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ABSTRACT: Non homogeneous particle distribution is one of the greatest problems 

in casting Metal Matrix Composites (MMC's). To optimize some of the parameters for 

uniform particle distribution for batch compocasting the present simulation studies were 

conducted. The simulation involves visualisation experiments. In the visualisation 

experiments liquid and semi solid aluminium are replaced by other fluids with similar 

characteristics. SiC reinforcement particulate similar to that used in aluminium MMC's 

was used in the simulation fluid mixtures. Scaled-up stirring experiments were carried 

out in a transparent crucible with the percentage of reinforcement material being varied. 

Optimum conditions for photographing flow patterns were established. The dependence 

of the photography conditions (shutter speed, aperture control, lighting), particles 

dispersion and settling times and vortex height on stirrer geometry and speed was found. 

Results are discussed in terms of their applicability to MMC production. 
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1 INTRODUCTION  

 

MMCs are a range of advanced materials providing properties heithertofore not achieved by 

conventional materials. These properties include increased strength, higher elastic modulus, higher 

service temperature, improve wear resistance, decreased part weight, low thermal shock, high 

electrical and thermal conductivity, and low co-efficient of thermal expansion compared to 

conventional metals and alloys [1, 2]. The excellent mechanical properties of these materials and 

the relatively low production cost make them very attractive for a variety of applications in 

automotive and aerospace industries. There are several fabrication techniques available in 

manufacturing the MMC materials. According to the type of reinforcement, the fabrication 

techniques can vary considerably. These techniques include stir casting (called compocasting) [3-8], 

liquid metal infiltration [9], squeeze casting [10], and spray codeposition [11]. Compocasting 

involves the addition of particulate reinforcement into Semi Solid Metal (SSM) by means of 

agitation. The advantage of compocasting lies in a lower processing temperature [12], leading to a 

longer die life and high production cycle time [13]. Reduced fluidity can be achieved in SSM by 

means of shearing [14]. The greater resultant fluidity of the SSM also reduces solidification 

shrinkage, making the fabrication of structural components with tight tolerance possible [15]. The 

production can be carried out by conventional foundry methods [16]. Disadvantages that may occur 

if process parameters are not adequately controlled include the fact that non-homogeneous particle 

distribution results in sedimentation and segregation [17]. 

 

Although compocasting is generally accepted as a commercial route for the production of MMC’s 

[18], there are however technical challenges associated with producing a homogeneous, high 

density composite. Effectiveness with which mechanical stirring can incorporate and distribute the 

particles throughout the melt depends on the constituent materials, the stirrer geometry and position, 

the speed of stirring, and the mixture temperature. Research has been conducted in an effort to 

optimise the mechanical properties of MMC’s [3, 5, 7, 10, 19-23]. Little of this work however is 
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concerned with investigation of time required 

for particulate distribution. Unfortunately, in 

normal practice the effect of the stirring 

action on the flow patterns cannot be 

observed as they take place in a non-

transparent molten metal within a furnace. As 

such, and because of the fact that direct 

measurements of metal flow characteristics 

can be expensive, time consuming and 

dangerous, the current research focuses on 

methods of simulating fluid and particle flow 

during stirring. 

 

Very little work has been conducted to date 

with simulation materials for the 

compocasting process. Exceptions to this 

include the work of Kocaefe et al. [24], 

Hashim et al. [25] and Rohatgi et al. [26]. The 

work of Kocaefe et al. used a water-SiC 

mixture, but related only to a specific set of 

processing conditions. Hashim et al. on the 

other hand, in an effort to simulate SSM 

viscosities used glycerol with small 

polystyrene particles to highlight the flow 

pattern. Experimental results from Rohatgi et 

al. indicated the homogeneity of SiC 

distributions during stirring in water-SiC 

mixtures. Other important parameters, such as 

uniform dispersion and settling time for 

different viscosity simulation fluids within a 

conventional cylindrical crucible, have not 

been investigated. This work examines in 

details these situations with a variety of 

processing conditions. Results from such 

simulations can, for example, indicate the 

time frames required to obtain a uniform 

distribution of particulate within the molten or 

SSM.  

