
Dynamic User Authentication Based on Mouse
Movements Curves

Zaher Hinbarji, Rami Albatal, and Cathal Gurrin

Insight Centre for Data Analytics,
Dublin City University

zaher.hinbarji@insight-centre.org

https://www.insight-centre.org

Abstract. In this paper we describe a behavioural biometric approach
to authenticate users dynamically based on mouse movements only and
using regular mouse devices. Unlike most of the previous approaches in
this domain, we focus here on the properties of the curves generated
from the consecutive mouse positions during typical mouse movements.
Our underlying hypothesis is that these curves have enough discrimi-
native information to recognize users. We conducted an experiment to
test and validate our model in which ten participants are involved. Back
propagation neural network is used as a classifier. Our experimental re-
sults show that behavioural information with discriminating features is
revealed during normal mouse usage, which can be employed for user
modeling for various reasons, such as information assets protection.

Keywords: multimedia security, user modeling, human-computer inter-
action, mouse dynamics

1 Introduction

We take care to encrypt or password protect our computers so that we can
restrict unauthorised access. However, we don’t typically consider the situation
of ‘friendly’ unauthorised access to our private personal archives. Consider the
people that have access to your physical computing devices and can theoretically
access your content. This work addresses this aspect of multimedia content stor-
age and protection by proposing a user authentication method based on mouse
movements alone. One could easily imagine the computer immediately locking
out a user who accesses the private multimedia archive of the data owner. It is
common to have three security procedures working together to protect informa-
tion assets and to ensure the controlled access. These procedures are: authenti-
cation, authorization and auditing [1].

We focus here on the first component of security systems, personal identifica-
tion and authentication, which can be done by something the user knows (e.g.,
password, PIN code, pattern), something the user has (e.g., card, access token,
wrist band) or something the user is or does (e.g., a fingerprint, signature, face,
voice, which are known as biometrics) [2]. The need for special hardware devices

2 Dynamic User Authentication Based on Mouse Movements Curves

for data capture is a big limitation of most biometric systems. The advantage
of a mouse-based authentication system is that it can be implemented using a
regular mouse [2], [3], [4], [5]. User authentication can be achieved statically or
dynamically. In the static approach, the system checks the identity of the user
once, usually at the beginning of the session so any change of user after that
will be unnoticeable to the system. In contrast, dynamic verification checks the
user continuously over the session which can effectively prevent session hijack-
ing, however that should be done passively without interrupting the user [6]. In
this work, we present a dynamic user authentication based on mouse movements
only and using normal mouse devices.

2 Related Work

Several mouse dynamics approaches for dynamic authentication have been
proposed in the literature, presenting different types of features. Hayashi et al.
[7] presented one of the earliest research in this domain; users were requested to
use the mouse for drawing circles or other figures, and then analytics algorithms
were applied on features based on the distances between the mouse coordinates
and the centre of the shapes. In [2], Pusara and Brodley used the distance, an-
gle and speed between pairs of data points as raw features which then used to
produce their mean, standard deviation and the third moment values (distance,
angle and speed) over a window of N data points. In Ahmed and Traore’s work
[3], raw mouse events are aggregated and then classified by action type. Consec-
utive actions are grouped into sessions, from which features related to movement
speed, movement direction, traveled distance are computed producing user sig-
nature. Schulz in [5] presented a model in which raw data are broken into mouse
curves; length, curvature and inflection points of the curve are used as main fea-
tures, and a reference signature is built by generating histograms from the curve
characteristics of multiple curves. The Verification is implemented then by com-
puting the Euclidean distance between the reference signature and the mouse
activity observed during authentication time. Jorgensen and Yu [8] evaluated
the approaches done by [2] and [3] and discussed some of the limitations in their
works. According to [8] it is not clear whether the system detects the differences
in mouse behavior or differences among the working environment including the
performed task.

