the methylation inhibitor effect were also

considered, and the inhibitor response curve expression proposed to describe the dynamics
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of blocking methylation modifications over time. Two case studies were built to analyse the

impact of such factors on intestinal cancer development.

Experimental data, (GEO accession GSE42752 and GSE50475), were used to initialize

the model which was allowed to evolve over a period of 550 days. Crypt groups were ob-

served and average methylation level was recorded. Differences were higher for carcinogen

influenced systems and overall methylation level were more stable in the small intestine

than in the colon crypt group. In addition, methylation level changes were inhibited un-

der different patterns in abnormal systems, during a 90 days - period. Inhibitor effect was

marked for abnormal crypt groups, with largest average methylation differences observed∼

0.60 - 0.90% lower when inhibitor was present. An interesting observation is that the final

methylation level in abnormal systems with inhibitors applied, (measured after 90 days), is

similar to methylation level measured after around 20 - 30 days in abnormal crypts, with

no inhibitors. Thus, a difference of around 60 - 70 days can be observed between abnor-

mal systems, implying that inhibitor presence can shrink tumour progression. However,

no inhibitor considered was able to restore methylation to normal levels. Employment of

multiple, (combined), inhibitors, which complement each another with respect to effect

over time, may offer a solution, but clearly, additional tests are required to determine the

appropriate inhibitor characteristics.

AgentCrypt described dynamics of different intestinal crypt systems focusing on in-

dividual cell activity. However, it is also important to investigate overall cell population

deregulations in order to understand abnormal changes within intestinal crypt leading to

cancer development. This specific analysis at intestinal tissue level is performed using the

LogisticCrypt model, presented in the next chapter.
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Chapter 7

LogisticCrypt - a Logistic Model of

Intestinal Crypt Structure

7.1 Introduction

Based on the need to interpret base level features of a system as these impact on system

behaviour as a whole, the LogisticCrypt model has been developed to perform comparative

analysis between colon and small intestine tissues with regard to cell number deregulations

observed in abnormal systems, (i.e. to target our third research objective, namely “To assess

the effect of deregulation on intestinal crypt dynamics with regard to tumour development”,

(Section 1.2.1)). Specifically, these mechanisms refer to both cell proliferation and inci-

dence of major intestinal crypt phenomena1, which have been associated with increased

risk of cancer development, (Chapter 2). The LogisticCrypt model describes crypt struc-

ture with regard to number of each cell type, (i.e. stem, progenitor, fully-differentiated and

Paneth cells), at given time. Study focus is on two elements:

1. cell division, differentiation and apoptosis rates within the intestinal crypt;

2. cell competition related to ‘crypt space’.
1Major crypt phenomena are ‘crypt fission’ (longitudinal crypt division) and the ‘bottleneck effect’ (crypt

regeneration from a common ancestor-cell). The occurrence of both phenomena has been reported in normal
intestinal crypts only over long time periods, approximated with 25 years for ‘crypt fission’ and 8.2 years for
the ‘bottleneck effect’, (Chapter 2).
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Figure 7.1: Structure of the Colorectal Cancer Model - focus on the LogisticCrypt model
The relationships between model components may refer to R1) average methylation level
for gene network / intestinal cell; R2) patient features; R3) intestinal crypt dynamics, ex-
plored following bottom-up and top-down approaches.

The position of the LogisticCrypt model in the Colorectal Cancer Model is highlighted

in Figure 7.1. Thus, while AgentCrypt, (Chapter 6), characterises intestinal crypt dynam-

ics, following a bottom-up approach, with information passed from cellular to tissue level,

LogisticCrypt aims to complement this information through a top-down approach, where

the prevalence of each cell type is determined by cell division, differentiation and apopto-

sis rates and restricted by intestinal crypt capacity. In order to achieve cross-comparison

between intestinal tissues, LogisticCrypt was built initially to mimic crypt structure in the

colon, (Section 7.2), and subsequently extended to the small intestine, (Section 7.3). In

addition, similar to AgentCrypt, carcinogen influence is considered in order to investigate

intestinal crypt modifications during tumour development. Implementation details are pro-

vided in Section 7.4 and the results obtained from the analysis of crypt deregulations, (e.g.

aberrant increase in stem cell division), are described in Section 7.5. Finally, main contri-

butions and limitations of the top-down model are presented in Section 7.6.
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7.2 Modelling the colon crypt

In LogisticCrypt, the colon crypt consists of three main cell populations, namely stem, pro-

genitor and differentiated cell groups, for which, specific actions are considered, citepReya2005.

Similarly to the AgentCrypt model, (Chapter 6), stem cells can undergo both symmetrical

and asymmetrical2) division or apoptosis, progenitors can divide or differentiate, and dif-

ferentiated cells are removed from crypt following apoptosis, (Figure 7.2), [Potten et al.,

2003; Frank, 2007; Humphries and Wright, 2008; Khalek et al., 2010; Vaiopoulos et al.,

2012]. While in AgentCrypt, the focus was on individual cell behaviour, LogisticCrypt

aims to investigate colon crypt dynamics at cell population level, i.e. to explore variations

of the cell population size over time, as these can indicate tumour development, [Humphries

and Wright, 2008; Vaiopoulos et al., 2012], (Chapter 2). In colon crypt, stem cell number

increases only during symmetrical division, (by addition of new stem cells), and decreases

during apoptosis. The progenitor cell group enlarges following both progenitor and asym-

metrical stem cell divisions and diminishes during differentiation. Augmentation in differ-

entiated cell set is determined by progenitor differentiation, while reduction of differentiated

cell population size is caused by apoptosis.

The LogisticCrypt describes intestinal crypts based on stem, progenitor and differen-

tiated cell number and rates for both symmetrical and asymmetrical stem cell division,

(RateStemSymDiv and RateStemAsymDiv), for stem and differentiated cell apoptosis, (RateStemApoptosis

and RateDiff
Apoptosis, respectively) and for progenitor division and differentiation rates, (RateProg

Div

and RateProg
FullDiff , respectively), considered with values ∈ [0, 1] (fractions). For example,

the number of stem cells that undergo apoptosis at a given time t is equal to RateStemApoptosis ×

Stem(t). In addition, given that three possible cell actions are defined for stem cell group,

(namely symmetrical and asymmetrical divisions and apoptosis), the sum of these cell ac-

tion rates is ≤ 1, (shown in expression (7.1)). The inequality indicates that a stem cell

subgroup performs no action during a time-interval, (i.e. neither division or apoptosis), as

stem cell division or apoptosis are rare events in normal colon crypts, (which are triggered
2Two new stem cells or a stem and a progenitor cells are born during symmetrical and asymmetrical divi-

sions , respectively. In both situations, the mother stem cell is replaced by one daughter stem cell.
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Figure 7.2: Intestinal Cell Actions in the LogisticCrypt model
A stem cell can divide symmetrically or asymmetrically, resulting into two new stem cells
or a stem and a progenitor cells, respectively. In addition, a stem cell can undergo apop-
tosis, following which, it is removed from crypt. A progenitor can divide into two new
progenitor cells or differentiate into a fully-differentiated cell. A differentiated cell can un-
dergo apoptosis, being removed from the crypt, [Potten et al., 2003; Humphries and Wright,
2008].

by abnormal changes that affect crypt homestasis, [Bach et al., 2000]). Similar, the sum of

the progenitor cell division and differentiation rates is ≤ 1, (expression 7.2).

RateStemSymDiv +RateStemAsymDiv +RateStemApoptosis ≤ 1 (7.1)

RateProg
Div +RateProg

FullDiff ≤ 1 (7.2)

At every time-step, each cell type group is updated according to its specific actions.

Thus, the stem cell population at time t+1 is composed from stem cells found in the colon

crypt at the previous time-step, t, in addition to the new stem cells, (born through stem cell

symmetrical division during this interval), minus dead stem cells that underwent apoptosis

during the same time-period. The numbers of new and removed stem cells are calculated

based on stem cell symmetrical division and apoptosis rates, respectively. Based on these,

the expression for stem cell number updates is:
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Stem(t+ 1) = Stem(t) +BornStem(t+ 1)−DeadStem(t+ 1) (7.3)

BornStem(t+ 1) = Stem(t)×RateStemSymDiv

DeadStem(t+ 1) = Stem(t)×RateStemApoptosis ⇒

Stem(t+ 1) = Stem(t) + Stem(t)× (RateStemSymDiv −RateStemApoptosis)

where BornStem, DeadStem = new and removed stem cell numbers, respectively, at

time t+1. Analogously, the progenitor cell population at time t+1 is given by the total of i)

progenitors found in crypt at time t and ii) new progenitors, (born through both progenitor

and asymmetrical stem cell division), from which, the group of progenitors that underwent

differentiation is removed. The size of the differentiated cell group at time t+1 is com-

puted from the differentiated cell number at time t, plus the number of new differentiated

cells, (originated from progenitors), minus differentiated cells that underwent apoptosis. In

conclusion, the progenitor and differentiated cell updates are given by:

Prog(t+ 1) = Prog(t) + Stem(t)×RateStemAsymDiv + Prog(t)× (RateProg
Div −Rate

Prog
FullDiff )

(7.4)

Diff(t+ 1) = Diff(t) + Prog(t)×RateProg
FullDiff −Diff(t)×RateDiff

Apoptosis

(7.5)

with variables defined as given in Table 7.1.

Table 7.1: Variable definitions for LogisticCrypt in the colon crypt

Prog(t), Diff(t) the numbers of progenitor and differentiated cells, respec-
tively, observed in crypt at time t;

Prog(t+1), Diff(t+1) numbers of above cell types at time t+1;
RateProg

Div and
RateProg

FullDiff

the rates of progenitor cell division and differentiation, re-
spectively;

RateDiff
Apoptosis the rate differentiated cell apoptosis.

Intra- and inter-specific competitions are also incorporated into LogisticCrypt to de-
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scribe crypt dynamics. In such systems, an increase in one species’ population restricts the

expansion of the other populations, (due to inter-specific competition), and an increase in

population size leads to decrease in population growth rate, (due to intra-specific competi-

tion), (subsection 3.3.3).

7.2.1 Modelling cell intra- and interspecific competition

Intra-specific competition, indicated by the Density-Dependence Coefficient, DDC, (Sub-

section 3.3.3), is represented for every cell type within the colon crypt, where the DDC

values for stem, progenitor and differentiated cells, (i.e. DDCSTEM , DDCPROG and

DDCDIFF , respectively), are computed based on expression (3.4), as discussed further.

The DDCSTEM (t) value is calculated using expression (7.6), based on the stem cell

carrying capacity, i.e. maximum stem cell number defined for colon crypt, (MaxStemNo),

and stem cell number found in colonic system at time t, Stem(t). DDCSTEM (t) takes a

value between 0 and 1, which is closer to 1 when Stem(t) is much smaller than MaxStemNo,

and closer 0 when Stem(t) reaches stem cell carrying capacity, (i.e. Stem(t)'MaxStemNo).

Thus, theDDCSTEM (t) value declines as stem cell population size increases, and the addi-

tion of theDDCSTEM (t) coefficient to stem cell population growth rate, (i.e. RateStemSymDiv−

RateStemApoptosis), indicates that the latter decreases, as well, as stem cell population extends.

While expression (7.3) describes stem cell population growth in systems with no competi-

tion, expression (7.7), (which integrates DDCSTEM (t)), is proposed for stem cell number

updates in colon crypt with intra-specific competition over time.

DDCSTEM (t) =
[MaxStemNo− Stem(t)]

MaxStemNo
(7.6)

Stem(t+ 1) = Stem(t) + Stem(t)× (RateStemSymDiv −RateStemApoptosis)×DDCSTEM (t)

(7.7)

where: MaxStemNo = stem cell carrying capacity, i.e. maximum stem cell number de-

fined for colon crypt; Stem(t+1), Stem(t) = stem cell numbers at time t+1 and t, respectively;

RateStemSymDiv, RateStemApoptosis = stem cell symmetrical division and apoptosis rates, respec-
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tively. Similarly, the density-dependence coefficient is calculated for progenitor cells, using

expression (7.8), and is considered during the progenitor cell update step. Thus, the initial

expression (7.4), used for progenitor cell number dynamics, changes to expression (7.9).

DDCPROG(t) =
[MaxProgNo− Prog(t)]

MaxProgNo
(7.8)

Prog(t+ 1) = Prog(t) + [Stem(t)×RateStemAsymDiv+ (7.9)

+ Prog(t)× (RateProg
Div −Rate

Prog
FullDiff )]×DDCPROG(t)

where MaxProgNo is maximum progenitor cell number in colon crypt, DDCPROG(t)

is the density-dependent coefficient for progenitor cell group and the rest of variables are

defined in Table 7.1. Analogous, density-dependence coefficient and update step for differ-

entiated cells are given by expressions (7.10) and (7.11), respectively. Considering crypt

structure, the carrying capacity for differentiated cells is calculated based on the maximum

numbers for i) total, ii) stem and iii) progenitor cells allowed in colon crypt, i.e. MaxTotal-

CellNo, MaxStemNo, and MaxProgNo, respectively.

