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Abstract 
 

The work detailed in this thesis involves the synthesis, computational analysis and biological 

evaluation of a series of macrocycles against Kv1 channels that could lead to a novel 

therapeutic for the neurological disorder multiple sclerosis (MS). The initial SAR study 

focuses on porphyrin derivatives possessing various alkyl ammonium substituents. The 

results obtained from the initial SAR study with the porphyrins was used to design a new 

non-conjugated scaffold based on the calix[4]pyrroles. However, the synthesis of the target 

calix[4]pyrroles was not achieved. Alternatively, a comparative model of rat Kv1.1 was 

constructed and the results of the porphyrin SAR study were modelled. This computational 

work led to the identification of a new dipyrromethane small molecule inhibitor which was 

successfully prepared. The new lead dipyrromethane DDAAKN01 proved to be selective and 

potent for the target potassium channel Kv1.1 which is believed to be associated with MS. 

The obtained IC50 value for DDAAKN01 was 14 µM, which is 40 times more potent than 

the current therapeutic 4-aminopyridine that is currently used for the treatment of MS. 

DDAAKN01 also showed high selectivity toward the Kv(1.1)4 channel whilst not interacting 

with normalised Kv(1.1)x(1.2)y channels. Further investigation into the mechanism of 

binding of DDAAKN01 using a comparative model of Kv1.1 led to the preparation of a new 

tetrapyrrole derivative DDAAKN02. DDAAKN02 was synthesised and biologically 

evaluated. The results for DDAAKN02 were superior to DDAAKN01 in both selectivity and 

potency. DDAAKN02 has a preliminary IC50 value of 8 µM. Both DDAAKN01 and 

DDAAKN02 have excellent potential as new candidates to alleviate the symptoms of MS and 

are presently being evaluated with MS in vivo models.     .  
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1.1 Multiple sclerosis 
 

Multiple sclerosis is a progressive neurological disease that results in long term disability. 

Worldwide approximately 2.5 million people are affected by the condition. People that 

develop MS experience conditions such as ambulatory impairment, visual loss, bowel and 

bladder urgency, fatigue and excruciating pain. The areas affected are mainly the brain and 

spinal cord.  The disease state can be categorised into four subtypes. These are relapsing 

remitting (RR), primary progressive (PP), secondary progressive (SP), and progressive 

relapsing (PR).  Based upon these four subtypes prognosis can be made and a therapeutic 

course of action undertaken. Relapse remission is defined as, the individual will experience 

disease relapses with full recovery. RR-MS shows periods between the disease relapses 

characterised by a lack of progression by the disease itself.1 Primary progressive multiple 

sclerosis, the sufferer will experience disease progression from the onset with occasional 

plateaus showing slight temporary improvements shown in PP-MS. The fundamental aspect 

of PP-MS is there is a steady, gradual deterioration of the disease state with minor 

fluctuations, however there is no real distinct relapses associated with this subtype. SP-MS is 

a general combination of the initial RR disease state followed by progression. The 

progression for SP-MS can occur with the individual experiencing or not experiencing 

relapses, minor remissions and plateaus.1 Finally PP-MS, the suffer skips the relapse 

remitting phase and is diagnosed with the progressive disease state from the beginning. 

Because 80% of suffers experience RR-MS, PP-MS is the least common.2 Clear acute 

relapses, with or without full recovery between the relapses with accordance with continuing 

progression. 
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1.2 Potassium channels in myelinated and demyelinated axons 
 

Concerning MS the axon is the main species of interest as it acts as the transmission wire for 

any electrical stimulus from the cell body to the axon termini which in turn feeds into muscle 

tissue. Motor neurons are composed of a cell body, dendrites, axon, nodes of ranvier, myelin 

sheath and axon termini. 

Myelin sheath that surrounds the axon acts as an insulator. Characteristics of this insulating 

property are, it provides high resistance and low capacitance, thus a greater impulse 

conduction velocity is achieved in the axon.3,4 Regarding the axon it can be stated that 

demyelination is the pathologic hallmark of MS. When this occurs the lesions as a result 

delay or block the action potential.5 As the disease progresses, further axonal and neurologic 

degeneration contributes to the disease process.6,7 

The pathogenesis is not fully resolved but it is believed that MS is a T-cell dependent 

autoimmune disease.8 Acute inflammatory lesions result from the breakdown of the blood 

brain barrier. The degree of damage that the myelin sheath and axons encounter could be 

directly related to immunological resistance 9 or genetic susceptibility.10,11 Figure 1.1 shows 

the exposure of potassium channels as a result of demyelination. The exposure of potassium 

channels cause an increase in the outward flow of K
+
 and prevents depolarisation, which is 

essential for proper axon functioning. 

 

Figure 1.1: Illustrates K
+
 ion dissipation into the exterior of the cell as a result of demyelination.

12
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1.2.1 Potassium channels 
 

Potassium channels are proteins that mediate the flow of potassium ions across nerve 

membranes, identified in virtually all living organisms, bacterial, archeal and eukaryotic 

existing in both plant and animal.13 In mammals the channels consist of four α or pore 

forming subunits spatially arranged around a central ion conducting pore as homotetramers or 

heterotetramers.14,15 Their role is fundamental to the physiological function of the cell as they 

regulate the electrical potential essential for stimulus. 

Potassium channels contain 78 known members and are divided into four structural types 

based on their various mode of action. These include 2-pore 4-transmembrane K
+
 channels 

(K2p), Ca
2+

 activated K
+
 channels (KCa), inwardly-rectifying K

+
 channels (Kir) and voltage 

gated K
+
 channels (Kv).

16 For the focus of this work, the emphasis will be on the voltage-

gated potassium channels. 

1.2.2 Kv channel molecular structure and functionality. 
Voltage-gated potassium channels contribute to just over half of the K

+
 channels known (40 

genes), these 40 Kv channels have been studied in great detail as they have all been 

successfully cloned and biophysical properties characterized. They can be divided into 12 

subfamilies, Kv1-Kv12. In mammalian entities Kv channels consist of four α-subunits, these 

proteins share a common structural configuration, they contain six transmembrane α-helical 

regions, S1-S6, and a membrane re-entering P-loop which is highly conserved, 

circumferentially around a central pore as a heterotetramer. The ion conduction pore of the 

selectivity filter constitutes the fifth and sixth α helical region S5-P-S6. The four S1-S4 

moieties each contain positively charged arginine residues in the S4 helix. The purpose that 

they serve is they act as voltage sensor domains and ‘gate’ the pore exerting a pulling action 

on the S4 linker 14,17, 18 as shown in figure 1.2. 

The structure of the Kv channel can undergo an induced structural rearrangement due to 

changes in the electrical field across the transmembrane, sensed by the S4 segment. The 

channels when open conduct and whilst closed are non-conducting. The non-conducting 

channels undergo further rearrangements to open which activates or closes, deactivates the 

ion translocation pore.19 For inactivating channels, N-type inactivation occurs; this is when 

the ion translocation pore is hindered by the binding of the N-terminal segment to the 

cytoplasmic vestibule of the pore 20 this can be visualised in figure 1.3 C. After a period of 
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binding to the pore the N terminus segment that was causing inactivation dissociates in a 

process called recovery from inactivation. Another form of inactivation that occurs is from 

the opposite C terminus region and as a result bears the name C-type inactivation shown in 

figure 1.3 D. This occurs with prolonged depolarization as a result of Na
+
 channel opening. 

The prolonged depolarization leads to a dramatic decrease in the flow of current due to 

structural changes thus inhibiting the extracellular end of the ion pore.21-23 Other agents that 

can modulate the Kv channels are small organic molecules and various venom peptides. 

These inhibit the regular functionality of the channels by blocking the ion translocation pore 

from the inner, external turret region or binding to the voltage sensor domain hence 

modifying the channel gating; these are shown as figure 1.3 (E), (F) and (G) respectively. The 

turret region being the most extracellular region in the protein tetramer. 

 

 

Figure 1.2: Schematic diagrams depictive of a generic Kv Channel. Each of the diagrams   shows the 

extracellular surface (exterior) on top and the intracellular surface (Cytosol) on the bottom. In diagram 

(A) it is a representation of the 6 transmembrane segments (6TM) as a single Kv subunit. In (B) the 

intracellular C-terminus and N-terminus involved with inactivating mechanism via N/C type. In (C) 

this diagram illustrates the Kv channel in its open state in the vicinity of the transmembrane lipid 

bilayer.
15
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Figure 1.3: A list of schematic diagrams illustrating the various conducting and non-conducting 

conformations the Kv channel. (A) Shows a closed channel with non-conducting potential. (B) Open, 

conducting channel. (C) Open channel but non-conducting due to the N-type inactivation mechanism 

occurring. (D) Open, non-conducting channel to which the selectivity filter has closed due to C-type 

inactivation. (E) Open, non-conducting channel as a result of the inner turret binding of the small 

molecule 4-aminopyridine (4-AP). (F) Open, non-conducting channel inhibited by the binding of a 

toxin molecule at the outer turret region. (G) Closed, non- conducting channel in which a voltage-

sensor modifying toxin has administered itself into the membrane lipid bylayer binding to the voltage 

sensor region and as a result inducing channel closure.
15
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1.3 Properties and therapeutic feasibility of Kv channels. 
 

K
+
 channels are important regulators of membrane excitability which, in turn, determine 

signal transmission between neurons or other effector cells (e.g. muscles). Voltage-gated K
+
 

channel of Shaker subfamily (Kv1) are involved in human diseases24, where their functions 

are altered by mutation (e.g. certain forms of epilepsy) or truncation (e.g. Episodic ataxia type 

I). Also, the appearance of a new K
+
 channel upon demyelination of axons in patients 

suffering from multiple sclerosis (MS) culminates in abnormal propagation of nerve signals, 

underlying muscle weakness and debilitation.  

 

Immunohistochemical studies revealed that KV1.1 and KV1.2 α subunits are mainly 

coalesced at the juxta-paranode of myelinated nerve axons.25-27 These subunits form hetero-

multimeric channels with limited possible combination.28 Null-mutation has also confirmed 

the importance of the Kv1.1 channel in the functioning of the nervous system. Deletion of the 

channel underlies a form of rodent temporal lobe epilepsy.29 In demyelination lesions of the 

rat sciatic nerve,26 observed a redistribution of Kv1.1 and Kv1.2. Some demyelinated axons 

had diffused staining at nodes, where other axons were devoid of Kv1 channel staining, but 

none had paranodal localization of these channels. During remyelination, Kv1.1 expression 

was found at the node and over time redistributed to the paranodal/juxtaparanodal sites but 

were never completely contained in their original juxtaparanodal sites. This alteration in Kv1 

surface expression along the demyelinated axons shows the possible formation of new 

population of Kv1 channels associated with MS, such as homomeric Kv1.1 channel. The 

exposure of these newly formed channels lead to massive efflux of K
+
 currents from axons 

which disturb nerve conduction. 

 

To date, attempts to correct neuro-transmission abnormality associated with neuronal 

demeylination have relied on inhibiting these K
+ 

channels with aminopyridines; although that 

therapy is effective in the short-term, their use is limited by narrow toxic-to-therapeutic ratio 

and blockade of unrelated K
+
 channels results in severe side effects, especially seizures.15 

This unmet medical need has led to a search for small molecules which could act 

extracellularly as specific inhibitors of the disease-related Kv1 channels. It should be possible 

to normalise neuronal communication in MS patients using a blocking drug selective for the 

channel uniquely associated with this disease.  
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Kv 1.1 is over-expressed in MS patient autopsies (Dolly, unpublished results) An ideal 

molecular candidate for the application of this strategy would be to inhibit the Kv 1.1 channel 

whilst have little or no interaction with other Kv1 channels, especially Kv1.2 which is the 

most expressed potassium channel in the cerebrum. 

 

1.3.1 Treatments for multiple sclerosis. 
 

In 2010 there was massive progress made in the treatment of multiple sclerosis, the potassium 

channel blocker Dalfampridine was released to the market. The significance of this treatment 

was that it was the first oral medication to engender any functional improvement in patient 

suffering with MS. Dalfampridine is the formulated, extended release form of fampridine. 

The API  is 4-aminopyridine shown in figure 1.4. 

N N N

NH2 NH2 NH2

OH

NH2

4-aminopyridine 3,4-diaminopyridine 4-aminopyridine-3-methanol
 

Figure 1.4: Trialled aminopyridine derivatives 

 

1.3.2 Mechanism of action 
 

There are a number of factors which leads to the confusion in which a plausible mechanism 

of action can be determined for 4-aminopyridine inhibiting Kv channels. Firstly, confusion 

arises because the response of the molecule is concentration dependent; this means that the 

doses that can be used clinically produce only very low concentrations of the drug in the 

cerebrospinal fluid and blood. These don’t relate when compared to typical concentrations 

investigated in laboratory studies. Other factors include the frequency of stimulation and the 

kinetic environment of the potassium channel.15,30,31,32 The various gating processes that 

include activation, deactivation and inactivation are all known to illustrate modulation of 4-

aminopyridine blockage. For example, in particular Kv channels, 4AP can display resting 
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block or frequency-dependent block. Dating back to the initial electrophysiological work 

performed with 4-AP block in native delayed rectifier type Kv channels, in the axonal 

membrane of squid, frequency-dependent relief of block portrayed that 4 AP bound to closed 

channels30 or closed channels just prior to opening.31 

Table 1.1: IC50 values of 4-AP between the various Kv1-4 channels.
15

 

Kv gene subfamily 4-AP IC50 range (µM) 4-AP IC50 by IUPHAR (µM) 

Kv1.1 89-1100 290 

Kv1.2 200-800 590 

Kv1.3 200-1500 195 

Kv1.4 647-13000 13000 

Kv1.5 50-400 270 

Kv1.6 300-1500 1500 

Kv1.7 150-245 150 

Kv1.8 68-1500 1500 

Kv2.1 500-18000 18000 

Kv2.2 890-1500 1500 

Kv3.1 20-600 29 

Kv3.2 100-900 100 

Kv3.3 100-1200 1200 

Kv4.1 9000-20000 9000 

Kv4.2 1005-5000 5000 

Kv4.3 1540-10000 N/a 
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In table 1.1 it is important to take into account the differences in the state dependence of 4-

AP binding and the kinetics of the channel gating. The 4-AP binding affinity is dependent on 

the voltage clamp protocol. It is possible that the 4-AP binding site and the activation gate 

correspond with each other in potassium channels. In Kv1.1 it is an open channel blocker, i.e 

the drug is trapped within the pore on channel closure. Kinetic comparison studies were 

preformed based upon the highly selective Kv3.1 channel and the low sensitivity Kv2.1. 

Results from this suggested the 4-AP binding site was in the 3’ S6 segment and that a region 

in the 5’ S5 segment traps bound 4-AP.32 Another study directly related to this work 

demonstrated that channel activation accelerated 4-AP dissociation from a Kv1.1 channel 

confirming that the charged form of 4-AP was the principal cause for channel block33. Thus 

K
+
 channel sensitivity to dalfampridine depends on the activation state of the channel, with 

open channels being more accessible to blockage compared to closed channels. The drug will 

enter an open ion channel more readily than a closed channel. The theory behind how 4-AP 

works from a simplistic view is illustrated in figure 1.5. Putative theory suggests that 

dalfampridine blocks the potassium channels and as a result only a fraction of the K
+
 ions are 

lost across the axon to the exterior as a result of demyelination experienced. Damfampridine 

has been experimentally proven to overcome conduction block in a variety of animal modes. 

Using this drug restoration of axonal conduction in demyelinated rat sensory nerve fibers of 

the dorsal root as it effected demyelinated axons. It had no effect on the action potential of 

normal myelinated nerve fibers in the rat.34 

 

Figure 1.5: Illustrates (A) K
+
 ion efflux of a normal demyelinated axon against (B) a demyelinated 

axon with dalfampridine acting as a K
+
 channel blocker.
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1.3.3 Kv1.3 and immunosuppressant’s as treatments 
 

In the previous sections the neurodegenerative phase of multiple sclerosis was discussed, 

however, it is widely believed that MS is a two stage disease. The first phase revolves around 

autoimmunity.8,9 It is widely accepted that autoimmune T cells mediate the initial steps of 

multiple sclerosis lesions, with particular focus on myelin antigens. Kv1.3 potassium 

channels were first discovered in human T cells in 1984.35,36 T cell investigation as an 

immunosuppressant target arose due to studies involving 4-AP. 4-AP can inhibit T cell 

proliferation and interleukin-2 secretion.36 The mechanism how immunosuppression is 

achieved with Kv1.3 blockers is that the T cell membrane is depolarized37 and this reduces 

the driving force for calcium ion entry through the calcium released-activated calcium 

(CRAC) channel.35 T cells are small on the normal cellular size and have no substantial 

intracellular Ca
2+

 stores, this Ca
2+

 influx through the inward rectifier CRAC is necessary for 

the translocation of nuclear factor of activated T cells to the nucleus and the ultimately 

resulting cytokine secretion and T cell proliferation.14 The following therapeutic pipeline as a 

result of this work directly reflects on immunosuppression and Kv1.3 channels to treat the 

disease in the initial autoimmune stage rather than neurodegenerative phase. As of 2011 there 

are a number of drugs under clinical trials to treat MS, these include: 

Fingolimod: This drug is a Sphinosine-1-phosphate inhibitor, it blocks lymphocyte egress 

from lymph nodes.38 It is delivered orally and once daily. It is FDA approved on the basis of 

two published phase 3 trials.39,40 Additional phase 3 trials are further evaluating safety and 

efficiency against placebo for RRMS and PPMS. 

Cladribine: Purine nucleoside analogue; causes durable reduction in lymphocyte counts.41 

It is delivered orally, daily for short course administration. Patients were treated for 16 or 30 

days over 52 weeks in clinical trials. Currently under review by the FDA, one published 

phase 3 trial42 with 2 additional phase 3 trials ongoing. There is significant reduction in 

relapse rates and disability compared with placebo. Long term immune suppression may 

increase the risk of infection and developing malignancies. 

Terifluomide: Antiproliferative agent with effects on T and B cells.41 It is an oral therapeutic 

taken once daily. One phase 3 trial is complete and the results are published. This is currently 

undergoing further phase 3 clinical trials to prove efficiency. 
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Alemtuzumab: Monoclonal antibody targeting CD52, produces rapid and durable depletion 

of T and B cells.43 This treatment is administered intravenously for 5 consecutive days 

followed by yearly dosing for 3 consecutive days. Phase 2 results have been published44, 

carried out over a 5 year period. There is two phase 3 currently ongoing for RRMS.45 

Daclizumab: Monoclonal antibody targeting CD25 T cell immune modulator. Intravenously 

administered once monthly. Phase 2 trial completed, phase 3 currently ongoing for RRMS.43 

Rituximab: Monoclonal antibodies targeting CD20, these produce sustained suppression of 

B cells.46 This is also intravenously administered, the dosing strategy however is still under 

investigation. There was positive phase 2 results in RRMS patients47, however negative phase 

2/3 results for PPMS. 

 

1.4 Venom peptide toxins targeting Kv channels. 
 

The biodiversity in plants, animals and marina that stretch across land and ocean worldwide 

results in massive diversity of venoms and poisons. These moieties contain potent active 

toxins that range from small organic molecules to large polypeptides. The flora or fauna 

carrying or administering toxins acquire these as secondary metabolites as an attack/defence 

mechanism. The method of synthesis of these toxins can be broke down into two systems, the 

first is via gene expression/ complex metabolic pathway where a number of chemical 

reactions are catalyzed by specific enzymes leading to the secondary metabolites. Another 

means to acquire toxicity is by the accumulation and storage of compounds that are toxic or 

have the potential to become toxic.48 
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Figure 1.6: Sources of venom therapy and means of administration. 

To date there has been extensive research concerning the venoms of spiders, snakes, 

scorpions, sea anemones and marine cone snails that produce peptide toxins that are highly 

potent and highly selective blockers of K+ ion channels.49, 50-51 The features that these peptide 

toxins exhibit are their impeccable specificity and high sensitivity for the ion channels that 

have allowed the isolation and sufficient purification of the channel proteins. The use of these 

toxins have allowed massive advancements in the field of ion channel research mainly 

because they have unravelled important data concerning the structure and function of the 

proteins. 

1.4.1 Mechanism of peptide toxin blockade in Kv channels. 
 

K
+
 channel studies and the possibility to investigate mechanistic properties of Kv channels 

began with the use of venom-derived peptide toxins as probes. The initial studies began with 

the identification and purification of the snake derived peptide toxin, dendrotoxin (DTX)52, 53, 

and two scorpion-derived toxins, noxiustoxin (NxTX)54 and charybdotoxin (ChTX).55, 56 The 

two general mechanisms of how venom-derived peptide toxins interact with K
+
 channels are 

as follows, they either bind to the extracellular mouth of the ion translocation pore inserting a 
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lysine side chain into the pore, as a result blocking the pore. The second mechanism involves 

binding to and modulating the voltage sensor region of the K
+
 channel after dispersing into 

the lipid bilayer. 

 

Figure 1.7: Tetrameric protein showing the main regions of interest.
14 

The binding of ChTX and DTX has been studied in tremendous detail.57,58 Site-directed 

mutagenesis in combination with mutant cycle analysis techniques, deductions were made 

assessing the critical amino acids involved in the structural surface between dendrotoxins and 

their binding site at the extracellular region of the ion pore in certain Kv channels.59,60 The 

initial investigation into ChTX and DTX binding in Kv1 channels acted as a platform that 

lead to the current functional dyad model still in practice.61, 62 This model shows how scorpion 

and sea anemone peptide toxins that have vastly different tertiary structures exert very similar 

blockage due to critical residues that are conserved.63, 64 The functional dyad is composed of a 

critical lysine residue and an aromatic hydrophobic residue separated by 6.6 Å.61 The snail 

cone conotoxin does not appear to follow this functional diad.62 From the early studies for 



15 
 

ChTX and DTX, our understanding is there are commonly reoccurring features of the 

functional amino acid dyad. These, located on the surfaces of folded scorpion, snake or sea 

anemone toxins can anchor into the S5-S6 loop in the pore region of the Kv channel.65 

Unlike the peptide toxins such as scorpion, snake, marine cone snail and sea anemone that 

bind in the S5-P-S6 region, spider venoms act differently. Spider derived peptide toxins have 

shown experimentally to inhibit Kv channels by interacting with the voltage sensory region 

(S3-S4), as opposed to binding to the extracellular pore region like the other toxin sources 

discussed. 

These spider venoms that have been isolated and purified from species of tarantula include 

the hanatoxins66, 67, phrixtoxins68, heteropodatoxins69 and the venoms from the Chilean rose 

tarantula.70,71 Voltage sensor modifying toxins are characteristically associated with changes 

that increase the stability of the channel closed state. Spider venoms produce depolarizing 

shifts in the voltage dependence of current activation, as mentioned in section 1.2.2, this 

refers to more depolarization of the membrane potential required to open the channel, hence 

inhibiting it. Another effect spider venoms exert is, the increase in acceleration of current 

deactivation kinetics thus the channel closes faster.67,69,70 Hanatoxin was the founding member 

of the toxin family that bound to the voltage sensing domains, inhibiting the channels. 

HaTX1 and HaTX2 showed localisation in the S3-S4 linker.72-74 

 

1.4.2 Venom therapy in the treatment of multiple sclerosis. 
 

Above it has been stated the specificity, selectivity and potency of venom derived peptide 

toxins makes it possible to investigate and possibly treat complex diseases as they have a 

great affinity to bind to molecular targets. Compared to small molecule therapeutics it may 

seem negligible, however, there are six FDA-approved drugs derived from venom peptides or 

proteins and these include captopril, eptifibatide, tirofiban, bivalirudin, ziconitide and 

exenatide.75 

Bee venoms 

The honeybee Apis mellifera has venom that contains various small molecules, peptides and 

proteins that range from low molecular weight to high molecular weight compounds. The 
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larger species include melittin, apamin, adolapin and phospholipase A2.76-78 The lower 

molecular weight compounds are biologically active amines, histamine and epinephrine. The 

use of bee venom as an effective treatment for MS has been reported.79 This research 

included a body of 9 patients that had progressive forms of the disease. In this trial no serious 

adverse allergic reactions were witnessed in any of the subjects, but 4 patients experienced a 

deteriation of neurological symptoms, this could not be denounced as a side effect. From the 

other 5 patients administered the bee venom, 3 felt that the therapy has subjective 

amelioration of symptoms and the final 2 showed objective improvement.79 This trial was 

only to show safety, no major conclusions could be made referring to the efficiency of using 

BV as a therapeutic. Another trial, a randomised crossover study based on 24 weeks of 

treatment with 26 patients with relapse remitting or relapse secondary progressive MS, no 

serious side effects were witnessed. The number of new gadolinium-enhancing lesions could 

not be reduced, this being one of the primary determinants for evaluating disease progression. 

Also there was no significant reduction in relapse rate or fatigue.80 The results collectively 

obtained showed immunostimulant properties that could limit the efficiency of BV as a viable 

therapeutic option for the treatment of MS.81 

Sea anemone and scorpion toxins 

The sea anemone (Stichodactyk helianthus) found along the Cuban coast has been used as a 

source of K+ channel blockers. Sticholysins I and II are the most characterized cytolysins 

from this particular anemone.82, 83 The sea anemone toxin ShK blocks K+ channels Kv1.1 and 

Kv1.3 in low picomolar range.15 A synthetic derivative of ShK, ShK-Dap(22) has been 

synthesised, this peptide has replaced a lysine with a diaminopropionic acid residue and this 

has been investigated with Kv1.3.83-85 The activity against T-cells and their 

immunosuppressant properties have propelled themselves into a position of evaluation for 

MS however no formal clinical trial has started yet. The scorpion toxin OSK1 as an 

immunosuppressant entity against Kv1.3 is even more potent than the sea anemone ShK.15 

There has been a synthetic derivative of OSK1, [K16,D20]-OSK1 made, both scorpion toxins 

have been tested in mice. Intracerebroventicular injections into the mice produced toxic 

epileptogenic tremors effects comparable with inoculation.86 
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Snake venom 

In MS lesions, fibrinogen escapes from the blood into the brain tissue, which then permates a 

broken down blood brain barrier (BBB). Increased fibrin deposition has been observed 

experimentally at the site of lesions in patients with MS.87 It has been shown that the absence 

of fibrin, the rate of regeneration of myelin sheath is improved. This was proven in mice 

models lacking fibrin. In the absence of fibrin, sheath cells are able to mature more quickly 

and can remyelinate damaged nerves. The results from this work lead to the hypothesis that, 

preventing fibrin deposition could be a method to help stimulate the nervous systems 

regenerative capacity thus having potential for MS. This hypothesis has been tested using the 

venom batroxobin isolated from the American pit viper. Batroxobin converts circulating 

fibrinogen into an insoluble material and causes afibrinogenemia. Plasma fibrogen 

concentration decreases significantly in bactroxobin treated rats.88, 89 

The only current venom derived toxin undergoing clinical trials is alpha-cobratoxin, its code 

name is RPI-78M.90 It is administered orally as opposed to the toxins discussed previously. It 

has the same immunosuppressant properties of other venoms. 

With regard to the systematic administration of various peptide toxins, proteolytic 

degradation of toxins in the blood brain barrier has really handicapped their further 

development as a feasible therapeutic in MS or any neurodegenerative disease. The other 

concerns include the appearance of side effects following the use of the biological agents. 

Side effects of venom therapy could be seen as a result of their non-self polypeptide structure. 

Administration of these foreign entities can sensitize the subject and cause various 

hypersensitivity reactions.  

1.5 Calixarene and porphyrins as K+ channel inhibitors 
 

Discussed in section 1.3.1, the possibility of probing potassium channels with small 

molecules to inhibit multiple sclerosis is already at advanced stages of clinical trials. The 

mechanism to which these all adhere by is based upon Kv1.3 and immunosuppression. There 

are two major synthetic papers in the literature that uses macrocycles to probe the Kv1.3 

channel, these are porphyrin91 and calixerene92. Firstly, water soluble porphyrin derivatives 

were synthesised and screened against transfected HEK293 cell with the Kv1.3 channel. 

Results showed that inhibition as low as 13nM could be obtained with the screening 
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technique employed when cationic porphyrins were used. Calix[4]arenes, another macrocycle 

was used to probe these Kv1.3 channels, cationic calix[4]arenes gave inhibition at 50 µM 

which is substantially less than the results witnessed with the porphyrins. The concepts with 

spatial geometries by Martos et al, are valid however there are a number of questions that 

arise in the molecular modelling aspect of the work. Their work on the molecular modelling 

is based upon the potassium channel Kv1.2, the cell screening is based upon Kv1.3. The 

molecular modelling was a key aid for the argument of the paper, predicting the best 

candidates for optimal binding. However, the amino acid sequence in the turret regions, both 

inner and outer of these two channels Kv1.2 and Kv1.3 are substantially different and the 

plausibility of the concepts promoted by this paper has to be questioned. Comparing both 

pieces of work, the ideal scaffold to begin any investigation into the Kv1.1 channel associated 

with the neuron, porphyrins seem to be the ideal candidate. Further studies were conducted 

by Ader et al93 using porphyrins as a probe to understand the mechanism to which these Kv 

channels gate in the presence of an inhibitor. Using solid state NMR techniques and an 

isotopically enriched 
15

N porphyrin it was shown that the deviance of the selectivity filter 

residues carbonyl backbone, from its natural arrangement had a direct relationship with 

conductance within the channel. The similarity between the Kv1.3 channel and the Kv1.1 

channel allows this work to be a platform for studies into the diseased state Kv1.1 channel.      

1.5.1 Screening technologies for target molecules 
 

Due to the complexity of the target, the biological screening to measure ion channel 

inhibition is difficult. There are two main methods to which this can be performed; these are 

conventional patch clamp and QPatch testing. Conventional patch clamp methodology 

measures the ion channel function directly. The system to which testing consists of a whole-

cell voltage clamp, a specialized amplifier that accurately clamps the membrane potential and 

measures the current flow across the membrane of the cell. The high level of accuracy that 

this method has for measurement of the current has gave it the accolade of the gold standard 

for studying ion channel function and pharmacology. It is only used for testing a small 

number of samples. The QPatch system is however an automated method that combines high 

throughput screening with conventional patch clamp systems. The distinct advantage that the 

QPatch method offers is the ability to screen a library of compounds rather than a few, this 

benefits the pharmaceutical industry.94 
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Figure 1.8:  QPatch screening chip 

Shown in figure 1.9 is the whole-cell patch-clamp recording apparatus used. 

 

Figure 1.9: Whole-cell patch-clamp setup. 
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The apparatus consists of an electrically grounded microscope on an isolation table together 

with a recording chamber mounted to the stage of the microscope. The ‘chip’ which the 

studies are conducted on contains the cell line of interest. An electrode pierces the membrane 

and measures a current across the cells. Electrode resistance is monitored continuously by the 

application of a small voltage pulse. The application of the inhibitor to the cell is monitored 

by the electrode. There is also an outlet valve that allows the wash out of the inhibitor upon 

administration. The ‘chip’ is grounded and the whole system protected in a Faraday cage 

preventing external electromagnetic interference. The measured data is collected and 

represented as a function of amplitude against time.  