To overcome the above mentioned drawback of the state-of-the-art meth-
ods, our main challenge is to extract features that can reflect the user behavior
patterns regardless of both the task that she/he is performing and the envi-
ronment she/he is working in. Our underlying hypothesis is that mouse curves
have such user-specific information that can be used to model users behavior.
Our approach is similar to the one followed by Schulz [5] in using histograms of
features extracted form the mouse curves. However, the two approaches differ
in two major aspects. First, we use different features and emphasise on using
ones that satisfy certain mathematical properties related to task-independence.
Second, [5] uses a single ‘reference’ signature per user. The Euclidean distance

Dynamic User Authentication Based on Mouse Movements Curves 3

between the evaluated signature and reference signature is then used to validate
the user. Our method, on the other hand, uses instead a neural network per user
which is trained using multiple signatures. The neural network has the potential
of better recognition by generalising from different signature training samples.

3 Behavior Modeling

In order to make our approach practical enough to be used in typical working
environment, our model uses raw mouse coordinates collected from users during
their normal workday activities without any kind of restrictions. The consecu-
tive mouse coordinates are grouped into curves that correspond to the typical
performed mouse actions (point-and-click, move, drag-drop). A single curve does
not have enough information by itself to refer to its user, that is why we group
the curves into sessions in order to study the statistical behavior characteristics
observed during each session. A session is a number of consecutive curves belong
to the same user. To show how results are affected by the length of the session we
will present the accuracy of the system in terms of 3 different values of session
length: 100, 200 and 300 curves.

The objective of our method is to verify the identity of the user based on fea-
tures of the curves followed when moving the mouse from one point to another.
The exact values of those features may vary considerably even for curves belong-
ing to the same user. However, we assume that each feature follows a probability
distribution that is unique to each user and can serve as a signature of his/her
mouse movements. The probability distribution of each feature is approximated
by a normalized histogram computed using a large number of curves belonging
to a certain user (session). The histograms of different features belonging to a
certain user form the signature of that user, which is the input of our detection
algorithm.

4 Mouse Curve Features

In this section, we describe the nine different features used to characterize
a single mouse curve. Each feature gives a single value as a descriptor of the
curve, except for inflection profile, sharpness profile and central moments that
generate five, five and three values accordingly. As a result, we have in total 19
values describing each curve. To the best of our knowledge we are the first who
introduced these features in this domain except for straightness and inflection
profile which are previously used before by [5]. However, we introduce here our
own implementation for these features.

A mouse curve is defined as a tuple (ordered list) of two or more 2D points:

C = (p1, p2, ..., pn) : n ≥ 2, pi = (xi, yi) ∈ R2 , (1)

where n is the number of points.
A feature of this curve is simply a function of the coordinates of its points:

F (C) : R2n → S ⊆ R , (2)

4 Dynamic User Authentication Based on Mouse Movements Curves

where S is a subset of the real numbers.
Since those features will be used to characterize a user, they should be task

independent, which implies that any feature should be independent of the posi-
tion, size and orientation of the curve. This means that feature functions should
satisfy the following mathematical properties:

– Translational invariance

F (p1 + q, p2 + q, ..., pn + q) = F (p1, p2, ..., pn) , (3)

where q ∈ R2 is a 2D translation vector.
– Scale invariance

F (αp1, αp2, ..., αpn) = F (p1, p2, ..., pn) , (4)

where α ∈ R is a scaling factor.
– Rotational invariance

F (M p1,M p2, ...,M pn) = F (p1, p2, ..., pn) , (5)

where M =

[
cos θ − sin θ
sin θ cos θ

]
is a 2D rotation matrix that rotates points

counter-clockwise through an angle θ about the origin.

4.1 Efficiency

The goal of a single mouse movement is to go from the first point p1 to the last
one pn. The shortest path between those two points is a straight line while any
other curve will be longer. Efficiency is defined as the ratio of the length of the
shortest path over the length of the curve

E =

√
(xn − x1)2 + (yn − y1)2∑n−1

i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2

∈ [0, 1] . (6)

This feature measures how efficient a curve is, in achieving its goal. The value
of efficiency rages between 0 and 1. A curve with value 1 is the shortest path and
the most efficient (It should be a straight line but the converse is not necessarily
true), while a curve with value near 0 is a one that moves a lot without going too
far. A user whose curves have a high efficiency value tends to move the mouse
directly between target positions without making many unnecessary movements.