DDCDIFF (t) =
[MaxTotalCellNo−MaxStemNo−MaxProgNo−Diff(t)]

(MaxTotalCellNo−MaxStemNo−MaxProgNo)

(7.10)

Diff(t+ 1) = Diff(t) + [Prog(t)×RateProg
FullDiff −Diff(t)×RateDiff

Apoptosis]×DDCDIFF (t)

(7.11)

where DDCDIFF (t) = density-dependent coefficient for differentiated cells at given time

t and the other variables are defined as given in Table 7.1.

Given that the stem cell number range is known, (i.e. 16 - 19 in colon and 1-6 in small

intestine, (Section 2.4)), the inter-specific competition describes the relationship between
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the progenitor and differentiated cells within the colon crypt. Specifically, this refers to

the total number of progenitor and differentiated cells from the crypt that must always be

less than or equal to the crypt capacity without stem cell number, (expression 7.12). Thus,

given that the crypt capacity is limited, an increase in progenitor cell number determines a

decrease in differentiated cell population size.

Prog(t) +Diff(t) ≤MaxTotalCellNo−MaxStemNo (7.12)

Considering expressions (7.6) - (7.12), the cell population changes in colon crypt over

time are determined based on a set of 12 parameters, namely i) stem, progenitor and dif-

ferentiated cell numbers at time t, ii) the maximum sizes of total, stem and progenitor cell

populations, and iii) the rates of stem and progenitor cell divisions, stem and differentiated

cell apoptosis and progenitor differentiation. A major phase in the LogisticCrypt model

development is minimization of the set of the input parameters needed to describe the colon

crypt dynamics. This can be achieved using relationships between model parameters and

the steps made for parameter group reduction are discussed in the next subsection.

7.2.2 Relationships between cell action rates in the healthy colon crypt system

The relationship between model dependent and independent parameters relies for plausibil-

ity on knowledge of the mechanisms which characterise the healthy colon crypt. This is a

system of different cell types, where cell action rates ensure low fluctuations in any cell type

number in successive time-steps, [Van Leeuwen et al., 2006; Humphries and Wright, 2008;

Leedham and Wright, 2008]. Thus, phenomena such as ‘crypt fission’ and the ‘bottleneck

effect’, (introduced in Chapter 2), can occur in normal systems only over long time-periods.

In order to compute the relationship between cell division, differentiation and apoptosis

rates in the healthy3 colon crypt, an ‘abstract’ system, with no variations on cell number

over time, is initially considered. In such system, the cell number differences between two
3Given that cell cycle is affected during tumour development, the relationships between cell action rates

in abnormal systems are calculated based on corresponding relationships in healthy crypts, but taking account
also of deregulations of cell division, differentiation and apoptosis, [Van Leeuwen et al., 2006; Humphries and
Wright, 2008; Leedham and Wright, 2008].
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successive time-steps, i.e. t and (t+1), are equal to zero for each cell type:

Stem(t+ 1)− Stem(t) = 0 (7.13)

Prog(t+ 1)− Prog(t) = 0 (7.14)

Diff(t+ 1)−Diff(t) = 0 (7.15)

The steps performed to identify a relationship between stem cell division and apoptosis

rates in such a system are presented further. For a complete summary of how other relation-

ships, (including progenitor division and differentiation, differentiated cell apoptosis rates),

are calculated, see Appendix D.

Stem cell group - calculation of cell action rate relationships Relationships between

stem cell action rates are calculated based on expressions for i) stem cell number updates

in colon crypt over time, ii) sum of all stem cell action rates and iii) ‘no fluctuation in stem

cell population size’ condition. The calculation procedure is given by:

Input: Expression (7.1) for sum of all stem cell action rates:

RateStemSymDiv + RateStemAsymDiv + RateStemApoptosis ≤ 1

Expression (7.7) for stem cell number updates in colon crypt over time:

Stem(t+1) = Stem(t) + Stem(t) × (RateStemSymDiv - RateStemApoptosis) × DDCSTEM (t),

with DDCSTEM (t) 6= 0

Expression (7.13) for no variations in stem cell compartment:

Stem(t+1) - Stem(t) = 0

Output: RateStemSymDiv ? RateStemApoptosis ? RateStemAsymDiv

Calculation: Given expression (7.13), Stem(t+1) - Stem(t) = 0
+expr.(7.7)

=⇒

Stem(t) + Stem(t) × (RateStemSymDiv - RateStemApoptosis) × DDCSTEM (t) - Stem(t) = 0⇒

(RateStemSymDiv - RateStemApoptosis) × DDCSTEM (t) = 0⇒

RateStemSymDiv - RateStemApoptosis = 0, (given DDCSTEM (t) 6= 0)⇒
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RateStemApoptosis = RateStemSymDiv (7.16)

From expressions (7.1) and (7.16),⇒

RateStemSymDiv ≤
(1−RateStemAsymDiv)

2
(7.17)

According to expression (7.17), stem cell population dynamics can be described by only

two parameters, namely symmetrical and asymmetrical stem cell division rates.

Progenitor and differentiated cell groups - summary of relationship calculation be-

tween cell action rates

Further, the relationships between progenitor cell action rates are based on expressions for

i) progenitor cell updates, ii) sum of progenitor cell action rates in colon crypt and iii) ‘no

variations in progenitor cell compartment’ condition, (with calculation details provided in

Appendix D):

Input: Expression (7.2) on sum of progenitor cell action rates in colon crypt:

RateProg
Div +RateProg

FullDiff ≤ 1

Expression (7.9) on progenitor cell updates:

Prog(t+1) = Prog(t) + [Stem(t)×RateStemAsymDiv + Prog(t)×(RateProg
Div −Rate

Prog
FullDiff )]×

DDCPROG(t)

Expression (7.14) for no variations in progenitor cell compartment:

Prog(t+1) - Prog(t) = 0

Output: RateProg
Div ? RateProg

FullDiff

Solution: Given expressions (7.9) and (7.14)⇒

RateProg
FullDiff =

Stem(t0)

Prog(t0)
×RateStemAsymDiv +RateProg

Div (7.18)
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In addition, using expression (7.2)⇒

RateProg
Div ≤

[1− Stem(t0)
Prog(t0)

×RateStemAsymDiv]

2
(7.19)

According to expression 7.18, the progenitor differentiation rate can be calculated based

on i) the initial stem and progenitor cell number and ii) the progenitor and asymmetrical

stem cell division rates. Progenitor population growth over time is controlled by expression

(7.19), which indicates that an increase in stem cell symmetrical division rate determines a

decrease in progenitor division rate.

Finally, the differentiated cell apoptosis rates can be calculated based on i) initial size of

each cell type population and ii) the rates of progenitor and symmetrical stem cell divisions,

as indicated by expression (7.20); (again, complete calculation procedure is provided in

Appendix D).

Input: Expression (7.11) on differentiated cell updates:

Diff(t+1) = Diff(t) + [Prog(t)×RateProg
FullDiff - Diff(t)×RateDiff

Apoptosis]×DDCDIFF (t)

Expression (7.15) for no variations in differentiated cell compartment:

Diff(t+1) - Diff(t) = 0

Expression (7.18) for progenitor differentiated rate:

RateProg
FullDiff = Stem(t0)

Prog(t0)
×RateStemAsymDiv +RateProg

Div

Output: RateDiff
Apoptosis ? RateProg ? RateStem

Solution: From expressions (7.11) and (7.15)⇒

RateDiff
Apoptosis = Prog(t0)

Diff(t0)
×RateProg

FullDiff , (complete calculation steps provided in Ap-

pendix D).

In addition, using expression (7.18) to replace RateProg
FullDiff ,⇒

RateDiff
Apoptosis =

Prog(t0)

Diff(t0)
× [

Stem(t0)

Prog(t0)
×RateStemSymDiv +RateProg

Div ] (7.20)
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Relationships between cell action rates in healthy systems

Given the evidence of ‘crypt fission’ and the ‘bottleneck effect’ in a normal intestinal crypt,

low variation in stem cell number exists over time, [Yatabe et al., 2001; Jin et al., 2009],

(Subsection 2.6.1). Thus, the relationship between the symmetrical division and apoptosis

rate of the stem cell in ‘no variation’ systems), (expression (7.16)), should be extended to

permit small fluctuations in stem cell population size over time, i.e.

RateStemApoptosis = RateStemSymDiv ± δCOLON , with δCOLON ∈ (0, 1) (7.21)

where ±δCOLON indicates low changes in stem cell number over time. In case of ‘+’,

stem cell apoptosis rate is higher than stem cell symmetrical division rate, i.e. stem cell

population size decreases (more stem cells die than are born). In case of ‘-’, division rate is

higher than apoptosis rate and stem cell number increases.

Stem cell symmetrical division and apoptosis rates can be deduced based on time needed

for major crypt occurrence in healthy human crypts, which was approximated to 8.2 years

and 25 years for the ‘bottleneck effect’ and ‘crypt fission’, respectively, [Yatabe et al.,

2001; Graham et al., 2011]. The crypt cycle within a normal system is defined to start with

a decrease in stem cell number, (inducing the ‘bottleneck effect’), followed by an expan-

sion of the stem cell compartment, (which precedes ‘crypt fission’). For example, a set

of values, with RateStemApoptosis = 0.01 and RateStemSymDiv = 0.003 during ‘bottleneck effect’

(i.e. RateStemApoptosis > RateStemSymDiv) and RateStemSymDiv = 0.0115 during ‘crypt fission’ (i.e.

RateStemApoptosis < RateStemSymDiv), was found to be plausible for describing both major crypt

phenomena in reported time, (i.e. 8.2 and 25 years respectively, as illustrated in Figure 7.3).

A stem cell cycle is given by stem cell division, approximated to seven days in human

colon, [Potten et al., 2003; Frank, 2007]. Based on these, time for the ‘bottleneck effect’

to occur is ≈ 1 cycle/week × 52 weeks/year × 8.2 years = 426.4 cycles. Similarly, time

period for ‘crypt fission’ incidence is ≈ 25 years × 52 cycles/year = 1300 cycles. Other

values for these rates are also possible and there is certainly a need to perform a sensitivity

analysis for colon crypt parameters, (phase discussed in Chapter 8).
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Figure 7.3: Stem cell numbers over three successive Colon Crypt cycles
A crypt cycle is considered to start with a decrease in stem cell number until the ‘bottleneck
effect’ is observed, after which, the stem cell number increases until it reaches a maximum
value (fission). Red points are used as markers for the crypt cycle. The interrupted line
shows the decrease in stem cell number recorded after crypt fission.

In conclusion, the set of independent variables needed to describe colon crypt dynamics

is given by i) stem cell and progenitor division rates and ii) the initial size for each cell type

population. Other parameter values can be calculated, (e.g. for progenitor differentiation

rate) using expressions (7.16), (7.18), and (7.20). Thus, the size of colon crypt parame-

ter group is reduced from initial twelve to six. In addition, major crypt phenomena were

simulated by the LogisticCrypt model based on a set of plausible values for stem cell sym-

metrical division and apoptosis rates, (e.g. RateStemApoptosis = 0.01 and RateStemSymDiv = 0.003

during ‘bottleneck effect’ and RateStemSymDiv = 0.0115 during ‘crypt fission’).
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7.3 LogisticCrypt - Extensions

7.3.1 LogisticCrypt for the small intestine tissue

Given the similarities4 between the structure of colon and small intestine crypts, (Chapter

2), the LogisticCrypt model is extended to investigate cell population dynamics in small

intestine. Information on Paneth cell group is integrated, as follows. Similarly to (fully-)

differentiated cells, ‘apoptosis’ is considered to be the single action performed by Paneth

cells, given that Paneth cells are differentiated cells, [Umar, 2010]; in addition, progenitor

differentiation into Paneth cells is added to progenitor action set, [Kim et al., 2005]. In

consequence, two new parameters, namely rates for progenitor differentiation into Paneth

cells and Paneth apoptosis, (i.e. RateProg
Paneth and RatePaneth

Apoptosis, respectively), are included

in LogisticCrypt, in addition to those used for the colon crypt. Intra-specific competition

features are considered also for Paneth cell population, where the the density-dependence

coefficient for Paneth cell group at a given time t, DDCPANETH(t), is calculated based on

Paneth cell carrying capacity, MaxPanethNo, and Paneth cell number at time t, Paneth(t),

(expression (7.22)). Based on these, Paneth cell population at time t+1 is given by i) Paneth

cell group at time t, ii) new Paneth cells, minus iii) the set of Paneth cells that underwent

apoptosis during the last time interval, (expression (7.23), with variables defined in Table

7.2).