The importance of this technology has now become an essential FDA guideline if a drug is to 

go to market. All potential candidates must be screened against the hERG K channels by the 

patch clamp method. The reasoning for this was, in the 1990’s certain pharmaceuticals, 

thapsigargin caused potentially fatal arrhythmias amongst patients.     

Shown in figure 1.10 is a typical biophysical recording of the measure of current across the 

membrane of a rat subject. The application of this technology is most commonly used to 

monitor potassium, sodium and calcium ion channels. Anionic ions such as chloride channels 

also use this technique. The use of these towards chloride channels is, these are related to 

cystic fibrosis transmembrane regulators (CFTR), mutations in the CFTR gene is studied 

using these ion channel apparatus.   

Other channels such as P2X3 and γ-amino-butyric acid (GABA) ion channels have been 

studied in detail using the patch clamp and QPatch methods.
94

  

 

Figure 1.10: Biophysical characterisation of Rat Nav1.2 currents measured with QPatch 16. 
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Chapter 2: The synthesis and biological evaluation of porphyrins 

against Kv1 channels 
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2.1 Introduction  

Porphyrins 

The porphyrin is derived from its basic skeleton known as a porphine. The molecular 

composition of porphine comprises of four pyrrole rings covalently linked in the α position 

by four methine bridges and consists of 26 pi electrons (figure 2.1). Kuster first proposed the 

structure in 1912 but porphyrins were not isolated or structurally characterised until 1928 by 

Fischer who originally discredited the work of Kuster stating that a ring structure of such size 

was intrinsically too unstable.1 Ironically Fischer a critic of this work would later be renouned 

as the father of modern porphyrin chemistry. 

 

Figure 2.1 : General structure of porphine. 

Porphyrins can be prepared by either an acid catalysed condensation between pyrrole and an 

aldehyde in refluxing propionic acid2 or condensation of pyrrole and aldehyde via a Lewis 

acid e.g. BF3.OEt2 (scheme 2.1), forming porphyrinogen followed by oxidation to give the 

porphyrin macrocycle3. There are two types of substituted porphyrin: β substituted 

porphyrins, which have one or more substituents on the pyrrole rings. All naturally occurring 

porphyrins are of this type and heme belongs to this class also. The other type meso 

substituted porphyrins, which have substituents attached to the methine bridge (the meso 

position). The majority of synthetically produced porphyrins are the latter type and for the 

scope of the work presented here it is meso modifications that will be considered. 
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Scheme 2.1: Preparation of porphyrins, (where R= Ar). Alder Method, refluxing propionic acid, 

Lindsey method, BF3.OEt2, DDQ, CH2Cl2 at room temperature. 

2.1.1 Symmetry and point group 

 

Porphyrins are not ideal species for direct translation from research to our therapeutic 

application due to their photoactive properties. Their high conjugation is what makes them so 

appealing for singlet oxygen production and photodynamic therapy4. However it is the four 

fold symmetrical properties it possesses which makes the porphyrins attractive as a model 

compound to target the tetramer Kv channels. 

Group theory can be used to characterise the various symmetry elements of a lead compound. 

Free base Porphyrins belong to the point group D2h
5
. They have a C2 principal axis of rotation, 

two C2 axes in the plane of the molecule and a horizontal plane. Observing through a 

cartesian plane, the C2 axis in the z-plane cuts through the centre of the macrocycle, this is 

the principal axis. There is a C2 axis in the x-plane and a C2 axis in the y-plane. The centre of 

inversion is observed through the centre of the macrocycle and a series of symmetry planes 

defined in the yz-/ xz- and xy- planes. Rotational axes and the various planes of symmetry are 

shown in Figure 2.1(b). 
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Figure 2.1(b): Symmetry elements of D2h point group for TCPP 1. 

 

 

Macrocycles such as porphyrins have been investigated with the Shaker channel6. The K
+
 

channel, Kv1.3 was also studied in this line of research by Gradl.
6
 This particular channel is 

highly associated with autoimmunity. Porphyrins are useful scaffolds to use for the probing 

of Kv channels because of their fourfold symmetries. The target channels are tetrameric 

proteins, thus symmetry and spacial orientation are key fundamental characteristics for this 

medicinal/biological investigation. Metal-free porphyrins (D2h) fit this model. The application 

of porphyrins for this work is to determine their inhibition effectiveness and selectivity 

against the target neuronal channel Kv1.1. It is desirable, for an MS treatment, that the 

inhibitor act selectively against the Kv1.1 channels, leaving the remainder of the Kv1 family 

(eg. Kv1.2, Kv1.3, Kv1.4 and Kv1.6) unaffected. It should be noted that the existing 

marketed therapies do not show this selectivity, which results in severe side-effects.  
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As shown in figure 2.2(a) the porphyrins that were made consisted of a porphyrin scaffold, 

phenyl ring system, amide bond, alkyl chain and protonated amine. As mentioned the amino 

acid residues that are under investigation in the Kv1.1 channel consist of residues that have 

potential ionic, pi-pi and hydrogen bonding interactions. The selectivity filter of Kv1.1 

consists of two glycine, a tyrosine and an aspartic acid residue. The inner turret region 

consists of a tyrosine residue unique to the channel7. The potential ionic interaction between 

the porphyrin and the channel residues can be investigated by replacing the protonated 

primary amine with a protonated tertiary methylated amine, steric hindrance and H-bonding 

at the binding site can also be investigated via this modification of the porphyrin. Glycine, 

present in the selectivity filter,  is an interesting residue as this side group consists of only a 

hydrogen but the carbonyl moiety of the peptide chain has hydrogen bond donating potential. 

Thus the amide bond in the porphyrin can be modified to an ester eliminating the amide 

proton that could possibly contribute to hydrogen bonding to the glycine. We proposed to 

prepare a series of porphyrins that would allow for the development of a structure activity 

relationship (SAR); to determine the essential functional groups and their spacial 

arrangements for biological activity. Of particular interest, with respect to the prophyrin, are 

the following:  

 

1. Fourfold symmetrical plane  

2. π electron rich scaffold 

3. Hydrogen bond donating and accepting sites 

4. Alkyl chain lenght 

5. Ionic interactions 
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Figure 2.2(a): General structure of the target sites of the porphyrin to be manipulated in the SAR 

study. 

 

 

The compounds that are shown in figure 2.2(b) allows for a full SAR study based upon the 

porphyrin scaffold. The hydrogen bonding donor/acceptor interaction has been planned to be 

investigated by substituting the secondary amide bond with an ester or tertiary amide, 

keeping the chain length and terminal amine constant. Chain length of the alkyl ammonium 

side groups will be examined by introducing  a series of different spacers ranging from  two 

to six carbons. The results of this study will reveal the effect of chain length on the inhibition 

of the Kv1 channels.. Lastly, in this SAR study the side groups will contain terminal amines 

that are methylated and the alkyl chain extended from two to three. By performing this last 

modification the effect of ionic interaction with the protonated primary amine can be probed 

with respect to steric constraints with the binding site.  
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Figure 2.2(b): Proposed compounds to perform SAR study. 

 

The region of interest within the complex assembly of the protein are the turret regions, pore 

helix and selectivity filter (S5-S6). This has widely been explored in the past by using large 

venom peptide toxins of the snake, scorpion and sea anemone. The amino acid residue of 

interest in the turret region is highlighted in figure 2.3(a). This sequence occurs in the Kv 

(348-386) region of the neuronal Kv 1.1 channel. The previous work detailed by Gradl et al
6
 

illustrated how their porphyrin derivatives with cationic alkyl ammonium bearing side arms 

can be used to inhibit potassium channels. The potassium channel that was the focus of their 

research was Kv1.3 which is related to the immune system. The amino acid residue they 

focused on as outlined in figure 2.3(b). It should be noted that both rat Kv1.1 and Kv1.3 

channels are similar in residue sequence with only minor variations. 



35 
 

E A E E A E S H F S S I P D A F W W A V V S M T T V G Y G D M Y P V 

T I G G K. 

Figure 2.3(a) : Rat Kv1.1 amino acid sequence.  

E A D D P S S G F N S I P D A F W W A V V T M T T V G Y G D M H P V 

T I G G K. 

Figure 2.3(b) : Rat Kv1.3 amino acid sequence. 

   

2.2 The synthesis of amino functionalised porphyrins by acid chloride 

coupling 
 

For the synthesis of these amino derivative porphyrins, the methodology of acid chloride 

chemistry was investigated first. The starting material 5,10,15,20- tetrakis (4-carboxyphenyl) 

porphyrin (TCPP) was synthesised via the Alder method2. Pyrrole and 4-formylbenzoic acid 

were condensed at reflux using propionic acid as both the solvent and acid catalyst. The 

porphyrin TCPP was then treated with oxalyl chloride in the presence of catalytic quantities 

of DMF in CH2Cl2 at room temperature to yield the acid chloride porphyrin as per the method 

used by Gradl et al6 (scheme 2.2). Once formed, the acid chloride porphyrin was treated with 

the corresponding alkyl diamine in the presence of a number of organic bases such as 

pyridine, TEA and DIPEA. The material obtained from these reactions were tar-like and 

highly insoluble in any solvent making any characterisation difficult. The isolated material 

was suspected to be polymerised macrocycle as a result of the diamine substrate having the 

potential to react at both amine sites with the highly reactive acid chloride. To prevent 

polymerisation it was decided  to selectively protect one of the amine groups of the alkyl 

diamine prior to coupling.  
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Scheme 2.2: The synthesis of the acid chloride porphyrin from TCPP. 

 

2.2.1 Synthesis of mono N-Boc alkyldiamines. 

 

The preparation of the N-Boc protected alkylene diamines were prepared as per the protocol 

Muller et al8 (scheme 2.3). Di-tert-butyl bicarbonate (0.1 mol eq) was dissolved in CHCl3 and 

added dropwise over a period of 3 hours to the alkyldiamine (1 mol eq) dissolved in CHCl3 at 

0 
o
C. The reaction was allowed stir for a further 16 hours at room temperature. The reaction 

was worked up and TLC analysis with ninhydrin stain showed one spot. This was observed 

with all N-Boc alkyldiamines except with N-Boc-1,6-diaminohexane. N-Boc diaminohexane 

required column chromatography for purification. The synthesis of these mono-protected 

amine derivatives are conducted under stoichiometric controlled conditions and the order of 

addition is essential to prevent double Boc addition. 

 

Scheme 2.3: Synthesis of monoprotected diamines. 
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2.2.2  Application of N-Boc alkyldiamines to the acid chloride system. 

 

The porphyrin acid chloride was prepared via the method described in scheme 2.2 by Gradl et 

al. The formation of the acid chloride is observed by effervescence and the reaction colour 

changing to green. To ensure reaction completion occurred the mixture was stirred for 24 

hours under an argon atmosphere. The crude acid chloride intermediate was concentrated 

under a stream of argon and then the excess oxalyl chloride removed via vacuum pump at 

room temperature. The acid chloride was redissolved in anhydrous CH2Cl2, treated with 

diisopropylethylamine and the mono-Boc protected diamine and allowed stir for a further 24 

hours at room temperature. Evolution of a white gas was observed with the addition of the 

base. Analysis of the reaction was performed by TLC. Due to the nature of the intermediate 

molecule being an acid chloride, concentrated HCl formed in solution can potentially react 

with the acid liable Boc protecting group on each of the alkyldiamine moieties. TLC analysis 

showed multiple spots. Problems were encountered in the work up, extremely difficult 

emulsions formed and were challenging to separate into two phases.  

The optimisation of the method was carried out to obtain the desired derivatives, this 

included changing the equivancies and organic bases. The objective was to obtain an 

analytical pure set of samples for bio-analysis however, reasonable yields were also desired.  

The side arm amine derivatives that this method was applied to was N-Boc ethylenediamine, 

N-Boc-1,3-diaminopropane, N-Boc-1,4-diaminobutane and N-Boc-1,6-diaminohexane. 

Using 4 eq of amine (1eq per COCl) a large amount of starting material (TCPP) remained 

when the work up was performed. This problem was eliminated by using a slight excess of 

N-Boc alkyldiamine. There was no difference in yield or conversion rates when 8 eq ( 2 per 

COCl), 12eq ( 3 per COCl) and 16 eq ( 4 per COCl) were used. For this reason 8eq-per 

reaction was sufficient. Negligible differences in conversions were observed when either 

DIPEA or TEA were used as catalysts. The yields dropped however as the alkyl chain length 

increased. Yields ranged between 3-35%. The N-Boc-1,6-diaminohexane derivative was 

obtained as low as 3%. Yields are shown in table 2.1.  
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Table 2.1: Yields of isolated porphyrins obtained by using acid chloride coupling methods. 

Substrate Ligand % Yield 

TCPP N-Boc ethylenediamine 35% 

TCPP N-Boc 1,3 diaminopropane 28% 

TCPP N-Boc 1,4 diaminobutane 10-15% 

TCPP N-Boc 1,6 diaminohexane 3-6% 

 

To prevent cleavage of the N-Boc groups, N-Boc ethylenediamine was treated with the acid 

chloride porphyrin in the presence of diisopropylethylamine (DIPEA) which is shown in 

scheme 2.4. DIPEA was used to help neutralise the acid formed during the reaction however 

the rate of cleavage seemed to exceed the rate of amide bond formation. Carpino et al9 details 

the problems with acid chloride coupling with N-Boc protected species. 

 

 

Scheme 2.4: The expected reaction between the porphyrin acid chloride and the N-Boc protected 

ethylene diamine. 
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The fractions that were cleaved in situ by HCl were observed by TLC and were combined 

together. Attempts to purify these mixtures failed since the free amines become charged 

(ionised) and become extremely difficult to move on silica gel. 

2.2.3 Cleavage of N-Boc protected porphyrins via TFA acid 

 

All isolated fractions containing mono to tetra Boc protected porphyrins were combined and 

treated with trifluoroacetic acid (TFA). The fractions were dissolved in anhydrous CH2Cl2 

and the TFA added and stirred overnight under an argon atmosphere (scheme 2.5). The 

solvent and TFA were removed and the final product was triturated using diethyl ether. 

Regardless of how many triturations were performed a pure sample could not be obtained. A 

purple/green oil for each product was obtained. Ideally, these compounds should be 

crystalline. 

 

Scheme 2.5: TFA cleavage of N-Boc ethylenediamine porphyrin. 

 

 The 
1
H NMR that was obtained for the product is shown in Figure 2.4: 
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Figure 2.4: 
1
H NMR of compound 13 obtained from TFA cleavage.  

The 
1
H NMR obtained for compound 13 contains extra peaks (excluding solvent) that are 

impurities. The aromatic region in particular shows the presence of unwanted impurities, 

even after the compound has been purified by column chromatography and a number of 

triturations performed. It would appear that a clean intermediate Boc protected porphyrin is 

essential to obtain a final cleaved product with acceptable purity. The preparation of these 

compounds under the described acid chloride conditions does not yield high purity products 

for bio-analysis. Thus, an alternative method using carbodiimide coupling was explored as an 

alternative. 

2.3 The synthesis of amino functionalised porphyrins by carbodiimide 

coupling 
 

It is apparent that the amines must be introduced under softer methods and not harsh acidic 

transformations. To isolate clean, pure Boc protected intermediates would be a more logical 

route to undergo and this method can be achieved by carbodiimide coupling.  

Coupling reagents that are used for coupling carboxylic acids with amines are detailed 

extensively in the literature.10, 11 For the synthesis of the target porphyrins N-Boc amino 

derivatives and two carbodiimide reagents were chosen. Initially the reaction with N-Boc 

ethylenediamine and TCPP was trialled with N,N'-dicyclohexylcarbodiimide (DCC) and N-

hydroxysuccinimide (NHS) shown in (scheme 2.6), the conversion to the target product was 

excellent however there were problems removing large quantities of the by-product 

associated with the carbodiimide DCC. The by-product dicyclohexylurea (DCU), eluted 

strongly with the porphyrin product on silica gel columns. To overcome this purification 
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problem DCC was replaced with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (EDCI). EDCI forms water soluble by-products that can be removed with 

greater ease. 

 

Scheme 2.6: DCC/NHS coupling of TCPP and N-Boc ethylenediamine to give compound 3. 
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2.3.1   Application of EDCI  

 

The carbodiimide EDCI has shown it can successfully couple TCPP with N-Boc 

alkyldiamines.12 This procedure was used with slight modification from the literature and 

applied to synthesize the target N-Boc alkyldiamines from EDCI, NHS and DMAP as shown 

in scheme 2.7 

 

Scheme 2.7: Synthesis of the coupled amino porphyrin. 

The initial step to the formation of the amide involved the addition of the carbodiimide to the 

porphyrin (TCPP) to form four O-acylisourea ester intermediates. This intermediate is 

extremely reactive and experiences intramolecular acyl transfer forming an N-acylurea by-

product shown in scheme 2.8. The formation of this by-product is believed to contribute to 

the reduction in yields when using these coupling reagents. The fact that these porphyrin 

compounds are fourfold substituted increases the probability for the rate of formation of the 

by-product which can compete with the rate of formation of the product as amide bond 

formation can be sluggish. There are a number of co-additives that are used to suppress the 

intramolecular acyl transfer to the corresponding N-acylurea. The co-additive used 

throughtout this work was NHS. Others additives include HOBt, HOPip, HOPcp and HOPfp 
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but for the purpose of this work were not used. Addition of NHS interacts with the O-

acylisourea ester, before high levels of the N-acylurea can be formed, and the resulting active 

ester is formed. The active ester reacts with the amine thus forming the amide bond. 

 

Scheme 2.8: Intramolecular acyl transfer of the O-acylisourea to the corresponding N-acylurea. 

 

The synthesis of the N-Boc protected porphyrins using the N-Boc protected diamines in 

scheme 2.7 gave isolated yields ranging from 14-70%. The results are shown in table 2.2.  

Table 2.2: Conversion of TCPP to corresponding porphyrin. 

Substrate Ligand % Yield 

TCPP N-Boc ethylenediamine 70% 

TCPP N-Boc 1,3 diaminopropane 68% 

TCPP N-Boc 1,4 diaminobutane 65% 

TCPP N-Boc 1,6 diaminohexane 14% 

TCPP 1,4-Bis-Boc 1,4,7-triazaheptane 35% 
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These compounds when isolated were not fully soluble in chlorinated solvents such as 

CH2Cl2 and CHCl3. It was only with the addition of 5% MeOH or 5% EtOH to the 

chlorinated solvent that full solubility was achieved. In the case of the amine derivative N-

Boc-1,6-diaminohexane, the isolated porphyrin was 100% soluble in chlorinated solvents, no 

alcohol was required to aid solubility. When the substrate N-Boc-1,6-diaminohexane was 

synthesized the yield for the final porphyrin dropped to 14%. A high number of impurities 

were shown by TLC in this reaction. 

All compounds were purified using silica gel chromatography with CH2Cl2 and EtOH as the 

eluting mobile phase in the ratio (90:10) for the compounds 3, 4 and 5. Purification of the N-

Boc-1,6-diaminohexane derivative was tedious, required a much less polar solvent system 

(20:1) CH2Cl2 and EtOH. There was an impurity that eluted with the target compound and the 

only way to separate it was using a slow flow rate to elute the compound pure from the silica 

column. 

2.4 1H NMR Spectroscopic studies of N-Boc alkyl amino porphyrins 
 

All the 
1
H NMR experiments were performed in DMSO-d6 as the amide alkyldiamine Boc 

protected porphyrins showed limited solubility in the other common deuterated solvents. For 

all the 
1
H NMR experiments performed on compounds 3, 4, 5 and 6, it was observed that the 

splitting patterns for all amides and CH2 signals were broad, not sharp peaks. This was due to 

the broadening effect that is associated with adjacent amino functionalization. Apparent 

triplet, quartet and pentets are observed depending on the chemical environment.  

2.4.1 1H NMR and 13C spectroscopic study of 5,10,15,20 tetra[4-benzoamido(tert-

butyl N-(2-amino-n-butyl)carbamate)] porphyrin. 

The 
1
H NMR spectrum of the porphyrin derivative 5 is shown in figure 2.5. The β-pyrrole 

protons and the amide adjacent to the phenyl ring appear as an overlapping multiplet at δ 8.9 

ppm with an intergration of 12 (sum of the 8 protons from the β-pyrrole and 4 protons from 

the amide). The phenyl hydrogens at 8.3 ppm integrate as 16. The multiplicity these protons 

show are a broad overlap of a doublet of doublets as a result of para substitution on the 

phenyl ring. The Boc carbamate amide is seen as a triplet at δ 6.9 ppm and integrates as 4 

protons. The methylene peaks from the alkyl chain adjacent to the amide bond (CH2NHPh) is 

observed at δ 3.4 ppm as a broad quartet. The integration for these protons is 8. The 
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methylene peak that is adjacent to the carbamate (CH2NHCO) is observed as a quartet at δ 

3.0  ppm intergrating to 8. The methylene protons that are observed at δ 1.7 ppm and δ 1.6 

ppm show as pentets, these protons correspond to the two inner methylene groups on the four 

carbon chain side arm. The Boc protons are observed at δ 1.4 as a singlet and intergrate as 36 

protons. The internal protons on the nitrogen can be seen at δ -2.9 as a broad singlet with an 

intergration of 2. 

 

The 
13

C of the porphyrin is shown in figure 2.5b, the carbonyl carbons for both the amide and 

the carbamate were found at 166.1 ppm and 155.7 ppm. The β-pyrrole carbon is located at 

143.8 ppm. It must be noted that the two quaternary carbons on the porphyrin ring do not 

show for any of the samples ran, even at 10000 scans. The two aryl C-H carbons are shown at 

134.3 ppm and 125.9 ppm. The two associated aryl quaternary carbons are found at 134.1 

ppm and 119.5 ppm. The quaternary Boc carbon is found at 77.4 ppm, the two aliphatic 

carbons that are adjacent to the amide and carbamate are located underneath the DMSO peak, 

DEPT-135 verified this. The terminal methyl groups on the Boc group is located at 28.6 ppm. 

Lastly, the remaining methylene carbons are found at 27.2 ppm and 26.7 ppm.  
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Figure 2.5a: 
1
H NMR of 5,10,15,20 tetra[4-benzoamido(tert-butyl N-(2-amino-n-butyl)carbamate)] 

porphyrin 5. 
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Figure 2.5b: 
13

C NMR of 5,10,15,20 tetra[4-benzoamido(tert-butyl N-(2-amino-n-butyl)carbamate)] 

porphyrin 5. 
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2.5 Synthesis of modified porphyrins for SAR investigation. 

2.5.1 Synthesis of ester functionalised porphyrins 

The N-Boc protected ester porphyrin 8 shown in scheme 2.9 was synthesised via a modified 

Steglich esterification method replacing DCC with EDCI. The porphyrin was prepared by 

reacting N-Boc aminoethanol with TCPP in the presence of the coupling reagent EDCI, 

DMAP as a catalyst and DMF as the reaction solvent. After 24h the material was isolated by 

pouring the reaction mixture onto water, the precipitate filtered to give a red/purple solid. 

This was purified by column chromography on silica, eluting with a mobile phase of CH2Cl2 

and EtOH in the ratio (90:10) to give compound 8 in 80% yield.  

 

Scheme 2.9: Conversion of TCPP to the ester derivative aminoporphyrin 8. 

2.5.2 Synthesis of tertiary amide functionalised porphyrin as another lead to 

probe the  hydrogen bonding effect. 

 

Secondary amines are more reactive than primary amines due to the inductive effect and the 

lone pair of electrons are more reactive. This poses a problem with the protection of the 

starting material diethylenetriamine that is required to prepare porphyrin 19 (scheme 2.10). 

The primary amines required protection, leaving the secondary amine free to couple and form 

the corresponding tertiary amide bond. The problem arose that Boc anhydride is selective for 

secondary amine protection over primary amines and is not a viable method of protection.  

 

Scheme 2.10: Problems that arise when Boc2O is used to try protect the primary amines. 
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However the use of an alternative protection group, phthalic anhydride which is selective for 

primary amines was attempted. Diethylenetriamine was selectively protected with 

phthalimide groups13 (scheme 2.11). 

 

Scheme 2.11: Primary amine selectively protected with phthalimide groups. 

Two methods were then employed to prepare the porphyrins; coupling via carbodiimide and 

acid chloride coupling. Carbodiimide coupling was not successful using the phthalimide 

protected amine and TCPP, the ligand was highly insoluble in DMF (scheme 2.12).  

 

Scheme 2.12: Failed conversion of TCPP to phthalimide protected porphyrin 10. 

 

However, acid chloride activation of TCPP followed by amine coupling was successful for 

this specific compound. The conditions that were described in section 2.1 shown in scheme 

2.13 were used with the phthalimide protected amine. Purification of the crude reaction 

mixture by column chromography on silica, eluting with a mobile phase of CH2Cl2 and 
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acetone in the gradient ratio (90:10)-(80-20) gave compound 10 in 53% yield. Figure 2.9 and 

2.10 shows 
1
H NMR and MALDI MS characterisation for 10. 

 

 

 

 

Scheme 2.13: Conversion of TCPP to the phthalimide protected porphyrin 10. 

 

 

 



51 
 

 

 

Figure 2.6: 
1
H NMR of 10. 

The 
1
H NMR spectrum shown in figure 2.6 represents compound 10. Although this 

compound is symmetrical, however, on analysis of the side arm phthalimide protected 

diethylene triamine, the phthalimide protons and the alkyl protons are in different 

environments. On examining the phthalimide protons, if this compound was symmetrical 
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there would be only two peaks observed, however this isn’t the case as four are observed for 

the phthalimide substituents. It is the same in the alkyl region, four peaks are observed where 

two would be expected. The reasoning for this could be due to the size of the molecule and 

the axis orientation of side arms due to rotation. An argument could be presented that there 

could be intra-molecular pi-pi stacking occurring with the phthalimides. 

 

Figure 2.7: MALDI MS of the compound 10. 

The presence of 10 is confirmed by MALDI MS (figure 2.7) shows the M+1 peak of 10 at 

2171.6823 m/z. The peak shown at 1780.5696 m/z corresponds to the fragmentation of three 

phthalimide groups and at 1389.4545 m/z with six groups fragmented.  
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Scheme 2.14: The failed attempt at hydrazine induced cleavage of the phthalimide protecting group. 

Before synthesising 10 it was always suspected that there could be competitive cleavage with 

the hydrazine and the tertiary amide bonds that are bound to the phenyl rings of the porphyrin 

along with the phthalimide group. Experimentally this was shown as the cleaved product 

using this method was never obtained (scheme 2.14). 
1
H NMR for this experiment showed 

the phthalimide groups never fully cleaved and also there was a number of impurities 

throughout the spectrum. MALDI MS confirmed the product was not present as the peak at 

1131 m/z was not observed. 

As an alternative to phthalimide protecting groups, an attempted synthesis of the 

diethylenetriamine amino porphyrin with trifluoroacetimide protecting groups was tried 

(scheme 2.15+2.16). The trifluoroacetimide protecting group method proved to be highly 

unstable to mild carbodiimide coupling conditions and all that was obtained was a purple 

material insoluble in all deuterated solvents, and suspected to be a polymeric mixture. 

 

Scheme 2.15: Trifluoroacetimide protection of diethylenetriamine. 
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Scheme 2.16: Failed conversion of TCPP to trifluoroacetimide protected diethylenetriamine 

porphyrin.  

 

An alternative protection strategy had to be found. Common methods such as Boc anhydride 

and Boc-OSu couldn’t be employed however Boc-ON (2-(tert-butoxycarbonyloxyimino)-2-

phenylacetonitrile) allows for the selective protection of primary over secondary amines to be 

obtained in excellent yield.14  The difference between conventional Boc protection using Boc 

anhydride and Boc-ON is that Boc-ON provides a highly steric hindered addition that favours 

primary amines rather than secondary amine addition. Coupling the target protected amine 

shown in scheme 2.17 with TCPP via carbodiimide conditions gave the Bis-Boc diethylene 

porphyrin 9 which was purified via silica column chromatography, (95:5) CH2Cl2: EtOH with 

an isolated yield of 66% (scheme 2.18).  

 

 

 

Scheme 2.17: Selective primary amine protection of diethylenetriamine. 
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Scheme 2.18: Synthesis of Boc protected diethylenetriamine porphyrin. 
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Figure 2.8:  
1
H NMR of the Bis-Boc protected diethylenetriamine porphyrin 9. 

Similar to compound 10, there is evidence that 9 is not symmetrical by 
1
H NMR (figure 2.8). 

The amide bond associated with the carbamate Boc group shows two close overlapping 

triplets. The alkyl region shows three peaks; one that intergrates to sixteen and the other two 

methylene peaks intergrating to eight protons each. The Boc groups should intergrate to 

seventy-two with a singlet mutiplicity, however a doublet is observed indicating the Boc 

groups are in different environments. As mentioned with compound 10 there was a proposed 
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theory that the observed lower symmetry for 10 could occur as a result of intramolecular pi-pi 

stacking, however with the removal of the aromatic phthalimide groups, as is the case with 

19, this phenomena is still observed. This conformational phenomena will be discussed in 

more detail later.     

2.5.3 Synthesis of tertiary amine porphyrins 

 

As opposed to the literature method of synthesising porphyrins with ammonium side chains 

via acid chloride chemistry15, the more milder carbodiimide approach was used shown in 

scheme 2.19. Both porphyrins 11 and 12 were synthesised from TCPP and their 

corresponding amine side arms, N,N-ethylenediamine and N,N-dimethyl-1,3-

diaminopropane. The coupling conditions that were used were the same as previously 

described EDCI/NHS methodology, purified by column chromatography 5:5:1. CH3Cl: 

EtOH: NH3OH. The respective yields were 62% 11 and 59% 12. 

 

Scheme 2.19: Synthesis of tertiary amine porphyrins 11 and 12. 
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Figure 2.9: 
1
H NMR of compound 11. 
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2.6 Cleavage of the N-Boc aminoporphyrins 
 

As discussed previously in section 2.2.2, the TFA cleavage gave impure 
1
H NMR spectra and 

the solubility of these TFA salts in water was not 100%, and a slight precipitate observed. 

The alternative to TFA was to use 4M HCl in dioxane solution. All of the Boc protected 

porphyrins were suspended/dissolved in CH2Cl2 and a 20 fold molar excess of the 4M HCl in 

dioxane was added dropwise at 0 
o
C under an argon atmosphere. After addition, the solution 

was allowed stir at room temperature for 24 hr. The reaction work-up involved pouring the 

reaction solution into diethyl ether, the precipitate formed was collected by filtration through 

a glass frit and washed with diethyl ether, CH2Cl2 and allowed dry under vacuum overnight at 

room temperature. This gave pure porphyrin derivatives as HCl salts in quantitative yields.  

2.6.1 1H NMR studies of cleaved amino porphyrins 

 

 

Scheme 2.20: Cleavage of the Boc protecting groups, and preparation of tertiary amine salts. 

2.6.2  1H NMR spectroscopic study of 5,10,15,20 tetra[4-benzoamido(N-(2-amino-

n-butyl  hydrochloride] porphyrin. 