4.2 Straightness

This feature measure how much a curve resembles a straight line. This is done
by studying the correlation between the curve points. First, we compute the
covariance matrix of the points coordinates:

Σ =

(
σ2
x σxy

σyx σ2
y

)
(7)

Dynamic User Authentication Based on Mouse Movements Curves 5

σ2
x and σ2

y are the variances along the x and y axes, respectively. σxy is the
covariance of x and y.

Then we compute the eigenvalue decomposition of the covaraince matrix.
The largest eigenvalue (let it be λ1) represents the largest variance of the points
along any direction while the second eigenvalue (let it be λ2) represents the
variance along the direction orthogonal to the previous one. As a straightness
measure, we use the following relation:

S =
λ1 − λ2
λ1

∈ [0, 1] . (8)

Straightness value range between 0 and 1. When the relation between x and
y is almost linear, λ1 is much larger than λ2 and the straightness is near 1. When
the relation is non-linear, λ1 and λ2 are close and the straightness is near 0 (see
Fig. 1). Our measure of straightness is meant to replace the one given by [5].
Their measure is a yes/no measure that does not account for that fact that some
curves appear more straight than others while our measure gives a zero value
when the curve is exactly a straight line and a positive value proportional to
how well the curve resembles a straight line.

1 1

0 ≈ 0 ≈ 0

≈ 0.8

Fig. 1: Different sets of points with their straightness values.

4.3 Regularity

This feature measures how regular a curve is by looking at the distances of its
points to its geometrical centre.

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi

di =
√

(xi − x̄)2 + (yi − ȳ)2

Regularity is then defined in terms of the mean and standard deviation of those
distances as

R =
µd

µd + σd
∈ [0, 1] , (9)

where µd =
1

n

n∑
i=1

di, σ2
d =

1

n

n∑
i=1

(di − µd)2 .

6 Dynamic User Authentication Based on Mouse Movements Curves

Note that curves forming regular polygons, like equilateral triangle or squares,
have all their corners at the same distance from their center. This implies that
the variance of the distances is zero and thus regularity is one.

4.4 Self-Intersection

This feature counts the number of times a curve intersects with itself. To find
this number, we test all pairs of line segments for intersection. This approach
takes O(n2) which is fine because n is small in our case.

Two line segments p1p2 and p3p4 intersect, if and only if both:

– p1 and p2 are on different sides of p3p4,
– p3 and p4 are on different sides of p1p2.

These are respectively true, if and only if :

– Angles ∠p1p3p4 and ∠p2p3p4 are of opposite signs.
– Angles ∠p3p1p2 and ∠p4p1p2 are of opposite signs.

These are respectively true, if and only if :

– Cross products −−→p3p1 ×−−→p3p4 and −−→p3p2 ×−−→p3p4 are of opposite signs.

– Cross products −−→p1p3 ×−−→p1p1 and
−−→
p1p4×−−→p1p2 are of opposite signs.

As a result, it is sufficient to check the fulfillment of the last two conditions to
test whether two line segments intersect. Note that we do not consider touching
line segments as intersecting.

4.5 Curvature-based Features

Mathematically, the curvature of a continuously differentiable curve is defined
as the rate of change of the tangential angle with respect to the arc length:
κ = dφ/ds.

Handling curvature of mouse curves is problematic because they are piecewise
linear, so the curvature is zero inside the line segments and ill-defined on the
corners. One approach to solve this problem is approximating the rough mouse
curve by another smooth curve like B-spline (as done in [5]) or Bezier curves
and then studying the curvature of the resulting smooth curves. We follow here
a different approach.

First let us look at the the line integral of the curvature between two points
of the curve

Φ(a, b) =

∫ b

a

κ ds =

∫ b

a

dφ = φ(b)− φ(a) . (10)

It is called the total curvature and it is nothing but the total change in the
tangential angle.

For mouse curves, the total curvature is well-defined and it is a step function
that is constant along the line segments and jumps at the corners; The value of
the jump at a corner equals to the change in the angle (see Fig. 2).

Since the curvature is the derivative of the total curvature, it is ill-defined
at the jumps because of the discontinuity. However, it can still be defined in a

Dynamic User Authentication Based on Mouse Movements Curves 7

P0

Pn

Curvature

Arc Length

Total Curvature

Arc Length

- π

π

0

Fig. 2: Curvature and total curvature of a mouse curve (piecewise linear curve).

distributional sense as a Dirac delta function. The behavior of delta function is
well-defined inside integrals and most curvature-based features are defined using
integrals. The only feature that goes beyond integration, is the inflection profile
but the problem is resolved then by replacing delta functions with Gaussian
function.