DDCPANETH(t) =
[MaxPanethNo− Paneth(t)]

MaxPanethNo
(7.22)

Paneth(t+ 1) = Paneth(t) + [Prog(t)×RateProg
Paneth− (7.23)

− Paneth(t)×RatePaneth
Apoptosis]×DDCPANETH(t)

4Paneth cell type is the fourth cell type specific to small intestine crypt, in addition to stem, progenitor
and differentiated cells, found also in the colon crypt. Paneth cells are differentiated cells, (derived from
progenitors), reported in relative small number in comparison with differentiated and progenitor population
size, and are located at crypt base in small intestine crypt. Paneth cell presence in colon crypt is considered a
marker for tumour development, [Sancho et al., 2003; Kim et al., 2005; Nicolas et al., 2007; Humphries and
Wright, 2008; Umar, 2010; Clevers and Bevins, 2013], (Section 2.4), (Chapter 2).
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Table 7.2: Variable definitions for LogisticCrypt for the small intestine crypt

Parameter name Parameter description
DDCPANETH(t) The density-dependence coefficient related to Paneth cell

at time t;
MaxPanethNo the carrying capacity for the Paneth cells;
Stem(t), Prog(t), Prog(t+1),
RateStemSymDiv, RateStemApoptosis,

RateStemAsymDiv, RateProg
Div ,

RateProg
FullDiff , RateDiff

Apoptosis

parameters as defined for colon crypt in 7.1;

Paneth(t), Paneth(t+1) the Paneth cell numbers observed in small intestine crypt
at t and t+1, respectively;

RateProg
Paneth the rate of progenitor differentiation into Paneth cells,

(model input parameter with value in the interval [0, 1]);
RatePaneth

Apoptosis the rate of Paneth cell apoptosis in the small intestine.

Given the inclusion of ‘progenitor differentiation into Paneth cells’ to progenitor action

set, expressions for progenitor cell dynamics are also changed. Specifically, progenitor cell

population size at time t+1 is now calculated based on i) population size at time t, ii) new

progenitors, (born through progenitor and asymmetrical stem cell divisions), from which,

iii) the number of progenitors that underwent differentiation into both (fully-)differentiated

and Paneth cells, is subtracted, (extending, thus, expression (7.9), used for progenitor group

updates in colon crypt):

Prog(t+ 1) = Prog(t) + [Stem(t)×RateStemAsymDiv+ (7.24)

+ Prog(t)× (RateProg
Div −Rate

Prog
FullDiff −Rate

Prog
Paneth)]×DDCPROG(t)

In addition, the sum of all progenitor action rates is given by:

RateProg
Div +RateProg

FullDiff +RateProg
Paneth ≤ 1 (7.25)

The relationships between cell action rates in the healthy small intestine crypt are cal-

culated similarly to those from the healthy colon crypt, where the ‘no - variation’ small

intestine system is described by:
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Paneth(t+ 1)− Paneth(t) = 0 (7.26)

Stem(t+ 1)− Stem(t) = 0 (7.27)

Prog(t+ 1)− Prog(t) = 0 (7.28)

Diff(t+ 1)−Diff(t) = 0 (7.29)

Since in the model, the inclusion of Paneth cell group was not linked to changes in stem

cell population dynamics, (expression (7.23)), the relationship between stem cell action

rates in the healthy small intestine crypt is similar to expression (7.21), (used in the colon

crypt), i.e.:

RateStemApoptosis = RateStemSymDiv ± δSI , with δSI ∈ (0, 1) (7.30)

Given the modifications introduced in progenitor dynamics set, the relationships be-

tween progenitor action rates can be summarised by expressions (7.31) and (7.32), (again,

full calculation provided in Appendix D). These are calculated based on i) progenitor cell

updates, ii) sum of all progenitor cell action rates in small intestine and iii) ‘no variations in

progenitor cell compartment’ condition:

Input: Expression (7.14) for no variations in progenitor cell compartment:

Prog(t+1) - Prog(t) = 0

Expression (7.24) on progenitor cell updates:

Prog(t+1) = Prog(t) + [Stem(t)×RateStemAsymDiv + Prog(t)×(RateProg
Div −Rate

Prog
FullDiff−

RateProg
Paneth)]×DDCPROG(t)

Expression (7.25) on sum of all progenitor cell action rates in small intestine:

RateProg
Div +RateProg

FullDiff +RateProg
Paneth ≤ 1

Output: RateProg
Div ? RateProg

FullDiff ? RateProg
Paneth
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Solution: Given expressions (7.14) and (7.24)⇒

RateProg
FullDiff =

Stem(t0)

Prog(t0)
×RateStemAsymDiv +RateProg

Div −Rate
Prog
Paneth (7.31)

In addition, using expression (7.25)⇒

RateProg
Div ≤

[1− Stem(t0)
Prog(t0)

×RateStemAsymDiv]

2
(7.32)

Thus, the rate of progenitor differentiation into (fully-) differentiated cells,RateProg
FullDiff ,

depends on the rates of i) asymmetrical stem cell and progenitor divisions, RateStemAsymDiv

and RateProg
Div respectively, (similar to the colon crypt), and ii) progenitor differentiation

into Paneth cells,RateProg
Paneth. An increase inRateProg

Paneth determines a decrease inRateProg
FullDiff .

In addition, RateProg
Div is independent by RateProg

Paneth, but depends on RateStemAsymDiv, (ex-

pression 7.32).

Finally, relationships between cell action rates are calculated for differentiated and

Paneth cells. The differentiated cell apoptosis rate is given by i) initial stem, progenitor and

differentiated cell numbers, ii) stem and progenitor division rates and also iii) progenitor

differentiation into Paneth cell rate, (expression (7.33)). Based on these, it can be observed

that while an increase of either stem or progenitor division rate causes an increase in differ-

entiated cell apoptosis rate, an increase of RateProg
Paneth induces a decrease of RateDiff

Apoptosis,

(in order to maintain the cell number equilibrium in normal systems). In addition, Paneth

cell apoptosis rate depends on progenitor differentiation in Paneth cell rate, (expression

(7.34)), and, in healthy small intestine crypts, an increase in the latter determines an in-

crease in the former.

RateDiff
Apoptosis =

Prog(t0)

Diff(t0)
× [

Stem(t0)

Prog(t0)
×RateStemAsymDiv +RateProg

Div −Rate
Prog
Paneth]

(7.33)
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RatePaneth
Apoptosis =

Prog(t0)

Paneth(t0)
×RateProg

Paneth (7.34)

7.3.2 Carcinogen influence

The carcinogen influence in LogisticCrypt is associated with modifications in the cell action

rates that determine cell population growth. Specifically, since cell proliferation is given by

both increased division and decreased apoptosis rates, the stem and progenitor cell division

rates are increased by a value δ2, where δ2 ∈ [0, 1], (input), while the apoptosis rates, for

both fully-differentiated and Paneth cells, are decreased by the same δ2 value. For example,

the expression for carcinogen impact on symmetrical stem cell division rate is:

RateStemSymDiv ← RateStemSymDiv × (1 + δ2) (7.35)

The δ2 parameter was considered for a sensitivity analysis, with δ2 ∈ {5%, 10%, , 50%};

the results are discussed in subsection 7.5.2.

7.4 Implementation details of the LogisticCrypt model

Adopting the same rationale as before, for E-G Network & AgentCrypt models, the Logis-

ticCrypt was also developed as an objected oriented model using C++. The LogisticCrypt

class is the main class and provides functionality for handling crypt dynamics based on

fixed rate values of cell division, differentiation and apoptosis. The intestinal crypt char-

acteristics, e.g. the stem cell number, are stored in a LogisticModelSettings object and

transmitted in a single step to the LogisticCrypt object. The class diagram for this model is

simple and is illustrated in Figure 7.4.
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Figure 7.4: Class diagram for the LogisticCrypt model

7.5 Results and discussion

LogisticCrypt function was investigated through test cases which explored crypt dynamics

following modifications in stem and progenitor cell groups and consideration of carcinogen

influence in intestinal crypts, (Subsection 7.3.2). Specifically, the focus was on a com-

parison between ‘healthy’ and ‘affected’ crypts with regard to the occurrences of i) crypt

fission, (doubling of the no. of stem cells), [McDonald et al., 2006; Jin et al., 2009], and

the ‘bottleneck effect’, (reduction of the no. of stem cell to 1), [Yatabe et al., 2001]; and ii)

tumour growth, (i.e. total cell group at maximum), in carcinogen-affected and unaffected

systems. Both intra- and inter-tissue comparisons on crypt phenomena are discussed.

Cell number parameter values A set of input parameters, which describes cell popula-

tion size in a normal system for each intestinal tissue, is included in Table 7.3. These values

were considered a potential setting group for the systems included in the simulations pre-

sented here, (discussion on parameter value choice follows). However, other values for cell

number parameters, (e.g. Paneth cell number), should be considered also, and the need of a

sensitivity analysis of this parameter set is anticipated, (discussed in Chapter 8). Given that

cell population size was approximated to around 2000 cells and 260 cells in healthy colon

and small intestine crypt, respectively, [Sancho et al., 2003; Nicolas et al., 2007; Khalek
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et al., 2010; Vaiopoulos et al., 2012], (Section 2.4), these values were assigned to the ‘ini-

tial cell number’ parameter, i.e. InitCellNumber, in each intestinal tissue. Similarly, the

stem cell number at time t0, Stem(t0), was set to be 16 - 19 cells in colon and 1 - 6 cells in

small intestine crypt, [Sancho et al., 2003; Brittan and Wright, 2004; Khalek et al., 2010],

(Section 2.4).

Table 7.3: Input parameter values used in LogisticCrypt for the cell numbers in the intestinal
crypts

Parameter name Parameter value in
the colon crypt

Parameter value in the
small intestine crypt

Stem(t0) 16 6
InitCellNumber 2000 260
Paneth(t0) 0 10
Prog(t0)
(0.25 × InitCellNumber)

500 65

MaxStemNo
(2 × InitStemCellNumber)

32 12

MinStemCellNumber 1 1
MaxProgNo 1000 130
MaxPanethCellNumber 0 20
MaxTotalCellNo
(2 × InitCellNumber)

4000 520

Precise information on progenitor and Paneth cell numbers in healthy human intestinal

crypts was not found to be available. In consequence, the progenitor cell compartment

was considered to occupy initially a percentage of crypt space, (e.g. PercPROG = 25%).

Thus, the initial progenitor cell number, Prog(t0)≈500 cells in colon crypt, (25% × 2000

cells), and 65 cells in the small intestine crypt. The Paneth cell group at the bottom of

the small intestine crypt is relatively small, so the initial Paneth cell number, Paneth(t0),

was approximated to 10 cells in small intestine, and no cells in the colon crypt, (as absent

for healthy colon tissue). Finally, the maximum stem cell number, MaxStemNo, was set to

twice the initial stem cell number Stem(t0), (since ‘crypt fission’ leads to doubling stem

cell population size in intestinal crypts, [McDonald et al., 2006; Jin et al., 2009], (Section

2.6)). Similarly, the maximum numbers for i) total, ii) progenitor and iii) Paneth cells were

taken to be double initial numbers of these cell groups. Moreover, given the evidence of the
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‘bottleneck effect’ in normal systems, (associated with decrease in stem cell population to

a single stem cell, [Yatabe et al., 2001], (Section 2.6)), the minimum stem cell number was

set to 1:

MaxStemNo = 2× Stem(t0) (7.36)

MaxTotalCellNo = 2× InitCellNumber (7.37)

MaxProgNo = 2× Prog(t0) (7.38)

MaxPanethNo = 2× Paneth(t0) (7.39)

MinStemCellNumber = 1 (7.40)

Cell action rate parameter values In addition to cell number parameters, a set of input

parameters, (included in Table 7.4), is proposed to describe cell action rates; (with a sen-

sitivity analysis for this parameter group discussed in Chapter 8). The values of stem cell

division and apoptosis rates in normal systems, included in the test cases presented here,

are the same as those of the stem cell action rates, used to simulate the occurrence of ma-

jor crypt phenomena in healthy colon crypt, (Subsection 7.2.2). Specifically, RateStemApoptosis

was considered equal to 0.01, RateStemSymDiv to 0.003, (during the ‘bottleneck effect’ phase)

and RateStemSymDiv to 0.0115 per week, (during ‘crypt fission’ phase). Both symmetrical and

asymmetrical stem cell divisions are rare events; however, the latter was reported to have

a higher occurrence rate than the former. In consequence, asymmetrical stem cell division

was assigned to a higher value than those considered for symmetrical cell division rate,

(e.g. RateStemAsymDiv = 0.02 per week, which indicates that around 2% from stem cell popu-

lation perform asymmetrical division every week). While differentiated cell life-cycle was

approximated to several hours in intestinal crypt, the lifetime for Paneth cells was reported

to be around 20 - 30 days, (Section 2.4). Based on these, the rate of progenitor differenti-

ation into Paneth cells, was approximated with a small value, e.g. 0.05, i.e. RateProg
Paneth =

0.05 per day. In addition, given that three possible actions were defined for progenitors, a

value of 0.33, was considered forRateProg
FullDiff . Thus, the progenitor division rate could be
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Table 7.4: Input parameter values used in LogisticCrypt for the intestinal crypt

Parameter name Parameter description
Cell action rates RateStemSymDiv = 0.003 per week; (value used for the sym-

metrical stem cell division during the ‘bottleneck effect’
phase).
RateStemSymDiv = 0.0115 per week; (value used for the sym-
metrical stem cell division during the ‘crypt fission’ phase).
RateStemApoptosis = 0.01 per week;
RateStemAsymDiv = 0.02 per week;

RateProg
Div = 0.38 per day;

RateProg
Paneth = 0.05 per day;

Carcinogen influence δ2 ∈ {0.05, 0.10, .. 0.50}.

calculated using expression (7.31) and approximated to 0.38, i.e. RateProg
Div = 0.38 per day.

