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Abstract. Automatic concept detection is a crucial aspect of automat-
ically indexing unstructured multimedia archives. However, the current
prevalence of one-per-class detectors neglect inherent concept relation-
ships and operate in isolation. This is insufficient when analyzing content
gathered from wearable visual sensing, in which concepts occur with high
diversity and with correlation depending on context. This paper presents
a method to enhance concept detection results by constructing and fac-
torizing a multi-way concept detection tensor in a time-aware manner.
We derived a weighted non-negative tensor factorization algorithm and
applied it to model concepts’ temporal occurrence patterns and show how
it boosts overall detection performance. The potential of our method is
demonstrated on lifelog datasets with varying levels of original concept
detection accuracies.

Keywords: visual lifelogging, concept detection, NTF, concept seman-
tics, wearable sensing

1 Introduction

With the maturity of lightweight sensors and computing devices, and more re-
cently the emergence of unobtrusive wearable visual sensing devices like Google
Glass or Microsoft’s SenseCam, the creation of large volumes of personal, first-
person visual media archives for quantified-self applications has become feasible.
Visual lifelogging is the term used to describe one class of personal sensing and
digital recording of all our everyday behaviour which employs wearable cameras
to capture image or video of everyday activities [1].

To manage what is in effect a new form of multimedia, the lifelog, state-of-
the-art techniques suggest that we use statistical mapping from low-level visual
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features to semantic concepts which are more appropriate to users’ understand-
ing of their lifelogs. According to the TRECVid benchmark, acceptable results
in mapping low level features to semantic concepts have been achieved already,
particularly for concepts for which there exists enough annotated training da-
ta [2]. However, unlike most other kinds of multimedia content, a wide range
of semantic concepts will usually appear in visual lifelogs because of the wide
variety of activities that people usually engage in and which are subsequently
logged and recorded. In addition, due to the wearers’ movements while captur-
ing a visual lifelog, images captured within the same event or activity may have
significant perceptual differences as, for example, users will turn around and face
a window while still being in the same room. This poses many challenges for the
organisation of wearable visual lifelogs which is essential if lifelogs are to be used
to good effect.

In addition to visual media, a rich pool of information can be collected in
wearable sensing by individuals to record their own activities and this can be
used to build applications that enhance their quality of life in many ways in-
cluding productivity, health monitoring and wellness, safety and security, social
interactions, leisure and more. However, the raw lifelog data has comparative-
ly little metadata and so performing content-based operations on the lifelog is
problematic, especially as the archives become larger. Accurately structuring a
lifelog into events [3] is considered crucial in managing visual logs for various
applications, and the identification of events and event boundaries [4] is nor-
mally the first step in processing lifelogs. However, this alone doesn’t offer a
complete solution because we need to know what the contents of events actual-
ly are and how they relate to each other. Therefore, the focus in research has
shifted towards mining deeper meanings from visual lifelogs and lifelog events
i.e. determining the semantics reflected in lifelogs.

Concepts express the semantics of media in a useful way and are usually au-
tomatically detected by providing a meaningful link between low-level features
like colours and textures, and high-level semantics. In [5], the semantic indexing
method has shown potential for relating low-level visual features to high-level
semantic concepts (such as indoors, outdoors, people, buildings, etc.) for visual
lifelogs using supervised machine learning techniques. This is then applied in
[6] to learn lifestyle traits from lifelogs collected by different users, based on
the automatically detected everyday concepts. The accuracy of a concept detec-
tor/classifier is an important factor in the provision of satisfactory solutions to
indexing visual media and it is also widely accepted that detection accuracy can
be improved if concept correlation can be utilised. The utilization of correlation
in multi-concept detection falls into two main categories: multi-label training
and detection refinement/adjusting. A typical multi-label training method is p-
resented in [11], in which concept correlations are modeled in the classification
model using Gibbs random fields. Since all concepts are learned from one inte-
grated model, the direct shortcoming is the lack of flexibility, which means the
learning stage needs to be repeated when concept lexicon is changed. Because
detection scores obtained by specific binary detectors allow independent and
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possibly specialized classification techniques to be leveraged for each concept
[14], detection refinement using post processing attracts much research interest
based on utilising concept correlations inferred from preconstructed knowledge
[12, 15] or annotation sets [16–18]. These methods highly depend on external
knowledge such as WordNet or the training data. When concepts do not exist
in the lexicon ontology or extra annotation sets are insufficient for correlation
learning (limited size of corpus or sparse annotations), these methods can not
adapt to these situations and obtain equally good results. In [19], a semantic en-
hancement method is proposed for lifelogging based on weighted none-negative
matrix factorization (WNMF), but the temporal semantics can not been applied
in this model.