The 
1
H NMR spectrum of the porphyrin derivative 15 is shown in figure 2.10. The peak at 

8.99 ppm is observed as a apparent triplet, this peak is the amide bond that is bound to the 

phenyl ring and intergrates as 4 hydrogens. The β-pyrrole protons at 8.85 ppm are observed 
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as a singlet, and integrates at 8H. The phenyl hydrogen’s show as a singlet (as described in 

section 2.6.1). The protonated amine hydrogen’s, as a result of the acid cleavage of the Boc 

protection groups, are observed as a broad singlet at 7.97 ppm that integrates as 12 

hydrogens. The alkyl region shows a peak at 2.89ppm with an integration of 8 and can be 

assigned to the carbon adjacent to the NH3
+
 Cl

-
 , a second peak at 1.72 with an intergration of 

16 can be assigned
 
to the remaining methylene protons in the alkyl chain. As observed in the 

spectrum in figure 2.9, there are only 24 methylene hydrogens however there are four 

methylene carbon protons (8 protons) missing. These are under the water peak which cannot 

be avoided with working with the hydroscopic solvent DMSO-d6. COSY NMR was used to 

confirm that the ‘missing’ methylene peaks are indeed under the water peak. An alternative 

method to prove this point was a temperature NMR study on the porphyrin. At 70-80 
o
C the 

alkyl peaks shift from under the water peak and are observed at 3.51 ppm. The final protons 

are the highly shielded internal hydrogen protons of the porphyrin at -2.9 ppm as a broad 

singlet.         
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Figure 2.10: 
1
H NMR of 5,10,15,20 tetra[4-benzoamido(N-(2-amino-n-butyl  hydrochloride] 

porphyrin 15. 

Mentioned previously, when we synthesised compounds 9 and 10 it was observed that both 

contained spectral features that were irregular (figure 2.6 and figure 2.8). When analysed by 

1
H NMR, peaks that should be symmetrical appeared as unsymmetrical. Using the acid 
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methods detailed in section 2.6.1 for the cleavage of the Boc groups, compound 9 was 

converted to 19 and analysed by 
1
H NMR (figure 2.11). Upon cleavage  the spectrum of 19 

simplifies in the alkyl region to two broad singlets that intergrate as 16 each. The protonated 

NH3
+
 species does not simplify into a singlet, instead two broad singlets are observed at 8.4 

ppm and 8.3 ppm. It would appear that the terminal amines of 19 are inequivalent as was also 

observed with both the phthalimide and Boc protected porphyrins 9 and 10. 

 

Figure 2.11: 1H NMR of compound 19.      

2.7 SAR study evaluation of porphyrin moieties with biological screen 

against Kv1 channels. 
As stated previously the purpose of the SAR study was to evaluate previous work reported on 

the interaction of macrocycle moieties against potassium channels. The work reported in the 

literature is based upon the massive multi-million investment research project undertook by 

Merck. Their work was highly focused on the autoimmunity potassium channel Kv1.3. Our 

work is focused upon the neurological Kv1.1 channel. Table 2.4 lists the porphyrin 

derivatives tested against not only Kv1.1 but Kv1.1-Kv1.6.  
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Table 2.4: Associated bioactivity with the porphyrin derivatives and Kv1 channels (10µM). 

Compound 

number 

% Block Kv1.1 % Block Kv1.2 % Block Kv1.4 % Block Kv1.6 

13 45 22 Insensitive 42 

14 22 34 32 15 

15 62 Insensitive 44 57 

16 Insensitive Insensitive Insensitive Insensitive 

17 Insensitive Insensitive Insensitive Insensitive 

18 Insensitive 50 Insensitive Insensitive 

19 Insensitive Insensitive Insensitive Insensitive 

20 Insensitive Insensitive Insensitive Insensitive 

21 Insensitive Insensitive Insensitive Insensitive 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correlating the SAR study to the biological results obtained from the screening there are 

fundamental features that arose. Surprisingly the majority of derivatives are insensitive and 

do not cause an inhibition at the concentration of 10 µM to the Kv1 channels. Looking at the 

channel we believe to be directly involved with MS (Kv1.1) the porphyrins that exhibited 

inhibition at 10 µM were, derivatives 13, 14 and 15 all containing amide bonds, and  primary 

amines protonated as the HCl salt. The inhibition values were 45, 22 and 62% respectively. 

There was no visual correlative trend observed with alkyl chain extension, compound 15 
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docks into the protein to administer the highest inhibition effect. Derivative 16 gave no 

inhibition effect, the reasoning for this is  that the carbon chain of 16 could be too long and 

the amine cannot dock into the turret region.  

Changing the amide bond to an ester has a significant effect on the biological activity of these 

compounds. As shown in table 2.4, 13 inhibits the potassium channel at 45% at a 10 µM 

concentration. The same compound with the amide converted to an ester 17 has no observed 

inhibition. This phenomenon can be deduced to the fact that the hydrogen bond donor has 

been removed (figure 2.12). It is apparent that this hydrogen bonding interaction is important. 

 

Figure 2.12: Bonding effect of amide vs ester with the protein. 

On comparison of the bioactivities of the primary (13, 14) and tertiary amine porphyrins (20, 

21) it is evident that replacing the terminal hydrogens with methyl groups the number of free 

hydrogens has been significantly reduced, thereby reducing hydrogen bonding potential 

between the inhibitor and the amino acid residue Asp377 as shown in figure 2.13. It should 

also be noted that steric hindrance, caused by the introduction of two methyl groups into 20 

and 21  could also have an effect in the binding between the amino side arm and the protein 

binding site. Both the derivatives 20 and 21 of the tertiary amine series had no inhibitory 

effect. 

 

Figure 2.13: Weak bond formation could be due to the sterics of methyl groups of the porphyrin 20 

and Asp377 in rat Kv1.1. 
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Comparison of the biological activity of 19 with 13 again demonstrates the importance of the 

secondary amide proton since 19 shows no activity.  

The problems with porphyrins 13-15 is that inhibition is observed, however they are not 

selective to any specific potassium channel. Similar to 4-aminopyridine the porphyrin induces 

inhibition in other members of the Kv1 family (Kv1.1-Kv1.6). The porphyrin 13, inhibits 

Kv1.1, 1.2 and 1.6 and is insensitive to Kv1.4 whereas 14 inhibits all the channels tested and 

finally 15 inhibits Kv1.1,1.4 and 1.6 but is insensitive to Kv 1.2. These results are all detailed 

in table 2.4. The final compound tested was 18. This compound was designed to mimic 

porphyrin 16. The interesting result for 18 is it has specific activity for Kv1.2 at 50%, and 

showed no inhibition of the other channels. Although not useful for our research, 18 could 

possibly be used as a starting point for other diseases related to Kv1.2. Thus, for inhibition it 

has been experimentally shown that (i) amide bonds are essential to the inhibition of these 

tertameric proteins (ii) free primary amines are also essential for the inhibition of these Kv1.1 

channels. However the two must complement each other. Both amide and amines are 

essential to inhibit with hydrogen bonding contributing immensely (figure 2.14). 

 

 

 

 

 

 

 

Figure 2.14: Key pharmacophore regions from porphyrin interactions with Kv1 channels.  

2.8 Effect of hydrogen bonding on the protonated porphyrins 
The chemistry of these amino porphyrins has been shown to exhibit interesting properties 

based on their 
1
H NMR. Upon cleavage, the free amines exist in the protonated state as  

chloride salts. It was observed that the 
1
H NMR splitting pattern of the phenyl hydrogens of 
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the porphyrins, was dependant on the ester or amide linkage and alkyl chain length. The 

effect observed can give an insight into the conformation of these compounds in solution.  

 

 Figure 2.15: 
1
H NMR of Aromatic region of the porphyrins 13 ,14, 15 and 17 at room temperature. 

Shown in Figure 2.15 is the aromatic region in the 
1
H NMR spectra of 13, 14, 15 and 17 in 

DMSO-d6. The ester functionality gives a doublet of doublets as a result of the para 

substitution. The phenyl hydrogens are separated by 0.2 ppm. Replacing the ester 

functionality with an amide bond the same doublet of doublets is affected drastically. The 

splitting pattern for the protons converge together and are seen as an overlapping multiplet. 

The ester porphyrin 17 resembles a pseudo AX system, when the ester is replaced by an 

amide 13 the splitting pattern becomes an AB system. The electronegativity of the adjacent 

protons are influenced significantly by the resonance delocalisation of the amide.  

With the alkyl chain increasing from a two carbon chained system to a three and four carbon 

moiety (13 – 15), the splitting  pattern of the changes from an AB pattern to a singlet.. To 

better understand what is occurring a number of temperature 
1
H NMR experiments were 

carried out. The spectra of 15 at 20 
o
C, 70 

o
C and 80 

o
C are shown in figure 2.16. The 

splitting pattern of the phenyl protons of 15 changes from a ‘singlet’ to an AB pattern with 

increasing temperature.  Also the β- pyrrole hydrogens at 8.83 ppm also resolve to a sharper 

singlet and slightly shift downfield (which is to be expected since aggregation between the 
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porphyrins is reduced with increased temperature), the amide hydrogens move downfield 

with increasing temperature. The protons related to the amide bond are shifted from 8.99 ppm 

to 8.79ppm on going from 20
 o
C to 80

 o
C.   

 

Figure 2.16: The observed change in chemical shifts and resolution seen from the porphyrin 

5,10,15,20 tetra[4-benzoamido(N-(2-amino-n-butyl  hydrochloride] porphyrin 15. 

 

The observed temperature effect on the 1H NMR of the phenyl protons of 15 could be 

explained as follows: The AB system is observed as a singlet at room temperature wheree Aʋ 

= Bʋ, at room temperature  a ring conformation, as shown in figure 2.17, can likely form via 

intramolecular hydrogen bonding. As a result of this intramolecular hydrogen bonding, the 

amide bond bound to the phenyl ring will have a change in electron density thereby affecting 

the amount of electron density that it is withdrawing from the phenyl ring. As a consequence 

of this effect the chemical shift for protons A changes and becomes equivalent to the 

chemical shift of protons B, thereby resulting in a classic AB singlet (Aʋ = Bʋ). The 

application of heat disrupts this hydrogen bonding and the peaks resolve to the expected AB 
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doublet of doublet pattern as shown in figure 2.16. It should be noted that this phenomena 

was not observed for 14 which has only a two cabon spacer between the amide and terminal 

amino group. 

 

Figure 2.17a: Effect of H-Bonding on the AB phenyl system. 

This effect is dependant on the primary amines being in their protonated salt forms. Similar 

effects were witnessed when the protonated tertiary amines 20 and 21 were analysed by 
1
H 

NMR (figure 2.18). The two carbon chained quaternary dimethylated amine salt 20 shows a 

broad doublet of doublets due to para substitution similar to that observed with the  

protonated two carbon chained amine 13. When the chain length is further extended by 1 

methylene group, as is the case with 21, a singlet is observed just as is the case with 

porphyrin 14 It seems when comparing the two sets of porphyrins, regardless of replacing the 

terminal hydrogens with methyl groups, the hydrogen bonding will still occur. The factors 

that affect the resolution of these peaks is chain length and temperature in which the spectra 

is run at as shown in figure 2.18. 

Another plausible reason for the effect on the AB system could be due to rotamers on amide, 

this is shown in figure 2.17b. Depending on the position of the NH with the carbonyl it could 

be directly affecting the AB system. 

 

Figure 2.17b: Effect of H-Bonding on the AB phenyl system due to rotamers. 
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Figure 2.18: 
1
H NMR of compounds 20 and 21 in the aromatic region. How chain length and 

temperature effects the hydrogen bonding between each molecule 

Further evidence of the intramolecular hydrogen bonding phenomena proposed above is 

supported by 
1
H NMR concentration studies (30-25 mg - 0.7 mg).  Shown in figure 2.19 is a 

concentration study of 15. At high concentrations a complicated spectrum is observed as a 

consequence of increased aggregation between the porphyrin rings in solution (π-π stacking). 

However, on dilution toward a unimolecular species (reduced aggregation) the spectrum 

simplifies to that observed in figure 2.16 at room temperature. If intermolecular hydrogen 

bonding was causing the observed effect with 15 (aromatic protons being a singlet) then the 

spectrum should have resolved into a doublet of doublets upon dilution, but it does not, 

therefore it is reasonable that it is intramolecular hydrogen bonding causing the observed 

singlet. 
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Figure 2.19: 
1
H NMR of compound 15 ( spectral effects high concentration (30-25 mg/0.7 ml) vs low 

concentration  (5mg/0.7 mL).   

2.9 Conclusion 
 

Using porphyrins as a suitable scaffold gave invaluable SAR information with the range of 

potassium channels studied. The hydrogen bonding, alkyl chain length and ability to ionic 

bond provided to be essential characteristics needed to cause any inhibition of the channels 

investigated. There was no single selectivity witnessed for any of the porphyrin derivatives 

tested amongst the channel of interest. This was not expected and was not an objective of the 

SAR work. The objective was to determine if the compounds would interact with Kv 1.1, (the 

previous work is solely based shaker and Kv 1.3 channels). Once the basic interactions were 

established the key elements that caused inhibition could be explored.  

1
H NMR identified interesting phenomena concerning the manner in which the compounds in 

their protonated form behave in solution. The main variables that surround the observations 

are concentration, temperature, type of bond (ester/amide) and chain length. The latter two, 

type of bond and chain length could be related to the biological activity but this has yet to be 

determined 
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2.10 Experimental 
 

Materials 

 

All operations were carried out under an atmosphere of argon or nitrogen using standard 

Schlenk techniques. All solvents were supplied by the Aldrich Chemical Company and TCI. 

Dichloromethane was dried over MgSO4 prior to use. Methanol was distilled over 

magnesium turnings and iodine before use. All organic reagents were purchased from the 

Aldrich Chemical Company. Pyrrole was freshly distilled over potassium hydroxide before 

use. Anhydrous triethylamine, propionic acid, borontrifluoride diethyletherate and were all 

used without further purification. 

Column chromatography was carried out using neutral silica gel (Merck, used 

as received). All mobile phases for column chromatography were dried over MgSO4 prior 

to use. All solvents were deoxygenated by purging withargon or nitrogen for ~10 minutes 

 

Equipment 

All syntheses involving air- and moisture-sensitive reagents were performed in oven or 

flame dried glassware. NMR spectra were recorded on a Bruker model AC 400 MHz 

spectrometer and Bruker model ANC 600 MHz spectrometer using CDCl3 as solvent. All 

NMR spectra were calibrated according to the residual solvent peak, i.e. CHCl3 at 7.26 

ppm DMSO-d6 2.50 ppm for all 
1
H spectra and 77.16 ppm and 39.52 ppm for all 

13
C spectra. 

Chemical shifts are given in parts per million (ppm). All UV vis spectra were measured on an 

Agilent Technologies 8453 photodiode array spectrometer using a 1 cm
3
 quartz cell. Melting 

points were measured on a Stuart Scientific SMP1 melting point apparatus. 

 

aq= apparent quartet, at = apparent triplet, ap = apparent pentet 

 

All Melting points of the porphyrins were measured to >350 
o
C  

 

λmax for the porphyrins was 418 nm  
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5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin 1 

To a 250 mL round bottom flask 1.5 g (10 mmol) of 4-formylbenzoic acid and 50 mL of 

propanoic acid were added and the reaction mixture was magnetically stirred. To completely 

dissolve 4-formylbenzoic acid the reaction mixture had to be heated to 80 
o
C at this point the 

aldehyde fully dissolved. Freshly distilled pyrrole (0.7 mL; 10 mmol) was then added to the 

mixture and the temperature was then brought to reflux and allowed stir for 2 h at reflux. 

After 2 hours the reaction mixture was let cool to room temperature and the reaction flask 

was placed in the freezer overnight, to aid precipitation of the porphyrin. The reaction 

mixture was then vacuum  filtered using a glass frit and a dark purple solid was collected and 

washed with 5x50 mL aliquots of CH2Cl2 and was then dried overnight in vacco to give 1.1 

g, of. 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin ( 55% yield). 

1
H

 
NMR (600 MHz) δ (DMSO- d6) 13.33 (4H, s, -COOH), 8.87 (8H, s, β-H), 8.31 (16H, dd, 

o+m aryl-H), -2.92 (2H, s, NH) ; 
13

C NMR (150 MHz) δ 167.1, 145.6, 134.4, 130.2, 127.3, 

119.9.Mass Spec: (MALDI MS) Calculated (M+1) C48H30N4O8: 791.2097 , Observed (M+1) 

791.0887  UV (EtOH): 418, 513, 546, 590 and 647 nm  
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General procedure 1: Preparation of N-Boc protected porphyrins  

To a 25mL two necked round bottom flask, 235 mg (0.297 mmol) of TCPP was dissolved in 

4 mL of anhydrous DMF. To this mixture was added 357 mg (1.96 mmol) of EDCI and 226 

(1.96 mmol) NHS and the reaction mixture was stirred at room temperature for 1 h under 

nitrogen. After this time, a solution containing 376 µL (2.36 mmol) of N-boc 

ethylenediamine and 295 mg (2.36 mmol) of DMAP both dissolved in 1 mL of anhydrous 

DMF was added dropwise to the reaction mixture. After addition was completed the reaction 

mixture was allowed to stir for 24 h at room temperature. After this time the reaction mixture 

was poured into 80 mL distilled H2O and filtered through a glass frit. The collected crude 

residue was then subjected to column chromatography and separated using a mobile phase of 

90:10 CH2Cl2: ethanol on silica gel to give the protected porphyrins. 
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5,10,15,20-tetrakis 2-([4-tert-butyl benzamido]ethyl carbamate) porphyrin (3) 

General procedure 1 was followed using 235 mg (0.297 mmol) of TCPP and 376 µL; (2.36 

mmol) of N-boc 1,2-diaminoethane. The isolated crude residue was subjected to column 

chromatography and separated using a mobile phase 90:10
 
CH2Cl2: ethanol on silica to give 

282 mg of 5,10,15,20-tetrakis 2-([4-tert-butyl benzamido] ethyl carbamate) porphyrin (70% 

yield) 

1
H NMR: (600MHz) δ (DMSO-d6) 8.89 (12H, s, β-H+ NH Amide) 8.32 (16H, dd, J= 5.2 Hz, 

aryl-H) 7.01 (4H, at, NH-Amide) 3.51 (8H, aq, CH2) 3.33 (8H, aq, CH2 ) 1.42 (36H, s, Boc-

H) -2.92 (2H, s, NH). 
13

C NMR (150 MHz): 166.1, 155.6, 143.5, 134.1, 134.1, 125.9, 119.1, 

77.7, 39.5, 39.3, 28.2. UV (CH2Cl2): 418 nm, 513 nm, 546 nm, 590 nm, 647 nm  Mass Spec: 

(MALDI MS) Calculated (M+1) C76H86N12O12 1359.6522; Observed (M+1) 1359.6915.   
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5,10,15,20-tetrakis 3-([4-tert-butyl benzamido] propyl carbamate) porphyrin (4) 

General procedure 1 was followed using 235 mg (0.297 mmol) of TCPP and 412 µL; (2.36 

mmol) of N-boc 1,3-diaminopropane. The isolated crude residue was subjected to column 

chromatography and separated using a mobile phase 90:10
 
CH2Cl2: ethanol on silica gel to 

give  286 mg of 5,10,15,20-tetrakis 3-([4-tert-butyl benzamido] propyl carbamate) porphyrin 

(68% yield).
 

1
H NMR: (600MHz) δ (DMSO-d6) 8.87 (12H, s, β-H+ NH Amide) 8.33 (16H, dd, J= 5.6 Hz, 

aryl-H) 6.91 (4H, at, NH-Amide) 3.41 (8H, aq, CH2) 3.13 (8H, aq, CH2) 1.85 (8H, ap, CH2) 

1.42 (36H, s, Boc-H) -2.92 (2H, s, NH). 
13

C NMR (150 MHz) 166.1, 156.5, 143.3, 134.8, 

125.5, 119.2, 77.6, 37.8, 37.1, 29.6, 28.2 UV (CH2Cl2): 418 nm, 513 nm, 547 nm, 591 nm, 

647 nm Mass Spec: (MALDI MS) Calculated (M+1) C80H94N12O12 1415.7148, Observed 

(M+1) 1415.7576  

. 
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5,10,15,20-tetrakis- 4-([4-tert-butyl benzamido] butyl carbamate) porphyrin (5) 

General procedure 1 was followed using 235 mg (0.297 mmol) of TCPP and 452 µL (2.36 

mmol) of N-boc 1,4-diaminobutane. The crude residue was subjected to column 

chromatography and separated using a with a mobile phase 90:10
 
CH2Cl2: ethanol on silica to 

give 286 mg of 5,10,15,20-tetrakis- 4-([4-tert-butyl benzamido] butyl carbamate) porphyrin  

(65% yield). 

1
H NMR: (600MHz) δ (DMSO-d6) 8.98 (12H, m, β-H + NH Amide), 8.30 (16H, dd, J=5.6 

Hz, aryl-H) 6.94 (4H, aq, NH Amide) 3.42 (8H, aq, CH2) 3.19 (8H, aq, CH2) 1.74 (8H, ap, 

CH2) 1.66 (8H, ap, CH2) 1.42 (36H, s, Boc-H) -2.92 (2H, s, NH) 
13

C NMR (150 MHz) 166.5, 

155.5, 143.8, 134.3, 134.1, 125.4, 119.2, 77.7, 39.8, 39.4, 28.3, 27.2, 26.6. UV (CH2Cl2): 419 

nm, 513 nm, 546 nm, 590 nm, 647 nm Mass Spec: (MALDI MS) Calculated (M+1) 

C84H102N12O12 1471.7774, Observed (M+1) 1471.8192.   
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5,10,15,20-tetrakis 2-([4-tert-butyl benzamido] hexyl carbamate) porphyrin (6) 

General procedure 1 was followed with 235 mg (0.297 mmol) of TCPP and N-boc 1,6-

diaminohexane (530 µL; 2.36 mmol). The collected crude residue was subjected to column 

chromatography using a mobile phase of (20:1) CH2Cl2: ethanol to give 66 mg of 5,10,15,20-

tetrakis 2-([4-tert-butyl benzamido] hexyl carbamate) porphyrin  (14% yield) 

1
H NMR: 8.88 (12H, m, β-H + NH Amide), 8.31-8.28 (16H, dd, J=5.6, aryl-H), 6.84 (4H, at,  

NH Amide), 3.44 (8H, aq, CH2), 2.96 (8H, aq, CH2), 1.61 (8H, ap, CH2), 1.41 (24H, m, CH2), 

1.35 (36H, s, Boc-H), -2.92 (-2.9, s, NH) 
13

C NMR (150 MHz) 166.6, 156.5, 144.4, 134.3, 

134.1, 126.8, 119.7, 77.8, 39.7, 39.4, 30.2, 29.8, 28.6, 26.3, 26.1 UV (CH2Cl2): 418 nm, 513 

nm, 546 nm, 590 nm, 647 nm Mass Spec (MALDI-HR): Calculated: (M+1) C92H118N12O12: 

1583.9026, Observed (M+1) 1182.97 (Boc cleaved, free NH2 observed).  
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5,10,15,20-tetrakis-2-([tert-butyl-(2-benzamidoethyl) (2-((tert-butoxycarbonyl) 

amino)ethyl) carbamate porphyrin. (7) 

To a two neck 25 mL round bottom flask 250 mg (0.313 mmol) of TCPP was charged, to this 

4mL of anhydrous DMF was added and stirred at 0 
o
C for 10 mins under an argon 

atmosphere. To this 360 mg (1.88 mmol) EDCI was added. Once the EDCI was added 320 

mg; (2.5 mmol) of DMAP dissolved in 1 mL of anhydrous DMF was added. The EDCI and 

DMAP addition is done simultaneously. The reaction mixture was allowed stir for 1 h at 0 
o
C.  

0.760 g (2.5 mmol) of tert-butyl (2-aminoethyl)(2-((tert-butoxycarbonyl) amino) ethyl) 

carbamate was slowly added to the reaction flask dropwise, this was allowed stir for a further 

half an hour at 0 
o
C and then at room temperature overnight. The reaction was poured into 

100mL of water and filtered. The material was columned with 95:5 CH2Cl2: ethanol as eluant 

to give 212mg of 5,10,15,20-tetrakis-2-([tert-butyl-(2-benzamidoethyl) (2-((tert-

butoxycarbonyl) amino) ethyl) carbamate porphyrin. (35% yield). 

1
H NMR: (600MHz) δ (DMSO-d6) 8.94 (12H, m, β-H + NH amide) 8.32 (16H, m, aryl-H) 

7.01 (4H, m, NH-amide) 3.53 (16H, m, CH2) 3.31 (8H, m, CH2) 3.11 (8H, m, CH2) 1.42 

(72H, d, Boc-H) -2.92 (2H, s, NH). 
13

C NMR (150 MHz) 166.6, 156.5, 155.5, 144.6, 134.4, 

134.2, 127.8, 120.1, 77.9, 77.4, 39.6, 39.5, 30.2, 29.8, 28.6, 26.3, UV (CH2Cl2): 418 nm, 513 

nm, 546 nm, 590 nm, 647 nm Mass Spec: (MALDI-HR) C106H142N16O20 Calculated (M+1) 

1959.0586: Observed (M+1) 1959.0888. 
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5,10,15,20-tetrakis 2-([4-tert-butyl benzester] ethyl carbamate) porphyrin (8) 

To a two neck 25 mL round bottom flask was added TCPP (200 mg; 0.254 mmol) and 4 mL 

of anhydrous DMF and the mixture was stirred under an argon atmosphere and cooled to 0
o
C 

on an ice bath. After ten minutes of stirring at 0 
o
C  both EDCI (285 mg; 1.47 mmol) and 

DMAP (245 mg; 1.97 mmol dissolved in 1 mL of anhydrous DMF) were added 

simultaneously to the reaction mixture at 0
o
C.. The reaction mixture was allowed stir for an 

additional 1 hr at 0
o
C, after this time N-boc ethanolamine (320 µL; 2.04 mmol) was then 

added dropwise to the reaction flask.  The reaction mixture was then allowed to stir for a 

further 30 mins at 0 
o
C , after which time the reaction  was allowed to warm to room 

temperature and left to stir for 36 h. The reaction mixture was then poured into 80 mL of 

water and filtered. The collected precipitate was further purified by column chromatographed 

using silica gel with 90:10 CH2Cl2: ethanol as eluant. the isolated product was further 

purified by reprecipitation from a CHCl3: hexane mixture (1:1) to give 277 mg of 5,10,15,20-

tetrakis 2-([4-tert-butyl benzester] ethyl carbamate) porphyrin  (80% yield). 

1
H NMR: (600MHz) δ (CDCl3) 8.86 (8H, s, β-H) 8.51 (8H, d, aryl-H) 8.30 (8H, d, aryl-H) 

5.04 (4H, t, NH-carbamate) 4.62 (8H, t, CH2) 3.73 (8H, q, CH2) 1.55 (36H, s, Boc-H)   -2.89 

(2H, s, NH). 
13

C NMR (150 MHz): 155.7, 144.1, 134.6, 134.2, 125.7, 119.4, 78.0, 39.8, 39.4, 

28.3. UV (CH2Cl2): 418 nm, 514 nm, 546 nm, 590 nm, 647 nm  Mass Spec: (MALDI MS) 

Calculated (M+1) C76H82N8O16 1363.5882: Observed (M+1) 1363.6461. 
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5,10,15,20-tetrakis 2-([di-tert-butyl ((benzoylazanediyl)bis(ethane-2,1-diyl))dicarbamate 

porphyrin (9) 

To a two neck 25 mL round bottom flask 250 mg (0.313 mmol) of TCPP was charged, to this 

4mL of anhydrous DMF was added and stirred at 0 
o
C for 10 min under an argon atmosphere. 

To this 360 mg (1.88 mmol) EDCI was added. Once the EDCI was added 320 mg (2.5 mmol) 

of DMAP dissolved in 1 mL of anhydrous DMF was added. The EDCI and DMAP addition 

is done simultaneously. The reaction mixture was allowed stir for 1 hour at 0 
o
C.  0.760 g (2.5 

mmol) of di-tert-butyl (azanediylbis(ethane-2,1-diyl))dicarbamate was slowly added to the 

reaction flask dropwise, this was allowed stir for a further half an hour at 0 
o
C and then at 

room temperature overnight. The reaction was poured into 100mL of water and filtered. The 

material was columned with 95:5 CH2Cl2: ethanol as eluent to give 399mg of 5,10,15,20-

tetrakis 2-([di-tert-butyl ((benzoylazanediyl)bis(ethane-2,1-diyl))dicarbamate porphyrin (66% 

yield). 

1
H NMR: (600MHz) δ (DMSO-d6) 8.89 (8H, s, β-H) 8.34 (8H, d, aryl-H) 7.83 (8H, d, aryl-

H) 7.16 (8H, m, NH-amide) 3.59 (16H, m, CH2) 3.28 (8H, m, CH2) 3.23 (8H, m, CH2) 1.42 

(72H, d, Boc-H) -2.93 (2H, s, NH). UV (CH2Cl2): 418 nm, 513 nm, 546 nm, 590 nm, 647 nm 

Mass Spec: (MALDI-HR) C106H142N16O20 Calculated (M+1) 1959.0586: Observed (M+1) 

1959.0986.  
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5,10,15,20-tetrakis(4-carboxphenyl-N,N''-bis(phthalimido)diethylenetriamine) 

porphyrin 10. 