Finally, ‘the carcinogen impact on cell action rates’ parameter, δ2, was integrated in a sen-

sitivity analysis, with respect to tumour growth occurrence, i.e. changes of cell population

size in crypt systems over time.

7.5.1 ‘Crypt fission’ and the ‘bottleneck’ effect

Comparison on the crypt fission time-point between the small intestine and colon was

achieved by considering a group of eleven crypts for each tissue, where the rate of sym-

metrical stem cell division was increased from 0.015, (healthy crypt), to 0.039 per week, in

the tenth abnormal crypt, (i.e. ‘the most affected’ one), by increments of ∼ 10% between

consecutive crypts. Similarly, for the ‘bottleneck effect’ simulations, the stem cell division

rate, considered to be 0.003 in a ‘healthy crypt’, was decreased across a group of ten abnor-

mal crypts for each tissue to around 0.001 per week (in the 10th abnormal crypt), by∼ 10%

between each consecutive crypt. Given that colon stem cell cycle was approximated to one

week and the time-period of ‘crypt fission’ occurrence to 25 years, the simulation time was

taken equal to 1300 iterations or stem cell cycles, (i.e. 25 years × 52 weeks/ year ≈ 1300

weeks). At the end of these simulations, both ‘bottleneck effect’ and ‘fission’ phenomena

were recorded in normal and all abnormal crypts, with time to occurrence shown in Table

7.5 for both intestinal crypt groups.
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Table 7.5: Time-steps (Weeks) for ‘Crypt Fission’ and ‘Bottleneck Effect in the colon and
small intestine crypt groups

Crypt
Phe-
nomenon

Tissue
Type

Cr 1
Healthy

Cr
2
(Ab
1)

Cr
3
(Ab
2)

Cr
4
(Ab
3)

Cr
5
(Ab
4)

Cr
6
(Ab
5)

Cr
7
(Ab
6)

Cr
8
(Ab
7)

Cr
9
(Ab
8)

Cr
10
(Ab
9)

Cr
11
(Ab
10)

Crypt Colon 1388 1068 852 697 582 492 421 362 314 275 241
Fission Small

Intestine
710 547 436 357 298 252 215 186 161 140 123

Bottleneck Colon 487 467 451 437 424 414 406 398 391 386 381
Effect Small

Intestine
334 228 220 212 208 203 199 195 192 189 186

Intra-tissue comparison The average time-period, measured to ‘crypt fission’ occur-

rence, (i.e. time taken to reach the maximum limit of 12 and 32 cells in the small intestine

and colon crypts, respectively in each 11-crypt group), was found to be ≈ 311 weeks in

the small intestine crypt group, (with standard deviation5 StDevSIF ission ≈ 178 weeks, over

1300 iterations), and ≈ 608 weeks in the colon crypt group, (with StDevColon
F ission ≈ 364

weeks). The longest and the shortest times correspond to the first and the 11th crypt, re-

spectively, in each group. Specifically, these are approximated to 710 weeks and 123 weeks

for the small intestine, and to 1388 weeks and 241 weeks for colon crypt. While the first

crypt represents the normal system, defined by small changes of stem cell population size

over time, (induced by low difference between stem cell symmetrical division and apop-

tosis rates, e.g. ∼ 0.005, calculated based on RateStemSymDiv1 = 0.0115 and RateStemApoptosis =

0.01 per week), the 11th crypt mimics the most ‘affected’ system, represented by the high-

est difference between stem cell action rates from the whole crypt group, i.e. 0.029, (with

RateStemSymDiv10 = 0.039 and RateStemApoptosis = 0.01 per week). Thus, the differences between

stem cell action rates, (which increased from 0.005 in normal system to 0.029 in the 10th

abnormal system), reduced the time-period for ‘crypt fission’ manifestation in the most ‘af-

fected’ crypt when compared with healthy crypts, with ∼ 1147 weeks in colon, (i.e. 1388
5Standard deviation is estimated based on crypt samples, using the following formula:

s =

√
1

n− 1
× Σn

i=1(xi − x̄)2 (7.41)

where x̄ = sample mean, N = sample size.
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weeks - 241 weeks), and with∼ 587 weeks in small intestine, (i.e. 710 weeks - 123 weeks),

(Table 7.5).

Similarly, the average time-period to occurrence of the ‘bottleneck effect’ was measured

in eleven crypts for both tissues, with values≈ 206 weeks in the small intestine crypt group,

(with StDevSIBottleNeck ≈ 17 weeks over 1300 iterations), and ≈ 422 weeks in the colon

crypt group, (with StDevColon
BottleNeck ≈ 35 weeks). The extreme values of the time to the

’bottleneck effect’ occurrence were around 334 weeks and 186 weeks for the small intestine

crypt and 487 weeks and 381 weeks for the colon crypt, corresponding to the first crypt,

(i.e. normal system), and to the 11th crypt, (i.e the most ‘affected’ system), respectively.

The most ‘affected’ crypt was characterised by the highest difference between stem cell

apoptosis and symmetrical division rates, estimated to 0.009, (with RateStemSymDiv11 = 0.001

and RateStemApoptosis = 0.01 per week), when compared with other crypts; for instance, the

difference between the same rates was around 0.008 in the 6th crypt, (with RateStemSymDiv6

= 0.002 and RateStemApoptosis = 0.01 per week), and ∼ 0.007 (with RateStemSymDiv1 = 0.003 and

RateStemApoptosis = 0.01 per week) in the first crypt.

In conclusion, alterations of stem cell population dynamics can increase major crypt

phenomena incidence, leading to higher predisposition to tumour development in intestinal

systems.

Inter-tissue comparison While similar alterations were considered for stem cell dynam-

ics in both small intestine and colon crypt groups, results indicate that the time to occurrence

of major crypt phenomena is more variable in the latter case. Specifically, the standard de-

viation6 for the time-periods recorded for ‘crypt fission’ occurrence was StDevColon
F ission ≈

364 weeks and StDevSIF ission ≈ 178 weeks, over 1300 iterations among the 11-crypt group

in colon and small intestine, respectively. Similarly, the standard deviation for the ‘bot-

tleneck effect’ incidence time was approximated to StDevColon
BottleNeck ≈ 35 weeks and

StDevSIBottleNeck ≈ 17 weeks over 1300 iterations, among colon and small intestine crypt

groups, respectively. Thus, given that variance of time for major crypt phenomena for-
6It refers to sample standard deviation estimated with formula (7.41).
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mation was higher for colon that for small intestine crypt groups, the colon crypt group

seems more sensitive to deregulations in the stem cell compartment than the small intes-

tine crypt group. Similar findings on this difference between intestinal tissues have been

reported from a study on epidermal growth factor in rats with regard to crypt fission and

cell proliferation, [Berlanga-Acosta et al., 2001].

7.5.2 Tumour growth in systems with and without carcinogen influence

A second comparison between small intestine and colon crypts was performed to investigate

the time taken to reach maximum crypt capacity, i.e. 520 and 4000 cells in small intestine

and colon crypts, respectively, since this may signal abnormalities associated with tumour

growth. Specifically, the variation in total cell number was recorded in two systems, namely

S1 and S2, represented by groups of eleven crypts for each tissue, where different external

influences were applied to cell action rates, (as follows):

1. in S1, the progenitor cell division rate was increased by 5% between successive

crypts, in order to facilitate cell proliferation, while other cell action rates were main-

tained at initial values;

2. in S2, “carcinogen influence” was considered and every cell action rate was changed

according to specifications (subsection 7.3.2), with δ2 ∈ {0.05, 0.10, .. 0.50}.

At the end of the simulation, the total cell number reached the maximum limit in all

intestinal crypts in both systems, with time-periods for each crypt shown in Table 7.6

The average time taken for the S1 group was ≈ 318 days in small intestine (with

StDevSIProgDereg ≈ 22 days), and ≈ 1495 days in colon crypts, (StDevColon
ProgDereg ≈ 20

days). In the system with carcinogen influence applied, i.e. S2, the average time taken for

cell number extension was ≈ 70 days in small intestine and ≈ 116 days in colon, (with

StDevSICarcinogen ≈ 40 days and StDevColon
Carcinogen ≈ 68 days, respectively). Therefore, the

average time taken for doubling of the initial cell number was around thirteen times shorter

in the colon crypt group subject to carcinogen influence, S2, (with changes in all cell divi-

sion and apoptosis rates), in comparison to the S1 group, (with only progenitor cell division
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Table 7.6: Time-steps (Days) to reach Maximum Crypt Capacity in systems with and with-
out Carcinogen influence

Group type Cr
1

Cr
2

Cr
3

Cr
4

Cr
5

Cr
6

Cr
7

Cr
8

Cr
9

Cr
10

Colon (S1) 1543 1514 1502 1494 1490 1487 1485 1482 1481 1478
Carcinogen
Colon (S2)

279 181 138 113 97 86 77 71 65 61

Small Intes-
tine (S1)

372 337 324 316 308 308 306 304 303 302

Carcinogen
Small In-
testine
(S2)

166 109 83 69 52 52 47 44 40 38

rate affected). Similarly, the total cell number in the small intestine crypt group increased

faster in S2 than in S1, where the ratio between these systems was≈ 4.50. Although similar

cell action rate alterations were considered for both colon and small intestine crypt groups,

it appears that the impact on crypt dynamics was considerably higher for the colon than for

the small intestine in terms of tumour development. These results support the conclusion

stated in the previous test case, which suggests that the small intestine is less sensitive than

the colon with respect to cell cycle changes over time. In addition, results are in agreement

with an earlier experimental study on cell proliferation in intestinal tissues in rats, described

in Berlanga-Acosta et al. [2001].

7.6 Summary

LogisticCrypt is a discrete model on crypt structure, (represented by stem, progenitor and

differentiated cells in colon, with addition of Paneth cell population in small intestine),

which is monitored during cancer development. LogisticCrypt considered both intra- and

interspecific competitions among cell populations within the intestinal crypt. The ‘healthy

crypt’, which permitted low variations in cell numbers over time, was described by a set of

values on stem and progenitor cell division rates in the colon, and, additionally, by differ-

entiation rate into Paneth cells in the small intestine. Other cell actions rates, e.g. stem cell
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apoptosis, were deduced from equilibrium equations and calculated based on relationships

between all cell types within normal systems, (a step that facilitates reduction of the set of

input parameters needed to describe the intestinal crypt).

A sensitivity analysis for a) stem cell division rate and b) ‘carcinogen impact’ on crypt

dynamics was performed with respect to time-scales needed for i) ‘crypt fission’ and ‘bottle-

neck effect’, and ii) tumour growth occurrence. When comparing between tissues, shorter

average time-intervals for both ‘fission’ and ‘bottleneck effect’ were recorded for the small

intestine than for the colon crypt group. However, higher variance for these times of occur-

rence was recorded for the latter compared to the former, suggesting that the colon crypt is

more sensitive to alterations in stem cell compartment than the small intestine crypt. Mod-

ifications on progenitor division rate were also considered as well as carcinogen influence

for each tissue type. Results for carcinogen impact on cell proliferation (tumour growth),

indicated that the extension of the cell population to crypt capacity was accelerated by a

factor of 13 for the colon and 4.50 for the small intestine in carcinogen-influenced crypt

groups compared to systems with increase in progenitor cell division rates only. This ap-

pears to indicate that the colon crypt is more sensitive to deregulations in cell action rates

than the small intestine crypt, a conclusion in agreement with an earlier experimental study

on crypt fission and cell proliferation in small intestine and colon crypts in rats, [Berlanga-

Acosta et al., 2001]. However, LogisticCrypt results are inevitably tentative, given limited

information on crypt phenomena in small intestine tissue. In LogisticCrypt, the cell action

rate was considered to be equal for small intestine and colon crypts, although cell prolif-

eration was reported to be more rapid in the former case, [Berlanga-Acosta et al., 2001].

Thus, further work on LogisticCrypt must include scenarios which consider differences in

cell action rates between tissue types.