 
 

2 EXPERIMENTAL  

 

Water and transparent glycerol/water 

solutions were used to provide fluids of a 

varying viscosity. Viscosities similar to those 

of SSM of 300, 500, 800 and 1000 mPas were 

produced from glycerol/water solutions [27]. 

Water provided a viscosity of 1 mPas, similar 

to that of liquid aluminium [28]. Two levels 

of 13 m sized SiC particles, 0.1% or 10%, 

were added to these fluids. The lower level 

allowed internal flow patterns to be observed 

whereas the upper level, simulating a typical 

quantity of SiC in a MMC, showed external 

flow patterns and allowed measurement of  
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Figure 1: Four blades stirrer, showing  

different blade configurations (a) 0  

(b) 30 (c) 45 (d) 60 and (e) 90. 
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dispersion rates. A 400 ml quantity of each of 

these solutions was prepared in a 10.5 cm 

diameter Pyrex beaker. This resulted in a 

solution height of 6.5 cm. Agitation was 

provided by three different stirrer types. Three 

and four bladed stirrers with blades normal to 

the axis of rotation as well as a fixed bladed 

turbine stirrer were used. Flat blades could be 

rotated about their longitudinal axis (Figure 

1). A speed controlled DC motor enabled 

accurate control of the stirring speed. Height 

of the stirrer from the bottom of the beaker, 

H, was adjustable. A schematic of the 

experimental set up is shown in Figure 2. The 

scale shown in this drawing related directly to 

a laboratory scale production facilities for 

MMC’s. 

 

A camera was mounted along the same 

horizontal plane as the beaker. Shutter speed, 

aperture, and lighting settings were adjusted 

to optimise the picture quality. During these 

tests, shutter speeds were varied from 1/15-

1/2000 s while the aperture was automatically 

controlled. Conversely, the aperture was 

varied from F5.5-38 while the shutter speed 

was automatically adjusted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steady state flow patterns were set up in the fluids with stirring speeds of 50, 100, 150, 200, 250 

and 300 rpm. With the SiC particles initially resting at the bottom of the beaker, time required from 

shearing commencement, for a uniform dispersion of particles were recorded. When shearing was 

stopped, settling times for uniformly dispersed particles in the different fluids were measured. 

Uniform dispersion and settling were completely judged by visual examination. The effects of 

different stirrer heights on different solutions were also observed. In addition, vortex height, h 

(Fig.1), was recorded for water and glycerol/ water with different stirrer types and stirring speeds.  

 

 
3 RESULTS 
 

Camera shutter speeds at least greater than 1/60 s were required to capture the flow pattern in the 

stirring speed range investigated (50-300 rpm). Faster shutter speeds up to 1/2000 s did not affect 

captured image quality. Aperture control with automatic shutter speed settings did not produce good 

photographs due to the low shutter speeds recorded for the aperture range investigated (<1/60 s). 

Integral camera flash, with a white background to the Pyrex beaker, proved the best lighting 

solution. With this set-up internal flow pattern were captured in 0.1% SiC fluids and external flow 

of the fluid could be observed in the 10% SiC fluid mixtures.  

 

At 50 rpm no dispersion of the particles occurred irrespective of blade angle or fluid. Uniform 

particulate dispersion times for a 10% SiC water mixture, for different stirring speeds above 50 rpm 

are listed in Table 1.  From Table 1 it is observed that at 100 rpm and with 0 and 30 degree blade 

angles no uniform dispersion resulted, but with 45 and 60 degree blade angles there was full 

6.5 cm 

10.5 cm 

Figure 2: Schematic of the experimental set up. 

8 cm 

h 
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particulate dispersion. It is further observed for all stirring speeds that dispersion rates increase with 

increasing blade angle. The turbine blade also produces dispersion times similar to the best found 

for the flat bladed stirrers.  

 

Table 1: Uniform dispersion time for 10% SiC particles for different stirrer types and stirring speeds 

in water of viscosity 1 mPas. Stirrer height was 20 mm from the base of the beaker. 