To a 100 mL two neck round bottom flask 200 mg (0.255 mmol) of TCPP was charged. A 

volume of 20 mL of anhydrous CH2Cl2 was added and the reaction was stirred for 10 min 

under nitrogen at room temperature. Through a SUBA seal port 3 mL (6 mmol) of a 2M 

oxalyl chloride solution in methylene chloride was added simultaneously with 2 drops of 

catalytic DMF. This was allowed stir overnight to effectively form the acid chloride. A 

stream of nitrogen was placed over the reaction at room temperature to remove the solvent, 

once the solvent was removed the flask was subjected to a high vaccum pump to remove 

excess oxalyl chloride. After this the reaction contents were redissolved in 20 mL CH2Cl2 and 

stirred. A mass of 0.741 g (2.04 mmol) of N,N''-bis(phthalimido)diethylenetriamine was 

dissolved in 10 mL CH2Cl2 along with 136 mg; DMAP and added to the reaction mix 

simultaneously with 2.5 mL (14.35 mmol), diisopropylethylamine and the reaction mixture 

was let stir overnight at room temperature. The reaction mixture was diluted with 200 mL 

CH2Cl2 to dilute the sample and was then washed with 2x100 mL 5% HCl solution, 2x100 

mL 1 M NaOH solution, 2x100 mL brine solution and dried over MgSO4. Solvent removed 

in vacuo. Column chromatography was used to isolate the product on silica using a mobile 

phase of CH2Cl2: acetone (90-10)-(80:20) 

1
H NMR: (600 MHz) δ (CDCl3) 9.04 (8H, s, β-H), 7.99 (8H, dd, aryl-H), 7.91 (8H, m, phth-

H), 7.81 (8H, m, phth-H), 7.71 (8H, m, phth-H) 7.52 (8H, m, phth-H), 7.36 (8H, m, phth-H), 

4.2 (8H, m, CH2), 4.11 (8H, m, CH2), 4.02 (8H, m, CH2), 3.96 (8H, m, CH2), -2.89 (2H, s, 

NH); 
13

C NMR: 172.6, 169.7, 168.4. 143.5, 135.4, 134.6, 134.5, 134.5, 132.1, 132.2, 125.5, 

123.9, 123.7, 119.8, 47.4, 43.6, 36.3, 35.1.  UV (CH2Cl2): 418 nm, 513 nm, 546 nm, 590 nm, 

647 nm Mass Spec: (MALDI MS) Calculated (M+1) C128H90N16O20 2171.6551, Observed 

(M+1) 2171.6823 
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General procedure 2: N-(2-(dimethylamino)ethyl)benzamide porphyrin 11 

TCPP (500 mg; 0.632 mmol) was charged into a 25 mL two neck round bottom flask. To this 

10 mL anhydrous DMF was added and the reaction mixture was placed on an ice bath and  

allowed to stir under an argon atmosphere for 15 minutes. To this mixture both EDCI (740 

mg; 3.86 mmol) and NHS (340 mg; 3.86mmol) were added and the reaction mixture was 

allowed to stir at 0 
o
C for a further hour. After this time N,N dimethylethylenediamine (552 

µL; 4.38 mmol) was added to the mixture (at 0 
o
C) and the reaction mixture was allowed to 

stir at 0 
o
C for a further 20 minutes. After this time the reaction mixture was allowed to warm 

to room temperature and was then stirred overnight. The reaction mixture was then poured 

into 80 mL of water and filtered. The collected precipitate was further purified by column 

chromatography using silica gel and a mobile phase of 5:5:1 CHCl3: EtOH : NH3OH . The 

product collected after column chromatography was further purified by reprecipitation from 

MeOH/H2O (1:1) to give 419 mg of N-(2-(dimethylamino)ethyl)benzamide porphyrin as a 

purple solid (62% yield). 

1
H NMR: (600MHz) δ (CDCl3) 8.82 (8H, s, β-H) 8.31 (8H, dd, J=5.2Hz, aryl-H) 8.26 (8H, 

dd, J=5.2Hz, aryl-H) 7.31 (4H, at, NH Amide), 3.73 (8H, aq, CH2), 2.62 (8H, at, CH2) 2.34 

(24H, s, N-CH3) -2.88 (2H, s, NH) 
13

C NMR (150 MHz) 168.8, 145.2, 134.6, 134.2, 126.4, 

119.8, 58.7, 45.4, 34.5. UV (CH2Cl2): 418 nm, 513 nm, 546 nm, 590 nm, 647 nm. Mass 

Spec: (MALDI MS) Calculated (M+1) C64H70N12O4 1071.5677, Observed (M+1) 1071.5953. 
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5,10,15,20-tetrakis N-(3-(dimethylamino)propyl)benzamide porphyrin 12 

General procedure 2 was used to prepare 12 using TCPP (500 mg; 0.632 mmol) and N,N 

dimethylpropylenediamine (552 µL; 4.38 mmol) to give 413 mg of 12 (59% yield) after 

purification as per the general procedure 2.  

1
H NMR: (600MHz) δ (CDCl3) 8.96 (4H, at, NH Amide) 8.85 (8H, s, β-H) 8.25 (8H, dd, 

J=5.2Hz, aryl-H) 8.11 (8H, dd, J= 5.2, aryl-H) 3.76 (8H, aq, CH2) 2.66 (8H, at, CH2) 1.94 

(8H, ap, CH2) -2.89 (2H, s, NH) 
13

C NMR (150 MHz) 167.9, 145.5, 135.8, 134.7, 125.9, 

119.9, 60.5, 46.1, 41.2, 25.1. UV (CH2Cl2): 418 nm, 513 nm, 546 nm, 590 nm, 647 nm. Mass 

Spec: (MALDI MS) Calculated (M+1) C68H78N12O4: 1127.6303, Observed (M+1) 

1127.6917. 

 

 

 

 

 

 

 



84 
 

General procedure 3: Deprotection of N-boc protected porphyrins.   

To a 25mL round bottom flask 80 mg of boc protected porphyrin was added and placed over 

an argon atmosphere. Anhydrous CH2Cl2 (5mL) was then added and the mixture was stirred 

at 0 
o
C for 15 min at which time 1 mL of 4M HCl in dioxane was added dropwise (the 

reaction mixture was kept at 0 
o
C during the addition). The reaction was let stir overnight at 

room temperature, before being poured into 30 mL diethyl ether and the precipitate was 

collected by suction filtration. The collected precipitate was then washed with two 8 mL 

aliquots of diethyl ether. No 
13

C could be obtained for any of the compounds 13-21 due to the 

H-Bonding phenomena mentioned previously. 

 

 

Coumpound 13:  

General procedure 3 was followed using 80 mg of 5,10,15,20-tetrakis 2-([4-tert-butyl 

benzamido] ethyl carbamate) porphyrin. Compound 13 was isolated as a green solid in 

quantitative yield. 

1
H NMR: (600MHz) δ (DMSO-d6) 9.22 (4H, t, NH-amide) 8.88 (8H, s, β-H) 8.48 (16H, dd, 

aryl-H) 8.21 (12H, s, NH3) 3.76 (8H, q, CH2) 3.10 (8H, q, CH2) -2.91 (2H, s, NH). UV 

(H2O): 418 nm, 513 nm, 546 nm, 590 nm, 647 nm Mass Spec: (MALDI MS) Calculated 

(M+1-4HCl) C56H58Cl4N12O4 959.4425, Observed (M+1-4HCl) 959.4461. 
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Compound 14: 

General procedure 3 was followed using 80 mg of 5,10,15,20-tetrakis 3-([4-tert-butyl 

benzamido] propyl carbamate) porphyrin. Compound 14 was isolated as a green solid in 

quantitative yield.  

1
H NMR: (600MHz) δ (DMSO-d6) 9.12 (4H, t, NH-amide) 8.98 (8H, s, β-H) 8.46 (16H, s, 

aryl-H) 8.08 (12H, s, NH3) 3.52 (8H, t, CH2) 3.02 (8H, q, CH2) 2.01 (8H, p, CH2) -2.91 (2H, 

s, NH) UV (H2O): 418 nm, 513 nm, 546 nm, 590 nm, 647 nm  Mass Spec: (MALDI MS) 

Calculated C60H66Cl4N12O4 (M+1-4HCl) 1015.5051, Observed (M+1-4HCl) 1015.5107. 
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Compound 15:  

General procedure 3 was followed using 80 mg of 5,10,15,20-tetrakis 4-([4-tert-butyl 

benzamido] butyl carbamate) porphyrin. Compound  15 was isolated as a green solid was 

obtained in quantitative yield.  

1
H NMR: (600MHz) δ (DMSO-d6) 9.04 (4H, t, NH-amide) 8.89 (8H, s, β-H) 8.32 (16H, s, 

aryl-H) 7.95 (12H, s, NH3) 3.56 (8H, under water peak , CH2) 2.91 (8H, m, CH2) 1.71 (16H, 

m, CH2) -2.92 (2H, s, NH). UV (H2O): 419 nm, 514 nm, 546 nm, 590 nm, 647 nm Mass 

Spec: (MALDI MS) Calculated C64H74Cl4N12O4 (M+1-4HCl) 1071.5677, Observed (M+1-

4HCl) 1071.5763. 
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Compound 16:  

General procedure 3 was followed using 80 mg of 5,10,15,20-tetrakis 6-([4-tert-butyl 

benzamido] hexyl carbamate) porphyrin .  A green solid 16 was obtained in quantitative 

yield.. 

1
H NMR: (600MHz) δ (DMSO-d6) 9.01 (4H, t, NH-amide) 8.96 (8H, s, β-H) 8.34 (16H, s, 

aryl-H) 8.06 (12H, s, NH3) 3.54 (8H,q , CH2) 2.82 (8H, q, CH2) 1.74 (16H, m, CH2) 1.43 

(16H, m, CH2)  -2.91 (2H, s, NH). UV (H2O): 418 nm, 513 nm, 547 nm, 591 nm, 647 nm 

Mass Spec: (MALDI MS) Calculated C72H90Cl4N12O4: (M+1-4HCl) 1183.6929, Observed 

(M+1-4HCl) 1183.6995. 
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Compound 17:  

General procedure 3 was followed using 80 mg of 5,10,15,20-tetrakis 2-([4-tert-butyl 

benzester] ethyl carbamate) porphyrin.  A green solid was obtained in quantitative yield.  

1
H NMR: (600MHz) δ (DMSO-d6) 8.90 (8H, s, β-H) 8.62 (8H, d, aryl-H) 8.46 (8H, d, aryl-

H) 8.37 (12H, s, NH3) 4.66 (8H, q, CH2) 3.48 (8H, q, CH2) -2.92 (2H, s, NH). UV (H2O): 419 

nm, 513 nm, 545 nm, 590 nm, 647 nm Mass Spec: (MALDI MS) Calculated C56H54Cl4N8O8 

(M+1-4HCl) 963.3785, Observed (M+1-4HCl) 963.3157. 
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Compound 18:  

General procedure 3 was followed using 80 mg of.5,10,15,20-tetrakis 2-([di-tert-butyl 

((benzoylazanediyl)bis(ethane-2,1-diyl))dicarbamate porphyrin  A green solid was obtained 

in quantitative yield.  

1
H NMR: (600MHz) δ (DMSO-d6) 9.63 (8H, s, NH2) 9.28 (4H, t, NH-amide) 8.81 (8H, s, β-

H) 8.44 (20H, m,aryl-H + NH3) 8.33 (8H,d , aryl-H) 3.82 (8H, m, CH2) 3.41 (16H, m, CH2) 

3.34 (8H, m, CH2)  -2.92 (2H, s, NH). UV (H2O): 418 nm, 513 nm, 546 nm, 590 nm, 647 nm  

Mass Spec: (MALDI MS) Calculated C64H82Cl4N16O4: (M+1-4HCl) 1131.6112, Observed 

(M+1-4HCl) 1131.5670. 
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Compound 19:   

General procedure 3 was followed using 80 mg of 80 mg of 5,10,15,20-tetrakis-2-([tert-butyl-

(2-benzamidoethyl) (2-((tert-butoxycarbonyl) amino) ethyl) carbamate porphyrin.  A green 

solid was obtained in quantitative yield.  

1
H NMR: (600MHz) δ (DMSO-d6) 9.11 (8H, s, β-H) 8.48 (12H, s, NH3) 8.27 (8H, d, aryl-H) 

8.18 (8H, s, NH2) 8.06 (8H,d , aryl-H) 3.92 (16H, m, CH2) 3.25 (16H, m, CH2) -2.91 (2H, s, 

NH). UV (H2O): 418 nm, 513 nm, 546 nm, 590 nm, 647 nm  Mass Spec: (MALDI MS) 

Calculated C64H82Cl4N16O4: (M+1-4HCl) 1131.6112  Observed (M+1-4HCl) 1131.6693. 
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Protonation procedure to prepare 20  

General procedure 3 was followed using 80 mg of 5,10,15,20-tetrakis N-(2-

(dimethylamino)ethyl)benzamide porphyrin.  A green solid was obtained in quantitative 

yield.. 

1
H NMR: (600MHz) δ (DMSO-d6) 8.32 (4H, s,,NH(CH3)2) 9.33 (4H, t, NH-amide) 8.51 (8H, 

s, β-H) 8.45 (16H, s, phenyl-H) 3.88 (8H, m, CH2) 3.41 (8H, m, CH2) 2.92 (24H, d, (CH3)2)  -

2.91 (2H, s, NH). UV (H2O): 418 nm, 513 nm, 546 nm, 590 nm, 647 nm  Mass Spec: 

(MALDI MS) Calculated C64H74Cl4N12O4:  (M+1-4HCl) 1071.5677, Observed (M+1-4HCl) 

1071.5673. 
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Protonation procedure to prepare 21:  

The general procedure was followed using 80 mg of 5,10,15,20-tetrakis N-(3-

(dimethylamino)propyl)benzamide porphyrin. A green solid was obtained in quantitative 

yield  

1
H NMR: (600MHz) δ (DMSO-d6) 8.01 (4H, s,NH(CH3)2) 9.12 (4H, t, NH-amide) 8.89 (8H, 

s, β-H) 8.31 (16H, s, phenyl-H) 3.52 (8H, m, CH2) 3.28 (8H, m, CH2) 2.89 (24H, d, (CH3)2) 

2.12 (8H, p, CH2) -2.91 (2H, s, NH). UV (H2O): 418 nm, 513 nm, 546 nm, 590 nm, 647 nm  

Mass Spec: (MALDI MS) Calculated C68H82Cl4N12O4: (M+1-4HCl) 1127.6303, Observed 

(M+1-4HCl) 1127.6328. 
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Chapter 3: The synthesis of calix[4]pyrroles 
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3.1 Introduction 
 

Calix[4]pyrroles are an interesting potential replacement for porphyrins as potential inhibitors 

of the tetrameric Kv1 channels since they possess a similar fourfold scaffold to porphyrins 

and are not photocytotoxic.  

Calix[4]pyrroles, previously named meso-octaalkylporphyrinogens, are macrocycles bearing 

four pyrrole entities linked via four dialkylsubstituted sp
3
 hybridised carbons. Similar to 

porphyrin macrocycles they are linked at the α position. The main distinction between a 

calix[4]pyrrole and a porphyrin is the hybridisation number at the meso position. The 

calix[4]pyrrole is prepared by the condensation of a ketone with pyrrole.  

It was the goal of this work to translate the findings of the porphyrin SAR study to the 

calix[4]pyrrole scaffold, that is to introduce a series of both phenylalkylaminoamides and 

alkylaminoamides into the meso positions of the calix[4]pyrroles thus replicating the same 

substitution patterns as the porphyrin series of compounds. 

 

3.1.1 Synthetic approaches to synthesising calix[4]pyrrole macrocycles 

 

The general methods that have been employed for the synthesis of calix[4]pyrroles are the 

[1+1+1+1] condensation (scheme 3.1) and the [2+2] condensation (scheme 3.2). The one pot 

synthesis of a calix[4]pyrrole involves the condensation of pyrrole and ketone in a 1:1 ratio in 

the presence of an acid catalyst. The acid catalysts commonly used include hydrochloric acid 

1, methanesulfonic acid2, boron trifluoride diethyl etherate3 and trifluoroacetic acid4. Others 

include ytterbium(III) triflate, bismuth nitrate and amberlyst resin.  

 

Scheme 3.1: Simple [1+1+1+1] condensation involving pyrrole and the symmetric ketone acetone
2
. 
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Scheme 3.2: [2+2] condensation for the preparation  the asymmetric calix[4]pyrrole 23. 

 

3.1.2 Calix[4]pyrrole functionalization 

 

There are two possible positions in a calix[4]pyrrole scaffold that can be potentially 

functionalised.5 The meso position and the β-position (C-rim) shown in figure 3.1. The 

synthetic route to modifying the meso position is limited. The modification of the C-rim (β-

position) has more variety as functionalization can be made via condensation or post 

macrocycle condensation.  
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Figure 3.1: Illustration of the possible positions available for modification at the meso and C-rim 

positions in the calix[4]pyrrole.  

Halogenation with fluorine, chlorine or bromine and the incorporation of methoxy6 

substitiuents have been used to replace the hydrogen’s on the β-pyrroles. When fluorine has 

been the halogen of choice the method of synthesis used has been a direct condensation 

between 3,4-difluoro-1H-pyrrole and acetone using methanesulphonic acid as the catalyst.7  

 

3.2 Objective of chapter 
 

It was the goal of this chapter to translate the findings of the porphyrin SAR study to the 

calix[4]pyrrole scaffold, that is we wished to introduce a series of both 

phenylalkylaminoamide and alkylamino substituents into the meso positions and C-rim of the 

calix[4]pyrroles thus replicating the same substitution patterns as the porphyrin series of 

compounds (figures 3.2-3.5).  
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Figure 3.2: An example of one of the alkylamino targets   24. 

 

 

Figure 3.3: An example of the calix[4]pyrrole 25 required to prepare the phenylalkylaminoamide 

series of compounds. 
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Figure 3.4: Required C-rim modified starting precursor 26 for the preparation of  alkylaminoamide 

substituted calix[4]pyrroles. 

 

 

Figure 3.5: Target molecule from the carboxylic acid derivative 27. 
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3.3 Results and Discussion 
 

3.3.1 Synthesis of meso-octapropylamino-calix[4]pyrrole 
  

The synthetic strategy employed to synthesize 24 (shown in figure 3.2) required the 

corresponding starting ketone 1,7 diaminoheptan-4-one to be synthesised first as this ketone 

was not commercially available (scheme 3.3).   

The preparation of 1,7 diaminoheptan-4-one  involved treating dicyclopropylketone with HCl 

gas (HCl gas was prepared by the slow, dropwise addition of H2SO4 to aqueous HCl in a 

closed system with a cannula transferring the gas through to the neat ketone for an hour) to 

obtain a brown oil in quantitative yield. The reaction progression was monitored by 
1
H NMR. 

It was essential to maintain a stream of HCl gas bubbling through the neat ketone to drive the 

reaction to completion. The product formed, 1,7-dichloroketone is extremely unstable and 

begins to decompose once made thus the use of this substrate for further modification must 

be done in-situ. 

The 1,7 dichloroketone was treated with potassium phthalimide in DMF at 90 
o
C to obtain the 

bis-phthalimide ketone derivative. The reaction of the dichloroketone with potassium 

phthalimide produces two products. There is a competitive decomposition product formed 

parallel to the bis-phthalimide ketone formation due to the unstable nature of the precursor. 

As a result column chromatography on silica is required. The products were separated by 

column chromatography on silica using ethyl acetate and hexane (1:1) to yield the target 

ketone in 55%. It should be noted that the Gabriel synthesis approach, of using potassium 

phthalimide to introduce the amine functionality, was favoured over bubbling ammonia gas 

through the dichloroketone as the generated amine would have the potential to cyclise to the 

corresponding imine. 
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Scheme 3.3: The synthesis of the the bis-phtalimide ketone. 

 

With the ketone obtained it was then condensed with pyrrole, with the phthalimide protection 

groups still present, as shown in scheme 3.4.    

 

Scheme 3.4: Attempted synthesis of the octa-phthalimide calix[4]pyrrole. 

 

The results of the attempted condensation, under various conditions, are shown in table 3.1. 

Using BF3.(OEt)2, MeSO3H and (aq) HCl as acid catalyst and MeOH/CH2Cl2 as  solvent the 

condensations did not proceed at either room temperature or reflux. It was necessary to carry 
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out these reactions in a mix of solvents due to the insolublity of the ketone in methanol. 

Analysis of the reactions only showed unreacted ketone. The inability of the ketone to form 

calix[4]pyrrole may be a result of the steric bulk of the phthalimide groups. 

 Table 3.1: Reaction table of the conditions used for the condensation between the bis-

phthalimide and pyrrole. 

Solvent Acid Catalyst  Temperature Reaction progression 

MeOH/CH2Cl2 BF3.(OEt)2 RT No Rxn 

MeOH/CH2Cl2 MeSO3H RT No Rxn  

MeOH/CH2Cl2 HCl RT No Rxn 

MeOH/CH2Cl2 BF3.(OEt)2 50 
o
C No Rxn 

MeOH/CH2Cl2 MeSO3H 50 
o
C  No Rxn  

MeOH/CH2Cl2 HCl 50 
o
C  No Rxn 

 

3.3.2 Synthesis of octa-methlenephenylmethyl carboxylate 
 

The proposed synthesis of compound 25 was investigated, however it has been previously 

reported that diarlyketones do not form calix[4]pyrroles due to steric constrains, but rather 

produce dipyrromethanes as shown in scheme 3.5.
15

 

 

Scheme 3.5: The condensation of pyrrole with bezophenone typically yields 22 over the 

calyx[4]pyrrole.  
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An attempt to prepare the target tetra-aryl calix[4]pyrrole outlined in scheme 4.5 from 

benzophenone failed to give the target macrocycle however, the bispyrrole was isolated in 

good yields. Thus, benzophenone derivatives  fail to condense to calix[4]pyrrole. An 

alternative to using benzophenone derivatives are dibenzylketones and it has been previously 

shown that calix[4]pyrrole can be prepared from dibenzylketone and pyrrole using MeSO3H 

as an acid catalyst8,9 (scheme 3.6) in 32% yield. 

 

Scheme 3.6: Synthesis of meso-octabenzylcalix[4]pyrrole.
8 

The same condensation conditions were attempted with 4,4-dibenzylmethylcarboxylate 

ketone as outlined in scheme 3.7. 4,4-Dibenzylmethylcarboxylate was prepared using the 

method of Potter et al10 to yield a yellow solid in 59% yield. 

 

 

Scheme 3.7: Attempted condensation between pyrrole and 1,3-bis-(4-(methoxycarbonyl)phenyl)-

propan-2-one 25. 
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Unfortunately, these conditions failed to yield 25. A tar-like material was obtained after the 

reaction was worked up. Column chromatography of the crude reaction material did not yield 

the target 25. 

3.4 C-rim modification 
 

Introduction of functionality into the calix[4]pyrrole may also be achieved by C-rim 

modification. The Sessler group have been pioneers in calix[4]pyrrole synthesis and have 

developed a  method for the introduction of functional groups, such as carboxylic acids and 

esters, involve the deprotonation of the pyrrole hydrogen of the macrocycles at low 

temperature with n-BuLi in hexanes followed by addition of CO2(s) or ethyl bromoacetate.6, 

11, 12 However, octa-substitution has never been achieved using this approach.  C-rim 

octasubstituted calix[4]pyrroles have been successfully prepared using 3,4-alkyl carboxylate 

pyrroles and trioxane with TFA as the acid catalyst.
14

      

 

3.4.1 Synthesis of the C-rim condensed octa methylcarboxylate-

calix[4]pyrrole  

3,4-Dimethyl carboxylate pyrrole was prepared using a modified version of the method 

developed  by Woo et al.13 To a solution of dimethyl fumarate and 60% sodium hydride 

stirring in DMF at 0 
o
C, toluenesufonylmethyl isocyanide (TosMIC) was added dropwise. 

After stirring for 15 minutes at 0 
o
C the reaction mixture was poured onto ice-water. The 

resulting precipitate was filtered and dried to give a yellow solid in 55% yield.   

 

 

 

 

.  
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Scheme 3.8: Synthesis of octa- substitutedcalix[4]pyrroles using TFA acetone. 

The application of the procedure shown in scheme 3.8 using dimethyl pyrrole-3,4-

dicarboxylate and acetone was performed. The reaction was refluxed for 24 hours where full 

conversion of the pyrrole was consumed. Column chromatography of the crude material on 

silica gel and using ethyl acetate: hexane (1:6) was applied and three factions isolated. The 

reaction mixture again did not yield the target calix[4]arene target, however a number of 

linear oligomers were obtained.  

3.5 Synthesis of the asymmetric calix[4]pyrrole  
 

A possible route to the preparation of an  asymmetric calix[4]pyrrole 27 is outlined in scheme 

3.9 where a di-tolyldipyrromethane is condensed with dry acetone in the presence of an acid 

catalyst.  
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Scheme 3.9. Synthesis of meso-1,1,3,3-tetratolyl-meso-2,2,4,4-tetramethylcalix[4]pyrrole, 

28. 

 

The di-tolyldipyrromethane was prepared, pyrrole was condensed with 4,4 

dimethylbenzophenone and BF3.(OEt)2 as an acid catalyst for 5 days, after five days the 

precipitated material was filtered and washed with 3x10 mL aliquots of cold MeOH. The 

product shown in scheme 3.10 is the di-tolyldipyrromethane (29) obtained in 50% yield. 

 

Scheme 3.10: Synthesis of di-tolyldipyrromethane 29. 

 

The di-tolyldipyrromethane starting material was initially insoluble in methanol (and ethanol) 

as reaction solvent, however, the dropwise addition of acetone started to solubilise the 

dipyrromethane.  Both the BF3·(OEt)2 and methanesulphonic acid (MeSO3H) were used as 

acid catalysts in separate reactions to compare yields. For both catalysts the reaction turned a 

lime green colour upon dropwise addition of catalyst to either reaction. The reactions were 

kept under an argon atmosphere and left to react for 7 days at room temperature with stirring. 
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The reactions turned a dark brown and a small amount of light brown coloured precipitate 

started to form, as the reaction progressed. The reaction was stopped after 7 days, and the 

solvents removed under vacuum. A mobile phase of 1:1 CH2Cl2: hexane was used to purify 

the resulting calix[4]pyrrole (scheme 3.9). 

 

Comparison of  both catalysts showed that BF3.(OEt)2 gave higher yields than MeSO3H. In 

the literature, there are yields reported for a similar calix[4]pyrrole (with phenyl groups) at 

20% for MeSO3H and 56% for BF3·(OEt)2. One of the reasons for the low yields exhibited in 

these reactions is the fact that they are multi-component condensations which can produce a 

series of different products, this was observed  by TLC where multiple spots were observed 

during the course of both reactions.   

3.5.1 
1
H NMR of meso-1,1,3,3-tetratolyl-meso-2,2,4,4-tetramethylcalix[4]pyrrole 

(28) 

 

The 
1
H NMR spectrum of 28 is shown in figure 3.6. The protons associated with the NH 

from the pyrrole are located as a broad singlet at 7.35 ppm, and integrate as 4. The phenyl 

hydrogens show as two doublets at 7.0 and 6.9 ppm and integrate as 8 respectively. The β-

pyrrole hydrogens appear as multiplets at 5.9 and 5.7 ppm, each with an integration of four. 

The singlet peak at 2.3 ppm represents the methyl hydrogens of the toluyl group with an 

integration of 12. The final singlet peak in the spectrum is the aliphatic methyl substituents 

which have an  integration of 12.     
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Figure 3.6: 
1
H NMR of 28 in CDCl3. 

3.5.2 Oxidation of  28. 

 
 

Attempts to synthesize calix[4]pyrroles with functionality have resulted in unsuccessful 

macrocycle condensation. The main goal was to introduce a carboxylic acid into the 

calix[4]pyrrole either pre or post condensation via the conventional [1+1+1+1] condensation. 

An alternative strategy was undertaken whereby 28, bearing toluene substituents, would be 

oxidised to the corresponding acids post cyclisation (scheme 3.11).   
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Scheme 3.11: Oxidation of 28 to the corresponding carboxylic acid 30. 

A variety of classical methods were used in the attempt to oxidise 28 to 30 the results of 

which are shown in Table 3.2. All reactions yielded a complex mixture. 

Table 3.2: List of oxidation conditions employed on 28. 

 

Oxidant Temperature  Time Catalyst Solvent 

KMnO4 Reflux  24 hours Pyridine H2O 

KMnO4 Reflux 48 hours Pyridine H2O 

KMnO4 Reflux 5 days Pyridine H2O 

Na2Cr2O7 (250
o
C) 

autoclave 

5 hours Pyridine H2O 

Na2Cr2O7 (250
o
C) 

autoclave 

10 hours Pyridine H2O 

Na2Cr2O7 (250
o
C) 

autoclave 

20 hours Pyridine H2O 

Mn(OAc)2/Co(OAc)2 

H2O2 

O2 

RT 24 hours NaBr Acetic acid 

O2, hv RT 24 hours CBr4 EtOH 
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Table 3.2 shows the failed attempts at oxidation of 28 to 30. Analysis of the reactions by 
1
H 

NMR showed consistant decomposition of the pyrrole hydrogens on the macrocycle for all 

reactions. FT-IR did show that partial oxidation had occurred, as characteristic peaks for 

COOH groups were present, however the macrocycle could not withstand any of the 

oxidation conditions used and as a result the target molecule 30 could not be prepared by 

oxidative methods. At this point the calix[4]pyrrole work was abandoned. 

 

 

3.6 Conclusion 
 

The attempts to synthesize a calix[4]pyrrole with multiple carboxylic acids or hydrolystable 

esters via [1+1+1+1] condensation or [2+2] condensations proved unsuccessful. Macrocycle 

formation proved to be extremely sensitive with carbonyl functionality in the ketone or 

pyrrole positions. Oxidation of the macrocycle post condensation also proved to be 

unsuccessful as the instability of the asymmetric calix[4]pyrroles led to unwanted side 

reactions on the pyrrole scaffold thus leading to decomposition of the macrocycle. It would 

have been valuable to the study the effect of the target calix[4]pyrroles vs the porphyrins on 

the Kv1 channels.  Work on the calix[4]pyrroles was stopped at this point.To go to the next 

stage of the project, that being the development of a new non photocytotoxic small molecule 

inhibitor, a molecular modelling analysis was undertaken using Accelerys discovery studio. 

Docking simulations were performed using the results from the porphyrin SAR study to 

better understand the interaction of the porphyrin with the Kv1 channels. These results will 

then be used to aid in the design of new potential, selective inhibitors of Kv1 channels.   
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3.7 Experimental 
 

Materials 

 

All operations were carried out under an atmosphere of argon or nitrogen using standard 

Schlenk techniques. All solvents were supplied by the Aldrich Chemical Company and TCI. 

Dichloromethane was dried over MgSO4 prior to use. Methanol was distilled over 

magnesium turnings and iodine before use. All organic reagents were purchased from the 

Aldrich Chemical Company. Pyrrole was freshly distilled over potassium hydroxide before 

use. Anhydrous triethylamine, borontrifluoride diethyletherate and were all used without 

further purification. 

Column chromatography was carried out using neutral silica gel (Merck, used 

as received). All mobile phases for column chromatography were dried over MgSO4 prior 

to use. All solvents were deoxygenated by purging withargon or nitrogen for ~10 minutes 

 

Equipment 

All syntheses involving air- and moisture-sensitive reagents were performed in oven or 

flame dried glassware. NMR spectra were recorded on a Bruker model AC 400 MHz 

spectrometer and Bruker model ANC 600 MHz spectrometer using CDCl3 as solvent. All 

NMR spectra were calibrated according to the residual solvent peak, i.e. CHCl3 at 7.26 ppm 

DMSO-d6 2.50 ppm for all 
1
H spectra and 77.16 ppm and 39.52 ppm for all 

13
C spectra. 

Chemical shifts are given in parts per million (ppm). 
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General procedure for the preparation of di-(4-methyl phenyl)di-(2-     

pyrrolyl)methane (29) 

 

To a clean, dry 500 mL two necked round bottom flask were added dry methanol (300 mL) 

and 4,4-dimethylbenzophenone (7.8224 g, 0.0372 mol, 1 eq.). Freshly distilled pyrrole (6.452 

mL, 0.093 mol, 2.5 eq.) was added to the flask via syringe. BF3·OEt2 (6.4 mL, 0.0518 mol, 

1.4 eq.) was then added to the reaction dropwise via syringe. The reaction was kept under an 

argon atmosphere and stirred for 5 days at room temperature.  

The precipitated product was filtered through a frit, washed with cold methanol and dried 

under vacuum overnight. 5.97 g (50% yield) of the grey powder was obtained. 

1
H NMR (600 MHz, DMSO-d6): δ = 10.02 (br.s, 2H, N-H), 7.04 (d, 4H, aryl-H), 6.81 (d, 4H, 

aryl-H), 6.70 (m, 2H, pyrrole-Hα), 5.90 (m, 2H, pyrrole-Hβ), 5.53 (m, 2H, pyrrole-Hβ), 2.30 

(s, 6H, CH3).   