Finally, sensitivity analysis is certainly needed for the rest of unknown parameters, (e.g.

maximum progenitor cell number, progenitor cell division rate), and is discussed in the next

chapter.
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Chapter 8

Concluding discussion and future

work

8.1 Summary and conclusions

Epigenetics has emerged only recently as a fundamentally important area of biological and

medical research that has implications for our understanding of human diseases including

cancer, autoimmune and neuropsychiatric disorders. The motivation of this work is the con-

siderable interest generated in investigation of genetic and epigenetic features in terms of

how these contribute to disease, in this case colorectal cancer development. In this Thesis,

a cross-scale computational model was presented for CRC dynamics, which aims to help in

analysis of aberrant changes observed at micro-molecular, cellular and tissue levels in ma-

lignant intestinal systems. Novel components were required as follows. A network-based

framework, i.e. the E-G Network Model, was built initially to study interdependencies be-

tween genetic and epigenetic signals recorded at different CRC stages. This was extended to

include and assess the impact of different risk factors, (such as ageing and gender) on micro-

molecular events in tumour pathways. Subsequently, an agent-based model, AgentCrypt,

was developed to describe the dynamics of the human intestinal system, (within both colon

and small intestine tissues). This was used to evaluate the aberrant methylation variation
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induced by deregulations of the crypt mechanisms in malignant systems, influenced by

various factors. In addition, several potential inhibitors were considered for methylation

modifications in abnormal intestinal crypts and their effect evaluated with respect to tu-

mour initiation. Finally, a logistic model, LogisticCrypt, was built to provide information

on the intestinal crypt structure at specific time points and to facilitate the investigation of

aberrant changes in cell number with respect to tumour initiation and progression.

Main findings

The role of epigenetic events in cancer development was outlined and the importance of un-

derstanding interdependencies between micro-molecular signals, (genetic and epigenetic),

was demonstrated with a view to potential use as targets for personalized cancer therapies.

Model types and major databases on cancer dynamics were reviewed and in some case, used

as primary data resources. The background research indicated that a single model formula-

tion has limited capability to investigate malignant changes, since large sets of parameters

are needed to characterise human biological system. In consequence, hybridised models are

required to represent the aberrant molecular mechanisms in tumour development, from cel-

lular to whole-body scales. This motivated development of the component models reported

in this Thesis.

The first computational component of the multi-scale model, i.e. the genetic and epige-

netic signals network, integrated empirical data on conditional relationships between micro-

molecular events observed at different CRC stages. Information on signalling pathways

involved in CRC development, (e.g. Wntβ catenin, MAPK), was included from KEGG

Pathway database, [Kanehisa et al., 2014], and other sources. The framework permitted

analysis of the impact on DNA methylation level of interdependencies between aberrant

modifications. The framework enabled introduction of the ‘methylation cycle’ to denote the

process of updating gene methylation level inside the network, based on five key-elements.

In addition, an algorithm was developed for identification of the most plausible pathways

in gene networks based on the conditional relationships between genetic and epigenetic

events. A limitation at this model developmental stage, however, was lack of precise infor-
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mation on real time methylation cycle and consequently, this was approximated by stem cell

cycle for the human colon. The novelty of the framework formulation rests on proposing

two criteria to evaluate the tumour progression inside a gene network: a) average network

methylation level, (network score), and b) percentage of genes highly methylated due to the

influence of abnormal genetic and epigenetic changes.

The genetic and epigenetic events framework was extended to enable ‘customisation’

of malignant systems, (represented by the gene network), by incorporating information on

patient characteristics, (e.g. ageing, gender), considered to have a crucial impact on cancer

mechanisms. Information on a key-group of genes, (e.g. IGF2, ER, [Issa and Ahuja, 2000]),

reported to be sensitive to age-related methylation, was integrated into the gene network.

For these specific genes, a coefficient was inferred from reported studies to denote the rela-

tionship between ageing and methylation patterns and was included in the methylation level

update algorithm. This enhancement offered potential for improved overall investigation of

colorectal tumour-genesis through ‘patient typing’ in terms of malignancy development

features.

A comparative analysis on DNAm variation over time was performed in normal and

abnormal systems, for both colon and small intestine crypts using an agent-based model

to mimic major influences in intestinal systems. Global methylation level decrease was

marked for the colon compared with the small intestine, although similar alterations were

induced in both tissues. These results suggest that the methylation patterns inside the colon

crypt are more sensitive to deregulations in the proximal tissue than those recorded inside

the small intestine. In addition, methylation level decrease was accelerated by carcinogen

influence. This result is important in guiding further analysis on the effect of environmental

factors on epigenetic mechanisms. Finally, a set of potential methylation inhibitors with

different potencies over time was proposed and applied in abnormal intestinal systems and

the impact on methylation level investigated.

A second comparative analysis between the colon and small intestine was performed to

determine time taken to occurrence of recognised crypt phenomena in the intestinal crypt.

Results were more variable for the colon crypt, compared with the small intestine crypt,
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suggesting that the former is more sensitive to alterations in cell division, differentiation and

apoptosis rates than the latter. Similar observations were concluded from an experimental

study on crypt fission and cell proliferation in rat intestinal tissues, described in Berlanga-

Acosta et al. [2001].

8.2 Future work

Connecting model-components in a multi-scale computational model for CRC dynam-

ics

An obvious limitation of the AgentCrypt model is the absence of information on patient

characteristics, (e.g. ageing, gender). Given the overall aim of a multi-scale computational

model for CRC dynamics, (i.e. representing CRC specifics at micro-molecular, cellular and

tissue layers), the final step is to connect AgentCrypt to the E-G Network Model. Specif-

ically, there is a need to link information on (i) micro-molecular layer (gene relationship,

genetic and epigenetic mechanisms), (ii) cellular/ tissue level (cell/ crypt interdependen-

cies), (iii) personal characteristics (e.g. ageing, gender, heredity) and (iv) carcinogen influ-

ences (e.g. tobacco usage, chemical exposure), in order to analyse tumour pathways and to

identify potential targets for epigenetic inhibitors that can be explored in cancer therapy. A

link between the gene network and the agent-based model is feasible, as initialization and

update of the methylation level status inside a cell is driven by AgentCrypt, (which relies on

the strength of gene dependencies to set some of the input parameters). This E-G Network

- AgentCrypt combined model can be extended to integrate information on inhibitors for

methylation on specific key-genes from tumour pathways in order to analyse their effect

at cellular/ tissue level. This approach may improve understanding of aberrant molecu-

lar events observed for genes such as APC, KRAS, which are known to have a crucial

role in CRC initiation and progression, [Jones and Baylin, 2002]. In addition, given inter-

est in studying the combined effect of two or more epigenetic inhibitors in solid tumours,

[Hatzimichael and Crook, 2013], the E-G Network - AgentCrypt model can be extended to

investigate the consequences of using epigenetic inhibitor combinations in the colon tissue
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during cancer development.

Sensitivity analysis for the parameter sets integrated in the E-G Network, AgentCrypt

& LogisticCrypt

Given the lack of precise biological information available on intestinal crypt systems during

cancer development, extensive sensitivity analysis is necessary for the set of parameters

included in the Colorectal Cancer Model. This analysis is necessary for further validation as

parameter changes should lead to model outputs which can be marked for known patterns.

In addition, parameter variation can indicate more sensitive factors in cancer development,

providing new hypotheses to be tested.

Tests should integrate alternative values for the gene network parameters, including net-

work size, simulation time, the d-value used for identification of d-plausible pathways, the

coefficients for the genes that were i) identified in signalling pathways, or ii) reported to be

sensitive to age-related methylation, i.e. SAM and SIG coefficients, (E-G Network). Some

adjustments are likely also for the value-ranges considered for the relationships between

epigenetic event level and cancer stages, incorporated in i) DNA methylation and histone

modification initialization and update steps and ii) cancer progression decision methods,

(Tables 4.3 - 5.2). Resources such as GEO database can be also consulted for gene pro-

moter methylation level in CRC, (similar as for the global methylation level in intestinal

cells that was used in the AgentCrypt for colon and small intestine systems). Moreover, the

E-G Network model can be extended to include also average gene methylation level and

to analyse global hypomethylation over time. Analogously, different value-ranges must be

considered for the AG and TH HM parameters, (Tables 5.3 - 5.4), which describe ageing

and gender impact on micro-molecular events. The sensitivity analysis will be carried out

systematically, for larger sample sizes, (e.g. 1000 synthetic patients), with focus on the

assessment of cancer progression within gene networks.

In addition, sensitivity analysis should address the parameter set used for the intestinal

crypt structure and dynamics. Specifically, i) the crypt intra- and interdependencies and

their weights in updating DNAm level, (i.e. ICoef, CNI and DiffMethCoef); ii) carcinogen
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contribution coefficients, (i.e. δ1); iii) the value - ranges for every cell type number, (e.g.

MaxProgNo); iv) cell cycle duration, (e.g. for progenitor cells); as well as v) the cell rates

of division, differentiation and apoptosis, (LogisticCrypt).

Parallel implementation for E-G Network and AgentCrypt

Parallel implementation is anticipated for extension of the E-G Network and AgentCrypt

models to accommodate the complexity of intestinal crypt dynamics during cancer devel-

opment. For example, the time for a single simulation, run using AgentCrypt for 550 it-

erations, in an ‘i7-2600, 3.40 GHz, 8 GB RAM’ system, was around 12 - 13 the minutes

for small intestine and around 10 hours for the colon. However, the further developmen-

tal phase is not trivial, and in complex systems, with high communication overhead, the

speedup, (Section 5.3), of such approach can be difficult to estimate. Several strategies

already identified during model development target parallelisation for

i. the group of ‘individuals’, (where an ‘individual’ is mimicked by AgentCrypt using

the Intestinal Crypt Group). Given that every individual is independent with respect

to intestinal tissue dynamics from every other individual, every Intestinal Crypt Group

can run on a distinct compute node and no communication is needed between nodes.

The speedup in this case is almost linear given that the Intestinal Crypt Group are

analysed concurrently.

ii. a single ‘individual’, (i.e. one Intestinal Crypt Group in AgentCrypt). The Intestinal

Crypt Group can be split between a group of compute nodes, with every Crypt running

on a single node. However, given ‘inter-crypt influences’ considered in AgentCrypt,

communication between nodes does exist in this case and linear speedup is not antici-

pated.

iii. ‘chunks of cells’, (i.e. inside the Crypt in AgentCrypt). Given the parallelisation fea-

tures, (illustrated in Figure 6.4), a Crypt can be divided in cell sets of same of similar

sizes, with every group allocated to a distinct compute node. Slave compute nodes can

calculate cell methylation level and decide on cell division, differentiation and apop-
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tosis and once cell methylation level and actions are determined, the master node is

informed and updates crypt structure. Limitations at this level are clearly given by

communication between nodes and linear speedup is not possible. However, commu-

nication is reduced by using ‘chunks of cells’ instead of running every cell on distinct

node. In addition, algorithm efficiency seems also influenced by crypt phenomena.

While is a crypt with a large cell number, all allocated nodes run, (are ‘busy’), and

the overall job is divided, in a crypt with a small cell number, only a part of consid-

ered nodes work and the remainder is in ‘waiting’ state, causing decrease in algorithm

efficiency. Thus, of high importance is choosing node number and cell group size.

iv. the gene network, (E-G Network Model). Parallelisation at this level involves gene

network division into subnetworks with similar node and edge numbers, in order to

homogenize time needed for updates among the set of subnetworks. However, commu-

nication between sub-networks is obviously required and speedup is again, not linear.

Parallelisation is available for the ageing/gender case study (Chapter 5). Other compo-

nents are in the preliminary development stage, (e.g. for methylation level update in the

AgentCrypt), but this work is ongoing.

Development of a graphical interface and visualisation

The code documentation file mentioned in Chapter 5 was provided in order to facilitate

understanding of technical details on model implementation. The future plan is to develop

a graphical interface for the Colorectal Cancer Model, in order to help non-computational

scientists use the framework. Thus, input information such as patient characteristics, (e.g.

ageing, gender), tumour specifics, (e.g. mutation of a specific gene), or time-period consid-

ered for prediction, (e.g. 3-5 years), could be easily imported through a graphical interface

into the model, in order to be used for analysis. Additionally, a visual representation of the

output data, (e.g. the way in which crypt dynamics change under carcinogen influence),

would also be of value.

Other Inclusions / Extensions:
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Inclusion of nutrition and physical activity influence in the Colorectal Cancer Model

Studies have shown that, while a diet containing more vegetables and fruits and a more

active program of physical exercises can help reduce CRC risk, a high intake of red meat

and alcohol and a limited amount of physical activity have been associated with increased

risk, [Ryan-Harshman and Aldoori, 2007; Harriss et al., 2009]. In addition, the influence

of nutrition with regard to epigenetic modifications was recently reported also, (reviewed

in Parle-McDermott and Ozaki [2011] and references therein). Ideally, therefore, the influ-

ence of lifestyle characteristics should be taken into account as an extension of the model

presented here. In terms of such an extension, the aim would be to determine a quantitative

coefficient to represent the impact of these risk factors on gene methylation level, (based on

data from reported statistical studies), and to link this information to the update step.