Fig. 1: A variety of wearable visual lifelog devices through the ages including SenseCam
(bottom right).

In this paper, we propose an enhancement to concept detection by using
inherent inter-concept correlations. Based on the assumption that the scores
from the initial detectors are reasonably usable for some concepts similar as in
[16], our method exempts from using any extra annotation sets and includes
concept detection results as the only input. To evaluate the effectiveness of our
approach to enhancing concept detection, we employed SenseCam (shown in
Figure 1) as a wearable device to log details of users’ lives. SenseCam has a
lightweight passive camera with several built-in sensors which captures the view
of the wearer with its fisheye lens. By default, images are taken at the rate of
about one every 50 seconds while the on-board sensors can help to trigger the
capture of pictures when sudden changes are detected in the environment of the
wearer.

2 Overview of Problem and Solution

We define the research problem as follows: given particular streams of everyday
activities divided into discrete events with consecutive images each of which has
some concepts detected, the task is to use each concepts’ contextual semantics,
embedded in the detection results, to improve the overall detection performance.
We assume a lexicon of concepts L. Let {E1, E2, ..., En} be the set of event
streams in the dataset. Event Ei is represented by successive images I(i) =
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{Im(i)
1 , Im

(i)
2 , ..., Im

(i)
k }. Each image Im

(i)
j might have several concepts detected.

We assume the concepts appearing in image Im
(i)
j are represented as a confidence

vector C
(i)
j = {c(i)j1 , c

(i)
j2 ...c

(i)
jM} forM concepts. The whole set of SenseCam images

can be denoted as I = {I(1), I(2), ..., I(n)} which has dimension
∑n

i=1 ki, where
ki is the number of images in each event Ei.

Concatenating confidence vectors from all SenseCam images represents detec-
tion results as a 2-dimensional matrix, however this loses information from event
segmentation and the features of different events are not captured separately. To
utilise the temporal features reflected in different events, a tensor is employed to
formalize the above problem given its merit in representing the structure of mul-
tidimensional data more naturally than matrices. The algorithm for enhancing
concept detection proposed in this paper requires a nonnegative tensor factor-
ization (NTF) approach to capture latent feature structure. By introducing a
new dimension, NTF can preserve and model temporal characteristics of each
event and avoid significant information loss.

Fig. 2: NTF-based concept detection enhancement framework.

The procedure for concept tensor construction and factorization is illustrated
in Figure 2. As shown, our approach treats the concept detection results in a nat-
ural way which has the advantage of preserving local temporal constraints using
a series of two-dimensional slices. Each slice is a segmented part of an event and
is represented by a confidence matrix. In Figure 2, we use different colors of slices
to show that they are the segments from different events. Meanwhile, the confi-
dences of concept existences in each slice are represented by various gray levels.
The slices are then stacked one below another to construct a three-dimensional
tensor which preserves the two-dimensional characters of each segment while
keeping temporal features along the event dimension and avoids significant loss
of contextual information.

Assume each slice is a segment of N SenseCam images, each of which is
represented by a vector of M concept detection confidences (i.e. concept vectors).
The constructed concept detection tensor C has the dimensionality of N×M×L
for events with L slices in total. The task now is to modify the N × M × L
dimensional tensor C in order to keep consistency with the underlying contextual
pattern of concepts. The factorization of weighted non-negative tensor C and the
concept detection enhancement based on this WNTF method is now described.
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3 Time-Aware Concept Detection Enhancement

3.1 Weighted Non-Negative Tensor Factorization (WNTF)

As we can see from Section 2, the confidence tensor C has a dimensionality of
N ×M × L which consists of N neighborhood SenseCam images, M semantic
concepts and L time intervals. The task of WNTF is to find the latent features
to represent the three components of confidence tensor C. The tensor can then
be approximated by the Tucker Decomposition (TD) [8] as