Formally, the curvature of a mouse curve is then defined as a linear combi-
nation of delta functions positioned at the corners and weighted by the angles

κ(s) =

n−2∑
i=1

θi δ

(
s− si

sn−1

)
where: (11)

si =

j=i∑
j=1

√
(xj − xj+1)2 + (yj − yj+1)2

θi = sign(vi × vi+1) arccos

(
vi.vi+1

‖vi‖‖vi+1‖

)
vi = −−−−→pipi+1 .

Notice that in Eq. 11 the positions are rescaled by the length of the curve (sn−1)
in order to make the curvature scale-invariant.

Total Angle This feature measures the total change in angle between the first
and last points of the curve. It equals to the integral of the curvature

TA =

∫
ds κ(s) =

∫
ds

n−2∑
i=1

θi δ(s− si) =

n−2∑
i=1

θi

∫
ds δ(s− si) =

n−2∑
i=1

θi . (12)

The last equality holds because the integral of a Dirac delta function is unity.

Bending Energy This feature measures the total change of angles regardless
of the sign. It equals to the L1-norm of the curvature

BE =

∫
ds |κ(s)| =

∫
ds|

n−2∑
i=1

θi δ(s− si)| =
n−2∑
i=1

|θi|
∫
ds δ(s− si) =

n−2∑
i=1

|θi| .

(13)

8 Dynamic User Authentication Based on Mouse Movements Curves

Inflection Profile Inflection point is where the curve changes the sign of its
curvatures. Computing the number of inflection points naively, by counting the
number of sign changes of θi, results many spurious inflection points because
of the noise on the curvature. Therefore, we need to smooth the curvature by
replacing the delta functions with Gaussian functions of the same weight and
certain width (see Fig. 3). The number of sign inflection points is the number of
sign changes in the smoothed curvature. In order to avoid biasing the result to
a certain smoothing level (certain width of the Gaussian), we use the different
number of inflection points at five different smoothing levels as features. Taken
together, we call these features inflection profile.

Delta Functions Curvature

Arc Length

Smoothed Curvature

Arc Length

Fig. 3: Curvature can be smoothed by replacing delta functions with Gaussian
functions of the same weight and at the same postion.

Sharpness Profile We define a sharp bend as an absolute change in the angle
by more than π/2. A sharp bend may happen on a single corner or may take
several corners. To find the number of sharp bends requiring m corners, we sum
each m consecutive angles θi and then count the values that are greater than
π/2 in absolute value.

We compute the number of sharp bends requiring five different number of
corners. Taken together, these features are called sharpness profile.

Center and Central Moments The n-th moment of a normalized positive
function around point c is defined as

µ′n(c) =

∫
ds (s− c)n f(s) . (14)

The first moment around 0 is called the mean µ := µ′1(0) and the moments
around the mean µn := µ′n(µ) are called central moments. Knowing the mean
and the first few central moments of a function gives a rough idea about its
shape.

We use the moments of the normalized absolute value of the curvature f(s) =
|κ(s)|/

∫
ds |κ(s)| as features. They are computed using the following relations

which are obtained by substituting f(s) in Eq. 14:

µ =

∑n−2
i=1 si |θi|∑n−2
i=1 |θi|

(15)

µn =

∑n−2
i=1 (si − µ)n |θi|∑n−2

i=1 |θi|
(16)

We used the values of the first 3 moments in our features vectors.

Dynamic User Authentication Based on Mouse Movements Curves 9

5 Behavior Comparison

As described earlier, we do not use the features themselves for classification
but rather their probability distribution. This probability distribution can be
approximated using a normalized histogram of the feature values. We determine
the binning of the histogram using the equal-frequency discretization algorithm
[9]. Given the feature values of all the users together, we sort all the values in
ascending order. If the number of required bins is n, we use every nth value of
the sorted data as a bin marker, plus the first and last values. Regarding the
number of bins, we use eight bins per feature; this has heuristically given good
results in approximating the underlying distributions of the features. As a result,
our final signature vector has 152 values, which is an 8-value histogram for each
one of our 19 features concatenated together.