Inclusion of miRNAs

MiRNAs are involved in cell cycle phases and their deregulation has been observed for dif-

ferent cancer types, (Subsection 2.3.3). MiRNA potential for CRC diagnosis and prognosis

has been recently reported, (reviewed in Luo et al. [2011]; Schetter et al. [2011]; Menéndez

et al. [2013] and references therein). Therefore, the plan would be to integrate relevant

data on miRNAs into the Colorectal Cancer Model, to link these changes to information on

methylation level from the gene network and to analyse their influence at tissue level, (i.e.

on crypt dynamics).

Extension to other types of cancer, (e.g. liver and lung cancer)

While colorectal cancer was the initial focus, the model presented here has been designed

to be generalizable also to other types of cancer. Therefore, more general terms, such as

‘carcinoma in situ’, have been used to denote colon cancer stages in the framework, instead

of more disease-specific usage. Based on similar mechanisms observed in cancer develop-

ment among different tissues at molecular or cell level, (e.g. common genes involved in

tumour pathways, high cell division rate), a future long-term plan would be to extend the

current framework to other types of solid cancer, such as liver and lung. The difficulty, as
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usual, is parametrisation and this extension is non-trivial. The task would involve refining

existing metrics from the Colorectal Cancer Model and integrating information on tissue-

specific malignant phenomena, (such as the high impact of tobacco usage in lung cancer,

[Hecht, 2003], or viral infection in liver cancer, (reviewed in Herceg and Vaissière [2011];

Dandri and Locarnini [2012] and references therein).

8.3 Final remarks

The Colorectal Cancer Model aims to investigate the tumour mechanisms at three main lay-

ers, namely the micro-molecular, cellular and tissue levels. The E-G Network Model can

be used as a prototype-tool to aid prediction of CRC development based on information on

micro-molecular interdependencies, and towards personalised medicine. AgentCrypt can

be seen as proof of concept to be used in epigenetic epidemiology, to accommodate in vivo

and in vitro experiments on tissue-specific methylation modifications. Finally, Logistic-

Crypt can be considered a prototype tool for investigating the dynamics of a multi-species

system characterised by intra- and interspecific competition. Full scale-up, in computa-

tional terms, remains a challenge for the future.
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Appendix A

Glossary

5hmC, 5fC and 5caC are DNA methylation variants resulted sequentially from methyla-

tion cytosine (5mC) oxidation processes, which are regulated by the Tet (ten eleven

translocation) protein group, as illustrated by the following relationships:

5mC oxidation−−−−−−→ 5hmC oxidation−−−−−−→ 5fC oxidation−−−−−−→ 5caC.

Acetylation is addition of an acetyl group to a chemical compound.

Agent-based model (ABM) consists of units or entities at basis level, to which attributes

are assigned.

Age Sensitive Gene (ASG parameter) indicates age when methylation level changes of a

gene sensitive to age-related methylation are observed.

Apoptosis is the process of programmed cell death.

Bayesian network is a network of genes in which change of a given gene is conditional

on change of one or more other genes.

Benign (tumour) does not invade nearby tissues or spread throughout the body, i.e. not

cancerous.

Biomarker is an entity that characterizes specifically abnormal systems and can be used

to differentiate tumour from normal tissues.
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Cell is the the smallest structural and functional unit of an organism.

Cell cycle contains the set of events between two successive cell divisions.

Cell differentiation is the process during which a less specialized cell, (e.g. stem cell), be-

comes a more specialized cell type; in some cases, (e.g. colon), a fully-differentiated

cell loses the ability of performing further divisions.

Cell division is the process during which a parent cell divides into two daughter cells,

transmitting genetic information.

Cell proliferation is the process of increasing cell numbers, through cell division.

Cellular automaton is a discrete model consisting of large number of identical cells found

in a discrete number of states. All cells change state simultaneously, based on transi-

tion rules with their neighbours.

Chemotherapy is a standard cancer therapy, where cancerous cells are targeted by differ-

ent drugs.

Chromatin immunoprecipitation (ChIP) is a method for histone modification analysis,

which can be applied at both gene specific and genome-wide levels, also in combina-

tion with microarray and NGS technologies, (e.g. ChIP-chip, ChIP-Seq).

Chromatin is the combination of DNA and proteins that makes up the contents of the cell

nucleus. Chromatin is present in two forms: heterochromatin (highly condensed and

characterised by low levels of gene transcription), and euchromatin (less compacted

and characterised by high levels of gene transcription).

Chromosome is an organized arrangement or package of DNA in cell.

Chromosomal instability is a class of genomic instability characterised by deletions or

duplications of parts of chromosomes; it has been associated with malignant tumour

development.
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Colonoscopy is the screening procedure that permits examination of the entire colon and

removal of detected polyps in the same session.

Colorectal cancer develops in the colon, rectum or in the appendix. It is also referred as

colon cancer, rectal cancer, bowel cancer or colorectal adenocarcinoma.

CpG Island Methylator Phenotype represents the malignant phenotype given by CpG

island hypermethylation of promoters in a group of genes.

Density-Dependent Coefficient determine the relationships between growth rate within

a population at a given time t based on population size at time t and its maximum

capacity permitted in a specific environment.

DNA, or deoxyribonucleic acid, is a double-stranded macromolecule that encodes the ge-

netic information in almost all living organisms and is composed from base pairs of

nucleotides. The nucleotides contain the bases adenine (A), guanine (G), cytosine

(C), and thymine (T). In nature, base pair affinities are A-T and G-C.

DNA methylation is a molecular process that involves the addition of a methyl group

to a cytosine or adenine ring. (Adenine methylation has been reported recently in

prokaryotes, [Aguilar and Craighead, 2013] and references therein.)

DNA methyltransferase family represents enzymes catalysing methyl group transfer to

DNA.

DNA repair is the process used by a cell to identify and repair abnormal changes in DNA.

d-Network Threshold (dNT) is a model coefficient that determines if gene pathways

found in a gene network are d-plausible, based on the value of d- model parameter.

Drug response curve is a curve measuring level of response of drug present over time.

Epigenetic events within a cell are heritable and reversible modifications that affect gene

expression but not the DNA sequence.

Epigenome refers to the totality of epigenetic markers in an organism.
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Epithelium is one of the four major animal tissue types, (along connective, muscle and

nervous), characterised by high cell division rate and little intercellular gaps. Epithe-

lium assures functions of e.g. tissue protection, hormone secretion, nutrient absorp-

tion, sensation detection.

Exon is the coding part of a gene that is used in translation to protein.

Familial adenomatous polyposis represents an incipient or initial stage of adenoma, char-

acterised by large numbers of polyps in both colon and rectal tissues, which can

progress to CRC if are not treated.

Gene is the basic physical and functional hereditary unit, comprises part of the DNA

sequence and determines a specific characteristic of an organism.

Gene expression is the process of synthesising the gene product, (protein or RNA).

Gene Expression Omnibus is a database of genetic and epigenetic data generated by high

throughput technologies. technologies

Genome consists of all the genetic material found in an organism.

Genotype is the gene collection for an individual. It refers also to the alleles inherited for

a specific gene.

Histone is a protein package of the DNA nucleosome sequence. There are five known

families of histones H1/H5, H2A, H2B, H3 and H4, grouped in two categories: the

core, (H2A, H2B, H3, H4) and the linker histones, (H1 and H5).

Histone acetyltransferases represent enzyme family catalysing acetyl group transfer to

histones.

Histone deacetylases represent enzyme family removing acetyl group from histones.

Histone demethylases represent enzyme family removing methyl group from histones.

Histone modification refers to addition of different chemical compounds (e.g. acetyl,

methyl) to histone ‘tails’, forming e.g. histone acetylation, methylation.
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Histone methyltransferases represent enzyme family catalysing methyl group transfer to

histones.

High-performance liquid chromatography is method for global DNA methylation anal-

ysis.

Histone variant is a variant form of a major histone modification. For example, H2A.X

and H2A.Z are histone H2A variants, while the H3.3 is a variant for histone H3.

Homeostasis is the balance or stable state that characterises the internal environment of a

normal biological system; this is usually altered in malignant tumour.

Hypermethylation is an increase in DNA methylation level.

Hypomethylation is a decrease in DNA methylation level.

Inhibitor Maximum Efficiency Time represents the time period with the highest inhibitor

effect.

Incidence rate of cancer is the rate per unit time of cancer occurrence in a population

scaled to the population size.

Inflammatory bowel disease represents a group of disorders involving inflammation of

different parts of the intestine. Its presence is considered to be a risk factor in bowel

cancer development.

Intron is a non-coding DNA/ RNA segment.

Leukaemia is a malignant disease of the blood-forming organs characterised by an aber-

rant increase in the white blood cells number.

Lymph is a transparent liquid, (composed from white blood cells, mainly lymphocytes),

which circulates through the lymphatic vessels and intercellular gaps and facilitates

substance exchange between blood and solid tissues.

Malignant implies ability to invade nearby tissues or spread throughout the body, i.e.

cancerous.
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Metastasis characterises the tumour extension from the initial (primary) tissue to other

parts of the body.

Methylation is addition of a methyl group to a chemical compound.

The methylation cycle number average (MCA) is the average time period after which

all gene networks within a given group advance to the next cancer stage.

Micro RNAs are small sequences of non-coding RNA molecule with role in cell cycle

regulation.

Microsatellite instability is the condition of increased mutation rate caused by deregula-

tions in the DNA mismatch repair mechanism.

Mortality rate = number of deaths per unit of time caused by a disease in a population

scaled to the population size.

Mutation is a modification in a DNA sequence. Mutations can be i) germline, (which can

be transmitted to offspring), and ii) somatic, (which are not passed on).

Neurodegenerative disorder refers to a group of diseases that primarily include affections

of the neurons in the human brain, (e.g. Parkinson’s, Alzheimer’s disease).

Next-Generation Sequencing is a collective name for more recent high throughput meth-

ods of determining e.g. variation at genetic and epigenetic levels.

Nucleotide is a compound consisting of a base, (A, G, C, T), sugar, and phosphate.

Oncogene is a gene that has potential to cause cancer.

Percentage of methylated reference measures the degree of methylation for a given gene.

When PMR values show variation across multiple runs, average PMR can be calcu-

lated based on reported PMR values.

Phenotype is composed from the observable characteristics of a living organism. A sim-

plified mathematical formula that describes the phenotype is: Phenotype = Genotype
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+ Environment + Epigenetics, incorporating both environment and Epigenetics influ-

ences in gene expression.

The polymerase chain reaction is a technology used to amplify one or more DNA se-

quence, generating large number of copies, (e.g. thousands, millions).

Polyp is a small growth protruding from a mucous membrane.

Progenitor cell is a cell, characterised by the ability of limited division number.

Protein is a molecule built from amino acids, (formed from triplets of nucleotide bases),

which governs functionality. Proteins characterise major components, (e.g. hair, skin,

etc.).

Proto-oncogene is a normal gene that can become an oncogene due to mutations or in-

creased expression.

Radiotherapy is standard for more advanced cancer stages and aims to destroy malignant

cells.

Recurrent (cancer) refers to malignant tumours; initially susceptible to treatment, which

reoccurs in an individual after a time-period during which the disease is non-detectable

(latent).

Residue is a small quantity of a substance.

Risk factor is a factor such as chemical exposure, tobacco usage, that may increase the

probability of disease development.

RNA, or ribonucleic acid, is a single-stranded macromolecule transcribing the genetic

information from DNA to proteins.

Sensitive to age-related methylation is a gene feature that indicates that methylation

levels of a given gene are influenced by ageing.

Sporadic refers to a tumour that occurs in a population without involving heritable pre-

disposition.
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Stage (cancer) is the degree of the cancer development and extension.

Stem cells can differentiate into diverse specialized cell types. Referred to as self-renewable

due to ability to produce new stem cells and considered to be the repair system of the

body.

Signalling pathway represents a set of inter-related molecules within a cell working to

control cell functions, including cell division or apoptosis.

Targeted therapy aims to detect and destroy malignant cells without affecting normal

cells. It can be applied for more advanced cancer stages, (e.g. metastasis), and also

in combination with chemotherapy.

Tumour refers to abnormal and uncontrolled cell proliferation.

Tumour suppressor gene is a gene that protects a cell from progressing one step along

the path to disease; it governs cell apoptosis.
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Appendix B

Extended information on CRC

Biological Background

Table B.1: Key genes in CRC development

Gene Sym-
bol

Gene characteristics

APC The molecular changes of the adenomatous polyposis coli, (APC), gene are linked
to the earliest beginning of CRC, being associated with FAP and sporadic cases,
[Fodde et al., 2001; Grady and Markowitz, 2002; Frank, 2007; Suehiro et al.,
2008]. The results presented in Suehiro et al. [2008] show an association between
the hypermethylation of APC and mutations of TP53 in colorectal neoplasms.