Stirring 

speed 

Blade 

angle 

Uniform dispersion time  

(s) 

(rpm) (Degrees) 3 blade stirrer 4 blade stirrer Turbine blade stirrer 

 0 N/A N/A  

 30 N/A N/A  

100 45 300 180 180 

 60 180 180  

 90 180 120  

 0 120 120  

 30 90 25  

150 45 30 29 27 

 60 25 12  

 90 28 27  

 0 120 29  

 30 60 17  

200 45 20 16 17 

 60 19 16  

 90 25 16  

 0 60 16  

 30 30 16  

250 45 16 16 16 

 60 15 16  

 90 14 18  

 0 60 15  

 30 19 15  

300 45 15 15 15 

 60 13 15  

 90 13 15  
 

Below 150 rpm no dispersion occurred for the higher viscosity glycerol/water mixtures. Uniform 

particulate dispersion times for a 10% SiC glycerol/water mix (with 300 mPas viscosity), for the 

different stirring speeds are shown in Table 2. At 200, 250 and 300 rpm the range of dispersion time 

for 3, 4 and turbine bladed stirrers are 1920-2700, 1680-1980 and 900-1320 seconds respectively. 

Though there was a tendency for reduced dispersion time with higher blade angle, it was found that 

for most cases the 60 degree angle produced the lowest dispersion times. The turbine stirrer again 

produced the lowest dispersion time. Very similar results were observed for the higher viscosity 

(300, 500, 800 and 1000 mPas) glycerol/water mixtures tested. 
 

Uniform dispersion times for 10% SiC particles in glycerol/water solution for different stirrer types 

and heights, H, are listed in Table 3. Due to high vortex formation in water at higher stirring speeds 

and the lack of dispersion in the glycerol/water mixture at lower speeds, a stirring speed of 150 rpm 

was used in water and 200 rpm in the glycerol/water mixture. With increase in the height of the 

stirrer in the melt, the dispersion times increase. Indeed, for stirrer heights of 30 mm and above in 

the glycerol/water mixtures, the particles are not dispersed into the solution. From Table 1, 2 and 3, 

a general result observed is the strong tendency for the turbine to produce a faster dispersion time 
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than the other stirrer types. A less pronounced tendency for the 4 blade stirrer to produce shorter 

stirrer times than the 3 bladed stirrer is also observed. 
 

Table 2: Uniform dispersion time for 10% SiC particles for different stirrer types and stirring speeds 

in glycerol/water solution of viscosity 300mPas. Stirrer height was 20 mm from the base of the 

beaker. 

Stirring 

speed  

Blade  

angle 

Uniform dispersion time  

(s) 

(rpm) (Degree) 3 blade stirrer 4 blade stirrer Turbine blade stirrer 

 0 2700 2520  

 30 2520 2460  

200 45 2400 2400 2340 

 60 2100 1920  

 90 2640 2460  

 0 1980 1800  

 30 1800 1800  

250 45 1800 1740 1680 

 60 1740 1680  

 90 1920 1800  

 0 1320 1200  

 30 1200 1140  

300 45 1080 1080 900 

 60 900 900  

 90 1200 1200  

 

 

Table 3: Uniform dispersion time in different solution for 10 % SiC particles for different stirrer 

types and height for 45 degree blade angle.  

Solution Stirring  Stirrer  Uniform Dispersion time (s) 

 speed 

(rpm) 

Height  

(mm) 

3 Blade Stirrer 4 Blade Stirrer Turbine Blade stirrer 

  10 30 25 24 

Water,   20 30 29 27 

viscosity  150 30 50 45 40 

1mPas  40 120 90 60 

  50 180 120 70 

  10 1500 1500 1320 

Glycerol,   20 2400 2400 1740 

viscosity  200 30 N/A N/A N/A 

300mPas  40 N/A N/A N/A 

  50 N/A N/A N/A 
 

 

In all cases, particulate settling times measured were independent of stirrer types and stirring speed. 

Approximately 90% of all particles settled within 60 seconds in water and complete settling was 

recorded after 180 seconds. The time at which particulate settling occurred in the glycerol/water 

mixtures was evident from the emergence a clear layer, absent of SiC particles, at the top of the 

mixture. For all glycerol/water mixtures the uniform dispersion of SiC remained for one hour, and 

complete particulate settling only occurred after 20 hours.  
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Table 4 compares the vortex depth of different viscosities solutions, stirrer types, and stirring 

speeds. It is clearly evident from this table that at higher stirring speed in water the vortex height 

increases. Much greater vortex height is also observed in the water mixtures compared with the 

glycerol/water mixtures. No vortex was present in glycerol/water mixtures for stirring speeds below 

150 rpm. Air entrapment was also observed in all fluids at speeds above 250 rpm, though this was 

surprisingly more evident in the higher viscosity fluids. 