13
C NMR (150.9 MHz, DMSO): δ = 143.6, 135.7, 135.1, 129.0, 127.9, 117.9, 108.7, 106.0, 

54.6, 20.5 

 

 

General procedure for the preparation of meso-1,1,3,3-tetramethyl,-2,2,4,4- 

tetra(4-methyl phenyl)calix[4]pyrrole (20): 

 

To a clean, dry 250 mL two necked round bottom flask were added dipyrromethane (0.718 g, 

2.2 mmol, 2 eq.) dry methanol (60 mL), and dry acetone (60 mL, 2 eq.) BF3·OEt2 (300 µL, 

2.4 mmol, ~2 eq.) was added to the reaction dropwise via syringe. The reaction was kept 

under an argon atmosphere and stirred for 7 days at room temperature. Solvents were 

removed under vacuum. The crude solid was purified by column chromatography over silica 

using a 50: 50 CH2Cl2: Hexane mobile phase. Rf value of 0.46 were kept and combined, and 

the solvents removed under vacuum to yield 0.288 g (36% yield) of the calix[4]pyrrole. 

 

1
H NMR (400 MHz, CDCl3): δ = 7.32 (br.s, 4H, N-H), 7.03 (d, 8H, aryl-H), 6.87 (d, 8H, 

aryl-H), 5.90 (t, 4H, pyrrole-Hβ), 5.68 (t, 4H, pyrrole-Hβ), 2.30 (s, 12H, Tol-CH3), 1.65 (s, 

12H, CH3).  

13
C NMR (100.6 MHz, CDCl3): δ = 144.0, 139.3, 135.7, 134.5, 128.7, 128.4, 109.1, 102.8, 

54.7, 35.2, 29.3, 21.0. 
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Chapter 4: The construction of Kv1.1 comparative model 
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4.1 Introduction 
 

Drug discovery is a laborious, expensive process. The method by which therapeutics are 

traditionally discovered relies on clusters of interdisciplinary teams, who first identify a class 

of compound, by screening the target. Then by synthesizing a large library of these 

compounds with minor derivatives and then screening of these compounds against the 

biological target. The activity profile is established and the ‘hit candidate’ is selected and 

further optimised and pre-clinical/clinical trials follow.1 

The arrival of improved computational hardware and software, united with an increase in the 

number of available protein 3D structures from the protein database2 has enabled molecular 

modelling to contribute and be an excellent component of modern drug discovery. The 

pivotal benefit of introducing molecular modelling into a drug discovery pipeline is to move 

away from traditional “trial and error” approaches such as large synthetic library 

constructions, and consider moving towards rational drug design, resulting in a reduction of 

the cost and time. 

The various rational drug design techniques can be applied across the drug discovery pipeline 

from the initial hit identification, to hit to lead optimization.3 Lead optimization  can be used 

in a synergic relationship with experiment through synthesis, modelling and testing. 

Computational software approaches include both structure based4,5 and ligand based6 drug 

design (SBDD and LBDD). Structure based approximations such as molecular docking 

utilize the available information on the protein’s 3-D structure and are used to aid in the 

prediction of the binding pose and interactions of proposed ligands with the protein target.  

Ligand based methods take advantage of the available information of known active ligands 

e.g. pharmacophores, the steric and electronic features that are necessary to ensure the 

various key intermolecular interactions with a specific biological target and to administer the 

corresponding biological response. 

Once a computational model has been developed using Accelry’s Discovery Studio 3.5- 4.0 

virtual screening (VS) processes can be implemented to examine large compound 

databases in silico and to identify a selected number of molecules for in vitro testing. Such 

virtual high throughput screens (vHTS) allow the key interactions that are associated with 

biological activity of a large number of compounds to be studied without the need to 

synthesize them in the laboratory which can be tedious depending on the class of organic 
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molecules needed for the project.  The approach can be cheaper, faster, and safer than real 

experiments, and the data can help scientists to eliminate the uninteresting compounds that 

would not perform the required function.  

In chapter two we built a foundation for the project based upon the results obtained for the 

porphyrins. Following this work in chapter three, it was suggested that the synthesis of 

calix[4]pyrroles with potential amide functionality could serve as a suitable replacement for a 

porphyrin as the elimination of conjugation and photocytotoxicity is achieved. The issue with 

using calix[4]pyrroles as a drug is its large molecular weight. Having a compound with large 

molecular weight has a number of problems; the first problem is it has little drug-like oral 

bioavailability as it does not fall under the Lipinski pharmacokinetic guidelines.7,8 The second 

reason and probably the most important, is the number of non-specific interactions the 

calix[4]pyrrole would encounter due to its size. Similar to the porphyrin, the size and number 

of potential interactions the calix[4]pyrrole can have with residue amino acids such as H-

bonding, π-π stacking can hinder the use of the scaffold. Lastly, the compounds we wish to 

use for the probing of the channels are synthetically challenging. The Kv1 channel sequences, 

shown in figure 4.1, highlights the high similarity between the channels Kv1.1-1.6. A large 

molecule such as a porphyrin/calix[4]pyrrole would have unwanted interactions and this is 

believed to be the reason for the lack of selectivity between the channels. A molecule that 

shows excellent inhibition is relativity ineffective without the high selectivity for the channel 

of interest. 4-Aminopyridine as discussed earlier has no selectivity for the channels and the 

patient experiences the associated side effects of the drug because of this lack of selectivity.9 

Kv1.1 (348-386):  E A E E A E S H F S S I P D A F W W A V V S M T T V G Y G D M Y P V T I G G K 

 

Kv1.2 (350-388):  E A D E R D S Q F P S I P D A F W W A V V S M T T V G Y G D M V P T T I G G K 

 

Kv1.3 (373-411):  E A D D P S S G F N S I P D A F W W A V V T M T T V G Y G D M H P V T I G G K 

 

Kv1.4 (501-539):  E A D E P T T H F Q S I P D A F W W A V V T M T T V G Y G D M K P I T V G G K 

 

Kv1.6 (398-436):  E A D D V D S Q F P S I P D A F W W A V V T M T T V G Y G D M Y P M T V G G K 

 

Figure 4.1: The rat Kv1 channels, amino acids identical throughout all channels are shown in yellow, 

turret region amino acids are shown in blue, selectivity filter amino acids are shown in green and the 

inner turret residue shown in grey. 

Molecular docking studies can aid in the design for synthesis of a new candidate by studies 

identifying the key interactions with important amino acid residues in the amino acid 

sequence shown in figure 4.1. By observing how these dock into the channel it is then 

possible to obtain in silico theoretical observations of the spatial orientation of the porphyrin 



119 
 

compound to the channel and the predicted binding affinity. Using this data could aid in the 

design of a smaller more drug-like molecule that experiences the key interactions whilst 

eliminating the unwanted interactions. This route could offer the required selectivity for 

Kv1.1 over the other channels. The main modelling approaches will now be discussed.         

4.2 Molecular mechanics  
 

There are two general approaches to computational studies; quantum mechanical (QM) 

calculations of the molecular electronic structure and molecular mechanical (MM) 

calculations.10 The QM approach can have a high degree of accuracy due to the fact this 

method takes electrons into account, however it is computationally expensive and requires 

access to supercomputers.11 Due to this, computational simulations of biological protein 

macromolecules are more favoured using classical MMs derived from Newtonian theory. 

This approach considers atoms as balls/spheres with an associated mass.  

The force-fields that we utilized within our work for MM calculations used the Chemistry at 

Harvard Molecular Mechanics CHARMM program that is a component of the accelrys 

software. The Cdocker algorithm12 is a grid-based molecular docking method that employs 

CHARMM.13 

 

The total energy (Etot) is a function of the nuclear coordinates. As mentioned above the atoms 

are considered balls/spheres (the nucleus and electrons collectively), the electrons are not 

categorically considered and the field they generate is not calculated. The equation that this 

total energy is based upon is shown  where the sum of bond stretching υr(r), angle bending 

υθ(θ), torsion potentials υϕ(ϕ), improper torsions υχ(χ) and non-bonding interactions υnb(r).
10, 

14,15 

 

      ∑        ∑        ∑        ∑       ∑                               

 

Or                                                                                                                             (1) 

 

Esteric = Estr + Ebnd + Etor + Eoop + EvdW + Eelectrostatic 
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4.2.1 Bonded functions  

 

Energy due to bond stretching. 

The interpretation on how the potential energy of a typical bond is represented is derived 

from harmonic oscillation based on Hookes law. The potential energy is related to the bond 

state compressed or stretched. (kr) is the bond stretching constant, the stronger the bond the 

larger the associated force constant to that particular bond is. The bond length is represented 

by (r) and the equilibrium bond length (r0).  

 

       
  

 
      

  

                                                                                                                                        (2) 

 

Energy for bond angle bending 

The deviation of an angle θ between atoms from the reference angle θ0 relates to the 

frequency element of Hookes law. As the angles are bent from its original state the energy 

increases. The related force constant (kθ), in the harmonic angle potential are proportionately 

smaller than for the bonded function. Less energy is needed to distort an angle from 

equilibrium than to stretch or compress a bond. 

 

 

       
  

 
      

  

                                                                                                                                        (3) 

Energy due to torsional strain 

Intramolecular rotations defined as torsional or dihedral angles require energy. These 

describe the degrees of freedom in a molecule. The dihedral angle is expressed from 1-4 

atoms. The presence of barriers to rotation around these chemical bonds is fundamental to 

understanding the structural properties of molecules and conformational analysis. These 

torsional energies are defined through cosine expansions.14 

       
  

 
             

  

 
              

  

 
              

                                                                                                                                               (4) 
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Φ is the torsion angle between the atoms of interest; V refers to the barrier height. This value 

gives qualitative information of the relative barriers to rotation. The phase factor is 

represented by γ, this determines exactly where the torsion angle passes through the absolute 

minimum value. 

 

The improper torsion motion is sometimes alternatively shown as the equation ‘out-of-plane’ 

bending energy. This is the equation used to select the correct geometry or the chirality of 

atoms. This type of bonding strain is defined by four atoms i, j, k and l. The middle atom j is 

covalently bound to the other three atoms i, k and l. The improper angle is thus defined as the 

angle between jl and the plane (ijk). This is shown in figure 4.1 

 

 

Figure 4.2: Improper torsion around a four atom species 

 

 

                
  

                                                                                                                                              (5) 
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4.2.2 Non bonded functions 

 

Completing the total overall energy equation  it is important to incorporate the non-bonding 

forces that molecules also adhere to, these are mainly van der Waal (vdw) and electrostatic 

potentials. The non-bonded interations (υnb) consists of the van der Waal forces defined from 

the short ranged separations between the atoms (υsr) the electrostatic potentials are defined 

from the long ranged weak attractions (υcoulomb). 

 

                    

                                                                                                                                        (6)                                                                        

The short ranged, Lennard-Jones potential is a derived function based upon a non-bonding 

interaction approximation between a pair of atoms. This potential relates to the short ranged 

van der Waal forces shown in the above equation. There is a repulsive component (r
-12

) and 

an attractive component (r
-6

). The components together illustrate the behaviour of a pair of 

atoms that repel each other at short distances and attract each other at longer distances. In 

equation 7, υsr is the potential energy that exists between the two non-bonded atoms. 

Internuclear separation is defined as r. The coefficient A and B determine the depth and 

location of the energy minima. The mathamatical expression is shown as: 

 

 

                    

     
 

   
 

 

  
 

                                                                                                                                                               (7) 

 

Figure 4.3: Van der Waal energy function. 
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The Lennard-Jones potential is highly dependent on distance. At a certain point non-bonded 

atom pairs are not believed to contribute to the atom pair interactions as they exceed a finite 

distance where the forces that govern the variables of the principle are negligible.  

 

                    

          
     

     
  

                                                                                                                                       (8) 

The electrostatic interaction component of the non-bonded energy equation allows the 

calculation of long ranged potentials that the Lennard-Jones is not feasible for. This is based 

upon Coulombs law. q is defined as the point charges on the atoms, ε0 is the permittivity of 

free space and (4πε0)
-1 

is a Coulomb constant. These force field calculations will be utilised in 

the later sections. 

4.3  Protein sequence analysis and structure prediction 
 

Section 4.1 discussed the theoretical basis of MM as used in the molecular modelling  

Accelry’s software suite. These are used to determine a wide array of information from 

molecular conformations to the various interactions between host and guest. The application 

these methods will be applied during the techniques of comparative modelling and 

conformational analysis. 

 

The key protein that we are working with is the tetramer of rat Kv1.1. The issue with analysis 

of the key interaction sites of this protein is it has not been crystallised, as membrane proteins 

are difficult to express in soluble form, purify and crystallise. As a result a three dimensional 

(3D) structure of the target Kv1.1 protein was developed from the protein sequence and the 

known Kv1.2 structure that has been successfully crystallised.16,17   
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4.3.1 Comparative Modelling overview 

 

Homology modelling techniques use the templates of crystallised proteins to aid the 

prediction of the conformations of other proteins i.e.  (Kv1.2; 2A79)16 from the protein data 

bank (pdb) can be used to develop homology models18 of Kv1.1. The resolution of the crystal 

structure from the pdb Kv1.2; 2A79 is 2.9 Å.17 

 

 

Figure 4.4: Homomeric crystal structure of 2A79 from pdb, generated using pymol software.
19
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Figure 4.5: Theoretical image of 2A79 tetramer from pdb.
16

 

 

 When determining if the proteins have a high sequence identity, the target sequence from the 

uniprot code20 for rat Kv1.1 was aligned against the template rat sequence Kv1.2;2A79. The 

percentage sequence identity was identified using the pairwise alignment function in 

Accelrys.  

The comparative modelling undertaken followed a step by step process consisting of initial 

sequence alignment, the generation of spatial restraints, the construction of the homomeric 

model, constructing the tetramer model and evaluation of the models quality.18,21 

Once aligned, the template coordinates and a series of spatial restraints are employed in 

conjunction with an optimisation procedure to derive a structure of the target protein. Typical 

spatial resraints involve the distribution of distances between Cα atoms, residue solvent 
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accessibilites or side chain torsion angles. The restraints are expressed as probability density 

functions (pdf) and are combined to give a molecular function, which is then optimised.18 

The ability to then separate appropriate models of protein structures from incorrect models is 

of great importance for protein structure prediction methods. The conformation of an amino 

acid can be classified according to the torsion angles of its rotatable bonds Fig.4.5. There are 

three backbone torsion angles labelled ϕ (angle about the Cα-N bond), ψ (angle about the Cα-

C bond) and ω (the amide bond). 

 

Figure 4.5: There are three backbone torsion angles labelled ϕ (angle about the Cα-N bond), ψ( angle 

about the Cα-C bond) and ω( the amide bond).
13 

 

 

A Ramachandran plot22-24 is a contour map of angles as the backbone torsions ϕ and ψ are 

rotated. An amino acid in a sterically favourable conformation will have ϕ, ψ angles in set 

ranges if in an α helix or β strand. Ramachandran plots also indicate regions of 

stereochemical conflict (disallowed regions), which corresponds to conformations where 

atoms in the polypeptide come to close to one another. Other validation tools include ERRAT 

and Prosa which indicate potential problem regions in the modelled protein structure.25,26 

4.4 Conformational searches 
  

The properties of a molecule and the interactions it can form can be highly influenced by the 

conformation it possesses. The ligands are prepared first, by enumerating stereoisomers, 

tautomers and add hydrogens. The energetics of any given molecule may possess multiple 

local minima along with its global minimum. The goal of a conformational search is to 

sample the energy surface of the molecule and to recognize the energetically favoured 

conformations. There are two methods that can be used to do this and the choice of which to 

use is highly dependent on the number of rotatable bonds. These can be categorised into 

systematic and random conformational searches. 
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4.4.1 Systematic conformational searches  

 

Systematic conformational searches is a technique conducted to explore the rotatable bonds 

in a molecule systematically through 360 
o
 using a fixed increment i.e. 15 

o
,30 

o 
,90 

o
, etc. 

When generating the various conformations a number for factors including associated 

sterics27 with the conformation and energy are considered.28 The high energy conformations 

are discarded. The final step involves the minimisation of the conformations. This type of 

method is used for molecules that possess ligands with 4 or less rotatable bonds.  

4.4.2 Random conformational searches  

 

Random conformational searches are used for molecules that possess more than four rotatable 

bonds. Randomising the torsions i.e. 10 
o
, 25 

o
, 50 

o
, 105 

o
 allows the computation to be 

significantly reduced. Large molecules with more rotatable bonds generate a high number of 

conformers using a systematic approach require too much computing power. Combinatorial 

explosion is the term used to explain the generation of high amounts of data to the degree that 

the system cannot handle. Using the equation below, A is the torsion angle at 15 
o
 increments 

and T is the number of rotatable bonds i.e. five. The number of conformations is 7,962,624 

 

   
   

 
   

                                                                                                                                       (9) 

4.5 Molecular docking: 
 

The turret region of Kv1.1 was defined as per the residues highlighted in Fig 4.6. All atoms 

within 4Å of these residues were selected and the combination was utilised to define a 

binding sitesphere. The CDOCKER algorithm12 is a grid-based molecular docking method 

that employs CHARMm. The channel is held rigid while the ligands are allowed to flex 

during the refinement. Ligand placement in the active site is performed using a binding site 

sphere. Random ligand conformations are generated from the initial ligand structure through 

high temperature molecular dynamics, followed by random rotations. The random 

conformations are refined by grid-based (GRID 1) simulated annealing and a final grid-based 

or full forcefield minimization. The docked ligands were minimized in the presence of the 

channel (in situ). Residues with atoms inside the specified sphere were allowed to minimize. 
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In a subsequent flexible docking approach - a number of protein conformations were 

generated differing in side chain conformations in the turret region and the ligand poses 

rescored using the CDOCKER protocol shown in figure 4.6. 

 

 

Figure 4.6: Image of comparative model for Kv1.1 Tyr379 residues in each chain are indicated (in 

yellow). Turret region includes residue 351-355 in each chain. 
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The geometric quality of the backbone conformation, the residue interaction, the residue 

contact and the energy profile of the structure are well within the restrictions established for 

reliable structures. 

The compounds were allowed dock into the region shown in figure 4.7. The region ranges 

from residue Glu353-Lys386 

 

Figure 4.7: Potential binding site for molecule-protein interaction highlighted by the sphere. 
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4.6 Results and discussion 
 

4.7 Application of the porphyrin series to the Kv1.1 Homology model. 

 

All porphyrins (13-21) that were synthesized, were modelled and docked into the 

comparative model of Kv1.1. The porphyrin 15 was the best porphyrin derivative that 

inhibited the Kv1.1 channel in vitro. 

 

Figure 4.8: Docking model of compound 15 into the homology model of Kv1.1.    

Shown in figure 4.8 is the functionalised porphyrin 15 docked into the constructed Kv1.1 

homology model. The porphyrin scaffold is spatially and rigidly restricted from entering into 

the deep inner pore regions that small 4-aminopyridine molecules can bind into. It is because 

of this that these large macrocycles can be compared to toxins such as snake venom 

previously discussed in detail in chapter one.29-31 There are two subsequent results that were 

obtained from the in silico interaction between the porphyrin and the channel. The binding 

energy (Cdocker function) and more importantly, the types of interactions occurring between 

the inhibitor and protein. The Cdocker energy for porphyrin 15 was the most effective 

amongst the compounds that were screened experimentally biologically active in Kv1.1 

channels.  
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The Cdocker energy gives an estimate as to how efficiently the molecule binds to the protein 

in a particular pose. The mechanism of how these proteins inhibit is too complex for the type 

of docking simulations we are limited to, higher calculations such as QM can offer this but 

due to computational expense these were not applied.  

The principal interactions observed by the docking study on porphyrin 15 included hydrogen 

bonding with the Asp377 residue on all chains of the tetramer protein. A strong hydrogen 

bonding interaction between the amide bond region of the porphyrin and the alcohol of 

Tyr375 were key interactions that was shown from the models. This is an important site in 

the selectivity filter region. Ader et al32 states that a hallmark of the conductive conformation 

of the selectivity filter is a regular alignment of the backbone carbonyls. Strong hydrogen 

bonding can distort the carbonyl of specific residues thus causing nonconductive inhibition to 

occur. π-π interactions are also present with the inner pore amino acid residue Tyr379. It 

could be the combination of all these interactions collectively causing the effect on the 

sensitive region in the protein. The ligand-plot shown in figure 4.4 indicates these specific 

interactions.  

Notice the large number of interactions that occur with the porphyrin 15 and protein, there are 

interactions from glutamic acid (Glu353) in the turret region ranging to valine (Val381) 

located two residues past the selectivity filter/inner pore region.  This sequence of 28 amino 

acids, could indicate an issue. Numerous interactions over a wide array of amino acids could 

be the cause for the lack of selectivity in the channels when the porphyrin molecules were 

tested. The lack of selectivity could be due to the fact that all the Kv1 channels are highly 

similar in this region as shown in figure 4.1. The pore region is highly conserved throughout 

all of the Kv1 channels, the only variations are observed in the turret region, small variations 

in the pore helix and the selectivity filter/inner pore region. If the molecule covers a wide 

area it has the potential to interact with more residues that is common to all channels rather 

than interact with the minority of residues that is unique to the individual channels. 
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Figure 4.9: Ligand-plot of 15 with Kv1.1 homology model. 
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Figure 4.10: 3D resolved image of the interaction between 15 and the Kv1.1 homology model 

generated in Pymol.
19 

Table 4.2: Table of Cdocker energy of porphyrin series. 

Porphyrin -Cdocker energy 

16 40.8 

20 38.8 

17 38.6 

15 33.5 

21 32.6 

13 28.3 

14 26.1 

18 13.6 

19 12.7 

 

In Table 4.2, the list of associated binding energies that occur between the interaction of a 

molecule and the Kv1.1 homology model. The modelling scores this energy based upon 

overall residue interaction, it fails to isolate and score the energy based upon key residue 

interactions such as Tyr 375, Gly376, Asp 377, Met 378 and the most important Tyr 379 and 

this is its major limitation. These key residue interactions would be directly related to 
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bioactivity.32 The Cdocker energy should be used to indicate how the molecule has an affinity 

towards the region of the protein and not to predict a direct correlation between any 

modifications in side group to exact bioactivity.  

Porphyrins 13 and 14, the ethyl and propyl porphyrin derivatives were predicted to give 

similar docking energies to 15, these three compounds were the only bioactive porphyrins 

that showed inhibition of the Kv1.1 channel when experimentally tested using 

electrophysiology methods. From the docking study we expected these three compounds to 

be the best as the biological studies proved these findings. This was not consistent however, 

porphyrins 16, 20 and 17 were observed to computationally superior to 13, 14 and 15. 

Electrophysiologically 16, 20 and 17 proved to be insensitive to the Kv1 channels. This was 

the limitation of our model.   

 

Cdocker, the original docked poses only uses a static protein model i.e one snapshot; To 

refine this, the side chains of some residues were then allowed to be flexible to optimise key 

local interactions. This is limited flexibility of the region,  it works effectively well for some 

systems but might not always be appropriate if large conformational changes are associated 

with binding. 

 

To examine conformational changes of the protein molecular dynamics simulations would be 

performed. The in silico simulations are primarily applied to indicate how and where the 

molecule interacts. As discussed in chapter two when the hydrogen bonding that is 

experienced by the secondary amide is removed and replaced by an ester or tertiary amide the 

hydrogen bonding that has been shown at Tyr375 is lost. We see this in figure 4.8, the only 

significant interactions that occur is with porphyrin 17 which interacts with the four Asp 377 

tetramer residues  and one Tyr 379, the rest of the residues were shown to have negligible 

effects.   
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Figure 4.11: Ester functionalised porphyrin 17 docked with the rat Kv1.1 model.  

 

Figure 4.12: The ligand-plot between the porphyrin 17 and the Kv1.1 tetramer comparative model. 

Asp 377 and 17 are the primary interactions observed. 
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There were vast differences with porphyrin 17 and 13. As shown in figure 4.12, the side 

chain alkyl ammonium group enters into the protein and has a completely different 

orientation as a lot of distortion is observed. 

 

Figure 4.12: Amide functionalised porphyrin 13 docked with the rat Kv1.1 model. 

 

Figure 4.13: Ligand-plot of porphyrin 13. 
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The deviance between experimental and the theoretical results could be the lack of specific 

HB and π-π interactions between the molecules and the proteins key selectivity filter and 

inner turret residues. The ester interacts with the Asp 377 residues but so does porphyrin 13. 

The difference is the amide has a higher number of interactions with Tyr 379 compared to the 

ester derivative which is believed to be the most important residue associated with 

conductivity in the channel.   

The modelling shows porphyrin 17 has a docking energy significantly better than its amide 

counterpart 13 however experimentally this is the opposite. Porphyrin 13 inhibits Kv1.1 at 

45% at 10 µM where the ester shows negligible inhibition. The main distinction between 

porphyrins 15 and 13 against 17 is there is no predicted hydrogen bonding to the Tyr375 or 

Tyr 379 residues which is highlighted in figure 4.12. This is a significant finding as the 

difference in inhibition and non-inhibition between the amide/ester seems to be directly 

related to the HB/ π-π interactions at these residues. The ligand-plot shown in figure 4.12 of 

the ester porphyrin shows a high affinity to dock to Asp377. It is evident from the results that 

to cause inhibition requires more than just this interaction. The interaction between the alkyl 

ammonium and Asp377 may only serve as an anchor for the molecule and the other regions 

of the molecule may interact with other important residues. This again would link into the 

findings by Ader et al32, distorting the amino acid residues in the vicinity of the selectivity 

filter stops the conductance of current.  

 

Porphyrin 16, computationally has an excellent Cdocker energy but shows negligible 

inhibition when biologically tested. The limitation of the software seems to be that every 

interaction gives a score however every interaction is not associated with biological 

inhibition. The high number of interactions due to the size and the space the molecule 

occupies is showing false potential. 

Porphyrins 18 and 19, these compounds possess tertiary terminal amines. These 

computationally, docked extremely poor and also had negligible bioactivity. This was 

expected and was shown due to the poor interactions with Asp377 due to steric restraints. 

This is a further indication that Asp377 is important to position the potential inhibitor in the 

region where key inhibition residues reside.  
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Table 4.3: Porphyrin binding pose and interaction with the amino acid residues of the rat Kv1.1 

homology model. 

Porphyrin  (compound 
number) 

Binding pose Interaction  

13 

 

HB with Asp377 (all chains) 

HB with Pro 380 (1 chain) 

HB with Tyr 379 (1 chain) 

 

Pi interaction: Tyr379 

14 

 

HB with Asp377 (all chains) 

HB with Pro380 (1 chain) 

 

Pi interaction: Tyr379, Trp364 

15 

 

HB with Asp377 (all chains) 

HB with Pro380 (1 chain) 

HB with Tyr375 (1 chain) 

HB with Asp 361 (1 chain) 

 

Pi interaction: Tyr379, Trp364 

16 

 

HB with Asp377 (all chains) 

HB with Pro380, Val (1 chain) 

Tyr379 (1 chain) HB with 

Asp361 (1 chain) Glu353 (2 

chains), Val 381 (1 chain) 

 

Pi interaction: Tyr379, Trp364 

17 

 

HB with Asp377 (all chains) 

 

Pi interaction: Tyr379 
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18 

 

HB with Asp377 (all chains) 

 

Pi interaction: Tyr379, Phe356 

19 

 

HB with Asp377 (all chains) 

 

Pi interaction: Tyr379, Phe356, 

Trp364 

20 

 

HB with Asp377 (all chains) 

HB with Pro380 (1 chain) 

HB with Glu 353 (2 chain) 

 

Pi interaction: Tyr379, Trp364 

21 

 

HB with Asp377 (3 chains) 

HB with Glu353 (2 chains) 

  

 

Pi interaction with Tyr379 
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4.8 Molecular modelling of an alternative scaffold 
 

The molecular modelling of the porphyrin series yielded valuable information concerning the 

approximate binding affinity energy the molecules had for the homology model of the Kv1.1 

channel. More importantly, it showed the types of interactions that could be crucial for the 

inhibition of Kv1.1. The literature confirms a number of these interactions were essential for 

inhibition of the channel but the modelling has further aided in our understanding by the 

experimental SAR study performed with the compounds that were modelled. The modelling 

on the porphyrin series suggests that the lack of selectivity throughout the channels could be 

a result of the large number of interactions the porphyrin has with non-essential amino acid 

residues that are consistent in all Kv1 channels. Targeting selectivity amongst the channels 

should start by reducing the size of the scaffold to which the side arm alkyl ammonium 

groups are attached. The size is an issue because making it too small, the inhibitor would 

enter deep into the inner pore region of the potassium channel and similar to 4-aminopyridine 

the selectivity would be lost. The goal is to model an inhibitor which is 1) large enough to 

avoid entering the deep inner pore region of the protein, 2) target the essential amino acid 

residues in the vicinity of the selectivity filter/inner turret region 3) and abide by Lipinski’s 

rules. 

In the previous chapter we unsuccessfully attempted the synthesis of calix[4]pyrrole 

molecules. However, in these attempts an efficient synthesis of the corresponding 

dipyrromethanes was achieved. The scaffold of the dipyrromethane possesses characteristic 

regions that can have hydrogen bonding and π-π stacking interactions. Proposed molecules 

were constructed based upon the dipyrromethanes and were then modelled accordingly to the 

method used for the porphyrin figure 4.14.       

The dipyrromethane molecules shown in figure 4.9 were modelled using the same homology 

model of Kv1.1 as previously used with the porphyrins. The first interesting feature that these 

molecules had was their higher affinity to the Kv1.1 channel as their Cdocker energy scores 

were almost double that of any of the porphyrin molecules modelled. 
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Figure 4.14: The di-tolyldipyrromethanes that were modelled 31-38. 

This is an interesting result solely from a binding perpective however, as observed with the 

porphyrins the true potential to inhibit would be related to the frequency and types of key 

interactions surrounding the selectivity filter region and inner turret residue, Tyr 379. 

Table 4.4: Table of Cdocker energies of the dipyrromethane derivatives 31-38 sorted by score.   

Dipyrromethane -Cdocker energy 

32 84.6 

31 80.8 

38 75.7 

33 74.3 

36 72.2 

35 71.3 

34 71.2 

37 41.2 

   

 



142 
 

 

Figure 4.15: The propyl di-tolyldipyrromethane 32 docked into the rat Kv1.1 model. 
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The highest scoring dipyrromethane was shown to be compound 32 shown in figure 4.15. 

When modelled the results that were obtained were extremely interesting. The first 

observation is the molecule binds to the outer region of the protein. This is the type of 

binding that is required to mimic the venom toxins such as DTX that can inhibit these 

channels. By binding to the outer region and inserting reactive groups into the pore it does 

not possess the same characteristics of 4-aminopyridine showing that this scaffold is 

promising as a new lead target molecule.  