C ≈ G×1 U
(1) ×2 U

(2) ×3 U
(3)

where G ∈ RR×S×T , U (1) ∈ RN×R, U (2) ∈ RM×S and U (3) ∈ RL×T . The
operator ×i(i = 1, 2, 3) denotes the tensor-matrix multiplication operators with
the subscript i specifying which dimension of the tensor is multiplied with the
given matrix. In Tucker Decomposition, the high-order tensor is factorized into
a core tensor G and a factor matrix U (i) along each mode i [9]. In the TD model,
each element in C is approximated by

Ĉijk =
R∑

r=1

S∑
s=1

T∑
t=1

GrstU
(1)
ir U

(2)
js U

(3)
kt

As a particular case of the general Tucker Decomposition, the Canonical De-
composition (CD) [10] is derived from the TD model by constraining that each
factor matrix has the same number of columns, i.e., the length of latent features
has a fixed value of K. By setting G as a diagonal tensor

Gijk =

{
1, if i = j = k
0, else

the CD model simplifies the approximation of tensor C as a sum of 3-fold outer-

products with rank-K decomposition Ĉ =
∑K

f=1 U
(1)
·f ⊗U

(2)
·f ⊗U

(3)
·f , which means

that each element Ĉijk =
∑K

f=1 U
(1)
if U

(2)
jf U

(3)
kf .

The CD approximation factorization defined above can be solved by opti-
mizing the cost function defined to qualify the quality of the approximation.
Different forms of cost function and corresponding optimization can be applied
to this problem. Euclidian distance can be used to define the cost function, which
has the form of F = 1

2‖C − Ĉ‖
2
F . However, in factorizing the confidence tensor,

the weighted measure is more suitable since detection performance differs due
to the characteristics of concepts and quality of the training set. To distinguish
the contribution of different concept detectors to the cost function, the weighted
cost function is employed as

F =
1

2
‖C − Ĉ‖2W =

1

2
‖
√
W ◦ (C − Ĉ)‖2F

=
1

2

∑
ijk

Wijk(Cijk −
K∑

f=1

U
(1)
if U

(2)
jf U

(3)
kf )2

s.t. U (1), U (2), U (3) ≥ 0 (1)
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where ◦ denotes element-wise multiplication, W = (Wijk)N×M×L denotes the
weight tensor and ‖ · ‖2F denotes the Frobenius norm, i.e., the sum of squares of
all entries in the tensor. The nonnegative constraints guarantees each component
described by U (1), U (2), U (3) are additively combined.

A gradient descent method can be applied for optimizing this problem, im-
plemented by updating each matrix U (t) in the opposite direction to the gradient
at each iteration through

U (t) ← U (t) − αU(t) ◦ ∂F/∂U (t), t = 1, 2, 3 (2)

To solve the partial differential ∂F/∂U (t), we can rewrite Equation (1) as

F =
1

2
< C − Ĉ, C − Ĉ >W =

1

2
< C −

K∑
f=1

⊗3
t=1U

(t)
·f , C −

K∑
f=1

⊗3
t=1U

(t)
·f >W

where < X,Y > denotes the inner product of two 3-way tensors [20] which is
defined as < X,Y >=

∑
ijk xijkyijk. Hence we conduct the derivative

dF =
1

2
d < C − Ĉ, C − Ĉ >W =< W ◦ (C − Ĉ),−d(

K∑
f=1

⊗3
t=1U

(t)
·f ) > (3)

Without losing generality, we focus on the update of the fth column in U (1) in
the following derivation procedure and the update rule for other columns and
matrices can be obtained in a similar manner. By taking the differential with

respect to U
(1)
·f , we can obtain the derivative of Equation (3) as

dF (U
(1)
f ) =< W ◦ (C − Ĉ),−d(U

(1)
·f )⊗ U (2)

·f ⊗ U
(3)
·f >

=< W ◦ Ĉ, d(U
(1)
·f )⊗ U (2)

·f ⊗ U
(3)
·f >

− < W ◦ C, d(U
(1)
·f )⊗ U (2)

·f ⊗ U
(3)
·f >

Hence the differential with respect to an element U
(1)
if can be represented as

∂F/∂U
(1)
if = < W ◦ Ĉ, ei ⊗ U (2)