 

Table 4: Comparison of the vortex height for different stirring speeds and stirrer types in solutions 

of viscosities 1, 300, 500, 800 and 1000 mPas.  

 Stirring   Vortex Depth (mm)  

Solutions speeds 

(rpm) 

3 blade stirrer 

(45 degree blade angle) 

4 blade stirrer 

(45 degree blade angle) 

Turbine blade stirrer 

 

 100 4 5 6 

Water 150 12 13 14 

Viscosity 200 22 25 30 

1mPas 250 35 40 45 

 300 40 50 55 

 100 No Vortex No Vortex No Vortex 

Glycerol 150 No Vortex No Vortex 1 

Viscosity 200 2 1 5 

300 mPas 250 5 5 7 

 300 7 6 10 

 100 No Vortex No Vortex No Vortex 

Glycerol 150 No Vortex No Vortex No Vortex 

Viscosity 200 1 No Vortex 1 

500 mPas 250 2 3 3 

 300 4 5 6 

 100 No Vortex  No Vortex 

Glycerol 150 No Vortex  No Vortex 

Viscosity 200 No Vortex  No Vortex 

800 mPas 250 1 1 1 

 300 2 3 4 

 100 No Vortex No Vortex No Vortex 

Glycerol 150 No Vortex No Vortex No Vortex 

Viscosity 200 No Vortex No Vortex No Vortex 

1000 mPas 250 2 1 1 

 300 2 2 3 

 

4 DISCUSSION 
 

From the results presented it is apparent that the stirring speed and blade angle have a significant 

effect on particle distribution in the water mixture. These effects are dampened by the higher 

viscosity glycerol/water mixtures. In this regard, even the relatively low viscosity glycerol/water 

mixture (300 mPas) has a significant effect. 

 

The height of the stirrer is also seen to have an important effect for the distribution time of the SiC. 

This is particularly true for the higher viscosity glycerol/water solutions. Particulate settling time 

are in general longer than dispersion time though they are of similar order of magnitude. Settling 

time, in contrast to dispersion time, show no variation with stirring speed but are strongly dependent 

on fluid viscosity. From the results with the liquid aluminium simulation fluid (water) it was seen 

that settling occurs within seconds of stopping shear within the fluid. In the context of 
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compocasting MMC materials, solidification would then have to be immediate in order to retain the 

uniform SiC distribution. A slight increase in viscosity however allows for much longer time before 

processing. Such a viscosity increase can be obtained from lowering temperature to that within an 

alloy's semi-solid range. A disadvantage of higher viscosities however is their increased lack of 

fluidity. A compromise is then required in the casting temperature. It is seen from the results above 

that at a viscosity of 300 mPas would be sufficient to increase the time available for SSM 

processing. 

 

Excessive vortex height was shown to result in air entrapment, however brute force has also been 

shown to provide the best method for incorporating particles in SSM [29]. For batch casting then, 

the stirrer should only produce strong currents in the bottom region of the SSM to encourage 

particle entrapment and discourage air entrapment. Air entrapment leads to internal voids and 

oxides within the casting which deteriorate the mechanical properties. Non-reactive argon or 

nitrogen gas atmospheres mitigate the problems of oxide formation. However these gases may also 

form pores when present within the SSM during solidification. In contrast to the constant viscosity 

simulation fluids used in this work the viscosity of SSM changes during processing. Lower 

fractions solid, higher shear rates, or longer shearing periods result in lower viscosity in the SSM 

which would help prevent retention of these gases [14].  

 

 

5 CONCLUSION 
 

1. Higher blade angles and lower viscosity result in reduced particulate dispersion time. 

2. A minimum stirring speed of 100 rpm for water and 200 rpm for glycerol/water-SiC mixtures is 

required for uniform dispersion to occur.  

3. A viscosity increase from 1 mPas (for liquid metal) to 300 mPas has a tremendous effect on the 

SiC dispersion and settling time. However a further increase from 300 mPas to 1000 mPas has 

negligible effect on this time. 
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