Authenticating users using a signature is done via artificial neural networks.
Each user has his/her own neural network which is trained to recognize his/her
signature alone. A neural network automatically selects the most discriminating
factors in the features vector by over-weighting the most discriminating features
and ignoring the less important ones. The neural network used in our approach
is a feed-forward multilayer perceptron network of three layers. The input layer
consists of 152 nodes, corresponding to the length of our features vector. The
hidden layer consists of 50 nodes whereas the network has only one node in the
output layer. The output of the network is in the range [0,1]. During training,
positive examples are assigned value 1 and negative examples are assigned value
0. However, due to the interpolating nature of the neural network, the output
for new examples will lie in between. Therefore, a threshold limit is used to
authorize the claimed identity.

To train a neural network to recognise sessions for a targeted user, we consider
all the sessions that belong to that user in the training set as positive examples
and all other sessions as negative examples. This was carried out in a similar
manner for all users. In real life scenario, the first sessions of the user are used
passively to build his/her signature. User authentication is the final step in the
process; in order to verify the claimed identity of a session we first extract the
features vector of that session and use it as an input for the network specifically
trained to recognize that identity. Then, the output of the network is compared to
an authentication threshold to ensure that it is sufficient enough to authenticate
that captured behavior.

6 Evaluation

In order to test our model in normal working environment, our data set is
collected from users during their regular workday activities without any kind of
pre-defined tasks or restrictions. We developed a background app that intercepts
raw mouse events passively and save them for later analysis. Ten users partici-
pated in this experiment using Mac OS without changing their mouse settings.
The collected data is only mouse coordinates with an indicator to the current

10 Dynamic User Authentication Based on Mouse Movements Curves

performed action (point-and-click, move, drag-drop). Around 16,500 actions are
collected for each user during about 24 working hours. Our evaluation is done us-
ing three measures: false acceptance rate (FAR), false rejection rate (FRR) and
equal error rate (EER). FAR measures the likelihood that the system incorrectly
accepts an access attempt by an intruder. Whereas, FRR measures the likeli-
hood that the system incorrectly rejects an access attempt by an authorized user.
EER is the value at which both acceptance and rejection errors are equal due
to tuning the authentication threshold of the system. The sessions of each user
are divided into two equal subsets: training set and testing set. After training
the system on the training set only, we test the system by counting the number
of misclassifications against all the sessions in the testing set. FRR is computed
by counting the number of misclassifications when both the testing session and
the trained neural network belong to the same user. On the other hand, FAR is
computed by counting the number of misclassifications when the testing session
and the trained neural network belong to different users. To make sure that FAR
also covers the case of an attacker who has not been seen before by the system,
the previous process is repeated ten times (according to the number of users). In
each time, one of the users is considered as an outsider; his sessions are excluded
during the training phase and are added to the testing set. The total number of
misclassifications over the ten times is used to calculate FAR and FRR. To find
the value of EER, we conduct the testing by varying the authentication threshold
between 0.1 and 0.9. Figure 4 shows how the values of FAR decreases and the
FRR increases as the authentication threshold increases for sessions of length
100 curves. The higher the threshold, the lower the probability the system incor-
rectly accepts an intruder and the higher the probability the system incorrectly
rejects an authorized user. The shape of ROC curves for the two other values of
session length (200,300) are similar to Figure 4. As expected, the EER decreases
when we increase the length of the session. Increasing the session length allow
the system to detect more behavioral patterns. However, long sessions give the
attacker more time to finish his/her attack before the system detects him/her.
Since the session length measured by the number of actions (curves), the actual
needed time to authenticate a user may vary considerably even for sessions of the
same user depending on how much time the user needs to generate the sufficient
mouse actions. Table 1 shows the EER and the corresponding total average time
our subjects took to generate the needed curves.

As we introduced before, [5] presented a similar model based on mouse curves
too. By comparing results in Table 2 and our reported error rates (Table 1) we
can see that our model achieves good results toward a reliable task-independence
mouse based authentication system.