·f ⊗ U
(3)
·f > − < W ◦ C, ei ⊗ U (2)

·f ⊗ U
(3)
·f >

=
∑
jk

(W ◦ Ĉ)ijkU
(2)
jf U

(3)
kf −

∑
jk

(W ◦ C)ijkU
(2)
jf U

(3)
kf

where ei is the ith column of the identity matrix and has the same dimension

as U
(1)
·f . By employing αU(1) as the form α

U
(1)
if

= U
(1)
if /

∑
jk(W ◦ Ĉ)ijkU

(2)
jf U

(3)
kf ,

where / denotes element-wise division, and substituting into Equation (2), we
obtain the multiplicative updating rule [21] as

U
(1)
if ← U

(1)
if

∑
jk(W ◦ C)ijkU

(2)
jf U

(3)
kf∑

jk(W ◦ Ĉ)ijkU
(2)
jf U

(3)
kf

The updating of U (2) and U (3) can be achieved in a similar manner. Note that
it is not hard to prove that under such updating rules, the cost function in
Equation (1) is non-increasing in each optimization step.
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3.2 WNTF-Based Concept Detection Enhancement

To obtain a reconstruction of the underlying semantic structure that we can
mine for co-occurrences and so enhance raw concept detection performance, the
weights must be set in terms of concept accuracy. Because each confidence value
Cijk in tensor C denotes the probability of concept Cj occurring in the image,
estimating the existence of Cj is more likely to be correct when Cijk is high
enough. Under this premise [16], we used the concept detection enhancement as
in Algorithm 1:

Algorithm 1: WNTF-based detection enhancement

Input:
C = (Cijk)N×M×L: original confidence tensor, threshold
Output:
Cnew ∈ <N×M×L: adjusted confidence tensor for C
Data:
W ∈ <N×M×L: weight tensor
U (1) ∈ <N×K , U

(2) ∈ <M×K , U
(3) ∈ <L×K

1 begin
2 Normalize C at each concept slice:

C(:, j, :) = normalize(C(:, j, :)), 1 ≤ j ≤M ;

3 Initialized U (1), U (2), U (3) randomly with small numbers;
4 for each Cijk in C do
5 C′ijk = Cijk,Wijk = 1 if Cijk ≥ threshold;

C′ijk = 0,Wijk = w,w ∈ (0, 1); Otherwise;

6 repeat

7 U
(1)
if ← U

(1)
if

∑
jk(W ◦ C′)ijkU (2)

jf U
(3)
kf /

∑
jk(W ◦ Ĉ′)ijkU (2)

jf U
(3)
kf

8 U
(2)
jf ← U

(2)
jf

∑
ik(W ◦ C′)ijkU (1)

if U
(3)
kf /

∑
ik(W ◦ Ĉ′)ijkU (1)

if U
(3)
kf

9 U
(3)
kf ← U

(3)
kf

∑
ij(W ◦ C

′)ijkU
(1)
if U

(2)
jf /

∑
ij(W ◦ Ĉ′)ijkU

(1)
if U

(2)
jf

10 until Converges;
11 for each C′ijk ∈ [C′]0 do

12 C′ijk =
∑K

f=1 U
(1)
if U

(2)
jf U

(3)
kf

13 Return Cnew = [average(C′ijk, Cijk)]N×M×L;

Firstly, each concept-oriented slice C(:, j, :) of tensor C is normalized at Max−
Min scale [14] for each specific concept j, which is indeed a lateral slice in the
tensor visualized by Figure 2. This is then followed by constructing a new sparse
tensor C ′ by thresholding C, whose element is

C ′ijk =

{
Cijk, if Cijk ≥ threshold;
0, otherwise.

The rationale for this is to retain elements with high confidence as “seeds” and
use the contextual information modeled by non-negative tensor factorization to
predict other concepts in correlation with these seed concepts. A sparse confi-
dence tensor C ′ is achieved and we denote the non-zero element set in C ′ as
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[C ′]+. Meanwhile, the set [C ′]0 can be used to denote zero elements in C ′ which
need to be estimated from [C ′]+. C ′ is then factorized using the updating al-
gorithm described in Section 3.1. This involves the iterative optimization of the
cost function defined in Equation (1). In the optimization step, we configure the
settings of weights as Wijk = 1 if C ′ijk ∈ [C ′]+, otherwise Wijk ∈ (0, 1). In this

step, the component matrices of U (1), U (2) and U (3) are returned as an estimate
of the contextual structure of C ′.