The main interactions that 32 had with the homology model of Kv1.1 were the hydrogen 

bonding of Gly374 at all sites of the tetramer. The key interaction with Asp377 was also 

observed, the amide bond of the molecule showed direct hydrogen bonding with the alcohol 

of the amino acid residue Tyr375 and there was a π-π interaction between the inner pore 

residue Tyr379. A combination of all these interactions, the hypothesis proposed earlier by 

Ader et al that distortion of the selectively filter residues coupled with our theory, distorting 

the inner turret Tyr 379, could be plausible for 32. Figure 4.16 highlights the interactions on 

the ligand-plot. Another promising feature observed is that the number of interactions of 32 

with the channels is limited across 5 amino acid residues in the tetramer, these are Gly374-

Tyr379. The number of interactions is greatly reduced compared to the porphyrins which 

showed potential interactions across 28 amino acid residues. Thus, this new proposed 

scaffold could improve highly on the selectivity to between channels. 

 

Figure 4.16: Ligand-plot of compound 32 with the rat Kv1.1 model 
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The next dipyrromethane in the list of energies was 31. This dipyrromethane was the ethyl 

derivative to the propyl derivative 32. The interactions of compound 31 are similar to that of 

32 however it appears that the interactions with the key amino acids which we believe to be 

Gly374, Thy375, Asp377 and Tyr379 are greater. The four Gly374 are interacting via HB 

with 31 along with the Asp377 and Tyr375. Shown in figure 4.17, the ethyl side chain seems 

to be the correct fit to optimise maximum interaction with Asp377 as the amide and 

protonated amine have total interaction whilst the other side arm amide can still undergo HB 

with Tyr375.  The π-π interaction between the compound and Tyr379 distributed throughout 

the tetramer appears to be highly active with both the toluene component of the molecule and 

the pyrrole region of the molecule. This type of finding gives enough theoretical evidence 

that this molecule should be targeted as a legitimate lead structure for the probing of these 

Kv1 channels. 

 

 

Figure 4.17: The ligand-plot of the ethyl ditolyldipyrromethane derivative 31 interacting with the rat 

Kv1.1 model. 
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Figure 4.18: 3D model of the ethyl ditolyldipyrromethane 31 derivative interacting with the Kv1.1 

homology model. 

 

Dipyrromethane 33, the butane derivative, gave interesting results compared to the other two 

derivatives 31 and 32. The observed HB and π interactions that were so prevalent in the ethyl 

and propyl derivatives (31, 32) are not observed with 33. Figure 4.19 and 4.20 for compound 

42 does not show the HB between the amide of the dipyrromethane and that of the Tyr375 

residue. This is interesting as the ester from the porphyrin did not show this interaction either; 

experimentally the ester was shown not to be bioactive. The ligand-plot appears to show that 

a large percentage of the molecule is not in any direct region where the proposed key amino 

acids reside. If the models are correct, these results should correlate with biological results. 
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Figure 4.19: 3D image of the interaction between 33 and Kv1.1 homology  model. 

 

Figure 4.20: The ligand-plot of the butane ditolyldipyrromethane 33 and the rat Kv1.1 model. 
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The top three molecules (31-33) have highlighted the types of interactions observed when the 

alkyl chain length is extended. The changes in interaction could also be witnessed if the 

toluene substituent is replaced by a phenyl group. The implications of replacing the methyl 

group with a hydrogen has a direct effect on the electronics of the π system in the aromatic 

ring and also on sterics. The sterics of the molecule has two effects when binding to the 

protein; 1) is the space the methyl group occupies can have a positive or negative effect and 

2) removing the methyl group from the toluene substituent can change the angle on the 

central quaternary carbon, thus changing the overall angle to which the rest of the regions of 

the molecule interact.   

Dipyrromethane 38 was simulated accordingly with the Kv1.1 homology model that has been 

shown for 31, 32 and 33. The binding of this molecule is similar to that of its toluene 

counterpart 31 except there is a negligible interaction with Tyr379. All expected interactions 

with Tyr375 and Asp377 are shown in figure 4.21. The main distinction between the 

interactions in compounds 38 and 31 is in 38 only one of the amides is utilised in HB and the 

π interactions are significantly weaker.  

 

Figure 4.21: The ligand-plot of the ethyl diphenyldipyrromethane 38 interacting with the rat Kv1.1 

model. 
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Figure 4.22: 3D Pose of 38  docked into the  homology model of rat Kv1.1. 

It was mentioned that the π interactions between 38 and Tyr379 are weak. This interaction is 

shown in figure 4.22, the phenyl component of the dipyrromethane and the Tyr379 residue 

are perpendicular to one another. Efficient π-π interactions are optimum when the orbitals are 

parallel to give optimum orbital overlap.  
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Table 4.5: Di-tolyldipyrromethane binding poses and interaction with the amino acid residues of the 

rat Kv1.1 homology model. 

Kv1.1 Pose description Predicted HB and π 

interactions. 

31 

 

 

HB Gly374 x 4 chains; 

Tyr375 x 4 chains; Asp377 

x1 chain 

Pi: Tyr379 x 2 chains 

32 

 

 

HB: Gly374 x 4 chains; 

Tyr375 x 4 chains; Tyr379 x 

1 chain; Asp377 x1 chain; 

Gly376 x 1 chain 

Pi: Tyr379 x 2 chains 

33 

 

 

HB Gly374 x 4 chains; 

Asp377 x 1 chain 

Pi: Tyr379 x1 chain 
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38 

 

 

HB Gly374 x 4 chains; 

Asp377 x 2 chains; Tyr375 

x4 chains 

No π interactions 

 

34 

 

 

HB Gly374 x 4 chains; 

Asp377 x 2 chains; Gly 376 

x 2 chains; Tyr375 x2 

chains 

Pi: Tyr379 x 1 chain 

35 

  

 

HB  Asp377 x 1 chain; Gly 

376 x 3 chains; Tyr375 x4 

chains 

Pi: Tyr379 x 3 chains 

36 

 

 

HB  Thr372 x 2 chains; 

Val373 x 4 chains; Gly 374 

x 4 chains; ; Asp377 x 1 

chain; Gly 376 x 3 chains 

Tyr375 x4 chains 

Pi: Tyr379 x 3 chains 
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37 

 

 

HB Gly374 x 3 chains; 

Tyr375 x 3 chains; Asp377 

x2 chains 

Pi: Tyr379 x 1 chain 

 

4.9 Modelling of a fourfold functionalised scaffold 
 

The above di-tolyldipyrromethane derivatives showed potential to inhibit the Kv(1.1)4 

biological target based upon the types and number of interactions with key amino acid 

residues. A number of other derivatives were also modelled and are shown in figure 4.23. By 

incorporating alternative functional groups it may be possible to enhance HB and π 

interactions within the dipyrromethane scaffold. 

 

Figure 4.23: Plausible compounds 39-41 for enhanced interaction.     
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The tetra-functionalised amino derivatives 39-41 (figure 4.23-4.29), when modelled in the 

Kv(1.1)4 homology model, showed promising results with an increase in Cdocker energy, 

however as described previously this energy does not directly correspond to bioactivity but it 

does show that the molecule has a strong affinity for the region where the key amino acids 

reside. The energies for these tetra functionalised molecules have rose to ~120 kcal/mol from 

85 kcal/mol shown for the ditolyldipyrromethanes and 40 kcal/mol for the porphyrins. Shown 

in figure 4.25-4.29 are the ligand-plots for 39, 40 and 41 derivatives respectively. The key 

features from all of these interaction maps are that they correspond to the fundamental theory 

that we observe interactions in the selectivity filter region with Gly374, Tyr375, Gly376, 

Asp377 and inner pore Tyr379. The propane and butane derivatives also interact with the 

residue Glu353 in the outer turret region.     

 

Figure 4.24: 3D pose of 39 with the rat Kv1.1 model. 
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Figure 4.25: Ligand-plot of 39 interacting with the rat Kv1.1 model. 

 

 

Figure 4.26: 3D pose of 40 interacting with rat Kv1.1 model. 
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Figure 4.27:  Ligand-plot of 40 interacting with rat Kv1.1 model 

 

 

Figure 4.28: 3D pose of 41. 
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Figure 4.29: Ligand-plot of 41 with the rat Kv1.1 model. 
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4.10 Experimental 
 

Protein structures were downloaded from the protein databank (PDB: 2A79, 2.9Ȧ16 this was 

the crystal structure of Kv1.2. Accelrys Discovery Studio 3.5 was used to prepare the protein 

structures (add missing atoms, correct connectivity, correct names, etc.) For ligands, Accelrys 

Discovery Studio 3.0 was used to enumerate tautomers, stereoisomers and conformations. 

 

The protein sequences (for Kv1.1, Kv1.3, Kv1.4, Kv1.5 and Kv1.6) obtained from uniplot 

were aligned to the template of known structure (PDB: 2A79) using Discovery Studio 3.0 and 

100 protein structures were built for each alignment. The Modeller software implemented 

comparative protein structure modelling by satisfying spatial restraints18, 21. The alignment is 

used to construct a set of geometrical criteria that are converted into probability density 

functions (PDFs) for each restraint. A global optimization procedure refines the positions of 

all heavy atoms in the protein.  

The PDFs include the following: 

(1) Homology-derived restraints on distances and dihedral angles in the target sequence, 

taken from its alignment with the template structure(s) 

(2) Stereochemical restraints such as bond length and bond angle preferences, obtained from 

the CHARMM-22 molecular mechanics force field 

(3) Statistical preferences for dihedral angles and nonbonded interatomic distances, obtained 

from a representative set of known protein structures21. 

PDFs restrain Cα–Cα distances, main-chain N–O distances, and main-chain–side-chain 

dihedral angles. The three-dimensional model of a protein is obtained by optimization of 

molecular PDFs such that the model violates the input restraints as little as possible 

The best model was selected using a combination of the Modeller discrete optimized protein 

energy (DOPE) score and a selection of protein assessment tools. Profiles 3D (Accelrys 

Discovery Studio 3.0) checks the validity of a protein structure by measuring the 

compatibility score of each residue in the given 3D environment33. PROCHECK34 was 

employed to perform a stereochemical check, with every amino acid being classified as 

having a favoured, additionally allowed, generously allowed, or disallowed conformation. 

ERRAT25 counts the number of nonbonded interactions between atoms (CC, CN, CO, NN, 
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NO, and OO) within a cutoff distance of 3.5 Å and yields an overall quality factor for each 

structure, which is expressed as the percentage of protein for which the calculated error value 

falls below a 95% rejection limit. Normally accepted model structures produce values above 

50, with a higher score indicating that the model has a better ratio of nonbonded interactions. 

Procheck and ERRAT validation were accessed at (http://swift.cmbi.kun.nl/WIWWWI). The 

final model selected yielded the overall best performance across the validation tools, coupled 

with a structural analysis of the binding pocket. 

Tetramer models were developed using Pymol35 and the biological assembly of the 

Mammalian Shaker Kv1.2 potassium channel (PDB:  2A7917) structure 

 

Table 4.5: Quality of the template and generated homology model as checked by Procheck and Errat. 

Ramachandran plot qualities show the percentage (%) of residues belonging to the core, allowed, 

generally allowed and disallowed region of the plot. The interaction energy per residue was also 

calculated by the PROSA2003 program. The Prosa z-score indicates overall model quality. 

 

 

Validation of the models built was carried out using Ramachandran plot calculations 

computed with the PROCHECK program. Ramachandran plot qualities show the percentage 

(%) of residues belonging to the core, allowed, generally allowed and disallowed region of 

the plot. The φ and ψ distributions of the Ramachandran plots of non-glycine, non-proline 

residues are summarized in Figure 1 and Table 1. Altogether, for the Kv1.1, Kv1.4 and Kv1.6 

models >98% of the (non Gly or Pro) residues were in favoured and allowed regions. 

 

 Procheck – Ramachandran plot quality Prosa3D Errat Score 

 Residue Fully 

allowed  

% 

Additionally 

Allowed % 

Generously 

Allowed % 

Disallowed 

% 

  

Template 

V1.2 

658 75.91 20.45 2.08 1.56 -10.04  96.085 

V1.1 636 88.69 8.60 2.23 0.48 -1.12 81.126  

http://swift.cmbi.kun.nl/WIWWWI
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Chapter 5: The synthesis and bioevaluation of dipyrromethanes 
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5.1 Objective of chapter 
 

The interpretive data obtained from the molecular modelling in chapter 4 showed the specific 

binding affinities and the potential biological activity that the functionalised di-

tolyldipyrromethane scaffold possesses. The interactions observed amongst known key amino 

acid residues in the selectivity filter and inner turret region make these compounds an 

extremely interesting series of molecules to probe the protein. This chapter involves the 

various synthetic strategies employed to reach the target molecules, the subsequent biological 

testing of the target compounds and the validation of the molecular modelling as a feasible 

tool to predict efficient inhibitors.  

 

5.2 Results and Discussion    
 

5.3 Synthesis of ditolyldipyrromethane target compounds 
 

The synthesis of the dipyrromethane scaffold was prepared via the method by Turner et al1 

discussed in chapter 3 to give compound 29 in 50% yield (scheme 5.1). The variation to the 

method was 4,4 dimethylbenzophenone replaced benzophenone as the ketone. The reaction 

solvent was anhydrous MeOH rather than EtOH and the reaction period was 5 days rather 

than 7 days.   

 

Scheme 5.1:Preparation of 29. 
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There is another method to synthesize these dipyrromethane scaffolds that may offer the 

potential to derivatize the para position on the phenyl ring. The alternative method is a 

Grignard synthesis2 shown in scheme 5.2. 

 

Scheme 5.2: Grignard synthesis of dipyrromethanes. 

The synthesis of the dipyrromethane by the Grignard method uses the methyl ester derivative 

of the pyrrole molecule. To this freshly prepared tolyl magnesium bromide was added in high 

molar excess to ensure the conversion to the carbinol derivative was obtained. When isolated, 

the carbinol was further condensed with distilled excess pyrrole and catalytic BF3.(OEt)2 to 

form an instant precipitate which was isolated as the target scaffold.    

The comparative dipyrromethanes synthesized from the Grignard method against the 

condensation method give higher yields and vastly superior reaction completion rates. The 

disadvantage is extremely dry conditions are required and the quantity of pyrrole required for 

the formation of the dipyrromethane from the carbinol is high, resulting in high quantities of 

pyrrole waste. 
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5.3.1 Functionalization of ditolyldipyrromethane scaffold with TFAA 

 

The principle behind the attempted functionalization of the dipyrromethane is that the 2’ 

position of unmodified pyrrole has a high degree of electron density. The electron density is 

vastly distributed in the 2’ position vs. the 3’ position. Because of this electrophilic 

substitution is selectively favoured for the 2’ position. 

 

Scheme 5.3: Preparation of 42.    

 

The ditolyldipyrromethane scaffold (1 eq) was partially dissolved in anhydrous CH2Cl2 with 

a catalytic quantity of DMAP. This solution was chilled to 0 
o
C and stirred under an argon 

atmosphere. The dropwise addition of trifluoroacetic anhydride (2.5 eq) immediately 

dissolves the partially dissolved dipyrromethane in solution. The reaction was allowed stir at 

room temperature once all the TFAA was added. The rate of reaction was monitored by TLC 

against the starting material using a solvent system of (95:5) hexane: ethyl acetate. The 

reaction has a quick conversion rate in CH2Cl2 as full conversion is observed after 20 

minutes. After sufficient aqueous washes with sodium bicarbonate, water and brine, the 

organic solvent was removed in vacco and 42 was obtained in quantitative yield shown in 

scheme 5.3. Compound 42 was fully analysed by 
1
H, 

19
F and 

13
C. 

 

The reaction was also attempted using diethyl ether and acetonitrile as solvents and the 

results  shown in table 5.1. Both of these methods were unsuccessful as a mix of mono and 

disubstituted products were obtained after long reaction periods. Heating of the reaction did 

not favour the formation of 42 as mono substituted product was still observed by TLC. The 

efficiency of the reaction in CH2Cl2 was superior to both alternative solvents. 
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Table 5.1: Effects of solvent and temperature on the substitution of the ditolyldipyrromethane 

scaffold.  

Solvent Temperature Mono/disubstitution 

mix after 24 hours 

Exclusive 2,2 

disubstitution (42) 

Diethyl ether 0oC Yes No 

Diethyl ether RT Yes No 

Diethyl ether Reflux Yes No 

Acetonitrile 0oC Yes No 

Acetonitrile RT Yes No 

Acetonitrile Reflux Yes No 

Dichloromethane 0oC-RT No Yes 

 

5.3.2 Direct coupling via the TFAA modified dipyrromethane 
 

An attempt was made to prepare 43 by direct coupling of the side chain derivative N-Boc 

ethylenediamine with 42  as shown in scheme 5.4. The reaction was attempted in CH2Cl2 

using TEA as a catalyst. The reaction did not proceed at room temperature nor upon heating 

with long reaction times. No starting material was converted to product nor by-product as 

shown by TLC. The trifluorocarbon appears to be a poor leaving group under the conditions 

used. The pKa of the CF3
-
 species is ~28 (in H2O). The pKa of the TEA catalyst is ~10.8 and 

the amine similar. The reaction conditions for amide formation with the CF3 group would be 

difficult via this method as the pKa’s are relatively close. As a result, the trifluorocarbonyl 

must be hydrolysed to the corresponding carboxylic acid to introduce the required side chain 

derivatives. 
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Scheme 5.4: Attempted preparation of 43.  

5.3.3 Hydrolysis of the functionalized dipyrromethane to 2,2 dicarboxyl-

ditolyldipyrromethane 
 

Dipyrromethane 42 (shown in scheme 5.5) was hydrolysed by refluxing the compound in a 

mix of aqueous NaOH and EtOH overnight. After the reaction had gone to completion the 

mother liquor was reduced to approximately a third of its volume. The pH was carefully 

acidified by the dropwise addition of concentrated HCl until full precipitation of the free acid 

44 was observed. The precipitate that formed was a yellow/beige colour and was isolated by 

vacuum filtration and dried in the vacuum oven at 70 
o
C, 800 mbar to give 44 in quantitative 

yield. Selectively functionalizing these molecules from the initial ditolyldipyrromethane to 

2,2-dicarboxyl-ditolyldipyrromethane was quantitative.  

 

 

 

Scheme 5.5: Hydrolysis of 42 to the corresponding dicarboxylic acid 44. 
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5.3.4 Synthesis of 43 via EDCI coupling 
 

The target compounds 43 could now be synthesized using EDCI/NHS activation of the 

carboxylic acid followed by conversion to the amide, scheme 5.6. The solvents used for this 

coupling were CH2Cl2, CH3Cl, ACN and DMF shown in table 5.2.  

 

 

Scheme 5.6: Preparation of 43 by EDCI coupling. 

 

Table 5.2 shows the reaction times for the conversions of 44 to 43.  

Solvent Reaction time (hours) Yield % 

CH2Cl2 24,48,72 0 

CH3Cl 24,48,72 0 

CAN 48 0 

DMF 48 11 

DMF 92 13 

 

The coupling of the functionalized dipyrromethane was initially subjected to the same 

reaction conditions with different solvents. Compound 44, was charged into a 2 neck reaction 

flask and placed under an argon atmosphere and stirred. The solvent was then added and the 

contents cooled to 0 
o
C. The dipyrromethane was not fully soluble in any of the reaction 

solvents used. The coupling reagent (EDCI) and additive (NHS) was added quickly and 
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stirred at 0 
o
C for an hour to activate the carboxylic acid. N-Boc ethylenediamine was added 

dropwise to the reaction flask with DIPEA. The reactions were monitored by TLC. For the 

chlorinated solvents CH2Cl2 and CH3Cl no product was isolated. The TLC analysis for any of 

the reactions performed in these solvents showed a large number of unwanted impurities and 

that the starting material was fully consumed after 24 hours. The formation of the amide bond 

in the reaction was also monitored by FT-IR. Analysis after column chromatography 95:5 

CH2Cl2:EtOH on silica gel showed the target compound 43 was not present. 
1
H NMR of the 

isolated fractions gave an array of peaks which do not match with predicted spectra. FT-IR 

showed for all fractions isolated a mix of stretching vibrations for COOH, COOR and CO-

NH. Acetonitrile was similar as no product was isolated from the reactions using this solvent.  

However, the reaction did proceed in DMF giving yields for 43 of 11% after 48 hours and 

13% after 92 hours. The reaction conditions were slightly modified to try to improve the yield 

of 43 in DMF. The modification made was to add the DIPEA base to the reaction before the 

EDCI/NHS was to be added. Dipyrromethane 44 was fully soluble in DIPEA, as the free acid 

is converted to the deprotonated conjugate base. The issue with this is that the coupling 

reagent requires 44 to be in  the free acid form to initiate the coupling and this was reflected 

in the lack of any conversion to the target compound.  
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5.3.5 Introduction of the side chain derivatives alkyldiamines using TClAA. 
 

The introduction of the required side chain N-boc alkyldiamines were introduced into the 

dipyrromethane scaffold with great difficulty, the coupling via EDCI was extremely solvent 

sensitive and very low yielding. Optimisation of the yield would require a different strategy 

of amide introduction rather than through the carboxylic acid. Taking adavantage of the 

knowledge that the Boc intermediate is highly insoluble in common bench organic solvents, 

no column chromatography would be required for purification. Eliminating additives such as 

coupling reagents reduces impurities such as N-acylurea by-products that could hinder the 

formation of the product.   

The initial idea that the N-Boc alkyldiamine could be introduced via nucleophilic substitution 

of the trifluorocarbon to the amide was unsuccessful. The pKa of the CF3 species appeared to 

be too unfavourable. The hydrolysis to the carboxylic acid proceeded at reflux and an excess 

of the hydroxide species to drive the reaction to completion. The introduction of the amide 

bond would be more favourable by replacing CF3 with CCl3. The CCl3H, conjugate acid 
-

CCl3 has a pKa of ~15.5 which would be theoretically more favourable for displacement. 

Pyrroles containing trichlorocarbonyls have been shown to convert to amide bonds under soft 

conditions3.  

5.3.5.1 Synthesis of  45  

 

The preparation of 45 is outlined in scheme 5.7. Ditolyldipyrromethane (29) was partially 

dissolved in anhydrous CH2Cl2, a catalytic amount of DMAP was added. The solution was 

stirred under an argon atmosphere and chilled to 0 
o
C for 15 minutes. The dropwise addition 

of trichloroacetic anhydride to the solution turned the reaction a brownish colour. The 

reaction was monitored by TLC against 29 the dipyrromethane starting material. Full 

conversion to 45 was observed after two hours. The electrophilic substitution to the 

ditolyldipyrromethane is considerably less reactive when  trichloroacetic anhydride replaces 

trifluoroacetic anhydride due to the higher electron withdrawning ability of fluorine 

compared to chlorine. The reaction, upon completion, was quenched using a saturated 

Na2CO3 solution and washed with brine. The organic solvent was removed in vacco and the 

resulting white solid was recovered in a quantitative yield. 
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Scheme 5.7: Preparation of 45 from 29.  
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5.3.5.2 The introduction of the amide bond  into 45  

 

To prepare 43 compound 45 was suspended in anhydrous CH2Cl2 and stirred under argon at 

room temperature. N-Boc ethylenediamine was added dropwise followed by the addition of 

TEA. The reaction was allowed stir for 24 hours to ensure reaction completion. The 

precipitate was filtered and washed with CH2Cl2 to yield a white solid 43 with a glasslike 

appearance similar to the isolated product from previous coupling by EDCI in DMF in 

quantitative yield. The benefit of the introduction of the amide via this route is the lack of 

impurities generated. The only by-product is chloroform from the nucleophilic displacement 

of the CCl3 leaving group. No column chromatography was required as the insoluble nature 

of the compound allows any impurity to be washed into the filterate.  

This method was then applied to prepare 46 and 47 using N-Boc-1,3-diaminopropane and N-

Boc-1,4-diaminobutane as the source of amine. The isolated compounds 35 and 36 shown in 

scheme 5.8 were also yielded quantitatively.  

 

Scheme 5.8: Synthesis of 43, 46 and 47. 
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5.3.5.3 1H NMR of N-Boc diethylenediamine ditolyldipyrromethane 

 

The 
1
H NMR of 43 is shown in figure 5.1. The pyrrole NH protons are shown at 10.82 ppm 

as a broad singlet with an integration of two. The amide NH protons are observed at 8.04 

ppm as a triplet with an integration of two. The phenyl protons are shown at 7.11 ppm and 

6.80 ppm, these both have an integration of four and are observed as doublets due to the para 

disubstituted environment they are both experiencing. The NH protons from the carbamate 

are shown at 6.89 ppm as a triplet and also have an integration of two. The β-pyrrole 

hydrogen’s are shown at 6.64 ppm and 5.69 ppm. Both multiplets have an integration of two. 

The two methylene groups on the alkyl chain are shown at 3.22 ppm and 3.06 ppm as broad 

quartets with both integrating to four. The methyl hydrogens at 2.29 ppm on the para phenyl 

region of the molecule have an integration of six and are seen as a singlet. The Boc protons 

are observed at 1.36 ppm and are also shown as a singlet with an integration of eighteen.     
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Figure 5.1a: 
1
H NMR of 43 in DMSO-d6. 
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Figure 5.1b: 
13

C NMR of 43 in DMSO-d6 
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5.3.5.4 Cleavage of N-Boc alkyldiamine ditolyldipyrromethanes. 

 

 

Scheme 5.9: Deprotection of the Boc protecting groups to give 31-33. 

 

The cleavage of the N-Boc alkyl ditolyldipyrromethane derivatives 43,46 and 47 is outlined 

in scheme 5.9. The protected dipyrromethane derivatives were charged into a 25 mL round 

bottom flask and suspended in anhydrous CH2Cl2. The suspension was placed under an argon 

atmosphere and stirred at 0 
o
C. A volume of 4M HCl in dioxane solution was added dropwise 

to the suspension. The suspension slowly dissolved as the reaction was brought to room 

temperature. As the Boc groups cleave the HCl salt form of the dipyrromethane precipitates 

out of the CH2Cl2. The time required for this reaction was 24 hours to allow for complete 

cleavage of all the Boc groups. The products were isolated by filtration followed by  washing 

with small aliquots of CH2Cl2 and Et2O to give the products 31, 32 and 33 as white solids in 

quantitative yields.   
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5.3.5.5 1H NMR and 13C NMR of 31 

 

The 
1
H NMR of 31 is shown in figure 5.2a. The pyrrole NH protons are shown at 10.95 ppm 

as a broad singlet with an integration of two. The amide NH protons are observed at 8.4 ppm 

as broad triplets with an integration of two. The NH3
+
 protons from the cleavage of the Boc 

groups appear as a broad singlet and an integration of six. The phenyl protons are shown at 

7.1 ppm and 6.8 ppm, these both have an integration of four and are observed as doublets due 

to the para disubstitution. The β-pyrrole hydrogen’s are shown at 6.7 ppm and 5.7 ppm. Both 

multiplets have an integration of two. The two methylene groups on the alkyl chain are 

shown at 3.5 ppm and 2.9 ppm with both having an integration of four. The multiplicity of 

the methylene group at 3.5 ppm is a quartet these represent the protons adjacent to the amide.  

The methylene group at 2.9 ppm is a triplet and these are the protons adjacent to the 

protonated amine. The methyl hydrogens at 2.3 ppm on the para phenyl region of the 

molecule have an integration of six and are seen as a singlet.  

The 
13

C NMR of 31 is shown in figure 5.2b. The amide carbonyl is found at 160.9 ppm. The 

quaternary pyrrole adjacent to the amide carbonyl is found at 141.8 ppm. The two quaternary 

carbons on the aryl ring is found at 139.2 ppm and 135.8 ppm. The two aryl C-H carbons are 

found at 129.1 ppm and 128.2 ppm. The last aromatic quaternary pyrrole carbon is found at 

126.6 ppm. The two β-pyrrole carbons are found at 111.0 ppm and 110.3 ppm. The central 

quaternary carbon is found at 55.2 ppm. The aliphatic carbons on the alkyl chain are found at 

40.1 ppm and 36.5 ppm. The peak at 40.1 ppm is underneath the solvent peak, however, 

DEPT-135 showed a negative peak indicating the presense of this peak. Lastly, the tolyl 

methyl carbon is found at 20.6 ppm.  
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Figure 5.2a: 
1
H NMR of 31.  
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Figure 5.2b: 
13

C NMR of 31 
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5.3.5.6 Synthesis of diphenyldipyrromethane and modification with TClAA 

 

The synthesis of diphenyldipyrromethane 22 from benzophenone and pyrrole was achieved 

by the same protocol used by Turner et al
1
. The modification of the 2’ position with TClAA, 

shown in scheme 5.10, was performed to give the target compound 48 in quantitative yield. 

The purpose of the synthesis of this diphenyl derivative vs the ditolyl derivative was to 

identify whether or not the small modification on the phenyl group has drastic implications 

on the bioactivity of these molecules.  

 

 

 

 

Scheme 5.10:Preparation of 48.  
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5.3.5.7 Amide functionalization of the Diphenyldipyrromethane-COCCl3 species.  

 

Dipyrromethane 48 was converted to the N-Boc ethylene diamine derivative using the same 

procedure  used for the preparation of 43 to give the product 49 in quantitative yield (shown 

in scheme 5.11). The 
1
H NMR of 49 is shown in figure 5.3 

 

 

Scheme 5.11: Conversion of 48 to 49. 
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Figure 5.3: 
1
H NMR N-Boc ethylenediamine diphenyldipyrromethane 39. 

 



182 
 

5.3.5.8 Cleavage of the N-Boc ethylenediamine diphenyldipyrromethane derivative 

 

The N-Boc ethylenediamine diphenyldipyrromethane derivative 49, shown in scheme 5.12 

was deprotected using 4M HCl in dioxane solution to give the HCl salt product  after 

filtration and CH2Cl2, Et2O washing to give 50 in quantitative yield.  

 

 

Scheme 5.12: Deprotection of 49 with 4M HCl in dioxane. 
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Figure 5.4: 
1
H NMR of 50. 
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5.4 Synthesis of modified Ditolyl dipyrromethane at the para position 
 

What was discovered from the calix[4]pyrrole chapter, particularly in the section that 

illustrated the point that aryl ketones bearing electron withdrawing/donating groups do not 

condense to the functionalised dipyrromethane. The molecular modelling simulations of 

theoretical molecules (Chapter 4 Figure 4.23 compounds 39-41) that possess amide bonds 

and alkyl ammonium species in place of the tolyl group have shown a higher number of 

interactions with key amino acid residues that we believe to be important for inhibition. Thus, 

such compounds might be more potent Kv1 channel blockers, further investigation into 

preparing these derivatives was undertaken.  

 

Figure 5.7: Plausible target, 39,  based upon molecular modelling simulations 

 

5.4.1 Route 1: Condensation of dicarboxybenzophenone with pyrrole 

 

An attempt to prepare the dipyrromethane starting precursor for 39 involved the condensation 

of pyrrole with 4,4-dicarboxybenzophenone in the ratio (1:2). Different acid catalysts were 

chosen along with different mono and duel solvent systems which are listed in table 5.3. The 

reactions were carried out at different temperatures ranging from room temperature to reflux 

over 5 days in a parallel carousel reaction apparatus. Subsequently, all reactions failed to 

produce any condensation product, for each reaction unreacted dicarboxyketone starting 
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material was recovered. The results of all of these reactions are shown in tables 5.3, 5.4 and 

scheme 5.13 . 