KRAS The v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog, (KRAS), gene is the
most commonly mutated RAt Sarcoma (RAS) family member in CRC, [Grady
and Markowitz, 2002]. Studies have reported that approximately 50% of ad-
vanced adenomas with APC mutations also have KRAS mutations, [Grady and
Markowitz, 2002]. A high influence is seen also in lung cancer, where KRAS was
observed as being mutated in 30% of cases, [Risch and Plass, 2008].

TP53 The tumour protein p53, (TP53), gene is a stress response gene involved in main-
taining genomic stability through the control of cell cycle progression, DNA re-
pair and apoptosis. Its inactivation leads to both decrease of tumour-cell death rate
and increase of their division rate, [Knudson, 2001]. A significantly high level of
changes in this TGS was reported in lung and colorectal cancers, [Risch and Plass,
2008; Suehiro et al., 2008].

Continued on next page
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Gene Sym-
bol

Gene characteristics

RASSF1A The Ras-associated domain family member 1, (RASSF1A), gene is considered to
be one of the most hypermethylated TSGs in various cancer types, such as breast,
[Dworkin et al., 2009], lung, [Dammann et al., 2003], ovarian, renal, prostate
and colorectal cancers, [Yoon et al., 2001]. Studies show that RASSF1A expres-
sion is significantly reduced in tumours, although it has a high level in normal
cells, [Dworkin et al., 2009]. Therefore, identification of high RASSF1A methyla-
tion level in carcinoma cells could become important in early detection of cancer,
[Dammann et al., 2003].

MCC Mutated In Colorectal Cancers (MCC) gene is considered to be involved in sev-
eral cellular processes, (e.g. proliferation, [Fukuyama et al., 2008], movement
of epithelial cells, [Arnaud et al., 2009]), and pathways, (e.g. Wnt, [Fukuyama
et al., 2008]), and to act as a TSG. MCC silencing, (due to promoter methyla-
tion), has been observed in sporadic forms of CRC, [Kohonen-Corish et al., 2007;
Fukuyama et al., 2008].

MLH1 The mutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli), (MLH1), gene is
found to be mutated or aberrant methylated in the hereditary nonpolyposis forms
of the CRC, [Ogino et al., 2006b; Niv, 2007]. MLH1 is considered a ‘caretaker’
gene, since its expressed protein has a role in repairing DNA mismatches that
appear normally during DNA replication; abnormal changes in MLH1 expression
lead to genomic instability and cell proliferation, [Niv, 2007].

MGMT Another ‘caretaker’ gene that encodes DNA repair protein, [Herman and Baylin,
2003], the O6-methylguanine-DNA methyltransferase, (MGMT), is found to be
highly hypermethylated in adenomas, [Ogino et al., 2006b; Suehiro et al., 2008].
Additionally, aberrant methylation of APC followed by MGMT or MLH1 hyper-
methylation is associated with abnormal G-to-A transition in APC, [Suehiro et al.,
2008].

Table B.2: Colorectal cancer types

CRC Type Major characteristics
CIN CIN is characterised by genetic mutations involving the inactivation of TGSs such

as APC, p53, and the activation of oncogenes, (e.g. KRAS), [Grady, 2004].
CIMP CIMP is characterised by inactivation of different TSGs, (e.g. CDKN2A:p16,

IGF2, RUNX3), and DNA repair genes, (e.g. MLH1), caused by CpG islands
hypermethylation in their promoters, (reviewed in [Hughes et al., 2012]). In addi-
tion, activation of the BRAF proto-oncogene is considered to be an early event in
CIMP, [Hughes et al., 2012].

Continued on next page
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CRC Type Major characteristics
HNPCC HNPCC is characterised by germline mutations in the DNA mismatch repair

genes, e.g. in MLH1, MSH2, or MSH6 genes. In addition, the time-period for
developing CRC decreases in comparison with sporadic cases, (i.e. 2-3 years in
the former instead of 8-10 years in the later). Moreover, in the former case, the
malignant phenotype can be identified in younger individuals, (with average age
≈ 45 years), in comparison with the later, (with the average age ≈ 63 years),
[Cunningham et al., 2010].

FAP FAP is characterised by large numbers of adenomas in both colon and rectal tis-
sues, which can progress during short time-periods to CRC if are not treated.
Initially, the polyps develop as consequence of germline mutations in APC gene,
[Half et al., 2009].

MAP MAP is characterised by recessively inherited mutations in MUTYH gene causing
a number of polyps, (lower than in the FAP cases), [Half et al., 2009].

BRAF BRAF is a proto-oncogene, mutated in several human cancers, including
melanoma, ovarian, prostate and CRC, [McCubrey et al., 2006; Cho et al., 2006;
Ahmed et al., 2013]. In CRC, BRAF is one of the most commonly affected genes,
in addition to e.g. TP53 and KRAS, [Ahmed et al., 2013]. Drugs targeting BRAF
mutation have been already approved by FDA, (e.g. Vemurafenib , [Bollag et al.,
2012]) and are in use for melanoma.

Table B.3: Cancer predisposition based on ageing

Group
name

Description

Group 1 refers to children, (aged 0-14 years), and young adults, (15-29 years), and is char-
acterised by very low number of diagnosed cancer cases. An exception to this
observation is that of leukaemia, the most common childhood cancer, which has a
very low rate in adults, [Cancer Research UK, 2014a]. CRC incidence rate is esti-
mated to be below 5 per 100,000 population UK, (2009-2011), [Cancer Research
UK, 2014b].

Group 2 includes adults of 30-49 years and shows a slightly higher overall cancer predis-
position in females than in males. This is caused mainly by the high number of
breast cancer cases identified in this age range, [Frank, 2007]. CRC incidence is
still low, with the rate around 45 for male and 40 for females per 100,000 UK
population, (2009 - 2011), [Cancer Research UK, 2014b].

Continued on next page
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Group
name

Description

Group 3 is composed of adults aged 50-74 years and includes the highest number of de-
tected cancer cases from all age groups, with more cancer cases diagnosed in
males than in females. Some early studies reported that CRC incidence increases
markedly after 50 years, [Issa et al., 1994]. However, more recent reports noted
that although abnormal changes can appear in the colon even 10-15 years earlier
than malignant symptoms, CRC development mostly occurs between the ages 65-
75, with screening recommended between ages 50-75 or 40-75 for people with
familial colon cancer history, [Scholefield, 2002]. Estimated CRC incidence per
100,000 of the population was reported to be around 360 world-wide in 2012, and
around 220 in US, (2009-2011), [SEER, 2013a; Ferlay et al., 2014].

Group 4 is associated with the elderly, (i.e. of age greater than 75 years), and it char-
acterised by relatively high CRC incidence rate. For instance, estimated CRC
incidence per 100,000 individuals was reported to be around 200 world-wide in
2012, and around 250 in US, (2009-2011), [SEER, 2013a; Ferlay et al., 2014].
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Appendix C

Resources

Table C.1: A list of Resources for Epigenetics Research (Urls accessed on 09/06/2014)

Resource name Description and url.
Epigenesys - Network of
Excellence

European community on Epigenetics;
url: http://www.epigenesys.eu/en/.

Epigenie - Informally
informative coverage of
Epigenetics

Resources for Epigenetics research including information on
technologies, webminars, meetings and products etc.;
url: http://epigenie.com/.

e3: Scientific Networking
for Epigenetic Experts

Information on conferences, meetings, resources for Epigenetics
researchers;
url: http://epiexperts.com/.

Galaxy A web-based, free framework for biomedical data research,
[Goecks et al., 2010];
url: http://galaxyproject.org/.

NCBI Epigenomics Repository for epigenetic modification data for whole-genome,
[Fingerman et al., 2011];
url: http://www.ncbi.nlm.nih.gov/epigenomics.

Table C.2: Databases accessed for genetic and epigenetic mechanisms in cancer and other
human diseases (Urls accessed on 09/06/2014)

Resource Description/ Database content
ArrayExpress Gene expression data from studies using microarray and high throughput sequenc-

ing technologies;
url: https://www.ebi.ac.uk/arrayexpress/.

Continued on next page
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Resource Description/ Database content
COSMIC Catalogue Of Somatic Mutations In Cancer database: Somatic mutations ob-

served in human cancers;
url: http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/.

DiseaseMeth Methylation level in human diseases;
url: http://202.97.205.78/diseasemeth/.

Ensembl
Genome
Browser

The genome of different organisms, (including human, mouse);
url: http://www.ensembl.org/index.html.

GeneCards Gene annotation;
url: http://www.genecards.org/

HGMD Human Gene Mutation Database: Methylation level and mutation of cancer-
related genes;
url: http://www.hgmd.org/.

HHMD Human Histone Modification Database: Human histone modification;
url: http://202.97.205.78/hhmd/.

Histone
Database

Histone sequences;
url: http://genome.nhgri.nih.gov/histones/.

HIstome Information on histone modifications, variants and modifying enzymes in human
systems; url: http://www.actrec.gov.in/histome/index.php.

ICGC Data
Portal

Repository for output information from the ICGC projects;
url: https://dcc.icgc.org/.

KEGG Path-
way

Pathways involved in e.g. cellular processes, human diseases;
url: http://www.genome.jp/kegg/pathway.html.

MethDB Cancer methylation;
url: http://www.methdb.de/.

MethyCancer Methylation level of cancer-related genes;
url: http://methycancer.psych.ac.cn/.

MPromDb Information from ChIP-Seq experiments on gene promoters in mammalian bio-
logical systems;
url: http://mpromdb.wistar.upenn.edu/.

NCBI GEO Genomic data generated from microarray and NGS technologies;
url: http://www.ncbi.nlm.nih.gov/geo/.

NCBI Gene Gene annotation;
url: http://www.ncbi.nlm.nih.gov/gene

PubMeth Gene methylation level specific to various systems;
url: http://www.pubmeth.org/.

StatEpigen Conditional relationships between genetic and epigenetic events affecting differ-
ent genes in various cancer types;
url: http://statepigen.sci-sym.dcu.ie/.

TCGA Data
Portal

The TGCA data sets on exome, methylation, miRNA and clinical information for
different malignant phenotypes;
url: https://tcga-data.nci.nih.gov/tcga/.
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Table C.3: A list of software developed for generating BN-applications, (software urls ac-
cessed 19/06/2014)

Tool type Tool name and url
Free Bayesian Network tools in Java, url: http://bnj.sourceforge.net/.

Chordalysis, url: http://sourceforge.net/projects/chordalysis/.
FDEP, url: http://www.cs.bris.ac.uk/ flach/fdep/.
GeNIe, url: http://genie.sis.pitt.edu/.
jBNC, url: http://jbnc.sourceforge.net/.
PNL: Open Source Probabilistic Networks Library,
url: http://sourceforge.net/projects/openpnl/.
Netice, url: http://www.norsys.com/.

Commercial Analytica, url: http://www.lumina.com/.
BayesServer, url: http://www.bayesserver.com/default.aspx.
BNet, url: https://www.cra.com/commercial-solutions/bnet-builder.asp.
Flint, url: http://www.lpa.co.uk/fln.htm.
Precision Tree, url: http://www.palisade.com/precisiontree/.
WEKA, url: http://www.cs.waikato.ac.nz/ ml/weka/.

Table C.4: Genes included in the E-G Network Model, with information on gene symbol
and name from the GeneCards database, [Safran et al., 2010]

Gene Sym-
bol

Gene Name

APC Adenomatous Polyposis Coli
BRAF v-raf murine sarcoma viral oncogene homolog B
CDKN2A:P14 Cyclin-dependent kinase inhibitor 2A
CDKN2A:p16 Cyclin-dependent kinase inhibitor 2
CRABP1 Cellular retinoic acid binding protein 1
GJC1 Gap junction protein, gamma 1, 45kDa
IGF2 Insulin-like growth factor II
KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
MCC Mutated In Colorectal Cancers
MGMT O6-methylguanine-DNA methyltransferase
MLH1 MutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli)
MUTYH MutY homolog
NORE1 Ras association (RalGDS/AF-6) domain family member 5
NR3C1 Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)
RASSF1A Ras-associated domain family member 1
SMAD4 SMAD family member 4
TP53 Tumour Protein p53
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Appendix D

Cell Rate Relationships in the

LogisticCrypt Component Model

The cell action rate expressions described here are deduced based on biological information

on intestinal crypt dynamics and structure indicated in e.g Potten et al. [2003]; Sancho

et al. [2003]; Kim et al. [2005]; Canavan et al. [2006]; Frank [2007]; Nicolas et al. [2007];

Humphries and Wright [2008]; Jin et al. [2009]; Khalek et al. [2010]; Umar [2010]; Bock

[2012]; Vaiopoulos et al. [2012]; Clevers and Bevins [2013], (Section 2.4).