Finally, the approximation of elements in [C ′]0 can be calculated using the

refactorized features as
∑K

f=1 U
(1)
if U

(2)
jf U

(3)
kf , in which each component is the la-

tent factor learned from the sparse tensor C ′. The new confidence values for
elements in [C ′]0 form an estimate of concept detection to adjust the original
detection result by averaging the original confidence and the new estimated val-
ue.

4 Results and Discussion

4.1 Experimental Setup and Dataset

To assess the performance of our algorithm, we used a set of 85 everyday con-
cepts and a dataset including event samples of 23 activity types collected from 4
SenseCam wearers consisting of 12,248 SenseCam images [13]. Concept detectors
with different accuracy levels were simulated and the metrics of AP and MAP
were calculated for concepts based on a manual groundtruth. Different concept
detection accuracies were provided in the dataset by varying the mean of the
positive class µ1 in the range [0.5...10]. The details of simulation are described
in [13], following on from the work by Aly in [7]. For each setting of parameters,
we executed 20 repeated runs to avoid random performance and the averaged
concept AP and MAP were both calculated. The accuracy of the detection of
original concepts is simulated with various accuracy levels and the MAP s are
shown in Table 1 (first row) with the increased values of simulation parameter
µ1. The rationale for this is to test the performance of our algorithm at differ-
ent concept detection accuracies. WNTF-based enhancement is carried out as
described in Section 3 with concept detection confidence as the only input.

4.2 Detection Enhancement Analysis

Since averaging MAP over different detection accuracies is meaningless, pairwise
comparison is depicted in Table 1 at different µ1 values where detection enhance-
ment (K = 50, threshold = 0.3) is applied. As shown by the improvement in
Table 1, our algorithm can self-learn the contextual semantics of concepts and
enhance the overall detection performance for various original detection accu-
racy levels. The highest overall improvement of 10.59% is achieved at µ1 = 2.0
when the original detection performance is neither too low nor too high. The
improvement is shown to be significant and robust at various original detection
accuracy levels in Table 1.
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Table 1: Improved concept detections for various original accuracies.

Value of µ1 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0

Original MAP 0.0946 0.1570 0.2645 0.4124 0.5797 0.7313 0.9251 0.9891

Adjusted MAP 0.0959 0.1640 0.2874 0.4560 0.6242 0.7744 0.9410 0.9912

Improvement 1.40% 4.48% 8.65% 10.59% 7.69% 5.89% 1.72% 0.21%

The less significant performance of our enhancement approach at µ1 = 5.0
makes sense as the initial detection accuracy is good enough. In this case, there
is no space to improve detection accuracy, which is also the case when µ1 = 4.0
at which the original MAP has already reached 0.9. However, our approach
can still enhance detection results with an improvement of 1.72% at µ1 = 4.0.
On the other hand, when the original detection accuracy is too low, as shown
in Table 1 at µ1 = 0.5, low accuracy detected elements can be selected and
treated as “seed” candidates in our algorithm. Though this is an extreme, which
is impractical in real world applications, our approach still works well with the
average improvement of 1.40% achieved.

In many lifelog application scenarios, concept detection confidences need to
be binarized to decide the existence or absence of concepts, instead of using
the raw concept detection confidence values. Figures 3 and 4 illustrate the F-
score, Recall-Precision improvement at different binarization levels thresholdbin,
after applying our enhancement algorithm, taking the two concepts ‘inside bus’
and ‘building’ as instances. To consider the role of different filtering values of
threshold in Section 3.2, we assign threshold = 0.5 and threshold = 0.8 in
Figure 3 and Figure 4 respectively. As shown by these two figures, the curves for
two concepts are both enhanced. Since we use threshold = 0.5 in implementing
the WNTF-based method in Figure 3, a large proportion of the adjusted concept
detection confidences are below this threshold value. Hence the enhancements
are significant for the parts of curves when the binarization thresholdbin <
0.5. In this case, if we choose the binarizing threshold at higher values such
as thresholdbin ≥ 0.5, the use of WNTF will affect the result less significantly
because most of the adjusted confidences are less than thresholdbin and the
corresponding concepts are still decided not to be present in the SenseCam
images. Meanwhile, if we choose a higher value of threshold = 0.8, a larger
range of enhancement for Recall and Precision can be achieved as shown by the
curves in Figure 4.