 

Table 5.3: List of conditions for the condensation performed in carousel apparatus at room 

temperature. 

Temperature Solvent Catalyst 

Room temperature MeOH BF3.(OEt)2 

Room temperature MeOH HCl 

Room temperature MeOH  MeSO3H 

Room temperature MeOH TFA 

Room temperature EtOH BF3.(OEt)2 

Room temperature EtOH HCl 

Room temperature EtOH MeSO3H 

Room temperature EtOH TFA 

Room temperature TFA TFA 

Room temperature  DMF BF3.(OEt)2 

Room temperature DMF HCl 

Room temperature DMF MeSO3H 

Room temperature DMF TFA 

Room temperature  DMF Acetic acid 

Room temperature MeOH/CH2Cl2 BF3.(OEt)2 

Room temperature MeOH/CH2Cl2 HCl 

Room temperature MeOH/CH2Cl2 MeSO3H 

Room temperature MeOH/CH2Cl2 TFA 

 

Table 5.4: List of conditions for condensation performed in carousel apparatus at elevated 

temperatures 

Temperature Solvent Catalyst 

Reflux MeOH BF3.(OEt)2 

Reflux MeOH HCl 

Reflux MeOH  MeSO3H 
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Reflux MeOH TFA 

Reflux EtOH BF3.(OEt)2 

Reflux EtOH HCl 

Reflux EtOH MeSO3H 

Reflux EtOH TFA 

Reflux TFA TFA 

100oC DMF BF3.(OEt)2 

100oC DMF HCl 

100oC DMF MeSO3H 

100oC DMF Acetic acid 

55oC MeOH/CH2Cl2 BF3.(OEt)2 

55oC MeOH/CH2Cl2 HCl 

55oC MeOH/CH2Cl2 MeSO3H 

55oC MeOH/CH2Cl2 TFA 

 

The reactions were analysed by TLC and 
1
H NMR. The main issue that was found with most 

of the reactions undertaken was related to the solubility of the ketone. The ketone was only 

fully soluble in DMF at room temperature. Duel solvent systems were also shown to be 

unsuccessful. 

  

Scheme 5.13: Attempted condensations using various temperature and acid conditions. 

To try to overcome these solubility problems the 4,4-dicarboxybenzophenone was subjected 

to esterification with methanol and dry HCl to form the methyl ester derivative shown in 

scheme 5.14. Condensation reactions between the 4,4- dimethylcarboxylate-benzophenone 

derivative and pyrrole were conducted to exactly the same conditions shown in table 5.3 and 

5.4. The reactions followed the same fate as the previous reactions and no product was 

obtained.  
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Scheme 5.14: Attempted condensation from the ester derivative. 

These findings verify that condensation  of the ketone is effected by the presence of electron 

withdrawing groups at the para position of the aryl phenyl ring. As a consequence a second 

approach to prepare the precursor for 39 was undertaken.   

5.4.2 Oxidation  
 

In chapter 3, post oxidative modification of the benzylic tolyl group of the calix[4]pyrrole 

ring was unsuccessful. The asymmetric calix[4]pyrrole was extremely unstable to oxidative 

conditions, this instability can be explained by the presence of four distorted sp
3 

hybridised 

bridging carbons4. This distortion may have led to the  oxidative destruction of the 

macrocycle.  The oxidation of the dipyrromethanes would give definitive information as to 

whether the decomposition observed with the calix[4]pyrroles  is a result of the distortion 

caused by the macrocycle ring or due to the oxidation of the pyrrole sub-unit.  

The oxidation of dipyrromethane was performed on two substrates 29 shown in scheme 5.15 

and 44 shown in figure 5.16. Both 29 and 44 decomposed  under KMnO4 conditions (same 

conditions as used in  in chapter 3). The fact that  both 29 and 44 decomposed illustrates the 

liability of the pyrrole ring to oxidation conditions. Precipitation of both reactions by 

acidifying the solutions subsequent filtration and analysis by 
1
H NMR showed no pyrrole 

hydrogen’s on the nitrogen nor the β-position.  
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Scheme 5.15: Failed oxidation of ditolyldipyrromethane 29. 

 

Scheme 5.16: Failed oxidation of dicarboxy-ditolyldipyrromethane 44. 
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5.5 Biological evaluation of dipyrromethanes. 
 

In search of a small molecular weight blocker(s), a recently-designed expression platform
6,7

  

was utilized to express various Kv1 channels in a single open reading frame (ORF) after 

transfecting human embryonic kidney (HEK)-293 cells. Such a strategy allows 

predetermination of not just the combinations of α subunits in the Kv 1 channels but, also, 

their actual arrangements in the tetrameric channels on the plasmalemma. This is exemplified 

by the observed fast-inactivation of Kv1.4-containing channels only when Kv1.6 with its N-

terminal inactivation prevention  domain is placed adjacent to Kv1.4 [possesses an N-

terminal inactivation ball].
6
 In this way, the importance has been established of the 

stoichiometry and positioning of α subunits for determining the interaction of 

tetraethylammonium with Kv1.1- and 1.2-containing heteromers that mimic those in the 

brain
6,8

. Herein, these concatenated Kv1 channels were utilised as targets to evaluate the 

compounds 31-33 prepared in chapter 4.  

5.5.1 Evaluation of the existing therapeutic 4-aminopyridine against the Kv 

channels. 

 

As shown by Judge and Bever5, the existing therapeutic 4-AP is not selective against the Kv1 

channels. As already discussed in chapter one, all of the related side effects caused by 4-AP 

are directly related to non-selective inhibition. 4-AP was again tested against concatenated 

tetramers of Kv1.1 and Kv1.2.  The results corresponded with the literature, there was no 

selectivity between the two channels, and both showed considerable inhibition. These 

experiments were important to act as a control. As shown in the review by Judge and Bever
5
, 

there are considerably wide IC50 values reported for the inhibition of Kv1.1 (89-1100 µM) 

and Kv1.2 (200-800 µM) by 4-AP. It must be emphasised that these values are based upon 

homometric channels and don’t mimic the Kv1 tetramers as they would appear in nature. 

To verify any activity of the prepared dipyrromethanes, a direct comparison between the 

results found with 4-AP with 31-33 will be done in order to obtain a true evaluation of the 

potency and potential of 31-33 as Kv1  channel inhibitors.   
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Table 5.5: Concatenated Kv1.1 and 1.2 channels against 4-AP. 

Channel IC50 (µM) Hill slope Experiment no 

Kv(1.1)4 530 ± 56 0.8 ± 0.1 7 

Kv(1.2)4 850 ± 35 0.9 ± 0.1 10 

 

The IC50 values shown in table 5.5 give the degree of inhibition 4-AP has for the Kv1 

channels we have expressed. We only looked at Kv1.1 and Kv1.2 as these are channels are 

most prevalent in the brain. The 4-AP molecule only inhibits the Kv1.1 tetramer at 530 µM 

and the tetramer at 850 µM. For a therapeutic these IC50 values are not extremely attractive, 

as low µM-nM ranges are generally associated with most commonly marketed drugs. Even 

without the selectivity an increase in  potency of ten-fold offers a viable alternative to  4-AP 

treatment. The hill slope obtained for 4-AP indicates that only one molecule of 4-AP is 

interacting with the inner pore region of the potassium channels. The dose response curve of 

4-AP against Kv(1.1)4 and Kv(1.2)4 is shown in figure 5.8.   
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Figure 5.8: Dose response curve of 4-AP against the concatenated Kv1.1 and 1.2 channels. 
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5.5.2 Bio-evaluation of the prepared dipyrromethanes   

 

The dipyrromethane compounds 31-33, shown in figure 5.9, were tested on the Kv channels 

1.1-1.6 as per the method by Al-Sabi et al.6, 7 Each of the compounds were tested at 10 µM.  

 

Figure 5.9: Preliminary screen of ditolyldipyrromethane derivatives 31-33.  

The graph shown in figure 5.9 represents the preliminary screen of the compounds derived 

from the molecular modelling of the ditolyldipyrromethane scaffold. The information 

obtained from the electrophysiology screening of the homometric channels Kv1.1-Kv1.6 

showed that, similar to porphyrins, the channels are sensitive to alkyl chain length. 

Compound 31, proved to be the most selective and the most potent amongst the compounds 

tested. Compound 31, inhibits Kv1.1 at 40-43% and Kv1.3 at 15-17% at 10 µM, it was 

insensitive to Kv1.2, Kv1.4 and Kv1.6. The high similarities between the selectivity filter and 

inner turret regions of both Kv1.1 and Kv1.3 limit the preference of inhibition to (2:1) 

between the channels.  

Compound 32, has similar inhibition to that of 31 for Kv1.1 as it inhibits the channel at 36-

38% at 10 µM. The extension of the carbon chain also increases the inhibition of Kv1.3 to 

18-23%. The main difference in the activity between 31 and 32 was that 32 inhibited the 

channel Kv1.4 to the same extent  as it inhibited Kv1.1 at 38%. This lack of observed 

selectivity of 32 between the Kv1.1 and Kv1.4 channel eliminated compound 32  as a 
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potential selective inhibitor. Lastly, compound 33, was insensitive to all Kv1 channels as 

negligible inhibition was obtained when tested against the channels.  

The molecular modelling of these compounds illustrated the number of interactions with key 

amino acid residues that aided in the prediction  of their potential biological activity. From 

the ligand-plots of all three compounds shown in chapter four, both 31 and 32 demonstrated a 

number of significant interactions (H-bonding and π-π stacking) with the amino acid residues 

of the Kv1.1 channel. These interactions near the selectivity filter and in the inner turret 

region of Kv1.1 influence the conductance of the channel. Dipyrromethane 33 appeared not 

to have the same number of these interactions and this correlates with the observed biological 

activity. Figure 5.10 shows the corresponding currents as a function of time for 31-33 on the 

Kv1.1 channel. The line shape allow us to interpret the activation mechanism of how the 

compounds interact with the channel.  

 

Figure 5.10: Respective current profiles of Kv1.1 treated with 31, 32 and 33 plotted current against 

time. 

          

5.5.3 Full cellular evaluation of 31(DDAAKN01) 

 

Evaluation of the results from the preliminary studies of 31,32 and 33 have elucidated that the 

derivative 31 is the lead candidate from this series of compounds tested on the Kv1 channels. 

This finding is the first for this type of study using a small molecule inhibitor. The results 

obtained are only surpassed by extracted venom derived peptide toxins. To mark the 

exclusiveness of the lead candidate, it shall be renamed DDAAKN01. 

The obtained IC50 value that DDAAKN01 has is 14µM against Kv1.1. The significance of 

this potency is, it is approximately 40 times more potent than 4-AP against the Kv1.1 channel 
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from our testing. The captivating distinctness between DDAAKN01 and 4-AP is the 

selectivity it possesses relative to the marketed therapeutic. DDAAKN01 shows enhanced 

selectivity for Kv1.1 over the other channels such as Kv1.2, Kv1.4 and Kv1.6, unlike 4-AP 

which inhibits all of these channels.The measured LogP of DDAAKN01 is -1.05, this 

characteristic value prevents it from passing the blood brain barrier (BBB) which is important 

for our studies as normalised Kv1.1/1.2 concatenated proteins reside in this region. 4-AP also 

possesses a negative LogP of -0.76    

 

Figure 5.11: Lead dipyrromethane DDAAKN01. 

The lead DDAAKN01 was tested against the Kv1 channels and the concatenated tetramer of 

Kv(1.1)4. These results are shown in figure 5.12. Interestingly the blockage of Kv1.1 

improves when tested on the concatenated tetramer which is more common in nature rather 

than the artificial homometric species. Negligible inhibition was observed for the channels 

Kv1.2, Kv1.4 and Kv1.6. The result for Kv1.2 is the most interesting from this subset of 

channels as Kv1.2 propagates in the brain with Kv1.1 in MS patients, thus any potential 

therapeutic would have to inhibit Kv1.1 without interfering with Kv1.2. Our results show 

this.  
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Figure 5.12: Overview of inhibition profile for DDAAKN01 and the dose response curve. 

The similarity in binding with the channels Kv1.1 and Kv1.3, shown in figure 5.13, may be a 

consequence that both channels are highly similar especially in the turret, selectivity filter and 

inner turret regions. Nature itself has great difficulty in distinguishing between these two 

channels. DTXk is the only toxin found to date that has been found to selectively inhibit 

Kv1.1
9,10

.  

 Kv1.1 (348-386):  E A E E A E S H F S S I P D A F W W A V V S M T T V G Y G D M Y P V T I G G K 
 

  Kv1.3 (373-411):  E A D D P S S G F N S I P D A F W W A V V T M T T V G Y G D M H P V T I G G K 
 

 

Figure 5.13: Kv1.1 and Kv1.3 amino acid sequence adjacent to the inner turret.  

 

 

Observing the residue sequence for both Kv1.1 and Kv1.2, in figure 5.13, the entire region 

highlighted yellow has the exact same amino acid sequence. The region surrounding the 
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selectivity filter is highly conserved for both channels and making minor changes to this 

region has an enormous effect on the biophysical properties of the channels. Highlighted in 

grey are the inner pore resides tyrosine (Kv1.1) and histidine (Kv1.3). We have already 

hypothesised that how the new lead compounds may be causing inhibition is by H-bonding 

interactions with surrounding amino acids in the selectivity filter region, furthermore the 

molecule can further interact by π-π with Tyr379 in the inner pore of Kv1.1. Histidine, the 

inner turret residue of Kv1.3, being aromatic itself, is also capable of π-π interactions, thus 

selectively distinguishing between the two channels is increasingly difficult. This hypothesis 

is plausible since on examining the inner pore residues of the other channels, Kv1.2 and 

Kv1.4, no observable π-π interaction is evident since valine is present as the inner pore 

residue in Kv1.2 and lysine is present as the inner pore residue in Kv1.4.  

 

Kv1.6 does not fall under this hypothesis. Kv1.6 has a tyrosine residue as the selectivity filter 

residue and as discussed this could potentially π-π interact. The main difference between 

Kv1.1/1.3 and Kv1.6 is, Kv1.1/1.3 amino acid sequence is identical in the region surrounding 

the selectivity filter. Kv1.6 has a different sequence, Kv1.6 has  two methionine residues in 

the vicinity of the selectivity filter. Methionine is capapble of forming disulphide bridges 

which subsequently changes the orientation of the protein in this region. What has been 

observed from both the porphyrin SAR study and the dipyrromethane screening is that small 

changes in alkyl chain length has significant implications on the  inhibition of these channels. 

 

Kv1.6 (398-436):  E A D D V D S Q F P S I P D A F W W A V V T M T T V G Y G D M Y P M 
T V G G K 

 
Figure 5.14: Amino acid sequence of Kv1.6, methionine residues are highlighted in yellow.  
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5.5.4 Effect of DDAAKN01 on conductance and τ activation 

 

Inhibition of Kv1.1 homo-tetramer proved reversible as indicated by the time course of wash 

in/wash out of DDAAKN01 (Figure 5.15).   

 

Figure 5.15: Reversible binding of DDAAKN01 and its ability to wash out upon administration. 

 

Interestingly, this effect of DDAAKN01 on the (Kv1.1)4 channel is associated with 

significant (~ 20 times; 3 ±0.3 ms before and 57 ±5 ms after 10 µM 10, P<0.001 n=5 and 4, 

respectively) slowing of the activation kinetics, as indicated by the time course of activation 

(τ) shown in Figure 5.16a. Also, the gV relations of Kv(1.1)4 (before, open circles) gave a 

typical half maximal of activation (V1/2) value of -27 ±1 (n=7) [Figure 5.16b]. A significant 

shift of ~40 mV towards positive potentials was observed in the presence of 10 µM 

DDAAKN01 [11 ±1 (n=4); Figure 5.16b (closed circles)]. These findings showed the 

promising inhibitory effect of DDAAKN01 on the (Kv1.1)4 channel. Kv(1.1)4 only exists in 

diseased state channels as a result of demylination, the open circles shown in figure 5.16b 

mimic a diseased state. When DDAAKN01 is applied the current shifts and thus mimics a 

normalised channel that does not undergo demylination.  

 

 

 

 
Figure 5.16 (a) the τ activation of the diseased state channel,(b) the regulation of the current due to 

administration of DDAAKN01. 
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5.5.5 Effect on bioactivity with minor modification to the scaffold 

 

We have discussed the activity of  31-33 in detail, results have shown that if the chain length 

is extended it had a significant effect on both potency and selectivity. We predicted this using 

the porphyrin SAR study discussed in chapter 2, and used molecular modelling in chapter 4 

to endorse these results. A second modification that is possible is the replacement of the 

methyl substituents of the tolulenes with hydrogen to give compound 50.  Such a 

modification could potentially give a substantial amount of information concerning the role 

of the methyl groups with respect to channel binding/inhibition.  

 

Figure 5.17: Structure of  50. 

As shown in figure 5.17, the modification to the scaffold in 50 is minor versus the active 

compound DDAAKN01. When this compound was tested against Kv(1.1)4 the results were 

surprising, compound 50 showed no biological activity on the channels as shown in figure 

5.18, removal of the methyl group eliminated all inhibition activity. 

 

Figure 5.18: Current profile of 50. 
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We can interpret this result in a number of ways; the first interpretation is that the methyl 

groups may be involved in hydrophobic interactions with the channel amino acid residues. 

Alternatively, the removal of the methy groups reduces the electron density of the aromatic 

ring affecting π-π interactions.  Comparing Hammett parameters, substitution of the methyl 

group by a hydrogen the electron density on the ring changes and this would have a direct 

effect on the π interaction with tyrosine we discussed previously (figure 5.19). Another 

possible consequence of replacing the methy group with hydrogen on the phenyl ring is that 

the angle of the central tetrahedral quanternary carbon of 50 changes and as a result of this 

angle change the amide alkyl ammonium group which we know is essential for bioactivity 

changes. Making a minor variation on the scaffold has huge ramifications on the biological 

performance of this class of compound. 

 

Figure 5.19: Potential change in bond angle of 50 on replacing methyl group.   

5.5.6 Effect of DDAAKN01 on natural Kv1 channels in the brain.  

 

The manner in which these concatenated Kv1 tetramer channels exist has not been discussed 

yet. These channels do not exist as simple tetramers Kv (1.1)4 and Kv (1.2)4, but rather as an 

amalgamation of both channels.  

The effect of DDAAKN01 was also tested on Kv1.1 with tetrameric channels containing 

Kv1.1 and/or Kv1.2 subunits in different combinations to mimic those that exist in the brain 

or associated with MS. Figure 5.20 summarizes a dose-response for the susceptibility of these 

combinations to DDAAKN01. Channels composed of Kv1.2 or 3 copies of Kv1.2 (Kv1.2-
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1.2-1.1-1.1) were insensitive to this blocker. In contrast, these possessing two or three copies 

of Kv1.1 showed similar reactivity to DDAAKN01, with IC50 values between 40-60 µM. 

However, Kv1.1 or Kv(1.1)4 channels showed similar sensitivity to this inhibitor with 

IC50~15 µM. Table 5.7 summarizes these IC50 values. 

 

 

Figure 5.20:  The percentage blockage of DDAAKN01 on the concatenated Kv1.1/1.2 channels as 

they exist in diseased state normally found in the brain. 

Table 5.7: IC50 values for inhibition of DDAAKN01 of Kv1 concatenated tetramers 

Channel IC50 (µM) Hill Slope No of experiments 

Kv 1.1 17 ± 1 1.4 ± 0.2 6 

Kv(1.1)4 14 ± 1 1.5 ± 0.1 7 

Kv 1.1-1.2-1.1-1.1 43 ± 4 1.8 ± 0.2 5 

Kv 1.1-1.1-1.1-1.2 57 ± 2 1.3 ± 0.3 4 

Kv 1.1-1.1-1.2-1.2 18 ± 3 ------------- 5 

Kv 1.2-1.2-1.1-1.2 >100 ------------- 6 

Kv(1.2)4 >100 ------------- 4 

 

Interestingly, Hill’s slope values deviated from unity when 3 or 4 copies of Kv1.1 subunits 

were present in the concatamer, indicating that one or more molecules of DDAAKN01 might 
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be binding to the same channel. However, DDAAKN01 inhibits currents from tetramers with 

2 or 3 copies of Kv1.1, in a similar manner independently of the positioning of these 

subunits. These results indicate that DDAAKN01 inhibits channels enriched with Kv1.1, in a 

similar manner as extracellular blockers, such as DTXK
9
.  

5.6 Conclusion 

 

The target ditolyldipyrromethane derivatives that were docked into rat Kv1.1 comparative 

model  and detailed in chapter 4 were prepared. DDAAKN01, showed high selectivity for the 

potassium channel Kv(1.1)4 which is believed to be highly associated with MS. Minimal 

variations to the molecule, as shown with 50, has drastic implications to both the selectivity 

and potency of these molecules. The hill-slope for DDAAKN01  indicated that more than one 

molecule is interacting with the tetrameric protein DDAAKN01 was also observed to be 

highly selective for Kv channels that only possess Kv1.1, with Kv1.2 incorporated into 

tetrameric sub-unit, the inhibition profile reduces proportionately.  
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5.7 Experimental 
 

Materials 

 

All operations were carried out under an atmosphere of argon or nitrogen using standard 

Schlenk techniques. All solvents were supplied by the Aldrich Chemical Company and TCI. 

Dichloromethane was dried over MgSO4 prior to use. Methanol was distilled over 

magnesium turnings and iodine before use. All organic reagents were purchased from the 

Aldrich Chemical Company and TCI. Pyrrole was freshly distilled over potassium hydroxide 

before use. Anhydrous triethylamine, borontrifluoride diethyletherate and were all used 

without further purification. 

Column chromatography was carried out using neutral silica gel (Merck, used 

as received). All mobile phases for column chromatography were dried over MgSO4 prior 

to use.. All solvents were deoxygenated by purging withargon or nitrogen for ~10 minutes 

 

Equipment 

All syntheses involving air- and moisture-sensitive reagents were performed in oven or 

flame dried glassware. NMR spectra were recorded on a Bruker model AC 400 MHz 

spectrometer and Bruker model ANC 600 MHz spectrometer using CDCl3 as solvent. All 

NMR spectra were calibrated according to the residual solvent peak, i.e. CHCl3 at 7.26 ppm, 

DMSO-d6 2.50 ppm for all 
1
H spectra and 77.16 ppm and 39.52 ppm for all 

13
C spectra. 

Chemical shifts are given in parts per million (ppm). 
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29 

Synthesis of di-p-tolyldipyrromethane 

To a 250 mL 2-necked round bottom flask, 1.31 g (6.18 mmol) of 4,4-dimethylbenzophenone 

was charged. To this 50 mL of anhydrous methanol was added and magnetically stirred under 

a argon atmosphere. When the 4,4-dimethylbenzophenone was fully dissolved 1.07 mL (15.5 

mmol) of freshly distilled pyrrole was added dropwise.  After 5 minutes, 1.07 mL (8.6 mmol) 

of BF3.(OEt)2 was added and the reaction was allowed stir for 5 days. The precipitate formed 

was filtered and washed with cold methanol to give a white solid 30. (1.007 g, 50%) 

1
H

 
NMR (400 MHz) δ (DMSO- d6) 10.22 (2H, s, pyrrole-NH) 7.12 (2H, d, aryl-H) 6.88 (2H, 

d, aryl-H) 6.76 (2H, m, pyrrole-H) 5.94 (2H, m, pyrrole-H) 5.65 (2H, m, pyrrole-H) 2.29 (6H, 

s, Tolyl-CH3) 
13

C NMR (100 MHz, DMSO- d6 ) δ 143.6, 135.7, 135.1, 129.0, 127.8, 117.9, 

108.7, 105.9, 54.7, 20.3 

 

 

 

 



204 
 

 

42 

 

5,5'-(di-p-tolyldipyrromethane)bis(2-trifluorocarbonyl) 

To a 25 mL 2-neck round bottom flask, 336 mg (1 mmol) of 29  and 24 mg (0.2 mmol) of 

DMAP was charged with a small magnetic stirring bar and placed over was cooled to 0 
o
C. 

To the stirring solution 350 µL (2.5 mmol) of trifluoroacetic anhydride was added dropwise 

and the reaction was allowed stir for 10 minutes at room temperature. The reaction was 

transferred to a small separating funnel and the organic phase was washed with 2x10 mL 

water, 2x10 mL NaHCO3 and dried with MgSO4. The CH2Cl2 was removed to give a white 

solid in quantitative yield to give compound 31. 

1
H

 
NMR (400 MHz) δ (DMSO- d6) 12.58 (2H, s, pyrrole-NH) 7.28 (6H, d, aryl-H + pyrrole-

H) 6.93 (4H, d, aryl-H) 6.11 (2H, m, pyrrole-H) 2.29 (6H, s, tolyl-CH3)
13

C NMR (100 MHz, 

DMSO- d6 ) δ (168.1,167.9,167.7,167.5) 147.7, 140.0, 136.3, 128.9, 128.5, 125.5, 121.32, 

(119.7, 117.8, 115.8,113.9), 114.6, 55.8, 20.3 
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44 

5,5'-(di-p-tolyldipyrromethane)bis(2-carboxylic acid) 

To a 50 mL round bottom flask 500 mg of compound 42 was charged. To this 4 g of NaOH 

dissolved in 20 mL of water was added along with 10 mL of ethanol. The reaction was 

allowed to reflux for 6 hours. The reaction mixture was then concentrated to approximately 

half of its original volume and to this 1M HCl was added dropwise to reach a pH of 2. The 

yellow precipitate formed was filtered and dried to obtain the carboxylic acid dipyrromethane 

derivative 32 in quantitative yield.  

1
H

 
NMR (400 MHz) δ (DMSO- d6) 12.24 (2H, s, COOH) 11.47 (2H, s, pyrrole-NH) 7.13 

(4H, d, aryl-H) 6.77 (4H, d, aryl-H) 6.63 (2H, m, pyrrole-H) 5.73 (2H, m, pyrrole-H) 2.29 

(6H, s, tolyl-CH3)
13

C NMR (100 MHz, DMSO- d6 ) δ 161.8, 141.6, 140.9, 135.9, 129.2 

128.1, 123.7, 113.8, 111.9, 55.4, 20.5 
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45 

5,5'-(di-p-tolyldipyrromethane)bis(2-trichlorocarbonyl) 

To a 25 mL 2-neck round bottom flask, 336 mg (1 mmol) of - 29 and 24 mg (0.2 mmol) of 

DMAP was charged with a small magnetic stirring bar and placed over an argon atmosphere. 

To this 10 mL of anhydrous DCM was added and the reaction mixture was cooled to 0 
o
C. To 

the stirring solution 457 µL (2.5 mmol) of trichloroacetic anhydride was added dropwise and 

the reaction was allowed stir for 2 hours at room temperature. The reaction was transferred to 

a small separating funnel and the organic phase was washed with 2x10 mL water, 2x10 mL 

NaHCO3 and dried with MgSO4. The CH2Cl2 was removed to give 33 as a white solid in 

quantitative yield.   

1
H

 
NMR (400 MHz) δ (DMSO- d6) 12.20 (2H, s, pyrrole-NH) 7.29 (2H, d, pyrrole-H) 7.28 

(2H, d, aryl-H) 6.94 (2H, d, aryl-H) 6.06 (2H, m, pyrrole-H) 2.29 (6H, s, tolyl-CH3) 
13

C 

NMR (100 MHz, DMSO- d6 ) δ 171.8, 145.8, 140.4, 136.4, 129.0, 128.5, 122.5, 120.8, 113.9, 

95.2, 55.9, 20.3 
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General procedure 4 for the preparation of N-Boc protected dipyrromethanes from 33 

To a 50 mL round bottom flask (400 mg; 0.648 mmol) of the 45 were added with 5 mL of 

CH2Cl2. This mixture was allowed stir for 5 mins at room temperature under an argon 

atmosphere. N-boc ethylenediamine (250 µL; 1.6 mmol) was then added to the mixture 

followed by the dropwise addition of anhydrous triethylamine (360 µL; 2.6 mmol). The 

reaction was stirred at room temperature overnight. The precipitate that formed was collected 

by suction filteration and the precipitate was washed twice with 25mL aliquots of CH2Cl2 and 

was then vacuum dried to give the N-Boc derivatives in quantitative yield. 

 

43 

Di-tert-butyl (((5,5'-(di-p-tolyldipyrromethane)bis(2,2'-carbonyl)) bis (azanediyl)) 

bis(ethane-2,1-diyl))dicarbamate 

General procedure 4 was followed using 45 (400 mg; 0.648mmol) and N-boc 1,2 

ethanediamine (250 µL; 1.6mmol) to give 43  in quantitative yield. 

1
H

 
NMR (400 MHz) δ (DMSO- d6) 10.82 (2H, s, pyrrole NH) 8.06 (2H, t, amide NH) 7.12 

(4H, d, aryl-H) 6.89 (2H, t, amide-NH) 6.78 (4H, d, aryl-H) 6.64 (2H, d, pyrrole-H) 5.69 (2H, 

d, pyrrole-H) 3.22 (4H, q, CH2) 3.06 (4H, q, CH2) 2.29 (6H, s, tol-CH3) 1.37 (18H, s, Boc-

CH3). 
13

C NMR (100 MHz, DMSO- d6 ) δ 160.6, 155.7, 141.9, 138.9, 135.9, 129.2, 128.2, 

126.9, 110.9, 109.9, 77.7, 55.2, 54.9, 39.5, 38.7, 28.3, 20.6. 
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46 

 

Di-tert-butyl (((5,5'-(di-p-tolyldipyrromethane)bis(2,2'-carbonyl)) bis (azanediyl)) 

bis(propane-3,1-diyl))dicarbamate 

General procedure 4 was followed using 45 (400 mg; 0.648mmol) and N-boc-1,3-

propanediamine (270 µL; 1.6mmol) to give di-tert-butyl 46 in quantitative yield. 

1
H

 
NMR (400 MHz) δ (DMSO- d6) 10.77 (2H, s, pyrrole NH) 7.98 (2H, t, amide NH) 7.11 

(4H, d, aryl-H) 6.79 (4H, t, aryl-H + (2H) amide-NH) 6.62 (2H, d, pyrrole-H) 5.66 (2H, d, 

pyrrole-H) 3.18 (4H, q, CH2) 2.91 (4H, q, CH2) 2.28 (6H, s, tol-CH3) 1.56 (4H, p, CH2) 1.35 

(18H, s, Boc-CH3). 
13

C NMR (100 MHz, DMSO- d6 ) δ 160.4, 155.6, 141.9, 138.7, 135.9, 

129.2, 128.2, 126.9, 110.8, 109.7, 77.5, 55.2, 54.9, 37.7, 36.2, 29.9, 28.3, 20.6. 
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47 

Di-tert-butyl (((5,5'-(di-p-tolyldipyrromethane)bis(2,2'-carbonyl)) bis(azanediyl))bis 

(butane-4,1-diyl))dicarbamate 

General procedure 4 was followed using 45 (400 mg; 0.648mmol) and N-boc-1,4-

butanediamine (290 µL; 1.6mmol) to give 47 in quantitative yield. 