Table 1: EER values and the corresponding session length

Session Length (#Curves) Session Length (Time) EER Threshold

100 5.6 min 9.8% 65%

200 14.3 min 7.2% 50%

300 18.7 min 5.3% 55%

Dynamic User Authentication Based on Mouse Movements Curves 11

0 10 20 30 40 50 60

False Acceptance Rate (%)

0

5

10

15

20

25

Fa
ls

e
 R

e
je

ct
io

n
 R

a
te

 (
%

)

ROC Curve

Threshold FRR(%) FAR(%)

10% 3.3 52.3

15% 3.6 50.1

20% 3.9 45.4

25% 4.3 30.7

30% 4.8 27.1

35% 5.2 20.8

40% 5.4 18.1

45% 5.7 16.7

50% 6.2 14.2

55% 7.1 12.3

60% 8.7 10.8

65% 9.8 9.8

70% 13.6 9.5

75% 14.8 8.8

80% 15.4 8.2

85% 17.3 8.0

90% 20.4 7.8

Fig. 4: FAR and FRR values according to different authentication thresholds for
sessions of length 100 curves and the corresponding ROC curve.

Table 2: EER values reported by Schulz [5].

#Curves 120 300 600 2400 3600

EER 20.6% 16.6% 13.8% 10.9% 11.1%

7 Conclusions

In this work we have proposed an approach to model the normal human-
computer interaction via mouse device that can be used to control access to
information assets, multimedia archives and personal devices by continuously
authenticating the current user of the system. Our main contribution is intro-
ducing mouse-curve based features that satisfy certain mathematical properties
related to task-independence. Experimental results of ten subjects achieved an
EER of 5.3 percent. Future research will extend the subjects involved in the
evaluation process and test consistency and invariance of the model over time.
Besides, a statistical analysis will be useful to show the contribution of each
feature in the final decision, which can also help us to know how comprehensive
the features set is.

Acknowledgments This publication has emanated from research conducted
with the financial support of Science Foundation Ireland (SFI) under grant num-
ber SFI/12/RC/2289. We would like to express our deep gratitude to Dr. Ammar
Joukhadar and Mr. Khaldoon Ghanem for their valuable support and construc-
tive recommendations on this project.

12 REFERENCES

References

[1] Dobromir Todorov, ed. Mechanics of User Identification and Authentica-
tion: Fundamentals of Identity Management. Auerbach Publications, 2007.

[2] Maja Pusara and Carla E. Brodley. “User Re-authentication via Mouse
Movements”. In: Proceedings of the 2004 ACM Workshop on Visualization
and Data Mining for Computer Security. USA: ACM, 2004, pp. 1–8.

[3] Ahmed Awad E. Ahmed and Issa Traore. “A New Biometric Technology
Based on Mouse Dynamics”. In: IEEE Trans. Dependable Sec. Comput. 4.3
(2007), pp. 165–179.

[4] Y. Nakkabi, I. Traore, and A.A.E. Ahmed. “Improving Mouse Dynamics
Biometric Performance Using Variance Reduction via Extractors With Sep-
arate Features”. In: Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on 40.6 (Nov. 2010), pp. 1345–1353.

[5] D.A. Schulz. “Mouse Curve Biometrics”. In: Biometric Consortium Con-
ference, 2006 Biometrics Symposium: Special Session on Research at the.
Sept. 2006, pp. 1–6.

[6] Dorothy E. Denning. “An Intrusion-Detection Model”. In: IEEE Trans.
Softw. Eng. 13.2 (Feb. 1987), pp. 222–232.

[7] Kenichi Hayashi, Eiji Okamoto, and Masahiro Mambo. “Proposal of User
Identification Scheme Using Mouse”. In: Proceedings of the First Interna-
tional Conference on Information and Communication Security. ICICS ’97.
London, UK, UK: Springer-Verlag, 1997, pp. 144–148.

[8] Zach Jorgensen and Ting Yu. “On Mouse Dynamics As a Behavioral Bio-
metric for Authentication”. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security. ASIACCS ’11. New
York, NY, USA: ACM, 2011, pp. 476–482.

[9] Sotiris Kotsiantis and Dimitris Kanellopoulos. Discretization Techniques: A
recent survey. 2006.