D.1 Colon Crypt System

1. Rules applied to update cell numbers in colon crypt over time:

Stem(t+1) = Stem(t) + Stem(t) × (RateStemSymDiv - RateStemApoptosis) × DDCSTEM (t)

Prog(t+1) = Prog(t) + [Stem(t)×RateStemAsymDiv + Prog(t)× (RateProg
Div - RateProg

FullDiff )]

× DDCPROG(t)

Diff(t+1) = Diff(t) + [Prog(t)×RateProg
FullDiff - Diff(t)×RateDiff

Apoptosis]×DDCDIFF (t)

DDCSTEM (t) 6= 0; DDCPROG(t) 6= 0; DDCDIFF (t) 6= 0,

Stem(t0), Prog(t0), Diff(t0) = known values, being equal to respectively, the stem,

progenitor and differentiated cell number at initial time, i.e. t0.
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2. Relationships showing no variations on cell number over time:

Stem(t+1) - Stem(t) = 0

Prog(t+1) - Prog(t) = 0

Diff(t+1) - Diff(t) = 0

3. Calculation of relationship between parameters:

Stem(t+1) - Stem(t) = 0⇒

Stem(t) + Stem(t) × (RateStemSymDiv - RateStemApoptosis) × DDCSTEM (t) - Stem(t) = 0⇒

(RateStemSymDiv - RateStemApoptosis) × DDCSTEM (t) = 0⇒

RateStemSymDiv - RateStemApoptosis = 0, (given DDCSTEM (t) 6= 0)⇒

RateStemApoptosis = RateStemSymDiv

Prog(t+1) - Prog(t) = 0⇒

Prog(t) + [Stem(t)×RateStemAsymDiv + Prog(t)× (RateProg
Div - RateProg

FullDiff )]×DDCPROG(t)

Prog(t) = 0⇒

[Stem(t) × RateStemAsymDiv + Prog(t) × (RateProg
Div - RateProg

FullDiff )] × DDCPROG(t) =

0, (given DDCPROG(t) 6= 0)⇒

Stem(t) × RateStemAsymDiv + Prog(t) × (RateProg
Div RateProg

FullDiff ) = 0⇒

Stem(t) × RateStemAsymDiv + Prog(t) × RateProg
Div = Prog(t) × RateProg

FullDiff

At initial time, i.e. t0,⇒

RateProg
FullDiff = Stem(t0)

Prog(t0)
× RateStemAsymDiv + RateProg

Div

Diff(t+1) - Diff(t) = 0⇒

Diff(t) + [Prog(t) × RateProg
FullDiff - Diff(t) × RateDiff

Apoptosis] × DDCDIFF (t) - Diff(t)

= 0⇒
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[Prog(t)×RateProg
FullDiff - Diff(t)×RateDiff

Apoptosis]×DDCDIFF (t) = 0 (given DDCDIFF (t)

6= 0)⇒

Prog(t) × RateProg
FullDiff - Diff(t) × RateDiff

Apoptosis = 0

At initial time, i.e. t0,⇒

RateDiff
Apoptosis = Prog(t0)

Diff(t0)
× RateProg

FullDiff ⇒

RateDiff
Apoptosis = Prog(t0)

Diff(t0)
× [Stem(t0)

Prog(t0)
× RateStemAsymDiv + RateProg

Div ]

D.2 Small Intestine Crypt System

1. Rules applied to update cell numbers in small intestine crypt over time:

Stem(t+1) = Stem(t) + Stem(t) × (RateStemSymDiv - RateStemApoptosis) × DDCSTEM (t);

Diff(t+1) = Diff(t) + [Prog(t)×RateProg
FullDiff - Diff(t)×RateDiff

Apoptosis]×DDCDIFF (t)

Prog(t+1) = Prog(t) + [Stem(t) × RateStemAsymDiv + Prog(t) × (RateProg
Div - RateProg

FullDiff

- RateProg
Paneth)] × DDCPROG(t)

Paneth(t+1) = Paneth(t) + [Prog(t) × RateProg
Paneth - Paneth(t) × RatePaneth

Apoptosis] ×

DDCPANETH (t)

DDCSTEM (t) 6= 0; DDCPROG(t) 6= 0; DDCDIFF (t) 6= 0, DDCPANETH 6= 0;

Stem(t0), Prog(t0), Paneth(t0) = known values, being equal respectively to, the stem,

progenitor and Paneth cell number at initial time, i.e. t0;

Diff(t0) = the number of fully-differentiated cells, (excepting Paneth cells that are

included in ‘Paneth’ group), at initial time, (t0).

2. Relationships showing no variations on cell number over time:

Stem(t+1) - Stem(t) = 0

Prog(t+1) - Prog(t) = 0

Diff(t+1) - Diff(t) = 0

Paneth(t+1) - Paneth(t) = 0
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3. Calculation of relationship between parameters:

Stem(t+1) - Stem(t) = 0⇒

RateStemApoptosis = RateStemSymDiv (same as for the colon crypt)

Prog(t+1) - Prog(t) = 0⇒

Prog(t) + [Stem(t)×RateStemAsymDiv + Prog(t)× (RateProg
Div - RateProg

FullDiff - RateProg
Paneth)]

× DDCPROG(t) - Prog(t) = 0 (given DDCPROG(t) 6= 0)⇒

Stem(t) × RateStemAsymDiv + Prog(t) × (RateProg
Div - RateProg

FullDiff - RateProg
Paneth) = 0⇒

Stem(t)×RateStemAsymDiv + Prog(t)× (RateProg
Div - RateProg

Paneth) = Prog(t)×RateProg
FullDiff

⇒

At initial time, i.e. t0,⇒

RateProg
FullDiff = Stem(t0)

Prog(t0)
× RateStemAsymDiv + RateProg

Div - RateProg
Paneth

Diff(t+1) - Diff(t) = 0⇒

Diff(t) + [Prog(t) × RateProg
FullDiff - Diff(t) × RateDiff

Apoptosis] × DDCDIFF (t) Diff(t)

= 0⇒

RateDiff
Apoptosis = Prog(t0)

Diff(t0)
× RateProg

FullDiff (same as for colon crypt)

At initial time, i.e. t0,⇒

RateDiff
Apoptosis = Prog(t0)

Diff(t0)
× [Stem(t0)

Prog(t0)
× RateStemAsymDiv + RateProg

Div - RateProg
Paneth]

Paneth(t+1) - Paneth(t) = 0⇒

Paneth(t) + [Prog(t) × RateProg
Paneth - Paneth(t) × RatePaneth

Apoptosis] × DDCPANETH (t) -

Paneth(t) = 0⇒

Prog(t) × RateProg
Paneth - Paneth(t) × RatePaneth

Apoptosis = 0 (given DDCPANETH 6= 0).

At initial time, i.e. t0,⇒

RatePaneth
Apoptosis = Prog(t0)

Paneth(t0)
× RateProg

Paneth
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• Roznovăţ, I. A. and Ruskin, H. J., Methylation Inhibitors and Carcinogens in an

Agent-based Model for Colon Crypt Dynamics during Cancer Development, In Pro-

ceedings of the UKSim/AMSS 7th European Modelling Symposium (EMS2013), Manch-

ester, UK, 20th-22nd November 2013, pp. 144 - 149. Published by IEEE Computer

Society - Conference Publishing Service (CPS). DOI: 10.1109/EMS.2013.27.
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Roznovăţ, I. A. and Ruskin, H. J. (2013). A Computational Model for Genetic

and Epigenetic Signals in Colon Cancer

Cancer, a class of diseases, characterized by abnormal cell growth, has one of the highest

overall death rates world-wide. Its development has been linked to aberrant genetic and

epigenetic events, affecting the regulation of key genes that control cellular mechanisms.

However, a major issue in cancer research is the lack of precise information on tumour

pathways, so that delineation of these and the processes underlying disease proliferation
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is an important area of investigation. A computational approach to modelling malignant

system events can help to improve understanding likely ‘triggers’, i.e. initiating abnor-

mal micro-molecular signals that occur during cancer development. Here, we introduce

a network-based model for genetic and epigenetic events observed at different stages of

colon cancer, with a focus on the gene relationships and tumour pathways. Additionally,

we describe a case study on tumour progression recorded for two gene networks on colon

cancer, carcinoma in situ. Our results to date showed that tumour progression rate is higher

for a small, closely-associated network of genes than for a larger, less-connected set; thus,

disease development depends on assessment of network properties. The current work aims

to provide improved insight on the way in which aberrant modifications characterize cancer

initiation and progression. The framework dynamics are described in terms of interdepen-

dencies between three main layers: genetic and epigenetic events, gene relationships and

cancer stage levels.

Roznovăţ, I. A. and Ruskin, H. J. (2013). Methylation Inhibitors and Carcino-

gens in an Agent-based Model for Colon Crypt Dynamics during Cancer Devel-

opment

Cancer, (uncontrolled cell proliferation), has demonstrably high impact on human life:

complex feelings and lifestyle changes, caused by malignancy, affect not only patients, but

also family and friends. Cancer origin has been linked to genetic and epigenetic abnor-

malities that target stem cells. Here, we introduce an agent-based model for colon crypt

dynamics, where the agents represent three cell types: stem, progenitor and differentiated

cells. Additionally, we describe two test cases developed to analyse the influence of epige-

netic inhibitors and carcinogens in tumour development. The focus is on the way in which

DNA methylation patterns can be affected by de-regulations in cellular mechanisms in the

colon crypt during cancer initiation and progression. Results to date have shown significant

differences in average DNA methylation level for crypts, where epigenetic inhibitors have

been temporarily or permanently present, in comparison to those with no such inhibitors.
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Considerable variation in methylation level has also been observed in systems affected by

carcinogens, compared to those unaffected.

Roznovăţ, I. A. and Ruskin, H. J. (2012). A Computational Model for Genetic

and Epigenetic Signals in Colon Cancer

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6470302

Cancer, a class of diseases, which are characterized by abnormal cell growth, has one

of the highest overall death rates world-wide. Its development has been linked to genetic

and epigenetic events that aberrantly affect the regulation of key genes that control cellular

mechanisms. However, a distinct problem in cancer research is the lack of precise informa-

tion on tumor pathways, so the delineation of these and the processes underlying disease

proliferation is an important area of investigation. This has motivated the effort to build

computational models to help understand the molecular changes that lead to one or more

types of malignancy. The current work aims to develop a prototype network-based model

to describe cancer initiation and progression, with a focus on three main layers: micro-

molecular events, gene interactions and cancer stages.

Roznovăţ, I. A. and Ruskin, H. J. (2012). Modelling the Genetic and Epigenetic

Signals in Colon Cancer using a Bayesian Network

http://link.springer.com/chapter/10.1007%2F978-3-319-00395-5_

126

Cancer, the unregulated growth of cells, has been a major area of focus of research for

years due to its impact on human health. Cancer development can be traced back to aberrant

modifications in genetic and epigenetic mechanisms within the body over time. Given

time and cost implications of human genome experimentation, computational modeling is

increasingly being employed to improve understanding of mechanisms which determine

cancer initiation and progression. Here, we introduce a network-based model for genetic
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and epigenetic signals in colorectal cancer, with the focus on the gene level and tumor

pathways. The current framework also considers the influence of ageing for micromolecular

events in cancer development.

Szczesna, K., Sandoval, J., Modhukur, V., Kull, M., Rajashekar, B., Perrin, D.,

Barat, A., Raghavan, K., Roznovăţ, I. A., Huertas, D., Vilo, J. and Ruskin, H.

J. (2013). Complexity of Interdependent Epigenetic Signals in Cancer Initiation

http://www.nwo.nl/en/research-and-results/programmes/complexity/

meetings/eccs+meeting+2013

The aim of the Complexity of Interdependent Epigenetic Signals in Cancer Initiation

network is to determine epigenetic signals implicated in cancer initiation in one of the

best-characterized mouse carcinogenesis systems, the multistage skin cancer progression

model. This has been achieved through efforts on three interconnected layers (a) wet-lab

experiments, (b) bioinformatics assisted analysis, (c) computer-based modeling. We have

produced DNA methylation, gene expression, and histone modification data profiles from

four different cell lines that mimics graduated stages of skin carcinogenesis. The results

that we have generated after integration and computational models have been implemented

will be presented in the meeting.

Roznovăţ, I. A. and Ruskin, H. J. (2013). Interdependencies of Genetic and

Epigenetic Events in a Computational Model for Colon Cancer Dynamics

http://ercim-news.ercim.eu/en95/ri/interdependencies-of-genetic-

and-epigenetic-events-in-a-computational-model-for-colon-cancer-

dynamics

The aim of our current work is to investigate the interdependencies of genetic and epi-

genetic mechanisms leading to aberrations in cancer initiation and progression. The objec-

tives are to develop a computational model for colon cancer dynamics, linking microscopic
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effects to macroscopic outcomes, and to analyse the impact of different risk factors on ma-

lignant tumour development.
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