1
H

 
NMR (400 MHz) δ (DMSO- d6) 10.72 (2H, s, pyrrole NH) 7.99 (2H, t, amide NH) 7.12 

(4H, d, aryl-H) 6.81 (4H, t, aryl-H + 2H amide-NH) 6.64 (2H, d, pyrrole-H) 5.67 (2H, d, 

pyrrole-H) 3.16 (4H, q, CH2) 2.93 (4H, q, CH2) 2.29 (6H, s, tol-CH3) 1.41 (8H, m, CH2) 1.36 

(18H, s, Boc-CH3). 
13

C NMR (100 MHz, DMSO- d6 ) δ 160.3, 155.7, 142.0, 138.7, 135.9, 

129.2, 128.2, 127.1, 110.8, 109.7, 77.4, 55.2, 55.0, 39.4, 38.3, 28.3, 27.2, 26.9, 20.6. 
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General Procedure 5 for deprotection of compounds 43, 46-47  

To a 25 mL round bottom flask 100 mg of the boc protected dipyrromethanes and a stirring 

bar were added. The flask was then placed under an argon atmosphere and 10 mL of 

anhydrous CH2Cl2 was added with stirring. The reaction mixture cooled to 0 
o
C and  1 mL of 

4M HCl in dioxane was added dropwise to the reaction mixture at 0 
o
C. After addition was 

completed the reaction mixture was allowed stir overnight at room temperature. The formed 

precipitate was then collected by suction filtration and washed with CH2Cl2 to give a white 

solid. 

 

31  

2,2'-((5,5'-(di-p-tolyldipyrromethane)bis(2,2'carbonyl))bis(azanediyl))-

diethaneamine.2HCl 

General procedure 5 was followed using 100 mg of 43 to yield 31 as a white solid in 

quantitative yield. 

1
H

 
NMR (400 MHz) δ (DMSO- d6) 10.96 (2H, s, pyrrole-NH) 8.30 (2H, t, amide-NH) 7.95 

(6H, s, NH3) 7.13 (4H, d, aryl-H) 6.79 (4H, d, aryl-H) 6.72 (2H, m, pyrrole-H) 5.73 (2H, m, 

pyrrole-H) 3.40 (4H, q, CH2) 2.95 (4H, q, CH2) 2.29 (6H, s, CH3)
13

C NMR (100 MHz, 

DMSO- d6) δ 160.9, 141.7, 139.2, 135.9, 129.1, 128.1, 126.5, 110.94, 110.2, 55.2, 38.8, 36.5, 

20.5. 

MALDI-HRMS: Calculated C29H36Cl2N6O2 (M+1-4HCl) 499.2777 Observed (M+1-4HCl) 

499.3296 m/z; (M+Na) 521.3234 
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32 

3,3'-((5,5'-(di-p-tolyldipyrromethane)bis(2,2'-carbonyl))bis(azanediyl))-

dipropaneamine.2HCl 

General procedure 5 was followed using 100 mg of 46 to yield 32 as a white solid in 

quantitative yield. 

1
H

 
NMR (400 MHz) δ (DMSO- d6) 10.87 (2H, s, pyrrole-NH) 8.24 (2H, t, amide-NH) 7.88 

(6H, s, NH3) 7.11 (4H, d, phenyl-H) 6.78 (4H, d, phenyl-H) 6.67 (2H, m, pyrrole-H) 5.68 

(2H, m, pyrrole-H) 3.25 (4H, q, CH2) 2.80 (4H, q, CH2) 2.28 (6H, s, CH3), 1.77 (4H, p, 

CH2)
13

C NMR (100 MHz, DMSO- d6) δ 160.7, 141.9, 139.0, 135.9, 129.2, 128.2, 126.8, 

111.0, 110.0, 55.2, 36.8, 35.5, 27.6, 20.6. 

MALDI-HRMS- Calculated C31H40Cl2N6O2 (M-4HCl) 527.3190 Observed (M+1-

4HCl):527.3686; (M+Na):549.3571 
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33 

4,'-((5,5'-(di-p-tolyldipyrromethane)bis(2,2'-carbonyl))bis(azanediyl))-

dibutaneamine.2HCl 

General procedure 5 was followed using 100 mg of 47, to yield 33 as a white solid in 

quantitative yield. 

1
H

 
NMR (400 MHz) δ (DMSO- d6) 10.83 (2H, s, pyrrole-NH) 8.14 (2H, t, amide-NH) 7.91 

(6H, s, NH3) 7.12 (4H, d, phenyl-H) 6.76 (4H, d, phenyl-H) 6.67 (2H, m, pyrrole-H) 5.68 

(2H, m, pyrrole-H) 3.19 (4H, q, CH2) 2.77 (4H, q, CH2) 2.29 (6H, s, CH3), 1.55 (8H, p, 

CH2)
13

C NMR (100 MHz, DMSO- d6 ) δ 160.3, 141.9, 138.8, 135.9, 129.2, 128.2, 127.0, 

110.9, 109.8, 55.2, 38.5, 37.8, 26.4, 24.6, 20.6. 

MALDI-HRMS Calculated C33H44Cl2N6O2 (M-4HCl): 555.4103: Observed:(M+1-4HCl): 

555.4175 
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22 

Synthesis of di-phenyldipyrromethane 

To a 250 mL 2-necked round bottom flask, 1.13 g (6.18 mmol) of benzophenone was 

charged. To this 50 mL of anhydrous methanol was added and magnetically stirred under a 

argon atmosphere. When the benzophenone was fully dissolved 1.07 mL (15.5 mmol) of 

freshly distilled pyrrole was added dropwise.  After 5 minutes, 1.07 mL (8.6 mmol) of 

BF3.(OEt)2 was added and the reaction was allowed stir for 5 days. The precipitate formed 

was filtered and washed with cold methanol to give a white solid 37. (0.615 g, 50%) 

1
H and 

13
C match with literature values Turner et al

1 
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48 

 

To a 25 mL 2-neck round bottom flask, 298 mg (1 mmol) of 22 and 24 mg (0.2 mmol) of 

DMAP was charged with a small magnetic stirring bar and placed over an argon atmosphere. 

To this 10 mL of anhydrous CH2Cl2 was added and the reaction mixture was cooled to 0 
o
C. 

To the stirring solution 457 µL (2.5 mmol) of trichloroacetic anhydride was added dropwise 

and the reaction was allowed stir for 2 hours at room temperature. The reaction was 

transferred to a small separating funnel and the organic phase was washed with 2*10 mL 

water, 2*10 mL NaHCO3 and dried with MgSO4. The DCM was removed to give 48 as a 

white solid in quantitative yield.  

1
H

 
NMR (400 MHz) δ (DMSO- d6) 12.25 (2H, s, pyrrole-NH) 7.29 (6H, m, aryl-H) 7.31 (2H, 

d, pyrrole-H) 7.04 (4H, m, aryl-H) 6.08 (2H, d, pyrrole-H)
13

C NMR (100 MHz, DMSO- d6 ) 

δ 171.8, 145.4, 143.2, 129.1, 128.0, 127.3, 122.6, 120.8, 113.9, 85.1, 56.4. 
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49 

To a 50 mL round bottom flask 350 mg (0.594 mmol) of compound 48 was charged. To this 

5mL of CH2Cl2 was added and allowed stir for 5 minutes under an argon atmosphere. 225 µL 

(1.4 mmol) of N-boc ethylenediamine was added. To this 330 µL (2.4mmol) anhydrous 

triethylamine was added dropwise and the reaction was allowed stir at room temperature 

overnight. The precipitate that was formed was filtered and washed with 2*25 mL aliquots of 

CH2Cl2. The resulting precipitate was dried to form compound 49 in quantitative yield. 

1
H

 
NMR (400 MHz) δ (DMSO- d6) 10.98 (2H, s, pyrrole-H) 8.03 (2H, t, amide-NH) 7.30 

(6H, m, aryl-H) 6.91 (6H, m, aryl-H + amide-NH) 6.7 (2H, d, pyrrole-H) 5.7 (2H, d, pyrrole-

H) 3.2 (4H, q, CH2) 3.0 (4H, q, CH2) 1.4 (18H, s, Boc-H)
13

C NMR (100 MHz, DMSO- d6 ) δ 

160.5, 155.6, 144.6, 138.5, 129.3, 127.6, 127.1, 126.8, 111.0, 109.6, 77.6, 55.8, 39.4, 38.7, 

28.1 
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50 

2,2'-((5,5'-(diphenyldipyrromethane)bis(2,2'-carbonyl))bis(azanediyl))diethanamine 

2HCl 

To a 25 mL round bottom flask 100 mg of 49 and stirring bar was added. The flask was then 

placed under an argon atmosphere. To this 10 mL of anhydrous CH2Cl2 was added. The 

reaction was cooled to 0 
o
C and stirred. To this 1 mL of 4M HCl in dioxane was added and 

the reaction was allowed stir overnight. The precipitated material was filtered and washed 

with CH2Cl2 to yield 50 as a white solid in quantitative yield. 

1
H

 
NMR (400 MHz) δ (DMSO- d6) 11.09 (2H, s, pyrrole-NH) 8.33 (2H, t, amide-H) 8.02 

(6H, s, NH3) 7.32 (6H, m, phenyl-H) 6.90 (4H, m, phenyl-H) 6.73 (2H, m, pyrrole-H) 5.70 

(2H, m, pyrrole-H) 3.43 (4H, q, CH2) 2.91 (4H, q, CH2)
13

C NMR (100 MHz, DMSO- d6 ) δ 

160.8, 144.5, 138.8, 129.2, 127.5, 126.8, 126.7, 111.1, 110.1, 55.8, 38.7, 36.4 
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Chapter 6: The synthesis and bioevaluation of a bridged 

dipyrromethane system 
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6.1 Bridged dipyrromethane systems  
 

In the previous chapter four, the theoretical binding of small dipyrromethane molecules were 

modelled against the homology model of Kv1.1. These results showed a high number of 

localised interactions between DDAAKN01, the selectivity filter and inner turret region 

residues. In chapter 5, the synthesis of these compounds was undertaken with subsequent 

biological evaluation. As selective and potent the inhibitor DDAAKN01 was, the modelling 

highlighted the issue that these small dipyrromethanes do not take full advantage of all 

important residue interactions due to size constraints. The Hill slope for DDAAKN01 was 

found to be between 1.5-1.8, indicating that two molecules are interacting with the Kv1.1 

channel. The concept of linking two dipyrromethanes can offer a route to maximising 

fourfold interaction. A plausible scaffold to test this hypothesis is shown in figure 6.1. 

 

Figure 6.1: Proposed ‘dimer’ of DDAAKN01 

The issue with making a dimer of DDAAKN01 is that  functionalization of the scaffold in the 

para positions of the ditolyldipyrromethanes can not be performed, as illustrated in chapter 

five, with the attempts to oxidise at the para position of the scaffold proving to be 

unsuccessful.     

A potential solution to this problem is outlined in scheme 6.1. This approach is a viable 

alternative for the dimer shown in figure 6.1. Outlined in scheme 6.1 is a plausible synthetic 

route for the preparation of a new dimeric dipyrromethane 54.  The key difference between 

54 and the proposed dimer shown in figure 6.1 is that one of the phenyl groups of the 

dipyrromethane are replaced with a methyl group and in the second phenyl ring the para 
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methyl group is replaced with an amide. The original homology models of DDAAKN01, 

showed that only one of the tolyl groups had direct π-π interactions with Tyr 379 whilst the 

other tolyl remained on the peripheral region of the pore. As a result of this finding, removal 

of one of these substituents in theory, if the model is accurate, should not disrupt the 

molecule-protein interaction therefore 54 should indeed interact with the target Kv1 channels 

(molecular modelling discussed later). Thus the preparation of 54 was undertaken. 

 

 

 

Scheme 6.1: Full schematic of the [2+2] synthesis of the dipyrromethane 54. (i, TEA, THF, RT, 24hr, 

ii pyrrole, TFA, reflux, 4 hr, iii TClAA, DMAP, CH2Cl2, iv N-Boc ethylenediamine, TEA, CH2Cl2, v 

4M HCl in dioxane CH2Cl2) 
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6.2 Results and discussion 
 

 

The modelling performed on compound 54 is shown in figure 6.2. This molecule was docked 

into the rat Kv1.1 homology model constructed in chapter 4. The key interactions that were 

observed were π- π and HB interactions with the inner turret amino acid Tyr 379 on all chains 

(A-D). There was also strong interaction between the terminal amines and the Asp 377 

residues on two of the chains (A and B) and hydrogen bonding between 54 and Tyr 375 on 

one of the chains (C). The phenyl linker holds the two dipyrromethane molecules covalently 

together via an amide bond, positioning the molecule in the centre of the pore region and 

spatially aligns the active sites of the molecule against the corresponding residues in the 

protein matrix. The most interesting aspect of modelling this candidate is the sole molecule 

thus far that has shown that it interacts with Tyr 379 on all residues. This type of selective 

interaction was identified as an initial objective; the Tyr 379 residue is unique to this Kv1.1 

channel over the other Kv1 channels. 

 

 

Figure 6.2: The linked dipyrromethane 54 docked into the rat Kv1.1 homology model. Red illustrates 

chain A, Blue relates to chain B, Cyan indicates chain C and orange is chain D.  
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Figure 6.3: 2D ligand-plot of the linked dipyrromethane 54 docked into the rat Kv1.1 homology 

model. 

The ligand plot indicates the full molecule-protein interaction. This 2D image shows the high 

degree of potential distortion between all of the residues mentioned above and shown in 

figure 6.2. The major observation from the ligand plot in figure 6.3 is the optimum HB 

interaction between the Tyr379 residue and both the amide and terminal amine moiety of the 

side group of 54. As discussed earlier in chapter 4 and 5, this type of interaction, with this 

particular inner turret residue is believed to be essential in causing selective inhibition.    
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6.2.1 Synthesis of  54 

 

The initial step in the synthesis of 54  consisted of a coupling between isophthaloyl chloride 

and 4-aminoacetophenone using TEA as a base. The 4-aminoacetophenone (2.2 eq) was 

dissolved in anhydrous THF with anhydrous TEA (2.2 eq) and chilled to 0 
o
C. The 

isophthaloyl chloride dissolved in anhydrous THF was added dropwise.  Upon addition of the 

acid chloride to the reaction flask a white precipitate is observed. The reaction was stirred at 

room temperature for 2 hours and the precipitate was filtered and thoroughly washed with 

water and CH2Cl2 to remove the triethylamine hydrochloride side product from the 

precipitate. The precipitate was then dried overnight in the vacuum oven at 70 
o
C, 800 mbar 

to obtain 50 as a white solid in 85% yield. Analysed by 
1
H and 

13
C NMR. 

 

 

       

                                                                                                                                         51                                 

Scheme 6.2: Synthesis of compound  51. 
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Condensation of 51 was performed using neat distilled pyrrole and excess TFA. The reaction 

solution was heated to 70 °C and stirred for 4 hours. The reaction was quenched with 5 ml of 

triethylamine and the residual pyrrole was removed by evaporation in vacuo. To the resulting 

black sticky oil, silica was added until a fine powder was obtained. The crude product was 

purified by column chromatography over silica gel (eluent: ethyl acetate/hexane (2:3). 

Column chromatography of the crude mixture of compound 52 is challenging and required 

tediously long columns to isolate the target compound. Synthesis of this compound provides 

a basic, similar scaffold to that shown in figure 6.1 in 28% yield.  

 

 

 

 

Scheme 6.3: Synthesis of compound 52. 
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. 

Figure 6.4: 
1
H NMR of compound 52 
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The modification of compound 52 was performed using the same methods described in 

chapter 5, TClAA and DMAP was successfully used to modify the pyrrole scaffold in 

compound 51, selectively in the 2’ position to give 53 in 68% yield. Unlike the 

ditolyldipyrromethanes, compound 53 required column chromatography ethyl acetate:hexane 

(3:1) to remove trace trifunctionalised impurities. The removal of these impurities is 

extremely important at this step, neglecting them introduces amino trifunctionalised species 

in later steps making purification difficult. 

 

 

 

Scheme 6.4: Synthesis of compound 53 
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The coupling between the N-Boc ethylenediamine species and 53 was performed under the 

same conditions used in chapter 5. Compound 53 was suspended in anhydrous CH2Cl2 at 0 
o
C 

and stirred with N-Boc ethylenediamine (4.8 eq). To this mixture anhydrous TEA (4.8 eq) 

was added dropwise, when finished the solution was allowed heat to room temperature and 

stir overnight.  The precipitate was filtered, and washed thoroughly with both Et2O and 

CH2Cl2.  

 

 

Scheme 6.5: Synthesis of the Boc protected linked dipyrromethane 53a 
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The final step required the cleavage of the carbamate protecting group. Compound 53a was 

suspended in anhydrous CH2Cl2. The reaction was cooled to 0 
o
C and stirred. To this 1 mL of 

4M HCl in dioxane was added and the reaction was allowed stir overnight. The precipitate 

was isolated and washed with diethyl ether. 

 

 

Scheme 6.6: Final deprotected linked dipyrromethane 54 
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Figure 6.5: 
1
H NMR of compound 54 
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6.3 Biological evaluation of DDAAKN02 vs DDAAKN01 
 

The results discussed concerning DDAAKN01 showed excellent potency and selectivity in 

the inhibition of the diseased state channel Kv(1.1)4. The Hill’s slopes indicate that more than 

one molecule of DDAAKN01 was interacting with the channel, presumably through a H-

bonding mechanism. Based on these results compound 54 (DDAAKN02) was prepared in the 

hope that the presence of two dipyrromethanes in the same compound would  optimise all 

possible interactions leading to a more potent and selective inhibitor.  

When the linked dipyrromethane 54 (DDAAKN02) was screened it was observed that this 

molecule gave a Hill’s slope of 1, this results illustrates that only one molecule of 

DDAAKN02 is solely interacting with the tetramer channel.  

Bio-evaluation of DDAAKN02 vs DDAAKN01 was performed and the results are shown in 

figure 6.7. The comparative results between the compounds are highly interesting as  

DDAAKN02 is almost twice as potent for the diseased state Kv(1.1)4 channels against the 

smaller molecule DDAAKN01 and follows the same inhibition pattern. Results have also 

shown that the linked molecule DDAAKN02 inhibits the Kv1.3 slightly less than 

DDAAKN01. The most interesting discovery on comparing these results is that the ratio of 

inhibition for the Kv1.1 channel against Kv1.3 was 2:1 with DDAAKN01 however with 

DDAAKN02 this ratio increased to almost 4:1. The modifications made in the design of 

DDAAKN02 could hold the key to the discovery of a molecule that is 100% exclusive to 

Kv(1.1)4. The calculated IC50 value for DDAAKN02 was 8±0.4 µM.  
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Figure 6.7: Linked dipyrromethane DDAAKN02 against DDAAKN01 tested upon the rat Kv1 

channels. 
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6.3.1 Comparisment of concatenated tetramers Kv(1.1/1.2)4 with DDAAKN02 and 

DDAAKN01 

 

The real ‘acid test’ of the efficiency of DDAAKN01 is to test it against the diseased state 

channel Kv(1.1)4 and the normal channels Kv(1.1)3-(1.2), Kv(1.1)2-(1.2)2 and Kv(1.2)4 

shown in figure 6.8. The screening results revealed that  DDAAKN02 inhibited only the 

diseased state concatenated tetramer at about 70%. When we introduced one copy of Kv(1.2) 

into the tetramer we only inhibit at 10%, the addition of another copy of Kv(1.2) totally stops 

the channel from undergoing inhibition. 

The main distinction between DDAAKN02 and DDAAKN01 is, that DDAAKN01  will 

inhibit the normal channels very marginally whereas DDAAKN02 eliminates the inhibition 

of the normal channels to a negligible effect.  

This selectivity over the two channels Kv(1.1)/Kv(1.2) is fundamentally important to the 

potential development of any possible therapeutic  because inhibiting Kv1.2 results in serious 

side-effects a good example of this is 4-AP which lacks this selectivity and causes major 

side-effects.  Thus DDAAKN02 can be considered a viable new lead for the treatment of MS. 

      

 

Figure 6.8: DDAAKN02 against DDAAKN01 upon the concatenated channels Kv1.1/1.2 expressed 

in the brain and diseased state.  
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6.3.2 Ca2+ and Na+ blockage with DDAAKN01 and DDAAKN02 

 

As detailed in the literature review in chapter one the other classes of ion channels, that also 

have biological importance, were discussed. Both DDAAKN01 and DDAAKN02 were 

screened against both Na
+
(figure 6.09) and Ca

2+
(figure 6.10)  channels for possible associated 

side effects with these channels. Both compounds were tested on TTX-sensitive Na
+
 channels 

from - F-11  DRG neuroblastoma mouse cell line. 

 

Figure 6.9: DDAAKN01 and DDAAKN01 tested on TTX-sensitive Na
+
 channels. 

Both compounds showed to be insensitive to Na
+
 channels. There was no observed change in 

the inward current as a result of administration of the two inhibitors to the cell lines. This is 

an extremely important finding as similar to Kv channels, Na
+
 channels are directly 

associated to the action potential within the cell, and inhibiting them would cause unwanted 

side-effects. The selectivity towards Kv1 provides a suitable platform for these compounds to 

be further investigated as a plausible therapeutic.  
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Figure 6.10: DDAAKN01 and DDAAKN02 screened against the native Kca channels. 

Shown in figure 6.10, only DDAAKN01 inhibits the native calcium channel. The rate of 

inhibition is ~30%. DDAAKN02 is totally insensitive to the channel.    

 

6.4 Conclusion 

 

Improvements on the selectivity and potency were achieved by modifying the previous lead 

candidate DDAAKN01 detailed in chapter 5. The modified inhibitor DDAAKN02 has vastly 

improved potency believed to be due to the higher percentage of key interactions between the 

inhibitor and the key amino acid residues in the channel. As a result of the designed and 

strategic incorporation of more key moieties DDAAKN02 has proved to be a superior 
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candidate to selectively inhibit Kv1.1. DDAAKN02 showed that it was more selective to the 

diseased channel Kv(1.1)4 and that normalised channels with incorperated Kv1.2 sub-units 

had negligible inhibition potential. Both Na
+
 and Ca

2+
 were unaffected when treated with 

DDAAKN02 whereas DDAAKN01 showed some sensitivity to the native calcium channel. 

These results demonstrate both the selectivity and potency of DDAAKN02 as a feasible 

therapeutic for Kv1.1 related diseases such as MS.  
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6.5 Experimental 

 
All operations were carried out under an atmosphere of argon or nitrogen using standard 

Schlenk techniques. All solvents were supplied by the Aldrich Chemical Company and TCI. 

Dichloromethane was dried over MgSO4 prior to use. All organic reagents were purchased 

from the Aldrich Chemical Company and TCI. Pyrrole was freshly distilled over potassium 

hydroxide before use. Anhydrous triethylamine, borontrifluoride diethyletherate and were all 

used without further purification. Column chromatography was carried out using neutral 

silica gel (Merck, used as received). All mobile phases for column chromatography were 

dried over MgSO4 prior to use.. All solvents were deoxygenated by purging withargon or 

nitrogen for ~10 minutes 

 

Equipment 

All syntheses involving air- and moisture-sensitive reagents were performed in oven or 

flame dried glassware. NMR spectra were recorded on a Bruker model AC 400 MHz 

spectrometer and Bruker model ANC 600 MHz spectrometer using CDCl3 as solvent. All 

NMR spectra were calibrated according to the residual solvent peak, i.e. CHCl3 at 7.26 ppm, 

DMSO-d6 2.50 ppm for all 
1
H spectra and 77.16 ppm and 39.52 ppm for all 

13
C spectra. 

Chemical shifts are given in parts per million (ppm). 
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51 

To a 250 mL round bottom flask, 4.3 g (32.5 mmol) of 4-aminoacetophenone was added. 

This was dissolved in 45 mL of anhydrous THF. A volume of 2.5mL of anhydrous TEA was 

added and the reaction mixture was chilled to 0 
o
C and stirred. A weight of 3.0 g (14.8mmol 

of isophthaloyl chloride was dissolved in 30mL of anhydrous THF and added dropwise to the 

stirring solution. The reaction was stirred for 4 hours and the precipitate was filtered. The 

precipitate was washed with 5x50 mL H2O and 5x50 mL washings of CH2Cl2. The 

precipitate was dried to yield a white solid 5.02 g, 85% yield. 

1
H

 
NMR (400 MHz) δ (DMSO- d6) 10.72 (2H, s, NH) 8.53 (1H, s, CH) 8.11 (2H, m, CH) 

7.89 (8H, dd, p-aryl-H) 7.72 (1H, t, CH) 2.41 (6H, s, CH3)
13

C NMR (100 MHz, DMSO- d6 ) 

196.6, 165.4, 143.4, 134.8, 132.1, 131.1, 129.3, 128.8, 127.2, 119.5, 26.5. 
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52 

To a 100 mL round bottom flask, 1 g (2.49 mmol) of 51 was added. To this 15 mL (216 

mmol) of freshly distilled pyrrole was added. A volume of 2 mL TFA was added dropwise 

and the reaction was stirred at 70 
o
C for 4 hours. The reaction was quenched with 5 mL of 

TEA and stirred at room temperature for 20 mins. The unreacted pyrrole was removed under 

high vaccum at 50 
o
C to leave a black tar-like oil. The crude reaction mixture was purified by 

silica gel chromatography eluting with hexane: ethyl acetate (3:2) and the solvent removed in 

vacco to give a beige solid 450 mg; 28% yield.  

1
H

 
NMR (400 MHz) δ (DMSO- d6) 10.43 (6H ,m, NH pyrrole + NH amide) 8.55 (1H, s, CH) 

8.18 (2H, m, CH) 7.73 (5H, d, aryl-H + CH) 7.01 (4H, d, aryl-H) 6.69 (4H, m, pyrrole-H) 

5.94 (4H, s, pyrrole-H) 5.60 (4H, m, pyrrole-H) 2.00 (6H, s, CH3)
13

C NMR (100 MHz, 

DMSO- d6 ) 165.8, 145.2, 138.7, 137.9, 136.1, 131.5, 129.5, 128.3, 127.9, 120.4, 118.1, 

107.2, 106.8, 44.8, 28.9 
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53 

To a 50 mL round bottom flask 200 mg  (0.316 mmol) of compound 52 was added with 18 

mg (0.158 mmol) of DMAP. These were suspended in 10 mL anhydrous CH2Cl2 and the 

reaction mixture chilled to 0 
o
C and placed under an argon atmosphere. 0.288 mL (1.58 

mmol) of trichloroacetic anhydride was added dropwise and the reaction was stirred at room 

temperature for 2 hours. The reaction was quenched with aq NaHCO3 and washed with brine 

2x10 mL. The crude product was purified by silica gel column chromatography, eluting with 

ethyl acetate and hexane (1:3) to give 52 as a white solid 0.2614 g, 68% yield. 

1
H

 
NMR (400 MHz) δ (DMSO- d6) 12.22 (4H, s, NH-pyrrole) 10.51 (2H, s, NH-amide) 8.58 

(1H, s, CH) 8.11 (2H, m, CH) 7.80-7.78 (5H, d, aryl-H + CH) 7.31 (4H, m, pyrrole-H) 7.02 

(4H, d, aryl-H) 6.15 (4H, m, pyrrole-H) 2.13 (6H, s, CH3)
 13

C NMR (100 MHz, DMSO- d6 ) 

171.8, 165.0, 147.8, 141.0, 137.7, 135.0, 130.7, 128.6, 127.3, 127.0, 122.3, 121.2, 120.4, 

111.3, 95.3, 45.2, 27.5. 
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53a 

To a 25 ml round bottom flask 150 mg (0.125 mmol) of compound 53 and 5 mL of 

anhydrous CH2Cl2 was added and placed over an argon atmosphere. 0.094 mL (0.592 mmol) 

of N-Boc ethylenediamine was added dropwise and the reaction mixture was allowed to stir 

for 10 mins. To this 0.082 mL (0.592mmol) of anhydrous TEA was added and the reaction 

was allowed stir for 24hours at room temperature. The precipitate was filtered and washed 

thoroughly with CH2Cl2 to leave a white/beige solid 0.144 g, 84% yield. 
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54 

To a 25 mL round bottom flask, 100mg of compound 53a was charged. A volume of 5 mL 

anhydrous CH2Cl2 was added, placed under an argon atmosphere and chilled to 0 
o
C. To this 

1mL of 4M HCl in dioxane was added and the reaction was stirred for 24 hours at room 

temperature. The precipitate was filtered and washed with CH2Cl2 to give compound 54 in 

quantitative yield.  

1
H

 
NMR (400 MHz) δ (DMSO- d6) 11.2 (4H, s, NH-pyrrole) 10.6 (2H, s, NH-amide) 8.7 

(1H, s, CH) 8.3 (4H, t, NH-amide) 8.1 (2H, m, CH) 8.0 (12H, s, NH3
+
) 7.7 (5H, d, phenyl-H+ 

CH) 6.9 (4H, d, phenyl-H) 6.7 (4H, m, pyrrole-H) 5.9 (4H, m, pyrrole-H) 3.3 (8H, m, CH2) 

2.9 (8H, m, CH2) 2.0 (6H, s, CH3)  HR-MALDI MS: Calculated C52H64Cl4N14O6 (M+1-

4HCl: 977.4854) Observed (M+1-4HCl: 977.4899) 
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Thesis Conclusion 
 

The overall objective of the thesis was a success, the initial SAR work performed on the 

porphyrin scaffold provided enough information to design two new, selective and potent 

inhibitors for Kv1.1 channels associated with MS. Although the porphyrins that were 

prepared did not possess high selectivity to any particular Kv1 channel, (except for 

compound 18, which gave sole selectivity for Kv1.2) essential information was obtained to 

aid in the creation of a simple pharmacaphore model. An attempt was then made to 

translation the porphyrin pharmacaphore to a non photoactive calix[4]pyrrole scaffold. 

Unfortunately this approach was unsuccessful due to the inability to prepare the target 

calix[4]pyrroles.  

However, by applying comparative modelling of the porphyrin results with Kv1.1 allowed for 

the visual interactions between the key amino acids of the channel and the active porphyrins. 

From the comparative modelling study three new lead dipyrromethanes were synthesised and 

evaluated against the Kv1 channels. From this study a new lead was discovered, 

DDAAKN01 (31) , which exhibited excellent selectivity and potency for the target Kv1 

channels that are associated with MS. It was also discovered that two molecules of 

DDAAKN01 are involved in the channel blockage based on the Hill slope study. Further 

modelling was then undertaken on DDAAKN01 to better understand the key interactions 

between the new lead and the target channels.  From the modelling work a new improved 

lead , DDAAKN02 (54), was designed and synthesised. The subsequent bioevaluation of this 

new compound revealed that DDAAKN02 possesses both far superior binding and selectivity 

than DDAAKN01.   

It should be note that both DDAAKN01 and DDAAKN02 are the first examples of small 

molecules that demonstrate such high selectivity and potency toward the target Kv1.1 

channels. Furthermore, both compounds outperform the MS marketed drug 4-AP with respect 

to both selectivity and potency making them excellent lead structure candidates for the 

treatment of MS.  

 

 

 