Our algorithm has the advantage of enhancing a large number of concepts
as demonstrated in Figure 5. In Figure 5, the performances of WNTF-based
(K = 50) and WNMF-based [19] methods are compared across all 85 concept
AP s using the same threshold. The detection of around 60 concepts are improved
by our algorithm at µ1 = 1.5. In [19], the advantage of WNMF-based method has
been demonstrated against ontological method for lifelogging concept enhance-
ment. However, by utilising the temporal features, the WNTF-based method is
more effective and the overall improvement is significant across all 85 concepts.
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Fig. 3: F-score enhanced at threshold =
0.5 (for ‘inside bus’ and ‘building’).

Fig. 4: Recall-precision curve enhanced
at threshold = 0.8 (for ‘inside bus’ and
‘building’).

Fig. 5: Improvement comparison over all concepts.

4.3 Impact of Parameters

The impact of parameters on enhancement performance is demonstrated in Fig-
ures 6 and 7, in which improvement is depicted at two different concept detection
accuracies, determined by µ1 = 1.5 and µ1 = 2.5 respectively. In Figure 6, re-
sults for all settings of K ∈ [10, ..., 80] and threshold ∈ [0.1, ..., 0.9] are shown.
All cases in Figure 6 are achieved by executing the algorithm in 20 runs and the
averaged MAP improvement across all 85 concepts are obtained. We notice the
robustness of the WNTF-based enhancement algorithm through the improve-
ments achieved over different configurations of K and threshold.

As shown in Figure 6, detection performance is improved in most cases when
the value of threshold is not very high. The reason is because when threshold is
chosen as too high, there will be fewer correct concept detection results chosen,
hence the potential for overall performance improvement is lessened. As shown
in Figure 6, the best overall performances are achieved when threshold = 0.3 for
µ1 = 1.5. In Figure 7, for which the original MAP is better as shown in Table 1,
more correctly detected concepts can be used when higher threshold is chosen
to give better estimates on the others. That is why threshold = 0.5 achieves the
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Fig. 6: MAP improvement with various
parameter configures (µ1 = 1.5).

Fig. 7: Impact of feature number K
(µ1 = 2.5).

best performance for Figure 7. The choice of “noisy” concepts can also degrade
the improvement, as depicted when threshold is small, say, threshold = 0.1 in
both figures. In these cases, erroneous detection results are likely to be chosen
to [C ′]+ in the thresholding procedure which contaminates performance.

The impact of selected latent features is shown in Figure 7 in which the
improvement in detection for different threshold values are depicted across dif-
ferent K values. With the increase in K, performance improves gradually and
converges at stable values. For poorly-chosen threshold values such as 0.1 and
0.9, the performance converges earlier, which reduces the potential for improve-
ment if we increase the number of features. This implies that higher dimension-
ality is necessary to characterize the semantic features of concepts when more
correct concept detection results are selected as “seeds” in the enhancement. For
all settings of threshold, the performance keeps increasing and usually achieves
satisfactory enhancement when about 50 latent features are selected.

5 Conclusions and Future Work

We present an algorithm to improve performance of semantic concept detection
for wearable visual sensing. Based on non-negative tensor factorization, the al-
gorithm models concept appearance patterns through partial concept detection
results, which have better accuracy. For this purpose, we derived a weighted
factorization method for updating latent features representing the structure of
a multi-way confidence tensor. Based on this weighted nonnegative tensor fac-
torization, local temporal constraints in each event segment are retained and
reflected for the time-aware enhancement which uses the concept co-occurrence
and re-occurrence patterns. The confidences of less accurate concept detection-
s are then estimated and adjusted to enhance performance of overall concept
detection. This method has been evaluated in experiments on datasets with var-
ious original detection accuracies. Since the factorization of time-aware WNTF
also models the temporal structure of events, the application of this approach
to event structuring and detection is a promising suggestion for future work.
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